Signal Processing Engine (SPE)
Programming Environments Manual:

A Supplement to the EREF

SPEPEM
Rev. 0
01/2008

freescale”

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

+1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: SPEPEM
Rev. 0, 01/2008

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org. The
PowerPC name is a trademark of IBM Corp. and is used under license. IEEE 754 is a
registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
(IEEE). This product is not endorsed or approved by the IEEE. All other product or
service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2008. Printed in the United States of
America. All rights reserved.

~ BUILTON |

freescale

semiconductor

Paragraph
Number

11

12
121
1211
1.3

21
22
221
222
223

2231
2232
2233
2234

31

3.2

321
3211
3212
3.2.2
3221
32211
32212
32213
323

3.3

331

Contents

Page
Title Number
About This Book

Chapter 1

Overview
(@Y= VT SRR 1-1
REGISIEr MOGEL ... e e e e 1-2
I S S {0 (0] TSR 1-3
Embedded Vector and Scalar Floating-Point INStructions.............ccccveeenecinnecnnen. 1-6
SPE and Embedded Floating-Point Exceptions and INtEITUPLSoeveveeveereeieceienenn. 1-6

Chapter 2

SPE Register Model
(@7 VT SR 2-1
REGISIEr MOGEL ... e e e 2-1
General-Purpose REGISLErS (GPRS)........ooviieieeeie et 2-3
Accumulator REJISIEN (ACC) ..ottt e s 2-4
Signal Processing Embedded Floating-Point Status and

Control Register (SPEFSCR)cooiiieiiese ettt 2-5
Interrupt Vector Offset REGISLENS (IVORS)eeivieieiieeeeie et 2-8
Exception Bit in the Exception Syndrome Register (ESR)cccooveeveevieninieenens 2-8
Condition REGISLEN (CR)coveeieieeeeeie ettt et s esaesre e e enneas 2-8
SPE Available Bit in the Machine State Register (MSR)cccoeoevieveiiincceeee 2-9

Chapter 3

SPE and Embedded Floating-Point Instruction Model

(@Y= VT SRS 31
SPE INSITUCHION SELeieeece ettt ettt e e esae s e se e e e e neenseeneeeneeneens 31
SPE Data FOMMELS. ..ottt sttt e ne e sr e embe e es 3-2
INtEGEI FOIMELo e 3-2
Fractional FOMMEL...........coieiieeee ettt sttt e sr e se e 3-2
ComputatiONal OPEIELIONS........c.eieeueereeiertiieie ettt se et sr e ere e es e e 3-2
Data Formats and RegiSter USAJE........occeiririeiiiecie et e e 34
SIGNEA FraCiONScouiiiieiieeie ettt s st 3-4
SPE Integer and Fractional OPerationsccoereeirneiereene s 3-4
I S (0 (0] 3-5
SPE Simplified MNEMONICS.........coiiiiieieeie e 311
Embedded Floating-Point INSIrUCtION Set..........cooiiiiiiiecieece e 311
Embedded Fl0ating-Point OPerations.............ccoeeereeerieeiereee e 3-12

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor iii

Contents

Paragraph Page
Number Title Number
3311 OpErational MOUES..........coeiireeiieeee et 3-12
3312 Floating-Point Datal FOIMELS...........cccuireiieieieeie e s 3-12
3313 Overflow and UNderfloWccooiiiiireee e e 3-13
3314 [EEE Std 754™ COMPHAINCE.......coeieiieitire ettt 3-14
3315 Sticky Bit Handling for Exception Conditions.............ccoveierenenene e 3-15
3.3.1.6 Implementation OPLioNS SUMMEIYcoeieierierereere et 3-15
3.3.1.7 Saturation, Shift, and Bit ReVErSe MOAEIS..........oooiviueeeiiieeee e 3-15
33171 SBEUIBLTION ...ttt ettt s et sn e er e er et en e 3-16
33.17.2 SHIFELEFL... et et e e e 3-16
33.1.7.3 BIT REVEISE ... e e 3-16
332 Embedded Vector and Scalar Floating-Point INStructions............c.coeeveveeeniecieneee 3-16
333 LOB0/SEOrE INSITUCLIONS........cevieeeiie ettt sttt nas 3-18
3331 Floating-Point Conversion MOEIS............cuiiieiineiie e 3-18
Chapter 4
SPE/Embedded Floating-Point Interrupt Model
4.1 OVEIVIBIW ...ttt ettt ettt a e et ee bbb et es e ee et em et eb et eb e e e ennennas 4-1
4.2 SPE INEEITUPDES ...ttt et er e sr e e e nneenr e 4-1
42.1 INterrupt-Related REGISLENS........couiiiiie et 4-1
4.2.2 ALGNMENE TNEEITUPL ...t e sr e 4-2
4.2.3 SPE/Embedded Floating-Point Unavailable Interrupt............cccoovereninecenenieiecieens 4-2
4.2.4 SPE Embedded Floating-Point INtEITUPES..........coeiireiie e 4-3
4241 Embedded Floating-Point Data INEETUPL............ooeerirerere e 4-3
4.2.4.2 Embedded Floating-Point Round INTEIMTUPLcocoeiiiiiinie e 4-3
4.3 INEEITUPDE PrIOMTTIES. ...ttt e et sr e 4-4
4.4 EXCEPLION CONDITIONS.c.eiieiie ittt ettt se e sr e eb e ene e enes 4-4
44.1 Floating-Point EXCeption CONAItIONSccueiiiiiireie s 4-5
44.1.1 Denormalized ValueS 0N INPUL.........ccuoiiiiiiice e 4-5
44.1.2 Embedded Floating-Point Overflow and Underflow...........ccceviiiiiniiinieciineee, 4-5
44.1.3 Embedded Floating-Point Invalid Operation/Input Errors...........cccocoeeveneeinneene. 4-5
44.1.4 Embedded Floating-Point ROUN (INEXACL)ccevermrieeiereee e 4-6
44.15 Embedded Floating-Point Divide Dy Zero..........ccooeiiiiiiinicesceeeese e 4-6
44.1.6 DEfAUIT RESUITS.......eeieeeeeee et e e bbb e 4-6
Chapter 5
Instruction Set
51 I\ [o] 7= 1 o] o TP OR PRSP 5-1
52 INSEIUCION FTEIAS ... e e e 5-2
5.3 Description of INStruction OPEratioNS.coerererireeire e 5-2

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

iv Freescale Semiconductor

Paragraph
Number

53.1
5311
5312
53.2
5321
53211
53212
53213
53214
5322
5323
5324

5.3.25
5.3.2.6
5.3.2.7

533
534
5.4

B.1
B.2
B.3

Contents

Page

Title Number

SPE Saturation and Bit-Reverse MOdelS..........coeoriiiii e 5-4
I LU (] o] o TS 5-4
BIt REVEISE. ...ttt sttt r e st e st e et e e e s e enaesreense e e enne s 55
Embedded Floating-Point Conversion MOdelS............ccoiiiiiieincieeee e 5-5
Common Embedded Floating-Point FUNCLIONScccouiiiireiiece e 5-6
32-Bit NaN Or INfINITY TESE......ccviieieie e 5-6
Signal Floating-POiNt EITOTooiiieiee et 5-6
ROUNA @32-Bit VAIUE ...ttt 5-6
ROUNA @64-Bit VAIUE ..ottt 5-7

Convert from Single-Precision Floating-Point to Integer Word with Saturation 5-7
Convert from Double-Precision Floating-Point to Integer Word with Saturation... 5-9
Convert from Double-Precision Floating-Point to Integer Double

WOrd With SEEUFELION.......ccueeeeieceieeeeee et enes 5-10
Convert to Single-Precision Floating-Point from Integer Word with Saturation .. 5-11
Convert to Double-Precision Floating-Point from Integer Word with Saturation. 5-12
Convert to Double-Precision Floating-Point from Integer Double

WOrd With SEEUFELION.......ccueeieieceeeeee et enes 5-13
Integer Saturation MOGEIS..........ooiiiiiiee e e e 5-14
Embedded Floating-Point RESUILSccooiiiii e 5-14

LS o 1] R OSSR 5-15
Appendix A

Embedded Floating-Point Results Summary

Appendix B
SPE and Embedded Floating-Point Opcode Listings

Instructions (Binary) By MNEMONIC.........cccooiiiiiiereie i e B-1
Instructions (Decimal and Hexadecimal) by Opcode...........cooeieniiiniienincceeceen B-9
INSEFUCTIONS DY FOMMN ... e e B-16

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor '

) 4

Contents

Paragraph Page
Number Title Number

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

vi Freescale Semiconductor

Figure
Number

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6

3-1
3-2
3-3
4-1
51
5-2
5-3
0-1
5-4
5-5
5-6
S-7
5-8
59
5-10
5-11
5-12
5-13
5-14
5-15
5-16
S5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27

Page
Title Number
SPE REQISIEr IMOUE! ...ttt ettt se e et e n s 1-2
TwO-Element VECtOor OPEraLiONS..........cciiieieeeie sttt sr e s nn s 1-3
SPE REQISIEr IMOUE! ...ttt st se e eb e e nn e 2-1
Integer, Fractional, and Floating-Point Data Formats and GPR Usage...........ccoeveieeieneeeeene. 2-2
32- and 64-Bit Register Elements and Bit-Numbering Conventions.............ccocceovveeeeneeinenees 2-3
General Purpose Registers (GPRO—GRP3L)cccoiiiiieiie et 2-4
ACCUMUIBEON (ACC) ...ttt ettt e r e ee e e bttt sr e et e e sbe e e s nn e 2-4
Signal Processing and Embedded Floating-Point Status and Control
REGISLEr (SPEFSCR)ccueieieeiiee ettt sttt et st e e et ea e ae e ene s 2-5
TwOo-Element VECLOr OPEraLiONS..........cccoueririeriereeiiriere et sre e ene e 3-3
Integer and Fractional OPEraLiONS..........c.ciiieeirieeieie et e sn e 3-5
Floating-Point Datal FOMMELccciieiiieeiereee e e s 3-12
SPE Interrupt-Related REQISIENSoouiiieieeee e 4-1
INSEUCE 0N DESCITPIION. ...ttt ettt s sr e er et eb e s e nnas 5-15
Vector ADSOIULE VAlUE (BVADS)ooviiiiiiicese ettt 5-68
Vector Add Immediate Word (EVaddiW).........ccuoreieieieeree e s 5-69
Vector Add Signed, Modulo, Integer to Accumulator Word (evaddsmiaaw)...........c.......... 5-70
Vector Add Signed, Saturate, Integer to Accumulator Word (evaddssiaaw)cc.e..... 5-71
Vector Add Unsigned, Modulo, Integer to Accumulator Word (evaddumiaaw)................. 5-72
Vector Add Unsigned, Saturate, Integer to Accumulator Word (evaddusiaaw) 5-73
VeCtor Add WOrd (EVAAAW)cueiiieieie et s 5-74
VECTOr AND (BVANA)eieieeiee ettt sr e er e e 5-75
Vector AND with Complement (VaNdC)cueriirieiieee e 5-76
Vector Compare EqQual (BVCMPEQ)vooverueeiiieeiereeiee ettt s s 5-77
Vector Compare Greater Than Signed (EVCMPOLS)......ovveverirerierieeiereeie e 5-78
Vector Compare Greater Than Unsigned (EVCMPGEU)ovvirererieirneeie e 5-79
Vector Compare Less Than Signed (6VCMPIES)oveeeieiieiinecieee e 5-80
Vector Compare Less Than Unsigned (eVCMPITU) ...c..ooveeriiiiireeeeeee e 5-81
Vector Count Leading Signed Bits WOrd (EVCNTISW)......ccuovvirieiinicieecie e 5-82
Vector Count Leading ZerosS Word (EVCNEIZW)c.eeeeiiieiieciee e 5-83
Vector Divide Word SIgNed (EVAIVIVS)c.ooeeiiriiieieieeie et 5-84
Vector Divide Word UNSIgNed (EVAIVIWUY)cc.ueiiiiiiiecie e 5-85
VECtOr EQUIVAIENT (EVEOV)eieieieieiie ettt sttt et e 5-86
Vector Extend Sign Byte (EVEXTSD).......coiiiiiieee e 5-87
Vector Extend Sign Half WOord (EVEXISN)ooveiiiiiie e 5-88
evldd Resultsin Big- and Little-Endian MOGES...........oooeieiiiiiiieceee e 5-112
evlddx Resultsin Big- and Little-Endian MOdES............ccoeviieriinenineceeeee e 5-113
evldh Resultsin Big- and Little-Endian MOGES..........coooveiiiiiiiiiiceee e 5-114
evldhx Resultsin Big- and Little-Endian MOES............ccoerieriniiinecie e 5-115
evldw Resultsin Big- and Little-Endian MOdES............ccooiiiiiiieiieniereee e 5-116
evldwx Resultsin Big- and Little-Endian MOdES...........ccoovviiiiiiciiicece e 5-117

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor vii

Figures

Figure Page
Number Title Number
5-28 evlihhesplat Resultsin Big- and Little-Endian MOGESoooieiiiiiinecieeee e 5-118
5-29 evlihhesplatx Resultsin Big- and Little-Endian MOdES..........cccoooeiiiiiiniciiece e 5-119
5-30 evlihhossplat Resultsin Big- and Little-Endian MOdES...........c.ooeiereiinine s 5-120
5-31 evlihhossplatx Resultsin Big- and Little-Endian MOdES.............ccceveienineninecineciee 5-121
5-32 evlihhousplat Resultsin Big- and Little-Endian Modes............cooiiiinininincciceee, 5-122
5-33 evlihhousplatx Resultsin Big- and Little-Endian MOdES............ccooeieriiinincninecieeee, 5-123
5-34 eviwhe Results in Big- and Little-Endian MOdES............ccooviiiiiiciiicenie e 5-124
5-35 eviwhex Resultsin Big- and Little-Endian MOdES..........cccooeeiiiicinniienie e 5-125
5-36 eviwhos Resultsin Big- and Little-Endian MOdES..........cccoiiiiiiciiiee e 5-126
5-37 eviwhosx Resultsin Big- and Little-Endian MOdES...........ccoceeiiiicieiciince e 5-127
5-38 eviwhou Resultsin Big- and Little-Endian MOAEScooeeiiiecieiieee e 5-128
5-39 eviwhoux Resultsin Big- and Little-Endian MOdEScccciiiiiiiicniesce e 5-129
5-40 eviwhsplat Resultsin Big- and Little-Endian MOAESccooeiiieniiinineseeee e 5-130
5-41 eviwhsplatx Resultsin Big- and Little-Endian MOdES. ..o 5-131
5-42 eviwwsplat Resultsin Big- and Little-Endian MOdEesS...........ccooveiiiiininciicceece e 5-132
5-43 eviwwsplatx Resultsin Big- and Little-Endian MOdES...........ccocveiriciininienieceeeeees 5-133
5-44 High Order Element Merging (EVMEr gehi)ooeieiereresere e 5-134
5-45 High Order Element Merging (eVMEergehilo)cocooeieieiiniecireee e 5-135
5-46 Low Order Element Merging (EVMer gelo)c.ooeieierire e 5-136
5-47 Low Order Element Merging (evmer geloni) ... 5-137
5-48 evmhegsmfaa (EVEN FOMM) ... 5-138
5-49 evmhegsmfan (EVEN FOM).......ccoie et 5-139
5-50 evmhegsmiaa (EVEN FOM) ..ot e 5-140
5-51 evmhegsmian (EVEN FOMM) ...t 5-141
5-52 evmhegumiaa (EVEN FOIM) ..ot 5-142
5-53 evmhegumian (EVEN FOMM)coiiee et e 5-143
5-54 Even Multiply of Two Signed Modulo Fractional

Elements (to Accumulator) (eVMNESMT)ooiiiiiiieee e 5-144
5-55 Even Form of Vector Half-Word Multiply (evmhesmfaaw)ccooeoeriiininieniniecieens 5-145
5-56 Even Form of Vector Half-Word Multiply (evmhesmfanw)..........cccocceoeviiiiinieninieceens 5-146
5-57 Even Form for Vector Multiply (to Accumulator) (evmhesmi)cccceveveveneieniccienene 5-147
5-58 Even Form of Vector Half-Word Multiply (evmhesmiaaw)cccoceoereneninieninieciens 5-148
5-59 Even Form of Vector Half-Word Multiply (evmhesmianw)cccceoeviieninieniniecieens 5-149
5-60 Even Multiply of Two Signed Saturate Fractional

Elements (to Accumulator) (EVMNESSE)cc.oiiiiieiieeireee s 5-150
5-61 Even Form of Vector Half-Word Multiply (evmhessfaaw)...........cccoverenineninieiiniecieens 5-151
5-62 Even Form of Vector Half-Word Multiply (evmhessfanw)cccccoeviiiiinciniccienene 5-152
5-63 Even Form of Vector Half-Word Multiply (evmhessiaaw)cccceveierineniniecinieeieens 5-153
5-64 Even Form of Vector Half-Word Multiply (evmhesSsianw)..........cccceveienineninieninieeieens 5-154
5-65 Vector Multiply Half Words, Even, Unsigned, Modulo,

Integer (to Accumulator) (EVMNEUMI)oeiiiiiie s 5-155

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

viii Freescale Semiconductor

Figures

Figure
Number Title
5-66 Even Form of Vector Half-Word Multiply (evmheumiaaw)cccccoeeevrienennns
5-67 Even Form of Vector Half-Word Multiply (evmheumianw)ccccoeenieienen.
5-68 Even Form of Vector Half-Word Multiply (evmheusiaaw)c.cccoveveinnecnenes
5-69 Even Form of Vector Half-Word Multiply (evmheusianw)cccceovceeirncnenns
5-70 evmhogsmfaa (Odd FOIM) ..o
5-71 evmhogsmfan (Odd FOrM).........ccueeeiie e
5-72 evmhogsmiaa (Odd FOrM) ..o e
5-73 evmhogsmian (Odd FOIM) ..o e
5-74 evmhogumiaa (Odd FOIM)ceeiiieiie e
5-75 evmhogumian (Odd FOIMM)ccuiieiie e e
5-76 Vector Multiply Half Words, Odd, Signed, Modulo,

Fractional (to Accumulator) (eVvmMhOoSMI)......ccoiiiiiiiiiie e
5-77 Odd Form of Vector Half-Word Multiply (evmhosmfaaw)c.ccoceeeenieeienenne
5-78 Odd Form of Vector Half-Word Multiply (evmhosmfanw)ccoceoeenieeienenne
5-79 Vector Multiply Half Words, Odd, Signed, Modulo,

Integer (to Accumulator) (EVMNOSMI)ccuceuiiiiiiieeee e
5-80 Odd Form of Vector Half-Word Multiply (evmhosmiaaw)ccccceeeverennnneee
5-81 Odd Form of Vector Half-Word Multiply (evmhosmianw)ccccceeevirennnneee
5-82 Vector Multiply Half Words, Odd, Signed, Saturate,

Fractional (to Accumulator) (eVMNOSSE)........ccviiiiiiiiii e
5-83 Odd Form of Vector Half-Word Multiply (evmhossfaaw)..........cccceveverincninnneee
5-84 Odd Form of Vector Half-Word Multiply (evmhossfanw)..........ccccoeevenincnnnneees
5-85 Odd Form of Vector Half-Word Multiply (evmhossiaaw)ccccoveverincninnneee
5-86 Odd Form of Vector Half-Word Multiply (evmhossianw)..........ccccevenenincnienneee
5-87 Vector Multiply Half Words, Odd, Unsigned, Modulo,

Integer (to Accumulator) (EVMNOUMI) ...c.ceuiiiiiiieee e
5-88 Odd Form of Vector Half-Word Multiply (evmhoumiaaw)..........ccccceeevireninnnee
5-89 Odd Form of Vector Half-Word Multiply (evmhoumianw)cccccoveeeinneenenns
5-90 Odd Form of Vector Half-Word Multiply (evmhousiaaw)ccccceeveerirneenenes
5-91 Odd Form of Vector Half-Word Multiply (evmhousianw)ccccevreiiniecienns
5-92 Initialize ACCUMUIBLOr (EVIMIA)c.ciieeiie et s

5-93 Vector Multiply Word High Signed, Modulo,

Fractional (to Accumulator) (evmMWHhSMI)ooiiiiiiiie e

5-94 Vector Multiply Word High Signed, Modulo,

Integer (to Accumulator) (EVMWRNSM)oueiuiiiiiiieeee e

5-95 Vector Multiply Word High Signed, Saturate,

Fractional (to Accumulator) (VMWASSE).......coviiiiiiiiiie e

5-96 Vector Multiply Word High Unsigned, Modulo,

Integer (to Accumulator) (EVMWRNUMI) .o

5-97 Vector Multiply Word Low Signed, Modulo, Integer and

Accumulate in Words (VMWISMIQaW)ccereriiirieeieece e

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Page
Number

Freescale Semiconductor

Figure
Number

5-98
5-99
5-100

5-101
5-102

5-103
5-104
5-105
5-106
5-107
5-108
5-109
5-110
5-111
5-112
5-113
5-114
5-115
5-116
5-117

5-118
5-119

Figures

Page
Title Number
Vector Multiply Word Low Signed, Modulo, Integer and
Accumulate Negative in Words (eVMWwISMIANW)coeieeirieienecie e 5-190
Vector Multiply Word Low Signed, Saturate, Integer and
Accumulate in Words (EVMWISSI QW)ccueririerieriire i 5-192
Vector Multiply Word Low Signed, Saturate, Integer and
Accumulate Negative in WOords (eVMWISSIANW ..o 5-193
Vector Multiply Word Low Unsigned, Modulo, Integer (evmwlumi)ccccooeeinivenennns 5-194
Vector Multiply Word Low Unsigned, Modulo, Integer and
Accumulate in Words (VMWIUMIGAW)oouiriiieriire i 5-195
Vector Multiply Word Low Unsigned, Modulo, Integer and
Accumulate Negative in Words (eVmwIUMIANW)cocoeereeinieienee e 5-196
Vector Multiply Word Low Unsigned, Saturate, Integer and
Accumulate in Words (EVMWIUSIAW)........ccuoiiriiieiiee i 5-197
Vector Multiply Word Low Unsigned, Saturate, Integer and
Accumulate Negative in Words (eVMWIUSIANW)cccoiiriririeeierece e 5-198
Vector Multiply Word Signed, Modulo,
Fractional (to Accumulator) (EVMWSIMI) ..o 5-199
Vector Multiply Word Signed, Modulo, Fractional and
Accumulate (EVMWSIMTER)ccuerieiieeie et e sr e 5-200
Vector Multiply Word Signed, Modulo, Fractional and
Accumulate Negative (EVMWSIMTAN)ooiiiiiie e e 5-201
Vector Multiply Word Signed, Modulo,
Integer (to ACCUMUIBLOr) (EVMWSIMI)viiiieeiieie et s 5-202
Vector Multiply Word Signed, Modulo, Integer and
ACCUMUIEEE (EVMWSIMIAA)c.veevieeeieeeeiie st se et e e e e e ere e e 5-203
Vector Multiply Word Signed, Modulo, Integer and
Accumulate Negative (EVMWSIMIAN)ooiiiriieie e 5-204
Vector Multiply Word Signed, Saturate,
Fractional (to ACCUMUIELON) (EVIMWSSE)ouiiiiiiie it 5-205
Vector Multiply Word Signed, Saturate, Fractional, and
AccuMUIEe (EVMWSSFAQ)cveiviiieiieieie et e e 5-206
Vector Multiply Word Signed, Saturate, Fractional and
Accumulate Negative (EVMWSSFAN)cc.oiiieiiiiie et 5-207
Vector Multiply Word Unsigned, Modulo,
Integer (to ACCUMUIBLOr) (EVMWUIMI).....ooiiiireiieie ettt 5-208
Vector Multiply Word Unsigned, Modulo, Integer and
AccuMUIEE (EVMWUIMIAA)veiveieeieeeeiie et sr e ese e se e sr e e e e e neas 5-209
Vector Multiply Word Unsigned, Modulo, Integer and
Accumulate Negative (EVMWUIMIAN).......oo it s 5-210
VECtOr NAND (BVNANA)......eiiiiiiie ittt sn e e e e e 5-211
VECTOr NEGALE (BVNEQ) ... veeeeeieeeie sttt ettt sr e et se e et sn e ebe e e e 5-212

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

Figure Page
Number Title Number
5-120 VECLOr NOR (BVNOI) ...ttt ettt e st se e see s ettt es et sn et s e es et b e e e ene e e s 5-213
5-121 VECLOr OR (BVON) .ottt ettt ettt se e e se et et se et es et eee e e es e er e e e ese e e enne s 5-214
5-122 Vector OR with COmMPIEMENE (BVOFC) ...ueeueeeiieieiie ettt 5-215
5-123 Vector Rotate Left WOrd (EVFTW)couvieiieieie e 5-216
5-124 Vector Rotate Left Word Immediate (VI TWi)ocoieiiieiiececerce e 5-217
5-125 Vector ROUNA WOrd (EUFNAW)c.eiieiiieeieieee sttt s s 5-218
5-126 VECLOr SEIECE (BVSE!)....ueieeuieieiie ettt ettt st se et sr e sr e es e 5-219
5-127 Vector Shift Left WOrd (EVSIW) ... e 5-220
5-128 Vector Shift Left Word Immediate (EVSIWI)oovereieieiie e 5-221
5-129 Vector Splat Fractional Immediate (eVSPlatfi)........cccooiieririeiicesce e 5-222
5-130 EVSPIALT SIGN EXTENG........oieiieieie ettt e et 5-223
5-131 Vector Shift Right Word Immediate Signed (EVSIWIS)ooeeerieiiieciesece e 5-224
5-132 Vector Shift Right Word Immediate Unsigned (8VSIWill)cooeeeereeiiereineneeneeeeneeeee e 5-225
5-133 Vector Shift Right WOrd SIgNed (BVSIWS)c.eeiviiiieieiieeeee e 5-226
5-134 Vector Shift Right WOord UnSigNed (EVSIWU).......ccueieieirieeienieieeeeie s 5-227
5-135 evstdd Resultsin Big- and Little-Endian MOES...........ccooeiiieiiiiincie e 5-228
5-136 evstddx Resultsin Big- and Little-Endian MOGES............ccooirereiirieciienece e 5-229
5-137 evstdh Resultsin Big- and Little-Endian MOOES............cooiriierieeirnicerece e 5-230
5-138 evstdhx Resultsin Big- and Little-Endian MOGES............ccoooermrieirieeiience e 5-231
5-139 evstdw Resultsin Big- and Little-Endian MOdEsS...........ccoooviiiiiiiiiceeeece e 5-232
5-140 evstdwx Resultsin Big- and Little-Endian MOES...........ccooeemriiiinnenesee e 5-233
5-141 evstwhe Resultsin Big- and Little-Endian MOdES..........ccooeeiiiieicieeeee e 5-234
5-142 evstwhex Resultsin Big- and Little-Endian MOdES...........ccooeeiiiiiieniieice e 5-235
5-143 evstwho Resultsin Big- and Little-Endian MOdES..........cccooeeiiiiiiincienie e 5-236
5-144 evstwhox Resultsin Big- and Little-Endian MOdES...........cocoeiiiiiiiiiieie e 5-237
5-145 evstwwe Resultsin Big- and Little-Endian MOGES...........ccoiiiiiiiiiciece e 5-238
5-146 evstwwex Resultsin Big- and Little-Endian MOdES............cccoveiiiininenine e 5-239
5-147 evstwwo Resultsin Big- and Little-Endian MOdES..........ccoeeiiieiieniiesceseeee e 5-240
5-148 evstwwox Resultsin Big- and Little-Endian MOGES.............cocviiiiieiiiiiineeeeee e 5-241
5-149 Vector Subtract Signed, Modulo, Integer to

Accumulator Word (eVSUDFSMIGAW)........ccuiiuiriiiie e 5-242
5-150 Vector Subtract Signed, Saturate, Integer to

Accumulator Word (EVSUDFSSIA8W)ooiieiiiiie e 5-243
5-151 Vector Subtract Unsigned, Modulo, Integer to

Accumulator Word (eVSUDFUMIBAW)ccceiueieiriiieriee e 5-244
5-152 Vector Subtract Unsigned, Saturate, Integer to

Accumulator Word (EVSUDFUSIBAW)ooiiiiiiiie e 5-245
5-153 Vector Subtract from Word (VSUDTW) ..o 5-246
5-154 Vector Subtract Immediate from Word (eVSUDITW)cooiriiiiii e 5-247
5-155 VECLOr XOR (BVXO)...uiiueeueeieenieeteie ettt ettt es e sees e st ess e s s st es e e ensese et ss e sesbe e e enee e enne s 5-248

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor Xi

) 4

Figures

Figure Page
Number Title Number

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Xii Freescale Semiconductor

Tables

Table

Number Title

1-1 SPE Vector Multiply Instruction Mnemonic Structure..........ccooeeeveeneseenneee
1-2 Mnemonic Extensions for Multiply Accumulate Instructions..............c.cc......
1-3 SPE Vector Multiply Instruction Mnemonic Structure..........ccocceeeeeeeeieseeenee.
1-4 Mnemonic Extensions for Multiply-Accumulate Instructions...............c.c......
2-1 SPEFSCR Field DESCIIPLIONSccviieiiiniiie it
2-2 SPE Instructionsthat USEthe CR ..o
2-3 Embedded Floating-Point Instructions that Usethe CR............ccccooveieeinee.
3-1 Mnemonic Extensions for Multiply Accumulate Instructions.............cc.cc......
3-2 SPE Vector Multiply Instruction Mnemonic Structure..........ccocceeeeeeeeieseeenee.
3-3 Mnemonic Extensions for Multiply-Accumulate Instructions...............c.c......
3-4 SPE INSIIUCHIONS ...ttt st
35 SPE Simplified MNEMONICS........ccouiiiiieieie e
3-6 Vector and Scalar Floating-Point INSLrUCtioNS ..o
4-1 SPE/SPE Embedded Fl oating-Point Interrupt and Exception Types..............
5-1 NOLatiON CONVENTIONSoueiuieeiie et s
5-2 Instruction Field DESCIPLIONS........cccoueiirieieire e
5-3 RTL NOEBEION ...ttt e s
5-4 OpErator PrECEABNCEocueieeiireeiieeee ettt e e
5-5 ConNVErSION MOGEIS ..o
5-6 Data Samples and SIZES.......c..ooiiiiieiieei s
A-1 Embedded Floating-Point Results Summary—Add, Sub, Mul, Div
A-2 Embedded Floating-Point Results Summary—Single Convert from Double
A-3 Embedded Floating-Point Results Summary—Double Convert from Single
A-4 Embedded Floating-Point Results Summary—Convert to Unsigned.............
A-5 Embedded Floating-Point Results Summary—Convert to Signed..................
A-6 Results Summary—Convert from Unsignedcccoeeeienene s
A-7 Embedded Floating-Point Results Summary—Convert from Signed
A-8 Embedded Floating-Point Results Summary—* abs, * nabs, *neg..................
B-1 Instructions (Binary) by MNEMONIC..........cooviieiiieiieieeee e
B-2 Instructions (Decimal and Hexadecimal) by Opcode............cccoviiiniciennnne
B-3 Instructions (Binary) By FOrM..........ccoiiiiiiiecee e

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Page
Number

Freescale Semiconductor

Xiii

) 4

Tables

Table Page
Number Title Number

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Xiv Freescale Semiconductor

About This Book

The primary objective of thismanual isto help programmers provide software compatible with processors
that implement the signal processing engine (SPE) and embedded floating-point instruction sets.

To locate any published errata or updates for this document, refer to the web at http://www.freescale.com.

Thisbook isused asareference guidefor assembler programmers. It uses astandardized format instruction
to describe each instruction, showing syntax, instruction format, register trandation language (RTL) code
that describeshow theinstruction works, and alisting of which, if any, registers are affected. At the bottom
of each instruction entry isafigure that shows the operations on elements within source operands and
where the results of those operations are placed in the destination operand.

The SPE Programming I nterface Manual (SPEPIM) isareference guidefor high-level programmers. The
VLEPIM describes how programmers can access SPE functionality from programming languages such as
C and C++. It defines a programming model for use with the SPE instruction set. Processors that
implement the Power ISA™ (instruction set architecture) use the SPE instruction set as an extensionto the
base and embedded categories of the Power ISA.

Because it isimportant to distinguish among the categories of the Power | SA to ensure compatibility
across multiple platforms, those distinctions are shown clearly throughout this book. This document stays
consistent with the Power 1SA in referring to three levels, or programming environments, which are as
follows:

» User instruction set architecture (UISA)—The UISA definesthe level of the architecture to which
user-level software should conform. The UISA defines the base user-level instruction set,
user-level registers, data types, memory conventions, and the memory and programming models
seen by application programmers.

» Virtual environment architecture (VEA)—The VEA, which is the smallest component of the
architecture, definesadditional user-level functionality that fallsoutsidetypical user-level software
requirements. The VEA describes the memory model for an environment in which multiple
processors or other devices can access external memory and defines aspects of the cache model and
cache control instructions from a user-level perspective. VEA resources are particularly useful for
optimizing memory accesses and for managing resources in an environment in which other
processors and other devices can access external memory.

Implementations that conform to the VEA also conform to the UISA but may not necessarily
adhere to the OEA.

* Operating environment architecture (OEA)—The OEA defines supervisor-level resources
typically required by an operating system. It defines the memory management model,
supervisor-level registers, and the exception model.

Implementations that conform to the OEA aso conform to the UISA and VEA.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor XV

Most of the discussions on the SPE are at the UISA level. For easein reference, thisbook and the processor
reference manuals have arranged the architecture information into topics that build on one another,
beginning with a description and complete summary of registers and instructions (for all three
environments) and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of the architecture,
but when discussing OEA and VEA, the level is noted in the text.

It is beyond the scope of this manual to describe individual devices that implement SPE. It must be kept
in mind that each processor that implements the Power ISA is unique in its implementation.

Theinformation in thisbook is subject to change without notice, asdescribed in the disclaimerson thetitle
page of thisbook. Aswith any technical documentation, it isthe readers’ responsibility to be surethey are
using the most recent version of the documentation. For more information, contact your sales
representative or visit our web site at http://www.freescale.com.

Audience

This manual isintended for system software and hardware devel opers, and for application programmers
who want to devel op products using the SPE. It is assumed that the reader understands operating systems,
microprocessor system design, the basic principles of RISC processing, and details of the Power [SA.

This book describes how SPE interacts with the other components of the architecture.

Organization

Following is a summary and a brief description of the major sections of this manual:

» Chapter 1, “Overview,” isuseful for those who want a general understanding of the features and
functions of the SPE. This chapter provides an overview of how the VLE defines the register set,
operand conventions, addressing modes, instruction set, and interrupt model.

» Chapter 2, “ SPE Register Model,” lists the register resources defined by the SPE and embedded
floating-point ISASs. It also lists base category resources that are accessed by SPE and embedded
floating-point instructions.

» Chapter 3, “ SPE and Embedded Floating-Point Instruction Model,” describes the SPE and
embedded floating-point instruction set, including operand conventions, addressing modes, and
instruction syntax. It also provides a brief description of instructions grouped by category.

» Chapter 5, “Instruction Set,” functions as a handbook for the SPE and embedded floating-point
instruction set. Instructions are sorted by mnemonic. Each instruction description includes the
instruction formats and figures where it helps in understanding what the instruction does.

* Appendix A, “Embedded Floating-Point Results Summary,” summarizes the results of various
types of embedded floating-point operations on various combinations of input operands.

* Appendix B, “ SPE and Embedded Floating-Point Opcode Listings,” listsal SPE and
embedded-floating point instructions, grouped according to mnemonic and opcode.

This manual also includes an index.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

XVi Freescale Semiconductor

Suggested Reading

This section listsadditional reading that provides background for the information in this manual aswell as
genera information about the VLE and the Power 1SA.

General Information

Thefollowing documentation provides useful information about the Power Architecture™ technology and
computer architecture in general:

» Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and
David A. Patterson.

» Computer Organization and Design: The Hardware/Software Interface, Third Edition,
David A. Patterson and John L. Hennessy.

Related Documentation

Freescale documentation is available from the sources listed on the back of the title page; the document
order numbers, when applicable, are included in parentheses for ease in ordering:

* EREF: A Programmer's Reference Manual for Freescale Embedded Processors (EREFRM).
Describes the programming, memory management, cache, and interrupt models defined by the
Power 1SA for embedded environment processors.

« Power ISA™. The latest version of the Power |SA can be downloaded from the website
WWW.POWE.Org.

» Variable-Length Encoding (VLE) Extension Programming Interface Manual (VLEPIM). Provides
the VL E-specific extensions to the e500 application binary interface.

» €500 Application Binary Interface User's Guide (ESO0ABIUG). Establishes a standard binary
interface for application programs on systems that implement the interfaces defined in the System
V Interface Definition, Issue 3. Thisincludes systems that have implemented UNIX System V
Release 4.

» Reference manuals. The following reference manuals provide details information about processor
cores and integrated devices:

— Corereference manual s—T hese books describe the features and behavior of individual
microprocessor cores and provide specific information about how functionality described in
the EREF isimplemented by a particular core. They also describe implementation-specific
features and microarchitectural details, such asinstruction timing and cache hardware details,
that lie outside the architecture specification.

— Integrated device reference manuals—These manual s describe the features and behavior of
integrated devices that implement a Power | SA processor core. It isimportant to understand
that some features defined for a core may not be supported on all devices that implement that
core.

Also, somefeatures are defined in ageneral way at the core level and have meaning only in the
context of how the core isimplemented. For example, any implementation-specific behavior
of register fields can be described only in the reference manual for the integrated device.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor Xvii

Each of these documents include the following two chapters that are pertinent to the core:

— A coreoverview. This chapter provides a general overview of how the core works and
indicates which of acore’s features are implemented on the integrated device.

— A register summary chapter. This chapter gives the most specific information about how
register fields can be interpreted in the context of the implementation.

These reference manuals also describe how the core interacts with other blocks on the integrated
device, especially regarding topics such as reset, interrupt controllers, memory and cache
management, debug, and global utilities.

* Addenda/erratato reference manuals—Errata documents are provided to address errorsin
published documents.
Because some processors have follow-on parts, often an addendum is provided that describes the
additional features and functionality changes. These addenda, which may aso contain errata, are
intended for use with the corresponding reference manuals.

Always check the Freescale website for updates to reference manuals.

» Hardware specifications—Hardware specifications provide specific data regarding bus timing;
signal behavior; AC, DC, and thermal characteristics; and other design considerations.

* Product brief—Each integrated device has aproduct brief that providesan overview of itsfeatures.
This document is roughly the equivalent to the overview (Chapter 1) of the device's reference
manual.

» Application notes—These short documents address specific design issues useful to programmers
and engineers working with Freescale processors.

Additional literatureis published as new processors become available. For current documentation, refer to
http://www.freescale.com.

Conventions

This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of
one, it issaid to be set.

mnemonics Instruction mnemonics are shown in lowercase bold

italics Italics indicate variable command parameters, for example, beetrx
Book titlesin text are set in italics

0x0 Prefix to denote hexadecimal number

Ob0 Prefix to denote binary number

rA,rB Instruction syntax used to identify a source general-purpose register (GPR)

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source floating-point register (FPR)

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or

ranges appear in brackets.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Xviii Freescale Semiconductor

l -5 X

Ro

0000

In some contexts, such as signal encodings, an unitalicized x indicates adon’t
care.

Anitalicized x indicates an a phanumeric variable
Anitalicized n indicates anumeric variable

NOT logical operator

AND logical operator

OR logical operator

Indicatesreserved bitsor bit fieldsin aregister. Although these bitsmay bewritten
to as ones or zeros, they are aways read as zeros.

Additional conventions used with instruction encodings are described in Section 5.1, “Notation.”

Acronyms and Abbreviations

Tablei contains acronyms and abbreviations that are used in this document. Note that the meanings for
some acronyms (such as XER) are historical, and the words for which an acronym stands may not be
intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning
CR Condition register
CTR Count register
DEC Decrementer register
EA Effective address
EREF A Programmer's Reference Manual for Freescale Embedded Processors (Including the e200 and e500
Families)
GPR General-purpose register
IEEE Institute of Electrical and Electronics Engineers
U Integer unit
LR Link register
LRU Least recently used
LSB Least significant byte
Isb Least significant bit
LSU Load/store unit
MMU Memory management unit
MSB Most significant byte
msb Most significant bit
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor Xix

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
PMCn Performance monitor counter register

PVR Processor version register

RISC Reduced instruction set computing

RTL Register transfer language

SIMM Signed immediate value

SPR Special-purpose register

SRRO Machine status save/restore register 0

SRR1 Machine status save/restore register 1

B Time base facility

TBL Time base lower register

TBU Time base upper register

TLB Translation lookaside buffer

UMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

VLEPEM Variable-Length Encoding (VLE) Programming Environments Manual
VLEPIM Variable-Length Encoding (VLE) Extension Programming Interface Manual (VLEPIM)

XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Tableii lists certain terms used in this manual that differ from the architecture terminology conventions.

Table ii. Terminology Conventions

The Architecture Specification This Manual
Extended mnemonics Simplified mnemonics
Fixed-point unit (FXU) Integer unit (1U)
Privileged mode (or privileged state) Supervisor-level privilege
Problem mode (or problem state) User-level privilege
Real address Physical address
Relocation Translation
Storage (locations) Memory
Storage (the act of) Access
Store in Write back
Store through Write through

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

XX Freescale Semiconductor

Tableiii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:
BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)
D d
DS ds
11001 0...0 (shaded)
RA, RB, RT, RS rA, rB, rD, rS (respectively)
Si SIMM
U IMM
ul UMM

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

XXi

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

XXii Freescale Semiconductor

Chapter 1
Overview

This chapter provides a general description of the signal processing engine (SPE) and the SPE embedded
floating-point resources defined as part of the Power ISA™ (instruction set architecture).

1.1 Overview

The SPE is a 64-hit, two-element, single-instruction multiple-data (SIMD) ISA, originally designed to
accelerate signal processing applications normally suited to DSP operation. The two-element vectors fit
within GPRs extended to 64 bits. SPE also defines an accumulator register (ACC) to alow for
back-to-back operations without loop unrolling. Likethe VEC category, SPE is primarily an extension of
Book | but identifies some resources for interrupt handling in Book I11-E.

In addition to add and subtract to accumulator operations, the SPE supports anumber of forms of multiply
and multiply-accumul ate operations, as well as negative accumulate forms. These instructions are
summarized in Table 1-3. The SPE supports signed, unsigned, and fractional forms. For theseinstructions,
thefractional form does not apply to unsigned forms, because integer and fractional formsareidentical for
unsigned operands.

Mnemonics for SPE instructions generally begin with the letters ‘ev’ (embedded vector).

Table 1-1. SPE Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element
ho |half odd (16x16->32) usi | unsigned saturate integer | a write to ACC
he |half even (16x16->32) umi |unsigned modulo integer |aa |write to ACC & added ACC

hog | half odd guarded (16x16->32) |[ssi |signed saturate integer an |write to ACC & negate ACC

heg | half even guarded (16x16->32) |ssf' |signed saturate fractional |aaw |write to ACC & ACC in words

evm |(wh |word high (32x32->32) smi |signed modulo integer anw | write to ACC & negate ACC in words
wl | word low (32x32->32) smf’ signed modulo fractional
whg | word high guarded (32x32->32)
wlg |word low guarded (32x32->32)
w word (32x32->64)

' Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute an
opcode corresponding to these instructions causes boundedly undefined results.

The SPE is part of the Power | SA specification (whereit is referred to as the category SPE). Closely
associated with the SPE are the embedded fl oating-point categories, which may beimplemented if the SPE
isimplemented and which consist of the following:

» Single-precision scalar (SPFS)
» Single-precision vector (SPFV)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 1-1

|
y

'
A

Overview

* Double-precision scalar (SPFD)

The embedded floating-point categories provide floating-point operations compatible with |EEE Std
754™ to power- and space-sensitive embedded applications. Asistrue for all SPE categories, rather than
implementing separate register floating-point registers (FPRs), these categories share the GPRs used for
integer operations, extending them to 64 bits to support the vector single-precision and scalar
double-precision categories. These extended GPRs are described in Section 2.2.1, “General-Purpose
Registers (GPRs).”

1.2 Register Model

Figure 1-1 shows the register resources defined by the Power | SA for the SPE and embedded
floating-point operations. Note that SPE operations may also affect other registers defined by the
Power | SA.

User-Level Registers Supervisor-Level Registers
l I
0 31 32 63 32 63
Upper Lower MSR[SPV] | Machine state register
Upper Lower .
Interrupt Registers
Upper Lower General-purpose registers (GPRs) P 9

spr62| ESR[SPV] | Exception syndrome register

Upper | Lower | Interrupt Vector Offset Registers
L | SPE defines GPRn[0-31] for use with 64-bit operands spr405| IVOR5 Alignment
spr 528/ IVOR32 SPE/Embedded FP
spr529| IVOR33 Embedded FP data
spr 51 2 SPE/floating-point status/control spr 530/ IVOR34 Embedded FP round

ACC | Accumulator

Figure 1-1. SPE Register Model

These registers are briefly described as follows:

» General-purposeregisters (GPRs). Note especially that the SPE does not define anew register file
but uses an extended version of the general-purpose registers (GPRs) implemented on all Power
ISA devices. The GPRs are used as follows:

— SPE (not including the embedded floating-point instructions) treat the 64-bit GPRs as a
two-element vector for 32-bit fractional and integer computation.

— Embedded scalar single-precision floating-point instructions use only the lower word of the
GPRsfor single-precision computation.

— Embedded vector single-precision instructions treat the 64-bit GPRs as a two-element vector
for 32-bit single-precision computation.

— Embedded scalar double-precision floating-point instructions treat the GPRs as 64-bit
single-element registers for double-precision computation.

» Accumulator register (ACC). Holds the results of the multiply accumulate (MAC) forms of SPE
integer instructions. The ACC allows back-to-back execution of dependent MAC instructions,
something that isfoundintheinner loops of DSP code such asfiniteimpulseresponse (FIR) filters.
The accumulator ispartially visibleto the programmer in that its results do not haveto be explicitly
read to use them. Instead, they are always copied into a64-bit destination GPR specified as part of
the instruction.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

1-2 Freescale Semiconductor

Overview

» SPE floating-point status and control register (SPEFSCR). Used for status and control of SPE and
embedded floating-point instructions. It controls the handling of floating-point exceptions and
records status resulting from the floating-point operations.

* Interrupt vector offset registers (IVORS). The SPE uses four IVORs, which together with the
interrupt vector prefix register (IVPR) define the vector address for interrupt handler routines. The
following IVORs are used:

— IVORS5 (SPR 405)—Defined by the base architecture for alignment exceptions and used with
SPE load and store instructions alignment interrupts.

— IVOR32 (SPR 528)—SPE/embedded floating-point unavailable exception (causes the
SPE/embedded floating-point unavail able interrupt)

— IVOR33 (SPR 529)—Embedded floating-point datainterrupts
— IVOR34 (SPR 530)—Embedded floating-point round interrupts

» SPE/embedded floating-point available bit in the machine state register (MSR[SPV], formerly
caled MSR[SPE]). If this bit is zero and software attempts to execute an SPE/embedded
floating-point instruction, an SPE unavailable interrupt is taken.

» Exception bit in the exception syndrome register (ESR[SPV], formerly called ESR[SPE). This bit
is set whenever the processor takes an interrupt related to the execution of SPE vector or
floating-point instructions.

Chapter 2, “ SPE Register Model,” provides detailed descriptions of these register resources.

1.2.1 SPE Instructions

Instructions are provided for the instruction types:

» Simplevector instructions. Theseinstructions use the corresponding low- and high-word elements
of the operandsto produce a vector result that is placed in the destination register, the accumul ator,
or both. Figure 1-2 shows how operations are typically performed in vector operations.

0 31 32 63

rA

| | B

Y ¢ Y ¢

operation operation

| |
\J \J D

Figure 1-2. Two-Element Vector Operations

* Multiply and accumulate instructions. These instructions perform multiply operations, optionally
add the result to the ACC, and place the result into the destination register and optionally into the
ACC. These instructions are composed of different multiply forms, data formats, and data
accumulate options, as indicated by their mnemonics, as shown in Table 1-2.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 1-3

Overview

Table 1-2. Mnemonic Extensions for Multiply Accumulate Instructions

Extension Meaning Comments
Multiply Form

he Half word even 16 X 16 — 32
heg Half word even guarded 16 X 16 — 32, 64-bit final accum result

ho Half word odd 16 X 16 — 32
hog Half word odd guarded 16 X 16 — 32, 64-bit final accum result

w Word 32X32 - 64

wh Word high 32 X 32 — 32 (high order 32 bits of product)
wi Word low 32 X 32 — 32 (low order 32 bits of product)

Data Format

smf Signed modulo fractional Modulo, no saturation or overflow
smi Signed modulo integer Modulo, no saturation or overflow
ssf Signed saturate fractional Saturation on product and accumulate
ssi Signed saturate integer Saturation on product and accumulate
umi Unsigned modulo integer Modulo, no saturation or overflow
usi Unsigned saturate integer Saturation on product and accumulate

Accumulate Option

a Place in accumulator Result — accumulator
aa Add to accumulator Accumulator + result — accumulator
aaw Add to accumulator Accumulatorg.3¢ + resulty.31 — accumulatorg.3
Accumulatorgp.gs + resultgs.g3 — accumulatorzs.gz
an Add negated to accumulator Accumulator — result — accumulator
anw Add negated to accumulator Accumulatorg.3¢ — resulty.3; — accumulatorg.34

Accumulatorgp.gs — resultss.gz3 — accumulatorszs.gz

» Load and storeinstructions. These instructions provide |oad and store capabilities for moving data
to and from memory. A variety of forms are provided that position data for efficient computation.

» Compareand miscellaneousinstructions. Theseinstructions perform miscellaneous functions such
as field manipulation, bit reversed incrementing, and vector compares.

SPE supports severa different computational capabilities. Modulo results produce truncation of the
overflow bitsin acalculation; therefore, overflow does not occur and no saturation is performed. For
instructions for which overflow occurs, saturation provides a maximum or minimum representable value
(for the data type) in the case of overflow.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

1-4 Freescale Semiconductor

Table 1-3 shows how SPE vector multiply instruction mnemonics are structured.

Table 1-3. SPE Vector Multiply Instruction Mnemonic Structure

Overview

Prefix Multiply Element Data Type Element Accumulate Element
ho |half odd (16x16->32)
he | half even (16x16->32) usi |unsigned saturate integer .
hog | half odd guarded (16x16->32) umi | unsianed modulo integer | 2 write to ACC
heg | half even guarded (16x16->32) ' | unsig) 9 aa |write to ACC & added ACC
ssi | signed saturate integer
evm | wh |word high (32x32->32) ssf' | sianed saturate fractional | 2" write to ACC & negate ACC
wl | word low (32x32->32) smi signed modulo inteaer aaw | write to ACC & ACC in words
whg | word high guarded (32x32->32) 1 '9 9 anw | write to ACC & negate ACC in words
smf’ | signed modulo fractional
wlg | word low guarded (32x32->32)
w |word (32x32->64)

' Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute an
opcode corresponding to these instructions causes boundedly undefined results.

Table 1-4 defines mnemonic extensions for these instructions.

Table 1-4. Mnemonic Extensions for Multiply-Accumulate Instructions

Extension Meaning Comments
Multiply Form
he Half word even 16x16—32
heg Half word even guarded 16x16—32, 64-bit final accumulator result
ho Half word odd 16x16—32
hog Half word odd guarded 16x16—32, 64-bit final accumulator result
w Word 32x32—64
wh Word high 32x32—32, high-order 32 bits of product
wl Word low 32x32—-32, low-order 32 bits of product
Data Type
smf Signed modulo fractional (Wrap, no saturate)
smi Signed modulo integer (Wrap, no saturate)
ssf Signed saturate fractional
ssi Signed saturate integer
umi Unsigned modulo integer (Wrap, no saturate)
usi Unsigned saturate integer
Accumulate Options
a Update accumulator Update accumulator (no add)
aa Add to accumulator Add result to accumulator (64-bit sum)
aaw Add to accumulator (words) Add word results to accumulator words (pair of 32-bit sums)
an Add negated Add negated result to accumulator (64-bit sum)
anw Add negated to accumulator (words) | Add negated word results to accumulator words (pair of 32-bit sums)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

Overview

1.2.1.1 Embedded Vector and Scalar Floating-Point Instructions

The embedded floating-point operations are | EEE 754—compliant with software exception handlers and
offer asimpler exception model than the Power ISA floating-point instructions that use the fl oating-point
registers (FPRs). Instead of FPRs, these instructions use GPRs to offer improved performance for
converting between floating-point, integer, and fractional values. Sharing GPRs allows vector
floating-point instructions to use SPE load and store instructions.

Section 3.3.1.2, “Floating-Point Data Formats,” describes the floating-point data format.

1.3 SPE and Embedded Floating-Point Exceptions and Interrupts

The SPE defines the following exceptions:

» SPE/embedded floating-point unavailable exception (causes the SPE/embedded floating-point
unavailable interrupt)—I'VOR32 (SPR 528)

» SPE vector alignment exception (causes the alignment interrupt)—IV ORS5 (SPR 405)

In addition to these general SPE interrupts, the SPE embedded floating-point facility definesthe following:
» Embedded floating-point data interrupt—IV OR33 (SPR 529)
» Embedded floating-point round interrupt—IV OR34 (SPR 539)

Details about these interrupts are provided in Chapter 4, “ SPE/Embedded Floating-Point Interrupt
Model.”

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

1-6 Freescale Semiconductor

Chapter 2
SPE Register Model

This chapter describes the register model of the signal processing engine (SPE) for embedded processors.
Thisincludes additional resources defined to support embedded floating-point instruction sets that may be

implemented.

2.1 Overview

The SPE is designed to accel erate signal-processing applications normally suited to DSP operation. This

is accomplished using short (two-element) vectors within 64-bit GPRs and using single instruction

multiple data (SIMD) operations to perform the requisite computations. An accumulator register (ACC)
allows back-to-back operations without loop unrolling.

2.2 Register Model

Figure 2-1 shows the register resources defined by the Power | SA for the SPE and embedded
floating-point operations. Note that SPE operations may also affect other registers defined by the

Power | SA.
User-Level Registers Supervisor-Level Registers
I I
0 31 32 63 32
Int/Frac Int/Frac MSR[SPV] | Machine state register
Int/Frac Int/Frac
Interrupt Registers
Int/Frac Int/Frac General-purpose registers (GPRs) P g, ’
spr62| ESR[SPV] | Exception syndrome register
Int/Frac | Int/Frac | Interrupt Vector Offset Registers
L I SPE defines GPRA[0-31] for use with 64-bit operands ~ spr 405 IVOR5 Alignment
ACC A lat spr 528/ IVOR32 SPE/Embedded FP
ccumulator
| spr529| |IVOR33 Embedded FP data
spr512| SPEFSCR SPE/floating-point status/control spr530| |IVOR34 Embedded FP round
CR Condition register

Figure 2-1. SPE Register Model

Figure 2-2 shows how the SPE register model is used with the SPE and embedding floating-point
instruction sets.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

2-1

SPE Register Model

Register Model Instruction Model
1 |
User-Level Registers Supervisor-Level Registers Computation Load/Store
0 31 32 63 32 63 brinc evidh...
InUFrac | inuFrac MSRISPV] | Machine state mra evidw...
Int/Frac Int/Frac . evabs evl...splat...
_ InUFrac InUFrac General-purpose Interrupt Registers evadg ev:wnos...
registers (GPRs) spr 62| ESR[SPV] | Exception syndrome ngasncth gzs‘q’dd
eventl... evstdh...
SPE Int/Frac | Int/Frac | Interrupt Vector Offset Registers evdiv... evstdw...
| oo | Accumultor spr40s| IVOR5 | Alignment evmerge... evstwh...
Original SPE spr 528/ IVOR32 SPE/Embedded FP logical, rotate,
— A;g'na spr512] SPEFSCR | SPEfMoatingpoint <, 550 VORE | Embedded FP data St extend,
Gondition register P 5%0__IVOR&4 | Embedded FP round compare
0 31 32 63 32 63 efvcf... From SPE:
Single-prec. | Single-prec. MSRISPV] | Machine state g;zgf,'g Szlggx
Single-prec. | Single-prec. i efvadd evstdd
Single-prec. | Single-prec. | | General-purpose, Interrupt Registers e;vgmp... evstddx
Vector registers (GPRs) spr 62| ESR[SPV] | Exception syndrome gfzn:xl
. _ -¢ - - ‘ .
Slr;:?le tl?recllaSIPf: S|ngle—prec.| Single-prec. | Interrupt Vector Offset Registers e;vnaEs
oating-Poin ; efvsu
ACC | Accumulator sprdos| IVORS Alignment efvtst...

spr528| IVOR32 SPE/Embedded FP From SPE:
SPE/floating-point evmergehi
spr512[SPEFSCR | gutiig/oontral ' sPr529| IVOR33 | Embedded FPdata SUM erg olo
” . spr530| IVOR34 Embedded FP round
Condition register

0 31 32 63 32 63 e;scf... Usesé| g
- meoreno] efsct... standard,
Single-prec. | MSRISPV] | Machine state efsabs base
Single-prec. . efsadd category
Single-prec. | | General-purpose Interrupt Registers efscmp... 32-bit loads
orec. 1 ;
. SFa_Iar registers (GPRs) spr 62| ESR[SPV] | Exception syndrome g:zﬁ:xl and stores
Single-Precision efsne
Floating-Point | | Single-prec. | Interrupt Vector Offset Registers efsnags
405 IVOR5 | Ali t efssub
| ACC | Accumulator spr 'gnmen efstst...

