
www.parallax.com/P2 ⬝ sales@parallax.com ⬝ support@parallax.com ⬝ +1 888-512-1024

Propeller 2 Assembly Language
(PASM2) Manual

Nov 1, 2022 Release

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 1

https://www.parallax.com/propeller-2/
mailto:sales@parallax.com


COPYRIGHTS AND TRADEMARKS
This documentation is copyright © 2022 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used with, or with products containing, the Parallax Propeller
2 P2X8C4M64P microcontroller. Any other uses are not permitted and may represent a violation of Parallax
copyrights, legally punishable according to Federal copyright or intellectual property laws. Any duplication of this
documentation for commercial uses is expressly prohibited by Parallax Inc. Duplication for educational use is
permitted, subject to the following Conditions of Duplication: Parallax Inc. grants the user a conditional right to
download, duplicate, and distribute this text without Parallax's permission. This right is based on the following
conditions: the text, or any portion thereof, may not be duplicated for commercial use; it may be duplicated only
for educational purposes when used solely in conjunction with Parallax products, and the user may recover from
the student only the cost of duplication.

Parallax, Propeller Spin, and the Parallax logos are trademarks of Parallax Inc. If you decide to use any trademarks
of Parallax Inc. on your web page or in printed material, you must state that (trademark) is a trademark of Parallax
Inc.” upon the first appearance of the trademark name in each printed document or web page. Other brand and
product names herein are trademarks or registered trademarks of their respective holders.

DISCLAIMER OF LIABILITY
Parallax, Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Parallax, Inc. assume any liability arising out of the application or use of any product,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages
even if Parallax, Inc. has been advised of the possibility of such damages.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax Propeller products, at
forums.parallax.com.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let
us know by commenting/suggesting on live documentation, or by sending an email to editor@parallax.com. We
continually strive to improve all of our educational materials and documentation, and frequently revise our texts.
Occasionally, an errata sheet with a list of known errors and corrections for a given text will be posted to our
website, www.parallax.com. Please check the individual product page’s free downloads for an errata file.

SUPPORTED HARDWARE AND FIRMWARE
This manual is valid with the following hardware and firmware versions:

Hardware Firmware
P2X8C4M64P Rev B/C

CREDITS
Authorship: Jeff Martin • Format & Editing: Stephanie Lindsay • Technical Graphics: Michael Mulholland
With many thanks to everyone in the Propeller Community and staff at Parallax Inc.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 2

https://forums.parallax.com/
https://www.parallax.com


TABLE OF CONTENTS

PREFACE 10

CONVENTIONS 10

ASSEMBLY LANGUAGE REFERENCE 11

Multi-Long ADD/SUB/CMP Operations 11

Adding Two Multi-Long Values 11

Subtracting Two Multi-Long Values 12

Comparing Two Multi-Long Values 14

Categorical Listing Of Propeller 2 Assembly Language 15

Directives 15

Conditions 15

Effects 16

Flag Modification 17

Augmentation 18

Indirection 18

Configuration 18

Cog Control 18

Process Control 18

Flow Control 19

Lookup Table (LUT) Memory Access 19

Hub Memory Access 20

Streamer 20

I/O Pins 20

Math 21

Timing 23

Event Handling 23

Interrupts 25

Bit Operations 25

Color Manipulation 26

Miscellaneous 27

Registers 27

Constants 27

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 3



Operators 28

Assembly Language Elements 29

Term Definitions 29

Opcode Tables 30

Propeller Assembly Instruction Master Table 31

ABS 31

ADD 32

ADDCT1/2/3 32

ADDPIX 33

ADDS 33

ADDSX 34

ADDX 34

AKPIN 35

ALIGNL 35

ALIGNW 36

ALLOWI 38

ALTB 38

ALTD 39

ALTGB 40

ALTGN 41

ALTGW 42

ALTI 43

ALTR 45

ALTS 46

ALTSB 46

ALTSN 47

ALTSW 48

AND / ANDN 49

AUGD 50

AUGS 51

BITC / BITNC 52

BITH / BITL 52

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 4



BITNOT 53

BITRND 54

BITZ / BITNZ 54

BMASK 55

BRK 55

CALL 56

CALLA / CALLB 57

CALLD 58

CALLPA / CALLPB 59

CMP 59

CMPM 60

CMPR 60

CMPS 61

CMPSUB 61

CMPSX 62

CMPX 62

COGATN 63

COGBRK 64

COGID 64

COGINIT 64

COGSTOP 67

Conditions ( IF_x ) 67

DECMOD 69

DECOD 69

DIRC / DIRNC 70

DIRH / DIRL 71

DIRNOT 72

DIRRND 72

DIRZ / DIRNZ 73

DJF / DJNF 74

DJZ / DJNZ 74

DRVC / DRVNC 75

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 5



DRVH / DRVL 76

DRVNOT 77

DRVRND 77

DRVZ / DRVNZ 78

ENCOD 79

Effects ( WC, WZ, WCZ, ANDC, etc. ) 80

FGE 81

FGES 81

FLE 82

FLES 82

FLTC / FLTNC 83

FLTH / FLTL 84

FLTNOT 85

FLTRND 85

FLTZ / FLTNZ 86

GETBYTE 87

GETNIB 88

GETWORD 88

IF_x (Conditions) 89

IJZ / IJNZ 89

INCMOD 89

JATN / JNATN 90

JCT1/2/3 / JNCT1/2/3 91

JFBW / JNFBW 91

JINT / JNINT 92

JPAT / JNPAT 93

JQMT / JNQMT 93

JSE1/2/3/4 / JNSE1/2/3/4 94

JXFI / JNXFI 95

JXMT / JNXMT 95

JXRL / JNXRL 96

JXRO / JNXRO 96

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 6



MODC / MODZ / MODCZ 97

MOV 99

MUL 99

MULS 100

MUXC / MUXNC 100

MUXNIBS 101

MUXNITS 101

MUXQ 101

MUXZ / MUXNZ 102

NEG 102

NEGC 103

NEGNC 103

NEGNZ 104

NEGZ 105

NOP 105

NOT 105

OR 106

ONES 106

OUTC / OUTNC 107

OUTH / OUTL 108

OUTNOT 108

OUTRND 109

OUTZ / OUTNZ 110

POLLATN 111

POLLCT1/2/3 111

POLLFBW 112

POLLINT 112

POLLPAT 113

POLLQMT 113

POLLSE1/2/3/4 114

POLLXFI 114

POLLXMT 115

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 7



POLLXRL 115

POLLXRO 116

RCL 116

RCR 117

RCZL 117

RCZR 118

Registers 118

REV 119

ROL 119

ROLBYTE 119

ROLNIB 120

ROLWORD 121

ROR 121

SAL 122

SAR 122

SCA 123

SCAS 123

SETBYTE 124

SETD 124

SETNIB 125

SETR 126

SETS 126

SETWORD 127

SHL 128

SHR 128

SIGNX 129

STALLI 129

SUB 130

SUBR 130

SUBS 131

SUBSX 131

SUBX 132

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 8



SUMC / SUMNC 132

SUMZ / SUMNZ 133

TEST 134

TESTB / TESTBN 134

TESTN 135

TESTP / TESTPN 136

TJF / TJNF 136

TJS / TJNS 137

TJV 138

TJZ / TJNZ 138

WAITATN 139

WAITCT1/2/3 139

WAITFBW 140

WAITINT 141

WAITPAT 141

WAITSE1/2/3/4 142

WAITXFI 143

WAITXMT 143

WAITXRL 144

WAITXRO 145

WRC / WRNC 145

WRZ / WRNZ 146

XOR 146

ZEROX 146

PROPELLER 2 ASSEMBLY LANGUAGE (PASM2) IN BRIEF 148

PROPELLER 2 RESERVED WORDS (SPIN2 + PASM2) 160

CHANGE LOG 162

PARALLAX INCORPORATED 162

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 9



PREFACE
This guide is an in-depth description of the Propeller 2 PASM2 language (Propeller 2 Assembly Language).  It
serves as a full reference to the language and techniques for its use.

For additional documentation and resources, including programming tools, visit www.parallax.com/P2. The latest
version of this guide, along with links to a commentable Google Doc version, are available from the
Documentation section. In addition, there are links to other references for the Propeller 2 and its Spin2 language,
which may include commentable Google Docs.

CONVENTIONS
● % - indicates a binary number (containing the digits 0 and 1, and underscore "_" characters)

○ ex: %0101 and %11000111
● $ - indicates either a hexadecimal number (containing the digits 0–9, A–F, and underscore "_" characters)

or the current address (the address of the current instruction)
○ ex: $2AF and $0D816
○ ex: $ (in an instruction's destination or source field)

● _ - (underscore) is a visual separator in numbers and in certain symbols.  Occasionally they are used as
the leading or trailing character of a symbol to make it unique while keeping it similar to a same-named
symbol that may already exist, or may be used in a syntax description to separate words of an
all-lowercase phrase meant to be replaced by the reader when typing.  In numbers (i.e. decimal,
hexadecimal, and binary values) they are group indicators that may separate natural boundaries (like
groups of 3 digits in decimal or 8 bits in binary) or may separate context-specific fields of a value (like
smart mode bits and drive level bits in an I/O pin configuration value)

○ ex: %00111010_01011101 and $4C1F_0D816 and 2_328_476
○ ex: <low_byte>  and IF_C_AND_Z and ZSTR_

● x - indicates a group of symbols where the x-part can vary
○ ex: INx means both INA and INB
○ ex: RDxxxx / WRxxx means RDBYTE, RDWORD, etc. and WRBYTE, WRWORD, etc.

-- or --

x - indicates a don't care bit in a binary number (a bit that can be 0 or 1 without affecting the execution
context nor the explanation)

○ ex: %x_1_xxx0 and %xxxx10
● ALL CAPS or ALL_CAPS - indicates the item has special meaning, such as a reference to a label in a

diagram, or a component in the Propeller 2, or is a predefined symbol (reserved word) such as a
command, condition, register name, etc.

● <all_lowercase> - indicates an item meant to be completely replaced by the user when typing code; the
phrase in brackets "<>" describes the intent of the specific item.

● {item} or { item1 | item2 | item3 } - denotes an optional item or items.  Either zero or one of the items can
exist at the noted place; don't type the brackets "{}" or pipe symbol "|".

● item1 | item2 | item3 - denotes a single item, chosen from the list, that must be at the noted place; don't
type the pipe symbol "|".

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 10

http://www.parallax.com/P2


ASSEMBLY LANGUAGE REFERENCE

Multi-Long ADD/SUB/CMP Operations
Many useful integer quantities fit within 32 bits of space (0 to 4,294,967,295 or -2,147,483,648 to +2,147,483,647).
This wide range means the majority of integer add/subtract/compare operations are achieved in just one step
using a single 32-bit signed or unsigned math instruction; a single-long operation.  However, if any such operation
will use or create values larger than 32 bits, multiple math instructions must be chained together to form a
multi-long "extended" operation; two instructions for 64-bits, three instructions for 96-bits, etc.

Adding Two Multi-Long Values
To add two 64-bit values, use an unsigned ADD instruction (regardless of the values' unsigned or signed nature)
followed by either an unsigned-extended ADDX or signed-extended ADDSX instruction, for unsigned or signed
numbers, respectively. If the two values are larger than 64 bits in size (regardless of their signed/unsigned format)
insert one ADDX instruction per extra 32-bits in-between the first and last instruction.

Make sure to also use the WC or WCZ effect on the leading ADD and ADDX instructions so that the final ADDX or
ADDSX instruction works properly.

64-bit Unsigned Add
An unsigned double-long (64-bit) addition looks like this:

add   XLow,  YLow    wcz 'Add low longs; save C (required) and Z (optional)
addx  XHigh, YHigh   wcz 'Add high longs; save C and Z (both optional)

Note: the optional flag effects are only required if the intent is to monitor for zero or an unsigned overflow.

After executing the above, the full double-long (64-bit) result is in the registers XHigh:XLow. If XHigh:XLow started
out as $0000_0000:FFFF_FFFF (4,294,967,295) and YHigh:YLow was $0000_0000:0000_0001 (1), the result in
XHigh:XLow would be $0000_0001:0000_0000 (4,294,967,296). This is demonstrated below.

Hexadecimal                  Decimal
(high)     (low)

(XHigh:XLow)     $0000_0000:FFFF_FFFF           4,294,967,295
+ (YHigh:YLow)   + $0000_0000:0000_0001         +             1

───────────────────        ──────────────
= $0000_0001:0000_0000         = 4,294,967,296

An unsigned triple-long (96-bit) addition would look similar but with another ADDX instruction inserted between
the ADD and ADDX instructions:

add   XLow,  YLow    wcz 'Add low longs; save C (required) and Z (optional)
addx  XMid,  YMid    wcz 'Add middle longs; save C (required) and Z (optional)
addx  XHigh, YHigh   wcz 'Add high longs; save C and Z (both optional)

During this multi-step operation, the Z flag always indicates if the result is turning out to be zero, but the C flag
indicates unsigned carries until the final ADDX instruction, in which it indicates unsigned overflow (if any).

64-bit Signed Add
In comparison to the above, a signed double-long (64-bit) addition uses an ADDSX instead of ADDX as the last
instruction:

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 11



add   XLow,  YLow    wcz 'Add low longs; save C (required) and Z (optional)
addsx XHigh, YHigh   wcz 'Add high longs; save C and Z (both optional)

Note: the optional flag effects are only required if the intent is to monitor for zero or the final sign.

After executing the above, the full double-long (64-bit) result is in the registers XHigh:XLow.  If XHigh:XLow started
out as $0000_0001:0000_0000 (4,294,967,296) and YHigh:YLow was $FFFF_FFFF:FFFF_FFFF (-1), the result in
XHigh:XLow would be $0000_0000:FFFF_FFFF (4,294,967,295). This is demonstrated below.

Hexadecimal                  Decimal
(high)     (low)

(XHigh:XLow)     $0000_0001:0000_0000           4,294,967,296
+ (YHigh:YLow)   + $FFFF_FFFF:FFFF_FFFF         +            -1

───────────────────        ──────────────
= $0000_0000:FFFF_FFFF         = 4,294,967,295

A signed triple-long (96-bit) addition is similar, but with an ADDX instruction inserted between the ADD and ADDSX
instructions:

add   XLow,  YLow    wcz 'Add low longs; save C (required) and Z (optional)
addx  XMid,  YMid    wcz 'Add middle longs; save C (required) and Z (optional)
addsx XHigh, YHigh   wcz 'Add high longs; save C and Z (both optional)

During this multi-step operation, the Z flag always indicates if the result is turning out to be zero, but the C flag
indicates unsigned carries until the final instruction, ADDSX, in which it indicates the final result's sign.

Subtracting Two Multi-Long Values
To subtract two 64-bit values, use an unsigned SUB instruction (regardless of the values' unsigned or signed
nature) followed by either an unsigned-extended SUBX or signed-extended SUBSX instruction, for unsigned or
signed numbers, respectively. If the two values are larger than 64 bits in size (regardless of their signed/unsigned
format) insert one SUBX instruction per extra 32-bits in-between the first and last instruction.

Make sure to also use the WC or WCZ effect on the leading SUB and SUBX instructions so that the final SUBX or
SUBSX instruction works properly.

64-bit Unsigned Subtraction
An unsigned double-long (64-bit) subtraction looks like this:

sub   XLow,  YLow    wcz 'Subtract low longs; save C (required) and Z (optional)
subx  XHigh, YHigh   wcz 'Subtract high longs; save C and Z (both optional)

Note: the optional flag effects are only required if the intent is to monitor for zero or an unsigned underflow.

After executing the above, the full double-long (64-bit) result is in the registers XHigh:XLow. If XHigh:XLow started
out as $0000_0001:0000_0000 (4,294,967,296) and YHigh:YLow was $0000_0000:0000_0001 (1), the result in
XHigh:XLow would be $0000_0000:FFFF_FFFF (4,294,967,295). This is demonstrated below.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 12



Hexadecimal                  Decimal
(high)     (low)

(XHigh:XLow)     $0000_0001:0000_0000           4,294,967,296
- (YHigh:YLow)   - $0000_0000:0000_0001         -             1

───────────────────        ──────────────
= $0000_0000:FFFF_FFFF         = 4,294,967,295

An unsigned triple-long (96-bit) addition is similar, but with another SUBX instruction inserted between the SUB
and SUBX instructions:

sub   XLow,  YLow    wcz 'Subtract low longs; save C (required) and Z (optional)
subx  XMid,  YMid    wcz 'Subtract middle longs; save C (required) and Z (optional)
subx  XHigh, YHigh   wcz 'Subtract high longs; save C and Z (both optional)

During this multi-step operation, the Z flag always indicates if the result is turning out to be zero, but the C flag
indicates unsigned borrows until the final SUBX instruction, in which it indicates unsigned underflow (if any).

64-bit Signed Subtraction
In comparison to the above, a signed double-long (64-bit) subtraction uses a SUBSX instead of SUBX as the last
instruction:

sub   XLow,  YLow    wcz 'Subtract low longs; save C (required) and Z (optional)
subsx XHigh, YHigh   wcz 'Subtract high longs; save C and Z (both optional)

Note: the optional flag effects are only required if the intent is to monitor for zero or the final sign.

After executing the above, the full double-long (64-bit) result is in the registers XHigh:XLow.  If XHigh:XLow started
out as $0000_0000:0000_0001 (1) and YHigh:YLow was $0000_0000:0000_0002 (2), the result in XHigh:XLow
would be $FFFF_FFFF:FFFF_FFFF (-1). This is demonstrated below.

Hexadecimal                  Decimal
(high)     (low)

(XHigh:XLow)     $0000_0000:0000_0001                       1
- (YHigh:YLow)   - $0000_0000:0000_0002         -             2

───────────────────        ──────────────
= $FFFF_FFFF:FFFF_FFFF         =            -1

A signed triple-long (96-bit) subtraction would look similar but with a SUBX instruction inserted between the SUB
and SUBSX instructions:

sub   XLow,  YLow    wcz 'Subtract low longs; save C (required) and Z (optional)
subx  XMid,  YMid    wcz 'Subtract middle longs; save C (required) and Z (optional)
subsx XHigh, YHigh   wcz 'Subtract high longs; save C and Z (both optional)

During this multi-step operation, the Z flag always indicates if the result is turning out to be zero, but the C flag
indicates unsigned borrows until the final instruction, SUBSX, in which it indicates the final result's sign.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 13



Comparing Two Multi-Long Values
The process of comparing multi-long values is similar to subtracting them.  To compare two 64-bit values, use an
unsigned CMP instruction (regardless of their unsigned or signed form) followed by either an unsigned-extended
CMPX or signed-extended CMPSX instruction, for unsigned or signed numbers, respectively. If the two values are
larger than 64 bits in size (regardless of their signed/unsigned format) insert one CMPX instruction per extra 32-bits
in-between the first and last instruction.

Make sure to also use the WC or WCZ effect on the leading CMP and CMPX instructions so the final CMPX or CMPSX
instruction works properly.

64-bit Unsigned Compare
An unsigned double-long (64-bit) compare looks like this:

cmp   XLow,  YLow    wcz 'Compare low longs; save C and Z (required)
cmpx  XHigh, YHigh   wcz 'Compare high longs; save C and Z (required)

Note: both C and Z flags are required to discern the possible outcomes of the comparison; X < Y, X = Y, or X > Y.

After executing the above, the C and Z flags will indicate the relationship between the two unsigned double-long
(64-bit) values.  If XHigh:XLow started as $0000_0001:0000_0000 (4,294,967,296) and YHigh:YLow was
$0000_0000:0000_0001 (1) the resulting flags would be: Z = 0 and C = 0; (X > Y). This is demonstrated below.
Note that the comparison is really just a subtraction with the result not written and the Z and C flags updated.

Hexadecimal                  Decimal           Flags
(high)     (low)

(XHigh:XLow)     $0000_0001:0000_0000           4,294,967,296         n/a
- (YHigh:YLow)   - $0000_0000:0000_0001         -             1         n/a

───────────────────        ──────────────     ───────
= $0000_0000:FFFF_FFFF         = 4,294,967,295      Z=0, C=0

64-bit Signed Compare
In comparison to the above, a signed double-long (64-bit) comparison uses a CMPSX instead of CMPX as the last
instruction:

cmp   XLow,  YLow    wcz 'Compare low longs; save C and Z (required)
cmpsx XHigh, YHigh   wcz 'Compare high longs; save C and Z (required)

Note: both C and Z flags are required to discern the possible outcomes of the comparison; X < Y, X = Y, or X > Y.

After executing the above, the C and Z flags indicate the relationship between the two signed double-long (64-bit)
values.  If XHigh:XLow started as $FFFF_FFFF:FFFF_FFFF (-1) and YHigh:YLow was $0000_0000:0000_0001 (1)
the resulting flags would be: Z = 0 and C = 1; (Value1 < Value2). This is demonstrated below.  Note that the
comparison is really just a subtraction with the result not written and the Z and C flags updated.

Hexadecimal                  Decimal           Flags
(high)     (low)

(XHigh:XLow)     $FFFF_FFFF:FFFF_FFFF                      -1         n/a
- (YHigh:YLow)   - $0000_0000:0000_0001         -             1         n/a

───────────────────        ──────────────     ───────
= $FFFF_FFFF:FFFF_FFFE         =            -2      Z=0, C=1

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 14



A signed triple-long (96-bit) comparison would look similar but with a CMPX  instruction inserted between the
CMP and CMPSX instructions:

cmp   XLow,  YLow    wcz 'Compare low longs; save C and Z (required)
cmpx  XMid,  YMid    wcz 'Compare middle longs; save C and Z (required)
cmpsx XHigh, YHigh   wcz 'Compare high longs; save C and Z (required)

Categorical Listing Of Propeller 2 Assembly Language
The following is a list of all elements of the PASM2 language grouped by category and ordered by type or
frequency-of-use within each category.

Directives
PASM2 directives instruct the compiler how to configure assembly code.

ALIGNW Align to next word in Hub
ALIGNL Align to next long in Hub
BYTE Insert byte data
WORD Insert word data
LONG Insert long data
ORG Set code for Cog RAM
ORGH Set code for Hub RAM
ORGF Fill Cog RAM with zeros
FIT Validate that code fits within Cog RAM or Hub RAM
RES Reserve long registers for symbol

Conditions
Conditions are placed in front of instructions ( {Label}  {Condition}  Instruction  Operands  {Effect} ) to
conditionally execute or exclude that instruction based on flag settings at runtime.  Conditions are optional;
omitting the condition means "always execute" the instruction (the default behavior).

IF_E If comparison/subtraction was equal (Z = 1)
IF_NE If comparison/subtraction was not equal (Z = 0)
IF_A If comparison/subtraction was above (C = 0 and Z = 0)
IF_AE If comparison/subtraction was above or equal (C = 0)
IF_B If comparison/subtraction was below (C = 1)
IF_BE If comparison/subtraction was below or equal (C = 1 or Z = 1)
IF_GT If comparison/subtraction was greater than (C = 0 and Z = 0)
IF_GE If comparison/subtraction was greater than or equal (C = 0)
IF_LT If comparison/subtraction was less than (C = 1)
IF_LE If comparison/subtraction was less than or equal (C = 1 or Z = 1)
IF_C If C set (C = 1)
IF_NC If C clear (C = 0)
IF_Z If Z set (Z = 1)
IF_NZ If Z clear (Z = 0)
IF_C_EQ_Z If C equal to Z (C = 0 and Z = 0 --or-- C = 1 and Z = 1)
IF_C_NE_Z If C not equal to Z (C = 0 and Z = 1 --or-- C = 1 and Z = 0)
IF_C_AND_Z If C set and Z set (C = 1 and Z = 1)
IF_C_AND_NZ If C set and Z clear (C = 1 and Z = 0)
IF_NC_AND_Z If C clear and Z set (C = 0 and Z = 1)

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 15



IF_NC_AND_NZ If C clear and Z clear (C = 0 and Z = 0)
IF_C_OR_Z If C set or Z set (C = 1 or Z = 1)
IF_C_OR_NZ If C set or Z clear (C = 1 or Z = 0)
IF_NC_OR_Z If C clear or Z set (C = 0 or Z = 1)
IF_NC_OR_NZ If C clear or Z clear (C = 1 or Z = 0)
IF_Z_EQ_C If Z equal to C (Z = 0 and C = 0 --or-- Z = 1 and C = 1)
IF_Z_NE_C If Z not equal to C (Z = 0 and C = 1 --or-- Z = 1 and C = 0)
IF_Z_AND_C If Z set and C set (Z = 1 and C = 1)
IF_Z_AND_NC If Z set and C clear (Z = 1 and C = 0)
IF_NZ_AND_C If Z clear and C set (Z = 0 and C = 1)
IF_NZ_AND_NC If Z clear and C clear (Z = 0 and C = 0)
IF_Z_OR_C If Z set or C set (Z = 1 or C = 1)
IF_Z_OR_NC If Z set or C clear (Z = 1 or C = 0)
IF_NZ_OR_C If Z clear or C set (Z = 0 or C = 1)
IF_NZ_OR_NC If Z clear or C clear (Z = 0 or C = 0)
IF_00 If C clear and Z clear (C = 0 and Z = 0)
IF_01 If C clear and Z set (C = 0 and Z = 1)
IF_10 If C set and Z clear (C = 1 and Z = 0)
IF_11 If C set and Z set (C = 1 and Z = 1)
IF_X0 If Z clear (Z = 0)
IF_X1 If Z set (Z = 1)
IF_0X If C clear (C = 0)
IF_1X If C set (C = 1)
IF_NOT_00 If C clear and Z clear (C = 0 and Z = 0)
IF_NOT_01 If C set or Z clear (C = 1 or Z = 0)
IF_NOT_10 If C clear or Z set (C = 0 or Z = 1)
IF_NOT_11 If C clear or Z clear (C = 0 or Z = 0)
IF_DIFF If C not equal to Z (C = 0 and Z = 1 --or-- C = 1 and Z = 0)
IF_SAME If C equal to Z (C = 0 and Z = 0 --or-- C = 1 and Z = 1)
_RET_ Always execute instruction then return if no branch; no context restore

Effects
Nearly half of PASM2 instructions feature optional effects to modify the C and/or Z flags.  Effects are placed at
the end of such instructions ( {Label}  {Condition}  Instruction  Operands  {Effect} ) to affect flags, or omitted to
leave flags as-is.

ANDC AND tested bit/pin into current C
ANDZ AND tested bit/pin into current Z
ORC OR tested bit/pin into current C
ORZ OR tested bit/pin into current Z
XORC XOR tested bit/pin into current C
XORZ XOR tested bit/pin into current Z
WC Write C flag
WCZ Write both C and Z flags
WZ Write Z flag

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 16



Flag Modification
Flag Modification commands (MODxx) alter the state of the C and/or Z flag according to the given modifier
( {Label}  {Condition}  MOD_Instruction  Modifier  {Effect} ).

MOD_Instruction
MODC Modify C according to modifier
MODZ Modify Z according to modifier
MODCZ Modify C and Z according to modifier

Modifier
_CLR Clear C/Z (C == 0 and/or Z == 0)
_E Set C/Z if comparison/subtraction was equal (C == Z and/or Z == Z)
_NE Set C/Z if comparison/subtraction was not equal (C == !Z and/or Z == !Z)
_GT Set C/Z if comparison/subtraction was greater than (C == !C AND !Z and/or Z == !C AND !Z)
_GE Set C/Z if comparison/subtraction was greater than or equal (C == !C and/or Z == !C)
_LT Set C/Z if comparison/subtraction was less than (C == C and/or Z == C)
_LE Set C/Z if comparison/subtraction was less than or equal (C == C OR Z and/or Z == C OR Z)
_C Set C/Z to C (C == C and/or Z == C)
_NC Set C/Z to inverse of C (C == !C and/or Z == !C)
_Z Set C/Z to Z (C == Z and/or Z == Z)
_NZ Set C/Z to inverse of Z (C == !Z and/or Z == !Z)
_C_EQ_Z Set C/Z if C equal to Z (C == C = Z and/or Z == C = Z)
_C_NE_Z Set C/Z if C not equal to Z (C == C <> Z and/or Z == C <> Z)
_C_AND_Z Set C/Z to C AND Z (C == C AND Z and/or Z == C AND Z)
_C_AND_NZ Set C/Z to C AND NOT Z (C == C AND !Z and/or Z == C AND !Z)
_NC_AND_Z Set C/Z to NOT C AND Z (C == !C AND Z and/or Z == !C AND Z)
_NC_AND_NZ Set C/Z to NOT C AND NOT Z (C == !C AND !Z and/or Z == !C AND !Z)
_C_OR_Z Set C/Z to C OR Z (C == C OR Z and/or Z == C OR Z)
_C_OR_NZ Set C/Z to C OR NOT Z (C == C OR !Z and/or Z == C OR !Z)
_NC_OR_Z Set C/Z to NOT C OR Z (C == !C OR Z and/or Z == !C OR Z)
_NC_OR_NZ Set C/Z to NOT C OR NOT Z (C == !C OR !Z and/or Z == !C OR !Z)
_Z_EQ_C Set C/Z if Z equal to C (C == Z = C and/or Z == Z = C)
_Z_NE_C Set C/Z if Z not equal to C (C == Z <> C and/or Z == Z <> C)
_Z_AND_C Set C/Z to Z AND C (C == Z AND C and/or Z == Z AND C)
_Z_AND_NC Set C/Z to Z AND NOT C (C == Z AND !C and/or Z == Z AND !C)
_NZ_AND_C Set C/Z to NOT Z AND C (C == !Z AND C and/or Z == !Z AND C)
_NZ_AND_NC Set C/Z to NOT Z AND NOT C (C == !Z AND !C and/or Z == !Z AND !C)
_Z_OR_C Set C/Z to Z OR C (C == Z OR C and/or Z == Z OR C)
_Z_OR_NC Set C/Z to Z OR NOT C (C == Z OR !C and/or Z == Z OR !C)
_NZ_OR_C Set C/Z to NOT Z OR C (C == !Z OR C and/or Z == !Z OR C)
_NZ_OR_NC Set C/Z to NOT Z OR NOT C (C == !Z OR !C and/or Z == !Z OR !C)
_SET Set C/Z (C == 1 and/or Z == 1)

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 17



Augmentation
Augmentation instructions change or enhance the next instruction's behavior.

SETQ Set Q register for companion instruction
SETQ2 Set Q register for LUT RAM companion instruction
AUGS Augment next literal Src to 32-bits
AUGD Augment next literal Dest to 32-bits

Indirection
Indirection instructions modify the next instruction's target addresses.

ALTB Alter subsequent BITxxx instruction
ALTSN Alter subsequent SETNIB instruction
ALTGN Alter subsequent GETNIB / ROLNIB instruction
ALTSB Alter subsequent SETBYTE instruction
ALTGB Alter subsequent GETBYTE / ROLBYTE instruction
ALTSW Alter subsequent SETWORD instruction
ALTGW Alter subsequent GETWORD / ROLWORD instruction
ALTD Alter D field of next instruction
ALTS Alter S field of next instruction
ALTR Alter Result register address of next instruction
SETD Set template D field for ALTI
SETS Set template S field for ALTI
SETR Set template Result field for ALTI
ALTI Substitute next instruction's field values from template, per configuration

Configuration
The HUBSET configuration instruction sets clock, write-protect, debug, filter, and PRNG configuration or initiates a
software reset of the Propeller.

HUBSET Set global configuration, or software reset

Cog Control
Cog control instructions monitor or alter current cog activity.

COGID Get current cog’s ID or any cog's status by ID
COGINIT Start an available cog, or restart a cog by ID
COGSTOP Stop a cog by ID

Process Control
Process control instructions coordinate exclusive actions between multiple cogs.  See also the Event Handling
instructions like xxxATN and xxxSE1.

LOCKNEW Request a new lock
LOCKRET Return a lock
LOCKTRY Attempt ownership of a lock
LOCKREL Release ownership of a lock

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 18



Flow Control
Flow control instructions direct execution to another part of the application.  They are used for looping,
subroutine, interrupt, or instruction skipping purposes.  Also see the Event Handling > Branch category for
event-based flow control.

CALL Call a subroutine; store return context on the stack
CALLA Call a subroutine; store return context in the Hub long at PTRA++
CALLB Call a subroutine; store return context in the Hub long at PTRB++
CALLD Call a subroutine; store return context in PA/PB/PTRA/PTRB/D
CALLPA Call a subroutine; store return context on the stack and copy D into PA
CALLPB Call a subroutine; store return context on the stack and copy D into PB
RET Return from subroutine by popping stack; optional context restore
RETA Return from subroutine by reading Hub long at --PTRA; restore context
RETB Return from subroutine by reading Hub long at --PTRB; restore context
JMP Jump
JMPREL Jump relative (forward/back)
DJZ Decrement value and jump if zero
DJNZ Decrement value and jump if not zero
DJF Decrement value and jump if full (-1; $FFFF_FFFF)
DJNF Decrement value and jump if not full (<> -1; <> $FFFF_FFFF)
IJZ Increment value and jump if zero
IJNZ Increment value and jump if not zero
TJZ Test value and jump if zero
TJNZ Test value and jump if not zero
TJF Test value and jump if full (-1; $FFFF_FFFF)
TJNF Test value and jump if not full (<> -1; <> $FFFF_FFFF)
TJS Test value and jump if signed
TJNS Test value and jump if not signed
TJV Test value and jump if overflowed
REP Repeat next instructions
SKIP Skip next instructions by pattern
SKIPF Skip next instructions fast by pattern
EXECF Execute fast; jump to Cog RAM and set SKIPF pattern
RETI0 Return from interrupt 0
RETI1 Return from interrupt 1
RETI2 Return from interrupt 2
RETI3 Return from interrupt 3
RESI0 Resume from interrupt 0
RESI1 Resume from interrupt 1
RESI2 Resume from interrupt 2
RESI3 Resume from interrupt 3

Lookup Table (LUT) Memory Access
Instructions that manipulate or share the cog's Lookup RAM.

RDLUT Read long from Lookup RAM
WRLUT Write long to Lookup RAM
SETLUTS Enable/disable Lookup RAM sharing

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 19



Hub Memory Access
Instructions for manipulating Hub RAM.

Random Access
RDBYTE Read byte of Hub RAM
RDWORD Read word of Hub RAM
RDLONG Read long of Hub RAM
WRBYTE Write byte to Hub RAM
WRWORD Write word to Hub RAM
WRLONG Write long to Hub RAM
WMLONG Write non-zero bytes of long to Hub RAM
PUSHA Write long to Hub RAM at PTRA++
PUSHB Write long to Hub RAM at PTRB++
POPA Read long of Hub RAM at --PRTA
POPB Read long of Hub RAM at --PRTB

FIFO Access
GETPTR Get current FIFO Hub pointer
RDFAST Start new fast FIFO Hub read
WRFAST Start new fast FIFO Hub write
FBLOCK Set next block for FIFO
RFBYTE Read next byte from FIFO
RFWORD Read next word from FIFO
RFLONG Read next long from FIFO
WFBYTE Write next byte to FIFO
WFWORD Write next word to FIFO
WFLONG Write next long to FIFO
RFVAR Read variable-size (1 to 4 byte) value from FIFO
RFVARS Read variable-size (1 to 4 byte) sign-extended value from FIFO

Streamer
Instructions to manipulate the cog's streamer.

SETXFRQ Set streamer NCO frequency
XINIT Issue streamer command immediately and zero the phase
XSTOP Stop streamer immediately
XZERO Buffer new streamer command; issued on final NCO rollover and zero the phase
XCONT Buffer new streamer command; issued on final NCO rollover and continue the phase
GETXACC Get the streamer's Goertzel accumulator results and clear the accumulators

I/O Pins
Instructions for manipulating Core and Smart I/O pin features.  In addition to these instructions, the DIRA / DIRB /
OUTA / OUTB / INA / INB registers may be used as operands of instructions to affect or read I/O pins.

Core Logic
DIRL Set pin(s) direction to input (0)
DIRH Set pin(s) direction to output (1)
DIRC Set pin(s) direction to input/output according to C
DIRNC Set pin(s) direction to input/output according to !C

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 20



DIRZ Set pin(s) direction to input/output according to Z
DIRNZ Set pin(s) direction to input/output according to !Z
DIRRND Set pin(s) direction to random input/output
DIRNOT Toggle pin(s) to the opposite direction
OUTL Set pin(s) output level low (0)
OUTH Set pin(s) output level high (1)
OUTC Set pin(s) output level to low/high according to C
OUTNC Set pin(s) output level to low/high according to !C
OUTZ Set pin(s) output level to low/high according to Z
OUTNZ Set pin(s) output level to low/high according to !Z
OUTRND Set pin(s) output level to random low/high
OUTNOT Toggle pin(s) to the opposite output level
DRVL Set pin(s) direction to output and output level low (0)
DRVH Set pin(s) direction to output and output level high (1)
DRVC Set pin(s) direction to output and output level to low/high according to C
DRVNC Set pin(s) direction to output and output level to low/high according to !C
DRVZ Set pin(s) direction to output and output level to low/high according to Z
DRVNZ Set pin(s) direction to output and output level to low/high according to !Z
DRVRND Set pin(s) direction to output and output level to random low/high
DRVNOT Set pin(s) direction to output and toggle to the opposite output level
FLTL Set pin(s) direction to input and to an output level of low (0)
FLTH Set pin(s) direction to input and to an output level of high (1)
FLTC Set pin(s) direction to input and to an output level of low/high according to C
FLTNC Set pin(s) direction to input and to an output level of low/high according to !C
FLTZ Set pin(s) direction to input and to an output level of low/high according to Z
FLTNZ Set pin(s) direction to input and to an output level of low/high according to !Z
FLTRND Set pin(s) direction to input and to an output level of random low/high
FLTNOT Set pin(s) direction to input and toggle to the opposite output level
TESTP Test pin and either store, AND, OR, or XOR the result into C/Z
TESTPN Test pin and either store, AND, OR, or XOR inverse result into C/Z

Smart Logic
AKPIN Acknowledge smart pin(s)
RQPIN Read smart pin result and mode flag; no acknowledge (quiet)
RDPIN Read smart pin result and mode flag, then acknowledge
WRPIN Set smart pin(s) mode and acknowledge
WXPIN Set smart pin(s) "X" value and acknowledge
WYPIN Set smart pin(s) "Y" value and acknowledge
SETDACS Set smart pin digital to analog converters (DACs)
SETSCP Enable/disable four-channel oscilloscope pins
GETSCP Get four-channel oscilloscope samples

Math
ALU circuit and CORDIC Solver math instructions.  The ALU (Arithmetic Logic Unit) instructions perform common
math operations in just 2 clock cycles each.  The CORDIC (COordinate Rotation DIgital Computer) instructions
perform more complicated math operations in 54 clock cycles each.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 21



ALU Circuit
ABS Get the absolute value of a number
NEG Negate a value
NEGC Negate value according to C
NEGNC Negate value according to !C
NEGZ Negate value according to Z
NEGNZ Negate value according to !Z
ZEROX Zero-extend value beyond designated bit
SIGNX Sign-extend value beyond designated bit
FGE Force unsigned value to be greater than or equal to another
FGES Force signed value to be greater than or equal to another
FLE Force unsigned value to be less than or equal to another
FLES Force signed value to be less than or equal to another
SUMC Adjust signed value by other C-negated value
SUMNC Adjust signed value by other !C-negated value
SUMZ Adjust signed value by other Z-negated value
SUMNZ Adjust signed value by other !Z-negated value
ADD Add two unsigned values
ADDX Add two unsigned extended values
ADDS Add two signed values
ADDSX Add two signed extended values
INCMOD Increment with modulus
DECMOD Decrement with modulus
SUB Subtract one unsigned value from another
SUBX Subtract one unsigned extended value from another
SUBS Subtract one signed value from another
SUBSX Subtract one signed extended value from another
SUBR Subtract one unsigned value from another (in reverse order to SUB)
CMPSUB Compare two unsigned values and subtract the second if it is lesser or equal
MUL Multiply unsigned 16-bit x 16-bit values
MULS Multiply signed 16-bit x 16-bit values
SHL Multiply 32-bit integer by power-of-two (shift left)
SHR Divide unsigned 32-bit integer by power-of-two (shift right)
SAR Divide signed 32-bit integer by power-of-two (shift arithmetic right)
SCA Create unsigned 16-bit scale value for next instruction's S value
SCAS Create signed 18-bit scale value for next instruction's S value
CMP Compare two unsigned values
CMPX Compare two unsigned values plus carry flag
CMPS Compare two signed values
CMPSX Compare two signed values plus carry flag
CMPR Compare two unsigned values (in reverse order to CMP)
CMPM Compare two unsigned values, get MSB of difference

CORDIC Solver
QLOG Start CORDIC number-to-logarithm conversion
QEXP Start CORDIC logarithm-to-number conversion

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 22



QMUL Start CORDIC unsigned multiplication
QDIV Start CORDIC unsigned division
QFRAC Start CORDIC unsigned division
QSQRT Start CORDIC square root
QROTATE Start CORDIC rotation or polar-to-cartesian conversion
QVECTOR Start CORDIC cartesian-to-polar conversion
GETQX Get lower long, quotient, root, X, length, logarithm, or integer CORDIC result
GETQY Get upper long, remainder, Y, or angle CORDIC result

Timing
Instructions to retrieve the current clock value or wait for a future clock value.  Also see xxxCT event instructions
for handling timed events.

GETCT Get lower/upper 32-bits of System Counter
WAITX Wait for fixed or range-limited random number of clocks

Event Handling
Event instructions create, configure, monitor, or branch on various events.

Create/Configure
COGATN Strobe the attention signal of one or more cogs
ADDCT1 Set counter event 1 trigger time
ADDCT2 Set counter event 2 trigger time
ADDCT3 Set counter event 3 trigger time
SETPAT Set pin pattern event
SETSE1 Set selectable event 1 configuration
SETSE2 Set selectable event 2 configuration
SETSE3 Set selectable event 3 configuration
SETSE4 Set selectable event 4 configuration

Monitor
POLLATN Retrieve and clear attention flag
POLLCT1 Retrieve and clear counter event 1 flag
POLLCT2 Retrieve and clear counter event 2 flag
POLLCT3 Retrieve and clear counter event 3 flag
POLLFBW Retrieve and clear FIFO-interface-block-wrap event flag
POLLINT Retrieve and clear interrupt-occurred event flag
POLLPAT Retrieve and clear pin-pattern-detected event flag
POLLQMT Retrieve and clear CORDIC-read-but-empty event flag
POLLSE1 Retrieve and clear selectable event 1 flag
POLLSE2 Retrieve and clear selectable event 2 flag
POLLSE3 Retrieve and clear selectable event 3 flag
POLLSE4 Retrieve and clear selectable event 4 flag
POLLXMT Retrieve and clear streamer-empty event flag
POLLXFI Retrieve and clear streamer-finished event flag
POLLXRO Retrieve and clear streamer-NCO-rollover event flag
POLLXRL Retrieve and clear streamer-LUT-RAM-rollover event flag
WAITATN Wait for and clear attention flag
WAITCT1 Wait for and clear counter event 1 flag

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 23



WAITCT2 Wait for and clear counter event 2 flag
WAITCT3 Wait for and clear counter event 3 flag
WAITFBW Wait for and clear FIFO-interface-block-wrap event flag
WAITINT Wait for and clear interrupt-occurred event flag
WAITPAT Wait for and clear pin-pattern-detected event flag
WAITSE1 Wait for and clear selectable event 1 flag
WAITSE2 Wait for and clear selectable event 2 flag
WAITSE3 Wait for and clear selectable event 3 flag
WAITSE4 Wait for and clear selectable event 4 flag
WAITXMT Wait for and clear streamer-empty event flag
WAITXFI Wait for and clear streamer-finished event flag
WAITXRO Wait for and clear streamer-NCO-rollover event flag
WAITXRL Wait for and clear streamer-LUT-RAM-rollover event flag

Branch
JATN Jump if attention flag set
JNATN Jump if attention flag clear
JCT1 Jump if counter 1 event flag set
JNCT1 Jump if counter 1 event flag clear
JCT2 Jump if counter 2 event flag set
JNCT2 Jump if counter 2 event flag clear
JCT3 Jump if counter 3 event flag set
JNCT3 Jump if counter 3 event flag clear
JFBW Jump if FIFO interface block wrap event flag set
JNFBW Jump if FIFO interface block wrap event flag clear
JINT Jump if interrupt-occurred event flag set
JNINT Jump if interrupt-occurred event flag clear
JPAT Jump if pin pattern event flag set
JNPAT Jump if pin pattern event flag clear
JSE1 Jump if selectable event 1 flag set
JNSE1 Jump if selectable event 1 flag clear
JSE2 Jump if selectable event 2 flag set
JNSE2 Jump if selectable event 2 flag clear
JSE3 Jump if selectable event 3 flag set
JNSE3 Jump if selectable event 3 flag clear
JSE4 Jump if selectable event 4 flag set
JNSE4 Jump if selectable event 4 flag clear
JQMT Jump if CORDIC-read-but-empty event flag set
JNQMT Jump if CORDIC-read-but-empty event flag clear
JXMT Jump if streamer empty event flag set
JNXMT Jump if streamer empty event flag clear
JXFI Jump if streamer finished event flag set
JNXFI Jump if streamer finished event flag clear
JXRO Jump if streamer NCO rollover event flag set
JNXRO Jump if streamer NCO rollover event flag clear
JXRL Jump if streamer LUT RAM rollover event flag set
JNXRL Jump if streamer LUT RAM rollover event flag clear

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 24



Interrupts
Instructions to manage interrupts.

