
www.parallax.com/P2 ⬝ sales@parallax.com ⬝ support@parallax.com ⬝ +1 888-512-1024

Propeller 2 P2X8C4M64P
Hardware Manual

Nov 1, 2022 Release

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 1

https://www.parallax.com/propeller-2/
mailto:sales@parallax.com

COPYRIGHTS AND TRADEMARKS
This documentation is copyright © 2022 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used with, or with products containing, the Parallax Propeller
2 P2X8C4M64P microcontroller. Any other uses are not permitted and may represent a violation of Parallax
copyrights, legally punishable according to Federal copyright or intellectual property laws. Any duplication of this
documentation for commercial uses is expressly prohibited by Parallax Inc. Duplication for educational use is
permitted, subject to the following Conditions of Duplication: Parallax Inc. grants the user a conditional right to
download, duplicate, and distribute this text without Parallax's permission. This right is based on the following
conditions: the text, or any portion thereof, may not be duplicated for commercial use; it may be duplicated only
for educational purposes when used solely in conjunction with Parallax products, and the user may recover from
the student only the cost of duplication.

Parallax, Propeller Spin, and the Parallax logos are trademarks of Parallax Inc. If you decide to use any trademarks
of Parallax Inc. on your web page or in printed material, you must state that (trademark) is a trademark of Parallax
Inc.” upon the first appearance of the trademark name in each printed document or web page. Other brand and
product names herein are trademarks or registered trademarks of their respective holders.

DISCLAIMER OF LIABILITY
Parallax, Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Parallax, Inc. assume any liability arising out of the application or use of any product,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages
even if Parallax, Inc. has been advised of the possibility of such damages.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax Propeller products, at
forums.parallax.com.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let
us know by commenting/suggesting on live documentation, or by sending an email to editor@parallax.com. We
continually strive to improve all of our educational materials and documentation, and frequently revise our texts.
Occasionally, an errata sheet with a list of known errors and corrections for a given text will be posted to our
website, www.parallax.com. Please check the individual product page’s free downloads for an errata file.

SUPPORTED HARDWARE AND FIRMWARE
This manual is valid with the following hardware and firmware versions:

Hardware Firmware
P2X8C4M64P Rev B/C

CREDITS
Authorship: Jeff Martin • Format & Editing: Stephanie Lindsay • Technical Graphics: Michael Mulholland
With many thanks to everyone in the Propeller Community and staff at Parallax Inc.

Page 2 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

https://forums.parallax.com/
https://www.parallax.com

TABLE OF CONTENTS

PREFACE 7

CONVENTIONS 7

OVERVIEW 8

Specifications 9

Package Description 9

Hardware Connections 11

Operation 11

Boot Up 11

Runtime 12

Shutdown 12

Rebooting 13

System Clock 13

Memory 14

COGS (PROCESSORS) 14

Cog Memory 15

Register RAM 15

General Purpose Registers 15

Dual-Purpose Registers 15

Special-Purpose Registers 16

Lookup RAM 16

Scratch Space 16

Paired-Cog Communication Mechanism 16

Instruction Pipeline 16

Instruction Stages 17

Pipeline 18

Wait (Pipeline Stall) 19

Branch (Pipeline Flush) 20

Execution 21

Register Execution 21

Lookup Execution 21

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 3

Hub Execution 21

Starting And Stopping Cogs 21

Cog Attention 22

System Counter 22

Pseudo-Random Number Generator 23

HUB 24

Hub RAM 24

Random Access 25

Sequential Access 25

Protected RAM 25

System Clock Configuration 26

PLL Example 27

Locks (Semaphores) 28

Lock Usage 28

CORDIC Solver 29

Multiply 29

Divide 29

Square Root 30

Rotation 30

Cartesian to Polar 30

Polar to Cartesian 30

Integer to Logarithm 30

Logarithm to Integer 31

SMART I/O PINS 31

I/O Pin Circuit 31

Direction and State 32

Pin Modes 32

Equivalent Schematics for Each Unique I/O Pin Configuration 36

I/O Pin Timing 42

Smart Modes 43

Smart Pin Off; Default (%00000) 45

Page 4 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Long Repository (%00001..%00011 and not DAC_MODE) 45

DAC Noise (%00001 and DAC_MODE) 46

DAC 16-Bit With Noise Dither (%00010 and DAC_MODE) 46

DAC 16-Bit With PWM dither (%00011 and DAC_MODE) 46

Pulse/Cycle Output (%00100) 46

Transition Output (%00101) 47

NCO Frequency (%00110) 47

NCO Duty (%00111) 47

PWM Triangle (%01000) 47

PWM Sawtooth (%01001) 48

PWM Switch-Mode Power Supply With Voltage And Current Feedback (%01010) 48

A/B-Input Quadrature Encoder (%01011) 49

Count A-Input Positive Edges When B-Input Is High (%01100) 49

Count A-Input Positive Edges; Increment w/B-Input = 1, Decrement w/B-Input = 0 (%01101) 49

Count A-Input Positive Edges (%01110 AND !Y[0]) 49

Increment w/A-Input Positive Edge, Decrement w/B-Input Positive Edge (%01110 AND Y[0]) 49

Count A-Input Highs (%01111 AND !Y[0]) 50

Increment w/A-Input High, Decrement w/B-Input High (%01111 AND Y[0]) 50

Time A-Input States (%10000) 50

Time A-Input High States (%10001) 50

Time X A-Input Highs/Rises/Edges (%10010 AND !Y[2]) 50

Timeout on X Clocks Of Missing A-Input High/Rise/Edge (%10010 AND Y[2]) 50

Count Time For X Periods (%10011) 51

Count State For X Periods (%10100) 51

Count Time For Periods In X+ Clock Cycles (%10101) 51

Count States For Periods In X+ Clock Cycles (%10110) 51

Count Periods For Periods In X+ Clock Cycles (%10111) 51

ADC Sample/Filter/Capture, Internally Clocked (%11000) 52

ADC Sample/Filter/Capture, Externally Clocked (%11001) 52

About SINC2 and SINC3 filtering 52

SINC2 Sampling Mode (%00) 53

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 5

SINC2 Filtering Mode (%01) 54

SINC3 Filtering Mode (%10) 54

Bitstream Capturing Mode (%11) 55

ADC Scope With Trigger (%11010) 55

SCOPE Data Pipe 56

USB Host/Device (%11011) 57

Synchronous Serial Transmit (%11100) 58

Synchronous Serial Receive (%11101) 59

Asynchronous Serial Transmit (%11110) 59

Asynchronous Serial Receive (%11111) 60

HOST COMMUNICATION 60

Download Propeller Application 61

Multiprogramming 62

Loader Parsing Notes 62

Prop_Chk 62

Prop_Clk 62

Prop_Hex 63

Prop_Txt 64

Interactive Mode 65

P2 Monitor 65

TAQOZ 66

PROPELLER 2 RESERVED WORDS (SPIN2 + PASM2) 67

GENERAL PURPOSE I/O PIN EXCEPTIONS 69

CHANGE LOG 70

PARALLAX INCORPORATED 70

Page 6 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

PREFACE
Thank you for exploring the Propeller microcontroller! Here you will learn about the second member in the
Propeller family– the Propeller 2 (P2X8C4M64P)

The Propeller 2 is the culmination of countless ideas, wishes, suggestions, and intense work by Parallax's Chip
Gracey and the dedicated Propeller Community of engineers and makers. It is perhaps the most openly-designed
microcontroller; constantly revised and discussed on the public Propeller forums, with interim designs released as
FPGA-runnable images and direct community efforts making it all the way to final silicon available today.

This manual is an in-depth description of the concepts, features, and hardware of the Propeller 2 multicore
microcontroller. It serves as a reference beyond that of the Propeller 2 Datasheet. Wherever code is needed to
demonstrate a hardware feature, this manual will only use PASM2 (the core language). Other languages like
Spin2 and C have similar capabilities— refer to the desired language documentation as needed.

For additional documentation and resources, including programming tools, visit www.parallax.com/P2. The latest
version of this manual, along with links to a commentable Google Doc version, are available from the
Documentation section. In addition, there are links to more in-depth references for the Propeller 2 and its Spin2
and PASM2 languages, which may include commentable Google Docs.

CONVENTIONS
● % - indicates a binary number (containing the digits 0 and 1, and underscore "_" characters)

○ ex: %0101 and %11000111
● $ - indicates a hexadecimal number (containing the digits 0–9, A–F, and underscore "_" characters)

○ ex: $2AF and $0D816
● _ - (underscore) is a visual separator in numbers and in certain symbols. Occasionally they are used as

the leading or trailing character of a symbol to make it unique while keeping it similar to a same-named
symbol that may already exist, or may be used in a syntax description to separate words of an
all-lowercase phrase meant to be replaced by the reader when typing. In numbers (i.e. decimal,
hexadecimal, and binary values) they are group indicators that may separate natural boundaries (like
groups of 3 digits in decimal or 8 bits in binary) or may separate context-specific fields of a value (like
smart mode bits and drive level bits in an I/O pin configuration value)

○ ex: %00111010_01011101 and $4C1F_0D816 and 2_328_476
○ ex: <low_byte> and IF_C_AND_Z and ZSTR_

● x - indicates a group of symbols where the x-part can vary
○ ex: INx means both INA and INB
○ ex: RDxxxx / WRxxx means RDBYTE, RDWORD, etc. and WRBYTE, WRWORD, etc.

-- or --

x - indicates a don't care bit in a binary number (a bit that can be 0 or 1 without affecting the execution
context nor the explanation)

○ ex: %x_1_xxx0 and %xxxx10
● ALL CAPS or ALL_CAPS - indicates the item has special meaning, such as a reference to a label in a

diagram, or a component in the Propeller 2, or is a predefined symbol (reserved word) such as a
command, condition, register name, etc.

● <all_lowercase> - indicates an item meant to be completely replaced by the user when typing code; the
phrase in brackets "<>" describes the intent of the specific item.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 7

https://forums.parallax.com/categories/propeller-2-multicore-microcontroller
http://www.parallax.com/P2

OVERVIEW
The Propeller microcontroller family provides high-speed processing for embedded systems while maintaining
low current consumption and a small physical footprint. The Propeller provides flexibility and power through its
multiple processors (called cogs) that perform simultaneous, independent or cooperative tasks, all while being
easy to learn and utilize.

The Propeller 2 frees application developers from common complexities of embedded systems programming:

● Application design is flexible. Every processor (cog) has the same capabilities; no special-use cases.
● Most I/O pins have the same strengths; there are few location limits. Prototype with convenience, then

produce with convenience, swapping pin responsibilities at-will with ease.
● Asynchronous events are easy to handle. Assign a dedicated cog to handle such an event, leaving other

cog(s) free to perform synchronous or independent processes, or split a cog's responsibilities between
synchronous tasks and asynchronous events using interrupts.

● Propeller Assembly language features conditional execution, optional result writing, loop-optimized
timing, and runtime-selectable instruction skipping to provide fast, consistent timing and tight,
multipurpose code that is capable of jitter-free event handling.

The Propeller 2 (P2X8C4M64P) microcontroller architecture consists of 8 identical 32-bit processors (cogs), each
with their own RAM, which connect to a common hub and I/O pins. The hub provides 512 KB of shared RAM, a
CORDIC math solver, and housekeeping facilities. The architecture includes 64 smart I/O pins, each capable of
many autonomous analog and digital functions.

The Propeller 2's assembly language (PASM2) features per-instruction conditional execution, special looping
mechanisms, and pattern-based instruction skipping to encourage fast, compact code.

The Propeller 2's high-level language (Spin2) provides fast, interpreted code that builds upon the power of the
hardware and PASM2. The Spin2 language naturally encourages structured, yet terse constructs organized as
methods grouped within reusable objects. Spin2 objects include other existing objects to extend their own
functionality through the reuse of proven, open-source code.

Propeller 2 Applications, when developed using Spin2 and/or PASM2, integrate one or more objects into a
complete program. Applications perform their duty by executing designated assignments within at least one cog
(or across as many as eight); starting and stopping multiple cogs, utilizing raw I/O and Smart I/O, digital and
analog signaling, streamers, and other built-in hardware as-needed to get the job done. This is how Parallax tools
construct and use Propeller 2 Applications— there are other options made available by Propeller Community
members featuring different languages, concepts, tools, and build techniques. Parallax lists other options in the
Programming Tools section of the Propeller 2 website.

Each cog sits dormant until called into action—referred to as "launching a cog"—at which point the cog executes
its given code independently from, and in parallel alongside, other active cogs. If needed, cogs may share
information and coordinate actions together, either indirectly via shared Hub RAM, locks, or I/O pins, or directly via
paired Lookup RAM or cog attention signals. Cogs may monitor and control I/O pins directly or can choose to
employ smart modes (automated state machines) for sophisticated signaling. Each cog has independent access
to every I/O pin at all times, though the cog collective ultimately decides the direction and state of each.

The Hub provides coordinated access to Hub RAM, the CORDIC math solver, and system management and
configuration features. It serves a traffic management role, ensuring that any given unique element of any
exclusive resource is not accessed simultaneously by multiple cogs. In most cases, cogs must wait their turn

Page 8 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

https://www.parallax.com/p2

(once every eight clock cycles) to read or modify a shared element; however, even faster access to Hub RAM and
the CORDIC solver are possible using a special feature.

Specifications
Propeller 2 Specifications

Feature Specification

Model P2X8C4M64P

Power 1.8 V Core, 3.3 V I/O

Internal Oscillator ~24 MHz or ~20 kHz

External Clock 10 - 20 MHz crystal (P2 Clock PLL enabled) or 0 to 180 MHz (nominal) clock oscillator

Nominal System Clock Speed 180 MHz @ 105 ℃

Number of clock modes 6 + PLL ÷/× & 2 OSC load options

Cogs (cores) 8 identical

Internal execution speed 0 to 720 MIPS (90 MIPS/cog) @ 180 MHz

Cog RAM 512 longs (Register RAM) + 512 longs (Lookup RAM)

Hub RAM 512 KB (byte/word/long-addressable)

ROM 16 KB (Bootloader, P2 Monitor debug interface, and TAQOZ (Forth) command interface)

I/O Pins 64; each featuring digital and analog signalling plus internal smart circuits

Max current per I/O +/- 30mA

Inter-cog communication Hub RAM, Lookup RAM, Attention Signal, or External I/O

Assembly language (PASM2) 358 instructions

Interpreted languages Spin2 (Propeller Tool), TAQOZ (built-in), MicroPython, or Forth via community tools

Compiled languages Spin (FlexGUI community Tool), BASIC, C/C++ (community tools)

PASM2 execution memory Register RAM + Lookup RAM + Hub RAM

Spin2 execution memory Hub RAM

For feature highlights, see also the Propeller 2 website and P2 Datasheet for feature highlights.

Package Description
The P2X8C4M64P microcontroller is an exposed-pad TQFP-100 package. It contains 8 cogs, 512 KB of Hub RAM,
and 64 Smart I/O pins. Refer to the P2 Datasheet for package dimensions.

Part Number Legend

P2X 8C 4M 64P

Propeller 2 8 cogs (processors) 4 Mbit Hub RAM (512 KB) 64 smart I/O pins

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 9

https://www.parallax.com/p2

Pin Descriptions

Pin Name Direction V (typ) Description

GND
[not shown]

- 0 Ground for core and smart pins; [not shown here] internally connected to underside
exposed pad. Connect to ground plane for thermal dissipation.

TEST I 0 Tied to ground

VDD - 1.8 Core power

P0-63 I/O 0 to 3.3 Smart pins; P58-P63 serve in the boot process, then general purpose after.

Vxxyy - 3.3 Power for smart pins in groups of 4: Pxx through Pyy

Page 10 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

XO O - Crystal Output. Provides feedback for an external crystal, or may be left
disconnected depending on CLK Register settings. No external resistors or
capacitors are required.

XI I - Crystal Input. Can be connected to output of crystal/oscillator pack (with XO left
disconnected), or to one leg of crystal (with XO connected to the other leg of
crystal or resonator) depending on CLK Register settings. No external resistors or
capacitors are required.

RESN I 0 Reset (active low). When low, resets the Propeller: all cogs disabled and I/O pins
floating. Propeller restarts 3 ms after RESn transitions from low to high. Connect
to a resistor to pull up to 3.3 V.

The Propeller 2's I/O pins (P0-P63) are general purpose; however, some exceptions may apply to certain
applications. See General Purpose I/O Pin Exceptions for more information.

Hardware Connections
Parallax offers pre-built P2 boards where vital connections are already made for you. Examples include the P2
Edge Module (#P2-EC) and P2 Mini Breakout Board (#64019) pictured here.

Schematics are available for download from the respective product pages. Visit the Propeller 2 > Hardware
section of the Parallax online store for development tools. For additional P2 connection details including boot
options, see the P2 Datasheet in the Documentation section.

Operation
There are three states that characterize the Propeller 2 general operation: Boot Up, Runtime, and Shutdown. Each
is conceptually distinct, though their behaviors may overlap.

Boot Up
Upon any power-up, reset (RESn) pin low-to-high, or software reset event:

1. The Propeller 2 delays for 3 ms, engages the fast clock, then loads up Cog 0 with the ROM-resident
Bootloader within 2 ms.

2. The Bootloader executes, checks the Boot Pattern on pins P59-P61, and performs the prescribed boot
process which may include:

○ interacting with, or receiving a Propeller application from, a host (ex: PC) over serial,
○ fast booting from a connected SPI-based flash chip, or
○ booting from a connected SD card.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 11

https://www.parallax.com/p2

Boot Pattern

Set by floating connection 'ƒ', pull-up resistor '⇧', or pull-down resistor '⇩'. Don't care is '⨯'.

P611 P601 P591 Procedure

ƒ ƒ ƒ Program from serial within 60 s window

⨯ ⨯ ⇧ Program from serial within 60 s window; no flash or microSD card boot

⇧ ⨯ ƒ Program from serial within 100 ms or boot from flash. If fails, program from serial within 60 s window.

⇧ ⨯ ⇩ Fast boot from flash; no serial. If it fails, shutdown.

ƒ / ⇩ ⇧2 ƒ Boot from microSD card. If fails, program from serial within 60 s window.

ƒ / ⇩ ⇧2 ⇩ Boot from microSD card. If it fails, shutdown.

1 Development boards with switchable settings may show P61 as "FLASH," P60 omitted, and P59 as "△" and "▽"
2 Built into microSD card

The following connections must be made when a host system, flash memory and/or microSD Card memory is
intended for programming or boot up purposes:

Host Serial and Boot Memory Connections

Type P63 (in) P62 (out) P61 (out) P60 (out) P59 (out) P58 (in)

Host Serial TX (out) RX (in)

Flash SPI CSn (in) CLK (in) DI (in) DO (out)

SD SPI CLK (in) CSn (in) DI (in) DO (out)

Runtime
In typical operation (above), the Propeller 2 will boot up and run a user's pre-written application in Cog 0. At this
point, all further activity is defined by the application where there is complete control over internal clock speed, I/O
pin usage and behavior, mix of cogs running, and more. At runtime, Propeller applications have the flexibility to
execute full-speed at all times or to carefully manage processing speed, system functions, and current
consumption dynamically—they can even willfully shut down partially or completely.

If the boot process didn't result in running a user application, the loader may still operate for some time, waiting
for host communication. Most boot patterns on pins P59-P61 feature a serial communication window, allowing
the boot process to talk to a host computer over pins P62 and P63. This communication window is used to load
new applications or to run interactive sessions with the Propeller 2's built-in systems. See Host Communication.

