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This document describes an Advanced Interrupt Architecture (AIA) for RISC-V systems. This
specification was ratified by the RISC-V International Association in June of 2023.

The table below indicates which chapters of this document specify extensions to the RISC-V ISA
(instruction set architecture) and which are non-ISA.

Chapter ISA?
1. Introduction —
2. Control and Status Registers (CSRs) Added to Yes
Harts

3. Incoming MSI Controller (IMSIC) Yes
4. Advanced Platform-Level Interrupt Controller No
(APLIC)

5. Interrupts for Machine and Supervisor Levels Yes
6. Interrupts for Virtual Machines (VS Level) Yes
7. Interprocessor Interrupts (IP1s) No
8. IOMMU Support for MSIs to Virtual Machines No

Changes for version 20250312
Made the following clarifications to AIA 1.0:
- Where there are irreconcilable conflicts between the AIA and other implemented RISC-V
extensions, the AIA usually has priority by default.

- Deference is given to extension Smesrind/Sscsrind (indirectly accessed CSRs).

- Names are given to the bits defined in mstateen@ and hstateen® when extension
Smstateen/Ssstateen is also implemented.

- An IMSIC interrupt file’s eidelivery register affects only whether an interrupt appears in a hart’s
mip or hgeip register.

- IMSIC CSRs mtopei, stopei, and vstopei are not affected by the values of mie, sie, hie, hgeie, or
vsie.

- There may be a visible delay between a change of state of an IMSIC interrupt file and its effect on a
bitinmip, sip, or hgeip.

- An APLIC’s idelivery registers and the IE bits of its domaincfg registers affect only whether

pending-and-enabled interrupts are delivered to harts.

- The default priority order for major interrupts is applicable only when multiple interrupts would
trap to the same privilege mode.

- The example pseudocode given for handling major interrupts at M-level and S-level has additional
requirements not mentioned previously.

- An interrupt priority number in the S-level iprio array may be writable (not read-only zero) if the
correponding bit is writable in either sie or hie.

- If a supervisor external interrupt (SEI) is injected from M-level when there is no actual interrupt
from an external interrupt controller, the injected SEI is assigned an S-level priority number of
256.
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- CSR hvictl affects only vstopi and the trapping of some instructions, notmip, sip, hip, or vsip.
Changes for the ratified version 1.0

Resolved some inconsistencies in Chapter 2 about when to raise a virtual instruction exception versus
an illegal instruction exception.

Changes for RC5 (Release Candidate 5)

Better aligned the rules for indirectly accessed registers with the hypervisor extension and with
forthcoming extension Smecsrind/Sscsrind. In particular, when vsiselect has a reserved value,
attempts to access sireg from a virtual machine (VS or VU-mode) should preferably raise an illegal
instruction exception instead of a virtual instruction exception.

Added clarification about the term IOMMU used in Chapter 8.
Added clarification about MSI write replaced by MRIF update and notice MSI sent after the update.
Changes for RC4

For alignment with other forthcoming RISC-V ISA extensions, the widths of the indirect-access CSRs,
miselect, mireg, siselect, sireg, vsiselect, and vsireg, were changed to all be the current XLEN
rather than being tied to their respective privilege levels (previously MXLEN for miselect and mireg,
SXLEN for siselect and sireg, and VSXLEN for vsiselect and vsireqg).

Changed the description (but not the actual function) of high-half CSRs and their partner CSRs to
match the latest RISC-V Privileged ISA specification. (An example of a high-half CSR is miph, and its
partner here ismip.)

Changes for RC3
Removed the still-draft Duo-PLIC chapter to a separate document.
Allocated major interrupts 35 and 43 for signaling RAS events (Section 5.1).

In Section 5.3 added the options for bits 1 and 9 to be writable in CSR mvien, and specified the effects
of setting each of these bits.

Upgraded Chapter 8 ("lOMMU Support") to the frozen state.
Changes for RC2

Clarified that field 11D of CSR hvictl must support all unsigned integer values of the number of bits
implemented for that field, and that writes to hvict1 always set IID in the most straightforward way.

A comment was added to Chapter 7 warning about the possible need for FENCE instructions when
IPIs are sent to other harts by writing MSIs to those harts' IMSICs.
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Chapter 1. Introduction

This document specifies the Advanced Interrupt Architecture for RISC-V, consisting of: (a)an
extension to the standard RISC-V Privileged Architecture; (b) two standard interrupt controllers for
RISC-V systems, an Advanced Platform-Level Interrupt Controller (APLIC) and an Incoming Message-
Signaled Interrupt Controller (IMSIC); and (c) requirements on other system components concerning
interrupts.

Commentary on our design decisions, implementation options, and application is
| y formatted as in this paragraph, and can be skipped if the reader is only interested in the

specification itself.

1.1. Goals

The RISC-V Advanced Interrupt Architecture has these goals:
« Build upon the interrupt-handling functionality of the RISC-V Privileged Architecture,
minimizing the replacement of existing functionality.

- Provide facilities for RISC-V systems to work directly with message-signaled interrupts (MSIs) as
employed by PCI Express and other device standards, in addition to basic wired interrupts.

- For wired interrupts, define a new Platform-Level Interrupt Controller (the Advanced PLIC, or
APLIC) that has an independent control interface for each level of privilege (such as RISC-V
machine and supervisor levels), and that can convert wired interrupts into MSIs for systems
supporting MSIs.

- Expand the framework for local interrupts at a RISC-V hart.

- Optionally allow software to configure the relative priorities of all sources of interrupts to a RISC-V
hart (including the standard timer and software interrupts, among others), instead of being limited
just to the ability of a separate interrupt controller to prioritize external interrupts only.

- When harts implement the Privileged Architecture’s H extension, provide sufficient assistance for
virtualizing these same interrupt facilities for virtual machines.

- With the help of an IOMMU (I/O memory management unit) for redirecting MSls, maximize the
opportunities and ability for a guest operating system running in a virtual machine to have direct
control of devices with minimal involvement of a hypervisor.

- Avoid having the interrupt hardware be a limiter on the number of virtual machines.
- Achieve all of the above with the best possible compromises between speed, efficiency, and

flexibility of implementation.

This initial version of the Advanced Interrupt Architecture is focused primarily on the needs of larger,
high-performance RISC-V systems. Support is not currently defined for the following interrupt-
handling features that are useful for minimizing interrupt response times in so-called '"real-time"
systems but are less appropriate for high-speed processor cores:

- the option to give each interrupt source at a hart a separate trap entry address;

- automatic stacking of register values on interrupt trap entry, and restoration on exit; and

- automatic preemption (nesting) of interrupts at a hart, based on priority.

It is intended that such features optimizing for smaller and/or real-time systems can be developed as a
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follow-on extension, either separately or as part of a future version of the interrupt architecture of this
document.

1.2. Limits

In its current version, the RISC-V Advanced Interrupt Architecture can support RISC-V symmetric
multiprocessing (SMP) systems with up to 16,384 harts. If the harts are 64-bit (RV64) and implement
the H extension, and if all features of the Advanced Interrupt Architecture are fully implemented as
well, then for each physical hart there may be up to 63 active virtual harts and potentially thousands
of additional idle (swapped-out) virtual harts, where each virtual hart has direct control of one or more
physical devices.

Table 1 summarizes the main limits on the numbers of harts, both physical and virtual, and the
numbers of distinct interrupt identities that may be supported with the Advanced Interrupt
Architecture.

We assume that any single RISC-V computer (or any single node in a cluster or distributed

—y system) with many thousands of physical harts will probably need an interrupt

J infrastructure adapted to the machine’s specific organization, which we do not attempt to
predict.

Table 1. Absolute limits on the numbers of harts and interrupt identities in a system. Individual implementations
are likely to have smaller limits.

Maximum Requirements

Physical harts 16,384

Active virtual harts having direct control of a 31 for RV32, RISC-V H extension; IMSICs with
device, per physical hart 63 for RV64 guest interrupt files; and an IOMMU
Idle (swapped-out) virtual harts having direct ~ potentially ~An IOMMU with support for memory-
control of a device, per physical hart thousands  resident interrupt files

Wired interrupts at a single APLIC 1023

Distinct identities usable for MSIs at each 2047 IMSICs

hart (physical or virtual)

1.3. Overview of main components

A RISC-V system’s overall architecture for signaling interrupts depends on whether it is built mainly
for message-signaled interrupts (MSIs) or for more traditional wired interrupts. In systems with full
support for MSIs, every hart has an Incoming MSI Controller (IMSIC) that serves as the hart’'s own
private interrupt controller for external interrupts. Conversely, in systems based primarily on
traditional wired interrupts, harts do not have IMSICs. Larger systems, and especially those with PCI
devices, are expected to fully support MSIs by giving harts IMSICs, whereas many smaller systems
may continue to be best served with wired interrupts and simpler harts without IMSICs.

1.3.1. External interrupts without IMSICs

When RISC-V harts do not have Incoming MSI Controllers, external interrupts are signaled to harts
through dedicated wires. In that case, an Advanced Platform-Level Interrupt Controller (APLIC) acts as a
traditional central hub for interrupts, routing and prioritizing external interrupts for each hart as
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illustrated in Figure 1. Interrupts may be selectively routed either to machine level or to supervisor
level at each hart. The APLIC is specified in Chapter 4.

Without IMSICs, the current Advanced Interrupt Architecture does not support the direct signaling of
external interrupts to virtual machines, even when RISC-V harts implement the H extension. Instead,
an interrupt must be sent to the relevant hypervisor, which can then choose to inject a virtual
interrupt into the virtual machine.

Machine-level interrupt N
i
— Supervisor-level interrupt Hart 1
s Advanced ?
PLIC
—
_wired ———  (interrupt-pending Machine-level interrupt
interrupts —| and >
— interrupt-enable Supervisor-level interrupt Hart 2
3 bit arrays) 7
—
—] Machine-level interrupt .
7
Supervisor-level interrupt Hart 3
7
Figure 1. Traditional delivery of wired interrupts to harts without support for MSIs.
{  Busnetwork Y IMSIC
PCle device 1| Machine-level interrupt file
(ip and ie arrays) Hart 1
- Supervisor-level interrupt file
PCle device - ) .
\ MSI/H: |7 (ip and ie arrays)
: IMSIC
—>
wired —> Advanced / 1| Machine-level interrupt file
interrupts —]  PLIC MS| write (ip and ie arrays) Hart 2
—
— \__ Supervisor-level interrupt file
(ip and ie arrays)

Figure 2. Interrupt delivery by MSIs when harts have IMSICs for receiving them.

1.3.2. External interrupts with IMSICs

To be able to receive message-signaled interrupts (MSIs), each RISC-V hart must have an Incoming
MSI Controller (IMSIC) as shown in Figure 2. Fundamentally, a message-signaled interrupt is simply a
memory write to a specific address that hardware accepts as indicating an interrupt. To that end, every
IMSIC is assigned one or more distinct addresses in the machine’s address space, and when a write is
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made to one of those addresses in the expected format, the receiving IMSIC interprets the write as an
external interrupt for the respective hart.

Because all IMSICs have unique addresses in the machine’s physical address space, every IMSIC can
receive MSI writes from any agent (hart or device) with permission to write to it. IMSICs have separate
addresses for MSlIs directed to machine and supervisor levels, in part so the ability to signal interrupts
at each privilege level can be separately granted or denied by controlling write permissions at the
different addresses, and in part to better support virtualizability (pretending that one privilege level is
a higher level). MSIs intended for a hart at a specific privilege level are recorded within the IMSIC in
an interrupt file, which consists mainly of an array of interrupt-pending bits and a matching array of
interrupt-enable bits, the latter indicating which individual interrupts the hart is currently prepared
to receive.

