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About This Book
The primary objective of this manual is to help programmers provide software compatible with processors 
that implement the signal processing engine (SPE) and embedded floating-point instruction sets. 

To locate any published errata or updates for this document, refer to the web at http://www.freescale.com.

This book is used as a reference guide for assembler programmers. It uses a standardized format instruction 
to describe each instruction, showing syntax, instruction format, register translation language (RTL) code 
that describes how the instruction works, and a listing of which, if any, registers are affected. At the bottom 
of each instruction entry is a figure that shows the operations on elements within source operands and 
where the results of those operations are placed in the destination operand. 

The SPE Programming Interface Manual (SPEPIM) is a reference guide for high-level programmers. The 
VLEPIM describes how programmers can access SPE functionality from programming languages such as 
C and C++. It defines a programming model for use with the SPE instruction set. Processors that 
implement the Power ISA™ (instruction set architecture) use the SPE instruction set as an extension to the 
base and embedded categories of the Power ISA. 

Because it is important to distinguish among the categories of the Power ISA to ensure compatibility 
across multiple platforms, those distinctions are shown clearly throughout this book. This document stays 
consistent with the Power ISA in referring to three levels, or programming environments, which are as 
follows:

• User instruction set architecture (UISA)—The UISA defines the level of the architecture to which 
user-level software should conform. The UISA defines the base user-level instruction set, 
user-level registers, data types, memory conventions, and the memory and programming models 
seen by application programmers. 

• Virtual environment architecture (VEA)—The VEA, which is the smallest component of the 
architecture, defines additional user-level functionality that falls outside typical user-level software 
requirements. The VEA describes the memory model for an environment in which multiple 
processors or other devices can access external memory and defines aspects of the cache model and 
cache control instructions from a user-level perspective. VEA resources are particularly useful for 
optimizing memory accesses and for managing resources in an environment in which other 
processors and other devices can access external memory.

Implementations that conform to the VEA also conform to the UISA but may not necessarily 
adhere to the OEA.

• Operating environment architecture (OEA)—The OEA defines supervisor-level resources 
typically required by an operating system. It defines the memory management model, 
supervisor-level registers, and the exception model. 

Implementations that conform to the OEA also conform to the UISA and VEA.
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Most of the discussions on the SPE are at the UISA level. For ease in reference, this book and the processor 
reference manuals have arranged the architecture information into topics that build on one another, 
beginning with a description and complete summary of registers and instructions (for all three 
environments) and progressing to more specialized topics such as the cache, exception, and memory 
management models. As such, chapters may include information from multiple levels of the architecture, 
but when discussing OEA and VEA, the level is noted in the text. 

It is beyond the scope of this manual to describe individual devices that implement SPE. It must be kept 
in mind that each processor that implements the Power ISA is unique in its implementation.

The information in this book is subject to change without notice, as described in the disclaimers on the title 
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are 
using the most recent version of the documentation. For more information, contact your sales 
representative or visit our web site at http://www.freescale.com. 

Audience
This manual is intended for system software and hardware developers, and for application programmers 
who want to develop products using the SPE. It is assumed that the reader understands operating systems, 
microprocessor system design, the basic principles of RISC processing, and details of the Power ISA.

This book describes how SPE interacts with the other components of the architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for those who want a general understanding of the features and 
functions of the SPE. This chapter provides an overview of how the VLE defines the register set, 
operand conventions, addressing modes, instruction set, and interrupt model.

• Chapter 2, “SPE Register Model,” lists the register resources defined by the SPE and embedded 
floating-point ISAs. It also lists base category resources that are accessed by SPE and embedded 
floating-point instructions. 

• Chapter 3, “SPE and Embedded Floating-Point Instruction Model,” describes the SPE and 
embedded floating-point instruction set, including operand conventions, addressing modes, and 
instruction syntax. It also provides a brief description of instructions grouped by category.

• Chapter 5, “Instruction Set,” functions as a handbook for the SPE and embedded floating-point 
instruction set. Instructions are sorted by mnemonic. Each instruction description includes the 
instruction formats and figures where it helps in understanding what the instruction does.

• Appendix A, “Embedded Floating-Point Results Summary,” summarizes the results of various 
types of embedded floating-point operations on various combinations of input operands. 

• Appendix B, “SPE and Embedded Floating-Point Opcode Listings,” lists all SPE and 
embedded-floating point instructions, grouped according to mnemonic and opcode.

This manual also includes an index.
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Suggested Reading
This section lists additional reading that provides background for the information in this manual as well as 
general information about the VLE and the Power ISA. 

General Information

The following documentation provides useful information about the Power Architecture™ technology and 
computer architecture in general:

• Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and 
David A. Patterson. 

• Computer Organization and Design: The Hardware/Software Interface, Third Edition, 
David A. Patterson and John L. Hennessy. 

Related Documentation

Freescale documentation is available from the sources listed on the back of the title page; the document 
order numbers, when applicable, are included in parentheses for ease in ordering:

• EREF: A Programmer's Reference Manual for Freescale Embedded Processors (EREFRM). 
Describes the programming, memory management, cache, and interrupt models defined by the 
Power ISA for embedded environment processors. 

• Power ISA™. The latest version of the Power ISA can be downloaded from the website 
www.power.org. 

• Variable-Length Encoding (VLE) Extension Programming Interface Manual (VLEPIM). Provides 
the VLE-specific extensions to the e500 application binary interface.

• e500 Application Binary Interface User's Guide (E500ABIUG). Establishes a standard binary 
interface for application programs on systems that implement the interfaces defined in the System 
V Interface Definition, Issue 3. This includes systems that have implemented UNIX System V 
Release 4.

• Reference manuals. The following reference manuals provide details information about processor 
cores and integrated devices:

— Core reference manuals—These books describe the features and behavior of individual 
microprocessor cores and provide specific information about how functionality described in 
the EREF is implemented by a particular core. They also describe implementation-specific 
features and microarchitectural details, such as instruction timing and cache hardware details, 
that lie outside the architecture specification. 

— Integrated device reference manuals—These manuals describe the features and behavior of 
integrated devices that implement a Power ISA processor core. It is important to understand 
that some features defined for a core may not be supported on all devices that implement that 
core. 

Also, some features are defined in a general way at the core level and have meaning only in the 
context of how the core is implemented. For example, any implementation-specific behavior 
of register fields can be described only in the reference manual for the integrated device. 
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Each of these documents include the following two chapters that are pertinent to the core:

– A core overview. This chapter provides a general overview of how the core works and 
indicates which of a core’s features are implemented on the integrated device.

– A register summary chapter. This chapter gives the most specific information about how 
register fields can be interpreted in the context of the implementation. 

These reference manuals also describe how the core interacts with other blocks on the integrated 
device, especially regarding topics such as reset, interrupt controllers, memory and cache 
management, debug, and global utilities. 

• Addenda/errata to reference manuals—Errata documents are provided to address errors in 
published documents. 

Because some processors have follow-on parts, often an addendum is provided that describes the 
additional features and functionality changes. These addenda, which may also contain errata, are 
intended for use with the corresponding reference manuals.

Always check the Freescale website for updates to reference manuals. 

• Hardware specifications—Hardware specifications provide specific data regarding bus timing; 
signal behavior; AC, DC, and thermal characteristics; and other design considerations. 

• Product brief—Each integrated device has a product brief that provides an overview of its features. 
This document is roughly the equivalent to the overview (Chapter 1) of the device’s reference 
manual. 

• Application notes—These short documents address specific design issues useful to programmers 
and engineers working with Freescale processors. 

Additional literature is published as new processors become available. For current documentation, refer to 
http://www.freescale.com.

Conventions
This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of 
one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold 

italics Italics indicate variable command parameters, for example, bcctrx

Book titles in text are set in italics

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source general-purpose register (GPR)

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source floating-point register (FPR)

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or 
ranges appear in brackets. 
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x In some contexts, such as signal encodings, an unitalicized x indicates a don’t 
care. 

x An italicized x indicates an alphanumeric variable

n An italicized n indicates a numeric variable

¬ NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits may be written 
to as ones or zeros, they are always read as zeros. 

Additional conventions used with instruction encodings are described in Section 5.1, “Notation.”

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document. Note that the meanings for 
some acronyms (such as XER) are historical, and the words for which an acronym stands may not be 
intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

CR Condition register 

CTR Count register 

DEC Decrementer register

EA Effective address

EREF A Programmer's Reference Manual for Freescale Embedded Processors (Including the e200 and e500 
Families)

GPR General-purpose register

IEEE Institute of Electrical and Electronics Engineers

IU Integer unit

LR Link register 

LRU Least recently used

LSB Least significant byte

lsb Least significant bit

LSU Load/store unit

MMU Memory management unit

MSB Most significant byte

msb Most significant bit

MSR Machine state register 

NaN Not a number

No-op No operation

OEA Operating environment architecture

0 0 0 0 
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Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology conventions.

PMCn Performance monitor counter register

PVR Processor version register 

RISC Reduced instruction set computing

RTL Register transfer language

SIMM Signed immediate value

SPR Special-purpose register

SRR0 Machine status save/restore register 0 

SRR1 Machine status save/restore register 1

TB Time base facility

TBL Time base lower register

TBU Time base upper register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

VLEPEM Variable-Length Encoding (VLE) Programming Environments Manual 

VLEPIM Variable-Length Encoding (VLE) Extension Programming Interface Manual (VLEPIM)

XER Register used for indicating conditions such as carries and overflows for integer operations

Table ii. Terminology Conventions

The Architecture Specification This Manual

Extended mnemonics Simplified mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory 

Storage (the act of) Access

Store in Write back

Store through Write through

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
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Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

/, //, /// 0...0 (shaded)

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM
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Chapter 1  
Overview
This chapter provides a general description of the signal processing engine (SPE) and the SPE embedded 
floating-point resources defined as part of the Power ISA™ (instruction set architecture). 

1.1 Overview
The SPE is a 64-bit, two-element, single-instruction multiple-data (SIMD) ISA, originally designed to 
accelerate signal processing applications normally suited to DSP operation. The two-element vectors fit 
within GPRs extended to 64 bits. SPE also defines an accumulator register (ACC) to allow for 
back-to-back operations without loop unrolling. Like the VEC category, SPE is primarily an extension of 
Book I but identifies some resources for interrupt handling in Book III-E.

In addition to add and subtract to accumulator operations, the SPE supports a number of forms of multiply 
and multiply-accumulate operations, as well as negative accumulate forms. These instructions are 
summarized in Table 1-3. The SPE supports signed, unsigned, and fractional forms. For these instructions, 
the fractional form does not apply to unsigned forms, because integer and fractional forms are identical for 
unsigned operands. 

Mnemonics for SPE instructions generally begin with the letters ‘ev’ (embedded vector).

The SPE is part of the Power ISA specification (where it is referred to as the category SPE). Closely 
associated with the SPE are the embedded floating-point categories, which may be implemented if the SPE 
is implemented and which consist of the following:

• Single-precision scalar (SP.FS)

• Single-precision vector (SP.FV)

Table 1-1. SPE Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element

evm

ho 
he 
hog
heg
wh 
wl 
whg
wlg
w 

half odd (16x16->32)

half even (16x16->32)

half odd guarded (16x16->32)

half even guarded (16x16->32)

word high (32x32->32)

word low (32x32->32)

word high guarded (32x32->32)

word low guarded (32x32->32)

word (32x32->64)

usi
umi
ssi
ssf1

smi
smf1

1 Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute an 
opcode corresponding to these instructions causes boundedly undefined results. 

unsigned saturate integer

unsigned modulo integer

signed saturate integer

signed saturate fractional

signed modulo integer

signed modulo fractional

a
aa
an
aaw
anw

write to ACC

write to ACC & added ACC

write to ACC & negate ACC

write to ACC & ACC in words

write to ACC & negate ACC in words
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• Double-precision scalar (SP.FD)

The embedded floating-point categories provide floating-point operations compatible with IEEE Std 
754™ to power- and space-sensitive embedded applications. As is true for all SPE categories, rather than 
implementing separate register floating-point registers (FPRs), these categories share the GPRs used for 
integer operations, extending them to 64 bits to support the vector single-precision and scalar 
double-precision categories. These extended GPRs are described in Section 2.2.1, “General-Purpose 
Registers (GPRs).” 

1.2 Register Model
Figure 1-1 shows the register resources defined by the Power ISA for the SPE and embedded 
floating-point operations. Note that SPE operations may also affect other registers defined by the 
Power ISA. 

These registers are briefly described as follows:

• General-purpose registers (GPRs). Note especially that the SPE does not define a new register file 
but uses an extended version of the general-purpose registers (GPRs) implemented on all Power 
ISA devices. The GPRs are used as follows:

— SPE (not including the embedded floating-point instructions) treat the 64-bit GPRs as a 
two-element vector for 32-bit fractional and integer computation. 

— Embedded scalar single-precision floating-point instructions use only the lower word of the 
GPRs for single-precision computation.

— Embedded vector single-precision instructions treat the 64-bit GPRs as a two-element vector 
for 32-bit single-precision computation.

— Embedded scalar double-precision floating-point instructions treat the GPRs as 64-bit 
single-element registers for double-precision computation.

• Accumulator register (ACC). Holds the results of the multiply accumulate (MAC) forms of SPE 
integer instructions. The ACC allows back-to-back execution of dependent MAC instructions, 
something that is found in the inner loops of DSP code such as finite impulse response (FIR) filters. 
The accumulator is partially visible to the programmer in that its results do not have to be explicitly 
read to use them. Instead, they are always copied into a 64-bit destination GPR specified as part of 
the instruction. 

User-Level Registers Supervisor-Level Registers

0 31 32 63 32 63

Upper Lower

General-purpose registers (GPRs)

MSR[SPV] Machine state register 

Upper Lower
Interrupt Registers

Upper Lower
 spr 62 ESR[SPV] Exception syndrome register

… …

Upper Lower Interrupt Vector Offset Registers

SPE defines GPRn[0–31] for use with 64-bit operands spr 405 IVOR5 Alignment 

spr 528 IVOR32 SPE/Embedded FP
ACC Accumulator

spr 529 IVOR33 Embedded FP data

SPE/floating-point status/control spr 512 SPEFSCR spr 530 IVOR34 Embedded FP round

Figure 1-1. SPE Register Model
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• SPE floating-point status and control register (SPEFSCR). Used for status and control of SPE and 
embedded floating-point instructions. It controls the handling of floating-point exceptions and 
records status resulting from the floating-point operations.

• Interrupt vector offset registers (IVORs). The SPE uses four IVORs, which together with the 
interrupt vector prefix register (IVPR) define the vector address for interrupt handler routines. The 
following IVORs are used:

— IVOR5 (SPR 405)—Defined by the base architecture for alignment exceptions and used with 
SPE load and store instructions alignment interrupts. 

— IVOR32 (SPR 528)—SPE/embedded floating-point unavailable exception (causes the 
SPE/embedded floating-point unavailable interrupt)

— IVOR33 (SPR 529)—Embedded floating-point data interrupts

— IVOR34 (SPR 530)—Embedded floating-point round interrupts

• SPE/embedded floating-point available bit in the machine state register (MSR[SPV], formerly 
called MSR[SPE]). If this bit is zero and software attempts to execute an SPE/embedded 
floating-point instruction, an SPE unavailable interrupt is taken.

• Exception bit in the exception syndrome register (ESR[SPV], formerly called ESR[SPE). This bit 
is set whenever the processor takes an interrupt related to the execution of SPE vector or 
floating-point instructions.

Chapter 2, “SPE Register Model,” provides detailed descriptions of these register resources.

1.2.1 SPE Instructions

.Instructions are provided for the instruction types:

• Simple vector instructions. These instructions use the corresponding low- and high-word elements 
of the operands to produce a vector result that is placed in the destination register, the accumulator, 
or both. Figure 1-2 shows how operations are typically performed in vector operations.

Figure 1-2. Two-Element Vector Operations

• Multiply and accumulate instructions. These instructions perform multiply operations, optionally 
add the result to the ACC, and place the result into the destination register and optionally into the 
ACC. These instructions are composed of different multiply forms, data formats, and data 
accumulate options, as indicated by their mnemonics, as shown in Table 1-2.

0 31 32 63

rA

rB

operation operation

rD
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• Load and store instructions. These instructions provide load and store capabilities for moving data 
to and from memory. A variety of forms are provided that position data for efficient computation.

• Compare and miscellaneous instructions. These instructions perform miscellaneous functions such 
as field manipulation, bit reversed incrementing, and vector compares.

SPE supports several different computational capabilities. Modulo results produce truncation of the 
overflow bits in a calculation; therefore, overflow does not occur and no saturation is performed. For 
instructions for which overflow occurs, saturation provides a maximum or minimum representable value 
(for the data type) in the case of overflow.

Table 1-2. Mnemonic Extensions for Multiply Accumulate Instructions

Extension Meaning Comments

Multiply Form

he Half word even 16 X 16 → 32

heg Half word even guarded 16 X 16 → 32, 64-bit final accum result

ho Half word odd 16 X 16 → 32

hog Half word odd guarded 16 X 16 → 32, 64-bit final accum result

w Word 32 X 32 → 64

wh Word high 32 X 32 → 32 (high order 32 bits of product)

wl Word low 32 X 32 → 32 (low order 32 bits of product)

Data Format

smf Signed modulo fractional Modulo, no saturation or overflow

smi Signed modulo integer Modulo, no saturation or overflow

ssf Signed saturate fractional Saturation on product and accumulate

ssi Signed saturate integer Saturation on product and accumulate

umi Unsigned modulo integer Modulo, no saturation or overflow

usi Unsigned saturate integer Saturation on product and accumulate

Accumulate Option

a Place in accumulator Result → accumulator

aa Add to accumulator Accumulator + result → accumulator

aaw Add to accumulator Accumulator0:31 + result0:31 → accumulator0:31
Accumulator32:63 + result32:63 → accumulator32:63

an Add negated to accumulator Accumulator – result → accumulator

anw Add negated to accumulator Accumulator0:31 – result0:31 → accumulator0:31
Accumulator32:63 – result32:63 → accumulator32:63
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Table 1-3 shows how SPE vector multiply instruction mnemonics are structured.

Table 1-4 defines mnemonic extensions for these instructions.
 

Table 1-3. SPE Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element

evm

ho 
he 

hog
heg
wh 
wl 

whg
wlg
w 

half odd (16x16->32)
half even (16x16->32)
half odd guarded (16x16->32)
half even guarded (16x16->32)
word high (32x32->32)
word low (32x32->32)
word high guarded (32x32->32)
word low guarded (32x32->32)
word (32x32->64)

usi
umi
ssi
ssf1

smi
smf1

1 Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute an 
opcode corresponding to these instructions causes boundedly undefined results. 

unsigned saturate integer
unsigned modulo integer
signed saturate integer
signed saturate fractional
signed modulo integer
signed modulo fractional

a
aa
an

aaw
anw

write to ACC
write to ACC & added ACC
write to ACC & negate ACC
write to ACC & ACC in words
write to ACC & negate ACC in words

Table 1-4. Mnemonic Extensions for Multiply-Accumulate Instructions

Extension Meaning Comments

Multiply Form

he Half word even 16×16→32

heg Half word even guarded 16×16→32, 64-bit final accumulator result

ho Half word odd 16×16→32

hog Half word odd guarded 16×16→32, 64-bit final accumulator result

w Word 32×32→64

wh Word high 32×32→32, high-order 32 bits of product

wl Word low 32×32→32, low-order 32 bits of product

Data Type

smf Signed modulo fractional (Wrap, no saturate)

smi Signed modulo integer (Wrap, no saturate)

ssf Signed saturate fractional

ssi Signed saturate integer

umi Unsigned modulo integer (Wrap, no saturate)

usi Unsigned saturate integer

Accumulate Options

a Update accumulator Update accumulator (no add)

aa Add to accumulator Add result to accumulator (64-bit sum)

aaw Add to accumulator (words) Add word results to accumulator words (pair of 32-bit sums)

an Add negated Add negated result to accumulator (64-bit sum)

anw Add negated to accumulator (words) Add negated word results to accumulator words (pair of 32-bit sums)
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1.2.1.1 Embedded Vector and Scalar Floating-Point Instructions

The embedded floating-point operations are IEEE 754–compliant with software exception handlers and 
offer a simpler exception model than the Power ISA floating-point instructions that use the floating-point 
registers (FPRs). Instead of FPRs, these instructions use GPRs to offer improved performance for 
converting between floating-point, integer, and fractional values. Sharing GPRs allows vector 
floating-point instructions to use SPE load and store instructions. 

Section 3.3.1.2, “Floating-Point Data Formats,” describes the floating-point data format.

1.3 SPE and Embedded Floating-Point Exceptions and Interrupts
The SPE defines the following exceptions:

• SPE/embedded floating-point unavailable exception (causes the SPE/embedded floating-point 
unavailable interrupt)—IVOR32 (SPR 528)

• SPE vector alignment exception (causes the alignment interrupt)—IVOR5 (SPR 405)

In addition to these general SPE interrupts, the SPE embedded floating-point facility defines the following:

• Embedded floating-point data interrupt—IVOR33 (SPR 529)

• Embedded floating-point round interrupt—IVOR34 (SPR 539)

Details about these interrupts are provided in Chapter 4, “SPE/Embedded Floating-Point Interrupt 
Model.”



Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 2-1
 

Chapter 2  
SPE Register Model
This chapter describes the register model of the signal processing engine (SPE) for embedded processors. 
This includes additional resources defined to support embedded floating-point instruction sets that may be 
implemented.

2.1 Overview
The SPE is designed to accelerate signal-processing applications normally suited to DSP operation. This 
is accomplished using short (two-element) vectors within 64-bit GPRs and using single instruction 
multiple data (SIMD) operations to perform the requisite computations. An accumulator register (ACC) 
allows back-to-back operations without loop unrolling.

2.2 Register Model
Figure 2-1 shows the register resources defined by the Power ISA for the SPE and embedded 
floating-point operations. Note that SPE operations may also affect other registers defined by the 
Power ISA. 

Figure 2-2 shows how the SPE register model is used with the SPE and embedding floating-point 
instruction sets.

User-Level Registers Supervisor-Level Registers

0 31 32 63 32 63

Int/Frac Int/Frac

General-purpose registers (GPRs)

MSR[SPV] Machine state register 

Int/Frac Int/Frac
Interrupt Registers

Int/Frac Int/Frac
 spr 62 ESR[SPV] Exception syndrome register

… …

Int/Frac Int/Frac Interrupt Vector Offset Registers

SPE defines GPRn[0–31] for use with 64-bit operands spr 405 IVOR5 Alignment 

spr 528 IVOR32 SPE/Embedded FP
ACC Accumulator

spr 529 IVOR33 Embedded FP data

spr 512 SPEFSCR SPE/floating-point status/control spr 530 IVOR34 Embedded FP round

CR Condition register

Figure 2-1. SPE Register Model
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Register Model Instruction Model

User-Level Registers Supervisor-Level Registers Computation Load/Store

0 31 32 63 32 63 brinc 
evmra
evm…
evabs 
evadd…
evand…
evfsctuiz
evcntl…
evdiv…
evmerge…
evsub… 
logical, rotate, 
shift, extend, 
round, select, 
compare

evldh…
evldw…
evldd…
evl…splat…
evlwhos…
evlwh…
evstdd…
evstdh…
evstdw…
evstwh…

Int/Frac Int/Frac

General-purpose 
registers (GPRs)

MSR[SPV] Machine state 

Int/Frac Int/Frac
Interrupt Registers

Int/Frac Int/Frac
 spr 62 ESR[SPV] Exception syndrome

SPE
… …

Int/Frac Int/Frac Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded FP

Original SPE 
APU 

SPE/floating-point
status/control spr 512 SPEFSCR spr 529 IVOR33 Embedded FP data

spr 530 IVOR34 Embedded FP round
CR Condition register

Vector
Single-Precision

Floating-Point

0 31 32 63 32 63 efvcf… 
efvct…
efvabs 
efvadd 
efvcmp… 
efvdiv 
efvmul
efvneg 
efvnabs
efvsub
efvtst…
From SPE: 
evmergehi 
evmergelo 

From SPE: 
evldd
evlddx
evstdd
evstddx

Single-prec. Single-prec.

General-purpose 
registers (GPRs)1

MSR[SPV] Machine state 

Single-prec. Single-prec.
Interrupt Registers

Single-prec. Single-prec.
 spr 62 ESR[SPV] Exception syndrome

… …

Single-prec. Single-prec. Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded FP

SPE/floating-point
status/control spr 512 SPEFSCR spr 529 IVOR33 Embedded FP data

spr 530 IVOR34 Embedded FP round
CR Condition register

Scalar
Single-Precision

Floating-Point

0 31 32 63 32 63 efscf… 
efsct…
efsabs 
efsadd 
efscmp… 
efsdiv 
efsmul
efsneg 
efsnabs
efssub
efstst…

Uses 
standard, 
base 
category 
32-bit loads 
and stores

Single-prec.

General-purpose 
registers (GPRs) 1

MSR[SPV] Machine state 
Single-prec.

Interrupt Registers
Single-prec.

 spr 62 ESR[SPV] Exception syndrome
…

Single-prec. Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded FP

SPE/floating-point
status/control spr 512 SPEFSCR spr 529 IVOR33 Embedded FP data

spr 530 IVOR34 Embedded FP round
CR Condition register

Scalar
Double-Precision

Floating-Point

0 31 32 63 32 63 efdcf… 
efdct…
efdabs 
efdadd 
efdcmp… 
efddiv 
efdmul
efdneg 
efdnabs
efdsub
efdtst…
From SPE: 
evmergehi 
evmergelo 

From SPE:
evldd
evlddx
evstdd
evstddx

Double-precision

General-purpose 
registers (GPRs) 1

MSR[SPV] Machine state 

Double-precision
Interrupt Registers

Double-precision
 spr 62 ESR[SPV] Exception syndrome

…

Double-precision Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded FP

SPE/floating-point
status/control spr 512 SPEFSCR spr 529 IVOR33 Embedded FP data

spr 530 IVOR34 Embedded FP round
CR Condition register

Note:  Gray text indicates that this register or register field is not used. 
1 Formatting of floating-point operands is as defined by IEEE 754. 

Figure 2-2. Integer, Fractional, and Floating-Point Data Formats and GPR Usage
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Several conventions regarding nomenclature are used in this chapter: 

• All register bit numbering is 64-bit. As shown in Figure 2-3, for 64-bit registers, bit 0 being the 
most significant bit (msb). For 32-bit registers, bit 32 is the msb. For both 32- and 64-bit registers, 
bit 63 is the least significant bit (lsb).

• As shown in Figure 2-3, bits 0 to 31 of a 64-bit register are referenced as the upper-, even-, or 
high-word element. Bits 32–63 are referred to as lower-, odd-, or low-word element.

• As shown in Figure 2-3, bits 0 to 15 and bits 32 to 47 are referenced as even half words. Bits 16 to 
31 and bits 48 to 63 are odd half words.

• The gray lines shown in Figure 2-3 indicate 4-bit nibbles, and are provided as a convenience for 
making binary-to-hexadecimal conversions. 

• Mnemonics for SPE instructions generally begin with the letters ‘ev’ (embedded vector).

2.2.1 General-Purpose Registers (GPRs)

The SPE requires a GPR file with thirty-two 64-bit registers, as shown in Figure 2-4, which also indicates 
how the SPE and embedded floating-point instruction sets use the GPRs. For 32-bit implementations, 
instructions that normally operate on a 32-bit register file access and change only the least significant 32 
bits of the GPRs, leaving the most significant 32 bits unchanged. For 64-bit implementations, operation of 
these instructions is unchanged; that is, those instructions continue to operate on the 64-bit registers as they 
would if SPE were not implemented. SPE vector instructions view the 64-bit register as being composed 
of a vector of two 32-bit elements. (Some instructions read or write 16-bit elements.) The most significant 
32 bits are called the upper, high, or even word. The least significant 32 bits are called the lower, low, or 
odd word. Unless otherwise specified, SPE instructions write all 64 bits of the destination register.

64-bit register 

32-bit register 

msb for 64-bit implementations msb for 32-bit implementations lsb

0 15 16 31 32 47 48 63

Upper word Lower word

Even half word (upper) Even half word (lower) Even half word (Lower) Odd half word (lower)

Figure 2-3. 32- and 64-Bit Register Elements and Bit-Numbering Conventions
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2.2.2 Accumulator Register (ACC)

The 64-bit accumulator (ACC), shown in Figure 2-5, is used for integer/fractional multiply accumulate 
(MAC) forms of instructions. The ACC holds the results of the multiply accumulate forms of SPE 
fixed-point instructions. It allows the back-to-back execution of dependent MAC instructions, something 
that is found in the inner loops of DSP code such as FIR and FFT filters. It is partially visible to the 
programmer in that its results do not have to be explicitly read to be used. Instead they are always copied 
into a 64-bit destination GPR, specified as part of the instruction. Based on the instruction, the ACC can 
hold a single 64-bit value or a vector of two 32-bit elements.

GPR0–GPR31 Access: User read/write

0 31 32 63

R
Upper word (SPE, single-precision vector floating-point)

Lower word (SPE, single-precision vector and scalar 
floating-point)W

R
Double-precision scalar floating point

W

Reset All zeros

Figure 2-4. General Purpose Registers (GPR0–GRP31)

As shown in Figure 2-2 and Figure 2-4, embedded floating-point operations use the GPRs as follows:

• Single-precision floating-point requires a GPR file with thirty-two 32-bit or 64-bit registers. When 
implemented with a 64-bit register file on a 32-bit implementation, single-precision floating-point 
operations only use and modify bits 32–63 of the GPR. In this case, bits 0–31 of the GPR are left 
unchanged by a single-precision floating-point operation. For 64-bit implementations, bits 0–31 are 
undefined after a single-precision floating-point operation.

• Vector floating-point and double-precision floating-point require a GPR file with thirty-two 64-bit 
GPRs. 

— Floating-point double-precision instructions operate on the entire 64 bits of the GPRs where a 
floating-point data item consists of 64 bits.

— Vector floating-point instructions operate on the entire 64 bits of the GPRs, but contain two 
32-bit data items that are operated on independently of each other in a SIMD fashion. The 
format of both data items is the same as a single-precision floating-point value. The data item 
contained in bits 0–31 is called the “high word.” The data item contained in bits 32–63 is called 
the “low word.”

There are no record forms of embedded floating-point instructions. Floating-point compare instructions 
treat NaNs, infinity, and denorm as normalized numbers for the comparison calculation when default results 
are provided.

Access: User read/write

0 31 32 63

R
Upper word Lower word

W

Reset All zeros

Figure 2-5. Accumulator (ACC)
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2.2.3 Signal Processing Embedded Floating-Point Status and
Control Register (SPEFSCR)

The SPEFSCR, shown in Figure 2-6, is used with SPE and embedded floating-point instructions. Vector 
floating-point instructions affect both the high element (bits 34–39) and low element floating-point status 
flags (bits 50–55). Double- and single-precision scalar floating-point instructions affect only the 
low-element floating-point status flags and leave the high-element floating-point status flags undefined.

Table 2-1 describes SPEFSCR bits.

SPR 512 Access: Supervisor-only

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R
SOVH OVH FGH FXH FINVH FDBZH FUNFH FOVFH — FINXS FINVS FDBZS FUNFS FOVFS —

W

Reset 0 0 undefined 0 0 0 0 0 0 0 0 0 0 0 0

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R
SOV OV FG FX FINV FDBZ FUNF FOVF — FINXE FINVE FDBZE FUNFE FOVFE FRMC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-6. Signal Processing and Embedded Floating-Point Status and Control
Register (SPEFSCR)

Table 2-1. SPEFSCR Field Descriptions 

Bits Name Description

32 SOVH Summary integer overflow high. Set when an SPE instruction sets OVH. This is a sticky bit that remains set 
until it is cleared by an mtspr instruction. 

33 OVH Integer overflow high. OVH is set to indicate that an overflow occurred in the upper element during execution 
of an SPE instruction. It is set if a result of an operation performed by the instruction cannot be represented in 
the number of bits into which the result is to be placed and is cleared otherwise. OVH is not altered by modulo 
instructions or by other instructions that cannot overflow.

34 FGH Embedded floating-point guard bit high. Used by the floating-point round interrupt handler. FGH is an extension 
of the low-order bits of the fractional result produced from a floating-point operation on the high word. FGH is 
zeroed if an overflow, underflow, or invalid input error is detected on the high element of a vector floating-point 
instruction. 
Execution of a scalar floating-point instruction leaves FGH undefined.

35 FXH Embedded floating-point inexact bit high. Used by the floating-point round interrupt handler. FXH is an 
extension of the low-order bits of the fractional result produced from a floating-point operation on the high word. 
FXH represents the logical OR of all of the bits shifted right from the guard bit when the fractional result is 
normalized. FXH is zeroed if an overflow, underflow, or invalid input error is detected on the high element of a 
vector floating-point instruction. 
Execution of a scalar floating-point instruction leaves FXH undefined.

High-Word Error Bits Status Bits

Enable Bits
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36 FINVH Embedded floating-point invalid operation/input error high. Set under any of the following conditions:
 • Any operand of a high word vector floating-point instruction is infinity, NaN, or denorm
 • The operation is a divide and the dividend and divisor are both 0
 • A conversion to integer or fractional value overflows.
Execution of a scalar floating-point instruction leaves FINVH undefined.

37 FDBZH Embedded floating-point divide by zero high. Set when a vector floating-point divide instruction is executed with 
a divisor of 0 in the high word operand and the dividend is a finite non-zero number.
Execution of a scalar floating-point instruction leaves FDBZH undefined.

38 FUNFH Embedded floating-point underflow high. Set when execution of a vector floating-point instruction results in an 
underflow on the high word operation.
Execution of a scalar floating-point instruction leaves FUNFH undefined.

39 FOVFH Embedded floating-point overflow high. Set when the execution of a vector floating-point instruction results in 
an overflow on the high word operation.
Execution of a scalar floating-point instruction leaves FOVFH undefined.

40–41 — Reserved, should be cleared. 

42 FINXS Embedded floating-point inexact sticky flag. Set under the following conditions:
 • Execution of any scalar or vector floating-point instruction delivers an inexact result for either the low or high 

element ,and no floating-point data interrupt is taken for either element.
 • A floating-point instruction results in overflow (FOVF=1 or FOVFH=1), but floating-point overflow exceptions 

are disabled (FOVFE=0). 
 • A floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but floating-point underflow 

exceptions are disabled (FUNFE=0), and no floating-point data interrupt occurs. 
FINXS is a sticky bit; it remains set until it is cleared by software.

43 FINVS Embedded floating-point invalid operation sticky flag. The sticky result of any floating-point instruction that 
causes FINVH or FINV to be set. That is, FINVS <- FINVS | FINV | FINVH. FINVS remains set until it is cleared 
by software. 1

44 FDBZS Embedded floating-point divide by zero sticky flag. Set when a floating-point divide instruction sets FDBZH or 
FDBZ. That is, FDBZS <- FDBZS | FDBZH | FDBZ. FDBZS remains set until it is cleared by software.

45 FUNFS Embedded floating-point underflow sticky flag. Defined to be the sticky result of any floating-point instruction 
that causes FUNFH or FUNF to be set. That is, FUNFS <- FUNFS | FUNF | FUNFH. FUNFS remains set until 
it is cleared by software. 1

46 FOVFS Embedded floating-point overflow sticky flag. defined to be the sticky result of any floating-point instruction that 
causes FOVH or FOVF to be set. That is, FOVFS <- FOVFS | FOVF | FOVFH. FOVFS remains set until it is 
cleared by software. 1

47 — Reserved, should be cleared. 

48 SOV Summary integer overflow low. Set when an SPE instruction sets OV. This sticky bit remains set until an mtspr 
writes a 0 to this bit.