Shutdown
Most applications run continuously until power is shut off, though there are cases that are considered to be a
powered shutdown state. During powered shutdowns, no cogs are running and all I/O pins become
high-impedance inputs. Powered shutdown occurs when the power supply remains stable while one of the
following happens:

1. the RESn pin goes low, or
2. the boot process fails to load an application or connect to a host, or
3. the user application terminates the last running cog, or
4. the user application requests a reboot (momentary shutdown)

Page 12 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

A powered shutdown state may last indefinitely in all but the last case. Boot up begins again when the RESn pin
transitions from low to high (case 1), when the Propeller 2 is power-cycled (case 2 and #3), or after an application
requests reboot (case 4).

If the boot process is about to shut down the Propeller 2, it first switches to the RCSLOW (~20 kHz) clock, then
terminates cog 0 (the only cog that was running), for the lowest powered shutdown state. User applications may
not switch to the slowest clock source before terminating the last cog, thus they will have a higher powered
shutdown current draw.

Note that Smart I/O operates independent of the cogs and continues while its associated DIR bit is high; however,
with all the cogs terminated, all I/O pin DIR bits are naturally low (i.e. set to input) which puts every Smart I/O into
its reset state.

Rebooting
While normally powered, the Propeller 2 reboots if it receives a low pulse on the RESn pin or executes a HUBSET
#$1000_0000 instruction. Both reset methods, external (via RESn pin) and internal (via HUBSET), behave the
same; however, the internal reset is not detectable externally using the RESn pin.

Shared Resources
The interaction between each cog and the Hub is vital for sharing resources in the Propeller 2. At any given time,
the Hub gives a specific cog momentary exclusive access to certain shared resources such as a region of Hub
RAM and system configuration settings. This happens for each cog in a “round robin” fashion– timing is
consistent regardless of how many cogs are running. Cogs can choose to use or ignore those resources
depending on their current needs; often processing internally (in Cog RAM) in parallel and only accessing
exclusive resources in bursts.

There are two types of shared resources in the Propeller 2: 1) common, and 2) exclusive. Common resources can
be accessed at any time by any number of cogs; they include Smart I/O Pins, the System Counter, and the
Pseudo-Random Number Generator results. Exclusive resources can also be accessed by each cog, but only by
one cog at a time; they include Hub RAM, the CORDIC solver, Lock bits and the seeder functionality for the
Pseudo-Random Number Generator. The Hub helps govern access to exclusive elements by granting each cog a
turn to use it, one at a time, facilitating atomic operations without any contention. For cases involving multiple
elements (ex: a block of Hub RAM locations) where an atomic operation is not intrinsically possible, lock bits can
be used to cooperatively share access between cogs. See the Hub section for more information.

System Clock
The System Clock is the central clock source for nearly every component of the Propeller 2. All cogs and I/O pins
perform their next step upon the next System Clock's clock edge. The System Clock itself is driven from one of
three selectable sources: 1) the Internal RC Oscillator, 2) the Phase-Locked Loop (PLL), or 3) the Crystal Oscillator
(an internal circuit that operates an external crystal or receives an external oscillator signal). The PLL uses the
Crystal Oscillator as its reference clock input. The System Clock source is selected by the CLK register setting,
which is configurable both at compile time and at run time.

The System Clock speed chosen for any Propeller application is of vital importance to timing calculations in code.
If coded properly via the clock setting constants (_clkfreq, _xinfreq, _xtlfreq, _rcslow, or _rcfast) the
compiled clock mode is reflected in clkfreq_ and clkmode_. When set via the HUBSET or ASMCLK instructions,
the run time CLKFREQ and CLKMODE values reflect the current System Clock speed.

See System Clock Configuration for more information.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 13

Memory
The Propeller 2 has three memory regions: Register RAM, Lookup RAM, and Hub RAM. Each cog has its own
Register RAM and Lookup RAM (collectively called Cog RAM), while the Hub RAM is shared by all cogs.

Propeller 2 (P2X8C4M64P) RAM Memory Configuration

Region Depth Width Address Range
(Hex)

PASM Instruction D/S
Address Range (Hex)

PC
Increment 1

Cog "Register" RAM 512 32 bits $00000..$001FF $000..$1FF 1

Cog "Lookup" RAM 512 32 bits $00200..$003FF $000..$1FF 1

Hub RAM 524,288 8 bits $00400..$7FFFF $00000..$7FFFF 4
1 PC is the Program Counter for PASM execution; incrementing relative to width to retrieve 32-bit instructions.

COGS (PROCESSORS)
The Propeller 2 contains eight (8) processors, called cogs, numbered 0 to 7. Each cog contains the same
components, including a Processor block, Cog RAM, Event Tracker, Cog Attention strobes, Streamer, Colorspace
Converter, Pixel Mixer, DAC Channels, an I/O Output Register, and an I/O Direction Register. Each cog is designed
exactly the same and can run tasks independently from the others.

All eight cogs are driven from the same clock source, the System Clock, so they each maintain the same time
reference and all active cogs execute instructions simultaneously. They also all have access to the same shared
resources, like I/O pins, Hub RAM, the System Counter, and CORDIC math solver.

Cogs can be started and stopped at-will, performing independent or cooperative tasks simultaneously. Regardless
of the nature of their use, the Propeller application developer has full control over how and when each cog is
employed; there is no compiler-driven or operating system-driven splitting of tasks between multiple cogs. This
empowers the developer to deliver absolutely deterministic timing, power consumption, and response to the
embedded application.

Page 14 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Cog Memory
Each cog has its own internal RAM that it uses to execute code and to store and manipulate data independent of
every other cog. This internal RAM is organized into two contiguous blocks of 512 longs (512 x 32), called
Register RAM and Lookup RAM, each with special attributes. See RAM Memory Configuration.

Note that $1FE (INA) and $1FF (INB) are also the debug interrupt call address and return address, respectively.

Register RAM
Each cog's primary 512 x 32-bit dual-port Register RAM (Reg RAM for short) provides for code execution, fast
direct register access, and special use. It is read and written as longs (4 bytes) and contains general purpose,
dual-purpose, and special-purpose registers.

General Purpose Registers
Register RAM locations $000 through $1EF are general-purpose registers for code and data usage.

Dual-Purpose Registers
Register RAM locations $1F0 through $1F7 may either be used as general-purpose registers, or may be used as
special-purpose registers if their associated functions are enabled.

Address Name Purpose

$1F0
$1F1
$1F2
$1F3
$1F4
$1F5
$1F6
$1F7

RAM / IJMP3
RAM / IRET3
RAM / IJMP2
RAM / IRET2
RAM / IJMP1
RAM / IRET1

RAM / PA
RAM / PB

Interrupt call address for INT3
Interrupt return address for INT3
Interrupt call address for INT2
Interrupt return address for INT2
Interrupt call address for INT1
Interrupt return address for INT1
CALLD-imm return, CALLPA parameter, or LOC address
CALLD-imm return, CALLPB parameter, or LOC address

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 15

Special-Purpose Registers
RAM registers $1F8 through $1FF give mapped access to eight special-purpose functions. In general, when
specifying an address between $1F8 and $1FF, the PASM2 instruction accesses a special-purpose register, not
just the underlying RAM.

Address Name Purpose

$1F8
$1F9
$1FA
$1FB
$1FC
$1FD
$1FE
$1FF

PTRA
PTRB
DIRA
DIRB
OUTA
OUTB
INA1

INB2

Pointer A to Hub RAM
Pointer B to Hub RAM
Output enables (direction bits) for P31..P0
Output enables (direction bits) for P63..P32
Output states for P31..P0
Output states for P63..P32
Input states for P31..P0
Input states for P63..P32

1 Also debug interrupt call address
2 Also debug interrupt return address

Lookup RAM
Each cog's secondary 512 x 32-bit dual-port Lookup RAM (LUT RAM for short) is read and written as longs (4
bytes). It is useful for:

● Scratch space
● Streamer access
● Bytecode execution lookup table
● Smart pin data source
● Paired-Cog communication mechanism
● Code execution

Scratch Space
In contrast to Register RAM, the cog cannot directly reference Lookup RAM locations in the majority of its PASM2
instructions. Instead, the desired location(s) must be read or written between Lookup RAM and Register RAM
using the RDLUT and WRLUT instructions, respectively. This is synonymous with other hardware architecture's
scratch storage using "LOAD" and "STORE" instructions. When using the RDLUT and WRLUT instructions, the
Lookup RAM's locations $200..$3FF are addressable as $000..$1FF.

Paired-Cog Communication Mechanism
Adjacent cogs whose ID numbers differ by only the LSB (cogs 0 and 1, 2 and 3, etc.) can each allow their Lookup
RAMs to be written by the other cog via its local Lookup RAM writes. This allows adjacent cogs to share data very
quickly through their Lookup RAMs.

Warning: Lookup RAM writes from the adjacent cog are implemented on the Lookup RAM's 2nd port. The 2nd port
is also shared by the streamer in DDS/LUT modes. If an external write occurs on the same clock as a streamer
read, the external write gets priority. It is not intended that external writes would be enabled at the same time the
streamer is in DDS/LUT mode.

Instruction Pipeline
To optimize execution speed, cogs employ a pipelined execution architecture for PASM2. The nature of the
pipeline is summarized by these attributes:

● There are five stages of processing per instruction, performed in a minimum of five clock cycles
● Instructions are overlapped to effectively execute in as little as two clock cycles when the pipeline is full

Page 16 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

● Branch instructions cause the pipeline to be flushed; the first instruction following the branch will take at
least five clock cycles (13 or 14 if branching to a hub address) since the pipeline is refilling

● Any instruction that is conditionally canceled will not execute but will still take effectively two clocks (or at
least five clocks, if following a branch) to pass through the pipeline

● If an instruction must wait for a resource, all the following instructions in the pipeline also wait

Instruction Stages
To understand the pipeline, first consider the process of executing a single PASM2 instruction. An instruction's
five stages of processing are illustrated below. Every PASM2 instruction is processed this way— five stages
taking at least five clock cycles total. Each stage is completed upon the rising edge of the following clock signal.

Isolated Instruction Processing

I = instruction opcode • D = destination operand • S = source operand • ALU = arithmetic logic unit
MUX = result multiplexer • R = result of instruction execution; ALU output value, or Hub result, plus C and Z flags

The first three stages (Fetches) involve reading the 32-bit PASM2 instruction (I) opcode from RAM, latching
(saving) the instruction opcode for decoding, and reading/latching the instruction's source (S) and destination (D)
values (32-bits each). The final two stages (Execute and Store) perform the instruction's intent by using the
arithmetic logic unit (ALU) and writing the resulting 32-bit value and the carry and zero flags if required. At that
point (five clock cycles in this case) the instruction is fully executed.

● The MUX gathers all possible results (from the ALU, Hub RAM, etc.) and delivers only what is appropriate
for the Write RAM R operation

● The final result value is written and the carry and zero flags are either written or discarded, depending on
the specific instruction and given effects (WC / WZ / WCZ)

● As needed for proper processing, an instruction may wait (one or more extra clock cycles are inserted,
without any stage advancement) immediately before the final stage

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 17

Pipeline
In the pipeline, instructions are overlapped by three stages, resulting in an effective two-stage execution per
instruction known as Fetch and Execute (or Wait). Compare the single instruction illustration above with the
multi-instruction pipeline flow below— the instruction above appears in the next illustration with the prefix "a" while
others use prefixes "b", "c", etc. This seven-cycle slice of time is processing six contiguous instructions.

Instruction Pipeline Flow

As the pipeline fills (or is full, as shown here) instructions overlap in time by three stages. Each cycle of the instruction pipeline
simultaneously processes different stages of two or three contiguous instructions. Here, instruction a is read (in the first
cycle) at the same moment its two previous instructions (y and z) write results and latch for later ALU operation, respectively.

Page 18 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Wait (Pipeline Stall)
When an instruction requires a resource that is not yet available (such as Hub RAM), the whole pipeline delays for
additional cycles ahead of the instruction's execute stage. These extra cycles align the target instruction's
MUX-update to the delayed resource's moment-of-result while performing no operation in any other instruction.
When the resource is ready, processing continues again for all instructions in the pipeline. For example, if
instruction a needs to wait 2 extra cycles to execute properly, the pipeline flow (above) would be stretched starting
at cycle 4; appearing like this:

Pipeline Stall

Instruction a is delayed 2 cycles (shown in gray) to wait for the result from a non-immediate resource; all further instructions
are equally delayed. Hollow arrows represent a shift in time by 2 clocks.

Instead of Execute a in cycle 4, two Wait cycles occur, delaying the Write operation (until the MUX has valid results)
as well as the latching and reading operations of instructions b, c, and d.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 19

Branch (Pipeline Flush)
Branch instructions potentially change the path of code execution. A "branch" instruction may be one of a few
static operations (such as JMP or CALL) or among many dynamic operations (such as a conditionally-executed
JMP or CALL, or a modify/test-and-branch instruction like DJZ or TJNZ). When processing a branch instruction,
one of two things will happen.

1. Branch not taken? Execution continues as normal with the instruction following the branch instruction
2. Branch is taken? Execution is diverted (the program counter is immediately changed to point to the

branch's target destination), all remaining instruction stages are flushed from the pipeline, and new
instructions from the destination begin to refill the pipeline

Due to the pipeline flush and the need to refill it, the instruction following an executed branch will take at least five
clock cycles to execute (13 or 14 if branching to a hub address).

In the illustration below, instruction a is a "branch taken." Immediately after the Execute a stage — all remaining
stages from the next four contiguous instructions are flushed (each marked by a red 'X') and new instructions refill
those empty pipeline positions.

Pipeline Flush

Instruction a is an executed branch— changing the program counter at the end of cycle 4, flushing further instruction stages
from the pipeline (shown in gray), and refilling the pipeline with instructions from the new (branched to) location. Instructions
b through e (which physically followed instruction a) are effectively "canceled" from the pipeline and replaced by instructions b'
and c' from the new code location.

Page 20 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Execution
Cogs use 20-bit addresses for their program counters (PC); the upper bit is a "don't care" bit - this affords an
execution space of up to 512 KB. Depending on the value of a cog's PC, an instruction will be fetched from either
its Register RAM, its Lookup RAM, or the Hub RAM. See RAM Memory Configuration.

Register Execution
When the PC is in the range of $00000 to $001FF, the cog fetches instructions from Cog Register RAM. This is
referred to as "cog execution mode." There are no special considerations when branching to a cog register
address.

Lookup Execution
When the PC is in the range of $00200 to $003FF, the cog fetches instructions from Cog Lookup RAM. This is
referred to as "lut execution mode." There are no special considerations when branching to a cog lookup address.

Hub Execution
When the PC is in the range of $00400 to $7FFFF, the cog fetches instructions from Hub RAM. This is referred to
as "hub execution mode." Special considerations are involved with hub execution.

1. The PC rolling beyond $003FF will not initiate hub execution (it will just wrap back to $00000); a branch
must occur to get from register or lookup execution to hub execution.

2. Branching to a hub address takes a minimum of 13 clock cycles. If the instruction being branched to is
not long-aligned, one additional clock cycle is required.

3. When executing from Hub RAM, the cog employs the FIFO hardware to spool up instructions so that a
stream of instructions will be available for continuous execution. This means the FIFO cannot be used for
anything else. So, during hub execution these instructions cannot be used:

RDFAST / WRFAST / FBLOCK
RFBYTE / RFWORD / RFLONG / RFVAR / RFVARS
WFBYTE / WFWORD / WFLONG
XINIT / XZERO / XCONT - when the streamer mode engages the FIFO

It is not possible to execute code from hub addresses $00000 through $003FF, as the cog will instead read
instructions from the cog's Register RAM or Lookup RAM as indicated above.

Starting And Stopping Cogs
Any cog can start or stop any other cog, or restart or stop itself. Each cog has a unique ID which can be used to
start or stop it. It is also possible to start free (stopped or never started) cogs, without needing to know their IDs.
This way, applications can simply start free cogs, as needed, and as those cogs retire by stopping themselves or
getting stopped by others, they return to the pool of free cogs to become available again for restarting.

To start a free cog:

COGINIT id, addr WC '(id=$30) start a free cog at addr, C=0 and id=Cog ID if okay

To (re)start a specific cog:

COGINIT #1, #$100 'load and start cog 1 from hub address $100

To start a cog, passing in a pointer or 32-bit value:

SETQ ptra_val 'ptra_val will go into target cog's PTRA register

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 21

COGINIT #%0_1_0000, addr 'load and start a free cog at addr

To retrieve this cog's ID:

COGID myID 'my cog ID is written to myID

To stop this cog:

COGID myID 'get my ID
COGSTOP myID 'halt myself

Cog Attention
Each cog can request the attention of other cogs by using the COGATN instruction. One or more of the D
operand's lower 8 bits may be set high (1) to signal the corresponding cog or cogs.

COGATN #00001100 'Get attention of cogs 2 and 3

For each high bit, the matching cog sees an attention event for POLLATN / WAITATN / JATN / JNATN and for
interrupt use. The attention strobe outputs from all cogs are OR'd together to form a composite set of 8 strobes
from which each cog receives its particular strobe.

Examples:

POLLATN WC 'has attention been requested?

WAITATN 'wait for attention request

JATN addr 'jump to addr if attention requested

JNATN addr 'jump to addr if attention not requested

In the intended use case, the cog receiving an attention request knows which other cog is strobing it and how to
respond. In cases where multiple cogs may request the attention of a single cog, some messaging structure may
need to be implemented in Hub RAM to differentiate requests.

System Counter
The System Counter is a 64-bit free-running counter that increments upon every clock cycle. It is a shared
resource, accessible by all cogs at any time, and it's lower 32 bits (usually referred to as CT) serves as the official
time reference for many instructions and events. It is often used for brief, relative time measurements; however,
since it is cleared to zero upon every power-up/reset, it is also a system up time reference.

To read the current System Counter value:

GETCT X 'read lower 32-bits (CT) of system counter into X register
--or--

GETCT X WC 'read upper 32-bits (CTH) of system counter into X register
GETCT Y 'read lower 32-bits (CT) of system counter into Y register

Note: PASM2 instructions that deal with the System Counter only use its lower 32 bits (known as CT)— with the
one exception being GETCT. To get the full 64-bit System Counter value (CTH:CT), it is important to read the
upper 32-bits first (as shown above) and immediately read the lower 32-bits second. This sequence employs a

Page 22 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

special mechanism that avoids phase issues; CT (the lower 32-bits) is returned exactly as it was back at the
moment in which the upper 32-bits (CTH) had been read. This 64-bit value is handy for calculation of long time
frame events (>23.8s @ 180 MHz).

For event handling, there are three hidden registers (CT1, CT2, and CT3) dedicated to short timeframe monitoring
(< 23.9s @ 180 MHz). These represent a target moment in time (future 32-bit value; CT), settable via the ADDCTx
instructions and used internally by many event instructions.

To mark a moment in time to wait for, use GETCT with ADDCTx and WAITCTx:

GETCT x 'get current CT
ADDCT1 x,#500 'make target 500 cycles later (CT1)
WAITCT1 'wait for CT to pass CT1 target

This can easily be extended to create a 500-cycle activity-loop instead. See ADDCTx / WAITCTx in the PASM2
Manual.

The event-timing instructions that utilize the System Counter are: ADDCTx, POLLCTx, WAITCTx, JCTx, and JNCTx.
In addition, by including a SETQ right before any WAITxxx instruction, a 32-bit timeout is created to abort the wait
in case the target event never arrives.