L spr528| IVOR32 SPE/Embedded FP

SPE/floating-point
spr512] SPEFSCR | gimisRaiidPONt spr529] IVOR33 | Embedded FP data
spr530| IVOR34 Embedded FP round

Condition register

0 63 32 63 efdcf... From SPE:
Double-precision MSRISPV] | Machine state efdct... evldd.
Double-precision . efdadd evstdd
— General-purpose Interrupt Registers efdcmp... evstddx
Double-precision registers (GPRs) ! ESRISPVI | E . efddiv
Scalar spr 62| ESR[SPV] xception syndrome efdmul
: . efdne
DOl.'l=lI)|e tl_’recllaspr: [Double-precision | Interrupt Vector Offset Registers efdnabs
oating-Poin 4 IVORE | Ali t efdsub
| ACC | Accumulator spr 405 'gnmen efdtst...

spr528| IVOR32 SPE/Embedded FP From SPE:
SPE/floating-point evmergehi
spr512[SPEFSCR | gutiig/oontrol ' sPr529| IVOR33 | Embedded FPdata SUM erg olo
” . spr530| IVOR34 Embedded FP round
Condition register

Note: Gray text indicates that this register or register field is not used.
1 Formatting of floating-point operands is as defined by IEEE 754.

Figure 2-2. Integer, Fractional, and Floating-Point Data Formats and GPR Usage

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

2-2 Freescale Semiconductor

SPE Register Model

Several conventions regarding nomenclature are used in this chapter:

» All register bit numbering is 64-bit. As shown in Figure 2-3, for 64-bit registers, bit O being the
most significant bit (msb). For 32-bit registers, bit 32 isthe msh. For both 32- and 64-bit registers,
bit 63 isthe least significant bit (Isb).

64-bit register

|
32-bit register
| |

msb for 64-bit implementations msb for 32-bit implementations Isb
o | L e | [] e |]] el |] e
Upper word Lower word
Even half word (upper) ‘ Even half word (lower) Even half word (Lower) ‘ Odd half word (lower)

Figure 2-3. 32- and 64-Bit Register Elements and Bit-Numbering Conventions

* Asshown in Figure 2-3, bits 0 to 31 of a 64-bit register are referenced as the upper-, even-, or
high-word element. Bits 32—63 are referred to as lower-, odd-, or low-word element.

* Asshownin Figure 2-3, bits 0 to 15 and bits 32 to 47 are referenced as even half words. Bits 16 to
31 and bits 48 to 63 are odd half words.

» Thegray lines shown in Figure 2-3 indicate 4-bit nibbles, and are provided as a convenience for
making binary-to-hexadecimal conversions.

* Mnemonics for SPE instructions generally begin with the letters ‘ev’ (embedded vector).

2.2.1 General-Purpose Registers (GPRSs)

The SPE requires a GPR file with thirty-two 64-bit registers, as shown in Figure 2-4, which also indicates
how the SPE and embedded floating-point instruction sets use the GPRS. For 32-bit implementations,
instructions that normally operate on a 32-hit register file access and change only the least significant 32
bits of the GPRSs, leaving the most significant 32 bits unchanged. For 64-bit implementations, operation of
theseinstructionsisunchanged; that is, those instructions continueto operate on the 64-bit registers asthey
would if SPE were not implemented. SPE vector instructions view the 64-bit register as being composed
of avector of two 32-bit elements. (Someinstructions read or write 16-bit elements.) The most significant
32 bits are called the upper, high, or even word. The least significant 32 bits are called the lower, low, or
odd word. Unless otherwise specified, SPE instructions write al 64 bits of the destination register.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-3

|
y

'
A
SPE Register Model
GPR0-GPR31 Access: User read/write
0 ‘ 31|32 ‘ ‘ ‘ 63
R . _ .
Upper word (SPE, single-precision vector floating-point) Lower word (SPE, smglg precision vector and scalar
w floating-point)
R . .)
W Double-precision scalar floating point
Reset All zeros

Figure 2-4. General Purpose Registers (GPR0—-GRP31)

As shown in Figure 2-2 and Figure 2-4, embedded floating-point operations use the GPRs as follows:

* Single-precision floating-point requires a GPR file with thirty-two 32-bit or 64-bit registers. When
implemented with a 64-bit register file on a 32-bit implementation, single-precision floating-point
operations only use and modify bits 32—63 of the GPR. In this case, bits 0-31 of the GPR are | eft
unchanged by asingle-precision floating-point operation. For 64-bit implementations, bits0-31 are
undefined after a single-precision floating-point operation.

» Vector floating-point and double-precision floating-point require a GPR file with thirty-two 64-bit
GPRs.

— Floating-point double-precision instructions operate on the entire 64 bits of the GPRswhere a
floating-point dataitem consists of 64 bits.

— Vector floating-point instructions operate on the entire 64 bits of the GPRs, but contain two
32-bit data items that are operated on independently of each other in a SIMD fashion. The
format of both dataitemsis the same as a single-precision floating-point value. The dataitem
contained in bits0-31 iscalled the “high word.” The dataitem contained in bits 32—63 iscalled
the “low word.”

There are no record forms of embedded floating-point instructions. Floating-point compare instructions
treat NaNs, infinity, and denorm as normalized numbersfor the comparison cal culation when default results
are provided.

2.2.2 Accumulator Register (ACC)

The 64-bit accumulator (ACC), shown in Figure 2-5, is used for integer/fractional multiply accumulate
(MAC) forms of instructions. The ACC holds the results of the multiply accumulate forms of SPE
fixed-point instructions. It allows the back-to-back execution of dependent MAC instructions, something
that isfound in the inner loops of DSP code such as FIR and FFT filters. It is partialy visible to the
programmer in that its results do not have to be explicitly read to be used. Instead they are always copied
into a 64-bit destination GPR, specified as part of the instruction. Based on the instruction, the ACC can
hold a single 64-bit value or a vector of two 32-bit elements.

Access: User read/write

0 ‘ ‘ ‘ 31|32 ‘ ‘ ‘ 63
VI\RI Upper word Lower word
Reset All zeros

Figure 2-5. Accumulator (ACC)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

2-4 Freescale Semiconductor

SPE Register Model

2.2.3 Signal Processing Embedded Floating-Point Status and
Control Register (SPEFSCR)

The SPEFSCR, shown in Figure 2-6, is used with SPE and embedded floating-point instructions. Vector
floating-point instructions affect both the high element (bits 34-39) and low element floating-point status
flags (bits 50-55). Double- and single-precision scalar floating-point instructions affect only the
low-element floating-point status flags and leave the high-element floating-point status flags undefined.

SPR 512 Access: Supervisor-only
—High-Word Error Bits ————— — StatusBits ————————
32 3 34 35 36 37 38 39 (40 4 42 43 44 45 46 47
R
SOVH|OVH |FGH|FXH |FINVH|FDBZH |FUNFH |FOVFH — FINXS| FINVS |FDBZS |[FUNFS|FOVFS| —
w
Reset 0 0 undefined| 0 0 0 0 0 0 0 0 0 0 0 0

——— Enable Bits ———

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
R
SOV | OV | FG | FX | FINV | FDBZ | FUNF | FOVF |—|FINXE|FINVE|FDBZE|FUNFE |FOVFE FRMC
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-6. Signal Processing and Embedded Floating-Point Status and Control
Register (SPEFSCR)

Table 2-1 describes SPEFSCR hits.
Table 2-1. SPEFSCR Field Descriptions

Bits | Name Description

32 SOVH | Summary integer overflow high. Set when an SPE instruction sets OVH. This is a sticky bit that remains set
until it is cleared by an mtspr instruction.

33 OVH | Integer overflow high. OVH is set to indicate that an overflow occurred in the upper element during execution
of an SPE instruction. It is set if a result of an operation performed by the instruction cannot be represented in
the number of bits into which the result is to be placed and is cleared otherwise. OVH is not altered by modulo
instructions or by other instructions that cannot overflow.

34 FGH | Embedded floating-point guard bit high. Used by the floating-point round interrupt handler. FGH is an extension
of the low-order bits of the fractional result produced from a floating-point operation on the high word. FGH is
zeroed if an overflow, underflow, or invalid input error is detected on the high element of a vector floating-point
instruction.

Execution of a scalar floating-point instruction leaves FGH undefined.

35 FXH | Embedded floating-point inexact bit high. Used by the floating-point round interrupt handler. FXH is an
extension of the low-order bits of the fractional result produced from a floating-point operation on the high word.
FXH represents the logical OR of all of the bits shifted right from the guard bit when the fractional result is
normalized. FXH is zeroed if an overflow, underflow, or invalid input error is detected on the high element of a
vector floating-point instruction.

Execution of a scalar floating-point instruction leaves FXH undefined.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-5

SPE Register Model

Table 2-1. SPEFSCR Field Descriptions (continued)

Bits | Name Description

36 FINVH | Embedded floating-point invalid operation/input error high. Set under any of the following conditions:
* Any operand of a high word vector floating-point instruction is infinity, NaN, or denorm
* The operation is a divide and the dividend and divisor are both 0
¢ A conversion to integer or fractional value overflows.

Execution of a scalar floating-point instruction leaves FINVH undefined.

37 | FDBZH | Embedded floating-point divide by zero high. Set when a vector floating-point divide instruction is executed with
a divisor of 0 in the high word operand and the dividend is a finite non-zero number.

Execution of a scalar floating-point instruction leaves FDBZH undefined.

38 | FUNFH | Embedded floating-point underflow high. Set when execution of a vector floating-point instruction results in an
underflow on the high word operation.

Execution of a scalar floating-point instruction leaves FUNFH undefined.

39 | FOVFH | Embedded floating-point overflow high. Set when the execution of a vector floating-point instruction results in
an overflow on the high word operation.

Execution of a scalar floating-point instruction leaves FOVFH undefined.
40-41 — Reserved, should be cleared.

42 FINXS | Embedded floating-point inexact sticky flag. Set under the following conditions:

» Execution of any scalar or vector floating-point instruction delivers an inexact result for either the low or high
element ,and no floating-point data interrupt is taken for either element.

* A floating-point instruction results in overflow (FOVF=1 or FOVFH=1), but floating-point overflow exceptions
are disabled (FOVFE=0).

* A floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but floating-point underflow
exceptions are disabled (FUNFE=0), and no floating-point data interrupt occurs.

FINXS is a sticky bit; it remains set until it is cleared by software.

43 FINVS | Embedded floating-point invalid operation sticky flag. The sticky result of any floating-point instruction that
causes FINVH or FINV to be set. That is, FINVS <- FINVS | FINV | FINVH. FINVS remains set until it is cleared
by software. !

44 | FDBZS | Embedded floating-point divide by zero sticky flag. Set when a floating-point divide instruction sets FDBZH or
FDBZ. That is, FDBZS <- FDBZS | FDBZH | FDBZ. FDBZS remains set until it is cleared by software.

45 | FUNFS | Embedded floating-point underflow sticky flag. Defined to be the sticky result of any floating-point instruction
that causes FUNFH or FUNF to be set. That is, FUNFS <- FUNFS | FUNF | FUNFH. FUNFS remains set until
it is cleared by software. !

46 | FOVFS | Embedded floating-point overflow sticky flag. defined to be the sticky result of any floating-point instruction that
causes FOVH or FOVF to be set. That is, FOVFS <- FOVFS | FOVF | FOVFH. FOVFS remains set until it is
cleared by software. '

47 — Reserved, should be cleared.

48 SOV | Summary integer overflow low. Set when an SPE instruction sets OV. This sticky bit remains set until an mtspr
writes a 0 to this bit.

49 OV | Integer overflow. Set to indicate that an overflow occurred in the lower element during instruction execution. OV
is set if a result of an operation cannot be represented in the designated number of bits; otherwise, it is cleared.
QV is unaffected by modulo instructions and other instructions that cannot overflow.

50 FG | Embedded floating-point guard bit (low/scalar). Used by the embedded floating-point round interrupt handler.

FG is an extension of the low-order bits of the fractional result produced from an embedded floating-point
instruction on the low word. FG is zeroed if an overflow, underflow, or invalid input error is detected on the low
element of an embedded floating-point instruction.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

2-6

Freescale Semiconductor

SPE Register Model

Table 2-1. SPEFSCR Field Descriptions (continued)

Bits | Name Description
51 FX Embedded floating-point inexact bit (low/scalar). Used by the embedded floating-point round interrupt handler.
FX is an extension of the low-order bits of the fractional result produced from an embedded floating-point
instruction on the low word. FX represents the logical OR of all the bits shifted right from the guard bit when
the fractional result is normalized. FX is zeroed if an overflow, underflow, or invalid input error is detected on
embedded floating-point instruction.
52 FINV | Embedded floating-point invalid operation/input error (low/scalar). Set by one of the following:
* Any operand of a low-word vector or scalar floating-point operation is infinity, NaN, or denorm.
* The dividend and divisor are both 0 for a divide operation.
¢ A conversion to integer or fractional value overflows.
53 FDBZ | Embedded floating-point divide by zero (low/scalar). Set when an embedded floating-point divide instruction is
executed with a divisor of 0 in the low word operand, and the dividend is a finite nonzero number.
54 FUNF | Embedded floating-point underflow (low/scalar). Set when the execution of an embedded floating-point
instruction results in an underflow on the low word operation.
55 FOVF | Embedded floating-point overflow (Low/scalar). Set when the execution of an embedded floating-point
instruction results in an overflow on the low word operation.
56 — Reserved, should be cleared.
57 FINXE | Embedded floating-point round (inexact) exception enable
0 Exception disabled
1 Exception enabled. A floating-point round interrupt is taken if no other interrupt is taken, and if FG | FGH |
FX | FXH (signifying an inexact result) is set as a result of a floating-point operation. If a floating-point
instruction operation results in overflow or underflow and the corresponding underflow or overflow exception
is disabled, a floating-point round interrupt is taken.
58 FINVE | Embedded floating-point invalid operation/input error exception enable
0 Exception disabled
1 Exception enabled. A floating-point data interrupt is taken if a floating-point instruction sets FINV or FINVH.
59 | FDBZE | Embedded floating-point divide by zero exception enable
0 Exception disabled
1 Exception enabled. A floating-point data interrupt is taken if a floating-point instruction sets FDBZ or FDBZH.
60 | FUNFE | Embedded floating-point underflow exception enable
0 Exception disabled
1 Exception enabled. A floating-point data interrupt is taken if a floating-point instruction sets FUNF or FUNFH.
61 | FOVFE | Embedded floating-point overflow exception enable
0 Exception disabled
1 Exception enabled. A floating-point data interrupt is taken if a floating-point instruction sets FOVF or FOVFH.
62-63 | FRMC | Embedded floating-point rounding mode control

00 Round to nearest

01 Round toward zero

10 Round toward +infinity. If this mode is not implemented, embedded floating-point round interrupts are
generated for every floating-point instruction for which rounding is indicated.

11 Round toward -infinity. If this mode is not implemented, embedded floating-point round interrupts are

generated for every floating-point instruction for which rounding is indicated.

1 Software note:

Software can detect the hardware that manages this bit by performing an operation on a NaN and observing

whether hardware sets this sticky bit. Alternatively, if it desired that software work on all processors supporting embedded
floating-point, software should check the appropriate status bits and set the sticky bit. If hardware also performs this operation,
the action is redundant.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-7

SPE Register Model

2.2.3.1 Interrupt Vector Offset Registers (IVORSs)
The SPE uses four 1V ORs which, together with the interrupt vector prefix register (1VPR), define the
vector address for interrupt handler routines. The following I'VORs are used:

* |VORS5 (SPR 405)—Defined by the base architecture for alignment interrupts and used for SPE
load and store instructions alignment interrupts

* [VOR32 (SPR 528)—SPE/embedded floating-point unavailable exception (causes the
SPE/embedded floating-point unavail able interrupt)

* VOR33 (SPR 529)—Embedded floating-point datainterrupts
* VOR34 (SPR 530)—Embedded floating-point round interrupts

For more information, see Chapter 4, “ SPE/Embedded Floating-Point Interrupt Model.”

2.2.3.2 Exception Bit in the Exception Syndrome Register (ESR)

ESR[SPV] (ESR[56]), formerly called ESR[SPE], is set whenever the processor takes an interrupt related
to the execution of SPE vector or floating-point instructions.

2.23.3 Condition Register (CR)

The CR is used to record results for compare and test instructions. It aso provides a source operand for
the Vector Select (evsel) instruction. Table 2-2 lists SPE instructions that explicitly access CR bits (cr Sor
crD).

Table 2-2. SPE Instructions that Use the CR

Instruction Mnemonic Syntax

Vector Compare Equal evempeq | crD,rA,rB

Vector Compare Greater Than Signed evempgts | crD,rA,rB

Vector Compare Greater Than Unsigned | evempgtu | crD,rA,rB

Vector Compare Less Than Signed evemplts | crD,rA,rB
Vector Compare Less Than Unsigned evempltu | crD,rA,rB
Vector Select evsel rD,rA,rB,crS

Table 2-2 lists embedded floating-point instructions that explicitly access CR bits (cr D).
Table 2-3. Embedded Floating-Point Instructions that Use the CR

Single-Precision
Instruction Double- Precision Scalar| Syntax
Scalar Vector
Floating-Point Compare Equal efscmpeq | evfscmpeq efdcmpeq crD,rA,rB
Floating-Point Compare Greater Than | efscmpgt | evfscmpgt efdecmpgt crD,rA,rB
Floating-Point Compare Less Than efscmplt | evfscmplt efdcmplt crD,rA,rB
Floating-Point Test Equal efststeq evfststeq efdtsteq crD,rA,rB
Floating-Point Test Greater Than efststgt evfststgt efdtstgt crD,rA,rB
Floating-Point Test Less Than efststlt evfststlit efdtstit crD,rA,rB

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

2-8 Freescale Semiconductor

SPE Register Model

2234 SPE Available Bit in the Machine State Register (MSR)

MSR[SPV] (MSR[38]), formerly called MSR[SPE], is the SPE/embedded floating-point available bit. If
this bit is zero and software attempts to execute an SPE instruction, an SPE unavailable interrupt is taken.
NOTE (Software)

Software can use M SR[SPV] to detect when a process usesthe upper 32 bits
of a 64-hit register on a 32-bit implementation and thus save them on
context switch.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-9

SPE Register Model

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

2-10 Freescale Semiconductor

Chapter 3
SPE and Embedded Floating-Point Instruction Model

This chapter describes the instruction model of the signal processing engine (SPE) for embedded
processors. Thisincludes additional resources defined to support embedded floating-point instruction sets
that may be implemented.

Chapter 5, “Instruction Set,” gives complete descriptions of individual SPE and embedded floating-point
instructions. Section 5.3.1, “ SPE Saturation and Bit-Reverse Models,” provides pseudo-RTL for
saturation and bit reversal to more accurately describe those functionsthat are referenced in theinstruction
pseudo-RTL.

3.1 Overview

The SPE is designed to accel erate signal-processing applications normally suited to DSP operation. This
is accomplished using short (two-element) vectors within 64-bit GPRs and using single instruction
multiple data (SIMD) operations to perform the requisite computations. An accumulator register (ACC)
allows back-to-back operations without loop unrolling.

The SPE defines both computational and load storeinstructions. SPE |oad store instructions are necessary
for 32-bit implementation to access 64-bit operands.

Embedded floating-point instructions, which may be implemented if the SPE isimplemented, include the
following computational instructions:

» Embedded vector single-precision floating-point, which use extended 64-bit GPRs
» Embedded scalar single-precision floating-point, which use extended 32-bit GPRs
» Embedded scalar double-precision floating-point, which use extended 64-bit GPRs

Notethat for 32-bit implementations, the SPE |oad and store instructions must be used for accessing 64-bit
embedded floating-point operands.

3.2 SPE Instruction Set

This section describes the dataformats and instruction syntax, and provides an overview of computational
operations of the SPE instructions.

Chapter 5, “Instruction Set,” gives complete descriptions of individual SPE and embedded floating-point
instructions.

Opcodes are listed in Appendix B, “ SPE and Embedded Floating-Point Opcode Listings.”

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 3-1

SPE and Embedded Floating-Point Instruction Model

3.2.1 SPE Data Formats

SPE provides integer and fractional data formats, which can be treated as signed or unsigned quantities.

3.2.1.1 Integer Format

Unsigned integers consist of 16-, 32-, or 64-bit binary integer values. The largest representable value is
2" — 1, where n represents the number of bitsin the value. The smallest representable valueis 0.
Computations that produce values larger than 2" — 1 or smaller than 0 set OV or OVH in SPEFSCR.

Signed integers consist of 16-, 32-, or 64-bit binary values in two’s-complement form. The largest
representable value is 2™ — 1, where n represents the number of bitsin the value. The smallest
representable value is—2"1. Computations that produce values larger than 2% — 1 or smaller than -2
set OV or OVH in SPEFSCR.

3.2.1.2 Fractional Format

Fractional datais useful for representing data converted from analog devices and is conventionally used
for DSP fractional arithmetic.

Unsigned fractions consist of 16-, 32-, or 64-bit binary fractional values that range from O to less than 1.
Unsigned fractionsplace theradix point immediately to the left of the msh. The msb of the value represents
the value 21, the next msb represents the value 22, and so on. The largest representable value is 1-2™
where n represents the number of bitsin the value. The smallest representable value is 0. Computations
that produce values larger than 1-2™" or smaller than 0 may set OV or OVH in the SPEFSCR. SPE does
not define unsigned fractional forms of instructions to manipulate unsigned fractional data because the
unsigned integer forms of the instructions produce the same results as unsigned fractional forms.

Guarded unsigned fractions are 64-bit binary fractional values. Guarded unsigned fractions place the
decimal pointimmediately to theleft of bit 32. The largest representablevalueis 232-232; the smallest is 0.
Guarded unsigned fractional computations are always modulo and do not set OV or OV H.

Signed fractions consist of 16-, 32-, or 64-bit binary fractional valuesin two’s-complement form that range
from -1 to less than 1. Signed fractions place the decimal point immediately to the right of the msb. The
largest representable value is 1-2- (™D where n represents the number of bits in the value. The smallest
representable valueis-1. Computations that produce values larger than 1-2°"D or smaller than -1 may set
OV or OVH. Multiplication of two signed fractional values causes the result to be shifted left one bit to
remove the resultant redundant sign bit in the product. In this case, a 0 bit is concatenated as the Isb of the
shifted resullt.

Guarded signed fractions are 64-bit binary fractional values that place the decimal point immediately to
the left of bit 33. The largest representable value is 232-2-3%; the smallest is -23%-1+2"3L. Guarded signed
fractional computations are always modulo and do not set OV or OVH.

3.2.2 Computational Operations

SPE supports severa different computational capabilities. Modulo results produce truncation of the
overflow bitsin acalculation; therefore, overflow does not occur and no saturation is performed. For
instructions for which overflow occurs, saturation provides a maximum or minimum representable value

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

3-2 Freescale Semiconductor

SPE and Embedded Floating-Point Instruction Model

(for the data type) in the case of overflow. Instructions are provided for a wide range of computational
capability. The operation types are as follows:

» Simplevector instructions. Theseinstructions use the corresponding low- and high-word elements
of the operandsto produce avector result that is placed in the destination register, the accumul ator,
or both. Figure 3-1 shows how operations are typically performed in vector operations.

0 31 32 63
rA
| | B
Y ¢ Y ¢
operation operation
| |
Y Y D

Figure 3-1. Two-Element Vector Operations

* Multiply and accumulate instructions. These instructions perform multiply operations, optionally
add the result to the ACC, and place the result into the destination register and optionally into the
ACC. These instructions are composed of different multiply forms, data formats, and data
accumulate options, as indicated by their mnemonics, as shown in Table 3-1.

Table 3-1. Mnemonic Extensions for Multiply Accumulate Instructions

Extension Meaning Comments
Multiply Form

he Half word even 16 X 16 — 32
heg Half word even guarded 16 X 16 — 32, 64-bit final accum result

ho Half word odd 16 X 16 — 32
hog Half word odd guarded 16 X 16 — 32, 64-bit final accum result

w Word 32X 32 - 64

wh Word high 32 X 32 — 32 (high order 32 bits of product)
wi Word low 32 X 32 — 32 (low order 32 bits of product)

Data Format

smf Signed modulo fractional Modulo, no saturation or overflow
smi Signed modulo integer Modulo, no saturation or overflow
ssf Signed saturate fractional Saturation on product and accumulate
ssi Signed saturate integer Saturation on product and accumulate
umi Unsigned modulo integer Modulo, no saturation or overflow
usi Unsigned saturate integer Saturation on product and accumulate

Accumulate Option

a Place in accumulator Result — accumulator

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 3-3

SPE and Embedded Floating-Point Instruction Model

Table 3-1. Mnemonic Extensions for Multiply Accumulate Instructions (continued)

Extension Meaning Comments
aa Add to accumulator Accumulator + result — accumulator
aaw Add to accumulator Accumulatorg.31 + resulty.3; — accumulatorg.4
Accumulatorg,.g3 + resultz,.gg — accumulatorgy.gs
an Add negated to accumulator Accumulator — result — accumulator
anw Add negated to accumulator Accumulatorg.3¢ — resulty.3; — accumulatorg.34

Accumulatorg,.g3 — resultzs.g3 — accumulatorss.gs

* Load and store instructions. These instructions provide |oad and store capabilities for moving data
to and from memory. A variety of forms are provided that position data for efficient computation.

» Compareand miscellaneousinstructions. Theseinstructions perform miscellaneous functions such
as field manipulation, bit reversed incrementing, and vector compares.

3.2.21 Data Formats and Register Usage
Figure 2-4 shows how GPRs are used with integer, fractional, and floating-point data formats.

3.2.2.1.1 Signed Fractions

In signed fractional format, the n-bit operand is represented in a 1.[n-1] format (1 sign bit, n—1 fraction
bits). Signed fractional numbers are in the following range:

10<sF<10-2 "D

The real value of the binary operand SF[0:n-1] is as follows:

n-1
SF=-10+SF(0)+ 3 SF(i)e 2"
i=1
The most negative and positive numbers representable in fractional format are as follows:
* The most negative number isrepresented by SF(0) = 1 and SF[1:n—1] = O (that is, n=32;
0x8000_0000 = —1.0).
* The most positive number is represented by SF(0) = 0 and SF[1:n-1] = all 1s(that is, n= 32;
OX7FFF_FFFF = 1.0- 2™y,
3.2.2.1.2 SPE Integer and Fractional Operations

Figure 3-2 shows data formats for signed integer and fractional multiplication. Note that low word
versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to
execute an opcode corresponding to these instructions causes boundedly undefined results.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

3-4 Freescale Semiconductor

SPE and Embedded Floating-Point Instruction Model

Signed Multiplication N X N — 2N — 1 Bits

Integer Fractional
s B E | [s
Signed Multiplier Signed Multiplier

B HP : LP | [S HP : LP |[0]

<—(2N-1)-Bit Product——mm> <—2N-1)-Bit Product——> f‘
Sign Extension Zero fill
< 2N Bits > < 2N Bits >

Figure 3-2. Integer and Fractional Operations

3.2.2.1.3 SPE Instructions
Table 3-2 shows how SPE vector multiply instruction mnemonics are structured.

Table 3-2. SPE Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element

ho |half odd (16x16->32)
he |half even (16x16->32)
hog | half odd guarded (16x16->32)
heg | half even guarded (16x16->32)
evm | wh |word high (32x32->32)
wl | word low (32x32->32)
whg | word high guarded (32x32->32)
wlg | word low guarded (32x32->32)
w | word (32x32->64)

usi | unsigned saturate integer a |write to ACC

um ;”iggi‘;ﬂf;:';gegrer aa |write to ACC & added ACC
ssf! signed saturate fracst;ional an | write to ACC & negate ACC
9 aaw | write to ACC & ACC in words

sm|1 s!gned modulo mteg_er anw | write to ACC & negate ACC in words
smf’ | signed modulo fractional

' Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute an
opcode corresponding to these instructions causes boundedly undefined results.

Table 3-3 defines mnemonic extensions for these instructions.

Table 3-3. Mnemonic Extensions for Multiply-Accumulate Instructions

Extension Meaning Comments
Multiply Form
he Half word even 16x16—32
heg Half word even guarded 16x16—32, 64-bit final accumulator result
ho Half word odd 16x16—32
hog Half word odd guarded 16x16—32, 64-bit final accumulator result
w Word 32x32—64
wh Word high 32x32—-32, high-order 32 bits of product
wl Word low 32x32—-32, low-order 32 bits of product
Data Type

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 3-5

SPE and Embedded Floating-Point Instruction Model

Table 3-3. Mnemonic Extensions for Multiply-Accumulate Instructions (continued)

Extension Meaning Comments
smf Signed modulo fractional Wrap, no saturate
smi Signed modulo integer Wrap, no saturate
ssf Signed saturate fractional —
ssi Signed saturate integer —
umi Unsigned modulo integer Wrap, no saturate
usi Unsigned saturate integer —
Accumulate Options
a Update accumulator Update accumulator (no add)
aa Add to accumulator Add result to accumulator (64-bit sum)
aaw Add to accumulator (words) Add word results to accumulator words (pair of 32-bit sums)
an Add negated Add negated result to accumulator (64-bit sum)
anw Add negated to accumulator (words) | Add negated word results to accumulator words (pair of 32-bit sums)

Table 3-4 lists SPE instructions.
Table 3-4. SPE Instructions

Instruction Mnemonic Syntax
Bit Reversed Increment brinc rD,rA,rB
Initialize Accumulator evmra rD,rA
Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate evmhegsmfaa | rD,rA,rB
Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate Negative evmhegsmfan | rD,rA,rB
Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate evmhegsmiaa rD,rA,rB
Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate Negative evmhegsmian rD,rA,rB
Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate evmhegumiaa | rD,rA,rB
Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate Negative evmhegumian | rD,rA,rB
Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate evmhogsmfaa | rD,rA,rB
Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate Negative evmhogsmfan | rD,rA,rB
Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate evmhogsmiaa | rD,rA,rB
Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate Negative evmhogsmian | rD,rA,rB
Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate evmhogumiaa | rD,rA,rB
Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate Negative evmhogumian | rD,rA,rB
Vector Absolute Value evabs rD,rA
Vector Add Immediate Word evaddiw rD,rB,UIMM
Vector Add Signed, Modulo, Integer to Accumulator Word evaddsmiaaw rD,rA,rB
Vector Add Signed, Saturate, Integer to Accumulator Word evaddssiaaw rD,rA
Vector Add Unsigned, Modulo, Integer to Accumulator Word evaddumiaaw rD,rA
Vector Add Unsigned, Saturate, Integer to Accumulator Word evaddusiaaw rD,rA
Vector Add Word evaddw rD,rA,rB

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

3-6

Freescale Semiconductor

SPE and Embedded Floating-Point Instruction Model

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
Vector AND evand rD,rA,rB
Vector AND with Complement evandc rD,rA,rB
Vector Compare Equal evcmpeq crD,rA,rB
Vector Compare Greater Than Signed evcmpgts crD,rA,rB
Vector Compare Greater Than Unsigned evcmpgtu crD,rA,rB
Vector Compare Less Than Signed evemplts crD,rA,rB
Vector Compare Less Than Unsigned evcempltu crD,rA,rB
Vector Count Leading Sign Bits Word evcntisw rD,rA
Vector Count Leading Zeros Word evcntlzw rD,rA
Vector Divide Word Signed evdivws rD,rA,rB
Vector Divide Word Unsigned evdivwu rD,rA,rB
Vector Equivalent eveqv rD,rA,rB
Vector Extend Sign Byte evextsb rD,rA
Vector Extend Sign Half Word evextsh rD,rA
Vector Load Double into Half Words evidh rD,d(rA)
Vector Load Double into Half Words Indexed evidhx rD,rA,rB
Vector Load Double into Two Words evidw rD,d(rA)
Vector Load Double into Two Words Indexed evidwx rD,rA,rB
Vector Load Double Word into Double Word evidd rD,d(rA)
Vector Load Double Word into Double Word Indexed eviddx rD,rA,rB
Vector Load Half Word into Half Word Odd Signed and Splat evlhhossplat rD,d(rA)
Vector Load Half Word into Half Word Odd Signed and Splat Indexed evlhhossplatx | rD,rA,rB
Vector Load Half Word into Half Word Odd Unsigned and Splat evihhousplat rD,d(rA)
Vector Load Half Word into Half Word Odd Unsigned and Splat Indexed evihhousplatx | rD,rA,rB
Vector Load Half Word into Half Words Even and Splat evihhesplat rD,d(rA)
Vector Load Half Word into Half Words Even and Splat Indexed evlhhesplatx rD,rA,rB
Vector Load Word into Half Words and Splat eviwhsplat rD,d(rA)
Vector Load Word into Half Words and Splat Indexed evlwhsplatx rD,rA,rB
Vector Load Word into Half Words Odd Signed (with sign extension) eviwhos rD,d(rA)
Vector Load Word into Half Words Odd Signed Indexed (with sign extension) evlwhosx rD,rA,rB
Vector Load Word into Two Half Words Even eviwhe rD,d(rA)
Vector Load Word into Two Half Words Even Indexed eviwhex rD,rA,rB
Vector Load Word into Two Half Words Odd Unsigned (zero-extended) eviwhou rD,d(rA)
Vector Load Word into Two Half Words Odd Unsigned Indexed (zero-extended) eviwhoux rD,rA,rB
Vector Load Word into Word and Splat eviwwsplat rD,d(rA)
Vector Load Word into Word and Splat Indexed eviwwsplatx rD,rA,rB
Vector Merge High evmergehi rD,rA,rB
Vector Merge High/Low evmergehilo rD,rA,rB
Vector Merge Low evmergelo rD,rA,rB
Vector Merge Low/High evmergelohi rD,rA,rB

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 3-7

SPE and Embedded Floating-Point Instruction Model

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
Vector Multiply Half Words, Even, Signed, Modulo, Fractional evmhesmf rD,rA,rB
Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate into Words evmhesmfaaw | rD,rA,rB
Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate Negative into evmhesmfanw | rD,rA,rB
Words
Vector Multiply Half Words, Even, Signed, Modulo, Fractional, Accumulate evmhesmfa rD,rA,rB
Vector Multiply Half Words, Even, Signed, Modulo, Integer evmhesmi rD,rA,rB
Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into Words evmhesmiaaw | rD,rA,rB
Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate Negative into Words | evmhesmianw | rD,rA,rB
Vector Multiply Half Words, Even, Signed, Modulo, Integer, Accumulate evmhesmia rD,rA,rB
Vector Multiply Half Words, Even, Signed, Saturate, Fractional evmhessf rD,rA,rB
Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate into Words evmhessfaaw rD,rA,rB
Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate Negative into | evmhessfanw rD,rA,rB
Words
Vector Multiply Half Words, Even, Signed, Saturate, Fractional, Accumulate evmhessfa rD,rA,rB
Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate into Words evmhessiaaw rD,rA,rB
Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate Negative into evmhessianw rD,rA,rB
Words
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer evmheumi rD,rA,rB
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate into Words evmheumiaaw | rD,rA,rB
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate Negative into evmheumianw | rD,rA,rB
Words
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer, Accumulate evmheumia rD,rA,rB
Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate into Words evmheusiaaw rD,rA,rB
Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate Negative into | evmheusianw rD,rA,rB
Words
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional evmhosmf rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate into Words evmhosmfaaw | rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate Negative into evmhosmfanw| rD,rA,rB
Words
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional, Accumulate evmhosmfa rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Modulo, Integer evmhosmi rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into Words evmhosmiaaw | rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate Negative into Words | evmhosmianw | rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Modulo, Integer, Accumulate evmhosmia rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional evmhossf rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into Words evmhossfaaw rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate Negative into evmhossfanw | rD,rA,rB
Words
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional, Accumulate evmhossfa rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate into Words evmhossiaaw rD,rA,rB
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate Negative into Words | evmhossianw rD,rA,rB

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

3-8

Freescale Semiconductor

SPE and Embedded Floating-Point Instruction Model

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer evmhoumi rD,rA,rB
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate into Words evmhoumiaaw | rD,rA,rB
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate Negative into evmhoumianw | rD,rA,rB
Words
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer, Accumulate evmhoumia rD,rA,rB
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate into Words evmhousiaaw rD,rA,rB
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate Negative into evmhousianw | rD,rA,rB
Words
Vector Multiply Word High Signed, Modulo, Fractional evmwhsmf rD,rA,rB
Vector Multiply Word High Signed, Modulo, Fractional and Accumulate evmwhsmfa rD,rA,rB
Vector Multiply Word High Signed, Modulo, Integer evmwhsmi rD,rA,rB
Vector Multiply Word High Signed, Modulo, Integer and Accumulate evmwhsmia rD,rA,rB
Vector Multiply Word High Signed, Saturate, Fractional evmwhssf rD,rA,rB
Vector Multiply Word High Signed, Saturate, Fractional and Accumulate evmwhssfa rD,rA,rB
Vector Multiply Word High Unsigned, Modulo, Integer evmwhumi rD,rA,rB
Vector Multiply Word High Unsigned, Modulo, Integer and Accumulate evmwhumia rD,rA,rB
Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words evmwlismiaaw | rD,rA,rB
Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in Words evmwlismianw | rD,rA,rB
Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words evmwlssiaaw rD,rA,rB
Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in Words evmwlssianw rD,rA,rB
Vector Multiply Word Low Unsigned, Modulo, Integer evmwlumi rD,rA,rB
Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate evmwlumia rD,rA,rB
Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words evmwlumiaaw | rD,rA,rB
Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in Words evmwlumianw | rD,rA,rB
Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words evmwlusiaaw rD,rA,rB
Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in Words evmwlusianw rD,rA,rB
Vector Multiply Word Signed, Modulo, Fractional evmwsmf rD,rA,rB
Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfa rD,rA,rB
Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfaa rD,rA,rB
Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative evmwsmfan rD,rA,rB
Vector Multiply Word Signed, Modulo, Integer evmwsmi rD,rA,rB
Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmia rD,rA,rB
Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmiaa rD,rA,rB
Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative evmwsmian rD,rA,rB
Vector Multiply Word Signed, Saturate, Fractional evmwssf rD,rA,rB
Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfa rD,rA,rB
Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfaa rD,rA,rB
Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative evmwssfan rD,rA,rB
Vector Multiply Word Unsigned, Modulo, Integer evmwumi rD,rA,rB
Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumia rD,rA,rB

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 3-9

SPE and Embedded Floating-Point Instruction Model

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumiaa rD,rA,rB
Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative evmwumian rD,rA,rB
Vector NAND evnhand rD,rA,rB
Vector Negate evheg rD,rA
Vector NOR ! evnor rD,rA,rB
Vector OR 2 evor rD,rA,rB
Vector OR with Complement evorc rD,rA,rB
Vector Rotate Left Word evriw rD,rA,rB
Vector Rotate Left Word Immediate evrlwi rD,rA,UIMM
Vector Round Word evrndw rD,rA
Vector Select evsel rD,rA,rB,crS
Vector Shift Left Word evsiw rD,rA,rB
Vector Shift Left Word Immediate evslwi rD,rA,UIMM
Vector Shift Right Word Immediate Signed evsrwis rD,rA,UIMM
Vector Shift Right Word Immediate Unsigned evsrwiu rD,rA,UIMM
Vector Shift Right Word Signed evsrws rD,rA,rB
Vector Shift Right Word Unsigned evsrwu rD,rA,rB
Vector Splat Fractional Immediate evsplatfi rD,SIMM
Vector Splat Immediate evsplati rD,SIMM
Vector Store Double of Double evstdd rS,d(rA)
Vector Store Double of Double Indexed evstddx rS,rA,rB
Vector Store Double of Four Half Words evstdh rS,d(rA)
Vector Store Double of Four Half Words Indexed evstdhx rS,rA,rB
Vector Store Double of Two Words evstdw rS,d(rA)
Vector Store Double of Two Words Indexed evstdwx rS,rA,rB
Vector Store Word of Two Half Words from Even evstwhe rS,d(rA)
Vector Store Word of Two Half Words from Even Indexed evstwhex rS,rA,rB
Vector Store Word of Two Half Words from Odd evstwho rS,d(rA)
Vector Store Word of Two Half Words from Odd Indexed evstwhox rS,rA,rB
Vector Store Word of Word from Even evstwwex rS,d(rA)
Vector Store Word of Word from Even Indexed evstwwex rS,rA,rB
Vector Store Word of Word from Odd evstwwo rS,d(rA)
Vector Store Word of Word from Odd Indexed evstwwox rS,rA,rB
Vector Subtract from Word 3 evsubfw rD,rA,rB
Vector Subtract Immediate from Word * evsubifw rD,UIMM,rB
Vector Subtract Signed, Modulo, Integer to Accumulator Word evsubfsmiaaw rD,rA
Vector Subtract Signed, Saturate, Integer to Accumulator Word evsubfssiaaw rD,rA
Vector Subtract Unsigned, Modulo, Integer to Accumulator Word evsubfumiaaw rD,rA

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

3-10 Freescale Semiconductor

SPE and Embedded Floating-Point Instruction Model

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
Vector Subtract Unsigned, Saturate, Integer to Accumulator Word evsubfusiaaw rD,rA
Vector XOR evxor rD,rA,rB

evnot rD,rA is equivalent to evnor rD,rA,rA

evmr rD,rA is equivalent to evor rD,rA,rA

evsubw rD,rB,rA is equivalent to evsubfw rD,rA,rB
evsubiw rD,rB,UIMM is equivalent to evsubifw rD,UIMM,rB

AW N =

3.2.3 SPE Simplified Mnemonics

Table 3-5 lists smplified mnemonics for SPE instructions.
Table 3-5. SPE Simplified Mnhemonics

Simplified Mnemonic Equivalent
evmr rD,rA evor rD,rA,rA
evnot rD,rA evnor rD,rA,rA

evsubiw rD,rB,UIMM | evsubifw rD,UIMM,rB

evsubw rD,rB,rA evsubfw rD,rA,rB

3.3 Embedded Floating-Point Instruction Set
The embedded floating-point categories require the implementation of the signal processing engine (SPE)
category and consist of three distinct categories:

» Embedded vector single-precision floating-point

» Embedded scalar single-precision floating-point

» Embedded scalar double-precision floating-point

Although each of these may be implemented independently, they are defined in asingle chapter because
they may be implemented together.

Load and store instructions for transferring operands to and from memory are described in Section 3.3.3,
“Load/Store Instructions.”

References to embedded floating-point categories, embedded floating-point instructions, or embedded
floating-point operations apply to al three categories.

Scalar single-precision floating-point operations use 32-hit GPRs as source and destination operands,
however, double precision and vector instructions require 64-bit GPRs as described in Section 2.2.1,
“General-Purpose Registers (GPRS).”

Opcodes are listed in Appendix B, “SPE and Embedded Floating-Point Opcode Listings.”

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 3-11

SPE and Embedded Floating-Point Instruction Model

3.3.1 Embedded Floating-Point Operations

This section describes embedded floating-point operational modes, data formats, underflow and overflow
handling, compliance with |EEE 754, and conversion models.

3.3.1.1 Operational Modes

All embedded floating-point operations are governed by the setting of the mode bit in SPEFSCR. The
mode bit defines how floating-point results are computed and how floating-point exceptions are handled.
Mode O defines areal-time, default-results-oriented mode that saturates results. Other modes are currently
not defined.

3.3.1.2 Floating-Point Data Formats

Single-precision floating-point data el ements are 32 bits wide with 1 sign bit (s), 8 bits of biased
exponent (e) and 23 bitsof fraction (f). Double-precision floating-point dataelementsare 64 bitswidewith
1sign bit (s), 11 bits of biased exponent (e) and 52 bits of fraction (f).

In the | EEE-754 specification, floating-point values are represented in aformat consisting of three explicit
fields (sign field, biased exponent field, and fraction field) and an implicit hidden bit. Figure 3-3 shows
floating-point data formats.

hidden bit
Vi
0 1 8 9 31 (or 32:63)
| s | exp | fraction | Single-precision
0 1 1112 63
| s | exp | fraction | Double-precision

s—sign bit; 0 = positive; 1 = negative
exp—biased exponent field
fraction—fractional portion of number

Figure 3-3. Floating-Point Data Format

For single-precision normalized numbers, the biased exponent value e lies in the range of 1 to 254
corresponding to an actual exponent value E in the range —126 to +127. For double-precision normalized
numbers, the biased exponent value e liesin the range of 1 to 2046 corresponding to an actual exponent
value E in the range -1022 to +1023. With the hidden bit implied to be ‘1’ (for normalized numbers), the
value of the number isinterpreted as follows:

(—1)° x 2E x (1.fraction)

where E isthe unbiased exponent and 1.fraction is the mantissa (or significand) consisting of aleading ‘1’
(the hidden bit) and afractional part (fraction field). For the single-precision format, the maximum positive
normalized number (pmax) is represented by the encoding Ox7F7F_FFFF which is approximately
3.4E+38, (21%8), and the minimum positive normalized value (pmin) is represented by the encoding
0x0080_0000 which is approximately 1.2E-38 (2712%). For the double-precision format, the maximum
positive normalized number (%)max) Is represented by the encoding Ox7FEF_FFFF_FFFF_FFFF whichis
approximately 1.8E+307 (21924, and the minimum positive normalized value (pmin) isrepresented by the

encoding 0x0010_0000_0000_0000 which is approximately 2.2E-308 (2710%2).

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

3-12 Freescale Semiconductor

SPE and Embedded Floating-Point Instruction Model

Two specific values of the biased exponent are reserved (0 and 255 for single-precision; 0 and 2047 for
double-precision) for encoding special values of +0, -0, +infinity, -infinity, and NaNs.

Zeros of both positive and negative sign are represented by a biased exponent value e of 0 and afraction f
whichisO.

Infinities of both positive and negative sign are represented by a maximum exponent field value (255 for
single-precision, 2047 for double-precision) and a fraction which is 0.

Denormalized numbers of both positive and negative sign are represented by a biased exponent value e of
0 and afraction f, which is nonzero. For these numbers, the hidden bit is defined by IEEE 754 to be 0. This
number typeis not directly supported in hardware. Instead, either a software interrupt handler isinvoked,
or adefault value is defined.

NaNs (Not-a-Numbers) are represented by a maximum exponent field value (255 for single-precision,
2047 for double-precision) and afraction, f, which is nonzero.

3.3.1.3 Overflow and Underflow

Defining pmax to be the most positive normalized value (farthest from zero), pmin the smallest positive
normalized value (closest to zero), nmax the most negative normalized value (farthest from zero) and nmin
the smallest normalized negative value (closest to zero), an overflow is said to have occurred if the
numerically correct result of an instruction is such that r > pmax or r < nmax. Additionally, an
implementation may also signal overflow by comparing the exponents of the operands. In this case, the
hardware examines both exponentsignoring the fractional values. If it is determined that the operation to
be performed may overflow (ignoring the fractional values), an overflow may be said to occur. For
addition and subtraction this can occur if the larger exponent of both operands is 254. For multiplication
this can occur if the sum of the exponents of the operands less the biasis 254. Thus:
si ngl e-preci sion addition:
if Aexp >= 254 | Bgyp >= 254 then overflow
doubl e-preci sion addition:
if Agxp >= 2046 | Bgyp >= 2046 then overflow
singl e-precision nmultiplication:
if Agp * Boyp - 127 >= 254 then overflow

doubl e-precision multiplication:
if Aexp + Bexp - 1023 >= 2046 then overflow

An underflow is said to have occurred if the numerically correct result of an instruction is such that
O<r<pmin or nmin<r<O0. In this case, r may be denormalized, or may be smaller than the smallest
denormalized number. Aswith overflow detection, an implementation may also signal underflow by
comparing the exponents of the operands. In this case, the hardware examines both exponents regardless
of thefractional values. If it isdetermined that the operation to be performed may underflow (ignoring the
fractional values), an underflow may be said to occur. For division, this can occur if the difference of the
exponent of the A operand less the exponent of the B operand lessthe biasis 1. Thus:

si ngl e- preci sion division:

if Aexp - Bexp - 127 <= 1 then underflow

doubl e-precision multiplication:
if Aexp - Bexp - 1023 <= 1 then underflow

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 3-13

SPE and Embedded Floating-Point Instruction Model

Embedded floating-point operations do not produce +Inf, —Inf, NaN, or a denormalized number. If the
result of an instruction overflows and floating-point overflow exceptions are disabled
(SPEFSCR[FOVFE] is cleared), pmax or nmax is generated as the result of that instruction depending on
the sign of theresult. If the result of an instruction underflows and floating-point underflow exceptions are
disabled (SPEFSCR[FUNFE] iscleared), +0 or -0 is generated as the result of that instruction based upon
the sign of the result.

3.3.14 IEEE Std 754™ Compliance

The embedded floating-point categories require a floating-point system as defined in |EEE 754 but may
rely on software support in order to conform fully with the standard. Thus, whenever an input operand of
the embedded floating-point instruction has data values that are +infinity, -infinity, alized, NaN, or when
the result of an operation produces an overflow or an underflow, an embedded fl oating-point datainterrupt
may be taken and the interrupt handler is responsible for delivering IEEE 754—compliant behavior if
desired.

When embedded floating-point invalid operation/input error exceptions are disabled (SPEFSCR[FINVE]
=0), default resultsare provided by the hardwarewhen an infinity, denormalized, or NaN input isreceived,
or for the operation 0/0. When embedded floating-point underflow exceptions are disabled
(SPEFSCR[FUNFE] = 0) and the result of afloating-point operation underflows, asigned zero result is
produced. The embedded floating-point round (inexact) exceptionisa so signaled for this condition. When
embedded floating-point overflow exceptions are disabled (SPEFSCR[FOVFE] = 0) and the result of a
floating-point operation overflows, apmax or nmax result isproduced. The embedded floating-point round
(inexact) exception isalso signaled for this condition. An exception enable flag (SPEFSCR[FINXE]) is
also provided for generating an embedded floating-point round interrupt when an inexact result is
produced, to allow a software handler to conformto | EEE 754. An embedded floating-point divide by zero
exception enable flag (SPEFSCR[FDBZE]) is provided for generating an embedded floating-point data
interrupt when adivide by zero operation is attempted to allow asoftware handler to conform to | EEE 754.
All of these exceptions may be disabled, and the hardware will then deliver an appropriate default result.

The sign of the result of an addition operation isthe sign of the source operand having the larger absolute
value. If both operands have the same sign, the sign of the result is the same as the sign of the operands.
This includes subtraction which is addition with the negation of the sign of the second operand. The sign
of theresult of an addition operation with operands of differing signsfor which theresultiszeroispositive
except when rounding to negativeinfinity. Thus-0+ -0 =-0, and all other caseswhich resultin azerovalue
give +0 unless the rounding mode is rounded to negative infinity.

NOTE (Programming)

When exceptions are disabled and default results computed, operations
having input values that are denormalized may provide different results on
different implementations. An implementation may choose to use the
denormalized value or a zero value for any computation. Thus a
computational operation involving adenormalized value and anormal value
may return different results depending on the implementation.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

3-14 Freescale Semiconductor

SPE and Embedded Floating-Point Instruction Model

3.3.1.5 Sticky Bit Handling for Exception Conditions

The SPEFSCR defines sticky bits for retaining information about exception conditions that are detected.
These sticky bits (FINXS, FINVS, FDBZS, FUNFS, and FOVFS) can be used to help provide IEEE-754
compliance. The sticky bits represent the combined OR of all previous status bits produced from any
embedded floating-point operation before the last time software zeroed the sticky bit. Only software can
zero a sticky bit; hardware can only set sticky bits.

The SPEFSCR is described in Section 2.2.3, “ Signal Processing Embedded Floating-Point Status and
Control Register (SPEFSCR).” Interrupts are described in Chapter 4, “* SPE/Embedded Fl oating-Point
Interrupt Model.”

3.3.1.6 Implementation Options Summary

There are severa options that may be chosen for a given implementation. This section summarizes
implementation-dependent functionality and should be used with the processor core documentation to
determine behavior of individual implementations.

* Floating-point instruction sets can be implemented independently of one another.

* Overflow and underflow conditions may be signaled by evaluating the exponent. If the evaluaton
indicates an overflow or underflow could occur, the implementation may choose to signal an
overflow or underflow. It is recommended that future implementations not use this estimation and
that they signal overflow or underflow when they actually occur.

» |If an operand for a calculation or conversion is denormalized, the implementation may choose to
use a same-signed zero value in place of the denormalized operand.

» Therounding modesof +infinity and -infinity are not required to be handled by animplementation.
If an implementation does not support infinity rounding modes and the rounding mode is set to
be +infinity or -infinity, an embedded floating-point round interrupt occurs after every
floating-point instruction for which rounding may occur, regardless of the value of FINXE, unless
an embedded floating-point datainterrupt also occurs and is taken.

» For absolute value, negate, and negative absol ute val ue operations, an implementation may choose
either to simply perform the sign bit operation, ignoring exceptions, or to compute the operation
and handle exceptions and saturation where appropriate.

» SPEFSCR[FGH,FXH] are undefined on completion of a scalar floating-point operation. An
implementation may choose to zero them or leave them unchanged.

* Animplementation may choose to only implement sticky bit setting by hardware for FDBZS and
FINXS, allowing software to manage the other sticky bits. It is recommended that al future
implementations implement al sticky bit setting in hardware.

» For 64-bit implementations, the upper 32 bits of the destination register are undefined when the
result of a scalar floating-point operation is a 32-bit result. It is recommended that future 64-bit
implementations produce 64-bit results for the results of 64-bit convert-to-integer values.

3.3.1.7 Saturation, Shift, and Bit Reverse Models
For saturation, left shifts, and bit reversal, the pseudo-RTL is provided here to more accurately describe
those functions referenced in the instruction pseudo-RTL.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 3-15

SPE and Embedded Floating-Point Instruction Model

3.3.1.71 Saturation

SATURATE (ov, carry, sat_ovn, sat_ov, val)
if ov then
if carry then
return sat_ovn
else
return sat_ov
else
return val

3.3.1.7.2 Shift Left

SL(value, cnt)
if cnt > 31 then
return 0
else
return (value << cnt)

3.3.1.7.3 Bit Reverse

BITREVERSE (value)
result € 0
mask <1
shift «31
cnt €32
while cnt > 0 then do
t €<value & mask
if shift >= 0 then
result «(t << shift) | result
else
result «(t >> -shift) | result
cnt ¢€cnt - 1
shift € ghift - 2
mask €mask << 1
return result

3.3.2 Embedded Vector and Scalar Floating-Point Instructions

The embedded floating-point operations are | EEE 754—compliant with software exception handlers and
offer asimpler exception model than the Power |SA floating-point instructions that use the floating-point
registers (FPRs). Instead of FPRs, these instructions use GPRs to offer improved performance for
converting among floating-point, integer, and fractional values. Sharing GPRs allowsvector floating-point
instructions to use SPE load and store instructions.

NOTE

Note that the vector and scalar versions of the instructions have the same
syntax.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

3-16 Freescale Semiconductor

SPE and Embedded Floating-Point Instruction Model

Table 3-6 lists the vector and scalar floating-point instructions.

Table 3-6. Vector and Scalar Floating-Point Instructions

Single-Precision Double-
Instruction Precision | Syntax
Scalar Vector Scalar
Convert Floating-Point Double- from Single-Precision — — efdcfs rD,rB
Convert Floating-Point from Signed Fraction efscfsf evfscfsf efdcfsf rD,rB
Convert Floating-Point from Signed Integer efscfsi evfscfsi efdcfsi rD,rB
Convert Floating-Point from Unsigned Fraction efscfuf evfscfuf efdcfuf rD,rB
Convert Floating-Point from Unsigned Integer efscfui evfscfui efdcfui rD,rB
Convert Floating-Point Single- from Double-Precision — —_ efscfd rD,rB
Convert Floating-Point to Signed Fraction efsctsf evfsctsf efdctsf rD,rB
Convert Floating-Point to Signed Integer efsctsi evfsctsi efdctsi rD,rB
Convert Floating-Point to Signed Integer with Round toward Zero efsctsiz evfsctsiz efdctsiz rD,rB
Convert Floating-Point to Unsigned Fraction efsctuf evfsctuf efdctuf rD,rB
Convert Floating-Point to Unsigned Integer efsctui evfsctui efdctui rD,rB
Convert Floating-Point to Unsigned Integer with Round toward Zero | efsctuiz evfsctuiz efdctuiz rD,rB
Floating-Point Absolute Value efsabs ! evfsabs efdabs rD,rA
Floating-Point Add efsadd evfsadd efdadd rD,rA,rB
Floating-Point Compare Equal efscmpeq | eviscmpeq | efdcmpeq | crD,rA,rB
Floating-Point Compare Greater Than efscmpgt | evfscmpgt | efdempgt | crD,rA,rB
Floating-Point Compare Less Than efscmplt | evfscmplt | efdemplt | crD,rA,rB
Floating-Point Divide efsdiv evfsdiv efddiv rD,rA,rB
Floating-Point Multiply efsmul evfsmul efdmul rD,rA,rB
Floating-Point Negate efsneg 1 evfsneg efdneg rD,rA
Floating-Point Negative Absolute Value efsnabs ' | evfsnabs efdnabs rD,rA
Floating-Point Subtract efssub evfssub efdsub rD,rA,rB
Floating-Point Test Equal efststeq evfststeq efdtsteq | crD,rA,rB
Floating-Point Test Greater Than efststgt eviststgt efdtstgt | crD,rA,rB
Floating-Point Test Less Than efststit evfststlit efdtstit | crD,rA,rB
SPE Double Word Load/Store Instructions

Vector Load Double Word into Double Word — evidd evidd rD,d(rA)
Vector Load Double Word into Double Word Indexed — eviddx eviddx rD,rA,rB
Vector Merge High — evmergehi | evmergehi| rD,rA,rB
Vector Merge Low — evmergelo |evmergelo| rD,rA,rB
Vector Store Double of Double — evstdd evstdd rS,d(rA)
Vector Store Double of Double Indexed — evstddx evstddx rS,rA,rB

Note: On some cores, floating-point operations that produce a result of zero may generate an incorrect sign.
Exception detection for these instructions is implementation dependent. On some devices, infinities, NaNs, and denorms

1

are always be treated as Norms. No exceptions are taken if SPEFSCR[FINVE] = 1.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

3-17

SPE and Embedded Floating-Point Instruction Model

3.3.3 Load/Store Instructions

Embedded floating-point instructions use GPRs to hold and operate on floating-point values. Standard
load and store instructions are used to move the data to and from memory. If vector single-precision or
scalar doubl e-precision embedded fl oating-point instructions areimplemented on a 32-bit implementation,
the GPRs are 64 bits wide. Because a 32-bit implementation contains no load or store instructions that
operate on 64-bit data, the following SPE load/store instructions are used:

» evldd—Vector Load Doubleword into Doubleword

* evlddx—Vector Load Doubleword into Doubleword Indexed
e evstdd—Vector Store Doubleword of Doubleword

» evstddx—Vector Store Doubleword of Doubleword

» evmergehi—Vector Merge High

» evmergelo—Vector Merge Low

3.3.3.1 Floating-Point Conversion Models

Pseudo-RTL models for converting floating-point to and from non—floating-point is provided in
Section 5.3.2, “Embedded Floating-Point Conversion Models,” as a group of functions called from the
individual instruction pseudo-RTL descriptions, which are included in the instruction descriptions in
Chapter 5, “Instruction Set.”

