

Document
Number

UM165-155

Date Issued 2025-03-17

Copyright © 2017-2025 Andes Technology Corporation.

AndeStar V5

Instruction Extension

Specification

Copyright Notice

Copyright © 2017-2025 Andes Technology Corporation. All rights reserved.

AndesCore™, AndeSight™, AndeShape™, AndESLive™, AndeSoft™, AndeStar™, Andes Custom

Extension™, AndesClarity™, AndeSim™, AndeSysC™, Driving Innovations™, Andes-Embedded™,

CoDense™, StackSafe™ and QuickNap™ are trademarks owned by Andes Technology Corporation. All

other trademarks used herein are the property of their respective owners.

This document contains confidential information pertaining to Andes Technology Corporation. Use of this

copyright notice is precautionary and does not imply publication or disclosure. Neither the whole nor

part of the information contained herein may be reproduced, transmitted, transcribed, stored in a

retrieval system, or translated into any language in any form by any means without the written

permission of Andes Technology Corporation.

The product described herein is subject to continuous development and improvement. Thus, all

information herein is provided by Andes in good faith but without warranties. This document is intended

only to assist the reader in the use of the product. Andes Technology Corporation shall not be liable for

any loss or damage arising from the use of any information in this document, or any incorrect use of the

product.

Contact Information

Should you have any problems with the information contained herein, you may contact Andes

Technology Corporation through

◼ email – support@andestech.com

◼ Website – https://es.andestech.com/eservice/

Please include the following information in your inquiries:

◼ the document title

◼ the document number

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page ii

AndeStar_V5_ISA_Spec_UM165.docx

◼ the page number(s) to which your comments apply

◼ a concise explanation of the problem

General suggestions for improvements are welcome.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page iii

AndeStar_V5_ISA_Spec_UM165.docx

Revision History

Rev. Revision Date Revised Content

1.5.8 2025/03/17 1. Use the new version (2025) of Andes logo.

1.5.7 2024/12/11
2. Separate XAndesCoDense to XAndesCoDense(NDS.EXEC.IT) and

XAndesNewCoDense(NDS.NEXEC.IT).

1.5.6 2024/09/30

3. Add the missing word "{" in the pseudo code of BFOS and BFOZ.

4. Explain why there are two versions (Andes and RISC-V) of the two

instructions (FCVT.S.BF16 and FCVT.BF16.S).

1.5.5 2024/05/15 5. Removed ex9.it from exec.it instruction. (Section 3.2.1)

1.5.4 2024/05/13
1. Fixed the conflict description between the operation 2 and pseudo code

for NDS.EXEC.IT instruction. (Section 3.2.1)

1.5.3 2024/02/16
1. Added the prefix “NDS” for each instruction. (All sections)

2. Gave an abbreviated name for each extension. (Chapter 1)

1.5.2 2023/10/23

1. Allowed VLN8.V, VLNU8.V, VLE4.V to process elements from the index of

VSTART and generate new exceptions for load page fault. (Section 3.6.1,

3.6.2, 3.9.1)

1.5 2023/06/29

1. Removed intrinsic functions for vector bfloat16 conversion. (Section

3.5.1, 3.5.2)

2. Updated the table for the combination of vd LMUL and vs EMUL. (Section

3.9.2, 3.9.3, 3.9.4, 3.9.5)

3. Fixed the condition of 4-bit EEW support for VZEXT and VSEXT. (Section

3.9)

4. Added Vector Dot Product extension. (Section 2.8, 3.8)

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page iv

AndeStar_V5_ISA_Spec_UM165.docx

Rev. Revision Date Revised Content

5. Added Andes Vector Small INT Handling extension (Section 2.9, 3.9)

6. Added Andes Vector Quad-Widening Integer Multiply-Add extension

(Section 2.10, 3.10)

7. Fixed the behavior of FCVT.S.BF16 for NaN problem (Section 3.4.1)

8. Added new nexec.it instruction, which is exactly the same as exec.it but

with different opcode encoding (Section 1.1).

9. Added vector packed FP16 extension instructions. (Section 2.7, 3.7)

1.4 2020/11/19

1. Used __bf16 for the type of bfloat16 data. (Section 3.4.1, 3.4.2)

2. Added intrinsic functions for vector bfloat16 conversion. (Section 3.5.1,

3.5.2)

1.3 2020/10/12

1. Added INT4 Vector Load extension. (Section 2.6 and 3.6)

2. Added scalar and vector BFLOAT16 conversion extensions. (Section 2.4,

2.5, 3.4, 3.5)

1.2 2019/7/18

Removed the support support for FLHW/FSHW instructions and moved their

descriptions to the Appendix section as they conflict with Vector extension

encoding.

1.1 2018/6/20
1. Added FLHW and FSHW instructions.

2. Extended ex9.it to exec.it instruction. (Section 3.2.1)

1.0 2017/11/17 Initial Release

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page v

AndeStar_V5_ISA_Spec_UM165.docx

Table of Contents

COPYRIGHT NOTICE ... I

CONTACT INFORMATION ... I

REVISION HISTORY ... III

LIST OF TABLES ...X

1. INTRODUCTION ... 1

2. ANDES INSTRUCTION SUMMARY ... 3

2.1. ANDES PERFORMANCE EXTENSION (XANDESPERF) ... 3

2.2. ANDES CODENSE EXTENSION (XANDESCODENSE) .. 8

2.3. ANDES NEW CODENSE EXTENSION (XANDESNEWCODENSE) ... 8

2.4. ANDES SCALAR BFLOAT16 CONVERSION EXTENSION (XANDESBFHCVT) ... 8

2.5. ANDES VECTOR BFLOAT16 CONVERSION EXTENSION (XANDESVBFHCVT) ... 9

2.6. ANDES VECTOR INT4 LOAD EXTENSION (XANDESVSINTLOAD) ... 9

2.7. ANDES VECTOR PACKED FP16 EXTENSION (XANDESVPACKFPH) .. 9

2.8. ANDES VECTOR DOT PRODUCT EXTENSION (XANDESVDOT) .. 11

2.9. ANDES VECTOR SMALL INT HANDLING EXTENSION (XANDESVSINTH) .. 11

2.10. ANDES VECTOR QUAD-WIDENING INTEGER MULTIPLY-ADD EXTENSION (XANDESVQMAC) 12

3. DETAILED INSTRUCTION DESCRIPTION .. 14

3.1. ANDES PERFORMANCE EXTENSION (XANDESPERF) ... 14

3.1.1. NDS.BBC (Branch on Test Bit is Clear/Zero) ... 15

3.1.2. NDS.BBS (Branch on Test Bit is Set/Not Zero) .. 18

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page vi

AndeStar_V5_ISA_Spec_UM165.docx

3.1.3. NDS.BEQC (Branch on Equal to Constant) .. 21

3.1.4. NDS.BNEC (Branch on Not Equal to Constant) ... 23

3.1.5. NDS.BFOS (Sign-Extended Bit Field Operation) ... 25

3.1.6. NDS.BFOZ (Zero-Extended Bit Field Operation) ... 29

3.1.7. NDS.LEA.H (Load Effective Half-Word Address) ... 33

3.1.8. NDS.LEA.W (Load Effective Word Address) .. 34

3.1.9. NDS.LEA.D (Load Effective Double-Word Address) ... 35

3.1.10. NDS.LEA.B.ZE (Load Effective Byte Address from Unsigned 32-Bit Offset) 36

3.1.11. NDS.LEA.H.ZE (Load Effective Half-word Address from Unsigned 32-Bit Offset) 37

3.1.12. NDS.LEA.W.ZE (Load Effective Word Address from Unsigned 32-Bit Offset) 38

3.1.13. NDS.LEA.D.ZE (Load Effective Double-Word Address from Unsigned 32-Bit Offset) 39

3.1.14. NDS.ADDIGP (GP-Implied Add Immediate) ... 40

3.1.15. NDS.LBGP (GP-Implied Load Byte Signed Immediate) .. 41

3.1.16. NDS.LBUGP (GP-Implied Load Byte Unsigned Immediate) ... 43

3.1.17. NDS.LHGP (GP-Implied Load Half-Word Signed Immediate) .. 45

3.1.18. NDS.LHUGP (GP-Implied Load Half-Word Unsigned Immediate) .. 47

3.1.19. NDS.LWGP (GP-Implied Load Word Signed Immediate) ... 49

3.1.20. NDS.LWUGP (GP-Implied Load Word Unsigned Immediate) ... 51

3.1.21. NDS.LDGP (GP-Implied Load Double-Word Immediate) ... 53

3.1.22. NDS.SBGP (GP-Implied Store Byte Immediate) ... 55

3.1.23. NDS.SHGP (GP-Implied Store Half-Word Immediate) ... 57

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page vii

AndeStar_V5_ISA_Spec_UM165.docx

3.1.24. NDS.SWGP (GP-Implied Store Word Immediate) .. 59

3.1.25. NDS.SDGP (GP-Implied Store Double-Word Immediate) ... 61

3.1.26. NDS.FFB (Find First Byte) .. 63

3.1.27. NDS.FFZMISM (Find First Zero or Mis-Match) ... 68

3.1.28. NDS.FFMISM (Find First Mis-Match) .. 73

3.1.29. NDS.FLMISM (Find Last Mis-Match) ... 78

3.2. ANDES CODENSE EXTENSION (XANDESCODENSE) .. 83

3.2.1. NDS.EXEC.IT (Execution on Instruction Table) .. 83

3.3. ANDES NEW CODENSE EXTENSION (XANDESNEWCODENSE) ... 87

3.3.1. NDS.NEXEC.IT (New Execution on Instruction Table) .. 87

3.4. ANDES SCALAR BFLOAT16 CONVERSION EXTENSION (XANDESBFHCVT) ... 88

3.4.1. NDS.FCVT.S.BF16 (Scalar BF16 to 32-Bit SP Conversion) ... 89

3.4.2. NDS.FCVT.BF16.S (Scalar 32-Bit SP to BF16 Conversion) ... 91

3.5. ANDES VECTOR BFLOAT16 CONVERSION EXTENSION (XANDESVBFHCVT) ... 93

3.5.1. NDS.VFWCVT.S.BF16 (Vector BF16 to 32-Bit SP Conversion) .. 94

3.5.2. NDS.VFNCVT.BF16.S (Vector 32-Bit SP to BF16 Conversion) ... 96

3.6. ANDES VECTOR INT4 LOAD EXTENSION (XANDESVSINTLOAD) ... 98

3.6.1. NDS.VLN8.V (Vector Signed 4-Bit Uni-Stride Load into 8-Bit Element) .. 99

3.6.2. NDS.VLNU8.V (Vector Unsigned 4-Bit Uni-Stride Load into 8-Bit Element) 101

3.7. ANDES VECTOR PACKED FP16 EXTENSION (XANDESVPACKFPH) .. 103

3.7.1. NDS.VFPMADT.VF (Vector Single-Width Floating-Point Packed Fused Multiply-Add with Top FP16

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page viii

AndeStar_V5_ISA_Spec_UM165.docx

as Multiplicand) ... 103

3.7.2. NDS.VFPMADB.VF (Vector Single-Width Floating-Point Packed Fused Multiply-Add with Bottom

FP16 as Multiplicand) ... 104

3.8. ANDES VECTOR DOT PRODUCT EXTENSION (XANDESVDOT) ... 106

3.8.1. NDS.VD4DOTS.VV (Vector Signed Dot Product on 1/4 of SEW) .. 107

3.8.2. NDS.VD4DOTU.VV (Vector Unsigned Dot Product on 1/4 of SEW) ... 109

3.8.3. NDS.VD4DOTSU.VV (Vector Signed and Unsigned Dot Product on 1/4 of SEW) 111

3.9. ANDES VECTOR SMALL INT HANDLING EXTENSION (XANDESVSINTH) .. 113

3.9.1. NDS.VLE4.V (Vector 4-Bit Uni-Stride Load into a Vector Register) ... 114

3.9.2. NDS.VFWCVT.F.N.V (Vector Signed INT4 to SEW FP Conversion) .. 116

3.9.3. NDS.VFWCVT.F.NU.V (Vector Unsigned INT4 to SEW FP Conversion) .. 119

3.9.4. NDS.VFWCVT.F.B.V (Vector Signed INT8 to SEW FP Conversion) ... 121

3.9.5. NDS.VFWCVT.F.BU.V (Vector Unsigned INT8 to SEW FP Conversion) ... 123

3.10. ANDES VECTOR QUAD-WIDENING INTEGER MULTIPLY-ADD EXTENSION (XANDESVQMAC) 125

3.10.1. NDS.VQMACCU.VV (Quad-Widening Unsigned-Integer Multiply-Add, Overwrite Addend) 126

3.10.2. NDS.VQMACCU.VX (Quad-Widening Unsigned-integer Multiply-Add, Overwrite Addend) 128

3.10.3. NDS.VQMACC.VV (Quad-Widening Signed-Integer Multiply-Add, Overwrite Addend) 130

3.10.4. NDS.VQMACC.VX (Quad-Widening Signed-Integer Multiply-Add, Overwrite Addend) 132

3.10.5. NDS.VQMACCSU.VV (Quad-Widening Signed-Unsigned-Integer Multiply-Add, Overwrite

Addend) 134

3.10.6. NDS.VQMACCSU.VX (Quad-Widening Signed-Unsigned-Integer Multiply-Add, Overwrite

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page ix

AndeStar_V5_ISA_Spec_UM165.docx

Addend) 136

3.10.7. NDS.VQMACCUS.VX (Quad-Widening Unsigned-Signed-Integer Multiply-Add, Overwrite

Addend) 138

APPENDIX: OBSOLETE EXTENSIONS AND INSTRUCTIONS .. 140

APPENDIX I. ANDES HALF-PRECISION FLOATING-POINT EXTENSION .. 140

Appendix I-I. FLHW (Floating-point Load from Half-Precision to Single-Precision) 140

Appendix I-II. FSHW (Floating-point Store to Half-Precision from Single-Precision) 143

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page x

AndeStar_V5_ISA_Spec_UM165.docx

List of Tables

TABLE 1. BRANCH INSTRUCTIONS .. 3

TABLE 2. LOAD EFFECTIVE ADDRESS INSTRUCTIONS ... 4

TABLE 3. GLOBAL POINTER(GP)-RELATIVE INSTRUCTIONS .. 6

TABLE 4. STRING PROCESSING INSTRUCTIONS ... 7

TABLE 5. CODE DENSE INSTRUCTIONS .. 8

TABLE 5. NEW CODE DENSE INSTRUCTIONS ... 8

TABLE 6. BFLOAT16 SCALAR CONVERSION INSTRUCTIONS .. 8

TABLE 7. BFLOAT16 VECTOR CONVERSION INSTRUCTIONS (FOR SEW=16 ONLY) .. 9

TABLE 8. INT4 VECTOR LOAD INSTRUCTIONS .. 9

TABLE 9. VECTOR SINGLE-WIDTH FLOATING-POINT PACKED FUSED MULTIPLY-ADD INSTRUCTIONS...................................... 9