Pseudo-Random Number Generator
The Propeller 2 features a pseudo-random number generator (PRNG) based on the Xoroshiro128** algorithm.
Note that the "**" is part of the name, indicating the exact variation of the Xoroshiro128 algorithm used.

The Xoroshiro128** PRNG iterates on every clock cycle, generating 64 fresh bits which get spread among all cogs
and smart pins. From this 64-bit pool, upon every clock cycle, each cog receives a unique set of 32 different bits
(in a scrambled arrangement with some bits inverted) and each smart pin receives a similarly-unique set of 8
different bits. Cogs can read their current 32-bit pseudo-random value using the GETRND instruction and directly
apply them using the BITRND and DRVRND instructions. Smart pins utilize their 8 bits as noise sources for DAC
dithering and noise output.

After reset, the bootloader seeds the Xoroshiro128** PRNG fifty times, each time with 31 bits of thermal noise
gleaned from pin 63 while in ADC calibration mode. This establishes a very random seed which the PRNG iterates
from, thereafter. There is no need to do this again, but here is how you would do it if 'x' contained a seed value:

SETB x,#31 'set the MSB of x to make a PRNG seed command
HUBSET x 'seed 32 bits of the Xoroshiro128** state

Note: using HUBSET, with D's MSB set, will seed the 128-bit PRNG. This will write all bits of D into 32 bits of the
PRNG, affecting 1/4th of its total state. The required high MSB bit in D ensures that the overall state will not go to
zero. Because the PRNG's 128 state bits rotate, shift, and XOR against each other, they are thoroughly spread
around within a few clocks, so seeding from a fixed set of 32 bits should not pose a limitation on seeding quality.

Note there is also another pseudo-random number feature, accessed via the XORO32 instruction; however it
doesn't use the Xoroshiro128** PRNG— instead, it iterates a register value to make a relatively good PRNG
sequence under software control.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 23

https://www.parallax.com/propeller-2/documentation/
https://www.parallax.com/propeller-2/documentation/

HUB
While common shared resources, such as I/O Pins, are simultaneously accessible by every cog, exclusive shared
resources, such as an individual Hub RAM location, can not be simultaneously accessed without causing
problems. The Hub governs access to exclusive resources, giving each cog a turn to safely perform an atomic
operation on that resource. On the Propeller 2 (P2X8C4M64P), a given cog receives such access once every eight
clock cycles. This moment of access is known as the Hub Access Window.

Atomic operations are elemental in nature (indivisible); each performed in one step with guaranteed isolation from
other operations happening at the same time. In any given Hub Access Window, a cog can perform a single
atomic operation on a single entity, such as writing a value to one Hub RAM location or setting the system clock
speed.

The time-sliced nature of the Hub Access Window applies to every exclusive resource and results in a kind of
speed limit for accessing them– each cog must wait its turn among the collective of cogs. Luckily, there are
some natural use cases where the Propeller 2 provides optimized access as well; namely, sequential location
access of Hub RAM and successive CORDIC math engine use.

Hub RAM
Hub RAM consists of long elements (32-bits wide) that can be read and written as bytes, words, and longs, in
little-endian format. Each cog has access to the entire Hub RAM, though any given RAM location must be used in

Page 24 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

an orderly, time-sliced fashion. Hub addresses are always byte-oriented and there are no special alignment rules
for words and longs in Hub RAM. Cogs can read and write bytes, words, and longs at any hub address, as well as
execute instruction longs from any hub address starting at $400 (see Hub Execution).

On the Propeller 2 (P2X8C4M64P), the Hub RAM is split into eight slices that are multiplexed among all cogs.
Each RAM slice holds every 8th long of the composite Hub RAM. Upon every clock cycle, each cog can access
the next RAM slice, allowing all cogs simultaneous access to some part of Hub RAM. The Hub RAM Interface
diagram illustrates this process conceptually as the collective of RAM slices rotates around, each facing a new
cog every clock cycle.

For any target Hub RAM location, the lower 3 bits of its address determines the slice ID (0 through 7) that it
resides within. If that slice doesn't happen to be aligned with the cog at the moment it is executing the memory
read/write instruction (RDxxxx / WRxxxx), the cog will automatically wait for that slice to come around.

Random Access
Random accesses of Hub RAM (i.e. using non-contiguous locations) must always align to the Hub Access
Window of the RAM slice in question. This means each individual random access (RDxxxx / WRxxxx instruction)
may take as many as 16 clock cycles to complete. It is safe for any number of cogs to begin a random access
read or write operation on any clock cycle— the Hub will automatically delay each of them individually until they
line up with their target addresses' Hub Access Window.

Sequential Access
By default, sequential access of Hub RAM operates the same as with random access; however, when using either
the cog's Hub FIFO interface or fast block move feature, subsequent addresses in the series are available
immediately when called for.

Each cog has a Hub FIFO interface which can be set for Hub-RAM-read or Hub-RAM-write operation. This interface
allows the cog to either sequentially read or sequentially write the Hub RAM in units of bytes, words, or longs, at
any rate up to full speed; one long (32-bits) per clock. Regardless of the transfer frequency or the word size, the
FIFO will ensure that the cog's reads or writes are all properly conducted from/to the composite Hub RAM.

Fast block moves can also read/write a sequential series of values (longs only) at one per clock cycle. Either the
cog's Reg RAM or LUT RAM may be used as the destination/source. This is achieved by preceding a RDLONG /
WRLONG / WMLONG instruction with a SETQ or SETQ2 instruction to specify the number of longs to move using Reg
RAM or LUT RAM, respectively.

Protected RAM
Upon startup/reset, the internal 16 KB ROM contents are copied to the last 16 KB of Hub RAM to bring that code
image into addressable memory space. At that point, the ROM code image is accessible in Hub RAM at
$7C000–$7FFFF and also outside the 512 KB range, at $FC000–$FFFFF. It is readable and writable in both
locations (changes in one also appear in the other), though it can be write-protected using the HUBSET instruction
When write-protection is enabled, the image in RAM at $7C000–$7FFFF is hidden (becomes all zeros) and is
in-tact but read-only for the running user application in the range $FC000–$FFFFF. The debug mechanism (code
that runs during a debug interrupt) uses this area to perform its tasks and is the only code that can continue to
read and write that memory despite the engaged write-protection.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 25

System Clock Configuration
The system clock is the time base for all internal components and can be configured for several modes.

● Direct from internal slow clock (RCSLOW); a ~20 kHz oscillator is intended for low-power operation
● Direct from internal fast clock (RCFAST); a 20 MHz+ oscillator designed for minimum 20 MHz operation
● Direct from XI pin; driven externally via a clock oscillator or a crystal oscillator (w/crystal-feedback on XO)
● Enhanced from XI pin; driven externally via a clock oscillator or a crystal oscillator (w/crystal-feedback on

XO) and the XI signal internally modified by the PLL (phase-locked loop), often to accelerate the frequency

If the XI and XO pins (eXternal Input/Output) are used for clocking via an attached 10 – 20 MHz crystal oscillator,
internal loading caps can also be enabled on XI and XO for crystal impedance matching.

If the XI pin is used as a clock input or crystal oscillator input, its frequency can be modified through the internal
phase-locked loop (PLL). The PLL divides the XI pin frequency from 1 to 64, then multiplies the resulting frequency
from 1 to 1024 in the voltage-controlled oscillator (VCO). The VCO frequency can either be used directly (i.e.
divided by 1) or divided down by any even value from 2 to 30 to get the final PLL clock frequency which becomes
the system clock frequency.

The system clock is configured by the running Propeller 2 application using the HUBSET instruction in the following
format. The four LSBs are all that are needed to switch among clock sources and select all but the PLL settings.

HUBSET ##%0000_000E_DDDD_DDMM_MMMM_MMMM_PPPP_CCSS 'set clock mode

The bit fields (E, D, M, P, C, and S) are described in the following tables.

PLL Setting Value Effect Notes

%E 0/1 PLL off/on XI input must be enabled by %CC. Allow 10 ms for
crystal+PLL to stabilize before switching over to PLL clock
source.

%DDDDDD 0..63 1..64 division of XI pin
frequency

This divided XI frequency feeds into the phase-frequency
comparator's 'reference' input.

%MMMMMMMMMM 0..1023 1..1024 division of
VCO frequency

This divided VCO frequency feeds into the
phase-frequency comparator's 'feedback' input. This
frequency division has the effect of multiplying the divided
XI frequency (per %DDDDDD) inside the VCO. The VCO
frequency should be kept within 100 MHz to 350 MHz.

%PPPP 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

VCO / 2
VCO / 4
VCO / 6
VCO / 8
VCO / 10
VCO / 12
VCO / 14
VCO / 16
VCO / 18
VCO / 20
VCO / 22
VCO / 24
VCO / 26
VCO / 28
VCO / 30
VCO / 1

This divided VCO frequency is selectable as the system
clock when SS = %11.

Page 26 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

%CC XI status XO status XI / XO impedance XI / XO loading caps

%00 ignored float Hi-Z OFF

%01 input 600-ohm drive 1M-ohm OFF

%10 input 600-ohm drive 1M-ohm 15pF per pin

%11 input 600-ohm drive 1M-ohm 30pF per pin

%SS Clock Source Notes

%11 PLL CC != %00 and E=1, allow 10ms for crystal+PLL to stabilize before switching to PLL

%10 XI CC != %00, allow 5ms for crystal to stabilize before switching to XI pin

%01 RCSLOW ~20 kHz, can be switched to at any time, low-power

%00 RCFAST 20 MHz+1, can be switched to at any time, used on boot up
1 Designed to run a least 20 MHz, worst case, to accommodate 2 MBaud serial loading during boot

WARNING: Incorrectly switching away from the PLL setting (%SS = %11) can cause a glitch which will hang the
clock circuit. To safely switch, always start by switching to an internal oscillator using either HUBSET #$F0 (for
RCFAST) or HUBSET #$F1 (for RCSLOW).

PLL Example
The PLL divides the XI pin frequency from 1 to 64, then multiplies the resulting frequency from 1 to 1024 in the
VCO. The VCO frequency can be used directly, or divided by 2, 4, 6, ...30, to get the final PLL clock frequency which
can be used as the system clock.

The PLL's VCO is designed to run between 100 MHz and 200 MHz and should be kept within that range.

𝑉𝐶𝑂 = 𝐹𝑟𝑒𝑞(𝑋𝐼) × (%𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 1)
(%𝐷𝐷𝐷𝐷𝐷𝐷 + 1)

𝑃𝐿𝐿 = 𝑖𝑓(%𝑃𝑃𝑃𝑃 = 15) ⇒ 𝑉𝐶𝑂
𝑃𝐿𝐿 = 𝑖𝑓(%𝑃𝑃𝑃𝑃 ≠ 15) ⇒ 𝑉𝐶𝑂

(%𝑃𝑃𝑃𝑃 + 1) × 2

Let's say you have a 20 MHz crystal attached to XI and XO and you want to run the Prop2 at 148.5 MHz. You
could divide the crystal by 40 (%DDDDDD = 39) to get a 500 kHz reference, then multiply that by 297
(%MMMMMMMMMM = 296) in the VCO to get 148.5 MHz. You would set %PPPP to %1111 to use the VCO
output directly. The configuration value would be %1_100111_0100101000_1111_10_11. The last two 2-bit fields
select 15 pf crystal mode and the PLL. In order to realize this clock setting, though, it must be done over a few
steps:

HUBSET #$F0 'set 20 MHz+ (RCFAST) mode

HUBSET ##%1_100111_0100101000_1111_10_00 'enable crystal+PLL, stay in RCFAST mode

WAITX ##20_000_000/100 'wait ~10ms for crystal+PLL to stabilize

HUBSET ##%1_100111_0100101000_1111_10_11 'now switch to PLL running at 148.5 MHz

The clock selector controlled by the %SS bits has a deglitching circuit which waits for a positive edge on the old
clock source before disengaging, holding its output high, and then waiting for a positive edge on the new clock

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 27

source before switching over to it. It is necessary to select mode %00 or %01 while waiting for the crystal and/or
PLL to settle into operation, before switching over to either.

Locks (Semaphores)
For application-defined cog coordination, the hub provides a pool of 16 semaphore bits, called locks. Cogs may
use locks, for example, to manage exclusive access of a resource or to represent an exclusive state, shared
among multiple cogs. What a lock represents is completely up to the application using it; they are a means of
allowing one cog at a time the exclusive status of 'owner' of a particular lock ID. In order to be useful, all
participant cogs must agree on a lock's ID and what purpose it serves.

The LOCK instructions are:

LOCKNEW D {WC}

LOCKRET {#}D

LOCKTRY {#}D {WC}

LOCKREL {#}D {WC}

Lock Usage
In order to use a lock, one cog must first allocate a lock from the lock pool with LOCKNEW and communicate that
lock's ID with other cooperative cogs. If successful, LOCKNEW returns the lock ID in D and, if WC is given, will clear
C (0) if a lock was available or set C (1) if all locks were already allocated. A cog may allocate more than one lock
if needed.

Cooperative cogs then use LOCKTRY to take ownership of the state which that lock represents. The Hub
arbitrates lock ownership in a round-robin fashion (as with all exclusive resources) so any cog waiting to take
ownership of a lock will get its fair turn and only one will be awarded ownership at any given time. Here's an
example of looping until ownership of a lock is successful:

'Keep trying to capture lock until successful
.try LOCKTRY write_lock WC

IF_NC JMP #.try

Once lock ownership is successful, the cog should perform the task the lock was designed to protect while all
other cogs in this cooperative arrangement should be busy with other tasks or waiting for lock ownership
approval in a loop similar to the above. It is recommended that lock-protected steps be intentionally swift so as
not to hold up other cogs waiting for ownership to perform their lock-protected counter steps.

After the designated task is performed, the cog must immediately use LOCKREL to release ownership of the lock;
allowing other cogs potential ownership of the lock. Only the cog that has taken ownership of the lock can
release it; however, a lock will also be implicitly released if the cog that's holding ownership is stopped (COGSTOP),
restarted (COGINIT), or if LOCKRET is executed for that lock.

If the lock is no longer needed by the application (i.e. no cogs need it for the designed purpose), it may be
returned to the unallocated lock pool by executing LOCKRET. Any cog can return a lock, even if it wasn't the cog
that allocated it with LOCKNEW.

Page 28 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

CORDIC Solver
The Hub contains a 54-stage pipelined CORDIC solver (Coordinate Rotation Digital Computer) that can compute
the following functions for all cogs:

● Multiply: 32 x 32 unsigned multiply with 64-bit product
● Divide: 64 / 32 unsigned divide with 32-bit quotient and 32-bit remainder
● Square Root: root of 64-bit unsigned value with 32-bit result
● Rotation: 32-bit signed (X, Y) rotation around (0, 0) by a 32-bit angle with 32-bit signed (X, Y) results
● Cartesian to Polar: 32-bit signed (X, Y) to 32-bit (length, angle) cartesian to polar operation
● Polar to Cartesian: 32-bit (length, angle) to 32-bit signed (X, Y) polar to cartesian operation
● Integer to Logarithm: 32-bit unsigned integer to 5:27-bit logarithm
● Logarithm to Integer: 5:27-bit logarithm to 32-bit unsigned integer

Each cog can issue one CORDIC instruction per its hub access window, which occurs once every eight clocks, and
retrieve the result 55 clocks later via the GETQX and GETQY instructions. For faster throughput, cogs can take
advantage of the hub access window and CORDIC pipeline relationship to issue a stream of CORDIC instructions
interleaved with retrieving corresponding results, achieving up to one CORDIC result every eight clocks. Each
cog's active CORDIC instructions and forthcoming results are completely isolated from each other, as well as from
other cogs; however, each result must be retrieved on time or else it will be overwritten by the following result, if
any. As soon as a CORDIC result is calculated, it is automatically deposited into the cog's hidden "X" and "Y"
registers, ready to be picked up at any moment by the GETQX and GETQY instructions (independent of the hub
access window).

Multiply
Use the QMUL instruction to multiply two unsigned 32-bit numbers together and retrieve the CORDIC result with
the GETQX and GETQY instructions (for lower and upper long, respectively). QMUL will wait for the hub access
window and GETQX / GETQY will wait for the CORDIC results.

QMUL D/#,S/# - Multiply D by S

To get the results (these instructions wait for the CORDIC results):

GETQX lower_long
GETQY upper_long

Divide
Use the QDIV or QFRAC instruction (either with optional preceding SETQ instruction) to divide a 64-bit numerator
by a 32-bit denominator, then retrieve the CORDIC results with the GETQX and GETQY instructions (for quotient
and remainder, respectively). QDIV / QFRAC will wait for the hub access window and GETQX / GETQY will wait for
the CORDIC results.

QDIV D/#,S,# - Divide {$00000000:D} by S
...or...

SETQ Q/# - Set top part of numerator
QDIV D/#,S,# - Divide {Q:D} by S

...or...
QFRAC D/#,S,# - Divide {D:$00000000} by S

...or...

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 29

SETQ Q/# - Set bottom part of numerator
QFRAC D/#,S,# - Divide {D:Q} by S

...and to get the results:

GETQX quotient
GETQY remainder

Square Root
Use the QSQRT instruction on a 64-bit number and retrieve the square root CORDIC result with the GETQX
instruction. QSQRT will wait for the hub access window and GETQX will wait for the CORDIC results.

QSQRT D/#,S,# - Compute square root of {S:D}
GETQX root

Rotation
Use the SETQ instruction followed by the QROTATE instruction to rotate a 32-bit signed Y and X point pair by an
unsigned 32-bit angle and retrieve the CORDIC results with the GETQX and GETQY instructions for X and Y,
respectively. For the angle (in S), $00000000..$FFFFFFFF = 0..359.9999999 degrees. QROTATE will wait for the
hub access window and GETQX / GETQY will wait for the CORDIC results.

SETQ Q/# - Set Y
QROTATE D/#,S,# - Rotate (D,Q) by S
GETQX X
GETQY Y

Cartesian to Polar
Use the QVECTOR instruction to convert a (X, Y) cartesian coordinate into (length, angle) polar coordinate and
retrieve the CORDIC results with the GETQX and GETQY instructions (for length and angle, respectively). QVECTOR
will wait for the hub access window and GETQX / GETQY will wait for the CORDIC results.

QVECTOR D/#,S,# - (X=D,Y=S) cartesian into (length,angle) polar
GETQX length
GETQY angle

Polar to Cartesian
Use the QROTATE instruction to convert a (length, angle) polar coordinate into (X, Y) cartesian coordinate and
retrieve the CORDIC results with the GETQX and GETQY instructions (for X and Y, respectively). For the angle (in
S), $00000000..$FFFFFFFF = 0..359.9999999 degrees. QROTATE will wait for the hub access window and GETQX
/ GETQY will wait for the CORDIC results.

QROTATE D/#,S,# - Rotate (D,$00000000) by S
GETQX X
GETQY Y

Note this is just like an X,Y Rotation, but with Y set to 0 (by omitting the leading SETQ).

Integer to Logarithm
Use the QLOG instruction on an unsigned 32-bit integer and retrieve the 5:27-bit logarithm CORDIC result (5-bit
exponent and 27-bit mantissa) with the GETQX instruction. QLOG will wait for the hub access window and GETQX
will wait for the CORDIC results.

Page 30 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

QLOG D/# - Compute log base 2 of D
GETQX logarithm

Logarithm to Integer
Use the QEXP instruction on a 5:27-bit logarithm and retrieve the unsigned 32-bit integer CORDIC result with the
GETQX instruction. QEXP will wait for the hub access window and GETQX will wait for the CORDIC results.