ALLOWI Allow interrupts (default)
STALLI Stall Interrupts
TRGINT1 Trigger interrupt 1; regardless of STALLI mode
TRGINT2 Trigger interrupt 2; regardless of STALLI mode
TRGINT3 Trigger interrupt 3; regardless of STALLI mode
NIXINT1 Cancel interrupt 1
NIXINT2 Cancel interrupt 2
NIXINT3 Cancel interrupt 3
SETINT1 Set interrupt 1 source
SETINT2 Set interrupt 2 source
SETINT3 Set interrupt 3 source
BRK Trigger breakpoint in current cog
COGBRK Trigger breakpoint in specified cog
GETBRK Get breakpoint and cog status

Bit Operations
Bit manipulation instructions.

AND Bitwise AND two values
ANDN Bitwise AND a value with the NOT of another
OR Bitwise OR two values
XOR Bitwise XOR two values
NOT Bitwise NOT a value
REV Reverse bits of value
SHR Shift bits right
SHL Shift bits left
SAR Shift bits right, extending the MSB
SAL Shift bits left, extending the LSB
ROR Rotate bits right
ROL Rotate bits left
RCR Rotate carry flag right into value
RCL Rotate carry flag left into value
RCZR Rotate carry and zero flags right (2-bit rotate right)
RCZL Rotate carry and zero flags left (2-bit rotate left)
BITL Set bit(s) low (0)
BITH Set bit(s) high (1)
BITC Set bit(s) low/high according to C
BITNC Set bit(s) low/high according to !C
BITZ Set bit(s) low/high according to Z
BITNZ Set bit(s) low/high according to !Z
BITRND Set bit(s) random low/high
BITNOT Toggle bit(s) to opposite state
MUXC Set discrete bits to C
MUXNC Set discrete bits to !C
MUXZ Set discrete bits to Z

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 25



MUXNZ Set discrete bits to !Z
MUXNITS Set discrete bit pairs of a value to non-zero bit pair states of another
MUXNIBS Set discrete nibbles of a value to non-zero nibble states of another
MUXQ Set discrete bits of a value to that of another
WRC Write C to register
WRNC Write !C to register
WRZ Write Z to register
WRNZ Write !Z to register
TESTB Test bit of D and either store, AND, OR, or XOR the result into flags
TESTBN Test bit of !D and either store, AND, OR, or XOR the result into flags
TEST Test D, or bitwise AND D with S, to affect flags only
TESTN Test D by bitwise ANDing with !S to affect flags only
GETNIB Get a nibble from a value
GETBYTE Get a byte from a value
GETWORD Get a word from a value
SETNIB Set a nibble to new value
SETBYTE Set a byte to new value
SETWORD Set a word to new value
ROLNIB Rotate a nibble left into a value
ROLBYTE Rotate a byte left into a value
ROLWORD Rotate a word left into a value
MOV Move a value to a register
MOVBYTS Move bytes within D, described by S
ENCOD Get bit position of top-most 1 of Src or Dest into Dest
DECOD Decode value (0—31) into single-high-bit long
BMASK Get 1..32-bit mask into Dest
ONES Get number of 1s from Dest or Src into Dest
RGBSQZ Squeeze 8:8:8 RGB value into word
RGBEXP Squeeze word RGB value into 8:8:8
SPLITB Split every 4th bit of D into bytes
MERGEB Merge bits of bytes in D
SPLITW Split odd/even bits of D into words
MERGEW Merge bits of words in D
SEUSSF Forward relocate and periodically invert bits within D
SEUSSR Reverse relocate and periodically invert bits within D

Color Manipulation
Color value mixing and control instructions.

Pixel Mixer
ADDPIX Add RGB colors with full saturation
MULPIX Multiply colors ($00—$FF = 0.0—1.0)
BLNPIX Alpha-blend colors using SETPIV value
MIXPIX Mix colors using SETPIX and SETPIV values
SETPIV Set blend factor for BLNPIX / MIXPIX
SETPIX Set mode for MIXPIX

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 26



Color Space Converter
SETCY Set colorspace luma (Y) value
SETCI Set colorspace chrominance in-phase (I) value
SETCQ Set colorspace chrominance quadrature (Q) value
SETCFRQ Set colorspace frequency
SETCMOD Set colorspace mode

Miscellaneous
Miscellaneous instructions.

GETRND Get Xoroshiro128** random value
XORO32 Create Xoroshiro32+ random value from D and store in next instruction's S value
CRCBIT Iterate CRC value with 1-bit injection against 32-bit polynomial
CRCNIB Iterate CRC value with 4-bit injection against 32-bit polynomial
PUSH Place value onto hardware stack
POP Remove value from hardware stack
LOC Create relative or absolutable address for relocatable code
NOP No operation, just elapse two cycles

Registers
Special register symbols for direct feature access.

DIRA Output enables for P31..P0
DIRB Output enables for P63..P32
OUTA Output states for P31..P0
OUTB Output states for P63..P32
INA Input states for P31..P0
INB Input states for P63..P32
PA CALLD-imm return, CALLPA parameter, or LOC address
PB CALLD-imm return, CALLPB parameter, or LOC address
PTRA Pointer A to Hub RAM
PTRB Pointer B to Hub RAM
IJMP1 Interrupt call address for INT1
IJMP2 Interrupt call address for INT2
IJMP3 Interrupt call address for INT3
IRET1 Interrupt return address for INT1
IRET2 Interrupt return address for INT2
IRET3 Interrupt return address for INT3
PR0..PR7 PASM2 to Spin2 shared registers

Constants
Constants that represent special numeric values and modes.

Numerics
TRUE Logical true: -1 ($FFFFFFFF)
FALSE Logical false: 0 ($00000000)
POSX Maximum positive integer: 2,147,483,647 ($7FFFFFFF)
NEGX Maximum negative integer: -2,147,483,648 ($80000000)
PI Floating-point value for PI: ~3.141593 ($40490FDB)

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 27



Cog Initialization
COGEXEC Start a cog by ID in Cog Execution mode
COGEXEC_NEW Start the next available cog in Cog Execution mode
COGEXEC_NEW_PAIR Start the next available cog pair in Cog Execution mode with LUT RAM sharing
HUBEXEC Start a cog by ID in Hub Execution mode
HUBEXEC_NEW Start the next available cog in Hub Execution mode
HUBEXEC_NEW_PAIR Start the next available cog pair in Hub Execution mode with LUT RAM sharing

Smart Pins
P_ADC..P_XOR_AB 116 smart pin mode constants for WRPIN instruction

Streamer
X_16P_2DAC8_WFWORD..
X_WRITE_ON 78 streamer mode constants for XINIT / XZERO / XCONT instructions

Event/Interrupt
EVENT_ATN..INT_OFF 17 event/interrupt mode constants for SETINTx and GETBRK instructions

Operators
Operators for constant-expressions in PASM2 operands.

Unary
! Bitwise: NOT
+ Positive (+X) unary form of Add
- Negate (−X); unary form of Subtract

Binary
>> Bitwise: Shift right
<< Bitwise: Shift left
& Bitwise: AND
| Bitwise: OR
^ Bitwise: XOR
+ Add
- Subtract
* Multiply and return lower 32 bits (signed)
/ Divide and return quotient (signed)
+/ Divide and return quotient (unsigned)
// Divide and return remainder (signed)
+// Divide and return remainder (unsigned)
#> Limit minimum (signed)
<# Limit maximum (signed)
< Boolean: Is less than (signed)
+< Boolean: Is less than (unsigned)
> Boolean: Is greater than (signed)
+> Boolean: Is greater than (unsigned)
<= Boolean: Is less than or equal (signed)
+<= Boolean: Is less than or equal (unsigned)
>= Boolean: Is greater than or equal (signed)
+>= Boolean: Is greater than or equal (unsigned)

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 28



== Boolean: Is equal
<> Boolean: Is not equal
!! Boolean: NOT
&& Boolean: AND
|| Boolean: OR
^^ Boolean: XOR
<=> Signed comparison (<, =, > returns -1, 0, 1)

Ternary
? : Ternary: return 2nd or 3rd value based on 1st

Assembly Language Elements

Term Definitions
The Propeller 2 Assembly Language syntax, tables, and descriptions use the following terms extensively.

A / Addr: A 20-bit relative or absolute value used to change PC (the program counter).

C / Carry Flag: A 1-bit persistent "flag" value representing a special state prior to or after an instruction executes.
The C flag is traditionally output by a processor's adder circuit (ALU) to indicate that the previous mathematical
operation resulted in a "carry" or a "borrow."  In addition to this use, the Propeller has many instruction-specific
meanings for the C flag (both for instruction input and output).  When C appears in an instruction opcode, it
indicates that it optionally writes to the C flag at the end of its execution, governed by the WC or WCZ effect.

D / Dest / Destination: The target register that an instruction ultimately affects.  Usually the Destination operand is
a 9-bit register address, but may be a 32-bit augmented value (a 9-bit value extended to 32-bits by a previous
AUGD instruction).  Often the value in the Destination register is read, manipulated, and overwritten by the
execution of the instruction.  The final value is also referred to as Result (or R).  Some instructions use Destination
for both the source value and the result's landing place.

H / Hub Long: Hub RAM long (4 bytes) used to store subroutine calling context states (C and Z flags and return
address).

I: Immediate "literal" flag.  1 = Src operand value is an immediate (literal) value; 0 = Src operand value is a register
address.

K / Stack: The 8-level hardware stack used for subroutine calls (stores C, Z, and PC) and temporary 32-bit
push/pop storage.

L: Literal flag.  1 = Dest operand value is a literal (immediate) value; 0 = Dest operand value is a register address.

N: Index number.  0–1, 0–3, or 0–7 = An index value for instructions with a third operand.

PC: Program counter that determines the next instruction to be read by the cog's pipeline.  This is a hidden,
dedicated register whose value automatically increments by 1 or 4 (Cog/LUT execution or Hub execution) unless
altered by a branching instruction such as DJNZ, CALL, or JMP.

R: Relative flag.  1 = address is relative; 0 = address is absolute.

Result: Value written at the end of instruction execution; often the Destination (i.e. D or Dest) operand.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 29



S / Src / Source: The origin value that many instructions operate with.  Often, the Source operand is a 9-bit literal
value, but can also be the address of a register containing the source value, or may be a 32-bit augmented value
(a 9-bit literal that is extended to 32-bits by a previous AUGS instruction or the convenient ## prefix).

W: Register to write.  00–11 = index of special register to write (PA, PB, PTRA, or PTRB).

Z / Zero Flag: A 1-bit persistent "flag" value representing a special state prior to or after an instruction executes.
The Z flag is traditionally output by a processor's adder circuit (ALU) to indicate that the previous mathematical
operation resulted in a result of "zero."  In addition to this use, the Propeller has other instruction-specific uses for
the Z flag (for instruction input and output).  When Z appears in an instruction opcode, it indicates that it
optionally writes to the Z flag at the end of its execution, governed by the WZ or WCZ effect.

Opcode Tables
Most syntax definitions include an opcode table similar to the one below. This table lists the instruction’s 32-bit
opcode encoding, register and flag outputs, and execution time in clock cycles.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0001010 CZI DDDDDDDDD SSSSSSSSS D sign of (D + S) Result = 0 2

The above example is from the ADDS instruction which has one syntax form.  For instructions with multiple syntax
forms, the opcode table will include a separate row for each, like this from the CALL instruction:

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101101 RAA AAAAAAAAA AAAAAAAAA PC — — 4 / 13–20

EEEE 1101011 CZ0 DDDDDDDDD 000101101 PC D[31] D[30] 4 / 13–20

The table’s first column describes the PASM2 instruction's opcode, consisting of the following fields:

● COND (bits 31:28) - Indicates the condition in which to execute the instruction.
● INSTR (bits 27:21) - Indicates the instruction or class of instruction.
● FX (bits 20:18) - Indicates the instruction’s effect status and SRC field meaning.
● DEST (bits 17:9) - Contains the 9-bit destination register address.
● SRC (bits 8:0) - Contains the 9-bit source register address or literal value.

The bits of the COND field default to all ones (1111) if no condition is specified on the instruction line, as is
common; meaning "execute always."  The bit pattern will be different if a condition is specified, according to that
shown for the IF_x (Conditions).

The INSTR field uniquely identifies the specific instruction, or instruction class.  Some instructions have aliases
(different forms of the same class of instruction) which are further uniquely identified by the way the FX, DEST,
and SRC fields are encoded.

Each bit of the FX (effects) field is high or low (1 or 0) usually to describe the ‘C’ flag, ‘Z’ flag, and ‘I’mmediate
nature of the instruction; noted as the encoding "CZI" in that field.  The C and Z bits are set (1) when the
instruction line specifies a WC, WZ, or WCZ effect, meaning write (update) the C and/or Z flag at the end of the
instruction execution.  The "I" bit is set (1) when the instruction's Src operand is prefixed by a "#" sign, meaning
the SRC field contains an immediate literal value, rather than a register address where the value is located.
Certain instructions have fixed values (0 or 1) in some or all of these bits when the normal use (C, Z, or I) has no
purpose or when the DEST or SRC fields have special meaning.  A bit marked "L" is set (1) when the instruction's
Dest operand is prefixed by a "#" sign, meaning the DEST field contains an immediate literal value, rather than a
register address where the value is located.  A bit marked "R" is set (1) when the instruction's Address operand is
not prefixed by a "\" sign, meaning the address is relative rather than absolute.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 30



The DEST and SRC fields show the encoding of the instruction's Destination and Source operands, often "D" and
"S" to indicate 9-bits from the given destination and source symbol/value on the instruction line.

The Write column indicates what register (if any) is written by the instruction.  This is most often D (the
destination register indicated by the address in the D operand) but may be PC (the program counter) or I/O
registers. A "—" means nothing is written.

The Z Flag and C Flag columns indicate what value (if any) is written to the flag by the instruction.  This only
applies when the instruction line includes a WC, WZ, or WCZ effect, otherwise the flag is left as-is. A "—" means the
flag is never updated.

The Clocks column indicates the number of clock cycles the instruction takes to execute.  A single value or range
(# --or-- #–#) is the number of clocks the instruction takes regardless of its location in memory (Reg/LUT/Hub).
Two values or ranges separated by a slash "/" (# / #–# --or-- #–# / #–#) is the number of clock cycles if the
instruction is executing from Reg or LUT RAM (left of the slash) and the number of clock cycles if executing from
Hub RAM (right of the slash).  A value shown as "# or #" is the number of clock cycles if not branching (left of the
"or") or if branching (right of the "or").

Propeller Assembly Instruction Master Table
All elements (symbols) of the PASM2 language are listed below either in alphabetical order or grouped within a
category that fits alphabetically.  To find or learn about elements by category, use the main categorical listing and
follow its links to reach the details below.

ABS
Absolute
Math Instruction - Get the absolute value of a number.

ABS Dest, {#}Src {WC|WZ|WCZ}
ABS Dest {WC|WZ|WCZ}

Result: Absolute Src (or Dest) value is stored in Dest.

● Dest is the register in which to write the absolute value of Dest or Src.
● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose absolute value is written to Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0110010 CZI DDDDDDDDD SSSSSSSSS D S[31] Result = 0 2

EEEE 0110010 CZ0 DDDDDDDDD DDDDDDDDD D D[31] Result = 0 2

Related: NEG

Explanation:
ABS determines the absolute value of Src or Dest and writes the result into Dest.

If the WC or WCZ effect is specified, the C flag is set (1) if the original Src or Dest value was negative, or is cleared
(0) if it was positive.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

Literal Src values are zero-extended, so ABS is really best used with register Src (or augmented Src) values.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 31



ADD
Add
Math Instruction - Add two unsigned values.

ADD Dest, {#}Src {WC|WZ|WCZ}

Result: Sum of unsigned Src and unsigned Dest is stored in Dest.

● Dest is a register containing the value to add Src to, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is added into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0001000 CZI DDDDDDDDD SSSSSSSSS D carry of (D + S) Result = 0 2

Related: ADDX, ADDS, ADDSX, and SUB

Explanation:
ADD sums the two unsigned values of Dest and Src together and stores the result into the Dest register.

If the WC or WCZ effect is specified, the C flag is set (1) if the summation results in a 32-bit overflow (unsigned
carry), or is cleared (0) if no overflow.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result of Dest + Src is zero, or is cleared (0) if it is
non-zero.

To add unsigned, multi-long values, use ADD followed by ADDX as described in Adding Two Multi-Long Values.
ADD and ADDX are also used in adding signed, multi-long values with ADDSX ending the sequence.

ADDCT1/2/3
Add counter 1/2/3
Event Handling Instruction - Set one of three counter events' trigger time.

ADDCT1 Dest, {#}Src
ADDCT2 Dest, {#}Src
ADDCT3 Dest, {#}Src

Result: The Src value is added into Dest and the result is also stored in the hidden CT1, CT2, or CT3 event trigger
register.  The event triggers when System Counter (CT) = original Dest + Src.

● Dest is a register containing the value to add Src to, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is added into Dest.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1010011 00I DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1010011 01I DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1010011 10I DDDDDDDDD SSSSSSSSS D — — 2

Related: POLLCTx, WAITCTx, JCTx, and JNCTx

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 32



Explanation:
ADDCT1, ADDCT2, or ADDCT3 sets the hidden CT1, CT2, or CT3 event trigger register (respectively) to the value of
Dest + Src.  The result is also written to Dest.

Use the xxxxCTx Event Handling instructions to process time-based events.

ADDPIX
Add pixels
Color Manipulation Instruction - Add RGB colors with full saturation.

ADDPIX Dest, {#}Src

Result: Src color value bytes are added into Dest color value bytes with full saturation.

● Dest is a register containing the RGB color value to add Src to, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose RGB color value bytes are added into Dest.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1010010 00I DDDDDDDDD SSSSSSSSS D — — 7

Explanation:
ADDPIX sums individual RGB (reg, green, blue) color values of Src into that of Dest and stores the result in the
Dest register.

ADDS
Add signed
Math Instruction - Add two signed values.

ADDS Dest, {#}Src {WC|WZ|WCZ}

Result: Sum of signed Src and signed Dest is stored in Dest.

● Dest is a register containing the value to add Src to, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is added into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0001010 CZI DDDDDDDDD SSSSSSSSS D sign of (D + S) Result = 0 2

Related: ADD, ADDX, ADDSX, and SUBS

Explanation:
ADDS sums the two signed values of Dest and Src together and stores the result into the Dest register.  If Src is a
9-bit literal, its value is interpreted as positive (0-511; it is not sign-extended) — use ##Value (or insert a prior
AUGS instruction) for a 32-bit signed value; negative or positive.

If the WC or WCZ effect is specified, the C flag is set (1) if the summation results in a signed overflow (signed
carry), or is cleared (0) if no overflow.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result of Dest + Src is zero, or is cleared (0) if it is
non-zero.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 33



To add signed, multi-long values, use ADD (not ADDS) followed possibly by ADDX, and finally ADDSX as described
in Adding Two Multi-Long Values.

ADDSX
Add signed, extended
Math Instruction - Add two signed extended values.

ADDSX Dest, {#}Src {WC|WZ|WCZ}

Result: Sum of signed Src plus C and signed Dest is stored in Dest.

● Dest is a register containing the value to add Src pluc C to, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value plus C is added into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0001011 CZI DDDDDDDDD SSSSSSSSS D sign of (D+S+C) Z AND (Result = 0) 2

Related: ADD, ADDX, ADDSX, and SUBSX

Explanation:
ADDSX sums the signed values of Dest and Src plus C together and stores the result into the Dest register.  The
ADDSX instruction is used to perform signed multi-long (extended) addition, such as 64-bit addition.

If the WC or WCZ effect is specified, the C flag is set (1) if the result is negative (Result[31] = 1), or is cleared (0) if
positive.  Use WC or WCZ on preceding ADD and ADDX instructions for proper final C flag.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Z was previously set and the result of Dest + Src + C is
zero, or it is cleared (0) if non-zero.  Use WZ or WCZ on preceding ADD and ADDX instructions for proper final Z flag.

To add signed multi-long values, use ADD (not ADDS) followed possibly by ADDX, and finally ADDSX as described in
Adding Two Multi-Long Values.

ADDX
Add extended
Math Instruction - Add two unsigned extended values.

ADDX Dest, {#}Src {WC|WZ|WCZ}

Result: Sum of unsigned Src plus C and unsigned Dest is stored in Dest.

● Dest is a register containing the value to add Src pluc C to, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value plus C is added into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0001001 CZI DDDDDDDDD SSSSSSSSS D carry of (D+S+C) Z AND (Result = 0) 2

Related: ADD, ADDSX, and SUBX

Explanation:
ADDX sums the unsigned values of Dest and Src plus C together and stores the result into the Dest register.  The
ADDX instruction is used to perform unsigned multi-long (extended) addition, such as 64-bit addition.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 34



If the WC or WCZ effect is specified, the C flag is set (1) if the summation resulted in an unsigned carry, or is
cleared (0) if no carry.  Use WC or WCZ on preceding ADD and ADDX instructions for proper final C flag. If C is set
after the last ADDX in a multi-long addition, it indicates unsigned overflow.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Z was previously set and the result of Dest + Src + C is
zero, or it is cleared (0) if non-zero.  Use WZ or WCZ on preceding ADD and ADDX instructions for proper final Z flag.

To add unsigned multi-long values, use ADD followed by one or more ADDX instructions as described in Adding
Two Multi-Long Values.

AKPIN
Acknowledge pin
I/O Pin (Smart Logic) Instruction - Acknowledge smart pin(s).

AKPIN {#}Src

Result: One or more Smart Pins is acknowledged; lowering their corresponding IN signal(s).

● Src is a register, 9-bit literal, or 11-bit augmented literal whose value identifies the Smart Pin(s) to
acknowledge.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1100000 01I 000000001 SSSSSSSSS Ack Bus — — 2

Explanation:
AKPIN acknowledges the Smart Pin(s) designated by Src.  This lowers the corresponding IN signal(s) so that
future Smart Pin events may raise them again later.

Src[5:0] indicates the pin number (0–63).  For a range of Smart Pins, Src[5:0] indicates the first pin number (0–63)
and Src[10:6] indicates how many contiguous pins beyond the first should be affected (1–31).

A 9-bit literal Src is enough to express the starting pin (Src[5:0]) and a range of up to 8 contiguous pins (Src[8:6]).
If needed, use the augmented literal feature (##Src) to augment Src to the required 11-bit literal value— this
inserts an AUGS instruction prior.

When Src is a register, the register's value bits [10:0] are used as-is to form the 11-bit Smart Pin range, unless a
SETQ instruction immediately precedes the AKPIN instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for AKPIN's use.

The range calculation (from Src[5:0] up to Src[5:0]+Src[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB); it will not cross the port boundary.

ALIGNL
Align long
Directive - Align to next long in Hub RAM.

DAT
code_and_data_statements
ALIGNL
data_statements

Result: The next data element is long-aligned in Hub RAM by emitting up to three bytes (each $00) prior.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 35



● Code_and_data_statements are leading program code and/or data.
● Data_statements begin long-aligned in Hub RAM.

Explanation:
ALIGNL aligns the next data element to the beginning of the next long of Hub RAM. ALIGNL is important to use
when code requires certain data to begin on a long boundary (for access convenience and speed).

ALIGNL is only allowed in DAT blocks, not in in-line PASM.

Example
The following creates a data table of a byte ($11), a word ($2222), and a long ($33333333) meant for access from
Hub RAM.

DAT
T1  BYTE $11
T2  WORD $2222

LONG $33333333

This data may be emitted into the Hub memory image like below; the actual data start and alignment will vary
depending on the code and data that precede it.  The L#, W#, and B# labels denote contiguous long, word, and
byte boundaries.

L0 L1 L2
W0 W1 W2 W3 W4 W5

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

$11 $22 $22 $33 $33 $33 $33 -- -- -- -- --

Notice how each data element, regardless of size, is packed right next to the data before it.  If the code that is
meant to access Table T2 expects it to align with a long boundary (i.e. for convenience or speed), the ALIGNL
directive achieves this, as follows.

DAT
T1  BYTE $11

ALIGNL
T2  WORD $2222

LONG $33333333

In comparison, this data will be emitted as follows:

L0 L1 L2
W0 W1 W2 W3 W4 W5

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

$11 $00 $00 $00 $22 $22 $33 $33 $33 $33 -- --

In this case, the ALIGNL instruction causes three zero ($00) bytes to emit after Table T1 to automatically pad and
align the start of Table T2 to the boundary of L1.  Note that the second element (a long) of Table T2 is still packed
right after the first element (a word) which may require further attention depending on the needs of the code
accessing it.

ALIGNW
Align word
Directive - Align to next word in Hub RAM.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 36



DAT
code_and_data_statements
ALIGNW
data_statements

Result: The next data element is word-aligned in Hub RAM by emitting zero or one byte ($00) prior.

● Code_and_data_statements are leading program code and/or data.
● Data_statements begin word-aligned in Hub RAM.

Explanation:
ALIGNW aligns the next data element to the beginning of the next word of Hub RAM. ALIGNW is important to use
when code requires certain data to begin on a word boundary (for access convenience and speed).

ALIGNW is only allowed in DAT blocks, not in in-line PASM.

Example
The following creates a data table of a byte ($11), a word ($2222), and a long ($33333333) meant for access from
Hub RAM.

DAT
T1  BYTE $11
T2  WORD $2222

LONG $33333333

This data may be emitted into the Hub memory image like below; the actual data start and alignment will vary
depending on the code and data that precede it.  The L#, W#, and B# labels denote contiguous long, word, and
byte boundaries.

L0 L1 L2
W0 W1 W2 W3 W4 W5

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

$11 $22 $22 $33 $33 $33 $33 -- -- -- -- --

Notice how each data element, regardless of size, is packed right next to the data before it.  If the code that is
meant to access Table T2 expects it to align with a word boundary (i.e. for convenience or speed), the ALIGNW
directive achieves this, as follows.

DAT
T1  BYTE $11

ALIGNW
T2  WORD $2222

LONG $33333333

In comparison, this data will be emitted as follows:

L0 L1 L2
W0 W1 W2 W3 W4 W5

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

$11 $00 $22 $22 $33 $33 $33 $33 -- -- -- --

In this case, the ALIGNW instruction causes one zero ($00) byte to emit after Table T1 to automatically pad and
align the start of Table T2 to the boundary of W1.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 37



ALLOWI
Allow interrupts
Interrupt Instruction - Allow interrupts.

ALLOWI

Result: Any stalled and future interrupts are allowed.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 000 000100000 000100100 — — — 2

Related: STALLI

Explanation:
ALLOWI re-enables interrupt branching; the default on cog start. ALLOWI is the complement of the STALLI
instruction— both are used to protect short, vital sections of main code from timing jitter or state loss caused by
asynchronous interrupt handling.

ALTB
Alter bit
Indirection Instruction - Alter subsequent BITxxx instruction.

ALTB Dest, {#}Src
ALTB Dest

Result: The next instruction's pipelined Dest value is altered to be (Src + Dest[13:5]) & $1FF, or just Dest[13:5] for
syntax 2.

● Dest is the register whose 14-bit value is the index, or the full bit address, for the BITxxx instruction to
operate on.

● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base long
address (Src[8:0]; added to index (Dest[13:5]) for BITxxx) and also an optional auto-indexer value
(Src[17:9]; added to Dest at the end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001100 11I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001100 111 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTB should be followed by a BITxxx instruction— it modifies the BITxxx instruction's Dest value, enabling code
to iterate through multiple bits of data across a range of Reg RAM. BITxxx's Dest value is changed to (Src +
Dest[13:5]) & $1FF (for syntax 1), or to Dest[13:5] (for syntax 2).

Dest[13:5] corresponds to the target long register's 9-bit address and Dest[4:0] is the bit ID within it; values of
0–31 identify individual bits, by position, in least-significant bit order.  Iteratively executing ALTB followed by a
BITxxx instruction, and each time incrementing ALTB's 14-bit Dest value by one, effectively writes a stream of bit
values to Reg RAM as if it were all made of bit-sized registers.

Warning: BITxxx instructions optionally operate on a range of bits, encoded in the Src value— they don't limit
themselves to only reading Src[4:0] for the bit number.  For this reason, care must be taken when using ALTB with
BITxxx or the index value (often used for the Src of the altered instruction) will be misinterpreted as multiple bits

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 38



to affect.  One way to solve this is to use a SETQ #0 followed by the ALTB then BITxxx instructions to force
BITxxx's Src[9:5] bits to 0; i.e. no extra bits beyond the single bit described by Src[4:0].

In syntax 1, Src consists of two 9-bit fields; a base address (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base is the Reg RAM address where the series of bits begins. ALTB adds the long index (Dest[13:5])
to the base (Src[8:0]) to locate the register holding the target bit.  The bit ID (Dest[4:0]) identifies the bit's
position within that long register.

● At the end of ALTB execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the 14-bit
index (Dest) for a future ALTB+BITxxx iteration.

In syntax 2, Dest serves as the full bit address— it's the same format as in syntax 1, but represents the target
long's absolute address and its bit index instead of the long's relative index (to add to a base) and bit index.

Notes:
● The instruction following ALTB is shielded from interrupt
● ALTB alters the next instruction regardless of its kind— the intention is for it to be a BITxxx
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

ALTD
Alter destination
Indirection Instruction - Alter D field of next instruction.

ALTD Dest, {#}Src
ALTD Dest

Result: The next instruction's pipelined Dest value is altered to be (Src + Dest) & $1FF, or just Dest[8:0] in syntax 2.

● Dest is the register whose 9-bit value is the offset, or the full value, for the next instruction to operate on.
● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base (Src[8:0];

added to offset (Dest) for the next instruction) and also an optional auto-indexer value (Src[17:9]; added to
Dest at the end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001100 01I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001100 011 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTD modifies the next instruction's Dest value to be (Src + Dest) & $1FF (for syntax 1), or to Dest[8:0] (for syntax
2).

In syntax 1, Src consists of two 9-bit fields; a base value (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base represents a starting point. ALTD adds the offset (Dest[8:0]) to the base (Src[8:0]) to determine
the next instruction's Dest value.

● At the end of ALTD execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the offset
(Dest) for a future ALTD+instruction iteration.

In syntax 2, Dest serves as the full value— it is used as-is for the next instruction's substitute Dest value.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 39



Notes:
● The instruction following ALTD is shielded from interrupt
● ALTD alters the next instruction regardless of its kind
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

ALTGB
Alter get byte
Indirection Instruction - Alter subsequent GETBYTE / ROLBYTE instruction.

ALTGB Dest, {#}Src
ALTGB Dest

Result: The next instruction's pipelined Src and Num fields are altered to be (Src + Dest[10:2]) & $1FF, or just
Dest[10:2] for syntax 2, and Dest[1:0], respectively.

● Dest is the register whose 11-bit value is the index, or the full byte address, for the GETBYTE / ROLBYTE
instruction to read.

● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base long
address (Src[8:0]; added to index (Dest[10:2]) for GETBYTE / ROLBYTE) and also an optional auto-indexer
value (Src[17:9]; added to Dest at end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001011 01I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001011 011 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTGB should be followed by GETBYTE or ROLBYTE— it modifies the GETBYTE / ROLBYTE instruction's Src and
Num values, enabling code to iterate through multiple bytes of data across a range of Reg RAM. GETBYTE /
ROLBYTE's Src value is changed to (Src + Dest[10:2]) & $1FF (for syntax 1), or to Dest[10:2] (for syntax 2), and its
Num value is changed to Dest[1:0].

Dest[10:2] corresponds to the target long register's 9-bit address and Dest[1:0] is the byte ID within it; values of
0–3 identify individual bytes, by position, in least-significant byte order.  Iteratively executing ALTGB followed by
GETBYTE or ROLBYTE, and each time incrementing ALTGB's 11-bit Dest value by one, effectively reads a stream of
byte values from Reg RAM as if it were all made of byte-sized registers.

In syntax 1, Src consists of two 9-bit fields; a base address (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base is the Reg RAM address where the series of bytes begins. ALTGB adds the long index
(Dest[10:2]) to the base (Src[8:0]) to locate the register holding the target byte.  The byte ID (Dest[1:0])
identifies the byte's position within that long register.

● At the end of ALTGB execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the 11-bit
index (Dest) for a future ALTGB+GETBYTE or ROLBYTE iteration.

In syntax 2, Dest serves as the full byte address— it's the same format as in syntax 1, but represents the target
long's absolute address and its byte index instead of the long's relative index (to add to a base) and byte index.

Notes:
● The instruction following ALTGB is shielded from interrupt

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 40



● ALTGB alters the next instruction regardless of its kind— the intention is for it to be a GETBYTE / ROLBYTE
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

ALTGN
Alter get nibble
Indirection Instruction - Alter subsequent GETNIB / ROLNIB instruction.

ALTGN Dest, {#}Src
ALTGN Dest

Result: The next instruction's pipelined Src and Num values are altered to be (Src + Dest[11:3]) & $1FF, or just
Dest[11:3] for syntax 2, and Dest[2:0], respectively.

● Dest is the register whose 12-bit value is the index, or the full nibble address, for the next GETNIB /
ROLNIB instruction to read.

● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base long
address (Src[8:0]; added to index (Dest[11:3]) for GETNIB / ROLNIB) and also an optional auto-indexer
value (Src[17:9]; added to Dest at end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001010 11I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001010 111 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTGN should be followed by GETNIB or ROLNIB— it modifies the GETNIB / ROLNIB instruction's  Src and Num
values, enabling code to iterate through multiple nibbles of data across a range of Reg RAM. GETNIB / ROLNIB's
Src value is changed to (Src + Dest[11:3]) & $1FF (for syntax 1), or to Dest[11:3] (for syntax 2), and its Num value
is changed to Dest[2:0].

Dest[11:3] corresponds to the target long register's 9-bit address and Dest[2:0] is the nibble ID within it; values of
0–7 identify individual nibbles, by position, in least-significant nibble order.  Iteratively executing ALTGN followed
by GETNIB or ROLNIB, and each time incrementing ALTGN's 12-bit Dest value by one, effectively reads a stream
of nibble values from Reg RAM as if it were all made of nibble-sized registers.

In syntax 1, Src consists of two 9-bit fields; a base address (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base is the Reg RAM address where the series of nibbles begins. ALTGN adds the long index
(Dest[11:3]) to the base (Src[8:0]) to locate the register holding the target nibble.  The nibble ID (Dest[2:0])
identifies the nibble's position within that long register.

● At the end of ALTGN execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the 12-bit
index (Dest) for a future ALTGN+GETNIB or ROLNIB iteration.

In syntax 2, Dest serves as the full nibble address— it's the same format as in syntax 1, but represents the target
long's absolute address and its nibble index instead of the long's relative index (to add to a base) and nibble index.

Notes:
● The instruction following ALTGN is shielded from interrupt
● ALTGN alters the next instruction regardless of its kind— the intention is for it to be a GETNIB / ROLNIB
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 41



ALTGW
Alter get word
Indirection Instruction - Alter subsequent GETWORD / ROLWORD instruction.

ALTGW Dest, {#}Src
ALTGW Dest

Result: The next instruction's pipelined Src and Num fields are altered to be (Src + Dest[9:1]) & $1FF, or just
Dest[9:1] for syntax 2, and Dest[0], respectively.

● Dest is the register whose 10-bit value is the index, or the full word address for the GETWORD / ROLWORD
instruction to read.

● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base long
address (Src[8:0]; added to index (Dest[9:1]) for GETWORD / ROLWORD) and also an optional auto-indexer
value (Src[17:9]; added to Dest at end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001011 11I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001011 111 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTGW should be followed by GETWORD or ROLWORD— it modifies the GETWORD / ROLWORD instruction's Src and
Num values, enabling code to iterate through multiple words of data across a range of Reg RAM. GETWORD /
ROLWORD's Src value is changed to (Src + Dest[9:1]) & $1FF (for syntax 1), or to Dest[9:1] (for syntax 2), and its
Num value is changed to Dest[0].

Dest[9:1] corresponds to the target long register's 9-bit address and Dest[0] is the word ID within it; values of 0–1
identify individual words, by position, in least-significant word order.  Iteratively executing ALTGW followed by
GETWORD or ROLWORD, and each time incrementing ALTGW's 10-bit Dest value by one, effectively reads a stream of
word values from Reg RAM as if it were all made of word-sized registers.

In syntax 1, Src consists of two 9-bit fields; a base address (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base is the Reg RAM address where the series of words begins. ALTGW adds the long index
(Dest[9:1]) to the base (Src[8:0]) to locate the register holding the target word.  The word ID (Dest[0])
identifies the word's position within that long register.

● At the end of ALTGW execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the 10-bit
index (Dest) for a future ALTGW+GETWORD or ROLWORD iteration.

In syntax 2, Dest serves as the full word address— it's the same format as in syntax 1, but represents the target
long's absolute address and its word index instead of the long's relative index (to add to a base) and word index.

Notes:
● The instruction following ALTGW is shielded from interrupt
● ALTGW alters the next instruction regardless of its kind— the intention is for it to be a GETWORD / ROLWORD
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 42



ALTI
Alter instruction
Indirection Instruction - Substitute next instruction's field values from template, per configuration.

ALTI Dest, {#}Src
ALTI Dest

Result: The next instruction's pipelined field value values are substituted from the Dest template, and Dest is
modified per Src configuration (syntax 1), or the entire Dest opcode (instruction) is executed in place of the next
instruction (syntax 2).

● Dest is the register whose value contains one or more of the next instruction's field substitutes or an
entire 32-bit opcode for full substitution.

● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value describes the substitutions
and Dest modifications to perform.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001101 00I DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1001101 001 DDDDDDDDD 101100100 — — — 2

Related: SETD, SETS, SETR, ALTD, ALTS, and ALTR

Explanation:
ALTI substitutes fields from Dest for one or more of the next instruction's pipelined Dest, Src, Result, Instr, FX,
and/or Cond values, and ALTI's Dest is then modified per Src configuration (syntax 1), or the entire Dest opcode
(instruction) is executed in place of the next instruction (syntax 2).

The Dest register contains the ALTI template; a 32-bit value with the following format similar to an opcode:

Bits 31:28  (4 bits) 27:19  (9 bits) 18 17:9  (9 bits) 8:0  (9 bits)

Field Description Condition Field Result Field Indirect "I" Field Dest "D" Field Source "S" Field

In syntax 1, Src consists of the following six 3-bit fields that describe field substitution and Dest modification.

%rrr_ddd_sss_RRR_DDD_SSS

● %rrr = Result field increment/decrement mask size
● %ddd = Dest field increment/decrement mask size
● %sss = Src field increment/decrement mask size
● %RRR = Result/Instruction field control
● %DDD = Dest field control
● %SSS = Src field control

Field Increment/Decrement Mask Size

%rrr
%ddd
%sss

Mask Selection

000 Unlimited Increment/Decrement of 9 bits (default, full 512-register Reg RAM span)

001 Limit Increment/Decrement to 8 LSBs (256-register Reg RAM looped buffer)

010 Limit Increment/Decrement to 7 LSBs (128-register Reg RAM looped buffer)

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 43



011 Limit Increment/Decrement to 6 LSBs (64-register Reg RAM looped buffer)

100 Limit Increment/Decrement to 5 LSBs (32-register Reg RAM looped buffer)

101 Limit Increment/Decrement to 4 LSBs (16-register Reg RAM looped buffer)

110 Limit Increment/Decrement to 3 LSBs (8-register Reg RAM looped buffer)

111 Limit Increment/Decrement to 2 LSBs (4-register Reg RAM looped buffer)

Result/Instruction Field Control

%RRR Substitution Dest[27:19] Adjustment Notes

000 None None

001 None None Cancel next instruction's Result write

010 None Decrements per %rrr

011 None Increments per %rrr

100 Dest[27:19] ⇨ next instruction's Result field None

101 Dest[31:18] ⇨ next instruction's [31:18] None Cond+Instr+Fx substitution1, 2

110 Dest[27:19] ⇨ next instruction's Result field Decrements per %rrr

111 Dest[27:19] ⇨ next instruction's Result field Increments per %rrr
1 Substitutes for next instruction's conditional execution mode, instruction class, and/or effects (WC/WZ, I, etc.)
2 Can use with %DDD=1xx and %SSS=1xx for full instruction substitution; i.e. execute Dest opcode in place of next instruction

Dest Field Control

%DDD Substitution Dest[17:9] Adjustment Notes

000 None None

001 None None Same as %000

010 None Decrements per %ddd

011 None Increments per %ddd

100 Dest[17:9] ⇨ next instruction's Dest field None Execute Dest w/ RRR = %101, SSS = %1xx

101 Dest[17:9] ⇨ next instruction's Dest field None Execute Dest w/ RRR = %101, SSS = %1xx

110 Dest[17:9] ⇨ next instruction's Dest field Decrements per %ddd Execute Dest w/ RRR = %101, SSS = %1xx

111 Dest[17:9] ⇨ next instruction's Dest field Increments per %ddd Execute Dest w/ RRR = %101, SSS = %1xx

Src Field Control

%SSS Substitution Src[8:0] Adjustment Notes

000 None None

001 None None Same as %000

010 None Decrements per %sss

011 None Increments per %sss

100 Dest[8:0] ⇨ next instruction's Src field None Execute Dest w/ RRR = %101, DDD = %1xx

101 Dest[8:0] ⇨ next instruction's Src field None Execute Dest w/ RRR = %101, DDD = %1xx

110 Dest[8:0] ⇨ next instruction's Src field Decrements per %sss Execute Dest w/ RRR = %101, DDD = %1xx

111 Dest[8:0] ⇨ next instruction's Src field Increments per %sss Execute Dest w/ RRR = %101, DDD = %1xx

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 44



In syntax 2, Dest serves as the full opcode value— it is executed as-is in place of the next instruction and Dest
remains unaltered afterward.

Examples:

ALTI    ptrs,#%111_111 'set next D and S fields, increment ptrs[17:9] and ptrs[8:0]
ADD     0,0 'add registers

ALTI    inst 'execute inst; same as ALTI inst, #%101_100_100
NOP 'NOP becomes inst

Notes:
● The instruction following ALTI is shielded from interrupt
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

ALTR
Alter result
Indirection Instruction - Alter Result register address of next instruction.

ALTR Dest, {#}Src
ALTR Dest

Result: The next instruction's pipelined Result address (Dest address by default) is altered to be
(Src + Dest) & $1FF, or just Dest[8:0] in syntax 2.

● Dest is the register whose 9-bit value is the offset, or the full value, for the next instruction to operate on.
● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base (Src[8:0];

added to offset (Dest) for the next instruction) and also an optional auto-indexer value (Src[17:9]; added to
Dest at the end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001100 00I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001100 001 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTR modifies the next instruction's Result address to be (Src + Dest) & $1FF (for syntax 1), or to Dest[8:0] (for
syntax 2).

The Result address is the Dest address by default— it identifies where the result value from the instruction's
execution is written at the end of execution.  During execution, the pipeline holds an instruction's Dest address and
the Result address as two separate entities, normally set to the same location. ALTR causes the next instruction's
Result to redirect to a different address; changing an instruction from a destructive (operand overwriting)
operation to a non-destructive (operand preserving) operation.

In syntax 1, Src consists of two 9-bit fields; a base value (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base represents a starting point. ALTR adds the offset (Dest[8:0]) to the base (Src[8:0]) to determine
the next instruction's Result address.

● At the end of ALTR execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the offset
(Dest) for a future ALTR+instruction iteration.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 45



In syntax 2, Dest serves as the full value— it is used as-is for the next instruction's substitute Result address.

Notes:
● The instruction following ALTR is shielded from interrupt
● ALTR alters the next instruction regardless of its kind
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

ALTS
Alter source
Indirection Instruction - Alter S field of next instruction.

ALTS Dest, {#}Src
ALTS Dest

Result: The next instruction's pipelined Src value is altered to be (Src + Dest) & $1FF, or just Dest[8:0] in syntax 2.

● Dest is the register whose 9-bit value is the offset, or the full value, for the next instruction to operate on.
● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base (Src[8:0];

added to offset (Dest) for the next instruction) and also an optional auto-indexer value (Src[17:9]; added to
Dest at the end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001100 10I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001100 101 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTS modifies the next instruction's Src value to be (Src + Dest) & $1FF (for syntax 1), or to Dest[8:0] (for syntax
2).

In syntax 1, Src consists of two 9-bit fields; a base value (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base represents a starting point. ALTS adds the offset (Dest[8:0]) to the base (Src[8:0]) to determine
the next instruction's Src value.

● At the end of ALTS execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the offset
(Dest) for a future ALTS+instruction iteration.

In syntax 2, Dest serves as the full value— it is used as-is for the next instruction's substitute Src value.