TABLE 10. VECTOR DOT PRODUCT INSTRUCTIONS .. 11

TABLE 11. INT4 VECTOR LOAD INSTRUCTIONS .. 11

TABLE 12. INT4/INT8 VECTOR FLOATING-POINT WIDENING INSTRUCTIONS .. 11

TABLE 13. QUAD-WIDENING INTEGER MULTIPLY-ADD INSTRUCTIONS .. 12

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page xi

AndeStar_V5_ISA_Spec_UM165.docx

Typographical Convention Index

Document

Element

Font Font Style Size Color

Normal text Georgia Normal 12 Black

Command line,
source code
or file paths

Lucida
Console

Normal 11 Indigo

VARIABLES OR
PARAMETERS IN
COMMAND LINE,
SOURCE CODE
OR FILE PATHS

LUCIDA
CONSOLE

BOLD + ALL-
CAPS

11 INDIGO

Hyperlink Georgia Underlined 12 Blue

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 1

AndeStar_V5_ISA_Spec_UM165.docx

1. Introduction

To meet users’ wide-ranged requirements and help accelerate the adoption of RISC-V

architecture in the embedded markets, the AndeStar V5 ISA architecture extends the

RISC-V base ISA architecture with Andes instruction extensions. It includes the following

components:

◼ RISC-V base ISA and standard extensions

⚫ RISC-V RVI base integer instruction set

⚫ RISC-V RVC standard extension for compressed instructions

⚫ RISC-V RVM standard extension for integer multiplication and division

⚫ Optional RISC-V RVA standard extension for atomic operations

◼ Andes-extended ISA extensions

⚫ Andes Performance extension (XAndesPerf)

⚫ Andes CoDense extension (XAndesCoDense)

⚫ Andes New CoDense extension (XAndesNewCoDense)

⚫ Andes Scalar BFLOAT16 Conversion extension (XAndesBFHCvt)

⚫ Andes Vector BFLOAT16 Conversion extension (XAndesVBFHCvt)

⚫ Andes Vector INT4 Load extension (XAndesVSIntLoad)

⚫ Andes Vector Packed FP16 extension (XAndesVPackFPH)

⚫ Andes Vector Dot Product extension (XAndesVDot)

⚫ Andes Vector Small INT Handling extension (XAndesVSIntH)

⚫ Andes Vector Quad-Widening Integer Multiply-Add extension (XAndesVQMac)

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 2

AndeStar_V5_ISA_Spec_UM165.docx

This document introduces the instructions in the Andes-extended ISA extensions. These

instructions are designed for compilers or library developers to enhance application

performance and reduce code size. For details of instructions in the RISC-V base ISA and

standard extensions, see the RISC-V Instruction Set Manual, including Volume I: User-Level

ISA and Volume II: Privileged Architecture, on the RISC-V website.

https://riscv.org/technical/specifications/

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 3

AndeStar_V5_ISA_Spec_UM165.docx

2. Andes Instruction Summary

2.1. Andes Performance Extension (XAndesPerf)

Table 1. Branch Instructions

No. Arch. Mnemonic Instruction Operation

1

RV32

NDS.BBC Rs1,

#cimm[4:0],

#imm[10:1] Branch on test bit

is clear/zero

if (Rs1[cimm] == 0) {

tPC = PC +

SE(CONCAT(imm[10:1],0[0]

));

PC = tPC

}

RV64

NDS.BBC Rs1,

#cimm[5:0],

#imm[10:1]

2

RV32

NDS.BBS Rs1,

#cimm[4:0],

#imm[10:1] Branch on test bit

is set/not zero

if (Rs1[cimm] != 0) {

tPC = PC +

SE(CONCAT(imm[10:1],0[0]

));

PC = tPC

}

RV64

NDS.BBS Rs1,

#cimm[5:0],

#imm[10:1]

3

RV32

&

RV64

NDS.BEQC Rs1,

#cimm[6:0],

#imm[10:1]

Branch on equal to

constant

if (Rs1 == ZE(cimm)) {

tPC = PC +

SE(CONCAT(imm[10:1],0[0]

));

PC = tPC

}

4

RV32

&

RV64

NDS.BNEC Rs1,

#cimm[6:0],

#imm[10:1]

Branch on not

equal to constant

if (Rs1 != ZE(cimm)) {

tPC = PC +

SE(CONCAT(imm[10:1],0[0]

));

PC = tPC

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 4

AndeStar_V5_ISA_Spec_UM165.docx

}

5

RV32
NDS.BFOS Rd, Rs1,

#msb[4:0], #lsb[4:0]
Sign-extended bit

field operation
See page 25

RV64
NDS.BFOS Rd, Rs1,

#msb[5:0], #lsb[5:0]

6

RV32
NDS.BFOZ Rd, Rs1,

#msb[4:0], #lsb[4:0]
Zero-extended bit

field operation
See page 29

RV64
NDS.BFOZ Rd, Rs1,

#msb[5:0], #lsb[5:0]

Table 2. Load Effective Address Instructions

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64

NDS.LEA.H Rd, Rs1,

Rs2

Load effective half-

word address
Rd = Rs1 + Rs2*2

2
RV32 &

RV64

NDS.LEA.W Rd, Rs1,

Rs2

Load effective

word address
Rd = Rs1 + Rs2*4

3
RV32 &

RV64

NDS.LEA.D Rd, Rs1,

Rs2

Load effective

double-word

address

Rd = Rs1 + Rs2*8

4 RV64
NDS.LEA.B.ZE Rd,

Rs1, Rs2

Load effective byte

address from

unsigned 32-bit

Rd = Rs1 + ZE32(Rs2[31:0])

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 5

AndeStar_V5_ISA_Spec_UM165.docx

offset

5 RV64
NDS.LEA.H.ZE Rd,

Rs1, Rs2

Load effective half-

word address from

unsigned 32-bit

offset

Rd = Rs1 + ZE32(Rs2[31:0])*2

6 RV64
NDS.LEA.W.ZE Rd,

Rs1, Rs2

Load effective

word address from

unsigned 32-bit

offset

Rd = Rs1 + ZE32(Rs2[31:0])*4

7 RV64
NDS.LEA.D.ZE Rd,

Rs1, Rs2

Load effective

double-word

address from

unsigned 32-bit

offset

Rd = Rs1 + ZE32(Rs2[31:0])*8

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 6

AndeStar_V5_ISA_Spec_UM165.docx

Table 3. Global Pointer(GP)-Relative Instructions

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64

NDS.ADDIGP Rd,

imm[17:0]

GP-implied add

immediate
Rd = x3 + SE(imm[17:0])

2

RV32 &

RV64
NDS.LBGP Rd, [+

imm[17:0]]

GP-implied load

byte signed

immediate

See page 40

3

RV32 &

RV64
NDS.LBUGP Rd, [+

imm[17:0]]

GP-implied load

byte unsigned

immediate

See page 43

4

RV32 &

RV64
NDS.LHGP Rd, [+

(imm[17:1] << 1)]

GP-implied load

half-word signed

immediate

See page 45

5

RV32 &

RV64
NDS.LHUGP Rd, [+

(imm[17:1] << 1)]

GP-implied load

half-word unsigned

immediate

See page 47

6

RV32 &

RV64
NDS.LWGP Rd, [+

(imm[18:2] << 2)]

GP-implied load

word signed

immediate

See page 49

7 RV64
NDS.LWUGP Rd, [+

(imm[18:2] << 2)]

GP-implied load

word unsigned

immediate

See page 51

8 RV64
NDS.LDGP Rd, [+

(imm[19:3] << 3)]

GP-implied load

double-word

immediate

See page 53

9
RV32 &

RV64

NDS.SBGP Rs2, [+

imm[17:0]]

GP-implied store

byte immediate
See page 55

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 7

AndeStar_V5_ISA_Spec_UM165.docx

No. Arch. Mnemonic Instruction Operation

10

RV32 &

RV64
NDS.SHGP Rs2, [+

(imm[17:1] << 1)]

GP-implied store

half-word

immediate

See page 57

11
RV32 &

RV64

NDS.SWGP Rs2, [+

(imm[18:2] << 2)]

GP-implied store

word immediate
See page 59

12 RV64
NDS.SDGP Rs2, [+

(imm[19:3] << 3)]

GP-implied store

double-word

immediate

See page 61

Table 4. String Processing Instructions

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64

NDS.FFB Rd, Rs1,

Rs2
Find first Byte See page 63

2
RV32 &

RV64

NDS.FFZMISM Rd,

Rs1, Rs2

Find first zero or

mismatch
See page 68

3
RV32 &

RV64

NDS.FFMISM Rd, Rs1,

Rs2
Find first mismatch See page 73

4
RV32 &

RV64

NDS.FLMISM Rd,

Rs1, Rs2
Find last mismatch See page 78

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 8

AndeStar_V5_ISA_Spec_UM165.docx

2.2. Andes CoDense Extension (XAndesCoDense)

Table 5. Code Dense Instructions

No. Arch. Mnemonic Instruction Operation

1

RV32

&

RV64

NDS.EXEC.IT

(imm[11:2]<<2)

Execution on

instruction table
Execute(IT(imm[11:2]);

2.3. Andes New CoDense Extension (XAndesNewCoDense)

Table 6. New Code Dense Instructions

No. Arch. Mnemonic Instruction Operation

1

RV32

&

RV64

NDS.NEXEC.IT

(imm[11:2]<<2)

New execution on

instruction table.

An alias of

NDS.EXEC.IT.

Execute(IT(imm[11:2]);

2.4. Andes Scalar BFLOAT16 Conversion Extension (XAndesBFHCvt)

Table 7. BFLOAT16 Scalar Conversion Instructions

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64

NDS.FCVT.S.BF16

frd, frs

Scalar BF16 to 32-

bit SP conversion

frd.H[1] = frs.H[0];

frd.H[0] = 0;

frd = NaN-Boxing(frd.W[0])

2
RV32 &

RV64

NDS.FCVT.BF16.S

frd, frs

Scalar 32-bit SP to

BF16 conversion

frd.H[0] =

S_SP_TO_BF16(frs.W[0]);

frd = NaN-Boxing(frd.H[0]);

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 9

AndeStar_V5_ISA_Spec_UM165.docx

2.5. Andes Vector BFLOAT16 Conversion Extension (XAndesVBFHCvt)

Table 8. BFLOAT16 Vector Conversion Instructions (for SEW=16 only)

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64

NDS.VFWCVT.S.BF16

vd, vs

Vector BF16 to 32-

bit SP conversion

vd[i].H[1] = vs[i];

vd[i].H[0] = 0;

2
RV32 &

RV64

NDS.VFNCVT.BF16.S

vd, vs

Vector 32-bit SP to

BF16 conversion
vd[i] = V_SP_TO_BF16(vs[i])

2.6. Andes Vector INT4 Load Extension (XAndesVSIntLoad)

Table 9. INT4 Vector Load Instructions

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64

NDS.VLN8.V vd,

(rs1), vm

Vector signed 4-bit uni-stride load

into 8-bit element
See page 99

2
RV32 &

RV64

NDS.VLNU8.V vd,

(rs1), vm

Vector unsigned 4-bit uni-stride load

into 8-bit element
See page 101

2.7. Andes Vector Packed FP16 Extension (XAndesVPackFPH)

Table 10. Vector Single-Width Floating-Point Packed Fused Multiply-Add Instructions

No. Arch. Mnemonic Instruction Operation

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 10

AndeStar_V5_ISA_Spec_UM165.docx

1
RV32 &

RV64

NDS.VFPMADT.VF

vd, rs1, vs2, vm

Vector single-width floating-point

packed fused multiply-add with top

FP16 as multiplicand

See page 103

2
RV32 &

RV64

NDS.VFPMADB.VF

vd, rs1, vs2, vm

Vector single-width floating-point

packed fused multiply-add with

bottom FP16 as multiplicand

See page 104

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 11

AndeStar_V5_ISA_Spec_UM165.docx

2.8. Andes Vector Dot Product Extension (XAndesVDot)

Table 11. Vector Dot Product Instructions

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64

NDS.VD4DOTS.VV vd, vs1, vs2,

vm

Vector signed dot

product on 1/4 of SEW
See page 107

2
RV32 &

RV64

NDS.VD4DOTU.VV vd, vs1, vs2,

vm

Vector unsigned dot

product on 1/4 of SEW
See page 109

3

RV32 &

RV64
NDS.VD4DOTSU.VV vd, vs1, vs2,

vm

Vector signed and

unsigned dot product on

1/4 of SEW

See page 111

2.9. Andes Vector Small INT Handling Extension (XAndesVSIntH)

Table 12. INT4 Vector Load Instructions

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64
NDS.VLE4.V vd, (rs1)

Vector 4-bit uni-stride

load into a vector

register

See page 114

Table 13. INT4/INT8 Vector Floating-Point Widening Instructions

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64
NDS.VFWCVT.F.N.V vd, vs, vm

Vector signed INT4 to

SEW FP conversion
See page 116

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 12

AndeStar_V5_ISA_Spec_UM165.docx

No. Arch. Mnemonic Instruction Operation

2
RV32 &

RV64
NDS.VFWCVT.F.NU.V vd, vs, vm

Vector unsigned INT4 to

SEW FP Conversion
See page 119

3
RV32 &

RV64
NDS.VFWCVT.F.B.V vd, vs, vm

Vector signed INT8 to

SEW FP conversion
See page 121

4
RV32 &

RV64
NDS.VFWCVT.F.BU.V vd, vs, vm

Vector unsigned INT8 to

SEW FP Conversion
See page 123

2.10. Andes Vector Quad-Widening Integer Multiply-Add Extension

(XAndesVQMac)

Table 14. Quad-Widening Integer Multiply-Add Instructions

No. Arch. Mnemonic Instruction Operation

1
RV32 &

RV64

NDS.VQMACCU.VV vd, vs1,

vs2, vm

Quad-widening

unsigned-integer

multiply-add, overwrite

addend

vd[i] = +(vs1[i]

* vs2[i]) + vd[i]

2
RV32 &

RV64

NDS.VQMACCU.VX vd, rs1,

vs2, vm

Quad-widening

unsigned-integer

multiply-add, overwrite

addend

vd[i] = +(x[rs1]

* vs2[i]) + vd[i]

3
RV32 &

RV64

NDS.VQMACC.VV vd, vs1, vs2,

vm

Quad-widening signed-

integer multiply-add,

overwrite addend

vd[i] = +(vs1[i]

* vs2[i]) + vd[i]