IMSIC units are fully defined in Chapter 3. The format of MSIs used by the RISC-V Advanced
Interrupt Architecture is described in that chapter, Section 3.2.

When the harts in a RISC-V system have IMSICs, the system will normally still contain an APLIC, but
its role is changed. Instead of signaling interrupts to harts directly by wires as in Figure 1, an APLIC
converts incoming wired interrupts into MSI writes that are sent to harts via their IMSIC units. Each
MST is sent to a single target hart according to the APLIC’s configuration set by software.

If RISC-V harts implement the H extension, IMSICs may have additional guest interrupt files for
delivering interrupts to virtual machines. Besides Chapter 3 on the IMSIC, see Chapter 6 which
specifically covers interrupts to virtual machines. If the system also contains an IOMMU to perform
address translation of memory accesses made by I/O devices, then MSIs from those same devices may
require special handling. This topic is addressed in Chapter 8, "IOMMU Support for MSIs to Virtual
Machines."

1.3.3. Other interrupts

In addition to external interrupts from I/O devices, the RISC-V Privileged Architecture specifies a few
other major classes of interrupts for harts. The Privileged Architecture’s timer interrupts remain
supported in full, and software interrupts remain at least partly supported, although neither appears
in Figure 1 and Figure 2. For the specifics on software interrupts, refer to Chapter 7, "Interprocessor
Interrupts (IPIs)."

The Advanced Interrupt Architecture adds considerable support for local interrupts at a hart, whereby
a hart essentially interrupts itself in response to asynchronous events, usually errors. Local interrupts
remain contained within a hart (or close to it), so like standard RISC-V timer and software interrupts,
they do not pass through an APLIC or IMSIC.

1.4. Interrupt identities at a hart

The RISC-V Privileged Architecture gives every interrupt cause at a hart a distinct major identity
number, which is the Exception Code automatically written to CSR mcause or scause on an interrupt
trap. Interrupt causes that are standardized by the base Privileged Architecture have major identities
in the range 0-15, while numbers 16 and higher are officially available for platform standards or for
custom use. The Advanced Interrupt Architecture claims further authority over identity numbers in
the ranges 16-23 and 32-47, leaving numbers in the range 24-31 and all major identities 48 and higher
still free for custom use. Table 2 characterizes all major interrupt identities with this extension.

Table 2. Major and minor identities for all interrupt causes at a hart. Major identities 0-15 are the purview of the
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base Privileged Architecture.

Major identity Minor identity

0 - Reserved by base Privileged Architecture
1 - Supervisor software interrupt
2 - Virtual supervisor software interrupt
3 - Machine software interrupt
4 - Reserved by base Privileged Architecture
5 - Supervisor timer interrupt
6 - Virtual supervisor timer interrupt
7 - Machine timer interrupt
8 - Reserved by base Privileged Architecture
9 Determined by  Supervisor external interrupt
10 external interrupt Virtual supervisor external interrupt
11 controller Machine external interrupt
12 - Supervisor guest external interrupt
13 - Counter overflow interrupt
14-15 - Reserved by base Privileged Architecture
16-23 - Reserved for standard local interrupts
24-31 - Designated for custom use
32-34 - Reserved for standard local interrupts
35 - Low-priority RAS event interrupt
36-42 - Reserved for standard local interrupts
43 - High-priority RAS event interrupt
44-47 - Reserved for standard local interrupts
248 - Designated for custom use

Interrupts from most I/O devices are conveyed to a hart by the external interrupt controller for the hart,
which is either the hart's IMSIC (Figure 2) or an APLIC (Figure 1). As Table 2 shows, external
interrupts at a given privilege level all share a single major identity number: 11 for machine level, 9 for
supervisor level, and 10 for VS-level. External interrupts from different causes are distinguished from
one another at a hart by their minor identity numbers supplied by the external interrupt controller.

Other interrupt causes besides external interrupts might also have their own minor identities.
However, this document has need to discuss minor identities only with regard to external interrupts.

The local interrupts defined by the Advanced Interrupt Architecture and their handling are covered
mainly in Chapter 5, "Interrupts for Machine and Supervisor Levels."

1.5. Selection of harts to receive an interrupt

Each signaled interrupt is delivered to only one hart at one privilege level, usually determined by
software in one way or another. Unlike some other architectures, the RISC-V Advanced Interrupt
Architecture provides no standard hardware mechanism for the broadcast or multicast of interrupts to
multiple harts.

For local interrupts, and for any "virtual" interrupts that software injects into less-privileged levels at a
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hart, the interrupts are entirely a local affair at the hart and are never visible to other harts. The RISC-
V Privileged Architecture’s timer interrupts are also uniquely tied to individual harts. For other
interrupts, received by a hart from sources outside the hart, each interrupt signal (whether delivered
by wire or by an MSI) is configured by software to go to only a single hart.

To send an interprocessor interrupt (IPI) to multiple harts, the originating hart need only execute a
loop, sending an individual IPI to each destination hart. For IPIs to a single destination hart, see
Chapter 7.

The effort that a source hart expends in sending individual IPIs to multiple destinations
will invariably be dwarfed by the combined effort at the receiving harts to handle those
interrupts. Hence, providing an automated mechanism for IPI multicast could be expected
to reduce a system’s total overall work only modestly at best. With a very large number of
harts, a hardware mechanism for IPI multicast must contend with the question of how

Df exactly software specifies the intended destination set with each use, and furthermore, the
actual physical delivery of IPIs may not differ that much from the software version.

We do not exclude the future possibility of an optional hardware mechanism for multicast
IPI, but only if a significant advantage can be demonstrated in real use. As of 2020, Linux
has been observed not to make use of multicast IPI hardware even on systems that have it.

In the rare event that a single interrupt from an I/O device needs to be communicated to multiple
harts, the interrupt must be sent to a single hart which can then signal the other harts by IPIs.

We contend that the need to communicate an I/0 interrupt to multiple harts is sufficiently
rare that standardizing hardware support for multicast cannot be justified in this case.

Along with multicast delivery, other architectures support an option for "I-of-N" delivery of
interrupts, whereby the hardware chooses a single destination hart from among a
configured set of N harts, with the goal of automatic load balancing of interrupt handling
among the harts. Experiments in the 2010s called into question the utility of I-of-N modes
in practice, showing that software could often do a better job of load balancing than the
hardware algorithms implemented in actual chips. Linux was consequently modified to
discontinue using I-of-N interrupt delivery even on systems that have it.

We remain open to the argument that hardware load balancing of interrupt handling may
be beneficial for certain specialized markets, such as networking. However, the claims
made so far in this regard do not justify requiring support for 1-of-N delivery in all RISC-V

Dy servers. With more evidence, some mechanism for 1-of-N delivery might become a future
option.

The original Platform-Level Interrupt Controller (PLIC) for RISC-V is configurable so each
interrupt source signals external interrupts to any subset of the harts, potentially all harts.
When multiple harts receive an external interrupt from a single cause at the PLIC, the first
hart to claim the interrupt at the PLIC is the one responsible for servicing it. Usually this
sets up a race, where the subset of harts configured to receive the multicast interrupt all
take an external interrupt trap simultaneously and compete to be the first to claim the
interrupt at the PLIC. The intention is to provide a form of 1-of-N interrupt delivery.
However, for all the harts that fail to win the claim, the interrupt trap becomes wasted

effort.

For the reasons already given, the Advanced PLIC supports sending each signaled
interrupt to only a single hart chosen by software, not to multiple harts.
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1.6. ISA extensions Smaia and Ssaia

The Advanced Interrupt Architecture (AIA) defines two names for extensions to the RISC-V
instruction set architecture (ISA), one for machine-level execution environments, and another for
supervisor-level environments. For a machine-level environment, extension Smaia encompasses all
added CSRs and all modifications to interrupt response behavior that the AIA specifies for a hart, over
all privilege levels. For a supervisor-level environment, extension Ssaia is essentially the same as
Smaia except excluding the machine-level CSRs and behavior not directly visible to supervisor level.

Extensions Smaia and Ssaia cover only those AIA features that impact the ISA at a hart. Although the
following are described or discussed in this document as part of the AIA, they are not implied by
Smaia or Ssaia because the components are categorized as non-ISA: APLICs, IOMMUs, and any
mechanisms for initiating interprocessor interrupts apart from writing to IMSICs.

As revealed in subsequent chapters, the exact set of CSRs and behavior added by the AIA, and hence
implied by Smaia or Ssaia, depends on the base ISA’s XLEN (RV32 or RV64), on whether S-mode and
the H extension are implemented, and on whether the hart has an IMSIC. But individual AIA
extension names are not provided for each possible valid subset. Rather, the different combinations
are inferable from the intersection of features indicated (such as RV641 + S-mode + Smaia, but
without the H extension).

Software development tools like compilers and assemblers need not be concerned about whether an
IMSIC exists but should just allow attempts to access the IMSIC CSRs (described in Chapter 2 and
Chapter 3) if Smaia or Ssaia is indicated. Without an actual IMSIC, such attempts may trap, but that is
not a problem for the development tools.

If extension Smaia/Ssaia is implemented, then anywhere that the AIA specification has an
irreconcilable conflict with the requirements of another implemented RISC-V extension, the AIA is
intended to have priority, unless the other extension explicitly extends or overrides the AIA.

Extension Smcsrind/Sscsrind explicitly extends the AIA’s facility for indirect CSR access

y provided by the *iselect and *ireg CSRs described in the next chapter. Hence, if

EI Smesrind/Sscsrind is also implemented, any perceived conflicts between it and the AIA
should be resolved in favor of Smesrind/Sscsrind.
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Chapter 2. Control and Status Registers
(CSRs) Added to Harts

For each privilege level at which a RISC-V hart can take interrupt traps, the Advanced Interrupt
Architecture adds CSRs for interrupt control and handling.

2.1. Machine-level CSRs

Table 3 lists both the CSRs added for machine level and existing machine-level CSRs whose size is
changed by the Advanced Interrupt Architecture. Existing CSRs mie, mip, and mideleg are widened to
64 bits to support a total of 64 interrupt causes.

For RV32, the high-half CSRs listed in the table allow access to the upper 32 bits of registers mideleg,
mie, mvien, mvip, and mip. The Advanced Interrupt Architecture requires that these high-half CSRs
exist for RV32, but the bits they access may all be merely read-only zeros.