49 OV Integer overflow. Set to indicate that an overflow occurred in the lower element during instruction execution. OV 
is set if a result of an operation cannot be represented in the designated number of bits; otherwise, it is cleared. 
OV is unaffected by modulo instructions and other instructions that cannot overflow.

50 FG Embedded floating-point guard bit (low/scalar). Used by the embedded floating-point round interrupt handler. 
FG is an extension of the low-order bits of the fractional result produced from an embedded floating-point 
instruction on the low word. FG is zeroed if an overflow, underflow, or invalid input error is detected on the low 
element of an embedded floating-point instruction.

Table 2-1. SPEFSCR Field Descriptions  (continued)

Bits Name Description
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51 FX Embedded floating-point inexact bit (low/scalar). Used by the embedded floating-point round interrupt handler. 
FX is an extension of the low-order bits of the fractional result produced from an embedded floating-point 
instruction on the low word. FX represents the logical OR of all the bits shifted right from the guard bit when 
the fractional result is normalized. FX is zeroed if an overflow, underflow, or invalid input error is detected on 
embedded floating-point instruction.

52 FINV Embedded floating-point invalid operation/input error (low/scalar). Set by one of the following:
 • Any operand of a low-word vector or scalar floating-point operation is infinity, NaN, or denorm.
 • The dividend and divisor are both 0 for a divide operation.
 • A conversion to integer or fractional value overflows.

53 FDBZ Embedded floating-point divide by zero (low/scalar). Set when an embedded floating-point divide instruction is 
executed with a divisor of 0 in the low word operand, and the dividend is a finite nonzero number.

54 FUNF Embedded floating-point underflow (low/scalar). Set when the execution of an embedded floating-point 
instruction results in an underflow on the low word operation.

55 FOVF Embedded floating-point overflow (Low/scalar). Set when the execution of an embedded floating-point 
instruction results in an overflow on the low word operation.

56 — Reserved, should be cleared. 

57 FINXE Embedded floating-point round (inexact) exception enable
0 Exception disabled
1 Exception enabled. A floating-point round interrupt is taken if no other interrupt is taken, and if FG | FGH | 

FX | FXH (signifying an inexact result) is set as a result of a floating-point operation. If a floating-point 
instruction operation results in overflow or underflow and the corresponding underflow or overflow exception 
is disabled, a floating-point round interrupt is taken.

58 FINVE Embedded floating-point invalid operation/input error exception enable
0 Exception disabled
1 Exception enabled. A floating-point data interrupt is taken if a floating-point instruction sets FINV or FINVH.

59 FDBZE Embedded floating-point divide by zero exception enable
0 Exception disabled
1 Exception enabled. A floating-point data interrupt is taken if a floating-point instruction sets FDBZ or FDBZH.

60 FUNFE Embedded floating-point underflow exception enable
0 Exception disabled
1 Exception enabled. A floating-point data interrupt is taken if a floating-point instruction sets FUNF or FUNFH.

61 FOVFE Embedded floating-point overflow exception enable
0 Exception disabled
1 Exception enabled. A floating-point data interrupt is taken if a floating-point instruction sets FOVF or FOVFH.

62–63 FRMC Embedded floating-point rounding mode control
00 Round to nearest
01 Round toward zero
10 Round toward +infinity. If this mode is not implemented, embedded floating-point round interrupts are 

generated for every floating-point instruction for which rounding is indicated.
11 Round toward -infinity. If this mode is not implemented, embedded floating-point round interrupts are 
generated for every floating-point instruction for which rounding is indicated.

1 Software note: Software can detect the hardware that manages this bit by performing an operation on a NaN and observing 
whether hardware sets this sticky bit. Alternatively, if it desired that software work on all processors supporting embedded 
floating-point, software should check the appropriate status bits and set the sticky bit. If hardware also performs this operation, 
the action is redundant.

Table 2-1. SPEFSCR Field Descriptions  (continued)

Bits Name Description



SPE Register Model

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

2-8 Freescale Semiconductor
 

2.2.3.1 Interrupt Vector Offset Registers (IVORs)

The SPE uses four IVORs which, together with the interrupt vector prefix register (IVPR), define the 
vector address for interrupt handler routines. The following IVORs are used:

• IVOR5 (SPR 405)—Defined by the base architecture for alignment interrupts and used for SPE 
load and store instructions alignment interrupts 

• IVOR32 (SPR 528)—SPE/embedded floating-point unavailable exception (causes the 
SPE/embedded floating-point unavailable interrupt)

• IVOR33 (SPR 529)—Embedded floating-point data interrupts

• IVOR34 (SPR 530)—Embedded floating-point round interrupts

For more information, see Chapter 4, “SPE/Embedded Floating-Point Interrupt Model.”

2.2.3.2 Exception Bit in the Exception Syndrome Register (ESR)

ESR[SPV] (ESR[56]), formerly called ESR[SPE], is set whenever the processor takes an interrupt related 
to the execution of SPE vector or floating-point instructions.

2.2.3.3 Condition Register (CR)

The CR is used to record results for compare and test instructions. It also provides a source operand for 
the Vector Select (evsel) instruction. Table 2-2 lists SPE instructions that explicitly access CR bits (crS or 
crD).

Table 2-2 lists embedded floating-point instructions that explicitly access CR bits (crD).

Table 2-2. SPE Instructions that Use the CR

Instruction Mnemonic Syntax

Vector Compare Equal evcmpeq crD,rA,rB

Vector Compare Greater Than Signed evcmpgts crD,rA,rB

Vector Compare Greater Than Unsigned evcmpgtu crD,rA,rB

Vector Compare Less Than Signed evcmplts crD,rA,rB

Vector Compare Less Than Unsigned evcmpltu crD,rA,rB

Vector Select evsel rD,rA,rB,crS

Table 2-3. Embedded Floating-Point Instructions that Use the CR

Instruction
Single-Precision

Double- Precision Scalar Syntax
Scalar Vector

Floating-Point Compare Equal efscmpeq evfscmpeq efdcmpeq crD,rA,rB 

Floating-Point Compare Greater Than efscmpgt evfscmpgt efdcmpgt crD,rA,rB 

Floating-Point Compare Less Than efscmplt evfscmplt efdcmplt crD,rA,rB 

Floating-Point Test Equal efststeq evfststeq efdtsteq crD,rA,rB 

Floating-Point Test Greater Than efststgt evfststgt efdtstgt crD,rA,rB 

Floating-Point Test Less Than efststlt evfststlt efdtstlt crD,rA,rB 
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2.2.3.4 SPE Available Bit in the Machine State Register (MSR)

MSR[SPV] (MSR[38]), formerly called MSR[SPE], is the SPE/embedded floating-point available bit. If 
this bit is zero and software attempts to execute an SPE instruction, an SPE unavailable interrupt is taken.

NOTE (Software)
Software can use MSR[SPV] to detect when a process uses the upper 32 bits 
of a 64-bit register on a 32-bit implementation and thus save them on 
context switch.
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Chapter 3  
SPE and Embedded Floating-Point Instruction Model
This chapter describes the instruction model of the signal processing engine (SPE) for embedded 
processors. This includes additional resources defined to support embedded floating-point instruction sets 
that may be implemented.

Chapter 5, “Instruction Set,” gives complete descriptions of individual SPE and embedded floating-point 
instructions. Section 5.3.1, “SPE Saturation and Bit-Reverse Models,” provides pseudo-RTL for 
saturation and bit reversal to more accurately describe those functions that are referenced in the instruction 
pseudo-RTL.

3.1 Overview
The SPE is designed to accelerate signal-processing applications normally suited to DSP operation. This 
is accomplished using short (two-element) vectors within 64-bit GPRs and using single instruction 
multiple data (SIMD) operations to perform the requisite computations. An accumulator register (ACC) 
allows back-to-back operations without loop unrolling.

The SPE defines both computational and load store instructions. SPE load store instructions are necessary 
for 32-bit implementation to access 64-bit operands. 

Embedded floating-point instructions, which may be implemented if the SPE is implemented, include the 
following computational instructions:

• Embedded vector single-precision floating-point, which use extended 64-bit GPRs

• Embedded scalar single-precision floating-point, which use extended 32-bit GPRs

• Embedded scalar double-precision floating-point, which use extended 64-bit GPRs

Note that for 32-bit implementations, the SPE load and store instructions must be used for accessing 64-bit 
embedded floating-point operands.

3.2 SPE Instruction Set
This section describes the data formats and instruction syntax, and provides an overview of computational 
operations of the SPE instructions.

Chapter 5, “Instruction Set,” gives complete descriptions of individual SPE and embedded floating-point 
instructions.

Opcodes are listed in Appendix B, “SPE and Embedded Floating-Point Opcode Listings.”
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3.2.1 SPE Data Formats

SPE provides integer and fractional data formats, which can be treated as signed or unsigned quantities.

3.2.1.1 Integer Format

Unsigned integers consist of 16-, 32-, or 64-bit binary integer values. The largest representable value is 
2n – 1, where n represents the number of bits in the value. The smallest representable value is 0. 
Computations that produce values larger than 2n – 1 or smaller than 0 set OV or OVH in SPEFSCR.

Signed integers consist of 16-, 32-, or 64-bit binary values in two’s-complement form. The largest 
representable value is 2n–1 – 1, where n represents the number of bits in the value. The smallest 
representable value is –2n–1. Computations that produce values larger than 2n–1 – 1 or smaller than –2n–1 
set OV or OVH in SPEFSCR.

3.2.1.2 Fractional Format

Fractional data is useful for representing data converted from analog devices and is conventionally used 
for DSP fractional arithmetic.

Unsigned fractions consist of 16-, 32-, or 64-bit binary fractional values that range from 0 to less than 1. 
Unsigned fractions place the radix point immediately to the left of the msb. The msb of the value represents 
the value 2-1, the next msb represents the value 2-2, and so on. The largest representable value is 1-2-n 
where n represents the number of bits in the value. The smallest representable value is 0. Computations 
that produce values larger than 1-2-n or smaller than 0 may set OV or OVH in the SPEFSCR. SPE does 
not define unsigned fractional forms of instructions to manipulate unsigned fractional data because the 
unsigned integer forms of the instructions produce the same results as unsigned fractional forms.

Guarded unsigned fractions are 64-bit binary fractional values. Guarded unsigned fractions place the 
decimal point immediately to the left of bit 32. The largest representable value is 232-2-32; the smallest is 0. 
Guarded unsigned fractional computations are always modulo and do not set OV or OVH.

Signed fractions consist of 16-, 32-, or 64-bit binary fractional values in two’s-complement form that range 
from -1 to less than 1. Signed fractions place the decimal point immediately to the right of the msb. The 
largest representable value is 1-2-(n-1) where n represents the number of bits in the value. The smallest 
representable value is -1. Computations that produce values larger than 1-2-(n-1) or smaller than -1 may set 
OV or OVH. Multiplication of two signed fractional values causes the result to be shifted left one bit to 
remove the resultant redundant sign bit in the product. In this case, a 0 bit is concatenated as the lsb of the 
shifted result.

Guarded signed fractions are 64-bit binary fractional values that place the decimal point immediately to 
the left of bit 33. The largest representable value is 232-2-31; the smallest is -232-1+2-31. Guarded signed 
fractional computations are always modulo and do not set OV or OVH.

3.2.2 Computational Operations

SPE supports several different computational capabilities. Modulo results produce truncation of the 
overflow bits in a calculation; therefore, overflow does not occur and no saturation is performed. For 
instructions for which overflow occurs, saturation provides a maximum or minimum representable value 
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(for the data type) in the case of overflow. Instructions are provided for a wide range of computational 
capability. The operation types are as follows:

• Simple vector instructions. These instructions use the corresponding low- and high-word elements 
of the operands to produce a vector result that is placed in the destination register, the accumulator, 
or both. Figure 3-1 shows how operations are typically performed in vector operations.

Figure 3-1. Two-Element Vector Operations

• Multiply and accumulate instructions. These instructions perform multiply operations, optionally 
add the result to the ACC, and place the result into the destination register and optionally into the 
ACC. These instructions are composed of different multiply forms, data formats, and data 
accumulate options, as indicated by their mnemonics, as shown in Table 3-1.

Table 3-1. Mnemonic Extensions for Multiply Accumulate Instructions

Extension Meaning Comments

Multiply Form

he Half word even 16 X 16 → 32

heg Half word even guarded 16 X 16 → 32, 64-bit final accum result

ho Half word odd 16 X 16 → 32

hog Half word odd guarded 16 X 16 → 32, 64-bit final accum result

w Word 32 X 32 → 64

wh Word high 32 X 32 → 32 (high order 32 bits of product)

wl Word low 32 X 32 → 32 (low order 32 bits of product)

Data Format

smf Signed modulo fractional Modulo, no saturation or overflow

smi Signed modulo integer Modulo, no saturation or overflow

ssf Signed saturate fractional Saturation on product and accumulate

ssi Signed saturate integer Saturation on product and accumulate

umi Unsigned modulo integer Modulo, no saturation or overflow

usi Unsigned saturate integer Saturation on product and accumulate

Accumulate Option

a Place in accumulator Result → accumulator

0 31 32 63

rA

rB

operation operation

rD
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• Load and store instructions. These instructions provide load and store capabilities for moving data 
to and from memory. A variety of forms are provided that position data for efficient computation.

• Compare and miscellaneous instructions. These instructions perform miscellaneous functions such 
as field manipulation, bit reversed incrementing, and vector compares.

3.2.2.1 Data Formats and Register Usage

Figure 2-4 shows how GPRs are used with integer, fractional, and floating-point data formats.

3.2.2.1.1 Signed Fractions

In signed fractional format, the n-bit operand is represented in a 1.[n–1] format (1 sign bit, n–1 fraction 
bits). Signed fractional numbers are in the following range: 

The real value of the binary operand SF[0:n-1] is as follows:

The most negative and positive numbers representable in fractional format are as follows:

• The most negative number is represented by SF(0) = 1 and SF[1:n–1] = 0 (that is, n=32; 
0x8000_0000 = –1.0).

• The most positive number is represented by SF(0) = 0 and SF[1:n–1] = all 1s (that is, n = 32; 
0x7FFF_FFFF = 1.0 - 2–(n–1)).

3.2.2.1.2 SPE Integer and Fractional Operations

Figure 3-2 shows data formats for signed integer and fractional multiplication. Note that low word 
versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to 
execute an opcode corresponding to these instructions causes boundedly undefined results.

aa Add to accumulator Accumulator + result → accumulator

aaw Add to accumulator Accumulator0:31 + result0:31 → accumulator0:31
Accumulator32:63 + result32:63 → accumulator32:63

an Add negated to accumulator Accumulator – result → accumulator

anw Add negated to accumulator Accumulator0:31 – result0:31 → accumulator0:31
Accumulator32:63 – result32:63 → accumulator32:63

Table 3-1. Mnemonic Extensions for Multiply Accumulate Instructions (continued)

Extension Meaning Comments

1.0 SF 1.0 2
n 1–( )–

–≤ ≤–

SF 1.0 SF 0( )•–= SF i( ) 2
i–•

i 1=

n 1–

∑+
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Figure 3-2. Integer and Fractional Operations

3.2.2.1.3 SPE Instructions

Table 3-2 shows how SPE vector multiply instruction mnemonics are structured.

Table 3-3 defines mnemonic extensions for these instructions.
 

Table 3-2. SPE Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element

evm

ho 
he 

hog
heg
wh 
wl 

whg
wlg
w 

half odd (16x16->32)
half even (16x16->32)
half odd guarded (16x16->32)
half even guarded (16x16->32)
word high (32x32->32)
word low (32x32->32)
word high guarded (32x32->32)
word low guarded (32x32->32)
word (32x32->64)

usi
umi
ssi
ssf1

smi
smf1

1 Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute an 
opcode corresponding to these instructions causes boundedly undefined results. 

unsigned saturate integer
unsigned modulo integer
signed saturate integer
signed saturate fractional
signed modulo integer
signed modulo fractional

a
aa
an

aaw
anw

write to ACC
write to ACC & added ACC
write to ACC & negate ACC
write to ACC & ACC in words
write to ACC & negate ACC in words

Table 3-3. Mnemonic Extensions for Multiply-Accumulate Instructions

Extension Meaning Comments

Multiply Form

he Half word even 16×16→32

heg Half word even guarded 16×16→32, 64-bit final accumulator result

ho Half word odd 16×16→32

hog Half word odd guarded 16×16→32, 64-bit final accumulator result

w Word 32×32→64

wh Word high 32×32→32, high-order 32 bits of product

wl Word low 32×32→32, low-order 32 bits of product

Data Type

S S

×

S S HP LP

2N Bits

(2N–1)–Bit Product

Signed Multiplier

Sign Extension

S S

×

0S HP LP

2N Bits

(2N–1)–Bit Product

Signed Multiplier

Zero fill

Integer Fractional
Signed Multiplication N × N → 2N – 1 Bits
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Table 3-4 lists SPE instructions.

smf Signed modulo fractional Wrap, no saturate

smi Signed modulo integer Wrap, no saturate

ssf Signed saturate fractional —

ssi Signed saturate integer —

umi Unsigned modulo integer Wrap, no saturate

usi Unsigned saturate integer —

Accumulate Options

a Update accumulator Update accumulator (no add)

aa Add to accumulator Add result to accumulator (64-bit sum)

aaw Add to accumulator (words) Add word results to accumulator words (pair of 32-bit sums)

an Add negated Add negated result to accumulator (64-bit sum)

anw Add negated to accumulator (words) Add negated word results to accumulator words (pair of 32-bit sums)

Table 3-4. SPE Instructions

Instruction Mnemonic Syntax

Bit Reversed Increment brinc rD,rA,rB

Initialize Accumulator evmra rD,rA

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate evmhegsmfaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate Negative evmhegsmfan rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate evmhegsmiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate Negative evmhegsmian rD,rA,rB

Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate evmhegumiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate Negative evmhegumian rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate evmhogsmfaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate Negative evmhogsmfan rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate evmhogsmiaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate Negative evmhogsmian rD,rA,rB

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate evmhogumiaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate Negative evmhogumian rD,rA,rB

Vector Absolute Value evabs rD,rA

Vector Add Immediate Word evaddiw rD,rB,UIMM

Vector Add Signed, Modulo, Integer to Accumulator Word evaddsmiaaw rD,rA,rB

Vector Add Signed, Saturate, Integer to Accumulator Word evaddssiaaw rD,rA

Vector Add Unsigned, Modulo, Integer to Accumulator Word evaddumiaaw rD,rA

Vector Add Unsigned, Saturate, Integer to Accumulator Word evaddusiaaw rD,rA

Vector Add Word evaddw rD,rA,rB

Table 3-3. Mnemonic Extensions for Multiply-Accumulate Instructions (continued)

Extension Meaning Comments
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Vector AND evand rD,rA,rB

Vector AND with Complement evandc rD,rA,rB

Vector Compare Equal evcmpeq crD,rA,rB

Vector Compare Greater Than Signed evcmpgts crD,rA,rB

Vector Compare Greater Than Unsigned evcmpgtu crD,rA,rB

Vector Compare Less Than Signed evcmplts crD,rA,rB

Vector Compare Less Than Unsigned evcmpltu crD,rA,rB

Vector Count Leading Sign Bits Word evcntlsw rD,rA

Vector Count Leading Zeros Word evcntlzw rD,rA

Vector Divide Word Signed evdivws rD,rA,rB

Vector Divide Word Unsigned evdivwu rD,rA,rB

Vector Equivalent eveqv rD,rA,rB

Vector Extend Sign Byte evextsb rD,rA

Vector Extend Sign Half Word evextsh rD,rA

Vector Load Double into Half Words evldh rD,d(rA)

Vector Load Double into Half Words Indexed evldhx rD,rA,rB

Vector Load Double into Two Words evldw rD,d(rA)

Vector Load Double into Two Words Indexed evldwx rD,rA,rB

Vector Load Double Word into Double Word evldd rD,d(rA)

Vector Load Double Word into Double Word Indexed evlddx rD,rA,rB

Vector Load Half Word into Half Word Odd Signed and Splat evlhhossplat rD,d(rA)

Vector Load Half Word into Half Word Odd Signed and Splat Indexed evlhhossplatx rD,rA,rB

Vector Load Half Word into Half Word Odd Unsigned and Splat evlhhousplat rD,d(rA)

Vector Load Half Word into Half Word Odd Unsigned and Splat Indexed evlhhousplatx rD,rA,rB

Vector Load Half Word into Half Words Even and Splat evlhhesplat rD,d(rA)

Vector Load Half Word into Half Words Even and Splat Indexed evlhhesplatx rD,rA,rB

Vector Load Word into Half Words and Splat evlwhsplat rD,d(rA)

Vector Load Word into Half Words and Splat Indexed evlwhsplatx rD,rA,rB

Vector Load Word into Half Words Odd Signed (with sign extension) evlwhos rD,d(rA)

Vector Load Word into Half Words Odd Signed Indexed (with sign extension) evlwhosx rD,rA,rB

Vector Load Word into Two Half Words Even evlwhe rD,d(rA)

Vector Load Word into Two Half Words Even Indexed evlwhex rD,rA,rB

Vector Load Word into Two Half Words Odd Unsigned (zero-extended) evlwhou rD,d(rA)

Vector Load Word into Two Half Words Odd Unsigned Indexed (zero-extended) evlwhoux rD,rA,rB

Vector Load Word into Word and Splat evlwwsplat rD,d(rA)

Vector Load Word into Word and Splat Indexed evlwwsplatx rD,rA,rB

Vector Merge High evmergehi rD,rA,rB

Vector Merge High/Low evmergehilo rD,rA,rB

Vector Merge Low evmergelo rD,rA,rB

Vector Merge Low/High evmergelohi rD,rA,rB

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
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Vector Multiply Half Words, Even, Signed, Modulo, Fractional evmhesmf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate into Words evmhesmfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate Negative into 
Words 

evmhesmfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional, Accumulate evmhesmfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer evmhesmi rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into Words evmhesmiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate Negative into Words evmhesmianw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer, Accumulate evmhesmia rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional evmhessf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate into Words evmhessfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate Negative into 
Words 

evmhessfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional, Accumulate evmhessfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate into Words evmhessiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate Negative into 
Words 

evmhessianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer evmheumi rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate into Words evmheumiaaw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate Negative into 
Words 

evmheumianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer, Accumulate evmheumia rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate into Words evmheusiaaw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate Negative into 
Words 

evmheusianw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional evmhosmf rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate into Words evmhosmfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate Negative into 
Words 

evmhosmfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional, Accumulate evmhosmfa rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer evmhosmi rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into Words evmhosmiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate Negative into Words evmhosmianw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer, Accumulate evmhosmia rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional evmhossf rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into Words evmhossfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate Negative into 
Words 

evmhossfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional, Accumulate evmhossfa rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate into Words evmhossiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate Negative into Words evmhossianw rD,rA,rB

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
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Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer evmhoumi rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate into Words evmhoumiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate Negative into 
Words 

evmhoumianw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer, Accumulate evmhoumia rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate into Words evmhousiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate Negative into 
Words 

evmhousianw rD,rA,rB

Vector Multiply Word High Signed, Modulo, Fractional evmwhsmf rD,rA,rB

Vector Multiply Word High Signed, Modulo, Fractional and Accumulate evmwhsmfa rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer evmwhsmi rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer and Accumulate evmwhsmia rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional evmwhssf rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional and Accumulate evmwhssfa rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer evmwhumi rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer and Accumulate evmwhumia rD,rA,rB

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words evmwlsmiaaw rD,rA,rB

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in Words evmwlsmianw rD,rA,rB

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words evmwlssiaaw rD,rA,rB

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in Words evmwlssianw rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer evmwlumi rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate evmwlumia rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words evmwlumiaaw rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in Words evmwlumianw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words evmwlusiaaw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in Words evmwlusianw rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional evmwsmf rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative evmwsmfan rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer evmwsmi rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmia rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmiaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative evmwsmian rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional evmwssf rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfa rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfaa rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative evmwssfan rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer evmwumi rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumia rD,rA,rB

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
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Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumiaa rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative evmwumian rD,rA,rB

Vector NAND evnand rD,rA,rB

Vector Negate evneg rD,rA

Vector NOR 1 evnor rD,rA,rB

Vector OR 2 evor rD,rA,rB

Vector OR with Complement evorc rD,rA,rB

Vector Rotate Left Word evrlw rD,rA,rB

Vector Rotate Left Word Immediate evrlwi rD,rA,UIMM

Vector Round Word evrndw rD,rA

Vector Select evsel rD,rA,rB,crS

Vector Shift Left Word evslw rD,rA,rB

Vector Shift Left Word Immediate evslwi rD,rA,UIMM

Vector Shift Right Word Immediate Signed evsrwis rD,rA,UIMM

Vector Shift Right Word Immediate Unsigned evsrwiu rD,rA,UIMM

Vector Shift Right Word Signed evsrws rD,rA,rB

Vector Shift Right Word Unsigned evsrwu rD,rA,rB

Vector Splat Fractional Immediate evsplatfi rD,SIMM

Vector Splat Immediate evsplati rD,SIMM

Vector Store Double of Double evstdd rS,d(rA)

Vector Store Double of Double Indexed evstddx rS,rA,rB

Vector Store Double of Four Half Words evstdh rS,d(rA)

Vector Store Double of Four Half Words Indexed evstdhx rS,rA,rB

Vector Store Double of Two Words evstdw rS,d(rA)

Vector Store Double of Two Words Indexed evstdwx rS,rA,rB

Vector Store Word of Two Half Words from Even evstwhe rS,d(rA)

Vector Store Word of Two Half Words from Even Indexed evstwhex rS,rA,rB

Vector Store Word of Two Half Words from Odd evstwho rS,d(rA)

Vector Store Word of Two Half Words from Odd Indexed evstwhox rS,rA,rB

Vector Store Word of Word from Even evstwwex rS,d(rA)

Vector Store Word of Word from Even Indexed evstwwex rS,rA,rB

Vector Store Word of Word from Odd evstwwo rS,d(rA)

Vector Store Word of Word from Odd Indexed evstwwox rS,rA,rB

Vector Subtract from Word 3 evsubfw rD,rA,rB

Vector Subtract Immediate from Word 4 evsubifw rD,UIMM,rB

Vector Subtract Signed, Modulo, Integer to Accumulator Word evsubfsmiaaw rD,rA

Vector Subtract Signed, Saturate, Integer to Accumulator Word evsubfssiaaw rD,rA

Vector Subtract Unsigned, Modulo, Integer to Accumulator Word evsubfumiaaw rD,rA

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
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3.2.3 SPE Simplified Mnemonics

Table 3-5 lists simplified mnemonics for SPE instructions. 

3.3 Embedded Floating-Point Instruction Set
The embedded floating-point categories require the implementation of the signal processing engine (SPE) 
category and consist of three distinct categories:

• Embedded vector single-precision floating-point 

• Embedded scalar single-precision floating-point 

• Embedded scalar double-precision floating-point

Although each of these may be implemented independently, they are defined in a single chapter because 
they may be implemented together.

Load and store instructions for transferring operands to and from memory are described in Section 3.3.3, 
“Load/Store Instructions.”

References to embedded floating-point categories, embedded floating-point instructions, or embedded 
floating-point operations apply to all three categories.

Scalar single-precision floating-point operations use 32-bit GPRs as source and destination operands; 
however, double precision and vector instructions require 64-bit GPRs as described in Section 2.2.1, 
“General-Purpose Registers (GPRs).” 

Opcodes are listed in Appendix B, “SPE and Embedded Floating-Point Opcode Listings.”

Vector Subtract Unsigned, Saturate, Integer to Accumulator Word evsubfusiaaw rD,rA

Vector XOR evxor rD,rA,rB

1 evnot rD,rA is equivalent to evnor rD,rA,rA
2 evmr rD,rA is equivalent to evor rD,rA,rA
3 evsubw rD,rB,rA is equivalent to evsubfw rD,rA,rB
4 evsubiw rD,rB,UIMM is equivalent to evsubifw rD,UIMM,rB

Table 3-5. SPE Simplified Mnemonics

Simplified Mnemonic Equivalent

evmr rD,rA evor rD,rA,rA

evnot rD,rA evnor rD,rA,rA

evsubiw rD,rB,UIMM evsubifw rD,UIMM,rB

evsubw rD,rB,rA evsubfw rD,rA,rB

Table 3-4. SPE Instructions (continued)

Instruction Mnemonic Syntax
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3.3.1 Embedded Floating-Point Operations

This section describes embedded floating-point operational modes, data formats, underflow and overflow 
handling, compliance with IEEE 754, and conversion models. 

3.3.1.1 Operational Modes

All embedded floating-point operations are governed by the setting of the mode bit in SPEFSCR. The 
mode bit defines how floating-point results are computed and how floating-point exceptions are handled. 
Mode 0 defines a real-time, default-results-oriented mode that saturates results. Other modes are currently 
not defined.

3.3.1.2 Floating-Point Data Formats

Single-precision floating-point data elements are 32 bits wide with 1 sign bit (s), 8 bits of biased 
exponent (e) and 23 bits of fraction (f). Double-precision floating-point data elements are 64 bits wide with 
1 sign bit (s), 11 bits of biased exponent (e) and 52 bits of fraction (f).

In the IEEE-754 specification, floating-point values are represented in a format consisting of three explicit 
fields (sign field, biased exponent field, and fraction field) and an implicit hidden bit. Figure 3-3 shows 
floating-point data formats.

Figure 3-3. Floating-Point Data Format

For single-precision normalized numbers, the biased exponent value e lies in the range of 1 to 254 
corresponding to an actual exponent value E in the range –126 to +127. For double-precision normalized 
numbers, the biased exponent value e lies in the range of 1 to 2046 corresponding to an actual exponent 
value E in the range -1022 to +1023. With the hidden bit implied to be ‘1’ (for normalized numbers), the 
value of the number is interpreted as follows:

where E is the unbiased exponent and 1.fraction is the mantissa (or significand) consisting of a leading ‘1’ 
(the hidden bit) and a fractional part (fraction field). For the single-precision format, the maximum positive 
normalized number (pmax) is represented by the encoding 0x7F7F_FFFF which is approximately 
3.4E+38, (2128), and the minimum positive normalized value (pmin) is represented by the encoding 
0x0080_0000 which is approximately 1.2E-38 (2-126). For the double-precision format, the maximum 
positive normalized number (pmax) is represented by the encoding 0x7FEF_FFFF_FFFF_FFFF which is 
approximately 1.8E+307 (21024), and the minimum positive normalized value (pmin) is represented by the 
encoding 0x0010_0000_0000_0000 which is approximately 2.2E-308 (2-1022).

fraction
0

exp
31 (or 32:63)8

s

s—sign bit; 0 = positive; 1 = negative
exp—biased exponent field
fraction—fractional portion of number

1 9

fraction
0

exp
6311

s
1 12

hidden bit

Double-precision

Single-precision

1–( )s 2E× 1.fraction( )×
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Two specific values of the biased exponent are reserved (0 and 255 for single-precision; 0 and 2047 for 
double-precision) for encoding special values of +0, -0, +infinity, -infinity, and NaNs. 

Zeros of both positive and negative sign are represented by a biased exponent value e of 0 and a fraction f 
which is 0. 

Infinities of both positive and negative sign are represented by a maximum exponent field value (255 for 
single-precision, 2047 for double-precision) and a fraction which is 0.

Denormalized numbers of both positive and negative sign are represented by a biased exponent value e of 
0 and a fraction f, which is nonzero. For these numbers, the hidden bit is defined by IEEE 754 to be 0. This 
number type is not directly supported in hardware. Instead, either a software interrupt handler is invoked, 
or a default value is defined.

NaNs (Not-a-Numbers) are represented by a maximum exponent field value (255 for single-precision, 
2047 for double-precision) and a fraction, f, which is nonzero.

3.3.1.3 Overflow and Underflow

Defining pmax to be the most positive normalized value (farthest from zero), pmin the smallest positive 
normalized value (closest to zero), nmax the most negative normalized value (farthest from zero) and nmin 
the smallest normalized negative value (closest to zero), an overflow is said to have occurred if the 
numerically correct result of an instruction is such that r > pmax or r < nmax. Additionally, an 
implementation may also signal overflow by comparing the exponents of the operands. In this case, the 
hardware examines both exponents ignoring the fractional values. If it is determined that the operation to 
be performed may overflow (ignoring the fractional values), an overflow may be said to occur. For 
addition and subtraction this can occur if the larger exponent of both operands is 254. For multiplication 
this can occur if the sum of the exponents of the operands less the bias is 254. Thus:

single-precision addition:
if Aexp >= 254 | Bexp >= 254 then overflow

double-precision addition:
if Aexp >= 2046 | Bexp >= 2046 then overflow

single-precision multiplication:
if Aexp + Bexp - 127 >= 254 then overflow

double-precision multiplication:
if Aexp + Bexp - 1023 >= 2046 then overflow

An underflow is said to have occurred if the numerically correct result of an instruction is such that 
0<r<pmin or nmin<r<0. In this case, r may be denormalized, or may be smaller than the smallest 
denormalized number. As with overflow detection, an implementation may also signal underflow by 
comparing the exponents of the operands. In this case, the hardware examines both exponents regardless 
of the fractional values. If it is determined that the operation to be performed may underflow (ignoring the 
fractional values), an underflow may be said to occur. For division, this can occur if the difference of the 
exponent of the A operand less the exponent of the B operand less the bias is 1. Thus:

single-precision division:
if Aexp - Bexp - 127 <= 1 then underflow

double-precision multiplication:
if Aexp - Bexp - 1023 <= 1 then underflow
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Embedded floating-point operations do not produce +Inf, –Inf, NaN, or a denormalized number. If the 
result of an instruction overflows and floating-point overflow exceptions are disabled 
(SPEFSCR[FOVFE] is cleared), pmax or nmax is generated as the result of that instruction depending on 
the sign of the result. If the result of an instruction underflows and floating-point underflow exceptions are 
disabled (SPEFSCR[FUNFE] is cleared), +0 or -0 is generated as the result of that instruction based upon 
the sign of the result.

3.3.1.4 IEEE Std 754™ Compliance

The embedded floating-point categories require a floating-point system as defined in IEEE 754 but may 
rely on software support in order to conform fully with the standard. Thus, whenever an input operand of 
the embedded floating-point instruction has data values that are +infinity, -infinity, alized, NaN, or when 
the result of an operation produces an overflow or an underflow, an embedded floating-point data interrupt 
may be taken and the interrupt handler is responsible for delivering IEEE 754–compliant behavior if 
desired. 

When embedded floating-point invalid operation/input error exceptions are disabled (SPEFSCR[FINVE] 
= 0), default results are provided by the hardware when an infinity, denormalized, or NaN input is received, 
or for the operation 0/0. When embedded floating-point underflow exceptions are disabled 
(SPEFSCR[FUNFE] = 0) and the result of a floating-point operation underflows, a signed zero result is 
produced. The embedded floating-point round (inexact) exception is also signaled for this condition. When 
embedded floating-point overflow exceptions are disabled (SPEFSCR[FOVFE] = 0) and the result of a 
floating-point operation overflows, a pmax or nmax result is produced. The embedded floating-point round 
(inexact) exception is also signaled for this condition. An exception enable flag (SPEFSCR[FINXE]) is 
also provided for generating an embedded floating-point round interrupt when an inexact result is 
produced, to allow a software handler to conform to IEEE 754. An embedded floating-point divide by zero 
exception enable flag (SPEFSCR[FDBZE]) is provided for generating an embedded floating-point data 
interrupt when a divide by zero operation is attempted to allow a software handler to conform to IEEE 754. 
All of these exceptions may be disabled, and the hardware will then deliver an appropriate default result.