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 13

AndeStar_V5_ISA_Spec_UM165.docx

No. Arch. Mnemonic Instruction Operation

4
RV32 &

RV64

NDS.VQMACC.VX vd, rs1, vs2,

vm

Quad-widening signed-

integer multiply-add,

overwrite addend

vd[i] = +(x[rs1]

* vs2[i]) + vd[i]

5
RV32 &

RV64

NDS.VQMACCSU.VV vd, vs1,

vs2, vm

Quad-widening signed-

unsigned-integer

multiply-add, overwrite

addend

vd[i] =

+(signed(vs1[i])

*

unsigned(vs2[i]))

+ vd[i]

6
RV32 &

RV64

NDS.VQMACCSU.VX vd, rs1,

vs2, vm

Quad-widening signed-

unsigned-integer

multiply-add, overwrite

addend

vd[i] =

+(signed(x[rs1])

*

unsigned(vs2[i]))

+ vd[i]

7
RV32 &

RV64

NDS.VQMACCUS.VX vd, rs1,

vs2, vm

Quad-widening

unsigned-signed-

integer multiply-add,

overwrite addend

vd[i] =

+(unsigned(x[rs1]

) *

signed(vs2[i])) +

vd[i]

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 14

AndeStar_V5_ISA_Spec_UM165.docx

3. Detailed Instruction Description

3.1. Andes Performance Extension (XAndesPerf)

The 32-bit AndeStar V5 extension includes branch instructions, load effective address instructions, GP-

relative instructions, and string processing instructions for performance improvement.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 15

AndeStar_V5_ISA_Spec_UM165.docx

3.1.1. NDS.BBC (Branch on Test Bit is Clear/Zero)

Format:

⚫ RV32

31 30 29 25 24 20 19 15 14 12 11 8 7 6 0

imm[10]
BBC

0
imm[9:5] cimm[4:0] Rs1

BTBx

111
imm[4:1] 0

Custom-2

1011011

⚫ RV64

31 30 29 25 24 20 19 15 14 12 11 8 7 6 0

imm[10]
BBC

0
imm[9:5] cimm[4:0] Rs1

BTBx

111
imm[4:1] cimm[5]

Custom-2

1011011

Syntax:

⚫ RV32

 NDS.BBC Rs1, #cimm[4:0], #imm[10:1]

 BBC Rs1, #cimm[4:0], #imm[10:1] (deprecated)

⚫ RV64

 NDS.BBC Rs1, #cimm[5:0], #imm[10:1]

 BBC Rs1, #cimm[5:0], #imm[10:1] (deprecated)

Purpose: Branch on testing a bit when the specified bit is zero.

Description:

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 16

AndeStar_V5_ISA_Spec_UM165.docx

⚫ RV32

If the bit position cimm[4:0] of the register Rs1 is zero, this instruction branches to the position of

“current PC + sign-extended half-word offset imm[10:1]”.

⚫ RV64

If the bit position cimm[5:0] of the register Rs1 is zero, this instruction branches to the position of

“current PC + sign-extended half-word offset imm[10:1]”.

Operations:

⚫ RV32

if (Rs1[cimm[4:0]]) == 0) {

tPC = PC + SE(CONCAT(imm[10:1],0[0]));

PC = tPC

}

⚫ RV64

if (Rs1[cimm[5:0]]) == 0) {

tPC = PC + SE(CONCAT(imm[10:1],0[0]));

PC = tPC

}

General exceptions: None

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 17

AndeStar_V5_ISA_Spec_UM165.docx

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 18

AndeStar_V5_ISA_Spec_UM165.docx

3.1.2. NDS.BBS (Branch on Test Bit is Set/Not Zero)

Format:

⚫ RV32

31 30 29 25 24 20 19 15 14 12 11 8 7 6 0

imm[10]
BBS

1
imm[9:5] cimm[4:0] Rs1

BTBx

111
imm[4:1] 0

Custom-2

1011011

⚫ RV64

31 30 29 25 24 20 19 15 14 12 11 8 7 6 0

imm[10]
BBS

1
imm[9:5] cimm[4:0] Rs1

BTBx

111
imm[4:1] cimm[5]

Custom-2

1011011

Syntax:

⚫ RV32

 NDS.BBS Rs1, #cimm[4:0], #imm[10:1]

 BBS Rs1, #cimm[4:0], #imm[10:1] (deprecated)

⚫ RV64

 NDS.BBS Rs1, #cimm[5:0], #imm[10:1]

 BBS Rs1, #cimm[5:0], #imm[10:1] (deprecated)

Purpose: Branch on testing a bit when the specified bit is not zero.

Description:

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 19

AndeStar_V5_ISA_Spec_UM165.docx

⚫ RV32

If the bit position cimm[4:0] of the register Rs1 is not zero, this instruction branches to the position of

“current PC + sign-extended half-word offset imm[10:1]”.

⚫ RV64

If the bit position cimm[5:0] of the register Rs1 is not zero, this instruction branches to the position of

“current PC + sign-extended half-word offset imm[10:1]”.

Operations:

⚫ RV32

if (Rs1[cimm[4:0]]) != 0) {

tPC = PC + SE(CONCAT(imm[10:1],0[0]));

PC = tPC

}

⚫ RV64

if (Rs1[cimm[5:0]]) != 0) {

tPC = PC + SE(CONCAT(imm[10:1],0[0]));

PC = tPC

}

General exceptions: None

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 20

AndeStar_V5_ISA_Spec_UM165.docx

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 21

AndeStar_V5_ISA_Spec_UM165.docx

3.1.3. NDS.BEQC (Branch on Equal to Constant)

Format:

31 30 29 25 24 20 19 15 14 12 11 8 7 6 0

imm[10] cimm[6] imm[9:5] cimm[4:0] Rs1
BEQC

101
imm[4:1] cimm[5]

Custom-2

1011011

Syntax: NDS.BEQC Rs1, #cimm[6:0], #imm[10:1]

 BEQC Rs1, #cimm[6:0], #imm[10:1] (deprecated)

Purpose: Branch on equal comparison to a constant.

Description: If the content of the register Rs1 is equal to the zero-extended constant cimm[6:0], this

instruction branches to the position of “current PC + sign-extended half-word offset imm[10:1]”.

Operations:

if (Rs1 == ZE(cimm[6:0]) {

tPC = PC + SE(CONCAT(imm[10:1],0[0]));

PC = tPC

}

General exceptions: None

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 22

AndeStar_V5_ISA_Spec_UM165.docx

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 23

AndeStar_V5_ISA_Spec_UM165.docx

3.1.4. NDS.BNEC (Branch on Not Equal to Constant)

Format:

31 30 29 25 24 20 19 15 14 12 11 8 7 6 0

imm[10] cimm[6] imm[9:5] cimm[4:0] Rs1
BEQC

110
imm[4:1] cimm[5]

Custom-2

1011011

Syntax: NDS.BNEC Rs1, #cimm[6:0], #imm[10:1]

 BNEC Rs1, #cimm[6:0], #imm[10:1] (deprecated)

Purpose: Branch on not-equal comparison to a constant.

Description: If the content of the register Rs1 is not equal to the zero-extended constant cimm[6:0],

this instruction branches to the position of “current PC + sign-extended half-word offset imm[10:1]”.

Operations:

if (Rs1 != ZE(cimm[6:0]) {

tPC = PC + SE(CONCAT(imm[10:1],0[0]));

PC = tPC

}

General exceptions: None

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 24

AndeStar_V5_ISA_Spec_UM165.docx

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 25

AndeStar_V5_ISA_Spec_UM165.docx

3.1.5. NDS.BFOS (Sign-Extended Bit Field Operation)

Format:

⚫ RV32

31 30 26 25 24 20 19 15 14 12 11 7 6 0

0 msb[4:0] 0 lsb[4:0] Rs1
BFOS

011
Rd

Custom-2

1011011

⚫ RV64

31 26 25 20 19 15 14 12 11 7 6 0

msb[5:0] lsb[5:0] Rs1
BFOS

011
Rd

Custom-2

1011011

Syntax:

⚫ RV32

 NDS.BFOS Rd, Rs1, #msb[4:0], #lsb[4:0]

 BFOS Rd, Rs1, #msb[4:0], #lsb[4:0] (deprecated)

⚫ RV64

 NDS.BFOS Rd, Rs1, #msb[5:0], #lsb[5:0]

 BFOS Rd, Rs1, #msb[5:0], #lsb[5:0] (deprecated)

Purpose: Perform a sign-extended bit-field extract or insert operation.

Description:

⚫ RV32

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 26

AndeStar_V5_ISA_Spec_UM165.docx

This instruction contains three different bit-field operations. If msb[4:0] is 0, a sign-extended zero-tailed

bit-field insert operation is performed. If msb[4:0]<lsb[4:0], another sign-extended bit-field insert

operation is performed. If msb[4:0]>=lsb[4:0], a sign-extended bit-field extract operation is

performed instead.

⚫ RV64

This instruction contains three different bit-field operations. If msb[5:0] is 0, a sign-extended zero-tailed

bit-field insert operation is performed. If msb[5:0]<lsb[5:0], another sign-extended bit-field insert

operation is performed. If msb[5:0]>=lsb[5:0], a sign-extended bit-field extract operation is

performed instead.

Operations:

⚫ RV32

LSB = lsb[4:0]; MSB = msb[4:0];

lsbp1 = lsb[4:0]+1; msbm1 = msb[4:0]-1;

lsbm1 = lsb[4:0]-1;

if (MSB==0) {

Rd[LSB]=Rs1[0];

if (LSB < 31) Rd[31:lsbp1]=REPEAT(Rs1[0]);

if (LSB > 0) Rd[lsbm1:0]=0;

 } else if (MSB<LSB) {

 lenm1 = LSB-MSB;

 Rd[LSB:MSB]=Rs1[lenm1:0];

if (LSB < 31) Rd[31:lsbp1]=REPEAT(Rs1[lenm1]);

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 27

AndeStar_V5_ISA_Spec_UM165.docx

Rd[msbm1:0]=0;

 } else { // MSB>=LSB

 lenm1 = MSB-LSB;

 Rd[lenm1:0]=Rs1[MSB:LSB]; Rd[31:(lenm1+1)]=REPEAT(Rs1[MSB]);

 }

⚫ RV64

LSB = lsb[5:0]; MSB = msb[5:0];

lsbp1 = lsb[5:0]+1; msbm1 = msb[5:0]-1;

lsbm1 = lsb[5:0]-1;

if (MSB==0) {

Rd[LSB]=Rs1[0];

if (LSB < 63) Rd[63:lsbp1]=REPEAT(Rs1[0]);

if (LSB > 0) Rd[lsbm1:0]=0;

 } else if (MSB<LSB) {

 lenm1 = LSB-MSB;

 Rd[LSB:MSB]=Rs1[lenm1:0];

if (LSB < 63) Rd[63:lsbp1]=REPEAT(Rs1[lenm1]);

Rd[msbm1:0]=0;

 } else { // MSB>=LSB

 lenm1 = MSB-LSB;

 Rd[lenm1:0]=Rs1[MSB:LSB]; Rd[63:(lenm1+1)]=REPEAT(Rs1[MSB]);

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 28

AndeStar_V5_ISA_Spec_UM165.docx

 }

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 29

AndeStar_V5_ISA_Spec_UM165.docx

3.1.6. NDS.BFOZ (Zero-Extended Bit Field Operation)

Format:

⚫ RV32

31 30 26 25 24 20 19 15 14 12 11 7 6 0

0 msb[4:0] 0 lsb[4:0] Rs1
BFOZ

010
Rd

Custom-2

1011011

⚫ RV64

31 26 25 20 19 15 14 12 11 7 6 0

msb[5:0] lsb[5:0] Rs1
BFOZ

010
Rd

Custom-2

1011011

Syntax:

⚫ RV32

 NDS.BFOZ Rd, Rs1, #msb[4:0], #lsb[4:0]

 BFOZ Rd, Rs1, #msb[4:0], #lsb[4:0] (deprecated)

⚫ RV64

 NDS.BFOZ Rd, Rs1, #msb[5:0], #lsb[5:0]

 BFOZ Rd, Rs1, #msb[5:0], #lsb[5:0] (deprecated)

Purpose: Perform a zero-extended bit-field extract or insert operation.

Description:

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 30

AndeStar_V5_ISA_Spec_UM165.docx

⚫ RV32

This instruction contains three different bit-field operations. If msb[4:0] is 0, a zero-extended zero-

tailed bit-field insert operation is performed. If msb[4:0]<lsb[4:0], another zero-extended bit-field

insert operation is performed. If msb[4:0]>=lsb[4:0], a zero-extended bit-field extract operation is

performed instead.

⚫ RV64

This instruction contains three different bit-field operations. If msb[5:0] is 0, a zero-extended zero-

tailed bit-field insert operation is performed. If msb[5:0]<lsb[5:0], another zero-extended bit-field

insert operation is performed. If msb[5:0]>=lsb[5:0], a zero-extended bit-field extract operation is

performed instead.

Operations:

⚫ RV32

LSB = lsb[4:0]; MSB = msb[4:0];

lsbp1 = lsb[4:0]+1; msbm1 = msb[4:0]-1;

lsbm1 = lsb[4:0]-1;

if (MSB==0) {

Rd[LSB]=Rs1[0];

if (LSB < 31) Rd[31:lsbp1]=0;

if (LSB > 0) Rd[lsbm1:0]=0;

 } else if (MSB<LSB) {

 lenm1 = LSB-MSB;

 Rd[LSB:MSB]=Rs1[lenm1:0];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 31

AndeStar_V5_ISA_Spec_UM165.docx

if (LSB < 31) Rd[31:lsbp1]=0;

Rd[msbm1:0]=0;

 } else { // MSB>=LSB

 lenm1 = MSB-LSB;

 Rd[lenm1:0]=Rs1[MSB:LSB]; Rd[31:(lenm1+1)]=0;

 }

⚫ RV64

LSB = lsb[5:0]; MSB = msb[5:0];

lsbp1 = lsb[5:0]+1; msbm1 = msb[5:0]-1;

lsbm1 = lsb[5:0]-1;

if (MSB==0) {

Rd[LSB]=Rs1[0];

if (LSB < 63) Rd[63:lsbp1]=0;

if (LSB > 0) Rd[lsbm1:0]=0;

 } else if (MSB<LSB) {

 lenm1 = LSB-MSB;

 Rd[LSB:MSB]=Rs1[lenm1:0];

if (LSB < 63) Rd[63:lsbp1]=0;

Rd[msbm1:0]=0;

 } else { // MSB>=LSB

 lenm1 = MSB-LSB;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 32

AndeStar_V5_ISA_Spec_UM165.docx

 Rd[lenm1:0]=Rs1[MSB:LSB]; Rd[63:(lenm1+1)]=0;

 }

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 33

AndeStar_V5_ISA_Spec_UM165.docx

3.1.7. NDS.LEA.H (Load Effective Half-Word Address)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

LEA.H

0000101
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.LEA.H Rd, Rs1, Rs2

 LEA.H Rd, Rs1, Rs2 (deprecated)

Purpose: Add a base register with a half-word-aligned offset from an offset register.