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

3-18 Freescale Semiconductor

Chapter 4
SPE/Embedded Floating-Point Interrupt Model

This chapter describes the SPE interrupt model, including the SPE embedded floating-point interrupts

4.1

Overview

SPE/Embedded Floating-Point Interrupt Model

The SPE defines additional exceptions that can generate an alignment interrupt and three additional
interrupts to allow software handling of exceptions that may occur during execution of SPE.embedded
floating-point instructions. These are shown in Table 4-1 and described in detail in the following sections.

Table 4-1. SPE/SPE Embedded Floating-Point Interrupt and Exception Types

. Synchronous/ MSR [DBCRO/TCR
IVOR Interrupt Exception Precise ESR Mask Mask Category Page
IVORS5 |Alignment Alignment Synchronous/ | [ST],[FPAPSPV]| — — SPE/ 4.2.2/4-2
Precise [EPID],[VLEMI] Embedded FP
IVOR32|SPE/embedded |SPE unavailable | Synchronous/| SPV, [VLEMI] — — SPE 4.2.3/4-2
floating-point’ Precise
IVOR33|Embedded Embedded Synchronous/ | SPV, [VLEMI] — — Embedded |4.2.4/4-3
floating-point data |[floating-point data Precise FP
IVOR34|Embedded Embedded Synchronous/ | SPV, [VLEMI] — — Embedded |4.2.2/4-2
floating-point round|floating-point round Precise FP

1

4.2

SPE Interrupts

Other implementations use IVOR32 for vector (AltiVec) unavailable interrupts.

This section describes the interrupts that can be generated when an SPE/embedded floating-point
exception is encountered.

4.2.1

Interrupt-Related Registers

Figure 4-1 shows the register resources that are defined by the base category and by the SPE interrupt
model. Base category resources are described in the EREF.

Base Register Resources

SPE Interrupt Register Resources

32 63

spr 62 ESR
spr 26 SRRO
spr27| SRR1

User-Level Registers
32 63

SPEFSCR | SPE/floating-point status/control

Supervisor-Level Registers

spr62[ESR[SPV]

Exception syndrome register

Exception syndrome register
SPE/vector field

Save/restore registers 0/1

Interrupt vector prefix
Data exception address register

Figure 4-1. SPE Interrupt-Related Registers

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

4-1

SPE/Embedded Floating-Point Interrupt Model

Interrupt Vector Offset Registers

spr 405 IVOR5 Alignment spr528| IVOR32 SPE/Embedded FP

spr529| IVOR33 Embedded FP data
spr530| IVOR34 Embedded FP round

Figure 4-1. SPE Interrupt-Related Registers

4.2.2 Alignment Interrupt

An SPE vector alignment exception occursif the EA of any of the following instructionsin not aligned to
a 64-bit boundary: evldd, eviddx, evidw, evldwx, evidh, evidhx, evstdd, evstddx, evstdw, evstdwx,
evstdh, or evstdhx. When an SPE vector alignment exception occurs, an alignment interrupt is taken and
the processor suppresses execution of the instruction causing the exception. SRRO, SRR1, MSR, ESR, and
DEAR are modified as follows:

* SRROisset to the EA of theinstruction causing the interrupt.
* SRR isset to the contents of the MSR at the time of the interrupt.
* MSR hits CE, ME, and DE are unchanged. All other bits are cleared.

* ESR[SPV] isset. ESR[ST] is set if theinstruction causing the interrupt is astore. All other ESR
bits are cleared.

» DEARisupdated with the EA of the access that caused the exception. Thisis generally the EA of
the instruction, except for some instructions that are misaligned or that reference multiple storage
element.

Instruction execution resumes at address 1V PR[0-47]||IV OR5[48-59] ||0b0000.

4.2.3 SPE/Embedded Floating-Point Unavailable Interrupt
An SPE/embedded floating-point unavailable exception occurs on an attempt to execute any of the
following instructions and MSR[SPV] is not set:
» SPE instruction (except brinc)
* Anembedded scalar double-precision instruction
» A vector single-precision floating-point instructions
It is not used by embedded scalar single-precision floating-point instructions.

If this exception occurs, an SPE/embedded floating-point unavailable interrupt is taken and the processor
suppresses execution of the instruction causing the exception. Registers are modified as follows:
The SRRO, SRR1, MSR, and ESR registers are modified as follows:

* SRROisset to the EA of theinstruction causing the interrupt.

* SRR1isset to the contents of the MSR at the time of the interrupt.

* MSR hits CE, ME, and DE are unchanged. All other bits are cleared.

* ESRbitsSPV (and VLEMI if VLE isimplemented and theinstruction causing the interrupt resides

in VLE storage) are set. All other ESR bits are cleared.

Instruction execution resumes at address 1V PR[0-47]]IV OR32[48-59]||0b000O0.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

4-2 Freescale Semiconductor

SPE/Embedded Floating-Point Interrupt Model

NOTE (Software)

Software should use thisinterrupt to determineif the applicationisusing the
upper 32 hits of the GPRs and thus is required to save and restore them on
acontext switch.

4.2.4 SPE Embedded Floating-Point Interrupts

The following sections describe SPE embedded floating-point interrupts:
* Section 4.2.4.1, “Embedded Floating-Point Data I nterrupt”
» Section 4.2.4.2, “Embedded Floating-Point Round Interrupt”

4241 Embedded Floating-Point Data Interrupt

The embedded floating-point data interrupt vector is used for enabled floating-point invalid
operation/input error, underflow, overflow, and divide-by-zero exceptions (collectively called
floating-point data exceptions). When one of these enabled exceptions occurs, the processor suppresses
execution of the instruction causing the exception. The SRRO, SRR1, MSR, ESR, and SPEFSCR are
modified as follows:

* SRROisset to the EA of theinstruction causing the interrupt.

* SRR isset to the contents of the MSR at the time of the interrupt.

* MSR hits CE, ME, and DE are unchanged. All other bits are cleared.
» ESR[SPV] isset. All other ESR bits are cleared.

* One or more SPEFSCR status bits are set to indicate the type of exception. The affected bits are
FINVH, FINV, FDBZH, FDBZ, FOVFH, FOVF, FUNFH, and FUNF. SPEFSCR[FGFGH, FX,
FXH] are cleared.

Instruction execution resumes at address 1V PR[0—47]||IV OR33[48-59]||0b000O0.

4.2.4.2 Embedded Floating-Point Round Interrupt
The embedded floating-point round interrupt occursif no other floating-point data interrupt is taken and
one of the following conditions is met:

» SPEFSCR[FINXE] is set and the unrounded result of an operation is not exact

» SPEFSCR[FINXE] is set, an overflow occurs, and overflow exceptions are disabled (FOVF or
FOVFH set with FOV FE cleared)

* Anunderflow occurs and underflow exceptions are disabled (FUNF set with FUNFE cleared)

The embedded floating-point round interrupt does not occur if an enabled embedded floating-point data
interrupt occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 4-3

SPE/Embedded Floating-Point Interrupt Model

NOTE (Programming)

If an implementation does not support xinfinity rounding modes and the
rounding modeis set to be +infinity or -infinity, an embedded floati ng-point
round interrupt occurs after every embedded floating-point instruction for
which rounding might occur regardless of the FINXE value, if no higher
priority exception exists.

When an embedded floating-point round interrupt occurs, the unrounded
(truncated) result of an inexact high or low element is placed in the target
register. If only asingle element isinexact, the other exact element is
updated with the correctly rounded result, and the FG and FX bits
corresponding to the other exact element are be 0.

FG (FGH) and FX (FXH) are provided so an interrupt handler can round the
result asit desires. FG (FGH) isthevalue of the bit immediately to theright
of the Isb of the destination format mantissa from the infinitely precise
intermediate calculation before rounding. FX (FXH) isthe value of the OR
of al bitsto the right of the FG (FGH) of the destination format mantissa
from the infinitely precise intermediate calculation before rounding.
The SRRO, SRR1, MSR, ESR, and SPEFSCR are modified as follows:

* SRROisset to the EA of theinstruction following the instruction causing the interrupt.

* SRR1isset to the contents of the MSR at the time of the interrupt.

* MSR hits CE, ME, and DE are unchanged. All other bits are cleared.

» ESR[SPV] isset. All other ESR bits are cleared.

* SPEFSCR[FGH,FGFXH,FX] are set appropriately. SPEFSCR[FINXS] is set.

Instruction execution resumes at address 1V PR[0-47]]IV OR34[48-59]||0b000O0.

4.3 Interrupt Priorities

The priority order among the SPE and embedded floating-point interrupts is as follows:
SPE/embedded floating-point unavail able interrupt

SPE vector alignment interrupt

Embedded floating-point data interrupt

Embedded floating-point round interrupt

A wDdPE

The EREF describes how these interrupts are prioritized among the other Power 1SA interrupts. Only one
of the above types of synchronous interrupts may have an existing exception generating it at any given
time. Thisis guaranteed by the exception priority mechanism and the requirements of the sequential
execution model.

4.4 Exception Conditions

The following sections describe the exception conditions that can generate the interrupts described in
Section 4.2, “ SPE Interrupts.” Enable and status bits associated with these programming exceptions can

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

4-4 Freescale Semiconductor

SPE/Embedded Floating-Point Interrupt Model

befoundinthe SPEFSCR, described in Section 2.2.3, “ Signal Processing Embedded Floating-Point Status
and Control Register (SPEFSCR).”

4.4.1 Floating-Point Exception Conditions

This section describes the conditions that generate exceptions that, depending on how the processor is
configured, may generate an interrupt.

4411 Denormalized Values on Input

Any denormalized value used as an operand may be truncated by the implementation to a properly signed
zero value.

441.2 Embedded Floating-Point Overflow and Underflow

Defining pmax to be the most positive normalized value (farthest from zero), pmin the smallest positive
normalized value (closest to zero), nmax the most negative normalized value (farthest from zero) and nmin
the smallest normalized negative value (closest to zero), an overflow is said to have occurred if the
numerically correct result (r) of an instruction is such that r>pmax or r<nmax. An underflow issaid to have
occurred if the numerically correct result of an instruction issuch that O<r<pmin or nmin<r<0. In this case,
r may be denormalized, or may be smaller than the smallest denormalized number.

The embedded floating-point categories do not produce +infinity, -infinity, NaN, or denormalized
numbers. If the result of an instruction overflows and embedded floating-point overflow exceptions are
disabled (SPEFSCR[FOVFE]=0), pmax or nmax is generated as the result of that instruction depending
upon the sign of the result. If the result of an instruction underflows and embedded floating-point
underflow exceptions are disabled (SPEFSCR[FUNFE]=0), +0 or -0 is generated as the result of that
instruction based upon the sign of the result.

If an overflow occurs, SPEFSCR[FOVF FOVFH] are set appropriately, or if an underflow occurs,
SPEFSCR[FUNF FUNFH] are set appropriately. If either embedded floating-point underflow or
embedded floating-point overflow exceptionsare enabled and acorresponding statushitis 1, an embedded
floating-point data interrupt is taken and the destination register is not updated.

NOTE (Programming)

On some implementations, operations that result in overflow or underflow
arelikely to take significantly longer than those that do not. For example,
these operations may cause a system error handler to be invoked; on such
implementations, the system error handler updates overflow bits

appropriately.

4413 Embedded Floating-Point Invalid Operation/input Errors

Embedded fl oating-point invalid operation/input errors occur when an operand to an operation contains an
invalid input value. If any of the input values are infinity, denorm, or NaN, or for an embedded
floating-point divide instruction both operands are +/-0, SPEFSCR[FINV FINVH] are set appropriately,

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 4-5

SPE/Embedded Floating-Point Interrupt Model

and SPEFSCR[FGH FXH FG FX] are cleared appropriately. If SPEFSCR[FINVE]=1, an embedded
floating-point data interrupt is taken and the destination register is not updated.

441.4 Embedded Floating-Point Round (Inexact)

If any result element of an embedded floating-point instruction isinexact, or overflows but embedded
floating-point overflow exceptions are disabled, or underflows but embedded floating-point underflow
exceptions are disabled, and no higher priority interrupt occurs, SPEFSCR[FINX S| is set. If the embedded
floating-point round (inexact) exception is enabled, an embedded floating-point round interrupt occurs. In
this case, the destination register is updated with the truncated results. SPEFSCR[FGH FXH FG FX] are
properly updated to allow rounding to be performed in the interrupt handler.

SPEFSCR[FG FX] (SPEFSCR[FGH FXH]) are cleared if an embedded floating-point data interrupt is
taken due to overflow or underflow, or if an embedded floating-point invalid operation/input error is
signaled for the low (high) element (regardless of SPEFSCR[FINVE]).

4415 Embedded Floating-Point Divide by Zero

If an embedded floating-point divide instruction executes and an embedded floating-point invalid
operation/input error does not occur and the instruction is executed with a +/-0 divisor value and afinite
normalized nonzero dividend value, an embedded floating-point divide by zero exception occurs and
SPEFSCR[FDBZ FDBZH)] are set appropriately. If embedded floating-point divide by zero exceptionsare
enabled, an embedded fl oating-point datainterrupt isthen taken and the destination register is not updated.

4.41.6 Default Results

Default results are generated when an embedded floating-point invalid operation/input error, embedded
floating-point overflow, embedded floating-point underflow, or embedded floating-point divide by zero
occurs on an embedded floating-point operation. Default results provide anormalized value as aresult of
the operation. In general, denormalized results and underflows are cleared and overflows are saturated to
the maximum representable number.

Default results for each operation are described in Section 5.3.4, “ Embedded Floating-Point Results.”

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

4-6 Freescale Semiconductor

Chapter 5
Instruction Set
This chapter describes the SPE instructions and the embedded floating-point instructions, which are as
follows:
» Single-precision scalar floating-point (SPE FS)
» Single-precision vector floating-point (SPE FV)
* Double-precision scalar floating-point (SPE FD)

5.1 Notation

The definitions and notation listed in Table 5-1 are used throughout this chapter in the instruction
descriptions.

Table 5-1. Notation Conventions

Symbol Meaning

Xp Bit p of register/field X

Xtield | The bits composing a defined field of X. For example, Xsign Xexp and Xgqc represent the sign, exponent, and
fractional value of a floating-point number X

Bits p through q of register/field X

Bits p, q,... of register/field X

—X | The one’s complement of the contents of X

Fieldi |Bits 4xithrough 4xi+3 of a register

Il Describes the concatenation of two values. For example, 010 || 111 is the same as 010111.

x raised to the n" power

Mx | The replication of x, n times (i.e., x concatenated to itself n—1 times). "0 and "1 are special cases:
"0 means a field of n bits with each bit equal to 0. Thus 50is equivalent to Ob0_0000.
"1 means a field of n bits with each bit equal to 1. Thus 51is equivalent to Ob1_1111.

1,11, 111, | A reserved field in an instruction or in a register.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-1

Instruction Set

5.2 Instruction Fields
Table 5-2 describes instruction fields.

Table 5-2. Instruction Field Descriptions

Field Description
CRS (11-13) Used to specify a CR field to be used as a source
D (16-31) Immediate field used to specify a 16-bit signed two’s complement integer that is sign-extended to 64 bits
LI (6—29) Immediate field specifying a 24-bit signed two’s complement integer that is concatenated on the right
with Ob00 and sign-extended to 64 bits
LK (31) LINK bit. Indicates whether the link register (LR) is set.
0 Do not setthe LR.
1 Set the LR. The sum of the value 4 and the address of the branch instruction is placed into the LR.
OPCD (0-5) Primary opcode field
rA (11-15) Used to specify a GPR to be used as a source or as a target
rB (16-20) Used to specify a GPR to be used as a source
RS (6-10) Used to specify a GPR to be used as a source
RD (6-10) Used to specify a GPR to be used as a target
SIMM (16-31) Immediate field used to specify a 16-bit signed integer
UIMM (16-31) Immediate field used to specify a 16-bit unsigned integer

5.3 Description of Instruction Operations

The operation of most instructions is described by a series of statements using a semiformal language at
theregister transfer level (RTL), which usesthe general notation given in Table 5-1 and Table 5-2 and the
RTL-specific conventionsin Table 5-3. Seethe examplein Figure 5-1. Some of this notationisusedin the
formal descriptions of instructions.

The RTL descriptions cover the normal execution of the instruction, except that ‘ standard’ setting of the
condition register, integer exception register, and floating-point status and control register are not always
shown. (Non-standard setting of these registers, such as the setting of condition register field O by the
stwcex. instruction, is shown.) The RTL descriptions do not cover al casesin which exceptions may occur,
or for which the results are boundedly undefined, and may not cover al invalid forms.

RTL descriptions specify the architectural transformation performed by the execution of an instruction.
They do not imply any particular implementation.

Table 5-3. RTL Notation

Notation Meaning
«— Assignment
—¢ Assignment in which the data may be reformatted in the target location
= NQOT logical operator (one’s complement)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-2 Freescale Semiconductor

Instruction Set

Table 5-3. RTL Notation (continued)

Notation Meaning
+ Two’s complement addition
- Two’s complement subtraction, unary minus
X Multiplication
+ Division (yielding quotient)
+dp Floating-point addition, double precision
—dp Floating-point subtraction, double precision
Xdp Floating-point multiplication, double precision
+dp Floating-point division quotient, double precision
+sp Floating-point addition, single precision
sp Floating-point subtraction, single precision
Xef Signed fractional multiplication. Result of multiplying two quantities of bit lengths x and y taking the least
significant x+y—1 bits of the product and concatenating a 0 to the Isb forming a signed fractional result of x+y bits.
Xsi Signed integer multiplication
Xsp Floating-point multiplication, single precision
*sp Floating-point division, single precision
Xfp Floating-point multiplication to infinite precision (no rounding)
Xyi Unsigned integer multiplication
= # Equals, Not Equals relations
<, <,>,2 | Signed comparison relations
<w>u Unsigned comparison relations
? Unordered comparison relation
&, | AND, OR logical operators
@, = Exclusive OR, Equivalence logical operators ((a=b) = (a®—b))
>>, << Shift right or left logical
ABS(x) Absolute value of x
EXTS(x) Result of extending x on the left with signed bits
EXTZ(x) Result of extending x on the left with zeros
GPR(x) General-purpose register x
MASK(x, y) | Mask having 1s in bit positions x through y (wrapping if x>y) and Os elsewhere
MEM(x,1) | Contents of the byte of memory located at address x
MEM(x,y) | Contents of y bytes of memory starting at address x. If big-endian memory, the byte at address x is the MSB and

(for y={2,4,8})

the byte at address x+y—1 is the LSB of the value being accessed.[f little-endian memory, the byte at address x
is the LSB and the byte at address x+y—1 is the MSB.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-3

Instruction Set

Table 5-3. RTL Notation (continued)

Notation Meaning
undefined | An undefined value. The value may vary between implementations and between different executions on the
same implementation.
if ... then ... | Conditional execution, indenting shows range; else is optional
else ...
do Do loop, indenting shows range. ‘To’ and/or ‘by’ clauses specify incrementing an iteration variable, and a ‘while’

clause gives termination conditions.

Precedencerulesfor RTL operatorsare summarized in Table 5-4. Operators higher in the table are applied

before those

lower in the table. Operators at the same level in the table associate from |eft to right, from

right to left, or not at all, as shown. (For example, — associates from left to right, so a-b—c = (a-b)—.)
Parentheses are used to override the evaluation order implied by the table or to increase clarity;
parenthesized expressions are evaluated before serving as operands.

Table 5-4. Operator Precedence

Operators Associativity

Subscript, function evaluation Left to right

Pre-superscript (replication), post-superscript (exponentiation) | Right to left

unary —, — Right to left
X, + Left to right
+, - Left to right

Il Left to right

=#<5,>,2, <, >, 7 Left to right

& &, = Left to right

| Left to right

: (range) None

— None

5.3.1 SPE Saturation and Bit-Reverse Models

For saturation and bit reversal, the pseudo RTL is provided here to more accurately describe those
functions that are referenced in the instruction pseudo RTL.

5.3.1.1

SATURATE

if overf
if ¢

else

Saturation

(overflow, carry, saturated underflow, saturated overflow, value)

low then
arry then
return saturated underflow

return saturated overflow

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-4

Freescale Semiconductor

else
return value

5.3.1.2 Bit Reverse

BITREVERSE (value)

result < 0
mask « 1
shift « 31
cnt « 32
while cnt > 0 then do
t ¢« data & mask
if shift >= 0 then
result « (t << shift)
else
result « (t >> -shift)
cnt <~ cnt - 1
shift <« shift - 2
mask < mask << 1
return result

5.3.2

| result

| result

Embedded Floating-Point Conversion Models

Instruction Set

The embedded floating-point instructions defined by the signal processing engine (SPE) contain
floating-point conversion to and from integer and fractional type instructions. The floating-point
to-and-from non—floating-point conversion model pseudo-RTL is provided in Table 5-5 as a group of
functionsthat is called from the individual instruction pseudo-RTL descriptions.

Table 5-5. Conversion Models

Function Name Reference
Common Functions
Round a 32-bit value Round32(fp,guard,sticky) 5.3.2.1.3/5-6
Round a 64-bit value Round64(fp,guard,sticky) 5.3.2.1.4/5-7
Signal floating-point error SignalFPError 5.3.2.1.2/5-6
Is a 32-bit value a NaN or infinity? Isa32NaNorinfinity(fp) 5.3.2.1.1/5-6
Floating-Point Conversions
Convert from single-precision floating-point to CnvtFP32Tol32Sat(fp,signed,upper_lower,round,fractional) | 5.3.2.2/5-7
integer word with saturation
Convert from double-precision floating-point to CnvtFP64Tol32Sat(fp,signed,round,fractional) 5.3.2.3/5-9
integer word with saturation
Convert from double-precision floating-point to CnvtFP64Tol64Sat(fp,signed,round) 5.3.2.4/5-10
integer double word with saturation
Convert to single-precision floating-point from Cnvtl32ToFP32Sat(v,signed,upper_lower,fractional) 5.3.2.5/5-11
integer word with saturation
Convert to double-precision floating-point from Cnvtl64ToFP64Sat(v,signed) 5.3.2.7/5-13
integer double word with saturation
Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-5

Instruction Set

Table 5-5. Conversion Models (continued)

Function Name Reference

Integer Saturate

Integer saturate SATURATE(ovf,carry,neg_sat,pos_sat,value) 5.3.3/5-14

5.3.2.1 Common Embedded Floating-Point Functions

This section includes common functions used by the functions in subsequent sections.

5.3.2.1.1 32-Bit NaN or Infinity Test

// Determine if fp value is a NaN or infinity
Isa32NaNorInfinity (fp)
return (fpexp = 255)

Isa32NaN(fp)
return ((fpeyp = 255) & (£Pfrac # 0))
Isa32Infinity (£p)

return ((fpexp = 255) & (fPgyac = 0))

// Determine if fp value is denormalized
Isa32Denorm(£fp)
return ((fpey, = 0) & (fPgrac # 0))

// Determine if fp value is a NaN or Infinity
Isa64NaNorInfinity (fp)
return (fpexp = 2047)

Isa64NaN(fp)
return ((fpeyp = 2047) & (fPgrac # 0))
Isa64Infinity (£p)

return ((fpeyp = 2047) & (fPgrae = 0))

// Determine if fp value is denormalized
Isa64Denorm(£fp)
return ((fpey, = 0) & (fPgrac # 0))

5.3.2.1.2 Signal Floating-Point Error

// Signal a Floating-Point Error in the SPEFSCR
SignalFPError (upper lower, bits)
if (upper lower = UPPER) then
bits « bits << 15
SPEFSCR ¢ SPEFSCR | bits
bits « (FG | FX)
if (upper lower = UPPER) then
bits « bits << 15
SPEFSCR ¢« SPEFSCR & —bits

5.3.2.1.3 Round a 32-Bit Value

// Round a result
Round32 (fp, guard, sticky)

FP32format fp;

if (SPEFSCRpyxg = 0) then
if (SPEFSCRggwc = 0b00) then // nearest
if (guard) then
if (sticky | fPfrac[22)) then

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-6 Freescale Semiconductor

Instruction Set

v[0:23] ¢ fpgrac + 1
if v[0] then
if (fpexp >= 254) then
// overflow

fp < fpeign || Obll1l11110 || *°1
else
fpexp — fpexp + 1
fPfrac < Vi:23
else
fPfrac ¢ VvI[1:23]
else if ((SPEFSCRggyc & 0b10) = 0b10) then // infinity modes

// implementation dependent
return fp

5.3.2.1.4 Round a 64-Bit Value

// Round a result
Roundé4 (fp, guard, sticky)

FP32format fp;

if (SPEFSCRpyxg = 0) then
if (SPEFSCRggwc = 0b00) then // nearest
if (guard) then
if (sticky | fPfrac(s1)) then
v[0:52] ¢ fpgrac + 1
if v[0] then
if (fpexp >= 2046) then
// overflow
fp ¢ fPgign || Obl1111111110 || 1
else
fPexp ¢ fPexp + 1
fpfrac < Vi:s2
else
fpfrac < Vi.s2
else if ((SPEFSCRggwc & O0b1l0) = 0b1l0) then // infinity modes
// implementation dependent
return fp

5.3.2.2 Convert from Single-Precision Floating-Point to Integer Word
with Saturation

// Convert 32-bit floating point to integer/factional
// signed = SIGN or UNSIGN

// upper lower = UPPER or LOWER

// round = ROUND or TRUNC

// fractional = F (fractional) or I (integer)

CnvtFP32ToI32S8at (fp, signed, upper lower, round, fractional)
FP32format fp;

if (Isa32NaNorInfinity (fp)) then // SNaN, QNaN, +-INF
SignalFPError (upper lower, FINV)
if (Isa32NaN(fp)) then
return 0x00000000 // all NaNs
if (signed = SIGN) then
if (fpgign = 1) then
return 0x80000000
else
return Ox7fffffff
else
if (fpsign = 1) then

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-7

Instruction Set

return 0x00000000
else
return Oxffffffff

if (Isa32Denorm(fp)) then
SignalFPError (upper lower, FINV)
return 0x00000000 // regardless of sign

if ((signed = UNSIGN) & (fpgign = 1)) then
SignalFPError (upper lower, FOVF) // overflow
return 0x00000000

if ((EPeyp = 0) & (£Pgrac = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp <« 158
shift « 158 - fpeyp
if (signed = SIGN) then
if ((fPexp # 158) | (£Pfrac # 0) | (fpgign # 1)) then
max_exp <« max exp - 1
else // fractional conversion
max_exp <« 126
shift < 126 - fpeyy
if (signed = SIGN) then
shift « shift + 1

if (fpeyp > max_exp) then
SignalFPError (upper lower, FOVF) // overflow
if (signed = SIGN) then
if (fpgign = 1) then
return 0x80000000
else
return Ox7fffffff
else
return Oxffffffff

result < 0bl || £pfrae || 0000000000 // add U to frac
guard < 0
sticky « 0

for (n ¢« 0; n < shift; n <« n + 1) do
sticky « sticky | guard
guard ¢« result & 0x00000001
result ¢« result > 1

// Report sticky and guard bits

if (upper_lower = UPPER) then
SPEFSCRpgy ¢« guard
SPEFSCRpyy < sticky

else
SPEFSCRpg ¢ guard
SPEFSCRpy ¢« sticky

if (guard | sticky) then
SPEFSCRpryxs ¢ 1

// Round the integer result

if ((round = ROUND) & (SPEFSCRpiyxg = 0)) then
if (SPEFSCRggwc = 0b00) then // nearest
if (guard) then
if (sticky | (result & 0x00000001)) then
result <« result + 1

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-8 Freescale Semiconductor

5.3.2.3

else if ((SPEFSCRggyc & 0b10) = 0b10) then // infinity modes

// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then
result ¢« —result + 1

return result

with Saturation

// Convert 64-bit floating point to integer/fractional
// signed = SIGN or UNSIGN

// round = ROUND or TRUNC

// fractional = F (fractional) or I (integer)

CnvtFP64ToI32Sat (fp, signed, round, fractional)
FPe4format fp;

if (Isa64NaNorInfinity (fp)) then // SNaN, QNaN, +-INF
SignalFPError (LOWER, FINV)
if (Isa64NaN(fp)) then
return 0x00000000 // all NaNs
if (signed = SIGN) then
if (fpsign = 1) then
return 0x80000000
else
return Ox7fffffff
else
if (fpgign = 1) then
return 0x00000000
else
return Oxffffffff

if (Isa64Denorm(fp)) then
SignalFPError (LOWER, FINV)
return 0x00000000 // regardless of sign

if ((signed = UNSIGN) & (fpgign = 1)) then
SignalFPError (LOWER, FOVF) // overflow
return 0x00000000

if ((fDeyp = 0) & (fDgrae = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp <« 1054
shift <« 1054 - fpgy,
if (signed « SIGN) then

if ((fPexp # 1054) | (£Pgrac # 0) | (£pgign # 1)) then
max_exp ¢« max exp - 1
else // fractional conversion

max_exp <« 1022

shift « 1022 - fPexp

if (signed = SIGN) then
shift ¢« shift + 1

if (fpexp > max_exp) then
SignalFPError (LOWER, FOVF) // overflow
if (signed = SIGN) then
if (fpgign = 1) then
return 0x80000000
else

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Convert from Double-Precision Floating-Point to Integer Word

Instruction Set

Freescale Semiconductor

Instruction Set

return Ox7fffffff
else
return Oxffffffff

result < Obl || fPfracio:30] // add U to frac
guard <« fpfracBl]
sticky < (fPfrac(32:631 # 0)
for (n <« 0; n < shift; n <« n + 1) do
sticky ¢« sticky | guard
guard ¢ result & 0x00000001
result ¢« result > 1

// Report sticky and guard bits

SPEFSCRpg ¢ guard
SPEFSCRyy ¢ sticky

if (guard | sticky) then
SPEFSCRppyxs < 1

// Round the result

if ((round = ROUND) & (SPEFSCRpiyxg = 0)) then

if (SPEFSCRggwc = 0b00) then // nearest
if (guard) then
if (sticky | (result & 0x00000001)) then
result ¢« result + 1
else if ((SPEFSCRggyc & 0b10) = 0b10) then // infinity modes

// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then
result ¢« —result + 1

return result

5.3.2.4 Convert from Double-Precision Floating-Point to Integer Double
Word with Saturation

// Convert 64-bit floating point to integer/fractional
// signed = SIGN or UNSIGN
// round = ROUND or TRUNC

CnvtFP64ToI64Sat (fp, signed, round)
FPe4format fp;

if (Isa64NaNorInfinity (fp)) then // SNaN, QNaN, +-INF
SignalFPError (LOWER, FINV)
if (Isa64NaN(fp)) then
return 0x00000000_00000000 // all NaNs
if (signed = SIGN) then
if (fpsign = 1) then
return 0x80000000_00000000
else
return Ox7fffffff ffffffff
else
if (fpsign = 1) then
return 0x00000000_00000000
else
return Oxffffffff ffffffff

if (Isa64Denorm(fp)) then
SignalFPError (LOWER, FINV)
return 0x00000000_ 00000000 // regardless of sign

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-10 Freescale Semiconductor

Instruction Set

if ((signed = UNSIGN) & (fpwgn = 1)) then
SignalFPError (LOWER, FOVF) // overflow
return 0x00000000_00000000

if ((fPexp = 0) & (fPfrac = 0)) then
return 0x00000000_ 00000000 // all zero values

max_exp <« 1086
shift < 1086 - fpeyp
if (signed = SIGN) then
if ((fPexp # 1086) | (fPgrac # 0) | (fpgign # 1)) then
max exp ¢ max_exp - 1

if (fpexp > max_exp) then
SignalFPError (LOWER, FOVF) // overflow
if (signed = SIGN) then
if (fpsign = 1) then
return 0x80000000_00000000
else
return Ox7fffffff ffffffff
else
return Oxffffffff fFEFFFFff

result « 0bl || £pgyac || 0b00000000000 // add U to frac
guard < 0
sticky « 0
for (n « 0; n < shift; n « n + 1) do
sticky ¢« sticky | guard
guard <« result & 0x00000000 00000001
result « result > 1

// Report sticky and guard bits

SPEFSCRpg ¢ guard
SPEFSCRpyx ¢ sticky

if (guard | sticky) then
SPEFSCRppyxs <« 1

// Round the result

if ((round = ROUND) & (SPEFSCRpiyxg = 0)) then

if (SPEFSCRggwc = 0b00) then // nearest
if (guard) then
if (sticky | (result & 0x00000000 00000001)) then
result < result + 1
else if ((SPEFSCRggyc & 0b10) = 0b10) then // infinity modes

// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then
result ¢« —result + 1

return result

5.3.2.5 Convert to Single-Precision Floating-Point from Integer Word

with Saturation

// Convert from integer/factional to 32-bit floating point
// signed = SIGN or UNSIGN

// upper lower = UPPER or LOWER

// fractional = F (fractional) or I (integer)

CnvtI32ToFP32Sat (v, signed, upper lower, fractional)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-11

Instruction Set

FP32format result;

resultgig, < 0
if (v = 0) then
result < 0
if (upper lower = UPPER) then
SPEFSCRpgy < O
SPEFSCRpyy < O
else
SPEFSCRpg ¢ 0
SPEFSCRpy ¢ O
else
if (signed = SIGN) then
if (vy = 1) then
V &~ v + 1
resultgigy, < 1
if (fractional = F) then // fractional bit pos alignment
maxexp <« 127
if (signed = UNSIGN) then

maxexp <« maxexp - 1
else
maxexp <« 158 // integer bit pos alignment
sc < O
while (v, = 0)

V& Vv << 1

sc ¢« sc + 1
vy < 0 // clear U bit
resultey, ¢ maxexp - sc
guard < Vyyu
sticky ¢« (vy5.,37 # 0)

// Report sticky and guard bits

if (upper lower = UPPER) then
SPEFSCRpgy ¢ guard
SPEFSCRpyy ¢« sticky

else
SPEFSCRpg ¢« guard
SPEFSCRpy ¢« sticky

if (guard | sticky) then
SPEFSCRpryxs < 1

// Round the result

resulte o ¢ Vy.93
result ¢« Round32 (result, guard, sticky)

return result

5.3.2.6 Convert to Double-Precision Floating-Point from Integer Word
with Saturation

// Convert from integer/factional to 64-bit floating point
// signed = SIGN or UNSIGN
// fractional = F (fractional) or I (integer)

CnvtI32ToFP64Sat (v, signed, fractional)
FpP64format result;

resultgigy < 0

if (v = 0) then
result < 0
SPEFSCRpg ¢ 0

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-12 Freescale Semiconductor

Instruction Set

SPEFSCRpy ¢ O
else
if (signed = SIGN) then
if (v[0] = 1) then
V &~ v + 1
resultgigy, < 1
if (fractional = F) then // fractional bit pos alignment
maxexp <« 1023
if (signed = UNSIGN) then

maxexp <« maxexp - 1
else
maxexp <« 1054 // integer bit pos alignment
sc < O
while (v, = 0)

V & Vv << 1

sc ¢« sc + 1
vy < 0 // clear U bit
resultey, ¢ maxexp - sc

// Report sticky and guard bits

SPEFSCRpg ¢ 0
SPEFSCRpy ¢ 0

21
resuj'tfrac < Vi || 0

return result

5.3.2.7 Convert to Double-Precision Floating-Point from Integer Double
Word with Saturation

// Convert from 64 integer to 64-bit floating point
// signed = SIGN or UNSIGN

CnvtI64ToFP64Sat (v, signed)
FP64format result;

resultgjgy < 0
if (v = 0) then
result < 0
SPEFSCRpg ¢ 0
SPEFSCRpy ¢ 0
else
if (signed = SIGN) then
if (vy = 1) then
V &~ —=v + 1
resultgigy, < 1
maxexp ¢ 1054
sc < O

while (v, = 0)

V& Vv << 1

sc ¢« sc + 1
vy < 0 // clear U bit
resultey, ¢ maxexp - sc
guard < Vg,
sticky ¢ (vg4.63 # 0)

// Report sticky and guard bits

SPEFSCRpg ¢ guard

SPEFSCRpy ¢ sticky

if (guard | sticky) then
SPEFSCRpryxs « 1

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

Instruction Set

// Round the result

resulte o ¢ Vy.5;
result ¢« Roundé4 (result, guard, sticky)

return result

5.3.3 Integer Saturation Models
// Saturate after addition
SATURATE (ovf, carry, neg sat, pos sat, value)

if ovf then
if carry then
return neg_sat
else
return pos_sat
else
return value

5.3.4 Embedded Floating-Point Results

Section 5.3.4, “Embedded Fl oating-Point Results,” summarizes results of various types of SPE and

embedded floating-point operations on various combinations of input operands.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-14

Freescale Semiconductor

5.4 Instruction Set

Instruction Set

The rest of this chapter describesindividual instructions, which are listed in alphabetical order by
mnemonic. Figure 5-1 shows the format for instruction description pages.

K User/Supervisor access

ey: .
y Architecture
Instruction mnemonic
Instruction name

Instruction syntax

Instruction encoding

RTL description of
instruction operation

Text description of
instruction operation

Registers altered by instruction

Graphical representation
of instruction behavior

¥ ¥
— slevmra evmra
———> |nitialize Accumulator
evmra rD,rA
—_—
0 56 1011 1516 20 21 31

‘000100‘rD‘ rA ‘00000‘1 0011000100

ACCp.e3 ¢ Thj.63
TDy.e3 ¢ Thy.g3

The contents of rA are written into the accumulator and copied into rD. Thisisthe
method for initializing the accumulator.

Other registers altered: ACC

>
>

[¢] 31 32 63

| | |

| | | rD and Accumulator

Figure 5-1. Instruction Description

Note that the execution unit that executes the instruction may not be the same for all processors.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

|
y

'
A

Instruction Set

brinc SPE | User brinc
Bit Reversed Increment
brinc rD,rArB
0 5 6 10 11 15 16 20 21 31
0001 00O rD rA rB 01 00O0OO0OO0OT1TT1T 11
n <« MASKBITS // Imp dependent # of mask bits
mask ¢ rBgy .63 // Least sig. n bits of register
a ¢ TRgyn.63
d < bitreverse(l + bitreverse(a | (—mask)))
rD ¢ rAy.e3.n || (d & mask)

brinc provides away for software to access FFT datain abit-reversed manner. r A containsthe index into
abuffer that contains data on which FFT isto be performed. r B contains a mask that allows the index to
be updated with bit-reversed addressing. Typically thisinstruction precedes aload with index instruction;
for example,

brinc r2, r3, r4

lhax r8, r5, r2
rB contains a bit-mask that is based on the number of pointsin an FFT. To access abuffer containing n
byte sized datathat is to be accessed with bit-reversed addressing, the mask has log,n 1sin the least
significant bit positions and Os in the remaining most significant bit positions. If, however, thedatasizeis
amultiple of ahalf word or aword, the mask is constructed so that the 1s are shifted left by log, (size of
the data) and Os are placed in the least significant bit positions. Table 5-6 shows example values of masks
for different data sizes and number of data.

Table 5-6. Data Samples and Sizes

Data Size
Number of Data Samples
Byte Half Word Word Double Word
8 000...00000111 000...00001110 000...000011100 | 000...0000111000
16 000...00001111 000...00011110 000...000111100 | 000...0001111000
32 000...00011111 000...00111110 000...001111100 | 000...0011111000
64 000...00111111 000...01111110 000...011111100 | 000...0111111000

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-16 Freescale Semiconductor

Instruction Set

efdabs SPEFD | User efdabs

Floating-Point Double-Precision Absolute Value

efdabs rD,rA
0 5 6 10 11 15 16 20 21 31
0 001 0O rD rA 00 0OOO1TO0OT1TT1TM1O0O0T1TUO0TO0O
rDy.g3 ¢ ObO || rA .5

The sign bit of rA isset to 0 and the result is placed intorD.
Exceptions:

Exception detection for embedded floating-point absol ute value operations isimplementation dependent.
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the
implementation does not detect exceptions, or if exception detection is disabled, the computation can be
carried out in one of two ways, asasign bit operationignoring therest of the contents of the sourceregister,
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: If rA isinfinity,
denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are cleared. If floating-point invalid input
exceptions are enabled, an interrupt is taken and the destination register is not updated.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-17

Instruction Set

efdadd SPE FD User efdadd

Floating-Point Double-Precision Add

efdadd rD,rArB
0 5 6 10 11 15 16 20 21 31
|ooo1oo| D rA rB 01011100000|

rDg.e3 < TAg.63 taprBo.63

rAisaddedtorB andtheresultisstoredinrD. If r A isNaN or infinity, theresultiseither pmax (a; 4,==0),
or Nmax (ag;4n==1). Otherwise, If rB isNaN or infinity, the result is either pmax (bg;4,==0), Or NMax
(bgign==1). Otherwisg, if an overflow occurs, pmax or nmax (as appropriate) is stored inrD. If an
underflow occurs, +0 (for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) isstored in rD.

Exceptions:

If the contents of r A or rB areinfinity, denorm, or NaN, SPEFSCR[FINV] isset. If SPEFSCR[FINVE] is
set, an interrupt is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCR[FOVF] isset, or if an underflow occurs, SPEFSCR[FUNF] is set. If either underflow or
overflow exceptions are enabled and the corresponding bit is set, an interrupt is taken. If any of these
interrupts are taken, the destination register is not updated.

If theresult of thisinstructionisinexact or if an overflow occurs but overflow exceptions are disabled, and
no other interrupt istaken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an
interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is
updated with the truncated result, the FG and FX bits are properly updated to alow rounding to be
performed in the interrupt handler.

FG and FX arecleared if an overflow, underflow, or invalid operation/input error is signaled, regardl ess of
enabled exceptions.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-18 Freescale Semiconductor

Instruction Set

efdcfs SPFD User efdcfs

Floating-Point Double-Precision Convert from Single-Precision

efdcfs rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O B 01011101111

FP32format f;
FP64format result;

f « rBi;.¢3

1f (fexp = 0) & (fgrac 230)) then
result « fgig, || 0 // signed zero value
else if Isa32NaNorInfinity(f) | Isa32Denorm(f) then
SPEFSCRpryy < 1
result « fgjg, || 0b11111111110 || **1 // max value
else if Isa32Denorm(f) then
SPEFSCRpryy < 1
result « £
else
resultgign ¢« fsign
resulte,, < foup - 127 + 1023
resuj'tfrac « ffrac || 290

sign || 630

rDy.q3 = result

The single-precision floating-point value in the low element of rB is converted to a double-precision
floating-point value and theresult is placed into r D. The rounding modeis not used since this conversion
is always exact.

Exceptions:

If thelow element of r B isinfinity, denorm, or NaN, SPEFSCR[FINV] isset. If SPEFSCR[FINVE] is set,
an interrupt is taken, and the destination register is not updated.

FG and FX are always cleared.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-19

Instruction Set

efdcfsf SPE FD User efdcfsf

Convert Floating-Point Double-Precision from Signed Fraction

efdcfsf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 01011110011

rDy,¢3 ¢ CnvtI32TOFP64 (rBy,, ¢35, SIGN, F)

The signed fractional low element inrB is converted to a double-precision floating-point value using the
current rounding mode and the result is placed into rD.

Exceptions:

None.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-20 Freescale Semiconductor

Instruction Set

efdcfsi SPE FD User efdcfsi

Convert Floating-Point Double-Precision from Signed Integer

efdcfs rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 01011110001

rDg, g3 ¢ CnVESI32TOFP64 (¥By,. 65, SIGN, I)

The signed integer low element in rB is converted to a double-precision floating-point value using the
current rounding mode and the result is placed into rD.

Exceptions:

None.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-21

Instruction Set

efdcfsid SPEFD | User efdcfsid
Convert Floating-Point Double-Precision from Signed Integer Doubleword
efdcfsid rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 01011100011

rDy,63 ¢ CNvtI64TOFP64 (rBy,g3, SIGN)

The signed integer doubleword in rB is converted to a double-precision floating-point value using the
current rounding mode and the result is placed into rD.

Exceptions:

Thisinstruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Thisinstruction may only be implemented for 64-bit implementations.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-22 Freescale Semiconductor

Instruction Set

efdcfuf SPE FD User efdcfuf

Convert Floating-Point Double-Precision from Unsigned Fraction

efdcfuf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 010111100410

rDy,¢3 ¢ CnvtI32TOFP64 (rBy,, ¢, UNSIGN, F)

The unsigned fractional low element in r B is converted to a double-precision floating-point value using
the current rounding mode and the result is placed into rD.

Exceptions:

None.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-23

Instruction Set

efdcfui SPE FD User efdcfui
Convert Floating-Point Double-Precision from Unsigned Integer
efdcfui rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 B 01011110000

rDy, g3 ¢ CNVESI32TOFP64 (rB;,, 53, UNSIGN, I)

The unsigned integer low element in r B is converted to a double-precision floating-point value using the
current rounding mode and the result is placed into rD.

Exceptions:

None.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-24 Freescale Semiconductor

Instruction Set

efdcfuid SPE FD User efdcfuid

Convert Floating-Point Double-Precision from Unsigned Integer Doubleword

efdcfuid rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 01011100010

rDy,¢3 ¢ CnvtI64TOFP64 (rBy,4;, UNSIGN)

The unsigned integer doubleword in rB is converted to a double-precision floating-point value using the
current rounding mode and the result is placed into rD.

Exceptions:

Thisinstruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Thisinstruction may only be implemented for 64-bit implementations.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-25

V¥ ¢
i

Instruction Set

efdcmpeq SPEFD | User efdcmpeq
Floating-Point Double-Precision Compare Equal
efdcmpeq crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000100 e [0 0] rA B 01011101110

al < 1Ay, 4,

bl <~ rBj.63

if (al = bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

rA iscompared against rB. If rA isequal torB, the bit in thecrfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of r A or rB are infinity, denorm, or NaN, SPEFSCR[FINV] is set, and the FGH FXH, FG
and FX bitsare cleared. If floating-point invalid input exceptions are enabled, an interrupt istaken and the
condition register is not updated. Otherwise, the comparison proceeds after treating NaNs, infinities, and
denorms as normalized numbers, using their values of ‘e and ‘f’ directly.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-26 Freescale Semiconductor

Instruction Set

efdcmpgt SPEFD | User efdcmpgt
Floating-Point Double-Precision Compare Greater Than
efdcmpgt crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000100 e [0 0] rA rB 01011101100

al < 1Ay, 4,

bl <~ rBj.63

if (al > bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

rA iscompared against rB. If r A isgreater than rB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of r A or rB are infinity, denorm, or NaN, SPEFSCR[FINV] is set, and the FGH FXH, FG
and FX bitsare cleared. If floating-point invalid input exceptions are enabled, an interrupt istaken and the
condition register is not updated. Otherwise, the comparison proceeds after treating NaNs, infinities, and
denorms as normalized numbers, using their values of ‘e and ‘f’ directly.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-27

V¥ ¢
i

Instruction Set

efdcmplt efdcmplt
Floating-Point Double-Precision Compare Less Than
efdecmplt crfD,rArB
0 5 6 8 9 10 M1 15 16 20 21 31
000100 e [0 0] rA rB 0101110110 1

al < 1Ay, 4,

bl <~ rBj.63

if (al < bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

rA iscompared against rB. If rA islessthan rB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of r A or rB are infinity, denorm, or NaN, SPEFSCR[FINV] is set, and the FGH FXH, FG
and FX bitsare cleared. If floating-point invalid input exceptions are enabled, an interrupt istaken and the
condition register is not updated. Otherwise, the comparison proceeds after treating NaNs, infinities, and
denorms as normalized numbers, using their values of ‘e and ‘f’ directly.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-28 Freescale Semiconductor

Instruction Set

efdctsf SPEFD | User efdctsf

Convert Floating-Point Double-Precision to Signed Fraction

efdctsf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O B 01011110111

¥Ds,.45 < CnvtFP64ToI32Sat (rBy,.;, SIGN, ROUND, F)

The double-precision floating-point valuein r B is converted to a signed fraction using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit fraction. NaNs are
converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and
the FG and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination
register is not updated.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-29

Instruction Set

efdctsi SPEFD | User efdctsi

Convert Floating-Point Double-Precision to Signed Integer

efdctsi rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 01011110101

¥Ds,.45 « CnvtFP64ToI32Sat (rBy,,;, SIGN, ROUND, I)

The double-precision floating-point valuein r B isconverted to asigned integer using the current rounding
mode and theresult is saturated if it cannot be represented in a32-bit integer. NaNsare converted asthough
they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and
the FG and FX bitsare cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination register
is not updated, and no other status bits are set.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-30 Freescale Semiconductor

Instruction Set

efdctsidz SPEFD | User efdctsidz

Convert Floating-Point Double-Precision to Signed Integer Doubleword with Round toward Zero

efdctsidz rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 01011101011

rDy,¢3 < CnvtFP64ToI64Sat (rBy,.y, SIGN, TRUNC)

The double-precision floating-point valuein r B is converted to a signed integer doubleword using the
rounding mode Round toward Zero and theresult is saturated if it cannot be represented in a 64-bit integer.
NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and
the FG and FX bitsare cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination register
is not updated, and no other status bits are set.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Thisinstruction may only be implemented for 64-bit implementations.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-31

Instruction Set

efdctsiz SPE FD User efdctsiz

Convert Floating-Point Double-Precision to Signed Integer with Round toward Zero

efdctsiz rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 010111110410

¥D;,.45 < CnvtFP64ToI32Sat (rBy,.;, SIGN, TRUNC, I

The double-precision floating-point value in r B is converted to asigned integer using the rounding mode
Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and
the FG and FX bitsare cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination register
is not updated, and no other status bits are set.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-32 Freescale Semiconductor

Instruction Set

efdctuf SPE FD User efdctuf

Convert Floating-Point Double-Precision to Unsigned Fraction

efdctuf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 01011110110

¥Ds,.45 « CnvtFP64ToI32Sat (rB,,s;, UNSIGN, ROUND, F)

The double-precision floating-point valuein r B is converted to an unsigned fraction using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit unsigned fraction. NaNs
are converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and
the FG and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination
register is not updated.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the Floating-Point Round
Interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-33

Instruction Set

efdctui SPE FD User efdctui

Convert Floating-Point Double-Precision to Unsigned Integer

efdctui rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 01011110100

¥D;,.45 & CnvtFP64ToI32Sat (rBy,s;, UNSIGN, ROUND, I

The double-precision floating-point valuein rB is converted to an unsigned integer using the current
rounding mode and theresult is saturated if it cannot be represented in a 32-bit integer. NaNs are converted
as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and
the FG and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination
register is not updated.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-34 Freescale Semiconductor

Instruction Set

efdctuidz SPE FD User efdctuidz

Convert Floating-Point Double-Precision to Unsigned Integer Doubleword with Round toward
Zero

efdctuidz rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 00O0O0O rB 010111010410

rDy.¢3 « CnvtFP64ToIl64Sat (rBy,¢;, UNSIGN, TRUNC)

The double-precision floating-point value in r B is converted to an unsigned integer doubleword using the
rounding mode Round toward Zero and theresult is saturated if it cannot be represented in a 64-bit integer.
NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and
the FG and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination
register is not updated.

Thisinstruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Thisinstruction may only be implemented for 64-bit implementations.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-35

Instruction Set

efdctuiz SPE FD User efdctuiz

Convert Floating-Point Double-Precision to Unsigned Integer with Round toward Zero

efdctuiz rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 01011111000

¥Ds,.45 « CnvtFP64ToI32Sat (rBy,s;, UNSIGN, TRUNC, I)

The double-precision floating-point valuein rB is converted to an unsigned integer using the rounding
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs
are converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and
the FG and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination
register is not updated.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-36 Freescale Semiconductor

Instruction Set

efddiv SPE FD User efddiv

Floating-Point Double-Precision Divide

efddiv rD,rArB
0 5 6 10 11 15 16 20 21 31
ooo1oo| rD | rA rB 01011101000

TDg.¢3 ¢ My.63 Fap Bo.e3

rAisdivided by rB and theresult isstoredin rD. If rB isaNaN or infinity, the result isa properly signed
zero. Otherwise, if rB isazero (or a denormalized number optionally transformed to zero by the
implementation), or if rA iseither NaN or infinity, the result is either pmax (ag;g,==bgign), OF NMax
(asign!=bsign)- Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored inrD. If an
underflow occurs, +0 or -0 (as appropriate) isstored inrD.

Exceptions:

If the contents of r A or r B areinfinity, denorm, or NaN, or if bothrA and rB are +/-0, SPEFSCR[FINV]
isset. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination register is not updated.
Otherwise, if the content of rB is +/-0 and the content of r A is afinite normalized non-zero number,
SPEFSCR[FDBZ] isset. If floating-point divide by zero Exceptions are enabled, an interrupt isthen taken.
Otherwise, if an overflow occurs, SPEFSCR[FOVF] is set, or if an underflow occurs, SPEFSCR[FUNF]
isset. If either underflow or overflow exceptions are enabled and the corresponding bit is set, an interrupt
istaken. If any of these interrupts are taken, the destination register is not updated.

If theresult of thisinstructionisinexact or if an overflow occurs but overflow exceptions are disabled, and
no other interrupt istaken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an
interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is
updated with the truncated result, the FG and FX bits are properly updated to alow rounding to be
performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, divide by zero, or invalid operation/input error is
signaled, regardless of enabled exceptions.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-37

Instruction Set

efdmul SPE FD User efdmul
Floating-Point Double-Precision Multiply

efdmul rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA | B |o1o111o1ooo

rDg.63 < Mg.63 Xap Bo.63

rA ismultiplied by rB and theresult isstored in rD. If rA or rB are zero (or a denormalized number
optionally transformed to zero by the implementation), the result is a properly signed zero. Otherwise, if
rA or rB are either NaN or infinity, the result is either pmax (ag; gn==bg;4pn), OF NMAX (ag; gy ! =bgign)-
Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in rD. If an underflow occurs,
+0 or -0 (as appropriate) isstored inrD.

Exceptions:

If the contents of r A or rB areinfinity, denorm, or NaN, SPEFSCR[FINV] isset. If SPEFSCR[FINVE] is
set, an interrupt is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCR[FOVF] isset, or if an underflow occurs, SPEFSCR[FUNF] is set. If either underflow or
overflow exceptions are enabled and the corresponding bit is set, an interrupt is taken. If any of these
interrupts are taken, the destination register is not updated.

If theresult of thisinstructionisinexact or if an overflow occurs but overflow exceptions are disabled, and
no other interrupt istaken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an
interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is
updated with the truncated result, the FG and FX bits are properly updated to alow rounding to be
performed in the interrupt handler.

FG and FX arecleared if an overflow, underflow, or invalid operation/input error is signaled, regardl ess of
enabled exceptions.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-38 Freescale Semiconductor

Instruction Set

efdnabs SPEFD | User efdnabs

Floating-Point Double-Precision Negative Absolute Value

efdnabs rD,rA
0 5 6 10 11 15 16 20 21 31
0001 O0O rD rA oo0oo0oo0O0O|O1T O1T1 1 0O0T1TO0 1
rDg.g3 ¢ Ob1l || rA; .4

The sign bit of rA isset to 1 and the result is placed intorD.
Exceptions:

Exception detection for embedded floating-point absol ute value operations isimplementation dependent.
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the
implementation does not detect exceptions, or if exception detection is disabled, the computation can be
carried out in one of two ways, asasign bit operationignoring therest of the contents of the sourceregister,
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: If rA isinfinity,
denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are cleared. If floating-point invalid input
exceptions are enabled, an interrupt is taken and the destination register is not updated.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-39

Instruction Set

efdneg SPEFD | User efdneg

Floating-Point Double-Precision Negate

efdneg rD,rA
0 5 6 10 11 15 16 20 21 31
000 1O0ODO rD rA 0o00O0OO|O0O1TO0O1T11 00110
tDg.e3 < TRy || rRA; 45

The sign bit of r A is complemented and the result is placed into r D.
Exceptions:

Exception detection for embedded floating-point absolute value operations isimplementation dependent.
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the
implementation does not detect exceptions, or if exception detection is disabled, the computation can be
carried out in one of two ways, asasign bit operationignoring therest of the contents of the sourceregister,
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: If rA isinfinity,
denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are cleared. If floating-point invalid input
exceptions are enabled, an interrupt is taken and the destination register is not updated.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-40 Freescale Semiconductor

Instruction Set

efdsub SPE FD User efdsub

Floating-Point Double-Precision Subtract

efdsub rD,rArB
0 5 6 10 11 15 16 20 21 31
|000100| D | rA rB o1o111oooo1|

TDy.e3 < Mo.63dp/Bo:63

rB is subtracted from rA and theresult isstored in rD. If r A isNaN or infinity, the result is either pmax
(2g1gn==0), OF NMAX (ag;4,==1). Otherwise, If rB isNaN or infinity, the result is either nmax (bg; 4,==0), Or
pmax (bg;4,==1). Otherwisg, if an overflow occurs, pmax or nmax (as appropriate) is stored inrD. If an
underflow occurs, +0 (for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) isstored in rD.