The sign of the result of an addition operation is the sign of the source operand having the larger absolute 
value. If both operands have the same sign, the sign of the result is the same as the sign of the operands. 
This includes subtraction which is addition with the negation of the sign of the second operand. The sign 
of the result of an addition operation with operands of differing signs for which the result is zero is positive 
except when rounding to negative infinity. Thus -0 + -0 = -0, and all other cases which result in a zero value 
give +0 unless the rounding mode is rounded to negative infinity.

NOTE (Programming)
When exceptions are disabled and default results computed, operations 
having input values that are denormalized may provide different results on 
different implementations. An implementation may choose to use the 
denormalized value or a zero value for any computation. Thus a 
computational operation involving a denormalized value and a normal value 
may return different results depending on the implementation.
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3.3.1.5 Sticky Bit Handling for Exception Conditions

The SPEFSCR defines sticky bits for retaining information about exception conditions that are detected. 
These sticky bits (FINXS, FINVS, FDBZS, FUNFS, and FOVFS) can be used to help provide IEEE-754 
compliance. The sticky bits represent the combined OR of all previous status bits produced from any 
embedded floating-point operation before the last time software zeroed the sticky bit. Only software can 
zero a sticky bit; hardware can only set sticky bits.

The SPEFSCR is described in Section 2.2.3, “Signal Processing Embedded Floating-Point Status and 
Control Register (SPEFSCR).” Interrupts are described in Chapter 4, “SPE/Embedded Floating-Point 
Interrupt Model.”

3.3.1.6 Implementation Options Summary

There are several options that may be chosen for a given implementation. This section summarizes 
implementation-dependent functionality and should be used with the processor core documentation to 
determine behavior of individual implementations.

• Floating-point instruction sets can be implemented independently of one another. 

• Overflow and underflow conditions may be signaled by evaluating the exponent. If the evaluaton 
indicates an overflow or underflow could occur, the implementation may choose to signal an 
overflow or underflow. It is recommended that future implementations not use this estimation and 
that they signal overflow or underflow when they actually occur.

• If an operand for a calculation or conversion is denormalized, the implementation may choose to 
use a same-signed zero value in place of the denormalized operand.

• The rounding modes of +infinity and -infinity are not required to be handled by an implementation. 
If an implementation does not support ±infinity rounding modes and the rounding mode is set to 
be +infinity or -infinity, an embedded floating-point round interrupt occurs after every 
floating-point instruction for which rounding may occur, regardless of the value of FINXE, unless 
an embedded floating-point data interrupt also occurs and is taken.

• For absolute value, negate, and negative absolute value operations, an implementation may choose 
either to simply perform the sign bit operation, ignoring exceptions, or to compute the operation 
and handle exceptions and saturation where appropriate.

• SPEFSCR[FGH,FXH] are undefined on completion of a scalar floating-point operation. An 
implementation may choose to zero them or leave them unchanged.

• An implementation may choose to only implement sticky bit setting by hardware for FDBZS and 
FINXS, allowing software to manage the other sticky bits. It is recommended that all future 
implementations implement all sticky bit setting in hardware.

• For 64-bit implementations, the upper 32 bits of the destination register are undefined when the 
result of a scalar floating-point operation is a 32-bit result. It is recommended that future 64-bit 
implementations produce 64-bit results for the results of 64-bit convert-to-integer values.

3.3.1.7 Saturation, Shift, and Bit Reverse Models

For saturation, left shifts, and bit reversal, the pseudo-RTL is provided here to more accurately describe 
those functions referenced in the instruction pseudo-RTL.
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3.3.1.7.1 Saturation

SATURATE(ov, carry, sat_ovn, sat_ov, val)
if ov then

if carry then
return sat_ovn

else
return sat_ov

else
return val

3.3.1.7.2 Shift Left

SL(value, cnt)
if cnt > 31 then

return 0
else

return (value << cnt)

3.3.1.7.3 Bit Reverse

BITREVERSE(value)
result  0
mask  1
shift  31
cnt  32
while cnt > 0 then do

t  value & mask
if shift >= 0 then

result  (t << shift) | result
else

result  (t >> -shift) | result
cnt  cnt - 1
shift  shift - 2
mask  mask << 1

return result

3.3.2 Embedded Vector and Scalar Floating-Point Instructions

The embedded floating-point operations are IEEE 754–compliant with software exception handlers and 
offer a simpler exception model than the Power ISA floating-point instructions that use the floating-point 
registers (FPRs). Instead of FPRs, these instructions use GPRs to offer improved performance for 
converting among floating-point, integer, and fractional values. Sharing GPRs allows vector floating-point 
instructions to use SPE load and store instructions. 

NOTE
Note that the vector and scalar versions of the instructions have the same 
syntax.
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Table 3-6 lists the vector and scalar floating-point instructions.

Table 3-6. Vector and Scalar Floating-Point Instructions

Instruction
Single-Precision Double- 

Precision 
Scalar

Syntax
Scalar Vector

Convert Floating-Point Double- from Single-Precision — — efdcfs rD,rB 

Convert Floating-Point from Signed Fraction efscfsf evfscfsf efdcfsf rD,rB 

Convert Floating-Point from Signed Integer efscfsi evfscfsi efdcfsi rD,rB 

Convert Floating-Point from Unsigned Fraction efscfuf evfscfuf efdcfuf rD,rB 

Convert Floating-Point from Unsigned Integer efscfui evfscfui efdcfui rD,rB 

Convert Floating-Point Single- from Double-Precision — — efscfd rD,rB 

Convert Floating-Point to Signed Fraction efsctsf evfsctsf efdctsf rD,rB 

Convert Floating-Point to Signed Integer efsctsi evfsctsi efdctsi rD,rB 

Convert Floating-Point to Signed Integer with Round toward Zero efsctsiz evfsctsiz efdctsiz rD,rB 

Convert Floating-Point to Unsigned Fraction efsctuf evfsctuf efdctuf rD,rB 

Convert Floating-Point to Unsigned Integer efsctui evfsctui efdctui rD,rB 

Convert Floating-Point to Unsigned Integer with Round toward Zero efsctuiz evfsctuiz efdctuiz rD,rB 

Floating-Point Absolute Value efsabs 1

1 Exception detection for these instructions is implementation dependent. On some devices, infinities, NaNs, and denorms 
are always be treated as Norms. No exceptions are taken if SPEFSCR[FINVE] = 1.

evfsabs efdabs rD,rA

Floating-Point Add efsadd evfsadd efdadd rD,rA,rB 

Floating-Point Compare Equal efscmpeq evfscmpeq efdcmpeq crD,rA,rB 

Floating-Point Compare Greater Than efscmpgt evfscmpgt efdcmpgt crD,rA,rB 

Floating-Point Compare Less Than efscmplt evfscmplt efdcmplt crD,rA,rB 

Floating-Point Divide efsdiv evfsdiv efddiv rD,rA,rB 

Floating-Point Multiply efsmul evfsmul efdmul rD,rA,rB 

Floating-Point Negate efsneg 1 evfsneg efdneg rD,rA

Floating-Point Negative Absolute Value efsnabs 1 evfsnabs efdnabs rD,rA

Floating-Point Subtract efssub evfssub efdsub  rD,rA,rB 

Floating-Point Test Equal efststeq evfststeq efdtsteq crD,rA,rB 

Floating-Point Test Greater Than efststgt evfststgt efdtstgt crD,rA,rB 

Floating-Point Test Less Than efststlt evfststlt efdtstlt crD,rA,rB 

SPE Double Word Load/Store Instructions

Vector Load Double Word into Double Word — evldd evldd rD,d(rA)

Vector Load Double Word into Double Word Indexed — evlddx evlddx rD,rA,rB

Vector Merge High — evmergehi evmergehi rD,rA,rB

Vector Merge Low — evmergelo evmergelo rD,rA,rB

Vector Store Double of Double — evstdd evstdd rS,d(rA)

Vector Store Double of Double Indexed — evstddx evstddx rS,rA,rB

Note:  On some cores, floating-point operations that produce a result of zero may generate an incorrect sign. 
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3.3.3 Load/Store Instructions

Embedded floating-point instructions use GPRs to hold and operate on floating-point values. Standard 
load and store instructions are used to move the data to and from memory. If vector single-precision or 
scalar double-precision embedded floating-point instructions are implemented on a 32-bit implementation, 
the GPRs are 64 bits wide. Because a 32-bit implementation contains no load or store instructions that 
operate on 64-bit data, the following SPE load/store instructions are used:

• evldd—Vector Load Doubleword into Doubleword

• evlddx—Vector Load Doubleword into Doubleword Indexed

• evstdd—Vector Store Doubleword of Doubleword

• evstddx—Vector Store Doubleword of Doubleword

• evmergehi—Vector Merge High

• evmergelo—Vector Merge Low

3.3.3.1 Floating-Point Conversion Models

Pseudo-RTL models for converting floating-point to and from non–floating-point is provided in 
Section 5.3.2, “Embedded Floating-Point Conversion Models,” as a group of functions called from the 
individual instruction pseudo-RTL descriptions, which are included in the instruction descriptions in 
Chapter 5, “Instruction Set.”
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Chapter 4  
SPE/Embedded Floating-Point Interrupt Model
This chapter describes the SPE interrupt model, including the SPE embedded floating-point interrupts

4.1 Overview
The SPE defines additional exceptions that can generate an alignment interrupt and three additional 
interrupts to allow software handling of exceptions that may occur during execution of SPE.embedded 
floating-point instructions. These are shown in Table 4-1 and described in detail in the following sections.

4.2 SPE Interrupts
This section describes the interrupts that can be generated when an SPE/embedded floating-point 
exception is encountered.

4.2.1 Interrupt-Related Registers

Figure 4-1 shows the register resources that are defined by the base category and by the SPE interrupt 
model. Base category resources are described in the EREF. 

Table 4-1. SPE/SPE Embedded Floating-Point Interrupt and Exception Types

IVOR Interrupt Exception
Synchronous/

Precise
ESR

MSR 
Mask

DBCR0/TCR
Mask

Category Page

IVOR5 Alignment Alignment Synchronous/
Precise

[ST],[FP,AP,SPV]
[EPID],[VLEMI]

— — SPE/
Embedded FP

4.2.2/4-2

IVOR32 SPE/embedded 
floating-point1

1 Other implementations use IVOR32 for vector (AltiVec) unavailable interrupts. 

SPE unavailable Synchronous/
Precise

SPV, [VLEMI] — — SPE 4.2.3/4-2

IVOR33 Embedded 
floating-point data

Embedded 
floating-point data

Synchronous/
Precise

SPV, [VLEMI] — — Embedded
FP

4.2.4/4-3

IVOR34 Embedded 
floating-point round

Embedded 
floating-point round

Synchronous/
Precise

SPV, [VLEMI] — — Embedded
FP

4.2.2/4-2

Base Register Resources SPE Interrupt Register Resources

User-Level Registers
32 63

SPEFSCR SPE/floating-point status/control 

Supervisor-Level Registers
32 63

spr 62 ESR Exception syndrome register  spr 62 ESR[SPV] Exception syndrome register 
SPE/vector field

 spr 26 SRR0
Save/restore registers 0/1

spr 27 SRR1

 spr 63 IVPR Interrupt vector prefix

spr 61 DEAR Data exception address register

Figure 4-1. SPE Interrupt-Related Registers
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4.2.2 Alignment Interrupt

An SPE vector alignment exception occurs if the EA of any of the following instructions in not aligned to 
a 64-bit boundary: evldd, evlddx, evldw, evldwx, evldh, evldhx, evstdd, evstddx, evstdw, evstdwx, 
evstdh, or evstdhx. When an SPE vector alignment exception occurs, an alignment interrupt is taken and 
the processor suppresses execution of the instruction causing the exception. SRR0, SRR1, MSR, ESR, and 
DEAR are modified as follows:

• SRR0 is set to the EA of the instruction causing the interrupt.

• SRR1 is set to the contents of the MSR at the time of the interrupt.

• MSR bits CE, ME, and DE are unchanged. All other bits are cleared.

• ESR[SPV] is set. ESR[ST] is set if the instruction causing the interrupt is a store. All other ESR 
bits are cleared.

• DEAR is updated with the EA of the access that caused the exception. This is generally the EA of 
the instruction, except for some instructions that are misaligned or that reference multiple storage 
element. 

Instruction execution resumes at address IVPR[0–47]||IVOR5[48–59]||0b0000.

4.2.3 SPE/Embedded Floating-Point Unavailable Interrupt

An SPE/embedded floating-point unavailable exception occurs on an attempt to execute any of the 
following instructions and MSR[SPV] is not set:

• SPE instruction (except brinc)

• An embedded scalar double-precision instruction

• A vector single-precision floating-point instructions

It is not used by embedded scalar single-precision floating-point instructions. 

If this exception occurs, an SPE/embedded floating-point unavailable interrupt is taken and the processor 
suppresses execution of the instruction causing the exception. Registers are modified as follows:

The SRR0, SRR1, MSR, and ESR registers are modified as follows:

• SRR0 is set to the EA of the instruction causing the interrupt.

• SRR1 is set to the contents of the MSR at the time of the interrupt.

• MSR bits CE, ME, and DE are unchanged. All other bits are cleared.

• ESR bits SPV (and VLEMI if VLE is implemented and the instruction causing the interrupt resides 
in VLE storage) are set. All other ESR bits are cleared. 

Instruction execution resumes at address IVPR[0–47]||IVOR32[48–59]||0b0000.

Interrupt Vector Offset Registers

spr 405 IVOR5 Alignment spr 528 IVOR32 SPE/Embedded FP

spr 529 IVOR33 Embedded FP data

spr 530 IVOR34 Embedded FP round

Figure 4-1. SPE Interrupt-Related Registers
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NOTE (Software) 
Software should use this interrupt to determine if the application is using the 
upper 32 bits of the GPRs and thus is required to save and restore them on 
a context switch.

4.2.4 SPE Embedded Floating-Point Interrupts

The following sections describe SPE embedded floating-point interrupts:

• Section 4.2.4.1, “Embedded Floating-Point Data Interrupt”

• Section 4.2.4.2, “Embedded Floating-Point Round Interrupt”

4.2.4.1 Embedded Floating-Point Data Interrupt

The embedded floating-point data interrupt vector is used for enabled floating-point invalid 
operation/input error, underflow, overflow, and divide-by-zero exceptions (collectively called 
floating-point data exceptions). When one of these enabled exceptions occurs, the processor suppresses 
execution of the instruction causing the exception. The SRR0, SRR1, MSR, ESR, and SPEFSCR are 
modified as follows:

• SRR0 is set to the EA of the instruction causing the interrupt.

• SRR1 is set to the contents of the MSR at the time of the interrupt.

• MSR bits CE, ME, and DE are unchanged. All other bits are cleared.

• ESR[SPV] is set. All other ESR bits are cleared.

• One or more SPEFSCR status bits are set to indicate the type of exception. The affected bits are 
FINVH, FINV, FDBZH, FDBZ, FOVFH, FOVF, FUNFH, and FUNF. SPEFSCR[FG,FGH, FX, 
FXH] are cleared.

Instruction execution resumes at address IVPR[0–47]||IVOR33[48–59]||0b0000.

4.2.4.2 Embedded Floating-Point Round Interrupt

The embedded floating-point round interrupt occurs if no other floating-point data interrupt is taken and 
one of the following conditions is met:

• SPEFSCR[FINXE] is set and the unrounded result of an operation is not exact

• SPEFSCR[FINXE] is set, an overflow occurs, and overflow exceptions are disabled (FOVF or 
FOVFH set with FOVFE cleared)

• An underflow occurs and underflow exceptions are disabled (FUNF set with FUNFE cleared)

The embedded floating-point round interrupt does not occur if an enabled embedded floating-point data 
interrupt occurs.
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NOTE (Programming)
If an implementation does not support ±infinity rounding modes and the 
rounding mode is set to be +infinity or -infinity, an embedded floating-point 
round interrupt occurs after every embedded floating-point instruction for 
which rounding might occur regardless of the FINXE value, if no higher 
priority exception exists.

When an embedded floating-point round interrupt occurs, the unrounded 
(truncated) result of an inexact high or low element is placed in the target 
register. If only a single element is inexact, the other exact element is 
updated with the correctly rounded result, and the FG and FX bits 
corresponding to the other exact element are be 0. 

FG (FGH) and FX (FXH) are provided so an interrupt handler can round the 
result as it desires. FG (FGH) is the value of the bit immediately to the right 
of the lsb of the destination format mantissa from the infinitely precise 
intermediate calculation before rounding. FX (FXH) is the value of the OR 
of all bits to the right of the FG (FGH) of the destination format mantissa 
from the infinitely precise intermediate calculation before rounding.

The SRR0, SRR1, MSR, ESR, and SPEFSCR are modified as follows:

• SRR0 is set to the EA of the instruction following the instruction causing the interrupt.

• SRR1 is set to the contents of the MSR at the time of the interrupt.

• MSR bits CE, ME, and DE are unchanged. All other bits are cleared.

• ESR[SPV] is set. All other ESR bits are cleared.

• SPEFSCR[FGH,FG,FXH,FX] are set appropriately. SPEFSCR[FINXS] is set.

Instruction execution resumes at address IVPR[0–47]||IVOR34[48–59]||0b0000.

4.3 Interrupt Priorities
The priority order among the SPE and embedded floating-point interrupts is as follows:

1. SPE/embedded floating-point unavailable interrupt

2. SPE vector alignment interrupt

3. Embedded floating-point data interrupt

4. Embedded floating-point round interrupt

The EREF describes how these interrupts are prioritized among the other Power ISA interrupts. Only one 
of the above types of synchronous interrupts may have an existing exception generating it at any given 
time. This is guaranteed by the exception priority mechanism and the requirements of the sequential 
execution model. 

4.4 Exception Conditions
The following sections describe the exception conditions that can generate the interrupts described in 
Section 4.2, “SPE Interrupts.” Enable and status bits associated with these programming exceptions can 
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be found in the SPEFSCR, described in Section 2.2.3, “Signal Processing Embedded Floating-Point Status 
and Control Register (SPEFSCR).”

4.4.1 Floating-Point Exception Conditions

This section describes the conditions that generate exceptions that, depending on how the processor is 
configured, may generate an interrupt. 

4.4.1.1 Denormalized Values on Input

Any denormalized value used as an operand may be truncated by the implementation to a properly signed 
zero value.

4.4.1.2 Embedded Floating-Point Overflow and Underflow

Defining pmax to be the most positive normalized value (farthest from zero), pmin the smallest positive 
normalized value (closest to zero), nmax the most negative normalized value (farthest from zero) and nmin 
the smallest normalized negative value (closest to zero), an overflow is said to have occurred if the 
numerically correct result (r) of an instruction is such that r>pmax or r<nmax. An underflow is said to have 
occurred if the numerically correct result of an instruction is such that 0<r<pmin or nmin<r<0. In this case, 
r may be denormalized, or may be smaller than the smallest denormalized number.

The embedded floating-point categories do not produce +infinity, -infinity, NaN, or denormalized 
numbers. If the result of an instruction overflows and embedded floating-point overflow exceptions are 
disabled (SPEFSCR[FOVFE]=0), pmax or nmax is generated as the result of that instruction depending 
upon the sign of the result. If the result of an instruction underflows and embedded floating-point 
underflow exceptions are disabled (SPEFSCR[FUNFE]=0), +0 or -0 is generated as the result of that 
instruction based upon the sign of the result.

If an overflow occurs, SPEFSCR[FOVF FOVFH] are set appropriately, or if an underflow occurs, 
SPEFSCR[FUNF FUNFH] are set appropriately. If either embedded floating-point underflow or 
embedded floating-point overflow exceptions are enabled and a corresponding status bit is 1, an embedded 
floating-point data interrupt is taken and the destination register is not updated.

NOTE (Programming)
On some implementations, operations that result in overflow or underflow 
are likely to take significantly longer than those that do not. For example, 
these operations may cause a system error handler to be invoked; on such 
implementations, the system error handler updates overflow bits 
appropriately.

4.4.1.3 Embedded Floating-Point Invalid Operation/Input Errors

Embedded floating-point invalid operation/input errors occur when an operand to an operation contains an 
invalid input value. If any of the input values are infinity, denorm, or NaN, or for an embedded 
floating-point divide instruction both operands are +/-0, SPEFSCR[FINV FINVH] are set appropriately, 
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and SPEFSCR[FGH FXH FG FX] are cleared appropriately. If SPEFSCR[FINVE]=1, an embedded 
floating-point data interrupt is taken and the destination register is not updated.

4.4.1.4 Embedded Floating-Point Round (Inexact)

If any result element of an embedded floating-point instruction is inexact, or overflows but embedded 
floating-point overflow exceptions are disabled, or underflows but embedded floating-point underflow 
exceptions are disabled, and no higher priority interrupt occurs, SPEFSCR[FINXS] is set. If the embedded 
floating-point round (inexact) exception is enabled, an embedded floating-point round interrupt occurs. In 
this case, the destination register is updated with the truncated results. SPEFSCR[FGH FXH FG FX] are 
properly updated to allow rounding to be performed in the interrupt handler.

SPEFSCR[FG FX] (SPEFSCR[FGH FXH]) are cleared if an embedded floating-point data interrupt is 
taken due to overflow or underflow, or if an embedded floating-point invalid operation/input error is 
signaled for the low (high) element (regardless of SPEFSCR[FINVE]).

4.4.1.5 Embedded Floating-Point Divide by Zero

If an embedded floating-point divide instruction executes and an embedded floating-point invalid 
operation/input error does not occur and the instruction is executed with a +/-0 divisor value and a finite 
normalized nonzero dividend value, an embedded floating-point divide by zero exception occurs and 
SPEFSCR[FDBZ FDBZH] are set appropriately. If embedded floating-point divide by zero exceptions are 
enabled, an embedded floating-point data interrupt is then taken and the destination register is not updated.

4.4.1.6 Default Results

Default results are generated when an embedded floating-point invalid operation/input error, embedded 
floating-point overflow, embedded floating-point underflow, or embedded floating-point divide by zero 
occurs on an embedded floating-point operation. Default results provide a normalized value as a result of 
the operation. In general, denormalized results and underflows are cleared and overflows are saturated to 
the maximum representable number.

Default results for each operation are described in Section 5.3.4, “Embedded Floating-Point Results.”
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Chapter 5  
Instruction Set
This chapter describes the SPE instructions and the embedded floating-point instructions, which are as 
follows:

• Single-precision scalar floating-point (SPE FS)

• Single-precision vector floating-point (SPE FV)

• Double-precision scalar floating-point (SPE FD)

5.1 Notation
The definitions and notation listed in Table 5-1 are used throughout this chapter in the instruction 
descriptions.

Table 5-1. Notation Conventions

Symbol Meaning

Xp Bit p of register/field X

Xfield The bits composing a defined field of X. For example, Xsign, Xexp, and Xfrac represent the sign, exponent, and 
fractional value of a floating-point number X

Xp:q Bits p through q of register/field X

Xp q ... Bits p, q,... of register/field X

¬X The one’s complement of the contents of X

Field i Bits 4× i through 4× i+3 of a register

|| Describes the concatenation of two values. For example, 010 || 111 is the same as 010111.

xn x raised to the nth power

nx The replication of x, n times (i.e., x concatenated to itself n–1 times). n0 and n1 are special cases: 
n0 means a field of n bits with each bit equal to 0. Thus 50 is equivalent to 0b0_0000.
n1 means a field of n bits with each bit equal to 1. Thus 51 is equivalent to 0b1_1111.

/, //, ///, A reserved field in an instruction or in a register. 
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5.2 Instruction Fields
Table 5-2 describes instruction fields.

5.3 Description of Instruction Operations
The operation of most instructions is described by a series of statements using a semiformal language at 
the register transfer level (RTL), which uses the general notation given in Table 5-1 and Table 5-2 and the 
RTL-specific conventions in Table 5-3. See the example in Figure 5-1. Some of this notation is used in the 
formal descriptions of instructions. 

The RTL descriptions cover the normal execution of the instruction, except that ‘standard’ setting of the 
condition register, integer exception register, and floating-point status and control register are not always 
shown. (Non-standard setting of these registers, such as the setting of condition register field 0 by the 
stwcx. instruction, is shown.) The RTL descriptions do not cover all cases in which exceptions may occur, 
or for which the results are boundedly undefined, and may not cover all invalid forms.

RTL descriptions specify the architectural transformation performed by the execution of an instruction. 
They do not imply any particular implementation.

Table 5-2. Instruction Field Descriptions

Field Description

CRS (11–13) Used to specify a CR field to be used as a source

D (16–31) Immediate field used to specify a 16-bit signed two’s complement integer that is sign-extended to 64 bits

LI (6–29) Immediate field specifying a 24-bit signed two’s complement integer that is concatenated on the right 
with 0b00 and sign-extended to 64 bits

LK (31) LINK bit. Indicates whether the link register (LR) is set. 
0 Do not set the LR.
1 Set the LR. The sum of the value 4 and the address of the branch instruction is placed into the LR.

OPCD (0–5) Primary opcode field

rA (11–15) Used to specify a GPR to be used as a source or as a target

rB (16–20) Used to specify a GPR to be used as a source

RS (6–10) Used to specify a GPR to be used as a source

RD (6–10) Used to specify a GPR to be used as a target

SIMM (16–31) Immediate field used to specify a 16-bit signed integer

UIMM (16–31) Immediate field used to specify a 16-bit unsigned integer

Table 5-3. RTL Notation

Notation Meaning

← Assignment

←f Assignment in which the data may be reformatted in the target location

¬ NOT logical operator (one’s complement)
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+ Two’s complement addition

– Two’s complement subtraction, unary minus

× Multiplication

÷ Division (yielding quotient)

+dp Floating-point addition, double precision

–dp Floating-point subtraction, double precision

×dp Floating-point multiplication, double precision

÷dp Floating-point division quotient, double precision

+sp Floating-point addition, single precision

–sp Floating-point subtraction, single precision

×sf Signed fractional multiplication. Result of multiplying two quantities of bit lengths x and y taking the least 
significant x+y–1 bits of the product and concatenating a 0 to the lsb forming a signed fractional result of x+y bits.

×si Signed integer multiplication

×sp Floating-point multiplication, single precision

÷sp Floating-point division, single precision

×fp Floating-point multiplication to infinite precision (no rounding)

×ui Unsigned integer multiplication

=, ≠ Equals, Not Equals relations

<, ≤, >, ≥ Signed comparison relations

<u, >u Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

⊕, ≡ Exclusive OR, Equivalence logical operators ((a≡b) = (a⊕¬b))

>>, << Shift right or left logical

ABS(x) Absolute value of x

EXTS(x) Result of extending x on the left with signed bits

EXTZ(x) Result of extending x on the left with zeros

GPR(x) General-purpose register x

MASK(x, y) Mask having 1s in bit positions x through y (wrapping if x>y) and 0s elsewhere

MEM(x,1) Contents of the byte of memory located at address x

MEM(x,y)
(for y={2,4,8})

Contents of y bytes of memory starting at address x. If big-endian memory, the byte at address x is the MSB and 
the byte at address x+y–1 is the LSB of the value being accessed.If little-endian memory, the byte at address x 
is the LSB and the byte at address x+y–1 is the MSB. 

Table 5-3. RTL Notation (continued)

Notation Meaning
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Precedence rules for RTL operators are summarized in Table 5-4. Operators higher in the table are applied 
before those lower in the table. Operators at the same level in the table associate from left to right, from 
right to left, or not at all, as shown. (For example, – associates from left to right, so a–b–c = (a–b)–c.) 
Parentheses are used to override the evaluation order implied by the table or to increase clarity; 
parenthesized expressions are evaluated before serving as operands.

5.3.1 SPE Saturation and Bit-Reverse Models

For saturation and bit reversal, the pseudo RTL is provided here to more accurately describe those 
functions that are referenced in the instruction pseudo RTL.

5.3.1.1 Saturation

SATURATE(overflow, carry, saturated_underflow, saturated_overflow, value)

if overflow then
if carry then

return saturated_underflow
else

return saturated_overflow

undefined An undefined value. The value may vary between implementations and between different executions on the 
same implementation.

if … then … 
else …

Conditional execution, indenting shows range; else is optional

do Do loop, indenting shows range. ‘To’ and/or ‘by’ clauses specify incrementing an iteration variable, and a ‘while’ 
clause gives termination conditions.

Table 5-4. Operator Precedence

Operators Associativity

Subscript, function evaluation Left to right

Pre-superscript (replication), post-superscript (exponentiation) Right to left

unary –, ¬ Right to left

×, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, ≤, >, ≥, <u, >u, ? Left to right

&, ⊕, ≡ Left to right

| Left to right

: (range) None

← None

Table 5-3. RTL Notation (continued)

Notation Meaning
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else
return value

5.3.1.2 Bit Reverse
BITREVERSE(value)

result ← 0
mask ← 1
shift ← 31
cnt ← 32
while cnt > 0 then do

t ← data & mask
if shift >= 0 then

result ← (t << shift) | result
else

result ← (t >> -shift) | result
cnt ← cnt - 1
shift ← shift - 2
mask ← mask << 1

return result

5.3.2 Embedded Floating-Point Conversion Models

The embedded floating-point instructions defined by the signal processing engine (SPE) contain 
floating-point conversion to and from integer and fractional type instructions. The floating-point 
to-and-from non–floating-point conversion model pseudo-RTL is provided in Table 5-5 as a group of 
functions that is called from the individual instruction pseudo-RTL descriptions.

Table 5-5. Conversion Models

Function Name Reference

Common Functions

Round a 32-bit value Round32(fp,guard,sticky) 5.3.2.1.3/5-6

Round a 64-bit value Round64(fp,guard,sticky) 5.3.2.1.4/5-7

Signal floating-point error SignalFPError 5.3.2.1.2/5-6

Is a 32-bit value a NaN or infinity? Isa32NaNorinfinity(fp) 5.3.2.1.1/5-6

Floating-Point Conversions

Convert from single-precision floating-point to 
integer word with saturation

CnvtFP32ToI32Sat(fp,signed,upper_lower,round,fractional) 5.3.2.2/5-7

Convert from double-precision floating-point to 
integer word with saturation

CnvtFP64ToI32Sat(fp,signed,round,fractional) 5.3.2.3/5-9

Convert from double-precision floating-point to 
integer double word with saturation

CnvtFP64ToI64Sat(fp,signed,round) 5.3.2.4/5-10

Convert to single-precision floating-point from 
integer word with saturation

CnvtI32ToFP32Sat(v,signed,upper_lower,fractional) 5.3.2.5/5-11

Convert to double-precision floating-point from 
integer double word with saturation

CnvtI64ToFP64Sat(v,signed) 5.3.2.7/5-13
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5.3.2.1 Common Embedded Floating-Point Functions

This section includes common functions used by the functions in subsequent sections.