Description: This instruction adds the content of the register Rs1 with the 1-bit left-shifted content of

the register Rs2 and writes the result to the register Rd.

Operations:

Rd = Rs1 + Rs2*2;

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 34

AndeStar_V5_ISA_Spec_UM165.docx

3.1.8. NDS.LEA.W (Load Effective Word Address)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

LEA.W

0000110
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.LEA.W Rd, Rs1, Rs2

 LEA.W Rd, Rs1, Rs2 (deprecated)

Purpose: Add a base register with a word-aligned offset from an offset register.

Description: This instruction adds the content of the register Rs1 with the 2-bit left-shifted content of

the register Rs2 and writes the result to the register Rd.

Operations:

Rd = Rs1 + Rs2*4;

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 35

AndeStar_V5_ISA_Spec_UM165.docx

3.1.9. NDS.LEA.D (Load Effective Double-Word Address)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

LEA.D

0000111
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.LEA.D Rd, Rs1, Rs2

 LEA.D Rd, Rs1, Rs2 (deprecated)

Purpose: Add a base register with a double-word-aligned offset from an offset register.

Description: This instruction adds the content of the register Rs1 with the 3-bit left-shifted content of

the register Rs2 and writes the result to the register Rd.

Operations:

Rd = Rs1 + Rs2*8;

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 36

AndeStar_V5_ISA_Spec_UM165.docx

3.1.10. NDS.LEA.B.ZE (Load Effective Byte Address from Unsigned 32-Bit Offset)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

LEA.B.ZE

0001000
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.LEA.B.ZE Rd, Rs1, Rs2

 LEA.B.ZE Rd, Rs1, Rs2 (deprecated)

Purpose: Add a base register with an unsigned 32-bit byte offset from an offset register.

Description: For RV64 only, this instruction adds the content of the register Rs1 with the zero-extended

[31:0] content of the register Rs2 and writes the result to the register Rd.

Operations:

Rd = Rs1 + ZE32(Rs2[31:0]);

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 37

AndeStar_V5_ISA_Spec_UM165.docx

3.1.11. NDS.LEA.H.ZE (Load Effective Half-word Address from Unsigned 32-Bit Offset)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

LEA.H.ZE

0001001
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.LEA.H.ZE Rd, Rs1, Rs2

 LEA.H.ZE Rd, Rs1, Rs2 (deprecated)

Purpose: Add a base register with an unsigned 32-bit half-word offset from an offset register.

Description: For RV64 only, this instruction adds the content of the register Rs1 with the 1-bit left-shifted

zero-extended [31:0] content of the register Rs2 and writes the result to the register Rd.

Operations:

Rd = Rs1 + ZE32(Rs2[31:0])*2;

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 38

AndeStar_V5_ISA_Spec_UM165.docx

3.1.12. NDS.LEA.W.ZE (Load Effective Word Address from Unsigned 32-Bit Offset)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

LEA.W.ZE

0001010
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.LEA.W.ZE Rd, Rs1, Rs2

 LEA.W.ZE Rd, Rs1, Rs2 (deprecated)

Purpose: Add a base register with an unsigned 32-bit word offset from an offset register.

Description: For RV64 only, this instruction adds the content of the register Rs1 with the 2-bit left-shifted

zero-extended [31:0] content of the register Rs2 and writes the result to the register Rd.

Operations:

Rd = Rs1 + ZE32(Rs2[31:0])*4;

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 39

AndeStar_V5_ISA_Spec_UM165.docx

3.1.13. NDS.LEA.D.ZE (Load Effective Double-Word Address from Unsigned 32-Bit

Offset)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

LEA.D.ZE

0001011
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.LEA.D.ZE Rd, Rs1, Rs2

 LEA.D.ZE Rd, Rs1, Rs2 (deprecated)

Purpose: Add a base register with an unsigned 32-bit double-word offset from an offset register.

Description: For RV64 only, this instruction adds the content of the register Rs1 with the 3-bit left-shifted

zero-extended [31:0] content of the register Rs2 and writes the result to the register Rd.

Operations:

Rd = Rs1 + ZE32(Rs2[31:0])*8;

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 40

AndeStar_V5_ISA_Spec_UM165.docx

3.1.14. NDS.ADDIGP (GP-Implied Add Immediate)

Format:

31 30 21 20 19 17 16 15 14 13 12 11 7 6 0

imm17 imm[10:1] imm11 imm[14:12] imm[16:15] imm0
ADDIGP

01
Rd

Custom-0

0001011

Syntax: NDS.ADDIGP Rd, imm[17:0]

 ADDIGP Rd, imm[17:0] (deprecated)

Purpose: Add the content of the implied global pointer (GP) register x3 with a signed constant.

Description: This instruction adds the content of the GP register x3 with the sign-extended imm[17:0]

offset value that covers a 256KiB range relative to the location pointed to by the GP register and writes

the result to the register Rd.

Operations:

Rd = x3 + SE(imm[17:0]);

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 41

AndeStar_V5_ISA_Spec_UM165.docx

3.1.15. NDS.LBGP (GP-Implied Load Byte Signed Immediate)

Format:

31 30 21 20 19 17 16 15 14 13 12 11 7 6 0

imm17 imm[10:1] imm11 imm[14:12] imm[16:15] imm0
LBGP

00
Rd

Custom-0

0001011

Syntax: NDS.LBGP Rd, [+ imm[17:0]]

 LBGP Rd, [+ imm[17:0]] (deprecated)

Purpose: Load a sign-extended 8-bit byte from the memory into a general register.

Description: This instruction loads a sign-extended byte from a memory location into the general register

Rd. The address of the memory location is specified by the implied GP register x3 plus a sign-extended

imm[17:0] offset that covers a 256KiB range relative to the location pointed to by the GP register.

Operations:

Vaddr = x3 + Sign_Extend(imm[17:0]);

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, LOAD);

If (Excep_status == NO_EXCEPTION) {

Bdata(7,0) = Load_Memory(PAddr, BYTE, Attributes);

Rd = Sign_Extend(Bdata(7,0));

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 42

AndeStar_V5_ISA_Spec_UM165.docx

} else {

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, load access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 43

AndeStar_V5_ISA_Spec_UM165.docx

3.1.16. NDS.LBUGP (GP-Implied Load Byte Unsigned Immediate)

Format:

31 30 21 20 19 17 16 15 14 13 12 11 7 6 0

imm17 imm[10:1] imm11 imm[14:12] imm[16:15] imm0
LBUGP

10
Rd

Custom-0

0001011

Syntax: NDS.LBUGP Rd, [+ imm[17:0]]

 LBUGP Rd, [+ imm[17:0]] (deprecated)

Purpose: Load a zero-extended 8-bit byte from the memory into a general register.

Description: This instruction loads a zero-extended byte from a memory location into the general register

Rd. The address of the memory location is specified by the implied GP register x3 plus a sign-extended

imm[17:0] offset that covers a 256KiB range relative to the location pointed to by the GP register.

Operations:

Vaddr = x3 + Sign_Extend(imm[17:0]);

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, LOAD);

If (Excep_status == NO_EXCEPTION) {

Bdata(7,0) = Load_Memory(PAddr, BYTE, Attributes);

Rd = Zero_Extend(Bdata(7,0));

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 44

AndeStar_V5_ISA_Spec_UM165.docx

} else {

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, load access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 45

AndeStar_V5_ISA_Spec_UM165.docx

3.1.17. NDS.LHGP (GP-Implied Load Half-Word Signed Immediate)

Format:

31 30 21 20 19 17 16 15 14 12 11 7 6 0

imm17 imm[10:1] imm11 imm[14:12] imm[16:15]
LHGP

001
Rd

Custom-1

0101011

Syntax: NDS.LHGP Rd, [+ (imm[17:1] << 1)]

 LHGP Rd, [+ (imm[17:1] << 1)] (deprecated)

Purpose: Load a sign-extended 16-bit half-word from the memory into a general register.

Description: This instruction loads a sign-extended half-word from the memory into the general register

Rd. The address of the memory location is specified by the implied GP register x3 plus a sign-extended

half-word imm[17:1] offset that covers a 256KiB range relative to the location pointed to by the GP

register.

Operations:

Vaddr = x3 + Sign_Extend((imm[17:1]<<1));

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, LOAD);

If (Excep_status == NO_EXCEPTION) {

Hdata(15,0) = Load_Memory(PAddr, HWORD, Attributes);

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 46

AndeStar_V5_ISA_Spec_UM165.docx

Rd = Sign_Extend(Hdata(15,0));

} else {

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, load access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 47

AndeStar_V5_ISA_Spec_UM165.docx

3.1.18. NDS.LHUGP (GP-Implied Load Half-Word Unsigned Immediate)

Format:

31 30 21 20 19 17 16 15 14 12 11 7 6 0

imm17 imm[10:1] imm11 imm[14:12] imm[16:15]
LHUGP

101
Rd

Custom-1

0101011

Syntax: NDS.LHUGP Rd, [+ (imm[17:1] << 1)]

 LHUGP Rd, [+ (imm[17:1] << 1)] (deprecated)

Purpose: Load a zero-extended 16-bit half-word from the memory into a general register.

Description: This instruction loads a zero-extended half-word from a memory location into the general

register Rd. The address of the memory location is specified by the implied GP register x3 plus a sign-

extended half-word imm[17:1] offset that covers a 256KiB range relative to the location pointed to by

the GP register.

Operations:

Vaddr = x3 + Sign_Extend((imm[17:1]<<1));

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, LOAD);

If (Excep_status == NO_EXCEPTION) {

Hdata(15,0) = Load_Memory(PAddr, HWORD, Attributes);

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 48

AndeStar_V5_ISA_Spec_UM165.docx

Rd = Zero_Extend(Hdata(15,0));

} else {

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, load access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 49

AndeStar_V5_ISA_Spec_UM165.docx

3.1.19. NDS.LWGP (GP-Implied Load Word Signed Immediate)

Format:

31 30 22 21 20 19 17 16 15 14 12 11 7 6 0

imm18 imm[10:2] imm17 imm11 imm[14:12] imm[16:15]
LWGP

010
Rd

Custom-1

0101011

Syntax: NDS.LWGP Rd, [+ (imm[18:2] <<2)]

 LWGP Rd, [+ (imm[18:2] <<2)] (deprecated)

Purpose: Load a sign-extended 32-bit word from the memory into a general register.

Description: This instruction loads a sign-extended word from a memory location into the general

register Rd. The address of the memory location is specified by the implied GP register x3 plus a sign-

extended word imm[18:2] offset that covers a 512KiB range relative to the location pointed to by the

GP register.

Operations:

Vaddr = x3 + Sign_Extend((imm[18:2]<<2));

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, LOAD);

If (Excep_status == NO_EXCEPTION) {

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes);

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 50

AndeStar_V5_ISA_Spec_UM165.docx

Rd = Sign_Extend(Wdata(31,0));

} else {

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, load access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 51

AndeStar_V5_ISA_Spec_UM165.docx

3.1.20. NDS.LWUGP (GP-Implied Load Word Unsigned Immediate)

Format:

31 30 22 21 20 19 17 16 15 14 12 11 7 6 0

imm18 imm[10:2] imm17 imm11 imm[14:12] imm[16:15]
LWUGP

110
Rd

Custom-1

0101011

Syntax: NDS.LWUGP Rd, [+ (imm[18:2] <<2)]

 LWUGP Rd, [+ (imm[18:2] <<2)] (deprecated)

Purpose: Load a zero-extended 32-bit word from the memory into a general register.

Description: For RV64 only, this instruction loads a zero-extended word from a memory location into the

general register Rd. The address of the memory location is specified by the implied GP register x3 plus a

sign-extended word imm[18:2] offset that covers a 512KiB range relative to the location pointed to by

the GP register.

Operations:

Vaddr = x3 + Sign_Extend((imm[18:2]<<2));

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, LOAD);

If (Excep_status == NO_EXCEPTION) {

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes);

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 52

AndeStar_V5_ISA_Spec_UM165.docx

Rd = Zero_Extend(Wdata(31,0));

} else {

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, load access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 53

AndeStar_V5_ISA_Spec_UM165.docx

3.1.21. NDS.LDGP (GP-Implied Load Double-Word Immediate)

Format:

31 30 23 22 21 20 19 17 16 15 14 12 11 7 6 0

imm19 imm[10:3] imm[18:17] imm11 imm[14:12] imm[16:15]
LDGP

011
Rd

Custom-1

0101011

Syntax: NDS.LDGP Rd, [+ (imm[19:3] <<3)]

 LDGP Rd, [+ (imm[19:3] <<3)] (deprecated)

Purpose: Load a 64-bit double-word from the memory into a general register.

Description: For RV64 only, this instruction loads a double-word from a memory location into the general

register Rd. The address of the memory location is specified by the implied GP register x3 plus a sign-

extended double-word imm[19:3] offset that covers a 1024KiB range relative to the location pointed to

by the GP register.

Operations:

Vaddr = x3 + Sign_Extend((imm[19:3]<<3));

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, LOAD);

If (Excep_status == NO_EXCEPTION) {

Dwdata(63,0) = Load_Memory(PAddr, DWORD, Attributes);

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 54

AndeStar_V5_ISA_Spec_UM165.docx

Rd = Sign_Extend(Dwdata(63,0));

} else {

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, load access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 55

AndeStar_V5_ISA_Spec_UM165.docx

3.1.22. NDS.SBGP (GP-Implied Store Byte Immediate)

Format:

31 30 25 24 20 19 17 16 15 14 13 12 11 8 7 6 0

imm17 imm[10:5] Rs2 imm[14:12] imm[16:15] imm0
SBGP

11
imm[4:1] imm11

Custom-0

0001011

Syntax: NDS.SBGP Rs2, [+ imm[17:0]]

 SBGP Rs2, [+ imm[17:0]] (deprecated)

Purpose: Store an 8-bit byte from a general register into a memory location.

Description: This instruction stores the least-significant 8-bit byte in the general register Rs2 to a

memory address specified by the implied GP register x3 plus a sign-extended imm[17:0] offset. The

offset value covers a 256KiB range relative to the location pointed to by the GP register.

Operations:

Vaddr = x3 + Sign_Extend(imm[17:0]);

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, STORE);

If (Excep_status == NO_EXCEPTION) {

Store_Memory(PAddr, BYTE, Attributes, Rs2(7,0));

} else {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 56

AndeStar_V5_ISA_Spec_UM165.docx

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, store access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 57

AndeStar_V5_ISA_Spec_UM165.docx

3.1.23. NDS.SHGP (GP-Implied Store Half-Word Immediate)

Format:

31 30 25 24 20 19 17 16 15 14 12 11 8 7 6 0

imm17 imm[10:5] Rs2 imm[14:12] imm[16:15]
SHGP

000
imm[4:1] imm11

Custom-1

0101011

Syntax: NDS.SHGP Rs2, [+ (imm[17:1] << 1)]

 SHGP Rs2, [+ (imm[17:1] << 1)] (deprecated)

Purpose: Store a 16-bit half-word from a general register into a memory location.