Exceptions:

If the contents of rA or r B areinfinity, denorm, or NaN, SPEFSCR[FINV] is set. If SPEFSCR[FINVE] is
set, an interrupt is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCR[FOVF] isset, or if an underflow occurs, SPEFSCR[FUNF] is set. If either underflow or
overflow exceptions are enabled and the corresponding bit is set, an interrupt is taken. If any of these
interrupts are taken, the destination register is not updated.

If theresult of thisinstructionisinexact or if an overflow occurs but overflow exceptions are disabled, and
no other interrupt istaken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an
interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is
updated with the truncated result, the FG and FX bits are properly updated to alow rounding to be
performed in the interrupt handler.

FG and FX arecleared if an overflow, underflow, or invalid operation/input error is signaled, regardl ess of
enabled exceptions.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-41

V¥ ¢
i

Instruction Set

efdtsteq SPEFD | User efdtsteq
Floating-Point Double-Precision Test Equal
efdtsteq crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000100 e [0 0] rA B 01011111110

al < 1Ay, 4,

bl <~ rBj.63

if (al = bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

rA iscompared against rB. If rA isequal torB, the bitin thecrfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating NaNs, infinities, and
denorms as normalized numbers, using their values of ‘e and ‘f’ directly.

No exceptions are generated during the execution of efdtsteq If strict IEEE-754 compliance is required,
the program should use efdcmpeq.

Implementation note: In an implementation, the execution of efdtsteq islikely to be faster than the
execution of efdcmpeg.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-42 Freescale Semiconductor

Instruction Set

efdtstgt SPEFD | User efdtstgt
Floating-Point Double-Precision Test Greater Than
efdtstgt crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000100 e [0 0] rA B 01011111100

al < 1Ay, 4,

bl <~ rBj.63

if (al > bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

rA iscompared against rB. If r A isgreater than rB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating NaNs, infinities, and
denorms as normalized numbers, using their values of ‘e and ‘f’ directly.

No exceptions are generated during the execution of efdtstgt. If strict IEEE-754 compliance isrequired,
the program should use efdcmpgt.

Implementation note: In an implementation, the execution of efdtstgt islikely to be faster than the
execution of efdcmpgt.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-43

V¥ ¢

4\
Instruction Set
efdtstit SPE FD User efdtstit
Floating-Point Double-Precision Test Less Than
efdtstlt crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000100|crfD|00| rA rB 0101111110 1

al < 1Ay, 4,

bl <~ rBj.63

if (al < bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

rA iscompared against rB. If rA islessthanrB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating NaNs, infinities, and
denorms as normalized numbers, using their values of ‘e and ‘f’ directly.

No exceptions are generated during the execution of efdtstlt. If strict IEEE-754 compliance is required,
the program should use efdcmplt.

Implementation note: In an implementation, the execution of efdtstlt islikely to be faster than the
execution of efdcmplt.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-44 Freescale Semiconductor

Instruction Set

efsabs SPEFS | User efsabs
Floating-Point Absolute Value
efsabs rD,rA
0 5 6 10 11 15 16 20 21 31
000100 D rA 000O0O001011000T1O00
rDyy.e3 < 0DO || rR35.45

The sign bit of r A iscleared and the result is placed into r D.

It isimplementation dependent if invalid valuesfor rA (NaN, denorm, infinity) are detected and exceptions
are taken.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-45

Instruction Set

efsadd SPE FS User efsadd
Floating-Point Add

efsadd rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01011000000

TD35.63 < FAsp.63 tgpBisi6s
The single-precision floating-point value of r A isadded to rB and the result is stored in rD.

If an overflow condition is detected or the contents of r A or rB are NaN or infinity, the result isan
appropriately signed maximum floating-point value.

If an underflow condition is detected, the result is an appropriately signed floating-point O.

The following status bits are set in the SPEFSCR:
* FINV if the contentsof rA or rB are +infinity, —infinity, denorm, or NaN
* FOFV if an overflow occurs
* FUNFif an underflow occurs
* FINXS, FG FX if the result isinexact or overflow occurred and overflow exceptions are disabled

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-46 Freescale Semiconductor

Instruction Set

efscfsf SPEFS | User efscfsf
Convert Floating-Point from Signed Fraction
ef scfsf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 01011010011

rDy,. ¢4 ¢ CnVtI32TOFP32Sat (rB;,,¢;, SIGN, LOWER, F)

The signed fractional valueinr B isconverted to the nearest single-precision floating-point value using the

current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:
* FINXS, FG FX if theresult isinexact

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-47

Instruction Set

20 21

efscfsi

31

efSCfSi SPE FS User
Convert Floating-Point from Signed Integer
efscfs rD,rB
0 5 6 10 11 15 16
000100 D 00000 B

0100 0 1

rDy,. 5 ¢ CnVESI32ToFP32Sat (rBy,, 3, SIGN, LOWER, I)

The signed integer value in r B is converted to the nearest single-precision floating-point value using the

current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:
* FINXS, FG FX if theresult isinexact

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-48

Freescale Semiconductor

Instruction Set

efscfuf SPEFS | User efscfuf
Convert Floating-Point from Unsigned Fraction
ef scfuf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 01011010010

rDy,,¢3 ¢« CnVEI32TOFP32Sat (rB;,, ¢, UNSIGN, LOWER, F)

The unsigned fractional valuein rB is converted to the nearest single-precision floating-point value using

the current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:
* FINXS, FG FX if theresult isinexact

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-49

Instruction Set

20 21

efscfui

31

efSCfUi SPE FS User
Convert Floating-Point from Unsigned Integer
ef scfui rD,rB
0 5 6 10 11 15 16
000100 D 00000 rB

0100 O00O0

rDy,,¢3 ¢ CnVEI32TOFP32Sat (rB;,, ¢4, UNSIGN, LOWER, I)

The unsigned integer valuein r B isconverted to the nearest single-precision floating-point value using the

current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:
* FINXS, FG FX if theresult isinexact

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-50

Freescale Semiconductor

Instruction Set

efscmpeq SPEFS | User efscmpeq
Floating-Point Compare Equal
efscmpeq cD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000 100| ed [0 0] rA B 01011001110

al ¢« 1hA3,5.45

bl ¢~ rB3,.43

if (al = bl) then cl« 1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

ThevaueinrA iscompared against rB. If rA equalsrB, the crD bit is set, otherwiseiit is cleared.
Comparison ignores the sign of 0 (+0 = -0).

If either operand contains aNaN, infinity, or a denorm and floating-point invalid exceptions are enabled
in the SPEFSCR, the exception is taken. If the exception is not enabled, the comparison treats NaNs,
infinities, and denorms as normalized numbers.

The following status bits are set in SPEFSCR:
* FINV if the contents of rA or rB are +infinity, -infinity, denorm or NaN

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-51

V¥ ¢

A4\
Instruction Set
efscmpgt SPEFS | User efscmpgt
Floating-Point Compare Greater Than
efscmpgt cD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000 100| ead [0 0] rA B 01011001100

al ¢« 1hA3,5.45

bl ¢~ rB3,.43

if (al > bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

ThevaueinrA iscompared against rB. If rA isgreater than r B, the bit in the cr D is set, otherwiseit is
cleared. Comparison ignoresthe sign of 0 (+0 =-0).

If either operand contains aNaN, infinity, or a denorm and floating-point invalid exceptions are enabled
in the SPEFSCR, the exception is taken. If the exception is not enabled, the comparison treats NaNs,
infinities, and denorms as normalized numbers.

The following status bits are set in SPEFSCR:
* FINV if the contents of rA or rB are +infinity, -infinity, denorm or NaN

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-52 Freescale Semiconductor

Instruction Set

efscmplt SPEFS | User efscmplt
Floating-Point Compare Less Than
efscmplt cD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000 100| ead [0 0] rA B 01011001101

al ¢« 1hA3,5.45

bl ¢~ rB3,.43

if (al < bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

ThevaueinrA iscompared against rB. If rA islessthan r B, the bit in thecrD is set, otherwise it is
cleared. Comparison ignoresthe sign of 0 (+0 =-0).

If either operand contains aNaN, infinity, or a denorm and floating-point invalid exceptions are enabled
in the SPEFSCR, the exception is taken. If the exception is not enabled, the comparison treats NaNs,
infinities, and denorms as normalized numbers.

The following status bits are set in SPEFSCR:
* FINV if the contents of rA or rB are +infinity, -infinity, denorm or NaN

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-53

Instruction Set

efsctsf SPEFS | User efsctsf
Convert Floating-Point to Signed Fraction
ef sctsf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 0101101011 1

rDy,,¢3 < CnVEFP32ToISat (rBy,,q3, SIGN, LOWER, ROUND, F)

The single-precision floating-point valuein r B is converted to asigned fraction using the current rounding
mode. The result saturates if it cannot be represented in a 32-bit fraction. NaNs are converted to O.

The following status bits are set in the SPEFSCR:

* FINV if the contents of rB are +infinity., —infinity, denorm, or NaN, or r B cannot be represented
in the target format

e FINXS, FG FX if theresult isinexact

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-54 Freescale Semiconductor

Instruction Set

efsctsi SPEFS | User efsctsi
Convert Floating-Point to Signed Integer
efscts rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 B 01011010101

rDy5,¢3 < CnVEFP32ToISat (rBy,,¢3, SIGN, LOWER, ROUND, I)

The single-precision floating-point value in r B is converted to a signed integer using the current rounding
mode. The result saturates if it cannot be represented in a 32-hit integer. NaNs are converted to O.

The following status bits are set in the SPEFSCR:

* FINV if the contents of rB are +infinity, -infinity, denorm, or NaN, or r B cannot be represented in
the target format

e FINXS, FG FX if theresult isinexact

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-55

Instruction Set

efsctsiz SPEFS | User efsctsiz
Convert Floating-Point to Signed Integer with Round toward Zero
efsctsiz rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 B 01011011010

rDy,_gy ¢ CnVtFP32ToISat (rBy,,qy, SIGN, LOWER, TRUNC, I)

The single-precision floating-point value in r B is converted to a signed integer using the rounding mode
Round towards Zero. Theresult saturatesif it cannot be represented in a32-bit integer. NaNs are converted
to 0.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-56 Freescale Semiconductor

Instruction Set

efsctuf SPEFS | User efsctuf
Convert Floating-Point to Unsigned Fraction
ef sctuf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 01011010110

rD;,. 63 ¢ CNVEFP32ToISat (rB;,,s5, UNSIGN, LOWER, ROUND, F)

The single-precision floating-point value in r B is converted to an unsigned fraction using the current
rounding mode. The result saturatesif it cannot be represented in a 32-bit unsigned fraction. NaNs are
converted to O.

The following status bits are set in the SPEFSCR:

* FINV if the contentsof r B are +infinity, —infinity, denorm, or NaN, or r B cannot be represented in
the target format

e FINXS, FG FX if theresult isinexact

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-57

Instruction Set

efsctui SPEFS | User efsctui
Convert Floating-Point to Unsigned Integer
efsctui rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 B 01011010100

rD;,. 63 ¢ CNVEFP32ToISat (rB;,,s5, UNSIGN, LOWER, ROUND, I)

The single-precision floating-point value in r B is converted to an unsigned integer using the current
rounding mode. The result saturatesif it cannot be represented in a 32-bit unsigned integer. NaNs are
converted to O.

The following status bits are set in the SPEFSCR:

* FINV if the contentsof r B are +infinity, —infinity, denorm, or NaN, or r B cannot be represented in
the target format

e FINXS, FG FX if theresult isinexact

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-58 Freescale Semiconductor

Instruction Set

efsctuiz SPEFS | User efsctuiz
Convert Floating-Point to Unsigned Integer with Round toward Zero
efsctuiz rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 B 01011011000

rD;,. 63 ¢ CNVEFP32ToISat (rB;,,s5, UNSIGN, LOWER, TRUNC, I)

The single-precision floating-point value in r B is converted to an unsigned integer using the rounding
mode Round toward Zero. The result saturates if it cannot be represented in a 32-bit unsigned integer.
NaNs are converted to 0.

The following status bits are set in the SPEFSCR:

* FINV if the contentsof r B are +infinity, —infinity, denorm, or NaN, or r B cannot be represented in
the target format

e FINXS, FG FX if theresult isinexact

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-59

Instruction Set

efsdiv SPEFS | User efsdiv
Floating-Point Divide
efsdiv rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA B 0101100100 1

TD35.63 < TA32.63 v B32.63

The single-precision floating-point value in r A is divided by rB and the result isstored inrD.

If an overflow is detected, or rB isadenorm (or O value), or rA isaNaN or infinity and r B isanormalized
number, the result is an appropriately signed maximum floating-point val ue.

If an underflow is detected or rB isaNaN or infinity, the result is an appropriately signed floating-point O.

The following status bits are set in the SPEFSCR:
* FINV if the contents of rA or rB are +infinity, —infinity, denorm, or NaN
* FOFV if an overflow occurs
* FUNV if an underflow occurs
» FDBZS, FDBZ if adivide by zero occurs
* FINXS, FG FX if the result isinexact or overflow occurred and overflow exceptions are disabled

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-60 Freescale Semiconductor

Instruction Set

efsmul SPEFS | User efsmul
Floating-Point Multiply
efsmul rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 010110041000

TD35.63 < MA32.63%Xgp B32.63
The single-precision floating-point value inr A is multiplied by r B and theresult isstored inrD.
If an overflow is detected the result is an appropriately signed maximum floating-point value.

If oneof rA orrBisaNaN or aninfinity and the other isnot adenorm or zero, theresult isan appropriately
signed maximum floating-point value.

If an underflow is detected, or r A or rB isadenorm, the result is an appropriately signed floating-point O.
The following status bits are set in the SPEFSCR:

* FINV if the contents of rA or rB are +infinity, —infinity, denorm, or NaN

e FOFV if an overflow occurs

* FUNV if an underflow occurs
* FINXS, FG FX if the result isinexact or overflow occurred and overflow exceptions are disabled

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-61

Instruction Set

efsnabs SPEFS | User efsnabs
Floating-Point Negative Absolute Value
efsnabs rD,rA
0 5 6 10 11 15 16 31
0001 0 0] D | rA 0000O 00010 1
¥Dyy. g3 ¢ 0b1 || rA55.¢5

Thesignbit of rA isset and theresult isstored in rD. It isimplementation dependent if invalid values for

rA (NaN, denorm, infinity) are detected and exceptions are taken.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-62

Freescale Semiconductor

Instruction Set

efsneg SPEFS | User efsneg
Floating-Point Negate
efsneg rD,rA
0 5 6 10 11 15 16 20 21 31
‘000100‘ D ‘ rA 00000]/01011000 110
TD3p.63 ¢ MA3; || TA33.43

Thesignbit of r A iscomplemented and theresult isstored inr D. It isimplementation dependent if invalid
valuesfor rA (NaN, denorm, infinity) are detected and exceptions are taken.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-63

Instruction Set

efssub SPE FS User efssub
Floating-Point Subtract
efssub rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 0101100000 1

rD35.63 < MA32.63 "5 B32.63

The single-precision floating-point valuein r B is subtracted from that inr A and theresult isstored inrD.

If an overflow condition is detected or the contents of r A or rB are NaN or infinity, the result isan
appropriately signed maximum floating-point value.

If an underflow condition is detected, the result is an appropriately signed floating-point O.

The following status bits are set in the SPEFSCR:
* FINV if the contents of rA or rB are +infinity, —infinity, denorm, or NaN
* FOFV if an overflow occurs
* FUNF if an underflow occurs
* FINXS, FG FX if the result isinexact or overflow occurred and overflow exceptions are disabled

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-64 Freescale Semiconductor

Instruction Set

efststeq SPEFS | User efststeq
Floating-Point Test Equal

efststeq crD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
ooo1oo‘ch‘oo‘ rA B 010110411110

al < T1A5,.63
bl ¢~ rB3,.43
if (al = bl) then cl«1
else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

ThevaueinrA iscompared against rB. If rA equalsrB, the bit in crD is set, otherwiseiit is cleared.

Comparison ignores the sign of 0 (+0 = —0). The comparison treats NaNs, infinities, and denorms as
normalized numbers.

No exceptions are taken during execution of efststeq. If strict IEEE-754 compliance isrequired, the
program should use efscmpeq.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-65

V¥ ¢

A4\
Instruction Set
efststgt SPEFS | User efststgt
Floating-Point Test Greater Than
efststgt cD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000 100| ead [0 0] rA B 01011011100

al < T1A5,.63

bl ¢~ rB3,.43

if (al > bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

If rA isgreater than rB, the bitin crD is set, otherwise it is cleared. Comparison ignores the sign of 0
(+0 = -0). The comparison treats NaNs, infinities, and denorms as normalized numbers.

No exceptions are taken during the execution of efststgt. If strict IEEE-754 compliance is required, the
program should use efscmpgt.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-66 Freescale Semiconductor

Instruction Set

efststlt SPE FS User efststlt

Floating-Point Test Less Than

efststlt crD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
ooo1oo‘ch‘oo‘ rA B 01011041110 1

al < T1A5,.63

bl ¢~ rB3,.43

if (al < bl) then cl«1

else cl« 0

CR4xcyp:a*crpss < undefined || ¢l || undefined || undefined

If rAislessthanrB, thebitinthecrD isset, otherwiseit is cleared. Comparison ignores the sign of 0
(+0 = -0). The comparison treats NaNs, infinities, and denorms as normalized numbers.

No exceptions are taken during the execution of efststlt. If strict |EEE-754 complianceis required, the
program should use efscmplt.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-67

Instruction Set

evabs

evabs SPE User

Vector Absolute Value

evabs rD,rA
0 5 6 10 11 15 16 20 21 31
000100 rD rA 0 000O0O|/010O0O0O0OOT1TO0TO 0O

]’_‘DO:31 < ABS (I'AO:31)
rD3y.63 ¢ ABS(fA3;.63)

The absolute value of each element of r A is placed in the corresponding elements of rD, as shown in
Figure 5-2. An absolute value of 0x8000_0000 (most negative number) returns 0x8000_0000. No

overflow is detected.

31

32

63

| |
v v

A|BS A|BS
Y Y

Figure 5-2. Vector Absolute Value (evabs)

rA

rD

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-68

Freescale Semiconductor

Instruction Set

evaddiw SPE | User evaddiw
Vector Add Immediate Word
evaddiw rD,rB,UMM
0 5 6 10 11 15 16 20 21 31
000100 rD UIMM rB 01 000O0O0UOTO0T1O0

rDy.3q ¢ ¥By.3; + EXTZ(UIMM)// Modulo sum
rD3y,63 ¢ ¥B3y.63 + EXTZ(UIMM) // Modulo sum

UIMM is zero-extended and added to both the high and low elements of rB and the results are placed in
rD, asshown in Figure 5-3. Note that the same value is added to both elements of the register. UIMM is5
bits.

0 31 32 63
B
UIMM UIMM
Y ¢ Y ¢
+ +
| |
Y Y D

Figure 5-3. Vector Add Immediate Word (evaddiw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-69

Instruction Set

evaddsmiaaw SPE | User evaddsmiaaw
Vector Add Signed, Modulo, Integer to Accumulator Word
evaddsmiaaw rD,rA
0 5 6 10 11 15 16 31
000100 D rA 000O0OGO|(1T0O01T100T100 1

rDg.31 ¢~ ACCp.31 + TAp.33
rD35.63 ¢ ACC33.63 + TR33.63

ACCp.63 <~ rDp.63

Each word element in r A is added to the corresponding element in the accumulator and the results are

placed in rD and into the accumulator, as shown in Figure 5-4.

Other registers altered: ACC

0

31

32

63

rA

Accumulator

rD and Accumulator

Figure 0-1. Vector Add Signed, Modulo, Integer to Accumulator Word (evaddsmiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-70

Freescale Semiconductor

Instruction Set

evaddssiaaw SPE | User evaddssiaaw
Vector Add Signed, Saturate, Integer to Accumulator Word
evaddssiaaw rD,rA
0 5 6 10 11 15 16 20 21 31
000100 rD rA 00000O0[1 001100000 1
// high

tempg.g3 ¢ EXTS (ACCy.31) + EXTS(rAg.3q1)
ovh < temp;; @ temp;,
rDj.3q <« SATURATE (ovh, temp;,;, 0x80000000, Ox7fffffff, temp32£3)

// low

tempy, ¢y ¢ EXTS (ACCy,.¢3) + EXTS(rA;,,¢5)

ovl « temp;; @ temp,,

rDj3,.¢3 ¢ SATURATE (ovl, tempsz;, 0x80000000, Ox7fffffff, temp;,.43)

ACCqy.63 ¢ ¥Dp.63

SPEFSCRqyy ¢ ovh

SPEFSCRqy ¢ ovl

SPEFSCRgoyy ¢ SPEFSCRgqyy | ovh
SPEFSCRgyy ¢ SPEFSCRgyy | ovl

Each signed integer word element in r A is sign-extended and added to the corresponding sign-extended
element in the accumulator, saturating if overflow or underflow occurs, and the results are placed in rD
and the accumulator, as shown in Figure 5-4. Any overflow or underflow is recorded in the SPEFSCR

overflow and summary overflow bits.
Other registers altered: SPEFSCR ACC

0 31 32 63

rA

| | Accumulator

Figure 5-4. Vector Add Signed, Saturate, Integer to Accumulator Word (evaddssiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

rD and Accumulator

Freescale Semiconductor

5-71

Instruction Set

evaddumiaaw SPE | User evaddumiaaw
Vector Add Unsigned, Modulo, Integer to Accumulator Word
evaddumiaaw rD,rA
0 5 6 10 11 15 16 31
000100 D rA 000O0GO|/10O01100T1000

rDg.31 ¢~ ACCp.31 + TAp.33
rD35.63 ¢ ACC33.63 + TR33.63

ACCp.63 <~ rDp.63

Each unsigned integer word element in r A is added to the corresponding element in the accumul ator and
the results are placed in r D and the accumulator, as shown in Figure 5-5.

Other registers altered: ACC

0

31

32

63

rA

Accumulator

rD and Accumulator

Figure 5-5. Vector Add Unsigned, Modulo, Integer to Accumulator Word (evaddumiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-72

Freescale Semiconductor

Instruction Set

evaddusiaaw SPE | User evaddusiaaw
Vector Add Unsigned, Saturate, Integer to Accumulator Word
evaddusiaaw rD,rA
0 5 6 10 11 15 16 20 21 31
000100 D rA 000O0O0|/1 0011000000
// high

tempg.g3 ¢ EXTZ (ACCj,31) + EXTZ(rRAj.s3q)
ovh <« tempyq
rDy.37 ¢ SATURATE (ovh, temps;, Oxffffffff, Oxffffffff, temp;,.q43)

// low

temp,.gy ¢ EXTZ (ACCy,.43) + EXTZ(rAj5.63)

ovl <« temps;;

rD3,.63 ¢ SATURATE (ovl, temp;,, Oxffffffff, Oxffffffff, temp;,.q3)

ACCp.63 ¢ rDyp.g3

SPEFSCRqyy ¢ ovh

SPEFSCRyy ¢ ovl

SPEFSCRguyy ¢ SPEFSCRgqyy | ovh
SPEFSCRgyy ¢ SPEFSCRgyy | ovl

Each unsigned integer word element inr A iszero-extended and added to the corresponding zero-extended

element in the accumulator, saturating if overflow occurs, and the results are placed in rD and the

accumulator, as shown in Figure 5-6. Any overflow is recorded in the SPEFSCR overflow and summary

overflow hits.
Other registers altered: SPEFSCR ACC

0 31 32 63

rA

| | Accumulator

Figure 5-6. Vector Add Unsigned, Saturate, Integer to Accumulator Word (evaddusiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

\ v rD and Accumulator

Freescale Semiconductor

5-73

Instruction Set

evaddw SPE | User evaddw
Vector Add Word
evaddw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01 000O0O0UOTO0TO OO

rDy.31 < Ag.37 + T¥Bgy,.3;// Modulo sum
rD35.63 ¢ A35.63 + TB3y,63 // Modulo sum

The corresponding elements of r A and r B are added and the results are placed in rD, as shown in
Figure 5-7. The sum is a modulo sum.

0 31 32 63
rA
| | B
\] ¢ \] ¢
+ +
| |
]] D

Figure 5-7. Vector Add Word (evaddw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-74 Freescale Semiconductor

Instruction Set

evand SPE | User evand
Vector AND
evand rD,rArB

0 5 6 10 11 15 16 20 21 31

0 0 01 0O rD rA rB o1 0O0O0OO0O1TO0O0TUO0 1

rDy.31 < Ay.31 & ¥By.3; // Bitwise AND
TD55.63 ¢ MA35.63 & TrB3,.43// Bitwise AND

The corresponding elements of r A and rB are ANDed bitwise and the results are placed in the
corresponding element of rD, as shown in Figure 5-8.

0 31 32 63
rA
| | B
\] ¢ \] ¢
& &
| |
]] D

Figure 5-8. Vector AND (evand)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-75

wr
PRt

Instruction Set

evandc SPE | User evandc
Vector AND with Complement
evandc rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 D rA B 01000010010
rDy.31 < MAg.31 & (-rBj.3q)

// Bitwise ANDC
D35.63 ¢ MA35.63 & (7¥By,.63) // Bitwise ANDC

The word elements of r A and are ANDed bitwise with the complement of the corresponding elements of
rB. Theresults are placed in the corresponding element of rD, as shown in Figure 5-9.

0

31 32 63

rA

| | B
Y Y
Y vy Y vy

AI\|ID AI\|ID
v v D
Figure 5-9. Vector AND with Complement (evandc)
Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0
5-76

Freescale Semiconductor

Instruction Set

evcmpeq SPE User evcmpeq
Vector Compare Equal
evempeq cD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
ooo1oo‘ch‘oo‘ rA B 010004110100
ah«Tr1A;. 3,
al < TAs;. 63
bh < rBj.31
bl < rB;j.63
if (ah = bh) then ch« 1
else ch« 0
if (al = bl) then cl« 1
else cl« 0
CR4*ch:4*ch+3QCh || cl || (Ch | C:U || (Ch & C:U

The most significant bitin crD is set if the high-order element of r A isequal to the high-order element of
rB, asshown in Figure 5-10; it is cleared otherwise. The next bitin crD isset if the low-order element of
rA isequa to the low-order element of rB and cleared otherwise. The last two bits of crD are set to the
OR and AND of the result of the compare of the high and low elements.

0 31 32 63
rA
| | B
v o_ ¢ Y _ ¢
| |
¢OR+]
AND

Figure 5-10. Vector Compare Equal (evcmpeq)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-77

Instruction Set

evcmpgts SPE | User evcmpgts
Vector Compare Greater Than Signed
evempagts cD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000 100| ead [0 0] rA B 0100011000 1

ah«Tr1A;. 3,

al < TAs;. 63

bh < rBj.31

bl < rB;j.63

if (ah > bh) then ch« 1

else ch« 0

if (al > bl) then cl« 1

else cl« 0

CR4*ch:4*ch+3QCh || cl || (Ch | C:U || (Ch & C:U

The most significant bitin crD isset if the high-order element of r A is greater than the high-order element
of rB, asshown in Figure 5-11; it is cleared otherwise. The next bit in crD isset if the low-order element
of rA isgreater than the low-order element of r B and cleared otherwise. The last two bits of crD are set
to the OR and AND of the result of the compare of the high and low elements.

0 31 32 63

rA

| | B

YIvT,
vy

AND

A crD

Figure 5-11. Vector Compare Greater Than Signed (evempgts)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-78 Freescale Semiconductor

Instruction Set

evcmpgtu SPE | User evcmpgtu
Vector Compare Greater Than Unsigned
evempgtu cD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000 100| ead [0 0] rA B 01000110000

ah«Tr1A;. 3,

al < TAs;. 63

bh < rBj.31

bl < 1rB;;.63

if (ah >U bh) then ch« 1

else ch« 0

if (al >U bl) then cl« 1

else cl« 0

CR4*ch:4*ch+3QCh || cl || (Ch | C:U || (Ch & C:U

The most significant bitin crD isset if the high-order element of r A is greater than the high-order element
of rB, asshown in Figure 5-12; it is cleared otherwise. The next bitin crD is set if the low-order element
of rA isgreater than the low-order element of r B and cleared otherwise. The last two bits of crD are set
to the OR and AND of the result of the compare of the high and low elements.

0 31 32 63

rA

| | B

YIvT,
vy

AND

‘\ crD

Figure 5-12. Vector Compare Greater Than Unsigned (evempgtu)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-79

Instruction Set

evcmplts SPE | User evcmplts
Vector Compare Less Than Signed
evemplts cD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000 100| ead [0 0] rA B 0100011001 1
ah«Tr1A;. 3,
al < TAs;. 63
bh < rBj.31
bl < rB;j.63
if (ah < bh) then ch« 1
else ch« 0
if (al < bl) then cl« 1
else cl« 0
CR4*ch:4*ch+3QCh || cl || (Ch | C:U || (Ch & C:U

Themost significant bit in cr D is set if the high-order element of r A islessthan the high-order element of
rB, asshownin Figure 5-13; it is cleared otherwise. The next bitin crD isset if the low-order element of
rA islessthan the low-order element of r B and cleared otherwise. The last two bits of crD are set to the
OR and AND of the result of the compare of the high and low elements.

0 31 32 63
rA
| | B
\] ¢ ¢
< <
| |
MR oD
vy
AND

Figure 5-13. Vector Compare Less Than Signed (evemplts)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-80

Freescale Semiconductor

Instruction Set

evcmpltu SPE | User evcmpltu
Vector Compare Less Than Unsigned
evempltu cD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000 100| ead [0 0] rA B 01000110010

ah«<rAgy. .3,

al < TA3;. 63

bh < rBj.5;

bl <~ rB3;.63

if (ah <U bh) then ch« 1

else ch« 0

if (al <U bl) then cl« 1

else cl« 0

CRyxcrp:averpsz < ch || ¢l || (ch | cl) || (ch & cl)

Themost significant bit in cr D is set if the high-order element of r A islessthan the high-order element of
rB, asshown in Figure 5-14; it is cleared otherwise. The next bitin crD isset if the low-order element of
rA islessthan the low-order element of r B and cleared otherwise. The last two bits of crD are set to the
OR and AND of the result of the compare of the high and low elements.

0 31 32 63

rA

| | B

VIV,
vy

AND

‘\ crD

Figure 5-14. Vector Compare Less Than Unsigned (evempltu)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-81

Instruction Set

evcntisw SPE | User evcntlsw
Vector Count Leading Signed Bits Word
eventlsw rD,rA
0 5 6 10 11 15 16 31
000100 D rA 0 000O0O 0000O0T1T110

The leading sign bits in each element of r A are counted, and the respective count is placed into each

element of rD, as shown in Figure 5-15.

eventlzw is used for unsigned operands; eventlsw is used for signed operands.

0

31

32

63

SSSS_SSS...

SSSS_SSS...

count of leading signed bits

count of leading signed bits

R

N

rA

rD

Figure 5-15. Vector Count Leading Signed Bits Word (evcntlsw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-82

Freescale Semiconductor

Instruction Set

evcentizw SPE | User evcentizw

Vector Count Leading Zeros Word

eventlzw rD,rA
0 5 6 10 11 15 16 20 21 31
000100 rD rA 000OO|O1TO0O0O0OO0OOT 110 1

The leading zero bitsin each element of r A are counted, and the respective count is placed into each
element of rD, as shown in Figure 5-16.

0 31 32 63
0000_000... 0000_000... rA
count of leading zeros count of leading zeros

RN BN D

Figure 5-16. Vector Count Leading Zeros Word (evcntizw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-83

\¥ 4
4\
Instruction Set
evdivws SPE | User evdivws
Vector Divide Word Signed
evdivws rD,rArB
0 5 6 10 11 15 16 20 21 31
00 01 0O rD rA rB 10011 0O0O0T1TT1T0O0
dividendh <« 1A, 3,
dividendl < rA;, .43
divisorh - rBj.31
divisorl < rBj, .43
rDy.3; ¢ dividendh + divisorh
rDj,.¢3 ¢ dividendl + divisorl
ovh « 0
ovl« 0
if ((dividendh < 0) & (divisorh = 0)) then
rDy, 31 ¢ 0x80000000
ovh«1
else if ((dividendh >= 0) & (divisorh = 0)) then
rDy,31 ¢ OX7FFFFFFF
ovh«1
else if ((dividendh = 0x80000000) & (divisorh = OxFFFF_FFFF)) then
rDy,31 ¢ OX7FFFFFFF
ovh«1
if ((dividendl < 0) & (divisorl = 0)) then
¥D3, .3 < 0%X80000000
ovl«1
else if ((dividendl >= 0) & (divisorl = 0)) then
rDs,. ¢4 ¢ OX7FFFFFFF
ovl«1
else if ((dividendl = 0x80000000) & (divisorl = OxFFFF_FFFF)) then
rDs,. ¢4 ¢ OX7FFFFFFF
ovl«1

SPEFSCRgyy < ovh

SPEFSCRgy ¢ ovl

SPEFSCRgoyy ¢ SPEFSCRgoyy | ovh
SPEFSCRgqoy ¢ SPEFSCRgyy | ovl

The two dividends are the two elements of the r A contents. The two divisors are the two elements of the
r B contents, as shown in Figure 5-17. The resulting two 32-bit quotients are placed into rD. Remainders
are not supplied. The operands and quotients are interpreted as signed integers. If overflow, underflow, or
divide by zero occurs, the overflow and summary overflow SPEFSCR bits are set. Note that any overflow
indication is always set as a side effect of thisinstruction. No form is defined that disables the setting of
the overflow bits. In case of overflow, a saturated value is delivered into the destination register.

0 31 32 63
| | | rA (dividends)
| | | | | rB (divisors)
Y Y
rA/rB rA/rB
| |
| Y | Y | ©

Figure 5-17. Vector Divide Word Signed (evdivws)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-84 Freescale Semiconductor

Instruction Set

evdivwu SPE | User evdivwu
Vector Divide Word Unsigned
evdivwu rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10011000111

dividendh <« 1A, 3,
dividendl < rA35.63
divisorh <« rBj.3;
divisorl ¢ rB;,.43
rDy.3; ¢ dividendh + divisorh
rDj3,.63 ¢ dividendl + divisorl
ovh < 0
ovl < 0
if (divisorh = 0) then
rDy.3; = OXFFFFFFFF

ovh « 1

if (divisorl = 0) then
rD;,,¢3 ¢ OXFFFFFFFF
ovl « 1

SPEFSCRgyy ¢« ovh

SPEFSCRyy ¢ ovl

SPEFSCRgoyy ¢ SPEFSCRgoyy | ovh

SPEFSCRgoy ¢« SPEFSCRgoy | ovl
The two dividends are the two elements of the contents of r A. The two divisors are the two elements of
the contents of rB, as shown in Figure 5-18. Two 32-bit quotients are formed as aresult of the division on
each of the high and low elements and the quotients are placed into r D. Remainders are not supplied.
Operands and quotients are interpreted as unsigned integers. If adivide by zero occurs, the overflow and
summary overflow SPEFSCR bits are set. Note that any overflow indication is always set as a Side effect
of thisinstruction. No form is defined that disables the setting of the overflow bits. In case of overflow, a
saturated value is delivered into the destination register.

0 31 32 63

rA (dividends)

| | rB (divisors)

Y Y D

Figure 5-18. Vector Divide Word Unsigned (evdivwu)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-85

Instruction Set

eveqv

eveqv SPE User

Vector Equivalent

eveqv rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 0 000O0T1TT1TO0OO 1

rDy.37 < FAy.31 = rBy.3;, // Bitwise XNOR

rD3y.63 ¢ FAj35.63 = IByy.g3 // Bitwise XNOR

The corresponding elements of r A and r B are XNORed bitwise, and theresultsare placed in r D, asshown

in Figure 5-19.

31 32

63

XNOR

n

XNOR

Figure 5-19. Vector Equivalent (eveqv)

rA

B

rD

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-86

Freescale Semiconductor

Instruction Set

evextsb SPE | User evextsb
Vector Extend Sign Byte
evextsh rD,rA

0 5 6 10 11 15 16 20 21

000100 D 0 00O0O0|/0O10000O0GO0T1O0

rDy.31 EXTS(rA24:31)

TD32.63 ¢

EXTS (rAsg.¢3)

The signsof the bytein each of theelementsinr A are extended, and theresultsare placed inr D, asshown
in Figure 5-20.

0

23 24

31

32

55 56 57

63

S

S

rA

L

|

SSSS_SSSS_SSSS_SSSS_SSSS_SSSS

S

SSSS_SSSS_SSSS_SSSS_SSSS_SSSS S

rD

Figure 5-20. Vector Extend Sign Byte (evextsb)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-87

Instruction Set

evextsh

eveXtSh SPE User

Vector Extend Sign Half Word

evextsh rD,rA
0 5 6 15 16 20 21 31
000100 D 0 000 O0]0 0 000O0T1TO 1 1

]’_‘DO:31 — EXTS(I’A16:31)
rD3y.63 < EXTS(rAsg.63)

The signs of the half wordsin each of the elementsinrA are extended, and theresultsare placed inrD, as

shown in Figure 5-21.

0 15 16 17

31

32 47 48 49

63

S

S

rA

/

/

SSSS_SSSS_SSSS_SSSS

S

SSSS_SSSS_SSSS_SSSS

S

rD

Figure 5-21. Vector Extend Sign Half Word (evextsh)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-88

Freescale Semiconductor

Instruction Set

evisabs SPE FV User evisabs

Vector Floating-Point Single-Precision Absolute Value

evisabs rD,rA
0 5 6 10 11 15 16 20 21 31
0001 O0O rD rA o o0o0O0O0O|0O1TO0O1TO0O0OO0OO0OT1TO0ODO
rDy.3; ¢ 0bO || rA; 5
rD3p.63 ¢ 000 || rAs3.4;

The sign bit of each element inr A is set to 0 and the results are placed into rD.
Exceptions:

Exception detection for embedded floating-point absol ute value operations isimplementation dependent.
An implementation may choose to not detect exceptions and carry out the computation. If the
implementation does not detect exceptions, or if exception detection is disabled, the computation can be
carried out in one of two ways, asasign bit operationignoring therest of the contents of the sourceregister,
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled asfollows: if the contents of
either element of rA are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are set appropriately, and
SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If floating-point invalid input exceptions are
enabled, an interrupt is taken and the destination register is not updated.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-89

Instruction Set

evfsadd SPEFV | User evfsadd
Vector Floating-Point Single-Precision Add

evfsadd rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01010000000

rDg.31 ¢ TAg.31tpTBg.3

rD35.63 < TA33.63 tpTB32.63
Each single-precision floating-point element of r A is added to the corresponding element of rB and the
resultsare stored inrD. If an element of rA isNaN or infinity, the corresponding result is either pmax
(2g1gn==0), OF NMAX (ay;4,==1). Otherwise, if an element of r B isNaN or infinity, the corresponding result
is either pmax (bg; 4,==0), OF NMaXx (bg;4,==1). Otherwise, if an overflow occurs, pmax or nmax (as
appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0 (for rounding modes
RN, RZ, RP) or -0 (for rounding mode RM) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of r A or r B are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If SPEFSCR[FINVE] is
set, an interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCR[FOVFFOV FH] are set appropriately, or if an underflow occurs, SPEFSCR[FUNFFUNFH] are
set appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is
set, an interrupt istaken. If any of these interrupts are taken, the destination register is not updated.

If either result element of thisinstruction isinexact, or overflows but overflow exceptions are disabled,
and no other interrupt istaken, or underflows but underflow exceptions are disabled, and no other interrupt
istaken, SPEFSCR[FINXS,FINXSH] isset. If thefloating-point inexact exception isenabled, an interrupt
istaken using the floating-point round interrupt vector. In this case, the destination register is updated with
the truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if aninvalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-90 Freescale Semiconductor

Instruction Set

evfscfsf SPEFV | User evfscfsf
Vector Convert Floating-Point Single-Precision from Signed Fraction
evfscfsf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 B 010 1001 0011

rD,,5, ¢ CnvtI32ToFP32Sat (rBy,5;, SIGN, UPPER, F)
rD;, .63 ¢ CnvtI32TOFP32Sat (rBy, .43, SIGN, LOWER, F)

Each signed fractional element of r B is converted to a single-precision floating-point value using the
current rounding mode and the results are placed into the corresponding elements of rD.
Exceptions:

Thisinstruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions are not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result(s). The FGH,
FXH, FG and FX bits are properly updated to alow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-91

Instruction Set

evfscfsi SPEFV | User evfscfsi
Vector Convert Floating-Point Single-Precision from Signed Integer
evfscfs rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 B 010 1001 0001

rDy,4;1 ¢ CnvtSI32TOFP32Sat (rBy,3;, SIGN, UPPER, I)
rD35,¢3 ¢« CnVESI32TOFP32Sat (rBy,.63, SIGN, LOWER, I)

Each signed integer element of r B is converted to the nearest single-precision floating-point value using
the current rounding mode and the results are placed into the corresponding element of rD.
Exceptions:

Thisinstruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions are not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result(s). The FGH,
FXH, FG and FX bits are properly updated to alow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-92 Freescale Semiconductor

Instruction Set

evfscfuf SPE FV User evfscfuf
Vector Convert Floating-Point Single-Precision from Unsigned Fraction
evfscfuf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 010 1001 0010

rDy,3; < CnvtI32ToFP32Sat (rBy,3;, UNSIGN, UPPER, F)
rD;,, 63 ¢ CnvtI32TOFP32Sat (rBy, .43, UNSIGN, LOWER, F)

Each unsigned fractional element of rB is converted to a single-precision floating-point value using the
current rounding mode and the results are placed into the corresponding elements of rD.
Exceptions:

Thisinstruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions are not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result(s). The FGH,
FXH, FG and FX bits are properly updated to alow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-93

Instruction Set

evfscfui SPE FV User evfscfui
Vector Convert Floating-Point Single-Precision from Unsigned Integer
evfscfui rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 010 1001 0000

rD,,5, ¢ CnvtI32ToFP32Sat (rBy,,, UNSIGN, UPPER, I)
rD;,, 63 ¢ CnvtI32TOFP32Sat (rBy, .43, UNSIGN, LOWER, I)

Each unsigned integer element of r B is converted to the nearest single-precision floating-point value using
the current rounding mode and the results are placed into the corresponding elements of rD.
Exceptions:

Thisinstruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions are not exact. If
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result(s). The FGH,
FXH, FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-94 Freescale Semiconductor

Instruction Set

evfscmpeq SPEFV | User evfscmpeq
Vector Floating-Point Single-Precision Compare Equal
evfscmpeq crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
00010 0| cd [0]0] rA B 010 1000 1110
ah < 1Ay, .5,
al < rAsz;5.63
bh <« rBj.3;
bl ¢ rBj;.463

if (ah = bh) then ch « 1

else ch < 0

if (al = bl) then cl « 1

else cl < 0

CR4*ch:4*ch+3 < ch || cl || (Ch | C:U || (Ch & C:U

Each element of r A is compared against the corresponding element of rB. If r A equalsrB, thecrfD bitis
set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of either element of r A or rB are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If floating-point invalid
input exceptions are enabled, an interrupt is taken, and the condition register is not updated. Otherwise,
the comparison proceeds after treating NaNs, infinities, and denorms as normalized numbers, using their
valuesof ‘e and ‘f’ directly.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-95

V¥ ¢
i

Instruction Set

evfscmpgt SPEFV | User evfscmpgt
Vector Floating-Point Single-Precision Compare Greater Than
eviscmpgt crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
00010 0| e [0 0] rA B 010 1000 1100
ah < 1Ay, .5,
al < rAsz;5.63
bh <« rBj.3;
bl ¢ rBj;.463

if (ah > bh) then ch « 1

else ch < 0

if (al > bl) then cl « 1

else cl < 0

CR4*ch:4*ch+3 < ch || cl || (Ch | C:U || (Ch & C:U

Each element of r A is compared against the corresponding element of rB. If r A isgreater than r B, the bit
inthe crfD is set, otherwiseit is cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of either element of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If floating-point invalid
input exceptions are enabled then an interrupt istaken, and the condition register isnot updated. Otherwise,
the comparison proceeds after treating NaNs, infinities, and denorms as normalized numbers, using their
valuesof ‘e and ‘f’ directly.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-96 Freescale Semiconductor

Instruction Set

evfscmplt SPEFV | User evfscmplt
Vector Floating-Point Single-Precision Compare Less Than
eviscmplt crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
00010 0| e [0 0] rA B 010 1000 1101

ah < 1Ay, .5,

al < rAs;.¢3

bh <« rBj.3;

bl « rBjj.63

if (ah < bh) then ch « 1

else ch < 0

if (al < bl) then cl « 1

else cl < 0

CR4*ch:4*ch+3 < ch || cl || (Ch | C:U || (Ch & C:U

Each element of r A is compared against the corresponding element of rB. If rA islessthan rB, the bitin

the crfD is set, otherwiseit is cleared. Comparison ignores the sign of 0 (+0 = -0).
Exceptions:

If the contents of either element of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If floating-point invalid
input exceptions are enabled then an interrupt istaken, and the condition register isnot updated. Otherwise,
the comparison proceeds after treating NaNs, infinities, and denorms as normalized numbers, using their
valuesof ‘e and ‘f’ directly.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-97

Instruction Set

evfsctsf SPEFV | User evfsctsf
Vector Convert Floating-Point Single-Precision to Signed Fraction
evfsctsf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 010 1001 0111

rDy,.3; ¢ CnvtFP32ToISat (rBy.;;, SIGN, UPPER, ROUND, F)

rD3,.43 ¢ CnvtFP32ToISat (rB;,.g3, SIGN, LOWER, ROUND, F)
Each single-precision floating-point element in rB is converted to a signed fraction using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit signed fraction. NaNs are
converted as though they were zero.

Exceptions:

If either element of r B isinfinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are
set appropriately and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If SPEFSCR[FINVE] is
set, an interrupt is taken, the destination register is not updated, and no other status bits are set.

If either result element of thisinstruction isinexact and no other interrupt is taken, SPEFSCR[FINXS] is
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH,
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-98 Freescale Semiconductor

Instruction Set

evfsctsi SPEFV | User evfsctsi
Vector Convert Floating-Point Single-Precision to Signed Integer
evfscts rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 010 1001 0101

rDy,y; ¢ CnvtFP32ToISat (rBy.;;, SIGN, UPPER, ROUND, I)

rD3,.63 ¢ CnvtFP32TolSat (rBj,,e3, SIGN, LOWER, ROUND, I)
Each single-precision floating-point element in r B is converted to a signed integer using the current
rounding mode and theresult is saturated if it cannot be represented in a 32-bit integer. NaNs are converted
as though they were zero.

Exceptions:

If the contents of either element of r B areinfinity, denorm, or NaN, or if an overflow occurson conversion,
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared
appropriately. If SPEFSCR[FINVE] isset, an interrupt istaken, the destination register is not updated, and
no other status bits are set.

If either result element of thisinstruction isinexact and no other interrupt is taken, SPEFSCR[FINXS] is
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH,
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-99

Instruction Set

evisctsiz SPE FV User evfscisiz

Vector Convert Floating-Point Single-Precision to Signed Integer with Round toward Zero

evfsctsiz rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 010 1001 1010

rDy,.3; ¢ CnvtFP32ToISat (rBy.;;, SIGN, UPPER, TRUNC, I)

rD3,.43 ¢ CnvtFP32ToISat (rB;,.g3, SIGN, LOWER, TRUNC, I)
Each single-precision floating-point element in rB is converted to a signed integer using the rounding
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs
are converted as though they were zero.

Exceptions:

If either element of r B isinfinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If SPEFSCR[FINVE] is
set, an interrupt is taken, the destination register is not updated, and no other status bits are set.

If either result element of thisinstruction isinexact and no other interrupt is taken, SPEFSCR[FINXS] is
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH,
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-100 Freescale Semiconductor

Instruction Set

evfsctuf SPEFV | User evfsctuf
Vector Convert Floating-Point Single-Precision to Unsigned Fraction
evfsctuf rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 B 010 1001 0110

rDy,.31 < CnvtFP32ToISat (rBj.;;, UNSIGN, UPPER, ROUND, F)

rD3,.43 ¢ CnvtFP32ToISat (rB;,.g3, UNSIGN, LOWER, ROUND, F)
Each single-precision floating-point element in rB is converted to an unsigned fraction using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit fraction. NaNs are
converted as though they were zero.

Exceptions:

If either element of r B isinfinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If SPEFSCR[FINVE] is
set, an interrupt is taken, the destination register is not updated, and no other status bits are set.

If either result element of thisinstruction isinexact and no other interrupt is taken, SPEFSCR[FINXS] is
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH,
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-101

Instruction Set

evfsctui SPEFV | User evfsctui
Vector Convert Floating-Point Single-Precision to Unsigned Integer
evfsctui rD,rB
0 5 6 10 11 15 16 20 21 31
000100 D 00000 rB 010 1001 0100

rDy,.31 ¢ CnvtFP32ToISat (rBj.;;, UNSIGN, UPPER, ROUND, I)

rD3,.43 ¢ CnvtFP32ToISat (rB;,.g3, UNSIGN, LOWER, ROUND, I)
Each single-precision floating-point element in rB is converted to an unsigned integer using the current
rounding mode and theresult is saturated if it cannot be represented in a 32-bit integer. NaNs are converted
as though they were zero.

Exceptions:

If either element of r B isinfinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If SPEFSCR[FINVE] is
set, an interrupt is taken, the destination register is not updated, and no other status bits are set.

If either result element of thisinstruction isinexact and no other interrupt is taken, SPEFSCR[FINXS] is
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH,
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-102 Freescale Semiconductor

Instruction Set

evfsctuiz SPE FV User evisctuiz

Vector Convert Floating-Point Single-Precision to Unsigned Integer with Round toward Zero

evfsctuiz rD,rB
0 5 6 10 11 15 16 20 21 31
000100 rD 000O0O rB 010 1001 1000

rDy,.31 < CnvtFP32ToISat (rBj.;;, UNSIGN, UPPER, TRUNC, I)

rD3,.43 ¢ CnvtFP32ToISat (rB;,.g3, UNSIGN, LOWER, TRUNC, I)
Each single-precision floating-point element in r B is converted to an unsigned integer using the rounding
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs
are converted as though they were zero.

Exceptions:

If either element of r B isinfinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If SPEFSCR[FINVE] is
set, an interrupt is taken, the destination register is not updated, and no other status bits are set.

If either result element of thisinstruction isinexact and no other interrupt is taken, SPEFSCR[FINXS] is
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH,
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-103

|
y

'
A

Instruction Set
evfsdiv SPE FV User evfsdiv
Vector Floating-Point Single-Precision Divide
evfsdiv rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 010100071001

rDg.31 < TAg.31+9pBo 3

rD33.63 < A32.63 +pfB32.63
Each single-precision floating-point element of r A is divided by the corresponding element of r B and the
resultisstoredinrD. If an element of rB isaNaN or infinity, the corresponding result is aproperly signed
zero. Otherwise, if an element of rB isazero (or a denormalized number optionally transformed to zero
by the implementation), or if an element of r A iseither NaN or infinity, the corresponding result is either
PMaX (ag; gn==Pgign) OF NMAX (ag;qy!=bg;iqn). Otherwise, if an overflow occurs, pmax or nmax (as
appropriate) isstored in the corresponding element of rD. If an underflow occurs, +0 or —0 (asappropriate)
is stored in the corresponding element of rD.

Exceptions:

If the contents of r A or r B are infinity, denorm, or NaN, or if bothr A and rB are +0,
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared
appropriately. If SPEFSCR[FINV E] is set, an interrupt istaken and the destination register is not updated.
Otherwise, if the content of rB is +0 and the content of r A is afinite normalized non-zero number,
SPEFSCR[FDBZ,FDBZH] are set appropriately. If floating-point divide-by-zero exceptions are enabled,
an interrupt is then taken. Otherwise, if an overflow occurs, SPEFSCR[FOVF,FOVFH] are set
appropriately, or if an underflow occurs, SPEFSCR[FUNF,FUNFH] are set appropriately. If either
underflow or overflow exceptions are enabled and a corresponding bit is set, an interrupt is taken. If any
of these interrupts are taken, the destination register is not updated.

If either result element of thisinstruction isinexact, or overflows but overflow exceptions are disabled,
and no other interrupt istaken, or underflows but underflow exceptions are disabled, and no other interrupt
istaken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt istaken
using the floating-point round interrupt vector. In this case, the destination register is updated with the
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if aninvalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-104 Freescale Semiconductor

Instruction Set

evfsmul SPEFV | User evfsmul
Vector Floating-Point Single-Precision Multiply

evfsmul rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01 01000T1000

rDy.31 ¢ TAp.31 Xep MBo.a1

rD33.63 < A33.63 Xsp MB32.63
Each single-precision floating-point element of r A ismultiplied with the corresponding element of r B and
theresult isstored in rD. If an element of rA or rB are either zero (or a denormalized number optionally
transformed to zero by the implementation), the corresponding result isa properly signed zero. Otherwise,
if an element of rA or r B are either NaN or infinity, the corresponding result is either pmax (ag; gn==bgign);
OF NMaX (ag; 4y ! =bs;ign)- Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in the
corresponding element of rD. If an underflow occurs, +0 or —0 (as appropriate) is stored in the
corresponding element of rD.

Exceptions:

If the contents of either element of r A or r B are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If SPEFSCR[FINVE] is
set, an interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCR[FOVFFOV FH] are set appropriately, or if an underflow occurs, SPEFSCR[FUNFFUNFH] are
set appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is
set, an interrupt istaken. If any of these interrupts are taken, the destination register is not updated.

If either result element of thisinstruction isinexact, or overflows but overflow exceptions are disabled,
and no other interrupt istaken, or underflows but underflow exceptions are disabled, and no other interrupt
istaken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt istaken
using the floating-point round interrupt vector. In this case, the destination register is updated with the
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow exception istaken, or if aninvalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-105

Instruction Set

evisnabs SPE FV User evisnabs

Vector Floating-Point Single-Precision Negative Absolute Value

evisnabs rD,rA
0 5 6 10 11 15 16 20 21 31
0001 O0O rD rA o o0oo0Oo0Oo0O|j01 010O0O0O0T1TO0 1
rDy.3; ¢ 0b1 || rA; 5
rD3p.63 ¢ 0b1 || rAs3.4;

The sign bit of each element inr A isset to 1 and the results are placed into rD.
Exceptions:

Exception detection for embedded floating-point absol ute value operations isimplementation dependent.
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the
implementation does not detect exceptions, or if exception detection is disabled, the computation can be
carried out in one of two ways, asasign bit operationignoring therest of the contents of the sourceregister,
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled asfollows: if the contents of
either element of rA are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are set appropriately, and
SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If floating-point invalid input exceptions are
enabled then an interrupt is taken, and the destination register is not updated.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-106 Freescale Semiconductor

Instruction Set

evfsheg SPEFV | User evfsheg

Vector Floating-Point Single-Precision Negate

evfsneg rD,rA
0 5 6 10 11 15 16 20 21 31
0001 O0O rD rA o o0oo0O0O0OO0O1TO0OT1TO0O0OO0OO0OT1TT1TO
rDg,31 < MAy || TA;.5;
rD3p.63 < MAs; || TAs3.63

The sign bit of each element inr A is complemented and the results are placed into rD.
Exceptions:

Exception detection for embedded floating-point absol ute value operations isimplementation dependent.
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the
implementation does not detect exceptions, or if exception detection is disabled, the computation can be
carried out in one of two ways, asasign bit operationignoring therest of the contents of the sourceregister,
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled asfollows: if the contents of
either element of rA are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are set appropriately, and
SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If floating-point invalid input exceptions are
enabled then an interrupt is taken, and the destination register is not updated.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-107

Instruction Set

evfssub SPEFV | User evfssub
Vector Floating-Point Single-Precision Subtract
evfssub rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 0101000000 1

rDg.31 < TAg.31-9pBo.a

rD3s.63 < TA33.63 "5 Biz.63
Each single-precision floating-point element of r B is subtracted from the corresponding element of r A and
theresultsarestored inrD. If an element of r A isNaN or infinity, the corresponding result is either pmax
(2gi1gn==0), OF NMAX (ay;4,==1). Otherwise, if an element of r B isNaN or infinity, the corresponding result
is either nmax (bg; 4,==0), OF pMax (bg;4,==1). Otherwise, if an overflow occurs, pmax or nmax (as
appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0 (for rounding modes
RN, RZ, RP) or -0 (for rounding mode RM) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of r A or r B are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are
set appropriately, and SPEFSCR[FGH,FXH,FGFX] are cleared appropriately. If SPEFSCR[FINVE] is
set, an interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCR[FOVFFOV FH] are set appropriately, or if an underflow occurs, SPEFSCR[FUNFFUNFH] are
set appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is
set, an interrupt istaken. If any of these interrupts are taken, the destination register is not updated.

If either result element of thisinstruction isinexact, or overflows but overflow exceptions are disabled,
and no other interrupt istaken, or underflows but underflow exceptions are disabled, and no other interrupt
istaken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt istaken
using the floating-point round interrupt vector. In this case, the destination register is updated with the
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if aninvalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-108 Freescale Semiconductor

Instruction Set

evfststeq SPEFV | User evfststeq
Vector Floating-Point Single-Precision Test Equal
evfststeq crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
00010 0| e [0 0] rA B 010 1001 1110

ah < 1Ay, .5,

al < rAsz;5.63

bh <« rBj.3;

bl ¢ rBj;.463

if (ah = bh) then ch « 1

else ch < 0

if (al = bl) then cl « 1

else cl < 0

CR4*ch:4*ch+3 < ch || cl || (Ch | C:U || (Ch & C:U
Each element of r A is compared against the corresponding element of rB. If r A equalsrB, thebitincrfD
isset, otherwiseit is cleared. Comparison ignores the sign of 0 (+0 = —0). The comparison proceeds after

treating NaNs, infinities, and denorms as normalized numbers, using their values of ‘e and ‘f’ directly.

No exceptions are taken during the execution of evfststeq. If strict IEEE-754 complianceis required, the
program should use evfscmpeq.