5.3.2.1.1 32-Bit NaN or Infinity Test

// Determine if fp value is a NaN or infinity
Isa32NaNorInfinity(fp)
return (fpexp = 255)
Isa32NaN(fp)
return ((fpexp = 255) & (fpfrac ≠ 0))
Isa32Infinity(fp)
return ((fpexp = 255) & (fpfrac = 0))

// Determine if fp value is denormalized
Isa32Denorm(fp)
return ((fpexp = 0) & (fpfrac ≠ 0))

// Determine if fp value is a NaN or Infinity
Isa64NaNorInfinity(fp)
return (fpexp = 2047)
Isa64NaN(fp)
return ((fpexp = 2047) & (fpfrac ≠ 0))
Isa64Infinity(fp)
return ((fpexp = 2047) & (fpfrac = 0))

// Determine if fp value is denormalized
Isa64Denorm(fp)
return ((fpexp = 0) & (fpfrac ≠ 0))

5.3.2.1.2 Signal Floating-Point Error

// Signal a Floating-Point Error in the SPEFSCR
SignalFPError(upper_lower, bits)
if (upper_lower = UPPER) then

bits ← bits << 15
SPEFSCR ← SPEFSCR | bits
bits ← (FG | FX)
if (upper_lower = UPPER) then

bits ← bits << 15
SPEFSCR ← SPEFSCR & ¬bits

5.3.2.1.3 Round a 32-Bit Value

// Round a result
Round32(fp, guard, sticky)

FP32format fp;

if (SPEFSCRFINXE = 0) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | fpfrac[22]) then

Integer Saturate

Integer saturate SATURATE(ovf,carry,neg_sat,pos_sat,value) 5.3.3/5-14

Table 5-5. Conversion Models (continued)

Function Name Reference
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v[0:23] ← fpfrac + 1
if v[0] then

if (fpexp >= 254) then
// overflow
fp ← fpsign || 0b11111110 || 

231
else

fpexp ← fpexp + 1
fpfrac ← v1:23

else
fpfrac ← v[1:23]

else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes
// implementation dependent

return fp

5.3.2.1.4 Round a 64-Bit Value

// Round a result
Round64(fp, guard, sticky)

FP32format fp;

if (SPEFSCRFINXE = 0) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | fpfrac[51]) then

v[0:52] ← fpfrac + 1
if v[0] then

if (fpexp >= 2046) then
// overflow
fp ← fpsign || 0b11111111110 || 

521
else

fpexp ← fpexp + 1
fpfrac ← v1:52

else
fpfrac ← v1:52

else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes
// implementation dependent

return fp

5.3.2.2 Convert from Single-Precision Floating-Point to Integer Word 
with Saturation

// Convert 32-bit floating point to integer/factional
// signed = SIGN or UNSIGN
// upper_lower = UPPER or LOWER
// round = ROUND or TRUNC
// fractional = F (fractional) or I (integer)

CnvtFP32ToI32Sat(fp, signed, upper_lower, round, fractional)

FP32format fp;

if (Isa32NaNorInfinity(fp)) then // SNaN, QNaN, +-INF
SignalFPError(upper_lower, FINV)
if (Isa32NaN(fp)) then

return 0x00000000 // all NaNs
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
if (fpsign = 1) then
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return 0x00000000
else

return 0xffffffff

if (Isa32Denorm(fp)) then
SignalFPError(upper_lower, FINV)
return 0x00000000 // regardless of sign

if ((signed = UNSIGN) & (fpsign = 1)) then
SignalFPError(upper_lower, FOVF) // overflow
return 0x00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp ← 158
shift ← 158 - fpexp
if (signed = SIGN) then

if ((fpexp ≠ 158) | (fpfrac ≠ 0) | (fpsign ≠ 1)) then
max_exp ← max_exp - 1

else // fractional conversion
max_exp ← 126
shift ← 126 - fpexp
if (signed = SIGN) then

shift ← shift + 1

if (fpexp > max_exp) then
SignalFPError(upper_lower, FOVF) // overflow
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
return 0xffffffff

result ← 0b1 || fpfrac || 0b00000000 // add U to frac
guard ← 0
sticky ← 0

for (n ← 0; n < shift; n ← n + 1) do
sticky ← sticky | guard
guard ← result & 0x00000001
result ← result > 1

// Report sticky and guard bits

if (upper_lower = UPPER) then
SPEFSCRFGH ← guard
SPEFSCRFXH ← sticky

else
SPEFSCRFG ← guard
SPEFSCRFX ← sticky

if (guard | sticky) then
SPEFSCRFINXS ← 1

// Round the integer result

if ((round = ROUND) & (SPEFSCRFINXE = 0)) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | (result & 0x00000001)) then

result ← result + 1
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else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes
// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then

result ← ¬result + 1

return result

5.3.2.3 Convert from Double-Precision Floating-Point to Integer Word 
with Saturation

// Convert 64-bit floating point to integer/fractional
// signed = SIGN or UNSIGN
// round = ROUND or TRUNC
// fractional = F (fractional) or I (integer)

CnvtFP64ToI32Sat(fp, signed, round, fractional)

FP64format fp;

if (Isa64NaNorInfinity(fp)) then // SNaN, QNaN, +-INF
SignalFPError(LOWER, FINV)
if (Isa64NaN(fp)) then

return 0x00000000 // all NaNs
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
if (fpsign = 1) then

return 0x00000000
else

return 0xffffffff

if (Isa64Denorm(fp)) then
SignalFPError(LOWER, FINV)
return 0x00000000 // regardless of sign

if ((signed = UNSIGN) & (fpsign = 1)) then
SignalFPError(LOWER, FOVF) // overflow
return 0x00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp ← 1054
shift ← 1054 - fpexp
if (signed ← SIGN) then

if ((fpexp ≠ 1054) | (fpfrac ≠ 0) | (fpsign ≠ 1)) then
max_exp ← max_exp - 1

else // fractional conversion
max_exp ← 1022
shift ← 1022 - fpexp
if (signed = SIGN) then

shift ← shift + 1

if (fpexp > max_exp) then
SignalFPError(LOWER, FOVF) // overflow
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
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return 0x7fffffff
else

return 0xffffffff

result ← 0b1 || fpfrac[0:30] // add U to frac
guard ← fpfrac[31]
sticky ← (fpfrac[32:63] ≠ 0)
for (n ← 0; n < shift; n ← n + 1) do

sticky ← sticky | guard
guard ← result & 0x00000001
result ← result > 1

// Report sticky and guard bits

SPEFSCRFG ← guard
SPEFSCRFX ← sticky

if (guard | sticky) then
SPEFSCRFINXS ← 1

// Round the result

if ((round = ROUND) & (SPEFSCRFINXE = 0)) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | (result & 0x00000001)) then

result ← result + 1
else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes

// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then

result ← ¬result + 1

return result

5.3.2.4 Convert from Double-Precision Floating-Point to Integer Double 
Word with Saturation

// Convert 64-bit floating point to integer/fractional
// signed = SIGN or UNSIGN
// round = ROUND or TRUNC

CnvtFP64ToI64Sat(fp, signed, round)

FP64format fp;

if (Isa64NaNorInfinity(fp)) then // SNaN, QNaN, +-INF
SignalFPError(LOWER, FINV)
if (Isa64NaN(fp)) then

return 0x00000000_00000000 // all NaNs
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000_00000000

else
return 0x7fffffff_ffffffff

else
if (fpsign = 1) then

return 0x00000000_00000000
else

return 0xffffffff_ffffffff

if (Isa64Denorm(fp)) then
SignalFPError(LOWER, FINV)
return 0x00000000_00000000 // regardless of sign
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if ((signed = UNSIGN) & (fpsign = 1)) then
SignalFPError(LOWER, FOVF) // overflow
return 0x00000000_00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000_00000000 // all zero values

max_exp ← 1086
shift ← 1086 - fpexp
if (signed = SIGN) then

if ((fpexp ≠ 1086) | (fpfrac ≠ 0) | (fpsign ≠ 1)) then
max_exp ← max_exp - 1

if (fpexp > max_exp) then
SignalFPError(LOWER, FOVF) // overflow
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000_00000000

else
return 0x7fffffff_ffffffff

else
return 0xffffffff_ffffffff

result ← 0b1 || fpfrac || 0b00000000000 // add U to frac
guard ← 0
sticky ← 0
for (n ← 0; n < shift; n ← n + 1) do

sticky ← sticky | guard
guard ← result & 0x00000000_00000001
result ← result > 1

// Report sticky and guard bits

SPEFSCRFG ← guard
SPEFSCRFX ← sticky

if (guard | sticky) then
SPEFSCRFINXS ← 1

// Round the result

if ((round = ROUND) & (SPEFSCRFINXE = 0)) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | (result & 0x00000000_00000001)) then

result ← result + 1
else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes

// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then

result ← ¬result + 1

return result

5.3.2.5 Convert to Single-Precision Floating-Point from Integer Word 
with Saturation

// Convert from integer/factional to 32-bit floating point
// signed = SIGN or UNSIGN
// upper_lower = UPPER or LOWER
// fractional = F (fractional) or I (integer)

CnvtI32ToFP32Sat(v, signed, upper_lower, fractional)
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FP32format result;

resultsign ← 0
if (v = 0) then

result ← 0
if (upper_lower = UPPER) then

SPEFSCRFGH ← 0
SPEFSCRFXH ← 0

else
SPEFSCRFG ← 0
SPEFSCRFX ← 0

else
if (signed = SIGN) then

if (v0 = 1) then
v ← ¬v + 1
resultsign ← 1

if (fractional = F) then // fractional bit pos alignment
maxexp ← 127
if (signed = UNSIGN) then

maxexp ← maxexp - 1
else

maxexp ← 158 // integer bit pos alignment
sc ← 0
while (v0 = 0)

v ← v << 1
sc ← sc + 1

v0 ← 0 // clear U bit
resultexp ← maxexp - sc
guard ← v24
sticky ← (v25:31 ≠ 0)

// Report sticky and guard bits

if (upper_lower = UPPER) then
SPEFSCRFGH ← guard
SPEFSCRFXH ← sticky

else
SPEFSCRFG ← guard
SPEFSCRFX ← sticky

if (guard | sticky) then
SPEFSCRFINXS ← 1

// Round the result

resultfrac ← v1:23
result ← Round32(result, guard, sticky)

return result

5.3.2.6 Convert to Double-Precision Floating-Point from Integer Word 
with Saturation

// Convert from integer/factional to 64-bit floating point
// signed = SIGN or UNSIGN
// fractional = F (fractional) or I (integer)

CnvtI32ToFP64Sat(v, signed, fractional)

FP64format result;

resultsign ← 0
if (v = 0) then

result ← 0
SPEFSCRFG ← 0
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SPEFSCRFX ← 0
else

if (signed = SIGN) then
if (v[0] = 1) then

v ← ¬v + 1
resultsign ← 1

if (fractional = F) then // fractional bit pos alignment
maxexp ← 1023
if (signed = UNSIGN) then

maxexp ← maxexp - 1
else

maxexp ← 1054 // integer bit pos alignment
sc ← 0
while (v0 = 0)

v ← v << 1
sc ← sc + 1

v0 ← 0 // clear U bit
resultexp ← maxexp - sc

// Report sticky and guard bits

SPEFSCRFG ← 0
SPEFSCRFX ← 0

resultfrac ← v1:31 || 
210

return result

5.3.2.7 Convert to Double-Precision Floating-Point from Integer Double 
Word with Saturation

// Convert from 64 integer to 64-bit floating point
// signed = SIGN or UNSIGN

CnvtI64ToFP64Sat(v, signed)

FP64format result;

resultsign ← 0
if (v = 0) then

result ← 0
SPEFSCRFG ← 0
SPEFSCRFX ← 0

else
if (signed = SIGN) then

if (v0 = 1) then
v ← ¬v + 1
resultsign ← 1

maxexp ← 1054
sc ← 0

while (v0 = 0)
v ← v << 1
sc ← sc + 1

v0 ← 0 // clear U bit
resultexp ← maxexp - sc
guard ← v53
sticky ← (v54:63 ≠ 0)

// Report sticky and guard bits

SPEFSCRFG ← guard
SPEFSCRFX ← sticky
if (guard | sticky) then

SPEFSCRFINXS ← 1



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-14 Freescale Semiconductor
 

// Round the result

resultfrac ← v1:52
result ← Round64(result, guard, sticky)

return result

5.3.3 Integer Saturation Models
// Saturate after addition

SATURATE(ovf, carry, neg_sat, pos_sat, value)

if ovf then
if carry then

return neg_sat
else

return pos_sat
else

return value

5.3.4 Embedded Floating-Point Results

Section 5.3.4, “Embedded Floating-Point Results,” summarizes results of various types of SPE and 
embedded floating-point operations on various combinations of input operands. 
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5.4 Instruction Set
The rest of this chapter describes individual instructions, which are listed in alphabetical order by 
mnemonic. Figure 5-1 shows the format for instruction description pages.

Figure 5-1. Instruction Description

Note that the execution unit that executes the instruction may not be the same for all processors. 

evmra  evmra
Initialize Accumulator

evmra rD,rA

ACC0:63 ← rA0:63
rD0:63 ← rA0:63

The contents of rA are written into the accumulator and copied into rD. This is the 
method for initializing the accumulator.

Other registers altered: ACC

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0

SPE User

0 31 32 63

rA

rD and Accumulator

Instruction mnemonic

Instruction name

Instruction syntax

Instruction encoding

RTL description of 

Text description of

Registers altered by instruction

instruction operation

instruction operation

User/Supervisor access

Architecture
Key: 

Graphical representation
of instruction behavior



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-16 Freescale Semiconductor
 

brinc brinc
Bit Reversed Increment

brinc rD,rA,rB

n ← MASKBITS // Imp dependent # of mask bits
mask ← rB64-n:63 // Least sig. n bits of register
a ← rA64-n:63
d ← bitreverse(1 + bitreverse(a | (¬ mask)))
rD ← rA0:63-n || (d & mask) 

brinc provides a way for software to access FFT data in a bit-reversed manner. rA contains the index into 
a buffer that contains data on which FFT is to be performed. rB contains a mask that allows the index to 
be updated with bit-reversed addressing. Typically this instruction precedes a load with index instruction; 
for example,

brinc r2, r3, r4
lhax r8, r5, r2

rB contains a bit-mask that is based on the number of points in an FFT. To access a buffer containing n 
byte sized data that is to be accessed with bit-reversed addressing, the mask has log2n 1s in the least 
significant bit positions and 0s in the remaining most significant bit positions. If, however, the data size is 
a multiple of a half word or a word, the mask is constructed so that the 1s are shifted left by log2 (size of 
the data) and 0s are placed in the least significant bit positions. Table 5-6 shows example values of masks 
for different data sizes and number of data. 

 

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 1 1 1 1

Table 5-6. Data Samples and Sizes

Number of Data Samples
Data Size

Byte Half Word Word Double Word

8 000...00000111 000...00001110 000...000011100 000...0000111000

16 000...00001111 000...00011110 000...000111100 000...0001111000

32 000...00011111 000...00111110 000...001111100 000...0011111000

64 000...00111111 000...01111110 000...011111100 000...0111111000

SPE User
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efdabs efdabs
Floating-Point Double-Precision Absolute Value

efdabs rD,rA

rD0:63 ← 0b0 || rA1:63 

The sign bit of rA is set to 0 and the result is placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is implementation dependent. 
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the 
implementation does not detect exceptions, or if exception detection is disabled, the computation can be 
carried out in one of two ways, as a sign bit operation ignoring the rest of the contents of the source register, 
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: If rA is infinity, 
denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are cleared. If floating-point invalid input 
exceptions are enabled, an interrupt is taken and the destination register is not updated.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

SPE FD User
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efdadd efdadd
Floating-Point Double-Precision Add

efdadd rD,rA,rB

rD0:63 ← rA0:63 +dp rB0:63

rA is added to rB and the result is stored in rD. If rA is NaN or infinity, the result is either pmax (asign==0), 
or nmax (asign==1). Otherwise, If rB is NaN or infinity, the result is either pmax (bsign==0), or nmax 
(bsign==1). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in rD. If an 
underflow occurs, +0 (for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in rD.

Exceptions:

If the contents of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV] is set. If SPEFSCR[FINVE] is 
set, an interrupt is taken, and the destination register is not updated. Otherwise, if an overflow occurs, 
SPEFSCR[FOVF] is set, or if an underflow occurs, SPEFSCR[FUNF] is set. If either underflow or 
overflow exceptions are enabled and the corresponding bit is set, an interrupt is taken. If any of these 
interrupts are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and 
no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an 
interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result, the FG and FX bits are properly updated to allow rounding to be 
performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled, regardless of 
enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 0

SPE FD User
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efdcfs efdcfs
Floating-Point Double-Precision Convert from Single-Precision 

efdcfs rD,rB

FP32format f;
FP64format result;

f ← rB32:63

if (fexp = 0) & (ffrac = 0)) then
result ← fsign || 

630 // signed zero value
else if Isa32NaNorInfinity(f) | Isa32Denorm(f) then

SPEFSCRFINV ← 1
result ← fsign || 0b11111111110 || 

521 // max value
else if Isa32Denorm(f) then

SPEFSCRFINV ← 1
result ← fsign || 

630
else

resultsign ← fsign
resultexp ← fexp - 127 + 1023
resultfrac ← ffrac || 

290

rD0:63 = result

The single-precision floating-point value in the low element of rB is converted to a double-precision 
floating-point value and the result is placed into rD. The rounding mode is not used since this conversion 
is always exact.

Exceptions:

If the low element of rB is infinity, denorm, or NaN, SPEFSCR[FINV] is set. If SPEFSCR[FINVE] is set, 
an interrupt is taken, and the destination register is not updated.

FG and FX are always cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1

SP.FD User
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efdcfsf efdcfsf
Convert Floating-Point Double-Precision from Signed Fraction 

efdcfsf rD,rB

rD0:63 ← CnvtI32ToFP64(rB32:63, SIGN, F)

The signed fractional low element in rB is converted to a double-precision floating-point value using the 
current rounding mode and the result is placed into rD.

Exceptions:

None.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 0 1 1

SPE FD User
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efdcfsi efdcfsi 
Convert Floating-Point Double-Precision from Signed Integer 

efdcfsi rD,rB

rD0:63 ← CnvtSI32ToFP64(rB32:63, SIGN, I)

The signed integer low element in rB is converted to a double-precision floating-point value using the 
current rounding mode and the result is placed into rD.

Exceptions:

None.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 0 0 1

SPE FD User
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efdcfsid efdcfsid 
Convert Floating-Point Double-Precision from Signed Integer Doubleword

efdcfsid rD,rB

rD0:63 ← CnvtI64ToFP64(rB0:63, SIGN)

The signed integer doubleword in rB is converted to a double-precision floating-point value using the 
current rounding mode and the result is placed into rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

This instruction may only be implemented for 64-bit implementations.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 0 0 1 1

SPE FD User
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efdcfuf efdcfuf
Convert Floating-Point Double-Precision from Unsigned Fraction 

efdcfuf rD,rB

rD0:63 ← CnvtI32ToFP64(rB32:63, UNSIGN, F)

The unsigned fractional low element in rB is converted to a double-precision floating-point value using 
the current rounding mode and the result is placed into rD.

Exceptions:

None.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 0 1 0

SPE FD User



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-24 Freescale Semiconductor
 

efdcfui efdcfui 
Convert Floating-Point Double-Precision from Unsigned Integer 

efdcfui rD,rB

rD0:63 ← CnvtSI32ToFP64(rB32:63, UNSIGN, I)

The unsigned integer low element in rB is converted to a double-precision floating-point value using the 
current rounding mode and the result is placed into rD.

Exceptions:

None.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 0 0 0

SPE FD User
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efdcfuid efdcfuid 
Convert Floating-Point Double-Precision from Unsigned Integer Doubleword

efdcfuid rD,rB

rD0:63 ← CnvtI64ToFP64(rB0:63, UNSIGN)

The unsigned integer doubleword in rB is converted to a double-precision floating-point value using the 
current rounding mode and the result is placed into rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

This instruction may only be implemented for 64-bit implementations.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 0 0 1 0

SPE FD User
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efdcmpeq efdcmpeq
Floating-Point Double-Precision Compare Equal

efdcmpeq crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is equal to rB, the bit in the crfD is set, otherwise it is cleared. 
Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV] is set, and the FGH FXH, FG 
and FX bits are cleared. If floating-point invalid input exceptions are enabled, an interrupt is taken and the 
condition register is not updated. Otherwise, the comparison proceeds after treating NaNs, infinities, and 
denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 0 1 1 1 0

SPE FD User
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efdcmpgt efdcmpgt
Floating-Point Double-Precision Compare Greater Than

efdcmpgt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is greater than rB, the bit in the crfD is set, otherwise it is cleared. 
Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV] is set, and the FGH FXH, FG 
and FX bits are cleared. If floating-point invalid input exceptions are enabled, an interrupt is taken and the 
condition register is not updated. Otherwise, the comparison proceeds after treating NaNs, infinities, and 
denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 0 1 1 0 0

SPE FD User
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efdcmplt efdcmplt
Floating-Point Double-Precision Compare Less Than

efdcmplt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is less than rB, the bit in the crfD is set, otherwise it is cleared. 
Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV] is set, and the FGH FXH, FG 
and FX bits are cleared. If floating-point invalid input exceptions are enabled, an interrupt is taken and the 
condition register is not updated. Otherwise, the comparison proceeds after treating NaNs, infinities, and 
denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 0 1 1 0 1
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efdctsf efdctsf
Convert Floating-Point Double-Precision to Signed Fraction 

efdctsf rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, SIGN, ROUND, F)

The double-precision floating-point value in rB is converted to a signed fraction using the current 
rounding mode and the result is saturated if it cannot be represented in a 32-bit fraction. NaNs are 
converted as though they were zero. 

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and 
the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination 
register is not updated.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 1 1 1

SPE FD User
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efdctsi efdctsi 
Convert Floating-Point Double-Precision to Signed Integer 

efdctsi rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, SIGN, ROUND, I)

The double-precision floating-point value in rB is converted to a signed integer using the current rounding 
mode and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are converted as though 
they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and 
the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination register 
is not updated, and no other status bits are set. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 1 0 1

SPE FD User
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efdctsidz efdctsidz 
Convert Floating-Point Double-Precision to Signed Integer Doubleword with Round toward Zero

efdctsidz rD,rB

rD0:63 ← CnvtFP64ToI64Sat(rB0:63, SIGN, TRUNC)

The double-precision floating-point value in rB is converted to a signed integer doubleword using the 
rounding mode Round toward Zero and the result is saturated if it cannot be represented in a 64-bit integer. 
NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and 
the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination register 
is not updated, and no other status bits are set. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

This instruction may only be implemented for 64-bit implementations.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 0 1 1

SPE FD User
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efdctsiz efdctsiz 
Convert Floating-Point Double-Precision to Signed Integer with Round toward Zero

efdctsiz rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, SIGN, TRUNC, I

The double-precision floating-point value in rB is converted to a signed integer using the rounding mode 
Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are 
converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and 
the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination register 
is not updated, and no other status bits are set. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 1 0 1 0

SPE FD User
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efdctuf efdctuf
Convert Floating-Point Double-Precision to Unsigned Fraction 

efdctuf rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, UNSIGN, ROUND, F)

The double-precision floating-point value in rB is converted to an unsigned fraction using the current 
rounding mode and the result is saturated if it cannot be represented in a 32-bit unsigned fraction. NaNs 
are converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and 
the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination 
register is not updated.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the Floating-Point Round 
Interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 1 1 0

SPE FD User
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efdctui efdctui 
Convert Floating-Point Double-Precision to Unsigned Integer 

efdctui rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, UNSIGN, ROUND, I

The double-precision floating-point value in rB is converted to an unsigned integer using the current 
rounding mode and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are converted 
as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and 
the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination 
register is not updated. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 1 0 0

SPE FD User
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efdctuidz efdctuidz 
Convert Floating-Point Double-Precision to Unsigned Integer Doubleword with Round toward 
Zero

efdctuidz rD,rB

rD0:63 ← CnvtFP64ToI64Sat(rB0:63, UNSIGN, TRUNC)

The double-precision floating-point value in rB is converted to an unsigned integer doubleword using the 
rounding mode Round toward Zero and the result is saturated if it cannot be represented in a 64-bit integer. 
NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and 
the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination 
register is not updated. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

This instruction may only be implemented for 64-bit implementations.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 0 1 0

SPE FD User



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-36 Freescale Semiconductor
 

efdctuiz efdctuiz 
Convert Floating-Point Double-Precision to Unsigned Integer with Round toward Zero

efdctuiz rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, UNSIGN, TRUNC, I)

The double-precision floating-point value in rB is converted to an unsigned integer using the rounding 
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs 
are converted as though they were zero.

Exceptions:

If the contents of rB are infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set, and 
the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination 
register is not updated. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result, the FG and FX 
bits are properly updated to allow rounding to be performed in the interrupt handler.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 1 0 0 0

SPE FD User
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efddiv efddiv
Floating-Point Double-Precision Divide

efddiv rD,rA,rB

rD0:63 ← rA0:63 ÷dp rB0:63

rA is divided by rB and the result is stored in rD. If rB is a NaN or infinity, the result is a properly signed 
zero. Otherwise, if rB is a zero (or a denormalized number optionally transformed to zero by the 
implementation), or if rA is either NaN or infinity, the result is either pmax (asign==bsign), or nmax 
(asign!=bsign). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in rD. If an 
underflow occurs, +0 or -0 (as appropriate) is stored in rD.

Exceptions:

If the contents of rA or rB are infinity, denorm, or NaN, or if both rA and rB are +/-0, SPEFSCR[FINV] 
is set. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination register is not updated. 
Otherwise, if the content of rB is +/-0 and the content of rA is a finite normalized non-zero number, 
SPEFSCR[FDBZ] is set. If floating-point divide by zero Exceptions are enabled, an interrupt is then taken. 
Otherwise, if an overflow occurs, SPEFSCR[FOVF] is set, or if an underflow occurs, SPEFSCR[FUNF] 
is set. If either underflow or overflow exceptions are enabled and the corresponding bit is set, an interrupt 
is taken. If any of these interrupts are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and 
no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an 
interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result, the FG and FX bits are properly updated to allow rounding to be 
performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, divide by zero, or invalid operation/input error is 
signaled, regardless of enabled exceptions.
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efdmul efdmul
Floating-Point Double-Precision Multiply

efdmul rD,rA,rB

rD0:63 ← rA0:63 ×dp rB0:63

rA is multiplied by rB and the result is stored in rD. If rA or rB are zero (or a denormalized number 
optionally transformed to zero by the implementation), the result is a properly signed zero. Otherwise, if 
rA or rB are either NaN or infinity, the result is either pmax (asign==bsign), or nmax (asign!=bsign). 
Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in rD. If an underflow occurs, 
+0 or -0 (as appropriate) is stored in rD. 

Exceptions:

If the contents of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV] is set. If SPEFSCR[FINVE] is 
set, an interrupt is taken, and the destination register is not updated. Otherwise, if an overflow occurs, 
SPEFSCR[FOVF] is set, or if an underflow occurs, SPEFSCR[FUNF] is set. If either underflow or 
overflow exceptions are enabled and the corresponding bit is set, an interrupt is taken. If any of these 
interrupts are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and 
no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an 
interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result, the FG and FX bits are properly updated to allow rounding to be 
performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled, regardless of 
enabled exceptions.
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efdnabs efdnabs
Floating-Point Double-Precision Negative Absolute Value

efdnabs rD,rA

rD0:63 ← 0b1 || rA1:63

The sign bit of rA is set to 1 and the result is placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is implementation dependent. 
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the 
implementation does not detect exceptions, or if exception detection is disabled, the computation can be 
carried out in one of two ways, as a sign bit operation ignoring the rest of the contents of the source register, 
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: If rA is infinity, 
denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are cleared. If floating-point invalid input 
exceptions are enabled, an interrupt is taken and the destination register is not updated.
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efdneg efdneg
Floating-Point Double-Precision Negate

efdneg rD,rA

rD0:63 ← ¬rA0 || rA1:63

The sign bit of rA is complemented and the result is placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is implementation dependent. 
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the 
implementation does not detect exceptions, or if exception detection is disabled, the computation can be 
carried out in one of two ways, as a sign bit operation ignoring the rest of the contents of the source register, 
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: If rA is infinity, 
denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are cleared. If floating-point invalid input 
exceptions are enabled, an interrupt is taken and the destination register is not updated.
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efdsub efdsub
Floating-Point Double-Precision Subtract

efdsub rD,rA,rB

rD0:63 ← rA0:63 -dp rB0:63

rB is subtracted from rA and the result is stored in rD. If rA is NaN or infinity, the result is either pmax 
(asign==0), or nmax (asign==1). Otherwise, If rB is NaN or infinity, the result is either nmax (bsign==0), or 
pmax (bsign==1). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in rD. If an 
underflow occurs, +0 (for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in rD. 

Exceptions:

If the contents of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV] is set. If SPEFSCR[FINVE] is 
set, an interrupt is taken, and the destination register is not updated. Otherwise, if an overflow occurs, 
SPEFSCR[FOVF] is set, or if an underflow occurs, SPEFSCR[FUNF] is set. If either underflow or 
overflow exceptions are enabled and the corresponding bit is set, an interrupt is taken. If any of these 
interrupts are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and 
no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an 
interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result, the FG and FX bits are properly updated to allow rounding to be 
performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled, regardless of 
enabled exceptions.
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efdtsteq efdtsteq
Floating-Point Double-Precision Test Equal

efdtsteq crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is equal to rB, the bit in the crfD is set, otherwise it is cleared. 
Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating NaNs, infinities, and 
denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

No exceptions are generated during the execution of efdtsteq If strict IEEE-754 compliance is required, 
the program should use efdcmpeq.

Implementation note: In an implementation, the execution of efdtsteq is likely to be faster than the 
execution of efdcmpeq.
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efdtstgt efdtstgt
Floating-Point Double-Precision Test Greater Than

efdtstgt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is greater than rB, the bit in the crfD is set, otherwise it is cleared. 
Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating NaNs, infinities, and 
denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

No exceptions are generated during the execution of efdtstgt. If strict IEEE-754 compliance is required, 
the program should use efdcmpgt.

Implementation note: In an implementation, the execution of efdtstgt is likely to be faster than the 
execution of efdcmpgt.
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efdtstlt efdtstlt
Floating-Point Double-Precision Test Less Than

efdtstlt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is less than rB, the bit in the crfD is set, otherwise it is cleared. 
Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating NaNs, infinities, and 
denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly. 

No exceptions are generated during the execution of efdtstlt. If strict IEEE-754 compliance is required, 
the program should use efdcmplt.

Implementation note: In an implementation, the execution of efdtstlt is likely to be faster than the 
execution of efdcmplt.
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efsabs efsabs
Floating-Point Absolute Value

efsabs rD,rA

rD32:63 ← 0b0 || rA33:63

The sign bit of rA is cleared and the result is placed into rD.

It is implementation dependent if invalid values for rA (NaN, denorm, infinity) are detected and exceptions 
are taken. 
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efsadd efsadd
Floating-Point Add

efsadd rD,rA,rB

rD32:63 ← rA32:63 +sp rB32:63

The single-precision floating-point value of rA is added to rB and the result is stored in rD.

If an overflow condition is detected or the contents of rA or rB are NaN or infinity, the result is an 
appropriately signed maximum floating-point value.

If an underflow condition is detected, the result is an appropriately signed floating-point 0.

The following status bits are set in the SPEFSCR:

• FINV if the contents of rA or rB are +infinity, –infinity, denorm, or NaN

• FOFV if an overflow occurs

• FUNF if an underflow occurs

• FINXS, FG, FX if the result is inexact or overflow occurred and overflow exceptions are disabled
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efscfsf efscfsf
Convert Floating-Point from Signed Fraction 

efscfsf rD,rB

rD32:63 ← CnvtI32ToFP32Sat(rB32:63, SIGN, LOWER, F)

The signed fractional value in rB is converted to the nearest single-precision floating-point value using the 
current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:

• FINXS, FG, FX if the result is inexact
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efscfsi efscfsi 
Convert Floating-Point from Signed Integer 

efscfsi rD,rB

rD32:63 ← CnvtSI32ToFP32Sat(rB32:63, SIGN, LOWER, I)

The signed integer value in rB is converted to the nearest single-precision floating-point value using the 
current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:

• FINXS, FG, FX if the result is inexact
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efscfuf efscfuf
Convert Floating-Point from Unsigned Fraction 

efscfuf rD,rB

rD32:63 ← CnvtI32ToFP32Sat(rB32:63, UNSIGN, LOWER, F)

The unsigned fractional value in rB is converted to the nearest single-precision floating-point value using 
the current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:

• FINXS, FG, FX if the result is inexact
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efscfui efscfui 
Convert Floating-Point from Unsigned Integer 

efscfui rD,rB

rD32:63 ← CnvtI32ToFP32Sat(rB32:63, UNSIGN, LOWER, I)

The unsigned integer value in rB is converted to the nearest single-precision floating-point value using the 
current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:

• FINXS, FG, FX if the result is inexact
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efscmpeq efscmpeq
Floating-Point Compare Equal

efscmpeq crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

The value in rA is compared against rB. If rA equals rB, the crD bit is set, otherwise it is cleared. 
Comparison ignores the sign of 0 (+0 = –0).

If either operand contains a NaN, infinity, or a denorm and floating-point invalid exceptions are enabled 
in the SPEFSCR, the exception is taken. If the exception is not enabled, the comparison treats NaNs, 
infinities, and denorms as normalized numbers.

The following status bits are set in SPEFSCR:

• FINV if the contents of rA or rB are +infinity, -infinity, denorm or NaN
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efscmpgt efscmpgt
Floating-Point Compare Greater Than

efscmpgt crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

The value in rA is compared against rB. If rA is greater than rB, the bit in the crD is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = –0).

If either operand contains a NaN, infinity, or a denorm and floating-point invalid exceptions are enabled 
in the SPEFSCR, the exception is taken. If the exception is not enabled, the comparison treats NaNs, 
infinities, and denorms as normalized numbers.

The following status bits are set in SPEFSCR:

• FINV if the contents of rA or rB are +infinity, -infinity, denorm or NaN
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efscmplt efscmplt
Floating-Point Compare Less Than

efscmplt crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

The value in rA is compared against rB. If rA is less than rB, the bit in the crD is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = –0).

If either operand contains a NaN, infinity, or a denorm and floating-point invalid exceptions are enabled 
in the SPEFSCR, the exception is taken. If the exception is not enabled, the comparison treats NaNs, 
infinities, and denorms as normalized numbers.

The following status bits are set in SPEFSCR:

• FINV if the contents of rA or rB are +infinity, -infinity, denorm or NaN
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efsctsf efsctsf
Convert Floating-Point to Signed Fraction 

efsctsf rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, ROUND, F)

The single-precision floating-point value in rB is converted to a signed fraction using the current rounding 
mode. The result saturates if it cannot be represented in a 32-bit fraction. NaNs are converted to 0.

The following status bits are set in the SPEFSCR:

• FINV if the contents of rB are +infinity., –infinity, denorm, or NaN, or rB cannot be represented 
in the target format

• FINXS, FG, FX if the result is inexact
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efsctsi efsctsi 
Convert Floating-Point to Signed Integer 

efsctsi rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, ROUND, I)

The single-precision floating-point value in rB is converted to a signed integer using the current rounding 
mode. The result saturates if it cannot be represented in a 32-bit integer. NaNs are converted to 0.

The following status bits are set in the SPEFSCR:

• FINV if the contents of rB are +infinity, -infinity, denorm, or NaN, or rB cannot be represented in 
the target format

• FINXS, FG, FX if the result is inexact
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efsctsiz efsctsiz 
Convert Floating-Point to Signed Integer with Round toward Zero

efsctsiz rD,rB

rD32–63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, TRUNC, I)

The single-precision floating-point value in rB is converted to a signed integer using the rounding mode 
Round towards Zero. The result saturates if it cannot be represented in a 32-bit integer. NaNs are converted 
to 0. 
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efsctuf efsctuf
Convert Floating-Point to Unsigned Fraction 

efsctuf rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, ROUND, F)

The single-precision floating-point value in rB is converted to an unsigned fraction using the current 
rounding mode. The result saturates if it cannot be represented in a 32-bit unsigned fraction. NaNs are 
converted to 0.

The following status bits are set in the SPEFSCR:

• FINV if the contents of rB are +infinity, –infinity, denorm, or NaN, or rB cannot be represented in 
the target format

• FINXS, FG, FX if the result is inexact
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efsctui efsctui 
Convert Floating-Point to Unsigned Integer 

efsctui rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, ROUND, I)

The single-precision floating-point value in rB is converted to an unsigned integer using the current 
rounding mode. The result saturates if it cannot be represented in a 32-bit unsigned integer. NaNs are 
converted to 0.

The following status bits are set in the SPEFSCR:

• FINV if the contents of rB are +infinity, –infinity, denorm, or NaN, or rB cannot be represented in 
the target format

• FINXS, FG, FX if the result is inexact

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 0 1 0 1 0 0

SPE FS User



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-59
 

efsctuiz efsctuiz 
Convert Floating-Point to Unsigned Integer with Round toward Zero

efsctuiz rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, TRUNC, I)

The single-precision floating-point value in rB is converted to an unsigned integer using the rounding 
mode Round toward Zero. The result saturates if it cannot be represented in a 32-bit unsigned integer. 
NaNs are converted to 0.

The following status bits are set in the SPEFSCR:

• FINV if the contents of rB are +infinity, –infinity, denorm, or NaN, or rB cannot be represented in 
the target format

• FINXS, FG, FX if the result is inexact
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efsdiv efsdiv
Floating-Point Divide

efsdiv rD,rA,rB

rD32:63 ← rA32:63 ÷sp rB32:63

The single-precision floating-point value in rA is divided by rB and the result is stored in rD.

If an overflow is detected, or rB is a denorm (or 0 value), or rA is a NaN or infinity and rB is a normalized 
number, the result is an appropriately signed maximum floating-point value.

If an underflow is detected or rB is a NaN or infinity, the result is an appropriately signed floating-point 0.

The following status bits are set in the SPEFSCR:

• FINV if the contents of rA or rB are +infinity, –infinity, denorm, or NaN

• FOFV if an overflow occurs

• FUNV if an underflow occurs

• FDBZS, FDBZ if a divide by zero occurs

• FINXS, FG, FX if the result is inexact or overflow occurred and overflow exceptions are disabled
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efsmul efsmul
Floating-Point Multiply

efsmul rD,rA,rB

rD32:63 ← rA32:63 ×sp rB32:63

The single-precision floating-point value in rA is multiplied by rB and the result is stored in rD.

If an overflow is detected the result is an appropriately signed maximum floating-point value.

If one of rA or rB is a NaN or an infinity and the other is not a denorm or zero, the result is an appropriately 
signed maximum floating-point value.

If an underflow is detected, or rA or rB is a denorm, the result is an appropriately signed floating-point 0.

The following status bits are set in the SPEFSCR:

• FINV if the contents of rA or rB are +infinity, –infinity, denorm, or NaN

• FOFV if an overflow occurs

• FUNV if an underflow occurs

• FINXS, FG, FX if the result is inexact or overflow occurred and overflow exceptions are disabled
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efsnabs efsnabs
Floating-Point Negative Absolute Value

efsnabs rD,rA

rD32:63 ← 0b1 || rA33:63

The sign bit of rA is set and the result is stored in rD. It is implementation dependent if invalid values for 
rA (NaN, denorm, infinity) are detected and exceptions are taken.
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efsneg efsneg
Floating-Point Negate

efsneg rD,rA

rD32:63 ← ¬rA32 || rA33:63

The sign bit of rA is complemented and the result is stored in rD. It is implementation dependent if invalid 
values for rA (NaN, denorm, infinity) are detected and exceptions are taken.
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efssub efssub
Floating-Point Subtract

efssub rD,rA,rB

rD32:63 ← rA32:63 -sp rB32:63

The single-precision floating-point value in rB is subtracted from that in rA and the result is stored in rD.

If an overflow condition is detected or the contents of rA or rB are NaN or infinity, the result is an 
appropriately signed maximum floating-point value.

If an underflow condition is detected, the result is an appropriately signed floating-point 0.

The following status bits are set in the SPEFSCR:

• FINV if the contents of rA or rB are +infinity, –infinity, denorm, or NaN

• FOFV if an overflow occurs

• FUNF if an underflow occurs

• FINXS, FG, FX if the result is inexact or overflow occurred and overflow exceptions are disabled
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efststeq efststeq
Floating-Point Test Equal

efststeq crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

The value in rA is compared against rB. If rA equals rB, the bit in crD is set, otherwise it is cleared. 
Comparison ignores the sign of 0 (+0 = –0). The comparison treats NaNs, infinities, and denorms as 
normalized numbers.

No exceptions are taken during execution of efststeq. If strict IEEE-754 compliance is required, the 
program should use efscmpeq.
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efststgt efststgt
Floating-Point Test Greater Than

efststgt crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

If rA is greater than rB, the bit in crD is set, otherwise it is cleared. Comparison ignores the sign of 0 
(+0 = –0). The comparison treats NaNs, infinities, and denorms as normalized numbers.