CSRs miselect and mireg provide a window for accessing multiple registers beyond the CSRs in Table
3. The value of miselect determines which register is currently accessible through alias CSR mireg.
miselect is a WARL register, and it must support a minimum range of values depending on the
implemented features. When an IMSIC is not implemented, miselect must be able to hold at least any
6-bit value in the range O to Ox3F. When an IMSIC is implemented, miselect must be able to hold any
8-bit value in the range O to OxFF. The Advanced Interrupt Architecture makes use of these subranges
of values for miselect:

0x30-0x3F major interrupt priorities

0x70-0xFF external interrupts (only with an IMSIC)

Table 3. Machine-level CSRs added or widened by the Advanced Interrupt Architecture.
Number Privilege Width Name  Description
Machine-Level Window to Indirectly Accessed Registers

0x350 MRW  XLEN miselect Machine indirect register select
0x351 MRW  XLEN mireg Machine indirect register alias

Machine-Level Interrupts

0x304 MRW 64 mie Machine interrupt-enable bits

0x344  MRW 64  mip Machine interrupt-pending bits

0x35C ~MRW MXLEN mtopei  Machine top external interrupt (only with an IMSIC)
OxFBO ~ MRO MXLEN mtopi Machine top interrupt

Delegated and Virtual Interrupts for Supervisor Level

0x303  MRW 64 mideleg Machine interrupt delegation
0x308 MRW 64 mvien Machine virtual interrupt enables
0x309 MRW 64  mvip Machine virtual interrupt-pending bits

Machine-Level High-Half CSRs (RV32 only)
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Number Privilege Width Name Description

0x313  MRW 32 midelegh Upper 32 bits of mideleg (only with S-mode)
0x314  MRW 32 mieh Upper 32 bits of mie

0x318  MRW 32 mvienh  Upper 32 bits of mvien (only with S-mode)
0x319  MRW 32 mviph Upper 32 bits of mvip (only with S-mode)
0x354  MRW 32 miph Upper 32 bits of mip

Values of miselect with the most-significant bit set (bit XLEN - 1 = 1) are designated for custom use,
presumably for accessing custom registers through mireg. If XLEN changes, the most-significant bit of
miselect moves to the new position, retaining its value from before. An implementation is not
required to support any custom values for miselect.

Othermiselect values are reserved for other RISC-V extensions.

y RISC-V extension Smcsrind generalizes the mechanism of indirect register access
EI provided by miselect and miregq.

Normally, the range for external interrupts, Ox70-OxFF, is populated only when an IMSIC is
implemented; else, attempts to access mireg when miselect is in this range cause an illegal
instruction exception. The contents of the external-interrupts region are documented in Chapter 3 on
the IMSIC.

CSR mtopei also exists only when an IMSIC is implemented, so is documented in Chapter 3 along with
the indirectly accessed IMSIC registers.

CSR mtopi reports the highest-priority interrupt that is pending and enabled for machine level, as
specified in Section 5.2.2.

When S-mode is implemented, CSRs mvien and mvip support interrupt filtering and virtual interrupts
for supervisor level. These facilities are explained in Section 5.3.

If extension Smecsrind is also implemented, then when miselect has a value in the range 0x30-0x3F
or Ox70-OxFF, attempts to access alias CSRs mireg2 through miregb raise an illegal instruction
exception.

2.2. Supervisor-level CSRs

Table 4 lists the supervisor-level CSRs that are added and existing CSRs that are widened to 64 bits, if
the hart implements S-mode. The functions of these registers all match their machine-level
counterparts.
Table 4. Supervisor-level CSRs added or widened by the Advanced Interrupt Architecture.
Number Privilege Width Name  Description
Supervisor-Level Window to Indirectly Accessed Registers

0x150 SRW  XLEN siselect Supervisor indirect register select
0x151 SRW  XLEN sireg Supervisor indirect register alias

Supervisor-Level Interrupts

The RISC-V Advanced Interrupt Architecture | © RISC-V International



2.2. Supervisor-level CSRs | Page 16

Number Privilege Width Name Description

0x104 SRW 64 sie Supervisor interrupt-enable bits

Ox144 SRW 64  sip Supervisor interrupt-pending bits

Ox15C SRW  SXLEN stopei  Supervisor top external interrupt (only with an IMSIC)
0xDBO SRO  SXLEN stopi Supervisor top interrupt

Supervisor-Level High-Half CSRs (RV32 only)

0x114 SRW 32 sieh Upper 32 bits of sie
0x154 SRW 32 siph Upper 32 bits of sip

The space of registers accessible through the siselect/sireg window is separate from but parallels
that of machine level, being for supervisor-level interrupts instead of machine-level interrupts. The
subranges of values used for siselect are once again these:

0x30-0x3F major interrupt priorities

0x70-0xFF external interrupts (only with an IMSIC)

For maximum compatibility, it is recommended that siselect support at least a 9-bit range, @ to
0x1FF, regardless of whether an IMSIC exists.

Because the VS CSR vsiselect (Section 2.3) always has at least 9 bits, and like other VS

y CSRs, vsiselect substitutes for siselect when executing in a virtual machine (VS-mode

EI or VU-mode), implementing a smaller range for siselect allows software to discover it is
not running in a virtual machine.

Like miselect, values of siselect with the most-significant bit set (bit XLEN - 1 = 1) are designated for
custom use. If XLEN changes, the most-significant bit of siselect moves to the new position,
retaining its value from before. An implementation is not required to support any custom values for
siselect.

Other siselect values are reserved for other RISC-V extensions.

At supervisor level, extension Sscsrind generalizes the mechanism of indirect register
| y access provided by siselect and sireg, as well as the parallel at VS-level provided by
vsiselect and vsiregq, described in the next subsection.

Note that the widths of 'siselect' and 'sireg’ are always the current XLEN rather than SXLEN. Hence, for
example, if MXLEN = 64 and SXLEN = 32, then these registers are 64 bits when the current privilege
mode is M (running RV64 code) but 32 bits when the privilege mode is S (RV32 code).

CSR stopei is described with the IMSIC in Chapter 3.

Register stopi reports the highest-priority interrupt that is pending and enabled for supervisor level,
as specified in Section 5.4.2.

If extension Sscsrind is also implemented, then when siselect has a value in the range 0x30-0x3F or
0x70-0xFF, attempts to access alias CSRs sireg2 through siregb raise an illegal instruction exception
(unless executing in a virtual machine, covered in the next section).
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2.5. Hypervisor and VS CSRs

If a hart implements the H extension, then the hypervisor and VS CSRs listed in Table 5 are also either
added or widened to 64 bits.

The new hypervisor CSRs in the table (hvien, hvictl , hvipriol, and hviprio2) augment hvip for
injecting interrupts into VS level. The use of these registers is covered in Chapter 6 on interrupts for
virtual machines.

The new VS CSRs (vsiselect, vsireg, vstopei, and vstopi) all match supervisor CSRs, and substitute
for those supervisor CSRs when executing in a virtual machine (in VS-mode or VU-mode).

CSR vsiselect is required to support at least a 9-bit range of @ to @x1FF, whether or not an IMSIC is
implemented. As with siselect, values of vsiselect with the most-significant bit set (bit XLEN - 1 =
1) are designated for custom use. If XLEN changes, the most-significant bit of vsiselect moves to the
new position, retaining its value from before.

Like siselect and sireg, the widths of vsiselect and vsireg are always the current XLEN rather
than VSXLEN. Hence, for example, if HSXLEN = 64 and VSXLEN = 32, then these registers are 64 bits
when accessed by a hypervisor in HS-mode (running RV64 code) but 32 bits for a guest OS in VS-
mode (RV32 code).

Table 5. Hypervisor and VS CSRs added or widened by the Advanced Interrupt Architecture. (Parameter HSXLEN
is just another name for SXLEN for hypervisor-extended S-mode).

Number Privilege Width  Name Description

Delegated and Virtual Interrupts, Interrupt Priorities, for VS Level

0x603 HRW 64 hideleg Hypervisor interrupt delegation

0x608 HRW 64 hvien Hypervisor virtual interrupt enables

0x609 HRW HSXLEN hvictl Hypervisor virtual interrupt control

0x645 HRW 64 hvip Hypervisor virtual interrupt-pending bits

0x646 HRW 64 hvipriol  Hypervisor VS-level interrupt priorities

0x647 HRW 64 hviprio2  Hypervisor VS-level interrupt priorities
VS-Level Window to Indirectly Accessed Registers

0x250 HRW XLEN  vsiselect Virtual supervisor indirect register select

0x251 HRW XLEN  vsireg Virtual supervisor indirect register alias

VS-Level Interrupts

0x204 HRW 64 vsie Virtual supervisor interrupt-enable bits

0x244 HRW 64 vsip Virtual supervisor interrupt-pending bits

0x25C HRW VSXLEN vstopei Virtual supervisor top external interrupt
(only with an IMSIC)

OxEBO HRO VSXLEN  vstopi Virtual supervisor top interrupt

Hypervisor and VS-Level High-Half CSRs (RV32 only)
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Number Privilege Width  Name Description
0x613 HRW 32 hidelegh  Upper 32 bits of hideleg
0x618 HRW 32 hvienh Upper 32 bits of hvien
0x655 HRW 32 hviph Upper 32 bits of hvip
0x656 HRW 32 hvipriolh  Upper 32 bits of hviprio
0x657 HRW 32 hviprio2h  Upper 32 bits of hviprio2
0x214 HRW 32 vsieh Upper 32 bits of vsie
0x254 HRW 32 vsiph Upper 32 bits of vsip

The space of registers selectable by vsiselect is more limited than for machine and supervisor levels:

0x030-0x03F inaccessible
0x070-0x0OFF external interrupts (IMSIC only), or inaccessible

Other vsiselect values are reserved for other RISC-V extensions.

For alias CSRs sireg and vsireg, the H extension’s usual rules for when to raise a virtual instruction
exception (based on whether an instruction is HS-qualified) are not applicable. The rules given in this
section for sireg and vsireg apply instead, unless overridden by the requirements of Section 2.5,
which take precedence over this section when extension Smstateen is also implemented.

A virtual instruction exception is raised for attempts from VS-mode or VU-mode to directly access
vsireg, or attempts from VU-mode to access sireg.

When vsiselect has the number of an inaccessible register, attempts from M-mode or HS-mode to
access vsireg raise an illegal instruction exception, and attempts from VS-mode to access sireg
(really vsireq) raise a virtual instruction exception.

Requiring a range of 0-OxIFF for vsiselect, even though most or all of the space is

y reserved or inaccessible, permits a hypervisor to emulate indirectly accessed registers in

EI the implemented range, including registers that are not currently defined but may be
standardized in the future.

The indirectly accessed registers for external interrupts (numbers Ox70-OxFF) are accessible only
when field VGEIN of hstatus is the number of an implemented guest external interrupt, not zero. If
VGEIN is not the number of an implemented guest external interrupt (including the case when no
IMSIC is implemented), then all indirect register numbers in the ranges 0x030-0x03F and 0x070-
OxOFF designate an inaccessible register at VS level.

Along the same lines, when hstatus.VGEIN is not the number of an implemented guest external
interrupt, attempts from M-mode or HS-mode to access CSR vstopei raise an illegal instruction
exception, and attempts from VS-mode to access stopei raise a virtual instruction exception.

If extension Sscsrind is also implemented, then when vsiselect has a value in the range 0x30-0x3F
or Ox70-OxFF, attempts from M-mode or HS-mode to access alias CSRs vsireg2 through vsiregb
raise an illegal instruction exception, and attempts from VS-mode to access sireg2 through siregb
raise a virtual instruction exception.

2.4. Virtual instruction exceptions

Following the default rules for the H extension, attempts from VS-mode to directly access a hypervisor
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or VS CSR other than vsireg, or from VU-mode to access any supervisor-level CSR (including
hypervisor and VS CSRs) other than sireg or vsireg, usually raise not an illegal instruction exception
but instead a virtual instruction exception. For details, see the H extension documentation.

Instructions that read/write CSR stopei or vstopei are considered to be HS-qualified unless all of
following are true: the hart has an IMSIC, extension Smstateen is implemented, and bit 58 of
mstateend is zero. (See the next section, Section 2.5, about mstateend.)

For sireg and vsireg, see both the previous section, Section 2.3, and the next, Section 2.5, for when a
virtual instruction exception is required instead of an illegal instruction exception.