Implementation note: In an implementation, the execution of evfststeq islikely to be faster than the
execution of evfscmpeqg.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-109

V¥ ¢

4\
Instruction Set
evfststgt SPEFV | User evfststgt
Vector Floating-Point Single-Precision Test Greater Than
evfststgt crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
00010 0| e [0 0] rA B 010 1001 1100

ah < 1Ay, .5,

al < rAsz;5.63

bh <« rBj.3;

bl ¢ rBj;.463

if (ah > bh) then ch « 1

else ch < 0

if (al > bl) then cl « 1

else cl < 0

CR4*ch:4*ch+3 < ch || cl || (Ch | C:U || (Ch & C:U
Each element of r A is compared against the corresponding element of rB. If r A isgreater than r B, the bit
incrfD is set, otherwiseit is cleared. Comparison ignores the sign of 0 (+0 = —0). The comparison
proceeds after treating NaNs, infinities, and denorms as normalized numbers, using their valuesof ‘e’ and
‘f" directly.
No exceptions are taken during the execution of evfststgt. If strict IEEE-754 complianceisrequired, the
program should use evfscmpgt.

Implementation note: In an implementation, the execution of evfststgt islikely to be faster than the
execution of evfscmpgt.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-110 Freescale Semiconductor

Instruction Set

evfststlt SPEFV | User evfststlt
Vector Floating-Point Single-Precision Test Less Than
evfststit crfD,rArB
0 5 6 8 9 10 11 15 16 20 21 31
000 1 00‘ crfD ‘o o‘ rA B 010 1001 1101

ah < 1Ay, .5,

al < rAsz;5.63

bh <« rBj.3;

bl ¢ rBj;.463

if (ah < bh) then ch « 1

else ch < 0

if (al < bl) then cl « 1

else cl < 0

CR4*ch:4*ch+3 < ch || cl || (Ch | C:U || (Ch & C:U
Each element of r A is compared with the corresponding element of rB. If rA islessthanrB, the bit in the
crfD isset, otherwiseit is cleared. Comparison ignores the sign of 0 (+0 = —0). The comparison proceeds
after treating NaNs, infinities, and denorms as normalized numbers, using their values of ‘e’ and ‘f’

directly.

No exceptions are taken during the execution of evfststlt. If strict IEEE-754 compliance isrequired, the
program should use evfscmpilt.

Implementation note: In an implementation, the execution of evfststlt islikely to be faster than the
execution of evfscmplt.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-111

Instruction Set

evidd SPE, SPE FV, SPE FD User evidd
Vector Load Double Word into Double Word

evidd rD,d(rA)

0 5 6 10 11 15 16 20 21 31
000100‘ D ‘ rA UIMM! 011000000 0 1

T d=UIMM*8

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ(UIMM*8)
rD <« MEM(EA, 8)

The double word addressed by EA isloaded from memory and placed inrD.
Figure 5-22 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3 4 5 6 7

Memory a b c d e f g h

GPR in big endian a b c d e f g h

GPR in little endian h g f e d c b a

Figure 5-22. evidd Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-112 Freescale Semiconductor

Instruction Set

eviddx SPE, SPE FV, SPE FD User eviddx
Vector Load Double Word into Double Word Indexed

eviddx rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01100000000

if (rA = 0) then b « 0
else b « (rd)

EA < b + (rB)

rD <« MEM(EA, 8)

The double word addressed by EA is loaded from memory and placed inrD.
Figure 5-23 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3 4 5 6 7

Memory a b c d e f g h

GPR in big endian a b c d e f g h

GPR in little endian h g f e d c b a

Figure 5-23. eviddx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-113

Instruction Set

eVIdh SPE User eVIdh
Vector Load Double into Four Half Words
evidh rD,d(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ D ‘ rA UIMM! 0110000010 1
T d=UIMM*8

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ(UIMM*8)
rDy.15 ¢ MEM(EA, 2)
rDig,3; < MEM(EA+2,2)
tDyy.47 < MEM(EA+4,2)
rDyg.63 < MEM(EA+6,2)

The double word addressed by EA isloaded from memory and placed inrD.
Figure 5-24 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3 4 5 6 7

Memory a b c d e f g h

GPR in big endian a b c d e f g h

GPR in little endian b a d c f e h g

Figure 5-24. evidh Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-114 Freescale Semiconductor

Instruction Set

evidhx SPE | User evidhx

Vector Load Double into Four Half Words Indexed

evidhx rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 01100000100
if (rA = 0) then b « 0

)
else b « (rd)
EA < b + (rB)
rDy,15 ¢ MEM(EA, 2)
rDyg.31 ¢ MEM(EA+2,2)
tDyy.47 < MEM(EA+4,2)
rDyg,¢3 ¢ MEM(EA+6,2)

The double word addressed by EA is loaded from memory and placed inrD.
Figure 5-25 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3 4 5 6 7
Memory a b c d e f g h

GPR in big endian a b c d e f g h

GPR in little endian b a d c f e h g

Figure 5-25. evidhx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-115

Instruction Set

evidw SPE | User evidw
Vector Load Double into Two Words
evidw rD,d(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ D ‘ rA UIMM! 011000000 1 1
T d=UIMM*8

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ(UIMM*8)
rDy.31 ¢ MEM(EA, 4)
rDy,.c3 ¢ MEM(EA+4, 4)

The double word addressed by EA is loaded from memory and placed inrD.
Figure 5-26 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3 4 5 6 7

Memory a b c d e f g h

GPR in big endian a b c d e f g h

GPR in little endian d c b a h g f e

Figure 5-26. evidw Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-116 Freescale Semiconductor

Instruction Set

evidwx SPE | User evidwx
Vector Load Double into Two Words Indexed
evldwx rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 011000000 T10

if (rA = 0) then b « 0
else b « (rd)

EA < b + (rB)

rDy,3; ¢ MEM(EA, 4)
tDy,.¢3 < MEM(EA+4, 4)

The double word addressed by EA is loaded from memory and placed inrD.
Figure 5-27 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3 4 5 6 7

Memory a b c d e f g h

GPR in big endian a b c d e f g h

GPR in little endian d c b a h g f e

Figure 5-27. evidwx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-117

Instruction Set

evlhhesplat SPE | User evihhesplat
Vector Load Half Word into Half Words Even and Splat

evlhhesplat rD,d(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ D ‘ rA UMM 01100007100 1
T d=UIMM*2

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ (UIMM*2)
rDy.15 < MEM (EA,2)
rDig.31 < 0x0000

tDyy.47 < MEM(EA,2)
¥Dyg.63 < 0x0000

The half word addressed by EA isloaded from memory and placed in the even half words of each element
of rD.

Figure 5-28 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0

Memory a b

GPR in big endian a b 4 4 a b 4 4 Z = zero

GPR in little endian b a Z Z b a Z Z Z = zero

Figure 5-28. evlhhesplat Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot half-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-118 Freescale Semiconductor

Instruction Set

evihhesplatx SPE | User evihhesplatx
Vector Load Half Word into Half Words Even and Splat Indexed

evlihhesplatx rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01100001000
if (rA = 0) then b « 0

)
else b « (rd)
EA < b + (rB)
rDy,15 ¢ MEM(EA,2)
rDig.3; < 0x0000
tDyy.47 < MEM(EA,2)
rDyg.¢3 < 0x0000

The half word addressed by EA isloaded from memory and placed in the even half words of each element
of rD.

Figure 5-29 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1

Memory a b

GPR in big endian a b 4 4 a b 4 4 Z = zero

GPR in little endian b a Z Z b a Z Z Z = zero

Figure 5-29. evlhhesplatx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot half-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-119

Instruction Set

evlhhossplat SPE | User evilhhossplat
Vector Load Half Word into Half Word Odd Signed and Splat
evlhhossplat rD,d(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ D rA UMM’ 0 10000 1 1 1 1
T d=UMMm* 2

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ (UIMM*2)
rDy.31 ¢ EXTS (MEM (EA,2))
rDs,.¢5 < EXTS (MEM(EA,2))

The half word addressed by EA isloaded from memory and placed in the odd half words sign extended in

each element of rD.

Figure 5-30 shows how bytes are loaded into r D as determined by the endian mode.

Byte address

0

1

Memory

GPR in big endian

GPR in little endian

a b
S S a b S S a b
S S b a S S b a

S = sign

S = sign

Figure 5-30. evlhhossplat Results in Big- and Little-Endian Modes

In big-endian memory, the msb of ais sign extended. In little-endian memory, the msb of bissign

extended.

Implementation note: If the EA isnot half-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-120

Freescale Semiconductor

Instruction Set

evihhossplatx SPE | User evihhossplatx
Vector Load Half Word into Half Word Odd Signed and Splat Indexed

evihhossplatx rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 011000041110

if (rA = 0) then b « 0
else b « (rd)

EA < b + (rB)

rDy,y, ¢« EXTS (MEM(EA,2))
rDs,.e5 ¢ EXTS (MEM (EA,2))

The half word addressed by EA isloaded from memory and placed in the odd half words sign extended in
each element of rD.

Figure 5-31 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1

Memory a b

GPR in big endian S S a b S S a b S = sign

GPR in little endian S S b a S S b a S = sign

Figure 5-31. evlhhossplatx Results in Big- and Little-Endian Modes

In big-endian memory, the msb of ais sign extended. In little-endian memory, the msb of bissign
extended.

Implementation note: If the EA isnot half-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-121

Instruction Set

evihhousplat SPE | User evihhousplat
Vector Load Half Word into Half Word Odd Unsigned and Splat

evlhhousplat rD,d(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ D ‘ rA UIMM! 01100004110 1
T d=UIMM*2

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ (UIMM*2)
rDy.15 ¢ 0x0000

rDig.3; ¢ MEM(EA,2)
¥D3y.47 < 0x0000

rDyg.¢3 < MEM(EA,?2)

The half word addressed by EA isloaded from memory and placed in the odd half words zero extended in
each element of rD.

Figure 5-32 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1

Memory a b

GPR in big endian 4 4 a b 4 4 a b Z = zero

GPR in little endian Z Z b a Z Z b a Z = zero

Figure 5-32. evlhhousplat Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot half-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-122 Freescale Semiconductor

Instruction Set

evihhousplatx SPE | User evihhousplatx
Vector Load Half Word into Half Word Odd Unsigned and Splat Indexed
evihhousplatx rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 011000071100

if (rA = 0) then b « 0
else b « (rd)

EA < b + (rB)

rDy.,5 < 0x0000

rDyg.31 < MEM(EA,?2)
¥D3y.47 < 0x0000
rD,g.c3 ¢ MEM(EA,?2)

The half word addressed by EA isloaded from memory and placed in the odd half words zero extended in
each element of rD.
Figure 5-33 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1

Memory a b

GPR in big endian 4 4 a b 4 4 a b Z = zero

Z = zero

GPR in little endian Z Z b a Z Z b a

Figure 5-33. evihhousplatx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot half-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-123

Instruction Set

eviwhe SPE | User eviwhe
Vector Load Word into Two Half Words Even

eviwhe rD,d(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ D ‘ rA UIMM! 0110004100 0 1
T d=UIMM* 4

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ(UIMM*4)
rDy.15 < MEM (EA,2)
rDig.31 < 0x0000

tDyy.47 < MEM(EA+2,2)
¥Dyg.63 < 0x0000

The word addressed by EA isloaded from memory and placed in the even half words in each element of
rD.

Figure 5-34 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian a b 4 4 c d 4 4 Z = zero

GPR in little endian b a Z Z d c Z Z Z = zero

Figure 5-34. eviwhe Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-124 Freescale Semiconductor

Instruction Set

eviwhex SPE | User eviwhex

Vector Load Word into Two Half Words Even Indexed

eviwhex rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01100010000
if (rA = 0) then b « 0

)
else b « (rd)
EA < b + (rB)
rDy,15 ¢ MEM(EA,2)
rDig.3; < 0x0000
tDyy.47 < MEM(EA+2,2)
rDyg.¢3 < 0x0000

The word addressed by EA isloaded from memory and placed in the even half words in each element of
rD.

Figure 5-35 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian a b 4 4 c d 4 4 Z = zero

GPR in little endian b a Z Z d c Z Z Z = zero

Figure 5-35. eviwhex Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-125

Instruction Set

eviwhos SPE | User eviwhos
Vector Load Word into Two Half Words Odd Signed (with sign extension)
eviwhos rD,d(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ D ‘ rA UMM 0110001011 1
T d=UIMM * 4

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ(UIMM*4)
rDy.31 ¢ EXTS (MEM (EA,2))
rDs,. 65 < EXTS (MEM(EA+2,2))

Theword addressed by EA isloaded from memory and placed in the odd half words sign extended in each
element of rD.

Figure 5-36 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian S S a b S S c d S =sign

GPR in little endian S S b a S S d c S =sign

Figure 5-36. eviwhos Results in Big- and Little-Endian Modes

In big-endian memory, the most significant bits of aand c are sign extended. In little-endian memory, the
most significant bits of b and d are sign extended.

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-126 Freescale Semiconductor

Instruction Set

eviwhosx SPE | User eviwhosx
Vector Load Word into Two Half Words Odd Signed Indexed (with sign extension)
eviwhosx rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 01100010110

if (rA = 0) then b « 0
else b « (rd)

EA < b + (rB)

rDy,y, ¢« EXTS (MEM(EA,2))
rDi,. 65 ¢ EXTS (MEM(EA+2,2))

Theword addressed by EA isloaded from memory and placed in the odd half words sign extended in each
element of rD.

Figure 5-37 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian S S a b S S c d S =sign

GPR in little endian S S b a S S d c S =sign

Figure 5-37. eviwhosx Results in Big- and Little-Endian Modes

In big-endian memory, the most significant bits of aand c are sign extended. In little-endian memory, the
most significant bits of b and d are sign extended.

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-127

Instruction Set

eviwhou SPE | User eviwhou
Vector Load Word into Two Half Words Odd Unsigned (zero-extended)

eviwhou rD,d(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ D ‘ rA UIMM! 011000410410 1
T d=UIMM* 4

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ(UIMM*4)
rDy.15 ¢ 0x0000

rDig.3; ¢ MEM(EA,2)
¥D3y.47 < 0x0000

rDyg.¢3 ¢ MEM(EA+2,2)

The word addressed by EA isloaded from memory and placed in the odd half words zero extended in each
element of rD.

Figure 5-38 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian 4 4 a b 4 4 c d Z = zero

GPR in little endian Z Z b a Z Z d c Z = zero

Figure 5-38. eviwhou Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-128 Freescale Semiconductor

Instruction Set

eviwhoux SPE | User eviwhoux
Vector Load Word into Two Half Words Odd Unsigned Indexed (zero-extended)
eviwhoux rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 01100010100

if (rA = 0) then b « 0
else b « (rd)

EA < b + (rB)

rDy.,5 < 0x0000

rDyg.31 < MEM(EA,?2)
¥D3y.47 < 0x0000

rDyg.c3 < MEM(EA+2,2)

The word addressed by EA isloaded from memory and placed in the odd half words zero extended in each
element of rD.

Figure 5-39 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian 4 4 a b 4 4 c d Z = zero

GPR in little endian Z Z b a Z Z d c Z = zero

Figure 5-39. eviwhoux Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-129

Instruction Set

eviwhsplat SPE | User eviwhsplat
Vector Load Word into Two Half Words and Splat
evlwhsplat rD,d(rA)
0 5 6 10 11 15 16 20 21 31
00010 0]) | rA UIMM' 01100011101
T d=uUMMm* 4

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ(UIMM*4)
rDy.15 < MEM (EA,2)
rDig.3; ¢ MEM(EA,2)
tDyy.47 < MEM(EA+2,2)
rDyg.¢3 ¢ MEM(EA+2,2)

The word addressed by EA isloaded from memory and placed in both the even and odd half wordsin each
element of rD.

Figure 5-40 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian a b a b c d c d

GPR in little endian b a b a d c d c

Figure 5-40. eviwhsplat Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-130 Freescale Semiconductor

Instruction Set

eviwhsplatx SPE | User eviwhsplatx
Vector Load Word into Two Half Words and Splat Indexed
evlwhsplatx rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01100011100
if (rA = 0) then b < 0

)
else b « (rd)
EA < b + (rB)
rDy,15 ¢ MEM(EA,2)
rDyg.31 < MEM(EA,?2)
tDyy.47 < MEM(EA+2,2)
rDyg.c3 < MEM(EA+2,2)

The word addressed by EA isloaded from memory and placed in both the even and odd half wordsin each
element of rD.

Figure 5-41 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian a b a b c d c d

GPR in little endian b a b a d c d c

Figure 5-41. eviwhsplatx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-131

Instruction Set

eviwwsplat SPE | User eviwwsplat
Vector Load Word into Word and Splat
evlwwsplat rD,d(rA)
0 5 6 10 11 15 16 20 21 31
00010 0]) | rA UIMM' 0110001100 1
T d=uUMMm* 4

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ(UIMM*4)
rDy.31 < MEM(EA,4)
rD3,.c3 ¢ MEM(EA,4)

The word addressed by EA is loaded from memory and placed in both elements of rD.
Figure 5-42 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian a b c d a b c d

GPR in little endian d c b a d c b a

Figure 5-42. eviwwsplat Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-132 Freescale Semiconductor

Instruction Set

eviwwsplatx SPE | User eviwwsplatx

Vector Load Word into Word and Splat Indexed

eviwwsplatx rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 01100011000
if (rA = 0) then b < 0

)
else b « (rd)
EA < b + (rB)
rDy,3; ¢ MEM(EA,4)
rDy,.¢3 ¢ MEM(EA,4)

The word addressed by EA isloaded from memory and placed in both elements of rD.
Figure 5-43 shows how bytes are loaded into r D as determined by the endian mode.

Byte address 0 1 2 3

Memory a b c d

GPR in big endian a b c d a b c d

GPR in little endian d c b a d c b a

Figure 5-43. eviwwsplatx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-133

Instruction Set

evmergehi SPE, SPE FV, SPE FD User evmergehi
Vector Merge High
evmer gehi rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01000101100

rDg.31 < TAg.a;
rD35.63 ¢ TBp.31

The high-order elements of r A and r B are merged and placed into r D, as shown in Figure 5-44.

0

31 32

63

Y

\

Figure 5-44. High Order Element Merging (evmergehi)

rA

rB

rD

Note: A vector splat high can be performed by specifying the same register in rA and r B.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-134

Freescale Semiconductor

Instruction Set

evmergehilo SPE, SPE FV, SPE FD User evmergehilo
Vector Merge High/Low
evmergehilo rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 01000101110

rDg.31 < TAg.a;
TD32.63 ¢ TB33.43

The high-order element of r A and the low-order element of rB are merged and placed into r D, as shown
in Figure 5-45.

0 31 32 63

rA

rB

Y

Y D

Figure 5-45. High Order Element Merging (evmergehilo)

Application note: With appropriate specification of r A and r B, evmer gehi, evmer gelo, evmer gehilo, and
evmer gelohi provide afull 32-bit permute of two source operands.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-135

Instruction Set

evmergelo SPE | User evmergelo
Vector Merge Low
evmergelo rD,rArB
0 5 6 10 11 15 16 20 21 31
0001 00O rD rA rB o100O0OT1TO0T1TT1TO01

TDy.31 ¢ TA33.63
TD32.63 ¢ TB33.43

The low-order elements of rA and r B are merged and placed inr D, as shown in Figure 5-46.

0 31 32 63

rA

rB

= Y D

Figure 5-46. Low Order Element Merging (evmergelo)

Note: A vector splat low can be performed by specifying the same register in rA and r B.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-136 Freescale Semiconductor

Instruction Set

evmergelohi SPE | User evmergelohi
Vector Merge Low/High
evmer gelohi rD,rArB
0 5 6 10 11 15 16 20 21 31
0001 00O rD rB 0O 0 0 1 1 1

rDy.31 < TA3;.63
rD35.63 ¢ TBp.31

The low-order element of r A and the high-order element of r B are merged and placed into r D, as shown

in Figure 5-47.

31

32

63

/

T—

Figure 5-47. Low Order Element Merging (evmergelohi)

rA

rB

rD

Note: A vector swap can be performed by specifying the same register inr A and r B.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-137

'
A

Instruction Set

evmhegsmfaa SPE | User evmhegsmfaa

Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate

evmhegsmfaa rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 101001010 1 1

tempg.3; ¢ TRzp.47 Xgr ¥Bas.y4y
tempg.g3 ¢ EXTS (tempg.s3q)
rDy.g3 ¢ ACCp.e3 + tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low even-numbered, half-word signed fractional elementsinr A and r B are multiplied.
The product is added to the contents of the 64-bit accumulator and the result is placed into rD and the
accumulator, as shown in Figure 5-48.

Note: Thisisamodulo sum. Thereis no overflow check and no saturation is performed. Any overflow of
the 64-bit sum is not recorded into the SPEFSCR.

0 31 32 47 48 63
rA
| rB
Y ¢
X
SSSS_SSSS_SSSS_SSSS...SSSS N Intermediate product

Accumulator

v

<— + <«<——

rD and Accumulator

Figure 5-48. evmhegsmfaa (Even Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-138 Freescale Semiconductor

Instruction Set

evmhegsmfan SPE | User evmhegsmfan

Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate
Negative

evmhegsmfan rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 101101010 1 1

tempg.31 ¢ TA3p.47 Xgf ¥B3p.47
temp,.s3 ¢ EXTS (tempg,sq)
rDy.g3 ¢ ACCp.e3 - tempp.gs

// update accumulator
ACCp.63 ¢ TDp.63

The corresponding low even-numbered, half-word signed fractional elementsinr A and r B are multiplied.
The product is subtracted from the contents of the 64-bit accumulator and the result is placed into r D and
the accumulator, as shown in Figure 5-49.

Note: Thisisamodulo difference. Thereis no overflow check and no saturation is performed. Any
overflow of the 64-bit differenceis not recorded into the SPEFSCR.

0 31 32 47 48 63

rA

| rB

SSSS_SSSS_SSSS_SSSS...SSS Intermediate product

| Accumulator

rD and Accumulator

Figure 5-49. evmhegsmfan (Even Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-139

Instruction Set
evmhegsmiaa SPE | User evmhegsmiaa
Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate
evmhegsmiaa rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10100101001

tempg.3; ¢ TRzp.47 Xgi ¥Bas.4y
tempg.g3 ¢ EXTS (tempg.s3q)
rDy.g3 ¢ ACCp.e3 + tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low even-numbered half-word signed integer elementsin r A and rB are multiplied.
The intermediate product is sign-extended and added to the contents of the 64-bit accumulator, and the
resulting sum is placed into r D and into the accumulator, as shown in Figure 5-50.

Note: Thisisamodulo sum. Thereis no overflow check and no saturation is performed. Any overflow of
the 64-bit sum is not recorded into the SPEFSCR.

0 31 32 47 48 63
rA
| rB
Y ¢
X
SSSS_SSSS_SSSS_SSSS...SSSS N Intermediate product

Accumulator

v

< + <

rD and Accumulator

Figure 5-50. evmhegsmiaa (Even Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-140 Freescale Semiconductor

Instruction Set

evmhegsmian SPE | User evmhegsmian
Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate Negative

evmhegsmian rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1011010100 1

tempg.3; ¢ TA3p.47 Xsi TB3n.47
tempg.g3 ¢ EXTS (tempg.s3q)
rDy.g3 ¢ ACCp.e3 - tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low even-numbered half-word signed integer elementsin r A and rB are multiplied.
The intermediate product is sign-extended and subtracted from the contents of the 64-bit accumulator, and
the result is placed into rD and into the accumulatorFigure 5-51.

Note: Thisisamodulo difference. Thereis no check for overflow and no saturation is performed. Any
overflow of the 64-bit differenceis not recorded into the SPEFSCR.

0 31 32 47 48 63

rA

| rB

SSSS_SSSS_SSSS__SSSS...SSSS

Intermediate product

| Accumulator

rD and Accumulator

Figure 5-51. evmhegsmian (Even Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-141

'
A

Instruction Set

evmhegumiaa SPE | User evmhegumiaa

Vector Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate

evmhegumiaa rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10100101000

tempg.3; ¢ TA3p.47 Xui TB3n.47
tempg.g3 ¢ EXTZ (tempg.s3q)
rDy.g3 ¢ ACCp.e3 + tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low even-numbered half-word unsigned integer elementsinr A and r B are multiplied.
The intermediate product is zero-extended and added to the contents of the 64-bit accumulator. The
resulting sum is placed into r D and into the accumulator, as shown in Figure 5-52.

Note: Thisisamodulo sum. Thereis no overflow check and no saturation is performed. Any overflow of
the 64-bit sum is not recorded into the SPEFSCR.

0 31 32 47 48 63
rA
| rB
\] ¢
X
0000_0000_0000_0000...000 N Intermediate product

Accumulator

v

< + <

rD and Accumulator

Figure 5-52. evmhegumiaa (Even Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-142 Freescale Semiconductor

Instruction Set

evmhegumian SPE | User evmhegumian

Vector Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate
Negative

evmhegumian rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10110101000

tempg.31 ¢ TAzp.47 Xyi ¥B3n.47
temp,.sy ¢ EXTZ (tempg,s3q)
rDy.g3 ¢ ACCp.e3 - tempp.gs

// update accumulator
ACCp.63 ¢ TDp.63

The corresponding low even-numbered unsigned integer elementsinrA and rB are multiplied. The
intermediate product is zero-extended and subtracted from the contents of the 64-bit accumulator. The
result is placed into r D and into the accumulatorFigure 5-53.

Note: Thisisamodulo difference. Thereis no check for overflow and no saturation is performed. Any
overflow of the 64-bit differenceis not recorded into the SPEFSCR.

0 31 32 47 48 63

rA

| rB

0000_0000_0000_0000...000 N Intermediate product

| Accumulator

rD and Accumulator

Figure 5-53. evmhegumian (Even Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-143

Instruction Set

evmhesmf SPE | User evmhesmf
Vector Multiply Half Words, Even, Signed, Modulo, Fractional (to Accumulator)
evmhesmf rD,rArB (A=0)
evmhesmfa rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10000‘A‘01011‘
// high

rDy.31 < (¥Ag.15 Xgr ¥Bg.15)

// low
TD35.63¢ (FR32.47 Xsf TB3n.47)

// update accumulator
if A = 1 then ACCy.43 ¢ rDy.43

The corresponding even-numbered half-word signed fractional elementsinrA and r B are multiplied then

placed into the corresponding words of r DFigure 5-54.

If A =1, theresultinrD isaso placed into the accumulator.

Other registers altered: ACC (If A =1)

0 15 16 31 32 47 48

63

N

rA

B

rD (and accumulator if evmhesmfa)

Figure 5-54. Even Multiply of Two Signed Modulo Fractional
Elements (to Accumulator) (evmhesmf)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-144

Freescale Semiconductor

Instruction Set

evmhesmfaaw SPE | User evmhesmfaaw

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate into Words

evmhesmfaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1 01000010 1 1
// high

tempg.3; ¢ (rAg,15 Xgr rBp.1s)
rDy.31 ¢ ACCp.31; + tempg.3g

// low
tempg. 31 ¢ (YA35.47 Xgr IB3n.a7)
rD33.63 ¢ ACC3.63 + tempg.s;

// update accumulator
ACCq.63 ¢ TDg.63

For each word element in the accumulator, the corresponding even-numbered half-word signed fractional
elementsinrA and rB are multiplied. The 32 bits of each intermediate product are added to the contents
of the accumulator words to form intermediate sums, which are placed into the corresponding rD words
and into the accumulator, as shown in Figure 5-55.

Other registers altered: ACC

0 15 16 31 32 47 48 63
rA
| | B
Vo Vo
X X
™S ™S Intermediate product

| | Accumulator
I Vo
| |

\ v rD and Accumulator

<
<

Figure 5-55. Even Form of Vector Half-Word Multiply (evmhesmfaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-145

Instruction Set

evmhesmfanw SPE | User evmhesmfanw
Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate Negative into
Words
evmhesmfanw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 101100010 1 1
// high

tempg.3; ¢ TAg.15 Xgr IBy.1s
rDy.31 ¢ ACCp.3; - tempgy.s;

// low
tempgy.3; ¢ TA3zp.47 Xgf ¥Bin.gy
rD35.63¢ ACC33.63 - tempg.s;

// update accumulator
ACCq.63 ¢ TDp.63

For each word element in the accumulator, the corresponding even-numbered half-word signed fractional
elementsinrA and rB are multiplied. The 32-bit intermediate products are subtracted from the contents
of the accumulator words to form intermediate differences, which are placed into the corresponding r D

words and into the accumulator, as shown in Figure 5-56.

Other registers altered: ACC

0 15 16 31 32

47 48

63

rA

rB

Intermediate product

Accumulator

rD and Accumulator

Figure 5-56. Even Form of Vector Half-Word Multiply (evmhesmfanw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-146

Freescale Semiconductor

Instruction Set

evmhesmi SPE | User evmhesmi
Vector Multiply Half Words, Even, Signed, Modulo, Integer (to Accumulator)
evmhesmi rD,rArB (A=0)
evmhesmia rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA rB 10000‘A‘01001‘
// high

TDg.31 <~ TRg.15 Xgi TBy.15

// low
TD33.63 ¢~ TR33.47 Xgi TB33z.47

// update accumulator
if A = 1, then ACCj.43 ¢ ¥Dyp.43

The corresponding even-numbered half-word signed integer elementsin rA and rB are multiplied. The
two 32-bit products are placed into the corresponding words of rD, as shown in Figure 5-57.

If A =1, theresultinrD isaso placed into the accumulator.

Other registers altered: ACC (If A =1)

0 15 16 31 32 47 48

63

rA

rB

S S

rD (and accumulator for evmhesmia)

Figure 5-57. Even Form for Vector Multiply (to Accumulator) (evmhesmi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-147

Instruction Set

evmhesmiaaw SPE | User evmhesmiaaw
Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into Words

evmhesmiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1010000100 1
// high

tempg.3; ¢ TRg.15 Xgi TBy.1s
rDy.31 ¢ ACCp.3; + tempgy.s;

// low
tempgy.3; ¢ TA3zp.47 Xgi ¥Binigy
rD33.63 ¢ ACC3.63 + tempg.s;

// update accumulator
ACCq.63 ¢ TDg.63

For each word element in the accumulator, the corresponding even-numbered half-word signed integer
elementsinrA and rB are multiplied. Each intermediate 32-bit product is added to the contents of the
accumulator words to form intermediate sums, which are placed into the corresponding r D words and into
the accumulator, as shown in Figure 5-58.

Other registers altered: ACC

0 15 16 31 32 47 48 63
rA
| | B
Vo Vo
X X
™S ™S Intermediate product

| Accumulator

v

+
|
Y

|
v

+
|
Y

<
<

rD and Accumulator

Figure 5-58. Even Form of Vector Half-Word Multiply (evmhesmiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-148 Freescale Semiconductor

Instruction Set

evmhesmianw SPE | User evmhesmianw
Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate Negative into Words
evmhesmianw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1011000100 1
// high

temp0p.37 ¢<TRg.15 Xgi ¥By.1s
rDg.31 ¢ ACCp.3; - tempOlgy.3;

// low
temply.3; ¢ TAzp.47 Xgi YBi3n.47
rD33.63 ¢ ACC3.63 - temply.s;

// update accumulator
ACCq.63 ¢ TDg.63

For each word element in the accumulator, the corresponding even-numbered half-word signed integer
elementsinrA and rB are multiplied. Each intermediate 32-bit product is subtracted from the contents of
the accumulator wordsto form intermediate diff erences, which are placed into the corresponding r D words
and into the accumulator, as shown in Figure 5-59.

Other registers altered: ACC

0 15 16 31 32 47 48 63
rA
| | rB
¢ Y ¢ Y
X X
AN AN Intermediate product

| | Accumulator

\ v rD and Accumulator

Figure 5-59. Even Form of Vector Half-Word Multiply (evmhesmianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-149

Instruction Set

evmhessf SPE | User evmhessf
Vector Multiply Half Words, Even, Signed, Saturate, Fractional (to Accumulator)
evmhessf rD,rArB (A=0)
evmhessfa rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10000‘A‘00011‘
// high

Cempg.3; <~ Thg.15 Xgr IBg.1s

if (rAp,;5 = 0x8000) & (rBg.;5 = 0x8000) then
rDy,3; < Ox7FFF_FFFF //saturate
movh <1

else
rDg.31 ¢ tempg.3;
movh < 0

// low

Cempg.3; ¢~ ITA33.47 Xsf TB32:47

if (rA;,.47 = 0x8000) & (rB3,.4; = 0x8000) then
rD35.43 ¢ OX7FFF_FFFF //saturate
movl <1

else
rD33.63 ¢ tempg.31
movl <« 0

// update accumulator

if A = 1 then ACCy,g3 ¢ rDg.43

// update SPEFSCR

SPEFSCRqyy ¢ movh

SPEFSCRgy ¢ movl

SPEFSCRgoyy ¢ SPEFSCRgoyy | movh

SPEFSCRgyy ¢ SPEFSCRgyy | movl

The corresponding even-numbered half-word signed fractional elementsinrA and rB are multiplied. The
32 bits of each product are placed into the corresponding words of rD, as shown in Figure 5-60. If both
inputs are —1.0, the result saturates to the largest positive signed fraction and the overflow and summary
overflow bits are recorded in the SPEFSCR.

If A =1, theresultinrD isaso placed into the accumulator.

Other registers altered: SPEFSCR, ACC (If A =1)

0 15 16 31 32 47 48 63

rA

™~ ™~

rD (and accumulator if evmhessa)

Figure 5-60. Even Multiply of Two Signed Saturate Fractional
Elements (to Accumulator) (evmhessf)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-150 Freescale Semiconductor

Instruction Set

evmhessfaaw SPE | User evmhessfaaw
Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate into Words
evmhessfaaw rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 101000000 1 1
// high

Cempg.31 <~ Thg.15 Xgf TBo:1s
if (rAp.15 = 0x8000) & (rBj,;5 = 0x8000) then
temp,,3; < Ox7FFF_FFFF //saturate
movh <1
else
movh < 0
tempg.g3 ¢ EXTS (ACCj.31) + EXTS(tempg.s3q)
ovh ¢« (temp;; @ temp,,)
rDg.31 ¢ SATURATE (ovh, tempPs;, 0xg000 0000, 0x7FFF_FFFF, temp32:63)
// low - -
Cempg.3; ¢~ TA33.47 Xsf TB32:47
if (rA;,.47 = 0x8000) & (rB;,.47 = 0x8000) then
tempgy,3; < Ox7FFF_FFFF //saturate
movl <1
else
movl < 0
tempg.g3 ¢ EXTS (ACC3,.63) + EXTS(tempg.s3q)
ovl « (temp;; ® temps;,)
rD3p.63 < SATURATE (ovl, tempsi, oxg000_0000, 0x7FFF_FFFF, temp32:63)
// update accumulator
ACCq.e3 < TDg.63
// update SPEFSCR
SPEFSCRgyy ¢ movh
SPEFSCRqy ¢ movl
SPEFSCRgoyy ¢ SPEFSCRgqyy | ovh | movh
SPEFSCRggy ¢ SPEFSCRgoy | ovl| movl

The corresponding even-numbered half-word signed fractional elementsinrA and r B are multiplied
producing a 32-bit product. If both inputs are —1.0, the result saturates to Ox7FFF_FFFF. Each 32-bit
product is then added to the corresponding word in the accumulator, saturating if overflow or underflow

occurs, and the result is placed in r D and the accumulator, as shown in Figure 5-61.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary

overflow bits are recorded in the SPEFSCR.
Other registers altered: SPEFSCR ACC

0 15 16 31 32 47 48 63
I [[[] rA
I | [[| [| rB
v X \ V X Y
[== [—=] Intermediate product
I | [:] Accumulator
\ Y \ \

<« +
<« +

] rD and Accumulator
Figure 5-61. Even Form of Vector Half-Word Multiply (evmhessfaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-151

Instruction Set

evmhessfanw SPE | User evmhessfanw

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate Negative into
Words

evmhessfanw rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 101100000 1 1
// high

Lempy.3; ¢~ TRo.15 Xg¢ IBg.1s
if (rAp.15 = 0x8000) & (rBj,;5 = 0x8000) then
tempgy,3; < Ox7FFF_FFFF //saturate
movh <1
else
movh < 0
temp,,s3 ¢ EXTS(ACCy,37) - EXTS(tempg.;;)
ovh ¢« (temp;; @ temp,,)
tDg,31 ¢ SATURATE (ovh, temps;, oxg000_0000, 0x7FFF_FFFF, temp32:63)
// low - -
Cempg.31 ¢~ TA33.47 Xsf TB32:47
if (rAj,.47 = 0x8000) & (rBs,.47 = 0x8000) then
temp,,3; < Ox7FFF_FFFF //saturate
movl <1
else
movl <« 0
tempg.g3 ¢ EXTS (ACC3,.63) - EXTS(tempg.s3q)
ovl « (temp;; @ temp,,)
rD3y.63 < SATURATE (OV1, tempsi, oxg000_0000, 0x7FFF_FFFF, temp32:63)
// update accumulator - -
ACCq.63 < TDg.63
// update SPEFSCR
SPEFSCRgyy ¢ movh
SPEFSCRgy ¢ movl
SPEFSCRgoyy ¢ SPEFSCRgoyy | ovh | movh
SPEFSCRggy ¢ SPEFSCRgoy | ovl| movl

The corresponding even-numbered half-word signed fractional elementsinrA and r B are multiplied
producing a 32-bit product. If both inputs are —1.0, the result saturates to Ox7FFF_FFFF. Each 32-bit
product is then subtracted from the corresponding word in the accumulator, saturating if overflow or
underflow occurs, and the result is placed in r D and the accumulator, as shown in Figure 5-62.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary
overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

0 1516 3132 47 48 63
[[[[] rA
[| [| | [| rB

Y x Y Y x Y
| —= I — | Intermediate product
[| [|] Accumulator

Y - ¥ Y+ VY

[¥ [¥] rD and Accumulator

Figure 5-62. Even Form of Vector Half-Word Multiply (evmhessfanw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-152 Freescale Semiconductor

Instruction Set

evmhessiaaw SPE | User evmhessiaaw
Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate into Words
evmhess aaw rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 101000000 0 1
// high

tempg.31 <~ TRg.15 Xgi ¥Bo.1s
tempg.g3 ¢ EXTS (ACCj.31) + EXTS(tempg.s3q)
ovh « (temp;; ® temps;,)

rDy.3; ¢ SATURATE (ovh, temps;, 0x8000 0000, 0x7FFF _FFFF, temp32:63)

// low

Cempg.31 ¢~ ITR33.47 Xsi TB3z:47

tempg.g3 ¢ EXTS (ACC3,.63) + EXTS(tempg.s3q)
ovl « (temp;; ® temps;,)

rD3;.3 < SATURATE (ovl, temps;, 0x8000 0000, Ox7FFF_FFFF, temp32:63)

// update accumulator
ACCq.63 ¢ ¥Dp.63

// update SPEFSCR

SPEFSCRgyy ¢ ovh

SPEFSCRyy ¢ ovl

SPEFSCRguyy ¢ SPEFSCRgqyy | ovh
SPEFSCRggy ¢ SPEFSCRgoy | ovl

The corresponding even-numbered half-word signed integer elementsin r A and r B are multiplied

producing a 32-bit product. Each 32-bit product is then added to the corresponding word in the

accumulator, saturating if overflow occurs, and the result is placed in r D and the accumulator, as shown

in Figure 5-63.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary

overflow bits are recorded in the SPEFSCR.
Other registers altered: SPEFSCR ACC

0 15 16 31 32 47 48 63
| | | | | rA
| L | L | 8
Y X ¢ Y X +
| ~x | Y | Intermediate product

| | | | | Accumulator

| Y | M | rD and Accumulator

Figure 5-63. Even Form of Vector Half-Word Multiply (evmhessiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-153

|
y

'
A

Instruction Set
evmhessianw SPE | User evmhessianw
Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate Negative into Words
evmhessianw rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 1011000000 1
// high
tempg.3; <~ TRg.15 Xsi TBo.1s
tempg.g3 ¢ EXTS (ACCj.31) - EXTS(tempg.s3q)

ovh « (temp;; ® temps;,)
rDy.3; ¢ SATURATE (ovh, temps;, 0x8000 0000, 0x7FFF _FFFF, temp32:63)

// low
tempg.31 ¢~ TA33.47 Xgi TB3z.47
tempg.g3 ¢ EXTS (ACC3,.63) - EXTS(tempg.s3q)

ovl « (temp;; ® temps;,)
rD3;.3 < SATURATE (ovl, temps;, 0x8000 0000, Ox7FFF_FFFF, temp32:63)

// update accumulator
ACCq.63 ¢ ¥Dp.63

// update SPEFSCR

SPEFSCRgyy ¢ ovh

SPEFSCRyy ¢ ovl

SPEFSCRguyy ¢ SPEFSCRgqyy | ovh
SPEFSCRggy ¢ SPEFSCRgoy | ovl

The corresponding even-numbered half-word signed integer elementsin r A and r B are multiplied
producing a 32-bit product. Each 32-bit product is then subtracted from the corresponding word in the
accumulator, saturating if overflow occurs, and the result is placed in r D and the accumulator, as shown
in Figure 5-64.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary
overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

0 15 16 31 32 47 48 63
| | | | | rA
| L | L | B
Y x ¢ Y X
| ~a ‘ > | Intermediate product

| | ‘ | | Accumulator

| Y ‘ v | rD and Accumulator

Figure 5-64. Even Form of Vector Half-Word Multiply (evmhessianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-154 Freescale Semiconductor

Instruction Set

evmheumi SPE | User evmheumi
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer (to Accumulator)
evmheumi rD,rArB (A=0)
evmheumia rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA rB 10000‘A‘01000‘
// high

TDg.31 <~ Thg.15 Xyi TBy.15

// low
TD33.63 ¢ TRA33.47 Xyi TB33.47

// update accumulator
if A = 1 then ACCy.43 ¢ rDy.43

The corresponding even-numbered half-word unsigned integer elementsinrA and r B are multiplied. The
two 32-bit products are placed into the corresponding words of rD, as shown in Figure 5-65.

If A =1, theresultinrD isaso placed into the accumulator.

0 15 16 31 32 47 48 63

rA

AN AN rD (and accumulator if evmheumia)

Figure 5-65. Vector Multiply Half Words, Even, Unsigned, Modulo,
Integer (to Accumulator) (evmheumi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-155

Instruction Set

evmheumiaaw SPE | User evmheumiaaw

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate into Words

evmheumiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1 0100001000
// high

tempg.3; ¢ Thg.15 Xyi ¥Bg.1s
rDg.31 ¢ ACCp.3; + tempgy.s;

// low
tempgy.3; ¢ TA3zp.47 Xui ¥Biz.g7
rD33.63 ¢ ACC33.63 + tempg.s;

// update accumulator
ACCq.63 ¢ TDg.63

For each word element in the accumul ator, the corresponding even-numbered half-word unsigned integer
elementsinrA and rB are multiplied. Each intermediate product is added to the contents of the
corresponding accumulator words and the sums are placed into the corresponding r D and accumulator
words, as shown in Figure 5-66.

Other registers altered: ACC

0 15 16 31 32 47 48 63
| | | | | A
L | L | | B
¢ \ ¢ \
X X
| Y ‘ A | Intermediate product

| | ‘ | | Accumulator

| \ ‘ \J | rD and Accumulator

Figure 5-66. Even Form of Vector Half-Word Multiply (evmheumiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-156 Freescale Semiconductor

Instruction Set

evmheumianw SPE | User evmheumianw

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate Negative into
Words

evmheumianw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10110001000
// high

tempg.3; ¢ TAg.15 Xyi IBy.is
rDy.31 ¢ ACCp.3; - tempgy.s;

// low
tempgy.3; ¢ TA3zp.47 Xui ¥Biz.g7
rD35.63 ¢ ACC3y.63 - tempg.s;

// update accumulator
ACCq.63 ¢ TDp.63

For each word element in the accumul ator, the corresponding even-numbered half-word unsigned integer
elementsinrA and rB are multiplied. Each intermediate product is subtracted from the contents of the
corresponding accumulator words. The differences are placed into the corresponding r D and accumul ator
words, as shown in Figure 5-67.

Other registers altered: ACC

0 15 16 31 32 47 48 63
| | | | | A

| | L | | B

Intermediate product

| | ‘ | | Accumulator

| Y ‘ v | rD and Accumulator

Figure 5-67. Even Form of Vector Half-Word Multiply (evmheumianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-157

wr
PRt

Instruction Set

evmheusiaaw SPE | User evmheusiaaw
Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate into Words
evmheusiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10100000000
// high

tempg.31 ¢ TAg:15 Xui IBo:1s

tempg.g3 ¢ EXTZ (ACCy.3;) + EXTZ(tempgy.s7)

ovh <« temps;

rDy.31 ¢« SATURATE (ovh, 0, OxFFFF_FFFF, OxFFFF_FFFF, temp;,.es)

//low

Cempg.3; ¢ YR3p.47 Xui ITB3zigy

tempg.g3 ¢ EXTZ (ACC;3,.43) + EXTZ(tempgy,37)

ovl <« temps;

rDi5,¢3 < SATURATE (ovl, 0, OxFFFF_FFFF, OxFFFF_FFFF, temps,.qs)

// update accumulator
ACCq.e3 ¢ TDp.63

// update SPEFSCR

SPEFSCRgyy < ovh

SPEFSCRgy ¢ ovl

SPEFSCRgoyy ¢ SPEFSCRgoyy | ovh

SPEFSCRggy ¢ SPEFSCRgoy | ovl
For each word element in the accumulator, corresponding even-numbered half-word unsigned integer
elementsin rA and r B are multiplied producing a 32-bit product. Each 32-bit product is then added to the
corresponding word in the accumulator, saturating if overflow occurs, and the result is placed in rD and
the accumulator, as shown in Figure 5-68.

If the addition causes overflow, the overflow and summary overflow bits are recorded in the SPEFSCR.
Other registers altered: SPEFSCR ACC

0 15 16 31 32 47 48 63
rA
| | rB
Y x ¥ Y X ¥
™ RN Intermediate product
| | Accumulator
Y. V.V
¢ rD and Accumulator

Figure 5-68. Even Form of Vector Half-Word Multiply (evmheusiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-158 Freescale Semiconductor

Instruction Set

evmheusianw SPE | User

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate Negative into
Words

evmheusianw rD,rA,rB
0 5 6 10 11 15 16 20 21 31
0001 00O rD rA rB 1011 00O0O0O0O0TO
// high
tempg.31 ¢ TRg.15 Xui ¥Bo.1s
tempg.g3 ¢ EXTZ (ACCy.3;) - EXTZ(tempgy.37)

ovh <« temps;
rDy.3; ¢ SATURATE (ovh, 0, 0x0000_0000, 0x0000_0000, temps,.s3)

//low
tempg.3; ¢ TA3p.47 Xui TB3n.47
tempg.g3 ¢ EXTZ (ACC;3,.43) - EXTZ(tempg,.s7)

ovl <« temps;
rD3,,63 ¢ SATURATE (ovl, 0, 0x0000_0000, 0x0000_0000, temps,.g3)

// update accumulator
ACCq.63 ¢ TDg.63

// update SPEFSCR

SPEFSCRqoyy ¢ ovh

SPEFSCRgy ¢ ovl

SPEFSCRgoyy ¢ SPEFSCRgoyy | ovh
SPEFSCRgyy ¢ SPEFSCRguy | ovl

For each word element in the accumulator, corresponding even-numbered half-word unsigned integer

evmheusianw

elementsinrA and rB are multiplied producing a 32-bit product. Each 32-bit product is then subtracted
from the corresponding word in the accumul ator, saturating if underflow occurs, and theresultisplacedin

r D and the accumulator, as shown in Figure 5-69.

If there is an underflow from the subtraction, the SPEFSCR records overflow and summary overflow bits.

Other registers altered: SPEFSCR ACC

0 15 16 31 32 47 48

|rB

| Intermediate product

| Accumulator

| ¥ | ¥

| rD and Accumulator

Figure 5-69. Even Form of Vector Half-Word Multiply (evmheusianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-159

'
A

Instruction Set

evmhogsmfaa SPE | User evmhogsmfaa
Vector Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate
evmhogsmfaa rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10100101111

tempg.3; ¢ Thyg.e3 Xsf TByg.63
tempg.g3 ¢ EXTS (tempg.s3q)
rDy.g3 ¢ ACCp.e3 + tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low odd-numbered half-word signed fractional elementsin rA and rB are multiplied.
The intermediate product is sign-extended to 64 bits then added to the contents of the 64-bit accumulator,
and the result is placed into r D and into the accumulator, as shown in Figure 5-70.

Note: Thisisamodulo sum. Thereisno check for overflow and no saturation is performed. An overflow
from the 64-bit sum, if one occurs, is not recorded into the SPEFSCR.

0 31 32 47 48 63

rA

SSSS_SSSS_SSSS_SSSS...SSSS “ Intermediate product

Accumulator

<

<— 4+ <——

rD and Accumulator

Figure 5-70. evmhogsmfaa (Odd Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-160 Freescale Semiconductor

Instruction Set

evmhogsmfan SPE | User evmhogsmfan
Vector Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate Negative

evmhogsmfan rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10110101111

tempg.3; ¢ Thyg.e3 Xsf TByg.63
tempg.g3 ¢ EXTS (tempg.s3q)
rDy.g3 ¢ ACCp.e3 - tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low odd-numbered half-word signed fractional elementsin rA and rB are multiplied.
The intermediate product is sign-extended to 64 bits then subtracted from the contents of the 64-bit
accumulator, and the result is placed into r D and into the accumulator, as shown in Figure 5-71.

Note: Thisisamodulo difference. Thereis no check for overflow and no saturation is performed. Any
overflow of the 64-bit differenceis not recorded into the SPEFSCR.

0 31 32 47 48 63

rA

| rB

SSSS_SSSS_SSSS_SSSS...SSSS

Intermediate product

| Accumulator

rD and Accumulator

Figure 5-71. evmhogsmfan (Odd Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-161

Instruction Set

evmhogsmiaa SPE | User evmhogsmiaa
Vector Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer, and Accumulate
evmhogsmiaa rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10100101101

tempg.3; ¢ Thyg.e3 Xsi TByg.63
tempg.g3 ¢ EXTS (tempg.s3q)
rDy.g3 ¢ ACCp.e3 + tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low odd-numbered half-word signed integer elementsinr A and r B are multiplied. The
intermediate product is sign-extended to 64 bits then added to the contents of the 64-bit accumulator, and
the result is placed into rD and into the accumulator, as shown in Figure 5-72.

Note: Thisisamodulo sum. Thereisno check for overflow and no saturation is performed. An overflow
from the 64-bit sum, if one occurs, is not recorded into the SPEFSCR.

0 31 32 47 48 63
rA
| rB
Y i‘
X
SSSS_SSSS_SSSS_SSSS...SSSS “ Intermediate product

Accumulator

<

<— 4+ <——

rD and Accumulator

Figure 5-72. evmhogsmiaa (Odd Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-162 Freescale Semiconductor

Instruction Set

evmhogsmian SPE | User evmhogsmian
Vector Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate Negative

evmhogsmian rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1011010110 1

tempg.3; ¢ Thyg.e3 Xsi TByg.63
tempg.g3 ¢ EXTS (tempg.s3q)
rDy.g3 ¢ ACCp.e3 - tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low odd-numbered half-word signed integer elementsinr A and r B are multiplied. The
intermediate product is sign-extended to 64 bits then subtracted from the contents of the 64-bit
accumulator, and the result is placed into r D and into the accumulator, as shown in Figure 5-73.

Note: Thisisamodulo difference. Thereis no check for overflow and no saturation is performed. Any
overflow of the 64-bit differenceis not recorded into the SPEFSCR.

0 31 32 47 48 63

rA

SSSS_SSSS_SSSS_SSSS...SSSS “ Intermediate product

| Accumulator

rD and Accumulator

Figure 5-73. evmhogsmian (Odd Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-163

Instruction Set

evmhogumiaa SPE | User evmhogumiaa
Vector Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate
evmhogumiaa rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10100101100

tempg.3; ¢ Thyg.e3 Xui TByg:.63
tempg.g3 ¢ EXTZ (tempg.s3q)
rDy.g3 ¢ ACCp.e3 + tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low odd-numbered half-word unsigned integer elementsin r A and rB are multiplied.
The intermediate product is zero-extended to 64 bits then added to the contents of the 64-bit accumulator,
and the result is placed into r D and into the accumulator, as shown in Figure 5-74.

Note: Thisisamodulo sum. Thereisno check for overflow and no saturation is performed. An overflow
from the 64-bit sum, if one occurs, is not recorded into the SPEFSCR.

0 31 32 47 48 63
rA
| rB
\] ¢
X
0000_0000_0000_0000...000 e Intermediate product

Accumulator

<

<— 4+ <——

rD and Accumulator

Figure 5-74. evmhogumiaa (Odd Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-164 Freescale Semiconductor

Instruction Set

evmhogumian SPE | User evmhogumian
Vector Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate Negative
evmhogumian rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10110101100

tempg.3; ¢ Thyg.e3 Xui TByg:.63
tempg.g3 ¢ EXTZ (tempg.s3q)
rDy.g3 ¢ ACCp.e3 - tempp.gs

// update accumulator
ACCqy.e3 ¢ TDp.63

The corresponding low odd-numbered half-word unsigned integer elementsin r A and rB are multiplied.
The intermediate product is zero-extended to 64 bits then subtracted from the contents of the 64-bit
accumulator, and the result is placed into r D and into the accumulator, as shown in Figure 5-75.

Note: Thisisamodulo difference. Thereis no check for overflow and no saturation is performed. Any
overflow of the 64-bit differenceis not recorded into the SPEFSCR.

0 31 32 47 48 63

rA

| rB

0000_0000_0000_0000...000 “ Intermediate product

| Accumulator

rD and Accumulator

Figure 5-75. evmhogumian (Odd Form)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-165

Instruction Set

evmhosmf SPE | User evmhosmf
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional (to Accumulator)
evmhosmf rD,rArB (A=0)
evmhosmfa rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10000‘A‘01111‘
// high

rDg.31 < (¥Ri1g.31 Xsf IBig.31)

// low
rD3;.63 ¢ (¥Rg5.63 Xgr TByg.e3)

// update accumulator
if A = 1 then ACCy.43 ¢ rDjy.43

The corresponding odd-numbered, half-word signed fractional elementsinrA and r B aremultiplied. Each
product is placed into the corresponding words of rD, as shown in Figure 5-71Figure 5-76.

If A =1, theresultinrD isaso placed into the accumulator.
Other registers altered: ACC (If A =1)

0 15 16 31 32 47 48 63

rA

4 4

rD (and accumulator if evmhosmf)

Figure 5-76. Vector Multiply Half Words, Odd, Signed, Modulo,
Fractional (to Accumulator) (evmhosmf)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-166 Freescale Semiconductor

Instruction Set

evmhosmfaaw SPE | User evmhosmfaaw
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate into Words
evmhosmfaaw rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 rD rA r8 1010000111 1
// high

tempg.31 ¢ TRjg.31 Xgf ¥Big.31
rDg.31 ¢ ACCp.31; + tempg.3;

// low
tempg.31 ¢ TRyg.63 Xgf TByg.63
rD33.63 ¢ ACC3.63 + tempg.s;

// update accumulator
ACCq.63 ¢ TDg.63

For each word element in the accumulator, the corresponding odd-numbered half-word signed fractional
elementsinrA and r B are multiplied. The 32 bits of each intermediate product is added to the contents of
the corresponding accumulator word and the results are placed into the corresponding r D words and into
the accumulator, as shown in Figure 5-77.

Other registers altered: ACC

0 15 16 31 32 47 48 63
rA
| | B
Y l Y l
X X
e P Intermediate product

| Accumulator

Y ¢

+
|
Y

|
v+¢
|

Y

rD and Accumulator

Figure 5-77. Odd Form of Vector Half-Word Multiply (evmhosmfaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-167

Instruction Set

evmhosmfanw SPE | User evmhosmfanw

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate Negative into
Words

evmhosmfanw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 101100011 1 1
// high

tempg.3; ¢ TAjg.31 Xgf TBig.31
rDg.31 ¢ ACCp.31 - tempg.3g

// low
tempg.31 ¢ TRyg.63 Xgf TByg.63
rD35.63 ¢ ACC3y.63 - tempg.s;

// update accumulator
ACCq.63 ¢ TDp.63

For each word element in the accumulator, the corresponding odd-numbered half-word signed fractional
elementsinrA and rB are multiplied. The 32 bits of each intermediate product is subtracted from the
contents of the corresponding accumulator word and the results are placed into the corresponding rD
words and into the accumulator, as shown in Figure 5-78.

Other registers altered: ACC

0 15 16 31 32 47 48 63
rA
| | rB
\] ¢ \] ¢
X X
e e Intermediate product

| Accumulator

\ \ rD and Accumulator

Figure 5-78. Odd Form of Vector Half-Word Multiply (evmhosmfanw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-168 Freescale Semiconductor

Instruction Set

evmhosmi SPE | User evmhosmi
Vector Multiply Half Words, Odd, Signed, Modulo, Integer (to Accumulator)
evmhosmi rD,rArB (A=0)
evmhosmia rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10000‘A‘01101‘
// high

TDg.31 ¢ Thy16.31 Xgi TBig.31

// low
TD35.63 ¢ TRyg.63 Xsi TByg:63

// update accumulator
if A = 1 then ACCy.43 ¢ rDjy.43

The corresponding odd-numbered half-word signed integer elementsinr A and r B are multiplied. Thetwo
32-bit products are placed into the corresponding words of rD, as shown in Figure 5-79.