Notes:
● The instruction following ALTS is shielded from interrupt
● ALTS alters the next instruction regardless of its kind
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

ALTSB
Alter set byte
Indirection Instruction - Alter subsequent SETBYTE instruction.

ALTSB Dest, {#}Src
ALTSB Dest

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 46



Result: The next instruction's pipelined Dest and Num values are altered to be (Src + Dest[10:2]) & $1FF, or just
Dest[10:2] for syntax 2, and Dest[1:0], respectively.

● Dest is the register whose 11-bit value is the index, or the full byte address, for the SETBYTE instruction to
operate on.

● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base long
address (Src[8:0]; added to index (Dest[10:2]) for SETBYTE) and also an optional auto-indexer value
(Src[17:9]; added to Dest at end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001011 00I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001011 001 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTSB should be followed by SETBYTE— it modifies the SETBYTE instruction's Dest and Num values, enabling
code to iterate through multiple bytes of data across a range of Reg RAM. SETBYTE's Dest value is changed to
(Src + Dest[10:2]) & $1FF (for syntax 1), or to Dest[10:2] (for syntax 2), and its Num value is changed to Dest[1:0].

Dest[10:2] corresponds to the target long register's 9-bit address and Dest[1:0] is the byte ID within it; values of
0–3 identify individual bytes, by position, in least-significant byte order.  Iteratively executing ALTSB followed by
SETBYTE, and each time incrementing ALTSB's 11-bit Dest value by one, effectively writes a stream of byte values
to Reg RAM as if it were all made of byte-sized registers.

In syntax 1, Src consists of two 9-bit fields; a base address (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base is the Reg RAM address where the series of bytes begins. ALTSB adds the long index
(Dest[10:2]) to the base (Src[8:0]) to locate the register holding the target byte.  The byte ID (Dest[1:0])
identifies the byte's position within that long register.

● At the end of ALTSB execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the 11-bit
index (Dest) for a future ALTSB+SETBYTE iteration.

In syntax 2, Dest serves as the full byte address— it's the same format as in syntax 1, but represents the target
long's absolute address and its byte index instead of the long's relative index (to add to a base) and byte index.

Notes:
● The instruction following ALTSB is shielded from interrupt
● ALTSB alters the next instruction regardless of its kind— the intention is for it to be a SETBYTE
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

ALTSN
Alter set nibble
Indirection Instruction - Alter subsequent SETNIB instruction.

ALTSN Dest, {#}Src
ALTSN Dest

Result: The next instruction's pipelined Dest and Num values are altered to be (Src + Dest[11:3]) & $1FF, or just
Dest[11:3] for syntax 2, and Dest[2:0], respectively.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 47



● Dest is the register whose 12-bit value is the index, or the full nibble address, for the SETNIB instruction to
operate on.

● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base long
address (Src[8:0]; added to index (Dest[11:3]) for SETNIB) and also an optional auto-indexer value
(Src[17:9]; added to Dest at the end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001010 10I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001010 101 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTSN should be followed by SETNIB— it modifies the SETNIB instruction's Dest and Num values, enabling code
to iterate through multiple nibbles of data across a range of Reg RAM. SETNIB's Dest value is changed to (Src +
Dest[11:3]) & $1FF (for syntax 1), or to Dest[11:3] (for syntax 2), and its Num value is changed to Dest[2:0].

Dest[11:3] corresponds to the target long register's 9-bit address and Dest[2:0] is the nibble ID within it; values of
0–7 identify individual nibbles, by position, in least-significant nibble order.  Iteratively executing ALTSN followed
by SETNIB, and each time incrementing ALTSN's 12-bit Dest value by one, effectively writes a stream of nibble
values to Reg RAM as if it were all made of nibble-sized registers.

In syntax 1, Src consists of two 9-bit fields; a base address (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base is the Reg RAM address where the series of nibbles begins. ALTSN adds the long index
(Dest[11:3]) to the base (Src[8:0]) to locate the register holding the target nibble.  The nibble ID (Dest[2:0])
identifies the nibble's position within that long register.

● At the end of ALTSN execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the 12-bit
index (Dest) for a future ALTSN+SETNIB iteration.

In syntax 2, Dest serves as the full nibble address— it's the same format as in syntax 1, but represents the target
long's absolute address and its nibble index instead of the long's relative index (to add to a base) and nibble index.

Notes:
● The instruction following ALTSN is shielded from interrupt
● ALTSN alters the next instruction regardless of its kind— the intention is for it to be a SETNIB
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

ALTSW
Alter set word
Indirection Instruction - Alter subsequent SETWORD instruction.

ALTSW Dest, {#}Src
ALTSW Dest

Result: The next instruction's pipelined Dest and Num fields are altered to be (Src + Dest[9:1]) & $1FF, or just
Dest[9:1] for syntax 2, and Dest[0], respectively.

● Dest is the register whose 10-bit value is the index, or the full word address, for the SETWORD instruction
to operate on.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 48



● Src is an optional register, 9-bit literal, or 18-bit augmented literal whose value contains a base long
address (Src[8:0]; added to index (Dest[9:1]) for SETWORD) and also an optional auto-indexer value
(Src[17:9]; added to Dest at end of execution).

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001011 10I DDDDDDDDD SSSSSSSSS D1 — — 2

EEEE 1001011 101 DDDDDDDDD 000000000 D1 — — 2
1 Dest is post-adjusted by the auto-indexer value; the sign-extended Src[17:9].  In syntax 2, the auto-indexer value is 0.

Explanation:
ALTSW should be followed by SETWORD— it modifies the SETWORD instruction's Dest and Num values, enabling
code to iterate through multiple words of data across a range of Reg RAM. SETWORD's Dest value is changed to
(Src + Dest[9:1]) & $1FF (for syntax 1), or to Dest[9:1] (for syntax 2), and its Num value is changed to Dest[0].

Dest[9:1] corresponds to the target long register's 9-bit address and Dest[0] is the word ID within it; values of 0–1
identify individual words, by position, in least-significant word order.  Iteratively executing ALTSW followed by
SETWORD, and each time incrementing ALTSW's 10-bit Dest value by one, effectively writes a stream of word
values to Reg RAM as if it were all made of word-sized registers.

In syntax 1, Src consists of two 9-bit fields; a base address (Src[8:0]) and a signed auto-indexer (Src[17:9]).

● The base is the Reg RAM address where the series of words begins. ALTSW adds the long index
(Dest[9:1]) to the base (Src[8:0]) to locate the register holding the target word.  The word ID (Dest[0])
identifies the word's position within that long register.

● At the end of ALTSW execution, the optional auto-indexer value (usually 0, 1, or -1) is added to the 10-bit
index (Dest) for a future ALTSW+SETWORD iteration.

In syntax 2, Dest serves as the full word address— it's the same format as in syntax 1, but represents the target
long's absolute address and its word index instead of the long's relative index (to add to a base) and word index.

Notes:
● The instruction following ALTSW is shielded from interrupt
● ALTSW alters the next instruction regardless of its kind— the intention is for it to be a SETWORD
● Field value modification occurs in the instruction pipeline only; code is not altered, values do not persist
● SETQ / SETQ2 does not affect ALTx instructions— the Q value passes through to the next instruction

AND / ANDN
And not
Bit Operation Instruction - Bitwise AND a value with another, or with the NOT of another.

AND Dest, {#}Src {WC|WZ|WCZ}
ANDN Dest, {#}Src {WC|WZ|WCZ}

Result: Dest AND Src (or Dest AND !Src) is stored in Dest and flags are optionally updated with parity and zero
status.

● Dest is the register containing the value to bitwise AND with Src (or with !Src) and is the destination in
which to write the result.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose value (or inverse value) will be bitwise
ANDed into Dest.

● WC, WZ, or WCZ are optional effects to update flags.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 49



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0101000 CZI DDDDDDDDD SSSSSSSSS D Parity of Result Result = 0 2

EEEE 0101001 CZI DDDDDDDDD SSSSSSSSS D Parity of Result Result = 0 2

Explanation:
AND or ANDN performs a bitwise AND of the value in Src (or !Src) into that of Dest.

If the WC or WCZ effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits, or is
cleared (0) if it contains an even number of high bits.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest AND Src (or Dest AND !Src) equals zero, or is
cleared (0) if it is non-zero.

AUGD
Augment destination
Augmentation Instruction - Augment next literal Dest to 32-bits.

AUGD #Dest

Result: The 23-bit value formed from Dest is queued to prefix the next literal Dest occurrence (#Dest) to form a
32-bit literal for that instruction; interrupts are also temporarily disabled..

● Dest is a 32-bit literal whose upper 23 bits are prepended to the next literal Dest occurrence.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 11111DD DDD DDDDDDDDD DDDDDDDDD Hidden D Queue — — 2

Related: AUGS

Explanation:
AUGD is an assistant instruction to aid with literal values that exceed 9 bits.  Most PASM2 instructions have 9 bits
available for literal Dest values; enough for many uses, but not all. AUGD augments the next occurrence of a literal
Dest value to be a full 32-bits.  When the instruction with the soon-to-be-augmented literal is later executed, the
cog uses the lower 9 bits encoded in the instruction's Dest field and prepends AUGD's 23 bits to it.

Notes:
● All instructions following AUGD are shielded from interrupt until after the instruction with the

newly-augmented literal Dest value is executed
● Dest value augmentation occurs in the instruction pipeline only; code is not altered, value does not persist
● SETQ / SETQ2 does not affect AUGD— the Q value passes through to the next instruction

Tip: Though AUGD may be manually entered wherever needed, the Parallax P2 compiler supports a convenient way
to use this feature.  In the target instruction's Dest field, use "##" followed by the desired 32-bit literal (instead of
"#" followed by a 9-bit literal); the compiler will automatically invoke AUGD immediately before.  When counting
clock cycles, make sure to account for 2 extra clock cycles for instructions containing ## augmented literals.

Example
Both samples below use greater-than 9-bit literals (via AUGD functionality).  The first is more convenient and
readable than using the AUGD instruction directly.

PUSHA   ##$ABCDEF '2+3..10 cycles (in Cog RAM)
QMUL    ##8192, #4 '2+2..9 cycles

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 50



is the same as:

AUGD    #$ABCDEF '2 cycles
PUSHA   #$ABCDEF & $1FF '3..10 cycles (in Cog RAM)
AUGD    #8192 '2 cycles
QMUL    #8192 & $1FF, #4 '2..9 cycles

AUGS
Augment source
Augmentation Instruction - Augment next literal Src to 32-bits.

AUGS #Src

Result: The 23-bit value formed from Src is queued to prefix the next literal Src occurrence (#Src) to form a 32-bit
literal for that instruction; interrupts are also temporarily disabled.

● Src is a 32-bit literal whose upper 23 bits are prepended to the next literal Src occurrence.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 11110SS SSS SSSSSSSSS SSSSSSSSS Hidden S Queue — — 2

Related: AUGD

Explanation:
AUGS is an assistant instruction to aid with literal values that exceed 9 bits.  Most PASM2 instructions have 9 bits
available for literal Src values; enough for many uses, but not all. AUGS augments the next occurrence of a literal
Src value to be a full 32-bits.  When the instruction with the soon-to-be-augmented literal is later executed, the cog
uses the lower 9 bits encoded in the instruction's Src field and prepends AUGS's 23 bits to it.

Notes:
● All instructions following AUGS are shielded from interrupt until after the instruction with the

newly-augmented literal Src value is executed
● Src value augmentation occurs in the instruction pipeline only; code is not altered, value does not persist
● SETQ / SETQ2 does not affect AUGS— the Q value passes through to the next instruction

Tip: Though AUGS may be manually entered wherever needed, the Parallax P2 compiler supports a convenient way
to use this feature.  In the target instruction's Src field, use "##" followed by the desired 32-bit literal (instead of "#"
followed by a 9-bit literal); the compiler will automatically invoke AUGS immediately before.  When counting clock
cycles, make sure to account for 2 extra clock cycles for instructions containing ## augmented literals.

Example
Both samples below use greater-than 9-bit literals (via AUGS functionality).  The first is more convenient and
readable than using the AUGS instruction directly.

AND   address, ##$FFFFF '2+2 cycles
DJNZ  idx, ##far_away '2+(2 or 4) cycles (in Cog RAM)

is the same as:

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 51



AUGS  #$FFFFF '2 cycles
AND   address, #$FFFFF & $1FF '2 cycles
AUGS  #far_away '2 cycles
DJNZ  idx, #far_away & $1FF '2 or 4 cycles (in Cog RAM)

BITC / BITNC
Bit C or not C
Bit Operation Instruction - Set bit(s) low/high according to C or !C.

BITC Dest, {#}Src {WCZ}
BITNC Dest, {#}Src {WCZ}

Result: Dest bit(s) described by Src are set to C or !C; the rest are left as-is.

● Dest is the register whose value will have one or more bits set to C or !C.
● Src is a register, 9-bit literal, or 10-bit augmented literal whose value identifies the bit(s) to modify.
● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0100010 CZI DDDDDDDDD SSSSSSSSS D Original D base bit Original D base bit 2

EEEE 0100011 CZI DDDDDDDDD SSSSSSSSS D Original D base bit Original D base bit 2

Explanation:
BITC or BITNC alters the Dest bit(s) designated by Src to equal the state, or inverse state, of the C flag.  All other
bits are left unchanged.

Src[4:0] indicates the bit number (0—31).  For a range of bits, Src[4:0] indicates the base bit number (0—31) and
Src[9:5] indicates how many contiguous bits beyond the base should be affected (1–31).

A 9-bit literal Src is enough to express the base bit (Src[4:0]) and a range of up to 16 contiguous bits (Src[8:5]).  If
needed, use the augmented literal feature (##Src) to augment Src to a 10-bit literal value— this inserts an AUGS
instruction prior.

When Src is a register, the register's value bits [9:0] are used as-is to form the 10-bit ID range, unless a SETQ
instruction immediately precedes the BITC / BITNC instruction; substituting SETQ's Dest[4:0] in place of value
bits[9:5], for BITC / BITNC's use.

If the WCZ effect is specified, the C and Z flags are updated to the original state of Dest's base bit, identified by Src.

BITH / BITL
Bit high or low
Bit Operation Instruction - Set bit(s) high (1) or low (0).

BITH Dest, {#}Src {WCZ}
BITL Dest, {#}Src {WCZ}

Result: Dest bit(s) described by Src are set high (1) or low (0); the rest are left as-is.

● Dest is the register whose value will have one or more bits set high or low.
● Src is a register, 9-bit literal, or 10-bit augmented literal whose value identifies the bit(s) to modify.
● WCZ is an optional effect to update flags.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 52



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0100001 CZI DDDDDDDDD SSSSSSSSS D Original D base bit Original D base bit 2

EEEE 0100000 CZI DDDDDDDDD SSSSSSSSS D Original D base bit Original D base bit 2

Explanation:
BITH or BITL alters the Dest bit(s) designated by Src to be high (1) or low (0).  All other bits are left unchanged.

Src[4:0] indicates the bit number (0—31).  For a range of bits, Src[4:0] indicates the base bit number (0—31) and
Src[9:5] indicates how many contiguous bits beyond the base should be affected (1–31).

A 9-bit literal Src is enough to express the base bit (Src[4:0]) and a range of up to 16 contiguous bits (Src[8:5]).  If
needed, use the augmented literal feature (##Src) to augment Src to a 10-bit literal value— this inserts an AUGS
instruction prior.

When Src is a register, the register's value bits [9:0] are used as-is to form the 10-bit ID range, unless a SETQ
instruction immediately precedes the BITH / BITL instruction; substituting SETQ's Dest[4:0] in place of value
bits[9:5], for BITH / BITL's use.

If the WCZ effect is specified, the C and Z flags are updated to the original state of Dest's base bit, identified by Src.

BITNOT
Bit not
Bit Operation Instruction - Toggle bit(s) to the opposite state.

BITNOT Dest, {#}Src {WCZ}

Result: Dest bit(s) described by Src are toggled to their opposite state(s); the rest are left as-is.

● Dest is the register whose value will have one or more bits toggled.
● Src is a register, 9-bit literal, or 10-bit augmented literal whose value identifies the bit(s) to modify.
● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0100111 CZI DDDDDDDDD SSSSSSSSS D Original D base bit Original D base bit 2

Explanation:
BITNOT alters the Dest bit(s) designated by Src to their inverse state.  All other bits are left unchanged.

Src[4:0] indicates the bit number (0—31).  For a range of bits, Src[4:0] indicates the base bit number (0—31) and
Src[9:5] indicates how many contiguous bits beyond the base should be affected (1–31).

A 9-bit literal Src is enough to express the base bit (Src[4:0]) and a range of up to 16 contiguous bits (Src[8:5]).  If
needed, use the augmented literal feature (##Src) to augment Src to a 10-bit literal value— this inserts an AUGS
instruction prior.

When Src is a register, the register's value bits [9:0] are used as-is to form the 10-bit ID range, unless a SETQ
instruction immediately precedes the BITNOT instruction; substituting SETQ's Dest[4:0] in place of value bits[9:5],
for BITNOT's use.

If the WCZ effect is specified, the C and Z flags are updated to the original state of Dest's base bit, identified by Src.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 53



BITRND
Bit random
Bit Operation Instruction - Set bit(s) random low/high.

BITRND Dest, {#}Src {WCZ}

Result: Dest bit(s) described by Src are each set randomly low or high; the rest are left as-is.

● Dest is the register whose value will have one or more bits set randomly low or high.
● Src is a register, 9-bit literal, or 10-bit augmented literal whose value identifies the bit(s) to modify.
● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0100110 CZI DDDDDDDDD SSSSSSSSS D Original D base bit Original D base bit 2

Explanation:
BITRND alters the Dest bit(s) designated by Src to each be an independent random low and high value, based on
bit(s) from the Xoroshiro128** PRNG.  All other bits are left unchanged.

Src[4:0] indicates the bit number (0—31).  For a range of bits, Src[4:0] indicates the base bit number (0—31) and
Src[9:5] indicates how many contiguous bits beyond the base should be affected (1–31).

A 9-bit literal Src is enough to express the base bit (Src[4:0]) and a range of up to 16 contiguous bits (Src[8:5]).  If
needed, use the augmented literal feature (##Src) to augment Src to a 10-bit literal value— this inserts an AUGS
instruction prior.

When Src is a register, the register's value bits [9:0] are used as-is to form the 10-bit ID range, unless a SETQ
instruction immediately precedes the BITRND instruction; substituting SETQ's Dest[4:0] in place of value bits[9:5],
for BITRND's use.

If the WCZ effect is specified, the C and Z flags are updated to the original state of Dest's base bit, identified by Src.

BITZ / BITNZ
Bit Z or not Z
Bit Operation Instruction - Set bit(s) low/high according to Z or !Z.

BITZ Dest, {#}Src {WCZ}
BITNZ Dest, {#}Src {WCZ}

Result: Dest bit(s) described by Src are set to Z or !Z; the rest are left as-is.

● Dest is the register whose value will have one or more bits set to Z or !Z.
● Src is a register, 9-bit literal, or 10-bit augmented literal whose value identifies the bit(s) to modify.
● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0100100 CZI DDDDDDDDD SSSSSSSSS D Original D base bit Original D base bit 2

EEEE 0100101 CZI DDDDDDDDD SSSSSSSSS D Original D base bit Original D base bit 2

Explanation:
BITZ or BITNZ alters the Dest bit(s) designated by Src to equal the state, or inverse state, of the Z flag.  All other
bits are left unchanged.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 54



Src[4:0] indicates the bit number (0—31).  For a range of bits, Src[4:0] indicates the base bit number (0—31) and
Src[9:5] indicates how many contiguous bits beyond the base should be affected (1–31).

A 9-bit literal Src is enough to express the base bit (Src[4:0]) and a range of up to 16 contiguous bits (Src[8:5]).  If
needed, use the augmented literal feature (##Src) to augment Src to a 10-bit literal value— this inserts an AUGS
instruction prior.

When Src is a register, the register's value bits [9:0] are natrally used as-is to form the 10-bit ID range, unless a
SETQ instruction immediately precedes the BITZ / BITNZ instruction; substituting SETQ's Dest[4:0] in place of
value bits[9:5], for BITZ / BITNZ's use.

If the WCZ effect is specified, the C and Z flags are updated to the original state of Dest's base bit, identified by Src.

BMASK
Bit mask
Bit Operation Instruction - Get 1..32-bit mask into Dest.

BMASK Dest, {#}Src
BMASK Dest

Result: Bit mask of size Src+1, or Dest+1 (1—32 bits) is stored into Dest.

● Dest is the register in which to store the generated bit mask and optionally begins by containing the 5-bit
mask size it is requesting (syntax 2).

● Src is an optional register or 5-bit literal whose value is the size of the bit mask to generate.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001110 01I DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1001110 010 DDDDDDDDD DDDDDDDDD D — — 2

Explanation:
BMASK generates an LSB-justified bit mask (all ones) of Src+1 or Dest+1 length and stores it in Dest.  The size
value, whether specified by Src or Dest, is in the range 0—31 to generate 1 to 32 bits of bit mask.

In effect, Dest becomes (%10 << size) - 1 via the BMASK instruction.

● A size value of 0 generates a bit mask of %00000000_00000000_00000000_00000001.
● A size value of 5 generates a bit mask of %00000000_00000000_00000000_00111111.
● A size value of 15 generates a bit mask of %00000000_00000000_11111111_11111111.

A bit mask is often useful in bitwise operations (AND, OR, XOR) to filter out or affect special groups of bits.

BRK
Break
Interrupt Instruction - Trigger breakpoint in current cog.

BRK {#}Dest

Result: If debug interrupts are enabled, a debug interrupt is triggered in the current cog and Dest's value becomes
the debug code or the next debug condition.

● Dest is the register, 9-bit literal, or 32-bit augmented literal whose value becomes the debug code or
condition depending on the state of execution (outside or inside of a Debug ISR).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 55



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 00L DDDDDDDDD 000110110 Code/Cond.1 — — 2

1 Cog's internal Debug Code or Condition register is written depending on the state of execution.

Explanation:
BRK triggers a breakpoint in the current cog and either defines a breakpoint code or the next breakpoint
condition(s).  The cog must have debug interrupts enabled, and if BRK is to be executed within the normal
program (outside the Debug ISR), the "BRK instruction" interrupt must first be enabled from within a prior Debug
ISR (interrupt service routine).

During normal program execution, the BRK instruction is used to generate a debug interrupt with an 8-bit code
(from D[7:0]) which can be read within the Debug ISR using a GETBRK instruction.

During a Debug ISR, the BRK instruction is used instead to establish the next debug interrupt condition(s) and to
select INA/INB, instead of the IJMP0/IRET0 registers exposed during the ISR, so that the pins' inputs states may
be read.

The format of Dest for Debug ISR use is %AAAAAAAAAAAAAAAAAAAA_BCDEFGHIJKLM

A: 20-bit breakpoint address or 4-bit event code
B: 1 = map INA/INB normally, 0 = map IJMP0/IRET0 at INA/INB (default during ISR).  If Debug ISR sets B

to 1, it must reset it to 0 before exiting the Debug ISR so the RETI0 instruction sees IJMP0 and IRET0.
C: 1 = enable interrupt on breakpoint address match
D: 1 = enable interrupt on event %eeee
E: 1 = enable interrupt on asynchronous breakpoint (via COGBRK from another cog)
F: 1 = enable interrupt on INT3 ISR entry
G: 1 = enable interrupt on INT2 ISR entry
H: 1 = enable interrupt on INT1 ISR entry
I: 1 = enable interrupt on BRK instruction
J: 1 = enable interrupt on INT3 ISR code (single step)
K: 1 = enable interrupt on INT2 ISR code (single step)
L: 1 = enable interrupt on INT1 ISR code (single step)
M: 1 = enable interrupt on non-ISR code (single step)

Upon Debug ISR entry, bits B through M are cleared (0).  If a subsequent debug interrupt is desired, a BRK
instruction must be executed before exiting the Debug ISR in order to establish the next breakpoint condition(s).

CALL
Call
Flow Control Instruction - Call a subroutine; store return context on the stack.

CALL #{\}Addr
CALL Dest {WC|WZ|WCZ}

Result: Push current C and Z flags and address of the next instruction onto the hardware stack, set PC to new
relative or absolute address, and optionally update C and/or Z to new state.

● Addr is a symbolic reference to the target subroutine; the location to set PC to.  Relative addressing is the
default; use '\' to force absolute addressing.

● Dest is a register containing the 20-bit absolute address to set PC to and optional new C and Z states.
● WC, WZ, or WCZ are optional effects to update the flags from Dest's upper bit states.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 56



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101101 RAA AAAAAAAAA AAAAAAAAA K1 and PC — — 4 / 13–20

EEEE 1101011 CZ0 DDDDDDDDD 000101101 K1 and PC D[31] D[30] 4 / 13–20
1 The current C, Z, and effective next PC values are pushed onto the stack (K) prior to replacing them with that of Addr or Dest.

Explanation:
CALL records the current state of the C and Z flags and the address of the next instruction (PC + 1 if Cog/LUT
execution; PC + 4 if Hub execution) by pushing to the stack (K), potentially updates the C and Z flags with new
given states, and jumps to the given address or offset.  The routine at the new address should eventually execute
a RET instruction, or an instruction with a _RET_ condition, to return to the recorded address (the instruction
following the CALL) and optionally restore the C and Z flag state as it was prior.

In syntax 1, #Addr and #\Addr encodes the instruction with relative and absolute addressing, respectively.  The
relative form (the default) is vital for creating relocatable code.  In either case, use symbolic references for Addr
and the assembler will encode it properly.  Examples: CALL #SendBit or CALL #\DebugStatus

In syntax 2, the format of the value at Dest is CZxxxxxx_xxxxAAAA_AAAAAAAA_AAAAAAAA.  C is the new C flag
state, Z is the new Z flag state, A is the new 20-bit address to jump to, and x are don't-care bits.  Syntax 2
effectively swaps the flags and PC with the value in the Dest register (and RET swaps them back), making it
convenient for switching between two threads.

If the WC or WCZ effect is specified, the C flag is updated to match D[31], after its original state is recorded.

If the WZ or WCZ effect is specified, the Z flag is updated to match D[30], after its original state is recorded.

CALLA / CALLB
Call A or B
Flow Control Instruction - Call a subroutine; store return context in the Hub long at PTRA++ or PTRB++.

CALLA #{\}Addr
CALLA Dest {WC|WZ|WCZ}
CALLB #{\}Addr
CALLB Dest {WC|WZ|WCZ}

Result: Write current C and Z flags and address of the next instruction into the 4-byte Hub RAM location at PTRA
or PTRB, increment pointer, set PC to new relative or absolute address, and optionally update C and/or Z to new
state.

● Addr is a symbolic reference to the target subroutine; the location to set PC to.  Relative addressing is the
default; use '\' to force absolute addressing.

● Dest is a register containing the 20-bit absolute address to set PC to and optional new C and Z states.
● WC, WZ, or WCZ are optional effects to update the flags from Dest's upper bit states.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101110 RAA AAAAAAAAA AAAAAAAAA Hub1 and PC — — 5–122 / 14–322

EEEE 1101011 CZ0 DDDDDDDDD 000101110 Hub1 and PC D[31] D[30] 5–122 / 14–322

EEEE 1101111 RAA AAAAAAAAA AAAAAAAAA Hub1 and PC — — 5–122 / 14–322

EEEE 1101011 CZ0 DDDDDDDDD 000101111 Hub1 and PC D[31] D[30] 5–122 / 14–322

1 The current C, Z, and effective next PC values are written to the Hub RAM long (H) referenced by PTRA or PTRB prior to
replacing them with that of Addr or Dest.
2 +1 clock cycle if target address isn't long-aligned in Hub RAM.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 57



Explanation:
CALLA and CALLB records the current state of the C and Z flags and the address of the next instruction (PC + 1 if
Cog/LUT execution; PC + 4 if Hub execution) by writing them to the Hub RAM long (H) referenced by PTRA or
PTRB, increments PTRA or PTRB, potentially updates the C and Z flags with new given states, and jumps to the
given address or offset.  The routine at the new address should eventually execute a RETA or RETB instruction to
return to the recorded address (the instruction following the CALLA or CALLB) and optionally restore the C and Z
flag state as it was prior.

In syntax 1 and 3, #Addr and #\Addr encodes the instruction with relative and absolute addressing, respectively.
The relative form (the default) is vital for creating relocatable code.  In either case, use symbolic references for
Addr and the assembler will encode it properly.  Examples: CALLA #SendBit or CALLB #\DebugStatus

In syntax 2 and 4, the format of the value at Dest is CZxxxxxx_xxxxAAAA_AAAAAAAA_AAAAAAAA.  C is the new C
flag state, Z is the new Z flag state, A is the new 20-bit address to jump to, and x are don't-care bits.  Syntax 2
effectively swaps the flags and PC with the value in the Dest register (and RETA or RETB swaps them back),
making it convenient for switching between two threads.

If the WC or WCZ effect is specified, the C flag is updated to match D[31], after its original state is recorded.

If the WZ or WCZ effect is specified, the Z flag is updated to match D[30], after its original state is recorded.

CALLD
Call D
Flow Control Instruction - Call a subroutine; store return context in PA/PB/PTRA/PTRB/D.

CALLD PA|PB|PTRA|PTRB, #{\}Addr
CALLD Dest, {#}Src {WC|WZ|WCZ}

Result: Write current C and Z flags and address of the next instruction into either PA, PB, PTRA, PTRB, or Dest, set
PC to new relative or absolute address (in Addr or Src), and optionally update C and/or Z to new state.

● PA|PB|PTRA|PTRB is the special register to store the current C and Z flags and next address into.
● Addr is a symbolic reference to the target subroutine; the location to set PC to.  Relative addressing is the

default; use '\' to force absolute addressing.
● Dest is a register to write the current C and Z flags and the address of the next instruction into.
● Src is a register, 9-bit literal, or 32-bit augmented literal that contains the relative or absolute address to

set PC to and optional new C and Z states.  Use # for relative addressing; omit # for absolute addressing.
● WC, WZ, or WCZ are optional effects to update the flags from Src's upper bit states.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 11100WW RAA AAAAAAAAA AAAAAAAAA Pxxx1 and PC — — 4 / 13–20

EEEE 1011001 CZI DDDDDDDDD SSSSSSSSS D1 and PC S[31] S[30] 4 / 13–20
1 The current C, Z, and effective next PC values are written to PA, PB, PTRA, PTRB, or Dest prior to replacing them with that of
Addr or Src.

Explanation:
CALLD records the current state of the C and Z flags and the address of the next instruction (PC + 1 if Cog/LUT
execution; PC + 4 if Hub execution) by writing them to the PA, PB, PTRA, PTRB, or Dest register, potentially updates
the C and Z flags with new given states, and jumps to the given address or offset.  The routine at the new address
should eventually execute another CALLD instruction to return to the recorded address (the instruction following
the original CALLD) optionally restore the C and Z flag state as it was prior, and optionally prep for another CALLD.
This instruction is typically used for the P2 DEBUG function.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 58



In syntax 1, #Addr and #\Addr encodes the instruction with relative and absolute addressing, respectively.  The
relative form (the default) is vital for creating relocatable code.  In either case, use symbolic references for Addr
and the assembler will encode it properly.  Examples: CALLD PA, #SendBit or CALLD PB, #\DebugStatus

In syntax 2, the format of the value at Src is CZxxxxxx_xxxxAAAA_AAAAAAAA_AAAAAAAA.  C is the new C flag
state, Z is the new Z flag state, A is the new 20-bit address to jump to, and x are don't-care bits.  If Src is a 9-bit
literal (immediate), it will be sign-extended to 20 bits and used as a relative offset; giving a range of -256 to +255
instructions, relative to the instruction following the CALLD.  When relative, PC is adjusted by signed(Src) if
Cog/LUT execution, or by signed(Src*4) if Hub execution.

If the WC or WCZ effect is specified, the C flag is updated to match S[31], after its original state is recorded.

If the WZ or WCZ effect is specified, the Z flag is updated to match S[30], after its original state is recorded.

CALLPA / CALLPB
Call parameter A or B
Flow Control Instruction - Call a subroutine; store return context on the stack and copy D into PA or PB.

CALLPA {#}Dest, {#}Src
CALLPB {#}Dest, {#}Src

Result: Push current C and Z flags and address of the next instruction onto the hardware stack, copy D to PA or
PB, and set PC to new relative or absolute address.

● Dest is a register, 9-bit literal, or 32-bit augmented literal whose value is copied to PA or PB.
● Src is a register, 9-bit literal, or 32-bit augmented literal that contains the relative or absolute address to

set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011010 0LI DDDDDDDDD SSSSSSSSS K1, PA and PC — — 4 / 13–20

EEEE 1011010 1LI DDDDDDDDD SSSSSSSSS K1, PB and PC — — 4 / 13–20
1 The current C, Z, and effective next PC values are pushed onto the stack (K) prior to updating PC with Src.

Explanation:
CALLPA and CALLPB records the current state of the C and Z flags and the address of the next instruction (PC + 1
if Cog/LUT execution; PC + 4 if Hub execution) by pushing to the stack (K), copies Dest to PA or PB, and jumps to
the given address or offset in Src.  The routine at the new address should eventually execute a RET instruction, or
an instruction with a _RET_ condition, to return to the recorded address (the instruction following the CALLPA or
CALLPB) and optionally restore the C and Z flag state as it was prior.

The Src can be absolute or relative; use #Addr for calling a range of -256 to +255 instructions, relative to the
instruction following the CALLPA or CALLPA.  When relative, PC is adjusted by signed(Src) if Cog/LUT execution,
or by signed(Src*4) if Hub execution.

CMP
Compare
Math Instruction - Compare two unsigned values.

CMP Dest, {#}Src {WC|WZ|WCZ}

Result: Greater/lesser and equality status is optionally written to the C and Z flags.

● Dest is the register containing the value to compare with that of Src.
Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 59



● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is compared to Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0010000 CZI DDDDDDDDD SSSSSSSSS — Unsigned (D < S) D = S 2

Related: CMPR, CMPX, CMPS, and CMPSX

Explanation:
CMP compares the unsigned values of Dest and Src (by subtracting Src from Dest) and optionally setting the C
and Z flags accordingly.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest is less than Src.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Dest equals Src.

To compare unsigned, multi-long values, use CMP followed by CMPX as described in Comparing Two Multi-Long
Values.

CMPM
Compare most significant bit
Math Instruction - Compare two unsigned values, get MSB of difference.

CMPM Dest, {#}Src {WC|WZ|WCZ}

Result: Greater/lesser and equality status is optionally written to the C and Z flags.

● Dest is the register containing the value to compare with that of Src.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is compared to Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0010101 CZI DDDDDDDDD SSSSSSSSS — Result[31] D = S 2

Explanation:
CMPM compares the unsigned values of Dest and Src (by subtracting Src from Dest) and optionally setting the C
and Z flags accordingly.

If the WC or WCZ effect is specified, the C flag is updated to the MSB of (Dest - Src).

If the WZ or WCZ effect is specified, the Z flag is set (1) if Dest equals Src.

CMPR
Compare reverse
Math Instruction - Compare two unsigned values (in reverse order to CMP).

CMPR Dest, {#}Src {WC|WZ|WCZ}

Result: Greater/lesser and equality status is optionally written to the C and Z flags.

● Dest is the register containing the value to compare with that of Src.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is compared to Dest.
● WC, WZ, or WCZ are optional effects to update flags.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 60



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0010100 CZI DDDDDDDDD SSSSSSSSS — Unsigned (S < D) D = S 2

Related: CMP

Explanation:
CMP compares the unsigned values of Dest and Src (by subtracting Dest from Src) and optionally setting the C
and Z flags accordingly.

If the WC or WCZ effect is specified, the C flag is set (1) if Src is less than Dest.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Dest equals Src.

To compare unsigned, multi-long values, use CMP (instead) followed by CMPX as described in Comparing Two
Multi-Long Values.

CMPS
Compare signed
Math Instruction - Compare two signed values.

CMPS Dest, {#}Src {WC|WZ|WCZ}

Result: Greater/lesser and equality status is optionally written to the C and Z flags.

● Dest is the register containing the value to compare with that of Src.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is compared to Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0010010 CZI DDDDDDDDD SSSSSSSSS — Signed (D < S) D = S 2

Related: CMP, CMPX, and CMPSX

Explanation:
CMPS compares the signed values of Dest and Src (by subtracting Src from Dest) and optionally setting the C and
Z flags to indicate the comparison and operation results.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest is less than Src.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Dest equals Src.

To compare signed, multi-long values, use CMP (not CMPS) followed possibly by CMPX, and finally CMPSX as
described in Comparing Two Multi-Long Values.

CMPSUB
Compare and subtract
Math Instruction - Compare two unsigned values and subtract the second if it is lesser or equal.

CMPSUB Dest, {#}Src {WC|WZ|WCZ}

Result: Dest is decremented by Src unless it is less than Src, and the comparison results are optionally written to
the C and Z flags.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 61



● Dest is the register containing the value to compare with Src and is the destination written to if a
subtraction is performed.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is compared with and possibly
subtracted from Dest.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0010111 CZI DDDDDDDDD SSSSSSSSS D1 Unsigned(D => S) Result = 0 2

1 Dest is only written if a subtraction was performed on it.

Explanation:
CMPSUB compares the unsigned values of Dest and Src, and if Src is less than or equal to Dest then it is
subtracted from Dest.  Optionally, the C and Z flags are set to indicate the comparison and operation results.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest was greater than or equal to Src.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result equals 0.

CMPSX
Compare signed, extended
Math Instruction - Compare two signed values plus carry flag.

CMPSX Dest, {#}Src {WC|WZ|WCZ}

Result: Greater/lesser and equality status is optionally written to the C and Z flags.

● Dest is the register containing the value to compare with that of Src.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is compared to Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0010011 CZI DDDDDDDDD SSSSSSSSS — Signed (D < S+C) Z AND (D = (S+C)) 2

Related: CMP, CMPX, and CMPSX

Explanation:
CMPSX compares the signed values of Dest and Src plus C (by subtracting Src + C from Dest) and optionally
setting the C and Z flags accordingly.  The CMPSX instruction is used to perform signed multi-long comparisons,
such as 64-bit comparisons.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest is less than Src + C (as multi-long values).  Use WC
or WCZ on preceding CMP and CMPX instructions for proper final C flag.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Z was previously set and the result of Dest - (Src + C) is
zero, or it is cleared (0) if non-zero.  Use WZ or WCZ on preceding SUB and SUBX instructions for proper final Z flag.

To compare signed, multi-long values, use CMP (not CMPS) followed possibly by CMPX, and finally CMPSX as
described in Comparing Two Multi-Long Values.

CMPX
Compare extended
Math Instruction - Compare two unsigned values plus carry flag.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 62



CMPX Dest, {#}Src {WC|WZ|WCZ}

Result: Greater/lesser and equality status is optionally written to the C and Z flags.

● Dest is a register containing the value to compare with that of Src plus C.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value plus C is compared to Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0010001 CZI DDDDDDDDD SSSSSSSSS — Unsigned (D < S+C) Z AND (D = S+C) 2

Related: CMP, CMPX, and CMPSX

Explanation:
CMPX compares the unsigned values of Dest and Src plus C (by subtracting Src + C from Dest) and optionally
setting the C and Z flags accordingly.  The CMPX instruction is used to perform unsigned multi-long comparisons,
such as 64-bit comparisons.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest is less than Src plus C, or is cleared (0) otherwise.
Use WC or WCZ on preceding CMP and CMPX instructions for proper final C flag.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Z was previously set and Dest equals Src + C, or it is
cleared (0) otherwise.  Use WZ or WCZ on preceding CMP and CMPX instructions for proper final Z flag.

To compare multi-long values, use CMP followed by one or more CMPX instructions as described in Comparing
Two Multi-Long Values.

COGATN
Cog attention
Event Handling Instruction - Get the attention of one or more other cogs.

COGATN {#}Dest

Result: The attention signal of one or more cogs is strobed.

● Dest is the register or 9-bit literal whose value (lower 8-bit pattern) indicates which cogs to signal.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 00L DDDDDDDDD 000111111 — — — 2

Related: POLLATN, WAITATN, JATN, and JNATN

Explanation:
COGATN strobes the attention signal for one or more cogs.  Dest bit positions 7:0 represent cogs 7 through 0; high
(1) bits indicate the cog(s) to signal.  The receiving cog(s) then latch the signal, setting an internal flag, and can
use any of the attention monitor instructions (JATN, JNATN, POLLATN, WAITATN) or interrupts to respond and
clear the flag.

COGATN   #00100010 'Get attention of cogs 1 and 5

In the intended use case, the cog receiving an attention request knows which other cog is strobing it and how to
respond.  In cases where multiple cogs may request the attention of a single cog, some messaging structure may
need to be implemented in Hub RAM to differentiate requests.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 63



COGBRK
Cog break
Interrupt Instruction - Trigger breakpoint in specified cog.

COGBRK {#}Dest

Result: If in the Debug ISR, trigger an asynchronous breakpoint in cog identified by Dest.

● Dest is the register or 9-bit literal whose value (lower 3-bits) indicates which cog to trigger.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 00L DDDDDDDDD 000110101 — — — 2

Explanation:
COGBRK triggers an asynchronous breakpoint in a designated cog.  The COGBRK instruction must be executed
from within a Debug ISR (interrupt service routine) and the designated cog must already have its asynchronous
breakpoint interrupt enabled.  Dest[2:0] indicates the ID of the desired cog.

COGID
Cog identification
Cog Control Instruction - Get current cog’s ID or any cog's status by ID.

COGID {#}Dest {WC}

Result: Current cog's ID is written to Dest or C is set (1) or cleared (0) if the Dest cog is running or stopped.

● Dest is the register where the current cog's ID will be written, or is the register or 9-bit literal whose value
(lower 3-bits) indicates which cog to get the status for.

● WC is an optional effect to update the C flag with the Dest cog's running status.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 C0L DDDDDDDDD 000000001 D if reg and !WC Cog Running — 2–9, +2 if result

Related: COGINIT and COGSTOP

Explanation:
COGID writes the current cog's ID into Dest (if Dest is a register and WC is omitted) or sets/clears the C flag
according to the running/stopped state of the cog indicated by Dest[2:0] (if WC is given).

If the WC effect is specified, the C flag is set (1) if the Dest[2:0] cog is running, or is cleared (0) if stopped.

COGINIT
Cog initialize
Cog Control Instruction - Start an available cog, or restart a cog by ID.

COGINIT {#}Dest, {#}Src {WC}

Result: Target cog is started, according to Dest, to execute code from Src.  The code pointer (Src) is written to the
target Cog's PTRB, and optionally a data pointer or user value is written to its PTRA (if previous SETQ is provided).

● Dest is the register or 9-bit literal describing the type of launch and possibly the ID of the desired cog to
launch.  If Dest is a register and WC is given, Dest is also where the ID of the launched cog will be written.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose value (lower 20 bits) is the target RAM
address (for code) and the new cog's PTRB value.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 64



● WC is an optional effect to update the C flag with the success (0) or fail (1) status and triggers Dest to be
overwritten with new cog's ID.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1100111 CLI DDDDDDDDD SSSSSSSSS D if reg and WC No cog available — 2–9, +2 if result

Related: COGID and COGSTOP

Explanation:
COGINIT starts a new (unused) cog, a new pair of cogs (that may share LUT memory), or a specific cog by ID, to
load code from Hub RAM to be executed within Reg/LUT RAM or to be executed right from Hub RAM.

If the WC effect is specified, the C flag is set (1) if the instruction failed to launch a cog, or is cleared (0) if it was
successful.  Also with the WC effect, if Dest is a register, it is overwritten with $F (on failure) or with the ID of the
newly launched cog —or the lowest of the pair of cogs— (on success).

The format of Dest is %E_N_xVVV.

E: 0 = load from Hub RAM (Src) into target cog's Reg RAM ($000–$1F7) and begin execution at its Reg
RAM ($000); 1 = no load, just execute from target cog's existing Reg/LUT RAM, or from Hub RAM.

N: 0 = target cog ID is V; 1 = start a free cog or cog pair according to V.
V: when N = 0, V is a specific cog ID (0–7; %000–%111); when N = 1, V is 0 (%000) to start a free cog or 1

(%001) to start a free odd/even pair of cogs for LUT RAM sharing.  Use the WC effect to get the results in
Dest and C.

The lower 20 bits of Src is the address of the start of code; the address in Hub RAM (or Reg/LUT RAM) where the
executable code image begins.  The entire 32-bit Src value will be written into the target cog's PTRB register.

If COGINIT is preceded by SETQ, the SETQ value will be written into the target cog's PTRA register. This is
intended as a convenient means of pointing the target cog's program to some runtime data structure or passing it
a 32-bit parameter. If no SETQ is used, the target cog's PTRA register will be cleared to zero.

Related instructions are COGID and COGSTOP.

Execution Modes
Code can be loaded into Cog RAM (Reg RAM and optionally LUT RAM) and executed, or code can be executed
from Hub RAM without pre-loading into Cog RAM.  For PASM2 programs, the former achieves the fastest
execution speed and natural isolation from other cogs while the latter achieves a larger effective code space
beyond the ≈1,000 instruction limit inside Cog RAM.  It is common to run PASM2 code from Reg RAM.