2.5. Access control by the state-enable CSRs

If extension Smstateen is implemented together with the Advanced Interrupt Architecture (AIA), three
bits of state-enable register mstateen@ control access to AIA-added state from privilege modes less
privileged than M-mode:

bit 60 CSRIND: CSRs siselect, sireg, vsiselect, and vsireg
bit 59 AIA: all other state added by the AIA and not controlled by bits CSRIND and IMSIC
bit 58 IMSIC: all IMSIC state, including CSRs stopei and vstopei

If one of these bits is zero in mstateen®, an attempt to access the corresponding state from a privilege
mode less privileged than M-mode results in an illegal instruction trap. As always, the state-enable
CSRs do not affect the accessibility of any state when in M-mode, only in less privileged modes. For
more explanation, see the documentation for extension Smstateen.

The AIA bit controls access to AIA CSRs siph, sieh, stopi, hidelegh, hvien/hvienh, hviph, hvictl,
hvipriol/hvipriolh, hviprio2/hviprio2h, vsiph, vsieh, and vstopi, as well as to the supervisor-
level interrupt priorities accessed through siselect + sireg (the iprio array of Section 5.4.1).

The IMSIC bit is implemented in mstateen@ only if the hart has an IMSIC. If the H extension is also
implemented, this bit does not affect the behavior or accessibility of hypervisor CSRs hgeip and hgeie,
or field VGEIN of hstatus. In particular, guest external interrupts from an IMSIC continue to be
visible to HS-mode in hgeip even when mstateen@.IMSIC is zero.

An earlier, pre-ratification draft of Smstateen said that when mstateen@.IMSIC is zero,
| yl registers hgeip and hgeie and field VGEIN of hstatus are all read-only zeros. That effect
is no longer correct.

If the hart does not have an IMSIC, the IMSIC bit of mstateen@ is read-only zero, but Smstateen has no
effect on attempts to access the nonexistent IMSIC state.

This means in particular that, when the hart does not have an IMSIC, the following raise a
virtual instruction exception as described in Table 5, not an illegal instruction exception,
despite that mstateen@./MSIC is zero:

Dy - attempts from VS-mode to access sireg (really vsireg) while vsiselect has a value
in the range Ox70—OxFF; and

- attempts from VS-mode to access stopei (really vstopei).

If the CSRIND bit of mstateen® is one, then regardless of any other mstateen bits (including the AIA
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and IMSIC bits of mstateen®), a virtual instruction exception is raised as described in Section 2.3 for
all attempts from VS-mode or VU-mode to directly access vsireg, and for all attempts from VU-mode
to access sireg. This behavior is overridden only when mstateend.CSRIND is zero.

If the H extension is implemented, the same three bits are defined also in hypervisor CSR hstateen@
but concern only the state potentially accessible to a virtual machine executing in privilege modes VS
and VU:

bit 60 CSRIND: CSRs siselect and sireg (really vsiselect and vsireg)
bit 59 AIA: CSRs siph and sieh (RV32 only) and stopi (really vsiph, vsieh, and vstopi)
bit 58 IMSIC: all state of IMSIC guest interrupt files, including CSR stopei(really vstope1)

If one of these bits is zero in hstateen@, and the same bit is one in mstateen®, then an attempt to
access the corresponding state from VS or VU-mode raises a virtual instruction exception. (But note
that, for high-half CSRs siph and sieh, this applies only when XLEN = 32. When XLEN > 32, an
attempt to access siph or sieh raises an illegal instruction exception as usual, not a virtual instruction
exception.)

If the CSRIND bit is one in mstateen@ but is zero in hstateen®, then all attempts from VS or VU-mode
to access siselect or sireg raise a virtual instruction exception, not an illegal instruction exception,
regardless of the value of vsiselect or any other mstateen bits.

The IMSIC bit is implemented in hstateen® only if the hart has an IMSIC. Furthermore, even with an
IMSIC, hstateend.IMSIC may (or may not) be read-only zero if the IMSIC has no guest interrupt files
for guest external interrupts (Chapter 3). When this bit is zero (whether read-only zero or set to zero), a
virtual machine is prevented from accessing the hart’s IMSIC the same as when hstatus.VGEIN = O.

Extension Ssstateen is defined as the supervisor-level view of Smstateen. Therefore, the combination
of Ssaia and Ssstateen incorporates the bits defined above for hstateen@ but not those for mstateen®,
since machine-level CSRs are not visible to supervisor level.
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Chapter 3. Incoming MSI Controller
(IMSIC)

An Incoming MSI Controller (IMSIC) is an optional RISC-V hardware component that is closely
coupled with a hart, one IMSIC per hart. An IMSIC receives and records incoming message-signaled
interrupts (MSIs) for a hart, and signals to the hart when there are pending and enabled interrupts to
be serviced.

An IMSIC has one or more memory-mapped registers in the machine’s address space for receiving
MSIs. Aside from those memory-mapped registers, software interacts with an IMSIC primarily
through several RISC-V CSRs at the attached hart.

3.1. Interrupt files and interrupt identities

In a RISC-V system, MSIs are directed not just to a specific hart but to a specific privilege level of a
specific hart, such as machine or supervisor level. Furthermore, when a hart implements the H
extension, an IMSIC may optionally allow MSIs to be directed to a specific virtual hart at virtual
supervisor level (VS level).

For each privilege level and each virtual hart to which MSIs may be directed at a hart, the hart’s IMSIC
contains a separate interrupt file. Assuming a hart implements supervisor mode, its IMSIC has at least
two interrupt files, one for machine level and the other for supervisor level. When a hart also
implements the H extension, its IMSIC may have additional interrupt files for virtual harts, called
guest interrupt files. The number of guest interrupt files an IMSIC has for virtual harts is exactly
GEILEN, the number of supported guest external interrupts, as defined by the H extension.

Each individual interrupt file consists mainly of two arrays of bits of the same size, one array for
recording MSIs that have arrived but are not yet serviced (interrupt-pending bits), and the other array
for specifying which interrupts the hart will currently accept (interrupt-enable bits). Each bit position
in the two arrays corresponds with a different interrupt identity number by which MSIs from different
sources are distinguished at an interrupt file. Because an IMSIC is the external interrupt controller for
a hart, an interrupt file’s interrupt identities become the minor identities for external interrupts at the
attached hart.

The number of interrupt identities supported by an interrupt file (and hence the number of active bits
in each array) is one less than a multiple of 64, and may be a minimum of 63 and a maximum of 2047.

Dy Platform standards may increase the minimum number of interrupt identities that must
be implemented by each interrupt file.

When an interrupt file supports N distinct interrupt identities, valid identity numbers are between 1
and N inclusive. The identity numbers within this range are said to be implemented by the interrupt
file; numbers outside this range are not implemented. The number zero is never a valid interrupt

identity.

IMSIC hardware does not assume any connection between the interrupt identity numbers at one
interrupt file and those at another interrupt file. Software is commonly expected to assign the same
interrupt identity number to different MSI sources at different interrupt files, without coordination
across interrupt files. Thus the total number of MSI sources that can be separately distinguished
within a system is potentially the product of the number of interrupt identities at a single interrupt
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file times the total number of interrupt files in the system, over all harts.

[t is not necessarily the case that all interrupt files in a system are the same size (implement the same
number of interrupt identities). For a given hart, the interrupt files for guest external interrupts must
all be the same size, but the interrupt files at machine level and at supervisor level may differ in size
from those of guest external interrupts, and from each other. Likewise, the interrupt files of different
harts may be different sizes.

A platform might provide a means for software to configure the number of interrupt files in an IMSIC
and/or their sizes, such as by allowing a smaller interrupt file at machine level to be traded for a larger
one at supervisor level, or vice versa, for example. Any such configurability is outside the scope of this
specification. It is recommended, however, that only machine level be given the power to change the
number and sizes of interrupt files in an IMSIC.

3.2. MSl encoding

Established standards (in particular, for PCI and PCI Express) dictate that an individual message-
signaled interrupt (MSI) from a device takes the form of a naturally aligned 32-bit write by the device,
with the address and value both configured at the device (or device controller) by software. Depending
on the versions of the standards to which a device or controller conforms, the address might be
restricted to the lower 4-GiB (32-bit) range, and the value written might be limited to a 16-bit range,
with the upper 16 bits always being zeros.

When RISC-V harts have IMSICs, an MSI from a device is normally sent directly to an individual hart
that was selected by software to handle the interrupt (presumably based on some interrupt affinity
policy). An MSI is directed to a specific privilege level, or to a specific virtual hart, via the
corresponding interrupt file that exists in the receiving hart's IMSIC. The MSI write address is the
physical address of a particular word-size register that is physically connected to the target interrupt
file. The MSI write data is simply the identity number of the interrupt to be made pending in that
interrupt file (becoming eventually the minor identity for an external interrupt to the attached hart).

By configuring an MSI’s address and data at a device, system software fully controls: (a) which hart
receives a particular device interrupt, (b) the target privilege level or virtual hart, and (c) the identity
number that represents the MSI in the target interrupt file. Elements a and b are determined by which
interrupt file is targeted by the MSI address, while element c is communicated by the MSI data.

y As the maximum interrupt identity number an IMSIC can support is 2047, a 16-bit limit
EI on MSI data values presents no problem.

When the H extension is implemented and a device is being managed directly by a guest operating
system, MSI addresses from the device are initially guest physical addresses, as they are configured at
the device by the guest OS. These guest addresses must be translated by an IOMMU, which gets
configured by the hypervisor to redirect those MSIs to the interrupt files for the correct guest external
interrupts. For more on this topic, see Chapter 8.

3.5, Interrupt priorities

Within a single interrupt file, interrupt priorities are determined directly from interrupt identity
numbers. Lower identity numbers have higher priority.

Dy Because MSIs give software complete control over the assignment of identity numbers in
an interrupt file, software is free to select identity numbers that reflect the relative
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priorities desired for interrupts.

It is true that software could adjust interrupt priorities more dynamically if interrupt files
included an array of priority numbers to assign to each interrupt identity. However, we
believe that such additional flexibility would not be utilized often enough to justify the
extra hardware expense. In fact, for many systems currently employing MSIs, it is common
practice for software to ignore interrupt priorities entirely and act as though all interrupts
had equal priority.

An interrupt file’s lowest identity numbers have been given the highest priorities, not the
reverse order, because it is only for the highest-priority interrupts that priority order may
need to be carefully managed, yet it is the low-numbered identities, 1through 63 (or
perhaps 1 through 127), that are guaranteed to exist across all systems. Consider, for
y example, that an interrupt file’s highest-priority interrupt—presumably the most time-
EI critical—is always identity number 1. If priority order were reversed, the highest-priority
interrupt would have different identity numbers on different machines, depending on how
many identities are implemented by interrupt files. The ability for software to assign fixed
identity numbers to the highest-priority interrupts is considered worth any discomfort that
may be felt from interrupt priorities being the reverse of the natural number order.

3.4. Reset and revealed state

Upon reset of an IMSIC, all the state of its interrupt files becomes valid and consistent but otherwise
UNSPECIFIED, except possibly for the eidelivery register of machine-level and supervisor-level
interrupt files, as specified in Section 3.8.1.

If an IMSIC contains a supervisor-level interrupt file and software at the attached hart enables S-mode
that was previously disabled (e.g. by changing bit S of CSR misa from zero to one), all state of the
supervisor-level interrupt file is valid and consistent but otherwise UNSPECIFIED. Likewise, if an
IMSIC contains guest interrupt files and software at the attached hart enables the H extension that
was previously disabled (e.g. by changing bit H of misa from zero to one), all state of the IMSIC’s guest
interrupt files is valid and consistent but otherwise UNSPECIFIED.