QEXP D/# - Compute 2 to the power of D
GETQX integer

SMART I/O PINS
Every I/O pin features versatile digital and analog capabilities as well as autonomous state machine functions
that would otherwise require processor time to perform. The combination of built-in circuitry plus configurable pin
modes and smart modes provides adept functionality for application design, increasing the Propeller 2 potential
beyond what multicore architecture alone provides. There are 24 low-level pin modes and 34 high-level smart
modes.

I/O Pin Circuit
Here is an illustration of a single I/O pin circuit which is powered from its local 3.3V supply pin (Vxxyy). There are
64 such circuits in the P2X8C4M64P, each connecting to its own physical pin (PIN), as well as its adjacent odd or
even pin (ADJ). I/O Pins P0 and P1 see each other as adjacent pins, as do P2 and P3, etc.

Each I/O pin's behavior is described by the combination of four settings: 1) direction (input/output), 2) state
(output drive / input sense), 3) pin mode, and 4) smart mode (optional). The first three of these activate or utilize

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 31

special internal circuitry in the I/O Pin block itself (via DIR, OUT/IN, Mxx signals) and the fourth provides optional
state-machine control outside of the circuit shown here. See Equivalent Schematics to visualize each pin mode's
effect. Each of the four settings is described below.

Direction and State
In simplest form, I/O pins are controlled via dedicated cog registers and the instructions that affect them.

I/O Pin Registers
Register Cog Address Purpose

DIRA $1FA Output enable bits for P0..P31 (active high)

DIRB $1FB Output enable bits for P32..P63 (active high)

OUTA $1FC Output state bits for P0..P31 (corresponding DIRA bit must be high to enable output)

OUTB $1FD Output state bits for P32..P63 (corresponding DIRB bit must be high to enable output)

INA $1FE Input state bits for P0..P31

INB $1FF Input state bits for P32..P63

General-purpose and special pin instructions can write to DIRA / DIRB / OUTA / OUTB to affect pin input/output
behavior and can read from INA / INB to retrieve pin states. General-purpose instructions operate on the entire
32-bit register (all pins) while the special pin instructions operate on a single bit (pin) within them.

Special Pin Instructions
Instructions Purpose

DIRL / DIRH / DIRC / DIRNC / DIRZ / DIRNZ / DIRRND / DIRNOT {#}D Affect pin D bit in DIRx

OUTL / OUTH / OUTC / OUTNC / OUTZ / OUTNZ / OUTRND / OUTNOT {#}D Affect pin D bit in OUTx

FLTL / FLTH / FLTC / FLTNC / FLTZ / FLTNZ / FLTRND / FLTNOT {#}D Affect pin D bit in OUTx, clear bit in DIRx

DRVL / DRVH / DRVC / DRVNC / DRVZ / DRVNZ / DRVRND / DRVNOT {#}D Affect pin D bit in OUTx, set bit in DIRx

TESTP {#}D WC / WZ / ANDC / ANDZ / ORC / ORZ / XORC / XORZ Read pin D bit in INx and affect C or Z

TESTPN {#}D WC / WZ / ANDC / ANDZ / ORC / ORZ / XORC / XORZ Read pin D bit in !INx and affect C or Z

The selected pin mode and smart mode (if other than the default) may override some of the above, as described
in their respective sections, later.

Pin Modes
Each I/O pin has 13 low-level pin mode configuration bits which determine the mode of operation (1 of 24) for its
3.3 V circuit. The pin mode is set using the WRPIN instruction, where the 13 'M' bits within the instruction's D
operand specifies the pin mode configuration. Note that in some smart pin modes, the configuration bits are
partially overwritten to set things like DAC values.

The format of the WRPIN's D operand value is:

%AAAA_BBBB_FFF_MMMMMMMMMMMMM_TT_SSSSS_0

● A = PIN input selector
● B = ADJ input selector
● F = PIN and ADJ input logic/filtering (applied to result of PIN and ADJ input selectors)
● M = pin mode

Page 32 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

● T = pin DIR / OUT control (default = %00)
● S = smart mode

(A) PIN or (B) ADJ Input Selector
%AAAA
%BBBB Selection

0xxx true (default)

1xxx inverted

x000 this pin's read state (default)

x001 relative +1 pin's read state

x010 relative +2 pin's read state

x011 relative +3 pin's read state

x100 this pin's OUT bit from cogs

x101 relative -3 pin's read state

x110 relative -2 pin's read state

x111 relative -1 pin's read state

(F) PIN and ADJ Logic/Filtering
%FFF Logic/Filter

000 A, B (default)

001 A AND B, B

010 A OR B, B

011 A XOR B, B

100 A, B, both filtered using global filt0 settings

101 A, B, both filtered using global filt1 settings

110 A, B, both filtered using global filt2 settings

111 A, B, both filtered using global filt3 settings

The resultant 'A' will drive the IN signal in non-smart-pin modes.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 33

(M) Pin Mode

WRPIN D[20:8] Configuration Resulting Internal Configuration

M[12:0] Input Pin Output1 CIOHHHLLL OE2 DAC ADC ADC Mode Comparator

0000_CIOHHHLLL
0001_CIOHHHLLL
0010_CIOHHHLLL
0011_CIOHHHLLL
0100_CIOHHHLLL
0101_CIOHHHLLL
0110_CIOHHHLLL
0111_CIOHHHLLL

Pin Logic
Pin Logic
Adj Logic

Pin Schmitt
Pin Schmitt
Adj Schmitt
Pin > Adj
Pin > Adj

OUT
Input
Input
OUT
Input
Input
OUT
Input

CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL
CIOHHHLLL

DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

Pin > Adj
Pin > Adj

100000_OHHHLLL
100001_OHHHLLL
100010_OHHHLLL
100011_OHHHLLL
100100_OHHHLLL
100101_OHHHLLL
100110_OHHHLLL
100111_OHHHLLL

ADC, GND
ADC, Vxxyy
ADC, float

ADC, Pin 1x
ADC, Pin 3.16x
ADC, Pin 10x

ADC, Pin 31.6x
ADC, Pin 100x

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL
10OHHHLLL

DIR
DIR
DIR
DIR
DIR
DIR
DIR
DIR

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

000
001
010
011
100
101
110
111

0
0
0
0
0
0
0
0

10100_DDDDDDDD
10101_DDDDDDDD
10110_DDDDDDDD
10111_DDDDDDDD

ADC, Pin 1x 3

ADC, Pin 1x 3

ADC, Pin 1x 3

ADC, Pin 1x 3

DAC 990 Ω, 3.3 V
DAC 600 Ω, 2.0 V

DAC 123.75 Ω, 3.3 V
DAC 75 Ω, 2.0 V

10xxxxxxx
10xxxxxxx
10xxxxxxx
10xxxxxxx

0
0
0
0

DIR
DIR
DIR
DIR

OUT
OUT
OUT
OUT

011
011
011
011

0
0
0
0

1100_CDDDDDDDD
1101_CDDDDDDDD
1110_CDDDDDDDD
1111_CDDDDDDDD

Pin > D
Pin > D
Adj > D
Adj > D

OUT, 1.5 kΩ
!Input, 1.5 kΩ
Input, 1.5 kΩ
!Input, 1.5 kΩ

C00001001
C01001001
C00001001
C01001001

DIR
DIR
DIR
DIR

0
0
0
0

0
0
0
0

Pin > D
Pin > D
Adj > D
Adj > D

1OUT means output latch bit drives output; Input means the 'Input' column's item drives output
2 OE is digital logic output enable only; analog output is indicated in the DAC column
3 if OUT bit = 1

Pin Mode Legend

C IN / OUT

0
1

Live 1

Clocked 2

I IN

0
1

True
Not (inverted)

O Output

0
1

True
Not (inverted)

HHH
LLL

Drive

000
001
010
011
100
101
110
111

Fast
1.5 kΩ
15 kΩ
150 kΩ
1 mA
100 µA
10 µA
Float

OE = digital output enable (when DIR bit high)

DAC = digital to analog converter enable (when DIR bit high)

ADC = analog to digital converter enable (fixed, or when OUT bit high)

OUT = output latch bit; 0: low, 1: high.
Exception: DAC modes use OUT as 0: disable, 1: enable.

DIR = direction bit; 0: input (float), 1: output (drive)
Exception: DAC modes use DIR as 0: disable, 1: enable.

DDDDDDDD and D = DAC Level

1 used for feedback operations; provides continuous (non-clocked) signal
2 signal updates on clock edge only

Page 34 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

(T) Pin DIR/OUT Control
Default (%TT = 00)

for odd pins 'OTHER' = even pin's NOT (inverted) output state (diff source)

for even pins 'OTHER' = unique pseudo-random bit (noise source)

for all pins 'SMART' = smart pin output which overrides OUT / OTHER

'DAC_MODE' is enabled when M[12:10] = %101

'BIT_DAC' outputs {2{M[7:4]}} for 'high' or {2{M[3:0]}} for 'low' in DAC_MODE

for smart pin mode "off" (%SSSSS = %00000)

DIR enables output

for non-DAC_MODE

0x OUT drives output

1x OTHER drives output

for DAC_MODE

00 DIR enables DAC, M[7:0] sets DAC level

01 OUT enables ADC, M[3:0] selects cog DAC channel

10 OUT drives BIT_DAC

11 OTHER drives BIT_DAC

for smart pin mode "on" (%SSSSS > %00000)

x0 output disabled, regardless of DIR

x1 output enabled, regardless of DIR

for DAC smart pin modes (%SSSSS = %00001..%00011)

0x OUT enables DAC in DAC_MODE, M[7:0] overridden

1x OTHER enables DAC in DAC_MODE, M[7:0] overridden

for non-DAC smart pin modes (%SSSSS = %00100..%11111)

0x SMART / OUT drives output, or BIT_DAC if DAC_MODE

1x SMART / OTHER drives output, or BIT_DAC if DAC_MODE

NOTE: The (S) smart modes are listed and described in their own section, Smart Modes.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 35

Equivalent Schematics for Each Unique I/O Pin Configuration

Page 36 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 37

Page 38 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 39

Page 40 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 41

I/O Pin Timing
Between each physical I/O pin and the cog(s) controlling them, there is a chain of three single-bit registers (reg).
The live signal (input or output) traverses through this chain on the way to its destination as described below.

When a DIRx / OUTx bit is changed by any instruction, it takes three additional clocks after the instruction before
the pin starts transitioning to the new state. Here this delay is demonstrated using DRVH to set I/O pin P0's output
enable (OE) and drive P0's output latch high.

P0 OE and P0 HIGH begin their transition on the rising edge of clock 5; however, the duration until complete depends on clock
frequency and circuit load. The I/O pads are asynchronous (not tied strictly to the clock) so with a slow operating frequency,
the transition may complete within 1 clock, whereas with higher frequencies it may take multiple clocks to complete.

When an INx register is read by an instruction, it will reflect the state of the pins registered three clocks before the
start of the instruction. Here this delay is demonstrated using TESTB:

When a TESTP / TESTPN instruction is used to read a pin, the value read will reflect the state of the pin registered
two clocks before the start of the instruction. Effectively, TESTP / TESTPN get fresher INx data than is available
via the INx registers:

Page 42 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Smart Modes
Each I/O pin has built-in 'smart pin' circuitry which (when enabled) performs one of 34 different autonomous
functions on the pin. Smart pins free the cogs from the need to micromanage many I/O operations by providing
high-bandwidth concurrent hardware functions that cogs could otherwise not perform as well through I/O pin
manipulating instructions.

In normal operation, an I/O pin's output enable is controlled by its DIR bit, its output state is controlled by its OUT
bit, and its IN bit returns the pin's read state. With smart pin mode enabled, its DIR bit is used as an active-low
reset signal to the smart pin circuitry, while the output enable state is controlled by a configuration bit. In some
modes, the smart pin circuit takes over driving the output state, in which case the OUT bit gets ignored. Its IN bit
serves as a flag to indicate to the cog(s) that the smart pin has completed some function or an event has
occurred, and acknowledgment is perhaps needed.

To configure a smart pin, first set its DIR bit to low (holding it in reset) then use WRPIN, WXPIN, and WYPIN to
establish the mode and related parameters. Once configured, DIR can be raised high and the smart pin will begin
operating. After that, depending on the mode, you may feed it new data via WXPIN / WYPIN or retrieve results
using RDPIN / RQPIN. These activities are usually coordinated with the IN signal going high; explained later.

Note that while a smart pin is configured, the %TT bits (of the WRPIN instruction's D operand) will govern the pin's
output enable, regardless of the DIR state.

Smart pins have four 32-bit registers inside of them:

Smart Pin Registers
32-bit Register Purpose

Mode smart pin mode, as well as low-level I/O pin mode (write-only)

X mode-specific parameter (write-only)

Y mode-specific parameter (write-only)

Z mode-specific result (read-only)

These four registers are written and read via the following 2-clock instructions, in which S/# is used to select the
pin number (0..63) and D/# is the 32-bit data conduit:

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 43

WRPIN D/#,S/# - Set smart pin S/# mode to D/#, ack pin

WXPIN D/#,S/# - Set smart pin S/# parameter X to D/#, ack pin

WYPIN D/#,S/# - Set smart pin S/# parameter Y to D/#, ack pin

RDPIN D,S/# {WC} - Get smart pin S/# result Z into D, flag into C, ack pin

RQPIN D,S/# {WC} - Get smart pin S/# result Z into D, flag into C, don't ack pin

AKPIN S/# - Acknowledge pin S/#

Each smart pin has a 34-bit input bus and a 33-bit output bus that connect it to the cogs.

To configure and control smart pins, each cog writes data and acknowledgement signals to the smart pin input
bus. Each smart pin OR's all incoming 34-bit buses from the collective of cogs in the same way DIR and OUT bits
are OR'd before going to the pins. Therefore, if you intend to have multiple cogs execute WRPIN / WXPIN / WYPIN /
RDPIN / AKPIN instructions on the same smart pin, you must be sure that they do so at different times, in order to
avoid clobbering each other's bus data. Reading a smart pin with RDPIN can cause the same conflict; however,
any number of cogs can read a smart pin simultaneously without bus conflict by using RQPIN ('read quiet'), since
it does not utilize the smart pin input bus for acknowledgement signaling (like RDPIN does).

Each smart pin writes to its output bus to convey its Z result and a special flag. The RDPIN and RQPIN multiplex
and read these buses, so that a pin's Z result is read into D and its special flag can be read into C. C will be either a
mode-related flag or the MSB of the Z result.

When a mode-related event occurs in a smart pin, it raises its IN signal to alert the cog(s) that new data is ready,
new data can be loaded, or some process has finished. A cog can test for this signal via the TESTP instruction
and can acknowledge a smart pin by executing a WRPIN, WXPIN, WYPIN, RDPIN, or AKPIN instruction for it. This
acknowledgement causes the smart pin to lower its IN signal so that it can be raised again on the next event.
After a WRPIN / WXPIN / WYPIN / RDPIN / AKPIN, it takes two clocks for IN to drop, before it can be polled again.

Example:

WRPIN 'acknowledge smart pin, releases IN from high
NOP 'elapse 2 clocks (or more)
TESTP pin WC 'IN can now be polled again

A smart pin can be reset at any time, without the need to reconfigure it, by clearing and then setting its DIR bit.

To return a pin to normal mode, do a 'WRPIN #0,pin'.

(S) Smart Pin Modes

%SSSSS Mode Note

00000 smart pin off; normal operation (default)

00001 long repository M[12:10] != %101 (not DAC_MODE)

00010 long repository M[12:10] != %101 (not DAC_MODE)

00011 long repository M[12:10] != %101 (not DAC_MODE)

00001 DAC noise M[12:10] = %101 (DAC_MODE)

00010 DAC 16-bit dither, noise M[12:10] = %101 (DAC_MODE)

00011 DAC 16-bit dither, PWM M[12:10] = %101 (DAC_MODE)

001001 pulse/cycle output

Page 44 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

001011 transition output

001101 NCO frequency

001111 NCO duty

010001 PWM triangle

010011 PWM sawtooth

010101 PWM switch-mode power supply, V and I feedback

01011 periodic/continuous: A-B quadrature encoder

01100 periodic/continuous: inc on A-rise & B-high

01101 periodic/continuous: inc on A-rise & B-high / dec on A-rise & B-low

01110 periodic/continuous: inc on A-rise {/ dec on B-rise}

01111 periodic/continuous: inc on A-high {/ dec on B-high}

10000 time A-states

10001 time A-highs

10010 time X A-highs/rises/edges -or- timeout on X A-high/rise/edge

10011 count time for X periods

10100 count state for X periods

10101 count time for periods in X+ clocks

10110 count states for periods in X+ clocks

10111 count periods for periods in X+ clocks

11000 ADC sample/filter/capture, internally clocked

11001 ADC sample/filter/capture, externally clocked

11010 ADC scope with trigger

110111 USB host/device even/odd pin pair = DM/DP

111001 sync serial transmit A-data, B-clock

11101 sync serial receive A-data, B-clock

111101 async serial transmit baud rate

11111 async serial receive baud rate
1 OUT signal overridden

Each mode from the Smart Pin Modes table is described below. The Smart Pin Mode is set (along with Pin Mode)
using the WRPIN instruction (see the %SSSSS bit field).

Smart Pin Off; Default (%00000)
Normal operation, without any smart pin functionality.

Long Repository (%00001..%00011 and not DAC_MODE)
Turns the smart pin into a long repository, where WXPIN writes the long and RDPIN / RQPIN can read the long.

● Upon each WXPIN, IN is raised.
● During reset (DIR=0), IN is low.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 45

DAC Noise (%00001 and DAC_MODE)
● Overrides M[7:0] to feed the pin's 8-bit DAC unique pseudo-random data on every clock. M[12:10] must be

set to %101 to configure the low-level pin for DAC output.
● X[15:0] can be set to a sample period, in clock cycles, in case you want to mark time with IN raising at

each period completion. If a sample period is not wanted, set X[15:0] to zero (65,536 clocks), in order to
maximize the unused sample period, thereby reducing switching power.

● RDPIN / RQPIN can be used to retrieve the 16-bit ADC accumulation from the last sample period.
● During reset (DIR=0), IN is low.

DAC 16-Bit With Noise Dither (%00010 and DAC_MODE)
● Overrides M[7:0] to feed the pin's 8-bit DAC with pseudo-randomly-dithered data on every clock. M[12:10]

must be set to %101 to configure the low-level pin for DAC output.
● X[15:0] establishes the sample period in clock cycles.
● Y[15:0] establishes the DAC output value which gets captured at each sample period and used for its

duration.
● On completion of each sample period, Y[15:0] is captured for the next output value and IN is raised.

Therefore, you would coordinate updating Y[15:0] with IN going high.
● Pseudo-random dithering does not require any kind of fixed period, as it randomly dithers the 8-bit DAC

between adjacent levels, in order to achieve 16-bit DAC output, averaged over time. So, if you would like to
be able to update the output value at any time and have it take immediate effect, set X[15:0] to one (IN will
stay high).

● If OUT is high, the ADC will be enabled and RDPIN / RQPIN can be used to retrieve the 16-bit ADC
accumulation from the last sample period. This can be used to measure loading on the DAC pin.

● During reset (DIR=0), IN is low and Y[15:0] is captured.

DAC 16-Bit With PWM dither (%00011 and DAC_MODE)
● Overrides MP[7:0] to feed the pin's 8-bit DAC with PWM-dithered data on every clock. M[12:10] must be

set to %101 to configure the low-level pin for DAC output.
● X[15:0] establishes the sample period in clock cycles. The sample period must be a multiple of 256

(X[7:0]=0), so that an integral number of 256 steps are afforded the PWM, which dithers the DAC between
adjacent 8-bit levels.