If A =1, theresultinrD isaso placed into the accumulator.
Other registers altered: ACC (If A =1)

0 15 16 31 32 47 48 63

rA

4 4

rD (and accumulator if evmhosmia)

Figure 5-79. Vector Multiply Half Words, Odd, Signed, Modulo,
Integer (to Accumulator) (evmhosmi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-169

Instruction Set

evmhosmiaaw SPE | User evmhosmiaaw
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into Words

evmhosmiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1010000110 1
// high

tempg.31 ¢ TRjg.31 Xgi ¥Big:.31
rDy.31 ¢ ACCp.3; + tempgy.s;

// low
tempg.31 ¢ TRgg.63 Xgi TByg.63
rD33.63 ¢ ACC3.63 + tempg.s;

// update accumulator
ACCq.63 ¢ TDg.63

For each word element in the accumulator, the corresponding odd-numbered half-word signed integer
elementsinrA and rB are multiplied. Each intermediate 32-bit product is added to the contents of the
corresponding accumulator word and the results are placed into the corresponding r D words and into the
accumulator, as shown in Figure 5-80.

Other registers altered: ACC

0 15 16 31 32 47 48 63
rA
| | B
Y l Y l
X X
e P Intermediate product

| | Accumulator

Y ¢ Y ¢

+ +
| |
Y Y

rD and Accumulator

Figure 5-80. Odd Form of Vector Half-Word Multiply (evmhosmiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-170 Freescale Semiconductor

Instruction Set

evmhosmianw SPE | User evmhosmianw
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate Negative into Words
evmhosmianw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA r8 1011000110 1
// high

tempg.3; < TrRig.31 Xgi ¥Big:.31
rDy.31 ¢ ACCp.3; - tempgy.s;

// low
tempg.31 ¢ TRgg.63 Xgi TByg.63
rD33.63 ¢ ACC33.63 - tempg.s;

// update accumulator
ACCq.63 ¢ TDg.63

For each word element in the accumulator, the corresponding odd-numbered half-word signed integer
elementsinrA and rB are multiplied. Each intermediate 32-bit product is subtracted from the contents of
the corresponding accumulator word and the results are placed into the corresponding r D words and into
the accumulator, as shown in Figure 5-81.

Other registers altered: ACC

0 15 16 31 32 47 48 63

rA

e e Intermediate product

| | Accumulator

\ \ rD and Accumulator

Figure 5-81. Odd Form of Vector Half-Word Multiply (evmhosmianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-171

Instruction Set

evmhossf SPE | User evmhossf
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional (to Accumulator)
evmhossf rD,rArB (A=0)
evmhossfa rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10000‘A‘00111‘
// high

tempg.3; ¢~ TRig.31 Xgr TBig.31

if (rAjg.31 = 0x8000) & (rBig.3; = 0x8000)

rDy.3; ¢ Ox7FFF_FFFF //saturate

movh « 1
else

TDg.31 ¢ tempg.3;

movh « 0

// low

tempg.3; <~ Thyg.63 Xgr TByg.63

if (rBge.¢3 = 0x8000) & (rByg.c3 = 0x8000)

rD5,.63 < OX7FFF_FFFF //saturate

movl « 1
else

rD33.63 ¢ tempg.33

movl « 0

// update accumulator
if A = 1 then ACCy.43 ¢ rDjy.43

// update SPEFSCR

SPEFSCRqyy ¢ movh

SPEFSCRgy ¢ movl

SPEFSCRgoyy ¢ SPEFSCRgoyy | movh
SPEFSCRgyy ¢ SPEFSCRgyy | movl

then

then

The corresponding odd-numbered half-word signed fractional elementsinrA and rB are multiplied. The
32 bits of each product are placed into the corresponding words of rD, as shown in Figure 5-82. If both
inputs are —1.0, the result saturates to the largest positive signed fraction and the overflow and summary
overflow bits are recorded in the SPEFSCR.

If A =1, theresultinrD isaso placed into the accumulator.

Other registers altered:

SPEFSCR ACC (If A = 1)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-172

Freescale Semiconductor

Instruction Set

0 15 16 31 32 47 48 63
| | | | | A
| | L | . |m®
Y x ¢ Y X ¢
| “ ‘ e | rD (and accumulator if evmhossfa)

Figure 5-82. Vector Multiply Half Words, Odd, Signed, Saturate,
Fractional (to Accumulator) (evmhossf)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-173

V¥ ¢

4\
Instruction Set
evmhossfaaw SPE | User evmhossfaaw
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into Words
evmhossfaaw rD,yrArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10100000 1 11
// high

Cempg.3; ¢~ ThA16.31 Xsf TBig:31
if (rA;g.31 = 0x8000) & (rB;g.37 = 0x8000) then
temp,,3; < Ox7FFF_FFFF //saturate
movh <1
else
movh < 0
tempg.g3 ¢ EXTS (ACCj.31) + EXTS(tempg.s3q)
ovh ¢« (temp;; @ temp,,)
rDg.31 ¢ SATURATE (ovh, tempPs;, 0xg000 0000, 0x7FFF_FFFF, temp32:63)
// low - -
Cempy.31 ¢~ TRgg.63 Xsf TBasg:e3
if (rBg.43 = 0x8000) & (rByg.q3 = 0x8000) then
temp,.3; < OxX7FFF_FFFF //saturate
movl <1
else
movl <« 0
tempg.g3 ¢ EXTS (ACC3,.63) + EXTS(tempg.s3q)
ovl « (temp;; ® temps;,)
rD3p.63 < SATURATE (ovl, tempsi, oxg000_0000, 0x7FFF_FFFF, temp32:63)
// update accumulator
ACCq.e3 < TDg.63
// update SPEFSCR
SPEFSCRgyy ¢ movh
SPEFSCRqy ¢ movl
SPEFSCRgoyy ¢ SPEFSCRgqyy | ovh | movh
SPEFSCRggy ¢ SPEFSCRgoy | ovl| movl

The corresponding odd-numbered half-word signed fractional elementsinrA and rB are multiplied
producing a 32-bit product. If both inputs are —1.0, the result saturates to Ox7FFF_FFFF. Each 32-bit
product is then added to the corresponding word in the accumulator, saturating if overflow or underflow
occurs, and the result is placed in r D and the accumulator, as shown in Figure 5-83.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary
overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

0 15 16 31 32 47 48 63
I | | | | TA
I | L] | .| B
Yy XV Y XV
| = | <= | Intermediate product
| | [| | Accumulator
Y+ ¥ Y+ ¥
N N
v v] rD and Accumulator

Figure 5-83. Odd Form of Vector Half-Word Multiply (evmhossfaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-174 Freescale Semiconductor

Instruction Set

evmhossfanw SPE | User evmhossfanw

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate Negative into
Words

evmhossfanw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 101100001 11
// high

Lempy.3; ¢~ TRig.31 Xsr YBig.3z
if (rA;g.31 = 0x8000) & (rB;g.37 = 0x8000) then
tempgy,3; < Ox7FFF_FFFF //saturate
movh <1
else
movh < 0
temp,,s3 ¢ EXTS(ACCy,37) - EXTS(tempg.;;)
ovh ¢« (temp;; @ temp,,)
tDg,31 ¢ SATURATE (ovh, temps;, oxg000_0000, 0x7FFF_FFFF, temp32:63)
// low - -
Cempy.31 ¢~ TRgg.63 Xsf TBasg:e3
if (rA g.63 = 0x8000) & (rByg.q3 = 0x8000) then
temp,,3; < Ox7FFF_FFFF //saturate
movl <1
else
movl <« 0
tempg.g3 ¢ EXTS (ACC3,.63) - EXTS(tempg.s3q)
ovl « (temp;; @ temp,,)
rD3y.63 < SATURATE (OV1, tempsi, oxg000_0000, 0x7FFF_FFFF, temp32:63)
// update accumulator - -
ACCq.63 < TDg.63
// update SPEFSCR
SPEFSCRgyy ¢ movh
SPEFSCRgy ¢ movl
SPEFSCRgoyy ¢ SPEFSCRgoyy | ovh | movh
SPEFSCRggy ¢ SPEFSCRgoy | ovl| movl

The corresponding odd-numbered half-word signed fractional elementsinrA and rB are multiplied
producing a 32-bit product. If both inputs are —1.0, the result saturates to Ox7FFF_FFFF. Each 32-bit
product is then subtracted from the corresponding word in the accumulator, saturating if overflow or
underflow occurs, and the result is placed in r D and the accumulator, as shown in Figure 5-84.

If thereisan overflow or underflow from either the multiply or the subtraction, the overflow and summary

overflow bits are recorded in the SPEFSCR.
Other registers altered: SPEFSCR ACC

U 15 16 31 32 4/ 48 03

[rA
[[| [[| | 1B

| < [< | Intermediate product
| | | |] Accumulator

] rD and Accumulator
Figure 5-84. Odd Form of Vector Half-Word Multiply (evmhossfanw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-175

|
y

'
A

Instruction Set
evmhossiaaw SPE | User evmhossiaaw
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate into Words
evmhossiaaw rD,yrArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 1010000010 1
// high

tempg.3; ¢~ TRj16.31 Xsi TBig.31
tempg.g3 ¢ EXTS (ACCj.31) + EXTS(tempg.s3q)
ovh « (temp;; ® temps;,)

rDy.3; ¢ SATURATE (ovh, temps;, 0x8000 0000, 0x7FFF _FFFF, temp32:63)

// low

Cempy.31 ¢~ IRgg.63 Xsi TBag:e3

tempg.g3 ¢ EXTS (ACC3,.63) + EXTS(tempg.s3q)
ovl « (temp;; ® temps;,)

rD3;.3 < SATURATE (ovl, temps;, 0x8000 0000, Ox7FFF_FFFF, temp32:63)

// update accumulator
ACCq.63 ¢ ¥Dp.63

// update SPEFSCR

SPEFSCRgyy ¢ ovh

SPEFSCRyy ¢ ovl

SPEFSCRguyy ¢ SPEFSCRgqyy | ovh
SPEFSCRggy ¢ SPEFSCRgoy | ovl

The corresponding odd-numbered half-word signed integer elementsin r A and rB are multiplied
producing a 32-bit product. Each 32-bit product is then added to the corresponding word in the

accumulator, saturating if overflow occurs, and the result is placed in r D and the accumulator, as shown

in Figure 5-85.

If there is an overflow or underflow from the addition, the overflow and summary overflow bits are
recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

0] 15 16 31 32 47 48 63
| | | | | A
| | L | |
Y x v Y x v
| = | e | intermediate product

| | ‘ | | Accumulator

|
| Y ‘ v | rD and Accumulator

Figure 5-85. Odd Form of Vector Half-Word Multiply (evmhossiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-176 Freescale Semiconductor

Instruction Set

evmhossianw SPE | User evmhossianw
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate Negative into Words
evmhossianw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 1011000010 1
// high
tempg.3; ¢~ TRig.31 Xgi T¥Big:.31
tempg.g3 ¢ EXTS (ACCj.31) - EXTS(tempg.s3q)

ovh « (temp;; ® temps;,)
rDy.3; ¢ SATURATE (ovh, temps;, 0x8000 0000, 0x7FFF _FFFF, temp32:63)

// low
tempg.31 ¢~ TrRyg.63 Xsi TBag.63
tempg.g3 ¢ EXTS (ACC3,.63) - EXTS(tempg.s3q)

ovl « (temp;; ® temps;,)
rD3;.3 < SATURATE (ovl, temps;, 0x8000 0000, Ox7FFF_FFFF, temp32:63)

// update accumulator
ACCq.63 ¢ ¥Dp.63

// update SPEFSCR

SPEFSCRgyy < ovh

SPEFSCRgy ¢« ovl

SPEFSCRgoyy ¢ SPEFSCRgqyy | ovh

SPEFSCRgoy ¢ SPEFSCRgyy | ovl
The corresponding odd-numbered half-word signed integer elementsin rA and r B are multiplied,
producing a 32-bit product. Each product is subtracted from the corresponding word in the accumulator,

saturating if overflow occurs, and the result is placed in r D and the accumul ator, as shown in Figure 5-86.

If there isan overflow or underflow from the subtraction, the overflow and summary overflow bits are
recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

0 15 16 31 32 47 48 63
| ‘ ‘ ‘ | rA
| | L | R
v X l v X l
| - ‘ “ | Intermediate product

| | ‘ | | Accumulator

| \ ‘ \J | rD and Accumulator

Figure 5-86. Odd Form of Vector Half-Word Multiply (evmhossianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-177

Instruction Set

evmhoumi SPE | User evmhoumi
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer (to Accumulator)
evmhoumi rD,rArB (A=0)
evmhoumia rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10000‘A‘01100‘
// high

TDg.31 ¢ Thy1g.31 Xui TBig.31

// low
TD35.63 ¢ TRyg.63 Xui TByg.63

// update accumulator
if A = 1 then ACCy.43 ¢ rDy.43

The corresponding odd-numbered half-word unsigned integer elementsin r A and r B are multiplied. The
two 32-bit products are placed into the corresponding words of rD, as shown in Figure 5-87.

If A =1, theresultinrD isaso placed into the accumulator.
Other registers altered: ACC (If A =1)

0 15 16 31 32 47 48 63

rA

~ ~

rD (and accumulator if evmhoumia)

Figure 5-87. Vector Multiply Half Words, Odd, Unsigned, Modulo,
Integer (to Accumulator) (evmhoumi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-178 Freescale Semiconductor

Instruction Set

evmhoumiaaw SPE | User evmhoumiaaw
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate into Words
evmhoumiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10100001100
// high

tempg.31 ¢ TRjg.31 Xyui ¥Big:.31
rDg.31 ¢ ACCp.3; + tempgy.s;

// low
tempg.31 ¢ Thyg.63 Xui TBig.63
rD33.63 ¢ ACC33.63 + tempg.s;

// update accumulator
ACCq.63 ¢ TDg.63

For each word element in the accumulator, the corresponding odd-numbered half-word unsigned integer
elementsinrA and rB are multiplied. Each intermediate product is added to the contents of the
corresponding accumulator word. The sumsare placed into the corresponding r D and accumul ator words,
as shown in Figure 5-88.

Other registers altered: ACC

0 15 16 31 32 47 48 63
rA
| | B
Y l Y l
X X
P P Intermediate product

| Accumulator

v v rD and Accumulator

Figure 5-88. Odd Form of Vector Half-Word Multiply (evmhoumiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-179

Instruction Set

evmhoumianw SPE | User evmhoumianw

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate Negative into
Words

evmhoumianw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10110001100
// high

tempg.3; ¢ Thg.15 Xyi ¥By.1s
rDg.31 ¢ ACCp.3; - tempgy.s;

/ low
tempg.3; ¢ TA3zp.47 Xui ¥Biz.g7
rD33.63 ¢ ACC33.63 - tempg.s;

// update accumulator
ACCq.63 ¢ TDg.63

For each word element in the accumulator, the corresponding odd-numbered half-word unsigned integer
elementsinrA and rB are multiplied. Each intermediate product is subtracted from the contents of the
corresponding accumulator word. The results are placed into the corresponding r D and accumulator
words, as shown in Figure 5-89.

Other registers altered: ACC

0 15 16 31 32 47 48 63
rA
| | rB
\] L \] L
X X
/ / Intermediate product
| | Accumulator
L Y i Y
| |
v v rD and Accumulator

Figure 5-89. Odd Form of Vector Half-Word Multiply (evmhoumianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-180 Freescale Semiconductor

Instruction Set

evmhousiaaw SPE | User evmhousiaaw
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate into Words
evmhousiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10100000100
// high

tempg.31 ¢ ThAjg.31 Xyi ¥Big:.31

temp,.s3 ¢ EXTZ (ACCy,,3;) + EXTZ(tempg,s3q)

ovh <« temps;

rDy,3; < SATURATE (ovh, 0, OxFFFF_FFFF, OxFFFF_FFFF, temps,,ss)

//low

Cempg.31 ¢ Ihyg.63 Xui TBys:63

temp,.g3 ¢ EXTZ (ACC;,.43) + EXTZ(tempg,s3q)

ovl <« temps;

rDy,.¢3 ¢ SATURATE (ovl, 0, OxFFFF FFFF, OxFFFF_FFFF, temps,, ;)

// update accumulator
ACCq.63 ¢ TDp.63

// update SPEFSCR

SPEFSCRgyy ¢ ovh

SPEFSCRgy ¢ ovl

SPEFSCRgoyy ¢ SPEFSCRgoyy | ovh
SPEFSCRgoy ¢ SPEFSCRgqy | ovl

For each word element in the accumulator, corresponding odd-numbered half-word unsigned integer

elementsinrA and r B are multiplied producing a 32-bit product. Each 32-bit product isthen added to the
corresponding word in the accumulator, saturating if overflow occurs, and the result is placed in rD and

the accumulator, as shown in Figure 5-90.

If the addition causes overflow, the overflow and summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

0 15 16 31 32 47 48 63
| | | | | A
| | L | L |
Y X ¢ Y X
| ~ ‘ “~ | Intermediate product

| Accumulator

| Y ‘ v | rD and Accumulator

Figure 5-90. Odd Form of Vector Half-Word Multiply (evmhousiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-181

|
y

'
A

Instruction Set
evmhousianw SPE | User evmhousianw
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate Negative into Words
evmhousianw rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10110000100
// high
tempg.3; ¢ TAjg.31 Xui TBig:31
tempg.g3 ¢ EXTZ (ACCy.3;) - EXTZ(tempgy,.37)

ovh <« temps;
rDy.3; ¢ SATURATE (ovh, 0, OxFFFF _FFFF, OxFFFF_FFFF, temp;,,e3)

//low
tempg.31 ¢ TRgg.63 Xui ¥Bsg.63
tempg.g3 ¢ EXTZ (ACC;3,.43) - EXTZ(tempgy,37)

ovl <« temps;
rDi,.43 < SATURATE (ovl, 0, OxFFFF_FFFF, OxFFFF_FFFF, temps,.g3)

// update accumulator
ACCq.e3 ¢ TDp.63

// update SPEFSCR

SPEFSCRgyy < ovh

SPEFSCRgy ¢ ovl

SPEFSCRgoyy ¢ SPEFSCRgqyy | ovh

SPEFSCRggy ¢ SPEFSCRgoy | ovl
For each word element in the accumulator, corresponding odd-numbered half-word unsigned integer
elementsinrA and rB are multiplied producing a 32-bit product. Each 32-bit product is then subtracted
from the corresponding word in the accumul ator, saturating if overflow occurs, and the result is placed in

r D and the accumulator, as shown in Figure 5-91.
If subtraction causes overflow, the overflow and summary overflow bits are recorded in the SPEFSCR.
Other registers altered: SPEFSCR ACC

0 15 16 31 32 47 48 63
| | | | | A
| | L | |
Y XY Yxv
| = ‘ e | Intermediate product

| | ‘ | | Accumulator

| Y ‘ v | rD and Accumulator

Figure 5-91. Odd Form of Vector Half-Word Multiply (evmhousianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-182 Freescale Semiconductor

Instruction Set

evimra SPE User evimra
Initialize Accumulator
evmra rD,rA
0 5 6 10 11 15 16 20 21 31
000100 D rA 000O0O0O/1 00110007100

ACCy.e3 ¢ TRAp.63
TDy.e3 < Thp.63

The contents of r A are written into the accumulator and copied into r D. Thisis the method for initializing
the accumulator, as shown in Figure 5-92.

Other registers altered: ACC

0 31 32 63

rA

rD and Accumulator

Figure 5-92. Initialize Accumulator (evmra)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-183

Instruction Set

evmwhsmf SPE | User evmwhsmf
Vector Multiply Word High Signed, Modulo, Fractional (to Accumulator)
evmwhsmf rD,rArB (A=0)
evmwhsmfa rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10001‘A‘01111‘
// high

tempg.g3 <~ TRg.31 Xgf TBp.31
rDy.31 ¢ tempg.33

// low
tempg.e3 <~ rR33.63 Xsf rB3n.63
TD35.63 ¢ tempgp.33

// update accumulator
if A = 1 then ACCy,g3 ¢ rDg.43

The corresponding word signed fractional elementsin rA and r B are multiplied and bits 0-31 of the two
products are placed into the two corresponding words of rD, as shown in Figure 5-93.

If A =1, theresultinrD isaso placed into the accumulator.
Other registers altered: ACC (if A =1)

0 31 32 63

rA

Intermediate product

TSa Y

rD (and accumulator
if evmshdmfa)

Figure 5-93. Vector Multiply Word High Signed, Modulo,
Fractional (to Accumulator) (evmwhsmf)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-184 Freescale Semiconductor

Instruction Set

evmwhsmi SPE | User evmwhsmi
Vector Multiply Word High Signed, Modulo, Integer (to Accumulator)
evmwhsmi rD,rArB (A=0)
evmwhsmia rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA rB 10001‘A‘01101‘
// high

tempg.g3 <~ TRg.31 Xgi TBp.31
rDg.31 ¢ tempg.33

// low
tempg.e3 ¢~ rR33.63 Xgi rB3n.63
TD35.63 ¢ tempgp.33

// update accumulator
if A = 1 then ACCy,g3 ¢ rDg.43

The corresponding word signed integer elementsin r A and r B are multiplied. Bits 0-31 of the two 64-bit
products are placed into the two corresponding words of rD, as shown in Figure 5-94.

If A=1TheresultinrD isaso placed into the accumulator.
Other registers altered: ACC (If A =1)

0 31 32 63

rA

Intermediate product

T 7

rD (and accumulator
if evmwhsmia)

Figure 5-94. Vector Multiply Word High Signed, Modulo,
Integer (to Accumulator) (evmwhsm)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-185

Instruction Set

evmwhssf SPE | User evmwhssf
Vector Multiply Word High Signed, Saturate, Fractional (to Accumulator)
evmwhssf rD,rArB (A=0)
evmwhssfa rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10001‘A‘00111‘
// high

Lempy. g3 ¢~ TRo.31 Xg¢ TBg.3
if (rRjy.5; = 0x8000_0000) & (rBj.3; =0x8000 0000) then
rDy.3; ¢ Ox7FFF_FFFF //saturate
movh <« 1
else
rDg.31 ¢ tempg.3;
movh « 0

// low
tempg.g3 <~ TR3y.63 Xgr TB3z.63
if (rBj,,c3 = 0x8000_0000) & (rBj,,s3 =0x8000_0000) then
rD35.43 < OX7FFF_FFFF //saturate
movl « 1
else
rD33.63 < tempg.31
movl « 0

// update accumulator
if A = 1 then ACCy.43 ¢ rDjy.43

// update SPEFSCR

SPEFSCRqyy ¢ movh

SPEFSCRgy ¢ movl

SPEFSCRgoyy ¢ SPEFSCRgoyy | movh

SPEFSCRgoy ¢ SPEFSCRgoy | movl
The corresponding word signed fractional elementsinrA and r B are multiplied. Bits 0-31 of each product
are placed into the corresponding words of rD, as shown in Figure 5-95. If both inputs are—1.0, the result
saturates to the largest positive signed fraction and the overflow and summary overflow bits are recorded
in the SPEFSCR.

Other registers altered: SPEFSCR ACC (If A =1)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-186 Freescale Semiconductor

Instruction Set

| | | rA

| | | | | B

Y ox ¢ Y ox ¢
Intermediate product

“ | ™ |

| e | |

rD (and accgmulator
if evmwhss

Figure 5-95. Vector Multiply Word High Signed, Saturate,
Fractional (to Accumulator) (evmwhssf)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-187

Instruction Set

evmwhumi SPE | User evmwhumi
Vector Multiply Word High Unsigned, Modulo, Integer (to Accumulator)
evmwhumi rD,rArB (A=0)
evmwhumia rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10001‘A‘01100‘
// high

tempg.g3 <~ TRg.31 Xyi TBp.31
rDg.31 ¢ tempg.33

// low
tempg.e3 < rR33.63 Xui rB3z.63
TD35.63 ¢ tempgp.33

// update accumulator
if A = 1, ACCy.e3 ¢« rDy.e3

The corresponding word unsigned integer elementsinr A and r B are multiplied. Bits 0-31 of the two
products are placed into the two corresponding words of rD, as shown in Figure 5-96.

If A =1, theresultinrD isaso placed into the accumulator.
Other registers altered: ACC (If A =1)

0 31 32 63

rA

Intermediate product

T~ 7

rD (and accumulator
if evmwhumia)

Figure 5-96. Vector Multiply Word High Unsigned, Modulo,
Integer (to Accumulator) (evmwhumi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-188 Freescale Semiconductor

Instruction Set

evmwlismiaaw SPE | User evmwlsmiaaw
Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words
evmwlsmiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1010100100 1
// high

tempg.e3 ¢~ TrRg.31 Xgi YBp.31
rDg.31 < ACCy.31 + tempsy.q3

// low
tempg.e3 ¢~ rR33.63 Xgi rB3n.63
rD33.63 ¢~ ACC33.63 + tempzs.¢3

// update accumulator
ACCq.63 < TDg.63

For each word element in the accumulator, the corresponding word signed integer elementsinrA and rB
aremultiplied. The least significant 32 bits of each intermediate product is added to the contents of the
corresponding accumulator words, and the result is placed into r D and the accumulator, as shown in
Figure 5-97.

NOTE

Care should betaken if theintermediate product cannot be represented in 32
bits as some implementations produce an undefined final result. Status bits
are set that indicate that such an overflow occurred.

Other registers altered: ACC

0 31 32 63

rA

Intermediate product

| | Accumulator

\ v rD and Accumulator

Figure 5-97. Vector Multiply Word Low Signed, Modulo, Integer and
Accumulate in Words (evmwIismiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-189

Instruction Set

evmwlismianw SPE | User evmwlismianw

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in Words

evmwlsmianw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1011100100 1
// high

tempg.e3 ¢~ TrRg.31 Xgi YBp.31
rDg.31 < ACCy.31 - tempsy.q3

// low
tempg.e3 ¢~ rR33.63 Xgi rB3n.63
rD33.63 ¢~ ACC33.63 - tempzs.¢3

// update accumulator
ACCq.63 < TDg.63

For each word element in the accumulator, the corresponding word elementsin r A and r B are multiplied.
The least significant 32 bits of each intermediate product is subtracted from the contents of the
corresponding accumulator words and the result is placed in r D and the accumulator, as shown in
Figure 5-98.

NOTE

Care should betaken if theintermediate product cannot be represented in 32
bits as some implementations produce an undefined final result. Status bits
are set that indicate that such an overflow occurred.

Other registers altered: ACC

0 31 32 63
| | |

| | | | | B

Intermediate product

~ | ™ |

| | ‘ | | Accumulator

| / ‘ \ | rD and Accumulator

Figure 5-98. Vector Multiply Word Low Signed, Modulo, Integer and
Accumulate Negative in Words (evmwlismianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-190 Freescale Semiconductor

Instruction Set

evmwlissiaaw SPE | User evmwlssiaaw
Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words
evmwlssiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 1010100000 1
// high

Cempg.e3 <~ ITRg.31 Xgi TBo:3z
tempg.g3 ¢ EXTS (ACCj.31) + EXTS(temps,.q3)
ovh « (temp;; ® temps;,)

rDy.3; ¢ SATURATE (ovh, temps;, 0x8000 0000, 0x7FFF _FFFF, temp32:63)

// low

tempg.g3 <~ TRA33.63 Xsi rBi32.63

tempg.g3 ¢ EXTS (ACC3,.63) + EXTS(tempss.g3)
ovl « (temp;; ® temps;,)

rD3;.3 < SATURATE (ovl, temps;, 0x8000 0000, Ox7FFF_FFFF, temp32:63)

// update accumulator
ACCq.63 ¢ ¥Dp.63

// update SPEFSCR

SPEFSCRgyy < ovh

SPEFSCRgy ¢« ovl

SPEFSCRgoyy ¢ SPEFSCRgqyy | ovh

SPEFSCRgoy ¢ SPEFSCRgyy | ovl
The corresponding word signed integer elementsinr A and r B are multiplied producing a 64-bit product.
The 32 Isbs of each product are added to the corresponding word in the ACC, saturating if overflow or
underflow occurs; theresult isplaced in r D and the ACC, as shown in Figure 5-99. If thereis overflow or

underflow from the addition, overflow and summary overflow bits are recorded in the SPEFSCR.

NOTE

Care should betaken if theintermediate product cannot be represented in 32
bits as some implementations produce an undefined final result. Status bits
are set that indicate that such an overflow occurred.

Other registers altered: SPEFSCR ACC

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-191

Instruction Set

0 31 32 63
| | | A

| | | | | B

Intermediate product
< | 4 |

| | | | | Accumulator

+T" Yo /

| \J | #

| rD and Accumulator

Figure 5-99. Vector Multiply Word Low Signed, Saturate, Integer and
Accumulate in Words (evmwlssiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-192 Freescale Semiconductor

Instruction Set

evmwissianw SPE | User evmwilssianw

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in Words

evmwlssanw rD,rArB
0 5 6 10 11 15 16 20 21 31
0001 00O rD rA rB 10111 000O0O0 1
// high
tempg.g3 <~ TRg.31 Xsi TBg.31
tempg.g3 ¢ EXTS (ACCj.31) - EXTS(temp;,.q3)

ovh « (temp;; ® temps;,)
rDy.3; ¢ SATURATE (ovh, temps;, 0x8000 0000, 0x7FFF _FFFF, temp32:63)

// low
tempg.e3 <~ rR33.63 Xgi rB3n.63
tempg,g3 ¢ EXTS (ACC3,.63) - EXTS(tempss.gs)

ovl « (temp;; ® temps;,)
rD3;.3 < SATURATE (ovl, temps;, 0x8000 0000, Ox7FFF_FFFF, temp32:63)

// update accumulator
ACCq.63 ¢ ¥Dp.63

// update SPEFSCR

SPEFSCRgyy ¢ ovh

SPEFSCRyy ¢ ovl

SPEFSCRguyy ¢ SPEFSCRgqyy | ovh
SPEFSCRggy ¢ SPEFSCRgoy | ovl

The corresponding word signed integer elementsinr A and r B are multiplied producing a 64-bit product.
The 32 Isbs of each product are subtracted from the corresponding ACC word, saturating if overflow or
underflow occurs, and theresultisplaced in r D and the ACC, as shown in Figure 5-100. If addition causes

overflow or underflow, overflow and summary overflow SPEFSCR bits are recorded.

NOTE

Care should betaken if theintermediate product cannot be represented in 32
bits as some implementations produce an undefined final result. Status bits
are set that indicate that such an overflow occurred.

Other registers altered: SPEFSCR ACC

0 31 32 63

| | | rA

| | | | | B
M v Y)Q Intermediate product

~ | e |

| | [. | Accumulator
v n

| v | v | rD and Accumulator

Figure 5-100. Vector Multiply Word Low Signed, Saturate, Integer and
Accumulate Negative in Words (evmwlssianw

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-193

Instruction Set

evmwlumi SPE | User evmwlumi
Vector Multiply Word Low Unsigned, Modulo, Integer
evmwlumi rD,rArB (A=0)
evmwlumia rD,rArB (A=1
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA rB 10001‘A‘01000‘
// high

tempg.e3 ¢~ TrRg.31 Xui ¥Bp.31
TDy.31 ¢ tempsy.¢3

// low
tempg.g3 <~ TR3y.63 Xyi rB3z.63
TD35.63 ¢ tempss.¢3

// update accumulator
If A = 1 then ACCy.g3 ¢ rDj.g3

The corresponding word unsigned integer elementsinrA and r B are multiplied. The least significant 32
bits of each product are placed into the two corresponding words of rD, as shown in Figure 5-101.

Note: Theleast significant 32 bits of the product are independent of whether the word elementsinrA and
rB aretreated as signed or unsigned 32-bit integers.

If A =1, theresultinrD isaso placed into the accumulator.

Other registers altered: ACC (If A =1)

Note that evmwlumi and evmwlumia can be used for signed or unsigned integers.

0

31 32

63

rA

| rB

Intermediate product

Y

rD (and accumulator
if evmwlumia)

/

Figure 5-101. Vector Multiply Word Low Unsigned, Modulo, Integer (evmwlumi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-194

Freescale Semiconductor

Instruction Set

evmwlumiaaw SPE | User evmwlumiaaw
Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words
evmwlumiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10101001000
// high

tempg.e3 ¢~ TrRg.31 Xui ¥Bp:.31
rDg.31 < ACCy.31 + tempsy.q3

// low
tempg.e3 ¢~ rR33.63 Xui rB3z.63
rD33.63 ¢~ ACC33.63 + tempzs.¢3

// update accumulator
ACCq.63 < TDg.63

For each word element in the accumulator, the corresponding word unsigned integer elementsinrA and
rB are multiplied. The least significant 32 bits of each product are added to the contents of the
corresponding accumulator word and the result is placed into r D and the accumul ator, as shown in
Figure 5-102.

NOTE

Care should betaken if theintermediate product cannot be represented in 32
bits as some implementations produce an undefined final result. Status bits
are set that indicate that such an overflow occurred.

Other registers altered: ACC

0 31 32 63
| | | rA

| | | | | B

Intermediate product

| | ‘ | | Accumulator

| ' ‘ v | rD and Accumulator

Figure 5-102. Vector Multiply Word Low Unsigned, Modulo, Integer and
Accumulate in Words (evmwlumiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-195

Instruction Set

evmwlumianw SPE | User evmwlumianw

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in Words

evmwlumianw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10111001000
// high

tempg.e3 ¢~ TrRg.31 Xui ¥Bp:.31
rDg.31 < ACCy.31 - tempsy.q3

// low
tempg.e3 ¢~ rR33.63 Xui rB3z.63
rD33.63 ¢~ ACC33.63 - tempzs.¢3

// update accumulator
ACCq.63 < TDg.63

For each word element in the accumulator, the corresponding word unsigned integer elementsinrA and

rB are multiplied. The least significant 32 bits of each product are subtracted from the contents of the

corresponding accumul ator word and the result is placed into r D and the ACC, as shown in Figure 5-103.
NOTE

Care should betaken if theintermediate product cannot be represented in 32
bits as some implementations produce an undefined final result. Status bits
are set that indicate that such an overflow occurred.

Other registers altered: ACC

0 31 32 63

rA

Intermediate product

| | Accumulator

rD and Accumulator

Figure 5-103. Vector Multiply Word Low Unsigned, Modulo, Integer and
Accumulate Negative in Words (evmwlumianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-196 Freescale Semiconductor

Instruction Set

evmwlusiaaw SPE | User evmwlusiaaw
Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words
evmwlusiaaw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10101000000
// high

Cempg.e3 ¢~ IRg.31 Xui TBo:sz

tempg.g3 ¢ EXTZ (ACCqy.3;) + EXTZ(temps,.g3)

ovh <« temps;;

rDy.3; ¢ SATURATE (ovh, 0, OxFFFF FFFF, OxFFFF FFFF, temps,.e;)
//low

Lempg.g3 ¢~ TR3z.63 Xui TB3z.63

tempg.g3 ¢ EXTZ (ACC;3,.43) + EXTZ(tempi;,.q3)

ovl <« temps;

rDy,.¢; ¢ SATURATE (ovl, 0, OxFFFF_FFFF, OxFFFF_FFFF, temps,, ;)
// update accumulator

ACCp.63 ¢ TDg.63

// update SPEFSCR

SPEFSCRqgyy ¢ ovh

SPEFSCRoy « ovl

SPEFSCRgoyy ¢ SPEFSCRgqyy | ovh

SPEFSCRgoy ¢ SPEFSCRgqy | ovl

For each word element in the ACC, corresponding word unsigned integer elementsinrA and rB are
multiplied, producing a 64-bit product. The 32 Isbs of each product are added to the corresponding ACC
word, saturating if overflow occurs; theresult is placed in rD and the ACC, as shown in Figure 5-104. If
the addition causes overflow, the overflow and summary overflow bits are recorded in the SPEFSCR.

NOTE

Care should betaken if theintermediate product cannot be represented in 32
bits as some implementations produce an undefined final result. Status bits
are set that indicate that such an overflow occurred.

Other registers altered: SPEFSCR ACC

0 31 32 63
| | | rA
| | | | | B
R Y v
X X Intermediate product
[« | e |
| | | | | Accumulator
v v Yoo
+ +
L L
| \ | \ | rD and Accumulator

Figure 5-104. Vector Multiply Word Low Unsigned, Saturate, Integer and
Accumulate in Words (evmwlusiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-197

Instruction Set

evmwlusianw SPE | User evmwlusianw

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in Words

evmwlusianw rD,rArB
0 5 6 10 11 15 16 20 21 31
000 1O00O rD rA rB 10111 00O0O0O0O0
// high
tempg.g3 < TAg.31 Xyi IBg.31
tempg.g3 ¢ EXTZ (ACCqy.3;) - EXTZ(temps,.g3)

ovh <« temps;;
rDj.37 ¢ SATURATE (ovh, 0, 0x0000_0000, 0x0000_0000, temps;.q3)

//low
tempg.g3 ¢ TA3z.63 Xui TB3z.63
tempg.g3 ¢ EXTZ (ACC;3,.43) - EXTZ(temps,.q3)

ovl < temp;;

rDy,. 43 < SATURATE (ovl, 0, 0x0000_0000, 0x0000_0000, temp;,.qs3)

// update accumulator

ACCp.63 ¢ TDg.63

// update SPEFSCR

SPEFSCRgyy < ovh

SPEFSCRgy ¢« ovl

SPEFSCRgoyy ¢ SPEFSCRgqyy | ovh

SPEFSCRgoy ¢ SPEFSCRgqy | ovl
For each ACC word element, corresponding word elementsinr A and r B are multiplied producing a 64-bit
product. The 32 Isbs of each product are subtracted from corresponding ACC words, saturating if
underflow occurs; the result is placed in rD and the ACC, as shown in Figure 5-105. If thereisan

underflow from the subtraction, the overflow and summary overflow bits are recorded in the SPEFSCR.

NOTE

Care should betaken if theintermediate product cannot be represented in 32
bits as some implementations produce an undefined final result. Status bits
are set that indicate that such an overflow occurred.

Other registers altered: SPEFSCR ACC

0 31 32 63
| | | rA
| | | | | B
vy v vy v
X X Intermediate product
il | N |
| | | | | Accumulator
R e
L |
| \ | v | rD and Accumulator

Figure 5-105. Vector Multiply Word Low Unsigned, Saturate, Integer and
Accumulate Negative in Words (evmwlusianw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-198 Freescale Semiconductor

Instruction Set
evmwsmf SPE | User evmwsmf
Vector Multiply Word Signed, Modulo, Fractional (to Accumulator)
evmwsmf rD,rArB (A=0)
evmwsmfa rD,rArB A=1)

0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA rB 10001‘A‘11011‘

TDg.e3 ¢ TA33.63 Xgf TB3n.63

// update accumulator
if A = 1 then ACCj,g3 ¢ rDg.43

The corresponding low word signed fractional elementsinrA and r B aremultiplied. The product is placed
intorD, as shown in Figure 5-106.

If A =1, theresultinrD isaso placed into the accumulator.
Other registers altered: ACC (If A =1)

0 31 32 63

rA

| B

—

rD (and accumulator if
evmwsmfa)

Figure 5-106. Vector Multiply Word Signed, Modulo,
Fractional (to Accumulator) (evmwsmf)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-199

Instruction Set

evmwsmfaa SPE | User evmwsmfaa
Vector Multiply Word Signed, Modulo, Fractional and Accumulate
evmwsmfaa rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10101011011

tempg.g3 < TR3y.63 Xgr IB3z.63
rDy.g3 < ACCh.63 + tempp.gs

// update accumulator
ACCq.63 ¢ ¥Dp.63

The corresponding low word signed fractional elementsin rA and r B are multiplied. The intermediate
product is added to the contents of the 64-bit accumulator and the result is placed in rD and the
accumulator, as shown in Figure 5-107.

Other registers altered: ACC

0 31 32 63

rA

Intermediate product

| Accumulator

rD and Accumulator

Figure 5-107. Vector Multiply Word Signed, Modulo, Fractional and
Accumulate (evmwsmfaa)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-200 Freescale Semiconductor

Instruction Set

evmwsmfan SPE | User evmwsmfan
Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative
evmwsmfan rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10111011011

tempg.g3 < TR3y.63 Xgr IB3z.63
rDy.g3 < ACCp.63 - tempp.gs

// update accumulator
ACCq.63 ¢ ¥Dp.63

The corresponding low word signed fractional elementsin rA and r B are multiplied. The intermediate
product is subtracted from the contents of the accumulator and the result is placed in rD and the
accumulator, as shown in Figure 5-108.

Other registers altered: ACC

0 31 32 63

rA

Intermediate product

| Accumulator

rD and Accumulator

Figure 5-108. Vector Multiply Word Signed, Modulo, Fractional and
Accumulate Negative (evmwsmfan)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-201

Instruction Set

evmwsmi SPE | User evmwsmi

Vector Multiply Word Signed, Modulo, Integer (to Accumulator)

evmwsmi rD,rArB (A=0)

evmwsmia rD,rArB A=1)
0 5 6 10 11 15 16 25 26 27 31
000100 D rA B 10001‘A‘11001‘

TDg.e3 <~ TA33.63 Xgi IB3n.63

// update accumulator
if A = 1 then ACCy,g3 ¢ rDg.43

The low word signed integer elementsin rA and rB are multiplied. The product is placed into rD.

If A =1, theresultinrD isalso placed into the accumulator. , as shown in Figure 5-109.
Other registers altered: ACC (If A =1)

0

31 32

p—

rA

B

rD (and accumulator if evmwsmia)

Figure 5-109. Vector Multiply Word Signed, Modulo,
Integer (to Accumulator) (evmwsmi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-202

Freescale Semiconductor

Instruction Set

evmwsmiaa SPE | User evmwsmiaa
Vector Multiply Word Signed, Modulo, Integer and Accumulate

evmwsmiaa rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1010101100 1

tempg.g3 <~ TR3y.63 Xgi IB3z.63
rDy.g3 < ACCh.63 + tempp.gs

// update accumulator
ACCq.63 ¢ ¥Dp.63

The low word signed integer elementsin r A and r B are multiplied. The intermediate product is added to
the contents of the 64-bit accumulator and the result is placed into r D and the accumulator, as shown in
Figure 5-110.

Other registers altered: ACC

0 31 32 63

rA

Intermediate product

| Accumulator

rD and Accumulator

Figure 5-110. Vector Multiply Word Signed, Modulo, Integer and
Accumulate (evmwsmiaa)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-203

Instruction Set

evmwsmian SPE | User evmwsmian
Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative

evmwsmian rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 1011101100 1

tempg.g3 <~ TR3y.63 Xgi IB3z.63
rDy.g3 < ACCp.63 - tempp.gs

// update accumulator
ACCq.63 ¢ ¥Dp.63

Thelow word signed integer elementsinr A and r B are multiplied. Theintermediate product is subtracted
from the contents of the 64-bit accumulator and theresult is placed into r D and the accumulator, as shown
in Figure 5-111.

Other registers altered: ACC

0 31 32 63

rA

Intermediate product

| Accumulator

rD and Accumulator

Figure 5-111. Vector Multiply Word Signed, Modulo, Integer and
Accumulate Negative (evmwsmian)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-204 Freescale Semiconductor

Instruction Set

evmwssf SPE | User evmwssf

Vector Multiply Word Signed, Saturate, Fractional (to Accumulator)

evmwssf rD,rArB (A=0)

evmwssfa rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10001‘A‘10011‘

tempg.e3 <~ TR33.63 Xsf TB3n.63
if (rAs,.g3 = 0x8000_0000) & (rBj,.g3 =0x8000_0000) then
rDy.¢; ¢ Ox7FFF_FFFF_FFFF_FFFF //saturate
mov <« 1
else
rDo.e3 < LeMPq. g3
mov <« 0

// update accumulator
if A = 1 then ACCy,g3 ¢ rDg.43

// update SPEFSCR

SPEFSCRgyy < 0

SPEFSCRgy ¢ mov

SPEFSCRgyy ¢ SPEFSCRgyy | mov
Thelow word signed fractional elementsinr A andr B aremultiplied. The 64 bit product isplacedintorD,
asshown in Figure 5-112. If both inputs are—1.0, the result saturates to the largest positive signed fraction
and the overflow and summary overflow bits are recorded in the SPEFSCR.

The architecture specifies that if the final result cannot be represented in 64 bits, SPEFSCR[OV] should
be set (along with the SOV bit, if it is not already set).

If A =1, theresultinrD isaso placed into the accumulator.

Other registers altered: SPEFSCR ACC (If A =1)
0 31 32 63
rA
| rB
\] ¢
X
<« rD (and accumulator if evmwssfa)

Figure 5-112. Vector Multiply Word Signed, Saturate,
Fractional (to Accumulator) (evmwssf)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-205

|
y

'
A

Instruction Set

evmwssfaa SPE | User evmwssfaa
Vector Multiply Word Signed, Saturate, Fractional and Accumulate
evmwssfaa rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 10101010011

CempPy.g3 ¢ TRA32.63 Xsf TB32.63

if (rBj,,c3 = 0x8000_0000) & (rBj,,c3 = 0x8000_0000) then
tempy.g; ¢ Ox7FFF_FFFF_FFFF_FFFF //saturate
mov <« 1

else
mov <« 0

temp,.gq ¢ EXTS(ACCy,q3) + EXTS(tempg.q3)

ov ¢« (temp, @ temp,)

TDg.3 ¢ LemMP1.6s4)

// update accumulator

ACCp.63 < TDg.63

// update SPEFSCR

SPEFSCRuyy <« 0

SPEFSCRgy ¢ mov

SPEFSCRggy ¢ SPEFSCRgoy | ov | mov

The low word signed fractional elementsin r A and r B are multiplied producing a 64-bit product. If both
inputs are—1.0, the product saturatesto the largest positive signed fraction. The 64-bit product is added to

the ACC and the result is placed in rD and the ACC, as shown in Figure 5-113.

If there is an overflow from either the multiply or the addition, the SPEFSCR overflow and summary
overflow bits are recorded.

Note: Thereis no saturation on the addition with the accumul ator.
Other registers altered: SPEFSCR ACC

0 31 32 63
| ‘ | rA
| ‘ | | rB
Y ¢
X
| <~ | Intermediate product

| | | Accumulator

| rD and Accumulator

Figure 5-113. Vector Multiply Word Signed, Saturate, Fractional, and
Accumulate (evmwssfaa)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-206 Freescale Semiconductor

Instruction Set

evmwssfan SPE | User evmwssfan
Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative
evmwssfan rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 D rA rB 101110 1

CempPy.g3 ¢ TRA32.63 Xsf TB32.63

if (rBj,,c3 = 0x8000_0000) & (rBj,,c3 = 0x8000_0000) then
tempy.g; ¢ Ox7FFF_FFFF_FFFF_FFFF //saturate
mov <« 1

else
mov <« 0

temp,.gq ¢ EXTS(ACCy,q3) - EXTS(tempg.q3)

ov ¢« (temp, @ temp,)

TDg.3 ¢ LemMP1.6s4)

// update accumulator

ACCp.63 < TDg.63

// update SPEFSCR

SPEFSCRuyy <« 0

SPEFSCRgy ¢ mov

SPEFSCRggy ¢ SPEFSCRgoy | ov | mov

The low word signed fractional elementsin r A and r B are multiplied producing a 64-bit product. If both
inputsare—1.0, the product saturatesto the largest positive signed fraction. The 64-bit product is subtracted

from the ACC and theresult is placed in rD and the ACC, as shown in Figure 5-114.

If there is an overflow from either the multiply or the addition, the SPEFSCR overflow and summary

overflow bits are recorded.
Note: Thereis no saturation on the subtraction with the accumulator.
Other registers altered: SPEFSCR ACC

0 31 32 63
| ‘ | rA
| ‘ | | rB
Y ¢
X
| « | Intermediate product

| | | Accumulator

Figure 5-114. Vector Multiply Word Signed, Saturate, Fractional and
Accumulate Negative (evmwssfan)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

| rD and Accumulator

Freescale Semiconductor

5-207

Instruction Set

evmwumi SPE | User evmwumi

Vector Multiply Word Unsigned, Modulo, Integer (to Accumulator)

evmwumi rD,rArB (A=0)

evmwumia rD,rArB (A=1)
0 5 6 10 11 15 16 20 21 25 26 27 31
000100 D rA B 10001‘A‘11000‘

TDg.e3 < TA33.63 Xui IB3z.63

// update accumulator
if A = 1 then ACCy,g3 ¢ rDg.43

Thelow word unsigned integer elementsinr A and r B are multiplied to form a64-bit product that is placed
intorD, as shown in Figure 5-115.

If A =1, theresultinrD isaso placed into the accumulator.
Other registers altered: ACC (If A =1)

0 31 32 63

rA

| rB

-

rD (an accumulator if evmwunia)

Figure 5-115. Vector Multiply Word Unsigned, Modulo,
Integer (to Accumulator) (evmwumi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-208 Freescale Semiconductor

Instruction Set

evmwumiaa SPE | User evmwumiaa

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate

evmwumiaa rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10101011000

tempg.g3 <~ TR3p.63 Xyi rB3z.63
rDy.g3 < ACCh.63 + tempp.gs

// update accumulator
ACCq.63 ¢ ¥Dp.63

The low word unsigned integer elementsin r A and rB are multiplied. The intermediate product is added
to the contents of the 64-bit accumulator, and the resulting value is placed into the accumulator and into
rD, as shown in Figure 5-116.

Other registers altered: ACC

0 31 32 63

rA

Intermediate product

| Accumulator

rD and Accumulator

Figure 5-116. Vector Multiply Word Unsigned, Modulo, Integer and
Accumulate (evmwumiaa)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-209

Instruction Set

evmwumian SPE | User evmwumian

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative

evmwumian rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 10111011000

tempg.g3 <~ TR3p.63 Xyi rB3z.63
rDy.g3 < ACCp.63 - tempp.gs

// update accumulator
ACCq.63 ¢ ¥Dp.63

The low word unsigned integer elementsin r A and r B are multiplied. The intermediate product is
subtracted from the contents of the 64-bit accumulator, and the resulting value is placed into the
accumulator and into r D, as shown in Figure 5-117.

Other registers altered: ACC

0 31 32 63

rA

Intermediate product

| Accumulator

rD and Accumulator

Figure 5-117. Vector Multiply Word Unsigned, Modulo, Integer and
Accumulate Negative (evmwumian)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-210 Freescale Semiconductor

Instruction Set

evhand SPE | User evhand
Vector NAND
evnand rD,rArB

0 5 6 10 11 15 16 20 21 31

0 0 01 0O rD rA rB o10O0OOT1TT1TT1TT1TO0

rDy.37 < ~(rAy,3; & rBy,31)// Bitwise NAND
rD3y.63 ¢ 7 (¥RA35.63 & ¥B3,.63) // Bitwise NAND

Corresponding word elements of rA and r B are bitwise NANDed. Theresult is placed in the
corresponding element of rD, as shown in Figure 5-118.

0 31 32 63
rA
| | B
\] ¢ \] ¢
NAND NAND
| |
]] D

Figure 5-118. Vector NAND (evnhand)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-211

Instruction Set

evneg SPE User evneg
Vector Negate
evneg rD,rA
0 5 6 10 11 15 16 20 21 31
000100 D rA 0 00O0O0[0O1T000O0O0O0T1TO0O0 1

rDy,.31 < NEG(rRAj,5;)
rD3y.63 < NEG(rAzj.63)

The negative of each element of rA isplacedinrD, as shown in Figure 5-119. The negative of
0x8000_0000 (most negative number) returns 0x8000_0000. No overflow is detected.

0 31 32 63
| | rA
NEG NEG
| |
Y Y D

Figure 5-119. Vector Negate (evneg)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-212 Freescale Semiconductor

Instruction Set

evnor SPE User evnor
Vector NOR
evnor rD,rA,rB
0 5 6 10 11 15 16 20 21 31
00O01O0O D rA B 01 000O0OT1TT1TO0TUO0TUO

rDy.31 ¢ - (rAg,3; | rBy,3;) // Bitwise NOR
rDiy.g3 < = (rAz5.63 | T¥Bis.e3) // Bitwise NOR

Each element of r A and r B isbitwise NORed. Theresult is placed in the corresponding element of rD, as
shown in Figure 5-120.

Note: Use evnand or evnor for evnot.

0 31 32 63
rA
| | B
\] ¢ \] ¢
NOR NOR
| |
Y Y D

Figure 5-120. Vector NOR (evnor)

Simplified mnemonic: evnot rD,r A performs a complement register
evnot rD,rA equivalent to evnor rD,rArA

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-213

Instruction Set

evor

eVOI‘ SPE User

Vector OR

evor rD,rA,rB
0 5 6 10 11 15 16 20 21 31
00O01O0O D rA B 000O0T1TO0T1T 11

rDy.3; ¢ TBy.37 | rBgy.3; //Bitwise OR
rD3y.63 ¢~ TR3s.63 | TByz.e3// Bitwise OR

Each element of r A and rB is bitwise ORed. The result is placed in the corresponding element of rD, as
shown in Figure 5-121.

0 31

OR

/

OR
|

v

Figure 5-121. Vector OR (evor)

rA

B

rD

Simplified mnemonic: evmr rD,rA handles moving of the full 64-bit SPE register.

evmr rD,rA

equivalent to

evor rD,rArA

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-214

Freescale Semiconductor

4\

Instruction Set
evorc SPE | User evorc
Vector OR with Complement
evorc rD,rArB

0 5 6 10 11 15 16 20 21 31
0 0 01 0O rD rA rB o10O0OOT1T1TO0 11
rDy.3; ¢ TBy,37 | (-rBy.31) // Bitwise ORC
rD3;.63 < TA32.63 |

(-rB3,.63) // Bitwise ORC

Each element of r A is bitwise ORed with the complement of rB. Theresult is placed in the corresponding
element of rD, as shown in Figure 5-122.

0 31 32 63
rA
| | rB
]]
Y Y
il il
1] 1] D

Figure 5-122. Vector OR with Complement (evorc)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0
Freescale Semiconductor

5-215

Instruction Set

evriw SPE | User evriw
Vector Rotate Left Word
evrlw rD,rArB
0 5 6 10 11 15 16 20 21 31
000100 rD rA rB 010001041000

nh < rByy.3;

nl < rBgg.63

rDy.37 ¢ ROTL(rA(,31, nh)
ID35.63 ¢ ROTL(rA55.43, nl)

Each of the high and low elements of r A isrotated left by an amount specified in rB. The result is placed

into rD, as shown in Figure 5-123. Rotate values for each element of r A are found in bit positions
rB[27-31] and rB[59-63].

0 31 32 63

rA

> > B

rD

Figure 5-123. Vector Rotate Left Word (evriw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-216 Freescale Semiconductor

Instruction Set

evriwi SPE | User evriwi

Vector Rotate Left Word Immediate

evriwi rD,rA,UIMM
0 5 6 10 11 15 16 20 21 31
000100 rD rA UIMM 01000101010
n < UIMM

rDy.37 ¢ ROTL(rRA(,31, n)
tD3z.63 ¢ ROTL(rA33.63, 1)

Both the high and low elements of r A are rotated left by an amount specified by a 5-bit immediate value,
as shown in Figure 5-124.

0 31 32 63

rA

> > Ui

rD

Figure 5-124. Vector Rotate Left Word Immediate (evriwi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-217

Instruction Set

evrndw SPE | User evrndw
Vector Round Word

evrndw rD,rA
0 5 6 10 11 15 16 20 21 31
000100 rD rA 000O0OGO|(0O100O0OO0OO0OT11TT1O0O0

rDy.3;, ¢ (rA;,3,+0x00008000) & OxFFFF0000 // Modulo sum
rD5,.63 ¢ (rAj3,.63+0x00008000) & OxXFFFF0000 // Modulo sum

The 32-bit elements of r A are rounded into 16 bits. Theresult isplaced into r D, as shown in Figure 5-125.
The resulting 16 bits are placed in the most significant 16 bits of each element of r D, zeroing out the low
order 16 bits of each element.

0 31 32 63

rA

0 15 16 31 32 47 48 63
¥ ¥ D

Figure 5-125. Vector Round Word (evrndw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-218 Freescale Semiconductor

Instruction Set

evsel SPE | User evsel
Vector Select
evsel rD,rA,rB,crS
0 5 6 10 11 15 16 20 21 28 29 31
000100 D rA rB 01001111‘cr8‘

ch < CRiygxg

cl < CRcrgwgs1

if (ch = 1) then rDgy.,3; ¢ rAy.3;

else rDj,31; ¢ rBj.3q

if (cl = 1) then rDj3,.43 ¢ YA35.43

else rD33.63 < TB3z.63
If the most significant bit in the crSfield of CR is set, the high-order element of rA is placed in the
high-order element of rD; otherwise, the high-order element of rB is placed into the high-order element
of rD. If the next most significant bit in the crSfield of CR is set, the low-order element of rA is placed
in the low-order element of r D, otherwise, the low-order element of rB is placed into the low-order

element of rD. Thisis shownin Figure 5-126.

0 31 32 63
rA
rB
\ Yy \ Yy
h_1__0 / o0 /
Y Y D

Figure 5-126. Vector Select (evsel)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-219

Instruction Set

evslw SPE | User evslw
Vector Shift Left Word
evdw rD,rArB
0 5 10 11 15 16 31
000100 rA rB 1000100100

nh < rByg.31
nl < rBgg.63

rDy.37 ¢ SL(rAj.31, nh)
rD3;.63 ¢ SL(rAz;.q3, nl)

Each of the high and low elements of r A are shifted left by an amount specified inrB. Theresult is placed
into rD, as shown in Figure 5-127. The separate shift amounts for each element are specified by 6 bitsin
rB that liein bit positions 26-31 and 58-63.

Shift amounts from 32 to 63 give a zero result.

0

25 26 31

32

57 58 63

nh

nl

31

32

63

High word shifted by
value specified in nh

Low word shifted by
value specified in nl

y

rd

Figure 5-127. Vector Shift Left Word (evsiw)

rB

rA

rD

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-220

Freescale Semiconductor

Instruction Set

evslwi SPE | User evslwi
Vector Shift Left Word Immediate

evslwi rD,rA,UIMM
0 5 6 10 11 15 16 20 21 31
000100 rD rA UIMM 01000100110
n < UIMM

rDy.3; ¢ SL(rAg.3;, n)
rD3p.63 ¢ SL(rRAzy.63, n)

Both high and low elements of r A are shifted left by the 5-bit UIMM value and the results are placed in
rD, as shown in Figure 5-128.