No exceptions are taken during the execution of efststgt. If strict IEEE-754 compliance is required, the 
program should use efscmpgt.
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efststlt efststlt
Floating-Point Test Less Than

efststlt crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

If rA is less than rB, the bit in the crD is set, otherwise it is cleared. Comparison ignores the sign of 0 
(+0 = –0). The comparison treats NaNs, infinities, and denorms as normalized numbers.

No exceptions are taken during the execution of efststlt. If strict IEEE-754 compliance is required, the 
program should use efscmplt.
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evabs evabs
Vector Absolute Value

evabs rD,rA

rD0:31 ← ABS(rA0:31)
rD32:63 ← ABS(rA32:63)

The absolute value of each element of rA is placed in the corresponding elements of rD, as shown in 
Figure 5-2. An absolute value of 0x8000_0000 (most negative number) returns 0x8000_0000. No 
overflow is detected.

Figure 5-2. Vector Absolute Value (evabs)
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evaddiw evaddiw
Vector Add Immediate Word

evaddiw rD,rB,UIMM

rD0:31 ← rB0:31 + EXTZ(UIMM)// Modulo sum
rD32:63 ← rB32:63 + EXTZ(UIMM)// Modulo sum

UIMM is zero-extended and added to both the high and low elements of rB and the results are placed in 
rD, as shown in Figure 5-3. Note that the same value is added to both elements of the register. UIMM is 5 
bits.

Figure 5-3. Vector Add Immediate Word (evaddiw)
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evaddsmiaaw evaddsmiaaw
Vector Add Signed, Modulo, Integer to Accumulator Word

evaddsmiaaw rD,rA

rD0:31 ← ACC0:31 + rA0:31
rD32:63 ← ACC32:63 + rA32:63

ACC0:63 ← rD0:63

Each word element in rA is added to the corresponding element in the accumulator and the results are 
placed in rD and into the accumulator, as shown in Figure 5-4.

Other registers altered: ACC

Figure 0-1. Vector Add Signed, Modulo, Integer to Accumulator Word (evaddsmiaaw)
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evaddssiaaw evaddssiaaw
Vector Add Signed, Saturate, Integer to Accumulator Word

evaddssiaaw rD,rA

// high
temp0:63 ← EXTS(ACC0:31) + EXTS(rA0:31)
ovh ← temp31 ⊕ temp32
rD0:31 ← SATURATE(ovh, temp31, 0x80000000, 0x7fffffff, temp32:63)

// low
temp0:63 ← EXTS(ACC32:63) + EXTS(rA32:63)
ovl ← temp31 ⊕ temp32
rD32:63 ← SATURATE(ovl, temp31, 0x80000000, 0x7fffffff, temp32:63)

ACC0:63 ← rD0:63

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

Each signed integer word element in rA is sign-extended and added to the corresponding sign-extended 
element in the accumulator, saturating if overflow or underflow occurs, and the results are placed in rD 
and the accumulator, as shown in Figure 5-4. Any overflow or underflow is recorded in the SPEFSCR 
overflow and summary overflow bits.

Other registers altered: SPEFSCR ACC

Figure 5-4. Vector Add Signed, Saturate, Integer to Accumulator Word (evaddssiaaw) 
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evaddumiaaw evaddumiaaw
Vector Add Unsigned, Modulo, Integer to Accumulator Word

evaddumiaaw rD,rA

rD0:31 ← ACC0:31 + rA0:31
rD32:63 ← ACC32:63 + rA32:63

ACC0:63 ← rD0:63

Each unsigned integer word element in rA is added to the corresponding element in the accumulator and 
the results are placed in rD and the accumulator, as shown in Figure 5-5.

Other registers altered: ACC

Figure 5-5. Vector Add Unsigned, Modulo, Integer to Accumulator Word (evaddumiaaw)
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evaddusiaaw evaddusiaaw
Vector Add Unsigned, Saturate, Integer to Accumulator Word

evaddusiaaw rD,rA

// high
temp0:63 ← EXTZ(ACC0:31) + EXTZ(rA0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, temp31, 0xffffffff, 0xffffffff, temp32:63)

// low
temp0:63 ← EXTZ(ACC32:63) + EXTZ(rA32:63)
ovl ← temp31
rD32:63 ← SATURATE(ovl, temp31, 0xffffffff, 0xffffffff, temp32:63)

ACC0:63 ← rD0:63

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

Each unsigned integer word element in rA is zero-extended and added to the corresponding zero-extended 
element in the accumulator, saturating if overflow occurs, and the results are placed in rD and the 
accumulator, as shown in Figure 5-6. Any overflow is recorded in the SPEFSCR overflow and summary 
overflow bits.

Other registers altered: SPEFSCR ACC

Figure 5-6. Vector Add Unsigned, Saturate, Integer to Accumulator Word (evaddusiaaw)
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evaddw evaddw
Vector Add Word

evaddw rD,rA,rB

rD0:31 ← rA0:31 + rB0:31// Modulo sum
rD32:63 ← rA32:63 + rB32:63 // Modulo sum

The corresponding elements of rA and rB are added and the results are placed in rD, as shown in 
Figure 5-7. The sum is a modulo sum.

Figure 5-7. Vector Add Word (evaddw)
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evand evand
Vector AND

evand rD,rA,rB

rD0:31 ← rA0:31 & rB0:31 // Bitwise AND
rD32:63 ← rA32:63 & rB32:63// Bitwise AND

The corresponding elements of rA and rB are ANDed bitwise and the results are placed in the 
corresponding element of rD, as shown in Figure 5-8.

Figure 5-8. Vector AND (evand)

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 0 0 1

SPE User

0 31 32 63

rA

rB

& &

rD



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-76 Freescale Semiconductor
 

evandc evandc
Vector AND with Complement

evandc rD,rA,rB

rD0:31 ← rA0:31 & (¬rB0:31) // Bitwise ANDC
rD32:63 ← rA32:63 & (¬rB32:63) // Bitwise ANDC

The word elements of rA and are ANDed bitwise with the complement of the corresponding elements of 
rB. The results are placed in the corresponding element of rD, as shown in Figure 5-9.

Figure 5-9. Vector AND with Complement (evandc) 
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evcmpeq evcmpeq
Vector Compare Equal

evcmpeq crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah = bh) then ch ← 1
else ch ← 0
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is equal to the high-order element of 
rB, as shown in Figure 5-10; it is cleared otherwise. The next bit in crD is set if the low-order element of 
rA is equal to the low-order element of rB and cleared otherwise. The last two bits of crD are set to the 
OR and AND of the result of the compare of the high and low elements. 

Figure 5-10. Vector Compare Equal (evcmpeq)
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evcmpgts evcmpgts
Vector Compare Greater Than Signed

evcmpgts crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah > bh) then ch ← 1
else ch ← 0
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is greater than the high-order element 
of rB, as shown in Figure 5-11; it is cleared otherwise. The next bit in crD is set if the low-order element 
of rA is greater than the low-order element of rB and cleared otherwise. The last two bits of crD are set 
to the OR and AND of the result of the compare of the high and low elements.

Figure 5-11. Vector Compare Greater Than Signed (evcmpgts)
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evcmpgtu evcmpgtu
Vector Compare Greater Than Unsigned

evcmpgtu crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah >U bh) then ch ← 1
else ch ← 0
if (al >U bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is greater than the high-order element 
of rB, as shown in Figure 5-12; it is cleared otherwise. The next bit in crD is set if the low-order element 
of rA is greater than the low-order element of rB and cleared otherwise. The last two bits of crD are set 
to the OR and AND of the result of the compare of the high and low elements.

Figure 5-12. Vector Compare Greater Than Unsigned (evcmpgtu)
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evcmplts evcmplts
Vector Compare Less Than Signed

evcmplts crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah < bh) then ch ← 1
else ch ← 0
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is less than the high-order element of 
rB, as shown in Figure 5-13; it is cleared otherwise. The next bit in crD is set if the low-order element of 
rA is less than the low-order element of rB and cleared otherwise. The last two bits of crD are set to the 
OR and AND of the result of the compare of the high and low elements.

Figure 5-13. Vector Compare Less Than Signed (evcmplts)
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evcmpltu evcmpltu
Vector Compare Less Than Unsigned

evcmpltu crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah <U bh) then ch ← 1
else ch ← 0
if (al <U bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is less than the high-order element of 
rB, as shown in Figure 5-14; it is cleared otherwise. The next bit in crD is set if the low-order element of 
rA is less than the low-order element of rB and cleared otherwise. The last two bits of crD are set to the 
OR and AND of the result of the compare of the high and low elements.

Figure 5-14. Vector Compare Less Than Unsigned (evcmpltu)
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evcntlsw evcntlsw
Vector Count Leading Signed Bits Word 

evcntlsw rD,rA

The leading sign bits in each element of rA are counted, and the respective count is placed into each 
element of rD, as shown in Figure 5-15.

evcntlzw is used for unsigned operands; evcntlsw is used for signed operands.

Figure 5-15. Vector Count Leading Signed Bits Word (evcntlsw)
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evcntlzw evcntlzw
Vector Count Leading Zeros Word 

evcntlzw rD,rA

The leading zero bits in each element of rA are counted, and the respective count is placed into each 
element of rD, as shown in Figure 5-16.

Figure 5-16. Vector Count Leading Zeros Word (evcntlzw)
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evdivws evdivws
Vector Divide Word Signed

evdivws rD,rA,rB

dividendh ← rA0:31
dividendl ← rA32:63
divisorh ← rB0:31
divisorl ← rB32:63
rD0:31 ← dividendh ÷  divisorh
rD32:63 ← dividendl ÷  divisorl
ovh ← 0
ovl ← 0
if ((dividendh < 0) & (divisorh = 0)) then

rD0:31 ← 0x80000000
ovh ← 1

else if ((dividendh >= 0) & (divisorh = 0)) then
rD0:31 ← 0x7FFFFFFF
ovh ← 1

else if ((dividendh = 0x80000000) & (divisorh = 0xFFFF_FFFF)) then
rD0:31 ← 0x7FFFFFFF
ovh ← 1

if ((dividendl < 0) & (divisorl = 0)) then
rD32:63 ← 0x80000000
ovl ← 1

else if ((dividendl >= 0) & (divisorl = 0)) then
rD32:63 ← 0x7FFFFFFF
ovl ← 1

else if ((dividendl = 0x80000000) & (divisorl = 0xFFFF_FFFF)) then
rD32:63 ← 0x7FFFFFFF
ovl ← 1

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The two dividends are the two elements of the rA contents. The two divisors are the two elements of the 
rB contents, as shown in Figure 5-17. The resulting two 32-bit quotients are placed into rD. Remainders 
are not supplied. The operands and quotients are interpreted as signed integers. If overflow, underflow, or 
divide by zero occurs, the overflow and summary overflow SPEFSCR bits are set. Note that any overflow 
indication is always set as a side effect of this instruction. No form is defined that disables the setting of 
the overflow bits. In case of overflow, a saturated value is delivered into the destination register.

Figure 5-17. Vector Divide Word Signed (evdivws)
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evdivwu evdivwu
Vector Divide Word Unsigned

evdivwu rD,rA,rB

dividendh ← rA0:31
dividendl ← rA32:63
divisorh ← rB0:31
divisorl ← rB32:63
rD0:31 ← dividendh ÷  divisorh
rD32:63 ← dividendl ÷  divisorl
ovh ← 0
ovl ← 0
if (divisorh = 0) then

rD0:31 = 0xFFFFFFFF
ovh ← 1

if (divisorl = 0) then
rD32:63 ← 0xFFFFFFFF
ovl ← 1

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The two dividends are the two elements of the contents of rA. The two divisors are the two elements of 
the contents of rB, as shown in Figure 5-18. Two 32-bit quotients are formed as a result of the division on 
each of the high and low elements and the quotients are placed into rD. Remainders are not supplied. 
Operands and quotients are interpreted as unsigned integers. If a divide by zero occurs, the overflow and 
summary overflow SPEFSCR bits are set. Note that any overflow indication is always set as a side effect 
of this instruction. No form is defined that disables the setting of the overflow bits. In case of overflow, a 
saturated value is delivered into the destination register.

Figure 5-18. Vector Divide Word Unsigned (evdivwu)
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eveqv eveqv
Vector Equivalent

eveqv rD,rA,rB

rD0:31 ← rA0:31 ≡ rB0:31 // Bitwise XNOR
rD32:63 ← rA32:63 ≡ rB32:63 // Bitwise XNOR

The corresponding elements of rA and rB are XNORed bitwise, and the results are placed in rD, as shown 
in Figure 5-19.

Figure 5-19. Vector Equivalent (eveqv)
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evextsb evextsb
Vector Extend Sign Byte 

evextsb rD,rA

rD0:31 ← EXTS(rA24:31)
rD32:63 ← EXTS(rA56:63)

The signs of the byte in each of the elements in rA are extended, and the results are placed in rD, as shown 
in Figure 5-20.

Figure 5-20. Vector Extend Sign Byte (evextsb)
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evextsh evextsh
Vector Extend Sign Half Word

evextsh rD,rA

rD0:31 ← EXTS(rA16:31)
rD32:63 ← EXTS(rA48:63)

The signs of the half words in each of the elements in rA are extended, and the results are placed in rD, as 
shown in Figure 5-21.

Figure 5-21. Vector Extend Sign Half Word (evextsh)

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

SPE User

0 31 32 63

rA

rD

ss

ss ssss_ssss_ssss_ssssssss_ssss_ssss_ssss

15 16 17 47 48 49



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-89
 

evfsabs evfsabs
Vector Floating-Point Single-Precision Absolute Value

evfsabs rD,rA

rD0:31 ← 0b0 || rA1:31
rD32:63 ← 0b0 || rA33:63

The sign bit of each element in rA is set to 0 and the results are placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is implementation dependent. 
An implementation may choose to not detect exceptions and carry out the computation. If the 
implementation does not detect exceptions, or if exception detection is disabled, the computation can be 
carried out in one of two ways, as a sign bit operation ignoring the rest of the contents of the source register, 
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: if the contents of 
either element of rA are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are set appropriately, and 
SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If floating-point invalid input exceptions are 
enabled, an interrupt is taken and the destination register is not updated. 
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evfsadd evfsadd
Vector Floating-Point Single-Precision Add

evfsadd rD,rA,rB

rD0:31 ← rA0:31 +sp rB0:31
rD32:63 ← rA32:63 +sp rB32:63

Each single-precision floating-point element of rA is added to the corresponding element of rB and the 
results are stored in rD. If an element of rA is NaN or infinity, the corresponding result is either pmax 
(asign==0), or nmax (asign==1). Otherwise, if an element of rB is NaN or infinity, the corresponding result 
is either pmax (bsign==0), or nmax (bsign==1). Otherwise, if an overflow occurs, pmax or nmax (as 
appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0 (for rounding modes 
RN, RZ, RP) or –0 (for rounding mode RM) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If SPEFSCR[FINVE] is 
set, an interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs, 
SPEFSCR[FOVF,FOVFH] are set appropriately, or if an underflow occurs, SPEFSCR[FUNF,FUNFH] are 
set appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is 
set, an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled, 
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt 
is taken, SPEFSCR[FINXS,FINXSH] is set. If the floating-point inexact exception is enabled, an interrupt 
is taken using the floating-point round interrupt vector. In this case, the destination register is updated with 
the truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the 
interrupt handler. 

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid 
operation/input error is signaled for the low (high) element (regardless of FINVE).
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evfscfsf evfscfsf
Vector Convert Floating-Point Single-Precision from Signed Fraction 

evfscfsf rD,rB

rD0:31 ← CnvtI32ToFP32Sat(rB0:31, SIGN, UPPER, F)
rD32:63 ← CnvtI32ToFP32Sat(rB32:63, SIGN, LOWER, F)

Each signed fractional element of rB is converted to a single-precision floating-point value using the 
current rounding mode and the results are placed into the corresponding elements of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions are not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result(s). The FGH, 
FXH, FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.
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evfscfsi evfscfsi 
Vector Convert Floating-Point Single-Precision from Signed Integer 

evfscfsi rD,rB

rD0:31 ← CnvtSI32ToFP32Sat(rB0:31, SIGN, UPPER, I)
rD32:63 ← CnvtSI32ToFP32Sat(rB32:63, SIGN, LOWER, I)

Each signed integer element of rB is converted to the nearest single-precision floating-point value using 
the current rounding mode and the results are placed into the corresponding element of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions are not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result(s). The FGH, 
FXH, FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.
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evfscfuf evfscfuf
Vector Convert Floating-Point Single-Precision from Unsigned Fraction 

evfscfuf rD,rB

rD0:31 ← CnvtI32ToFP32Sat(rB0:31, UNSIGN, UPPER, F)
rD32:63 ← CnvtI32ToFP32Sat(rB32:63, UNSIGN, LOWER, F)

Each unsigned fractional element of rB is converted to a single-precision floating-point value using the 
current rounding mode and the results are placed into the corresponding elements of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions are not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result(s). The FGH, 
FXH, FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.
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evfscfui evfscfui 
Vector Convert Floating-Point Single-Precision from Unsigned Integer 

evfscfui rD,rB

rD0:31 ← CnvtI32ToFP32Sat(rB031, UNSIGN, UPPER, I)
rD32:63 ← CnvtI32ToFP32Sat(rB32:63, UNSIGN, LOWER, I)

Each unsigned integer element of rB is converted to the nearest single-precision floating-point value using 
the current rounding mode and the results are placed into the corresponding elements of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions are not exact. If 
the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result(s). The FGH, 
FXH, FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.
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evfscmpeq evfscmpeq
Vector Floating-Point Single-Precision Compare Equal

evfscmpeq crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah = bh) then ch ← 1
else ch ← 0
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA equals rB, the crfD bit is 
set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0).

Exceptions:

If the contents of either element of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If floating-point invalid 
input exceptions are enabled, an interrupt is taken, and the condition register is not updated. Otherwise, 
the comparison proceeds after treating NaNs, infinities, and denorms as normalized numbers, using their 
values of ‘e’ and ‘f’ directly.
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evfscmpgt evfscmpgt
Vector Floating-Point Single-Precision Compare Greater Than

evfscmpgt crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah > bh) then ch ← 1
else ch ← 0
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA is greater than rB, the bit 
in the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0).

Exceptions:

If the contents of either element of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If floating-point invalid 
input exceptions are enabled then an interrupt is taken, and the condition register is not updated. Otherwise, 
the comparison proceeds after treating NaNs, infinities, and denorms as normalized numbers, using their 
values of ‘e’ and ‘f’ directly.
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evfscmplt evfscmplt
Vector Floating-Point Single-Precision Compare Less Than

evfscmplt crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah < bh) then ch ← 1
else ch ← 0
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA is less than rB, the bit in 
the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0).

Exceptions:

If the contents of either element of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If floating-point invalid 
input exceptions are enabled then an interrupt is taken, and the condition register is not updated. Otherwise, 
the comparison proceeds after treating NaNs, infinities, and denorms as normalized numbers, using their 
values of ‘e’ and ‘f’ directly.
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evfsctsf evfsctsf
Vector Convert Floating-Point Single-Precision to Signed Fraction 

evfsctsf rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, SIGN, UPPER, ROUND, F)
rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, ROUND, F)

Each single-precision floating-point element in rB is converted to a signed fraction using the current 
rounding mode and the result is saturated if it cannot be represented in a 32-bit signed fraction. NaNs are 
converted as though they were zero.

Exceptions:

If either element of rB is infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are 
set appropriately and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If SPEFSCR[FINVE] is 
set, an interrupt is taken, the destination register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, SPEFSCR[FINXS] is 
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH, 
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler. 
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evfsctsi evfsctsi 
Vector Convert Floating-Point Single-Precision to Signed Integer 

evfsctsi rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, SIGN, UPPER, ROUND, I)
rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, ROUND, I)

Each single-precision floating-point element in rB is converted to a signed integer using the current 
rounding mode and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are converted 
as though they were zero.

Exceptions:

If the contents of either element of rB are infinity, denorm, or NaN, or if an overflow occurs on conversion, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared 
appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination register is not updated, and 
no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, SPEFSCR[FINXS] is 
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH, 
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.
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evfsctsiz evfsctsiz 
Vector Convert Floating-Point Single-Precision to Signed Integer with Round toward Zero

evfsctsiz rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, SIGN, UPPER, TRUNC, I)
rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, TRUNC, I)

Each single-precision floating-point element in rB is converted to a signed integer using the rounding 
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs 
are converted as though they were zero.

Exceptions:

If either element of rB is infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If SPEFSCR[FINVE] is 
set, an interrupt is taken, the destination register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, SPEFSCR[FINXS] is 
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH, 
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.
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evfsctuf evfsctuf
Vector Convert Floating-Point Single-Precision to Unsigned Fraction 

evfsctuf rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, UNSIGN, UPPER, ROUND, F)
rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, ROUND, F)

Each single-precision floating-point element in rB is converted to an unsigned fraction using the current 
rounding mode and the result is saturated if it cannot be represented in a 32-bit fraction. NaNs are 
converted as though they were zero.

Exceptions:

If either element of rB is infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If SPEFSCR[FINVE] is 
set, an interrupt is taken, the destination register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, SPEFSCR[FINXS] is 
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH, 
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.
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evfsctui evfsctui 
Vector Convert Floating-Point Single-Precision to Unsigned Integer 

evfsctui rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, UNSIGN, UPPER, ROUND, I)
rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, ROUND, I)

Each single-precision floating-point element in rB is converted to an unsigned integer using the current 
rounding mode and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are converted 
as though they were zero.

Exceptions:

If either element of rB is infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If SPEFSCR[FINVE] is 
set, an interrupt is taken, the destination register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, SPEFSCR[FINXS] is 
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH, 
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.
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evfsctuiz evfsctuiz 
Vector Convert Floating-Point Single-Precision to Unsigned Integer with Round toward Zero

evfsctuiz rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, UNSIGN, UPPER, TRUNC, I)
rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, TRUNC, I)

Each single-precision floating-point element in rB is converted to an unsigned integer using the rounding 
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs 
are converted as though they were zero.

Exceptions:

If either element of rB is infinity, denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If SPEFSCR[FINVE] is 
set, an interrupt is taken, the destination register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, SPEFSCR[FINXS] is 
set. If the floating-point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result. The FGH, FXH, 
FG and FX bits are properly updated to allow rounding to be performed in the interrupt handler.
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evfsdiv evfsdiv
Vector Floating-Point Single-Precision Divide

evfsdiv rD,rA,rB

rD0:31 ← rA0:31 ÷sp rB0:31
rD32:63 ← rA32:63 ÷sp rB32:63

Each single-precision floating-point element of rA is divided by the corresponding element of rB and the 
result is stored in rD. If an element of rB is a NaN or infinity, the corresponding result is a properly signed 
zero. Otherwise, if an element of rB is a zero (or a denormalized number optionally transformed to zero 
by the implementation), or if an element of rA is either NaN or infinity, the corresponding result is either 
pmax (asign==bsign), or nmax (asign!=bsign). Otherwise, if an overflow occurs, pmax or nmax (as 
appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0 or –0 (as appropriate) 
is stored in the corresponding element of rD. 

Exceptions:

If the contents of rA or rB are infinity, denorm, or NaN, or if both rA and rB are ±0, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared 
appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken and the destination register is not updated. 
Otherwise, if the content of rB is ±0 and the content of rA is a finite normalized non-zero number, 
SPEFSCR[FDBZ,FDBZH] are set appropriately. If floating-point divide-by-zero exceptions are enabled, 
an interrupt is then taken. Otherwise, if an overflow occurs, SPEFSCR[FOVF,FOVFH] are set 
appropriately, or if an underflow occurs, SPEFSCR[FUNF,FUNFH] are set appropriately. If either 
underflow or overflow exceptions are enabled and a corresponding bit is set, an interrupt is taken. If any 
of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled, 
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt 
is taken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt is taken 
using the floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the 
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid 
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 1 0 0 1

SPE FV User



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-105
 

evfsmul evfsmul
Vector Floating-Point Single-Precision Multiply

evfsmul rD,rA,rB

rD0:31 ← rA0:31 ×sp rB0:31
rD32:63 ← rA32:63 ×sp rB32:63

Each single-precision floating-point element of rA is multiplied with the corresponding element of rB and 
the result is stored in rD. If an element of rA or rB are either zero (or a denormalized number optionally 
transformed to zero by the implementation), the corresponding result is a properly signed zero. Otherwise, 
if an element of rA or rB are either NaN or infinity, the corresponding result is either pmax (asign==bsign), 
or nmax (asign!=bsign). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in the 
corresponding element of rD. If an underflow occurs, +0 or –0 (as appropriate) is stored in the 
corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If SPEFSCR[FINVE] is 
set, an interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs, 
SPEFSCR[FOVF,FOVFH] are set appropriately, or if an underflow occurs, SPEFSCR[FUNF,FUNFH] are 
set appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is 
set, an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled, 
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt 
is taken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt is taken 
using the floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the 
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow exception is taken, or if an invalid 
operation/input error is signaled for the low (high) element (regardless of FINVE).
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evfsnabs evfsnabs
Vector Floating-Point Single-Precision Negative Absolute Value

evfsnabs rD,rA

rD0:31 ← 0b1 || rA1:31
rD32:63 ← 0b1 || rA33:63

The sign bit of each element in rA is set to 1 and the results are placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is implementation dependent. 
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the 
implementation does not detect exceptions, or if exception detection is disabled, the computation can be 
carried out in one of two ways, as a sign bit operation ignoring the rest of the contents of the source register, 
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: if the contents of 
either element of rA are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are set appropriately, and 
SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If floating-point invalid input exceptions are 
enabled then an interrupt is taken, and the destination register is not updated. 
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evfsneg evfsneg
Vector Floating-Point Single-Precision Negate

evfsneg rD,rA

rD0:31 ← ¬rA0 || rA1:31
rD32:63 ← ¬rA32 || rA33:63

The sign bit of each element in rA is complemented and the results are placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is implementation dependent. 
An implementation may choose to not detect exceptions and carry out the sign bit operation. If the 
implementation does not detect exceptions, or if exception detection is disabled, the computation can be 
carried out in one of two ways, as a sign bit operation ignoring the rest of the contents of the source register, 
or by examining the input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: if the contents of 
either element of rA are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are set appropriately, and 
SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If floating-point invalid input exceptions are 
enabled then an interrupt is taken, and the destination register is not updated. 
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evfssub evfssub
Vector Floating-Point Single-Precision Subtract

evfssub rD,rA,rB

rD0:31 ← rA0:31 -sp rB0:31
rD32:63 ← rA32:63 -sp rB32:63

Each single-precision floating-point element of rB is subtracted from the corresponding element of rA and 
the results are stored in rD. If an element of rA is NaN or infinity, the corresponding result is either pmax 
(asign==0), or nmax (asign==1). Otherwise, if an element of rB is NaN or infinity, the corresponding result 
is either nmax (bsign==0), or pmax (bsign==1). Otherwise, if an overflow occurs, pmax or nmax (as 
appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0 (for rounding modes 
RN, RZ, RP) or –0 (for rounding mode RM) is stored in the corresponding element of rD. 

Exceptions:

If the contents of either element of rA or rB are infinity, denorm, or NaN, SPEFSCR[FINV,FINVH] are 
set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If SPEFSCR[FINVE] is 
set, an interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs, 
SPEFSCR[FOVF,FOVFH] are set appropriately, or if an underflow occurs, SPEFSCR[FUNF,FUNFH] are 
set appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is 
set, an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled, 
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt 
is taken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt is taken 
using the floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the 
interrupt handler. 

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid 
operation/input error is signaled for the low (high) element (regardless of FINVE).
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evfststeq evfststeq
Vector Floating-Point Single-Precision Test Equal

evfststeq crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah = bh) then ch ← 1
else ch ← 0
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA equals rB, the bit in crfD 
is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0). The comparison proceeds after 
treating NaNs, infinities, and denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfststeq. If strict IEEE-754 compliance is required, the 
program should use evfscmpeq.

Implementation note: In an implementation, the execution of evfststeq is likely to be faster than the 
execution of evfscmpeq.
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evfststgt evfststgt
Vector Floating-Point Single-Precision Test Greater Than

evfststgt crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah > bh) then ch ← 1
else ch ← 0
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA is greater than rB, the bit 
in crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0). The comparison 
proceeds after treating NaNs, infinities, and denorms as normalized numbers, using their values of ‘e’ and 
‘f’ directly.

No exceptions are taken during the execution of evfststgt. If strict IEEE-754 compliance is required, the 
program should use evfscmpgt.

Implementation note: In an implementation, the execution of evfststgt is likely to be faster than the 
execution of evfscmpgt.
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evfststlt evfststlt
Vector Floating-Point Single-Precision Test Less Than

evfststlt crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah < bh) then ch ← 1
else ch ← 0
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared with the corresponding element of rB. If rA is less than rB, the bit in the 
crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0). The comparison proceeds 
after treating NaNs, infinities, and denorms as normalized numbers, using their values of ‘e’ and ‘f’ 
directly.

No exceptions are taken during the execution of evfststlt. If strict IEEE-754 compliance is required, the 
program should use evfscmplt.

Implementation note: In an implementation, the execution of evfststlt is likely to be faster than the 
execution of evfscmplt.
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evldd evldd
Vector Load Double Word into Double Word

evldd rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
rD ← MEM(EA, 8)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 5-22 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-22. evldd Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evlddx evlddx
Vector Load Double Word into Double Word Indexed 

evlddx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← MEM(EA, 8)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 5-23 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-23. evlddx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evldh evldh
Vector Load Double into Four Half Words 

evldh rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
rD0:15 ← MEM(EA, 2)
rD16:31 ← MEM(EA+2,2)
rD32:47 ← MEM(EA+4,2)
rD48:63 ← MEM(EA+6,2)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 5-24 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-24. evldh Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evldhx evldhx
Vector Load Double into Four Half Words Indexed

evldhx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← MEM(EA, 2)
rD16:31 ← MEM(EA+2,2)
rD32:47 ← MEM(EA+4,2)
rD48:63 ← MEM(EA+6,2)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 5-25 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-25. evldhx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evldw evldw
Vector Load Double into Two Words

evldw rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
rD0:31 ← MEM(EA, 4)
rD32:63 ← MEM(EA+4, 4)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 5-26 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-26. evldw Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evldwx evldwx
Vector Load Double into Two Words Indexed 

evldwx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:31 ← MEM(EA, 4)
rD32:63 ← MEM(EA+4, 4)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 5-27 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-27. evldwx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evlhhesplat evlhhesplat
Vector Load Half Word into Half Words Even and Splat

evlhhesplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*2)
rD0:15 ← MEM(EA,2)
rD16:31 ← 0x0000
rD32:47 ← MEM(EA,2)
rD48:63 ← 0x0000

The half word addressed by EA is loaded from memory and placed in the even half words of each element 
of rD.

Figure 5-28 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-28. evlhhesplat Results in Big- and Little-Endian Modes

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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evlhhesplatx evlhhesplatx
Vector Load Half Word into Half Words Even and Splat Indexed

evlhhesplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← MEM(EA,2)
rD16:31 ← 0x0000
rD32:47 ← MEM(EA,2)
rD48:63 ← 0x0000

The half word addressed by EA is loaded from memory and placed in the even half words of each element 
of rD.

Figure 5-29 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-29. evlhhesplatx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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evlhhossplat evlhhossplat
Vector Load Half Word into Half Word Odd Signed and Splat

evlhhossplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*2)
rD0:31 ← EXTS(MEM(EA,2))
rD32:63 ← EXTS(MEM(EA,2))

The half word addressed by EA is loaded from memory and placed in the odd half words sign extended in 
each element of rD.

Figure 5-30 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-30. evlhhossplat Results in Big- and Little-Endian Modes

In big-endian memory, the msb of a is sign extended. In little-endian memory, the msb of b is sign 
extended.

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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evlhhossplatx evlhhossplatx
Vector Load Half Word into Half Word Odd Signed and Splat Indexed

evlhhossplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:31 ← EXTS(MEM(EA,2))
rD32:63 ← EXTS(MEM(EA,2))

The half word addressed by EA is loaded from memory and placed in the odd half words sign extended in 
each element of rD.

Figure 5-31 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-31. evlhhossplatx Results in Big- and Little-Endian Modes

In big-endian memory, the msb of a is sign extended. In little-endian memory, the msb of b is sign 
extended.

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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evlhhousplat evlhhousplat
Vector Load Half Word into Half Word Odd Unsigned and Splat

evlhhousplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*2)
rD0:15 ← 0x0000
rD16:31 ← MEM(EA,2)
rD32:47 ← 0x0000
rD48:63 ← MEM(EA,2)

The half word addressed by EA is loaded from memory and placed in the odd half words zero extended in 
each element of rD.

Figure 5-32 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-32. evlhhousplat Results in Big- and Little-Endian Modes

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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evlhhousplatx evlhhousplatx
Vector Load Half Word into Half Word Odd Unsigned and Splat Indexed

evlhhousplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← 0x0000
rD16:31 ← MEM(EA,2)
rD32:47 ← 0x0000
rD48:63 ← MEM(EA,2)

The half word addressed by EA is loaded from memory and placed in the odd half words zero extended in 
each element of rD.

Figure 5-33 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-33. evlhhousplatx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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evlwhe evlwhe
Vector Load Word into Two Half Words Even

evlwhe rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:15 ← MEM(EA,2)
rD16:31 ← 0x0000
rD32:47 ← MEM(EA+2,2)
rD48:63 ← 0x0000

The word addressed by EA is loaded from memory and placed in the even half words in each element of 
rD.

Figure 5-34 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-34. evlwhe Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evlwhex evlwhex
Vector Load Word into Two Half Words Even Indexed

evlwhex rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← MEM(EA,2)
rD16:31 ← 0x0000
rD32:47 ← MEM(EA+2,2)
rD48:63 ← 0x0000

The word addressed by EA is loaded from memory and placed in the even half words in each element of 
rD.

Figure 5-35 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-35. evlwhex Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evlwhos evlwhos
Vector Load Word into Two Half Words Odd Signed (with sign extension)

evlwhos rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:31 ← EXTS(MEM(EA,2))
rD32:63 ← EXTS(MEM(EA+2,2))

The word addressed by EA is loaded from memory and placed in the odd half words sign extended in each 
element of rD.

Figure 5-36 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-36. evlwhos Results in Big- and Little-Endian Modes

In big-endian memory, the most significant bits of a and c are sign extended. In little-endian memory, the 
most significant bits of b and d are sign extended.

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evlwhosx evlwhosx
Vector Load Word into Two Half Words Odd Signed Indexed (with sign extension)

evlwhosx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:31 ← EXTS(MEM(EA,2))
rD32:63 ← EXTS(MEM(EA+2,2))

The word addressed by EA is loaded from memory and placed in the odd half words sign extended in each 
element of rD.

Figure 5-37 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-37. evlwhosx Results in Big- and Little-Endian Modes

In big-endian memory, the most significant bits of a and c are sign extended. In little-endian memory, the 
most significant bits of b and d are sign extended.

Implementation note: If the EA is not word aligned, an alignment exception occurs.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 1 1 0

SPE User

c d

0 1 2 3

a b

a b S S dS S c

b a S S cS S d

Memory

GPR in big endian

GPR in little endian

Byte address

S = sign

S = sign



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-128 Freescale Semiconductor
 

evlwhou evlwhou
Vector Load Word into Two Half Words Odd Unsigned (zero-extended)

evlwhou rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:15 ← 0x0000
rD16:31 ← MEM(EA,2)
rD32:47 ← 0x0000
rD48:63 ← MEM(EA+2,2)

The word addressed by EA is loaded from memory and placed in the odd half words zero extended in each 
element of rD.