● Y[15:0] establishes the DAC output value which gets captured at each sample period and used for its
duration.

● On completion of each sample period, Y[15:0] is captured for the next output value and IN is raised.
Therefore, you would coordinate updating Y[15:0] with IN going high.

● PWM dithering will give better dynamic range than pseudo-random dithering, since a maximum of only
two transitions occur for every 256 clocks. This means, though, that a frequency of Fclock/256 will be
present in the output at -48dB.

● If OUT is high, the ADC will be enabled and RDPIN / RQPIN can be used to retrieve the 16-bit ADC
accumulation from the last sample period. This can be used to measure loading on the DAC pin.

● During reset (DIR=0), IN is low and Y[15:0] is captured.

Pulse/Cycle Output (%00100)
● Overrides OUT to control the pin output state.
● X[15:0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
● X[31:16] establishes a value to which the base period counter will be compared to on each clock cycle, as

it counts from X[15:0] down to 1, before starting over at X[15:0] if decremented Y > 0. On each clock, if the
base period counter > X[31:16] and Y > 0, the output will be high (else low).

Page 46 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

● Whenever Y[31:0] is written with a non-zero value, the pin will begin outputting a high pulse or cycles,
starting at the next base period. After each pulse, Y is decremented by one, until it reaches zero, at which
the output will remain low. Examples:

○ If X[31:16] is set to 0, the output will be high for the duration of Y > 0.
○ If X[15:0] is set to 3 and X[31:16] is set to 2, the output will be 0-0-1 (repeat) for duration of Y > 0.

● IN will be raised and the pin will revert to low output when the pulse or cycles complete, meaning Y has
been decremented to zero.

● During reset (DIR=0), IN is low, the output is low, and Y is set to zero.

Transition Output (%00101)
● Overrides OUT to control the pin output state.
● X[15:0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
● Whenever Y[31:0] is written with a non-zero value, the pin will begin toggling for Y transitions at each base

period, starting at the next base period.
● IN will be raised when the transitions complete, with the pin remaining in its current output state.
● During reset (DIR=0), IN is low, the output is low, and Y is set to zero.

NCO Frequency (%00110)
● Overrides OUT to control the pin output state.
● X[15:0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
● Upon WXPIN, X[31:16] is written to Z[31:16] to allow phase setting.
● Y[31:0] will be added into Z[31:0] at each base period.
● The pin output will reflect Z[31].
● IN will be raised whenever Z overflows.
● During reset (DIR=0), IN is low, the output is low, and Z is set to zero.

NCO Duty (%00111)
● Overrides OUT to control the pin output state.
● X[15:0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
● Upon WXPIN, X[31:16] is written to Z[31:16] to allow phase setting.
● Y[31:0] will be added into Z[31:0] at each base period.
● The pin output will reflect Z overflow.
● IN will be raised whenever Z overflows.
● During reset (DIR=0), IN is low, the output is low, and Z is set to zero.

PWM Triangle (%01000)
● Overrides OUT to control the pin output state.
● X[15:0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
● X[31:16] establishes a PWM frame period in terms of base periods.
● Y[15:0] establishes the PWM output value which gets captured at each frame start and used for its

duration. It should range from zero to the frame period.
● A counter, updating at each base period, counts from the frame period down to one, then from one back

up to the frame period. Then, Y[15:0] is captured, IN is raised, and the process repeats.
● At each base period, the captured output value is compared to the counter. If it is equal or greater, a high

is output. If it is less, a low is output. Therefore, a zero will always output a low and the frame period value
will always output a high.

● During reset (DIR=0), IN is low, the output is low, and Y[15:0] is captured.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 47

PWM Sawtooth (%01001)
● Overrides OUT to control the pin output state.
● X[15:0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
● X[31:16] establishes a PWM frame period in terms of base periods.
● Y[15:0] establishes the PWM output value which gets captured at each frame start and used for its

duration. It should range from zero to the frame period.
● A counter, updating at each base period, counts from one up to the frame period. Then, Y[15:0] is

captured, IN is raised, and the process repeats.
● At each base period, the captured output value is compared to the counter. If it is equal or greater, a high

is output. If it is less, a low is output. Therefore, a zero will always output a low and the frame period value
will always output a high.

● During reset (DIR=0), IN is low, the output is low, and Y[15:0] is captured.

PWM Switch-Mode Power Supply With Voltage And Current Feedback (%01010)
● Overrides OUT to control the pin output state.
● X[15:0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
● X[31:16] establishes a PWM frame period in terms of base periods.
● Y[15:0] establishes the PWM output value which gets captured at each frame start and used for its

duration. It should range from zero to the frame period.
● A counter, updating at each base period, counts from one up to the frame period. Then, the 'A' input is

sampled at each base period until it reads low. After 'A' reads low, Y[15:0] is captured, IN is raised, and the
process repeats.

● At each base period, the captured output value is compared to the counter. If it is equal or greater, a high
is output. If it is less, a low is output. If, at any time during the cycle, the 'B' input goes high, the output will
be low for the rest of that cycle.

● Due to the nature of switch-mode power supplies, it may be appropriate to just set Y[15:0] once and let it
repeat indefinitely.

● During reset (DIR=0), IN is low, the output is low, and Y[15:0] is captured.
○ WXPIN is used to set the base period (X[15:0]) and the PWM frame count (X[31:16]). The base

period is the number of clocks which makes a base unit of time. The frame count is the number
of base units that make up a PWM cycle.

○ WYPIN is used to set the output value (Y[15:0]), which is internally captured at the start of every
PWM frame and compared to the frame counter upon completion of each base unit of time. If the
output value is greater than or equal to the frame counter, the pin outputs a high, else a low. This
is intended to drive the gate of the switcher FET.

○ The "A" input is the voltage detector for the SMPS output. This could be an adjacent pin using the
internal-DAC-comparison mode to observe the center tap of a voltage divider which is fed by the
final SMPS output. When "A" is low, a PWM cycle is performed because the final output voltage
has sagged below the requirement and it's time to do another pulse.

○ The "B" input is the over-current detector which, if ever high during the PWM cycle, immediately
forces the output low for the rest of that PWM cycle. This could be an adjacent pin using the
internal-DAC-comparison mode to observe a shunt resistor between GND and the FET source.
When the shunt voltage gets too high, too much current is flowing (or the desired amount of
current is flowing), so the output goes low to turn off the FET and allow the inductor connected to
its drain to shoot high, creating a power pulse to be captured by a diode and dumped into a cap,
which is the SMPS final output.

Page 48 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

A/B-Input Quadrature Encoder (%01011)
● X[31:0] establishes a measurement period in clock cycles.
● If zero is used for the period, the measurement operation will not be periodic, but continuous, like a

totalizer, and the current 32-bit quadrature step count can always be read via RDPIN / RQPIN.
● If a non-zero value is used for the period, quadrature steps will be counted for that many clock cycles and

then the result will be placed in Z while the accumulator will be set to the 0/1/-1 value that would have
otherwise been added into it. This way, all quadrature steps get counted across measurements. At the
end of each period, IN will be raised and RDPIN / RQPIN can be used to retrieve the last 32-bit
measurement.

● It may be useful to configure both 'A' and 'B' smart pins to quadrature mode, with one being continuous
(X=0) for absolute position tracking and the other being periodic (x<>0) for velocity measurement.

● The quadrature encoder can be "zeroed" by pulsing DIR low at any time; no need to do another WXPIN.
● During reset (DIR=0), IN is low and Z is set to the adder value (0/1/-1).

Count A-Input Positive Edges When B-Input Is High (%01100)
● X[31:0] establishes a measurement period in clock cycles.
● If zero is used for the period, the measurement operation will not be periodic, but continuous, like a

totalizer, and the current 32-bit high count can always be read via RDPIN / RQPIN.
● If a non-zero value is used for the period, events will be counted for that many clock cycles and then the

result will be placed in Z, while the accumulator will be set to the 0/1 value that would have otherwise
been added into it, beginning a new measurement. This way, all events get counted across
measurements. At the end of each period, IN will be raised and RDPIN / RQPIN can be used to retrieve the
32-bit measurement.

● During reset (DIR=0), IN is low and Z is set to the adder value (0/1).

Count A-Input Positive Edges; Increment w/B-Input = 1, Decrement w/B-Input = 0 (%01101)
● X[31:0] establishes a measurement period in clock cycles.
● If zero is used for the period, the measurement operation will not be periodic, but continuous, like a

totalizer, and the current 32-bit high count can always be read via RDPIN / RQPIN.
● If a non-zero value is used for the period, events will be counted for that many clock cycles and then the

result will be placed in Z, while the accumulator will be set to the 0/1/-1 value that would have otherwise
been added into it, beginning a new measurement. This way, all events get counted across
measurements. At the end of each period, IN will be raised and RDPIN / RQPIN can be used to retrieve the
32-bit measurement.

● During reset (DIR=0), IN is low and Z is set to the adder value (0/1/-1).

Count A-Input Positive Edges (%01110 AND !Y[0])
Increment w/A-Input Positive Edge, Decrement w/B-Input Positive Edge (%01110 AND Y[0])

● X[31:0] establishes a measurement period in clock cycles. Y[0] establishes whether to just count A-input
positive edges (=0), or to increment on A-input positive edge and decrement on B-input positive edge (=1).

● If zero is used for the period, the measurement operation will not be periodic, but continuous, like a
totalizer, and the current 32-bit high count can always be read via RDPIN / RQPIN.

● If a non-zero value is used for the period, events will be counted for that many clock cycles and then the
result will be placed in Z, while the accumulator will be set to the 0/1/-1 value that would have otherwise
been added into it, beginning a new measurement. This way, all events get counted across
measurements. At the end of each period, IN will be raised and RDPIN / RQPIN can be used to retrieve the
32-bit measurement.

● During reset (DIR=0), IN is low and Z is set to the adder value (0/1/-1).

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 49

Count A-Input Highs (%01111 AND !Y[0])
Increment w/A-Input High, Decrement w/B-Input High (%01111 AND Y[0])

● X[31:0] establishes a measurement period in clock cycles. Y[0] establishes whether to just count A-input
highs (=0), or to increment on A-input high and decrement on B-input high (=1).

● If zero is used for the period, the measurement operation will not be periodic, but continuous, like a
totalizer, and the current 32-bit high count can always be read via RDPIN / RQPIN.

● If a non-zero value is used for the period, events will be counted for that many clock cycles and then the
result will be placed in Z, while the accumulator will be set to the 0/1/-1 value that would have otherwise
been added into it, beginning a new measurement. This way, all events get counted across
measurements. At the end of each period, IN will be raised and RDPIN / RQPIN can be used to retrieve the
32-bit measurement.

● During reset (DIR=0), IN is low and Z is set to the adder value (0/1/-1).

Time A-Input States (%10000)
● Continuous states are counted in clock cycles.
● Upon each state change, the prior state is placed in the C-flag buffer, the prior state's duration count is

placed in Z, and IN is raised. RDPIN / RQPIN can then be used to retrieve the measurement. Z will be
limited to $80000000.

● If states change faster than the cog is able to retrieve measurements, the measurements will effectively
be lost, as old ones will be overwritten with new ones. This may be gotten around by using two smart pins
to time highs, with one pin inverting its 'A' input. Then, you could capture both states, as long as the sum
of the states' durations didn't exceed the cog's ability to retrieve both results. This would help in cases
where one of the states was very short in duration, but the other wasn't.

● During reset (DIR=0), IN is low and Z is set to $00000001.

Time A-Input High States (%10001)
● Continuous high states are counted in clock cycles.
● Upon each high-to-low transition, the previous high duration count is placed in Z, and IN is raised.

RDPIN/RQPIN can then be used to retrieve the measurement. Z will be limited to $80000000.
● During reset (DIR=0), IN is low and Z is set to $00000001.

Time X A-Input Highs/Rises/Edges (%10010 AND !Y[2])
● Time is measured until X A-input highs/rises/edges are accumulated.
● X[31:0] establishes how many A-input highs/rises/edges are to be accumulated.
● Y[1:0] establishes A-input high/rise/edge sensitivity:

○ %00 = A-input high
○ %01 = A-input rise
○ %1x = A-input edge

● Time is measured in clock cycles until X highs/rises/edges are accumulated from the A-input. The
measurement is then placed in Z, and IN is raised. RDPIN / RQPIN can then be used to retrieve the
measurement. Z will be limited to $80000000.

● During reset (DIR=0), IN is low and Z is set to $00000001.

Timeout on X Clocks Of Missing A-Input High/Rise/Edge (%10010 AND Y[2])
● If no A-input high/rise/edge occurs within X clocks, IN is raised, a new timeout period of X clocks begins,

and Z maintains a running count of how many clocks have elapsed since the last A-input high/rise/edge.
Z will be limited to $80000000 and can be read any time via RDPIN / RQPIN.

● If an A-input high/rise/edge does occur within X clocks, a new timeout period of X clocks begins and Z is
reset to $00000001.

Page 50 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

● X[31:0] establishes how many clocks before a timeout due to no A-input high/rise/edge occurring.
● Y[1:0] establishes A-input high/rise/edge sensitivity:

○ %00 = A-input high
○ %01 = A-input rise
○ %1x = A-input edge

● During reset (DIR=0), IN is low and Z is set to $00000001.

Count Time For X Periods (%10011)
Count State For X Periods (%10100)

● X[31:0] establishes how many A-input rise/edge to B-input rise/edge periods are to be measured.
● Y[1:0] establishes A-input and B-input rise/edge sensitivity:

○ %00 = A-input rise to B-input rise
○ %01 = A-input rise to B-input edge
○ %10 = A-input edge to B-input rise
○ %11 = A-input edge to B-input edge
○ Note: The B-input can be set to the same pin as the A-input for single-pin cycle measurement.

● Clock cycles or A-input trigger states are counted from each A-input rise/edge to each B-input rise/edge
for X periods. If the A-input rise/edge is ever coincident with the B-input rise/edge at the end of the period,
the start of the next period is registered. Upon completion of X periods, the measurement is placed in Z,
IN is raised, and a new measurement begins. RDPIN / RQPIN can then be used to retrieve the completed
measurement. Z will be limited to $80000000.

● The first mode is intended to be used as an oversampling period measurement, while the second mode is
a complementary duty measurement.

● During reset (DIR=0), IN is low and Z is set to $00000000.

Count Time For Periods In X+ Clock Cycles (%10101)
Count States For Periods In X+ Clock Cycles (%10110)
Count Periods For Periods In X+ Clock Cycles (%10111)

● X[31:0] establishes the minimum number of clock cycles to track periods for. Periods are A-input
rise/edge to B-input rise/edge.

● Y[1:0] establishes A-input and B-input rise/edge sensitivity:
○ %00 = A-input rise to B-input rise
○ %01 = A-input rise to B-input edge
○ %10 = A-input edge to B-input rise
○ %11 = A-input edge to B-input edge
○ Note: The B-input can be set to the same pin as the A-input for single-pin cycle measurement.

● A measurement is taken across some number of A-input rise/edge to B-input rise/edge periods, until X
clock cycles elapse and then any period in progress completes. If the A-input rise/edge is ever coincident
with the B-input rise/edge at the end of the period, the start of the next period is registered. Upon
completion, the measurement is placed in Z, IN is raised, and a new measurement begins. RDPIN / RQPIN
can then be used to retrieve the completed measurement. Z will be limited to $80000000.

● The first mode accumulates time within each period, for an oversampled period measurement.
● The second mode accumulates A-input trigger states within each period, for an oversampled duty

measurement.
● The third mode counts the periods.
● Knowing how many clock cycles some number of complete periods took, and what the duty was, affords

a very time-efficient and precise means of determining frequency and duty cycle. At least two of these
measurements must be made concurrently to get useful results.

● During reset (DIR=0), IN is low and Z is set to $00000000.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 51

ADC Sample/Filter/Capture, Internally Clocked (%11000)
ADC Sample/Filter/Capture, Externally Clocked (%11001)
These modes facilitate sampling, SINC filtering, and raw capturing of ADC bitstream data.

● For the internally-clocked mode, the A-input will be sampled on every clock and should be a pin configured
for ADC operation (M[12:10] = %100). In the externally-clocked mode, the A-input will be sampled on each
B-input rise, so that an external delta-sigma ADC may be employed.

● WXPIN sets the mode to X[5:4] and the sample period to POWER(2, X[3:0]). Not all mode and period
combinations are useful, or even functional:

Sample/Filter/Capture Configurations
X[5:4]➡
Mode➡

%00
SINC2 Sampling

%01
SINC2 Filtering

%10
SINC3 Filtering

%11
Bitstream Capturing

X[3:0] Sample Period Sample Resolution Post-diff ENOB1 Post-diff ENOB1 (LSB = oldest bit)
%0000 1 clock impractical impractical impractical 1 new bit

%0001 2 clocks 2 bits impractical impractical 2 new bits

%0010 4 clocks 3 bits impractical impractical 4 new bits

%0011 8 clocks 4 bits 4 impractical 8 new bits

%0100 16 clocks 5 bits 5 8 16 new bits

%0101 32 clocks 6 bits 6 10 32 new bits

%0110 64 clocks 7 bits 7 12 overflow

%0111 128 clocks 8 bits 8 14 overflow

%1000 256 clocks 9 bits 9 16 overflow

%1001 512 clocks 10 bits 10 18 overflow

%1010 1,024 clocks 11 bits 11 overflow overflow

%1011 2,048 clocks 12 bits 12 overflow overflow

%1100 4,096 clocks 13 bits 13 overflow overflow

%1101 8,192 clocks 14 bits 14 overflow overflow

%1110 16,384 clocks overflow overflow overflow overflow

%1111 32,768 clocks overflow overflow overflow overflow
1 ENOB = Effective Number of Bits, or the sample resolution

● For modes other than SINC2 Sampling (X[5:4] > %00), WYPIN may be used after WXPIN to override the
initial period established by X[3:0] and replace it with the arbitrary value in Y[13:0]. For example, if you'd
like to do SINC3 filtering with a period of 320 clocks, you could follow the WXPIN with a 'WYPIN
#320,adcpin'. The smart pin accumulators are 27 bits wide. This allows up to 2^(27/3), or 512, clocks
per decimation in SINC3 filtering mode and up to 2^(27/2), or 11,585, clocks in SINC2 filtering mode.

● Upon completion of each sample period, the measurement is placed in Z, IN is raised, and a new
measurement begins. RDPIN / RQPIN can then be used to retrieve the completed measurement.

About SINC2 and SINC3 filtering
SINC2 filtering works by summing the input bit into an accumulator on each clock which, in turn, is summed into
another accumulator, to create a double integration. At the end of each sampling period, the difference between
the new and previous second accumulator's value is the conversion sample, and the 'previous' value is updated.
This process has the pleasant effect of returning an extra bit of resolution over simple bit-summing, as well as
filtering away rectangular-sampling-window effects. SINC2 filtering is best for DC measurements, where precision

Page 52 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

is important. Practical measurements of 14-bit resolution can be made every 8,192 clocks using SINC2 filtering.
After starting SINC2 filtering, the filter will become accurate starting on the second period.

SINC3 filtering is like SINC2, but employs an additional level of accumulation to increase sensitivity to dynamics in
the input signal. SINC3 doubles the theoretical ENOB (effective number of bits) over simple bit-summing for fast
signals, but it is only slightly better at DC measurements than SINC2 filtering at the same sample period. Because
SINC3 takes more resources within the smart pin, it is limited to 512 samples per period, making it less practical
than SINC2 for precision DC measurements, but quite ideal for tracking fast, dynamic signals. After starting SINC3
filtering, the filter will become accurate starting on the third period.