0 31 32 63
rA

High and low word7/shifted by UIMM value /
y y D

Figure 5-128. Vector Shift Left Word Immediate (evslwi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-221

Instruction Set

evsplatfi SPE | User evsplatfi
Vector Splat Fractional Immediate
evsplatfi rD,SSMM
0 5 6 10 11 15 16 20 21 31
000100 D SIMM 0000O001TO0O0O0T1O0T1TO0 1 1
rDy,3; < SIMM || 270
rDy,y.65 < SIMM || 270

The 5-bit immediate value is padded with trailing zeros and placed in both elements of rD, as shown in
Figure 5-129. The SIMM ends up in bit positions r D[0-4] and r D[32-36].

SABCD SIMM

0 31 32 63
SABCD000..4...000000 SABCD000..%...... 000000 D

Figure 5-129. Vector Splat Fractional Inmediate (evsplatfi)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-222 Freescale Semiconductor

Instruction Set

evsplati SPE | User evsplati
Vector Splat Immediate
evsplati rD,SSMM
0 5 6 10 11 15 16 20 21 31
000100 rD SIMM 000O0O(0O100010T10 0 1

rDy,43; ¢ EXTS (SIMM)
rDsy,.¢5 ¢ EXTS (SIMM)

The 5-bit immediate value is sign extended and placed in both elements of rD, as shown in Figure 5-130.

SABCD SIMM

SSS............ / SABCD SSS............ % SABCD rD

Figure 5-130. evsplati Sign Extend

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-223

Instruction Set

evsrwis User evsrwis
Vector Shift Right Word Immediate Signed
evsrwis rD,rA,JUIMM
0 5 6 10 11 15 16 20 21 31
000100 D rA UIMM 010001000 1 1
n <« UIMM

rDg,31 ¢ EXTS(rAg.31.n)
rD3y.63 < EXTS (rRAz;.63.n)

Both high and low elements of r A are shifted right by the 5-bit UIMM value, as shown in Figure 5-131.
Bits in the most significant positions vacated by the shift are filled with a copy of the sign bit.

0

32

63

rA

\ High and low words s

h\ted by UIMM value

N

N

rD

Figure 5-131. Vector Shift Right Word Immediate Signed (evsrwis)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-224

Freescale Semiconductor

Instruction Set

evsrwiu SPE | User evsrwiu
Vector Shift Right Word Immediate Unsigned

evsrwiu rD,rA,UIMM
0 5 6 10 11 15 16 20 21 31
000100 rD rA UIMM 01 0001000T10
n < UIMM

rDg,31 ¢ EXTZ(rAg.31.n)

rD3y.63 ¢« EXTZ(rA35.63-5)
Both high and low elements of r A are shifted right by the 5-bit UIMM value; O bits are shifted in to the
most significant position, as shown in Figure 5-132. Bitsin the most significant positions vacated by the
shift are filled with a zero bit.

0 31 32 63
rA
\ High and low words sh\ted by UIMM value
N N D

Figure 5-132. Vector Shift Right Word Immediate Unsigned (evsrwiu)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-225

Instruction Set

evsrws SPE | User evsrws
Vector Shift Right Word Signed

evsrws rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000100 D rA B 010001000 TO0f

nh < rByg.31

nl < rBgg.63

rDy.31 ¢ EXTS (rAg.31-npn)

rD33.63 < EXTS (rA3;.63-n1)
Both the high and low elements of r A are shifted right by an amount specified in rB. Theresult is placed
into rD, as shown in Figure 5-133. The separate shift amounts for each element are specified by 6 bitsin
rB that lie in bit positions 26-31 and 58-63. The sign bits are shifted in to the most significant position.

Shift amounts from 32 to 63 give aresult of 32 sign hits.

0 2526 31 32 57 58 63
nh nl rB
0 31 32 63
rA
High word shifted by Low word shifted by
value specified in nh value specified in nl
N \ rD

Figure 5-133. Vector Shift Right Word Signed (evsrws)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-226 Freescale Semiconductor

Instruction Set

evsrwu SPE | User evsrwu
Vector Shift Right Word Unsigned

evsrwu rD,rA,rB
0 5 6 10 11 15 16 20 21 31
000 10O D rA B 01 0001000O0O

nh ¢ rByg.3;

nl < rBgg.63

rDy.31 ¢ EXTZ(rAg.31-np)

rD33.63 < EXTZ(rA3;.63-n1)
Both the high and low elements of r A are shifted right by an amount specified in rB. Theresult is placed
into rD, as shown in Figure 5-134. The separate shift amounts for each element are specified by 6 bitsin
rB that lie in bit positions 26-31 and 58-63. Zero bits are shifted in to the most significant position.

Shift amounts from 32 to 63 give a zero result.

0 2526 31 32 57 58 63
nh nl rB
0 31 32 63
rA
high word shifted by low word shifted by
value specified in nh value specified in nl
N \ rD

Figure 5-134. Vector Shift Right Word Unsigned (evsrwu)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-227

'

A

Instruction Set

evstdd SPE, SPE FV, SPE FD User evstdd

Vector Store Double of Double

evstdd rSd(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ rS ‘ rA UIMM! 0110041000 0 1
T d=UIMM*8

if (rA = 0) then b « 0
else b « (rd)

EA < Db + EXTZ (UIMM*8)
MEM (EA, 8) < RSj.q3

The contents of r S are stored as a double word in storage addressed by EA, as shown in Figure 5-135.

Figure 5-135 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3 4 5 6 7

Memory in big endian a b c d e f g h

Memory in little endian h g f e d c b a

Figure 5-135. evstdd Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-228 Freescale Semiconductor

Instruction Set

evstddx SPE, SPE FV, SPE FD User evstddx
Vector Store Double of Double Indexed
evstddx rSrArB
0 5 6 10 11 15 16 20 21 31
000100 rs rA rB 01100100000
if (rA = 0) then b « 0
else b « (rAh)
EA < Db + (rB)

MEM (EA, 8) < RSj. ¢

The contents of r S are stored as a double word in storage addressed by EA.

Figure 5-136 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3 4 5 6 7

Memory in big endian a b c d e f g h

Memory in little endian h g f e d c b a

Figure 5-136. evstddx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-229

Instruction Set

evstdh SPE | User evstdh
Vector Store Double of Four Half Words
evstdh rSd(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ rS ‘ rA UIMM! 011004100410 1
T d=UIMM*8
if (rA = 0) then b « 0

else b « (rd)

EA < Db + EXTZ (UIMM*8)
MEM (EA,2) < RSj.15
MEM (EA+2,2) < RSqg,.3;
MEM (EA+4,2) < RS35.47
MEM (EA+6,2) ¢ RS,5.63

The contents of r S are stored as four half words in storage addressed by EA.

Figure 5-137 shows how bytes are stored in memory as determined by the endian mode.

GPR a

Byte address 0

Memory in big endian a

Memory in little endian b

b c d e f g h
1 2 3 4 5 6 7
b c d e f g h
a d c f e h g

Figure 5-137. evstdh Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-230

Freescale Semiconductor

SPE User

evstdhx

Vector Store Double of Four Half Words Indexed

evstdhx rSrArB

0 5 6 10 11 15 16

20 21

Instruction Set

evstdhx

31

0001 0O rS rB

0

1 1

0o

100 1 00

if (rA =
else b « (rAd)

EA < Db + (rB)

MEM (EA, 2) < RSg,;s
MEM (EA+2,2) < RSig,3;
MEM (EA+4,2) < RS35.47
MEM (EA+6,2) < RSuq.65

0) then b « 0
(
(

The contents of r S are stored as four half words in storage addressed by EA.
Figure 5-138 shows how bytes are stored in memory as determined by the endian mode.

Byte address 0 1 2 3

Memory in big endian a b c d

GPR a b c d e f g h
4 5 6 7

e f g h

b a d c f e h g

Memory in little endian

Figure 5-138. evstdhx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

5-231

Instruction Set

evstdw SPE | User evstdw
Vector Store Double of Two Words
evstdw rSd(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ rS ‘ rA UIMM! 0110041000 1 1
T d=UIMM*8
if (rA = 0) then b « 0

else b « (rd)

EA < Db + EXTZ (UIMM*8)
MEM (EA,4) < RSy.3q
MEM (EA+4,4) < RS;3,.¢5

The contents of r S are stored as two words in storage addressed by EA.

Figure 5-139 shows how bytes are stored in memory as determined by the endian mode.

GPR

Byte address

Memory in big endian

Memory in little endian

Figure 5-139. evstdw Results in Big- and Little-Endian Modes

a b c d e f g h
0 1 2 3 4 5 6 7
a b c d e f g h
d c b a h g f e

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-232

Freescale Semiconductor

Instruction Set

evstdwx SPE | User evstdwx
Vector Store Double of Two Words Indexed
evstdwx rSrArB
0 5 6 10 11 15 16 20 21 31
000100 rS rA rB 01100100010
if (rA = 0) then b « 0
else b « (rAh)
EA < Db + (rB)

MEM (EA, 4) <« RSg.3;
MEM (EA+4,4) < RS3,,¢3

The contents of r S are stored as two words in storage addressed by EA.
Figure 5-140 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3 4 5 6 7

Memory in big endian a b c d e f g h

Memory in little endian d c b a h g f e

Figure 5-140. evstdwx Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot double-word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-233

Instruction Set

evstwhe SPE | User evstwhe

Vector Store Word of Two Half Words from Even

evstwhe rSd(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ rS ‘ rA UIMM! 01100411000 1
T d=UIMM* 4

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ (UIMM*4)
MEM (EA,2) < RSj.15

MEM (EA+2,2) ¢ RS;,. 47

The even half words from each element of r S are stored as two half words in storage addressed by EA.

Figure 5-141 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3

Memory in big endian a b e f

Memory in little endian b a f e

Figure 5-141. evstwhe Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-234 Freescale Semiconductor

Instruction Set

evstwhex SPE | User evstwhex
Vector Store Word of Two Half Words from Even Indexed
evstwhex rSrArB
0 5 6 10 11 15 16 20 21 31
000100 rS rA rB 01100110000
if (rA = 0) then b « 0
else b « (rAh)
EA < Db + (rB)

MEM (EA,2) <« RSy, s
MEM (EA+2,2) < RS35.47

The even half words from each element of r S are stored as two half words in storage addressed by EA.

Figure 5-142 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3

Memory in big endian a b e f

Memory in little endian b a f e

Figure 5-142. evstwhex Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-235

Instruction Set

evstwho SPE | User evstwho
Vector Store Word of Two Half Words from Odd

evstwho rSd(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ rS ‘ rA UIMM! 011004110410 1
T d=UIMM* 4

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ (UIMM*4)
MEM (EA, 2) ¢ RSig.31
MEM (EA+2,2) < RS,5.65

The odd half words from each element of r S are stored as two half words in storage addressed by EA, as
shown in Figure 5-143.

GPR a b c d e f g h

Byte address 0 1 2 3

Memory in big endian c d g h

Memory in little endian d c h g

Figure 5-143. evstwho Results in Big- and Little-Endian Modes

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-236 Freescale Semiconductor

Instruction Set

evstwhox SPE | User evstwhox
Vector Store Word of Two Half Words from Odd Indexed
evstwhox rSrA,rB
0 5 6 10 11 15 16 20 21 31
000100 rS rA rB 01100110100
if (rA = 0) then b « 0
else b « (rAh)
EA < Db + (rB)

MEM (EA, 2) < RSig.31
MEM (EA+2,2) < RSyq.¢3

The odd half words from each element of r S are stored as two half words in storage addressed by EA.

Figure 5-144 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3

Memory in big endian c d g h

Memory in little endian d c h g

Figure 5-144. evstwhox Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-237

Instruction Set

evstwwe SPE | User evstwwe
Vector Store Word of Word from Even
evstwwe rSd(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ rS ‘ rA UIMM! 01100411100 1
T d=UIMM* 4

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ (UIMM*4)
MEM (EA,4) < RSy.3q

The even word of r Sis stored in storage addressed by EA.
Figure 5-145 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3

Memory in big endian a b c d

Memory in little endian d c b a

Figure 5-145. evstwwe Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-238 Freescale Semiconductor

Instruction Set

evstwwex SPE | User evstwwex

Vector Store Word of Word from Even Indexed

evstwwex rSrArB
0 5 6 10 11 15 16 20 21 31
00 01 O00O rS rA rB o111 00111 00O
if (rA = 0) then b « 0
else b « (rd)
EA < Db + (rB)

MEM (EA, 4) <« RSg.3;

The even word of r Sis stored in storage addressed by EA.
Figure 5-146 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3

Memory in big endian a b c d

Memory in little endian d c b a

Figure 5-146. evstwwex Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-239

Instruction Set

evstwwo SPE | User evstwwo
Vector Store Word of Word from Odd
evstwwo rSd(rA)
0 5 6 10 11 15 16 20 21 31
000100‘ rS ‘ rA UIMM! 01100411110 1
T d=UIMM* 4

if (rA = 0) then b « 0
else b « (rd)

EA < b + EXTZ (UIMM*4)
MEM (EA,4) ¢ rS;5.63

The odd word of r Sis stored in storage addressed by EA.
Figure 5-147 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3

Memory in big endian e f g h

Memory in little endian h g f e

Figure 5-147. evstwwo Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-240 Freescale Semiconductor

Instruction Set

evstwwox SPE | User evstwwox
Vector Store Word of Word from Odd Indexed
evstwwox rSrArB
0 5 6 10 11 15 16 20 21 31
000100 rS rA rB 01100111100
if (rA = 0) then b « 0
else b « (rAh)
EA < Db + (rB)

MEM (EA, 4) ¢ rS3,.63
The odd word of r Sis stored in storage addressed by EA.
Figure 5-148 shows how bytes are stored in memory as determined by the endian mode.

GPR a b c d e f g h

Byte address 0 1 2 3

Memory in big endian e f g h

Memory in little endian h g f e

Figure 5-148. evstwwox Results in Big- and Little-Endian Modes

Implementation note: If the EA isnot word aligned, an alignment exception occurs.

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-241

Instruction Set

evsubfsmiaaw SPE | User evsubfsmiaaw
Vector Subtract Signed, Modulo, Integer to Accumulator Word
evsubfsmiaaw rD,rA
0 5 6 10 11 15 16 20 21 31
000100 rD rA 00000O0(1 0011001011
// high

rDg.31 <~ ACCy.31 - TRAg.31

// low
rD35.63 ¢~ ACC33.63 - TA33.63

// update accumulator
ACCq.63 ¢ ¥Dp.63

Each word element in r A is subtracted from the corresponding element in the accumulator and the
difference is placed into the corresponding r D word and into the accumulator, as shown in Figure 5-149.

Other registers altered: ACC

0 31 32 63

Accumulator

| | rA

rD and Accumulator

Figure 5-149. Vector Subtract Signed, Modulo, Integer to
Accumulator Word (evsubfsmiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-242 Freescale Semiconductor

Instruction Set

evsubfssiaaw SPE | User evsubfssiaaw
Vector Subtract Signed, Saturate, Integer to Accumulator Word
evsubfssiaaw rD,rA
0 5 6 10 11 15 16 20 21 31
000100 D rA 0 00O0O(1 00110000 1
// high
tempgy.g3 ¢ EXTS (ACC0:31) - EXTS(rA0:31)

ovh < temp;; @ temp;,
rDj.3q <« SATURATE (ovh, temp;,;, 0x80000000, Ox7fffffff, temp32£3)

// low

tempy, ¢y ¢ EXTS (ACCy,.¢3) - EXTS(rA;,.¢5)

ovl « temp;; @ temp,,

rDj3,.¢3 ¢ SATURATE (ovl, tempsz;, 0x80000000, Ox7fffffff, temp;,.43)

// update accumulator
ACCq.63 ¢ ¥Dp.63

SPEFSCRqyy ¢ ovh

SPEFSCRyy ¢ ovl

SPEFSCRguyy ¢ SPEFSCRgqyy | ovh
SPEFSCRgyy ¢ SPEFSCRgyy | ovl

Each signed integer word element in r A is sign-extended and subtracted from the corresponding

sign-extended element in the accumulator, as shown in Figure 5-150, saturating if overflow occurs, and
theresultsare placed in r D and the accumulator. Any overflow isrecorded in the SPEFSCR overflow and

summary overflow bits.
Other registers altered: SPEFSCR ACC

0 31 32 63

Accumulator

| | rA

Figure 5-150. Vector Subtract Signed, Saturate, Integer to
Accumulator Word (evsubfssiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

\ v rD and Accumulator

Freescale Semiconductor

5-243

Instruction Set

evsubfumiaaw SPE | User evsubfumiaaw

Vector Subtract Unsigned, Modulo, Integer to Accumulator Word

evsubfumiaaw rD,rA
0 5 6 10 11 15 16 20 21 31
000100 rD rA 000O0GO|1T0O0H110041010
// high

rDg.31 <~ ACCy.31 - TRAg.31

// low
rD35.63 ¢~ ACC33.63 - TA33.63

// update accumulator
ACCq.63 ¢ ¥Dp.63

Each unsigned integer word element in r A is subtracted from the corresponding element in the
accumulator and the results are placed inr D and into the accumulator, as shown in Figure 5-151.

Other registers altered: ACC

0 31 32 63

Accumulator

| rA

v v rD and Accumulator

Figure 5-151. Vector Subtract Unsigned, Modulo, Integer to
Accumulator Word (evsubfumiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-244 Freescale Semiconductor

Instruction Set

evsubfusiaaw SPE | User evsubfusiaaw
Vector Subtract Unsigned, Saturate, Integer to Accumulator Word
evsubfusiaaw rD,rA
0 5 6 10 11 15 16 20 21 31
000100 D rA 000O0O(1 00110000 0
// high
tempg.g3 ¢ EXTZ (ACC0:31) - EXTZ(rA0:31)

ovh <« temps;;
rDy,.31 ¢ SATURATE (ovh, temp;;, 0x00000000, 0x00000000, temp;,.g3)

// low

temp,.g3 ¢ EXTS(ACC5,.43) - EXTS(rAjz5.63)

ovl <« tempyq

rDj3,.¢3 ¢ SATURATE (ovl, tempz;, 0x00000000, 0x00000000, temps,.g3)

// update accumulator
ACCq.63 ¢ ¥Dp.63

SPEFSCRqyy ¢ ovh

SPEFSCRyy ¢ ovl

SPEFSCRguyy ¢ SPEFSCRgqyy | ovh
SPEFSCRgyy ¢ SPEFSCRgyy | ovl

Each unsigned integer word element in r A is zero-extended and subtracted from the corresponding
zero-extended element in the accumulator, , as shown in Figure 5-152, saturating if underflow occurs, and
the results are placed in r D and the accumulator. Any underflow is recorded in the SPEFSCR overflow

and summary overflow bits.
Other registers altered: SPEFSCR ACC

0 31 32 63

Accumulator

| | rA

Figure 5-152. Vector Subtract Unsigned, Saturate, Integer to
Accumulator Word (evsubfusiaaw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

rD and Accumulator

Freescale Semiconductor

5-245

Instruction Set

evsubfw SPE | User evsubfw
Vector Subtract from Word
evsubfw rD,rArB
0 5 6 10 11 15 16 20 21 31
0 0 01 0O rD rA rB 010 O0O0O0OOOT1TODO
rDy.31 < rBg.31 - TRy.a1 // Modulo difference
TD32.63 < TB33.63 - TRA32.63 // Modulo difference

Each signed integer element of r A is subtracted from the corresponding element of r B and the results are
placed into r D, as shown in Figure 5-153.

0 31 32 63

B

| | rA

v v D

Figure 5-153. Vector Subtract from Word (evsubfw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-246 Freescale Semiconductor

Instruction Set

evsubifw SPE | User evsubifw
Vector Subtract Immediate from Word
evsubifw rD,UIMM,B
0 5 6 10 11 15 16 20 21 31
000100 rD UIMM rB 01 0000O0TUO0OTI1T10

rDy.37 ¢ rBy,31; - EXTZ(UIMM) // Modulo difference
rD5,.63 ¢ ¥Biy.¢3 - EXTZ(UIMM)// Modulo difference

UIMM is zero-extended and subtracted from both the high and low elements of r B. Note that the same
value is subtracted from both elements of the register, as shown in Figure 5-154. UIMM is 5 hits.

0 31 32 63

rB

rD and Accumulator

Figure 5-154. Vector Subtract Inmediate from Word (evsubifw)

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-247

Instruction Set

evxor

eVXOI‘ SPE User

Vector XOR

evxor rD,rA,rB
0 5 6 10 11 15 16 20 21 31
00O01O0O D rA B 01 000O0OT1TO0T1TT1SODO

rDy.3, < Thjy,31 @ rBj.3; // Bitwise XOR
D3y.63 ¢~ YR35.43 @ IB3y.43// Bitwise XOR

Each element of rA and rB is exclusive-ORed. The results are placed in r D, as shown in Figure 5-155.

31 32

63

:

/ /
XOR XOR
| |

\J \J

Figure 5-155. Vector XOR (evxor)

rA

B

rD

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-248

Freescale Semiconductor

Embedded Floating-Point Results Summary

Appendix A
Embedded Floating-Point Results Summary

Table A-1 through Table A-8 summarize the results of various types of embedded floating-point
operations on various combinations of input operands. Flag settings are performed on appropriate el ement
flags. For al the tables the following annotation and general rules apply:

* denotes that this status flag is set based on the results of the calculation.

Calc denotes that the result is updated with the results of the computation.

max denotes the maximum normalized number with the sign set to the computation [sign(operand
A) XOR sign(operand B)].

amax denotes the maximum normalized number with the sign set to the sign of Operand A.
bmax denotes the maximum normalized number with the sign set to the sign of Operand B.

pmax denotes the maximum normalized positive number. The encoding for single-precision is:
Ox7F7FFFFF. The encoding for double-precision is: Ox7FEFFFFF_FFFFFFFF.

nmax denotes the maximum normalized negative number. The encoding for single-precision is:
OxFF7FFFFF. The encoding for double-precision is: OXFFEFFFFF_FFFFFFFF.

pmin denotes the minimum normalized positive number. The encoding for single-precisionis.
0x00800000. The encoding for double-precision is: 0x00100000_00000000.

nmin denotes the minimum normalized negative number. The encoding for single-precisionis:
0x80800000. The encoding for double-precision is: 0x80100000_00000000.

Calculationsthat overflow or underflow saturate. Overflow for operationsthat have afloating-point
result force the result to max. Underflow for operations that have a floating-point result force the
result to zero. Overflow for operations that have a signed integer result force the result to
Ox7FFFFFFF (positive) or 0x80000000 (negative). Overflow for operationsthat have an unsigned
integer result force the result to OXFFFFFFFF (positive) or 0x00000000 (negative).

L (superscript) denotes that the sign of the resuilt is positive when the sign of Operand A and the
sign of Operand B are different, for all rounding modes except round to minus infinity, where the
sign of theresult is then negative.
2 (superscript) denotes that the sign of the result is positive when the sign of Operand A and the
sign of Operand B are the same, for all rounding modes except round to minus infinity, where the
sign of theresult is then negative.
3 (superscript) denotes that the sign for any multiply or divideis always the result of the operation
[sign(Operand A) XOR sign(Operand B)].
4 (superscript) denotes that if an overflow is detected, the result may be saturated.

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div

Operation | Operand A | Operand B Result FINV | FOVF | FUNF | FDBZ | FINX

Add
Add oo oo amax 1 0 0 0 0
Add oo NaN amax 1 0 0 0 0

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor A-1

Embedded Floating-Point Results Summary

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (continued)

Operation | Operand A | Operand B Result FINV | FOVF | FUNF | FDBZ | FINX
Add oo denorm amax 1 0 0 0 0
Add oo zero amax 1 0 0 0 0
Add oo Norm amax 1 0 0 0 0
Add NaN oo amax 1 0 0 0 0
Add NaN NaN amax 1 0 0 0 0
Add NaN denorm amax 1 0 0 0 0
Add NaN zero amax 1 0 0 0 0
Add NaN norm amax 1 0 0 0 0
Add denorm oo bmax 1 0 0 0 0
Add denorm NaN bmax 1 0 0 0 0
Add denorm denorm zero! 1 0 0 0 0
Add denorm zero zero! 1 0 0 0 0
Add denorm norm operand_b4 1 0 0 0 0
Add zero oo bmax 1 0 0 0 0
Add zero NaN bmax 1 0 0 0 0
Add zero denorm zero! 1 0 0 0 0
Add zero zero zero' 0 0 0 0 0
Add zero norm operand_b4 0 0 0 0 0
Add norm oo bmax 1 0 0 0 0
Add norm NaN bmax 1 0 0 0 0
Add norm denorm | operand_a* | 1 0 0 0 0
Add norm zero operand_a*| 0 0 0 0 0
Add norm norm _Calc_ 0 * * 0 *

Subtract
Sub oo oo amax 1 0 0 0 0
Sub oo NaN amax 1 0 0 0 0
Sub oo denorm amax 1 0 0 0 0
Sub oo zero amax 1 0 0 0 0
Sub oo Norm amax 1 0 0 0 0
Sub NaN oo amax 1 0 0 0 0
Sub NaN NaN amax 1 0 0 0 0
Sub NaN denorm amax 1 0 0 0 0
Sub NaN zero amax 1 0 0 0 0

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

A-2 Freescale Semiconductor

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (continued)

Embedded Floating-Point Results Summary

Operation | Operand A | Operand B Result FINV | FOVF | FUNF | FDBZ | FINX
Sub NaN norm amax 1 0 0 0 0
Sub denorm oo -bmax 1 0 0 0 0
Sub denorm NaN -bmax 1 0 0 0 0
Sub denorm denorm zero? 1 0 0 0 0
Sub denorm zero zero? 1 0 0 0 0
Sub denorm norm -operand_b4 1 0 0 0 0
Sub zero oo -bmax 1 0 0 0 0
Sub zero NaN -bmax 1 0 0 0 0
Sub zero denorm zero? 1 0 0 0 0
Sub zero zero zero® 0 0 0 0 0
Sub zero norm -operand_b4 0 0 0 0 0
Sub norm oo -bmax 1 0 0 0 0
Sub norm NaN -bmax 1 0 0 0 0
Sub norm denorm operand_a4 1 0 0 0 0
Sub norm zero operand_a4 0 0 0 0 0
Sub norm norm _Calc_ 0 * * 0 *

Multiply®
Mul oo oo max 1 0 0 0 0
Mul oo NaN max 1 0 0 0 0
Mul oo denorm zero 1 0 0 0 0
Mul oo zero zero 1 0 0 0 0
Mul oo Norm max 1 0 0 0 0
Mul NaN oo max 1 0 0 0 0
Mul NaN NaN max 1 0 0 0 0
Mul NaN denorm zero 1 0 0 0 0
Mul NaN zero zero 1 0 0 0 0
Mul NaN norm max 1 0 0 0 0
Mul denorm oo zero 1 0 0 0 0
Mul denorm NaN zero 1 0 0 0 0
Mul denorm denorm zero 1 0 0 0 0
Mul denorm zero zero 1 0 0 0 0
Mul denorm norm zero 1 0 0 0 0
Mul zero oo zero 1 0 0 0 0

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

Embedded Floating-Point Results Summary

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (continued)

Operation | Operand A | Operand B Result FINV | FOVF | FUNF | FDBZ | FINX
Mul zero NaN zero 1 0 0 0 0
Mul zero denorm zero 1 0 0 0 0
Mul zero zero zero 0 0 0 0 0
Mul zero norm zero 0 0 0 0 0
Mul norm oo max 1 0 0 0 0
Mul norm NaN max 1 0 0 0 0
Mul norm denorm zero 1 0 0 0 0
Mul norm zero zero 0 0 0 0 0
Mul norm norm _Calc_ 0 * * 0 *

Divide®
Div oo oo zero 1 0 0 0 0
Div oo NaN zero 1 0 0 0 0
Div oo denorm max 1 0 0 0 0
Div oo zero max 1 0 0 0 0
Div oo Norm max 1 0 0 0 0
Div NaN oo zero 1 0 0 0 0
Div NaN NaN zero 1 0 0 0 0
Div NaN denorm max 1 0 0 0 0
Div NaN zero max 1 0 0 0 0
Div NaN norm max 1 0 0 0 0
Div denorm oo zero 1 0 0 0 0
Div denorm NaN zero 1 0 0 0 0
Div denorm denorm max 1 0 0 0 0
Div denorm zero max 1 0 0 0 0
Div denorm norm zero 1 0 0 0 0
Div zero oo zero 1 0 0 0 0
Div zero NaN zero 1 0 0 0 0
Div zero denorm max 1 0 0 0 0
Div zero zero max 1 0 0 0 0
Div zero norm zero 0 0 0 0 0
Div norm oo zero 1 0 0 0 0
Div norm NaN zero 1 0 0 0 0
Div norm denorm max 1 0 0 0 0

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

A-4

Freescale Semiconductor

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (continued)

Embedded Floating-Point Results Summary

Operation | Operand A | Operand B Result FINV | FOVF | FUNF | FDBZ | FINX
Div norm zero max 0 0 0 1 0
Div norm norm _Calc_ 0 * * 0 *

Table A-2. Embedded Floating-Point Results Summary—Single Convert from Double

Table A-3. Embedded Floating-Point Results Summary—Double Convert from Single

Operand B | efscfd result | FINV | FOVF | FUNF | FDBZ | FINX

+o0 pmax 1 0 0 0 0

-oo nmax 1 0 0 0 0
+NaN pmax 1 0 0 0 0
-NaN nmax 1 0 0 0 0
+denorm +zero 1 0 0 0 0
-denorm -zero 1 0 0 0 0
+zero +zero 0 0 0 0 0
-zero -zero 0 0 0 0 0
norm _Calc_ 0 * * 0 *

Operand B | efdcfs result | FINV | FOVF | FUNF | FDBZ | FINX

+o0 pmax 1 0 0 0 0

-oo nmax 1 0 0 0 0
+NaN pmax 1 0 0 0 0
-NaN nmax 1 0 0 0 0
+denorm +zero 1 0 0 0 0
-denorm -zero 1 0 0 0 0
+zero +zero 0 0 0 0 0
-zero -zero 0 0 0 0 0
norm _Calc_ 0 0 0 0 0

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

Embedded Floating-Point Results Summary

Table A-4. Embedded Floating-Point Results Summary—Convert to Unsigned

Operand B | Integer Result:ctui[d][z] |Fractional Result: ctuf | FINV | FOVF | FUNF | FDBZ | FINX
+o0 OXFFFF_FFFF Ox7FFF_FFFF 1 0 0 0 0
OXFFFF_FFFF_FFFF_FFFF

-oo 0 0 1 0 0 0 0
+NaN 0 0 1 0 0 0 0
-NaN 0 0 1 0 0 0 0
denorm 0 0 1 0 0 0 0
zero 0 0 0 0 0 0 0
+norm _Calc_ _Calc_ * 0 0 0 *
-norm _Calc_ _Calc_ * 0 0 0 *

Table A-5. Embedded Floating-Point Results Summary—Convert to Signed

Operand B Integer Result Fractional Result| -\ | FovF | FUNF | FDBZ| FINX
ctsi[d][z] ctsf

+o0 OX7FFF_FFFF Ox7FFF_FFFF 1 0 0 0 0
Ox7FFF_FFFF_FFFF_FFFF

-oo 0x8000_0000 0x8000_0000 1 0 0 0 0
0x8000_0000_0000_0000

+NaN 0 0 1 0 0 0 0

-NaN 0 0 1 0 0 0 0

denorm 0 0 1 0 0 0 0

zero 0 0 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

-norm _Calc_ _Calc_ * 0 0 0 *

Table A-6. Results Summary—Convert from Unsigned

Operand B | Integer Source: cfui | Fractional Source: cfuf | FINV | FOVF | FUNF | FDBZ | FINX

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

Embedded Floating-Point Results Summary

Table A-7. Embedded Floating-Point Results Summary—Convert from Signed

Operand B | Integer Source: cfsi | Fractional Source: cfsf | FINV | FOVF | FUNF | FDBZ | FINX
zero 0 0 0 0 0
norm 0 0 0 0 *

Table A-8. Embedded Floating-Point Results Summary—*abs, *nabs, *neg

Operand A *abs *nabs *neg FINV | FOVF | FUNF | FDBZ | FINX

+o0 pmax | +oo nmax | -eo -amax | -co 1 0 0 0 0

-o0 pmax | +oo nmax | -eo -amax | +eo 1 0 0 0 0
+NaN pmax | NaN nmax | -NaN -amax | -NaN 1 0 0 0 0
-NaN pmax | NaN nmax | -NaN -amax | +NaN 1 0 0 0 0
+denorm +zero | +denorm -zero | -denorm -zero | -denorm 1 0 0 0 0
-denorm +zero | +denorm -zero | -denorm +zero | +denorm 1 0 0 0 0
+zero +zero -zero -zero 0 0 0 0 0
-zero +zero -zero +zero 0 0 0 0 0
+norm +norm -norm -norm 0 0 0 0 0
-norm +norm -norm +norm 0 0 0 0 0

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0
Freescale Semiconductor A-7

Embedded Floating-Point Results Summary

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

A-8 Freescale Semiconductor

Appendix B
SPE and Embedded Floating-Point Opcode
Listings

This appendix lists SPE and embedded floating-point instructions as follows:

» Table B-1lists opcodes alphabetically by mnemonic. Smplified mnemonics for SPE and
embedded floating-point instructions are listed in this table with their standard instruction
equivalents.

» Table B-2 lists opcodes in numerical order, showing both the decimal and the hexadecimal value

for the primary opcodes.
» Table B-3 lists opcodes by form, showing the opcodesin binary.

B.1 Instructions (Binary) by Mnemonic

Table B-1 lists instructions by mnemonic.
Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

brinc|0 00100 rD rA B 0100000111 1|EVX brinc
efdabs|0 0 0 1 0 0 rD rA i 0101110010 0|EFX efdabs
efdadd ({0 0 0 1 0 O rD rA rB 0101110000 0|EFX efdadd
efdcfs (0 0 0 1 0 0 rD 00000 B 0101110111 1|EFX efdcfs
efdcfsf (0 0 0 1 00 rD " B 0101111001 1|EFX efdcfsf
efdcfsi|0 0 0 1 0 0 rD " rB 0101111000 1|EFX efdcfsi
efdcfuf (0 0 0 1 0 O rD " rB 0101111001 0| EFX efdcfuf
efdcfui|{0 0 0 1 0 0 rD " rB 0101111000 0|EFX efdcfui
efdcmpeq |0 0 0 1 0 O| cfD |/ / rA B 0101110111 0|EFX efdcmpeq
efdempgt|{0 0 0 1 0 O| crfD |/ / rA B 0101110110 0|EFX efdcmpgt
efdemplt|0 0 0 1 0 Of crfD |/ / rA rB 0101110110 1|EFX efdemplt
efdctsf (0 0 0 1 0 0 rD " B 0101111011 1|EFX efdctsf
efdctsi|0 0 0 1 0 0 rD " rB 0101111010 1|EFX efdctsi
efdctsiz{0 0 0 1 0 0 rD " rB 0101111101 0| EFX efdctsiz

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor

B-1

SPE and Embedded Floating-Point Opcode Listings

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

efdctuf (0 0 0 1 0 0 rD " rB 0101111011 0|EFX efdctuf
efdctui|0 0 0 1 0 0 rD " rB 0101111010 0|EFX efdctui
efdctuiz|0 0 0 1 00 rD mn B 0101111100 0|EFX efdctuiz
efddiv|i0 0 0 1 0 O rD rA rB 0101110100 1|EFX efddiv
efdmul {0 0 0 1 00 rD rA rB 0101110100 0|EFX efdmul
efdnabs |0 0 0 1 0 O rD rA i 0101110010 1|EFX efdnabs
efdneg|0 0 0 1 0 O rD rA i 0101110011 0|EFX efdneg
efdsub|0 0 0 1 0 0 rD rA rB 0101110000 1|EFX efdsub
efdtsteq|0 0 0 1 0 0| crfD |/ / rA B 0101111111 0|EFX efdtsteq
efdtstgt|{0 0 0 1 0 0| crfD |/ / rA 1B 0101111110 0|EFX efdtstgt
efdtstit ({0 0 O 1 0 O| crfD |/ / rA B 0101111110 1| EFX efdtstit
efsabs|(0 0 0 1 0 0 rD rA i 0101100010 0|EFX efsabs
efsadd|{0 0 0 1 0 0 rD rA rB 0101100000 0|EFX efsadd
efscfd|0 0 0 1 0 0 rD 000O0O rB 0101100111 1| EFX efscfd
efscfsf|0 0 0 1 0 0 rD mn B 0101101001 1|EFX efscfsf
efscfsi|0 0 0 1 00 rD " rB 0101101000 1|EFX efscfsi
efscfuf |0 0 0 1 0 0 rD " rB 0101101001 0]|EFX efscfuf
efscfui|0 0 0 1 00 rD " rB 0101101000 0|EFX efscfui
efscmpeq|0 0 0 1 0 Of crfD |/ / rA B 0101100111 0|EFX efscmpeq
efscmpgt|0 0 0 1 0 O cfD |/ / rA B 0101100110 0|EFX efscmpgt
efscmplt|{0 0 0 1 0 O] crfD |/ / rA B 0101100110 1|EFX efscmplt
efsctsf|0 0 0 1 0 0 rD mn B 0101101011 1|EFX efsctsf
efsctsi|0 0 0 1 00 rD " rB 0101101010 1|EFX efsctsi
efsctsiz|0 0 0 1 0 O rD mn B 0101101101 0|EFX efsctsiz
efsctuf ([0 0 0 1 0 0 rD mn B 0101101011 0|EFX efsctuf
efsctui|0 0 0 1 00 rD " rB 0101101010 0|EFX efsctui
efsctuiz{0 0 0 1 0 0 rD " rB 0101101100 0|EFX efsctuiz
efsdiv(0 0 0 1 00 rD rA rB 0101100100 1|EFX efsdiv
efsmul{0 0 0100 rD rA rB 0101100100 0|EFX efsmul
efsnabs|0 0 0 1 0 O rD rA i 0101100010 1|EFX efsnabs
efsneg|0 0 0 1 0 0 rD rA i 0101100011 0|EFX efsneg
efssub|{0 0 0 1 00 rD rA rB 0101100000 1|EFX efssub
efststeq(0 0 0 1 0 O| cfD |/ / rA B 0101101111 0|EFX efststeq

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

B-2 Freescale Semiconductor

Mnemonic
efststgt
efststit
evabs
evaddiw
evaddsmiaaw
evaddssiaaw
evaddumiaaw
evaddusiaaw
evaddw
evand
evandc
evcmpeq
evempgts
evempgtu
evcmplts
evcmpltu
evcntlsw
eventlzw
evdivws
evdivwu
eveqv
evextsb
evextsh
evfsabs
evfsadd
evfscfsf
evfscfsi
evfscfuf
evfscfui
evfscmpeq
eviscmpgt
evfscmplt

evfsctsf

Table B-1. Instructions (Binary) by Mnemonic

SPE and Embedded Floating-Point Opcode Listings

6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
cfD |/ / rA B 01011011100
cfD |/ / rA B 01011011101
rD rA i 010000010O00O
rD UIMM B 0100000O0O0T1O
rD rA i 10011001001
rD rA i 10011000001
rD rA i 10011001000
rD rA i 10011000000
rD rA B 0100000O0O0OO00O
rD rA B 01000010001
rD rA B 01000010010
cfD |/ / rA B 01000110100
cfD |/ / rA B 01000110001
cfD |/ / rA B 01000110000
cfD |/ / rA B 01000110011
cfD |/ / rA B 01000110010
rD rA i 01000001110
rD rA i 01000001101
rD rA B 10011000110
rD rA B 10011000111
rD rA B 01000011001
rD rA i 01000001010
rD rA i 01000001011
rD rA i 01010000100
rD rA B 010100000O00O
rD i B 01010010011
rD i B 01010010001
rD i B 01010010010
rD i B 01010010000
cfD |/ / rA B 01010001110
cfD |/ / rA B 01010001100
cfD |/ / rA B 01010001101
rD i B 01010010111

Form Mnemonic

EFX
EFX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

efststgt
efststit
evabs
evaddiw
evaddsmiaaw
evaddssiaaw
evaddumiaaw
evaddusiaaw
evaddw
evand
evandc
evcmpeq
evempgts
evempgtu
evcmplts
evempltu
evcntlsw
evcntlzw
evdivws
evdivwu
eveqv
evextsb
evextsh
evfsabs
evfsadd
evfscfsf
evfscfsi
evfscfuf
evfscfui
evfscmpeq
evfscmpgt
evfscmplt

evfsctsf

Freescale Semiconductor

B-3

SPE and Embedded Floating-Point Opcode Listings

Mnemonic
evfsctsi
evfsctsiz
evfsctuf
evfsctui
evfsctuiz
evisdiv
evismul
evfsnabs
evfsneg
evfssub
evfststeq
eviststgt
evfststit
evidd

eviddx

evidh

evidhx
evidw
evidwx
evihhesplat
evlhhesplatx
evlhhossplat
evlhhossplatx
evihhousplat
evlhhousplatx
eviwhe
eviwhex
eviwhos
eviwhosx
eviwhou
eviwhoux
eviwhsplat

eviwhsplatx

Table B-1. Instructions (Binary) by Mnemonic

123456 7 8 910111213141516 17 18 19 2021 22 23 24 25 26 27 28 29 30 31
00100 rD i B 0101001010 1
00100 rD i B 01010011010
00100 rD i B 01010010110
00100 rD i B 01010010100
00100 rD i B 01010011000
00100 rD rA B 0101000100 1
00100 rD rA B 01010001000
00100 rD rA Vi 0101000010 1
00100 rD rA Vi 01010000110
00100 rD rA B 0101000000 1
00100 cfD |/ / rA B 01010011110
00100 cfD |/ / rA B 01010011100
00100 cfD |/ / rA B 01010011101
00100 D rA UMM 0110000000 1
00100 rD rA B 01100000000
00100 rD rA uMM® 10110000010 1
00100 rD rA B 01100000100
00100 rD rA uMM® 10110000001 1
00100 rD rA B 01100000010
00100 rD rA UMMZ (0110000100 1
00100 rD rA B 01100001000
00100 D rA UMM2 01100001111
00100 rD rA B 01100001110
00100 D rA UMM2 0110000110 1
00100 rD rA B 01100001100
00100 rD rA UMM (0110001000 1
00100 rD rA B 01100010000
00100 D rA UMM3 0110001011 1
00100 rD rA B 01100010110
00100 rD rA UMM3 0110001010 1
00100 rD rA B 01100010100
00100 D rA UMM3 01100011101
00100 rD rA B 01100011100

Form Mnemonic

EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

evfsctsi
evfsctsiz
evfsctuf
evfsctui
evfsctuiz
evisdiv
evismul
evfsnabs
evfisneg
evfssub
evfststeq
eviststgt
evfststlit
evidd

eviddx

evidh

evidhx
evidw
evidwx
evihhesplat
evlhhesplatx
evlhhossplat
evlhhossplatx
evihhousplat
evihhousplatx
eviwhe
eviwhex
eviwhos
eviwhosx
eviwhou
eviwhoux
eviwhsplat

eviwhsplatx

B-4

Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic
eviwwsplat rD rA umMM® 0110001100 1|EVX eviwwsplat
eviwwsplatx rD rA B 0110001100 0fEVX eviwwsplatx
evmergehi rD rA B 0100010110 0|EVX evmergehi
evmergehilo rD rA B 0100010111 0|EVX evmergehilo
evmergelo rD rA B 0100010110 1|EVX evmergelo
evmergelohi rD rA B 0100010111 1]|EVX evmergelohi

evmhegsmfaa rD rA B 1010010101 1]EVX evmhegsmfaa
evmhegsmfan rD rA B 1011010101 1|EVX evmhegsmfan
evmhegsmiaa rD rA B 1010010100 1|EVX evmhegsmiaa
evmhegsmian rD rA B 1011010100 1|EVX evmhegsmian
evmhegumiaa rD rA B 1010010100 0] EVX evmhegumiaa
evmhegumian rD rA B 1011010100 0|EVX evmhegumian
evmhesmf rD rA B 1000000101 1|EVX evmhesmf
evmhesmfa rD rA B 1000010101 1|EVX evmhesmfa
evmhesmfaaw rD rA B 1010000101 1|EVX evmhesmfaaw
evmhesmfanw rD rA B 1011000101 1|EVX evmhesmfanw
evmhesmi rD rA B 1000000100 1|EVX evmhesmi
evmhesmia rD rA B 1000010100 1|EVX evmhesmia
evmhesmiaaw rD rA B 1010000100 1|EVX evmhesmiaaw
evmhesmianw rD rA B 1011000100 1|EVX evmhesmianw
evmhessf rD rA B 1000000O0O0T1 1|EVX evmhessf
evmhessfa rD rA B 1000010001 1|EVX evmhessfa
evmhessfaaw rD rA B 1010000001 1|EVX evmhessfaaw
evmhessfanw rD rA B 1011000001 1|EVX evmhessfanw
evmhessiaaw rD rA B 101000000O0O0 1|EVX evmhessiaaw
evmhessianw rD rA B 1011000000 1|EVX evmhessianw
evmheumi rD rA B 1000000100 0| EVX evmheumi
evmheumia rD rA B 1000010100 0|EVX evmheumia
evmheumiaaw rD rA B 1010000100 0| EVX evmheumiaaw
evmheumianw rD rA B 1011000100 0| EVX evmheumianw
evmheusiaaw rD rA B 1010000000 O0|EVX evmheusiaaw
evmheusianw rD rA B 1011000000 0|EVX evmheusianw
evmhogsmfaa rD rA B 1010010111 1|EVX evmhogsmfaa
Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0
Freescale Semiconductor B-5

SPE and Embedded Floating-Point Opcode Listings

Mnemonic
evmhogsmfan
evmhogsmiaa
evmhogsmian
evmhogumiaa
evmhogumian

evmhosmf

evmhosmfa
evmhosmfaaw
evmhosmfanw
evmhosmi
evmhosmia
evmhosmiaaw
evmhosmianw
evmhossf
evmhossfa
evmhossfaaw
evmhossfanw
evmhossiaaw
evmhossianw
evmhoumi
evmhoumia
evmhoumiaaw
evmhoumianw
evmhousiaaw
evmhousianw
evmr

evmra
evmwhsmf
evmwhsmfa
evmwhsmi
evmwhsmia
evmwhssf

evmwhssfa

Table B-1. Instructions (Binary) by Mnemonic

0123456 7 8 91011121314 151617 18 1920 21 22 23 24 25 26 27 28 29 30 31
000100 rD rA rB 10110101111
000100 rD rA rB 10100101101
000100 rD rA rB 10110101101
000100 rD rA rB 10100101100
000100 rD rA rB 10110101100
000100 rD rA rB 10000001111
000100 rD rA rB 10000101111
000100 rD rA rB 10100001111
000100 rD rA rB 10110001111
000100 rD rA rB 10000001101
000100 rD rA rB 10000101101
000100 rD rA rB 10100001101
000100 rD rA rB 10110001101
000100 rD rA rB 10000000111
000100 rD rA rB 10000100111
000100 rD rA rB 10100000111
000100 rD rA rB 10110000111
000100 rD rA rB 10100000101
000100 rD rA rB 10110000101
000100 rD rA rB 10000001100
000100 rD rA rB 10000101100
000100 rD rA rB 10100001100
000100 rD rA rB 10110001100
000100 rD rA rB 10100000100
000100 rD rA rB 10110000100
evmr rD,rA equivalent to evor rD,rA;rA

000100 rD rA i 10011000100
000100 rD rA rB 10001001111
000100 rD rA rB 10001101111
000100 rD rA rB 10001001101
000100 rD rA rB 10001101101
000100 rD rA rB 10001000111
000100 rD rA rB 10001100111

Form Mnemonic

EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX

EVX
EVX
EVX
EVX
EVX
EVX
EVX

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

evmhogsmfan
evmhogsmiaa
evmhogsmian
evmhogumiaa
evmhogumian
evmhosmf
evmhosmfa
evmhosmfaaw
evmhosmfanw
evmhosmi
evmhosmia
evmhosmiaaw
evmhosmianw
evmhossf
evmhossfa
evmhossfaaw
evmhossfanw
evmhossiaaw
evmhossianw
evmhoumi
evmhoumia
evmhoumiaaw
evmhoumianw
evmhousiaaw
evmhousianw
evmr

evmra
evmwhsmf
evmwhsmfa
evmwhsmi
evmwhsmia
evmwhssf

evmwhssfa

B-6

Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evmwhumi|0 0 0 1 0 O rD rA B 1000100110 0| EVX evmwhumi
evmwhumia|0 0 0 1 0 O rD rA B 1000110110 0|EVX evmwhumia
evmwhusiaaw (0 0 0 1 0 0 rD rA B 1010100010 0| EVX evmwhusiaaw
evmwhusianw |0 0 0 1 0 0 rD rA B 1011100010 0|EVX evmwhusianw
evmwlumi|0 0 0 1 0 0 rD rA B 1000100100 0| EVX evmwlumi
evmwlumia|0 0 0 1 0 0 rD rA B 1000110100 0|EVX evmwlumia
evmwlumiaaw (0 0 0 1 0 O rD rA B 1010100100 0|EVX evmwlumiaaw
evmwlumianw |0 0 0 1 0 0 rD rA B 1011100100 0|EVX evmwlumianw
evmwlusiaaw |0 0 0 1 0 O rD rA B 1010100000 0| EVX evmwlusiaaw
evmwlusianw (0 0 0 1 0 O rD rA B 1011100000 0|EVX evmwlusianw
evmwsmf|(0 0 0 1 0 O rD rA B 1000101101 1|EVX evmwsmf
evmwsmfa|0 0 0 1 0 0 rD rA B 1000111101 1|EVX evmwsmfa
evmwsmfaa|0 0 0 1 0 0 rD rA B 1010101101 1|EVX evmwsmfaa
evmwsmfan|{0 0 0 1 0 O rD rA B 1011101101 1|EVX evmwsmfan
evmwsmi|0 0 0 1 0 0 rD rA B 1000101100 1|EVX evmwsmi
evmwsmia|0 0 0 1 0 0 rD rA B 1000111100 1]EVX evmwsmia
evmwsmiaa|0 0 0 1 0 O rD rA rB 1010101100 1|EVX evmwsmiaa
evmwsmian (0 0 0 1 0 0 rD rA B 1011101100 1|EVX evmwsmian
evmwssf(0 0 0 1 0 0 rD rA B 1000101001 1|EVX evmwssf
evmwssfa(0 0 0 1 0 0 rD rA B 1000111001 1|EVX evmwssfa
evmwssfaa(0 0 0 1 0 0 rD rA B 1010101001 1|EVX evmwssfaa
evmwssfan |0 0 0 1 0 0 rD rA B 1011101001 1|EVX evmwssfan
evmwumi|0 0 0 1 0 0 rD rA B 1000101100 0| EVX evmwumi
evmwumia|0 0 0 1 0 0 rD rA B 1000111100 0|EVX evmwumia
evmwumiaa (0 0 0 1 0 0 rD rA B 1010101100 0|EVX evmwumiaa
evmwumian |0 0 0 1 0 0 rD rA B 1011101100 0]EVX evmwumian
evhand|{0 0 0 1 00 rD rA B 0100001111 0|EVX evhand
evheg|(0 0 0 100 rD rA mn 0100000100 1|EVX evneg
evhor|0 0 0100 rD rA rB 0100001100 OfEVX evnor
evnot evnot rD,rA equivalent to evnor rD,rA,rA evnot
evor|0 00100 rD rA B 0100001011 1|EVX evor
evorc(0 00100 rD rA B 0100001101 1|EVX evorc
evrilw(0 00100 rD rA B 0100010100 O0|EVX evriw

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor B-7

SPE and Embedded Floating-Point Opcode Listings

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evrlwi|0 00100 rD rA UMM 0100010101 0|EVX evrlwi
evrndw |0 0 0 1 0 O rD rA UMM 0100000110 0|EVX evindw
evsel 000100 rD rA B 01001111 cfS | EVX evsel
evslw{0 00100 rD rA B 0100010010 0fEVX evslw
evslwi(0 0 0 100 rD rA UMM 0100010011 0|EVX evslwi
evsplatfi|0 0 0 1 0 0 rD SIMM mn 0100010101 1|EVX evsplatfi
evsplatij0 0 0 1 00 rD SIMM mn 0100010100 1]EVX evsplati
evsrwis|0 0 0 1 00 rD rA UMM 0100010001 1|EVX evsrwis
evsrwiu(0 0 0 1 00 rD rA UMM 0100010001 0|EVX evsrwiu
evsrws |0 0 0100 rD rA B 0100010000 1|EVX evsrws
evsrwu(0 00 100 rD rA rB 01000100O0O0 OfEVX evsrwu
evstdd |0 0 0 1 0 O rD rA UIMM ! 0110010000 1|EVX evstdd
evstddx|{0 0 0 1 0 O rS rA rB 0110010000 OfEVX evstddx
evstdh|0 0 0 1 0 0 rS rA UIMM ! 0110010010 1|EVX evstdh
evstdhx|0 0 0 1 0 O rS rA rB 0110010010 0fEVX evstdhx
evstdw |0 0 0 1 0 O rS rA UIMM ! 0110010001 1]|EVX evstdw
evstdwx (0 0 0 1 0 O rS rA B 0110010001 0|EVX evstdwx
evstwhe |0 0 0 1 0 O rS rA uMM3 0110011000 1|EVX evstwhe
evstwhex |0 0 0 1 0 O rS rA B 0110011000 0|EVX evstwhex
evstwho (0 0 0 1 0 O rS rA uMM3 0110011010 1|EVX evstwho
evstwhox |0 0 0 1 0 O rS rA B 0110011010 0|EVX evstwhox
evstwwe (0 0 0 1 0 0O rS rA uMM3 0110011100 1|EVX evstwwe
evstwwex |0 0 0 1 0 O rS rA rB 0110011100 0|EVX evstwwex
evstwwo |0 0 0 1 0 0 rS rA uMM3 0110011110 1]EVX evstwwo
evstwwox |0 0 0 1 0 O rS rA B 0110011110 0|EVX evstwwox
evsubfsmiaaw [0 0 0 1 0 0 rD rA n 1001100101 1|EVX evsubfsmiaaw
evsubfssiaaw (0 0 0 1 0 0 rD rA mn 1001100001 1|EVX evsubfssiaaw
evsubfumiaaw (0 0 0 1 0 0 rD rA n 1001100101 0|EVX evsubfumiaaw
evsubfusiaaw |0 0 0 1 0 0 rD rA mn 1001100001 0|EVX evsubfusiaaw
evsubfw [0 0 0 1 0 0 rD rA rB 0100000010 0|EVX evsubfw
evsubifw (0 0 0 1 0 0 rD UiMM rB 0100000011 0|EVX evsubifw
evsubiw evsubiw rD,rB,UIMM equivalent to evsubifw rD,UIMM,rB evsubiw

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

B-8 Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evsubw evsubw rD,rB,rA equivalent to evsubfw rD,rA,rB evsubw
evxor|0 0 0100 rD rA rB 0100001011 0|EVX evxor
T d=UIMM*8
2 d=UIMM*2
3 d=UIMM* 4

B.2 Instructions (Decimal and Hexadecimal) by Opcode
Table B-2 lists instructions by opcode.