To execute code from Reg RAM, it must first be loaded from Hub RAM (i.e. a Dest value where E = 0 achieves both
load and execute in a single COGINIT instruction).

To execute code from LUT RAM, it must first be manually copied or streamed into LUT RAM by code executing in
Reg RAM (or by the neighboring cog in an even/odd pair that are sharing LUT RAM).

To execute code from Hub RAM, the Dest's E bit must be 1 and the Src must be an address beyond $3FF.  Note
that with a single COGINIT instruction, code could start out loaded into Reg RAM (E = 0), execute from there, and
can branch to $400 or beyond (Hub execution), or it can even copy or stream code into LUT RAM, execute in
Reg+LUT RAM, and then branch to $400 or beyond (Hub execution).

Additionally, it's possible to load and execute code in another cog's Reg RAM (one COGINIT instruction) and
restart that cog thereafter (another COGINIT instruction) to execute starting at any place in its existing Reg RAM

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 65



or LUT RAM (from the previous load) by using a Dest value with E = 1 and a Src value of less than $400.  This
works whether or not the cog is terminated first, since its Cog RAM is retained during its terminated (dormant)
state.  For example, one possibility is a Reg/LUT RAM-resident program consisting of a number of small
independent routines which are each exclusively started at-will by another cog— apparent cog launch and parallel
processing with no "loading" overhead latency.

COGINIT Constants
A number of constants are predefined for use in forming desired Dest values for COGINIT instructions.

COGINIT Constants
Symbol (for Dest) Dest Value Notes

COGEXEC %0_0_0000
The target cog loads its own Reg RAM registers $000–$1F7 from the Hub RAM
starting at Src address, then begins execution at register address $000.  Target
cog ID must be specified; i.e. COGEXEC+5 will launch Cog 5 in this fashion.

COGEXEC_NEW %0_1_0000

Same as above except an available (non-running) cog is chosen automatically;
do not specify an ID.  Use WC effect and a register for Dest (register's value set
to COGEXEC_NEW) to get pass/fail (0/1) result in C flag and ID of employed
cog in Dest register.

COGEXEC_NEW_PAIR %0_1_0001
Same as above except an available (non-running) even/odd pair of cogs is
chosen automatically— useful for LUT RAM sharing.  Dest receives the lowest
ID of the pair if successful (when the WC effect is used).

HUBEXEC %1_0_0000

No loading; the target cog begins execution at Reg/LUT/Hub RAM address Src.
Target cog ID must be specified; i.e. HUBEXEC+2 will launch Cog 2 in this
fashion.  NOTE: Though named HUBEXEC, this constant can also be used to
execute pre-existing code in Reg RAM or LUT RAM as well as Hub RAM.

HUBEXEC_NEW %1_1_0000

Same as above except an available (non-running) cog is chosen automatically;
do not specify an ID.  Use WC effect and a register for Dest (register's value set
to HUBEXEC_NEW) to get pass/fail (0/1) result in C flag and ID of employed
cog in Dest register.

HUBEXEC_NEW_PAIR %1_1_0001
Same as above except an available (non-running) even/odd pair of cogs is
chosen automatically— useful for LUT RAM sharing.  Dest receives the lowest
ID of the pair if successful (when the WC effect is used).

Examples
The following are individual examples.

COGINIT #1,#$100 'load and start Cog 1 from Hub RAM $100
—or—
COGINIT #COGEXEC+1,#$100

COGINIT #%1_0_0101, PTRA 'skip load and start Cog 5 at PTRA
—or—
COGINIT #HUBEXEC+5, PTRA

SETQ    ptra_val 'ptra_val will go into target cog's PTRA register
COGINIT #%0_1_0000, addr 'load and start a free cog at addr

—or—
SETQ    ptra_val
COGINIT #COGEXEC_NEW, addr

COGINIT #%1_1_0001, addr 'skip load, start a free pair of cogs at addr (for LUT RAM sharing)
—or—

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 66



COGINIT #HUBEXEC_NEW_PAIR, addr

COGINIT id, addr  WC '(id=HUBEXEC_NEW) skip load, start a free cog at addr
'C=0 and id=cog if okay

COGID   myID 'reload and restart me at Hub RAM PTRB
COGINIT myID, PTRB

COGSTOP
Cog stop
Cog Control Instruction - Stop a cog by ID.

COGSTOP {#}Dest

Result: Cog indicated by Dest is terminated (stopped).

● Dest is the register or 9-bit literal indicating (in lowest 3 bits) which cog to stop.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 00L DDDDDDDDD 000000011 — — — 2–9

Related: COGINIT and COGSTOP

Explanation:
COGSTOP terminates the cog identified by Dest[2:0]. In this dormant state, the cog ceases to execute code and
power consumption is greatly reduced.

Conditions ( IF_x )
Every PASM2 instruction has an optional “condition” that dynamically executes or excludes the instruction based
on flag settings at runtime.  A condition, if provided, is placed in front of the instruction it controls.

{Label}  {Condition}  Instruction  Operands  {Effect}

Conditions are optional; omitting the condition means "always execute" the instruction (the default behavior).  The
Condition field on an instruction line can contain one of fifty condition symbols (including blank; the default).  The
full set of condition symbols resolves down to 16 unique condition patterns (4-bits) that are stored in the
instruction's opcode (the COND field) during assembly.

This Condition feature, along with the instructions’ optional Effect feature, makes Propeller 2 Assembly very
powerful.  For example, the C and Z flags can be affected at will and later instructions can be conditionally
executed based on those results, making for easy behavioral changes through a single non-branching code path.

When an instruction’s condition evaluates to FALSE, the instruction effectively does nothing— still elapsing 2 clock
cycles, but not affecting any flags or registers. This makes the timing of multi-decision code deterministic.

Conditions
Condition1 Encoding2 Instruction Executes...

IF_E %1010 if comparison/subtraction was equal (Z = 1)

IF_NE %0101 if comparison/subtraction was not equal (Z = 0)

IF_A %0001 if comparison/subtraction was above (C = 0 and Z = 0)

IF_AE %0011 if comparison/subtraction was above or equal (C = 0)

IF_B %1100 if comparison/subtraction was below (C = 1)

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 67



IF_BE %1110 if comparison/subtraction was below or equal (C = 1 or Z = 1)

IF_GT %0001 if comparison/subtraction was greater than (C = 0 and Z = 0)

IF_GE %0011 if comparison/subtraction was greater than or equal (C = 0)

IF_LT %1100 if comparison/subtraction was less than (C = 1)

IF_LE %1110 if comparison/subtraction was less than or equal (C = 1 or Z = 1)

IF_C %1100 if C set (C = 1)

IF_NC %0011 if C clear (C = 0)

IF_Z %1010 if Z set (Z = 1)

IF_NZ %0101 if Z clear (Z = 0)

IF_C_EQ_Z %1001 if C equal to Z (C = 0 and Z = 0 --or-- C = 1 and Z = 1)

IF_C_NE_Z %0110 if C not equal to Z (C = 0 and Z = 1 --or-- C = 1 and Z = 0)

IF_C_AND_Z %1000 if C set and Z set (C = 1 and Z = 1)

IF_C_AND_NZ %0100 if C set and Z clear (C = 1 and Z = 0)

IF_NC_AND_Z %0010 if C clear and Z set (C = 0 and Z = 1)

IF_NC_AND_NZ %0001 if C clear and Z clear (C = 0 and Z = 0)

IF_C_OR_Z %1110 if C set or Z set (C = 1 or Z = 1)

IF_C_OR_NZ %1101 if C set or Z clear (C = 1 or Z = 0)

IF_NC_OR_Z %1011 if C clear or Z set (C = 0 or Z = 1)

IF_NC_OR_NZ %0111 if C clear or Z clear (C = 1 or Z = 0)

IF_Z_EQ_C %1001 if Z equal to C (Z = 0 and C = 0 --or-- Z = 1 and C = 1)

IF_Z_NE_C %0110 if Z not equal to C (Z = 0 and C = 1 --or-- Z = 1 and C = 0)

IF_Z_AND_C %1000 if Z set and C set (Z = 1 and C = 1)

IF_Z_AND_NC %0010 if Z set and C clear (Z = 1 and C = 0)

IF_NZ_AND_C %0100 if Z clear and C set (Z = 0 and C = 1)

IF_NZ_AND_NC %0001 if Z clear and C clear (Z = 0 and C = 0)

IF_Z_OR_C %1110 if Z set or C set (Z = 1 or C = 1)

IF_Z_OR_NC %1011 if Z set or C clear (Z = 1 or C = 0)

IF_NZ_OR_C %1101 if Z clear or C set (Z = 0 or C = 1)

IF_NZ_OR_NC %0111 if Z clear or C clear (Z = 0 or C = 0)

IF_00 %0001 if C clear and Z clear (C = 0 and Z = 0)

IF_01 %0010 if C clear and Z set (C = 0 and Z = 1)

IF_10 %0100 if C set and Z clear (C = 1 and Z = 0)

IF_11 %1000 if C set and Z set (C = 1 and Z = 1)

IF_X0 %0101 if Z clear (Z = 0)

IF_X1 %1010 if Z set (Z = 1)

IF_0X %0011 if C clear (C = 0)

IF_1X %1100 if C set (C = 1)

IF_NOT_00 %1110 if C clear and Z clear (C = 0 and Z = 0)

IF_NOT_01 %1101 if C set or Z clear (C = 1 or Z = 0)

IF_NOT_10 %1011 if C clear or Z set (C = 0 or Z = 1)

IF_NOT_11 %0111 if C clear or Z clear (C = 0 or Z = 0)

IF_DIFF %0110 if C not equal to Z (C = 0 and Z = 1 --or-- C = 1 and Z = 0)

IF_SAME %1001 if C equal to Z (C = 0 and Z = 0 --or-- C = 1 and Z = 1)

_RET_ %0000 always; execute instruction then return if no branch; no context restore

%1111 always; this is the default, no condition expressed

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 68



1 The Condition symbol must be entered in place of the {Condition} item (ahead of the Instruction) on an instruction line.
2 The Encoding value is emitted into the COND field (the EEEE bits) in the compiled instruction opcode.

Note that for every Condition that acts upon the state of C and/or Z flags, there's also a Modifier (for use with
MODxx instructions) capable of applying flag state(s) based on similar logic.   Additionally, the Condition symbols
and descriptions are similar to, and the encoding exactly matches, that of the related Modifiers.

DECMOD
Decrement modulus
Math Instruction - Decrement with modulus.

DECMOD Dest, {#}Src {WC|WZ|WCZ}

Result: If Dest was not equal to 0, it is decremented by 1; otherwise Dest is reset to Src.  Optionally, C and Z are
updated to indicate reset and zero result status.

● Dest is a register containing the value to decrement down to 0 with modulus, and is where the result is
written.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is the modulus limit to apply to Dest's
decrement operation.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0111001 CZI DDDDDDDDD SSSSSSSSS D Modulus triggered Result = 0 2

Related: INCMOD

Explanation:
DECMOD compares Dest with 0— if not equal, it decrements Dest; otherwise it sets Dest equal to Src.  If Dest
begins in the range 0 to Src, iterations of DECMOD will decrement Dest repetitively from Src to 0.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest was equal to 0 and subsequently reset to Src; or is
cleared (0) if not reset.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

DECMOD does not limit Dest within the specified range— if Dest begins as greater than Src, iterations of DECMOD
will continue to decrement it down through Src before it will effectively cycle from Src to 0.

DECOD
Decode
Bit Operation Instruction - Decode value (0—31) into single-high-bit long.

DECOD Dest, {#}Src
DECOD Dest

Result: A 32-bit value, with the bit position corresponding to Src, or Dest, value (0—31) set high, is stored in Dest.

● Dest is the register in which to store the decoded value and optionally begins by containing the 5-bit bit
position value it is requesting (syntax 2).

● Src is an optional register or 5-bit literal whose value is the bit position to set high in the decoded value.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 69



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001110 00I DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1001110 000 DDDDDDDDD DDDDDDDDD D — — 2

Related: ENCOD

Explanation:
DECOD generates a 32-bit value with just one bit high, corresponding to the Src, or Dest, value (0—31) and stores
that result in Dest.

In effect, Dest becomes %1 << value via the DECOD instruction; where value is Src[4:0] or Dest[4:0].

● A value of 0 generates %00000000_00000000_00000000_00000001.
● A value of 5 generates %00000000_00000000_00000000_00100000.
● A value of 15 generates %00000000_00000000_10000000_00000000.

DECOD is the complement of ENCOD.

DIRC / DIRNC
Direction C or not C
I/O Pin Instruction - Set pin(s) direction to input/output according to C or !C.

DIRC {#}Dest {WCZ}
DIRNC {#}Dest {WCZ}

Result: The I/O pin direction bit(s), described by Dest, are set to output/input according to C or !C; the rest are left
as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
output or input.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001000010 DIRx Orig DIRx base bit Orig DIRx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001000011 DIRx Orig DIRx base bit Orig DIRx base bit 2

Related: DIRZ, DIRNZ, DIRL, DIRH, DIRNOT, and DIRRND

Explanation:
DIRC or DIRNC alters the direction register's bit(s) designated by Dest to equal the state, or inverse state, of the C
flag; i.e. set pin to the output (1) or input (0) direction.  All other bits (pins) are left unchanged.  Each of these
instructions, DIRC and DIRNC, can affect one or more of the bits within the DIRA or DIRB registers.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 70



When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DIRC / DIRNC instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DIRC / DIRNC's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of DIRA / DIRB's base bit,
identified by Dest.

DIRH / DIRL
Direction high or low
I/O Pin Instruction - Set pin(s) direction to output (high; 1) or input (low; 0).

DIRH {#}Dest {WCZ}
DIRL {#}Dest {WCZ}

Result: The I/O pin direction bit(s), described by Dest, are set high (1; output) or low (0; input); the rest are left
as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
output or input.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001000001 DIRx Orig DIRx base bit Orig DIRx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001000000 DIRx Orig DIRx base bit Orig DIRx base bit 2

Related: DIRC, DIRNC, DIRZ, DIRNZ, DIRNOT, and DIRRND

Explanation:
DIRH or DIRL alters the direction register's bit(s) designated by Dest to be high (1) or low (0); i.e. set to the output
or input direction.  All other bits (pins) are left unchanged.  Each of these instructions, DIRH and DIRL, can affect
one or more of the bits within the DIRA or DIRB registers.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DIRH / DIRL instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DIRH / DIRL's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of DIRA / DIRB's base bit,
identified by Dest.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 71



DIRNOT
Direction not
I/O Pin Instruction - Toggle pin(s) to the opposite direction.

DIRNOT {#}Dest {WCZ}

Result: The I/O pin direction bit(s), described by Dest, are toggled to their opposite state(s); the rest are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to toggle
to the opposite direction.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001000111 DIRx Orig DIRx base bit Orig DIRx base bit 2

Related: DIRRND, DIRL, DIRH, DIRC, DIRNC, DIRZ, and DIRNZ

Explanation:
DIRNOT alters the direction register's bit(s) designated by Dest to their inverse state.  All other bits are left
unchanged.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DIRNOT instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DIRNOT's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of DIRA / DIRB's base bit,
identified by Dest.

DIRRND
Direction random
I/O Pin Instruction - Set pin(s) direction to random input/output.

DIRRND {#}Dest {WCZ}

Result: The I/O pin direction bit(s), described by Dest,  are each set randomly low or high (input or output); the rest
are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the pins set randomly to
inputs or outputs.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001000110 DIRx Orig DIRx base bit Orig DIRx base bit 2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 72



Related: DIRNOT, DIRL, DIRH, DIRC, DIRNC, DIRZ, and DIRNZ

Explanation:
DIRRND alters the direction register's bit(s) designated by Dest to be random low and high (input and output),
based on bit(s) from the Xoroshiro128** PRNG.  All other bits are left unchanged.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DIRRND instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DIRRND's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of DIRA / DIRB's base bit,
identified by Dest.

DIRZ / DIRNZ
Direction Z or not Z
I/O Pin Instruction - Set pin(s) direction to input/output according to Z or !Z.

DIRZ {#}Dest {WCZ}
DIRNZ {#}Dest {WCZ}

Result: The I/O pin direction bit(s), described by Dest, are set to output/input according to Z or !Z; the rest are left
as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
output or input.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZI DDDDDDDDD 001000100 DIRx Orig DIRx base bit Orig DIRx base bit 2

EEEE 1101011 CZI DDDDDDDDD 001000101 DIRx Orig DIRx base bit Orig DIRx base bit 2

Related: DIRC, DIRNC, DIRNOT, DIRRND, DIRL, and DIRH

Explanation:
DIRZ or DIRNZ alters the direction register's bit(s) designated by Dest to equal the state, or inverse state, of the Z
flag; i.e. set pin to the output (1) or input (0) direction.  All other bits (pins) are left unchanged.  Each of these
instructions, DIRZ and DIRNZ, can affect one or more of the bits within the DIRA or DIRB registers.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 73



A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DIRZ / DIRNZ instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DIRZ / DIRNZ's use.

If the WCZ effect is specified, the C and Z flags are updated to the original state of DIRA / DIRB's base bit,
identified by Dest.

DJF / DJNF
Decrement, jump if full or not full
Flow Control Instruction - Decrement value and jump if full (-1; $FFFF_FFFF) or not full (<> -1; <> $FFFF_FFFF).

DJF Dest, {#}Src
DJNF Dest, {#}Src

Result: Dest is decremented, and if the result is full (or not full in syntax 2), PC is set to a new relative (#Src) or
absolute (Src) address.

● Dest is a register whose value is decremented and tested for full or not full.
● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to

set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011011 10I DDDDDDDDD SSSSSSSSS D and PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011011 11I DDDDDDDDD SSSSSSSSS D and PC1 — — 2 or 4 / 2 or 13–20
1 Dest is always written; PC is written only when the result in Dest is full (or not full in syntax 2).

Explanation:
DJF or DJNF decrements the value in Dest, writes the result, and jumps to the address described by Src if the
result is full (-1; $FFFF_FFFF; in syntax 1) or not full (<> -1; <> $FFFF_FFFF; in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the DJF / DJNF.  The signed offset value is in units of
whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added to
PC when in Hub execution mode (long-aligned Hub code not required).

DJZ / DJNZ
Decrement, jump if zero or not zero
Flow Control Instruction - Decrement, jump if zero or not zero.

DJZ Dest, {#}Src
DJNZ Dest, {#}Src

Result: Dest is decremented, and if the result is zero (or not zero in syntax 2), PC is set to a new relative (#Src) or
absolute (Src) address.

● Dest is a register whose value is decremented and tested for zero or not zero.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 74



● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011011 00I DDDDDDDDD SSSSSSSSS D and PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011011 01I DDDDDDDDD SSSSSSSSS D and PC1 — — 2 or 4 / 2 or 13–20
1 Dest is always written; PC is written only when the result in Dest is zero (or not zero in syntax 2).

Explanation:
DJZ or DJNZ decrements the value in Dest, writes the result, and jumps to the address described by Src if the
result is zero (in syntax 1) or not zero (in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the DJZ / DJNZ.  The signed offset value is in units of
whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added to
PC when in Hub execution mode (long-aligned Hub code not required).

DRVC / DRVNC
Drive C or not C
I/O Pin Instruction - Set pin(s) direction to output and output level to low/high according to C or !C.

DRVC {#}Dest {WCZ}
DRVNC {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the output direction and to an output level of low/high according
to C or !C; the rest are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
output direction and output levels of low or high.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001011010 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001011011 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2
1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a DRVC or DRVNC.

Explanation:
DRVC or DRVNC sets the I/O pin(s) designated by Dest to the output direction and to a low/high output level
according to the state, or inverse state, of the C flag; i.e. alters the pin's direction and output registers.  All other
pins are left unchanged.  Each of these instructions, DRVC and DRVNC, can affect one or more of the bits within
the DIRA or DIRB and OUTA or OUTB registers.

DRVC or DRVNC achieves the same effect as two instructions— OUTC, or OUTNC, followed by DIRH.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 75



A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DRVC / DRVNC instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DRVC / DRVNC's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

DRVH / DRVL
Drive high or low
I/O Pin Instruction - Set pin(s) direction to output and output level high (1) or low (0).

DRVH {#}Dest {WCZ}
DRVL {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the output direction and to an output level of high or low; the rest
are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
output direction and output levels of high or low.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001011001 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001011000 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2
1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a DRVH or DRVL.

Explanation:
DRVH or DRVL sets the I/O pin(s) designated by Dest to the output direction and to a high or low output level; i.e.
alters the pin's direction and output registers.  All other pins are left unchanged.  Each of these instructions, DRVH
and DRVL, can affect one or more of the bits within the DIRA or DIRB and OUTA or OUTB registers.

DRVH or DRVL achieves the same effect as two instructions— OUTH, or OUTL, followed by DIRH.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DRVH / DRVL instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DRVH / DRVL's use.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 76



The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

DRVNOT
Drive not
I/O Pin Instruction - Set pin(s) direction to output and toggle to the opposite output level.

DRVNOT {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the output direction and to their opposite output level(s); the rest
are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
the output direction and toggle to opposite output levels.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001011111 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a DRVNOT.

Explanation:
DRVNOT sets the I/O pin(s) designated by Dest to the output direction and to their opposite output level(s); i.e.
alters the pin's direction and output registers.  All other pins are left unchanged.  This instruction can affect one or
more of the bits within the DIRA or DIRB and OUTA or OUTB registers.

DRVNOT achieves the same effect as two instructions— OUTNOT followed by DIRH.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DRVNOT instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DRVNOT's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

DRVRND
Drive random
I/O Pin Instruction - Set pin(s) direction to output and output level to random low/high.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 77



DRVRND {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the output direction and each output level is set randomly low or
high; the rest are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
the output direction and with output level(s) set randomly to low or high.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001011110 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a DRVRND.

Explanation:
DRVRND sets the I/O pin(s) designated by Dest to the output direction and with output level(s) set randomly low
and high, based on bit(s) from the Xoroshiro128** PRNG.  All other pins are left unchanged.  This instruction can
affect one or more of the bits within the DIRA or DIRB and OUTA or OUTB registers.

DRVRND achieves the same effect as two instructions— OUTRND followed by DIRH.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DRVRND instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DRVRND's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

DRVZ / DRVNZ
Drive Z or not Z
I/O Pin Instruction - Set pin(s) direction to output and output level to low/high according to Z or !Z.

DRVZ {#}Dest {WCZ}
DRVNZ {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the output direction and to an output level of low/high according
to Z or !Z; the rest are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
output direction and output levels of low or high.

● WCZ is an optional effect to update flags.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 78



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001011100 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001011101 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2
1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a DRVZ or DRVNZ.

Explanation:
DRVZ or DRVNZ sets the I/O pin(s) designated by Dest to the output direction and to a low/high output level
according to the state, or inverse state, of the Z flag; i.e. alters the pin's direction and output registers.  All other
pins are left unchanged.  Each of these instructions, DRVZ and DRVNZ, can affect one or more of the bits within
the DIRA or DIRB and OUTA or OUTB registers.

DRVZ or DRVNZ achieves the same effect as two instructions— OUTZ, or OUTNZ, followed by DIRH.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the DRVZ / DRVNZ instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for DRVZ / DRVNZ's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

ENCOD
Encode
Bit Operation Instruction - Get bit position of top-most 1 of Src or Dest into Dest.

ENCOD Dest, {#}Src {WC|WZ|WCZ}
ENCOD Dest {WC|WZ|WCZ}

Result: The bit position value of the top-most high bit (1) in Src, or Dest, is stored in Dest.

● Dest is the register in which to store the encoded bit position value and optionally begins by containing
the 32-bit value it is encoding (syntax 2).

● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose value is to be encoded into a bit
position.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0111100 CZI DDDDDDDDD SSSSSSSSS D S != 0 Result = 0 2

EEEE 0111100 CZ0 DDDDDDDDD DDDDDDDDD D Original D != 0 Result = 0 2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 79



Related: DECOD

Explanation:
ENCOD stores the bit position value (0—31) of the top-most high bit (1) of Src, or Dest, into Dest.  If the value to
encode (Src, or original Dest (in syntax 2)) may be %0, the resulting Dest will be 0— use the WC or WCZ effect and
check the resulting C flag to distinguish between the cases of input Src/Dest = %1 verses input Src/Dest = %0.

If the WC or WCZ effect is specified, the C flag is set (1) if Src (or original Dest in syntax 2) was not zero, or is
cleared (0) if it was zero.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result equals zero, or is cleared (0) if not zero.

● A long of %00000000_00000000_00000000_00000001 encodes to 0.
● A long of %00000000_00000000_00000000_00100000 encodes to 5.
● A long of %00000000_00000000_10000001_01000000 encodes to 15.
● A long of %00000000_00000000_00000000_00000000 encodes to 0 with optional C cleared to 0.

ENCOD is the complement of DECOD.

Effects ( WC, WZ, WCZ, ANDC, etc. )
Nearly half of PASM2 instructions feature optional effects to modify the C and/or Z flags.  An Effect is placed at
the end of such instructions.

{Label}  {Condition}  Instruction  Operands  {Effect}

When included (where allowed) the flag or flags are updated by the instruction execution; when omitted, the flags
remain as-is.  Only zero or one Effect is allowed per instruction.

Effects
Effect Description

ANDC AND tested bit/pin into current C; used on TESTxx instructions

ANDZ AND tested bit/pin into current Z; used on TESTxx instructions

ORC OR tested bit/pin into current C; used on TESTxx instructions

ORZ OR tested bit/pin into current Z; used on TESTxx instructions

XORC XOR tested bit/pin into current C; used on TESTxx instructions

XORZ XOR tested bit/pin into current Z; used on TESTxx instructions

WC Write C flag; used on many instructions

WCZ Write both C and Z flags; used on many instructions

WZ Write Z flag; used on many instructions

For example:

AND   config, #%1000  WZ 'config[3] low? z=1
TESTP #4              ANDZ 'pin 4 high? z=1

if_z        JMP   #MoreCode 'jump if config[3] low and pin 4 high

This code jumps to the label MoreCode only if config bit 3 is low (0) and I/O pin 4 is high.  This first instruction
bitwise AND's %1000 into config and sets the Z flag if that result is zero.  The second instruction tests I/O pin 4
and bitwise AND's its high/low state into the Z flag.  The third instruction, which specifies an if_z condition,

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 80



executes only if the z flag is high by then, jumping to MoreCode; otherwise it behaves like a nop instruction.  Using
an Effect on instructions, along with a Condition on later instructions, enables code to be much more powerful
than what is possible with typical assembly languages. See IF_x (Conditions) for more information.  NOTE: In this
example, the first instruction modifies config— to do non-destructive bit tests, use a testb instead of and
instruction.

FGE
Force greater or equal
Math Instruction - Force unsigned value to be greater than or equal to another.

FGE Dest, {#}Src {WC|WZ|WCZ}

Result: Unsigned Dest is set to unsigned Src if Dest was less than Src.  Optionally the C and Z flag indicates if the
replacement happened and the zero status of the result.

● Dest is a register containing the unsigned value to limit to a minimum of unsigned Src, and is where the
result is written.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose unsigned value is the lower limit to force
upon Dest.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0011000 CZI DDDDDDDDD SSSSSSSSS D limit enforced Result = 0 2

Related: FLE, FGES, and FLES

Explanation:
FGE sets unsigned Dest to unsigned Src if Dest is less than Src.  This is also known as a limit minimum function;
preventing Dest from sinking below Src.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest was limited (Dest was less than Src and now Dest is
equal to Src), or is cleared (0) if not limited.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

FGES
Force greater or equal, signed
Math Instruction - Force signed value to be greater than or equal to another.

FGES Dest, {#}Src {WC|WZ|WCZ}

Result: Signed Dest is set to signed Src if Dest was less than Src.  Optionally the C and Z flag indicates if the
replacement happened and the zero status of the result.

● Dest is a register containing the signed value to limit to a minimum of signed Src, and is where the result
is written.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose signed value is the lower limit to force upon
Dest.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0011010 CZI DDDDDDDDD SSSSSSSSS D limit enforced Result = 0 2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 81



Related: FLES, FGE, and FLE

Explanation:
FGES sets signed Dest to signed Src if Dest is less than Src.  This is also known as a limit minimum function;
preventing Dest from sinking below Src.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest was limited (Dest was less than Src and now Dest is
equal to Src), or is cleared (0) if not limited.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

FLE
Force lesser or equal
Math Instruction - Force unsigned value to be less than or equal to another.

FLE Dest, {#}Src {WC|WZ|WCZ}

Result: Unsigned Dest is set to unsigned Src if Dest was greater than Src.  Optionally the C and Z flag indicates if
the replacement happened and the zero status of the result.

● Dest is a register containing the unsigned value to limit to a maximum of unsigned Src, and is where the
result is written.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose unsigned value is the upper limit to force
upon Dest.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0011001 CZI DDDDDDDDD SSSSSSSSS D limit enforced Result = 0 2

Related: FGE, FLES, and FGES

Explanation:
FLE sets unsigned Dest to unsigned Src if Dest is greater than Src.  This is also known as a limit maximum
function; preventing Dest from rising above Src.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest was limited (Dest was greater than Src and now
Dest is equal to Src), or is cleared (0) if not limited.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

FLES
Force lesser or equal, signed
Math Instruction - Force signed value to be less than or equal to another.

FLES Dest, {#}Src {WC|WZ|WCZ}

Result: Signed Dest is set to signed Src if Dest was greater than Src.  Optionally the C and Z flag indicates if the
replacement happened and the zero status of the result.

● Dest is a register containing the signed value to limit to a maximum of signed Src, and is where the result
is written.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose signed value is the upper limit to force upon
Dest.

● WC, WZ, or WCZ are optional effects to update flags.
Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 82



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0011011 CZI DDDDDDDDD SSSSSSSSS D limit enforced Result = 0 2

Related: FGES, FLE, and FGE

Explanation:
FLES sets signed Dest to signed Src if Dest is greater than Src.  This is also known as a limit maximum function;
preventing Dest from rising above Src.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest was limited (Dest was greater than Src and now
Dest is equal to Src), or is cleared (0) if not limited.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

FLTC / FLTNC
Float C or not C
I/O Pin Instruction - Set pin(s) direction to input and an output level of low/high according to C.

FLTC {#}Dest {WCZ}
FLTNC {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the input direction and to an output level of low/high according
to C or !C; the rest are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
input direction and output levels of low or high.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001010010 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001010011 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2
1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a FLTC or FLTNC.

Explanation:
FLTC or FLTNC sets the I/O pin(s) designated by Dest to the input direction and to a low/high output level
according to the state, or inverse state, of the C flag; i.e. alters the pin's direction and output registers.  All other
pins are left unchanged.  Each of these instructions, FLTC and FLTNC, can affect one or more of the bits within
the DIRA or DIRB and OUTA or OUTB registers.

FLTC or FLTNC achieves the same effect as two instructions— DIRL followed by OUTC or OUTNC.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the FLTC / FLTNC instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for FLTC / FLTNC's use.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 83



The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

FLTH / FLTL
Float high or low
I/O Pin Instruction - Set pin(s) direction to input and to an output level of high (1) or low (0).

FLTH {#}Dest {WCZ}
FLTL {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the input direction and to an output level of high or low; the rest
are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
input direction and output levels of high or low.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001010001 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001010000 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2
1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a FLTH or FLTL.

Explanation:
FLTH or FLTL sets the I/O pin(s) designated by Dest to the input direction and to a high or low output level; i.e.
alters the pin's direction and output registers.  All other pins are left unchanged.  Each of these instructions, FLTH
and FLTL, can affect one or more of the bits within the DIRA or DIRB and OUTA or OUTB registers.

FLTH or FLTL achieves the same effect as two instructions— DIRL followed by OUTH or OUTL.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the FLTH / FLTL instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for FLTH / FLTL's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 84



FLTNOT
Float not
I/O Pin Instruction - Set pin(s) direction to input and toggle to the opposite output level.

FLTNOT {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the input direction and to their opposite output level(s); the rest
are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
the input direction and toggle to opposite output levels.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001010111 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a FLTNOT.

Explanation:
FLTNOT sets the I/O pin(s) designated by Dest to the input direction and to their opposite output level(s); i.e.
alters the pin's direction and output registers.  All other pins are left unchanged.  This instruction can affect one or
more of the bits within the DIRA or DIRB and OUTA or OUTB registers.

FLTNOT achieves the same effect as two instructions— DIRL followed by OUTNOT.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the FLTNOT instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for FLTNOT's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

FLTRND
Float random
I/O Pin Instruction - Set pin(s) direction to input and to an output level of random low/high.

FLTRND {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the input direction and each output level is set randomly low or
high; the rest are left as-is.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 85



● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
the input direction and with output level(s) set randomly to low or high.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001010110 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a FLTRND.

Explanation:
FLTRND sets the I/O pin(s) designated by Dest to the input direction and with output level(s) set randomly low and
high, based on bit(s) from the Xoroshiro128** PRNG.  All other pins are left unchanged.  This instruction can
affect one or more of the bits within the DIRA or DIRB and OUTA or OUTB registers.

FLTRND achieves the same effect as two instructions— DIRL followed by OUTRND.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the FLTRND instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for FLTRND's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

FLTZ / FLTNZ
Float Z or not Z
I/O Pin Instruction - Set pin(s) direction to input and an output level of low/high according to Z.

FLTZ {#}Dest {WCZ}
FLTNZ {#}Dest {WCZ}

Result: The I/O pins described by Dest are set to the input direction and to an output level of low/high according
to Z or !Z; the rest are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set to
input direction and output levels of low or high.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001010100 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001010101 DIRx1 + OUTx Orig OUTx base bit Orig OUTx base bit 2
1 New DIRx state is not data-forwarded; the next pipelined instruction sees the old state.  Make sure any instruction that reads
or modifies DIRx is at least two instructions after a FLTZ or FLTNZ.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 86



Explanation:
FLTZ or FLTNZ sets the I/O pin(s) designated by Dest to the input direction and to a low/high output level
according to the state, or inverse state, of the Z flag; i.e. alters the pin's direction and output registers.  All other
pins are left unchanged.  Each of these instructions, FLTZ and FLTNZ, can affect one or more of the bits within
the DIRA or DIRB and OUTA or OUTB registers.

FLTZ or FLTNZ achieves the same effect as two instructions— DIRL followed by OUTZ or OUTNZ.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the FLTZ / FLTNZ instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for FLTZ / FLTNZ's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (DIRA or
DIRB and OUTA or OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

GETBYTE
Get byte
Bit Operation Instruction - Get a byte from a value.

GETBYTE Dest, {#}Src, #Num
GETBYTE Dest

Result: Byte Num (0–3) of Src, or a byte from a source described by prior ALTGB instruction, is written to Dest.

● Dest is the register in which to store the byte.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value contains the target byte to read.
● Num is a 2-bit literal identifying the byte ID (0–3) of Src to read.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1000111 NNI DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1000111 000 DDDDDDDDD 000000000 D — — 2

Related: ALTGB, GETNIB, GETWORD, SETNIB, SETBYTE, SETWORD, ROLNIB, ROLBYTE, and ROLWORD

Explanation:
GETBYTE reads the byte identified by Num (0–3) from Src, or a byte from the source described by a prior ALTGB
instruction.

Num (0–3) identifies a value's individual bytes, by position, in least-significant byte order.

Syntax 2 is intended for use after an ALTGB instruction; i.e. in a loop to iteratively read a series of byte values
within contiguous long registers.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 87



GETNIB
Get nibble
Bit Operation Instruction - Get a nibble from a value.

GETNIB Dest, {#}Src, #Num
GETNIB Dest

Result: Nibble Num (0–7) of Src, or a nibble from a source described by prior ALTGN instruction, is written to Dest.

● Dest is the register in which to store the nibble.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value contains the target nibble to read.
● Num is a 3-bit literal identifying the nibble ID (0–7) of Src to read.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 100001N NNI DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1000010 000 DDDDDDDDD 000000000 D — — 2

Related: ALTGN, GETBYTE, GETWORD, SETNIB, SETBYTE, SETWORD, ROLNIB, ROLBYTE, and ROLWORD

Explanation:
GETNIB reads the nibble identified by Num (0–7) from Src, or a nibble from the source described by a prior ALTGN
instruction.

Num (0–7) identifies a value's individual nibbles, by position, in least-significant nibble order.

Syntax 2 is intended for use after an ALTGN instruction; i.e. in a loop to iteratively read a series of nibble values
within contiguous long registers.

GETWORD
Get word
Bit Operation Instruction - Get a word from a value.

GETWORD Dest, {#}Src, #Num
GETWORD Dest

Result: Word Num (0–1) of Src, or a word from a source described by prior ALTGW instruction, is written to Dest.

● Dest is the register in which to store the word.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value contains the target word to read.
● Num is a 1-bit literal identifying the word ID (0–1) of Src to read.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001001 1NI DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1001001 100 DDDDDDDDD 000000000 D — — 2

Related: ALTGW, GETNIB, GETBYTE, SETNIB, SETBYTE, SETWORD, ROLNIB, ROLBYTE, and ROLWORD

Explanation:
GETWORD reads the word identified by Num (0–1) from Src, or a word from the source described by a prior ALTGW
instruction.

Num (0–1) identifies a value's words, by position, in least-significant word order.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 88



Syntax 2 is intended for use after an ALTGW instruction; i.e. in a loop to iteratively read a series of word values
within contiguous long registers.

IF_x (Conditions)
See Conditions ( IF_x ).

IJZ / IJNZ
Increment, jump if zero or not zero
Flow Control Instruction - Increment value and jump if zero or not zero.

IJZ Dest, {#}Src
IJNZ Dest, {#}Src

Result: Dest is incremented, and if the result is zero (or not zero in syntax 2), PC is set to a new relative (#Src) or
absolute (Src) address.

● Dest is a register whose value is incremented and tested for zero or not zero.
● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to

set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011100 00I DDDDDDDDD SSSSSSSSS D and PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011100 01I DDDDDDDDD SSSSSSSSS D and PC1 — — 2 or 4 / 2 or 13–20
1 Dest is always written; PC is written only when the result in Dest is zero (or not zero in syntax 2).

Explanation:
IJZ or IJNZ increments the value in Dest, writes the result, and jumps to the address described by Src if the
result is zero (syntax 1) or not zero (in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the IJZ / IJNZ.  The signed offset value is in units of
whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added to
PC when in Hub execution mode (long-aligned Hub code not required).

INCMOD
Increment modulus
Math Instruction - Increment with modulus.

INCMOD Dest, {#}Src {WC|WZ|WCZ}

Result: If Dest was not equal to Src, it is incremented by 1; otherwise Dest is reset to 0.  Optionally, C and Z are
updated to indicate reset and zero result status.

● Dest is a register containing the value to increment up to Src with modulus, and is where the result is
written.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is the modulus limit to apply to Dest's
increment operation.

● WC, WZ, or WCZ are optional effects to update flags.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 89



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0111000 CZI DDDDDDDDD SSSSSSSSS D Modulus triggered Result = 0 2

Related: DECMOD

Explanation:
INCMOD compares Dest with Src— if not equal, it increments Dest; otherwise it sets Dest equal to 0.  If Dest
begins in the range 0 to Src, iterations of INCMOD will increment Dest repetitively from 0 to Src.

If the WC or WCZ effect is specified, the C flag is set (1) if Dest was equal to Src and subsequently reset to 0; or is
cleared (0) if not reset.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

INCMOD does not limit Dest within the specified range— if Dest begins as greater than Src, iterations of INCMOD
will continue to increment it through the 32-bit rollover point (back to 0) before it will effectively cycle from 0 to
Src.

JATN / JNATN
Jump if attention or not attention
Event Branch Instruction - Jump if attention flag is set or clear.

JATN {#}Src
JNATN {#}Src

Result: If ATN event flag is set (or is clear in syntax 2), PC is set to a new relative (#Src) or absolute (Src) address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000001110 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000011110 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the ATN event flag is set (or is clear in syntax 2).

Explanation:
JATN or JNATN checks the cog's attention signal and jumps to the address described by Src if attention is set (in
syntax 1) or is clear (in syntax 2).  The cog's attention signal, when set, indicates that one or more other cogs are
requesting this cog's attention.  See the Hardware Manual's Cog Attention section for more information.

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JATN / JNATN.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 90

https://www.parallax.com/propeller-2/documentation/


JCT1/2/3 / JNCT1/2/3
Jump if counter 1/2/3 or not counter 1/2/3
Event Branch Instruction - Jump if counter 1, 2, or 3 event flag is set or clear.

JCT1 {#}Src
JCT2 {#}Src
JCT3 {#}Src
JNCT1 {#}Src
JNCT2 {#}Src
JNCT3 {#}Src

Result: If counter 1, 2, or 3 event flag is set (or is clear in syntax 4–6), PC is set to a new relative (#Src) or absolute
(Src) address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000000001 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000000010 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000000011 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000010001 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000010010 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000010001 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the counter event flag is set (or is clear in syntax 4–6).

Explanation:
JCT1, JCT2, JCT3, or JNCT1, JNCT2, JNCT3 checks the cog's counter 1, 2, or 3 event flag and jumps to the
address described by Src if the flag is set (in syntax 1–3) or is clear (in syntax 4–6).  The cog's hidden registers,
CT1, CT2, and CT3 are dedicated to System Counter timing and events— when a counter event flag is set, it means
a specified time period has elapsed.  See the Hardware Manual's System Counter section for more information.

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JCTx / JNCTx.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

Related instructions are ADDCTx, POLLCTx, and WAITCTx.

JFBW / JNFBW
Jump if FIFO block wrap or not FIFO block wrap
Event Branch Instruction - Jump if FIFO interface block wrap event flag is set or clear.

JFBW {#}Src
JNFBW {#}Src

Result: If FIFO interface block wrap event flag is set (or is clear in syntax 2), PC is set to a new relative (#Src) or
absolute (Src) address.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 91

https://www.parallax.com/propeller-2/documentation/


● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000001001 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000011001 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the FIFO interface block wrap event flag is set (or is clear in syntax 2).

Explanation:
JFBW or JNFBW checks the cog's FIFO interface block wrap flag and jumps to the address described by Src if the
flag is set (in syntax 1) or is clear (in syntax 2).  The cog's Fast Sequential FIFO Interface is used to swiftly transfer
data between Hub and Cog.  When the FIFO runs out of data (block count), it sets this flag before wrapping
around to the start of the block again.

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JFBW / JNFBW.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

JINT / JNINT
Jump if interrupt or not interrupt
Event Branch Instruction - Jump if interrupt-occurred event flag is set or clear.

JINT {#}Src
JNINT {#}Src

Result: If interrupt-occurred event flag is set (or is clear in syntax 2), PC is set to a new relative (#Src) or absolute
(Src) address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000000000 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000010000 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the interrupt event flag is set (or is clear in syntax 2).

Explanation:
JINT or JNINT checks the cog's interrupt-occurred flag and jumps to the address described by Src if the flag is
set (in syntax 1) or is clear (in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JINT / JNINT.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 92



JPAT / JNPAT
Jump if pattern or not pattern
Event Branch Instruction - Jump if pin pattern event flag set or clear.

JPAT {#}Src
JNPAT {#}Src

Result: If pin pattern event flag is set (or is clear in syntax 2), PC is set to a new relative (#Src) or absolute (Src)
address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000001000 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000011000 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the pin pattern event flag is set (or is clear in syntax 2).

Explanation:
JPAT or JNPAT checks the cog's pin-pattern-detected event flag and jumps to the address described by Src if the
flag is set (in syntax 1) or is clear (in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JPAT / JNPAT.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

JQMT / JNQMT
Jump if CORDIC empty or not CORDIC empty
Event Branch Instruction - Jump if CORDIC-read-but-empty event flag set or clear.

JQMT {#}Src
JNQMT {#}Src

Result: If CORDIC-read-but-empty event flag is set (or is clear in syntax 2), PC is set to a new relative (#Src) or
absolute (Src) address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000001111 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000011111 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the CORDIC-read-but-empty event flag is set (or is clear in syntax 2).

Explanation:
JQMT or JNQMT checks the cog's CORDIC results event flag and jumps to the address described by Src if the flag
is set (in syntax 1) or is clear (in syntax 2).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 93



The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JQMT / JNQMT.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

JSE1/2/3/4 / JNSE1/2/3/4
Jump if selectable event 1/2/3/4 or not selectable event 1/2/3/4
Event Branch Instruction - Jump if selectable event 1, 2, 3, or 4 flag is set or clear.

JSE1 {#}Src
JSE2 {#}Src
JSE3 {#}Src
JSE4 {#}Src
JNSE1 {#}Src
JNSE2 {#}Src
JNSE3 {#}Src
JNSE4 {#}Src

Result: If selectable event 1, 2, 3, or 4 flag is set (or is clear in syntax 5–8), PC is set to a new relative (#Src) or
absolute (Src) address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000000100 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000000101 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000000110 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000000111 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000010100 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000010101 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000010110 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000010111 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the selectable event 1, 2, 3, or 4 flag is set (or is clear in syntax 5–8).