Description: This instruction stores the least-significant 16-bit half-word in the general register Rs2 to a

memory address specified by the implied GP register x3 plus a sign-extended half-word imm[17:1]

offset. The offset value covers a 256KiB range relative to the location pointed to by the GP register.

Operations:

Vaddr = x3 + Sign_Extend((imm[17:1]<<1));

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, STORE);

If (Excep_status == NO_EXCEPTION) {

Store_Memory(PAddr, HWORD, Attributes, Rs2(15,0));

} else {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 58

AndeStar_V5_ISA_Spec_UM165.docx

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, store access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 59

AndeStar_V5_ISA_Spec_UM165.docx

3.1.24. NDS.SWGP (GP-Implied Store Word Immediate)

Format:

31 30 25 24 20 19 17 16 15 14 12 11 9 8 7 6 0

imm18 imm[10:5] Rs2 imm[14:12] imm[16:15]
SWGP

100
imm[4:2] imm17 imm11

Custom-1

0101011

Syntax: NDS.SWGP Rs2, [+ (imm[18:2] << 2)]

 SWGP Rs2, [+ (imm[18:2] << 2)] (deprecated)

Purpose: Store a 32-bit word from a general register into a memory location.

Description: This instruction store the least-significant 32-bit word in the general register Rs2 to a

memory address specified by the implied GP register x3 plus a sign-extended word imm[18:2] offset.

The offset value covers a 512KiB range relative to the location pointed to by the GP register.

Operations:

Vaddr = x3 + Sign_Extend((imm[18:2]<<2));

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, STORE);

If (Excep_status == NO_EXCEPTION) {

Store_Memory(PAddr, WORD, Attributes, Rs2(31,0));

} else {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 60

AndeStar_V5_ISA_Spec_UM165.docx

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, store access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 61

AndeStar_V5_ISA_Spec_UM165.docx

3.1.25. NDS.SDGP (GP-Implied Store Double-Word Immediate)

Format:

31 30 25 24 20 19 17 16 15 14 12 11 10 9 8 7 6 0

imm19 imm[10:5] Rs2 imm[14:12] imm[16:15]
SWGP

111
imm[4:3] imm[18:17] imm11

Custom-1

0101011

Syntax: NDS.SDGP Rs2, [+ (imm[19:3] << 3)]

 SDGP Rs2, [+ (imm[19:3] << 3)] (deprecated)

Purpose: Store a 64-bit double-word from a general register into a memory location.

Description: For RV64 only, the instruction stores the 64-bit double-word in the general register Rs2 to a

memory address specified by the implied GP register x3 plus a sign-extended double-word imm[19:3]

offset. The offset value covers a 1024KiB range relative to the location pointed to by the GP register.

Operations:

Vaddr = x3 + Sign_Extend((imm[19:3]<<3));

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, STORE);

If (Excep_status == NO_EXCEPTION) {

Store_Memory(PAddr, DWORD, Attributes, Rs2(63,0));

} else {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 62

AndeStar_V5_ISA_Spec_UM165.docx

Generate_Exception(Excep_status);

}

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, page

modified, access bit, store access fault, bus error, ECC/parity error

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 63

AndeStar_V5_ISA_Spec_UM165.docx

3.1.26. NDS.FFB (Find First Byte)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

FFB

0010000
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.FFB Rd, Rs1, Rs2

 FFB Rd, Rs1, Rs2 (deprecated)

Purpose: Find the first byte in a register that matches a value in another register.

Description: Each byte in the register Rs1 is compared with the values in Rs2[7:0]. If any matching

byte is found, a non-zero position indication of the first matching byte is written to the register Rd and

the result is data-endian dependent. If no matching byte is found, a zero is written to the register Rd.

Operations:

⚫ RV32

Match1 = (Rs1[7:0] == Rs2[7:0]); Match2 = (Rs1[15:8] == Rs2[7:0]);

Match3 = (Rs1[23:16] == Rs2[7:0]); Match4 = (Rs1[31:24] == Rs2[7:0]);

found = Match1 || Match2 || Match3 || Match4;

If (!found) {

Rd = 0;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 64

AndeStar_V5_ISA_Spec_UM165.docx

} else if (“Little Endian”) {

If (Match1) {

Rd = -4;

} else if (Match2) {

Rd = -3;

} else if (Match3) {

Rd = -2;

} else {

Rd = -1;

}

} else { // “Big Endian”

If (Match4) {

Rd = -4;

} else if (Match3) {

Rd = -3;

} else if (Match2) {

Rd = -2;

} else {

Rd = -1;

}

}

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 65

AndeStar_V5_ISA_Spec_UM165.docx

⚫ RV64

Match1 = (Rs1[7:0] == Rs2[7:0]); Match2 = (Rs1[15:8] == Rs2[7:0]);

Match3 = (Rs1[23:16] == Rs2[7:0]); Match4 = (Rs1[31:24] == Rs2[7:0]);

Match5 = (Rs1[39:32] == Rs2[7:0]); Match6 = (Rs1[47:40] == Rs2[7:0]);

Match7 = (Rs1[55:48] == Rs2[7:0]); Match8 = (Rs1[63:56] == Rs2[7:0]);

found = Match1 || Match2 || Match3 || Match4 ||

Match5 || Match6 || Match7 || Match8;

If (!found) {

Rd = 0;

} else if (“Little Endian”) {

If (Match1) {

Rd = -8;

} else if (Match2) {

Rd = -7;

} else if (Match3) {

Rd = -6;

} else if (Match4) {

Rd = -5;

} else if (Match5) {

Rd = -4;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 66

AndeStar_V5_ISA_Spec_UM165.docx

} else if (Match6) {

Rd = -3;

} else if (Match7) {

Rd = -2;

} else {

Rd = -1;

}

} else { // “Big Endian”

If (Match8) {

Rd = -8;

} else if (Match7) {

Rd = -7;

} else if (Match6) {

Rd = -6;

} else if (Match5) {

Rd = -5;

} else if (Match4) {

Rd = -4;

} else if (Match3) {

Rd = -3;

} else if (Match2) {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 67

AndeStar_V5_ISA_Spec_UM165.docx

Rd = -2;

} else {

Rd = -1;

}

}

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 68

AndeStar_V5_ISA_Spec_UM165.docx

3.1.27. NDS.FFZMISM (Find First Zero or Mis-Match)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

FFZMISM

0010001
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.FFZMISM Rd, Rs1, Rs2

 FFZMISM Rd, Rs1, Rs2 (deprecated)

Purpose: Find the first byte in a register that is zero or fails a corresponding byte comparison.

Description: Each byte in the register Rs1 is compared with each corresponding byte in the register Rs2.

If any zero byte or mis-matching byte is found, a non-zero position indication of the first such byte is

written to the register Rd and the result is data-endian dependent. If no such byte is found, a zero is

written to the register Rd.

Operations:

⚫ RV32

F1 = (Rs1[7:0] == 0) || (Rs1[7:0] != Rs2[7:0]);

F2 = (Rs1[15:8] == 0) || (Rs1[15:8] != Rs2[15:8]);

F3 = (Rs1[23:16] == 0) || (Rs1[23:16] != Rs2[23:16]);

F4 = (Rs1[31:24] == 0) || (Rs1[31:24] != Rs2[31:24]);

found = F1 || F2 || F3 || F4;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 69

AndeStar_V5_ISA_Spec_UM165.docx

If (!found) {

Rd = 0;

} else if (“Little Endian”) {

If (F1) {

Rd = -4;

} else if (F2) {

Rd = -3;

} else if (F3) {

Rd = -2;

} else {

Rd = -1;

}

} else { // “Big Endian”

If (F4) {

Rd = -4;

} else if (F3) {

Rd = -3;

} else if (F2) {

Rd = -2;

} else {

Rd = -1;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 70

AndeStar_V5_ISA_Spec_UM165.docx

}

}

⚫ RV64

F1 = (Rs1[7:0] == 0) || (Rs1[7:0] != Rs2[7:0]);

F2 = (Rs1[15:8] == 0) || (Rs1[15:8] != Rs2[15:8]);

F3 = (Rs1[23:16] == 0) || (Rs1[23:16] != Rs2[23:16]);

F4 = (Rs1[31:24] == 0) || (Rs1[31:24] != Rs2[31:24]);

F5 = (Rs1[39:32] == 0) || (Rs1[39:32] != Rs2[39:32]);

F6 = (Rs1[47:40] == 0) || (Rs1[47:40] != Rs2[47:40]);

F7 = (Rs1[55:48] == 0) || (Rs1[55:48] != Rs2[55:48]);

F8 = (Rs1[63:56] == 0) || (Rs1[63:56] != Rs2[63:56]);

found = F1 || F2 || F3 || F4 || F5 || F6 || F7 || F8;

If (!found) {

Rd = 0;

} else if (“Little Endian”) {

If (F1) {

Rd = -8;

} else if (F2) {

Rd = -7;

} else if (F3) {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 71

AndeStar_V5_ISA_Spec_UM165.docx

Rd = -6;

} else if (F4) {

Rd = -5;

} else if (F5) {

Rd = -4;

} else if (F6) {

Rd = -3;

} else if (F7) {

Rd = -2;

} else {

Rd = -1;

}

} else { // “Big Endian”

If (F8) {

Rd = -8;

} else if (F7) {

Rd = -7;

} else if (F6) {

Rd = -6;

} else if (F5) {

Rd = -5;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 72

AndeStar_V5_ISA_Spec_UM165.docx

} else if (F4) {

Rd = -4;

} else if (F3) {

Rd = -3;

} else if (F2) {

Rd = -2;

} else {

Rd = -1;

}

}

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 73

AndeStar_V5_ISA_Spec_UM165.docx

3.1.28. NDS.FFMISM (Find First Mis-Match)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

FFMISM

0010010
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.FFMISM Rd, Rs1, Rs2

 FFMISM Rd, Rs1, Rs2 (deprecated)

Purpose: Find the first byte in a register that fails a corresponding byte comparison.

Description: Each byte in the register Rs1 is compared with each corresponding byte in the register Rs2.

If any mismatching byte is found, a non-zero position indication of the first mismatching byte is written to

the register Rd and the result is data-endian dependent. If no mismatching byte is found, a zero is written

to the register Rd.

Operations:

⚫ RV32

MisM1 = (Rs1[7:0] != Rs2[7:0]);

MisM2 = (Rs1[15:8] != Rs2[15:8]);

MisM3 = (Rs1[23:16] != Rs2[23:16]);

MisM4 = (Rs1[31:24] != Rs2[31:24]);

found = MisM1 || MisM2 || MisM3 || MisM4;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 74

AndeStar_V5_ISA_Spec_UM165.docx

If (!found) {

Rd = 0;

} else if (“Little Endian”) {

If (MisM1) {

Rd = -4;

} else if (MisM2) {

Rd = -3;

} else if (MisM3) {

Rd = -2;

} else {

Rd = -1;

}

} else { // “Big Endian”

If (MisM4) {

Rd = -4;

} else if (MisM3) {

Rd = -3;

} else if (MisM2) {

Rd = -2;

} else {

Rd = -1;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 75

AndeStar_V5_ISA_Spec_UM165.docx

}

}

⚫ RV64

MisM1 = (Rs1[7:0] != Rs2[7:0]);

MisM2 = (Rs1[15:8] != Rs2[15:8]);

MisM3 = (Rs1[23:16] != Rs2[23:16]);

MisM4 = (Rs1[31:24] != Rs2[31:24]);

MisM5 = (Rs1[39:32] != Rs2[39:32]);

MisM6 = (Rs1[47:40] != Rs2[47:40]);

MisM7 = (Rs1[55:48] != Rs2[55:48]);

MisM8 = (Rs1[63:56] != Rs2[63:56]);

found = MisM1 || MisM2 || MisM3 || MisM4 || MisM5 || MisM6 || MisM7 ||

MisM8;

If (!found) {

Rd = 0;

} else if (“Little Endian”) {

If (MisM1) {

Rd = -8;

} else if (MisM2) {

Rd = -7;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 76

AndeStar_V5_ISA_Spec_UM165.docx

} else if (MisM3) {

Rd = -6;

} else if (MisM4) {

Rd = -5;

} else if (MisM5) {

Rd = -4;

} else if (MisM6) {

Rd = -3;

} else if (MisM7) {

Rd = -2;

} else {

Rd = -1;

}

} else { // “Big Endian”

If (MisM8) {

Rd = -8;

} else if (MisM7) {

Rd = -7;

} else if (MisM6) {

Rd = -6;

} else if (MisM5) {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 77

AndeStar_V5_ISA_Spec_UM165.docx

Rd = -5;

} else if (MisM4) {

Rd = -4;

} else if (MisM3) {

Rd = -3;

} else if (MisM2) {

Rd = -2;

} else {

Rd = -1;

}

}

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 78

AndeStar_V5_ISA_Spec_UM165.docx

3.1.29. NDS.FLMISM (Find Last Mis-Match)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

FLMISM

0010011
Rs2 Rs1 000 Rd

Custom-2

1011011

Syntax: NDS.FLMISM Rd, Rs1, Rs2

 FLMISM Rd, Rs1, Rs2 (deprecated)

Purpose: Find the last byte in a register that fails a corresponding byte comparison.

Description: Each byte in the register Rs1 is compared with each corresponding byte in the register Rs2.

If any mismatching byte is found, a non-zero position indication of the last mismatching byte is written to

the register Rd and the result is data-endian dependent. If no mismatching byte is found, a zero is written

to the register Rd.