Because the accumulators are 27 bits wide, 32-bit integer adds and subtracts in software will roll over incorrectly.
There are two ways to handle this:

You can either prescale the 27-bit values to 32-bit values:

RDPIN x,#adcpin 'get SINC2 accumulator
SHL x,#5 'prescale 27-bit to 32-bit
SUB x,diff 'compute sample
ADD diff,x 'update diff value

Or you can post-trim then to 27-bit values:

RDPIN x,#adcpin 'get SINC2 accumulator
SUB x,diff 'compute sample
ADD diff,x 'update diff value
ZEROX x,#26 'trim to 27-bit

SINC2 Sampling Mode (%00)
This mode performs complete SINC2 conversions, updating the ADC output sample at the end of each period.
Once this mode is enabled, it is only necessary to do a RDPIN / RQPIN to acquire the latest ADC sample. The
limitation of this mode is that it only works at power-of-2 sample periods, since that stricture afforded efficient
implementation within the smart pin, making complete conversions possible without software. There is an
additional SINC2 filtering mode (%01) which allows non-power-of-2 sample periods, but you must perform the
difference computation in software.

To begin SINC2 sampling:

WRPIN ##%100011_0000000_00_11000_0,adcpin 'configure ADC+sample pin(s)
WXPIN #%00_0111,adcpin 'SINC2 sampling at 8 bits
DIRH adcpin 'enable smart pin(s)

NOTE: The variable 'adcpin' could enable multiple pins by having the additional number of pins in bits 10..6. For
example, if 'adcpin' held %00111_010000, pins 16 through 23 would have been simultaneously configured by the
above code.

To read the latest ADC sample, just do a RDPIN / RQPIN:

RDPIN sample,adcpin 'read sample at any time

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 53

SINC2 Filtering Mode (%01)
This mode performs SINC2 filtering, which requires some software interaction in order to realize ADC samples.

To begin SINC2 filtering:

WRPIN ##%100011_0000000_00_11000_0,#adcpin 'configure ADC+filter pin(s)
WXPIN #%01_0111,#adcpin 'SINC2 filtering at 128 clocks
DIRH #adcpin 'enable smart pin(s)

Pin interaction must occur after each sample period, so it may be good to set up an event to detect the
pin's IN going high:

SETSE1 #%001<<6 + adcpin 'SE1 triggers on pin high

.loop WAITSE1 'wait for sample period done
RDPIN x,#adcpin 'get SINC2 accumulator
SUB x,diff 'compute sample
ADD diff,x 'update diff value
SHR x,#6 'justify 8-bit sample
ZEROX x,#7 'trim 8-bit sample
'use x here 'use sample somehow
JMP #.loop 'loop for next period

x RES 1 'sample value
diff RES 1 'diff value

Note that it is necessary to shift the computed sample right by some number of bits to leave the ENOBs intact.
For SINC2 filtering, you must shift right by LOG2(clocks per period)-1, which in this case is LOG2(128)-1 = 6.

SINC3 Filtering Mode (%10)
This mode performs SINC3 filtering, which requires some software interaction in order to realize ADC samples.

To begin SINC3 filtering:

WRPIN ##%100011_0000000_00_11000_0,#adcpin 'configure ADC+filter pin(s)
WXPIN #%10_0111,#adcpin 'SINC3 filtering at 128 clocks
DIRH #adcpin 'enable smart pin(s)

Pin interaction must occur after each sample period, so it may be good to set up an event to detect the pin's IN
going high:

Page 54 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

SETSE1 #%001<<6 + adcpin 'SE1 triggers on pin high

.loop WAITSE1 'wait for sample period done
RDPIN x,#adcpin 'get SINC3 accumulator
SUB x,diff1 'compute sample
ADD diff1,x 'update diff1 value
SUB x,diff2 'compute sample
ADD diff2,x 'update diff2 value
SHR x,#7 'justify 14-bit sample
ZEROX x,#13 'trim 14-bit sample
'use x here 'use sample somehow
JMP #.loop 'loop for next period

x RES 1 'sample value
diff1 RES 1 'diff1 value
diff2 RES 1 'diff2 value

Note that it is necessary to shift the computed sample right by some number of bits to leave the ENOBs intact.
For SINC3 filtering, you must shift right by LOG2(clocks per period), which in this case is LOG2(128) = 7.

Bitstream Capturing Mode (%11)
This mode captures the raw bitstream coming from the ADC. It buffers 32 bits and is meant to be read once every
32 clocks, in order to get contiguous snapshots of the ADC bitstream. RDPIN / RQPIN is used to read the
snapshots. Bit 31 of the data will be the most recent ADC bit, while bit 0 will be from 31 clocks earlier.

To begin raw bitstream capturing:

WRPIN ##%100011_0000000_00_11000_0,adcpin 'configure ADC+sample pin(s)
WXPIN #%11_0101,adcpin 'raw sampling every 32 clocks
DIRH adcpin 'enable smart pin(s)

To get a snapshot of the latest 32 bits of the ADC bitstream, just do a RDPIN / RQPIN:

RDPIN bitstream,adcpin 'get snapshot of ADC bitstream

This mode can be used for purposes other than capturing ADC bitstreams. It is really just capturing the A-input
without regard to pin configuration.

ADC Scope With Trigger (%11010)
This mode calculates an 8-bit ADC sample and checks for hysteretic triggering on every clock, providing the basis
of oscilloscope functionality. Samples from blocks of up to four pins can be grouped into a 32-bit data pipe for
recording by the streamer or reading by the GETSCP instruction (see 'SCOPE Data Pipe' below).

There are three different windowed filter functions from which ADC samples can be computed. On each clock, the
incoming ADC bit is shifted into a tap string and the weighted tap bits are summed together to produce the
sample. The samples are normalized to 8 bits in size, but the DC dynamic range is ~5 to ~6 bits, depending on the
filter length. These are plots of the actual filter shapes and sizes:

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 55

The scope trigger function is set by two 6-bit parameters, A and B, which MSB-justify to the 8-bit samples for
comparison. Triggering is a two-step process of arming and then triggering, which raises the IN signal and waits
for a new arming event. The relationship between A and B determine the triggering pattern:

A and B
relationship

Arming Event
(initial / after trigger)

Trigger Event
(after arming)

A > B sample[7:2] => A sample[7:2] < B

A <= B sample[7:2] < A sample[7:2] => B

● WXPIN is used to configure this mode.
● X[15:10] sets the B trigger value.
● X[7:2] sets the A trigger value.
● X[1:0] selects the filter:

○ %00 = 68-tap Tukey filter
○ %01 = 45-tap Tukey filter
○ %1x = 28-tap Hann filter

● RDPIN / RQPIN always returns the 8-bit sample, along with the 'armed' state in the C flag.
● When 'armed' and then 'triggered', IN is raised and the 'armed' state is canceled.

SCOPE Data Pipe
Each cog has a 32-bit SCOPE data pipe which is intended to be used with smart pins configured to the 'scope'
mode. The SCOPE data pipe continuously aggregates the lower bytes of RDPIN values from a 4-pin block, so that
the streamer can record up to four time-aligned 8-bit ADC samples per clock. They can also be read at once via
the GETSCP instruction.

The SETSCP instruction enables the SCOPE data pipe and selects the 4-pin block whose lower bytes of RDPIN
values it will continuously carry:

SETSCP {#}D 'D[6] enables the SCOPE data pipe, D[5:2] selects the 4-pin block

The GETSCP instruction gets the SCOPE data pipe's current four bytes:

GETSCP D 'Get the lower-byte RDPIN values of four pins into the bytes of D

If the SCOPE data pipe didn't exist, the closest you could come to the GETSCP instruction would be this sequence,
which would not have time-aligned samples:

Page 56 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

RQPIN x,#pinblock | 3 'read pin3 long into x
ROLBYTE y,x 'rotate pin3 byte into y
RQPIN x,#pinblock | 2 'read pin2 long into x
ROLBYTE y,x 'rotate pin2 byte into y
RQPIN x,#pinblock | 1 'read pin1 long into x
ROLBYTE y,x 'rotate pin1 byte into y
RQPIN x,#pinblock | 0 'read pin0 long into x
ROLBYTE y,x 'rotate pin0 byte into y

The SCOPE data pipe is generic in function and may find other uses than carrying just 'scope' data.

USB Host/Device (%11011)
This mode requires that two adjacent pins be configured together to form a USB pair, whose OUTs will be
overridden to control their output states. These pins must be an even/odd pair, having only the LSB of their pin
numbers different. For example: pins 0 and 1, pins 2 and 3, and pins 4 and 5 can form USB pairs. They can be
configured via WRPIN with identical D data of %1_11011_0. Using D data of %0_11011_0 will disable output drive
and effectively create a USB 'sniffer'. A new WRPIN can be done to effect such a change without resetting the
smart pin.

WXPIN is used on the lower pin to establish the specific USB mode and set the baud rate. D[15] must be 1 for
'host' or 0 for 'device'. D[14] must be 1 for 'full-speed' or 0 for 'low-speed'. D[13:0] sets the baud rate, which is a
16-bit fraction of the system clock, whose two MSBs must be 0, necessitating that the baud rate be less than
1/4th of the system clock frequency. For example, if the main clock is 80MHz and you want a 12MHz baud rate
(full-speed), use 12,000,000 / 80,000,000 * $10000 = 9830, or $2666. To use this baud rate and select 'host' mode
and 'full-speed', you could do 'WXPIN ##$E666,lowerpin'.

The upper (odd) pin is the DP pin. This pin's IN is raised whenever the output buffer empties, signaling that a new
output byte can be written via WYPIN to the lower (even) pin. No WXPIN / WYPIN instructions are used for this pin.

The lower (even) pin is the DM pin. This pin's IN is raised whenever a change of status occurs in the receiver, at
which point a RDPIN / RQPIN can be used on this pin to read the 16-bit status word. WXPIN is used on this pin to
set the NCO baud rate.

These DP/DM electrical designations can actually be switched by swapping low-speed and full-speed modes, due
to USB's complementary line signaling.

To start USB, clear the DIR bits of the intended two pins and configure them each via WRPIN. Use WXPIN on the
lower pin to set the mode and baud rate. Then, set the pins' DIR bits. You are now ready to read the receiver
status via RDPIN / RQPIN and set output states and send packets via WYPIN, both on the lower pin.

To affect the line states or send a packet, use WYPIN on the lower pin. Here are its D values:

0 = output IDLE - default state, float pins, except possible resistor(s) to 3.3V or GND
1 = output SE0 - drive both DP and DM low
2 = output K - drive K state onto DP and DM (opposite)
3 = output J - drive J state onto DP and DM (opposite), like IDLE, but driven
4 = output EOP - output end-of-packet: SE0, SE0, J, then IDLE
$80 = SOP - output start-of-packet, then bytes, automatic EOP when buffer runs out

To send a packet, first do a 'WYPIN #$80,lowerpin'. Then, after each IN rise on the upper pin, do a 'WYPIN
byte,lowerpin' to buffer the next byte. The transmitter will automatically send an EOP when you stop giving it

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 57

bytes. To keep the output buffer from overflowing, you should always verify that the upper pin's IN was raised after
each WYPIN, before issuing another WYPIN, even if you are just setting a state. The reason for this is that all
output activity is timed to the baud generator and even state changes must wait for the next bit period before
being implemented, at which time the output buffer empties.

There are separate state machines for transmitting and receiving. Only the baud generator is common between
them. The transmitter was just described above. Below, the receiver is detailed. Note that the receiver receives not
just input from another host/device, but all local output, as well.

At any time, a RDPIN / RQPIN can be executed on the lower pin to read the current 16-bit status of the receiver,
with the error flag going into C. The lower pin's IN will be raised whenever a change occurs in the receiver's status.
This will necessitate A WRPIN / WXPIN / WYPIN / RDPIN / AKPIN before IN can be raised again, to alert of the
next change in status. The receiver's status bits are as follows:

[31:16] <unused> - $0000
[15:8] byte - last byte received
[7] byte toggle - cleared on SOP, toggled on each byte received
[6] error - cleared on SOP, set on bit-unstuff error, EOP SE0 > 3 bits, or SE1
[5] EOP in - cleared on SOP or 7+ bits of J or K, set on EOP
[4] SOP in - cleared on EOP or 7+ bits of J or K, set on SOP
[3] SE1 in (illegal) - cleared on !SE1, set on 1+ bits of SE1
[2] SE0 in (RESET) - cleared on !SE0, set on 1+ bits of SE0
[1] K in (RESUME) - cleared on !K, set on 7+ bits of K
[0] J in (IDLE) - cleared on !J, set on 7+ bits of J

The result of a RDPIN/RQPIN can be bit-tested for events of interest. It can also be shifted right by 8 bits to
LSB-justify the last byte received and get the byte toggle bit into C, in order to determine if you have a new byte.
Assume that 'flag' is initially zero:

SHR D,#8 WC 'get byte into D, get toggle bit into C
CMPX flag,#1 WZ 'compare toggle bit to flag, new byte if Z

IF_Z XOR flag,#1 'if new byte, toggle flag
IF_Z <use byte> 'if new byte, do something with it

Synchronous Serial Transmit (%11100)
● Overrides OUT to control the pin output state.
● Words of 1 to 32 bits are shifted out on the pin, LSB first, with each new bit being output two internal clock

cycles after registering a positive edge on the B input. For negative-edge clocking, the B input may be
inverted by setting B[3] in WRPIN's D value.

● WXPIN is used to configure the update mode and word length.
● X[5] selects the update mode:

○ X[5] = 0 sets continuous mode, where a first word is written via WYPIN during reset (DIR=0) to
prime the shifter. Then, after reset (DIR=1), the second word is buffered via WYPIN and
continuous clocking is started. Upon shifting each word, the buffered data written via WYPIN is
advanced into the shifter and IN is raised, indicating that a new output word can be buffered via
WYPIN. This mode allows steady data transmission with a continuous clock, as long as the
WYPIN's after each IN-rise occur before the current word transmission is complete.

○ X[5] = 1 sets start-stop mode, where the current output word can always be updated via WYPIN
before the first clock, flowing right through the buffer into the shifter. Any WYPIN issued after the
first clock will be buffered and loaded into the shifter after the last clock of the current output

Page 58 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

word, at which time it could be changed again via WYPIN. This mode is useful for setting up the
output word before a stream of clocks are issued to shift it out.

● X[4:0] sets the number of bits, minus 1. For example, a value of 7 will set the word size to 8 bits.
● WYPIN is used to load the output words. The words first go into a single-stage buffer before being

advanced to the shifter for output. Each time the buffer is advanced into the shifter, IN is raised, indicating
that a new output word can be written via WYPIN. During reset, the buffer flows straight into the shifter.

● If you intend to send MSB-first data, you must first shift and then reverse it. For example, if you had a byte
in D that you wanted to send MSB-first, you would do a 'SHL D,#32-8' and then a 'REV D'.

● During reset (DIR=0) the output is held low. Upon release of reset, the output will reflect the LSB of the
output word written by any WYPIN during reset.

Synchronous Serial Receive (%11101)
● Words of 1 to 32 bits are shifted in by sampling the A input around the positive edge of the B input. For

negative-edge clocking, the B input may be inverted by setting B[3] in WRPIN's D value.
● WXPIN is used to configure the sampling and word length.
● X[5] selects the A input sample position relative to the B input edge:

○ X[5] = 0 selects the A input sample just before the B input edge was registered. This requires no
hold time on the part of the sender.

○ X[5] = 1 selects the sample coincident with the B edge being registered. This is useful where
transmitted data remains steady after the B edge for a brief time. In the synchronous serial
transmit mode, the data is steady for two internal clocks after the B edge was registered, so
employing this complementary feature would enable the fastest data transmission when
receiving from another smart pin in synchronous serial transmit mode.

● X[4:0] sets the number of bits, minus 1. For example, a value of 7 will set the word size to 8 bits.
● When a word is received, IN is raised and the data can then be read via RDPIN / RQPIN. The data read will

be MSB-justified.
● If you received LSB-first data, it will require right-shifting, unless the word size was 32 bits. For a word size

of 8 bits, you would need to do a 'SHR D,#32-8' to get the data LSB-justified.
● If you received MSB-first data, it will need to be reversed and possibly masked, unless the word size was

32 bits. For example, if you received a 9-bit word, you would do 'REV D' + 'ZEROX D,#8' to get the data
LSB-justified.

Asynchronous Serial Transmit (%11110)
● Overrides OUT to control the pin output state.
● Words from 1 to 32 bits are serially transmitted on the pin at a programmable baud rate, beginning with a

low "start" bit and ending with a high "stop" bit.
● WXPIN is used to configure the baud rate and word length.
● X[31:16] establishes the number of clocks in a bit period, and in case X[31:26] is zero, X[15:10]

establishes the number of fractional clocks in a bit period. The X bit period value can be simply computed
as: (clocks * $1_0000) & $FFFFFC00. For example, 7.5 clocks would be $00078000, and 33.33 clocks
would be $00215400.

● X[4:0] sets the number of bits, minus 1. For example, a value of 7 will set the word size to 8 bits.
● WYPIN is used to load the output words. The words first go into a single-stage buffer before being

advanced to a shifter for output. This buffering mechanism makes it possible to keep the shifter
constantly busy, so that gapless transmissions can be achieved. Any time a word is advanced from the
buffer to the shifter, IN is raised, indicating that a new word can be loaded.

● Here is the internal state sequence:
a. Wait for an output word to be buffered via WYPIN, then set the 'buffer-full' and 'busy' flags.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 59

b. Move the word into the shifter, clear the 'buffer-full' flag, and raise IN.
c. Output a low for one bit period (the START bit).
d. Output the LSB of the shifter for one bit period, shift right, and repeat until all data bits are sent.
e. Output a high for one bit period (the STOP bit).
f. If the 'buffer-full' flag is set due to an intervening WYPIN, loop to (b). Otherwise, clear the 'busy'

flag and loop to (a).
● RDPIN / RQPIN with WC always returns the 'busy' flag into C. This is useful for knowing when a

transmission has completed. The busy flag can be polled starting three clocks after the WYPIN, which
loads the output words:

WYPIN x,#txpin 'load output word
WAITX #1 'wait 2+1 clocks before polling busy

wait RDPIN x,#txpin WC 'get busy flag into C
IF_C JMP #wait 'loop until C = 0

● During reset (DIR=0) the output is held high.

Asynchronous Serial Receive (%11111)
● Words from 1 to 32 bits are serially received on the A input at a programmable baud rate.
● WXPIN is used to configure the baud rate and word length.
● X[31:16] establishes the number of clocks in a bit period, and in case X[31:26] is zero, X[15:10]

establishes the number of fractional clocks in a bit period. The X bit period value can be simply computed
as: (clocks * $1_0000) & $FFFFFC00. For example, 7.5 clocks would be $00078000, and 33.33 clocks
would be $00215400.

● X[4:0] sets the number of bits, minus 1. For example, a value of 7 will set the word size to 8 bits.
● Here is the internal state sequence:

a. Wait for the A input to go high (idle state).
b. Wait for the A input to go low (START bit edge).
c. Delay for half a bit period.
d. If the A input is no longer low, loop to (b).
e. Delay for one bit period.
f. Right-shift the A input into the shifter and delay for one bit period, repeat until all data bits are

received.
g. Capture the shifter into the Z register and raise IN.
h. Loop to (a).