Explanation:
JSE1, JSE2, JSE3, JSE4, or JNSE1, JNSE2, JNSE3, JNSE4 checks the cog's selectable event 1, 2, 3, or 4 event
flag and jumps to the address described by Src if the flag is set (in syntax 1–4) or is clear (in syntax 5–8).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JSEx / JNSEx.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 94



JXFI / JNXFI
Jump if streamer finished or not streamer finished
Event Branch Instruction - Jump if streamer finished event flag set or clear.

JXFI {#}Src
JNXFI {#}Src

Result: If streamer finished event flag is set (or is clear in syntax 2), PC is set to a new relative (#Src) or absolute
(Src) address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000001011 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000011011 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the streamer finished event flag is set (or is clear in syntax 2).

Explanation:
JXFI or JNXFI checks the cog's streamer finished event flag and jumps to the address described by Src if the
flag is set (in syntax 1) or is clear (in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JXFI / JNXFI.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

JXMT / JNXMT
Jump if streamer empty or not streamer empty
Event Branch Instruction - Jump if streamer empty event flag set or clear.

JXMT {#}Src
JNXMT {#}Src

Result: If streamer empty event flag is set (or is clear in syntax 2), PC is set to a new relative (#Src) or absolute
(Src) address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000001010 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000011010 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the streamer empty event flag is set (or is clear in syntax 2).

Explanation:
JXMT or JNXMT checks the cog's streamer empty event flag and jumps to the address described by Src if the flag
is set (in syntax 1) or is clear (in syntax 2).  The address (Src) can be absolute or relative.  To specify an absolute
address, Src must be a register containing a 20-bit address value.  To specify a relative address, use #Label for a
9-bit signed offset (a range of -256 to +255 instructions) or use ##Label (or insert a prior AUGS instruction) for a

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 95



20-bit signed offset (a range of -524288 to +524287).  Offsets are relative to the instruction following the JXMT /
JNXMT.  The signed offset value is in units of whole instructions— it is added to PC as-is when in Cog/LUT
execution mode and is multiplied by 4 then added to PC when in Hub execution mode (long-aligned Hub code not
required).

JXRL / JNXRL
Jump if streamer rollover LUT or not streamer rollover LUT
Event Branch Instruction - Jump if streamer LUT RAM rollover event flag set or clear.

JXRL {#}Src
JNXRL {#}Src

Result: If streamer LUT RAM rollover event flag is set (or is clear in syntax 2), PC is set to a new relative (#Src) or
absolute (Src) address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000001101 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000011101 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the streamer LUT RAM rollover event flag is set (or is clear in syntax 2).

Explanation:
JXRL or JNXRL checks the cog's streamer LUT RAM rollover event flag and jumps to the address described by Src
if the flag is set (in syntax 1) or is clear (in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JXRL / JNXRL.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

JXRO / JNXRO
Jump if streamer rollover NCO or not streamer rollover NCO
Event Branch Instruction - Jump if streamer NCO rollover event flag set or clear.

JXRO {#}Src
JNXRO {#}Src

Result: If streamer NCO rollover event flag is set (or is clear in syntax 2), PC is set to a new relative (#Src) or
absolute (Src) address.

● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to
set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 01I 000001100 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011110 01I 000011100 SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when the streamer NCO rollover event flag is set (or is clear in syntax 2).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 96



Explanation:
JXRO or JNXRO checks the cog's streamer NCO rollover event flag and jumps to the address described by Src if
the flag is set (in syntax 1) or is clear (in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the JXRO / JNXRO.  The signed offset value is in units
of whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added
to PC when in Hub execution mode (long-aligned Hub code not required).

MODC / MODZ / MODCZ
Modify C, Z, or C and Z
Flag Modification Instruction - Modify C and/or Z flag(s) according to modifier mode and current state(s).

MODC CModifier {WC}
MODZ ZModifier {WZ}
MODCZ CModifier, ZModifier {WC|WZ|WCZ}

Result: The C and/or Z flag is set or cleared according to the given Modifier and the current state of the C and/or
Z flags.

● CModifer is a Modifier symbol for the designated mode to apply to the C flag.
● ZModifer is a Modifier symbol for the designated mode to apply to the Z flag.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 C01 0cccc0000 001101111 — C=cccc[{C,Z}] — 2

EEEE 1101011 0Z1 00000zzzz 001101111 — — Z=zzzz[{C,Z}] 2

EEEE 1101011 CZ1 0cccczzzz 001101111 — C=cccc[{C,Z}] Z=zzzz[{C,Z}] 2

Explanation:
MODC, MODZ, or MODCZ sets or clears the C and/or Z flag based on the mode described by the given Modifier
symbol(s) and the current state of the C and/or Z flag.  The WC, WZ, and WCZ effects are required to affect the
designated flag.

These flag modifier instructions allow code to preset flags to a desired state which may be required for entry into
certain code routines, or to set a special state based on multiple events that are otherwise not possible to realize
with a single instruction.

If the WC, WZ, or WCZ effect is specified, the C, Z, or both C and Z flags are updated according to the given
CModifier or ZModifier.  See the Modifier Symbols table for details.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 97



Modifier Symbols (for MODC / MODZ / MODCZ)

Modifier1 Encoding2 Description

_CLR %0000 Clear C/Z (C == 0 and/or Z == 0)

_E %1010 Set C/Z if comparison/subtraction was equal (C == Z and/or Z == Z)

_NE %0101 Set C/Z if comparison/subtraction was not equal (C == !Z and/or Z == !Z)

_GT %0001 Set C/Z if comparison/subtraction was greater than (C == !C AND !Z and/or Z == !C AND !Z)

_GE %0011 Set C/Z if comparison/subtraction was greater than or equal (C == !C and/or Z == !C)

_LT %1100 Set C/Z if comparison/subtraction was less than (C == C and/or Z == C)

_LE %1110 Set C/Z if comparison/subtraction was less than or equal (C == C OR Z and/or Z == C OR Z)

_C %1100 Set C/Z to C (C == C and/or Z == C)

_NC %0011 Set C/Z to inverse of C (C == !C and/or Z == !C)

_Z %1010 Set C/Z to Z (C == Z and/or Z == Z)

_NZ %0101 Set C/Z to inverse of Z (C == !Z and/or Z == !Z)

_C_EQ_Z %1001 Set C/Z if C equal to Z (C == C = Z and/or Z == C = Z)

_C_NE_Z %0110 Set C/Z if C not equal to Z (C == C <> Z and/or Z == C <> Z)

_C_AND_Z %1000 Set C/Z to C AND Z (C == C AND Z and/or Z == C AND Z)

_C_AND_NZ %0100 Set C/Z to C AND NOT Z (C == C AND !Z and/or Z == C AND !Z)

_NC_AND_Z %0010 Set C/Z to NOT C AND Z (C == !C AND Z and/or Z == !C AND Z)

_NC_AND_NZ %0001 Set C/Z to NOT C AND NOT Z (C == !C AND !Z and/or Z == !C AND !Z)

_C_OR_Z %1110 Set C/Z to C OR Z (C == C OR Z and/or Z == C OR Z)

_C_OR_NZ %1101 Set C/Z to C OR NOT Z (C == C OR !Z and/or Z == C OR !Z)

_NC_OR_Z %1011 Set C/Z to NOT C OR Z (C == !C OR Z and/or Z == !C OR Z)

_NC_OR_NZ %0111 Set C/Z to NOT C OR NOT Z (C == !C OR !Z and/or Z == !C OR !Z)

_Z_EQ_C %1001 Set C/Z if Z equal to C (C == Z = C and/or Z == Z = C)

_Z_NE_C %0110 Set C/Z if Z not equal to C (C == Z <> C and/or Z == Z <> C)

_Z_AND_C %1000 Set C/Z to Z AND C (C == Z AND C and/or Z == Z AND C)

_Z_AND_NC %0010 Set C/Z to Z AND NOT C (C == Z AND !C and/or Z == Z AND !C)

_NZ_AND_C %0100 Set C/Z to NOT Z AND C (C == !Z AND C and/or Z == !Z AND C)

_NZ_AND_NC %0001 Set C/Z to NOT Z AND NOT C (C == !Z AND !C and/or Z == !Z AND !C)

_Z_OR_C %1110 Set C/Z to Z OR C (C == Z OR C and/or Z == Z OR C)

_Z_OR_NC %1011 Set C/Z to Z OR NOT C (C == Z OR !C and/or Z == Z OR !C)

_NZ_OR_C %1101 Set C/Z to NOT Z OR C (C == !Z OR C and/or Z == !Z OR C)

_NZ_OR_NC %0111 Set C/Z to NOT Z OR NOT C (C == !Z OR !C and/or Z == !Z OR !C)

_SET %1111 Set C/Z (C == 1 and/or Z == 1)
1 Use Modifier symbol(s) in MODC, MODZ, and MODCZ instructions.  Note that the symbol and description is similar to, and

the encoding exactly matches, that of the related Conditions used to include/exclude instructions at run time.
2 The encoding is the 4-bit value placed into the MODC, MODZ, and MODCZ instruction's cccc or zzzz opcode field by the

compiler.
Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 98



Examples:

MODCZ   _NZ, 0          WC 'C = !Z,  Z = Z (unaltered)

MODCZ   0, _SET         WZ 'C = C (unaltered), Z = 1

MODCZ   _CLR, _Z_OR_C   WCZ 'C = 0,  Z |= C

MODC    _NZ_AND_C       WC 'C = !Z & C

MODZ    _Z_NE_C         WZ 'Z = Z ^ C;  (Z <> C)

MOV
Move
Bit Operation Instruction - Set a value into a register.

MOV Dest, {#}Src {WC|WZ|WCZ}

Result: The Src value is stored in Dest and optionally flags are updated with the sign bit and zero status.

● Dest is the register to receive the Src value.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value will be stored into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0110000 CZI DDDDDDDDD SSSSSSSSS D S[31] Result = 0 2

Explanation:
Mov stores the Src value into Dest.

If the WC or WCZ effect is specified, the C flag is updated to be Src[31].

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest result equals zero, or is cleared (0) if it is
non-zero.

MUL
Multiply
Math Instruction - Multiply unsigned 16-bit x 16-bit values.

MUL Dest, {#}Src {WZ}

Result: The 32-bit unsigned product of the 16-bit Dest and Src multiplication is stored into Dest and optionally the
Z flag is updated to the Dest or Src zero status.

● Dest is a register containing the 16-bit value to multiply with Src, and is where the result is written.
● Src is a register, 9-bit literal, or 16-bit augmented literal whose value is multiplied into Dest.
● WZ is an optional effect to update the Z flag.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1010000 0ZI DDDDDDDDD SSSSSSSSS D — (D = 0) | (S = 0) 2

Related: MULS, SCA, and QMUL

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 99



Explanation:
MUL multiplies the lower 16-bits of each of Dest and Src together and stores the 32-bit product result into the Dest
register.  This is a fast (2-clock) 16 x 16 bit multiplication operation— to multiply larger factors, use the CORDIC
Solver QMUL instruction.

If the WZ effect is specified, the Z flag is set (1) if either the Dest or Src values are zero, or is cleared (0) if both are
non-zero.

MULS
Multiply, signed
Math Instruction - Multiply signed 16-bit x 16-bit values.

MULS Dest, {#}Src {WZ}

Result: The 32-bit signed product of the signed 16-bit Dest and Src multiplication is stored into Dest and
optionally the Z flag is updated to the Dest or Src zero status.

● Dest is a register containing the signed 16-bit value to multiply with Src, and is where the result is written.
● Src is a register, 9-bit literal, or signed 16-bit augmented literal whose value is multiplied into Dest.
● WZ is an optional effect to update the Z flag.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1010000 1ZI DDDDDDDDD SSSSSSSSS D — (D = 0) | (S = 0) 2

Related: MUL, SCA, and QMUL

Explanation:
MULS multiplies the signed lower 16-bits of each of Dest and Src together and stores the 32-bit signed product
result into the Dest register.  This is a fast (2-clock) signed 16 x 16 bit multiplication operation— to multiply larger
factors, use the CORDIC Solver QMUL instruction.

If the WZ effect is specified, the Z flag is set (1) if either the Dest or Src values are zero, or is cleared (0) if both are
non-zero.

MUXC / MUXNC
Mux C or mux not C
Bit Operation Instructions - Set discrete bits to C or !C

MUXC Dest, {#}Src {WC|WZ|WCZ}
MUXNC Dest, {#}Src {WC|WZ|WCZ}

Result: Dest bit(s) described by Src are set to C or !C; the rest are left as-is.  Flags are optionally updated with
parity and zero status of the result.

● Dest is the register whose value will have one or more bits set to C or !C.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value identifies the bit(s) to modify.
● WC, WZ, or WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0101100 CZI DDDDDDDDD SSSSSSSSS D Parity of Result Result = 0 2

EEEE 0101101 CZI DDDDDDDDD SSSSSSSSS D Parity of Result Result = 0 2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 100



Explanation:
MUXC or MUXNC alters the Dest bit(s) designated by Src (high bits) to equal the state, or inverse state, of the C flag.
All Dest bits corresponding to high (1) bits in Src are modified; all other Dest bits are left unchanged.

If the WC or WCZ effect is specified, the C flag is set (1) if the number of high (1) bits in the result is odd, or is
cleared (0) if it is even.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is not zero.

MUXNIBS
Mux nibbles
Bit Operation Instruction - Set discrete nibbles of a value to non-zero nibble states of another.

MUXNIBS Dest, {#}Src

Result: Dest nibbles corresponding to non-zero Src nibbles are set to those nibble values; the rest are left as-is.

● Dest is a register whose value will be updated according to Src.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose non-zero nibbles will replace the

corresponding nibbles in Dest.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001111 01I DDDDDDDDD SSSSSSSSS D — — 2

Explanation:
MUXNIBS copies any non-zero nibbles from Src into the corresponding nibbles of Dest and leaves the rest of
Dest's nibbles as-is.

MUXNITS
Mux nits
Bit Operation Instruction - Set discrete bit pairs of a value to non-zero bit pair states of another.

MUXNITS Dest, {#}Src

Result: Dest bit pairs corresponding to non-zero Src bit pairs are set to those bit values; the rest are left as-is.

● Dest is a register whose value will be updated according to Src.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose non-zero bit pairs will replace the

corresponding bit pairs in Dest.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001111 00I DDDDDDDDD SSSSSSSSS D — — 2

Explanation:
MUXNITS copies any non-zero bit pairs from Src into the corresponding bit pairs of Dest and leaves the rest of
Dest's bit pairs as-is.

MUXQ
Mux Q
Bit Operation Instruction - Set discrete bits of a value to that of another.

MUXQ Dest, {#}Src

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 101



Result: Dest bits described by Q are set to corresponding Src bits; the rest are left as-is.

● Dest is a register whose bits will be updated according to Q and Src.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose select bits will replace the corresponding

bits in Dest.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001111 10I DDDDDDDDD SSSSSSSSS D — — 2

Explanation:
MUXQ copies all bits from Src corresponding to high (1) bits of Q into the corresponding bits of Dest.  All other
Dest bits are left as-is.

MUXQ must be preceded by SETQ to function properly since the Q value's high bits identify the bits to target in Src
and Dest.

MUXZ / MUXNZ
Mux Z or mux not Z
Bit Operation Instructions - Set discrete bits to Z or !Z

MUXZ Dest, {#}Src {WC|WZ|WCZ}
MUXNZ Dest, {#}Src {WC|WZ|WCZ}

Result: Dest bit(s) described by Src are set to Z or !Z; the rest are left as-is.  Flags are optionally updated with
parity and zero status of the result.

● Dest is the register whose value will have one or more bits set to Z or !Z.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value identifies the bit(s) to modify.
● WC, WZ, or WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0101110 CZI DDDDDDDDD SSSSSSSSS D Parity of Result Result = 0 2

EEEE 0101111 CZI DDDDDDDDD SSSSSSSSS D Parity of Result Result = 0 2

Explanation:
MUXZ or MUXNZ alters the Dest bit(s) designated by Src (high bits) to equal the state, or inverse state, of the Z flag.
All Dest bits corresponding to high (1) bits in Src are modified; all other Dest bits are left unchanged.

If the WC or WCZ effect is specified, the C flag is set (1) if the number of high (1) bits in the result is odd, or is
cleared (0) if it is even.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is not zero.

NEG
Negate
Math Instruction - Negate a value.

NEG Dest, {#}Src {WC|WZ|WCZ}
NEG Dest {WC|WZ|WCZ}

Result: The Src or Dest value is negated and stored into Dest and optionally the C and Z flags are updated to the
resulting sign and zero status.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 102



● Dest is a register to receive the -Src value (syntax 1), or contains the value to negate (syntax 2).
● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose negated value is stored into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0110011 CZI DDDDDDDDD SSSSSSSSS D Sign of result Result = 0 2

EEEE 0110011 CZ0 DDDDDDDDD DDDDDDDDD D Sign of result Result = 0 2

Related: ABS, NEGC, NEGNC, NEGZ and NEGNZ

Explanation:
NEG negates Src (syntax 1) or Dest (syntax 2) and stores the result in the Dest register.  The negation flips the
value's sign; ex: 78 becomes -78, or -306 becomes 306.

If the WC or WCZ effect is specified, the C flag is set (1) if the result is negative, or is cleared (0) if positive.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

NEGC
Negate C
Math Instruction - Negate value according to C.

NEGC Dest, {#}Src {WC|WZ|WCZ}
NEGC Dest {WC|WZ|WCZ}

Result: The Src or Dest value, possibly negated according to C, is stored into Dest and optionally the C and Z flags
are updated to the resulting sign and zero status.

● Dest is a register to receive the Src or -Src value (syntax 1), or contains the value to negate (syntax 2)
according to C.

● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose value (if C=0) or negated value (if
C=1) is stored into Dest.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0110100 CZI DDDDDDDDD SSSSSSSSS D Sign of result Result = 0 2

EEEE 0110100 CZ0 DDDDDDDDD DDDDDDDDD D Sign of result Result = 0 2

Related: NEGNC, NEGZ and NEGNZ

Explanation:
NEGC negates Src (syntax 1) or Dest (syntax 2) if C = 1 and stores the result in the Dest register.  If C = 0, the Src
or Dest value is left as-is (not negated) and is stored into Dest.  If the negation is performed, it flips the value's
sign; ex: 5 becomes -5, or -200 becomes 200.

If the WC or WCZ effect is specified, the C flag is set (1) if the result is negative, or is cleared (0) if positive.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

NEGNC
Negate not C
Math Instruction - Negate value according to !C.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 103



NEGNC Dest, {#}Src {WC|WZ|WCZ}
NEGNC Dest {WC|WZ|WCZ}

Result: The Src or Dest value, possibly negated according to !C, is stored into Dest and optionally the C and Z flags
are updated to the resulting sign and zero status.

● Dest is a register to receive the Src or -Src value (syntax 1), or contains the value to negate (syntax 2)
according to !C.

● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose value (if !C=0) or negated value (if
!C=1) is stored into Dest.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0110101 CZI DDDDDDDDD SSSSSSSSS D Sign of result Result = 0 2

EEEE 0110101 CZ0 DDDDDDDDD DDDDDDDDD D Sign of result Result = 0 2

Related: NEGC, NEGZ and NEGNZ

Explanation:
NEGNC negates Src (syntax 1) or Dest (syntax 2) if !C = 1 and stores the result in the Dest register.  If !C = 0, the Src
or Dest value is left as-is (not negated) and is stored into Dest.  If the negation is performed, it flips the value's
sign; ex: 21 becomes -21, or -1,374 becomes 1,374.

If the WC or WCZ effect is specified, the C flag is set (1) if the result is negative, or is cleared (0) if positive.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

NEGNZ
Negate not Z
Math Instruction - Negate value according to !Z.

NEGNZ Dest, {#}Src {WC|WZ|WCZ}
NEGNZ Dest {WC|WZ|WCZ}

Result: The Src or Dest value, possibly negated according to !Z, is stored into Dest and optionally the C and Z flags
are updated to the resulting sign and zero status.

● Dest is a register to receive the Src or -Src value (syntax 1), or contains the value to negate (syntax 2)
according to !C.

● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose value (if !C=0) or negated value (if
!C=1) is stored into Dest.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0110111 CZI DDDDDDDDD SSSSSSSSS D Sign of result Result = 0 2

EEEE 0110111 CZ0 DDDDDDDDD DDDDDDDDD D Sign of result Result = 0 2

Related: NEGZ, NEGC and NEGNC

Explanation:
NEGNZ negates Src (syntax 1) or Dest (syntax 2) if !Z = 1 and stores the result in the Dest register.  If !Z = 0, the Src
or Dest value is left as-is (not negated) and is stored into Dest.  If the negation is performed, it flips the value's
sign; ex: 193 becomes -193, or -3,062 becomes 3,062.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 104



If the WC or WCZ effect is specified, the C flag is set (1) if the result is negative, or is cleared (0) if positive.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

NEGZ
Negate Z
Math Instruction - Negate value according to Z.

NEGZ Dest, {#}Src {WC|WZ|WCZ}
NEGZ Dest {WC|WZ|WCZ}

Result: The Src or Dest value, possibly negated according to Z, is stored into Dest and optionally the C and Z flags
are updated to the resulting sign and zero status.

● Dest is a register to receive the Src or -Src value (syntax 1), or contains the value to negate (syntax 2)
according to Z.

● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose value (if Z=0) or negated value (if
Z=1) is stored into Dest.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0110110 CZI DDDDDDDDD SSSSSSSSS D Sign of result Result = 0 2

EEEE 0110110 CZ0 DDDDDDDDD DDDDDDDDD D Sign of result Result = 0 2

Related: NEGNZ, NEGC and NEGNC

Explanation:
NEGZ negates Src (syntax 1) or Dest (syntax 2) if Z = 1 and stores the result in the Dest register.  If Z = 0, the Src or
Dest value is left as-is (not negated) and is stored into Dest.  If the negation is performed, it flips the value's sign;
ex: 526 becomes -526, or -41 becomes 41.

If the WC or WCZ effect is specified, the C flag is set (1) if the result is negative, or is cleared (0) if positive.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

NOP
No operation
Miscellaneous Instruction - No operation, just elapse two cycles.

NOP

Result: Two clock cycles are consumed.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
0000 0000000 000 000000000 000000000 — — — 2

Explanation:
NOP simply consumes two clock cycles; no other operation is performed.

NOT
Not
Bit Operation Instruction - Bitwise NOT a value.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 105



NOT Dest, {#}Src {WC|WZ|WCZ}
NOT Dest {WC|WZ|WCZ}

Result: !Src (or !Dest) is stored in Dest and flags are optionally updated with the NOTed high bit and zero status.

● Dest is the register containing the value to bitwise NOT (syntax 2) or to be replaced by the bitwise NOT of
Src (syntax 1).

● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose value will be bitwise NOTed and
stored into Dest.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0110001 CZI DDDDDDDDD SSSSSSSSS D !S[31] Result = 0 2

EEEE 0110001 CZ0 DDDDDDDDD DDDDDDDDD D !D[31] Result = 0 2

Explanation:
NOT performs a bitwise NOT (inverting all bits) of the value in Src (or in Dest) and stores the result into Dest.

If the WC or WCZ effect is specified, the C flag value is replaced by the inverse of either S[31] (syntax 1) or D[31]
(syntax 2).

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result of !Src (syntax 1) or !Dest (syntax 2) equals
zero, or is cleared (0) if it is non-zero.

OR
Or
Bit Operation Instruction - Bitwise OR a value with another.

OR Dest, {#}Src {WC|WZ|WCZ}

Result: Dest OR Src is stored in Dest and flags are optionally updated with parity and zero status.

● Dest is the register containing the value to bitwise OR with Src and is the destination in which to write the
result.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose value will be bitwise ORed into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0101010 CZI DDDDDDDDD SSSSSSSSS D Parity of Result Result = 0 2

Explanation:
OR performs a bitwise OR of the value in Src into that of Dest.

If the WC or WCZ effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits, or is
cleared (0) if it contains an even number of high bits.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest OR Src result equals zero, or is cleared (0) if it is
non-zero.

ONES
Ones
Bit Operation Instruction - Get number of 1s from Dest or Src into Dest.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 106



ONES Dest, {#}Src {WC|WZ|WCZ}
ONES Dest {WC|WZ|WCZ}

Result: The number of high bits in Src, or Dest, is stored in Dest.

● Dest is the register in which to store the number of high bits found and optionally it begins by containing
the value to check (syntax 2).

● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose value is to be checked for ones.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0111101 CZI DDDDDDDDD SSSSSSSSS D Result is odd Result = 0 2

EEEE 0111101 CZ0 DDDDDDDDD DDDDDDDDD D Result is odd Result = 0 2

Explanation:
ONES tallies the number of high bits of Src, or Dest, and stores the count into Dest.

If the WC or WCZ effect is specified, the C flag is set (1) if the count is odd, or is cleared (0) if it is even.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result equals zero, or is cleared (0) if not zero.

OUTC / OUTNC
Output C or not C
I/O Pin Instruction - Set pin(s) output level to low/high according to C or !C.

OUTC {#}Dest {WCZ}
OUTNC {#}Dest {WCZ}

Result: The I/O pin output level bit(s), described by Dest, are set to low/high according to C or !C; the rest are left
as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) for which
output levels are to be set low or high.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001001010 OUTx Orig OUTx base bit Orig OUTx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001001011 OUTx Orig OUTx base bit Orig OUTx base bit 2

Explanation:
OUTC or OUTNC alters the output level register's bit(s) designated by Dest to equal the state, or inverse state, of
the C flag; i.e. set pin's output level low or high.  All other bits (pins) are left unchanged.  Each of these
instructions, OUTC and OUTNC, can affect one or more of the bits within the OUTA or OUTB registers.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 107



When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the OUTC / OUTNC instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for OUTC / OUTNC's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (OUTA or
OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

OUTH / OUTL
Output high or low
I/O Pin Instruction - Set pin(s) output level to high (1) or low (0).

OUTH {#}Dest {WCZ}
OUTL {#}Dest {WCZ}

Result: The I/O pin output level bit(s), described by Dest, are set high (1) or low (0); the rest are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to set high
or low.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001001001 OUTx Orig OUTx base bit Orig OUTx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001001000 OUTx Orig OUTx base bit Orig OUTx base bit 2

Explanation:
OUTH or OUTL alters the output level register's bit(s) designated by Dest to be high (1) or low (0).  All other bits
(pins) are left unchanged.  Each of these instructions, OUTH and OUTL, can affect one or more of the bits within
the OUTA or OUTB registers.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the OUTH / OUTL instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for OUTH / OUTL's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (OUTA or
OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

OUTNOT
Output not
I/O Pin Instruction - Toggle pin(s) to the opposite output level.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 108



OUTNOT {#}Dest {WCZ}

Result: The I/O pin output level bit(s), described by Dest, are toggled to their opposite state(s); the rest are left
as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) to toggle
to the opposite output level.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001001111 OUTx Orig OUTx base bit Orig OUTx base bit 2

Explanation:
OUTNOT alters the output level register's bit(s) designated by Dest to their inverse state.  All other bits are left
unchanged.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the OUTNOT instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for OUTNOT's use.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

OUTRND
Output random
I/O Pin Instruction - Set pin(s) output level to random low/high.

OUTRND {#}Dest {WCZ}

Result: The I/O pin output level bit(s), described by Dest,  are each set randomly low or high; the rest are left as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the pins set randomly to
low or high.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001001110 OUTx Orig OUTx base bit Orig OUTx base bit 2

Explanation:
OUTRND alters the output level register's bit(s) designated by Dest to be random low and high, based on bit(s)
from the Xoroshiro128** PRNG.  All other bits are left unchanged.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 109



A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the OUTRND instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for OUTRND's use.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

OUTZ / OUTNZ
Output Z or not Z
I/O Pin Instruction - Set pin(s) output level to low/high according to Z or !Z.

OUTZ {#}Dest {WCZ}
OUTNZ {#}Dest {WCZ}

Result: The I/O pin output level bit(s), described by Dest, are set to low/high according to Z or !Z; the rest are left
as-is.

● Dest is the register, 9-bit literal, or 11-bit augmented literal whose value identifies the I/O pin(s) for which
output levels are to be set low or high.

● WCZ is an optional effect to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001001100 OUTx Orig OUTx base bit Orig OUTx base bit 2

EEEE 1101011 CZL DDDDDDDDD 001001101 OUTx Orig OUTx base bit Orig OUTx base bit 2

Explanation:
OUTZ or OUTNZ alters the output level register's bit(s) designated by Dest to equal the state, or inverse state, of
the Z flag; i.e. set pin's output level low or high.  All other bits (pins) are left unchanged.  Each of these
instructions, OUTZ and OUTNZ, can affect one or more of the bits within the OUTA or OUTB registers.

Dest[5:0] indicates the pin number (0–63).  For a range of pins, Dest[5:0] indicates the base pin number (0–63)
and Dest[10:6] indicates how many contiguous pins beyond the base should be affected (1–31).

A 9-bit literal Dest is enough to express the base pin (Dest[5:0]) and a range of up to 8 contiguous pins (Dest[8:6]).
If needed, use the augmented literal feature (##Dest) to augment Dest to an 11-bit literal value— this inserts an
AUGD instruction prior.

When Dest is a register, the register's value bits [10:0] are used as-is to form the 11-bit ID range, unless a SETQ
instruction immediately precedes the OUTZ / OUTNZ instruction; substituting SETQ's Dest[4:0] in place of value
bits[10:6], for OUTZ / OUTNZ's use.

The range calculation (from Dest[5:0] up to Dest[5:0]+Dest[10:6]) will wrap within the same 32-pin group (OUTA or
OUTB); it will not cross the port boundary.

If the WCZ effect is specified, the C and Z flags are updated to the original state of OUTA / OUTB's base bit,
identified by Dest.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 110



POLLATN
Poll attention
Event Monitor Instruction - Retrieve and clear attention flag.

POLLATN {WC|WZ|WCZ}

Result: Attention event flag is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000001110 000100100 — ATN Event ATN Event 2

Related: COGATN, WAITATN, JATN, and JNATN

Explanation:
POLLATN copies the state of the attention event flag into C and/or Z and then clears the flag (unless it's being set
again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the attention event flag
prior to clearing it.

The attention event flag is set whenever another cog issues an attention request for this cog.  The attention event
flag is cleared upon cog start, or execution of POLLATN, WAITATN, JATN, or JNATN instructions.

POLLCT1/2/3
Poll counter 1/2/3
Event Monitor Instruction - Retrieve and clear counter event 1/2/3 flag.

POLLCT1 {WC|WZ|WCZ}
POLLCT2 {WC|WZ|WCZ}
POLLCT3 {WC|WZ|WCZ}

Result: Counter event flag 1, 2, or 3 state is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000000001 000100100 — CT1 Event CT1 Event 2

EEEE 1101011 CZ0 000000010 000100100 — CT2 Event CT2 Event 2

EEEE 1101011 CZ0 000000011 000100100 — CT3 Event CT3 Event 2

Related: ADDCTx, WAITCTx, JCTx, and JNCTx

Explanation:
POLLCT1, POLLCT2, or POLLCT3 copies the state of the count 1, 2, or 3 event flag into C and/or Z and then clears
the flag (unless it's being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the corresponding
counter event flag prior to clearing it.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 111



The counter 1, 2, or 3 event flag is set whenever the System Counter (CT) passes the value in the CT1, CT2, or CT3
event trigger register, respectively; i.e. MSB of (CT - CTx is 0).  The counter event flags are cleared upon execution
of the corresponding ADDCTx, POLLCTx, WAITCTx, JCTx, or JNCTx instructions.

POLLFBW
Poll FIFO block wrap
Event Monitor Instruction - Retrieve and clear FIFO-interface-block-wrap event flag.

POLLFBW {WC|WZ|WCZ}

Result: FIFO-interface-block-wrap event flag is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000001001 000100100 — FBW Event FBW Event 2

Related: RDFAST, WRFAST, FBLOCK, WAITFBW, JFBW, and JNFBW

Explanation:
POLLFBW copies the state of the FIFO-interface-block-wrap event flag into C and/or Z and then clears the flag
(unless it's being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the FIFO-interface‑block‑
wrap event flag prior to clearing it.

The FIFO-interface-block-wrap event flag is set whenever the Hub RAM FIFO interface exhausts its block count
and reloads its block count and start address.  The FIFO-interface-block-wrap event flag is cleared upon execution
of RDFAST, WRFAST, FBLOCK, POLLFBW, WAITFBW, JFBW, or JNFBW instructions.

POLLINT
Poll interrupt
Event Monitor Instruction - Retrieve and clear interrupt-occurred event flag.

POLLINT {WC|WZ|WCZ}

Result: Interrupt-occurred event flag is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000000000 000100100 — INT Event INT Event 2

Related: WAITINT, JINT, and JNINT

Explanation:
POLLINT copies the state of the interrupt-occurred event flag into C and/or Z and then clears the flag (unless it's
being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the interrupt-occurred
event flag prior to clearing it.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 112



The interrupt-occurred event flag is set whenever interrupt 1, 2, or 3 occurs— debug interrupts are ignored.  The
interrupt-occurred event flag is cleared upon cog start, or execution of POLLINT, WAITINT, JINT, or JNINT
instructions.

POLLPAT
Poll pattern
Event Monitor Instruction - Retrieve and clear pin-pattern-detected event flag.

POLLPAT {WC|WZ|WCZ}

Result: Pin-pattern-detected event flag is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000001000 000100100 — PAT Event PAT Event 2

Related: SETPAT, WAITPAT, JPAT, and JNPAT

Explanation:
POLLPAT copies the state of the pin-pattern-detected event flag into C and/or Z and then clears the flag (unless
it's being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the pin-pattern-detected
event flag prior to clearing it.

The pin-pattern-detected event flag is set whenever the masked input pins match or don't match the pattern
described by a previous SETPAT instruction.  The pin-pattern-detected event flag is cleared upon execution of
SETPAT, POLLPAT, WAITPAT, JPAT, or JNPAT instructions.

POLLQMT
Poll CORDIC empty
Event Monitor Instruction - Retrieve and clear CORDIC-read-but-empty event flag.

POLLQMT {WC|WZ|WCZ}

Result: CORDIC-read-but-empty event flag is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000001111 000100100 — QMT Event QMT Event 2

Related: JQMT and JNQMT

Explanation:
POLLQMT copies the state of the CORDIC-read-but-empty event flag into C and/or Z and then clears the flag
(unless it's being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the CORDIC-read-but-
empty event flag prior to clearing it.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 113



The CORDIC-read-but-empty event flag is set whenever GETQX / GETQY executes without any CORDIC results
available or in progress.  The pin-pattern-detected event flag is cleared upon cog start or execution of POLLQMT,
WAITQMT, JQMT, or JNQMT instructions.

POLLSE1/2/3/4
Poll selectable event 1/2/3/4
Event Monitor Instruction - Retrieve and clear selectable event 1, 2, 3, or 4 flag.

POLLSE1 {WC|WZ|WCZ}
POLLSE2 {WC|WZ|WCZ}
POLLSE3 {WC|WZ|WCZ}
POLLSE4 {WC|WZ|WCZ}

Result: Selectable event flag 1, 2, 3, or 4 state is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000000100 000100100 — SE1 Event SE1 Event 2

EEEE 1101011 CZ0 000000101 000100100 — SE2 Event SE2 Event 2

EEEE 1101011 CZ0 000000110 000100100 — SE3 Event SE3 Event 2

EEEE 1101011 CZ0 000000111 000100100 — SE4 Event SE4 Event 2

Related: SETSEx, WAITSEx, JSEx, and JNSEx

Explanation:
POLLSE1, POLLSE2, POLLSE3, or POLLSE4 copies the state of the selectable event 1, 2, 3, or 4 flag into C and/or
Z and then clears the flag (unless it's being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the corresponding
selectable event flag prior to clearing it.

The selectable event 1, 2, 3, or 4 flag is set whenever the corresponding configured event occurs.  The selectable
event flag is cleared upon execution of the corresponding SETSEx, POLLSEx, WAITSEx, JSEx, or JNSEx
instructions.

POLLXFI
Poll streamer finished
Event Monitor Instruction - Retrieve and clear streamer-finished event flag.

POLLXFI {WC|WZ|WCZ}

Result: Streamer-finished event flag is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000001011 000100100 — XFI Event XFI Event 2

Related: XINIT, XZERO, XCONT, WAITXFI, JXFI, and JNXFI

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 114



Explanation:
POLLXFI copies the state of the streamer-finished event flag into C and/or Z and then clears the flag (unless it's
being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the streamer-finished
event flag prior to clearing it.

The streamer-finished event flag is set whenever the streamer runs out of commands to process.  The
streamer-finished event flag is cleared upon execution of XINIT, XZERO, XCONT, POLLXFI, WAITXFI, JXFI, or
JNXFI instructions.

POLLXMT
Poll streamer empty
Event Monitor Instruction - Retrieve and clear streamer-empty event flag.

POLLXMT {WC|WZ|WCZ}

Result: Streamer-empty event flag is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000001010 000100100 — XMT Event XMT Event 2

Related: XINIT, XZERO, XCONT, WAITXMT, JXMT, and JNXMT

Explanation:
POLLXMT copies the state of the streamer-empty event flag into C and/or Z and then clears the flag (unless it's
being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the streamer-empty
event flag prior to clearing it.

The streamer-empty event flag is set whenever the streamer is ready for a new command.  The streamer-empty
event flag is cleared upon execution of XINIT, XZERO, XCONT, POLLXMT, WAITXMT, JXMT, or JNXMT instructions.

POLLXRL
Poll streamer rollover LUT
Event Monitor Instruction - Retrieve and clear streamer-LUT-RAM-rollover event flag.

POLLXRL {WC|WZ|WCZ}

Result: Streamer-LUT-RAM-rollover event flag is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000001101 000100100 — XRL Event XRLEvent 2

Related: XINIT, XZERO, XCONT, WAITXRL, JXRL, and JNXRL

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 115



Explanation:
POLLXRL copies the state of the streamer-LUT-RAM-rollover event flag into C and/or Z and then clears the flag
(unless it's being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the streamer-LUT-RAM-
rollover event flag prior to clearing it.

The streamer-LUT-RAM-rollover event flag is set whenever location $1FF of the Lookup RAM is read by the
streamer.  The streamer-LUT-RAM-rollover event flag is cleared upon cog start or upon execution of POLLXRL,
WAITXRL, JXRL, or JNXRL instructions.

POLLXRO
Poll streamer rollover NCO
Event Monitor Instruction - Retrieve and clear streamer-NCO-rollover event flag.

POLLXRO {WC|WZ|WCZ}

Result: Streamer-NCO-rollover event flag is optionally copied into C and/or Z, then it is cleared.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000001100 000100100 — XRO Event XRO Event 2

Related: XINIT, XZERO, XCONT, WAITXRO, JXRO, and JNXRO

Explanation:
POLLXRO copies the state of the streamer NCO rollover event flag into C and/or Z and then clears the flag (unless
it's being set again by the event sensor).

If the WC, WZ, or WCZ effect is specified, the C flag and/or Z flag is updated to the state of the streamer-NCO-
rollover event flag prior to clearing it.

The streamer-NCO-rollover event flag is set whenever the streamer's numerically-controlled oscillator (NCO) rolls
over.  The streamer-NCO-rollover event flag is cleared upon execution of XINIT, XZERO, XCONT, POLLXRO,
WAITXRO, JXRO, or JNXRO instructions.

RCL
Rotate carry left
Bit Operation Instruction - Rotate carry flag left into value.

RCL Dest, {#}Src {WC|WZ|WCZ}

Result: The bits of Dest are shifted left by Src bits, inserting C as new LSBs.

● Dest is the register containing the value to rotate carry left by Src bits.
● Src is a register or 5-bit literal whose value indicates the number of bit positions to rotate.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0000101 CZI DDDDDDDDD SSSSSSSSS D Last bit out1 Result = 0 2

1 C = last bit shifted out if Src[4:0] > 0, else C = Dest[31].

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 116



Explanation:
RCL shifts Dest's binary value left by Src places (0–31 bits) and sets the new LSBs to C.

If the WC or WCZ effect is specified, the C flag is updated to the value of the last bit shifted out if Src is 1–31, or to
Dest[31] if Src is 0.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest result equals zero, or is cleared (0) if it is
non-zero.

RCR
Rotate carry right
Bit Operation Instruction - Rotate carry flag right into value.

RCR Dest, {#}Src {WC|WZ|WCZ}

Result: The bits of Dest are shifted right by Src bits, inserting C as new MSBs.

● Dest is the register containing the value to rotate carry right by Src bits.
● Src is a register or 5-bit literal whose value indicates the number of bit positions to rotate.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0000100 CZI DDDDDDDDD SSSSSSSSS D Last bit out1 Result = 0 2

1 C = last bit shifted out if Src[4:0] > 0, else C = Dest[0].

Explanation:
RCR shifts Dest's binary value right by Src places (0–31 bits) and sets the new MSBs to C.

If the WC or WCZ effect is specified, the C flag is updated to the value of the last bit shifted out if Src is 1–31, or to
Dest[0] if Src is 0.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest result equals zero, or is cleared (0) if it is
non-zero.

RCZL
Rotate carry and zero left
Bit Operation Instruction - Rotate carry and zero flags left into value (2-bit rotate left).

RCZL Dest {WC|WZ|WCZ}

Result: The bits of Dest are shifted left by two places and C and Z are inserted as new LSBs.

● Dest is the register containing the value to rotate the carry and zero flags left into.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 DDDDDDDDD 001101011 D D[31] D[30] 2

Explanation:
RCZL shifts Dest's binary value left by two places and sets Dest[1] to C and Dest[0] to Z.

If the WC or WCZ effect is specified, the C flag is updated to the original Dest[31] state.

If the WZ or WCZ effect is specified, the Z is flag is updated to the original Dest[30] state.
Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 117



RCZR
Rotate carry and zero right
Bit Operation Instruction - Rotate carry and zero flags right into value (2-bit rotate right).

RCZR Dest {WC|WZ|WCZ}

Result: The bits of Dest are shifted right by two places and C and Z are inserted as new MSBs.

● Dest is the register containing the value to rotate the carry and zero flags right into.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 DDDDDDDDD 001101010 D D[1] D[0] 2

Explanation:
RCZR shifts Dest's binary value right by two places and sets Dest[31] to C and Dest[30] to Z.

If the WC or WCZ effect is specified, the C flag is updated to the original Dest[1] state.

If the WZ or WCZ effect is specified, the Z is flag is updated to the original Dest[0] state.

Registers
Special Purpose Registers - Rotate a byte left into a value.

Most Reg RAM registers are general-purpose (used for code and data) while a small set has a special purpose.

Name Address Access2 Special Purpose

IJMP3 $1F01 Read/Write Interrupt call address for INT3; set by code

IRET3 $1F11 Read/Write Interrupt return address and C/Z flags for INT3; set by cog

IJMP2 $1F21 Read/Write Interrupt call address for INT2; set by code

IRET2 $1F31 Read/Write Interrupt return address and C/Z flags for INT2; set by cog

IJMP1 $1F41 Read/Write Interrupt call address for INT1; set by code

IRET1 $1F51 Read/Write Interrupt return address and C/Z flags for INT1; set by cog

PA $1F61 Read/Write CALLD-imm return, CALLPA parameter, or LOC address

PB $1F71 Read/Write CALLD-imm return, CALLPB parameter, or LOC address

PTRA $1F8 Read Special / Write Special Pointer A to Hub RAM

PTRB $1F9 Read Special / Write Special Pointer B to Hub RAM

DIRA $1FA Read / Write Special Output enables (direction bits) for P31..P0

DIRB $1FB Read / Write Special Output enables (direction bits) for P63..P32

OUTA $1FC Read / Write Special Output states for P31..P0

OUTB $1FD Read / Write Special Output states for P63..P32

INA $1FE3 Read Special Input states for P31..P0

INB $1FF4 Read Special Input states for P63..P32
1 Locations $1F0–$1F7 are general-purpose code/data registers by default but become these named special-purpose

registers if their associated functions are enabled.
2 Most reads and writes involve the underlying Reg RAM at these locations; however, those marked "special" may read from a

special internal register (instead of Reg RAM) or write to both the Reg RAM location as well as to a special internal register.
3 Also debug interrupt call address.
4 Also debug interrupt return address.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 118



Additionally, for PASM2 code that is either in-line (within a Spin2 method) or called (by a Spin2 method), the
registers $1D8–$1DF are readable/writable by both languages using the symbols PR0–PR7.  PASM2 code that is
launched into another cog does not share this Reg RAM space with Spin2.

Name Address Access Special Purpose

PR0–PR7 $1D8–$1DF Read/Write PASM2 ⇄ Spin2 communication mechanism

REV
Reverse
Bit Operation Instruction - Reverse bits of value.

REV Dest

Result: The 32-bit pattern in Dest is reversed.

● Dest is the register containing the bit value to reverse.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 000 DDDDDDDDD 001101001 D — — 2

Explanation:
REV performs a bitwise reverse (bits 31:0 ⇒ bits 0:31) of the value in Dest and stores the result back into Dest.
This is useful for processing binary data in a different MSB/LSB order than it is transmitted with.