Figure 5-38 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-38. evlwhou Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evlwhoux evlwhoux
Vector Load Word into Two Half Words Odd Unsigned Indexed (zero-extended)

evlwhoux rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← 0x0000
rD16:31 ← MEM(EA,2)
rD32:47 ← 0x0000
rD48:63 ← MEM(EA+2,2)

The word addressed by EA is loaded from memory and placed in the odd half words zero extended in each 
element of rD.

Figure 5-39 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-39. evlwhoux Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evlwhsplat evlwhsplat
Vector Load Word into Two Half Words and Splat

evlwhsplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:15 ← MEM(EA,2)
rD16:31 ← MEM(EA,2)
rD32:47 ← MEM(EA+2,2)
rD48:63 ← MEM(EA+2,2)

The word addressed by EA is loaded from memory and placed in both the even and odd half words in each 
element of rD.

Figure 5-40 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-40. evlwhsplat Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evlwhsplatx evlwhsplatx
Vector Load Word into Two Half Words and Splat Indexed

evlwhsplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← MEM(EA,2)
rD16:31 ← MEM(EA,2)
rD32:47 ← MEM(EA+2,2)
rD48:63 ← MEM(EA+2,2)

The word addressed by EA is loaded from memory and placed in both the even and odd half words in each 
element of rD.

Figure 5-41 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-41. evlwhsplatx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evlwwsplat evlwwsplat
Vector Load Word into Word and Splat

evlwwsplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:31 ← MEM(EA,4)
rD32:63 ← MEM(EA,4)

The word addressed by EA is loaded from memory and placed in both elements of rD.

Figure 5-42 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-42. evlwwsplat Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evlwwsplatx evlwwsplatx
Vector Load Word into Word and Splat Indexed

evlwwsplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:31 ← MEM(EA,4)
rD32:63 ← MEM(EA,4)

The word addressed by EA is loaded from memory and placed in both elements of rD.

Figure 5-43 shows how bytes are loaded into rD as determined by the endian mode.

Figure 5-43. evlwwsplatx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 0 0 0

SPE User

c d

0 1 2 3

a b

c d a b da b c

b a d c ad c b

Memory

GPR in big endian

GPR in little endian

Byte address



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-134 Freescale Semiconductor
 

evmergehi evmergehi
Vector Merge High

evmergehi rD,rA,rB

rD0:31 ← rA0:31
rD32:63 ← rB0:31

The high-order elements of rA and rB are merged and placed into rD, as shown in Figure 5-44. 
 

Figure 5-44. High Order Element Merging (evmergehi)

Note: A vector splat high can be performed by specifying the same register in rA and rB.
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evmergehilo evmergehilo
Vector Merge High/Low

evmergehilo rD,rA,rB

rD0:31 ← rA0:31
rD32:63 ← rB32:63

The high-order element of rA and the low-order element of rB are merged and placed into rD, as shown 
in Figure 5-45.

Figure 5-45. High Order Element Merging (evmergehilo)

Application note: With appropriate specification of rA and rB, evmergehi, evmergelo, evmergehilo, and 
evmergelohi provide a full 32-bit permute of two source operands.
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evmergelo evmergelo
Vector Merge Low

evmergelo rD,rA,rB

rD0:31 ← rA32:63
rD32:63 ← rB32:63

The low-order elements of rA and rB are merged and placed in rD, as shown in Figure 5-46. 
 

Figure 5-46. Low Order Element Merging (evmergelo)

Note: A vector splat low can be performed by specifying the same register in rA and rB.
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evmergelohi evmergelohi
Vector Merge Low/High

evmergelohi rD,rA,rB

rD0:31 ← rA32:63
rD32:63 ← rB0:31

The low-order element of rA and the high-order element of rB are merged and placed into rD, as shown 
in Figure 5-47.

Figure 5-47. Low Order Element Merging (evmergelohi)

Note: A vector swap can be performed by specifying the same register in rA and rB.
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evmhegsmfaa evmhegsmfaa
Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate

evmhegsmfaa rD,rA,rB 

temp0:31 ← rA32:47 ×sf rB32:47
temp0:63 ← EXTS(temp0:31) 
rD0:63 ← ACC0:63 + temp0:63 

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered, half-word signed fractional elements in rA and rB are multiplied. 
The product is added to the contents of the 64-bit accumulator and the result is placed into rD and the 
accumulator, as shown in Figure 5-48.

Note: This is a modulo sum. There is no overflow check and no saturation is performed. Any overflow of 
the 64-bit sum is not recorded into the SPEFSCR. 

Figure 5-48. evmhegsmfaa (Even Form)
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evmhegsmfan evmhegsmfan
Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate 
Negative

evmhegsmfan rD,rA,rB 

temp0:31 ← rA32:47 ×sf rB32:47
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered, half-word signed fractional elements in rA and rB are multiplied. 
The product is subtracted from the contents of the 64-bit accumulator and the result is placed into rD and 
the accumulator, as shown in Figure 5-49.

Note: This is a modulo difference. There is no overflow check and no saturation is performed. Any 
overflow of the 64-bit difference is not recorded into the SPEFSCR. 

Figure 5-49. evmhegsmfan (Even Form)
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evmhegsmiaa evmhegsmiaa
Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate

evmhegsmiaa rD,rA,rB 

temp0:31 ← rA32:47 ×si rB32:47
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered half-word signed integer elements in rA and rB are multiplied. 
The intermediate product is sign-extended and added to the contents of the 64-bit accumulator, and the 
resulting sum is placed into rD and into the accumulator, as shown in Figure 5-50.

Note: This is a modulo sum. There is no overflow check and no saturation is performed. Any overflow of 
the 64-bit sum is not recorded into the SPEFSCR. 

Figure 5-50. evmhegsmiaa (Even Form)
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evmhegsmian evmhegsmian
Vector Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate Negative

evmhegsmian rD,rA,rB 

temp0:31 ← rA32:47 ×si rB32:47
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered half-word signed integer elements in rA and rB are multiplied. 
The intermediate product is sign-extended and subtracted from the contents of the 64-bit accumulator, and 
the result is placed into rD and into the accumulatorFigure 5-51.

Note: This is a modulo difference. There is no check for overflow and no saturation is performed. Any 
overflow of the 64-bit difference is not recorded into the SPEFSCR.

Figure 5-51. evmhegsmian (Even Form)
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evmhegumiaa evmhegumiaa
Vector Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate

evmhegumiaa rD,rA,rB 

temp0:31 ← rA32:47 ×ui rB32:47
temp0:63 ← EXTZ(temp0:31)
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered half-word unsigned integer elements in rA and rB are multiplied. 
The intermediate product is zero-extended and added to the contents of the 64-bit accumulator. The 
resulting sum is placed into rD and into the accumulator, as shown in Figure 5-52.

Note: This is a modulo sum. There is no overflow check and no saturation is performed. Any overflow of 
the 64-bit sum is not recorded into the SPEFSCR. 

Figure 5-52. evmhegumiaa (Even Form)
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evmhegumian evmhegumian
Vector Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate 
Negative

evmhegumian rD,rA,rB 

temp0:31 ← rA32:47 ×ui rB32:47
temp0:63 ← EXTZ(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered unsigned integer elements in rA and rB are multiplied. The 
intermediate product is zero-extended and subtracted from the contents of the 64-bit accumulator. The 
result is placed into rD and into the accumulatorFigure 5-53.

Note: This is a modulo difference. There is no check for overflow and no saturation is performed. Any 
overflow of the 64-bit difference is not recorded into the SPEFSCR. 

Figure 5-53. evmhegumian (Even Form)
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evmhesmf evmhesmf
Vector Multiply Half Words, Even, Signed, Modulo, Fractional (to Accumulator)

evmhesmf rD,rA,rB (A = 0)
evmhesmfa rD,rA,rB (A = 1)

// high
rD0:31 ← (rA0:15 ×sf rB0:15) 

// low
rD32:63← (rA32:47 ×sf rB32:47) 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding even-numbered half-word signed fractional elements in rA and rB are multiplied then 
placed into the corresponding words of rDFigure 5-54. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 5-54. Even Multiply of Two Signed Modulo Fractional
Elements (to Accumulator) (evmhesmf)
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evmhesmfaaw evmhesmfaaw
Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate into Words

evmhesmfaaw rD,rA,rB 

// high
temp0:31 ← (rA0:15 ×sf rB0:15) 
rD0:31 ← ACC0:31 + temp0:31 

// low
temp0:31 ← (rA32:47 ×sf rB32:47) 
rD32:63 ← ACC32:63 + temp0:31 

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word signed fractional 
elements in rA and rB are multiplied. The 32 bits of each intermediate product are added to the contents 
of the accumulator words to form intermediate sums, which are placed into the corresponding rD words 
and into the accumulator, as shown in Figure 5-55.

Other registers altered: ACC

Figure 5-55. Even Form of Vector Half-Word Multiply (evmhesmfaaw)
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evmhesmfanw evmhesmfanw
Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate Negative into 
Words

evmhesmfanw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×sf rB0:15 
rD0:31 ← ACC0:31 - temp0:31

// low
temp0:31 ← rA32:47 ×sf rB32:47 
rD32:63← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word signed fractional 
elements in rA and rB are multiplied. The 32-bit intermediate products are subtracted from the contents 
of the accumulator words to form intermediate differences, which are placed into the corresponding rD 
words and into the accumulator, as shown in Figure 5-56. 

Other registers altered: ACC

Figure 5-56. Even Form of Vector Half-Word Multiply (evmhesmfanw)
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evmhesmi evmhesmi
Vector Multiply Half Words, Even, Signed, Modulo, Integer (to Accumulator)

evmhesmi rD,rA,rB (A = 0)
evmhesmia rD,rA,rB (A = 1)

// high
rD0:31 ← rA0:15 ×si rB0:15 

// low
rD32:63 ← rA32:47 ×si rB32:47 

// update accumulator
if A = 1, then ACC0:63 ← rD0:63

The corresponding even-numbered half-word signed integer elements in rA and rB are multiplied. The 
two 32-bit products are placed into the corresponding words of rD, as shown in Figure 5-57. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)
 

Figure 5-57. Even Form for Vector Multiply (to Accumulator) (evmhesmi)
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evmhesmiaaw evmhesmiaaw
Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into Words

evmhesmiaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×si rB0:15 
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA32:47 ×si rB32:47 
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word signed integer 
elements in rA and rB are multiplied. Each intermediate 32-bit product is added to the contents of the 
accumulator words to form intermediate sums, which are placed into the corresponding rD words and into 
the accumulator, as shown in Figure 5-58. 

Other registers altered: ACC

Figure 5-58. Even Form of Vector Half-Word Multiply (evmhesmiaaw)
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evmhesmianw evmhesmianw
Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate Negative into Words

evmhesmianw rD,rA,rB 

// high
temp00:31 ←rA0:15 ×si rB0:15 
rD0:31 ← ACC0:31 - temp00:31

// low
temp10:31 ← rA32:47 ×si rB32:47 
rD32:63 ← ACC32:63 - temp10:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word signed integer 
elements in rA and rB are multiplied. Each intermediate 32-bit product is subtracted from the contents of 
the accumulator words to form intermediate differences, which are placed into the corresponding rD words 
and into the accumulator, as shown in Figure 5-59. 

Other registers altered: ACC

Figure 5-59. Even Form of Vector Half-Word Multiply (evmhesmianw)
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evmhessf evmhessf
Vector Multiply Half Words, Even, Signed, Saturate, Fractional (to Accumulator)

evmhessf rD,rA,rB (A = 0)
evmhessfa rD,rA,rB (A = 1)

// high
temp0:31 ← rA0:15 ×sf rB0:15 
if (rA0:15 = 0x8000) & (rB0:15 = 0x8000) then

rD0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
rD0:31 ← temp0:31
movh ← 0

// low
temp0:31 ← rA32:47 ×sf rB32:47 
if (rA32:47 = 0x8000) & (rB32:47 = 0x8000) then

rD32:63 ← 0x7FFF_FFFF //saturate
movl ← 1

else
rD32:63 ← temp0:31
movl ← 0

// update accumulator
if A = 1 then ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | movh
SPEFSCRSOV ← SPEFSCRSOV | movl

The corresponding even-numbered half-word signed fractional elements in rA and rB are multiplied. The 
32 bits of each product are placed into the corresponding words of rD, as shown in Figure 5-60. If both 
inputs are –1.0, the result saturates to the largest positive signed fraction and the overflow and summary 
overflow bits are recorded in the SPEFSCR. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: SPEFSCR, ACC (If A = 1)

Figure 5-60. Even Multiply of Two Signed Saturate Fractional
Elements  (to Accumulator) (evmhessf)
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evmhessfaaw evmhessfaaw
Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate into Words

evmhessfaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×sf rB0:15 
if (rA0:15 = 0x8000) & (rB0:15 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
movh ← 0

temp0:63 ← EXTS(ACC0:31) + EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 
// low
temp0:31 ← rA32:47 ×sf rB32:47 
if (rA32:47 = 0x8000) & (rB32:47 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movl ← 1

else
movl ← 0

temp0:63 ← EXTS(ACC32:63) + EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh | movh
SPEFSCRSOV ← SPEFSCRSOV | ovl| movl

The corresponding even-numbered half-word signed fractional elements in rA and rB are multiplied 
producing a 32-bit product. If both inputs are –1.0, the result saturates to 0x7FFF_FFFF. Each 32-bit 
product is then added to the corresponding word in the accumulator, saturating if overflow or underflow 
occurs, and the result is placed in rD and the accumulator, as shown in Figure 5-61.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary 
overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-61. Even Form of Vector Half-Word Multiply (evmhessfaaw)
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evmhessfanw evmhessfanw
Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate Negative into 
Words

evmhessfanw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×sf rB0:15 
if (rA0:15 = 0x8000) & (rB0:15 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
movh ← 0

temp0:63 ← EXTS(ACC0:31) - EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 
// low
temp0:31 ← rA32:47 ×sf rB32:47 
if (rA32:47 = 0x8000) & (rB32:47 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movl ← 1

else
movl ← 0

temp0:63 ← EXTS(ACC32:63) - EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh | movh
SPEFSCRSOV ← SPEFSCRSOV | ovl| movl

The corresponding even-numbered half-word signed fractional elements in rA and rB are multiplied 
producing a 32-bit product. If both inputs are –1.0, the result saturates to 0x7FFF_FFFF. Each 32-bit 
product is then subtracted from the corresponding word in the accumulator, saturating if overflow or 
underflow occurs, and the result is placed in rD and the accumulator, as shown in Figure 5-62.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary 
overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-62. Even Form of Vector Half-Word Multiply (evmhessfanw)
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evmhessiaaw evmhessiaaw
Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate into Words

evmhessiaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×si rB0:15 
temp0:63 ← EXTS(ACC0:31) + EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA32:47 ×si rB32:47 
temp0:63 ← EXTS(ACC32:63) + EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding even-numbered half-word signed integer elements in rA and rB are multiplied 
producing a 32-bit product. Each 32-bit product is then added to the corresponding word in the 
accumulator, saturating if overflow occurs, and the result is placed in rD and the accumulator, as shown 
in Figure 5-63.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary 
overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-63. Even Form of Vector Half-Word Multiply (evmhessiaaw)
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evmhessianw evmhessianw
Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate Negative into Words

evmhessianw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×si rB0:15 
temp0:63 ← EXTS(ACC0:31) - EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA32:47 ×si rB32:47 
temp0:63 ← EXTS(ACC32:63) - EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding even-numbered half-word signed integer elements in rA and rB are multiplied 
producing a 32-bit product. Each 32-bit product is then subtracted from the corresponding word in the 
accumulator, saturating if overflow occurs, and the result is placed in rD and the accumulator, as shown 
in Figure 5-64.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary 
overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-64. Even Form of Vector Half-Word Multiply (evmhessianw)
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evmheumi evmheumi
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer (to Accumulator)

evmheumi rD,rA,rB (A = 0)
evmheumia rD,rA,rB (A = 1)

// high
rD0:31 ← rA0:15 ×ui rB0:15 

// low
rD32:63 ← rA32:47 ×ui rB32:47 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding even-numbered half-word unsigned integer elements in rA and rB are multiplied. The 
two 32-bit products are placed into the corresponding words of rD, as shown in Figure 5-65. 

If A = 1, the result in rD is also placed into the accumulator.

Figure 5-65. Vector Multiply Half Words, Even, Unsigned, Modulo,
Integer (to Accumulator) (evmheumi)
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evmheumiaaw evmheumiaaw
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate into Words

evmheumiaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA32:47 ×ui rB32:47
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word unsigned integer 
elements in rA and rB are multiplied. Each intermediate product is added to the contents of the 
corresponding accumulator words and the sums are placed into the corresponding rD and accumulator 
words, as shown in Figure 5-66. 

Other registers altered: ACC

Figure 5-66. Even Form of Vector Half-Word Multiply (evmheumiaaw)
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evmheumianw evmheumianw
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate Negative into 
Words

evmheumianw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15
rD0:31 ← ACC0:31 - temp0:31

// low
temp0:31 ← rA32:47 ×ui rB32:47
rD32:63 ← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word unsigned integer 
elements in rA and rB are multiplied. Each intermediate product is subtracted from the contents of the 
corresponding accumulator words. The differences are placed into the corresponding rD and accumulator 
words, as shown in Figure 5-67. 

Other registers altered: ACC

Figure 5-67. Even Form of Vector Half-Word Multiply (evmheumianw)
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evmheusiaaw evmheusiaaw
Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate into Words

evmheusiaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15 
temp0:63 ← EXTZ(ACC0:31) + EXTZ(temp0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63) 

//low
temp0:31 ← rA32:47 ×ui rB32:47 
temp0:63 ← EXTZ(ACC32:63) + EXTZ(temp0:31)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the accumulator, corresponding even-numbered half-word unsigned integer 
elements in rA and rB are multiplied producing a 32-bit product. Each 32-bit product is then added to the 
corresponding word in the accumulator, saturating if overflow occurs, and the result is placed in rD and 
the accumulator, as shown in Figure 5-68.

If the addition causes overflow, the overflow and summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-68. Even Form of Vector Half-Word Multiply (evmheusiaaw)
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evmheusianw evmheusianw
Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate Negative into 
Words

evmheusianw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15 
temp0:63 ← EXTZ(ACC0:31) - EXTZ(temp0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000, temp32:63) 

//low
temp0:31 ← rA32:47 ×ui rB32:47 
temp0:63 ← EXTZ(ACC32:63) - EXTZ(temp0:31)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0x0000_0000, 0x0000_0000, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the accumulator, corresponding even-numbered half-word unsigned integer 
elements in rA and rB are multiplied producing a 32-bit product. Each 32-bit product is then subtracted 
from the corresponding word in the accumulator, saturating if underflow occurs, and the result is placed in 
rD and the accumulator, as shown in Figure 5-69.

If there is an underflow from the subtraction, the SPEFSCR records overflow and summary overflow bits.

Other registers altered: SPEFSCR ACC

Figure 5-69. Even Form of Vector Half-Word Multiply (evmheusianw)
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evmhogsmfaa evmhogsmfaa
Vector Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate

evmhogsmfaa rD,rA,rB 

temp0:31 ← rA48:63 ×sf rB48:63
temp0:63 ← EXTS(temp0:31) 
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word signed fractional elements in rA and rB are multiplied. 
The intermediate product is sign-extended to 64 bits then added to the contents of the 64-bit accumulator, 
and the result is placed into rD and into the accumulator, as shown in Figure 5-70.

Note: This is a modulo sum. There is no check for overflow and no saturation is performed. An overflow 
from the 64-bit sum, if one occurs, is not recorded into the SPEFSCR. 

 

Figure 5-70. evmhogsmfaa (Odd Form)
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evmhogsmfan evmhogsmfan
Vector Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate Negative

evmhogsmfan rD,rA,rB 

temp0:31 ← rA48:63 ×sf rB48:63
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word signed fractional elements in rA and rB are multiplied. 
The intermediate product is sign-extended to 64 bits then subtracted from the contents of the 64-bit 
accumulator, and the result is placed into rD and into the accumulator, as shown in Figure 5-71.

Note: This is a modulo difference. There is no check for overflow and no saturation is performed. Any 
overflow of the 64-bit difference is not recorded into the SPEFSCR. 

 

Figure 5-71. evmhogsmfan (Odd Form)

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 1 1

SPE User

47 480 31 32 63

Intermediate product

Accumulator

rB

X

–

rD and Accumulator

rA

ssss_ssss_ssss_ssss...ssss



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-162 Freescale Semiconductor
 

evmhogsmiaa evmhogsmiaa
Vector Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer, and Accumulate

evmhogsmiaa rD,rA,rB 

temp0:31 ← rA48:63 ×si rB48:63
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word signed integer elements in rA and rB are multiplied. The 
intermediate product is sign-extended to 64 bits then added to the contents of the 64-bit accumulator, and 
the result is placed into rD and into the accumulator, as shown in Figure 5-72.

Note: This is a modulo sum. There is no check for overflow and no saturation is performed. An overflow 
from the 64-bit sum, if one occurs, is not recorded into the SPEFSCR. 

 

Figure 5-72. evmhogsmiaa (Odd Form)
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evmhogsmian evmhogsmian
Vector Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate Negative

evmhogsmian rD,rA,rB 

temp0:31 ← rA48:63 ×si rB48:63
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word signed integer elements in rA and rB are multiplied. The 
intermediate product is sign-extended to 64 bits then subtracted from the contents of the 64-bit 
accumulator, and the result is placed into rD and into the accumulator, as shown in Figure 5-73.

Note: This is a modulo difference. There is no check for overflow and no saturation is performed. Any 
overflow of the 64-bit difference is not recorded into the SPEFSCR. 

 

Figure 5-73. evmhogsmian (Odd Form)
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evmhogumiaa evmhogumiaa
Vector Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate

evmhogumiaa rD,rA,rB 

temp0:31 ← rA48:63 ×ui rB48:63
temp0:63 ← EXTZ(temp0:31)
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word unsigned integer elements in rA and rB are multiplied. 
The intermediate product is zero-extended to 64 bits then added to the contents of the 64-bit accumulator, 
and the result is placed into rD and into the accumulator, as shown in Figure 5-74.

Note: This is a modulo sum. There is no check for overflow and no saturation is performed. An overflow 
from the 64-bit sum, if one occurs, is not recorded into the SPEFSCR. 

 

Figure 5-74. evmhogumiaa (Odd Form)
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evmhogumian evmhogumian
Vector Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate Negative

evmhogumian rD,rA,rB 

temp0:31 ← rA48:63 ×ui rB48:63
temp0:63 ← EXTZ(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word unsigned integer elements in rA and rB are multiplied. 
The intermediate product is zero-extended to 64 bits then subtracted from the contents of the 64-bit 
accumulator, and the result is placed into rD and into the accumulator, as shown in Figure 5-75.

Note: This is a modulo difference. There is no check for overflow and no saturation is performed. Any 
overflow of the 64-bit difference is not recorded into the SPEFSCR. 

 

Figure 5-75. evmhogumian (Odd Form)
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evmhosmf evmhosmf
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional (to Accumulator)

evmhosmf rD,rA,rB (A = 0)
evmhosmfa rD,rA,rB (A = 1)

// high
rD0:31 ← (rA16:31 ×sf rB16:31) 

// low
rD32:63 ← (rA48:63 ×sf rB48:63) 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding odd-numbered, half-word signed fractional elements in rA and rB are multiplied. Each 
product is placed into the corresponding words of rD, as shown in Figure 5-71Figure 5-76. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 5-76. Vector Multiply Half Words, Odd, Signed, Modulo,
Fractional (to Accumulator) (evmhosmf)
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evmhosmfaaw evmhosmfaaw
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate into Words

evmhosmfaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×sf rB16:31 
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA48:63 ×sf rB48:63 
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word signed fractional 
elements in rA and rB are multiplied. The 32 bits of each intermediate product is added to the contents of 
the corresponding accumulator word and the results are placed into the corresponding rD words and into 
the accumulator, as shown in Figure 5-77.

Other registers altered: ACC

Figure 5-77. Odd Form of Vector Half-Word Multiply (evmhosmfaaw)
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evmhosmfanw evmhosmfanw
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate Negative into 
Words

evmhosmfanw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×sf rB16:31 
rD0:31 ← ACC0:31 - temp0:31

// low
temp0:31 ← rA48:63 ×sf rB48:63 
rD32:63 ← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word signed fractional 
elements in rA and rB are multiplied. The 32 bits of each intermediate product is subtracted from the 
contents of the corresponding accumulator word and the results are placed into the corresponding rD 
words and into the accumulator, as shown in Figure 5-78.

Other registers altered: ACC

Figure 5-78. Odd Form of Vector Half-Word Multiply (evmhosmfanw)
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evmhosmi evmhosmi
Vector Multiply Half Words, Odd, Signed, Modulo, Integer (to Accumulator) 

evmhosmi rD,rA,rB (A = 0)
evmhosmia rD,rA,rB (A = 1)

// high
rD0:31 ← rA16:31 ×si rB16:31 

// low
rD32:63 ← rA48:63 ×si rB48:63 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding odd-numbered half-word signed integer elements in rA and rB are multiplied. The two 
32-bit products are placed into the corresponding words of rD, as shown in Figure 5-79. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)
 

Figure 5-79. Vector Multiply Half Words, Odd, Signed, Modulo,
Integer (to Accumulator) (evmhosmi)
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evmhosmiaaw evmhosmiaaw
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into Words

evmhosmiaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×si rB16:31 
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA48:63 ×si rB48:63 
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word signed integer 
elements in rA and rB are multiplied. Each intermediate 32-bit product is added to the contents of the 
corresponding accumulator word and the results are placed into the corresponding rD words and into the 
accumulator, as shown in Figure 5-80.

Other registers altered: ACC

Figure 5-80. Odd Form of Vector Half-Word Multiply (evmhosmiaaw)
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evmhosmianw evmhosmianw
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate Negative into Words

evmhosmianw rD,rA,rB 

// high
temp0:31 ←rA16:31 ×si rB16:31 
rD0:31 ← ACC0:31 - temp0:31

// low
temp0:31 ← rA48:63 ×si rB48:63 
rD32:63 ← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word signed integer 
elements in rA and rB are multiplied. Each intermediate 32-bit product is subtracted from the contents of 
the corresponding accumulator word and the results are placed into the corresponding rD words and into 
the accumulator, as shown in Figure 5-81.

Other registers altered: ACC

Figure 5-81. Odd Form of Vector Half-Word Multiply (evmhosmianw)
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evmhossf evmhossf
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional (to Accumulator)

evmhossf rD,rA,rB (A = 0)
evmhossfa rD,rA,rB (A = 1)

// high
temp0:31 ← rA16:31 ×sf rB16:31 
if (rA16:31 = 0x8000) & (rB16:31 = 0x8000) then

rD0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
rD0:31 ← temp0:31
movh ← 0

// low
temp0:31 ← rA48:63 ×sf rB48:63 
if (rA48:63 = 0x8000) & (rB48:63 = 0x8000) then

rD32:63 ← 0x7FFF_FFFF //saturate
movl ← 1

else
rD32:63 ← temp0:31
movl ← 0

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | movh
SPEFSCRSOV ← SPEFSCRSOV | movl

The corresponding odd-numbered half-word signed fractional elements in rA and rB are multiplied. The 
32 bits of each product are placed into the corresponding words of rD, as shown in Figure 5-82. If both 
inputs are –1.0, the result saturates to the largest positive signed fraction and the overflow and summary 
overflow bits are recorded in the SPEFSCR. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: SPEFSCR ACC (If A = 1)
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Figure 5-82. Vector Multiply Half Words, Odd, Signed, Saturate,
Fractional (to Accumulator) (evmhossf)
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evmhossfaaw evmhossfaaw
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into Words

evmhossfaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×sf rB16:31 
if (rA16:31 = 0x8000) & (rB16:31 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
movh ← 0

temp0:63 ← EXTS(ACC0:31) + EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 
// low
temp0:31 ← rA48:63 ×sf rB48:63 
if (rA48:63 = 0x8000) & (rB48:63 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movl ← 1

else
movl ← 0

temp0:63 ← EXTS(ACC32:63) + EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh | movh
SPEFSCRSOV ← SPEFSCRSOV | ovl| movl

The corresponding odd-numbered half-word signed fractional elements in rA and rB are multiplied 
producing a 32-bit product. If both inputs are –1.0, the result saturates to 0x7FFF_FFFF. Each 32-bit 
product is then added to the corresponding word in the accumulator, saturating if overflow or underflow 
occurs, and the result is placed in rD and the accumulator, as shown in Figure 5-83.

If there is an overflow or underflow from either the multiply or the addition, the overflow and summary 
overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-83. Odd Form of Vector Half-Word Multiply (evmhossfaaw)
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evmhossfanw evmhossfanw
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate Negative into 
Words

evmhossfanw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×sf rB16:31 
if (rA16:31 = 0x8000) & (rB16:31 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
movh ← 0

temp0:63 ← EXTS(ACC0:31) - EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 
// low
temp0:31 ← rA48:63 ×sf rB48:63 
if (rA48:63 = 0x8000) & (rB48:63 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movl ← 1

else
movl ← 0

temp0:63 ← EXTS(ACC32:63) - EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh | movh
SPEFSCRSOV ← SPEFSCRSOV | ovl| movl

The corresponding odd-numbered half-word signed fractional elements in rA and rB are multiplied 
producing a 32-bit product. If both inputs are –1.0, the result saturates to 0x7FFF_FFFF. Each 32-bit 
product is then subtracted from the corresponding word in the accumulator, saturating if overflow or 
underflow occurs, and the result is placed in rD and the accumulator, as shown in Figure 5-84.

If there is an overflow or underflow from either the multiply or the subtraction, the overflow and summary 
overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-84. Odd Form of Vector Half-Word Multiply (evmhossfanw)
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evmhossiaaw evmhossiaaw
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate into Words

evmhossiaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×si rB16:31 
temp0:63 ← EXTS(ACC0:31) + EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA48:63 ×si rB48:63
temp0:63 ← EXTS(ACC32:63) + EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding odd-numbered half-word signed integer elements in rA and rB are multiplied 
producing a 32-bit product. Each 32-bit product is then added to the corresponding word in the 
accumulator, saturating if overflow occurs, and the result is placed in rD and the accumulator, as shown 
in Figure 5-85.

If there is an overflow or underflow from the addition, the overflow and summary overflow bits are 
recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-85. Odd Form of Vector Half-Word Multiply (evmhossiaaw)
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evmhossianw evmhossianw
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate Negative into Words

evmhossianw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×si rB16:31 
temp0:63 ← EXTS(ACC0:31) - EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA48:63 ×si rB48:63
temp0:63 ← EXTS(ACC32:63) - EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding odd-numbered half-word signed integer elements in rA and rB are multiplied, 
producing a 32-bit product. Each product is subtracted from the corresponding word in the accumulator, 
saturating if overflow occurs, and the result is placed in rD and the accumulator, as shown in Figure 5-86.

If there is an overflow or underflow from the subtraction, the overflow and summary overflow bits are 
recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-86. Odd Form of Vector Half-Word Multiply (evmhossianw)
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evmhoumi evmhoumi
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer (to Accumulator)

evmhoumi rD,rA,rB (A = 0)
evmhoumia rD,rA,rB (A = 1)

// high
rD0:31 ← rA16:31 ×ui rB16:31 

// low
rD32:63 ← rA48:63 ×ui rB48:63 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding odd-numbered half-word unsigned integer elements in rA and rB are multiplied. The 
two 32-bit products are placed into the corresponding words of rD, as shown in Figure 5-87. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 5-87. Vector Multiply Half Words, Odd, Unsigned, Modulo,
Integer (to Accumulator) (evmhoumi)
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evmhoumiaaw evmhoumiaaw
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate into Words

evmhoumiaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×ui rB16:31
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA48:63 ×ui rB48:63
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word unsigned integer 
elements in rA and rB are multiplied. Each intermediate product is added to the contents of the 
corresponding accumulator word. The sums are placed into the corresponding rD and accumulator words, 
as shown in Figure 5-88. 

Other registers altered: ACC

Figure 5-88. Odd Form of Vector Half-Word Multiply (evmhoumiaaw)
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evmhoumianw evmhoumianw
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate Negative into 
Words

evmhoumianw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15
rD0:31 ← ACC0:31 - temp0:31
/
/ low
temp0:31 ← rA32:47 ×ui rB32:47
rD32:63 ← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word unsigned integer 
elements in rA and rB are multiplied. Each intermediate product is subtracted from the contents of the 
corresponding accumulator word. The results are placed into the corresponding rD and accumulator 
words, as shown in Figure 5-89. 

Other registers altered: ACC

Figure 5-89. Odd Form of Vector Half-Word Multiply (evmhoumianw)
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evmhousiaaw evmhousiaaw
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate into Words

evmhousiaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×ui rB16:31 
temp0:63 ← EXTZ(ACC0:31) + EXTZ(temp0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63) 

//low
temp0:31 ← rA48:63 ×ui rB48:63 
temp0:63 ← EXTZ(ACC32:63) + EXTZ(temp0:31)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the accumulator, corresponding odd-numbered half-word unsigned integer 
elements in rA and rB are multiplied producing a 32-bit product. Each 32-bit product is then added to the 
corresponding word in the accumulator, saturating if overflow occurs, and the result is placed in rD and 
the accumulator, as shown in Figure 5-90.

If the addition causes overflow, the overflow and summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-90. Odd Form of Vector Half-Word Multiply (evmhousiaaw)
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evmhousianw evmhousianw
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate Negative into Words

evmhousianw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×ui rB16:31 
temp0:63 ← EXTZ(ACC0:31) - EXTZ(temp0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63) 

//low
temp0:31 ← rA48:63 ×ui rB48:63 
temp0:63 ← EXTZ(ACC32:63) - EXTZ(temp0:31)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the accumulator, corresponding odd-numbered half-word unsigned integer 
elements in rA and rB are multiplied producing a 32-bit product. Each 32-bit product is then subtracted 
from the corresponding word in the accumulator, saturating if overflow occurs, and the result is placed in 
rD and the accumulator, as shown in Figure 5-91.

If subtraction causes overflow, the overflow and summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 5-91. Odd Form of Vector Half-Word Multiply (evmhousianw)
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evmra evmra
Initialize Accumulator

evmra rD,rA

ACC0:63 ← rA0:63
rD0:63 ← rA0:63

The contents of rA are written into the accumulator and copied into rD. This is the method for initializing 
the accumulator, as shown in Figure 5-92.

Other registers altered: ACC

Figure 5-92. Initialize Accumulator (evmra)
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evmwhsmf evmwhsmf
Vector Multiply Word High Signed, Modulo, Fractional (to Accumulator)

evmwhsmf rD,rA,rB (A = 0)
evmwhsmfa rD,rA,rB (A = 1)

// high
temp0:63 ← rA0:31 ×sf rB0:31 
rD0:31 ← temp0:31

// low
temp0:63 ← rA32:63 ×sf rB32:63
rD32:63 ← temp0:31 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding word signed fractional elements in rA and rB are multiplied and bits 0–31 of the two 
products are placed into the two corresponding words of rD, as shown in Figure 5-93. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (if A =1)
 

Figure 5-93. Vector Multiply Word High Signed, Modulo,
Fractional (to Accumulator) (evmwhsmf)
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evmwhsmi evmwhsmi
Vector Multiply Word High Signed, Modulo, Integer (to Accumulator)

evmwhsmi rD,rA,rB (A = 0)
evmwhsmia rD,rA,rB (A = 1)

// high
temp0:63 ← rA0:31 ×si rB0:31
rD0:31 ← temp0:31

// low
temp0:63 ← rA32:63 ×si rB32:63
rD32:63 ← temp0:31

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding word signed integer elements in rA and rB are multiplied. Bits 0–31 of the two 64-bit 
products are placed into the two corresponding words of rD, as shown in Figure 5-94. 