Operations:

⚫ RV32

MisM1 = (Rs1[7:0] != Rs2[7:0]);

MisM2 = (Rs1[15:8] != Rs2[15:8]);

MisM3 = (Rs1[23:16] != Rs2[23:16]);

MisM4 = (Rs1[31:24] != Rs2[31:24]);

found = MisM1 || MisM2 || MisM3 || MisM4;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 79

AndeStar_V5_ISA_Spec_UM165.docx

If (!found) {

Rd = 0;

} else if (“Little Endian”) {

If (MisM4) {

Rd = -1;

} else if (MisM3) {

Rd = -2;

} else if (MisM2) {

Rd = -3;

} else {

Rd = -4;

}

} else { // Big Endian

If (MisM1) {

Rd = -1;

} else if (MisM2) {

Rd = -2;

} else if (MisM3) {

Rd = -3;

} else {

Rd = -4;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 80

AndeStar_V5_ISA_Spec_UM165.docx

}

}

⚫ RV64

MisM1 = (Rs1[7:0] != Rs2[7:0]);

MisM2 = (Rs1[15:8] != Rs2[15:8]);

MisM3 = (Rs1[23:16] != Rs2[23:16]);

MisM4 = (Rs1[31:24] != Rs2[31:24]);

MisM5 = (Rs1[39:32] != Rs2[39:32]);

MisM6 = (Rs1[47:40] != Rs2[47:40]);

MisM7 = (Rs1[55:48] != Rs2[55:48]);

MisM8 = (Rs1[63:56] != Rs2[63:56]);

found = MisM1 || MisM2 || MisM3 || MisM4 || MisM5 || MisM6 || MisM7 ||

MisM8;

If (!found) {

Rd = 0;

} else if (“Little Endian”) {

If (MisM8) {

Rd = -1;

} else if (MisM7) {

Rd = -2;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 81

AndeStar_V5_ISA_Spec_UM165.docx

} else if (MisM6) {

Rd = -3;

} else if (MisM5) {

Rd = -4;

} else if (MisM4) {

Rd = -5;

} else if (MisM3) {

Rd = -6;

} else if (MisM2) {

Rd = -7;

} else {

Rd = -8;

}

} else { // Big Endian

If (MisM1) {

Rd = -1;

} else if (MisM2) {

Rd = -2;

} else if (MisM3) {

Rd = -3;

} else if (MisM4) {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 82

AndeStar_V5_ISA_Spec_UM165.docx

Rd = -4;

} else if (MisM5) {

Rd = -5;

} else if (MisM6) {

Rd = -6;

} else if (MisM7) {

Rd = -7;

} else {

Rd = -8;

}

}

General exceptions: None

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 83

AndeStar_V5_ISA_Spec_UM165.docx

3.2. Andes CoDense Extension (XAndesCoDense)

The 16-bit AndeStar CoDense extension is also known as Andes Code Dense Extension.

3.2.1. NDS.EXEC.IT (Execution on Instruction Table)

Format:

15 13 12 9 8 7 6 2 1 0

100 imm[10|4:3|8] imm[11]
EXEC.IT

0
imm[7:6|2|9|5] 00

Syntax: NDS.EXEC.IT imm[11:2]

EXEC.IT imm[11:2] (deprecated)

Purpose: Fetch an instruction from the instruction table and execute the instruction.

Description: This instruction is only available only when mmsc_cfg.ECD == 1 & mmsc_cfg2.ECDV

== 0 & mmsc_cfg.PP16 == 0. It performs the following two operations:

◼ Operation 1: It gets a 32-bit instruction data from the instruction table. If the instruction table is

hardwired (i.e., uitb.HW == 1), imm[11:2] is the index of the instruction in the instruction table.

Otherwise (i.e., uitb.HW == 0), the instruction is in the memory address specified by

[(uitb.ADDR + imm[11:2]) << 2].

◼ Operation 2: If the instruction data is a 32-bit instruction, execute the instruction. Otherwise, an

illegal instruction exception is generated.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 84

AndeStar_V5_ISA_Spec_UM165.docx

Operations:

If (uitb.HW == 1) {

 Inst = Instruction_Table[imm[11:2]];

 Execute(Inst);

} else {

 VAddr = uitb.ADDR << 2 + Zero_Extend(imm[11:2] << 2);

 (PAddr, Attributes) = Address_Translation(Vaddr);

 Excep_status = Page_Exception(Attributes, POM, Fetch);

If (Excep_status == NO_EXCEPTION) {

Inst = Fetch_Memory(PAddr, WORD, Attributes);

Execute(Inst);

} else {

 Generate_Exception(Excep_status);

}

}

Execute (Inst) {

 IF (Inst[1:0] != 3) {

Generate Illegal Instruction Exception;

 } else {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 85

AndeStar_V5_ISA_Spec_UM165.docx

If (Inst.OP == JAL and Rd is x0) {

PC = concat(PC(XLEN-1,21),imm[20:1]<<1);

 } else if (Inst.OP == JAL and Rd is not x0) {

 Rd = PC + 2;

PC = concat(PC(XLEN-1,21),imm[20:1]<<1);

 } else if (Inst == JRAL) {

Rd = PC + 2;

All the other JRAL operations defined in ISA SPEC;

} else {

 Execute Inst based on ISA SPEC;

 }

 }

}

Interruptible: Yes

General exceptions: TLB fill, non-leaf PTE not present, leaf PTE not present, read protection, non-execute

page, access bit, instruction access fault, bus error, ECC/parity error, illegal instruction

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 86

AndeStar_V5_ISA_Spec_UM165.docx

Note:

⚫ This instruction is supported only when mmsc_cfg.ECD is set. Otherwise, Andes processors generate

an illegal instruction exception.

⚫ Exec.it is a 16-bit instruction. If the fetched instruction is a 32-bit instruction, its sequential

address should be “PC+2”. Additionally, if the fetched 32-bit instruction is a non-branch instruction or

a not-taken conditional branch, its PC should be updated to “PC+2”.

⚫ If the processor encounters an illegal instruction exception while decoding the replaced instruction,

the CSR mtval is written with the instruction code of the replaced instruction.

⚫ If the processor encounters an instruction access fault exception while fetching the replaced

instruction, the CSR mtval is written with the address of the replaced instruction that caused the

access fault.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 87

AndeStar_V5_ISA_Spec_UM165.docx

3.3. Andes New CoDense Extension (XAndesNewCoDense)

The 16-bit AndeStar New CoDense extension is also known as Andes New Code Dense Extension.

3.3.1. NDS.NEXEC.IT (New Execution on Instruction Table)

Format:

15 13 12 11 9 8 7 6 2 1 0

100
NEXEC.IT

1
imm[4:3|8] imm[11] imm[10] imm[7:6|2|9|5] 00

Syntax: NDS.NEXEC.IT imm[11:2]

 NEXEC.IT imm[11:2] (deprecated)

Purpose: This instruction is an alias of NDS.EXEC.IT with different opcode encoding to resolve opcode

conflicts.

Description: This instruction behaves exactly the same as NDS.EXEC.IT. It only exists and replaces

NDS.EXEC.IT when mmsc_cfg.ECD == 1 & mmsc_cfg2.ECDV == 1 & mmsc_cfg.PP16 == 0.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 88

AndeStar_V5_ISA_Spec_UM165.docx

3.4. Andes Scalar BFLOAT16 Conversion Extension (XAndesBFHCvt)

This extension defines instructions to perform scalar floating-point conversion between the BFLOAT16

floating-point data and the IEEE-754 32-bit single-precision floating-point (SP) data in a scalar floating-

point register.

For RV64, this extension is present if misa.F == 1 & mmsc_cfg.BF16CVT == 1; for RV32, it is

present if misa.F == 1 & mmsc_cfg2.BF16CVT == 1.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 89

AndeStar_V5_ISA_Spec_UM165.docx

3.4.1. NDS.FCVT.S.BF16 (Scalar BF16 to 32-Bit SP Conversion)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

0000000 frs 00010 100 frd
Custom-2

1011011

Syntax: NDS.FCVT.S.BF16 frd, frs

 FCVT.S.BF16 frd, frs (deprecated)

Purpose: Convert BFLOAT16 data to SP data.

Description: This instruction converts BFLOAT16 data in the floating-point register frs to SP data and

writes the result to the floating-point register frd.

The BF16 encoded value is shifted to the left by 16 places and the least significant 16 bits are all written

with 0. The result is NaN-boxed by writing the most significant FLEN-32 bits all with 1.

In addition, this instruction will set the invalid operation exception flag (fcsr.NV) if the input operand is

a signaling NaN.

Operations:

if (frs.H[x] == 0xffff && frs.H[0] != NaN) {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 90

AndeStar_V5_ISA_Spec_UM165.docx

frd.H[1] = frs.H[0];

frd.H[0] = 0;

} else {

 frd.W[0] = 0x7fc00000;

}

frd = NaN-Boxing(frd.W[0]);

For single-precision floating-point (F extension): x = 1,

For double-precision floating-point (D extension): x = 3, 2, 1

General exceptions: illegal instruction exception

Floating-point exceptions: invalid operation

Privilege level: All

Note:

When multiple floating-point precisions are supported, the valid values of narrower n-bit types (where n

< FLEN) are represented in the lower n bits of an FLEN-bit NaN value through a NaN-boxing process. The

upper bits of a valid NaN-boxed value must be all 1s.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 91

AndeStar_V5_ISA_Spec_UM165.docx

3.4.2. NDS.FCVT.BF16.S (Scalar 32-Bit SP to BF16 Conversion)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

0000000 frs 00011 100 frd
Custom-2

1011011

Syntax: NDS.FCVT.BF16.S frd, frs

 FCVT.BF16.S frd, frs (deprecated)

Purpose: Convert SP data to BFLOAT16 data.

Description: This instruction converts SP data in the floating-point register frs to BFLOAT16 data and

writes the result to the floating-point register frd. The rounding mode used by the conversion operation

is specified in the fcsr.frm field.

In addition, this instruction sets the IEEE-754 exception flags according to IEEE-754 rules.

Operations:

frd.H[0] = S_SP_TO_BF16(frs.W[0], fcsr.frm);

frd = Nan-Boxing(frd.H[0]);

General exceptions: Illegal instruction exception

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 92

AndeStar_V5_ISA_Spec_UM165.docx

Floating-point exceptions: invalid operation, overflow, inexact, underflow

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 93

AndeStar_V5_ISA_Spec_UM165.docx

3.5. Andes Vector BFLOAT16 Conversion Extension (XAndesVBFHCvt)

This extension defines instructions to perform vector floating-point conversion between the BFLOAT16

floating-point data and the IEEE-754 32-bit single-precision floating-point (SP) data in a vector register.

For RV64, this extension is present if misa.V == 1 & mvec_cfg.MFSEW != 0 &

mmsc_cfg.BF16CVT == 1; for RV32, it is present if misa.V == 1 & mvec_cfg.MFSEW != 0 &

mmsc_cfg2.BF16CVT == 1.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 94

AndeStar_V5_ISA_Spec_UM165.docx

3.5.1. NDS.VFWCVT.S.BF16 (Vector BF16 to 32-Bit SP Conversion)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

0000000 vs 00000 100 vd
Custom-2

1011011

Syntax: NDS.VFWCVT.S.BF16 vd, vs

 VFWCVT.S.BF16 vd, vs (deprecated)

Purpose: Convert BFLOAT16 data to SP data.

Description: This instruction converts BFLOAT16 data in the vector register vs to SP data and writes the

result to the vector register vd.

This instruction is not masked and it is defined only for SEW=16. If the instruction is executed when SEW

is not 16, an illegal instruction exception will be generated.

In addition, this instruction will set the invalid operation exception flag (fcsr.NV) if the input operand is

a signaling NaN.

Operations:

if (vs[i] != NAN) {

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 95

AndeStar_V5_ISA_Spec_UM165.docx

vd[i].H[1] = vs[i];

vd[i].H[0] = 0;

} else {

 vd[i] = 0x7fc00000;

}

General exceptions: illegal instruction exception

Floating-point exceptions: invalid operation

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 96

AndeStar_V5_ISA_Spec_UM165.docx

3.5.2. NDS.VFNCVT.BF16.S (Vector 32-Bit SP to BF16 Conversion)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

0000000 vs 00001 100 vd
Custom-2

1011011

Syntax: NDS.VFNCVT.BF16.S vd, vs

 VFNCVT.BF16.S vd, vs (deprecated)

Purpose: Convert SP data to BFLOAT16 data.

Description: This instruction converts SP data in the vector register vs to BFLOAT16 data and writes the

result to the vector register vd. The rounding mode used by the conversion operation is specified in the

fcsr.frm field.

This instruction is not masked and it is defined only for SEW=16. If the instruction is executed when SEW

is not 16, an illegal instruction exception will be generated.

In addition, this instruction sets the IEEE-754 exception flags according to IEEE-754 rules.

Operations:

vd[i] = V_SP_TO_BF16(vs[i], fcsr.frm);

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 97

AndeStar_V5_ISA_Spec_UM165.docx

General exceptions: illegal instruction exception

Floating-point exceptions: invalid operation, overflow, inexact, underflow

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 98

AndeStar_V5_ISA_Spec_UM165.docx

3.6. Andes Vector INT4 Load Extension (XAndesVSIntLoad)

This extension defines vector load instructions to move sign-extended or zero-extended INT4 data into 8-

bit vector register elements.

For RV64, this extension is present if misa.V == 1 & mmsc_cfg.VL4 == 1; for RV32, it is present if

misa.V == 1 & mmsc_cfg2.VL4 == 1.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 99

AndeStar_V5_ISA_Spec_UM165.docx

3.6.1. NDS.VLN8.V (Vector Signed 4-Bit Uni-Stride Load into 8-Bit Element)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000001 vm 00010 rs1 100 vd
Custom-2

1011011

Syntax: NDS.VLN8.V vd, (rs1), vm

 VLN8.V vd, (rs1), vm (deprecated)

Purpose: Load a vector length (VL) number of sign-extended INT4 data from the memory into a vector

register of 8-bit elements with a uni-stride address.

Description: This instruction loads a continuous VL number of signed-extended INT4 data from the

memory into the vector register vd in which each element is 8-bit wide. The starting address for the

memory access is specified in the register rs1 and the instruction can be masked using the register vm.

Operations:

Element_size = 8;

i = VSTART..(VL-1)

addr = rs1 + floor(i/2);

part = i%2;

nibble[3:0] = MEM(addr)[4*part+3:4*part+0];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 100

AndeStar_V5_ISA_Spec_UM165.docx

if (vm.E[i] == 1) {

vd.E[i] = Sign-Extend(nibble[3:0]);

}

General exceptions: load access fault, load page fault

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 101

AndeStar_V5_ISA_Spec_UM165.docx

3.6.2. NDS.VLNU8.V (Vector Unsigned 4-Bit Uni-Stride Load into 8-Bit Element)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000001 vm 00011 rs1 100 vd
Custom-2

1011011

Syntax: NDS.VLNU8.V vd, (rs1), vm

 VLNU8.V vd, (rs1), vm (deprecated)

Purpose: Load a VL number of zero-extended INT4 data from the memory into a vector register of 8-bit

elements with a uni-stride address.

Description: This instruction loads a continuous VL number of zero-extended INT4 data from the memory

into the vector register vd in which each element is 8-bit wide. The starting address for the memory

access is specified in the register rs1 and the instruction can be masked using the register vm.

Operations:

Element_size = 8;

i = VSTART..(VL-1)

addr = rs1 + floor(i/2);

part = i%2;

nibble[3:0] = MEM(addr)[4*part+3:4*part+0];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 102

AndeStar_V5_ISA_Spec_UM165.docx

if (vm.E[i] == 1) {

vd.E[i] = Zero-Extend(nibble[3:0]);

}

General exceptions: load access fault, load page fault

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 103

AndeStar_V5_ISA_Spec_UM165.docx

3.7. Andes Vector Packed FP16 Extension (XAndesVPackFPH)

This extension is present if mmsc_cfg.VPFH == 1.