ROL
Rotate left
Bit Operation Instruction - Rotate bits left.

ROL Dest, {#}Src {WC|WZ|WCZ}

Result: The bits of Dest are rotated left by Src bits; any departing MSBs are moved into LSBs.

● Dest is the register containing the value to rotate left by Src bits.
● Src is a register or 5-bit literal whose value indicates the number of bit positions to rotate.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0000001 CZI DDDDDDDDD SSSSSSSSS D Last bit out1 Result = 0 2

1 C = last bit rotated out if Src[4:0] > 0, else C = Dest[31].

Explanation:
ROL rotates Dest's binary value left by Src places (0–31 bits).  All MSBs rotated out are moved into the new LSBs.

If the WC or WCZ effect is specified, the C flag is updated to the value of the last bit rotated out (effectively C =
result bit "0") if Src is 1–31, or to Dest[31] if Src is 0.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest result equals zero, or is cleared (0) if it is
non-zero.  Since no bits are lost by this operation, the result will only be zero if Dest started at zero.

ROLBYTE
Rotate left byte
Bit Operation Instruction - Rotate a byte left into a value.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 119



ROLBYTE Dest, {#}Src, #Num
ROLBYTE Dest

Result: Byte Num (0–3) of Src, or a byte from a source described by prior ALTGB instruction, is rotated left into
Dest.

● Dest is the register in which to rotate the byte into.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value contains the target byte to read.
● Num is a 2-bit literal identifying the nibble ID (0–3) of Src to read.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001000 NNI DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1001000 000 DDDDDDDDD 000000000 D — — 2

Related: ALTGB, ROLNIB, ROLWORD, GETNIB, GETBYTE, GETWORD, SETNIB, SETBYTE, and SETWORD

Explanation:
ROLBYTE reads the byte identified by Num (0–3) from Src, or a byte from the source described by a prior ALTGB
instruction, and rotates it left into Dest.

ROLBYTE achieves the same effect as two instructions— an 8-bit SHL followed by SETBYTE into byte 0.

Num (0–3) identifies a value's individual bytes, by position, in least-significant byte order.

Syntax 2 is intended for use after an ALTGB instruction; i.e. in a loop to iteratively read a series of byte values
within contiguous long registers.

ROLNIB
Rotate left nibble
Bit Operation Instruction - Rotate a nibble left into a value.

ROLNIB Dest, {#}Src, #Num
ROLNIB Dest

Result: Nibble Num (0–7) of Src, or a nibble from a source described by prior ALTGN instruction, is rotated left into
Dest.

● Dest is the register in which to rotate the nibble into.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value contains the target nibble to read.
● Num is a 3-bit literal identifying the nibble ID (0–7) of Src to read.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 100010N NNI DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1000100 000 DDDDDDDDD 000000000 D — — 2

Related: ALTGN, ROLBYTE, ROLWORD, GETNIB, GETBYTE, GETWORD, SETNIB, SETBYTE, and SETWORD

Explanation:
ROLNIB reads the nibble identified by Num (0–7) from Src, or a nibble from the source described by a prior ALTGN
instruction, and rotates it left into Dest.

ROLNIB achieves the same effect as two instructions— a 4-bit SHL followed by SETNIB into nibble 0.

Num (0–7) identifies a value's individual nibbles, by position, in least-significant nibble order.
Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 120



Syntax 2 is intended for use after an ALTGN instruction; i.e. in a loop to iteratively read a series of nibble values
within contiguous long registers.

ROLWORD
Rotate left word
Bit Operation Instruction - Rotate a word left into a value.

ROLWORD Dest, {#}Src, #Num
ROLWORD Dest

Result: Word Num (0–1) of Src, or a word from a source described by prior ALTGW instruction, is rotated left into
Dest.

● Dest is the register in which to rotate the word into.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value contains the target word to read.
● Num is a 1-bit literal identifying the nibble ID (0–1) of Src to read.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001010 0NI DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1001010 000 DDDDDDDDD 000000000 D — — 2

Related: ALTGW, ROLNIB, ROLBYTE, GETNIB, GETBYTE, GETWORD, SETNIB, SETBYTE, and SETWORD

Explanation:
ROLWORD reads the word identified by Num (0–1) from Src, or a word from the source described by a prior ALTGW
instruction, and rotates it left into Dest.

ROLWORD achieves the same effect as two instructions— a 16-bit SHL followed by SETWORD into word 0.

Num (0–1) identifies a value's individual words, by position, in least-significant word order.

Syntax 2 is intended for use after an ALTGW instruction; i.e. in a loop to iteratively read a series of word values
within contiguous long registers.

ROR
Rotate right
Bit Operation Instruction - Rotate bits right.

ROR Dest, {#}Src {WC|WZ|WCZ}

Result: The bits of Dest are rotated right by Src bits; any departing LSBs are moved into MSBs.

● Dest is the register containing the value to rotate right by Src bits.
● Src is a register or 5-bit literal whose value indicates the number of bit positions to rotate.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0000000 CZI DDDDDDDDD SSSSSSSSS D Last bit out1 Result = 0 2

1 C = last bit rotated out if Src[4:0] > 0, else C = Dest[0].

Explanation:
ROR rotates Dest's binary value right by Src places (0–31 bits).  All LSBs rotated out are moved into the new
MSBs.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 121



If the WC or WCZ effect is specified, the C flag is updated to the value of the last bit rotated out (effectively C =
result bit "31") if Src is 1–31, or to Dest[0] if Src is 0.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest result equals zero, or is cleared (0) if it is
non-zero.  Since no bits are lost by this operation, the result will only be zero if Dest started at zero.

SAL
Shift arithmetic left
Bit Operation Instruction - Shift bits left, extending the LSB.

SAL Dest, {#}Src {WC|WZ|WCZ}

Result: The bits of Dest are shifted left by Src bits, extending Dest[0] into new rightmost bits.

● Dest is the register containing the value to arithmetically left shift by Src bits.
● Src is a register or 5-bit literal whose value indicates the number of bits to arithmetically shift left.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0000111 CZI DDDDDDDDD SSSSSSSSS D Last bit out1 Result = 0 2

1 C = last bit shifted out if Src[4:0] > 0, else C = Dest[31].

Explanation:
SAL shifts Dest's binary value left by Src places (0–31 bits) and sets the new LSBs to that of the original Dest[0].
SAL is the complement of SAR for bit streams but not for math operations— use SHL instead for swift 32-bit
integer multiplication by a power-of-two.

If the WC or WCZ effect is specified, the C flag is updated to the value of the last bit shifted out (effectively C =
result bit "32") if Src is 1–31, or to Dest[31] if Src is 0.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest result equals zero, or is cleared (0) if it is
non-zero.

SAR
Shift arithmetic right
Math Instruction - Divide signed 32-bit integer by power-of-two; a.k.a shift bits right, extending the MSB.

SAR Dest, {#}Src {WC|WZ|WCZ}

Result: The bits of Dest are shifted right by Src bits, extending Dest[31] (the sign bit) into new leftmost bits.

● Dest is the register containing the value to arithmetically right shift by Src bits.
● Src is a register or 5-bit literal whose value indicates the number of bits to arithmetically shift right.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0000110 CZI DDDDDDDDD SSSSSSSSS D Last bit out1 Result = 0 2

1 C = last bit shifted out if Src[4:0] > 0, else C = Dest[0].

Related: SHR, SH

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 122



Explanation:
SAR shifts Dest's binary value right by Src places (0–31 bits) and sets the new MSBs to that of the original
Dest[31]; preserving the sign of a signed integer.  This is useful for bit stream manipulation and for swift division—
it is similar to SHR for swift division by a power-of-two, but is safe for both signed and unsigned integers.

If the WC or WCZ effect is specified, the C flag is updated to the value of the last bit shifted out (effectively C =
result bit "-1") if Src is 1–31, or to Dest[0] if Src is 0.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest result equals zero, or is cleared (0) if it is
non-zero.

SCA
Scale
Math Instruction - Create unsigned 16-bit scale value for next instruction's S value.

SCA Dest, {#}Src {WZ}

Result: The upper 16 bits of the unsigned product from the 16-bit Dest and Src multiplication is substituted as the
next instruction's Src value and optionally the Z flag is updated to the zero status.

● Dest is a register containing the 16-bit value to multiply with Src.
● Src is a register, 9-bit literal, or 16-bit augmented literal whose value is multiplied with Dest.
● WZ is an optional effect to update the Z flag.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1010001 0ZI DDDDDDDDD SSSSSSSSS — — Product = 0 2

Related: SCAS

Explanation:
SCA multiplies the lower 16-bits of each of Dest and Src together, right shifts the 32-bit product by 16 (to scale
down the result), and substitutes this value as the next instruction's Src value.

If the WZ effect is specified, the Z flag is set (1) if the product (before scaling down) is zero, or is cleared (0) if
non-zero.

Note: The instruction following SCA is shielded from interrupt.

SCAS
Scale, signed
Math Instruction - Create signed 18-bit scale value for next instruction's S value.

SCAS Dest, {#}Src {WZ}

Result: The upper 18 bits of the signed product from the 16-bit Dest and Src multiplication is substituted as the
next instruction's Src value and optionally the Z flag is updated to the zero status.

● Dest is a register containing the signed 16-bit value to multiply with Src.
● Src is a register, 9-bit literal, or signed 16-bit augmented literal whose value is multiplied with Dest.
● WZ is an optional effect to update the Z flag.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 123



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1010001 1ZI DDDDDDDDD SSSSSSSSS — — Product = 0 2

Related: SCA

Explanation:
SCAS multiplies the lower, signed 16-bits of each of Dest and Src together, right shifts the 32-bit product by 14 (to
scale down the result), and substitutes this value as the next instruction's Src value.

If the WZ effect is specified, the Z flag is set (1) if the product (before scaling down) is zero, or is cleared (0) if
non-zero.

Note: The instruction following SCAS is shielded from interrupt.

SETBYTE
Set byte
Bit Operation Instruction - Set a byte to new value.

SETBYTE Dest, {#}Src, #Num
SETBYTE {#}Src

Result: Src[7:0] is written to byte Num (0–3) of Dest, or to another register byte described by prior ALTSB
instruction.

● Dest is the register in which to modify a byte.
● Src is a register or 8-bit literal whose bits [7:0] will be stored in the designated location.
● Num is a 2-bit literal identifying the nibble ID (0–3) of Dest to modify.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1000110 NNI DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1000110 00I 000000000 SSSSSSSSS D1 — — 2
1 Dest, and the target byte ID, is specified by a prior ALTSB instruction.

Related: ALTSB, SETNIB, SETWORD, GETNIB, GETBYTE, GETWORD, ROLNIB, ROLBYTE, and ROLWORD

Explanation:
SETBYTE stores Src[7:0] into the byte identified by Num within Dest, or the byte and register described by a prior
ALTSB instruction.  No other bits are modified.

Num (0–3) identifies a value's individual bytes, by position, in least-significant byte order.

Syntax 2 is intended for use after an ALTSB instruction; i.e. in a loop to iteratively affect a series of byte values
within contiguous long registers.

SETD
Set destination
Indirection Instruction - Set template D field for ALTI.

SETD Dest, {#}Src

Result: The D field [17:9] of template Dest is set to Src[8:0].

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 124



● Dest is the register whose 32-bit value is a template for use with an ALTI instruction.
● Src is a register or 9-bit literal whose value (Src[8:0]) is copied to the D field of Dest.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001101 10I DDDDDDDDD SSSSSSSSS D — — 2

Related: SETS, SETR, and ALTI

Explanation:
SETD copies Src[8:0] to the D field of the template, Dest, to be used with an ALTI instruction.  Bits outside the D
field remain unaffected.  The D field (or Dest field) holds the address of a register (or sometimes a literal value) for
the instruction to use as it's destination value, and usually as its result destination, during its execution.

The ALTI template is a 32-bit value with the following format:

Bits 31:28  (4 bits) 27:19  (9 bits) 18 17:9  (9 bits) 8:0  (9 bits)

Field Description Condition Field Result Field Indirect "I" Field Dest "D" Field Source "S" Field

SETD can also be used in self-modifying Reg RAM code. Unlike with ALTx instructions, when used this way, field
value modification occurs in the program code itself (not the instruction pipeline); code is altered, values persist.
Due to the instruction pipeline nature, after modifying a code register, it is necessary to elapse at least two
instructions before executing the modified register.

SETD    inst, op 'set "inst" register[17:9] to op[8:0]
NOP 'first spacer instruction, could be anything
NOP 'second spacer instruction, could be anything

inst  MOV     x, y 'operate on x using y; x may become any register per SETD

SETNIB
Set nibble
Bit Operation Instruction - Set a nibble to new value.

SETNIB Dest, {#}Src, #Num
SETNIB {#}Src

Result: Src[3:0] is written to nibble Num (0–7) of Dest, or to another register nibble described by prior ALTSN
instruction.

● Dest is the register in which to modify a nibble.
● Src is a register or 4-bit literal whose bits [3:0] will be stored in the designated location.
● Num is a 3-bit literal identifying the nibble ID (0–7) of Dest to modify.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 100000N NNI DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1000000 00I 000000000 SSSSSSSSS D1 — — 2
1 Dest, and the target nibble ID, is specified by a prior ALTSN instruction.

Related: ALTSN, SETBYTE, SETWORD, GETNIB, GETBYTE, GETWORD, ROLNIB, ROLBYTE, and ROLWORD

Explanation:
SETNIB stores Src[3:0] into the nibble identified by Num within Dest, or the nibble and register described by a prior
ALTSN instruction.  No other bits are modified.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 125



Num (0–7) identifies a value's individual nibbles, by position, in least-significant nibble order.

Syntax 2 is intended for use after an ALTSN instruction; i.e. in a loop to iteratively affect a series of nibble values
within contiguous long registers.

SETR
Set result
Indirection Instruction - Set template Result field for ALTI.

SETR Dest, {#}Src

Result: The Result field [27:19] of template Dest is set to Src[8:0].

● Dest is the register whose 32-bit value is a template for use with an ALTI instruction.
● Src is a register or 9-bit literal whose value (Src[8:0]) is copied to the D field of Dest.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001101 01I DDDDDDDDD SSSSSSSSS D — — 2

Related: SETD, SETS, and ALTI

Explanation:
SETR copies Src[8:0] to the Result field of the template, Dest, to be used with an ALTI instruction.  Bits outside the
Result field remain unaffected.  The Result field does not exist in instruction opcodes, but takes its value from the
Dest field, holding the address of a register for the instruction to use as its result destination upon execution.

The ALTI template is a 32-bit value with the following format:

Bits 31:28  (4 bits) 27:19  (9 bits) 18 17:9  (9 bits) 8:0  (9 bits)

Field Description Condition Field Result Field Indirect "I" Field Dest "D" Field Source "S" Field

SETR can also be used in self-modifying Reg RAM code, though it won't affect the Register field (which doesn't
exist in instruction opcodes) but rather will affect the Instr field and the upper two bits of the FX field.  Unlike with
ALTx instructions, when used this way, field value modification occurs in the program code itself (not the
instruction pipeline); code is altered, values persist.  Due to the instruction pipeline nature, after modifying a code
register, it is necessary to elapse at least two instructions before executing the modified register.

SETR    inst, op 'set "inst" register[27:19] to op[8:0]
NOP 'first spacer instruction, could be anything
NOP 'second spacer instruction, could be anything

inst  MOV     x, y 'operate on x using y; MOV can become AND/OR/etc. per SETR

SETS
Set source
Indirection Instruction - Set template S field for ALTI.

SETS Dest, {#}Src

Result: The S field [8:0] of template Dest is set to Src[8:0].

● Dest is the register whose 32-bit value is a template for use with an ALTI instruction.
● Src is a register or 9-bit literal whose value (Src[8:0]) is copied to the S field of Dest.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 126



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001101 11I DDDDDDDDD SSSSSSSSS D — — 2

Related: SETD, SETR, and ALTI

Explanation:
SETS copies Src[8:0] to the S field of the template, Dest, to be used with an ALTI instruction.  Bits outside the S
field remain unaffected.  The S field (or Src field) holds the address of a register or literal value for an instruction
to use as it's source value during its execution.

The ALTI template is a 32-bit value with the following format:

Bits 31:28  (4 bits) 27:19  (9 bits) 18 17:9  (9 bits) 8:0  (9 bits)

Field Description Condition Field Result Field Indirect "I" Field Dest "D" Field Source "S" Field

SETS can also be used in self-modifying Reg RAM code. Unlike with ALTx instructions, when used this way, field
value modification occurs in the program code itself (not the instruction pipeline); code is altered, values persist.
Due to the instruction pipeline nature, after modifying a code register, it is necessary to elapse at least two
instructions before executing the modified register.

SETS    inst, op 'set "inst" register[8:0] to op[8:0]
NOP 'first spacer instruction, could be anything
NOP 'second spacer instruction, could be anything

inst  MOV     x, y 'operate on x using y; y may become any register/value per SETS

SETWORD
Set word
Bit Operation Instruction - Set a word to new value.

SETWORD Dest, {#}Src, #Num
SETWORD {#}Src

Result: Src[15:0] is written to word Num (0–1) of Dest, or to another register word described by prior ALTSW
instruction.

● Dest is the register in which to modify a word.
● Src is a register, 9-bit literal, or 16-bit augmented literal whose bits [15:0] will be stored in the designated

location.
● Num is a 1-bit literal identifying the word ID (0–1) of Dest to modify.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1001001 0NI DDDDDDDDD SSSSSSSSS D — — 2

EEEE 1001001 00I 000000000 SSSSSSSSS D1 — — 2
1 Dest, and the target word ID, is specified by a prior ALTSW instruction.

Related: ALTSW, SETNIB, SETBYTE, GETNIB, GETBYTE, GETWORD, ROLNIB, ROLBYTE, and ROLWORD

Explanation:
SETWORD stores Src[15:0] into the word identified by Num within Dest, or the word and register described by a
prior ALTSW instruction.  No other bits are modified.

Num (0–1) identifies a value's individual words, by position, in least-significant word order.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 127



Syntax 2 is intended for use after an ALTSW instruction; i.e. in a loop to iteratively affect a series of word values
within contiguous long registers.

SHL
Shift left
Bit Operation / Math Instruction - Shift bits left; a.k.a. multiply 32-bit integer by power-of-two.

SHL Dest, {#}Src {WC|WZ|WCZ}

Result: The bits of Dest are shifted left by Src bits, inserting zeros (0) as new rightmost bits.

● Dest is the register containing the value to left shift by Src bits.
● Src is a register or 5-bit literal whose value indicates the number of bits to shift left.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0000011 CZI DDDDDDDDD SSSSSSSSS D Last bit out1 Result = 0 2

1 C = last bit shifted out if Src[4:0] > 0, else C = Dest[31].

Explanation:
SHL shifts Dest's binary value left by Src places (0–31 bits) and sets the new LSBs to 0.  This is useful for
bit-stream manipulation as well as for swift multiplication; signed or unsigned 32-bit integer multiplication by a
power-of-two.  Care must be taken for power-of-two multiplications since upper bits will shift through the MSB
(sign bit); mangling large signed values.

If the WC or WCZ effect is specified, the C flag is updated to the value of the last bit shifted out (effectively C =
result bit "32") if Src is 1–31, or to Dest[31] if Src is 0.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest result equals zero, or is cleared (0) if it is
non-zero.

SHR
Shift right
Bit Operation / Math Instruction - Shift bits right; a.k.a. divide unsigned 32-bit integer by power-of-two.

SHR Dest, {#}Src {WC|WZ|WCZ}

Result: The bits of Dest are shifted right by Src bits, inserting zeros (0) as new leftmost bits.

● Dest is the register containing the value to right shift by Src bits.
● Src is a register or 5-bit literal whose value indicates the number of bits to shift right.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0000010 CZI DDDDDDDDD SSSSSSSSS D Last bit out1 Result = 0 2

1 C = last bit shifted out if Src[4:0] > 0, else C = Dest[0].

Explanation:
SHR shifts Dest's binary value right by Src places (0–31 bits) and sets the new MSBs to 0.  This is useful for
bit-stream manipulation as well as for swift division; unsigned 32-bit integer division by a power-of-two.  For
similar division of a signed value, use SAR instead.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 128



If the WC or WCZ effect is specified, the C flag is updated to the value of the last bit shifted out (effectively C =
result bit "-1") if Src is 1–31, or to Dest[0] if Src is 0.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest result equals zero, or is cleared (0) if it is
non-zero.

SIGNX
Sign extend
Math Instruction - Sign-extend value beyond designated bit.

SIGNX Dest, {#}Src {WC|WZ|WCZ}

Result: The Dest value is sign-extended above the bit indicated by Src and is stored in Dest.  Optionally the C and
Z flags are updated to the resulting MSB and zero status.

● Dest is a register containing the value to sign-extend above bit Src[4:0] and is where the result is written.
● Src is a register or 9-bit literal whose value (lower 5 bits) identifies the bit of Dest to zero-extend beyond.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0111011 CZI DDDDDDDDD SSSSSSSSS D MSB of result Result = 0 2

Related: ZEROX

Explanation:
SIGNX fills the bits of Dest, above the bit indicated by Src[4:0], with the value of that identified bit; i.e.
sign-extending the value.  This is handy when converting encoded or received signed values from a small bit width
to a large bit with; i.e. 32 bits.

If the WC or WCZ effect is specified, the C flag is set to the result's MSB value.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

STALLI
Stall interrupts
Interrupt Instruction - Prevent further interrupts.

STALLI

Result: All future interrupts are disallowed.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 000 000100001 000100100 — — — 2

Related: ALLOWI

Explanation:
STALLI disables interrupt branching. STALLI is the complement of the ALLOWI instruction— both are used to
protect short, vital sections of main code from timing jitter or state loss caused by asynchronous interrupt
handling.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 129



SUB
Subtract
Math Instruction - Subtract one unsigned value from another.

SUB Dest, {#}Src {WC|WZ|WCZ}

Result: Difference of unsigned Dest and unsigned Src is stored in Dest and optionally the C and Z flags are
updated to the borrow and zero status.

● Dest is a register containing the value to subtract Src from, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is subtracted from Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0001100 CZI DDDDDDDDD SSSSSSSSS D borrow of (D - S) Result = 0 2

Related: SUBX, SUBS, SUBSX, ADD, and SUBR

Explanation:
SUB subtracts the unsigned Src from the unsigned Dest and stores the result into the Dest register.

If the WC or WCZ effect is specified, the C flag is set (1) if the subtraction results in a 32-bit underflow (unsigned
borrow), or is cleared (0) if no borrow.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result of Dest - Src is zero, or is cleared (0) if it is
non-zero.

To subtract unsigned, multi-long values, use SUB followed by SUBX as described in Subtracting Two Multi-Long
Values. SUB and SUBX are also used in subtracting signed, multi-long values with SUBSX ending the sequence.

SUBR
Subtract reverse
Math Instruction - Subtract one unsigned value from another (in reverse order to SUB).

SUBR Dest, {#}Src {WC|WZ|WCZ}

Result: Difference of unsigned Src and unsigned Dest is stored in Dest and optionally the C and Z flags are
updated to the borrow and zero status.

● Dest is a register containing the value to subtract from Src, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is subtracted by Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0010110 CZI DDDDDDDDD SSSSSSSSS D borrow of (S - D) Result = 0 2

Related: SUB

Explanation:
SUBR subtracts the unsigned Dest from the unsigned Src and stores the result into the Dest register.  This is the
reverse of the subtraction order of SUB.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 130



If the WC or WCZ effect is specified, the C flag is set (1) if the subtraction results in a 32-bit underflow (unsigned
borrow), or is cleared (0) if no borrow.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result of Dest - Src is zero, or is cleared (0) if it is
non-zero.

SUBS
Subtract signed
Math Instruction - Subtract one signed value from another.

SUBS Dest, {#}Src {WC|WZ|WCZ}

Result: Difference of signed Dest and signed Src is stored in Dest and optionally the C and Z flags are updated to
the sign and zero status.

● Dest is a register containing the value to subtract Src from, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value is subtracted from Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0001110 CZI DDDDDDDDD SSSSSSSSS D sign of (D - S) Result = 0 2

Related: SUB, SUBX, SUBSX, and ADDS

Explanation:
SUBS subtracts the signed Src from the signed Dest and stores the result into the Dest register.  If Src is a 9-bit
literal, its value is interpreted as positive (0-511; it is not sign-extended) — use ##Value (or insert a prior AUGS
instruction) for a 32-bit signed value; negative or positive.

If the WC or WCZ effect is specified, the C flag is set (1) if the subtraction results in a signed underflow (signed
borrow), or is cleared (0) if no underflow.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result of Dest - Src is zero, or is cleared (0) if it is
non-zero.

To subtract signed, multi-long values, use SUB (not SUBS) followed possibly by SUBX, and finally SUBSX as
described in Subtracting Two Multi-Long Values.

SUBSX
Subtract signed, extended
Math Instruction - Subtract one signed extended value from another.

SUBSX Dest, {#}Src {WC|WZ|WCZ}

Result: Difference of signed Dest and signed Src (plus C) is stored in Dest and optionally the C and Z flags are
updated to the extended sign and zero status.

● Dest is a register containing the value to subtract Src plus C from, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value plus C is subtracted from Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0001111 CZI DDDDDDDDD SSSSSSSSS D sign of D-(S+C) Z AND (Result = 0) 2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 131



Related: SUB, SUBX, SUBSX, and ADDSX

Explanation:
SUBSX subtracts the signed value of Src plus C from the signed Dest and stores the result into the Dest register.
The SUBSX instruction is used to perform signed multi-long (extended) subtraction, such as 64-bit subtraction.

If the WC or WCZ effect is specified, the C flag is set (1) if the result is negative (Result[31] = 1), or is cleared (0) if
positive.  Use WC or WCZ on preceding SUB and SUBX instructions for proper final C flag.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Z was previously set and the result of Dest - (Src + C) is
zero, or it is cleared (0) if non-zero.  Use WZ or WCZ on preceding SUB and SUBX instructions for proper final Z flag.

To subtract signed multi-long values, use SUB (not SUBS) followed possibly by SUBX, and finally SUBSX as
described in Subtracting Two Multi-Long Values.

SUBX
Subtract extended
Math Instruction - Subtract one unsigned extended value from another.

SUBX Dest, {#}Src {WC|WZ|WCZ}

Result: Difference of unsigned Dest and unsigned Src (plus C) is stored in Dest and optionally the C and Z flags
are updated to the extended borrow and zero status.

● Dest is a register containing the value to subtract Src plus C from, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value plus C is subtracted from Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0001101 CZI DDDDDDDDD SSSSSSSSS D borrow of D-(S+C) Z AND (Result = 0) 2

Related: SUB, SUBSX, and ADDX

Explanation:
SUBX subtracts the unsigned value of Src plus C from the unsigned Dest and stores the result into the Dest
register.  The SUBX instruction is used to perform unsigned multi-long (extended) subtraction, such as 64-bit
subtraction.

If the WC or WCZ effect is specified, the C flag is set (1) if the subtraction results in an unsigned borrow, or is
cleared (0) if no borrow.  Use WC or WCZ on preceding SUB and SUBX instructions for proper final C flag. If C is set
after the last SUBX in a multi-long subtraction, it indicates unsigned underflow.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Z was previously set and the result of Dest - (Src + C) is
zero, or it is cleared (0) if non-zero.  Use WZ or WCZ on preceding SUB and SUBX instructions for proper final Z flag.

To subtract unsigned multi-long values, use SUB followed by one or more SUBX instructions as described in
Subtracting Two Multi-Long Values.

SUMC / SUMNC
Sum C or Sum not C
Math Instruction - Adjust signed value by other C-negated or !C-negated value.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 132



SUMC Dest, {#}Src {WC|WZ|WCZ}
SUMNC Dest, {#}Src {WC|WZ|WCZ}

Result: The sum of signed Dest and either Src or -Src (according to C) is stored in Dest and optionally the C and Z
flags are updated to the sign and zero status.

● Dest is a register containing the signed value to adjust by Src or -Src, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value (if C=0 or !C=0) or negated value (if

C=1 or !C=1) is added into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0011100 CZI DDDDDDDDD SSSSSSSSS D sign of (D +/- S) Result = 0 2

EEEE 0011101 CZI DDDDDDDDD SSSSSSSSS D sign of (D +/- S) Result = 0 2

Related: SUMZ and SUMNZ

Explanation:
SUMC or SUMNC adjusts the signed Dest value by Src or -Src (depending on C or !C) and stores the result into the
Dest register.  Prior to adding to Dest, the Src value is negated if C (SUMC) or !C (SUMNC) is 1.

If the WC or WCZ effect is specified, the C flag is set (1) if the result is negative, or is cleared (0) if positive.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result of Dest +/- Src is zero, or is cleared (0) if it is
non-zero.

SUMZ / SUMNZ
Sum Z or Sum not Z
Math Instruction - Adjust signed value by other Z-negated or !Z-negated value.

SUMZ Dest, {#}Src {WC|WZ|WCZ}
SUMNZ Dest, {#}Src {WC|WZ|WCZ}

Result: The sum of signed Dest and either Src or -Src (according to Z) is stored in Dest and optionally the C and Z
flags are updated to the sign and zero status.

● Dest is a register containing the signed value to adjust by Src or -Src, and is where the result is written.
● Src is a register, 9-bit literal, or 32-bit augmented literal whose value (if Z=0 or !Z=0) or negated value (if

Z=1 or !Z=1) is added into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0011110 CZI DDDDDDDDD SSSSSSSSS D sign of (D +/- S) Result = 0 2

EEEE 0011111 CZI DDDDDDDDD SSSSSSSSS D sign of (D +/- S) Result = 0 2

Related: SUMC and SUMNC

Explanation:
SUMZ or SUMNZ adjusts the signed Dest value by Src or -Src (depending on Z or !Z) and stores the result into the
Dest register.  Prior to adding to Dest, the Src value is negated if Z (SUMZ) or !Z (SUMNZ) is 1.

If the WC or WCZ effect is specified, the C flag is set (1) if the result is negative, or is cleared (0) if positive.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 133



If the WZ or WCZ effect is specified, the Z flag is set (1) if the result of Dest +/- Src is zero, or is cleared (0) if it is
non-zero.

TEST
Test
Bit Operation Instruction - Test D, or bitwise AND D with S, to affect flags.

TEST Dest {WC|WZ|WCZ}
TEST Dest, {#}Src {WC|WZ|WCZ}

Result: The parity and zero-state of Dest, or of Dest bitwise ANDed with Src, is stored in the C and Z flags.

● Dest is the register whose value will be tested.
● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose value is ANDed with Dest.
● WC, WZ, and WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0111110 CZ0 DDDDDDDDD DDDDDDDDD — Parity of D D = 0 2

EEEE 0111110 CZI DDDDDDDDD SSSSSSSSS — Parity of (D & S) (D & S) = 0 2

Related: TESTN

Explanation:
TEST determines the parity (number of high (1) bits) and the zero or non-zero state of Dest, or of Dest bitwise
ANDed with Src, and stores the results in the C and/or Z flag.

If the WC or WCZ effect is specified, the C flag is set (1) if the number of high (1) bits in Dest (or Dest ANDed with
Src) is odd, or is cleared (0) if it is even.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Dest (or Dest ANDed with Src) is zero, or is cleared (0) if it
is not zero.

TESTB / TESTBN
Test bit or bit not
Bit Operation Instruction - Test bit of D or !D and either store, AND, OR, or XOR the result into flags.

TESTB Dest, {#}Src WC|WZ
TESTB Dest, {#}Src ANDC|ANDZ
TESTB Dest, {#}Src ORC|ORZ
TESTB Dest, {#}Src XORC|XORZ
TESTBN Dest, {#}Src WC|WZ
TESTBN Dest, {#}Src ANDC|ANDZ
TESTBN Dest, {#}Src ORC|ORZ
TESTBN Dest, {#}Src XORC|XORZ

Result: The state of Dest's bit Src is read, possibly inverted, and either stored as-is, or bitwise ANDed, ORed, or
XORed into C or Z.

● Dest is the register whose value will have a single bit tested.
● Src is a register or 5-bit literal whose value identifies the bit (0–31) of Dest to test.
● WC, WZ, ANDC, ANDZ, ORC, ORZ, XORC, and XORZ is a required effect to update or bitwise manipulate the C

or Z flag.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 134



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0100000 CZI DDDDDDDDD SSSSSSSSS — IN[D[4:0]] IN[D[4:0]] 2

EEEE 0100010 CZI DDDDDDDDD SSSSSSSSS — C AND IN[D[4:0]] Z AND IN[D[4:0]] 2

EEEE 0100100 CZI DDDDDDDDD SSSSSSSSS — C OR IN[D[4:0]] Z OR IN[D[4:0]] 2

EEEE 0100110 CZI DDDDDDDDD SSSSSSSSS — C XOR IN[D[4:0]] Z XOR IN[D[4:0]] 2

EEEE 0100001 CZI DDDDDDDDD SSSSSSSSS — !IN[D[4:0]] !IN[D[4:0]] 2

EEEE 0100011 CZI DDDDDDDDD SSSSSSSSS — C AND !IN[D[4:0]] Z AND !IN[D[4:0]] 2

EEEE 0100101 CZI DDDDDDDDD SSSSSSSSS — C OR !IN[D[4:0]] Z OR !IN[D[4:0]] 2

EEEE 0100111 CZI DDDDDDDDD SSSSSSSSS — C XOR !IN[D[4:0]] Z XOR !IN[D[4:0]] 2

Related: TESTP and TESTPN

Explanation:
TESTB or TESTBN reads the state (0/1) of a bit in Dest designated by Src, possibly inverts that result, and either
stores it as-is, or bitwise ANDs, ORs, or XORs it into the C or Z flag.

Src[4:0] indicates the bit number (0–31) to test.

If the WC or WZ effect is specified, the C or Z flag is overwritten with the state or inverse state of the bit.

If the ANDC or ANDZ effect is specified, the C or Z flag is bitwise ANDed with the state or inverse state of the bit.

If the ORC or ORZ effect is specified, the C or Z flag is bitwise ORed with the state or inverse state of the bit.

If the XORC or XORZ effect is specified, the C or Z flag is bitwise XORed with the state or inverse state of the bit.

TESTN
Test not
Bit Operation Instruction - Test D by bitwise ANDing with !S to affect flags only.

TESTN Dest, {#}Src {WC|WZ|WCZ}

Result: The parity and zero-state of Dest bitwise ANDed with !Src is stored in the C and Z flags.

● Dest is the register whose value will be tested.
● Src is an optional register, 9-bit literal, or 32-bit augmented literal whose inverse value is ANDed with Dest.
● WC, WZ, and WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0111111 CZI DDDDDDDDD SSSSSSSSS — Parity of (D & !S) (D & !S) = 0 2

Related: TEST

Explanation:
TESTN determines the parity (number of high (1) bits) and the zero or non-zero state of Dest bitwise ANDed with
!Src and stores the results in the C and/or Z flag.

If the WC or WCZ effect is specified, the C flag is set (1) if the number of high (1) bits in Dest ANDed with !Src is
odd, or is cleared (0) if it is even.

If the WZ or WCZ effect is specified, the Z flag is set (1) if Dest ANDed with !Src is zero, or is cleared (0) if it is not
zero.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 135



TESTP / TESTPN
Test pin or pin not
I/O Pin Instruction - Test pin and either store, AND, OR, or XOR the result or inverse result into C/Z.

TESTP {#}Dest WC|WZ
TESTP {#}Dest ANDC|ANDZ
TESTP {#}Dest ORC|ORZ
TESTP {#}Dest XORC|XORZ
TESTPN {#}Dest WC|WZ
TESTPN {#}Dest ANDC|ANDZ
TESTPN {#}Dest ORC|ORZ
TESTPN {#}Dest XORC|XORZ

Result: The state of the I/O pin described by Dest is read, possibly inverted, and either stored as-is, or bitwise
ANDed, ORed, or XORed into C or Z.

● Dest is the register or 6-bit literal whose value identifies the I/O pin to test.
● WC, WZ, ANDC, ANDZ, ORC, ORZ, XORC, and XORZ is a required effect to update or bitwise manipulate the C

or Z flag.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZL DDDDDDDDD 001000000 — IN[D[5:0]] IN[D[5:0]] 2

EEEE 1101011 CZL DDDDDDDDD 001000010 — C AND IN[D[5:0]] Z AND IN[D[5:0]] 2

EEEE 1101011 CZL DDDDDDDDD 001000100 — C OR IN[D[5:0]] Z OR IN[D[5:0]] 2

EEEE 1101011 CZL DDDDDDDDD 001000110 — C XOR IN[D[5:0]] Z XOR IN[D[5:0]] 2

EEEE 1101011 CZL DDDDDDDDD 001000001 — !IN[D[5:0]] !IN[D[5:0]] 2

EEEE 1101011 CZL DDDDDDDDD 001000011 — C AND !IN[D[5:0]] Z AND !IN[D[5:0]] 2

EEEE 1101011 CZL DDDDDDDDD 001000101 — C OR !IN[D[5:0]] Z OR !IN[D[5:0]] 2

EEEE 1101011 CZL DDDDDDDDD 001000111 — C XOR !IN[D[5:0]] Z XOR !IN[D[5:0]] 2

Related: TESTB and TESTBN

Explanation:
TESTP or TESTPN reads the state (0/1) of the I/O pin designated by Dest, possibly inverts that result, and either
stores it as-is, or bitwise ANDs, ORs, or XORs it into the C or Z flag.  Dest[5:0] indicates the pin number (0–63) to
test.

If the WC or WZ effect is specified, the C or Z flag is overwritten with the state or inverse state of the pin.

If the ANDC or ANDZ effect is specified, the C or Z flag is bitwise ANDed with the state or inverse state of the pin.

If the ORC or ORZ effect is specified, the C or Z flag is bitwise ORed with the state or inverse state of the pin.

If the XORC or XORZ effect is specified, the C or Z flag is bitwise XORed with the state or inverse state of the pin.

TJF / TJNF
Test, jump if full or not full
Flow Control Instruction - Test value and jump if full (-1; $FFFF_FFFF) or not full (<> -1; <> $FFFF_FFFF).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 136



TJF Dest, {#}Src
TJNF Dest, {#}Src

Result: Dest is tested and if it's full (or not full in syntax 2), PC is set to a new relative (#Src) or absolute (Src)
address.

● Dest is a register whose value is tested for full or not full.
● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to

set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011101 00I DDDDDDDDD SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011101 01I DDDDDDDDD SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when Dest is full (or not full in syntax 2).

Explanation:
TJF or TJNF tests the value in Dest and jumps to the address described by Src if the result is full (-1; $FFFF_FFFF;
in syntax 1) or not full (<> -1; <> $FFFF_FFFF; in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the TJF / TJNF.  The signed offset value is in units of
whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added to
PC when in Hub execution mode (long-aligned Hub code not required).

TJS / TJNS
Test, jump if signed or not signed
Flow Control Instruction - Test value and jump if signed or not signed.

TJS Dest, {#}Src
TJNS Dest, {#}Src

Result: Dest is tested and if it's signed (or not signed in syntax 2), PC is set to a new relative (#Src) or absolute
(Src) address.

● Dest is a register whose value is tested for sign or no sign.
● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to

set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011101 10I DDDDDDDDD SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011101 11I DDDDDDDDD SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when Dest is signed (or not signed in syntax 2).

Explanation:
TJS or TJNS tests the value in Dest and jumps to the address described by Src if the result is signed (Dest[31] = 1)
or not signed (Dest[31] = 0).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the TJS / TJNS.  The signed offset value is in units of

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 137



whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added to
PC when in Hub execution mode (long-aligned Hub code not required).

TJV
Test, jump if overflow
Flow Control Instruction - Test value and jump if overflowed.

TJV Dest, {#}Src

Result: Dest and C are tested and if there's been an overflow, PC is set to a new relative (#Src) or absolute (Src)
address.

● Dest is a register whose value is tested for overflow (Dest[31] != C).
● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to

set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011110 00I DDDDDDDDD SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

1 PC is written only when Dest has overflowed.

Explanation:
TJV tests the value in Dest against C and jumps to the address described by Src if Dest has overflowed
(Dest[31] != C).  This instruction requires that C be updated (to the correct sign) by the previous ADDS / ADDSX /
SUBS / SUBSX / CMPS / CMPSX / SUMx instruction.

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the TJV. The signed offset value is in units of whole
instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added to PC
when in Hub execution mode (long-aligned Hub code not required).

TJZ / TJNZ
Test, jump if zero or not zero
Flow Control Instruction - Test value and jump if zero or not zero.

TJZ Dest, {#}Src
TJNZ Dest, {#}Src

Result: Dest is tested and if it's zero (or not zero in syntax 2), PC is set to a new relative (#Src) or absolute (Src)
address.

● Dest is a register whose value is tested for zero or not zero.
● Src is a register, 9-bit literal, or 20-bit augmented literal whose value is the absolute or relative address to

set PC to.  Use # for relative addressing; omit # for absolute addressing.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1011100 10I DDDDDDDDD SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20

EEEE 1011100 11I DDDDDDDDD SSSSSSSSS PC1 — — 2 or 4 / 2 or 13–20
1 PC is written only when Dest is zero (or not zero in syntax 2).

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 138



Explanation:
TJZ or TJNZ tests the value in Dest and jumps to the address described by Src if the result is zero (syntax 1) or
not zero (in syntax 2).

The address (Src) can be absolute or relative.  To specify an absolute address, Src must be a register containing a
20-bit address value.  To specify a relative address, use #Label for a 9-bit signed offset (a range of -256 to +255
instructions) or use ##Label (or insert a prior AUGS instruction) for a 20-bit signed offset (a range of -524288 to
+524287).  Offsets are relative to the instruction following the TJZ / TJNZ. The signed offset value is in units of
whole instructions— it is added to PC as-is when in Cog/LUT execution mode and is multiplied by 4 then added to
PC when in Hub execution mode (long-aligned Hub code not required).

WAITATN
Wait attention
Event Monitor Instruction - Wait for and clear attention flag.

WAITATN {WC|WZ|WCZ}

Result: Wait for attention event, then clear the flag; optionally aborting on timeout and setting C and/or Z on abort.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000011110 000100100 — Timeout Abort Timeout Abort 2+

Related: COGATN, POLLATN, JATN, and JNATN

Explanation:
WAITATN waits for an attention event to occur (unless the event flag is already set), then clears the event flag
(unless it's being set again by the event sensor) and resumes execution at the next instruction.  Optionally,
WAITATN can time-out if the attention event doesn't occur soon enough; setting C and/or Z flags and then
resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITATN.

The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

The attention event flag is set whenever another cog issues an attention request for this cog.  The attention event
flag is cleared upon cog start, or execution of POLLATN, WAITATN, JATN, or JNATN instructions.

WAITCT1/2/3
Wait counter 1/2/3
Event Monitor Instruction - Wait for and clear counter 1, 2, or 3 event flag.

WAITCT1 {WC|WZ|WCZ}
WAITCT2 {WC|WZ|WCZ}
WAITCT3 {WC|WZ|WCZ}

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 139



Result: Wait for counter 1, 2, or 3 event, then clear the flag; optionally aborting on timeout and setting C and/or Z
on abort.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000010001 000100100 — Timeout Abort Timeout Abort 2+

EEEE 1101011 CZ0 000010010 000100100 — Timeout Abort Timeout Abort 2+

EEEE 1101011 CZ0 000010011 000100100 — Timeout Abort Timeout Abort 2+

Related: ADDCTx, POLLCTx, JCTx, and JNCTx

Explanation:
WAITCT1, WAITCT2, or WAITCT3 waits for a counter 1, 2, or 3 event to occur (unless the event flag is already set),
then clears the event flag (unless it's being set again by the event sensor) and resumes execution at the next
instruction.  Optionally, WAITCTx can time-out if the counter event doesn't occur soon enough; setting C and/or Z
flags and then resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITCTx.

The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

The counter 1, 2, or 3 event flag is set whenever the System Counter (CT) passes the value in the CT1, CT2, or CT3
event trigger register, respectively; i.e. MSB of (CT - CTx is 0).  The counter event flags are cleared upon execution
of the corresponding ADDCTx, POLLCTx, WAITCTx, JCTx, or JNCTx instructions.

WAITFBW
Wait FIFO block wrap
Event Monitor Instruction - Wait for and clear FIFO-interface-block-wrap event flag.

WAITFBW {WC|WZ|WCZ}

Result: Wait for FIFO-interface-block-wrap event, then clear the flag; optionally aborting on timeout and setting C
and/or Z on abort.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000011001 000100100 — Timeout Abort Timeout Abort 2+

Related: RDFAST, WRFAST, FBLOCK, POLLFBW, JFBW, and JNFBW

Explanation:
WAITFBW waits for a FIFO-interface-block-wrap event to occur (unless the event flag is already set), then clears
the event flag (unless it's being set again by the event sensor) and resumes execution at the next instruction.
Optionally, WAITFBW can time-out if the FIFO-interface-block-wrap event doesn't occur soon enough; setting C
and/or Z flags and then resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITFBW.
Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 140



The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

The FIFO-interface-block-wrap event flag is set whenever the Hub RAM FIFO interface exhausts its block count
and reloads its block count and start address.  The FIFO-interface-block-wrap event flag is cleared upon execution
of RDFAST, WRFAST, FBLOCK, POLLFBW, WAITFBW, JFBW, or JNFBW instructions.