● RDPIN / RQPIN is used to read the received word. The word must be shifted right by 32 minus the word
size. For example, to LSB-justify an 8-bit word received, you would do a 'SHR D,#32-8'.

HOST COMMUNICATION
Normally the boot process loads a user's pre-written Propeller 2 Application and immediately executes it; however,
the boot process also enables a host system to either download a new Propeller application or to begin an
interactive session with the Propeller 2's built-in systems. Most boot patterns (dictated by pins P59-P61) feature
a serial communication window. While configured with one of these boot patterns, a host computer's
development software (such as Propeller Tool) can download new code, or instead, the user can initiate
interactive mode.

Page 60 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Download Propeller Application
During the boot process's serial communication window, the Propeller 2 can be loaded via asynchronous serial
stream into P63, configured as 8 data bits, no parity, 1 stop bit, 9,600 to 2,000,000 baud. The signal should be
inverted; start bit is low, stop bit is high, and data bits are high for 0 and low for 1.

The boot loader (or loader, for short) automatically adapts to the sender's baud rate from every greater-than ">"
character ($3E) it receives. It is necessary to initially send "> " (greater-than, space; $3E, $20) before the first
command, and then use ">" characters periodically throughout the data to keep the baud rate tightly calibrated to
the internal RC oscillator that the loader uses during the boot process. Received ">" characters are not passed to
the command parser, so they can be placed anywhere.

The loader's response messages are sent back serially over P62 at the same baud rate that the sender used. P62
is normally driven continuously during the serial protocol, but will go into open-drain mode when either the INA or
INB mask of a command is non-0 (for multiprogramming).

Unless forbidden by the Boot Pattern or preempted by a program in an SPI memory chip, the serial loader
becomes active within 15ms of reset being released.

Whitespace is required between command keywords and data. Each of the following characters, individually or in
groups of any contiguous combination, constitute a single whitespace:

Whitespace Characters in Serial Loading Protocol

TAB ($09), LF ($0A), CR ($0D), SPACE ($20), = ($3D)1

1 The equal sign "=" may be present as padding in Base64 data

There are four commands which the sender can issue:

Serial Loading Protocol Commands

Request Propeller Type

Prop_Chk <INAmask> <INAdata> <INBmask> <INBdata>

Change Clock Setting

Prop_Clk <INAmask> <INAdata> <INBmask> <INBdata> <HUBSETclocksetting>

Load and Execute Hex Data, With and Without Checksum Verification

Prop_Hex <INAmask> <INAdata> <INBmask> <INBdata> <hexdatabytes> ?

Prop_Hex <INAmask> <INAdata> <INBmask> <INBdata> <hexdatabytes> ~

Load and Execute Base64 Data, With and Without Checksum Verification

Prop_Txt <INAmask> <INAdata> <INBmask> <INBdata> <base64chrs> ?

Prop_Txt <INAmask> <INAdata> <INBmask> <INBdata> <base64chrs> ~

Each command keyword is followed by a Propeller 2 chip identifier in the form of four 32-bit hex values. The
normal case is to use zeros for each of these fields to talk to any and all chips that are connected; often a single
Propeller 2 chip.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 61

Multiprogramming
If multiple Propeller 2 chips are being loaded from the same serial line, it is often desirable to differentiate each
Propeller's download by unique ID (their individual INA and INB states in the circuit). The Propeller 2's loader
automatically ignores commands whose ID (INA / INB data and mask values) does not match its own INA and
INB ports. All ID patterns are valid using pins P2 and beyond— the loader can not see the state of P0 and P1
since it configures them as smart pins monitoring their logical neighbor, P63, for automatic baud detection.

Loader Parsing Notes
While waiting for a new command, Base64 data destined for another chip is safely ignored due to the fact that
each command keyword contains an underscore "_"; an illegal character in Base64.

If a character is received which does not fit expectations for that moment (ex: an "x" is received when hex digits
are expected), the loader aborts the current command and waits for a new command.

Prop_Chk
Use the Prop_Chk command to verify Propeller 2 connection and retrieve its version.

The response is in the form CR+LF+"Prop_Ver"+SPACE+<version_character>+CR+LF where <version_character>
is "A".."Z" and indicates the version of Propeller 2. The Rev B/C silicon responds with "G":

Sender: "> Prop_Chk 0 0 0 0"+CR
Loader: CR+LF+"Prop_Ver G"+CR+LF

Prop_Clk
Use the Prop_Clk command to update the P2's clock source. This is similar to executing the PASM instruction:
HUBSET ##$0xxxxxxx.

The response to a valid Prop_Clk command is a period "." character, then it performs the following steps:

1. Switches to the internal 20 MHz (fast) clock
2. Sets the desired configuration (except mode)
3. Waits ≈5 ms for the clock hardware to settle to the new configuration
4. Enables the desired clock mode

NOTE: After issuing the command, the sender should wait an additional 10ms, then send the "> " ($3E,
$20) auto-baud sequence to adjust for the new clock configuration.

NOTE: If an image is loaded (see Prop_Hex/Prop_Txt) after switching to a PLL clock mode that is different
than the mode used by that image, the uploaded image may need to issue a "HUBSET #$F0" before
switching to the desired clock mode. See the warning in Configuring the Clock Generator for more details.
An alternative approach is to use the same clock configuration as used by the image. This means that
the image's call to HUBSET will effectively be a NOP, but always safe to perform.

Page 62 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Example: Set PLL to 148.5 MHz

To update the clock source as calculated in the PLL Example:

Sender: "> Prop_Clk 0 0 0 0 19D28F8"+CR
Loader: "."
Sender: (wait ≈10ms)
Sender: "> Prop_Clk 0 0 0 0 19D28FB"+CR
Loader: "."

NOTE: An initial "Prop_Clk 0 0 0 0 F0" is not required since the clock circuit starts up in this mode.

Example: Reset to Boot Clock Configuration

To return to the clock configuration on bootup:

Sender: "> Prop_Clk 0 0 0 0 F0"+CR
Loader: "."

Prop_Hex
Use the Prop_Hex command to load code into Hub RAM, starting at $00000, and then execute it. The code must
be sent as a stream of ASCII text representing bytes in hex format, separated by whitespace. Only the lower 8 bits
of each value is used.

If the Prop_Hex command is terminated with a "?" character, the loader will verify the checksum and respond
before attempting to run the code. The loader responds with a period "." if the checksum was valid, or an
exclamation point "!" if the checksum was invalid. When valid, the booter will perform a COGINIT #0,#0
instruction to relaunch cog 0 (currently running the loader program) with the new program starting at $00000.
When invalid, the booter will wait for another command.

If the Prop_Hex command is terminated with a "~" character, the loader will relaunch cog 0 to run the new
program at $00000; skipping the validation and response steps noted above.

Example: Loading a small program:

Consider this small program:

DAT ORG
not dirb 'all outputs

.lp not outb 'toggle states (blinks leds on Prop123 & P2 Eval boards)
waitx ##20_000_000/4 'wait ¼ second
jmp #.lp 'loop

It assembles to:

00000- FB F7 23 F6 FD FB 23 F6 25 26 80 FF 1F 80 66 FD F0 FF 9F FD

and can be transmitted without a checksum like this:

Sender: "> Prop_Hex 0 0 0 0 FB F7 23 F6 FD FB 23 F6 25 26 80 FF 1F 80 66 FD F0 FF 9F FD ~"

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 63

In this example, the program image contains 5 longs (in little-endian order), the summation of which is
$E6CE9A2C. To generate an embedded checksum long, you would compute:

$706F7250 ("Prop" read as a long in little-endian order)
- $E6CE9A2C (code summation)
─────────
= $89A0D824 (checksum complement)

Those resulting four bytes (the checksum complement) may be appended to the end of the data stream,
transmitted as follows.

Sender: "> Prop_Hex 0 0 0 0 FB F7 23 F6 FD FB 23 F6 25 26 80 FF 1F 80 66 FD F0 FF 9F FD 24 D8 A0 89 ?"
Loader: "."

Note that for verification purposes it doesn't matter where the checksum complement long is placed– only that it
be long-aligned within your data.

If transmitting multiple lines (blocks) of code image, it is recommended to start each Base64 data line with a
greater-than ">" character to keep the baud rate tightly calibrated.

Prop_Txt
The Prop_Txt command is like Prop_Hex, but delivers Base64 data instead of hex bytes. Base64 data is a
stream of text characters that convey six bits each, and is assembled into bytes as it is received. This format is
2.25x denser than hex; minimizing transmission size and time.

Base64 Characters and Values

Characters Index Values

A–Z, a–z, 0–9, +, / $00–$19, $1A–$33, $34–$3D, $3E, $3F

Whitespaces are ignored among Base64 characters.

Example: Loading a small program:

The program from the Prop_Hex example can be transmitted in Base64 form without a checksum like this:

Sender: "> Prop_Txt 0 0 0 0 +/cj9v37I/YlJoD/H4Bm/fD/n/0 ~"

With the checksum complement appended:

Sender: "> Prop_Txt 0 0 0 0 +/cj9v37I/YlJoD/H4Bm/fD/n/0k2KCJ ?"
Loader: "."

Note that the Base64 stream must be generated using the assembled data's given byte order ($FB, $F7, $23...),
and from MSB to LSB within each byte (%111110, %111111, %011100, %100011...); however, the checksum is
calculated on little-endian long values (as with the Prop_Hex command) and must be appended/integrated into
the assembled data before Base64 conversion.

Page 64 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

Assembled "Code" Data to Base64 Stream Conversion
Code Hex FB F7 23 ...

Code (8-bit) Binary 11111011 11110111 00100011 ...

Code (6-bit) Binary 111110 11 1111 0111 00 100011 ...

Code (6-bit) Hex 3E 3F 1C 23 ...

Base64 Character + / c j ...

To keep the baud rate tightly calibrated when transmitting multiple lines (blocks) of code image, start each
Base64 data line with a greater-than ">" character.

Interactive Mode
To enter interactive mode from a host computer:

● Run serial terminal software (like Parallax Serial Terminal, TeraTerm, or RealTerm)
● Disable character echo ("Echo On" in Parallax Serial Terminal)
● Set to any baud rate from 9600 baud to 2 Mbaud (recommended), 8 data bits, 1 stop bit, no parity
● Press and release the Propeller 2 development board's Reset button
● Type "> " (greater than followed by a space), then either Ctrl+D or the ESC key to enter P2 Monitor or

TAQOZ mode, respectively

P2 Monitor
The P2 Monitor is a built-in interactive system that allows for viewing and manipulating memory and running
code. Use the P2 Monitor to explore and change current RAM contents or load and run code from microSD
memory. After power-up or reset (and while preventing autorun of a flash/microSD-resident application), invoke
the P2 Monitor from a terminal by typing: "> " (greater than followed by a space), then Ctrl+D.

Here is an example of listing the first 16 longs of Register RAM (in long format), by typing "000-010L":

*000-010L
000: FF800800 FC0C003F F606C832 FCDC041F '.......?...2....'
004: FD747E40 F0A6CA01 F426CA1F FD62CA00 '.t~@.....&...b..'
008: FB6EC9FA FC0C003F FD64C428 FF0007E0 '.n.....?.d.(....'
00C: FB06012C FD655229 FF0007E1 FB0420B8 '...,.eR)...... .'

Here is a list of the first 16 bytes of Hub RAM (in long format), typing "0000-0010L":

*0000-0010L
00000: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF '................'

For more information, see the P2 Monitor link on the Propeller 2 Documentation Page at www.parallax.com/p2.

To switch to TAQOZ while in P2 Monitor, type ESC followed by the Enter key.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 65

http://www.parallax.com/p2

TAQOZ
TAQOZ is a built-in interactive Forth language engine, based on Tachyon Forth. Use TAQOZ to explore "what ifs"
and quickly exercise P2 hardware for testing or debugging. After power-up or reset (and while preventing autorun
of a flash/microSD-resident application), invoke TAQOZ from a terminal by typing: "> " ESC (greater than followed
by a space), then the Escape key.

Toggle pin 56 (ex: blink an LED on P56) by typing:

56 blink (type "56 mute" to stop toggling)

...or by typing:

begin 56 high 250 ms 56 low 250 ms key until (press any key to stop toggling)

For more information, see the TAQOZ links on the Propeller 2 Documentation Page at www.parallax.com/p2.

To switch to P2 Monitor while in TAQOZ, type Ctrl+D.

Page 66 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

http://www.parallax.com/p2

PROPELLER 2 RESERVED WORDS (SPIN2 + PASM2)
Predefined symbols recognized by the compiler to have special meaning.

_ (leading underscore)
_C
_C_AND_NZ
_C_AND_Z
_C_EQ_Z

_C_NE_Z
_C_OR_NZ
_C_OR_Z
_CLR

_E
_GE
_GT
_LE

_LT
_NC
_NC_AND_NZ
_NC_AND_Z

_NC_OR_NZ
_NC_OR_Z
_NE
_NZ

_NZ_AND_C
_NZ_AND_NC
_NZ_OR_C
_NZ_OR_NC

RET
_SET
_Z
_Z_AND_C

_Z_AND_NC
_Z_EQ_C
_Z_NE_C
_Z_OR_C

_Z_OR_NC

A - B
ABORT
ABS
ADD
ADDBITS
ADDCT1

ADDCT2
ADDCT3
ADDPINS
ADDPIX
ADDS

ADDSX
ADDX
AKPIN
ALIGNL
ALIGNW

ALLOWI
ALT
ALTB
ALTD
ALTGB

ALTGN
ALTGW
ALTI
ALTR
ALTS

ALTSB
ALTSN
ALTSW
AND
ANDC

ANDN
ANDZ
ARCHIVE
ASMCLK
AUGD

AUGS
BACKCOLOR
BITC
BITH
BITL

BITMAP
BITNC
BITNOT
BITNZ
BITRND

BITZ
BLACK
BLNPIX
BLUE
BMASK

BOX
BRK
BYTE
BYTEFILL
BYTEMOVE

BYTES_1BIT
BYTES_2BIT
BYTES_4BIT

C - D
CALL
CALLA
CALLB
CALLD
CALLPA
CALLPB
CARTESIAN
CASE
CASE_FAST
CHANNEL

CIRCLE
CLEAR
CLKFREQ
CLKMODE
CLKSET
CLOSE
CMP
CMPM
CMPR
CMPS

CMPSUB
CMPSX
CMPX
COGATN
COGBRK
COGCHK
COGEXEC
COGEXEC_NEW
COGEXEC_NEW_PAIR
COGID

COGINIT
COGSPIN
COGSTOP
COLOR
CON
CRCBIT
CRCNIB
CYAN
DAT
DEBUG

DEBUG_BAUD
DEBUG_COGS
DEBUG_DELAY
DEBUG_DISPLAY_LEFT
DEBUG_DISPLAY_TOP
DEBUG_HEIGHT
DEBUG_LEFT
DEBUG_LOG_SIZE
DEBUG_PIN
DEBUG_TIMESTAMP

DEBUG_TOP
DEBUG_WIDTH
DEBUG_WINDOWS_OFF
DECMOD
DECOD
DEPTH
DEV
DIRA
DIRB
DIRC

DIRH
DIRL
DIRNC
DIRNOT
DIRNZ
DIRRND
DIRZ
DJF
DJNF
DJNZ

DJZ
DLY
DOT
DOTSIZE
DRVC
DRVH
DRVL
DRVNC
DRVNOT

DRVRND
DRVZ

E - F
ELSE
ELSEIF
ELSEIFNOT
ENCOD
END

EVENT_ATN
EVENT_CT1
EVENT_CT2
EVENT_CT3
EVENT_FBW

EVENT_INT
EVENT_PAT
EVENT_QMT
EVENT_SE1
EVENT_SE2

EVENT_SE3
EVENT_SE4
EVENT_XFI
EVENT_XMT
EVENT_XRL

EVENT_XRO
EXECF
FABS
FALSE
FBLOCK

FDEC
FDEC_
FDEC_ARRAY
FDEC_ARRAY_
FDEC_REG_ARRAY

FDEC_REG_ARRAY_
FFT
FGE
FGES
FILE

FIT
FLE
FLES
FLOAT
FLTC

FLTH
FLTL
FLTNC
FLTNOT
FLTNZ

FLTRND
FLTZ
FRAC
FROM
FSQRT

FVAR
FVARS

G - H
GETBRK
GETBYTE
GETCT

GETMS
GETNIB
GETPTR

GETQX
GETQY
GETREGS

GETRND
GETSCP
GETSEC

GETWORD
GETXACC
GREEN

GREY
HIDEXY
HOLDOFF

HSV16
HSV16W
HSV16X

HSV8
HSV8W
HSV8X

HUBEXEC
HUBEXEC_NEW
HUBEXEC_NEW_PAIR

HUBSET

I - J
IF
IF_00
IF_0000
IF_0001
IF_0010
IF_0011
IF_01
IF_0100
IF_0101
IF_0110
IF_0111
IF_0X

IF_10
IF_1000
IF_1001
IF_1010
IF_1011
IF_11
IF_1100
IF_1101
IF_1110
IF_1111
IF_1X
IF_A

IF_AE
IF_ALWAYS
IF_B
IF_BE
IF_C
IF_C_AND_NZ
IF_C_AND_Z
IF_C_EQ_Z
IF_C_NE_Z
IF_C_OR_NZ
IF_C_OR_Z
IF_DIFF

IF_E
IF_GE
IF_GT
IF_LE
IF_LT
IF_NC
IF_NC_AND_NZ
IF_NC_AND_Z
IF_NC_OR_NZ
IF_NC_OR_Z
IF_NE
IF_NOT_00

IF_NOT_01
IF_NOT_10
IF_NOT_11
IF_NZ
IF_NZ_AND_C
IF_NZ_AND_NC
IF_NZ_OR_C
IF_NZ_OR_NC
IF_SAME
IF_X0
IF_X1
IF_Z

IF_Z_AND_C
IF_Z_AND_NC
IF_Z_EQ_C
IF_Z_NE_C
IF_Z_OR_C
IF_Z_OR_NC
IFNOT
IJMP1
IJMP2
IJMP3
IJNZ
IJZ

INA
INB
INCMOD
INT_OFF
IRET1
IRET2
IRET3
JATN
JCT1
JCT2
JCT3
JFBW

JINT
JMP
JMPREL
JNATN
JNCT1
JNCT2
JNCT3
JNFBW
JNINT
JNPAT
JNQMT
JNSE1

JNSE2
JNSE3
JNSE4
JNXFI
JNXMT
JNXRL
JNXRO
JPAT
JQMT
JSE1
JSE2
JSE3

JSE4
JXFI
JXMT
JXRL
JXRO

L - M
LINE
LINESIZE
LOC
LOCKCHK
LOCKNEW

LOCKREL
LOCKRET
LOCKTRY
LOGIC
LOGSCALE

LONG
LONGFILL
LONGMOVE
LONGS_16BIT
LONGS_1BIT

LONGS_2BIT
LONGS_4BIT
LONGS_8BIT
LOOKDOWN
LOOKDOWNZ

LOOKUP
LOOKUPZ
LSTR
LSTR_
LUMA8

LUMA8W
LUMA8X
LUT1
LUT2
LUT4

LUT8
LUTCOLORS
MAG
MAGENTA
MERGEB

MERGEW
MIDI
MIXPIX
MODC
MODCZ

MODZ
MOV
MOVBYTS
MUL
MULDIV64

MULPIX
MULS
MUXC
MUXNC
MUXNIBS

MUXNITS
MUXNZ
MUXQ
MUXZ

N - O
NAN
NEG
NEGC
NEGNC

NEGNZ
NEGX
NEGZ
NEWCOG

NEXT
NIXINT1
NIXINT2
NIXINT3

NOP
NOT
OBJ
OBOX

ONES
OPACITY
OR
ORANGE

ORC
ORG
ORGF
ORGH

ORIGIN
ORZ
OTHER
OUTA

OUTB
OUTC
OUTH
OUTL

OUTNC
OUTNOT
OUTNZ
OUTRND

OUTZ
OVAL

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 67

P
P_ADC
P_ADC_100X
P_ADC_10X
P_ADC_1X
P_ADC_30X
P_ADC_3X
P_ADC_EXT
P_ADC_FLOAT
P_ADC_GIO
P_ADC_SCOPE
P_ADC_VIO
P_AND_AB
P_ASYNC_IO
P_ASYNC_RX
P_ASYNC_TX
P_BITDAC
P_CHANNEL
P_COMPARE_AB
P_COMPARE_AB_FB
P_COUNT_HIGHS