3.7.1. NDS.VFPMADT.VF (Vector Single-Width Floating-Point Packed Fused Multiply-

Add with Top FP16 as Multiplicand)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000010 vm vs2 rs1 100 vd
Custom-2

1011011

Syntax: NDS.VFPMADT.VF vd, rs1, vs2, vm

 VFPMADT.VF vd, rs1, vs2, vm (deprecated)

Purpose: Extract a pair of FP16 data from a floating-point register. Multiply the top FP16 data with the

FP16 elements and add the result with the bottom FP16 data.

Description: This instruction extracts a pair of FP16 data from the source scalar floating-point register

rs1 and multiplies the top FP16 data in the pair rs1.FP16[1] with the FP16 elements in the vector

register vs2. The multiplication results are added with the bottom FP16 data in the pair rs1.FP16[0]

next and the element addition results are written back to the register vd.

This instruction is defined only for SEW=16. If the instruction is executed when SEW is not 16, an illegal

instruction exception will be generated.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 104

AndeStar_V5_ISA_Spec_UM165.docx

Operations:

vd[i] = (f[rs1].FP16[1] * vs2[i]) + f[rs1].FP16[0];

General exceptions: illegal instruction exception

Floating-point exceptions: N/A

Privilege level: All

3.7.2. NDS.VFPMADB.VF (Vector Single-Width Floating-Point Packed Fused Multiply-

Add with Bottom FP16 as Multiplicand)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000011 vm vs2 rs1 100 vd
Custom-2

1011011

Syntax: NDS.VFPMADB.VF vd, rs1, vs2, vm

 VFPMADB.VF vd, rs1, vs2, vm (deprecated)

Purpose: Extract a pair of FP16 data from a floating-point register. Multiply the bottom FP16 data with

the FP16 elements and add the result with the top FP16 data.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 105

AndeStar_V5_ISA_Spec_UM165.docx

Description: This instruction extracts a pair of FP16 data from the source scalar floating-point register

rs1 and multiplies the bottom FP16 data in the pair rs1.FP16[0] with the FP16 elements in the vector

register vs2. The multiplication results are next added with the top FP16 data in the pair rs1.FP16[1]

and the element addition results are written back to the register vd.

This instruction is defined only for SEW=16. If the instruction is executed when SEW is not 16, an illegal

instruction exception will be generated.

Operations:

vd[i] = (f[rs1].FP16[0] * vs2[i]) + f[rs1].FP16[1];

General exceptions: illegal instruction exception

Floating-point exceptions: N/A

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 106

AndeStar_V5_ISA_Spec_UM165.docx

3.8. Andes Vector Dot Product Extension (XAndesVDot)

For RV64, this extension is present if misa.V == 1 & mmsc_cfg.VDOT == 1; for RV32, it is present if

misa.V == 1 & mmsc_cfg2.VDOT == 1.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 107

AndeStar_V5_ISA_Spec_UM165.docx

3.8.1. NDS.VD4DOTS.VV (Vector Signed Dot Product on 1/4 of SEW)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000100 vm vs2 vs1 100 vd
Custom-2

1011011

Syntax: NDS.VD4DOTS.VV vd, vs1, vs2, vm

 VD4DOTS.VV vd, vs1, vs2, vm (deprecated)

Purpose: Calculate the signed dot product of four SEW/4-bit data and accumulate the result into a SEW-

bit element for all elements in a vector register.

Description: This instruction calculates the signed dot product of four sets of SEW/4-bit data between

the elements of the register vs1 (signed) and those of another register vs2 (signed) and produces

signed SEW-bit results. The results are accumulated into the corresponding elements of the destination

vector register vd.

This instruction is defined only for SEW=32 or 64. If the instruction is executed when SEW is not 16 or 64,

an illegal instruction exception will be generated.

Operations:

D4 = SEW/4;

vs1d0[i] = vs1[i].D4[0]; vs2d0[i] = vs2[i].D4[0];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 108

AndeStar_V5_ISA_Spec_UM165.docx

vs1d1[i] = vs1[i].D4[1]; vs2d1[i] = vs2[i].D4[1];

vs1d2[i] = vs1[i].D4[2]; vs2d2[i] = vs2[i].D4[2];

vs1d3[i] = vs1[i].D4[3]; vs2d3[i] = vs2[i].D4[3];

vd[i] = vd[i] + vs1d0[i] s* vs2d0[i] + vs1d1[i] s* vs2d1[i] +

vs1d2[i] s* vs2d2[i] + vs1d3[i] s* vs2d3[i];

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 109

AndeStar_V5_ISA_Spec_UM165.docx

3.8.2. NDS.VD4DOTU.VV (Vector Unsigned Dot Product on 1/4 of SEW)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000111 vm vs2 vs1 100 vd
Custom-2

1011011

Syntax: NDS.VD4DOTU.VV vd, vs1, vs2, vm

 VD4DOTU.VV vd, vs1, vs2, vm (deprecated)

Purpose: Calculate the unsigned dot product of four SEW/4-bit data and accumulate the result into a

SEW-bit element for all elements in a vector register.

Description: This instruction calculates the unsigned dot product of four sets of SEW/4-bit data between

the elements of the register vs1 (unsigned) and those of another register vs2 (unsigned) and produces

unsigned SEW-bit results. The results are accumulated into the corresponding elements of the

destination vector register vd.

This instruction is only defined for SEW=32 or 64. If the instruction is executed when SEW is not 32 or 64,

an illegal instruction exception will be generated.

Operations:

D4 = SEW/4;

vs1d0[i] = vs1[i].D4[0]; vs2d0[i] = vs2[i].D4[0];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 110

AndeStar_V5_ISA_Spec_UM165.docx

vs1d1[i] = vs1[i].D4[1]; vs2d1[i] = vs2[i].D4[1];

vs1d2[i] = vs1[i].D4[2]; vs2d2[i] = vs2[i].D4[2];

vs1d3[i] = vs1[i].D4[3]; vs2d3[i] = vs2[i].D4[3];

vd[i] = vd[i] + vs1d0[i] u* vs2d0[i] + vs1d1[i] u* vs2d1[i] +

vs1d2[i] u* vs2d2[i] + vs1d3[i] u* vs2d3[i];

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 111

AndeStar_V5_ISA_Spec_UM165.docx

3.8.3. NDS.VD4DOTSU.VV (Vector Signed and Unsigned Dot Product on 1/4 of SEW)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000101 vm vs2 vs1 100 vd
Custom-2

1011011

Syntax: NDS.VD4DOTSU.VV vd, vs1, vs2, vm

 VD4DOTSU.VV vd, vs1, vs2, vm (deprecated)

Purpose: Calculate the signed and unsigned dot product of four SEW/4-bit data and accumulate the

result into a SEW-bit element for all elements in a vector register.

Description: This instruction calculates the signed and unsigned dot product of four sets of SEW/4-bit

data between the elements of the register vs1 (signed) and those of another register vs2 (unsigned)

and produces signed SEW-bit results. The results are accumulated into the corresponding elements of

the destination vector register vd.

This instruction is defined only for SEW=32 or 64. If this instruction is executed when SEW is not 16 or 64,

an illegal instruction exception will be generated.

Operations:

D4 = SEW/4;

vs1d0[i] = vs1[i].D4[0]; vs2d0[i] = vs2[i].D4[0];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 112

AndeStar_V5_ISA_Spec_UM165.docx

vs1d1[i] = vs1[i].D4[1]; vs2d1[i] = vs2[i].D4[1];

vs1d2[i] = vs1[i].D4[2]; vs2d2[i] = vs2[i].D4[2];

vs1d3[i] = vs1[i].D4[3]; vs2d3[i] = vs2[i].D4[3];

vd[i] = vd[i] + vs1d0[i] su* vs2d0[i] + vs1d1[i] su* vs2d1[i] +

vs1d2[i] su* vs2d2[i] + vs1d3[i] su* vs2d3[i];

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 113

AndeStar_V5_ISA_Spec_UM165.docx

3.9. Andes Vector Small INT Handling Extension (XAndesVSIntH)

For RV64, this extension is present if misa.V == 1 & mmsc_cfg.VSIH == 1; for RV32, it is present if

misa.V == 1 & mmsc_cfg2.VSIH == 1.

The behavior of the following vector integer extension instructions will be extended by this extension.

The source operand EEW of these instructions will be extended to 4.

vzext.vf2

vsext.vf2

vzext.vf4

vsext.vf4

vzext.vf8

vsext.vf8

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 114

AndeStar_V5_ISA_Spec_UM165.docx

3.9.1. NDS.VLE4.V (Vector 4-Bit Uni-Stride Load into a Vector Register)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000001 1 00000 rs1 100 vd
Custom-2

1011011

Syntax: NDS.VLE4.V vd, (rs1)

 VLE4.V vd, (rs1) (deprecated)

Purpose: Load a VL number of INT4 data from the memory into a vector register with a uni-stride

address.

Description: This instruction loads a continuous vector length number of INT4 data from the memory

into the vector register vd. The effective element width (EEW) of this instruction is 4 and the effective

LMUL (EMUL) is (4/SEW)*LMUL. The starting address for the memory access is specified in the register

rs1 and the instruction is not masked.

In addition, when the vector length is an odd number and vtype.vta == 0 (i.e., vector tail

undisturbed), this instruction will not conform to the undisturbed behavior for certain tail elements.

Operations:

Element_size = 4;

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 115

AndeStar_V5_ISA_Spec_UM165.docx

VSTART = VSTART – (VSTART % 2);

i = VSTART..(VL-1)

addr = rs1 + floor(i/2);

part = i%2;

nibble[3:0] = MEM(addr)[4*part+3:4*part+0];

vd.E[i] = nibble[3:0];

General exceptions: Load access fault, Load page fault

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 116

AndeStar_V5_ISA_Spec_UM165.docx

3.9.2. NDS.VFWCVT.F.N.V (Vector Signed INT4 to SEW FP Conversion)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000000 vm vs 00100 100 vd
Custom-2

1011011

Syntax: NDS.VFWCVT.F.N.V vd, vs, vm

 VFWCVT.F.N.V vd, vs, vm (deprecated)

Purpose: Convert signed INT4 data to SEW-sized floating-point data.

Description: This instruction converts signed INT4 data in the source vector register vs to SEW-sized

floating-point data and writes the result to the destination vector register vd. The source EEW is 4 and

the source EMUL is (4/SEW)*LMUL. The destination has its EEW equal to SEW and EMUL equal to LMUL.

This instruction is defined only for SEW=16 or 32. If the instruction is executed when SEW is not 16 or 32,

an illegal instruction exception will be generated.

The following table lists the constraints on the source vector register group (vs) based on the LMUL of the

destination register group (vd).

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 117

AndeStar_V5_ISA_Spec_UM165.docx

LMUL (vd)

EMUL (vs)

SEW == 16 SEW == 32

8 2 1

4 1 1/2

2 1/2 1/4

1 1/4 1/8

1/2 1/8 Reserved

1/4 Reserved Reserved

1/8 Reserved Reserved

Operations:

vd[i] = Convert_SINT4_to_FP(vs[i], SEW); // vfwcvt.f.n.v

General exceptions: illegal instruction exception

Floating-point exceptions: N/A

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 118

AndeStar_V5_ISA_Spec_UM165.docx

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 119

AndeStar_V5_ISA_Spec_UM165.docx

3.9.3. NDS.VFWCVT.F.NU.V (Vector Unsigned INT4 to SEW FP Conversion)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000000 vm vs 00101 100 vd
Custom-2

1011011

Syntax: NDS.VFWCVT.F.NU.V vd, vs, vm

VFWCVT.F.NU.V vd, vs, vm (deprecated)

Purpose: Convert unsigned INT4 data to SEW-sized floating-point data.

Description: This instruction converts unsigned INT4 data in the vector register vs to SEW-sized floating-

point data and writes the result to the vector register vd. The source EEW is 4 and the source EMUL is

(4/SEW)*LMUL. The destination has its EEW equal to SEW and EMUL equal to LMUL.

This instruction is defined only for SEW=16 or 32. If the instruction is executed when SEW is not 16 or 32,

an illegal instruction exception will be generated.

The following table lists the constraints on the source vector register group (vs) based on the LMUL of

the destination register group (vd).

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 120

AndeStar_V5_ISA_Spec_UM165.docx

LMUL (vd)

EMUL (vs)

SEW == 16 SEW == 32

8 2 1

4 1 1/2

2 1/2 1/4

1 1/4 1/8

1/2 1/8 Reserved

1/4 Reserved Reserved

1/8 Reserved Reserved

Operations:

vd[i] = Convert_UINT4_to_FP(vs[i], SEW); // vfwcvt.f.nu.v

General exceptions: illegal instruction exception

Floating-point exceptions: N/A

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 121

AndeStar_V5_ISA_Spec_UM165.docx

3.9.4. NDS.VFWCVT.F.B.V (Vector Signed INT8 to SEW FP Conversion)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000000 vm Vs 00110 100 vd
Custom-2

1011011

Syntax: NDS.VFWCVT.F.B.V vd, vs, vm

 VFWCVT.F.B.V vd, vs, vm (deprecated)

Purpose: Convert signed INT8 data to SEW-sized floating-point data.

Description: This instruction converts signed INT8 data in the vector register vs to SEW-sized floating-

point data and writes the result to the vector register vd. The source EEW is 8 and the source EMUL is

(8/SEW)*LMUL. The destination has its EEW equal to SEW and EMUL equal to LMUL.

This instruction is defined only for SEW=16 or 32. If the instruction is executed when SEW is not 16 or 32,

an illegal instruction exception will be generated.

The following table lists the constraints on the source vector register group (vs) based on the LMUL of

the destination register group (vd).

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 122

AndeStar_V5_ISA_Spec_UM165.docx

LMUL (vd)

EMUL (vs)

SEW == 16 SEW == 32

8 4 2

4 2 1

2 1 1/2

1 1/2 1/4

1/2 1/4 1/8

1/4 1/8 Reserved

1/8 Reserved Reserved

Operations:

vd[i] = Convert_UINT8_to_FP(vs[i], SEW); // vfwcvt.f.bu.v

General exceptions: illegal instruction exception

Floating-point exceptions: N/A

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 123

AndeStar_V5_ISA_Spec_UM165.docx

3.9.5. NDS.VFWCVT.F.BU.V (Vector Unsigned INT8 to SEW FP Conversion)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

000000 vm vs 00111 100 vd
Custom-2

1011011

Syntax: NDS.VFWCVT.F.BU.V vd, vs, vm

 VFWCVT.F.BU.V vd, vs, vm (deprecated)

Purpose: Convert unsigned INT8 data to SEW-sized floating-point data.