If A = 1,The result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)
 

Figure 5-94. Vector Multiply Word High Signed, Modulo,
Integer (to Accumulator) (evmwhsm)

0 5 6 10 11 15 16 20 21 25 26 27 31

0 0 0 1 0 0 rD rA rB 1 0 0 0 1 A 0 1 1 0 1

SPE User

0 31 32 63

Intermediate product

rB

X

rD (and accumulator 

rA

X

if evmwhsmia)
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evmwhssf evmwhssf
Vector Multiply Word High Signed, Saturate, Fractional (to Accumulator)

evmwhssf rD,rA,rB (A = 0)
evmwhssfa rD,rA,rB (A = 1)

// high
temp0:63 ← rA0:31 ×sf rB0:31 
if (rA0:31 = 0x8000_0000) & (rB0:31 = 0x8000_0000) then

rD0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
rD0:31 ← temp0:31
movh ← 0

// low
temp0:63 ← rA32:63 ×sf rB32:63 
if (rA32:63 = 0x8000_0000) & (rB32:63 = 0x8000_0000) then

rD32:63 ← 0x7FFF_FFFF //saturate
movl ← 1

else
rD32:63 ← temp0:31
movl ← 0

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | movh
SPEFSCRSOV ← SPEFSCRSOV | movl

The corresponding word signed fractional elements in rA and rB are multiplied. Bits 0–31 of each product 
are placed into the corresponding words of rD, as shown in Figure 5-95. If both inputs are –1.0, the result 
saturates to the largest positive signed fraction and the overflow and summary overflow bits are recorded 
in the SPEFSCR. 

Other registers altered: SPEFSCR ACC (If A = 1)

0 5 6 10 11 15 16 20 21 25 26 27 31

0 0 0 1 0 0 rD rA rB 1 0 0 0 1 A 0 0 1 1 1

SPE User
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Figure 5-95. Vector Multiply Word High Signed, Saturate,
Fractional (to Accumulator) (evmwhssf) 

0 31 32 63

Intermediate product

rB

X

rD (and accumulator

rA

X

if evmwhssfa)
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evmwhumi evmwhumi
Vector Multiply Word High Unsigned, Modulo, Integer (to Accumulator)

evmwhumi rD,rA,rB (A = 0)
evmwhumia rD,rA,rB (A = 1)

// high
temp0:63 ← rA0:31 ×ui rB0:31
rD0:31 ← temp0:31

// low
temp0:63 ← rA32:63 ×ui rB32:63
rD32:63 ← temp0:31

// update accumulator
if A = 1, ACC0:63 ← rD0:63

The corresponding word unsigned integer elements in rA and rB are multiplied. Bits 0–31 of the two 
products are placed into the two corresponding words of rD, as shown in Figure 5-96. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)
 

Figure 5-96. Vector Multiply Word High Unsigned, Modulo,
Integer (to Accumulator) (evmwhumi) 

0 5 6 10 11 15 16 20 21 25 26 27 31

0 0 0 1 0 0 rD rA rB 1 0 0 0 1 A 0 1 1 0 0

SPE User

0 31 32 63

Intermediate product

rB

X

rD (and accumulator 

rA

X

if evmwhumia)
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evmwlsmiaaw evmwlsmiaaw
Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words

evmwlsmiaaw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×si rB0:31
rD0:31 ← ACC0:31 + temp32:63

// low
temp0:63 ← rA32:63 ×si rB32:63
rD32:63 ← ACC32:63 + temp32:63

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding word signed integer elements in rA and rB 
are multiplied. The least significant 32 bits of each intermediate product is added to the contents of the 
corresponding accumulator words, and the result is placed into rD and the accumulator, as shown in 
Figure 5-97.

NOTE
Care should be taken if the intermediate product cannot be represented in 32 
bits as some implementations produce an undefined final result. Status bits 
are set that indicate that such an overflow occurred.

Other registers altered: ACC

Figure 5-97. Vector Multiply Word Low Signed, Modulo, Integer and
Accumulate in Words (evmwlsmiaaw)

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 1 0 0 1

SPE User

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

++

rD and Accumulator
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evmwlsmianw evmwlsmianw
Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in Words

evmwlsmianw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×si rB0:31
rD0:31 ← ACC0:31 - temp32:63

// low
temp0:63 ← rA32:63 ×si rB32:63
rD32:63 ← ACC32:63 - temp32:63

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding word elements in rA and rB are multiplied. 
The least significant 32 bits of each intermediate product is subtracted from the contents of the 
corresponding accumulator words and the result is placed in rD and the accumulator, as shown in 
Figure 5-98. 

NOTE
Care should be taken if the intermediate product cannot be represented in 32 
bits as some implementations produce an undefined final result. Status bits 
are set that indicate that such an overflow occurred.

Other registers altered: ACC

Figure 5-98. Vector Multiply Word Low Signed, Modulo, Integer and
Accumulate Negative in Words (evmwlsmianw)

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 1 0 0 1

SPE User

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

––

rD and Accumulator
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evmwlssiaaw evmwlssiaaw
Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words

evmwlssiaaw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×si rB0:31 
temp0:63 ← EXTS(ACC0:31) + EXTS(temp32:63)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:63 ← rA32:63 ×si rB32:63 
temp0:63 ← EXTS(ACC32:63) + EXTS(temp32:63)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding word signed integer elements in rA and rB are multiplied producing a 64-bit product. 
The 32 lsbs of each product are added to the corresponding word in the ACC, saturating if overflow or 
underflow occurs; the result is placed in rD and the ACC, as shown in Figure 5-99. If there is overflow or 
underflow from the addition, overflow and summary overflow bits are recorded in the SPEFSCR.

NOTE
Care should be taken if the intermediate product cannot be represented in 32 
bits as some implementations produce an undefined final result. Status bits 
are set that indicate that such an overflow occurred.

Other registers altered: SPEFSCR ACC

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 0 0 1

SPE User
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Figure 5-99. Vector Multiply Word Low Signed, Saturate, Integer and
Accumulate in Words (evmwlssiaaw)

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

++

rD and Accumulator



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor 5-193
 

evmwlssianw evmwlssianw
Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in Words

evmwlssianw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×si rB0:31 
temp0:63 ← EXTS(ACC0:31) - EXTS(temp32:63)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:63 ← rA32:63 ×si rB32:63 
temp0:63 ← EXTS(ACC32:63) - EXTS(temp32:63)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding word signed integer elements in rA and rB are multiplied producing a 64-bit product. 
The 32 lsbs of each product are subtracted from the corresponding ACC word, saturating if overflow or 
underflow occurs, and the result is placed in rD and the ACC, as shown in Figure 5-100. If addition causes 
overflow or underflow, overflow and summary overflow SPEFSCR bits are recorded. 

NOTE
Care should be taken if the intermediate product cannot be represented in 32 
bits as some implementations produce an undefined final result. Status bits 
are set that indicate that such an overflow occurred.

Other registers altered: SPEFSCR ACC

Figure 5-100. Vector Multiply Word Low Signed, Saturate, Integer and
Accumulate Negative in Words (evmwlssianw

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 0 0 1

SPE User

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

––
rD and Accumulator
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evmwlumi evmwlumi
Vector Multiply Word Low Unsigned, Modulo, Integer

evmwlumi rD,rA,rB (A = 0)
evmwlumia rD,rA,rB (A = 1) 

// high
temp0:63 ← rA0:31 ×ui rB0:31
rD0:31 ← temp32:63

// low
temp0:63 ← rA32:63 ×ui rB32:63
rD32:63 ← temp32:63

// update accumulator
If A = 1 then ACC0:63 ← rD0:63

The corresponding word unsigned integer elements in rA and rB are multiplied. The least significant 32 
bits of each product are placed into the two corresponding words of rD, as shown in Figure 5-101. 

Note: The least significant 32 bits of the product are independent of whether the word elements in rA and 
rB are treated as signed or unsigned 32-bit integers.

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Note that evmwlumi and evmwlumia can be used for signed or unsigned integers.

Figure 5-101. Vector Multiply Word Low Unsigned, Modulo, Integer (evmwlumi)

0 5 6 10 11 15 16 20 21 25 26 27 31

0 0 0 1 0 0 rD rA rB 1 0 0 0 1 A 0 1 0 0 0

SPE User

0 31 32 63

Intermediate product

rB

X

rA

X

rD (and accumulator 
if evmwlumia)
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evmwlumiaaw evmwlumiaaw
Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words

evmwlumiaaw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×ui rB0:31
rD0:31 ← ACC0:31 + temp32:63

// low
temp0:63 ← rA32:63 ×ui rB32:63
rD32:63 ← ACC32:63 + temp32:63

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding word unsigned integer elements in rA and 
rB are multiplied. The least significant 32 bits of each product are added to the contents of the 
corresponding accumulator word and the result is placed into rD and the accumulator, as shown in 
Figure 5-102. 

NOTE
Care should be taken if the intermediate product cannot be represented in 32 
bits as some implementations produce an undefined final result. Status bits 
are set that indicate that such an overflow occurred.

Other registers altered: ACC

Figure 5-102. Vector Multiply Word Low Unsigned, Modulo, Integer and
Accumulate in Words (evmwlumiaaw)

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 1 0 0 0

SPE User

0 31 32 63

Intermediate product
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evmwlumianw evmwlumianw
Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in Words

evmwlumianw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×ui rB0:31
rD0:31 ← ACC0:31 - temp32:63

// low
temp0:63 ← rA32:63 ×ui rB32:63
rD32:63 ← ACC32:63 - temp32:63

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding word unsigned integer elements in rA and 
rB are multiplied. The least significant 32 bits of each product are subtracted from the contents of the 
corresponding accumulator word and the result is placed into rD and the ACC, as shown in Figure 5-103.

NOTE
Care should be taken if the intermediate product cannot be represented in 32 
bits as some implementations produce an undefined final result. Status bits 
are set that indicate that such an overflow occurred.

Other registers altered: ACC

Figure 5-103. Vector Multiply Word Low Unsigned, Modulo, Integer and
Accumulate Negative in Words (evmwlumianw)

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 1 0 0 0

SPE User
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evmwlusiaaw evmwlusiaaw
Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words

evmwlusiaaw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×ui rB0:31 
temp0:63 ← EXTZ(ACC0:31) + EXTZ(temp32:63)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63) 
//low
temp0:63 ← rA32:63 ×ui rB32:63 
temp0:63 ← EXTZ(ACC32:63) + EXTZ(temp32:63)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63)
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the ACC, corresponding word unsigned integer elements in rA and rB are 
multiplied, producing a 64-bit product. The 32 lsbs of each product are added to the corresponding ACC 
word, saturating if overflow occurs; the result is placed in rD and the ACC, as shown in Figure 5-104. If 
the addition causes overflow, the overflow and summary overflow bits are recorded in the SPEFSCR.

NOTE
Care should be taken if the intermediate product cannot be represented in 32 
bits as some implementations produce an undefined final result. Status bits 
are set that indicate that such an overflow occurred.

Other registers altered: SPEFSCR ACC

Figure 5-104. Vector Multiply Word Low Unsigned, Saturate, Integer and
Accumulate in Words (evmwlusiaaw)

0 5 6 10 11 15 16 20 21 31
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evmwlusianw evmwlusianw
Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in Words

evmwlusianw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×ui rB0:31 
temp0:63 ← EXTZ(ACC0:31) - EXTZ(temp32:63)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000, temp32:63) 
//low
temp0:63 ← rA32:63 ×ui rB32:63 
temp0:63 ← EXTZ(ACC32:63) - EXTZ(temp32:63)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0x0000_0000, 0x0000_0000, temp32:63)
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each ACC word element, corresponding word elements in rA and rB are multiplied producing a 64-bit 
product. The 32 lsbs of each product are subtracted from corresponding ACC words, saturating if 
underflow occurs; the result is placed in rD and the ACC, as shown in Figure 5-105. If there is an 
underflow from the subtraction, the overflow and summary overflow bits are recorded in the SPEFSCR. 

NOTE
Care should be taken if the intermediate product cannot be represented in 32 
bits as some implementations produce an undefined final result. Status bits 
are set that indicate that such an overflow occurred.

Other registers altered: SPEFSCR ACC

Figure 5-105. Vector Multiply Word Low Unsigned, Saturate, Integer and
Accumulate Negative in Words (evmwlusianw)

0 5 6 10 11 15 16 20 21 31
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evmwsmf evmwsmf
Vector Multiply Word Signed, Modulo, Fractional (to Accumulator)

evmwsmf rD,rA,rB (A = 0)
evmwsmfa rD,rA,rB (A = 1)

rD0:63 ← rA32:63 ×sf rB32:63 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding low word signed fractional elements in rA and rB are multiplied. The product is placed 
into rD, as shown in Figure 5-106.

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 5-106. Vector Multiply Word Signed, Modulo,
Fractional (to Accumulator) (evmwsmf)

0 5 6 10 11 15 16 20 21 25 26 27 31

0 0 0 1 0 0 rD rA rB 1 0 0 0 1 A 1 1 0 1 1
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evmwsmfaa evmwsmfaa
Vector Multiply Word Signed, Modulo, Fractional and Accumulate

evmwsmfaa rD,rA,rB 

temp0:63 ← rA32:63 ×sf rB32:63
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low word signed fractional elements in rA and rB are multiplied. The intermediate 
product is added to the contents of the 64-bit accumulator and the result is placed in rD and the 
accumulator, as shown in Figure 5-107.

Other registers altered: ACC

Figure 5-107. Vector Multiply Word Signed, Modulo, Fractional and
Accumulate (evmwsmfaa)
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evmwsmfan evmwsmfan
Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative

evmwsmfan rD,rA,rB 

temp0:63 ← rA32:63 ×sf rB32:63
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low word signed fractional elements in rA and rB are multiplied. The intermediate 
product is subtracted from the contents of the accumulator and the result is placed in rD and the 
accumulator, as shown in Figure 5-108.

Other registers altered: ACC

Figure 5-108. Vector Multiply Word Signed, Modulo, Fractional and
Accumulate Negative (evmwsmfan)
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evmwsmi evmwsmi
Vector Multiply Word Signed, Modulo, Integer (to Accumulator)

evmwsmi rD,rA,rB (A = 0)
evmwsmia rD,rA,rB (A = 1)

rD0:63 ← rA32:63 ×si rB32:63

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The low word signed integer elements in rA and rB are multiplied. The product is placed into rD. 

If A = 1, the result in rD is also placed into the accumulator. , as shown in Figure 5-109.

Other registers altered: ACC (If A = 1)

Figure 5-109. Vector Multiply Word Signed, Modulo,
Integer (to Accumulator) (evmwsmi)
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evmwsmiaa evmwsmiaa
Vector Multiply Word Signed, Modulo, Integer and Accumulate

evmwsmiaa rD,rA,rB 

temp0:63 ← rA32:63 ×si rB32:63
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The low word signed integer elements in rA and rB are multiplied. The intermediate product is added to 
the contents of the 64-bit accumulator and the result is placed into rD and the accumulator, as shown in 
Figure 5-110.

Other registers altered: ACC

Figure 5-110. Vector Multiply Word Signed, Modulo, Integer and
Accumulate (evmwsmiaa)
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evmwsmian evmwsmian
Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative

evmwsmian rD,rA,rB 

temp0:63 ← rA32:63 ×si rB32:63
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The low word signed integer elements in rA and rB are multiplied. The intermediate product is subtracted 
from the contents of the 64-bit accumulator and the result is placed into rD and the accumulator, as shown 
in Figure 5-111.

Other registers altered: ACC

Figure 5-111. Vector Multiply Word Signed, Modulo, Integer and
Accumulate Negative (evmwsmian)
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evmwssf evmwssf
Vector Multiply Word Signed, Saturate, Fractional (to Accumulator)

evmwssf rD,rA,rB (A = 0)
evmwssfa rD,rA,rB (A = 1)

temp0:63 ← rA32:63 ×sf rB32:63 
if (rA32:63 = 0x8000_0000) & (rB32:63 = 0x8000_0000) then

rD0:63 ← 0x7FFF_FFFF_FFFF_FFFF //saturate
mov ← 1

else
rD0:63 ← temp0:63
mov ← 0

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← 0
SPEFSCROV ← mov
SPEFSCRSOV ← SPEFSCRSOV | mov

The low word signed fractional elements in rA and rB are multiplied. The 64 bit product is placed into rD, 
as shown in Figure 5-112. If both inputs are –1.0, the result saturates to the largest positive signed fraction 
and the overflow and summary overflow bits are recorded in the SPEFSCR.

The architecture specifies that if the final result cannot be represented in 64 bits, SPEFSCR[OV] should 
be set (along with the SOV bit, if it is not already set). 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: SPEFSCR ACC (If A = 1)

Figure 5-112. Vector Multiply Word Signed, Saturate,
Fractional (to Accumulator) (evmwssf)

0 5 6 10 11 15 16 20 21 25 26 27 31

0 0 0 1 0 0 rD rA rB 1 0 0 0 1 A 1 0 0 1 1

SPE User

0 31 32 63

rD (and accumulator if evmwssfa)

rB

X

rA



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-206 Freescale Semiconductor
 

evmwssfaa evmwssfaa
Vector Multiply Word Signed, Saturate, Fractional and Accumulate

evmwssfaa rD,rA,rB 

temp0:63 ← rA32:63 ×sf rB32:63 
if (rA32:63 = 0x8000_0000) & (rB32:63 = 0x8000_0000) then

temp0:63 ← 0x7FFF_FFFF_FFFF_FFFF //saturate 
mov ← 1

else
mov ← 0

temp0:64 ← EXTS(ACC0:63) + EXTS(temp0:63)
ov ← (temp0 ⊕ temp1)
rD0:63 ← temp1:64 ) 
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← 0
SPEFSCROV ← mov
SPEFSCRSOV ← SPEFSCRSOV | ov | mov

The low word signed fractional elements in rA and rB are multiplied producing a 64-bit product. If both 
inputs are –1.0, the product saturates to the largest positive signed fraction. The 64-bit product is added to 
the ACC and the result is placed in rD and the ACC, as shown in Figure 5-113.

If there is an overflow from either the multiply or the addition, the SPEFSCR overflow and summary 
overflow bits are recorded. 

Note: There is no saturation on the addition with the accumulator.

Other registers altered: SPEFSCR ACC

Figure 5-113. Vector Multiply Word Signed, Saturate, Fractional, and
Accumulate (evmwssfaa)
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evmwssfan evmwssfan
Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative

evmwssfan rD,rA,rB 

temp0:63 ← rA32:63 ×sf rB32:63 
if (rA32:63 = 0x8000_0000) & (rB32:63 = 0x8000_0000) then

temp0:63 ← 0x7FFF_FFFF_FFFF_FFFF //saturate 
mov ← 1

else
mov ← 0

temp0:64 ← EXTS(ACC0:63) - EXTS(temp0:63)
ov ← (temp0 ⊕ temp1)
rD0:63 ← temp1:64 ) 
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← 0
SPEFSCROV ← mov
SPEFSCRSOV ← SPEFSCRSOV | ov | mov

The low word signed fractional elements in rA and rB are multiplied producing a 64-bit product. If both 
inputs are –1.0, the product saturates to the largest positive signed fraction. The 64-bit product is subtracted 
from the ACC and the result is placed in rD and the ACC, as shown in Figure 5-114.

If there is an overflow from either the multiply or the addition, the SPEFSCR overflow and summary 
overflow bits are recorded. 

Note: There is no saturation on the subtraction with the accumulator.

Other registers altered: SPEFSCR ACC

Figure 5-114. Vector Multiply Word Signed, Saturate, Fractional and
Accumulate Negative (evmwssfan)
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evmwumi evmwumi
Vector Multiply Word Unsigned, Modulo, Integer (to Accumulator)

evmwumi rD,rA,rB (A = 0)
evmwumia rD,rA,rB (A = 1)

rD0:63 ← rA32:63 ×ui rB32:63

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The low word unsigned integer elements in rA and rB are multiplied to form a 64-bit product that is placed 
into rD, as shown in Figure 5-115. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 5-115. Vector Multiply Word Unsigned, Modulo,
Integer (to Accumulator) (evmwumi)
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evmwumiaa evmwumiaa
Vector Multiply Word Unsigned, Modulo, Integer and Accumulate

evmwumiaa rD,rA,rB 

temp0:63 ← rA32:63 ×ui rB32:63
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The low word unsigned integer elements in rA and rB are multiplied. The intermediate product is added 
to the contents of the 64-bit accumulator, and the resulting value is placed into the accumulator and into 
rD, as shown in Figure 5-116.

Other registers altered: ACC

Figure 5-116. Vector Multiply Word Unsigned, Modulo, Integer and
Accumulate (evmwumiaa)
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evmwumian evmwumian
Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative

evmwumian rD,rA,rB 

temp0:63 ← rA32:63 ×ui rB32:63
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The low word unsigned integer elements in rA and rB are multiplied. The intermediate product is 
subtracted from the contents of the 64-bit accumulator, and the resulting value is placed into the 
accumulator and into rD, as shown in Figure 5-117.

Other registers altered: ACC

Figure 5-117. Vector Multiply Word Unsigned, Modulo, Integer and
Accumulate Negative (evmwumian)
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evnand evnand
Vector NAND

evnand rD,rA,rB

rD0:31 ← ¬(rA0:31 & rB0:31)// Bitwise NAND
rD32:63 ← ¬(rA32:63 & rB32:63) // Bitwise NAND

Corresponding word elements of rA and rB are bitwise NANDed. The result is placed in the 
corresponding element of rD, as shown in Figure 5-118.

Figure 5-118. Vector NAND (evnand)
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evneg evneg
Vector Negate

evneg rD,rA

rD0:31 ← NEG(rA0:31)
rD32:63 ← NEG(rA32:63)

The negative of each element of rA is placed in rD, as shown in Figure 5-119. The negative of 
0x8000_0000 (most negative number) returns 0x8000_0000. No overflow is detected.

Figure 5-119. Vector Negate (evneg)
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evnor evnor
Vector NOR

evnor rD,rA,rB

rD0:31 ← ¬(rA0:31 | rB0:31) // Bitwise NOR
rD32:63 ← ¬(rA32:63 | rB32:63) // Bitwise NOR

Each element of rA and rB is bitwise NORed. The result is placed in the corresponding element of rD, as 
shown in Figure 5-120.

Note: Use evnand or evnor for evnot.

Figure 5-120. Vector NOR (evnor)

Simplified mnemonic: evnot rD,rA performs a complement register

evnot rD,rA equivalent to evnor rD,rA,rA
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evor evor
Vector OR

evor rD,rA,rB

rD0:31 ← rA0:31 | rB0:31 //Bitwise OR
rD32:63 ← rA32:63 | rB32:63// Bitwise OR

Each element of rA and rB is bitwise ORed. The result is placed in the corresponding element of rD, as 
shown in Figure 5-121.

Figure 5-121. Vector OR (evor)

Simplified mnemonic: evmr rD,rA handles moving of the full 64-bit SPE register.
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evorc evorc
Vector OR with Complement

evorc rD,rA,rB

rD0:31 ← rA0:31 | (¬rB0:31) // Bitwise ORC
rD32:63 ← rA32:63 | (¬rB32:63) // Bitwise ORC

Each element of rA is bitwise ORed with the complement of rB. The result is placed in the corresponding 
element of rD, as shown in Figure 5-122.

Figure 5-122. Vector OR with Complement (evorc)
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evrlw evrlw
Vector Rotate Left Word

evrlw rD,rA,rB

nh ← rB27:31
nl ← rB59:63
rD0:31 ← ROTL(rA0:31, nh)
rD32:63 ← ROTL(rA32:63, nl)

Each of the high and low elements of rA is rotated left by an amount specified in rB. The result is placed 
into rD, as shown in Figure 5-123. Rotate values for each element of rA are found in bit positions 
rB[27–31] and rB[59–63].

Figure 5-123. Vector Rotate Left Word (evrlw)
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evrlwi evrlwi
Vector Rotate Left Word Immediate

evrlwi rD,rA,UIMM

n ← UIMM
rD0:31 ← ROTL(rA0:31, n)
rD32:63 ← ROTL(rA32:63, n)

Both the high and low elements of rA are rotated left by an amount specified by a 5-bit immediate value, 
as shown in Figure 5-124.

Figure 5-124. Vector Rotate Left Word Immediate (evrlwi)
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evrndw evrndw
Vector Round Word 

evrndw rD,rA

rD0:31 ← (rA0:31+0x00008000) & 0xFFFF0000 // Modulo sum
rD32:63 ← (rA32:63+0x00008000) & 0xFFFF0000 // Modulo sum

The 32-bit elements of rA are rounded into 16 bits. The result is placed into rD, as shown in Figure 5-125. 
The resulting 16 bits are placed in the most significant 16 bits of each element of rD, zeroing out the low 
order 16 bits of each element.

Figure 5-125. Vector Round Word (evrndw)
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evsel evsel
Vector Select

evsel rD,rA,rB,crS

ch ← CRcrS*4
cl ← CRcrS*4+1
if (ch = 1) then rD0:31 ← rA0:31
else rD0:31 ← rB0:31
if (cl = 1) then rD32:63 ← rA32:63
else rD32:63 ← rB32:63

If the most significant bit in the crS field of CR is set, the high-order element of rA is placed in the 
high-order element of rD; otherwise, the high-order element of rB is placed into the high-order element 
of rD. If the next most significant bit in the crS field of CR is set, the low-order element of rA is placed 
in the low-order element of rD, otherwise, the low-order element of rB is placed into the low-order 
element of rD. This is shown in Figure 5-126. 

 

Figure 5-126. Vector Select (evsel)
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evslw evslw
Vector Shift Left Word

evslw rD,rA,rB

nh ← rB26:31
nl ← rB58:63
rD0:31 ← SL(rA0:31, nh)
rD32:63 ← SL(rA32:63, nl)

Each of the high and low elements of rA are shifted left by an amount specified in rB. The result is placed 
into rD, as shown in Figure 5-127. The separate shift amounts for each element are specified by 6 bits in 
rB that lie in bit positions 26–31 and 58–63.

Shift amounts from 32 to 63 give a zero result.
 

Figure 5-127. Vector Shift Left Word (evslw)
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evslwi evslwi
Vector Shift Left Word Immediate

evslwi rD,rA,UIMM

n ← UIMM
rD0:31 ← SL(rA0:31, n)
rD32:63 ← SL(rA32:63, n)

Both high and low elements of rA are shifted left by the 5-bit UIMM value and the results are placed in 
rD, as shown in Figure 5-128. 

 

Figure 5-128. Vector Shift Left Word Immediate (evslwi)
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evsplatfi evsplatfi
Vector Splat Fractional Immediate

evsplatfi rD,SIMM

rD0:31 ← SIMM || 270
rD32:63 ← SIMM || 270

The 5-bit immediate value is padded with trailing zeros and placed in both elements of rD, as shown in 
Figure 5-129. The SIMM ends up in bit positions rD[0–4] and rD[32–36]. 

 

Figure 5-129. Vector Splat Fractional Immediate (evsplatfi)
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evsplati evsplati
Vector Splat Immediate

evsplati rD,SIMM

rD0:31 ← EXTS(SIMM)
rD32:63 ← EXTS(SIMM)

The 5-bit immediate value is sign extended and placed in both elements of rD, as shown in Figure 5-130.
 

Figure 5-130. evsplati Sign Extend 
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evsrwis evsrwis
Vector Shift Right Word Immediate Signed

evsrwis rD,rA,UIMM

n ← UIMM
rD0:31 ← EXTS(rA0:31-n)
rD32:63 ← EXTS(rA32:63-n)

Both high and low elements of rA are shifted right by the 5-bit UIMM value, as shown in Figure 5-131. 
Bits in the most significant positions vacated by the shift are filled with a copy of the sign bit.

 

Figure 5-131. Vector Shift Right Word Immediate Signed (evsrwis)
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evsrwiu evsrwiu
Vector Shift Right Word Immediate Unsigned

evsrwiu rD,rA,UIMM

n ← UIMM
rD0:31 ← EXTZ(rA0:31-n)
rD32:63 ← EXTZ(rA32:63-n)

Both high and low elements of rA are shifted right by the 5-bit UIMM value; 0 bits are shifted in to the 
most significant position, as shown in Figure 5-132. Bits in the most significant positions vacated by the 
shift are filled with a zero bit.

 

Figure 5-132. Vector Shift Right Word Immediate Unsigned (evsrwiu)
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evsrws evsrws
Vector Shift Right Word Signed

evsrws rD,rA,rB

nh ← rB26:31
nl ← rB58:63
rD0:31 ← EXTS(rA0:31-nh)
rD32:63 ← EXTS(rA32:63-nl)

Both the high and low elements of rA are shifted right by an amount specified in rB. The result is placed 
into rD, as shown in Figure 5-133. The separate shift amounts for each element are specified by 6 bits in 
rB that lie in bit positions 26–31 and 58–63. The sign bits are shifted in to the most significant position.

Shift amounts from 32 to 63 give a result of 32 sign bits.
 

Figure 5-133. Vector Shift Right Word Signed (evsrws)
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evsrwu evsrwu
Vector Shift Right Word Unsigned

evsrwu rD,rA,rB

nh ← rB26:31
nl ← rB58:63
rD0:31 ← EXTZ(rA0:31-nh)
rD32:63 ← EXTZ(rA32:63-nl)

Both the high and low elements of rA are shifted right by an amount specified in rB. The result is placed 
into rD, as shown in Figure 5-134. The separate shift amounts for each element are specified by 6 bits in 
rB that lie in bit positions 26–31 and 58–63. Zero bits are shifted in to the most significant position. 

Shift amounts from 32 to 63 give a zero result.
 

Figure 5-134. Vector Shift Right Word Unsigned (evsrwu)

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 0 0 0

SPE User

0 31 32 63

rA

rB

rD

nh nl

0 31 32 6326 58

low word shifted by 
value specified in nl

high word shifted by 
value specified in nh

5725



Instruction Set

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

5-228 Freescale Semiconductor
 

evstdd evstdd
Vector Store Double of Double

evstdd rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
MEM(EA,8) ← RS0:63

The contents of rS are stored as a double word in storage addressed by EA, as shown in Figure 5-135.

Figure 5-135 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-135. evstdd Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evstddx evstddx
Vector Store Double of Double Indexed

evstddx rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,8) ← RS0:63

The contents of rS are stored as a double word in storage addressed by EA.

Figure 5-136 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-136. evstddx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evstdh evstdh
Vector Store Double of Four Half Words

evstdh rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
MEM(EA,2) ← RS0:15
MEM(EA+2,2) ← RS16:31
MEM(EA+4,2) ← RS32:47
MEM(EA+6,2) ← RS48:63

The contents of rS are stored as four half words in storage addressed by EA.

Figure 5-137 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-137. evstdh Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evstdhx evstdhx
Vector Store Double of Four Half Words Indexed

evstdhx rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,2) ← RS0:15
MEM(EA+2,2) ← RS16:31
MEM(EA+4,2) ← RS32:47
MEM(EA+6,2) ← RS48:63

The contents of rS are stored as four half words in storage addressed by EA.

Figure 5-138 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-138. evstdhx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evstdw evstdw
Vector Store Double of Two Words

evstdw rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
MEM(EA,4) ← RS0:31
MEM(EA+4,4) ← RS32:63

The contents of rS are stored as two words in storage addressed by EA.

Figure 5-139 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-139. evstdw Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evstdwx evstdwx
Vector Store Double of Two Words Indexed

evstdwx rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,4) ← RS0:31
MEM(EA+4,4) ← RS32:63

The contents of rS are stored as two words in storage addressed by EA.

Figure 5-140 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-140. evstdwx Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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evstwhe evstwhe
Vector Store Word of Two Half Words from Even

evstwhe rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
MEM(EA,2) ← RS0:15
MEM(EA+2,2) ← RS32:47

The even half words from each element of rS are stored as two half words in storage addressed by EA.

Figure 5-141 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-141. evstwhe Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evstwhex evstwhex
Vector Store Word of Two Half Words from Even Indexed

evstwhex rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,2) ← RS0:15
MEM(EA+2,2) ← RS32:47

The even half words from each element of rS are stored as two half words in storage addressed by EA.

Figure 5-142 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-142. evstwhex Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evstwho evstwho
Vector Store Word of Two Half Words from Odd

evstwho rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
MEM(EA,2) ← RS16:31
MEM(EA+2,2) ← RS48:63

The odd half words from each element of rS are stored as two half words in storage addressed by EA, as 
shown in Figure 5-143.

Figure 5-143. evstwho Results in Big- and Little-Endian Modes
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evstwhox evstwhox
Vector Store Word of Two Half Words from Odd Indexed

evstwhox rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,2) ← RS16:31
MEM(EA+2,2) ← RS48:63

The odd half words from each element of rS are stored as two half words in storage addressed by EA.

Figure 5-144 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-144. evstwhox Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evstwwe evstwwe
Vector Store Word of Word from Even

evstwwe rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
MEM(EA,4) ← RS0:31

The even word of rS is stored in storage addressed by EA.

Figure 5-145 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-145. evstwwe Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evstwwex evstwwex
Vector Store Word of Word from Even Indexed

evstwwex rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,4) ← RS0:31

The even word of rS is stored in storage addressed by EA.

Figure 5-146 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-146. evstwwex Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evstwwo evstwwo
Vector Store Word of Word from Odd

evstwwo rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
MEM(EA,4) ← rS32:63

The odd word of rS is stored in storage addressed by EA.

Figure 5-147 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-147. evstwwo Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evstwwox evstwwox
Vector Store Word of Word from Odd Indexed

evstwwox rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,4) ← rS32:63

The odd word of rS is stored in storage addressed by EA.

Figure 5-148 shows how bytes are stored in memory as determined by the endian mode.

Figure 5-148. evstwwox Results in Big- and Little-Endian Modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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evsubfsmiaaw evsubfsmiaaw
Vector Subtract Signed, Modulo, Integer to Accumulator Word

evsubfsmiaaw rD,rA

// high
rD0:31 ← ACC0:31 - rA0:31

// low
rD32:63 ← ACC32:63 - rA32:63

// update accumulator
ACC0:63 ← rD0:63

Each word element in rA is subtracted from the corresponding element in the accumulator and the 
difference is placed into the corresponding rD word and into the accumulator, as shown in Figure 5-149.

Other registers altered: ACC

Figure 5-149. Vector Subtract Signed, Modulo, Integer to
Accumulator Word (evsubfsmiaaw)
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evsubfssiaaw evsubfssiaaw
Vector Subtract Signed, Saturate, Integer to Accumulator Word

evsubfssiaaw rD,rA

// high
temp0:63 ← EXTS(ACC0:31) - EXTS(rA0:31)
ovh ← temp31 ⊕ temp32
rD0:31 ← SATURATE(ovh, temp31, 0x80000000, 0x7fffffff, temp32:63)

// low
temp0:63 ← EXTS(ACC32:63) - EXTS(rA32:63)
ovl ← temp31 ⊕ temp32
rD32:63 ← SATURATE(ovl, temp31, 0x80000000, 0x7fffffff, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

Each signed integer word element in rA is sign-extended and subtracted from the corresponding 
sign-extended element in the accumulator, as shown in Figure 5-150, saturating if overflow occurs, and 
the results are placed in rD and the accumulator. Any overflow is recorded in the SPEFSCR overflow and 
summary overflow bits.

Other registers altered: SPEFSCR ACC

Figure 5-150. Vector Subtract Signed, Saturate, Integer to
Accumulator Word (evsubfssiaaw)
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evsubfumiaaw evsubfumiaaw
Vector Subtract Unsigned, Modulo, Integer to Accumulator Word

evsubfumiaaw rD,rA

// high
rD0:31 ← ACC0:31 - rA0:31

// low
rD32:63 ← ACC32:63 - rA32:63

// update accumulator
ACC0:63 ← rD0:63

Each unsigned integer word element in rA is subtracted from the corresponding element in the 
accumulator and the results are placed in rD and into the accumulator, as shown in Figure 5-151.