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

brinc 04 rD rA B 0100000111 1|EVX brinc
efsabs 04 rD rA i 0101100010 0 EFX efsabs
efsadd 04 rD rA rB 0101100000 0 EFX efsadd
efscfsf 04 rD " rB 0101101001 1| EFX efscfsf
efscfsi 04 rD " rB 0101101000 1|EFX efscfsi
efscfuf 04 rD " rB 0101101001 0|EFX efscfuf
efscfui 04 rD " rB 0101101000 0|EFX efscfui
efscmpeq 04 cfD |/ / rA B 0101100111 0|EFX efscmpeq
efscmpgt 04 crfD |/ / rA rB 0101100110 0|EFX efscmpgt
efscmplt 04 cfD |/ / rA B 0101100110 1|EFX efscmplt
efsctsf 04 rD " rB 0101101011 1| EFX efsctsf
efsctsi 04 rD " rB 0101101010 1| EFX efsctsi
efsctsiz 04 rD " rB 0101101101 0| EFX efsctsiz
efsctuf 04 rD " rB 010110101 10| EFX efsctuf
efsctui 04 rD " rB 0101101010 0|EFX efsctui
efsctuiz 04 rD i rB 0101101100 0| EFX efsctuiz
efsdiv 04 rD rA rB 0101100100 1] EFX efsdiv
efsmul 04 rD rA rB 0101100100 0| EFX efsmul
efsnabs 04 rD rA i 0101100010 1|EFX efsnabs
efsneg 04 rD rA " 0101100011 0|EFX efsneg
efssub 04 rD rA B 0101100000 1|EFX efssub
efststeq 04 cfD |/ / rA B 0101101111 0|EFX efststeq
efststgt 04 cfD |/ / rA B 0101101110 0|EFX efststgt
efststlit 04 cfD |/ / rA rB 0101101110 1|EFX efststit

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor B-9

SPE and Embedded Floating-Point Opcode Listings

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evabs 04 rD rA " 0100000100 O EVX evabs
evaddiw 04 rD UiMM rB 0100000001 O0|EVX evaddiw
evaddsmiaaw 04 rD rA n 1001100100 1|EVX evaddsmiaaw
evaddssiaaw 04 rD rA n 1001100000 1|EVX evaddssiaaw
evaddumiaaw 04 rD rA n 1001100100 0| EVX evaddumiaaw
evaddusiaaw 04 rD rA n 1001100000 0| EVX evaddusiaaw
evaddw 04 rD rA rB 0100000O0O0O0 O EVX evaddw
evand 04 rD rA rB 0100001000 1|EVX evand
evandc 04 rD rA B 0100001001 O0|EVX evandc
evcmpeq 04 cfD |/ / rA rB 0100011010 0|EVX evcmpeq
evcmpgts 04 cfD |/ / rA B 0100011000 1|EVX evempgts
evcmpgtu 04 cfD |/ / rA B 0100011000 0|EVX evcmpgtu
evcmplts 04 cfD |/ / rA B 0100011001 1fEVX evcmplts
evcempltu 04 cfD |/ / rA B 010001100 10|EVX evcmpltu
evcntlsw 04 rD rA i 010000011 10|EVX eventlsw
evcntlzw 04 rD rA " 0100000110 1] EVX eventlzw
evdivws 04 rD rA B 1001100011 0|EVX evdivws
evdivwu 04 rD rA B 1001100011 1|EVX evdivwu
eveqv 04 rD rA B 0100001100 1|EVX eveqv
evextsb 04 rD rA i 0100000101 O0|EVX evextisb
evextsh 04 rD rA i 0100000101 1|EVX evextish
evfsabs 04 rD rA i 0101000010 0| EVX evfsabs
evfsadd 04 rD rA rB 0101000000 0|EVX evfsadd
evfscfsf 04 rD i rB 0101001001 1| EVX evfscfsf
evfscfsi 04 rD " rB 0101001000 1|EVX evfscfsi
evfscfuf 04 rD n B 0101001001 0|EVX evfscfuf
evfscfui 04 rD i rB 0101001000 0|EVX evfscfui
evfscmpeq 04 cfD |/ / rA B 0101000111 0[EVX evfscmpeq
evfscmpgt 04 cfD |/ / rA B 0101000110 0fEVX evfscmpgt
evfscmplt 04 cfD |/ / rA B 0101000110 1|EVX evfscmplt
evfsctsf 04 rD mn B 0101001011 1]EVX evfsctsf
evfsctsi 04 rD " rB 0101001010 1|EVX evfsctsi
evfsctsiz 04 rD n B 0101001101 0|EVX evfsctsiz

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

B-10 Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
evfsctuf 04 D " B 01010010110
evfsctui 04 D " B 01010010100
evfsctuiz 04 D " B 01010011000

evfsdiv 04 rD rA B 01010001001
evfsmul 04 rD rA B 01010001000

evfsnabs 04 rD rA " 0101000010O01
evfsneg 04 D rA " 01010000110
evfssub 04 D rA B 01010000001
evfststeq 04 cfd |/ / rA B 01010011110
evfststgt 04 cfd |/ / rA B 01010011100
evfststit 04 cfd |/ / rA B 01010011101

efscfd 04 D 00000 B 01011001111
efdcfs 04 D 00000 B 01011101111
evidd 04 D rA UMM 0110000000 1

eviddx 04 rD rA B 01100000000
evidh 04 rD rA umMMm® 01100000101

evidhx 04 rD rA B 01100000100
evidw 04 rD rA umMMm® 01100000011
evidwx 04 rD rA B 01100000010
evlhhesplat 04 D rA UMMZ 01100001001
evihhesplatx 04 rD rA B 01100001000
evihhossplat 04 rD rA umMmM2 01100001111
evlhhossplatx 04 rD rA B 01100001110
evihhousplat 04 rD rA UumMM2 01100001101
evihhousplatx 04 rD rA B 01100001100
eviwhe 04 D rA umMM® 0110001000 1
eviwhex 04 rD rA B 01100010000
eviwhos 04 rD rA umMm® 01100010111

eviwhosx 04 rD rA B 01100010110
eviwhou 04 rD rA umMmM® (0110001010 1
eviwhoux 04 rD rA B 01100010100

eviwhsplat 04 rD rA umMm® 01100011101

eviwhsplatx 04 rD rA B 01100011100

Form
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EFX
EFX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Mnemonic
evfsctuf
evfsctui
evfsctuiz
evisdiv
evismul
evfsnabs
evfsneg
evfssub
evfststeq
eviststgt
evfststlit
efscfd

efdcfs

evidd

eviddx

evidh

evidhx
evidw
evidwx
evihhesplat
evlhhesplatx
evlhhossplat
evlhhossplatx
evihhousplat
evihhousplatx
eviwhe
eviwhex
eviwhos
eviwhosx
eviwhou
eviwhoux
eviwhsplat

eviwhsplatx

Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

eviwwsplat 04 rD rA UMM3 |01 10001100 1]EVX eviwwsplat
eviwwsplatx 04 rD rA B 0110001100 0fEVX evlwwsplatx
evmergehi 04 rD rA B 0100010110 0| EVX evmergehi
evmergehilo 04 rD rA B 0100010111 0|EVX evmergehilo
evmergelo 04 rD rA B 0100010110 1|EVX evmergelo
evmergelohi 04 rD rA B 0100010111 1]EVX evmergelohi
evmhegsmfaa 04 rD rA B 1010010101 1] EVX evmhegsmfaa
evmhegsmfan 04 rD rA B 1011010101 1] EVX evmhegsmfan
evmhegsmiaa 04 rD rA B 1010010100 1]EVX evmhegsmiaa
evmhegsmian 04 rD rA B 1011010100 1|EVX evmhegsmian
evmhegumiaa 04 rD rA B 1010010100 0| EVX evmhegumiaa
evmhegumian 04 rD rA B 1011010100 0| EVX evmhegumian
evmhesmf 04 rD rA rB 1000000101 1] EVX evmhesmf
evmhesmfa 04 rD rA rB 1000010101 1] EVX evmhesmfa
evmhesmfaaw 04 rD rA B 1010000101 1] EVX evmhesmfaaw
evmhesmfanw 04 rD rA B 1011000101 1] EVX evmhesmfanw
evmhesmi 04 rD rA B 1000000100 1|EVX evmhesmi
evmhesmia 04 rD rA rB 1000010100 1| EVX evmhesmia
evmhesmiaaw 04 rD rA B 1010000100 1] EVX evmhesmiaaw
evmhesmianw, 04 rD rA B 1011000100 1] EVX evmhesmianw
evmhessf 04 rD rA rB 1000000O0O011|EVX evmhessf
evmhessfa 04 rD rA B 1000010001 1|EVX evmhessfa
evmhessfaaw 04 rD rA B 1010000001 1|EVX evmhessfaaw
evmhessfanw 04 rD rA B 1011000001 1| EVX evmhessfanw
evmhessiaaw 04 rD rA B 1010000000 1|EVX evmhessiaaw
evmhessianw 04 rD rA B 1011000000 1|EVX evmhessianw
evmheumi 04 rD rA B 1000000100 0| EVX evmheumi
evmheumia 04 rD rA B 1000010100 0| EVX evmheumia
evmheumiaaw 04 rD rA B 1010000100 0| EVX evmheumiaaw
evmheumianw 04 rD rA B 1011000100 0| EVX evmheumianw
evmheusiaaw 04 rD rA B 101000000 O0 0| EVX evmheusiaaw
evmheusianw 04 rD rA B 1011000000 0| EVX evmheusianw
evmhogsmfaa 04 rD rA B 1010010111 1]EVX evmhogsmfaa

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

B-12 Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evmhogsmfan 04 rD rA B 1011010111 1|EVX evmhogsmfan
evmhogsmiaa 04 rD rA B 1010010110 1] EVX evmhogsmiaa
evmhogsmian 04 rD rA B 1011010110 1] EVX evmhogsmian
evmhogumiaa 04 rD rA B 1010010110 0| EVX evmhogumiaa
evmhogumian 04 rD rA B 1011010110 0| EVX evmhogumian
evmhosmf 04 rD rA B 1000000111 1| EVX evmhosmf
evmhosmfa 04 rD rA B 1000010111 1| EVX evmhosmfa
evmhosmfaaw 04 rD rA B 1010000111 1] EVX evmhosmfaaw
evmhosmfanw 04 rD rA B 1011000111 1] EVX evmhosmfanw
evmhosmi 04 rD rA rB 1000000110 1|EVX evmhosmi
evmhosmia 04 rD rA rB 1000010110 1|EVX evmhosmia
evmhosmiaaw 04 rD rA B 1010000110 1| EVX evmhosmiaaw
evmhosmianw 04 rD rA B 1011000110 1] EVX evmhosmianw
evmhossf 04 rD rA rB 1000000011 1| EVX evmhossf
evmhossfa 04 rD rA B 1000010011 1|EVX evmhossfa
evmhossfaaw 04 rD rA B 1010000011 1|EVX evmhossfaaw
evmhossfanw 04 rD rA B 1011000011 1|EVX evmhossfanw
evmhossiaaw 04 rD rA B 1010000010 1|EVX evmhossiaaw
evmhossianw 04 rD rA B 1011000010 1| EVX evmhossianw
evmhoumi 04 rD rA rB 1000000110 0] EVX evmhoumi
evmhoumia 04 rD rA rB 1000010110 0] EVX evmhoumia
evmhoumiaaw 04 rD rA B 1010000110 0| EVX evmhoumiaaw
evmhoumianw 04 rD rA B 1011000110 0| EVX evmhoumianw
evmhousiaaw 04 rD rA B 1010000010 0| EVX evmhousiaaw
evmhousianw 04 rD rA B 1011000010 0| EVX evmhousianw
evmra 04 rD rA " 1001100010 0| EVX evmra
evmwhsmf 04 rD rA B 1000100111 1] EVX evmwhsmf
evmwhsmfa 04 rD rA B 1000110111 1|EVX evmwhsmfa
evmwhsmi 04 rD rA B 1000100110 1|EVX evmwhsmi
evmwhsmia 04 rD rA B 1000110110 1] EVX evmwhsmia
evmwhssf 04 rD rA B 1000100011 1|EVX evmwhssf
evmwhssfa 04 rD rA B 1000110011 1|EVX evmwhssfa
evmwhumi 04 rD rA B 1000100110 0] EVX evmwhumi

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor B-13

SPE and Embedded Floating-Point Opcode Listings

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode

Mnemonic 0 1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
evmwhumia 04 rD rA rB 10001101100
evmwhusiaaw 04 rD rA rB 10101000100
evmwhusianw 04 rD rA rB 10111000100
evmwlumi 04 rD rA rB 10001001000
evmwlumia 04 rD rA rB 10001101000
evmwlumiaaw 04 rD rA rB 10101001000
evmwlumianw 04 rD rA rB 10111001000
evmwlusiaaw 04 rD rA rB 10101000000O0
evmwlusianw 04 rD rA rB 10111000000
evmwsmf 04 rD rA rB 10001011011
evmwsmfa 04 rD rA rB 10001111011
evmwsmfaa 04 rD rA rB 10101011011
evmwsmfan 04 rD rA rB 10111011011
evmwsmi 04 rD rA rB 10001011001
evmwsmia 04 rD rA rB 10001111001
evmwsmiaa 04 rD rA B 10101011001
evmwsmian 04 rD rA rB 10111011001
evmwssf 04 rD rA rB 10001010011
evmwssfa 04 rD rA B 10001110011
evmwssfaa 04 rD rA B 10101010011
evmwssfan 04 rD rA B 10111010011
evmwumi 04 rD rA rB 10001011000
evmwumia 04 rD rA rB 10001111000
evmwumiaa 04 rD rA rB 10101011000
evmwumian 04 rD rA B 10111011000
evnhand 04 rD rA rB 01000011110
evneg 04 rD rA " 0100000100O01

evnor 04 rD rA rB 01000011000

evor 04 rD rA rB 01000010111

evorc 04 rD rA rB 01000011011

evrlw 04 rD rA rB 01000101000
evrlwi 04 rD rA UMM 01000101010
evrndw 04 rD rA UMM 01000001100

Form
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Mnemonic
evmwhumia
evmwhusiaaw
evmwhusianw
evmwlumi
evmwlumia
evmwlumiaaw
evmwlumianw
evmwlusiaaw
evmwlusianw
evmwsmf
evmwsmfa
evmwsmfaa
evmwsmfan
evmwsmi
evmwsmia
evmwsmiaa
evmwsmian
evmwssf
evmwssfa
evmwssfaa
evmwssfan
evmwumi
evmwumia
evmwumiaa
evmwumian
evnand

evneg

evnor

evor

evorc

evriw

evrlwi

evrndw

Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evsel 04 rD rA B 0100111 1| cfS |EVX evsel
evslw 04 rD rA rB 0100010010 O EVX evslw
evslwi 04 rD rA UiMM 0100010011 0|EVX evslwi
evsplatfi 04 rD SIMM " 0100010101 1|EVX evsplatfi
evsplati 04 rD SIMM " 0100010100 1|EVX evsplati
evsrwis 04 rD rA UiMM 0100010001 1|EVX evsrwis
evsrwiu 04 rD rA UiMM 0100010001 0|EVX evsrwiu
evsrws 04 rD rA rB 0100010000 1|EVX evsrws
evsrwu 04 rD rA rB 01000100O00O0 O EVX evsrwu
evstdd 04 rD rA uiMm ! 0110010000 1|EVX evstdd
evstddx 04 rS rA rB 0110010000 O EVX evstddx
evstdh 04 rS rA uiMm ! 0110010010 1|EVX evstdh
evstdhx 04 rS rA rB 0110010010 0fEVX evstdhx
evstdw 04 rS rA uiMm ! 0110010001 1| EVX evstdw
evstdwx 04 rS rA rB 0110010001 O0|EVX evstdwx
evstwhe 04 rS rA UIMM 3 0110011000 1|EVX evstwhe
evstwhex 04 rS rA rB 0110011000 0 EVX evstwhex
evstwho 04 rS rA UIMM 3 0110011010 1|EVX evstwho
evstwhox 04 rS rA rB 0110011010 0| EVX evstwhox
evstwwe| 04 rS rA UIMM 3 0110011100 1|EVX evstwwe
evstwwex 04 rS rA rB 0110011100 0| EVX evstwwex
evstwwo 04 rS rA UIMM 3 0110011110 1|EVX evstwwo
evstwwox 04 rS rA B 0110011110 0| EVX evstwwox
evsubfsmiaaw 04 rD rA mn 1001100101 1|EVX evsubfsmiaaw
evsubfssiaaw 04 rD rA mn 1001100001 1|EVX evsubfssiaaw
evsubfumiaaw 04 rD rA mn 1001100101 0|EVX evsubfumiaaw
evsubfusiaaw 04 rD rA mn 1001100001 0|EVX evsubfusiaaw
evsubfw 04 rD rA rB 0100000010 0| EVX evsubfw
evsubifw 04 rD UiMM rB 0100000011 0|EVX evsubifw
evxor 04 rD rA B 010000101 10|EVX evxor
T d=UuMM* 8
2 d=UIMM *2
3 d=UIMM* 4

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor B-15

SPE and Embedded Floating-Point Opcode Listings

B.3 Instructions by Form

Table B-3 lists instructions by form.
Table B-3. Instructions (Binary) by Form

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

efdabs|0 0 0 1 0 O rD rA i 0101110010 0| EFX efdabs
efdadd |0 0 0 1 0 O rD rA B 0101110000 0 EFX efdadd
efdcfs(0 0 0 1 0 0 rD 00000O0 B 0101110111 1|EFX efdcfs
efdcfsf |0 0 0 1 0 0 rD i B 0101111001 1|EFX efdcfsf
efdcfsi|0 0 0 1 0 0 rD i B 0101111000 1|EFX efdcfsi
efdcfuf (0 0 0 1 0 0 rD i B 0101111001 0|EFX efdcfuf
efdcfui |0 0 0 1 0 0 rD i B 0101111000 0f EFX efdcfui
efdcmpeq|0 0 0 1 0 O| cfD |/ / rA B 0101110111 0|EFX efdcmpeq
efdecmpgt|(0 0 0 1 0 O| crfD |/ / rA B 0101110110 0| EFX efdcmpgt
efdemplt|{0 0 0 1 0 O| cfD [/ / rA B 0101110110 1|EFX efdecmplt
efdctsf |0 0 0 1 0 O rD i B 0101111011 1|EFX efdctsf
efdctsi|0 0 0 1 0 O rD i B 0101111010 1|EFX efdctsi
efdctsiz{0 0 0 1 0 0 rD i B 0101111101 0|EFX efdctsiz
efdctuf (0 0 0 1 0 O rD i B 0101111011 0|EFX efdctuf
efdctui |0 0 0 1 0 0 rD i B 0101111010 0f EFX efdctui
efdctuiz|0 0 0 1 0 0 rD mn B 0101111100 0| EFX efdctuiz
efddivi0 0 0 1 0 0 rD rA B 0101110100 1|EFX efddiv
efdmul ({0 0 0 1 0 O rD rA B 0101110100 0 EFX efdmul
efdnabs |0 0 0 1 0 O rD rA i 0101110010 1|EFX efdnabs
efdneg|0 0 0 1 0 O rD rA i 0101110011 0|EFX efdneg
efdsub|0 0 0 1 0 O rD rA B 0101110000 1|EFX efdsub
efdtsteq |0 0 0 1 0 Of crfD |/ / rA B 0101111111 0]|EFX efdtsteq
efdtstgt (0 0 0 1 0 O crfD |/ / rA =] 0101111110 0|EFX efdtstgt
efdtstlt|/0 0 0 1 0 O| crfiD |/ / rA B 0101111110 1|EFX efdtstit
efsabs/0 0 0 1 0 O rD rA i 0101100010 0 EFX efsabs
efsadd/0 0 0 1 0 O rD rA B 0101100000 0 EFX efsadd
efscfd(0 0 0 1 0 O rD 00000O0 B 0101100111 1|EFX efscfd
efscfsf{0 0 0 1 0 0 rD i B 0101101001 1|EFX efscfsf
efscfsijf0 0 0 1 0 O rD i B 0101101000 1|EFX efscfsi
efscfuff0 0 0 1 0 0 rD i B 0101101001 0|EFX efscfuf

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

B-16 Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-3. Instructions (Binary) by Form

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

efscfuil0 0 0 1 0 O rD n rB 0101101000 0|EFX efscfui
efscmpeq(0 0 0 1 0 O| cfD [/ / rA B 0101100111 0|EFX efscmpeq
efscmpgt0 0 0 1 0 0| cfD |/ / rA B 0101100110 0|EFX efscmpgt
efscmpltjf0 0 0 1 0 O| cfD [/ / rA B 0101100110 1|EFX efscmplt
efsctsf{0 0 0 1 0 O rD mn B 0101101011 1|EFX efsctsf
efsctsil0 0 0 1 0 O rD n rB 0101101010 1| EFX efsctsi
efsctsiz|0 0 0 1 0 0 rD mn B 0101101101 0|EFX efsctsiz
efsctuff0 0 0 1 0 0 rD mn B 0101101011 0|EFX efsctuf
efsctuil0 0 0 1 0 0O rD n rB 0101101010 0|EFX efsctui
efsctuiz0 0 0 1 0 0 rD mn B 0101101100 0fEFX efsctuiz
efsdivi0 0 0 1 0 0 rD rA rB 0101100100 1|EFX efsdiv
efsmulf0 0 0 1 00 rD rA rB 0101100100 0| EFX efsmul
efsnabs{0 0 0 1 0 O rD rA i 0101100010 1| EFX efsnabs
efsneg|0 0 0 1 0 0 rD rA i 0101100011 0|EFX efsneg
efssub{0 0 0 1 0 O rD rA rB 0101100000 1| EFX efssub
efststeq(0 0 0 1 0 O| crfD |/ / rA B 0101101111 0|EFX efststeq
efststgt|0 0 0 1 0 0| crfD |/ / rA B 0101101110 0|EFX efststgt
efststltf0 0 0 1 0 0| crfD |/ / rA B 0101101110 1| EFX efststit
brinc'|/0 0 0 1 0 0 D rA B 0100000111 1|EVX brinc
evabs/0 0 0 1 0 O rD rA i 0100000100 O EVX evabs
evaddiw|0 0 0 1 0 O rD UMM rB 0100000001 0|EVX evaddiw
evaddsmiaaw|(0 0 0 1 0 O rD rA mn 1001100100 1|EVX evaddsmiaaw
evaddssiaaw|0 0 0 1 0 O rD rA n 1001100000 1|EVX evaddssiaaw
evaddumiaaw|0 0 0 1 0 O rD rA n 1001100100 0| EVX evaddumiaaw
evaddusiaaw|0 0 0 1 0 O rD rA n 1001100000 0| EVX evaddusiaaw
evaddw|{0 0 0 1 0 O rD rA rB 0100000O0O0O0 O EVX evaddw
evand/0 0 0 1 0 O rD rA rB 0100001000 1|EVX evand
evandc/0 0 0 1 0 O rD rA rB 0100001001 O0|EVX evandc
evcmpeq|0 0 0 1 0 Of criD |/ / rA B 0100011010 0|EVX evcmpeq
evempgts(0 0 0 1 0 O| crfD |/ / rA B 0100011000 1|EVX evempgts
evempgtu|0 0 0 1 0 O| crfD [/ / rA B 0100011000 0|EVX evecmpgtu
evemplts|0 0 0 1 0 O crfD |/ / rA B 0100011001 1fEVX evcmplts
evempltu|0 0 0 1 0 Of crfD |/ / rA B 010001100 10|EVX evcmpltu

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor B-17

SPE and Embedded Floating-Point Opcode Listings

Mnemonic
evcntlsw
evcentlzw

evdivws
evdivwu
eveqv
evextsb
evextsh
evfsabs
evfsadd
evfscfsf
evfscfsi
evfscfuf
evfscfui
evfscmpeq
evfscmpgt
evfscmplt
evfsctsf
evfsctsi
evfsctsiz
evfsctuf
evfsctui
evfsctuiz
evfsdiv
evismul
evfsnabs
evfisneg
evfssub
evfststeq
eviststgt
evfststit
evidd
eviddx

evidh

Table B-3. Instructions (Binary) by Form

123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic
00100 rD rA i 010000011 10|EVX eventlsw
00100 rD rA i 0100000110 1|EVX eventlzw
00100 rD rA rB 1001100011 0|EVX evdivws
00100 rD rA rB 1001100011 1|EVX evdivwu
00100 rD rA B 0100001100 1|EVX eveqv
00100 rD rA i 0100000101 0|EVX evexisb
00100 rD rA i 0100000101 1]EVX evexish
00100 rD rA i 0101000010 0| EVX evfsabs
00100 rD rA rB 0101000000 0| EVX evfsadd
00100 rD n rB 0101001001 1|EVX evfscfsf
00100 rD n rB 0101001000 1|EVX evfscfsi
00100 rD n rB 0101001001 0|EVX evfscfuf
00100 rD n rB 0101001000 0| EVX evfscfui
0010O0| cfb [/ / rA B 0101000111 0[EVX evfscmpeq
0010O0| cfb [/ / rA B 0101000110 0fEVX evfscmpgt
0010O0| cfb [/ / rA B 0101000110 1]EVX evfscmplt
00100 rD n rB 0101001011 1]EVX evfsctsf
00100 rD n rB 0101001010 1|EVX evfsctsi
00100 rD n rB 0101001101 0|EVX evfsctsiz
00100 rD n rB 010100101 10|EVX evfsctuf
00100 rD n rB 0101001010 0| EVX evfsctui
00100 rD n rB 0101001100 0fEVX evfsctuiz
00100 rD rA rB 0101000100 1|EVX evfsdiv
00100 rD rA rB 0101000100 0| EVX evfsmul
00100 rD rA " 0101000010 1|EVX evfsnabs
00100 rD rA " 0101000011 0|EVX evfsneg
00100 rD rA rB 0101000000 1|EVX evfssub
00100O0| cfD |/ / rA B 0101001111 0|EVX evfststeq
00100O0| cfD |/ / rA B 0101001110 0fEVX evfststgt
00100O0| cfD |/ / rA B 0101001110 1|EVX evfststit
00100 rD rA uiMM? 0110000000 1|EVX evidd
00100 rD rA rB 0110000000 0| EVX eviddx
00100 rD rA UIMM 0110000010 1|EVX evidh

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

B-18

Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-3. Instructions (Binary) by Form

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evidhx{0 0 0 1 0 O rD rA rB 0110000010 0fEVX evildhx
evidw|/0 0 0 1 0 O rD rA uiMm ! 0110000001 1|EVX evidw
evidwx/0 0 0 1 0 O rD rA B 0110000001 0|EVX evidwx
evihhesplat|0 0 0 1 0 O rD rA UMM2 |01 10000100 1|EVX evlhhesplat
evlhhesplatx(0 0 0 1 0 O rD rA B 0110000100 0|EVX evlhhesplatx
evlhhossplat|0 0 0 1 0 0 rD rA UMMZ 0110000111 1|EVX evihhossplat
evlhhossplatx|0 0 0 1 0 0 rD rA B 0110000111 0|EVX evlhhossplatx
evlhhousplat|0 0 0 1 0 O rD rA UMM2 01100001101 EVX evihhousplat
evihhousplatx|0 0 0 1 0 0 rD rA B 0110000110 0|EVX evlhhousplatx
eviwhe(0 0 0 1 0 O rD rA UIMM3 0110001000 1|EVX eviwhe
eviwhex(0 0 0 1 0 O rD rA rB 0110001000 O EVX eviwhex
eviwhos|0 0 0 1 0 0 D rA UMMS3 |01 10001011 1] EVX eviwhos
evlwhosx|{|0 0 0 1 0 O rD rA B 0110001011 0|EVX evlwhosx
eviwhou|{0 0 0 1 0 O rD rA umMmM® 0110001010 1|EVX eviwhou
evilwhoux(0 0 0 1 0 O rD rA B 0110001010 0fEVX evlwhoux
evilwhsplat{0 0 0 1 0 0 rD rA umMM3 0110001110 1|EVX eviwhsplat
evilwhsplatx{0 0 0 1 0 0 rD rA B 0110001110 0fEVX evlwhsplatx
evlwwsplat/0 0 0 1 0 0 rD rA umMM3 0110001100 1|EVX eviwwsplat
evlwwsplatx|/0 0 0 1 0 0 rD rA B 0110001100 0fEVX evlwwsplatx
evmergehil0 0 0 1 0 O rD rA B 0100010110 0| EVX evmergehi
evmergehilo|/0 0 0 1 0 0 rD rA B 0100010111 0|EVX evmergehilo
evmergelo/0 0 0 1 0 O rD rA B 0100010110 1|EVX evmergelo
evmergelohi|0 0 0 1 0 0 rD rA B 0100010111 1]EVX evmergelohi
evmhegsmfaa/0 0 0 1 0 O rD rA B 1010010101 1| EVX evmhegsmfaa
evmhegsmfan|0 0 0 1 0 0 rD rA B 1011010101 1|EVX evmhegsmfan
evmhegsmiaa/0 0 0 1 0 0 rD rA B 1010010100 1]EVX evmhegsmiaa
evmhegsmian/0 0 0 1 0 O rD rA B 1011010100 1|EVX evmhegsmian
evmhegumiaa/0 0 0 1 0 O rD rA B 1010010100 0 EVX evmhegumiaa
evmhegumian|0 0 0 1 0 0 rD rA B 1011010100 0| EVX evmhegumian
evmhesmf/0 0 0 1 0 O rD rA B 1000000101 1] EVX evmhesmf
evmhesmfal0 0 0 1 0 O rD rA B 1000010101 1] EVX evmhesmfa
evmhesmfaaw|0 0 0 1 0 O rD rA B 1010000101 1] EVX evmhesmfaaw
evmhesmfanw|0 0 0 1 0 O rD rA B 1011000101 1| EVX evmhesmfanw

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor B-19

SPE and Embedded Floating-Point Opcode Listings

Table B-3. Instructions (Binary) by Form

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evmhesmi(0 0 0 1 0 0 rD rA rB 1000000100 1|EVX evmhesmi
evmhesmia/0 0 0 1 0 O rD rA rB 1000010100 1| EVX evmhesmia
evmhesmiaaw(0 0 0 1 0 0 rD rA B 1010000100 1] EVX evmhesmiaaw
evmhesmianw|0 0 0 1 0 O rD rA B 1011000100 1| EVX evmhesmianw
evmhessf(l0 0 0 1 0 0 rD rA rB 1000000O0O0T1 1] EVX evmhessf
evmhessfal0 0 0 1 0 0 rD rA rB 1000010001 1]EVX evmhessfa
evmhessfaaw|0 0 0 1 0 O rD rA B 101000000O0T1 1] EVX evmhessfaaw
evmhessfanw|0 0 0 1 0 O rD rA B 1011000001 1| EVX evmhessfanw
evmhessiaaw|0 0 0 1 0 O rD rA B 1010000000 1|EVX evmhessiaaw
evmhessianw|0 0 0 1 0 O rD rA B 1011000000 1] EVX evmhessianw
evmheumi|/0 0 0 1 0 O rD rA rB 1000000100 0| EVX evmheumi
evmheumia/0 0 0 1 0 O rD rA rB 1000010100 0| EVX evmheumia
evmheumiaaw|0 0 0 1 0 O rD rA B 1010000100 0| EVX evmheumiaaw
evmheumianw|0 0 0 1 0 O rD rA B 1011000100 0| EVX evmheumianw
evmheusiaaw|0 0 0 1 0 0 rD rA B 1010000000 0| EVX evmheusiaaw
evmheusianw|0 0 0 1 0 O rD rA B 1011000000 0| EVX evmheusianw
evmhogsmfaa/0 0 0 1 0 O rD rA B 1010010111 1]EVX evmhogsmfaa
evmhogsmfan|0 0 0 1 0 O rD rA B 1011010111 1EVX evmhogsmfan
evmhogsmiaa/0 0 0 1 0 0 rD rA B 1010010110 1] EVX evmhogsmiaa
evmhogsmian|0 0 0 1 0 0 rD rA B 1011010110 1] EVX evmhogsmian
evmhogumiaa|0 0 0 1 0 0 rD rA B 1010010110 0| EVX evmhogumiaa
evmhogumian|0 0 0 1 0 O rD rA B 1011010110 0| EVX evmhogumian
evmhosmf(0 0 0 1 0 O rD rA B 1000000111 1| EVX evmhosmf
evmhosmfa/0 0 0 1 0 O rD rA B 1000010111 1|EVX evmhosmfa
evmhosmfaaw|0 0 0 1 0 0 rD rA B 1010000111 1| EVX evmhosmfaaw
evmhosmfanw|(0 0 0 1 0 0 rD rA B 1011000111 1] EVX evmhosmfanw
evmhosmi|/0 0 0 1 0 O rD rA B 1000000110 1|EVX evmhosmi
evmhosmia/0 0 0 1 0 O rD rA B 1000010110 1|EVX evmhosmia
evmhosmiaaw|0 0 0 1 0 O rD rA B 1010000110 1| EVX evmhosmiaaw
evmhosmianw|0 0 0 1 0 O rD rA B 1011000110 1] EVX evmhosmianw
evmhossfi0 0 0 1 0 O rD rA B 1000000011 1| EVX evmhossf
evmhossfaj0 0 0 1 0 0 rD rA B 1000010011 1|EVX evmhossfa
evmhossfaaw|0 0 0 1 0 O rD rA B 1010000011 1|EVX evmhossfaaw

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

B-20 Freescale Semiconductor

Mnemonic
evmhossfanw
evmhossiaaw
evmhossianw

evmhoumi

evmhoumia
evmhoumiaaw
evmhoumianw
evmhousiaaw
evmhousianw
evmra
evmwhsmf
evmwhsmfa
evmwhsmi
evmwhsmia
evmwhssf
evmwhssfa
evmwhumi
evmwhumia
evmwhusiaaw
evmwhusianw
evmwlumi
evmwlumia
evmwlumiaaw
evmwlumianw
evmwlusiaaw
evmwlusianw
evmwsmf
evmwsmfa
evmwsmfaa
evmwsmfan
evmwsmi
evmwsmia

evmwsmiaa

SPE and Embedded Floating-Point Opcode Listings

Table B-3. Instructions (Binary) by Form

EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX
EVX

evmhossfanw
evmhossiaaw
evmhossianw
evmhoumi
evmhoumia
evmhoumiaaw
evmhoumianw
evmhousiaaw
evmhousianw
evmra
evmwhsmf
evmwhsmfa
evmwhsmi
evmwhsmia
evmwhssf
evmwhssfa
evmwhumi
evmwhumia
evmwhusiaaw
evmwhusianw
evmwlumi
evmwlumia
evmwlumiaaw
evmwlumianw
evmwlusiaaw
evmwlusianw
evmwsmf
evmwsmfa
evmwsmfaa
evmwsmfan
evmwsmi

evmwsmia

6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic
rD rA rB 10110000111
rD rA rB 10100000101
rD rA rB 10110000101
rD rA rB 10000001100
rD rA rB 10000101100
rD rA rB 10100001100
rD rA rB 10110001100
rD rA rB 10100000100
rD rA rB 10110000100
rD rA " 10011000100
rD rA rB 10001001111
rD rA rB 10001101111
rD rA rB 10001001101
rD rA rB 10001101101
rD rA rB 10001000111
rD rA rB 10001100111
rD rA rB 10001001100
rD rA rB 10001101100
rD rA rB 10101000100
rD rA rB 10111000100
rD rA rB 10001001000
rD rA rB 10001101000
rD rA B 10101001000
rD rA B 10111001000
rD rA B 10101000000
rD rA B 10111000000
rD rA rB 10001011011
rD rA rB 10001111011
rD rA rB 10101011011
rD rA rB 10111011011
rD rA B 10001011001
rD rA rB 10001111001
rD rA rB 10101011001

EVX

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

evmwsmiaa

Freescale Semiconductor

B-21

SPE and Embedded Floating-Point Opcode Listings

Table B-3. Instructions (Binary) by Form

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evmwsmian/0 0 0 1 0 O rD rA B 1011101100 1| EVX evmwsmian
evmwssf(l0 0 0 1 0 0 rD rA rB 1000101001 1]EVX evmwssf
evmwssfa|/0 0 0 1 0 0 rD rA rB 1000111001 1| EVX evmwssfa
evmwssfaa|/0 0 0 1 0 O rD rA rB 1010101001 1|EVX evmwssfaa
evmwssfan/0 0 0 1 0 O rD rA B 1011101001 1|EVX evmwssfan
evmwumi|0 0 0 1 0 O rD rA rB 1000101100 0| EVX evmwumi
evmwumial0 0 0 1 0 O rD rA B 1000111100 0] EVX evmwumia
evmwumiaa/0 0 0 1 0 O rD rA rB 1010101100 0| EVX evmwumiaa
evmwumian{0 0 0 1 0 0 rD rA B 1011101100 0| EVX evmwumian
evnand(0 0 0 1 0 O rD rA B 0100001111 0|EVX evhnand
evheg(0 0 0 1 0 0 rD rA mn 0100000100 1|EVX evneg
evnor/0 0 0 1 00 rD rA rB 0100001100 O0fEVX evnor
evor/0 0 0 100 rD rA rB 0100001011 1|EVX evor
evorc/0 0 0 1 0 0 rD rA rB 0100001101 1]EVX evorc
evrlw/0 0 0 1 00 rD rA rB 0100010100 0|EVX evriw
evrlwil0 0 0 1 0 0 rD rA UMM 0100010101 0|EVX evrlwi
evrndw|(0 0 0 1 0 0 rD rA UMM 0100000110 0fEVX evrndw
evsell0 00100 rD rA B 0100111 1| cfS |EVX evsel
evslw|/0 0 0 1 00 rD rA rB 0100010010 0|EVX evslw
evslwil0 0 0 1 0 O rD rA UMM 010001001 10|EVX evslwi
evsplatfii0 0 0 1 0 0 rD SIMM mn 0100010101 1|EVX evsplatfi
evsplati0 0 0 1 0 0 rD SIMM mn 0100010100 1]EVX evsplati
evsrwis|/0 0 0 1 0 0 rD rA UMM 0100010001 1]EVX evsrwis
evsrwiu{0 0 0 1 0 O rD rA UMM 0100010001 O0|EVX evsrwiu
evsrws|0 0 0 1 0 O rD rA B 0100010000 1|EVX evsrws
evsrwu/0 0 0 1 0 O rD rA rB 01000100O00O0 O EVX evsrwu
evstdd/0 0 0 1 0 O rD rA UIMM ! 0110010000 1|EVX evstdd
evstddx(0 0 0 1 0 O rS rA rB 0110010000 O EVX evstddx
evstdhj0 0 0 1 0 O rS rA UIMM ! 0110010010 1|EVX evstdh
evstdhx({0 0 0 1 0 O rS rA rB 0110010010 0 EVX evstdhx
evstdw|0 0 0 1 0 O rS rA UIMM ! 0110010001 1|EVX evstdw
evstdwx/0 0 0 1 0 O rS rA B 0110010001 0[EVX evstdwx
evstwhe/0 0 0 1 0 O rS rA uMM3 0110011000 1|EVX evstwhe

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

B-22 Freescale Semiconductor

SPE and Embedded Floating-Point Opcode Listings

Table B-3. Instructions (Binary) by Form

Mnemonic 0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

evstwhex(|0 0 0 1 0 O rS rA B 0110011000 0 EVX evstwhex
evstwho/{0 0 0 1 0 O rS rA uMM® 0110011010 1|EVX evstwho
evstwhox/{0 0 0 1 0 O rS rA B 0110011010 0| EVX evstwhox
evstwwe|0 0 0 1 0 O rS rA UMM3 0110011100 1|EVX evstwwe
evstwwex|{0 0 0 1 0 O rS rA B 0110011100 0| EVX evstwwex
evstwwo({0 0 0 1 0 O rS rA uMM3 0110011110 1|EVX evstwwo
evstwwox|{0 0 0 1 0 O rS rA B 0110011110 0| EVX evstwwox

evsubfsmiaaw|0 0 0 1 0 O rD rA mn 1001100101 1|EVX evsubfsmiaaw

evsubfssiaaw|0 0 0 1 0 0 rD rA mn 1001100001 1|EVX evsubfssiaaw

evsubfumiaaw|0 0 0 1 0 O rD rA mn 1001100101 0|EVX evsubfumiaaw

evsubfusiaaw|0 0 0 1 0 O rD rA mn 1001100001 0|EVX evsubfusiaaw
evsubfw|0 0 0 1 0 O rD rA B 0100000010 0| EVX evsubfw
evsubifw|/0 0 0 1 0 O rD UiMM B 0100000011 0|EVX evsubifw

evxor(0 0 0 1 00 rD rA B 010000101 10|EVX evxor

T d=UuMM* 8

2 d=UIMM *2

3 d=UIMM* 4

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor B-23

SPE and Embedded Floating-Point Opcode Listings

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

B-24 Freescale Semiconductor

	Contents
	Figures
	Tables
	About This Book
	Table i. Acronyms and Abbreviated Terms
	Table ii. Terminology Conventions
	Table iii. Instruction Field Conventions

	Chapter 1 Overview
	1.1 Overview
	Table 1-1. SPE Vector Multiply Instruction Mnemonic Structure

	1.2 Register Model
	Figure 1-1. SPE Register Model
	1.2.1 SPE Instructions
	Figure 1-2. Two-Element Vector Operations
	Table 1-2. Mnemonic Extensions for Multiply Accumulate Instructions
	Table 1-3. SPE Vector Multiply Instruction Mnemonic Structure
	Table 1-4. Mnemonic Extensions for Multiply-Accumulate Instructions
	1.2.1.1 Embedded Vector and Scalar Floating-Point Instructions

	1.3 SPE and Embedded Floating-Point Exceptions and Interrupts

	Chapter 2 SPE Register Model
	2.1 Overview
	2.2 Register Model
	Figure 2-1. SPE Register Model
	Figure 2-2. Integer, Fractional, and Floating-Point Data Formats and GPR Usage
	Figure 2-3. 32- and 64-Bit Register Elements and Bit-Numbering Conventions
	2.2.1 General-Purpose Registers (GPRs)
	Figure 2-4. General Purpose Registers (GPR0-GRP31)

	2.2.2 Accumulator Register (ACC)
	Figure 2-5. Accumulator (ACC)

	2.2.3 Signal Processing Embedded Floating-Point Status and Control Register (SPEFSCR)
	Figure 2-6. Signal Processing and Embedded Floating-Point Status and Control Register (SPEFSCR)
	Table 2-1. SPEFSCR Field Descriptions
	2.2.3.1 Interrupt Vector Offset Registers (IVORs)
	2.2.3.2 Exception Bit in the Exception Syndrome Register (ESR)
	2.2.3.3 Condition Register (CR)
	Table 2-2. SPE Instructions that Use the CR
	Table 2-3. Embedded Floating-Point Instructions that Use the CR

	2.2.3.4 SPE Available Bit in the Machine State Register (MSR)

	Chapter 3 SPE and Embedded Floating-Point Instruction Model
	3.1 Overview
	3.2 SPE Instruction Set
	3.2.1 SPE Data Formats
	3.2.1.1 Integer Format
	3.2.1.2 Fractional Format

	3.2.2 Computational Operations
	Figure 3-1. Two-Element Vector Operations
	Table 3-1. Mnemonic Extensions for Multiply Accumulate Instructions
	3.2.2.1 Data Formats and Register Usage
	3.2.2.1.1 Signed Fractions
	3.2.2.1.2 SPE Integer and Fractional Operations
	Figure 3-2. Integer and Fractional Operations
	3.2.2.1.3 SPE Instructions
	Table 3-2. SPE Vector Multiply Instruction Mnemonic Structure
	Table 3-3. Mnemonic Extensions for Multiply-Accumulate Instructions
	Table 3-4. SPE Instructions

	3.2.3 SPE Simplified Mnemonics
	Table 3-5. SPE Simplified Mnemonics

	3.3 Embedded Floating-Point Instruction Set
	3.3.1 Embedded Floating-Point Operations
	3.3.1.1 Operational Modes
	3.3.1.2 Floating-Point Data Formats
	Figure 3-3. Floating-Point Data Format

	3.3.1.3 Overflow and Underflow
	3.3.1.4 IEEE Std 754™ Compliance
	3.3.1.5 Sticky Bit Handling for Exception Conditions
	3.3.1.6 Implementation Options Summary
	3.3.1.7 Saturation, Shift, and Bit Reverse Models
	3.3.1.7.1 Saturation
	3.3.1.7.2 Shift Left
	3.3.1.7.3 Bit Reverse

	3.3.2 Embedded Vector and Scalar Floating-Point Instructions
	Table 3-6. Vector and Scalar Floating-Point Instructions

	3.3.3 Load/Store Instructions
	3.3.3.1 Floating-Point Conversion Models

	Chapter 4 SPE/Embedded Floating-Point Interrupt Model
	4.1 Overview
	Table 4-1. SPE/SPE Embedded Floating-Point Interrupt and Exception Types

	4.2 SPE Interrupts
	4.2.1 Interrupt-Related Registers
	Figure 4-1. SPE Interrupt-Related Registers

	4.2.2 Alignment Interrupt
	4.2.3 SPE/Embedded Floating-Point Unavailable Interrupt
	4.2.4 SPE Embedded Floating-Point Interrupts
	4.2.4.1 Embedded Floating-Point Data Interrupt
	4.2.4.2 Embedded Floating-Point Round Interrupt

	4.3 Interrupt Priorities
	4.4 Exception Conditions
	4.4.1 Floating-Point Exception Conditions
	4.4.1.1 Denormalized Values on Input
	4.4.1.2 Embedded Floating-Point Overflow and Underflow
	4.4.1.3 Embedded Floating-Point Invalid Operation/Input Errors
	4.4.1.4 Embedded Floating-Point Round (Inexact)
	4.4.1.5 Embedded Floating-Point Divide by Zero
	4.4.1.6 Default Results

	Chapter 5 Instruction Set
	5.1 Notation
	Table 5-1. Notation Conventions

	5.2 Instruction Fields
	Table 5-2. Instruction Field Descriptions

	5.3 Description of Instruction Operations
	Table 5-3. RTL Notation
	Table 5-4. Operator Precedence
	5.3.1 SPE Saturation and Bit-Reverse Models
	5.3.1.1 Saturation
	5.3.1.2 Bit Reverse

	5.3.2 Embedded Floating-Point Conversion Models
	Table 5-5. Conversion Models
	5.3.2.1 Common Embedded Floating-Point Functions
	5.3.2.1.1 32-Bit NaN or Infinity Test
	5.3.2.1.2 Signal Floating-Point Error
	5.3.2.1.3 Round a 32-Bit Value
	5.3.2.1.4 Round a 64-Bit Value

	5.3.2.2 Convert from Single-Precision Floating-Point to Integer Word with Saturation
	5.3.2.3 Convert from Double-Precision Floating-Point to Integer Word with Saturation
	5.3.2.4 Convert from Double-Precision Floating-Point to Integer Double Word with Saturation
	5.3.2.5 Convert to Single-Precision Floating-Point from Integer Word with Saturation
	5.3.2.6 Convert to Double-Precision Floating-Point from Integer Word with Saturation
	5.3.2.7 Convert to Double-Precision Floating-Point from Integer Double Word with Saturation

	5.3.3 Integer Saturation Models
	5.3.4 Embedded Floating-Point Results

	5.4 Instruction Set
	Figure 5-1. Instruction Description
	Table 5-6. Data Samples and Sizes
	Figure 5-2. Vector Absolute Value (evabs)
	Figure 5-3. Vector Add Immediate Word (evaddiw)
	Figure 0-1. Vector Add Signed, Modulo, Integer to Accumulator Word (evaddsmiaaw)
	Figure 5-4. Vector Add Signed, Saturate, Integer to Accumulator Word (evaddssiaaw)
	Figure 5-5. Vector Add Unsigned, Modulo, Integer to Accumulator Word (evaddumiaaw)
	Figure 5-6. Vector Add Unsigned, Saturate, Integer to Accumulator Word (evaddusiaaw)
	Figure 5-7. Vector Add Word (evaddw)
	Figure 5-8. Vector AND (evand)
	Figure 5-9. Vector AND with Complement (evandc)
	Figure 5-10. Vector Compare Equal (evcmpeq)
	Figure 5-11. Vector Compare Greater Than Signed (evcmpgts)
	Figure 5-12. Vector Compare Greater Than Unsigned (evcmpgtu)
	Figure 5-13. Vector Compare Less Than Signed (evcmplts)
	Figure 5-14. Vector Compare Less Than Unsigned (evcmpltu)
	Figure 5-15. Vector Count Leading Signed Bits Word (evcntlsw)
	Figure 5-16. Vector Count Leading Zeros Word (evcntlzw)
	Figure 5-17. Vector Divide Word Signed (evdivws)
	Figure 5-18. Vector Divide Word Unsigned (evdivwu)
	Figure 5-19. Vector Equivalent (eveqv)
	Figure 5-20. Vector Extend Sign Byte (evextsb)
	Figure 5-21. Vector Extend Sign Half Word (evextsh)
	Figure 5-22. evldd Results in Big- and Little-Endian Modes
	Figure 5-23. evlddx Results in Big- and Little-Endian Modes
	Figure 5-24. evldh Results in Big- and Little-Endian Modes
	Figure 5-25. evldhx Results in Big- and Little-Endian Modes
	Figure 5-26. evldw Results in Big- and Little-Endian Modes
	Figure 5-27. evldwx Results in Big- and Little-Endian Modes
	Figure 5-28. evlhhesplat Results in Big- and Little-Endian Modes
	Figure 5-29. evlhhesplatx Results in Big- and Little-Endian Modes
	Figure 5-30. evlhhossplat Results in Big- and Little-Endian Modes
	Figure 5-31. evlhhossplatx Results in Big- and Little-Endian Modes
	Figure 5-32. evlhhousplat Results in Big- and Little-Endian Modes
	Figure 5-33. evlhhousplatx Results in Big- and Little-Endian Modes
	Figure 5-34. evlwhe Results in Big- and Little-Endian Modes
	Figure 5-35. evlwhex Results in Big- and Little-Endian Modes
	Figure 5-36. evlwhos Results in Big- and Little-Endian Modes
	Figure 5-37. evlwhosx Results in Big- and Little-Endian Modes
	Figure 5-38. evlwhou Results in Big- and Little-Endian Modes
	Figure 5-39. evlwhoux Results in Big- and Little-Endian Modes
	Figure 5-40. evlwhsplat Results in Big- and Little-Endian Modes
	Figure 5-41. evlwhsplatx Results in Big- and Little-Endian Modes
	Figure 5-42. evlwwsplat Results in Big- and Little-Endian Modes
	Figure 5-43. evlwwsplatx Results in Big- and Little-Endian Modes
	Figure 5-44. High Order Element Merging (evmergehi)
	Figure 5-45. High Order Element Merging (evmergehilo)
	Figure 5-46. Low Order Element Merging (evmergelo)
	Figure 5-47. Low Order Element Merging (evmergelohi)
	Figure 5-48. evmhegsmfaa (Even Form)
	Figure 5-49. evmhegsmfan (Even Form)
	Figure 5-50. evmhegsmiaa (Even Form)
	Figure 5-51. evmhegsmian (Even Form)
	Figure 5-52. evmhegumiaa (Even Form)
	Figure 5-53. evmhegumian (Even Form)
	Figure 5-54. Even Multiply of Two Signed Modulo Fractional Elements (to Accumulator) (evmhesmf)
	Figure 5-55. Even Form of Vector Half-Word Multiply (evmhesmfaaw)
	Figure 5-56. Even Form of Vector Half-Word Multiply (evmhesmfanw)
	Figure 5-57. Even Form for Vector Multiply (to Accumulator) (evmhesmi)
	Figure 5-58. Even Form of Vector Half-Word Multiply (evmhesmiaaw)
	Figure 5-59. Even Form of Vector Half-Word Multiply (evmhesmianw)
	Figure 5-60. Even Multiply of Two Signed Saturate Fractional Elements (to Accumulator) (evmhessf)
	Figure 5-61. Even Form of Vector Half-Word Multiply (evmhessfaaw)
	Figure 5-62. Even Form of Vector Half-Word Multiply (evmhessfanw)
	Figure 5-63. Even Form of Vector Half-Word Multiply (evmhessiaaw)
	Figure 5-64. Even Form of Vector Half-Word Multiply (evmhessianw)
	Figure 5-65. Vector Multiply Half Words, Even, Unsigned, Modulo, Integer (to Accumulator) (evmheumi)
	Figure 5-66. Even Form of Vector Half-Word Multiply (evmheumiaaw)
	Figure 5-67. Even Form of Vector Half-Word Multiply (evmheumianw)
	Figure 5-68. Even Form of Vector Half-Word Multiply (evmheusiaaw)
	Figure 5-69. Even Form of Vector Half-Word Multiply (evmheusianw)
	Figure 5-70. evmhogsmfaa (Odd Form)
	Figure 5-71. evmhogsmfan (Odd Form)
	Figure 5-72. evmhogsmiaa (Odd Form)
	Figure 5-73. evmhogsmian (Odd Form)
	Figure 5-74. evmhogumiaa (Odd Form)
	Figure 5-75. evmhogumian (Odd Form)
	Figure 5-76. Vector Multiply Half Words, Odd, Signed, Modulo, Fractional (to Accumulator) (evmhosmf)
	Figure 5-77. Odd Form of Vector Half-Word Multiply (evmhosmfaaw)
	Figure 5-78. Odd Form of Vector Half-Word Multiply (evmhosmfanw)
	Figure 5-79. Vector Multiply Half Words, Odd, Signed, Modulo, Integer (to Accumulator) (evmhosmi)
	Figure 5-80. Odd Form of Vector Half-Word Multiply (evmhosmiaaw)
	Figure 5-81. Odd Form of Vector Half-Word Multiply (evmhosmianw)
	Figure 5-82. Vector Multiply Half Words, Odd, Signed, Saturate, Fractional (to Accumulator) (evmhossf)
	Figure 5-83. Odd Form of Vector Half-Word Multiply (evmhossfaaw)
	Figure 5-84. Odd Form of Vector Half-Word Multiply (evmhossfanw)
	Figure 5-85. Odd Form of Vector Half-Word Multiply (evmhossiaaw)
	Figure 5-86. Odd Form of Vector Half-Word Multiply (evmhossianw)
	Figure 5-87. Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer (to Accumulator) (evmhoumi)
	Figure 5-88. Odd Form of Vector Half-Word Multiply (evmhoumiaaw)
	Figure 5-89. Odd Form of Vector Half-Word Multiply (evmhoumianw)
	Figure 5-90. Odd Form of Vector Half-Word Multiply (evmhousiaaw)
	Figure 5-91. Odd Form of Vector Half-Word Multiply (evmhousianw)
	Figure 5-92. Initialize Accumulator (evmra)
	Figure 5-93. Vector Multiply Word High Signed, Modulo, Fractional (to Accumulator) (evmwhsmf)
	Figure 5-94. Vector Multiply Word High Signed, Modulo, Integer (to Accumulator) (evmwhsm)
	Figure 5-95. Vector Multiply Word High Signed, Saturate, Fractional (to Accumulator) (evmwhssf)
	Figure 5-96. Vector Multiply Word High Unsigned, Modulo, Integer (to Accumulator) (evmwhumi)
	Figure 5-97. Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words (evmwlsmiaaw)
	Figure 5-98. Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in Words (evmwlsmianw)
	Figure 5-99. Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words (evmwlssiaaw)
	Figure 5-100. Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in Words (evmwlssianw
	Figure 5-101. Vector Multiply Word Low Unsigned, Modulo, Integer (evmwlumi)
	Figure 5-102. Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words (evmwlumiaaw)
	Figure 5-103. Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in Words (evmwlumianw)
	Figure 5-104. Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words (evmwlusiaaw)
	Figure 5-105. Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in Words (evmwlusianw)
	Figure 5-106. Vector Multiply Word Signed, Modulo, Fractional (to Accumulator) (evmwsmf)
	Figure 5-107. Vector Multiply Word Signed, Modulo, Fractional and Accumulate (evmwsmfaa)
	Figure 5-108. Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative (evmwsmfan)
	Figure 5-109. Vector Multiply Word Signed, Modulo, Integer (to Accumulator) (evmwsmi)
	Figure 5-110. Vector Multiply Word Signed, Modulo, Integer and Accumulate (evmwsmiaa)
	Figure 5-111. Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative (evmwsmian)
	Figure 5-112. Vector Multiply Word Signed, Saturate, Fractional (to Accumulator) (evmwssf)
	Figure 5-113. Vector Multiply Word Signed, Saturate, Fractional, and Accumulate (evmwssfaa)
	Figure 5-114. Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative (evmwssfan)
	Figure 5-115. Vector Multiply Word Unsigned, Modulo, Integer (to Accumulator) (evmwumi)
	Figure 5-116. Vector Multiply Word Unsigned, Modulo, Integer and Accumulate (evmwumiaa)
	Figure 5-117. Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative (evmwumian)
	Figure 5-118. Vector NAND (evnand)
	Figure 5-119. Vector Negate (evneg)
	Figure 5-120. Vector NOR (evnor)
	Figure 5-121. Vector OR (evor)
	Figure 5-122. Vector OR with Complement (evorc)
	Figure 5-123. Vector Rotate Left Word (evrlw)
	Figure 5-124. Vector Rotate Left Word Immediate (evrlwi)
	Figure 5-125. Vector Round Word (evrndw)
	Figure 5-126. Vector Select (evsel)
	Figure 5-127. Vector Shift Left Word (evslw)
	Figure 5-128. Vector Shift Left Word Immediate (evslwi)
	Figure 5-129. Vector Splat Fractional Immediate (evsplatfi)
	Figure 5-130. evsplati Sign Extend
	Figure 5-131. Vector Shift Right Word Immediate Signed (evsrwis)
	Figure 5-132. Vector Shift Right Word Immediate Unsigned (evsrwiu)
	Figure 5-133. Vector Shift Right Word Signed (evsrws)
	Figure 5-134. Vector Shift Right Word Unsigned (evsrwu)
	Figure 5-135. evstdd Results in Big- and Little-Endian Modes
	Figure 5-136. evstddx Results in Big- and Little-Endian Modes
	Figure 5-137. evstdh Results in Big- and Little-Endian Modes
	Figure 5-138. evstdhx Results in Big- and Little-Endian Modes
	Figure 5-139. evstdw Results in Big- and Little-Endian Modes
	Figure 5-140. evstdwx Results in Big- and Little-Endian Modes
	Figure 5-141. evstwhe Results in Big- and Little-Endian Modes
	Figure 5-142. evstwhex Results in Big- and Little-Endian Modes
	Figure 5-143. evstwho Results in Big- and Little-Endian Modes
	Figure 5-144. evstwhox Results in Big- and Little-Endian Modes
	Figure 5-145. evstwwe Results in Big- and Little-Endian Modes
	Figure 5-146. evstwwex Results in Big- and Little-Endian Modes
	Figure 5-147. evstwwo Results in Big- and Little-Endian Modes
	Figure 5-148. evstwwox Results in Big- and Little-Endian Modes
	Figure 5-149. Vector Subtract Signed, Modulo, Integer to Accumulator Word (evsubfsmiaaw)
	Figure 5-150. Vector Subtract Signed, Saturate, Integer to Accumulator Word (evsubfssiaaw)
	Figure 5-151. Vector Subtract Unsigned, Modulo, Integer to Accumulator Word (evsubfumiaaw)
	Figure 5-152. Vector Subtract Unsigned, Saturate, Integer to Accumulator Word (evsubfusiaaw)
	Figure 5-153. Vector Subtract from Word (evsubfw)
	Figure 5-154. Vector Subtract Immediate from Word (evsubifw)
	Figure 5-155. Vector XOR (evxor)

	Appendix A Embedded Floating-Point Results Summary
	Table A-1. Embedded Floating-Point Results Summary-Add, Sub, Mul, Div
	Table A-2. Embedded Floating-Point Results Summary-Single Convert from Double
	Table A-3. Embedded Floating-Point Results Summary-Double Convert from Single
	Table A-4. Embedded Floating-Point Results Summary-Convert to Unsigned
	Table A-5. Embedded Floating-Point Results Summary-Convert to Signed
	Table A-6. Results Summary-Convert from Unsigned
	Table A-7. Embedded Floating-Point Results Summary-Convert from Signed
	Table A-8. Embedded Floating-Point Results Summary-*abs, *nabs, *neg

	Appendix B SPE and Embedded Floating-Point Opcode Listings
	B.1 Instructions (Binary) by Mnemonic
	Table B-1. Instructions (Binary) by Mnemonic

	B.2 Instructions (Decimal and Hexadecimal) by Opcode
	Table B-2. Instructions (Decimal and Hexadecimal) by Opcode

	B.3 Instructions by Form
	Table B-3. Instructions (Binary) by Form