P_COUNT_RISES
P_COUNTER_HIGHS
P_COUNTER_PERIODS
P_COUNTER_TICKS
P_DAC_124R_3V
P_DAC_600R_2V
P_DAC_75R_2V
P_DAC_990R_3V
P_DAC_DITHER_PWM
P_DAC_DITHER_RND
P_DAC_NOISE
P_EVENTS_TICKS
P_FILT0_AB
P_FILT1_AB
P_FILT2_AB
P_FILT3_AB
P_HIGH_100UA
P_HIGH_10UA
P_HIGH_150K
P_HIGH_15K

P_HIGH_1K5
P_HIGH_1MA
P_HIGH_FAST
P_HIGH_FLOAT
P_HIGH_TICKS
P_INVERT_A
P_INVERT_B
P_INVERT_IN
P_INVERT_OUT
P_INVERT_OUTPUT
P_LEVEL_A
P_LEVEL_A_FBN
P_LEVEL_B_FBN
P_LEVEL_B_FBP
P_LOCAL_A
P_LOCAL_B
P_LOGIC_A
P_LOGIC_A_FB
P_LOGIC_B_FB
P_LOW_100UA

P_LOW_10UA
P_LOW_150K
P_LOW_15K
P_LOW_1K5
P_LOW_1MA
P_LOW_FAST
P_LOW_FLOAT
P_MINUS1_A
P_MINUS1_B
P_MINUS2_A
P_MINUS2_B
P_MINUS3_A
P_MINUS3_B
P_NCO_DUTY
P_NCO_FREQ
P_NORMAL
P_OE
P_OR_AB
P_OUTBIT_A
P_OUTBIT_B

P_PASS_AB
P_PERIODS_HIGHS
P_PERIODS_TICKS
P_PLUS1_A
P_PLUS1_B
P_PLUS2_A
P_PLUS2_B
P_PLUS3_A
P_PLUS3_B
P_PULSE
P_PWM_SAWTOOTH
P_PWM_SMPS
P_PWM_TRIANGLE
P_QUADRATURE
P_REG_UP
P_REG_UP_DOWN
P_REPOSITORY
P_SCHMITT_A
P_SCHMITT_A_FB
P_SCHMITT_B_FB

P_STATE_TICKS
P_SYNC_IO
P_SYNC_RX
P_SYNC_TX
P_TRANSITION
P_TRUE_A
P_TRUE_B
P_TRUE_IN
P_TRUE_OUT
P_TRUE_OUTPUT
P_TT_00
P_TT_01
P_TT_10
P_TT_11
P_USB_PAIR
P_XOR_AB
PA
PB
PC_KEY
PC_MOUSE

PI
PINCLEAR
PINF
PINFLOAT
PINH
PINHIGH
PINL
PINLOW
PINR
PINREAD
PINSTART
PINT
PINTOGGLE
PINW
PINWRITE
PLOT
POLAR
POLLATN
POLLCT
POLLCT1

POLLCT2
POLLCT3
POLLFBW
POLLINT
POLLPAT
POLLQMT
POLLSE1
POLLSE2
POLLSE3
POLLSE4
POLLXFI
POLLXMT
POLLXRL
POLLXRO
POLXY
POP
POPA
POPB
POS
POSX

PR0
PR1
PR2
PR3
PR4
PR5
PR6
PR7
PRECISE
PRECOMPILE
PRI
PTRA
PTRB
PUB
PUSH
PUSHA
PUSHB

Q - R
QCOS
QDIV
QEXP
QFRAC
QLOG
QMUL

QROTATE
QSIN
QSQRT
QUIT
QVECTOR
RANGE

RATE
RCL
RCR
RCZL
RCZR
RDBYTE

RDFAST
RDLONG
RDLUT
RDPIN
RDWORD
RECV

RED
REG
REGEXEC
REGLOAD
REP
REPEAT

RES
RESI0
RESI1
RESI2
RESI3
RET

RETA
RETB
RETI0
RETI1
RETI2
RETI3

RETURN
REV
RFBYTE
RFLONG
RFVAR
RFVARS

RFWORD
RGB16
RGB24
RGB8
RGBEXP
RGBI8

RGBI8W
RGBI8X
RGBSQZ
ROL
ROLBYTE
ROLNIB

ROLWORD
ROR
ROTXY
ROUND
RQPIN

S - T
SAL
SAMPLES
SAR
SAVE
SBIN
SBIN_
SBIN_BYTE_
SBIN_BYTE_ARRAY
SBIN_BYTE_ARRAY_
SBIN_LONG
SBIN_LONG_
SBIN_LONG_ARRAY
SBIN_LONG_ARRAY_
SBIN_REG_ARRAY
SBIN_REG_ARRAY_
SBIN_WORD
SBIN_WORD_
SBIN_WORD_ARRAY

SBIN_WORD_ARRAY_
SCA
SCAS
SCOPE
SCOPE_XY
SCROLL
SDEC
SDEC_
SDEC_BYTE
SDEC_BYTE_
SDEC_BYTE_ARRAY
SDEC_BYTE_ARRAY_
SDEC_LONG
SDEC_LONG_
SDEC_LONG_ARRAY
SDEC_LONG_ARRAY_
SDEC_REG_ARRAY
SDEC_REG_ARRAY_

SDEC_WORD
SDEC_WORD_
SDEC_WORD_ARRAY
SDEC_WORD_ARRAY_
SEND
SET
SETBYTE
SETCFRQ
SETCI
SETCMOD
SETCQ
SETCY
SETD
SETDACS
SETINT1
SETINT2
SETINT3
SETLUTS

SETNIB
SETPAT
SETPIV
SETPIX
SETQ
SETQ2
SETR
SETREGS
SETS
SETSCP
SETSE1
SETSE2
SETSE3
SETSE4
SETWORD
SETXFRQ
SEUSSF
SEUSSR

SHEX
SHEX_
SHEX_BYTE
SHEX_BYTE_
SHEX_BYTE_ARRAY
SHEX_BYTE_ARRAY_
SHEX_LONG
SHEX_LONG_
SHEX_LONG_ARRAY
SHEX_LONG_ARRAY_
SHEX_REG_ARRAY
SHEX_REG_ARRAY_
SHEX_WORD
SHEX_WORD_
SHEX_WORD_ARRAY
SHEX_WORD_ARRAY_
SHL
SHR

SIGNED
SIGNX
SIZE
SKIP
SKIPF
SPACING
SPECTRO
SPLITB
SPLITW
SPRITE
SPRITEDEF
SQRT
STALLI
STEP
STRCOMP
STRING
STRSIZE
SUB

SUBR
SUBS
SUBSX
SUBX
SUMC
SUMNC
SUMNZ
SUMZ
TERM
TEST
TESTB
TESTBN
TESTN
TESTP
TESTPN
TEXT
TEXTANGLE
TEXTSIZE

TEXTSTYLE
TITLE
TJF
TJNF
TJNS
TJNZ
TJS
TJV
TJZ
TO
TRACE
TRGINT1
TRGINT2
TRGINT3
TRIGGER
TRUE
TRUNC

U, V, W
UBIN
UBIN_
UBIN_BYTE
UBIN_BYTE_
UBIN_BYTE_ARRAY
UBIN_BYTE_ARRAY_
UBIN_LONG
UBIN_LONG_
UBIN_LONG_ARRAY
UBIN_LONG_ARRAY_
UBIN_REG_ARRAY
UBIN_REG_ARRAY_
UBIN_WORD
UBIN_WORD_
UBIN_WORD_ARRAY

UBIN_WORD_ARRAY_
UDEC
UDEC_
UDEC_BYTE
UDEC_BYTE_
UDEC_BYTE_ARRAY
UDEC_BYTE_ARRAY_
UDEC_LONG
UDEC_LONG_
UDEC_LONG_ARRAY
UDEC_LONG_ARRAY_
UDEC_REG_ARRAY
UDEC_REG_ARRAY_
UDEC_WORD
UDEC_WORD_

UDEC_WORD_ARRAY
UDEC_WORD_ARRAY_
UHEX
UHEX_
UHEX_BYTE
UHEX_BYTE_
UHEX_BYTE_ARRAY
UHEX_BYTE_ARRAY_
UHEX_LONG
UHEX_LONG_
UHEX_LONG_ARRAY
UHEX_LONG_ARRAY_
UHEX_REG_ARRAY
UHEX_REG_ARRAY_
UHEX_WORD

UHEX_WORD_
UHEX_WORD_ARRAY
UHEX_WORD_ARRAY_
UNTIL
UPDATE
VAR
VARBASE
WAITATN
WAITCT
WAITCT1
WAITCT2
WAITCT3
WAITFBW
WAITINT
WAITMS

WAITPAT
WAITSE1
WAITSE2
WAITSE3
WAITSE4
WAITUS
WAITX
WAITXFI
WAITXMT
WAITXRL
WAITXRO
WC
WCZ
WFBYTE
WFLONG

WFWORD
WHILE
WHITE
WINDOW
WMLONG
WORD
WORDFILL
WORDMOVE
WORDS_1BIT
WORDS_2BIT
WORDS_4BIT
WORDS_8BIT
WRBYTE
WRC
WRFAST

WRLONG
WRLUT
WRNC
WRNZ
WRPIN
WRWORD
WRZ
WXPIN
WYPIN
WZ

X, Y, Z
X_16P_2DAC8_WFWORD
X_16P_4DAC4_WFWORD
X_1ADC8_0P_1DAC8_WFBYTE
X_1ADC8_8P_2DAC8_WFWORD
X_1P_1DAC1_WFBYTE
X_2ADC8_0P_2DAC8_WFWORD
X_2ADC8_16P_4DAC8_WFLONG
X_2P_1DAC2_WFBYTE
X_2P_2DAC1_WFBYTE
X_32P_4DAC8_WFLONG
X_4ADC8_0P_4DAC8_WFLONG
X_4P_1DAC4_WFBYTE
X_4P_2DAC2_WFBYTE
X_4P_4DAC1_WFBYTE
X_8P_1DAC8_WFBYTE
X_8P_2DAC4_WFBYTE

X_8P_4DAC2_WFBYTE
X_ALT_OFF
X_ALT_ON
X_DACS_0_0_0_0
X_DACS_0_0_X_X
X_DACS_0_X_X_X
X_DACS_0N0_0N0
X_DACS_0N0_X_X
X_DACS_1_0_1_0
X_DACS_1_0_X_X
X_DACS_1N1_0N0
X_DACS_3_2_1_0
X_DACS_OFF
X_DACS_X_0_X_X
X_DACS_X_X_0_0
X_DACS_X_X_0_X

X_DACS_X_X_0N0
X_DACS_X_X_1_0
X_DACS_X_X_X_0
X_DDS_GOERTZEL_SINC1
X_DDS_GOERTZEL_SINC2
X_IMM_16X2_1DAC2
X_IMM_16X2_2DAC1
X_IMM_16X2_LUT
X_IMM_1X32_4DAC8
X_IMM_2X16_2DAC8
X_IMM_2X16_4DAC4
X_IMM_32X1_1DAC1
X_IMM_32X1_LUT
X_IMM_4X8_1DAC8
X_IMM_4X8_2DAC4
X_IMM_4X8_4DAC2

X_IMM_4X8_LUT
X_IMM_8X4_1DAC4
X_IMM_8X4_2DAC2
X_IMM_8X4_4DAC1
X_IMM_8X4_LUT
X_PINS_OFF
X_PINS_ON
X_RFBYTE_1P_1DAC1
X_RFBYTE_2P_1DAC2
X_RFBYTE_2P_2DAC1
X_RFBYTE_4P_1DAC4
X_RFBYTE_4P_2DAC2
X_RFBYTE_4P_4DAC1
X_RFBYTE_8P_1DAC8
X_RFBYTE_8P_2DAC4
X_RFBYTE_8P_4DAC2

X_RFBYTE_LUMA8
X_RFBYTE_RGB8
X_RFBYTE_RGBI8
X_RFLONG_16X2_LUT
X_RFLONG_32P_4DAC8
X_RFLONG_32X1_LUT
X_RFLONG_4X8_LUT
X_RFLONG_8X4_LUT
X_RFLONG_RGB24
X_RFWORD_16P_2DAC8
X_RFWORD_16P_4DAC4
X_RFWORD_RGB16
X_WRITE_OFF
X_WRITE_ON
XCONT
XINIT

XOR
XORC
XORO32
XORZ
XSTOP
XYPOL
XZERO
YELLOW
ZEROX
ZSTR
ZSTR_

Page 68 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

GENERAL PURPOSE I/O PIN EXCEPTIONS
All Propeller 2 I/O pins (P0–P63 on the P2X8C4M64P) share the same capabilities; however, certain applications
may be sensitive to edge cases noted here. Moving certain functions to other I/O pins in sensitive hardware
designs will resolve the issue.

P58–P63 : upon power-up/reset the pins have the special purpose of detecting the boot up configuration and
communicating with an external flash or SD memory, or with a host system for programming. After boot up, they
become general purpose for the user application (aside from that imposed by any hardware attached to them).
See Boot Up procedure for more information.

P28–P31 use the same internal power rails as the XI/XO pins' clock oscillator circuitry. If P28–P31 transition
simultaneously in fast digital mode, it may cause spikes on the internal power rails which can cause a slow
external crystal edge (on XI) to be registered as multiple edges. To avoid this, either move such functions to other
I/O pins or drive a crisp clock signal into XI (with an external clock oscillator). The P2 Edge Module Rev C
employs the latter solution.

Copyright © Parallax Inc. 2022/11/01 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Page 69

CHANGE LOG
Date Notes

09/09/2021 First public draft release.

10/15/2021 Enhanced Instruction Pipeline diagrams and explanations, and added Wait and Branch examples.

11/01/2022 Added underscore, ALL CAPS and <all_lowercase> to Conventions. Clarified CORDIC Solver result
availability. Clarified System Counter upper and lower usage. Added floating point, sprite, and debug
keyboard and mouse symbols to Propeller 2 Reserved Words.

PARALLAX INCORPORATED
Parallax Inc.
599 Menlo Drive, Suite 100
Rocklin, CA 95765
USA

Office: +1 916-624-8333
Toll Free US: 888-512-1024

sales@parallax.com
support@parallax.com

www.parallax.com/p2
forums.parallax.com

Purchase of the P2X8C4M64P does not include any license to emulate any other device nor to communicate
via any specific proprietary protocol; P2X8C4M64P connectivity objects and code examples provided or
referenced by Parallax, Inc. are NOT licensed and are provided for research and development purposes only;
end users must seek permission to use licensed protocols for their applications and products from the protocol
license holders.

Parallax, Inc. makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Parallax, Inc. assume any liability arising out of the application or
use of any product, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages even if Parallax, Inc. has been advised of the possibility of such damages.

Copyright © 2022 Parallax, Inc. All rights are reserved. Parallax, the Parallax logo, the P2 logo, and Propeller
are trademarks of Parallax, Inc.

Page 70 ▪ Parallax Propeller 2 (P2X8C4M64P) Hardware Manual ▪ Copyright © Parallax Inc. 2022/11/01

mailto:sales@parallax.com
mailto:support@parallax.com
http://www.parallax.com/p2
https://forums.parallax.com

	Untitled
	PREFACE
	CONVENTIONS
	OVERVIEW
	 Specifications
	 Package Description
	 Hardware Connections
	 Operation
	 Boot Up
	 Runtime
	 Shutdown
	 Rebooting
	 Shared Resources
	 System Clock
	 Memory
	COGS (PROCESSORS)
	 Cog Memory
	 Register RAM
	 Lookup RAM
	 Instruction Pipeline
	 Instruction Stages
	 Pipeline
	 Wait (Pipeline Stall)
	 Branch (Pipeline Flush)
	 Execution
	 Register Execution
	 Lookup Execution
	 Hub Execution
	 Starting And Stopping Cogs
	 Cog Attention
	 System Counter
	 Pseudo-Random Number Generator
	HUB
	 Hub RAM
	 Random Access
	 Sequential Access
	 Protected RAM
	 System Clock Configuration
	 PLL Example
	 Locks (Semaphores)
	 CORDIC Solver
	 Multiply
	 Divide
	 Square Root
	 Rotation
	 Cartesian to Polar
	 Polar to Cartesian
	 Integer to Logarithm
	 Logarithm to Integer
	SMART I/O PINS
	 I/O Pin Circuit
	 Direction and State
	 Pin Modes
	 Equivalent Schematics for Each Unique I/O Pin Configuration
	 I/O Pin Timing
	 Smart Modes
	 Smart Pin Off; Default (%00000)
	 DAC Noise (%00001 and DAC_MODE)
	 DAC 16-Bit With Noise Dither (%00010 and DAC_MODE)
	 DAC 16-Bit With PWM dither (%00011 and DAC_MODE)
	 Pulse/Cycle Output (%00100)
	 Transition Output (%00101)
	 NCO Frequency (%00110)
	 NCO Duty (%00111)
	 PWM Triangle (%01000)
	 PWM Sawtooth (%01001)
	 PWM Switch-Mode Power Supply With Voltage And Current Feedback (%01010)
	 A/B-Input Quadrature Encoder (%01011)
	 Count A-Input Positive Edges When B-Input Is High (%01100)
	 Count A-Input Positive Edges; Increment w/B-Input = 1, Decrement w/B-Input = 0 (%01101)
	 Count A-Input Positive Edges (%01110 AND !Y[0])
	 Count A-Input Highs (%01111 AND !Y[0])
	 Time A-Input States (%10000)
	 Time A-Input High States (%10001)
	 Time X A-Input Highs/Rises/Edges (%10010 AND !Y[2])
	 Timeout on X Clocks Of Missing A-Input High/Rise/Edge (%10010 AND Y[2])
	 Count Time For X Periods (%10011)
	 Count Time For Periods In X+ Clock Cycles (%10101)
	 ADC Sample/Filter/Capture, Internally Clocked (%11000)
	 ADC Scope With Trigger (%11010)
	 USB Host/Device (%11011)
	 Synchronous Serial Transmit (%11100)
	 Synchronous Serial Receive (%11101)
	 Asynchronous Serial Transmit (%11110)
	 Asynchronous Serial Receive (%11111)
	HOST COMMUNICATION
	 Download Propeller Application
	 Multiprogramming
	 Loader Parsing Notes
	 Prop_Chk
	 Prop_Clk
	 Prop_Hex
	 Prop_Txt
	 Interactive Mode
	 P2 Monitor
	 TAQOZ
	PROPELLER 2 RESERVED WORDS (SPIN2 + PASM2)
	GENERAL PURPOSE I/O PIN EXCEPTIONS
	CHANGE LOG
	PARALLAX INCORPORATED