Other registers altered: ACC

Figure 5-151. Vector Subtract Unsigned, Modulo, Integer to
Accumulator Word (evsubfumiaaw)
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evsubfusiaaw evsubfusiaaw
Vector Subtract Unsigned, Saturate, Integer to Accumulator Word

evsubfusiaaw rD,rA

// high
temp0:63 ← EXTZ(ACC0:31) - EXTZ(rA0:31)
ovh ← temp31 
rD0:31 ← SATURATE(ovh, temp31, 0x00000000, 0x00000000, temp32:63)

// low
temp0:63 ← EXTS(ACC32:63) - EXTS(rA32:63)
ovl ← temp31 
rD32:63 ← SATURATE(ovl, temp31, 0x00000000, 0x00000000, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

Each unsigned integer word element in rA is zero-extended and subtracted from the corresponding 
zero-extended element in the accumulator, , as shown in Figure 5-152, saturating if underflow occurs, and 
the results are placed in rD and the accumulator. Any underflow is recorded in the SPEFSCR overflow 
and summary overflow bits.

Other registers altered: SPEFSCR ACC

Figure 5-152. Vector Subtract Unsigned, Saturate, Integer to
Accumulator Word (evsubfusiaaw)
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evsubfw evsubfw
Vector Subtract from Word

evsubfw rD,rA,rB

rD0:31 ← rB0:31 - rA0:31 // Modulo difference
rD32:63 ← rB32:63 - rA32:63 // Modulo difference

Each signed integer element of rA is subtracted from the corresponding element of rB and the results are 
placed into rD, as shown in Figure 5-153. 

Figure 5-153. Vector Subtract from Word (evsubfw)
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evsubifw evsubifw 
Vector Subtract Immediate from Word

evsubifw rD,UIMM,rB

rD0:31 ← rB0:31 - EXTZ(UIMM) // Modulo difference
rD32:63 ← rB32:63 - EXTZ(UIMM)// Modulo difference

UIMM is zero-extended and subtracted from both the high and low elements of rB. Note that the same 
value is subtracted from both elements of the register, as shown in Figure 5-154. UIMM is 5 bits.

Figure 5-154. Vector Subtract Immediate from Word (evsubifw)
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evxor evxor
Vector XOR

evxor rD,rA,rB

rD0:31 ← rA0:31 ⊕ rB0:31 // Bitwise XOR
rD32:63 ← rA32:63 ⊕ rB32:63// Bitwise XOR

Each element of rA and rB is exclusive-ORed. The results are placed in rD, as shown in Figure 5-155.

Figure 5-155. Vector XOR (evxor)
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Appendix A  
Embedded Floating-Point Results Summary
Table A-1 through Table A-8 summarize the results of various types of embedded floating-point 
operations on various combinations of input operands. Flag settings are performed on appropriate element 
flags. For all the tables the following annotation and general rules apply:

• * denotes that this status flag is set based on the results of the calculation.

• _Calc_ denotes that the result is updated with the results of the computation.

• max denotes the maximum normalized number with the sign set to the computation [sign(operand 
A) XOR sign(operand B)].

• amax denotes the maximum normalized number with the sign set to the sign of Operand A.

• bmax denotes the maximum normalized number with the sign set to the sign of Operand B.

• pmax denotes the maximum normalized positive number. The encoding for single-precision is: 
0x7F7FFFFF. The encoding for double-precision is: 0x7FEFFFFF_FFFFFFFF.

• nmax denotes the maximum normalized negative number. The encoding for single-precision is: 
0xFF7FFFFF. The encoding for double-precision is: 0xFFEFFFFF_FFFFFFFF.

• pmin denotes the minimum normalized positive number. The encoding for single-precision is: 
0x00800000. The encoding for double-precision is: 0x00100000_00000000.

• nmin denotes the minimum normalized negative number. The encoding for single-precision is: 
0x80800000. The encoding for double-precision is: 0x80100000_00000000.

• Calculations that overflow or underflow saturate. Overflow for operations that have a floating-point 
result force the result to max. Underflow for operations that have a floating-point result force the 
result to zero. Overflow for operations that have a signed integer result force the result to 
0x7FFFFFFF (positive) or 0x80000000 (negative). Overflow for operations that have an unsigned 
integer result force the result to 0xFFFFFFFF (positive) or 0x00000000 (negative).

• 1 (superscript) denotes that the sign of the result is positive when the sign of Operand A and the 
sign of Operand B are different, for all rounding modes except round to minus infinity, where the 
sign of the result is then negative.

• 2 (superscript) denotes that the sign of the result is positive when the sign of Operand A and the 
sign of Operand B are the same, for all rounding modes except round to minus infinity, where the 
sign of the result is then negative.

• 3 (superscript) denotes that the sign for any multiply or divide is always the result of the operation 
[sign(Operand A) XOR sign(Operand B)].

• 4 (superscript) denotes that if an overflow is detected, the result may be saturated.

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX

Add

Add ∞ ∞ amax 1 0 0 0 0

Add ∞ NaN amax 1 0 0 0 0
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Add ∞ denorm amax 1 0 0 0 0

Add ∞ zero amax 1 0 0 0 0

Add ∞ Norm amax 1 0 0 0 0

Add NaN ∞ amax 1 0 0 0 0

Add NaN NaN amax 1 0 0 0 0

Add NaN denorm amax 1 0 0 0 0

Add NaN zero amax 1 0 0 0 0

Add NaN norm amax 1 0 0 0 0

Add denorm ∞ bmax 1 0 0 0 0

Add denorm NaN bmax 1 0 0 0 0

Add denorm denorm zero1 1 0 0 0 0

Add denorm zero zero1 1 0 0 0 0

Add denorm norm operand_b4 1 0 0 0 0

Add zero ∞ bmax 1 0 0 0 0

Add zero NaN bmax 1 0 0 0 0

Add zero denorm zero1 1 0 0 0 0

Add zero zero zero1 0 0 0 0 0

Add zero norm operand_b4 0 0 0 0 0

Add norm ∞ bmax 1 0 0 0 0

Add norm NaN bmax 1 0 0 0 0

Add norm denorm operand_a4 1 0 0 0 0

Add norm zero operand_a4 0 0 0 0 0

Add norm norm _Calc_ 0 * * 0 *

Subtract

Sub ∞ ∞ amax 1 0 0 0 0

Sub ∞ NaN amax 1 0 0 0 0

Sub ∞ denorm amax 1 0 0 0 0

Sub ∞ zero amax 1 0 0 0 0

Sub ∞ Norm amax 1 0 0 0 0

Sub NaN ∞ amax 1 0 0 0 0

Sub NaN NaN amax 1 0 0 0 0

Sub NaN denorm amax 1 0 0 0 0

Sub NaN zero amax 1 0 0 0 0

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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Sub NaN norm amax 1 0 0 0 0

Sub denorm ∞ -bmax 1 0 0 0 0

Sub denorm NaN -bmax 1 0 0 0 0

Sub denorm denorm zero2 1 0 0 0 0

Sub denorm zero zero2 1 0 0 0 0

Sub denorm norm -operand_b4 1 0 0 0 0

Sub zero ∞ -bmax 1 0 0 0 0

Sub zero NaN -bmax 1 0 0 0 0

Sub zero denorm zero2 1 0 0 0 0

Sub zero zero zero2 0 0 0 0 0

Sub zero norm -operand_b4 0 0 0 0 0

Sub norm ∞ -bmax 1 0 0 0 0

Sub norm NaN -bmax 1 0 0 0 0

Sub norm denorm operand_a4 1 0 0 0 0

Sub norm zero operand_a4 0 0 0 0 0

Sub norm norm _Calc_ 0 * * 0 *

Multiply3

Mul ∞ ∞ max 1 0 0 0 0

Mul ∞ NaN max 1 0 0 0 0

Mul ∞ denorm zero 1 0 0 0 0

Mul ∞ zero zero 1 0 0 0 0

Mul ∞ Norm max 1 0 0 0 0

Mul NaN ∞ max 1 0 0 0 0

Mul NaN NaN max 1 0 0 0 0

Mul NaN denorm zero 1 0 0 0 0

Mul NaN zero zero 1 0 0 0 0

Mul NaN norm max 1 0 0 0 0

Mul denorm ∞ zero 1 0 0 0 0

Mul denorm NaN zero 1 0 0 0 0

Mul denorm denorm zero 1 0 0 0 0

Mul denorm zero zero 1 0 0 0 0

Mul denorm norm zero 1 0 0 0 0

Mul zero ∞ zero 1 0 0 0 0

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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Mul zero NaN zero 1 0 0 0 0

Mul zero denorm zero 1 0 0 0 0

Mul zero zero zero 0 0 0 0 0

Mul zero norm zero 0 0 0 0 0

Mul norm ∞ max 1 0 0 0 0

Mul norm NaN max 1 0 0 0 0

Mul norm denorm zero 1 0 0 0 0

Mul norm zero zero 0 0 0 0 0

Mul norm norm _Calc_ 0 * * 0 *

Divide3

Div ∞ ∞ zero 1 0 0 0 0

Div ∞ NaN zero 1 0 0 0 0

Div ∞ denorm max 1 0 0 0 0

Div ∞ zero max 1 0 0 0 0

Div ∞ Norm max 1 0 0 0 0

Div NaN ∞ zero 1 0 0 0 0

Div NaN NaN zero 1 0 0 0 0

Div NaN denorm max 1 0 0 0 0

Div NaN zero max 1 0 0 0 0

Div NaN norm max 1 0 0 0 0

Div denorm ∞ zero 1 0 0 0 0

Div denorm NaN zero 1 0 0 0 0

Div denorm denorm max 1 0 0 0 0

Div denorm zero max 1 0 0 0 0

Div denorm norm zero 1 0 0 0 0

Div zero ∞ zero 1 0 0 0 0

Div zero NaN zero 1 0 0 0 0

Div zero denorm max 1 0 0 0 0

Div zero zero max 1 0 0 0 0

Div zero norm zero 0 0 0 0 0

Div norm ∞ zero 1 0 0 0 0

Div norm NaN zero 1 0 0 0 0

Div norm denorm max 1 0 0 0 0

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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Div norm zero max 0 0 0 1 0

Div norm norm _Calc_ 0 * * 0 *

Table A-2. Embedded Floating-Point Results Summary—Single Convert from Double

Operand B efscfd result FINV FOVF FUNF FDBZ FINX

+∞ pmax 1 0 0 0 0

-∞ nmax 1 0 0 0 0

+NaN pmax 1 0 0 0 0

-NaN nmax 1 0 0 0 0

+denorm +zero 1 0 0 0 0

-denorm -zero 1 0 0 0 0

+zero +zero 0 0 0 0 0

-zero -zero 0 0 0 0 0

norm _Calc_ 0 * * 0 *

Table A-3. Embedded Floating-Point Results Summary—Double Convert from Single

Operand B efdcfs result FINV FOVF FUNF FDBZ FINX

+∞ pmax 1 0 0 0 0

-∞ nmax 1 0 0 0 0

+NaN pmax 1 0 0 0 0

-NaN nmax 1 0 0 0 0

+denorm +zero 1 0 0 0 0

-denorm -zero 1 0 0 0 0

+zero +zero 0 0 0 0 0

-zero -zero 0 0 0 0 0

norm _Calc_ 0 0 0 0 0

Table A-1. Embedded Floating-Point Results Summary—Add, Sub, Mul, Div (continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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Table A-4. Embedded Floating-Point Results Summary—Convert to Unsigned

Operand B Integer Result:ctui[d][z] Fractional Result: ctuf FINV FOVF FUNF FDBZ FINX

+∞ 0xFFFF_FFFF 
0xFFFF_FFFF_FFFF_FFFF

0x7FFF_FFFF 1 0 0 0 0

-∞ 0 0 1 0 0 0 0

+NaN 0 0 1 0 0 0 0

-NaN 0 0 1 0 0 0 0

denorm 0 0 1 0 0 0 0

zero 0 0 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

-norm _Calc_ _Calc_ * 0 0 0 *

Table A-5. Embedded Floating-Point Results Summary—Convert to Signed

Operand B
Integer Result

ctsi[d][z]
Fractional Result

ctsf
FINV FOVF FUNF FDBZ FINX

+∞ 0x7FFF_FFFF
0x7FFF_FFFF_FFFF_FFFF

0x7FFF_FFFF 1 0 0 0 0

-∞ 0x8000_0000
0x8000_0000_0000_0000

0x8000_0000 1 0 0 0 0

+NaN 0 0 1 0 0 0 0

-NaN 0 0 1 0 0 0 0

denorm 0 0 1 0 0 0 0

zero 0 0 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

-norm _Calc_ _Calc_ * 0 0 0 *

Table A-6. Results Summary—Convert from Unsigned

Operand B Integer Source: cfui Fractional Source: cfuf FINV FOVF FUNF FDBZ FINX

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *
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Table A-7. Embedded Floating-Point Results Summary—Convert from Signed

Operand B Integer Source: cfsi Fractional Source: cfsf FINV FOVF FUNF FDBZ FINX

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *

Table A-8. Embedded Floating-Point Results Summary—*abs, *nabs, *neg

Operand A *abs *nabs *neg FINV FOVF FUNF FDBZ FINX

+∞ pmax | +∞ nmax | -∞ -amax | -∞ 1 0 0 0 0

-∞ pmax | +∞ nmax | -∞ -amax | +∞ 1 0 0 0 0

+NaN pmax | NaN nmax | -NaN -amax | -NaN 1 0 0 0 0

-NaN pmax | NaN nmax | -NaN -amax | +NaN 1 0 0 0 0

+denorm +zero | +denorm -zero | -denorm -zero | -denorm 1 0 0 0 0

-denorm +zero | +denorm -zero | -denorm +zero | +denorm 1 0 0 0 0

+zero +zero -zero -zero 0 0 0 0 0

-zero +zero -zero +zero 0 0 0 0 0

+norm +norm -norm -norm 0 0 0 0 0

-norm +norm -norm +norm 0 0 0 0 0
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Appendix B
SPE and Embedded Floating-Point Opcode 
Listings
This appendix lists SPE and embedded floating-point instructions as follows:

• Table B-1 lists opcodes alphabetically by mnemonic. Simplified mnemonics for SPE and 
embedded floating-point instructions are listed in this table with their standard instruction 
equivalents.

• Table B-2 lists opcodes in numerical order, showing both the decimal and the hexadecimal value 
for the primary opcodes. 

• Table B-3 lists opcodes by form, showing the opcodes in binary. 

B.1 Instructions (Binary) by Mnemonic
Table B-1 lists instructions by mnemonic. 

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

brinc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

efdabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 0 EFX efdabs

efdadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 0 EFX efdadd

efdcfs 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

efdcfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 1 EFX efdcfsf

efdcfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 1 EFX efdcfsi

efdcfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 0 EFX efdcfuf

efdcfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 0 EFX efdcfui

efdcmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 1 0 EFX efdcmpeq

efdcmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 0 EFX efdcmpgt

efdcmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 1 EFX efdcmplt

efdctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 1 EFX efdctsf

efdctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 1 EFX efdctsi

efdctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 1 0 EFX efdctsiz
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efdctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 0 EFX efdctuf

efdctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 0 EFX efdctui

efdctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 0 0 EFX efdctuiz

efddiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 1 EFX efddiv

efdmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 0 EFX efdmul

efdnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 1 EFX efdnabs

efdneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 1 0 EFX efdneg

efdsub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 1 EFX efdsub

efdtsteq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 1 0 EFX efdtsteq

efdtstgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 0 EFX efdtstgt

efdtstlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 1 EFX efdtstlt

efsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfd 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf

efscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui

efscmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpeq

efscmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpgt

efscmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt

efsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz

efsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv

efsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic



SPE and Embedded Floating-Point Opcode Listings

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor B-3
 

efststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt

efststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

evabs 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 0 0 0 1 0 0 rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evaddsmiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evaddsmiaaw

evaddssiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssiaaw

evaddumiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddumiaaw

evaddusiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddusiaaw

evaddw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand

evandc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc

evcmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpeq

evcmpgts 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgts

evcmpgtu 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgtu

evcmplts 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplts

evcmpltu 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmpltu

evcntlsw 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlzw 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 0 0 0 1 0 0 rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 0 0 0 1 0 0 rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu

eveqv 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf

evfscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi

evfscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmpeq

evfscmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmpgt

evfscmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmplt

evfsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic
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evfsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi

evfsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz

evfsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctuiz

evfsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnabs

evfsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

evfststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfststeq

evfststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

evldd 0 0 0 1 0 0 rD rA UIMM1 0 1 1 0 0 0 0 0 0 0 1 EVX evldd

evlddx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 0 0 0 1 0 0 rD rA UIMM 1 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

evldhx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 0 0 0 1 0 0 rD rA UIMM 1 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhesplat 0 0 0 1 0 0 rD rA UIMM2 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhesplat

evlhhesplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhesplatx

evlhhossplat 0 0 0 1 0 0 rD rA UIMM 2 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhossplat

evlhhossplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhossplatx

evlhhousplat 0 0 0 1 0 0 rD rA UIMM 2 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhousplat

evlhhousplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhousplatx

evlwhe 0 0 0 1 0 0 rD rA UIMM3 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

evlwhex 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhosx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhosx

evlwhou 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhoux 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhoux

evlwhsplat 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhsplat

evlwhsplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhsplatx

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic
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evlwwsplat 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwsplat

evlwwsplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwsplatx

evmergehi 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmergehi

evmergehilo 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmergehilo

evmergelo 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmergelo

evmergelohi 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmergelohi

evmhegsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmhegsmfaa

evmhegsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmhegsmfan

evmhegsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmhegsmiaa

evmhegsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmhegsmian

evmhegumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmhegumiaa

evmhegumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmhegumian

evmhesmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhesmf

evmhesmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhesmfa

evmhesmfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhesmfaaw

evmhesmfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhesmfanw

evmhesmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhesmi

evmhesmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhesmia

evmhesmiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhesmiaaw

evmhesmianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhesmianw

evmhessf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhessf

evmhessfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhessfa

evmhessfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhessfaaw

evmhessfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhessfanw

evmhessiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhessiaaw

evmhessianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhessianw

evmheumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheumi

evmheumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheumia

evmheumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheumiaaw

evmheumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheumianw

evmheusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheusiaaw

evmheusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheusianw

evmhogsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhogsmfaa

Table B-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic
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evmhogsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhogsmfan

evmhogsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhogsmiaa

evmhogsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhogsmian

evmhogumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhogumiaa

evmhogumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhogumian

evmhosmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhosmf

evmhosmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhosmfa

evmhosmfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhosmfaaw

evmhosmfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhosmfanw

evmhosmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhosmi

evmhosmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhosmia

evmhosmiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhosmiaaw

evmhosmianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhosmianw

evmhossf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhossf

evmhossfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhossfa

evmhossfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhossfaaw

evmhossfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhossfanw

evmhossiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhossiaaw

evmhossianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhossianw

evmhoumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhoumi

evmhoumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhoumia

evmhoumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhoumiaaw

evmhoumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhoumianw

evmhousiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhousiaaw

evmhousianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhousianw

evmr evmr rD,rA equivalent to evor rD,rA,rA evmr

evmra 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhsmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhsmf

evmwhsmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhsmfa

evmwhsmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhsmi

evmwhsmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhsmia

evmwhssf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhssf

evmwhssfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhssfa
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evmwhumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhumi

evmwhumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhumia

evmwhusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhusiaaw

evmwhusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhusianw

evmwlumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlumi

evmwlumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlumia

evmwlumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlumiaaw

evmwlumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlumianw

evmwlusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlusiaaw

evmwlusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlusianw

evmwsmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsmf

evmwsmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsmfa

evmwsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsmfaa

evmwsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsmfan

evmwsmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsmi

evmwsmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsmia

evmwsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsmiaa

evmwsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsmian

evmwssf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwssfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssfa

evmwssfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssfaa

evmwssfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssfan

evmwumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwumi

evmwumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwumia

evmwumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwumiaa

evmwumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwumian

evnand 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evnot evnot rD,rA equivalent to evnor rD,rA,rA evnot

evor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw
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evrlwi 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi

evrndw 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

evsel 0 0 0 1 0 0 rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatfi 0 0 0 1 0 0 rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 0 0 0 1 0 0 rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis

evsrwiu 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 0 0 0 1 0 0 rD rA UIMM 1 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

evstdh 0 0 0 1 0 0 rS rA UIMM 1 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 0 0 0 1 0 0 rS rA UIMM 1 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 0 0 0 1 0 0 rS rA UIMM 3 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe

evstwhex 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhex

evstwho 0 0 0 1 0 0 rS rA UIMM 3 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwhox 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwhox

evstwwe 0 0 0 1 0 0 rS rA UIMM 3 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe

evstwwex 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwex

evstwwo 0 0 0 1 0 0 rS rA UIMM 3 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstwwox 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwox

evsubfsmiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfsmiaaw

evsubfssiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfssiaaw

evsubfumiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfumiaaw

evsubfusiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfusiaaw

evsubfw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubifw 0 0 0 1 0 0 rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubifw

evsubiw evsubiw rD,rB,UIMM equivalent to evsubifw rD,UIMM,rB evsubiw
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B.2 Instructions (Decimal and Hexadecimal) by Opcode
Table B-2 lists instructions by opcode. 

evsubw evsubw rD,rB,rA equivalent to evsubfw rD,rA,rB evsubw

evxor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

1 d = UIMM * 8
2 d = UIMM * 2
3 d = UIMM * 4

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

brinc 04 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

efsabs 04 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 04 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfsf 04 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 04 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 04 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf

efscfui 04 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui

efscmpeq 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpeq

efscmpgt 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpgt

efscmplt 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt

efsctsf 04 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 04 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 04 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz

efsctuf 04 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 04 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 04 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 04 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv

efsmul 04 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 04 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 04 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 04 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

efststgt 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt

efststlt 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

Table B-1. Instructions (Binary) by Mnemonic
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evabs 04 rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 04 rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evaddsmiaaw 04 rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evaddsmiaaw

evaddssiaaw 04 rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssiaaw

evaddumiaaw 04 rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddumiaaw

evaddusiaaw 04 rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddusiaaw

evaddw 04 rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 04 rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand

evandc 04 rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc

evcmpeq 04 crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpeq

evcmpgts 04 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgts

evcmpgtu 04 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgtu

evcmplts 04 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplts

evcmpltu 04 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmpltu

evcntlsw 04 rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlzw 04 rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 04 rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 04 rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu

eveqv 04 rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 04 rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 04 rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 04 rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 04 rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 04 rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf

evfscfsi 04 rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi

evfscfuf 04 rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 04 rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscmpeq 04 crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmpeq

evfscmpgt 04 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmpgt

evfscmplt 04 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmplt

evfsctsf 04 rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf

evfsctsi 04 rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi

evfsctsiz 04 rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz
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evfsctuf 04 rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 04 rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctuiz 04 rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctuiz

evfsdiv 04 rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 04 rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnabs 04 rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnabs

evfsneg 04 rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 04 rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

evfststeq 04 crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfststeq

evfststgt 04 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 04 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

efscfd 04 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efdcfs 04 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

evldd 04 rD rA UIMM1 0 1 1 0 0 0 0 0 0 0 1 EVX evldd

evlddx 04 rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 04 rD rA UIMM 1 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

evldhx 04 rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 04 rD rA UIMM 1 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 04 rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhesplat 04 rD rA UIMM2 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhesplat

evlhhesplatx 04 rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhesplatx

evlhhossplat 04 rD rA UIMM 2 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhossplat

evlhhossplatx 04 rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhossplatx

evlhhousplat 04 rD rA UIMM 2 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhousplat

evlhhousplatx 04 rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhousplatx

evlwhe 04 rD rA UIMM3 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

evlwhex 04 rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 04 rD rA UIMM 3 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhosx 04 rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhosx

evlwhou 04 rD rA UIMM 3 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhoux 04 rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhoux

evlwhsplat 04 rD rA UIMM 3 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhsplat

evlwhsplatx 04 rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhsplatx
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evlwwsplat 04 rD rA UIMM 3 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwsplat

evlwwsplatx 04 rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwsplatx

evmergehi 04 rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmergehi

evmergehilo 04 rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmergehilo

evmergelo 04 rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmergelo

evmergelohi 04 rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmergelohi

evmhegsmfaa 04 rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmhegsmfaa

evmhegsmfan 04 rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmhegsmfan

evmhegsmiaa 04 rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmhegsmiaa

evmhegsmian 04 rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmhegsmian

evmhegumiaa 04 rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmhegumiaa

evmhegumian 04 rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmhegumian

evmhesmf 04 rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhesmf

evmhesmfa 04 rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhesmfa

evmhesmfaaw 04 rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhesmfaaw

evmhesmfanw 04 rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhesmfanw

evmhesmi 04 rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhesmi

evmhesmia 04 rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhesmia

evmhesmiaaw 04 rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhesmiaaw

evmhesmianw 04 rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhesmianw

evmhessf 04 rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhessf

evmhessfa 04 rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhessfa

evmhessfaaw 04 rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhessfaaw

evmhessfanw 04 rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhessfanw

evmhessiaaw 04 rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhessiaaw

evmhessianw 04 rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhessianw

evmheumi 04 rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheumi

evmheumia 04 rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheumia

evmheumiaaw 04 rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheumiaaw

evmheumianw 04 rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheumianw

evmheusiaaw 04 rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheusiaaw

evmheusianw 04 rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheusianw

evmhogsmfaa 04 rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhogsmfaa
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evmhogsmfan 04 rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhogsmfan

evmhogsmiaa 04 rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhogsmiaa

evmhogsmian 04 rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhogsmian

evmhogumiaa 04 rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhogumiaa

evmhogumian 04 rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhogumian

evmhosmf 04 rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhosmf

evmhosmfa 04 rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhosmfa

evmhosmfaaw 04 rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhosmfaaw

evmhosmfanw 04 rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhosmfanw

evmhosmi 04 rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhosmi

evmhosmia 04 rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhosmia

evmhosmiaaw 04 rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhosmiaaw

evmhosmianw 04 rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhosmianw

evmhossf 04 rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhossf

evmhossfa 04 rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhossfa

evmhossfaaw 04 rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhossfaaw

evmhossfanw 04 rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhossfanw

evmhossiaaw 04 rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhossiaaw

evmhossianw 04 rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhossianw

evmhoumi 04 rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhoumi

evmhoumia 04 rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhoumia

evmhoumiaaw 04 rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhoumiaaw

evmhoumianw 04 rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhoumianw

evmhousiaaw 04 rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhousiaaw

evmhousianw 04 rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhousianw

evmra 04 rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhsmf 04 rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhsmf

evmwhsmfa 04 rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhsmfa

evmwhsmi 04 rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhsmi

evmwhsmia 04 rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhsmia

evmwhssf 04 rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhssf

evmwhssfa 04 rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhssfa

evmwhumi 04 rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhumi

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode
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evmwhumia 04 rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhumia

evmwhusiaaw 04 rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhusiaaw

evmwhusianw 04 rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhusianw

evmwlumi 04 rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlumi

evmwlumia 04 rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlumia

evmwlumiaaw 04 rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlumiaaw

evmwlumianw 04 rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlumianw

evmwlusiaaw 04 rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlusiaaw

evmwlusianw 04 rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlusianw

evmwsmf 04 rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsmf

evmwsmfa 04 rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsmfa

evmwsmfaa 04 rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsmfaa

evmwsmfan 04 rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsmfan

evmwsmi 04 rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsmi

evmwsmia 04 rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsmia

evmwsmiaa 04 rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsmiaa

evmwsmian 04 rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsmian

evmwssf 04 rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwssfa 04 rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssfa

evmwssfaa 04 rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssfaa

evmwssfan 04 rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssfan

evmwumi 04 rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwumi

evmwumia 04 rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwumia

evmwumiaa 04 rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwumiaa

evmwumian 04 rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwumian

evnand 04 rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 04 rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 04 rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evor 04 rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 04 rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 04 rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw

evrlwi 04 rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi

evrndw 04 rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode
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evsel 04 rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 04 rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 04 rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatfi 04 rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 04 rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 04 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis

evsrwiu 04 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 04 rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 04 rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 04 rD rA UIMM 1 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 04 rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

evstdh 04 rS rA UIMM 1 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 04 rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 04 rS rA UIMM 1 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 04 rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 04 rS rA UIMM 3 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe

evstwhex 04 rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhex

evstwho 04 rS rA UIMM 3 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwhox 04 rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwhox

evstwwe 04 rS rA UIMM 3 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe

evstwwex 04 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwex

evstwwo 04 rS rA UIMM 3 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstwwox 04 rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwox

evsubfsmiaaw 04 rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfsmiaaw

evsubfssiaaw 04 rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfssiaaw

evsubfumiaaw 04 rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfumiaaw

evsubfusiaaw 04 rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfusiaaw

evsubfw 04 rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubifw 04 rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubifw

evxor 04 rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

1 d = UIMM * 8
2 d = UIMM * 2
3 d = UIMM * 4

Table B-2. Instructions (Decimal and Hexadecimal) by Opcode
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B.3 Instructions by Form
Table B-3 lists instructions by form.

Table B-3. Instructions (Binary) by Form

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

efdabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 0 EFX efdabs

efdadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 0 EFX efdadd

efdcfs 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

efdcfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 1 EFX efdcfsf

efdcfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 1 EFX efdcfsi

efdcfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 0 EFX efdcfuf

efdcfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 0 EFX efdcfui

efdcmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 1 0 EFX efdcmpeq

efdcmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 0 EFX efdcmpgt

efdcmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 1 EFX efdcmplt

efdctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 1 EFX efdctsf

efdctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 1 EFX efdctsi

efdctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 1 0 EFX efdctsiz

efdctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 0 EFX efdctuf

efdctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 0 EFX efdctui

efdctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 0 0 EFX efdctuiz

efddiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 1 EFX efddiv

efdmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 0 EFX efdmul

efdnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 1 EFX efdnabs

efdneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 1 0 EFX efdneg

efdsub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 1 EFX efdsub

efdtsteq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 1 0 EFX efdtsteq

efdtstgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 0 EFX efdtstgt

efdtstlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 1 EFX efdtstlt

efsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfd 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf



SPE and Embedded Floating-Point Opcode Listings

Signal Processing Engine (SPE) Programming Environments Manual, Rev. 0

Freescale Semiconductor B-17
 

efscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui

efscmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpeq

efscmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpgt

efscmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt

efsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz

efsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv

efsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

efststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt

efststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

brinc1 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

evabs 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 0 0 0 1 0 0 rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evaddsmiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evaddsmiaaw

evaddssiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssiaaw

evaddumiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddumiaaw

evaddusiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddusiaaw

evaddw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand

evandc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc

evcmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpeq

evcmpgts 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgts

evcmpgtu 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgtu

evcmplts 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplts

evcmpltu 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmpltu

Table B-3. Instructions (Binary) by Form
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evcntlsw 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlzw 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 0 0 0 1 0 0 rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 0 0 0 1 0 0 rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu

eveqv 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf

evfscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi

evfscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmpeq

evfscmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmpgt

evfscmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmplt

evfsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf

evfsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi

evfsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz

evfsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctuiz

evfsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnabs

evfsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

evfststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfststeq

evfststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

evldd 0 0 0 1 0 0 rD rA UIMM1 0 1 1 0 0 0 0 0 0 0 1 EVX evldd

evlddx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 0 0 0 1 0 0 rD rA UIMM 1 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

Table B-3. Instructions (Binary) by Form
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evldhx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 0 0 0 1 0 0 rD rA UIMM 1 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhesplat 0 0 0 1 0 0 rD rA UIMM2 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhesplat

evlhhesplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhesplatx

evlhhossplat 0 0 0 1 0 0 rD rA UIMM 2 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhossplat

evlhhossplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhossplatx

evlhhousplat 0 0 0 1 0 0 rD rA UIMM 2 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhousplat

evlhhousplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhousplatx

evlwhe 0 0 0 1 0 0 rD rA UIMM3 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

evlwhex 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhosx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhosx

evlwhou 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhoux 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhoux

evlwhsplat 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhsplat

evlwhsplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhsplatx

evlwwsplat 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwsplat

evlwwsplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwsplatx

evmergehi 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmergehi

evmergehilo 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmergehilo

evmergelo 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmergelo

evmergelohi 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmergelohi

evmhegsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmhegsmfaa

evmhegsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmhegsmfan

evmhegsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmhegsmiaa

evmhegsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmhegsmian

evmhegumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmhegumiaa

evmhegumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmhegumian

evmhesmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhesmf

evmhesmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhesmfa

evmhesmfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhesmfaaw

evmhesmfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhesmfanw

Table B-3. Instructions (Binary) by Form
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evmhesmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhesmi

evmhesmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhesmia

evmhesmiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhesmiaaw

evmhesmianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhesmianw

evmhessf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhessf

evmhessfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhessfa

evmhessfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhessfaaw

evmhessfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhessfanw

evmhessiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhessiaaw

evmhessianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhessianw

evmheumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheumi

evmheumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheumia

evmheumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheumiaaw

evmheumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheumianw

evmheusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheusiaaw

evmheusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheusianw

evmhogsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhogsmfaa

evmhogsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhogsmfan

evmhogsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhogsmiaa

evmhogsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhogsmian

evmhogumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhogumiaa

evmhogumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhogumian

evmhosmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhosmf

evmhosmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhosmfa

evmhosmfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhosmfaaw

evmhosmfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhosmfanw

evmhosmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhosmi

evmhosmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhosmia

evmhosmiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhosmiaaw

evmhosmianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhosmianw

evmhossf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhossf

evmhossfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhossfa

evmhossfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhossfaaw
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evmhossfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhossfanw

evmhossiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhossiaaw

evmhossianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhossianw

evmhoumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhoumi

evmhoumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhoumia

evmhoumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhoumiaaw

evmhoumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhoumianw

evmhousiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhousiaaw

evmhousianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhousianw

evmra 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhsmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhsmf

evmwhsmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhsmfa

evmwhsmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhsmi

evmwhsmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhsmia

evmwhssf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhssf

evmwhssfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhssfa

evmwhumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhumi

evmwhumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhumia

evmwhusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhusiaaw

evmwhusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhusianw

evmwlumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlumi

evmwlumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlumia

evmwlumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlumiaaw

evmwlumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlumianw

evmwlusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlusiaaw

evmwlusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlusianw

evmwsmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsmf

evmwsmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsmfa

evmwsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsmfaa

evmwsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsmfan

evmwsmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsmi

evmwsmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsmia

evmwsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsmiaa
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evmwsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsmian

evmwssf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwssfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssfa

evmwssfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssfaa

evmwssfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssfan

evmwumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwumi

evmwumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwumia

evmwumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwumiaa

evmwumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwumian

evnand 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw

evrlwi 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi

evrndw 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

evsel 0 0 0 1 0 0 rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatfi 0 0 0 1 0 0 rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 0 0 0 1 0 0 rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis

evsrwiu 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 0 0 0 1 0 0 rD rA UIMM 1 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

evstdh 0 0 0 1 0 0 rS rA UIMM 1 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 0 0 0 1 0 0 rS rA UIMM 1 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 0 0 0 1 0 0 rS rA UIMM 3 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe
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evstwhex 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhex

evstwho 0 0 0 1 0 0 rS rA UIMM 3 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwhox 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwhox

evstwwe 0 0 0 1 0 0 rS rA UIMM 3 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe

evstwwex 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwex

evstwwo 0 0 0 1 0 0 rS rA UIMM 3 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstwwox 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwox

evsubfsmiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfsmiaaw

evsubfssiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfssiaaw

evsubfumiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfumiaaw

evsubfusiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfusiaaw

evsubfw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubifw 0 0 0 1 0 0 rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubifw

evxor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

1 d = UIMM * 8
2 d = UIMM * 2
3 d = UIMM * 4
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