WAITINT
Wait interrupt
Event Monitor Instruction - Wait for and clear interrupt-occurred event flag.

WAITINT {WC|WZ|WCZ}

Result: Wait for interrupt-occurred event, then clear the flag; optionally aborting on timeout and setting C and/or Z
on abort.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000010000 000100100 — Timeout Abort Timeout Abort 2+

Related: POLLINT, JINT, and JNINT

Explanation:
WAITINT waits for an interrupt-occurred event to occur (unless the event flag is already set), then clears the event
flag (unless it's being set again by the event sensor) and resumes execution at the next instruction.  Optionally,
WAITINT can time-out if the interrupt-occurred event doesn't occur soon enough; setting C and/or Z flags and
then resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITINT.

The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

The interrupt-occurred event flag is set whenever interrupt 1, 2, or 3 occurs— debug interrupts are ignored.  The
interrupt-occurred event flag is cleared upon cog start, or execution of POLLINT, WAITINT, JINT, or JNINT
instructions.

WAITPAT
Wait pattern
Event Monitor Instruction - Wait for and clear pin-pattern-detected event flag.

WAITPAT {WC|WZ|WCZ}

Result: Wait for pin-pattern-detected event, then clear the flag; optionally aborting on timeout and setting C and/or
Z on abort.

● WC, WZ, or WCZ are optional effects to update flags.
Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 141



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000011000 000100100 — Timeout Abort Timeout Abort 2+

Related: SETPAT, POLLPAT, JPAT, and JNPAT

Explanation:
WAITPAT waits for a pin-pattern-detected event to occur (unless the event flag is already set), then clears the
event flag (unless it's being set again by the event sensor) and resumes execution at the next instruction.
Optionally, WAITPAT can time-out if the pin-pattern-detected event doesn't occur soon enough; setting C and/or Z
flags and then resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITPAT.

The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

The pin-pattern-detected event flag is set whenever the masked input pins match or don't match the pattern
described by a previous SETPAT instruction.  The pin-pattern-detected event flag is cleared upon execution of
SETPAT, POLLPAT, WAITPAT, JPAT, or JNPAT instructions.

WAITSE1/2/3/4
Wait selectable event 1/2/3/4
Event Monitor Instruction - Wait for and clear selectable event 1, 2, 3, or 4 flag.

WAITSE1 {WC|WZ|WCZ}
WAITSE2 {WC|WZ|WCZ}
WAITSE3 {WC|WZ|WCZ}
WAITSE4 {WC|WZ|WCZ}

Result: Wait for selectable event, then clear the flag; optionally aborting on timeout and setting C and/or Z on
abort.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000010100 000100100 — Timeout Abort Timeout Abort 2+

EEEE 1101011 CZ0 000010101 000100100 — Timeout Abort Timeout Abort 2+

EEEE 1101011 CZ0 000010110 000100100 — Timeout Abort Timeout Abort 2+

EEEE 1101011 CZ0 000010111 000100100 — Timeout Abort Timeout Abort 2+

Related: SETSEx, POLLSEx, JSEx, and JNSEx

Explanation:
WAITSE1, WAITSE2, WAITSE3, or WAITSE4 waits for a selectable event to occur (unless the event flag is already
set), then clears the event flag (unless it's being set again by the event sensor) and resumes execution at the next
instruction.  Optionally, WAITSEx can time-out if the selectable event doesn't occur soon enough; setting C and/or
Z flags and then resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITSEx.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 142



The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

The selectable event 1, 2, 3, or 4 flag is set whenever the corresponding configured event occurs.  The selectable
event flag is cleared upon execution of the corresponding SETSEx, POLLSEx, WAITSEx, JSEx, or JNSEx
instructions.

WAITXFI
Wait streamer finished
Event Monitor Instruction - Wait for and clear streamer-finished event flag.

WAITXFI {WC|WZ|WCZ}

Result: Wait for streamer-finished event, then clear the flag; optionally aborting on timeout and setting C and/or Z
on abort.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000011011 000100100 — Timeout Abort Timeout Abort 2+

Related: XINIT, XZERO, XCONT, POLLXFI, JXFI, and JNXFI

Explanation:
WAITXFI waits for a streamer-finished event to occur (unless the event flag is already set), then clears the event
flag (unless it's being set again by the event sensor) and resumes execution at the next instruction.  Optionally,
WAITXFI can time-out if the streamer-finished doesn't occur soon enough; setting C and/or Z flags and then
resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITXFI.

The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

The streamer-finished event flag is set whenever the streamer runs out of commands to process.  The
streamer-finished event flag is cleared upon execution of XINIT, XZERO, XCONT, POLLXFI, WAITXFI, JXFI, or
JNXFI instructions.

WAITXMT
Wait streamer empty
Event Monitor Instruction - Wait for and clear streamer-empty event flag.

WAITXMT {WC|WZ|WCZ}

Result: Wait for streamer-empty event, then clear the flag; optionally aborting on timeout and setting C and/or Z
on abort.

● WC, WZ, or WCZ are optional effects to update flags.
Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 143



COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000011010 000100100 — Timeout Abort Timeout Abort 2+

Related: XINIT, XZERO, XCONT, POLLXMT, JXMT, and JNXMT

Explanation:
WAITXMT waits for a streamer-empty event to occur (unless the event flag is already set), then clears the event
flag (unless it's being set again by the event sensor) and resumes execution at the next instruction.  Optionally,
WAITXMT can time-out if the streamer-empty event doesn't occur soon enough; setting C and/or Z flags and then
resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITXMT.

The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

The streamer-empty event flag is set whenever the streamer is ready for a new command.  The streamer-empty
event flag is cleared upon execution of XINIT, XZERO, XCONT, POLLXMT, WAITXMT, JXMT, or JNXMT instructions.

WAITXRL
Wait streamer rollover LUT
Event Monitor Instruction - Wait for and clear streamer-LUT-RAM-rollover event flag

WAITXRL {WC|WZ|WCZ}

Result: Wait for streamer-LUT-RAM-rollover event, then clear the flag; optionally aborting on timeout and setting C
and/or Z on abort.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000011101 000100100 — Timeout Abort Timeout Abort 2+

Related: XINIT, XZERO, XCONT, POLLXRL, JXRL, and JNXRL

Explanation:
WAITXRL waits for a streamer-LUT-RAM-rollover event to occur (unless the event flag is already set), then clears
the event flag (unless it's being set again by the event sensor) and resumes execution at the next instruction.
Optionally, WAITXRL can time-out if the streamer-LUT-RAM-rollover event doesn't occur soon enough; setting C
and/or Z flags and then resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITXRL.

The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 144



The streamer-LUT-RAM-rollover event flag is set whenever location $1FF of the Lookup RAM is read by the
streamer.  The streamer-LUT-RAM-rollover event flag is cleared upon cog start or upon execution of POLLXRL,
WAITXRL, JXRL, or JNXRL instructions.

WAITXRO
Wait streamer rollover NCO
Event Monitor Instruction - Wait for and clear streamer-NCO-rollover event flag

WAITXRO {WC|WZ|WCZ}

Result: Wait for streamer-NCO-rollover event, then clear the flag; optionally aborting on timeout and setting C
and/or Z on abort.

● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 CZ0 000011100 000100100 — Timeout Abort Timeout Abort 2+

Related: XINIT, XZERO, XCONT, POLLXRO, JXRO, and JNXRO.

Explanation:
WAITXRO waits for a streamer-NCO-rollover event to occur (unless the event flag is already set), then clears the
event flag (unless it's being set again by the event sensor) and resumes execution at the next instruction.
Optionally, WAITXRO can time-out if the streamer-NCO-rollover event doesn't occur soon enough; setting C and/or
Z flags and then resuming execution at the next instruction.

To set the optional timeout, insert a SETQ (with a future System Counter target value) right before WAITXRO.

The WC, WZ, or WCZ effect is recommended only if the optional timeout is specified, in which case the C flag and/or
Z flag is set (1) if a timeout occurred before the event, or is cleared (0) if the event occurred before the timeout.

During a wait, the pipeline is stalled; no instructions execute and no interrupts are processed in the cog until the
wait condition ends.

The streamer-NCO-rollover event flag is set whenever the streamer's numerically-controlled oscillator (NCO) rolls
over.  The streamer-NCO-rollover event flag is cleared upon execution of XINIT, XZERO, XCONT, POLLXRO,
WAITXRO, JXRO, or JNXRO instructions.

WRC / WRNC
Write C or not C
Bit Operation Instruction - Write C or not C to register.

WRC Dest
WRNC Dest

Result: Dest value is replaced with state of C or !C.

● Dest is the register whose value will be replaced with the state of C or !C.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 000 DDDDDDDDD 001101100 D — — 2

EEEE 1101011 000 DDDDDDDDD 001101101 D — — 2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 145



Explanation:
WRC or WRNC writes the state or inverse state of C (0 or 1) to Dest.

WRZ / WRNZ
Write Z or not Z
Bit Operation Instruction - Write Z or not Z to register.

WRZ Dest
WRNZ Dest

Result: Dest value is replaced with state of Z or !Z.

● Dest is the register whose value will be replaced with the state of Z or !Z.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 1101011 000 DDDDDDDDD 001101110 D — — 2

EEEE 1101011 000 DDDDDDDDD 001101111 D — — 2

Explanation:
WRZ or WRNZ writes the state or inverse state of Z (0 or 1) to Dest.

XOR
Exclusive or
Bit Operation Instruction - Bitwise XOR a value with another.

XOR Dest, {#}Src {WC|WZ|WCZ}

Result: Dest XOR Src is stored in Dest and flags are optionally updated with parity and zero status.

● Dest is the register containing the value to bitwise XOR with Src and is the destination in which to write
the result.

● Src is a register, 9-bit literal, or 32-bit augmented literal whose value will be bitwise XORed into Dest.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0101011 CZI DDDDDDDDD SSSSSSSSS D Parity of Result Result = 0 2

Explanation:
XOR performs a bitwise XOR of the value in Src into that of Dest.

If the WC or WCZ effect is specified, the C flag is set (1) if the result contains an odd number of high (1) bits, or is
cleared (0) if it contains an even number of high bits.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the Dest XOR Src result equals zero, or is cleared (0) if it
is non-zero.

ZEROX
Zero extend
Math Instruction - Zero-extend value beyond designated bit.

ZEROX Dest, {#}Src {WC|WZ|WCZ}

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 146



Result: The Dest value is zero-extended above the bit indicated by Src and is stored in Dest.  Optionally the C and
Z flags are updated to the resulting MSB and zero status.

● Dest is a register containing the value to zero-extend above bit Src[4:0] and is where the result is written.
● Src is a register or 9-bit literal whose value (lower 5 bits) identifies the bit of Dest to zero-extend beyond.
● WC, WZ, or WCZ are optional effects to update flags.

COND INSTR FX DEST SRC Write C Flag Z Flag Clocks
EEEE 0111010 CZI DDDDDDDDD SSSSSSSSS D MSB of result Result = 0 2

Related: SIGNX

Explanation:
ZEROX fills the bits of Dest, above the bit indicated by Src[4:0], with zeros; i.e. zero-extending the value.  This is
handy when converting encoded or received unsigned values from a small bit width to a large bit with; i.e. 32 bits.

If the WC or WCZ effect is specified, the C flag is set to the result's MSB value.

If the WZ or WCZ effect is specified, the Z flag is set (1) if the result is zero, or is cleared (0) if it is non-zero.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 147



PROPELLER 2 ASSEMBLY LANGUAGE (PASM2) IN BRIEF

Math and Logic Instructions

Instruction Description Clocks
Reg, LUT, & Hub

ABS     D        {WC/WZ/WCZ} Get absolute value of D into D. D = ABS(D). C = D[31]. * 2

ABS     D,{#}S   {WC/WZ/WCZ} Get absolute value of S into D. D = ABS(S). C = S[31]. * 2

ADD     D,{#}S   {WC/WZ/WCZ} Add S into D. D = D + S. C = carry of (D + S). * 2

ADDS    D,{#}S   {WC/WZ/WCZ} Add S into D, signed. D = D + S. C = correct sign of (D + S). * 2

ADDSX   D,{#}S   {WC/WZ/WCZ} Add (S + C) into D, signed and extended. D = D + S + C. C = correct sign of (D + S + C). Z = Z AND (result == 0). 2

ADDX    D,{#}S   {WC/WZ/WCZ} Add (S + C) into D, extended. D = D + S + C. C = carry of (D + S + C). Z = Z AND (result == 0). 2

AND     D,{#}S   {WC/WZ/WCZ} AND S into D. D = D & S. C = parity of result. * 2

ANDN    D,{#}S   {WC/WZ/WCZ} AND !S into D. D = D & !S. C = parity of result. * 2

BITC    D,{#}S         {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = C. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITH    D,{#}S         {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = 1. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITL    D,{#}S         {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = 0. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITNC   D,{#}S         {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = !C. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITNOT  D,{#}S         {WCZ} Toggle bits D[S[9:5]+S[4:0]:S[4:0]]. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITNZ   D,{#}S         {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = !Z. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BITRND  D,{#}S         {WCZ}
Bits D[S[9:5]+S[4:0]:S[4:0]] = RNDs. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original
D[S[4:0]].

2

BITZ    D,{#}S         {WCZ} Bits D[S[9:5]+S[4:0]:S[4:0]] = Z. Other bits una�ected. Prior SETQ overrides S[9:5]. C,Z = original D[S[4:0]]. 2

BMASK   D Get LSB-justified bit mask of size (D[4:0] + 1) into D. D = ($0000_0002 << D[4:0]) - 1. 2

BMASK   D,{#}S Get LSB-justified bit mask of size (S[4:0] + 1) into D. D = ($0000_0002 << S[4:0]) - 1. 2

CMP     D,{#}S   {WC/WZ/WCZ} Compare D to S. C = borrow of (D - S). Z = (D == S). 2

CMPM    D,{#}S   {WC/WZ/WCZ} Compare D to S, get MSB of di�erence into C. C = MSB of (D - S). Z = (D == S). 2

CMPR    D,{#}S   {WC/WZ/WCZ} Compare S to D (reverse). C = borrow of (S - D). Z = (D == S). 2

CMPS    D,{#}S   {WC/WZ/WCZ} Compare D to S, signed. C = correct sign of (D - S). Z = (D == S). 2

CMPSUB  D,{#}S   {WC/WZ/WCZ} Compare and subtract S from D if D >= S. If D => S then D = D - S and C = 1, else D same and C = 0. * 2

CMPSX   D,{#}S   {WC/WZ/WCZ} Compare D to (S + C), signed and extended. C = correct sign of (D - (S + C)). Z = Z AND (D == S + C). 2

CMPX    D,{#}S   {WC/WZ/WCZ} Compare D to (S + C), extended. C = borrow of (D - (S + C)). Z = Z AND (D == S + C). 2

CRCBIT  D,{#}S Iterate CRC value in D using C and polynomial in S. If (C XOR D[0]) then D = (D >> 1) XOR S, else D = (D >> 1). 2

CRCNIB  D,{#}S
Iterate CRC value in D using Q[31:28] and polynomial in S. Like CRCBIT x 4. Q = Q << 4. Use 'REP
#n,#1'+SETQ+CRCNIB+CRCNIB+CRCNIB...

2

DECMOD  D,{#}S   {WC/WZ/WCZ} Decrement with modulus. If D = 0 then D = S and C = 1, else D = D - 1 and C = 0. * 2

DECOD   D Decode D[4:0] into D. D = 1 << D[4:0]. 2

DECOD   D,{#}S Decode S[4:0] into D. D = 1 << S[4:0]. 2

ENCOD   D        {WC/WZ/WCZ} Get bit position of top-most '1' in D into D. D = position of top '1' in S (0..31). C = (S != 0). * 2

ENCOD   D,{#}S   {WC/WZ/WCZ} Get bit position of top-most '1' in S into D. D = position of top '1' in S (0..31). C = (S != 0). * 2

FGE     D,{#}S   {WC/WZ/WCZ} Force D >= S. If D < S then D = S and C = 1, else D same and C = 0. * 2

FGES    D,{#}S   {WC/WZ/WCZ} Force D >= S, signed. If D < S then D = S and C = 1, else D same and C = 0. * 2

FLE     D,{#}S   {WC/WZ/WCZ} Force D <= S. If D > S then D = S and C = 1, else D same and C = 0. * 2

FLES    D,{#}S   {WC/WZ/WCZ} Force D <= S, signed. If D > S then D = S and C = 1, else D same and C = 0. * 2

GETBYTE D Get byte established by prior ALTGB instruction into D. 2

GETBYTE D,{#}S,#N Get byte N of S into D. D = {24'b0, S.BYTE[N]). 2

GETNIB  D Get nibble established by prior ALTGN instruction into D. 2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 148



GETNIB  D,{#}S,#N Get nibble N of S into D. D = {28'b0, S.NIBBLE[N]). 2

GETWORD D Get word established by prior ALTGW instruction into D. 2

GETWORD D,{#}S,#N Get word N of S into D. D = {16'b0, S.WORD[N]). 2

INCMOD  D,{#}S   {WC/WZ/WCZ} Increment with modulus. If D = S then D = 0 and C = 1, else D = D + 1 and C = 0. * 2

LOC     PA/PB/PTRA/PTRB,#{\}A
Get {12'b0, address[19:0]} into PA/PB/PTRA/PTRB (per W). If R = 1, address = PC + A, else address = A. "\"
forces R = 0.

2

MERGEB  D Merge bits of bytes in D. D = {D[31], D[23], D[15], D[7], ...D[24], D[16], D[8], D[0]}. 2

MERGEW  D Merge bits of words in D. D = {D[31], D[15], D[30], D[14], ...D[17], D[1], D[16], D[0]}. 2

MODC    c               {WC} Modify C according to cccc. C = cccc[{C,Z}]. 2

MODCZ   c,z      {WC/WZ/WCZ} Modify C and Z according to cccc and zzzz. C = cccc[{C,Z}], Z = zzzz[{C,Z}]. 2

MODZ    z               {WZ} Modify Z according to zzzz. Z = zzzz[{C,Z}]. 2

MOV     D,{#}S   {WC/WZ/WCZ} Move S into D. D = S. C = S[31]. * 2

MOVBYTS D,{#}S Move bytes within D, per S. D = {D.BYTE[S[7:6]], D.BYTE[S[5:4]], D.BYTE[S[3:2]], D.BYTE[S[1:0]]}. 2

MUL     D,{#}S          {WZ} D = unsigned (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0). 2

MULS    D,{#}S          {WZ} D = signed (D[15:0] * S[15:0]). Z = (S == 0) | (D == 0). 2

MUXC    D,{#}S   {WC/WZ/WCZ} Mux C into each D bit that is '1' in S. D = (!S & D ) | (S & {32{ C}}). C = parity of result. * 2

MUXNC   D,{#}S   {WC/WZ/WCZ} Mux !C into each D bit that is '1' in S. D = (!S & D ) | (S & {32{!C}}). C = parity of result. * 2

MUXNIBS D,{#}S
For each non-zero nibble in S, copy that nibble into the corresponding D nibble, else leave that D nibble the
same.

2

MUXNITS D,{#}S
For each non-zero bit pair in S, copy that bit pair into the corresponding D bits, else leave that D bit pair the
same.

2

MUXNZ   D,{#}S   {WC/WZ/WCZ} Mux !Z into each D bit that is '1' in S. D = (!S & D ) | (S & {32{!Z}}). C = parity of result. * 2

MUXQ    D,{#}S Used after SETQ. For each '1' bit in Q, copy the corresponding bit in S into D. D = (D & !Q) | (S & Q). 2

MUXZ    D,{#}S   {WC/WZ/WCZ} Mux Z into each D bit that is '1' in S. D = (!S & D ) | (S & {32{ Z}}). C = parity of result. * 2

NEG     D        {WC/WZ/WCZ} Negate D. D = -D. C = MSB of result. * 2

NEG     D,{#}S   {WC/WZ/WCZ} Negate S into D. D = -S. C = MSB of result. * 2

NEGC    D        {WC/WZ/WCZ} Negate D by C. If C = 1 then D = -D, else D = D. C = MSB of result. * 2

NEGC    D,{#}S   {WC/WZ/WCZ} Negate S by C into D. If C = 1 then D = -S, else D = S. C = MSB of result. * 2

NEGNC   D        {WC/WZ/WCZ} Negate D by !C. If C = 0 then D = -D, else D = D. C = MSB of result. * 2

NEGNC   D,{#}S   {WC/WZ/WCZ} Negate S by !C into D. If C = 0 then D = -S, else D = S. C = MSB of result. * 2

NEGNZ   D        {WC/WZ/WCZ} Negate D by !Z. If Z = 0 then D = -D, else D = D. C = MSB of result. * 2

NEGNZ   D,{#}S   {WC/WZ/WCZ} Negate S by !Z into D. If Z = 0 then D = -S, else D = S. C = MSB of result. * 2

NEGZ    D        {WC/WZ/WCZ} Negate D by Z. If Z = 1 then D = -D, else D = D. C = MSB of result. * 2

NEGZ    D,{#}S   {WC/WZ/WCZ} Negate S by Z into D. If Z = 1 then D = -S, else D = S. C = MSB of result. * 2

NOT     D        {WC/WZ/WCZ} Get !D into D. D = !D. C = !D[31]. * 2

NOT     D,{#}S   {WC/WZ/WCZ} Get !S into D. D = !S. C = !S[31]. * 2

ONES    D        {WC/WZ/WCZ} Get number of '1's in D into D. D = number of '1's in S (0..32). C = LSB of result. * 2

ONES    D,{#}S   {WC/WZ/WCZ} Get number of '1's in S into D. D = number of '1's in S (0..32). C = LSB of result. * 2

OR      D,{#}S   {WC/WZ/WCZ} OR S into D. D = D | S. C = parity of result. * 2

RCL     D,{#}S   {WC/WZ/WCZ} Rotate carry left. D = [63:32] of ({D[31:0], {32{C}}} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. * 2

RCR     D,{#}S   {WC/WZ/WCZ} Rotate carry right. D = [31:0] of ({{32{C}}, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. * 2

RCZL    D        {WC/WZ/WCZ} Rotate C,Z left through D. D = {D[29:0], C, Z}. C = D[31], Z = D[30]. 2

RCZR    D        {WC/WZ/WCZ} Rotate C,Z right through D. D = {C, Z, D[31:2]}. C = D[1], Z = D[0]. 2

REV     D Reverse D bits. D = D[0:31]. 2

RGBEXP  D
Expand 5:6:5 RGB value in D[15:0] into 8:8:8 value in D[31:8]. D = {D[15:11,15:13], D[10:5,10:9], D[4:0,4:2],
8'b0}.

2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 149



RGBSQZ  D Squeeze 8:8:8 RGB value in D[31:8] into 5:6:5 value in D[15:0]. D = {15'b0, D[31:27], D[23:18], D[15:11]}. 2

ROL     D,{#}S   {WC/WZ/WCZ} Rotate left. D = [63:32] of ({D[31:0], D[31:0]} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. * 2

ROLBYTE D Rotate-left byte established by prior ALTGB instruction into D. 2

ROLBYTE D,{#}S,#N Rotate-left byte N of S into D. D = {D[23:0], S.BYTE[N]). 2

ROLNIB  D Rotate-left nibble established by prior ALTGN instruction into D. 2

ROLNIB  D,{#}S,#N Rotate-left nibble N of S into D. D = {D[27:0], S.NIBBLE[N]). 2

ROLWORD D Rotate-left word established by prior ALTGW instruction into D. 2

ROLWORD D,{#}S,#N Rotate-left word N of S into D. D = {D[15:0], S.WORD[N]). 2

ROR     D,{#}S   {WC/WZ/WCZ} Rotate right. D = [31:0] of ({D[31:0], D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. * 2

SAL     D,{#}S   {WC/WZ/WCZ}
Shift arithmetic left. D = [63:32] of ({D[31:0], {32{D[0]}}} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else
D[31]. *

2

SAR     D,{#}S   {WC/WZ/WCZ}
Shift arithmetic right. D = [31:0] of ({{32{D[31]}}, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else
D[0]. *

2

SCA     D,{#}S          {WZ} Next instruction's S value = unsigned (D[15:0] * S[15:0]) >> 16. * 2

SCAS    D,{#}S          {WZ} Next instruction's S value = signed (D[15:0] * S[15:0]) >> 14. In this scheme, $4000 = 1.0 and $C000 = -1.0. * 2

SETBYTE {#}S Set S[7:0] into byte established by prior ALTSB instruction. 2

SETBYTE D,{#}S,#N Set S[7:0] into byte N in D, keeping rest of D same. 2

SETD    D,{#}S Set D field of D to S[8:0]. D = {D[31:18], S[8:0], D[8:0]}. 2

SETNIB  {#}S Set S[3:0] into nibble established by prior ALTSN instruction. 2

SETNIB  D,{#}S,#N Set S[3:0] into nibble N in D, keeping rest of D same. 2

SETR    D,{#}S Set R field of D to S[8:0]. D = {D[31:28], S[8:0], D[18:0]}. 2

SETS    D,{#}S Set S field of D to S[8:0]. D = {D[31:9], S[8:0]}. 2

SETWORD {#}S Set S[15:0] into word established by prior ALTSW instruction. 2

SETWORD D,{#}S,#N Set S[15:0] into word N in D, keeping rest of D same. 2

SEUSSF  D Relocate and periodically invert bits within D. Returns to original value on 32nd iteration. Forward pattern. 2

SEUSSR  D Relocate and periodically invert bits within D. Returns to original value on 32nd iteration. Reverse pattern. 2

SHL     D,{#}S   {WC/WZ/WCZ} Shift left. D = [63:32] of ({D[31:0], 32'b0} << S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[31]. * 2

SHR     D,{#}S   {WC/WZ/WCZ} Shift right. D = [31:0] of ({32'b0, D[31:0]} >> S[4:0]). C = last bit shifted out if S[4:0] > 0, else D[0]. * 2

SIGNX   D,{#}S   {WC/WZ/WCZ} Sign-extend D from bit S[4:0]. C = MSB of result. * 2

SPLITB  D Split every 4th bit of D into bytes. D = {D[31], D[27], D[23], D[19], ...D[12], D[8], D[4], D[0]}. 2

SPLITW  D Split odd/even bits of D into words. D = {D[31], D[29], D[27], D[25], ...D[6], D[4], D[2], D[0]}. 2

SUB     D,{#}S   {WC/WZ/WCZ} Subtract S from D. D = D - S. C = borrow of (D - S). * 2

SUBR    D,{#}S   {WC/WZ/WCZ} Subtract D from S (reverse). D = S - D. C = borrow of (S - D). * 2

SUBS    D,{#}S   {WC/WZ/WCZ} Subtract S from D, signed. D = D - S. C = correct sign of (D - S). * 2

SUBSX   D,{#}S   {WC/WZ/WCZ}
Subtract (S + C) from D, signed and extended. D = D - (S + C). C = correct sign of (D - (S + C)). Z = Z AND (result
== 0).

2

SUBX    D,{#}S   {WC/WZ/WCZ} Subtract (S + C) from D, extended. D = D - (S + C). C = borrow of (D - (S + C)). Z = Z AND (result == 0). 2

SUMC    D,{#}S   {WC/WZ/WCZ} Sum +/-S into D by C. If C = 1 then D = D - S, else D = D + S. C = correct sign of (D +/- S). * 2

SUMNC   D,{#}S   {WC/WZ/WCZ} Sum +/-S into D by !C. If C = 0 then D = D - S, else D = D + S. C = correct sign of (D +/- S). * 2

SUMNZ   D,{#}S   {WC/WZ/WCZ} Sum +/-S into D by !Z. If Z = 0 then D = D - S, else D = D + S. C = correct sign of (D +/- S). * 2

SUMZ    D,{#}S   {WC/WZ/WCZ} Sum +/-S into D by Z. If Z = 1 then D = D - S, else D = D + S. C = correct sign of (D +/- S). * 2

TEST    D        {WC/WZ/WCZ} Test D. C = parity of D. Z = (D == 0). 2

TEST    D,{#}S   {WC/WZ/WCZ} Test D with S. C = parity of (D & S). Z = ((D & S) == 0). 2

TESTB   D,{#}S         WC/WZ Test bit S[4:0] of D, write to C/Z. C/Z = D[S[4:0]]. 2

TESTB   D,{#}S       ORC/ORZ Test bit S[4:0] of D, OR into C/Z. C/Z = C/Z OR D[S[4:0]]. 2

TESTB   D,{#}S     ANDC/ANDZ Test bit S[4:0] of D, AND into C/Z. C/Z = C/Z AND D[S[4:0]]. 2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 150



TESTB   D,{#}S     XORC/XORZ Test bit S[4:0] of D, XOR into C/Z. C/Z = C/Z XOR D[S[4:0]]. 2

TESTBN  D,{#}S         WC/WZ Test bit S[4:0] of !D, write to C/Z. C/Z = !D[S[4:0]]. 2

TESTBN  D,{#}S       ORC/ORZ Test bit S[4:0] of !D, OR into C/Z. C/Z = C/Z OR !D[S[4:0]]. 2

TESTBN  D,{#}S     ANDC/ANDZ Test bit S[4:0] of !D, AND into C/Z. C/Z = C/Z AND !D[S[4:0]]. 2

TESTBN  D,{#}S     XORC/XORZ Test bit S[4:0] of !D, XOR into C/Z. C/Z = C/Z XOR !D[S[4:0]]. 2

TESTN   D,{#}S    {WC/WZ/WCZ} Test D with !S. C = parity of (D & !S). Z = ((D & !S) == 0). 2

WRC     D Write 0 or 1 to D, according to C. D = {31'b0, C). 2

WRNC    D Write 0 or 1 to D, according to !C. D = {31'b0, !C). 2

WRNZ    D Write 0 or 1 to D, according to !Z. D = {31'b0, !Z). 2

WRZ     D Write 0 or 1 to D, according to Z. D = {31'b0, Z). 2

XOR     D,{#}S   {WC/WZ/WCZ} XOR S into D. D = D ^ S. C = parity of result. * 2

XORO32  D Iterate D with xoroshiro32+ PRNG algorithm and put PRNG result into next instruction's S. 2

ZEROX   D,{#}S   {WC/WZ/WCZ} Zero-extend D above bit S[4:0]. C = MSB of result. * 2

Pin & Smart Pin Instructions

Instruction Description Clocks
Cog, LUT & Hub

Pin

DIRC    {#}D           {WCZ}
DIR bits of pins D[10:6]+D[5:0]..D[5:0] = C. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit.

2

DIRH    {#}D           {WCZ}
DIR bits of pins D[10:6]+D[5:0]..D[5:0] = 1. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit.

2

DIRL    {#}D           {WCZ}
DIR bits of pins D[10:6]+D[5:0]..D[5:0] = 0. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit.

2

DIRNC   {#}D           {WCZ}
DIR bits of pins D[10:6]+D[5:0]..D[5:0] = !C. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit.

2

DIRNOT  {#}D           {WCZ}
Toggle DIR bits of pins D[10:6]+D[5:0]..D[5:0]. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit.

2

DIRNZ   {#}D           {WCZ}
DIR bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit.

2

DIRRND  {#}D           {WCZ}
DIR bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z =
DIR bit.

2

DIRZ    {#}D           {WCZ}
DIR bits of pins D[10:6]+D[5:0]..D[5:0] = Z. Wraps within DIRA/DIRB. Prior SETQ overrides D[10:6]. C,Z = DIR
bit.

2

DRVC    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

DRVH    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

DRVL    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

DRVNC   {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

DRVNOT  {#}D           {WCZ}
Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

DRVNZ   {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

DRVRND  {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

DRVZ    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. DIR bits = 1. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 151



FLTC    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

FLTH    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

FLTL    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

FLTNC   {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

FLTNOT  {#}D           {WCZ}
Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

FLTNZ   {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

FLTRND  {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

FLTZ    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. DIR bits = 0. Wraps within OUTA/OUTB. Prior SETQ overrides
D[10:6]. C,Z = OUT bit.

2

OUTC    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = C. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit.

2

OUTH    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 1. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit.

2

OUTL    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = 0. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit.

2

OUTNC   {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !C. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit.

2

OUTNOT  {#}D           {WCZ}
Toggle OUT bits of pins D[10:6]+D[5:0]..D[5:0]. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z =
OUT bit.

2

OUTNZ   {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = !Z. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit.

2

OUTRND  {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = RNDs. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z =
OUT bit.

2

OUTZ    {#}D           {WCZ}
OUT bits of pins D[10:6]+D[5:0]..D[5:0] = Z. Wraps within OUTA/OUTB. Prior SETQ overrides D[10:6]. C,Z = OUT
bit.

2

TESTP   {#}D           WC/WZ Test IN bit of pin D[5:0], write to C/Z. C/Z = IN[D[5:0]]. 2

TESTP   {#}D         ORC/ORZ Test IN bit of pin D[5:0], OR into C/Z. C/Z = C/Z OR IN[D[5:0]]. 2

TESTP   {#}D       ANDC/ANDZ Test IN bit of pin D[5:0], AND into C/Z. C/Z = C/Z AND IN[D[5:0]]. 2

TESTP   {#}D       XORC/XORZ Test IN bit of pin D[5:0], XOR into C/Z. C/Z = C/Z XOR IN[D[5:0]]. 2

TESTPN  {#}D           WC/WZ Test !IN bit of pin D[5:0], write to C/Z. C/Z = !IN[D[5:0]]. 2

TESTPN  {#}D         ORC/ORZ Test !IN bit of pin D[5:0], OR into C/Z. C/Z = C/Z OR !IN[D[5:0]]. 2

TESTPN  {#}D       ANDC/ANDZ Test !IN bit of pin D[5:0], AND into C/Z. C/Z = C/Z AND !IN[D[5:0]]. 2

TESTPN  {#}D       XORC/XORZ Test !IN bit of pin D[5:0], XOR into C/Z. C/Z = C/Z XOR !IN[D[5:0]]. 2

Smart Pin

AKPIN   {#}S Acknowledge smart pins S[10:6]+S[5:0]..S[5:0]. Wraps within A/B pins. Prior SETQ overrides S[10:6]. 2

GETSCP  D Get four-channel oscilloscope samples into D. D = {ch3[7:0],ch2[7:0],ch1[7:0],ch0[7:0]}. 2

RDPIN   D,{#}S          {WC} Read smart pin S[5:0] result "Z" into D, acknowledge smart pin. C = modal result. 2

RQPIN   D,{#}S          {WC}
Read smart pin S[5:0] result "Z" into D, don't acknowledge smart pin ("Q" in RQPIN means "quiet"). C = modal
result.

2

SETDACS {#}D DAC3 = D[31:24], DAC2 = D[23:16], DAC1 = D[15:8], DAC0 = D[7:0]. 2

SETSCP  {#}D Set four-channel oscilloscope enable to D[6] and set input pin base to D[5:2]. 2

WRPIN   {#}D,{#}S
Set mode of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B pins. Prior SETQ
overrides S[10:6].

2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 152



WXPIN   {#}D,{#}S
Set "X" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B pins. Prior SETQ
overrides S[10:6].

2

WYPIN   {#}D,{#}S
Set "Y" of smart pins S[10:6]+S[5:0]..S[5:0] to D, acknowledge smart pins. Wraps within A/B pins. Prior SETQ
overrides S[10:6].

2

Branch Instructions

Instruction Description Clocks
Cog & LUT / Hub

CALL    #{\}A Call to A by pushing {C, Z, 10'b0, PC[19:0]} onto stack. If R = 1 then PC += A, else PC = A. "\" forces R = 0. 4 / 13...20

CALL    D        {WC/WZ/WCZ} Call to D by pushing {C, Z, 10'b0, PC[19:0]} onto stack. C = D[31], Z = D[30], PC = D[19:0]. 4 / 13...20

CALLA   #{\}A
Call to A by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRA++. If R = 1 then PC += A, else PC = A. "\" forces R
= 0.

5...12 1 / 14...32 1

CALLA   D        {WC/WZ/WCZ} Call to D by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRA++. C = D[31], Z = D[30], PC = D[19:0]. 5...12 1 / 14...32 1

CALLB   #{\}A
Call to A by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRB++. If R = 1 then PC += A, else PC = A. "\" forces R
= 0.

5...12 1 / 14...32 1

CALLB   D        {WC/WZ/WCZ} Call to D by writing {C, Z, 10'b0, PC[19:0]} to hub long at PTRB++. C = D[31], Z = D[30], PC = D[19:0]. 5...12 1 / 14...32 1

CALLD   D,{#}S   {WC/WZ/WCZ} Call to S** by writing {C, Z, 10'b0, PC[19:0]} to D. C = S[31], Z = S[30]. 4 / 13...20

CALLD   PA/PB/PTRA/PTRB,#{\}A
Call to A by writing {C, Z, 10'b0, PC[19:0]} to PA/PB/PTRA/PTRB (per W). If R = 1 then PC += A, else PC = A. "\"
forces R = 0.

4 / 13...20

CALLPA  {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PA. 4 / 13...20

CALLPB  {#}D,{#}S Call to S** by pushing {C, Z, 10'b0, PC[19:0]} onto stack, copy D to PB. 4 / 13...20

DJF     D,{#}S Decrement D and jump to S** if result is $FFFF_FFFF. 2 or 4 / 2 or 13...20

DJNF    D,{#}S Decrement D and jump to S** if result is not $FFFF_FFFF. 2 or 4 / 2 or 13...20

DJNZ    D,{#}S Decrement D and jump to S** if result is not zero. 2 or 4 / 2 or 13...20

DJZ     D,{#}S Decrement D and jump to S** if result is zero. 2 or 4 / 2 or 13...20

EXECF   {#}D Jump to D[9:0] in cog/LUT and set SKIPF pattern to D[31:10]. PC = {10'b0, D[9:0]}. 4 / 4

IJNZ    D,{#}S Increment D and jump to S** if result is not zero. 2 or 4 / 2 or 13...20

IJZ     D,{#}S Increment D and jump to S** if result is zero. 2 or 4 / 2 or 13...20

JMP     #{\}A Jump to A. If R = 1 then PC += A, else PC = A. "\" forces R = 0. 4 / 13...20

JMP     D        {WC/WZ/WCZ} Jump to D. C = D[31], Z = D[30], PC = D[19:0]. 4 / 13...20

JMPREL  {#}D Jump ahead/back by D instructions. For cogex, PC += D[19:0]. For hubex, PC += D[17:0] << 2. 4 / 13...20

REP     {#}D,{#}S Execute next D[8:0] instructions S times. If S = 0, repeat instructions infinitely. If D[8:0] = 0, nothing repeats. 2 / 2

RESI0 Resume from INT0. (CALLD $1FE,$1FF WCZ) 4 / 13...20

RESI1 Resume from INT1. (CALLD $1F4,$1F5 WCZ) 4 / 13...20

RESI2 Resume from INT2. (CALLD $1F2,$1F3 WCZ) 4 / 13...20

RESI3 Resume from INT3. (CALLD $1F0,$1F1 WCZ) 4 / 13...20

RET              {WC/WZ/WCZ} Return by popping stack (K). C = K[31], Z = K[30], PC = K[19:0]. 4 / 13...20

RETA             {WC/WZ/WCZ} Return by reading hub long (L) at --PTRA. C = L[31], Z = L[30], PC = L[19:0]. 11...18 1 / 20...40 1

RETB             {WC/WZ/WCZ} Return by reading hub long (L) at --PTRB. C = L[31], Z = L[30], PC = L[19:0]. 11...18 1 / 20...40 1

RETI0 Return from INT0. (CALLD $1FF,$1FF WCZ) 4 / 13...20

RETI1 Return from INT1. (CALLD $1FF,$1F5 WCZ) 4 / 13...20

RETI2 Return from INT2. (CALLD $1FF,$1F3 WCZ) 4 / 13...20

RETI3 Return from INT3. (CALLD $1FF,$1F1 WCZ) 4 / 13...20

SKIP    {#}D Skip instructions per D. Subsequent instructions 0..31 get cancelled for each '1' bit in D[0]..D[31]. 2 / 2

SKIPF   {#}D Skip cog/LUT instructions fast per D. Like SKIP, but instead of cancelling instructions, the PC leaps over them. 2 / ILLEGAL

TJF     D,{#}S Test D and jump to S** if D is full (D = $FFFF_FFFF). 2 or 4 / 2 or 13...20

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 153



TJNF    D,{#}S Test D and jump to S** if D is not full (D != $FFFF_FFFF). 2 or 4 / 2 or 13...20

TJNS    D,{#}S Test D and jump to S** if D is not signed (D[31] = 0). 2 or 4 / 2 or 13...20

TJNZ    D,{#}S Test D and jump to S** if D is not zero. 2 or 4 / 2 or 13...20

TJS     D,{#}S Test D and jump to S** if D is signed (D[31] = 1). 2 or 4 / 2 or 13...20

TJV     D,{#}S Test D and jump to S** if D overflowed (D[31] != C, C = 'correct sign' from last addition/subtraction). 2 or 4 / 2 or 13...20

TJZ     D,{#}S Test D and jump to S** if D is zero. 2 or 4 / 2 or 13...20

1 +1 if crosses hub long

Hub Control, FIFO, & RAM Instructions

Instruction Description Clocks
Cog & LUT / Hub

Hub Control

COGID   {#}D            {WC} If D is register and no WC, get cog ID (0 to 15) into D. If WC, check status of cog D[3:0], C = 1 if on. 2...9, +2 if result / same

COGINIT {#}D,{#}S       {WC} Start cog selected by D. S[19:0] sets hub startup address and PTRB of cog. Prior SETQ sets PTRA of cog. 2...9, +2 if result / same

COGSTOP {#}D Stop cog D[3:0]. 2...9 / same

LOCKNEW D               {WC} Request a LOCK. D will be written with the LOCK number (0 to 15). C = 1 if no LOCK available. 4...11 / same

LOCKREL {#}D            {WC}
Release LOCK D[3:0]. If D is a register and WC, get current/last cog id of LOCK owner into D and LOCK status
into C.

2...9, +2 if result / same

LOCKRET {#}D Return LOCK D[3:0] for reallocation. 2...9 / same

LOCKTRY {#}D            {WC}
Try to get LOCK D[3:0]. C = 1 if got LOCK. LOCKREL releases LOCK. LOCK is also released if owner cog stops or
restarts.

2...9, +2 if result / same

HUBSET  {#}D Set hub configuration to D. 2...9 / same

Hub FIFO

GETPTR  D Get current FIFO hub pointer into D. 2 / FIFO IN USE

FBLOCK  {#}D,{#}S
Set next block for when block wraps. D[13:0] = block size in 64-byte units (0 = max), S[19:0] = block start
address.

2 / FIFO IN USE

RDFAST  {#}D,{#}S
Begin new fast hub read via FIFO. D[31] = no wait, D[13:0] = block size in 64-byte units (0 = max), S[19:0] =
block start address.

2 or WRFAST finish +
10...17 / FIFO IN USE

WRFAST  {#}D,{#}S
Begin new fast hub write via FIFO. D[31] = no wait, D[13:0] = block size in 64-byte units (0 = max), S[19:0] =
block start address.

2 or WRFAST finish + 3 /
FIFO IN USE

RFBYTE  D        {WC/WZ/WCZ} Used after RDFAST. Read zero-extended byte from FIFO into D. C = MSB of byte. * 2 / FIFO IN USE

RFLONG  D        {WC/WZ/WCZ} Used after RDFAST. Read long from FIFO into D. C = MSB of long. * 2 / FIFO IN USE

RFVAR   D        {WC/WZ/WCZ} Used after RDFAST. Read zero-extended 1..4-byte value from FIFO into D. C = 0. * 2 / FIFO IN USE

RFVARS  D        {WC/WZ/WCZ} Used after RDFAST. Read sign-extended 1..4-byte value from FIFO into D. C = MSB of value. * 2 / FIFO IN USE

RFWORD  D        {WC/WZ/WCZ} Used after RDFAST. Read zero-extended word from FIFO into D. C = MSB of word. * 2 / FIFO IN USE

WFBYTE  {#}D Used after WRFAST. Write byte in D[7:0] into FIFO. 2 / FIFO IN USE

WFLONG  {#}D Used after WRFAST. Write long in D[31:0] into FIFO. 2 / FIFO IN USE

WFWORD  {#}D Used after WRFAST. Write word in D[15:0] into FIFO. 2 / FIFO IN USE

Hub RAM

POPA    D        {WC/WZ/WCZ} Read long from hub address --PTRA into D. C = MSB of long. * 9...16 1 / 9...26 1

POPB    D        {WC/WZ/WCZ} Read long from hub address --PTRB into D. C = MSB of long. * 9...16 1 / 9...26 1

RDBYTE  D,{#}S/P {WC/WZ/WCZ} Read zero-extended byte from hub address {#}S/PTRx into D. C = MSB of byte. * 9...16 / 9...26

RDLONG  D,{#}S/P {WC/WZ/WCZ}
Read long from hub address {#}S/PTRx into D. C = MSB of long. * Prior SETQ/SETQ2 invokes cog/LUT block
transfer.