Description: This instruction converts unsigned INT8 data in the vector register vs to SEW-sized floating-

point data and writes the result to the vector register vd. The source EEW is 8 and the source EMUL is

(8/SEW)*LMUL. The destination has its EEW equal to SEW and EMUL equal to LMUL.

This instruction is defined only for SEW=16 or 32. If the instruction is executed when SEW is not 16 or 32,

an illegal instruction exception will be generated.

The following table lists the constraints on the source vector register group (vs) based on the LMUL of

the destination register group (vd).

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 124

AndeStar_V5_ISA_Spec_UM165.docx

LMUL (vd)

EMUL (vs)

SEW == 16 SEW == 32

8 4 2

4 2 1

2 1 1/2

1 1/2 1/4

1/2 1/4 1/8

1/4 1/8 Reserved

1/8 Reserved Reserved

Operations:

vd[i] = Convert_UINT8_to_FP(vs[i], SEW); // vfwcvt.f.bu.v

General exceptions: illegal instruction exception

Floating-point exceptions: N/A

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 125

AndeStar_V5_ISA_Spec_UM165.docx

3.10. Andes Vector Quad-Widening Integer Multiply-Add Extension

(XAndesVQMac)

The quad-widening integer multiply-add instructions add a SEW-bit*SEW-bit multiply result to/from a

4*SEW-bit value and produce a 4*SEW-bit result. They support all combinations of signed and unsigned

multiply operands.

For RV64, this extension is present if misa.V == 1 & mrvarch_cfg.Zvqmac == 1; for RV32, it is

present if misa.V == 1 & mrvarch_cfg2.Zvqmac == 1.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 126

AndeStar_V5_ISA_Spec_UM165.docx

3.10.1. NDS.VQMACCU.VV (Quad-Widening Unsigned-Integer Multiply-Add, Overwrite

Addend)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

111100 vm vs2 vs1 000 vd 1010111

Syntax: NDS.VQMACCU.VV vd, vs1, vs2, vm

 VQMACCU.VV vd, vs1, vs2, vm (deprecated)

Purpose: Multiply two SEW-bit values and accumulate the produced 4*SEW-bit result.

Description: This instruction multiplies an unsigned SEW-bit value in the vector register vs1 by an

unsigned SEW-bit value in the vector register vs2 to produce an unsigned 4*SEW-bit result. In addition,

it accumulates the produced 4*SEW-bit result to the vector register vd.

On ELEN=32 machines, only 8b * 8b = 16b products accumulated in a 32b accumulator are supported.

Machines with ELEN=64 also support 16b * 16b = 32b products accumulated in a 64b accumulator. If

SEW is not a legal value when this instruction is executed, an illegal instruction exception will be

generated.

Operations:

vd[i] = +(vs1[i] * vs2[i]) + vd[i];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 127

AndeStar_V5_ISA_Spec_UM165.docx

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 128

AndeStar_V5_ISA_Spec_UM165.docx

3.10.2. NDS.VQMACCU.VX (Quad-Widening Unsigned-integer Multiply-Add, Overwrite

Addend)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

111100 vm vs2 rs1 100 vd 1010111

Syntax: NDS.VQMACCU.VX vd, rs1, vs2, vm

VQMACCU.VX vd, rs1, vs2, vm (deprecated)

Purpose: Multiply two SEW-bit values and accumulate the produced 4*SEW-bit result.

Description: This instruction multiplies an unsigned SEW-bit value in the scalar register rs1 by an

unsigned SEW-bit value in the vector register vs2 to produce an unsigned 4*SEW-bit result. In addition,

it accumulates the produced 4*SEW-bit result to the vector register vd.

On ELEN=32 machines, only 8b * 8b = 16b products accumulated in a 32b accumulator are supported.

Machines with ELEN=64 also support 16b * 16b = 32b products accumulated in a 64b accumulator. If

SEW is not a legal value when this instruction is executed, an illegal instruction exception will be

generated.

Operations:

vd[i] = +(x[rs1] * vs2[i]) + vd[i];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 129

AndeStar_V5_ISA_Spec_UM165.docx

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 130

AndeStar_V5_ISA_Spec_UM165.docx

3.10.3. NDS.VQMACC.VV (Quad-Widening Signed-Integer Multiply-Add, Overwrite

Addend)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

111101 vm vs2 vs1 000 vd 1010111

Syntax: NDS.VQMACC.VV vd, vs1, vs2, vm

 VQMACC.VV vd, vs1, vs2, vm (deprecated)

Purpose: Multiply two SEW-bit values and accumulate the produced 4*SEW-bit result.

Description: This instruction multiplies a signed SEW-bit value in the vector register vs1 by a signed

SEW-bit value in the vector register vs2 to produce a signed 4*SEW-bit result. In addition, it accumulates

the produced 4*SEW-bit result to the vector register vd.

On ELEN=32 machines, only 8b * 8b = 16b products accumulated in a 32b accumulator are supported.

Machines with ELEN=64 also support 16b * 16b = 32b products accumulated in a 64b accumulator. If

SEW is not a legal value when this instruction is executed, an illegal instruction exception will be

generated.

Operations:

vd[i] = +(vs1[i] * vs2[i]) + vd[i];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 131

AndeStar_V5_ISA_Spec_UM165.docx

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 132

AndeStar_V5_ISA_Spec_UM165.docx

3.10.4. NDS.VQMACC.VX (Quad-Widening Signed-Integer Multiply-Add, Overwrite

Addend)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

111101 vm vs2 rs1 100 vd 1010111

Syntax: NDS.VQMACC.VX vd, rs1, vs2, vm

VQMACC.VX vd, rs1, vs2, vm (deprecated)

Purpose: Multiply two SEW-bit values and accumulate the produced 4*SEW-bit result.

Description: This instruction multiplies a signed SEW-bit value in the scalar register rs1 by a signed SEW-

bit value in the vector register vs2 to produce a signed 4*SEW-bit result. In addition, it accumulates the

produced 4*SEW-bit result to the vector register vd.

On ELEN=32 machines, only 8b * 8b = 16b products accumulated in a 32b accumulator are supported.

Machines with ELEN=64 also support 16b * 16b = 32b products accumulated in a 64b accumulator. If

SEW is not a legal value when this instruction is executed, an illegal instruction exception will be

generated.

Operations:

vd[i] = +(x[rs1] * vs2[i]) + vd[i];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 133

AndeStar_V5_ISA_Spec_UM165.docx

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 134

AndeStar_V5_ISA_Spec_UM165.docx

3.10.5. NDS.VQMACCSU.VV (Quad-Widening Signed-Unsigned-Integer Multiply-Add,

Overwrite Addend)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

111111 vm vs2 vs1 000 vd 1010111

Syntax: NDS.VQMACCSU.VV vd, vs1, vs2, vm

VQMACCSU.VV vd, vs1, vs2, vm (deprecated)

Purpose: Multiply two SEW-bit values and accumulate the produced 4*SEW-bit result.

Description: This instruction multiplies a signed SEW-bit value in the vector register vs1 by an unsigned

SEW-bit value in the vector register vs2 to produce a signed 4*SEW-bit result. In addition, it accumulates

the produced 4*SEW-bit result to the vector register vd.

On ELEN=32 machines, only 8b * 8b = 16b products accumulated in a 32b accumulator are supported.

Machines with ELEN=64 also support 16b * 16b = 32b products accumulated in a 64b accumulator. If

SEW is not a legal value when this instruction is executed, an illegal instruction exception will be

generated.

Operations:

vd[i] = +(signed(vs1[i]) * unsigned(vs2[i])) + vd[i];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 135

AndeStar_V5_ISA_Spec_UM165.docx

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 136

AndeStar_V5_ISA_Spec_UM165.docx

3.10.6. NDS.VQMACCSU.VX (Quad-Widening Signed-Unsigned-Integer Multiply-Add,

Overwrite Addend)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

111111 vm vs2 rs1 100 vd 1010111

Syntax: NDS.VQMACCSU.VX vd, rs1, vs2, vm

VQMACCSU.VX vd, rs1, vs2, vm (deprecated)

Purpose: Multiply two SEW-bit values and accumulate the produced 4*SEW-bit result.

Description: This instruction multiplies a signed SEW-bit value in the scalar register rs1 by an unsigned

SEW-bit value in the vector register vs2 to produce a signed 4*SEW-bit result. In addition, it accumulates

the produced 4*SEW-bit result to the vector register vd.

On ELEN=32 machines, only 8b * 8b = 16b products accumulated in a 32b accumulator are supported.

Machines with ELEN=64 also support 16b * 16b = 32b products accumulated in a 64b accumulator. If

SEW is not a legal value when this instruction is executed, an illegal instruction exception will be

generated.

Operations:

vd[i] = +(signed(x[rs1]) * unsigned(vs2[i])) + vd[i];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 137

AndeStar_V5_ISA_Spec_UM165.docx

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 138

AndeStar_V5_ISA_Spec_UM165.docx

3.10.7. NDS.VQMACCUS.VX (Quad-Widening Unsigned-Signed-Integer Multiply-Add,

Overwrite Addend)

Format:

31 26 25 24 20 19 15 14 12 11 7 6 0

111110 vm vs2 rs1 100 vd 1010111

Syntax: NDS.VQMACCUS.VX vd, rs1, vs2, vm

VQMACCUS.VX vd, rs1, vs2, vm (deprecated)

Purpose: Multiply two SEW-bit values and accumulate the produced 4*SEW-bit result.

Description: This instruction multiplies an unsigned SEW-bit value in the scalar register rs1 by a signed

SEW-bit value in the vector register vs2 to produce a signed 4*SEW-bit result. In addition, it accumulates

the produced 4*SEW-bit result to the vector register vd.

On ELEN=32 machines, only 8b * 8b = 16b products accumulated in a 32b accumulator are supported.

Machines with ELEN=64 also support 16b * 16b = 32b products accumulated in a 64b accumulator. If

SEW is not a legal value when this instruction is executed, an illegal instruction exception will be

generated.

Operations:

vd[i] = +(unsigned(x[rs1]) * signed(vs2[i])) + vd[i];

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 139

AndeStar_V5_ISA_Spec_UM165.docx

General exceptions: illegal instruction exception

Privilege level: All

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 140

AndeStar_V5_ISA_Spec_UM165.docx

Appendix: Obsolete Extensions and Instructions

This section provides information about the obsolete extensions and their associated instructions.

Appendix I. Andes Half-Precision Floating-Point Extension

Appendix I-I. FLHW (Floating-point Load from Half-Precision to Single-Precision)

Format:

31 20 19 15 14 12 11 7 6 0

imm[11:0] Rs1
HW

000
FRd

LOAD-FP

0000111

Syntax: FLHW FRd, imm[11:0] (Rs1)

Purpose: Load half-precision (16-bit) floating-point data from the memory and convert it to single-

precision data.

Description: This instruction loads half-precision (16-bit) floating-point data from the memory,

converts it to single-precision format, and then writes the result into the floating-point register FRd.

The memory address is specified by a base address in Rs1 plus a 12-bit signed byte offset,

imm[11:0].

If the loaded half-precision floating-point data is a signaling NaN (i.e., [14:10]=0x1F, [9]=0,

[8:0] ≠0), this instruction will raise the invalid operation status flag (i.e., fcsr.NV) and produce

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 141

AndeStar_V5_ISA_Spec_UM165.docx

a single-precision canonical NaN (i.e., 0x7FC00000).

Operations:

Vaddr = Rs1 + Sign_Extend(imm[11:0]);

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, LOAD);

If (Excep_status == NO_EXCEPTION) {

Hdata[15:0] = Load_Memory(PAddr, HWORD, Attributes);

FRd[31:0] = Convert_HP_to_SP(Hdata[15:0]);

} else {

Generate_Exception(Excep_status);

}

General exceptions: load address misaligned, load access fault, load page fault, bus error,

ECC/parity error

Floating-point exceptions: invalid operation

Privilege level: All

Note:

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 142

AndeStar_V5_ISA_Spec_UM165.docx

⚫ Under the RISC-V ISA specification, the underflow checking is performed by detecting tininess

after rounding the operation.

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 143

AndeStar_V5_ISA_Spec_UM165.docx

Appendix I-II. FSHW (Floating-point Store to Half-Precision from Single-

Precision)

Format:

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] FRs2 Rs1
HW

000
imm[4:0]

STORE-FP

0100111

Syntax: FSHW FRs2, imm[11:0] (Rs1)

Purpose: Store half-precision (16-bit) floating-point data converted from single-precision data to the

memory.

Description: This instruction converts single-precision data in the register FRs2 to half-precision

floating-point data and stores the result to the memory. The address for the memory access is

specified by a base address in Rs1 plus a 12-bit signed byte offset, imm[11:0].

The behaviors of this instruction for converting a single-precision value to a half-precision value are

defined as follows.

⚫ The rounding mode is “Round towards Zero”.

⚫ If an overflow condition occurs, the rounded value is saturated to the value of

±215˙(1+2-10˙(0x3FF)). The overflow exception flag will then be set in the fcsr.OF bit and

the inexact exception flag in the fcsr.NX bit.

⚫ If an underflow conditio occurs, the rounded value, v, might be delivered as a subnormal value if

it is within the subnormal range (i.e., 1.0x2-14 > v ≧ 1.0x2-24), or a signed zero if v < 1.0x2-24. If

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 144

AndeStar_V5_ISA_Spec_UM165.docx

the delivered value is inexact, the underflow exception flag will be set in the fcsr.UF bit and

the inexact exception flag in the fcsr.NX bit.

⚫ If the single-precision value is a signaling NaN (i.e., [30:23]=0xFF, [22]=1, [21:0]≠0), this

instruction will raise the invalid operation status flag (i.e., fcsr.NV) and produce a half-

precision canonical NaN (i.e., 0x7E00).

Operations:

Vaddr = Rs1 + Sign_Extend(imm[11:0]);

(PAddr, Attributes) = Address_Translation(Vaddr);

Excep_status = Page_Exception(Attributes, POM, LOAD);

If (Excep_status == NO_EXCEPTION) {

Hdata[15:0] = Convert_SP_to_HP(FRs2[31:0])

Store_Memory(PAddr, HWORD, Attributes, Hdata[15:0]);

} else {

Generate_Exception(Excep_status);

}

General exceptions: store address misaligned, store access fault, store page fault, bus error,

ECC/parity error

Floating-point exceptions: inexact, overflow, underflow, invalid operation

AndeStar™ V5 Instruction Extension Specification

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 145

AndeStar_V5_ISA_Spec_UM165.docx

Privilege level: All

Note:

⚫ Under the RISC-V ISA specification, the underflow checking is performed by detecting the

tininess after rounding the operation.

⚫ The IEEE 754-2008 standard does not regard the detection of an exact subnormal as an

underflow condition.