3.5. Memory region for an interrupt file

Each interrupt file in an IMSIC has one or two memory-mapped 32-bit registers for receiving MSI
writes. These memory-mapped registers are located within a naturally aligned 4-KiB region (a page) of
physical address space that exists for the interrupt file, i.e., one page per interrupt file.

The layout of an interrupt-file’s memory region is:

offset size  register name

0x000 4 bytes seteipnum_le
0x004 4 bytes seteipnum_be

All other bytes in an interrupt file’s 4-KiB memory region are reserved and must be implemented as
read-only zeros.

Only naturally aligned 32-bit simple reads and writes are supported within an interrupt file’s memory
region. Writes to read-only bytes are ignored. For other forms of accesses (other sizes, misaligned
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accesses, or AMOs), an IMSIC implementation should preferably report an access fault or bus error
but must otherwise ignore the access.

If i is an implemented interrupt identity number, writing value i in little-endian byte order to
seteipnum_le (Set External Interrupt-Pending bit by Number, Little-Endian) causes the pending bit
for interrupti to be set to one. A write to seteipnum_le is ignored if the value written is not an
implemented interrupt identity number in little-endian byte order.

For systems that support big-endian byte order, if i is an implemented interrupt identity number,
writing value i in big-endian byte order to seteipnum_be (Set External Interrupt-Pending bit by
Number, Big-Endian) causes the pending bit for interrupt i to be set to one. A write to seteipnum_be is
ignored if the value written is not an implemented interrupt identity number in big-endian byte order.
Systems that support only little-endian byte order may choose to ignore all writes to seteipnum_be.

In most systems, seteipnum_le is the write port for MSIs directed to this interrupt file. For systems
built mainly for big-endian byte order, seteipnum_be may serve as the write port for MSIs directed to
this interrupt file from some devices.

A read of seteipnum_le or seteipnum_be returns zero in all cases.

When not ignored, writes to an interrupt file’s memory region are guaranteed to be reflected in the
interrupt file eventually, but not necessarily immediately. For a single interrupt file, the effects of
multiple writes (stores) to its memory region, though arbitrarily delayed, always occur in the same
order as the global memory order of the stores as defined by the RISC-V Unprivileged ISA.

In most circumstances, any delay between the completion of a write to an interrupt file’s
memory region and the effect of the write on the interrupt file is indistinguishable from
y other delays in the memory system. However, if a hart writes to a seteipnum_le or
EI seteipnum_be register of its own IMSIC, then a delay between the completion of the store
instruction and the consequent setting of an interrupt-pending bit in the interrupt file may

be visible to the hart.

3.6. Arrangement of the memory regions of
mMultiple interrupt files

Each interrupt file that an IMSIC implements has its own memory region as described in the previous
section, occupying exactly one 4-KiB page of machine address space. When practical, the memory
pages of the machine-level interrupt files of all IMSICs should be located together in one part of the
address space, and the memory pages of all supervisor-level and guest interrupt files should similarly
be located together in another part of the address space, according to the rules below.

The main reason for separating the machine-level interrupt files from the other interrupt

files in the address space is so harts that implement physical memory protection (PMP)

. can grant supervisor-level access to all supervisor-level and guest interrupt files using

y; only a single PMP table entry. If the memory pages for machine-level interrupt files are

instead interleaved with those of lower-privilege interrupt files, the number of PMP table

entries needed for granting supervisor-level access to all non-machine-level interrupt files
could equal the number of harts in the system.

If a machine’s construction dictates that harts be subdivided into groups, with each group relegated to
its own portion of the address space, then the best that can be achieved is to locate together the
machine-level interrupt files of each group of harts separately, and likewise locate together the
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supervisor-level and guest interrupt files of each group of harts separately. This situation is further
addressed later below.

A system may divide harts into groups in the address space because each group exists on a

y separate chip (or chiplet in a multi-chip module), and weaving together the address

EI spaces of the multiple chips is impractical. In that case, granting supervisor-level access
to all non-machine-level interrupt files takes one PMP table entry per group.

For the purpose of locating the memory pages of interrupt files in the address space, assume each hart
(or each hart within a group) has a unique hart number that may or may not be related to the unique
hart identifiers ("hart IDs") that the Privileged Architecture assigns to harts. For convenient
addressing, the memory pages of all machine-level interrupt files (or all those of a single group of
harts) should be arranged so that the address of the machine-level interrupt file for hart number b is
given by the formula A + h x 2¢ for some integer constants A and C. If the largest hart number is Amax,
let k =[logs(hmax + 1)1, the number of bits needed to represent any hart number. Then the base address
A should be aligned to a 2k +¢ address boundary, so A + h x 2¢ always equals A | (h x 2€), where the
vertical bar (|) represents bitwise logical OR.

The smallest that C can be is 12, with 2¢ being the size of one 4-KiB page. If C>12, the start of the
memory page for each machine-level interrupt file is aligned not just to a 4-KiB page but to a stricter
2¢ address boundary. Within the 2% +¢-size address range A through a +2%+¢—1, every 4-KiB page
that is not occupied by a machine-level interrupt file should be filled with 32-bit words of read-only
zeros, such that any read of an aligned word returns zero and any write to an aligned word is ignored.

The memory pages of all supervisor-level interrupt files (or all those of a single group of harts) should
similarly be arranged so that the address of the supervisor-level interrupt file for hart number h is
B + h x 2P for some integer constants B and D, with the base address B being aligned to a 2¥ +? address
boundary.

If an IMSIC implements guest interrupt files, the memory pages for the IMSIC’s supervisor-level
interrupt file and for its guest interrupt files should be contiguous, starting with the supervisor-level
interrupt file at the lowest address and followed by the guest interrupt files, ordered by guest interrupt
number. Schematically, the memory pages should be ordered contiguously as

S, G], GZ, G3,

where S is the page for the supervisor-level interrupt file and each G; is the page for the interrupt file
of guest interrupt number i. Consequently, the smallest that constant D can be is
ogy(maximumGEILEN +1)1+12, recalling that GEILEN for each IMSIC is the number of guest
interrupt files the IMSIC implements.

Within the 2k + P-size address range B through B +25+P2 —1, every 4-KiB page that is not occupied by
an interrupt file (supervisor-level or guest) should be filled with 32-bit words of read-only zeros.

When a system divides harts into groups, each in its own separate portion of the address space, the
memory page addresses of interrupt files should follow the formulas g x 2F + A + h x 2¢ for machine-
level interrupt files, and g x 2%+ B+ h x 2P for supervisor-level interrupt files, with ¢ being a group
number, h being a hart number relative to the group, and E being another integer constant =
k +max(C, D) but usually much larger. If the largest group number is Imax, let j =[logy(gmax + 1)1, the
number of bits needed to represent any group number. Besides being multiples of 2k +¢ and 2k+P
respectively, A and B should be chosen so

(27-1)x25) & A = 0and (27 -1)x2F) & B = 0
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where an ampersand (&) represents bitwise logical AND. This ensures that

g x2F+ A +h x 2€ always equals (g x 2F) | A | (h x 2€), and
g x2F + B+ h x 2P always equals (g x 2F) | B | (h x 2P).

Infilling with read-only-zero pages is expected only within each group, not between separate groups.
Specifically, if 9 is any integer between O and 27 — 1 inclusive, then within the address ranges,

g x2F+ A through g x2F+ A +2k+¢ -1 and
gx2E+B throughgx2E+B+2k+D—1,

pages not occupied by an interrupt file should be read-only zeros.

See also Section 4.9.1 for the default algorithms an Advanced PLIC may use to determine the
destination addresses of outgoing MSIs, which should be the addresses of IMSIC interrupt files.

3.7. CSRs for external interrupts via an IMSIC

Software accesses a hart's IMSIC primarily through the CSRs introduced in Chapter 2. There is a
separate set of CSRs for each implemented privilege level that can receive interrupts. The machine-
level CSRs interact with the IMSIC’s machine-level interrupt file, while, if supervisor mode is
implemented, the supervisor-level CSRs interact with the IMSIC’s supervisor-level interrupt file.
When an IMSIC has guest interrupt files, the VS CSRs interact with a single guest interrupt file,
selected by the VGEIN field of CSR hstatus.

For machine level, the relevant CSRs are miselect, mireg, and mtopei. When supervisor mode is
implemented, the set of supervisor-level CSRs matches those of machine level: siselect, sireg, and
stopei. And when the H extension is implemented, there are three corresponding VS CSRs:
vsiselect, vsireg, and vstopei.

As explained in Chapter 2, registers miselect and mireg provide indirect access to additional
machine-level registers. Likewise for supervisor-level siselect and sireg, and VS-level vsiselect
and vsireg. In each case, a value of the *iselect CSR (miselect, siselect, or vsiselect)) in the range
Ox70-OxFF selects a register of the corresponding IMSIC interrupt file, either the machine-level
interrupt file (miselect), the supervisor-level interrupt file (siselect), or a guest interrupt file
(vsiselect).

Interrupt files at each level act identically. For a given privilege level, values of the *iselect CSR in
the range @x70-0xFF select these registers of the corresponding interrupt file:

0x70 eidelivery
O0x72 eithreshold
0x80 eip0
0x81 eipl

OxBF eip63

0xCO eied
0xCl eiel
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OxFF eieb3

Register numbers Ox71 and Ox73-Ox7F are reserved. When an *iselect CSR has one of these values,
reads from the matching *ireg CSR (mireg, sireg, or vsireg) return zero, and writes to the *1reg CSR
are ignored. (For vsiselect and vsireg, all accesses depend on hstatus. VGEIN being the valid
number of a guest interrupt file.)

Registers eip@ through eip63 contain the pending bits for all implemented interrupt identities, and
are collectively called the eip array. Registers eie@ through eie63 contain the enable bits for the same
interrupt identities, and are collectively called the eie array.

The indirectly accessed interrupt-file registers and CSRs mtopei, stopei, and vstopei are all
documented in more detail in the next two sections.

3.8. Indirectly accessed interrupt-file registers

This section describes the registers of an interrupt file that are accessed indirectly through a *iselect
CSR (miselect, siselect, or vsiselect) and its partner *ireg CSR (mireg, sireg, or vsireg). The
width of these indirect accesses is always the current XLEN, 32 bits for RV32 code, or 64 bits for RV64
code.

3.8.1. External interrupt delivery enable register (eidelivery)

eidelivery is a WARL register that controls whether interrupts from this interrupt file are delivered
from the IMSIC to the attached hart so they appear as a pending external interrupt in the hart's mip or
hgeip CSR. Register eidelivery may optionally also support the direct delivery of interrupts from a
PLIC (Platform-Level Interrupt Controller) or APLIC (Advanced PLIC) to the attached hart. Three
possible values are currently defined for eidelivery:

O = Interrupt delivery is disabled
1 = Interrupt delivery from the interrupt file is enabled

0x40000000 = Interrupt delivery from a PLIC or APLIC is enabled (optional)

If eidelivery supports value 0x40000000, then a specific PLIC or APLIC in the system may act as
an alternate external interrupt controller for the attached hart at the same privilege level as this
interrupt file. When eidelivery is 0x40000000, the interrupt file functions the same as though
eidelivery is O, and the PLIC or APLIC replaces the interrupt file in supplying pending external
interrupts at this privilege level at the hart.

Guest interrupt files do not support value 0x40000000 for eidelivery.