9...16 1 / 9...26 1

RDWORD  D,{#}S/P {WC/WZ/WCZ} Read zero-extended word from hub address {#}S/PTRx into D. C = MSB of word. * 9...16 1 / 9...26 1

PUSHA   {#}D Write long in D[31:0] to hub address PTRA++. 3...10 1 / 3...20 1

PUSHB   {#}D Write long in D[31:0] to hub address PTRB++. 3...10 1 / 3...20 1

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 154



WMLONG  D,{#}S/P
Write only non-$00 bytes in D[31:0] to hub address {#}S/PTRx. Prior SETQ/SETQ2 invokes cog/LUT block
transfer.

3...10 1 / 3...20 1

WRBYTE  {#}D,{#}S/P Write byte in D[7:0] to hub address {#}S/PTRx. 3...10 / 3...20

WRLONG  {#}D,{#}S/P Write long in D[31:0] to hub address {#}S/PTRx. Prior SETQ/SETQ2 invokes cog/LUT block transfer. 3...10 1 / 3...20 1

WRWORD  {#}D,{#}S/P Write word in D[15:0] to hub address {#}S/PTRx. 3...10 1 / 3...20 1

1 +1 if crosses hub long

Event Instructions

Instruction Description Clocks
Cog & LUT / Hub

ADDCT1  D,{#}S Set CT1 event to trigger on CT = D + S. Adds S into D. 2

ADDCT2  D,{#}S Set CT2 event to trigger on CT = D + S. Adds S into D. 2

ADDCT3  D,{#}S Set CT3 event to trigger on CT = D + S. Adds S into D. 2

COGATN  {#}D Strobe "attention" of all cogs whose corresponding bits are high in D[15:0]. 2

JATN    {#}S Jump to S** if ATN event flag is set. 2 or 4 / 2 or 13...20

JCT1    {#}S Jump to S** if CT1 event flag is set. 2 or 4 / 2 or 13...20

JCT2    {#}S Jump to S** if CT2 event flag is set. 2 or 4 / 2 or 13...20

JCT3    {#}S Jump to S** if CT3 event flag is set. 2 or 4 / 2 or 13...20

JFBW    {#}S Jump to S** if FBW event flag is set. 2 or 4 / 2 or 13...20

JINT    {#}S Jump to S** if INT event flag is set. 2 or 4 / 2 or 13...20

JNATN   {#}S Jump to S** if ATN event flag is clear. 2 or 4 / 2 or 13...20

JNCT1   {#}S Jump to S** if CT1 event flag is clear. 2 or 4 / 2 or 13...20

JNCT2   {#}S Jump to S** if CT2 event flag is clear. 2 or 4 / 2 or 13...20

JNCT3   {#}S Jump to S** if CT3 event flag is clear. 2 or 4 / 2 or 13...20

JNFBW   {#}S Jump to S** if FBW event flag is clear. 2 or 4 / 2 or 13...20

JNINT   {#}S Jump to S** if INT event flag is clear. 2 or 4 / 2 or 13...20

JNPAT   {#}S Jump to S** if PAT event flag is clear. 2 or 4 / 2 or 13...20

JNQMT   {#}S Jump to S** if QMT event flag is clear. 2 or 4 / 2 or 13...20

JNSE1   {#}S Jump to S** if SE1 event flag is clear. 2 or 4 / 2 or 13...20

JNSE2   {#}S Jump to S** if SE2 event flag is clear. 2 or 4 / 2 or 13...20

JNSE3   {#}S Jump to S** if SE3 event flag is clear. 2 or 4 / 2 or 13...20

JNSE4   {#}S Jump to S** if SE4 event flag is clear. 2 or 4 / 2 or 13...20

JNXFI   {#}S Jump to S** if XFI event flag is clear. 2 or 4 / 2 or 13...20

JNXMT   {#}S Jump to S** if XMT event flag is clear. 2 or 4 / 2 or 13...20

JNXRL   {#}S Jump to S** if XRL event flag is clear. 2 or 4 / 2 or 13...20

JNXRO   {#}S Jump to S** if XRO event flag is clear. 2 or 4 / 2 or 13...20

JPAT    {#}S Jump to S** if PAT event flag is set. 2 or 4 / 2 or 13...20

JQMT    {#}S Jump to S** if QMT event flag is set. 2 or 4 / 2 or 13...20

JSE1    {#}S Jump to S** if SE1 event flag is set. 2 or 4 / 2 or 13...20

JSE2    {#}S Jump to S** if SE2 event flag is set. 2 or 4 / 2 or 13...20

JSE3    {#}S Jump to S** if SE3 event flag is set. 2 or 4 / 2 or 13...20

JSE4    {#}S Jump to S** if SE4 event flag is set. 2 or 4 / 2 or 13...20

JXFI    {#}S Jump to S** if XFI event flag is set. 2 or 4 / 2 or 13...20

JXMT    {#}S Jump to S** if XMT event flag is set. 2 or 4 / 2 or 13...20

JXRL    {#}S Jump to S** if XRL event flag is set. 2 or 4 / 2 or 13...20

JXRO    {#}S Jump to S** if XRO event flag is set. 2 or 4 / 2 or 13...20

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 155



POLLATN          {WC/WZ/WCZ} Get ATN event flag into C/Z, then clear it. 2

POLLCT1          {WC/WZ/WCZ} Get CT1 event flag into C/Z, then clear it. 2

POLLCT2          {WC/WZ/WCZ} Get CT2 event flag into C/Z, then clear it. 2

POLLCT3          {WC/WZ/WCZ} Get CT3 event flag into C/Z, then clear it. 2

POLLFBW          {WC/WZ/WCZ} Get FBW event flag into C/Z, then clear it. 2

POLLINT          {WC/WZ/WCZ} Get INT event flag into C/Z, then clear it. 2

POLLPAT          {WC/WZ/WCZ} Get PAT event flag into C/Z, then clear it. 2

POLLQMT          {WC/WZ/WCZ} Get QMT event flag into C/Z, then clear it. 2

POLLSE1          {WC/WZ/WCZ} Get SE1 event flag into C/Z, then clear it. 2

POLLSE2          {WC/WZ/WCZ} Get SE2 event flag into C/Z, then clear it. 2

POLLSE3          {WC/WZ/WCZ} Get SE3 event flag into C/Z, then clear it. 2

POLLSE4          {WC/WZ/WCZ} Get SE4 event flag into C/Z, then clear it. 2

POLLXFI          {WC/WZ/WCZ} Get XFI event flag into C/Z, then clear it. 2

POLLXMT          {WC/WZ/WCZ} Get XMT event flag into C/Z, then clear it. 2

POLLXRL          {WC/WZ/WCZ} Get XRL event flag into C/Z, then clear it. 2

POLLXRO          {WC/WZ/WCZ} Get XRO event flag into C/Z, then clear it. 2

SETPAT  {#}D,{#}S Set pin pattern for PAT event. C selects INA/INB, Z selects =/!=, D provides mask value, S provides match value. 2

SETSE1  {#}D Set SE1 event configuration to D[8:0]. 2

SETSE2  {#}D Set SE2 event configuration to D[8:0]. 2

SETSE3  {#}D Set SE3 event configuration to D[8:0]. 2

SETSE4  {#}D Set SE4 event configuration to D[8:0]. 2

WAITATN          {WC/WZ/WCZ} Wait for ATN event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITCT1          {WC/WZ/WCZ} Wait for CT1 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITCT2          {WC/WZ/WCZ} Wait for CT2 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITCT3          {WC/WZ/WCZ} Wait for CT3 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITFBW          {WC/WZ/WCZ} Wait for FBW event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITINT          {WC/WZ/WCZ} Wait for INT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITPAT          {WC/WZ/WCZ} Wait for PAT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITSE1          {WC/WZ/WCZ} Wait for SE1 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITSE2          {WC/WZ/WCZ} Wait for SE2 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITSE3          {WC/WZ/WCZ} Wait for SE3 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITSE4          {WC/WZ/WCZ} Wait for SE4 event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITXFI          {WC/WZ/WCZ} Wait for XFI event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITXMT          {WC/WZ/WCZ} Wait for XMT event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITXRL          {WC/WZ/WCZ} Wait for XRL event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

WAITXRO          {WC/WZ/WCZ} Wait for XRO event flag, then clear it. Prior SETQ sets optional CT timeout value. C/Z = timeout. 2+

Interrupt Instructions

Instruction Description Clocks
Cog, LUT & Hub

ALLOWI Allow interrupts (default). 2

BRK     {#}D
If in debug ISR, set next break condition to D. Else, set BRK code to D[7:0] and unconditionally trigger BRK
interrupt, if enabled.

2

COGBRK  {#}D
If in debug ISR, trigger asynchronous breakpoint in cog D[3:0]. Cog D[3:0] must have asynchronous breakpoint
enabled.

2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 156



GETBRK  D          WC/WZ/WCZ Get breakpoint/cog status into D according to WC/WZ/WCZ. See documentation for details. 2

NIXINT1 Cancel INT1. 2

NIXINT2 Cancel INT2. 2

NIXINT3 Cancel INT3. 2

SETINT1 {#}D Set INT1 source to D[3:0]. 2

SETINT2 {#}D Set INT2 source to D[3:0]. 2

SETINT3 {#}D Set INT3 source to D[3:0]. 2

STALLI Stall Interrupts. 2

TRGINT1 Trigger INT1, regardless of STALLI mode. 2

TRGINT2 Trigger INT2, regardless of STALLI mode. 2

TRGINT3 Trigger INT3, regardless of STALLI mode. 2

Register Indirection Instructions

Instruction Description Clocks
Cog & LUT / Hub

ALTB    D,{#}S Alter D field of next instruction to D[13:5]. 2

ALTB    D,{#}S Alter D field of next instruction to (D[13:5] + S) & $1FF. D += sign-extended S[17:9]. 2

ALTD    D Alter D field of next instruction to D[8:0]. 2

ALTD    D,{#}S Alter D field of next instruction to (D + S) & $1FF. D += sign-extended S[17:9]. 2

ALTGB   D Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = D[10:2], N field = D[1:0]. 2

ALTGB   D,{#}S
Alter subsequent GETBYTE/ROLBYTE instruction. Next S field = (D[10:2] + S) & $1FF, N field = D[1:0]. D +=
sign-extended S[17:9].

2

ALTGN   D Alter subsequent GETNIB/ROLNIB instruction. Next S field = D[11:3], N field = D[2:0]. 2

ALTGN   D,{#}S
Alter subsequent GETNIB/ROLNIB instruction. Next S field = (D[11:3] + S) & $1FF, N field = D[2:0]. D +=
sign-extended S[17:9].

2

ALTGW   D Alter subsequent GETWORD/ROLWORD instruction. Next S field = D[9:1], N field = D[0]. 2

ALTGW   D,{#}S
Alter subsequent GETWORD/ROLWORD instruction. Next S field = ((D[9:1] + S) & $1FF), N field = D[0]. D +=
sign-extended S[17:9].

2

ALTI    D Execute D in place of next instruction. D stays same. 2

ALTI    D,{#}S Substitute next instruction's I/R/D/S fields with fields from D, per S. Modify D per S. 2

ALTR    D Alter result register address (normally D field) of next instruction to D[8:0]. 2

ALTR    D,{#}S Alter result register address (normally D field) of next instruction to (D + S) & $1FF. D += sign-extended S[17:9]. 2

ALTS    D Alter S field of next instruction to D[8:0]. 2

ALTS    D,{#}S Alter S field of next instruction to (D + S) & $1FF. D += sign-extended S[17:9]. 2

ALTSB   D Alter subsequent SETBYTE instruction. Next D field = D[10:2], N field = D[1:0]. 2

ALTSB   D,{#}S
Alter subsequent SETBYTE instruction. Next D field = (D[10:2] + S) & $1FF, N field = D[1:0]. D += sign-extended
S[17:9].

2

ALTSN   D Alter subsequent SETNIB instruction. Next D field = D[11:3], N field = D[2:0]. 2

ALTSN   D,{#}S
Alter subsequent SETNIB instruction. Next D field = (D[11:3] + S) & $1FF, N field = D[2:0]. D += sign-extended
S[17:9].

2

ALTSW   D Alter subsequent SETWORD instruction. Next D field = D[9:1], N field = D[0]. 2

ALTSW   D,{#}S
Alter subsequent SETWORD instruction. Next D field = (D[9:1] + S) & $1FF, N field = D[0]. D += sign-extended
S[17:9].

2

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 157



CORDIC Solver Instructions

Instruction Description Clocks
Cog, LUT & Hub

GETQX   D        {WC/WZ/WCZ} Retrieve CORDIC result X into D. Waits, in case result not ready. C = X[31]. 1 2...58

GETQY   D        {WC/WZ/WCZ} Retrieve CORDIC result Y into D. Waits, in case result not ready. C = Y[31]. 1 2...58

QDIV    {#}D,{#}S Begin CORDIC unsigned division of {SETQ value or 32'b0, D} / S. GETQX/GETQY retrieves quotient/remainder. 2...9

QEXP    {#}D Begin CORDIC logarithm-to-number conversion of D. GETQX retrieves number. 2...9

QFRAC   {#}D,{#}S Begin CORDIC unsigned division of {D, SETQ value or 32'b0} / S. GETQX/GETQY retrieves quotient/remainder. 2...9

QLOG    {#}D
Begin CORDIC number-to-logarithm conversion of D. GETQX retrieves log {5'whole_exponent,
27'fractional_exponent}.

2...9

QMUL    {#}D,{#}S Begin CORDIC unsigned multiplication of D * S. GETQX/GETQY retrieves lower/upper product. 2...9

QROTATE {#}D,{#}S Begin CORDIC rotation of point (D, SETQ value or 32'b0) by angle S. GETQX/GETQY retrieves X/Y. 2...9

QSQRT   {#}D,{#}S Begin CORDIC square root of {S, D}. GETQX retrieves root. 2...9

QVECTOR {#}D,{#}S Begin CORDIC vectoring of point (D, S). GETQX/GETQY retrieves length/angle. 2...9

1 Z = (result == 0)

Color Space Converter and Pixel Mixer Instructions

Instruction Description Clocks
Cog, LUT & Hub

Color Space Converter

SETCFRQ {#}D Set the colorspace converter "CFRQ" parameter to D[31:0]. 2

SETCI   {#}D Set the colorspace converter "CI" parameter to D[31:0]. 2

SETCMOD {#}D Set the colorspace converter "CMOD" parameter to D[8:0]. 2

SETCQ   {#}D Set the colorspace converter "CQ" parameter to D[31:0]. 2

SETCY   {#}D Set the colorspace converter "CY" parameter to D[31:0]. 2

Pixel Mixer

ADDPIX  D,{#}S Add bytes of S into bytes of D, with $FF saturation. 7

BLNPIX  D,{#}S Alpha-blend bytes of S into bytes of D, using SETPIV value. 7

MIXPIX  D,{#}S Mix bytes of S into bytes of D, using SETPIX and SETPIV values. 7

MULPIX  D,{#}S Multiply bytes of S into bytes of D, where $FF = 1.0 and $00 = 0.0. 7

SETPIV  {#}D Set BLNPIX/MIXPIX blend factor to D[7:0]. 2

SETPIX  {#}D Set MIXPIX mode to D[5:0]. 2

Lookup Table, Streamer, and Misc Instructions

Instruction Description Clocks
Cog & LUT / Hub

Lookup Table

RDLUT   D,{#}S/P {WC/WZ/WCZ} Read data from LUT address {#}S/PTRx into D. C = MSB of data. * 3

SETLUTS {#}D
If D[0] = 1 then enable LUT sharing, where LUT writes within the adjacent odd/even companion cog are copied
to this cog's LUT.

2

WRLUT   {#}D,{#}S/P Write D to LUT address {#}S/PTRx. 2

Streamer

GETXACC D
Get the streamer's Goertzel X accumulator into D and the Y accumulator into the next instruction's S, clear
accumulators.

2

SETXFRQ {#}D Set streamer NCO frequency to D. 2

XCONT   {#}D,{#}S Bu�er new streamer command to be issued on final NCO rollover of current command, continuing phase. 2+

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 158



XINIT   {#}D,{#}S Issue streamer command immediately, zeroing phase. 2

XSTOP Stop streamer immediately. 2

XZERO   {#}D,{#}S Bu�er new streamer command to be issued on final NCO rollover of current command, zeroing phase. 2+

Miscellaneous

AUGD    #n
Queue #n to be used as upper 23 bits for next #D occurrence, so that the next 9-bit #D will be augmented to 32
bits.

2

AUGS    #n
Queue #n to be used as upper 23 bits for next #S occurrence, so that the next 9-bit #S will be augmented to 32
bits.

2

GETCT   D               {WC}
Get CT[31:0] or CT[63:32] if WC into D. GETCT WC + GETCT gets full CT. CT=0 on reset, CT++ on every clock. C =
same.

2

GETRND WC/WZ/WCZ Get RND into C/Z. C = RND[31], Z = RND[30], unique per cog. 2

GETRND  D {WC/WZ/WCZ}
Get RND into D/C/Z. RND is the PRNG that updates on every clock. D = RND[31:0], C = RND[31], Z = RND[30],
unique per cog.

2

NOP No operation. 2

POP     D        {WC/WZ/WCZ} Pop stack (K). D = K. C = K[31]. * 2

PUSH    {#}D Push D onto stack. 2

SETQ    {#}D
Set Q to D. Use before RDLONG/WRLONG/WMLONG to set block transfer. Also used before
MUXQ/COGINIT/QDIV/QFRAC/QROTATE/WAITxxx.

2

SETQ2   {#}D Set Q to D. Use before RDLONG/WRLONG/WMLONG to set LUT block transfer. 2

WAITX   {#}D     {WC/WZ/WCZ} Wait 2 + D clocks if no WC/WZ/WCZ. If WC/WZ/WCZ, wait 2 + (D & RND) clocks. C/Z = 0. 2 + D

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 159



PROPELLER 2 RESERVED WORDS (SPIN2 + PASM2)
Predefined symbols recognized by the compiler to have special meaning.

_ (leading underscore)
_C
_C_AND_NZ
_C_AND_Z
_C_EQ_Z

_C_NE_Z
_C_OR_NZ
_C_OR_Z
_CLR

_E
_GE
_GT
_LE

_LT
_NC
_NC_AND_NZ
_NC_AND_Z

_NC_OR_NZ
_NC_OR_Z
_NE
_NZ

_NZ_AND_C
_NZ_AND_NC
_NZ_OR_C
_NZ_OR_NC

_RET_
_SET
_Z
_Z_AND_C

_Z_AND_NC
_Z_EQ_C
_Z_NE_C
_Z_OR_C

_Z_OR_NC

A - B
ABORT
ABS
ADD
ADDBITS
ADDCT1

ADDCT2
ADDCT3
ADDPINS
ADDPIX
ADDS

ADDSX
ADDX
AKPIN
ALIGNL
ALIGNW

ALLOWI
ALT
ALTB
ALTD
ALTGB

ALTGN
ALTGW
ALTI
ALTR
ALTS

ALTSB
ALTSN
ALTSW
AND
ANDC

ANDN
ANDZ
ARCHIVE
ASMCLK
AUGD

AUGS
BACKCOLOR
BITC
BITH
BITL

BITMAP
BITNC
BITNOT
BITNZ
BITRND

BITZ
BLACK
BLNPIX
BLUE
BMASK

BOX
BRK
BYTE
BYTEFILL
BYTEMOVE

BYTES_1BIT
BYTES_2BIT
BYTES_4BIT

C - D
CALL
CALLA
CALLB
CALLD
CALLPA
CALLPB
CARTESIAN
CASE
CASE_FAST
CHANNEL

CIRCLE
CLEAR
CLKFREQ
CLKMODE
CLKSET
CLOSE
CMP
CMPM
CMPR
CMPS

CMPSUB
CMPSX
CMPX
COGATN
COGBRK
COGCHK
COGEXEC
COGEXEC_NEW
COGEXEC_NEW_PAIR
COGID

COGINIT
COGSPIN
COGSTOP
COLOR
CON
CRCBIT
CRCNIB
CYAN
DAT
DEBUG

DEBUG_BAUD
DEBUG_COGS
DEBUG_DELAY
DEBUG_DISPLAY_LEFT
DEBUG_DISPLAY_TOP
DEBUG_HEIGHT
DEBUG_LEFT
DEBUG_LOG_SIZE
DEBUG_PIN
DEBUG_TIMESTAMP

DEBUG_TOP
DEBUG_WIDTH
DEBUG_WINDOWS_OFF
DECMOD
DECOD
DEPTH
DEV
DIRA
DIRB
DIRC

DIRH
DIRL
DIRNC
DIRNOT
DIRNZ
DIRRND
DIRZ
DJF
DJNF
DJNZ

DJZ
DLY
DOT
DOTSIZE
DRVC
DRVH
DRVL
DRVNC
DRVNOT

DRVRND
DRVZ

E - F
ELSE
ELSEIF
ELSEIFNOT
ENCOD
END

EVENT_ATN
EVENT_CT1
EVENT_CT2
EVENT_CT3
EVENT_FBW

EVENT_INT
EVENT_PAT
EVENT_QMT
EVENT_SE1
EVENT_SE2

EVENT_SE3
EVENT_SE4
EVENT_XFI
EVENT_XMT
EVENT_XRL

EVENT_XRO
EXECF
FABS
FALSE
FBLOCK

FDEC
FDEC_
FDEC_ARRAY
FDEC_ARRAY_
FDEC_REG_ARRAY

FDEC_REG_ARRAY_
FFT
FGE
FGES
FILE

FIT
FLE
FLES
FLOAT
FLTC

FLTH
FLTL
FLTNC
FLTNOT
FLTNZ

FLTRND
FLTZ
FRAC
FROM
FSQRT

FVAR
FVARS

G - H
GETBRK
GETBYTE
GETCT

GETMS
GETNIB
GETPTR

GETQX
GETQY
GETREGS

GETRND
GETSCP
GETSEC

GETWORD
GETXACC
GREEN

GREY
HIDEXY
HOLDOFF

HSV16
HSV16W
HSV16X

HSV8
HSV8W
HSV8X

HUBEXEC
HUBEXEC_NEW
HUBEXEC_NEW_PAIR

HUBSET

I - J
IF
IF_00
IF_0000
IF_0001
IF_0010
IF_0011
IF_01
IF_0100
IF_0101
IF_0110
IF_0111
IF_0X

IF_10
IF_1000
IF_1001
IF_1010
IF_1011
IF_11
IF_1100
IF_1101
IF_1110
IF_1111
IF_1X
IF_A

IF_AE
IF_ALWAYS
IF_B
IF_BE
IF_C
IF_C_AND_NZ
IF_C_AND_Z
IF_C_EQ_Z
IF_C_NE_Z
IF_C_OR_NZ
IF_C_OR_Z
IF_DIFF

IF_E
IF_GE
IF_GT
IF_LE
IF_LT
IF_NC
IF_NC_AND_NZ
IF_NC_AND_Z
IF_NC_OR_NZ
IF_NC_OR_Z
IF_NE
IF_NOT_00

IF_NOT_01
IF_NOT_10
IF_NOT_11
IF_NZ
IF_NZ_AND_C
IF_NZ_AND_NC
IF_NZ_OR_C
IF_NZ_OR_NC
IF_SAME
IF_X0
IF_X1
IF_Z

IF_Z_AND_C
IF_Z_AND_NC
IF_Z_EQ_C
IF_Z_NE_C
IF_Z_OR_C
IF_Z_OR_NC
IFNOT
IJMP1
IJMP2
IJMP3
IJNZ
IJZ

INA
INB
INCMOD
INT_OFF
IRET1
IRET2
IRET3
JATN
JCT1
JCT2
JCT3
JFBW

JINT
JMP
JMPREL
JNATN
JNCT1
JNCT2
JNCT3
JNFBW
JNINT
JNPAT
JNQMT
JNSE1

JNSE2
JNSE3
JNSE4
JNXFI
JNXMT
JNXRL
JNXRO
JPAT
JQMT
JSE1
JSE2
JSE3

JSE4
JXFI
JXMT
JXRL
JXRO

L - M
LINE
LINESIZE
LOC
LOCKCHK
LOCKNEW

LOCKREL
LOCKRET
LOCKTRY
LOGIC
LOGSCALE

LONG
LONGFILL
LONGMOVE
LONGS_16BIT
LONGS_1BIT

LONGS_2BIT
LONGS_4BIT
LONGS_8BIT
LOOKDOWN
LOOKDOWNZ

LOOKUP
LOOKUPZ
LSTR
LSTR_
LUMA8

LUMA8W
LUMA8X
LUT1
LUT2
LUT4

LUT8
LUTCOLORS
MAG
MAGENTA
MERGEB

MERGEW
MIDI
MIXPIX
MODC
MODCZ

MODZ
MOV
MOVBYTS
MUL
MULDIV64

MULPIX
MULS
MUXC
MUXNC
MUXNIBS

MUXNITS
MUXNZ
MUXQ
MUXZ

N - O
NAN
NEG
NEGC
NEGNC

NEGNZ
NEGX
NEGZ
NEWCOG

NEXT
NIXINT1
NIXINT2
NIXINT3

NOP
NOT
OBJ
OBOX

ONES
OPACITY
OR
ORANGE

ORC
ORG
ORGF
ORGH

ORIGIN
ORZ
OTHER
OUTA

OUTB
OUTC
OUTH
OUTL

OUTNC
OUTNOT
OUTNZ
OUTRND

OUTZ
OVAL

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 160



P
P_ADC
P_ADC_100X
P_ADC_10X
P_ADC_1X
P_ADC_30X
P_ADC_3X
P_ADC_EXT
P_ADC_FLOAT
P_ADC_GIO
P_ADC_SCOPE
P_ADC_VIO
P_AND_AB
P_ASYNC_IO
P_ASYNC_RX
P_ASYNC_TX
P_BITDAC
P_CHANNEL
P_COMPARE_AB
P_COMPARE_AB_FB
P_COUNT_HIGHS

P_COUNT_RISES
P_COUNTER_HIGHS
P_COUNTER_PERIODS
P_COUNTER_TICKS
P_DAC_124R_3V
P_DAC_600R_2V
P_DAC_75R_2V
P_DAC_990R_3V
P_DAC_DITHER_PWM
P_DAC_DITHER_RND
P_DAC_NOISE
P_EVENTS_TICKS
P_FILT0_AB
P_FILT1_AB
P_FILT2_AB
P_FILT3_AB
P_HIGH_100UA
P_HIGH_10UA
P_HIGH_150K
P_HIGH_15K

P_HIGH_1K5
P_HIGH_1MA
P_HIGH_FAST
P_HIGH_FLOAT
P_HIGH_TICKS
P_INVERT_A
P_INVERT_B
P_INVERT_IN
P_INVERT_OUT
P_INVERT_OUTPUT
P_LEVEL_A
P_LEVEL_A_FBN
P_LEVEL_B_FBN
P_LEVEL_B_FBP
P_LOCAL_A
P_LOCAL_B
P_LOGIC_A
P_LOGIC_A_FB
P_LOGIC_B_FB
P_LOW_100UA

P_LOW_10UA
P_LOW_150K
P_LOW_15K
P_LOW_1K5
P_LOW_1MA
P_LOW_FAST
P_LOW_FLOAT
P_MINUS1_A
P_MINUS1_B
P_MINUS2_A
P_MINUS2_B
P_MINUS3_A
P_MINUS3_B
P_NCO_DUTY
P_NCO_FREQ
P_NORMAL
P_OE
P_OR_AB
P_OUTBIT_A
P_OUTBIT_B

P_PASS_AB
P_PERIODS_HIGHS
P_PERIODS_TICKS
P_PLUS1_A
P_PLUS1_B
P_PLUS2_A
P_PLUS2_B
P_PLUS3_A
P_PLUS3_B
P_PULSE
P_PWM_SAWTOOTH
P_PWM_SMPS
P_PWM_TRIANGLE
P_QUADRATURE
P_REG_UP
P_REG_UP_DOWN
P_REPOSITORY
P_SCHMITT_A
P_SCHMITT_A_FB
P_SCHMITT_B_FB

P_STATE_TICKS
P_SYNC_IO
P_SYNC_RX
P_SYNC_TX
P_TRANSITION
P_TRUE_A
P_TRUE_B
P_TRUE_IN
P_TRUE_OUT
P_TRUE_OUTPUT
P_TT_00
P_TT_01
P_TT_10
P_TT_11
P_USB_PAIR
P_XOR_AB
PA
PB
PC_KEY
PC_MOUSE

PI
PINCLEAR
PINF
PINFLOAT
PINH
PINHIGH
PINL
PINLOW
PINR
PINREAD
PINSTART
PINT
PINTOGGLE
PINW
PINWRITE
PLOT
POLAR
POLLATN
POLLCT
POLLCT1

POLLCT2
POLLCT3
POLLFBW
POLLINT
POLLPAT
POLLQMT
POLLSE1
POLLSE2
POLLSE3
POLLSE4
POLLXFI
POLLXMT
POLLXRL
POLLXRO
POLXY
POP
POPA
POPB
POS
POSX

PR0
PR1
PR2
PR3
PR4
PR5
PR6
PR7
PRECISE
PRECOMPILE
PRI
PTRA
PTRB
PUB
PUSH
PUSHA
PUSHB

Q - R
QCOS
QDIV
QEXP
QFRAC
QLOG
QMUL

QROTATE
QSIN
QSQRT
QUIT
QVECTOR
RANGE

RATE
RCL
RCR
RCZL
RCZR
RDBYTE

RDFAST
RDLONG
RDLUT
RDPIN
RDWORD
RECV

RED
REG
REGEXEC
REGLOAD
REP
REPEAT

RES
RESI0
RESI1
RESI2
RESI3
RET

RETA
RETB
RETI0
RETI1
RETI2
RETI3

RETURN
REV
RFBYTE
RFLONG
RFVAR
RFVARS

RFWORD
RGB16
RGB24
RGB8
RGBEXP
RGBI8

RGBI8W
RGBI8X
RGBSQZ
ROL
ROLBYTE
ROLNIB

ROLWORD
ROR
ROTXY
ROUND
RQPIN

S - T
SAL
SAMPLES
SAR
SAVE
SBIN
SBIN_
SBIN_BYTE_
SBIN_BYTE_ARRAY
SBIN_BYTE_ARRAY_
SBIN_LONG
SBIN_LONG_
SBIN_LONG_ARRAY
SBIN_LONG_ARRAY_
SBIN_REG_ARRAY
SBIN_REG_ARRAY_
SBIN_WORD
SBIN_WORD_
SBIN_WORD_ARRAY

SBIN_WORD_ARRAY_
SCA
SCAS
SCOPE
SCOPE_XY
SCROLL
SDEC
SDEC_
SDEC_BYTE
SDEC_BYTE_
SDEC_BYTE_ARRAY
SDEC_BYTE_ARRAY_
SDEC_LONG
SDEC_LONG_
SDEC_LONG_ARRAY
SDEC_LONG_ARRAY_
SDEC_REG_ARRAY
SDEC_REG_ARRAY_

SDEC_WORD
SDEC_WORD_
SDEC_WORD_ARRAY
SDEC_WORD_ARRAY_
SEND
SET
SETBYTE
SETCFRQ
SETCI
SETCMOD
SETCQ
SETCY
SETD
SETDACS
SETINT1
SETINT2
SETINT3
SETLUTS

SETNIB
SETPAT
SETPIV
SETPIX
SETQ
SETQ2
SETR
SETREGS
SETS
SETSCP
SETSE1
SETSE2
SETSE3
SETSE4
SETWORD
SETXFRQ
SEUSSF
SEUSSR

SHEX
SHEX_
SHEX_BYTE
SHEX_BYTE_
SHEX_BYTE_ARRAY
SHEX_BYTE_ARRAY_
SHEX_LONG
SHEX_LONG_
SHEX_LONG_ARRAY
SHEX_LONG_ARRAY_
SHEX_REG_ARRAY
SHEX_REG_ARRAY_
SHEX_WORD
SHEX_WORD_
SHEX_WORD_ARRAY
SHEX_WORD_ARRAY_
SHL
SHR

SIGNED
SIGNX
SIZE
SKIP
SKIPF
SPACING
SPECTRO
SPLITB
SPLITW
SPRITE
SPRITEDEF
SQRT
STALLI
STEP
STRCOMP
STRING
STRSIZE
SUB

SUBR
SUBS
SUBSX
SUBX
SUMC
SUMNC
SUMNZ
SUMZ
TERM
TEST
TESTB
TESTBN
TESTN
TESTP
TESTPN
TEXT
TEXTANGLE
TEXTSIZE

TEXTSTYLE
TITLE
TJF
TJNF
TJNS
TJNZ
TJS
TJV
TJZ
TO
TRACE
TRGINT1
TRGINT2
TRGINT3
TRIGGER
TRUE
TRUNC

U, V, W
UBIN
UBIN_
UBIN_BYTE
UBIN_BYTE_
UBIN_BYTE_ARRAY
UBIN_BYTE_ARRAY_
UBIN_LONG
UBIN_LONG_
UBIN_LONG_ARRAY
UBIN_LONG_ARRAY_
UBIN_REG_ARRAY
UBIN_REG_ARRAY_
UBIN_WORD
UBIN_WORD_
UBIN_WORD_ARRAY

UBIN_WORD_ARRAY_
UDEC
UDEC_
UDEC_BYTE
UDEC_BYTE_
UDEC_BYTE_ARRAY
UDEC_BYTE_ARRAY_
UDEC_LONG
UDEC_LONG_
UDEC_LONG_ARRAY
UDEC_LONG_ARRAY_
UDEC_REG_ARRAY
UDEC_REG_ARRAY_
UDEC_WORD
UDEC_WORD_

UDEC_WORD_ARRAY
UDEC_WORD_ARRAY_
UHEX
UHEX_
UHEX_BYTE
UHEX_BYTE_
UHEX_BYTE_ARRAY
UHEX_BYTE_ARRAY_
UHEX_LONG
UHEX_LONG_
UHEX_LONG_ARRAY
UHEX_LONG_ARRAY_
UHEX_REG_ARRAY
UHEX_REG_ARRAY_
UHEX_WORD

UHEX_WORD_
UHEX_WORD_ARRAY
UHEX_WORD_ARRAY_
UNTIL
UPDATE
VAR
VARBASE
WAITATN
WAITCT
WAITCT1
WAITCT2
WAITCT3
WAITFBW
WAITINT
WAITMS

WAITPAT
WAITSE1
WAITSE2
WAITSE3
WAITSE4
WAITUS
WAITX
WAITXFI
WAITXMT
WAITXRL
WAITXRO
WC
WCZ
WFBYTE
WFLONG

WFWORD
WHILE
WHITE
WINDOW
WMLONG
WORD
WORDFILL
WORDMOVE
WORDS_1BIT
WORDS_2BIT
WORDS_4BIT
WORDS_8BIT
WRBYTE
WRC
WRFAST

WRLONG
WRLUT
WRNC
WRNZ
WRPIN
WRWORD
WRZ
WXPIN
WYPIN
WZ

X, Y, Z
X_16P_2DAC8_WFWORD
X_16P_4DAC4_WFWORD
X_1ADC8_0P_1DAC8_WFBYTE
X_1ADC8_8P_2DAC8_WFWORD
X_1P_1DAC1_WFBYTE
X_2ADC8_0P_2DAC8_WFWORD
X_2ADC8_16P_4DAC8_WFLONG
X_2P_1DAC2_WFBYTE
X_2P_2DAC1_WFBYTE
X_32P_4DAC8_WFLONG
X_4ADC8_0P_4DAC8_WFLONG
X_4P_1DAC4_WFBYTE
X_4P_2DAC2_WFBYTE
X_4P_4DAC1_WFBYTE
X_8P_1DAC8_WFBYTE
X_8P_2DAC4_WFBYTE

X_8P_4DAC2_WFBYTE
X_ALT_OFF
X_ALT_ON
X_DACS_0_0_0_0
X_DACS_0_0_X_X
X_DACS_0_X_X_X
X_DACS_0N0_0N0
X_DACS_0N0_X_X
X_DACS_1_0_1_0
X_DACS_1_0_X_X
X_DACS_1N1_0N0
X_DACS_3_2_1_0
X_DACS_OFF
X_DACS_X_0_X_X
X_DACS_X_X_0_0
X_DACS_X_X_0_X

X_DACS_X_X_0N0
X_DACS_X_X_1_0
X_DACS_X_X_X_0
X_DDS_GOERTZEL_SINC1
X_DDS_GOERTZEL_SINC2
X_IMM_16X2_1DAC2
X_IMM_16X2_2DAC1
X_IMM_16X2_LUT
X_IMM_1X32_4DAC8
X_IMM_2X16_2DAC8
X_IMM_2X16_4DAC4
X_IMM_32X1_1DAC1
X_IMM_32X1_LUT
X_IMM_4X8_1DAC8
X_IMM_4X8_2DAC4
X_IMM_4X8_4DAC2

X_IMM_4X8_LUT
X_IMM_8X4_1DAC4
X_IMM_8X4_2DAC2
X_IMM_8X4_4DAC1
X_IMM_8X4_LUT
X_PINS_OFF
X_PINS_ON
X_RFBYTE_1P_1DAC1
X_RFBYTE_2P_1DAC2
X_RFBYTE_2P_2DAC1
X_RFBYTE_4P_1DAC4
X_RFBYTE_4P_2DAC2
X_RFBYTE_4P_4DAC1
X_RFBYTE_8P_1DAC8
X_RFBYTE_8P_2DAC4
X_RFBYTE_8P_4DAC2

X_RFBYTE_LUMA8
X_RFBYTE_RGB8
X_RFBYTE_RGBI8
X_RFLONG_16X2_LUT
X_RFLONG_32P_4DAC8
X_RFLONG_32X1_LUT
X_RFLONG_4X8_LUT
X_RFLONG_8X4_LUT
X_RFLONG_RGB24
X_RFWORD_16P_2DAC8
X_RFWORD_16P_4DAC4
X_RFWORD_RGB16
X_WRITE_OFF
X_WRITE_ON
XCONT
XINIT

XOR
XORC
XORO32
XORZ
XSTOP
XYPOL
XZERO
YELLOW
ZEROX
ZSTR
ZSTR_

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 161



CHANGE LOG
Date Notes

11/11/2021 Live draft workspace published.

11/02/2022 Official release.

PARALLAX INCORPORATED
Parallax Inc.
599 Menlo Drive, Suite 100
Rocklin, CA 95765
USA

Office: +1 916-624-8333
Toll Free US: 888-512-1024

sales@parallax.com
support@parallax.com

www.parallax.com/p2
forums.parallax.com

Purchase of the P2X8C4M64P does not include any license to emulate any other device nor to communicate
via any specific proprietary protocol;  P2X8C4M64P connectivity objects and code examples provided or
referenced by Parallax, Inc. are NOT licensed and are provided for research and development purposes only;
end users must seek permission to use licensed protocols for their applications and products from the protocol
license holders.

Parallax,  Inc. makes  no  warranty,  representation  or  guarantee  regarding  the  suitability  of  its  products
for  any  particular  purpose,  nor  does  Parallax,  Inc.  assume  any  liability  arising  out  of  the  application  or
use  of  any  product, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages even if Parallax, Inc.  has  been  advised  of  the  possibility  of  such  damages.

Copyright © 2022 Parallax, Inc. All rights are reserved. Parallax, the Parallax logo, the P2 logo, and Propeller
are trademarks of Parallax, Inc.

Copyright © Parallax Inc.  2022/11/01    ▪    Propeller 2 Assembly Language Manual     ▪     Page 162

mailto:sales@parallax.com
mailto:support@parallax.com
http://www.parallax.com/p2
https://forums.parallax.com

	TABLE OF CONTENTS
	PREFACE
	CONVENTIONS
	ASSEMBLY LANGUAGE REFERENCE
	  Multi-Long ADD/SUB/CMP OperationsMany useful integer quantities fit within 32 bits of space (0 to
	    Adding Two Multi-Long Values
	    Subtracting Two Multi-Long Values
	    Comparing Two Multi-Long Values
	  Categorical Listing Of Propeller 2 Assembly Language
	    Directives
	   Conditions
	    Effects
	    Flag Modification
	    Augmentation
	    Indirection
	    Configuration
	    Cog Control
	    Process Control
	    Flow Control
	    Lookup Table (LUT) Memory Access
	    Hub Memory Access
	    Streamer
	    I/O Pins
	    Math
	    Timing
	    Event Handling
	    Interrupts
	    Bit Operations
	    Color Manipulation
	    Miscellaneous
	    Registers
	    Constants
	    Operators
	  Assembly Language Elements
	    Term Definitions
	    Opcode Tables
	    Propeller Assembly Instruction Master Table
	  ABS
	  ADD
	  ADDCT1/2/3
	  ADDPIX
	  ADDS
	  ADDSX
	  ADDX
	  AKPIN
	  ALIGNL
	  ALIGNW
	  ALLOWI
	  ALTB
	  ALTD
	  ALTGB
	  ALTGN
	  ALTGW
	  ALTI
	  ALTR
	  ALTS
	  ALTSB
	  ALTSN
	  ALTSW
	  AND / ANDN
	  AUGD
	  AUGS
	  BITC / BITNC
	  BITH / BITL
	  BITNOT
	  BITRND
	  BITZ / BITNZ
	  BMASK
	  BRK
	  CALL
	  CALLA / CALLB
	  CALLD
	  CALLPA / CALLPB
	  CMP
	  CMPM
	  CMPR
	  CMPS
	  CMPSUB
	  CMPSX
	  CMPX
	  COGATN
	  COGBRK
	  COGID
	  COGINIT
	  COGSTOP
	  Conditions ( IF_x )
	  DECMOD
	  DECOD
	  DIRC / DIRNC
	  DIRH / DIRL
	  DIRNOT
	  DIRRND
	  DIRZ / DIRNZ
	  DJF / DJNF
	  DJZ / DJNZ
	  DRVC / DRVNC
	  DRVH / DRVL
	  DRVNOT
	  DRVRND
	  DRVZ / DRVNZ
	  ENCOD
	  Effects ( WC, WZ, WCZ, ANDC, etc. )
	  FGE
	  FGES
	  FLE
	  FLES
	  FLTC / FLTNC
	  FLTH / FLTL
	  FLTNOT
	  FLTRND
	  FLTZ / FLTNZ
	  GETBYTE
	  GETNIB
	  GETWORD
	  IF_x (Conditions)
	  IJZ / IJNZ
	  INCMOD
	  JATN / JNATN
	  JCT1/2/3 / JNCT1/2/3
	  JFBW / JNFBW
	  JINT / JNINT
	  JPAT / JNPAT
	  JQMT / JNQMT
	  JSE1/2/3/4 / JNSE1/2/3/4
	  JXFI / JNXFI
	  JXMT / JNXMT
	  JXRL / JNXRL
	  JXRO / JNXRO
	  MODC / MODZ / MODCZ
	  MOV
	  MUL
	  MULS
	  MUXC / MUXNC
	  MUXNIBS
	  MUXNITS
	  MUXQ
	  MUXZ / MUXNZ
	  NEG
	  NEGC
	  NEGNC
	  NEGNZ
	  NEGZ
	 NOP
	  NOT
	  OR
	  ONES
	  OUTC / OUTNC
	  OUTH / OUTL
	  OUTNOT
	  OUTRND
	  OUTZ / OUTNZ
	  POLLATN
	  POLLCT1/2/3
	  POLLFBW
	  POLLINT
	  POLLPAT
	  POLLQMT
	  POLLSE1/2/3/4
	  POLLXFI
	  POLLXMT
	  POLLXRL
	  POLLXRO
	  RCL
	  RCR
	  RCZL
	  RCZR
	  Registers
	  REV
	  ROL
	  ROLBYTE
	  ROLNIB
	  ROLWORD
	  ROR
	  SAL
	  SAR
	  SCA
	  SCAS
	  SETBYTE
	  SETD
	  SETNIB
	  SETR
	  SETS
	  SETWORD
	  SHL
	  SHR
	  SIGNX
	  STALLI
	  SUB
	  SUBR
	  SUBS
	  SUBSX
	  SUBX
	  SUMC / SUMNC
	  SUMZ / SUMNZ
	  TEST
	  TESTB / TESTBN
	  TESTN
	  TESTP / TESTPN
	  TJF / TJNF
	  TJS / TJNS
	  TJV
	  TJZ / TJNZ
	  WAITATN
	  WAITCT1/2/3
	  WAITFBW
	  WAITINT
	  WAITPAT
	  WAITSE1/2/3/4
	  WAITXFI
	  WAITXMT
	  WAITXRL
	  WAITXRO
	  WRC / WRNC
	  WRZ / WRNZ
	  XOR
	  ZEROX
	PROPELLER 2 ASSEMBLY LANGUAGE (PASM2) IN BRIEF
	PROPELLER 2 RESERVED WORDS (SPIN2 + PASM2)
	CHANGE LOG
	PARALLAX INCORPORATED