Reset initializes eidelivery to 0x40000000 if that value is supported; otherwise, eidelivery has an
UNSPECIFIED valid value (O or 1) after reset.

eidelivery value 0x40000000 supports system software that is oblivious to IMSICs

y and assumes instead that the external interrupt controller is a PLIC or APLIC. Such

EI software may exist either because it predates the existence of IMSICs or because
bypassing IMSICs is believed to reduce programming effort.

The eidelivery register affects only whether an external interrupt appears in a hart's *ip register
(MEI or SEI in mip or sip, or a bit in hgeip) and what the source of such an interrupt may be (either
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the interrupt file or a separate external interrupt controller such as an APLIC). It has no effect on other
state within the interrupt file, or on any *topei CSR (mtopei, stopei, or vstopei).

3.8.2. External interrupt enable threshold register (eithreshold)

eithreshold is a WLRL register that determines the minimum interrupt priority (maximum interrupt
identity number) allowing an interrupt to be signaled from this interrupt file to the attached hart. If N
is the maximum implemented interrupt identity number for this interrupt file, eithreshold must be
capable of holding all values between O and N, inclusive.

When eithreshold is a nonzero value P, interrupt identities P and higher do not contribute to
signaling interrupts, as though those identities were not enabled, regardless of the settings of their
corresponding interrupt-enable bits in the eie array. When eithreshold is zero, all enabled interrupt
identities contribute to signaling interrupts from the interrupt file.

3.8.3. External interrupt-pending registers (eip0-eip63)

When the current XLEN = 32, register eipk contains the pending bits for interrupts with identity
numbers k x 32 through k x32+31. For an implemented interrupt identity i within that range, the
pending bit for interrupt i is bit (i mod 32) of eipk.

When the current XLEN = 64, the odd-numbered registers eip1, eip3, .. eip63 do not exist. In that
case, if the *1select CSR is an odd value in the range Ox81-0xBF, an attempt to access the matching
*ireg CSR raises an illegal instruction exception, unless done in VS-mode, in which case it raises a
virtual instruction exception. For even k, register eipk contains the pending bits for interrupts with
identity numbers k x 32 through k x32+63. For an implemented interrupt identity i within that
range, the pending bit for interrupt i is bit (i mod 64) of eipk.

Bit positions in a valid eipk register that don’t correspond to a supported interrupt identity (such as
bit O of e1p@) are read-only zeros.

3.8.4. External interrupt-enable registers (eied-eieb3)

When the current XLEN = 32, register eiek contains the enable bits for interrupts with identity
numbers k x 32 through k x32+31. For an implemented interrupt identity i within that range, the
enable bit for interrupt i is bit (i mod 32) of eiek.

When the current XLEN = 64, the odd-numbered registers eiel, eie3, .. eie63 do not exist. In that
case, if the *iselect CSR is an odd value in the range 0xC1-0xFF, an attempt to access the matching
*ireg CSR raises an illegal instruction exception, unless done in VS-mode, in which case it raises a
virtual instruction exception. For even k, register eiek contains the enable bits for interrupts with
identity numbers k x 32 through k x32+63. For an implemented interrupt identity i within that
range, the enable bit for interrupt i is bit (i mod 64) of eiek.

Bit positions in a valid eiek register that don’t correspond to a supported interrupt identity (such as
bit O of eied) are read-only zeros.

3.9. Top external interrupt CSRS (ntopei, stopei, vstopei)

CSR mtopei interacts directly with an IMSIC’s machine-level interrupt file. If supervisor mode is
implemented, CSR stopei interacts directly with the supervisor-level interrupt file. And if the H
extension is implemented and field VGEIN of hstatus is the number of an implemented guest
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interrupt file, vstopei interacts with the chosen guest interrupt file.

The value of a *topei CSR (mtopei, stopei, or vstopei) indicates the interrupt file’s current highest-
priority pending-and-enabled interrupt that also exceeds the priority threshold specified by its
eithreshold register if eithreshold is not zero. Interrupts with lower identity numbers have higher
priorities.

A read of a *topei CSR returns zero either if no interrupt is both pending in the interrupt file’s eip
array and enabled in its eie array, or if eithreshold is not zero and no pending-and-enabled interrupt
has an identity number less than the value of eithreshold. Otherwise, the value returned from a read
of *topei has this format:

bits 26:16 Interrupt identity

bits 10:0 Interrupt priority (same as identity)

All other bit positions are zeros.

The interrupt identity reported in a *topei CSR is the minor identity for an external interrupt at the
hart.

The redundancy in the value read from a *topei CSR is consistent with the Advanced
| y PLIC, which returns both an interrupt identity number and its priority in the same format
as above, but with the two components being independent of one another.

The value of a *topei CSR is not affected by an interrupt file’s eidelivery register or by any of mie,
sie, hie, hgeie, orvsie.

A write to a *topei CSR claims the reported interrupt identity by clearing its pending bit in the
interrupt file. The value written is ignored; rather, the current readable value of the register
determines which interrupt-pending bit is cleared. Specifically, when a *topei CSR is written, if the
register value has interrupt identity i in bits 26:16, then the interrupt file’s pending bit for interrupt i
is cleared. When a *topei CSR’s value is zero, a write to the register has no effect.

If a read and write of a *topei CSR are done together by a single CSR instruction (CSRRW, CSRRS, or
CSRRC), the value returned by the read indicates the pending bit that is cleared.

It is almost always a mistake to write to a *topei CSR without a simultaneous read to
learn which interrupt was claimed. Note especially, if a read of a *topei register and a
subsequent write to the register are done by two separate CSR instructions, then a higher-
priority interrupt may become newly pending-and-enabled in the interrupt file between the
two instructions, causing the write to clear the pending bit of the new interrupt and not the

Df one reported by the read. Once the pending bit of the new interrupt is cleared, the interrupt
is lost.

If it is necessary first to read a *topei CSR and then subsequently claim the interrupt as a
separate step, the claim can be safely done by clearing the pending bit in the eip array via
*siselect and *sireq, instead of writing to *topei.

3.10. Interrupt delivery and handling

An IMSIC’s interrupt files supply external interrupt signals to the attached hart, one interrupt signal
per interrupt file. The interrupt signal from a machine-level interrupt file appears as bit MEIP in CSR
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mip, and the interrupt signal from a supervisor-level interrupt file appears as bit SEIP in mip and sip.
Interrupt signals from any guest interrupt files appear as the active bits in hypervisor CSR hgeip.

When interrupt delivery is disabled by an interrupt file’s eidelivery register (eidelivery = 0), the
interrupt signal from the interrupt file is held de-asserted (false). When interrupt delivery from an
interrupt file is enabled (eidelivery = 1), its interrupt signal is asserted if and only if the interrupt file
has a pending-and-enabled interrupt that also exceeds the priority threshold specified by
eithreshold, if not zero.

Changes to the state of an interrupt file are guaranteed to be reflected in the relevant interrupt-
pending bit in CSR mip or hgeip eventually, but not necessarily immediately.

A trap handler solely for external interrupts via an IMSIC could be written roughly as follows:

save processor registers

i=read CSR mtopei or stopei, and write simultaneously to claim the interrupt
i=1>>16

call the interrupt handler for external interrupt i (minor identity)

restore processor registers

return from trap

The combined read and write of mtopei or stopei in the second step can be done by a single CSRRW
machine instruction,

csrrw rd, mtopei/stopei, x0

where rd is the destination register for value i.
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Chapter 4. Advanced Platform-Leve|
Interrupt Controller (APLIC)

In a RISC-V system, a Platform-Level Interrupt Controller (PLIC) handles external interrupts that are
signaled through wires rather than by MSIs. When the RISC-V harts in a system do not have IMSICs,
the harts themselves do not support MSIs, and all external interrupts to such harts must pass through
a PLIC. But even in machines where harts have IMSICs and most interrupts are communicated via
MSIs, it is not unusual for some device interrupts still to be signaled by dedicated wires. In particular,
for devices (or device controllers) that do not otherwise need to initiate bus transactions in the system,
the cost of supporting MSIs is especially high, so wired interrupts are a frugal alternative. Wired
interrupts also continue to be universally supported by all current computer platforms, unlike MSIs,
making another reason for many commodity devices or controllers to choose wired interrupts over
MSIs, unless conforming to a standard like PCI Express that dictates MSIs.

This chapter specifies an Advanced PLIC (APLIC) that is not backward compatible with the earlier
RISC-V PLIC. Full conformance to the Advanced Interrupt Architecture requires the APLIC. However,
a workable system can be built substituting the older PLIC instead, assuming only wired interrupts to
harts, not MSls.

We intend eventually to provide a free example parameterized implementation of an
| yl APLIC, written in portable SystemVerilog, that we expect will be suitable for many RISC-V
systems without modification.

A draft specification exists for a Duo-PLIC that is software-configurable to act as either
| y an original RISC-V PLIC or an APLIC. However, at this time, it appears unlikely that
RISC-V International will ever ratify the Duo-PLIC specification as a standard.

In a machine without IMSICs, every RISC-V hart accepts interrupts from exactly one PLIC or APLIC
that is the external interrupt controller for that hart. A hart’s external interrupt controller (the PLIC or
APLIC) signals interrupts to the hart through a dedicated connection, usually a wire, for each privilege
level that the hart may receive interrupts. (Recall Figure 1). A system without IMSICs will typically
have only one PLIC or APLIC, serving as the external interrupt controller for all RISC-V harts.

Because every RISC-V hart without an IMSIC has exactly one PLIC or APLIC as its
external interrupt controller, a system with multiple APLICs must partition the harts into

Dy disjoint subsets, making each APLIC the external interrupt controller for a separate subset
of the harts. While not prohibited, this arrangement is likely to be less efficient than
having all harts share a single APLIC.

RISC-V harts that employ IMSICs as their external interrupt controllers can receive external
interrupts only in the form of MSIs. In that case, the role of an APLIC is to convert wired interrupts
into MSIs for harts. (Recall Figure 2.) The APLIC is said to forward incoming wire-signaled interrupts
to harts by sending MSIs to the harts.

When harts have IMSICs to support MSIs, a system may easily contain multiple APLICs for converting
wired interrupts into MSIs, with each APLIC forwarding interrupts from a different subset of devices.
Multiple APLICs are presumably more likely to arise when groups of devices are physically distant
from one another, perhaps even on separate chips (including chiplets in a multi-chip module).
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4. Interrupt sources and identities

An individual APLIC supports a fixed number of interrupt sources, corresponding exactly with the set
of physical incoming interrupt wires at the APLIC. Most often, each source’s incoming wire is
connected to the output interrupt wire from a single device or device controller. (For level-sensitive
interrupts, the interrupt outputs of multiple devices or controllers may be combined to drive the
incoming wire of a single interrupt source at an APLIC. An interrupt source’s incoming wire might
also be simply tied high or low, if, for example, the source will always be configured as Detached. See
Section 4.5.2 for a description of source modes.)

Each of an APLIC’s interrupt sources has a fixed unique identity number in the range 1 to N, where N is
the total number of sources at the APLIC. The number zero is not a valid interrupt identity number at
an APLIC. The maximum number of interrupt sources an APLIC may support is 1023.

When an APLIC delivers interrupts directly to harts at a given privilege level (rather than forwarding
interrupts as MSIs), the APLIC is the external interrupt controller for the harts at that privilege level,
and the interrupt identities at the APLIC become directly the minor identities for external interrupts at
the harts.

On the other hand, when an APLIC forwards interrupts by MSIs, software configures a new interrupt
identity number for the outgoing MSIs of each source. Consequently, in this case, the source identity
numbers at a given APLIC only distinguish the incoming interrupts at the APLIC and have no
relevance outside the APLIC.

427 Interrupt domains

An APLIC supports one or more interrupt domains, each associated with a subset of RISC-V harts at one
privilege level (machine or supervisor level). The harts within an interrupt domain are those that the
domain can interrupt at the corresponding privilege level. Each domain has its own memory-mapped
control region in the machine’s address space that appears to control a complete, separate APLIC,
though in fact all domain interfaces together access a single combined interrupt controller.

Figure 3 through Figure 5 depict some possible hierarchies of interrupt domains implemented by an
APLIC in a RISC-V system.

The first figure represents a minimal system that has a single hart not supporting supervisor mode,
with a single interrupt domain for machine level on that hart. The next figure, Figure 4, shows a basic
arrangement for a larger system designed for symmetric multiprocessing (SMP), with multiple harts
that all implement supervisor mode. In such cases, the APLIC will usually provide a separate interrupt
domain for supervisor level, as the figure portrays. This supervisor-level interrupt domain allows an
operating system, running in S-mode on the multiple harts, to have direct control over the interrupts
it receives, avoiding the need to call upon M-mode to exercise that control.
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Advanced PLIC
wired > Machine-level by wire
interrupts f interrupt domain > orMsls —| Harto

Figure 3. Example of a RISC-V system that has a single hart implementing only M-mode, with a single machine-
level interrupt domain for that hart.

An APLIC’s interrupt domains are arranged in a tree hierarchy, with the root domain always being at
machine level. Incoming interrupt wires arrive first at the root domain. Each domain may then
selectively delegate all or a subset of interrupt sources to its child domains in the hierarchy. Within a
given APLIC, interrupt source numbers are invariant across all domains, so source identity number i
always refers to the same source in every domain, corresponding to incoming wire number i. For an
interrupt domain below the root, interrupt sources not delegated down to that domain appear to the
domain as being not implemented.

Figure 5 shows a hierarchy of three interrupt domains, two at machine level and one at supervisor
level. The arrangement in the figure, when combined with PMP (physical memory protection), allows
machine-level software to isolate a selection of interrupts exclusively for hart O, beyond the reach of
the four application harts, even at machine level.

Advanced PLIC
wired All harts
interrupts Machine-level by wires —>:
interrupt domain or MSls ! !
% Hart 0 Hart 1 i
delegation
—> i
Supervisar-level by wires — Hart 2 Hart 3 .
interrupt domain or MSls
— :

Figure 4. An example system with four harts that implement M-mode and S-mode, with two APLIC interrupt
domains, one each for machine and supervisor levels.
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Advanced PLIC
wired Machine-level by wire Manager
interrupts interrupt domain or MSls ? Hart 0
delegation
Application harts
Machine-level by wires —>
interrupt domain or MSls .
7 Hart 1 Hart 2
delegation
— 5
Supervisar-level by wires —i Hart 3 Hart 4 '
interrupt domain or MSls Hi E
—i 5

Figure 5. A RISC-V system that extends the example of Figure 4 with a fifth M-mode-only "manager" hart, with a
separate machine-level interrupt domain above the other domains.

In order for the harts within an interrupt domain to have direct control over the interrupts
from the domain, the harts must be cooperatively controlled by software at the same
privilege level. In particular, a single operating system should control all of the harts
associated with a supervisor-level interrupt domain. In the examples of Figure 4 and
Figure 5, control of the APLIC’s supervisor-level interrupt domain could not be safely split
among multiple independent OSes.

Dy Given the domain hierarchies depicted in the figures, if it were necessary to partition the
application harts for multiple OSes, machine-level software would need to prevent direct
OS access to the supervisor-level interrupt domain and instead provide SBI services for
controlling APLIC interrupts or, alternatively, emulate the control interfaces of separate
supervisor-level interrupt domains, one for each OS. Note that such emulation might still
make use of the APLIC’s physical supervisor-level interrupt domain, but under the control
of machine-level software.

An APLIC’s interrupt domain hierarchy satisfies these rules:

- The root domain is at machine level.

- The parent of any supervisor-level interrupt domain is a machine-level domain that includes at
least the same harts (but at machine level, obviously). The parent domain may have a larger set of
harts at machine level.

- For each interrupt domain, interrupts from the domain are signaled to harts all by the same
method, either by wire or by MSIs, not by a mixture of methods among the harts.

When a RISC-V hart’s external interrupt controller is an APLIC, not an IMSIC, the hart can be within
only one interrupt domain of this APLIC at each privilege level.
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On the other hand, a hart that has an IMSIC for its external interrupt controller may, at each privilege
level, be in multiple APLIC interrupt domains, even those of the same APLIC, and may potentially
receive MSIs from multiple different APLICs in the machine.

A platform might give software a way to choose between multiple interrupt domain hierarchies for any
given APLIC. Any such configurability is outside the scope of this specification, but should be available
to machine level only.

4.5 Hart index numlbers

Within a given interrupt domain, each of the domain’s harts has a unique index number in the range O
to 214 —1 (= 16,383). The index number a domain associates with a hart may or may not have any
relationship to the unique hart identifier ("hart ID") that the Privileged Architecture assigns to the hart.
Two different interrupt domains may employ a different mapping of index numbers to the same set of
harts. However, if any of an APLIC’s interrupt domains can forward interrupts by MSI, then all
machine-level domains of the APLIC share a common mapping of index numbers to harts.

Df For efficiency, implementations should prefer small integers for hart index numbers.

4 4 Overview of interrupt control for a single
domain

Each interrupt domain implemented by an APLIC has its own separate physical control interface that
is memory-mapped in the machine’s address space, allowing access to each domain to be easily
regulated by both PMP (physical memory protection) and page-based address translation. The control
interfaces of all interrupt domains have a common structure. In most respects, every domain appears
to software as though it were a root domain, without visibility of the domains above it in the hierarchy.

An individual interrupt domain has the following components for each interrupt source at the APLIC:

- Source configuration. This determines whether the specific source is active in the domain and, if
so, how the incoming wire is to be interpreted, such as level-sensitive or edge-sensitive. For a
source that is inactive in the domain, source configuration controls any delegation to a child
domain.

- Interrupt-pending and interrupt-enable bits. For an inactive source, these two bits are read-only
zeros. Otherwise, the pending bit records an interrupt that arrived and has not yet been signaled or
forwarded, while the enable bit determines whether interrupts from this source should currently
be delivered, or should remain pending.

- Target selection. For an active source, target selection determines the hart to receive the interrupt
and either the interrupt’s priority or the new interrupt identity when forwarding as an MSI.

For interrupt domains that deliver interrupts directly to harts rather than forwarding by MSIs, the
domain has a final set of components for controlling interrupt delivery to harts, one instance per hart
in the domain.

Although an APLIC with multiple interrupt domains may appear to duplicate the per-
source state listed above (source configuration, etc.) by a factor equal to the number of
Dy domains, in fact, APLIC implementations can exploit the fact that each source is
ultimately active in only one domain. In all domains to which a specific interrupt source
has not been delegated, the state associated with the source appears as read-only zeros,
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requiring no physical register bits.

45 Memory-mapped control region for an
Interrupt domain

For each interrupt domain that an APLIC supports, there is a dedicated memory-mapped control
region for managing interrupts in that domain. This control region is a multiple of 4 KiB in size and
aligned to a 4-KiB address boundary. The smallest valid control region is 16 KiB. An interrupt domain’s
control region is populated by a set of 32-bit registers. The first 16 KiB contains the registers listed in
Table 6.

Table 6. The registers of the first 16 KiB of an interrupt domain’s memory-mapped control region.

offset size

0x0000 4 bytes
0x0004 4 bytes
0x0008 4 bytes

OxOFFC 4 bytes
0x1BCO 4 bytes
0x1BC4 4 bytes
0x1BC8 4 bytes
0x1BCC 4 bytes
0x1C00 4 bytes
0x1C04 4 bytes

0x1C7C 4 bytes
0x1CDC 4 bytes
0x1D00 4 bytes
0x1D04 4 bytes

0x1D7C 4 bytes
0x1DDC 4 bytes
0x1E00 4 bytes
0x1EQ4 4 bytes

Ox1E7C 4 bytes
Ox1EDC 4 bytes
0x1F00 4 bytes
0x1F04 4 bytes

register name
domaincfg
sourcecfg[1]

sourcecfg[2]

sourcecfg[1023]
mmsiaddrcfg
mmsiaddrcfgh
smsiaddrcfg
smsiaddrcfgh
setip[0]
setip[1]

setip[31]
setipnum
in_clrip[0]
in_clrip[1]

in_clrip[31]
clripnum
setie[0]
setie[1]

setie[31]
setienum
clrie[0]
clrie[1]
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0x1F7C 4 bytes clrie[31]
0x1FDC 4 bytes clrienum
0x2000 4 bytes setipnum_le
0x2004 4 bytes setipnum_be
0x3000 4 bytes genmsi
0x3004 4 bytes target[1]
0x3008 4 bytes target[2]

0x3FFC 4 bytes target[1023]

Starting at offset 0x4000, an interrupt domain’s control region may optionally have an array of
interrupt delivery control (IDC) structures, one for each potential hart index number in the range O to
some maximum that is at least as large as the maximum hart index number for the interrupt domain.
IDC structures are used only when the domain is configured to deliver interrupts directly to harts
instead of being forwarded by MSIs. An interrupt domain that supports only interrupt forwarding by
MSIs and not the direct delivery of interrupts by the APLIC does not need IDC structures in its control
region.

The first IDC structure, if any, is for the hart with index number O; the second is for the hart with
index number 1; and so forth. Each IDC structure is 32 bytes and has these defined registers:

offset size  register name
0x00 4 bytes idelivery
0x04 4 bytes iforce

0x08 4 bytes ithreshold
0x18 4 bytes topi

ox1C 4 bytes claimi

IDC structures are packed contiguously, 32 bytes per structure, so the offset from the beginning of an
interrupt domain’s control region to its second IDC structure (hart index 1), if it exists, is 0x4020; the
offset to the third IDC structure (hart index 2), if it exists, is 0x4040; etc.

The array of IDC structures may include some for potential hart index numbers that are not actual hart
index numbers in the domain. For example, the first IDC structure is always for hart index O, but O is
not necessarily a valid index number for any hart in the domain. For each IDC structure in the array
that does not correspond to a valid hart index number in the domain, the IDC structure’s registers may
(or may not) be all read-only zeros.

Aside from the registers in Table 6 and those listed above for IDC structures, all other bytes in an
interrupt domain’s control region are reserved and are implemented as read-only zeros.

Only naturally aligned 32-bit simple reads and writes are supported within an interrupt domain’s
control region. Writes to read-only bytes are ignored. For other forms of accesses (other sizes,
misaligned accesses, or AMOs), implementations should preferably report an access fault or bus error
but must otherwise ignore the access.
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The registers of the first 16 KiB of an interrupt domain’s control region (all but the IDC structures) are
documented individually below. IDC structures are documented later, in Section 4.8, "Interrupt
delivery directly by the APLIC."

4.51. Domain configuration (domaincfg)

The domaincfg register has this format:

bits 31:24 read-only 0x80
bit 8 IE

bit 7 read-only O

bit 2 DM (WARL)
bitO  BE(WARL)

All other register bits are reserved and read as zeros.

Bit IE (Interrupt Enable) is a global enable for all active interrupt sources at this interrupt domain.
Only when IE = 1 are pending-and-enabled interrupts actually signaled or forwarded to harts.

The value of bit [E affects only whether interrupts are delivered to harts. It has no effect on any other
APLIC state, including the interrupt-enable and interrupt-pending bits of interrupt sources and IDC
registers idelivery, topi, and claimi.

Field DM (Delivery Mode) is WARL and determines how this interrupt domain delivers interrupts to
harts. The two possible values for DM are:

O = direct delivery mode
1= MSI delivery mode

In direct delivery mode, interrupts are prioritized and signaled directly to harts by the APLIC itself. In
MSI delivery mode, interrupts are forwarded by the APLIC as MSIs to harts, presumably for further
handling by IMSICs at those harts. A given APLIC implementation may support either or both of these
delivery modes for each interrupt domain.

If the interrupt domain’s harts have IMSICs, then unless the relevant interrupt files of those IMSICs
support value 0x40000000 for register eidelivery, setting DM to zero (direct delivery mode) will have
the same effect as setting IE to zero. See Section 3.8.1 and Section 4.8.2.

BE (Big-Endian) is a WARL field that determines the byte order for most registers in the interrupt
domain’s memory-mapped control region. If BE = O, byte order is little-endian, and if BE = 1, it is big-
endian. For RISC-V systems that support only little-endian, BE may be read-only zero, and for those
that support only big-endian, BE may be read-only one. For bi-endian systems, BE is writable.

Field BE affects the byte order of accesses to the domaincfg register itself, just as for other registers in
the interrupt domain’s control region. To deal with this fact, the read-only value in domaincfg’s most-
significant byte, bits 31:24, serves two purposes. First, for any read of domaincfg, the register’s correct
byte order is easily determined from the four-byte value obtained: When interpreted in the correct
byte order, bit 31 is one, and in the wrong order, bit 31 is zero. Second, if the value of BE is uncertain
(prior to software initializing the interrupt domain, presumably), an 8-bit value x can be safely written
to domaincfg by writing (x<<24)|x, where <<24 represents shifting left by 24 bits, and the vertical bar
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() represents bitwise logical OR. After domaincfg is written once, the value of BE should then be
known, so subsequent writes should not need to repeat the same trick.

At system reset, all writable bits in domaincfg are initialized to zero, including IE. If an
implementation supports additional forms of reset for the APLIC, it is implementation-defined (or
possibly platform-defined) how these other resets may affect domaincfg.

4.572. Source configurations (sourcecfg[1]-sourcecfg[1023])

For each possible interrupt source i, register sourcecfg[i] controls the source mode for source i in this
interrupt domain as well as any delegation of the source to a child domain. When source i is not
implemented, or appears in this domain not to be implemented, sourcecfg[i] is read-only zero. If
source i was not delegated to this domain and is then changed (at the parent domain) to become
delegated to this domain, sourcecfg[i] remains zero until successfully written with a nonzero value.

Bit 10 of sourcecfg[i] is a 1-bit field called D (Delegate). If D = 1, source i is delegated to a child
domain, and if D = 0O, it is not delegated to a child domain. Interpretation of the rest of sourcecfg[i]
depends on field D.

When interrupt source i is delegated to a child domain, sourcecfg[i] has this format:

bit10 D, =1
bits 9:0 Child Index (WLRL)

All other register bits are reserved and read as zeros.

Child Index is a WLRL field that specifies the interrupt domain to which this source is delegated. For
an interrupt domain with ¢ child domains, this field must be able to hold integer values in the range O
to C —1. Each interrupt domain has a fixed mapping from these index numbers to child domains.

If an interrupt domain has no children in the domain hierarchy, bit D cannot be set to one in any
sourcecfg register for that domain. For such a leaf domain, attempting to write a sourcecfg register
with a value that has bit 10 = 1 causes the entire register to be set to zero instead.

When interrupt source i is not delegated to a child domain, sourcecfg[i] has this format:

bit10 D, =0
bits 2:0 SM (WARL)

All other register bits are reserved and read as zeros.

The SM (Source Mode) field is WARL and controls whether the interrupt source is active in this
domain, and if so, what values or transitions on the incoming wire are interpreted as interrupts. The
values allowed for SM and their meanings are listed in Table 7. Inactive (zero) is always supported for
field SM. Implementations are free to choose, independently for each interrupt source, what other
values are supported for SM.

Table 7. Encoding of the SM (Source Mode) field of a sourcecfq register when bit D = O

Value Name Description

O  Inactive Inactive in this domain (and not delegated)

The RISC-V Advanced Interrupt Architecture | © RISC-V International



4.5. Memory-mapped control region for an interrupt domain | Page 40

Value Name Description

1  Detached Active, detached from the source wire

2-3 — Reserved
4 Edgel Active, edge-sensitive; interrupt asserted on rising edge
5 EdgeO Active, edge-sensitive; interrupt asserted on falling edge
6 Levell Active, level-sensitive; interrupt asserted when high
7 LevelO Active, level-sensitive; interrupt asserted when low

An interrupt source is inactive in the interrupt domain if either the source is delegated to a child
domain (D = 1) or it is not delegated (D = O) and SM is Inactive. Whenever interrupt sourcei is
inactive in an interrupt domain, the corresponding interrupt-pending and interrupt-enable bits
within the domain are read-only zeros, and register target[i] is also read-only zero. If source i is
changed from inactive to an active mode, the interrupt source’s pending and enable bits remain zeros,
unless set automatically for a reason specified later in this section or in Section 4.7, and the defined
subfields of target[i] obtain UNSPECIFIED values.

When a source is configured as Detached, its wire input is ignored; however, the interrupt-pending bit
may still be set by a write to a setip or setipnum register. (This mode can be useful for receiving MSIs,
for example.)

An edge-sensitive source can be configured to recognize an incoming interrupt on either a rising edge
(low-to-high transition) or a falling edge (high-to-low transition). When configured for a falling edge
(mode Edge0), the source is said to be inverted.

A level-sensitive source can be configured to interpret either a high level (1) or a low level (0) on the
wire as the assertion of an interrupt. When configured for a low level (mode LevelO), the source is said
to be inverted.

For an interrupt source that is configured as edge-sensitive or level-sensitive, define
rectified input value = (incoming wire value) XOR (source is inverted).

For a source that is inactive or Detached, the rectified input value is zero.

Any write to a sourcecfg register might (or might not) cause the corresponding interrupt-pending bit
to be set to one if the rectified input value is high (= 1) under the new source mode. A write to a
sourcecfg register will not by itself cause a pending bit to be cleared except when the source is made
inactive. (But see Section 4.7.)

4.53. Machine MSI address configuration (mmsiaddrcfg and mmsiaddrcfgh)

For machine-level interrupt domains, registers mmsiaddrcfg and mmsiaddrcfgh may optionally
provide parameters used to determine the addresses to write outgoing MSIs.

If no interrupt domain of the APLIC supports MSI delivery mode (domaincfg.DM is read-only zero for
all domains), these two registers are not implemented for any domain. Otherwise, they are
implemented for the root domain, and may or may not be implemented for other machine-level
domains. For domains not at machine level, they are never implemented. When a domain does not
implement mmsiaddrcfg and mmsiaddrcfgh, the eight bytes at their locations are simply read-only
zeros like other reserved bytes.
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Registers mmsiaddrcfg and mmsiaddrefgh are potentially writable only for the root domain. For all
other machine-level domains that implement them, they are read-only.

When implemented, mmsiaddrcfg has this format:
bits 31:0 Low Base PPN (WARL)
and mmsiaddrcfgh has this format:

bit 31 L

bits 28:24 HHXS (WARL)

bits 22:20 LHXS (WARL)

bits 18:16 HHXW (WARL)

bits 15:12 LHXW (WARL)

bits 1:0  High Base PPN (WARL)

All other bits of mmsiaddrcfgh are reserved and read as zeros.

Fields High Base PPN from mmsiaddrcfgh and Low Base PPN from mmsiaddrcfg concatenate to form a
44-bit Base PPN (Physical Page Number). The use of this value and fields HHXS (High Hart Index
Shift), LHXS (Low Hart Index Shift), HHXW (High Hart Index Width), and LHXW (Low Hart Index
Width) for determining target addresses for MSIs is described later, in Section 4.9.1.

When mmsiaddrcfg and mmsiaddrcfgh are writable (root domain only), all fields other than L are
WARL. An implementation is free to choose what values are supported. Typically, some bits are
writable while others are read-only constants. In the extreme, the values of all fields may be entirely
constant, fixed by the implementation.

If bit L in mmsiaddrcfgh is set to one, mmsiaddrcfg and mmsiaddrcfgh are locked, and writes to the
registers are ignored, making the registers effectively read-only. When L = 1, the other fields in
mmsiaddrcfg and mmsiaddrefgh may optionally all read as zeros. In that case, if these other fields were
given nonzero values when L was first set in the root domain, their values are retained internally by
the APLIC but become no longer visible by reading mmsiaddrcfg and mmsiaddrcfgh.

Setting mmsiaddrefgh.L to one also locks registers smsiaddrcfg and smsiaddrcfgh described in the
next subsection, if those registers are implemented as well.

For the root domain, L is initialized at system reset to either zero or one, whichever is deemed
appropriate for the specific APLIC implementation. If reset initializes L to one, either the other fields
are hardwired by the APLIC to constants, or the APLIC has a different means, outside of this standard,
for determining the addresses of outgoing MSI writes. In the latter case, the other fields in
mmsiaddrcfg and mmsiaddrefgh may all read as zeros, so registers mmsiaddrcfg and mmsiaddrcfgh
have only read-only values zero and 0x80000000 respectively. Any time mmsiaddrcfg or mmsiaddrcfgh
has a different value (not zero or 9x80000000 respectively), the addresses for outgoing MSI writes
directed to machine level must be derivable from the visible values of these registers, as specified in
Section 4.9.1.

For machine-level domains that are not the root domain, if these registers are implemented, bit L is

always one, and the other fields either are read-only copies of mmsiaddrcfg and mmsiaddrcfgh from
the root domain, or are all zeros.
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Giving software the ability to arbitrarily determine the addresses to which MSIs are sent,
even if allowed only for machine level, permits bypassing physical memory protection
(PMP). For APLICs that support MSI delivery mode, it is recommended, if feasible, that the
APLIC internally hardwire the physical addresses for all target IMSICs, putting those
addresses beyond the reach of software to change. However, not all APLIC
implementations will be able to follow that recommendation.

It is expected that most systems will arrange the physical addresses of target IMSICs in a

simple linear correspondence with hart index numbers. (See Section 3.6.) Registers

y mmsiaddrcfg and mmsiaddrcfgh (along with smsiaddrcfg and smsiaddrcfgh from the

EI next subsection) allow sufficiently trusted machine-level software, early after system reset,

to configure the pattern of physical addresses for target IMSICs and then lock this
configuration against subsequent tampering.

APLICs that actually hardwire the IMSIC addresses internally can implement these
registers simply as read-only with values zero and 8x80000000. Or, if the IMSIC addresses
must be configured by software but the formula is too complex for registers mmsiaddrcfg
and mmsiaddrcfgh to handle, again the registers can be implemented simply as read-only
with values zero and 0x80000000, and a separate, custom mechanism supplied for
configuring the IMSIC addresses.

If an APLIC supports additional forms of reset besides system reset, it is implementation-defined (or
possibly platform-defined) how these other resets may affect mmsiaddrcfg and mmsiaddrcfgh (as well
as smsiaddrcfg and smsiaddrcfgh) in the root domain. However, it must not be possible for
insufficiently privileged software to use a localized reset to unlock these registers by changing bit L
back to zero. For this reason, it is likely that only a complete system reset affects these registers, and
any other resets do not.

454 Supervisor MSI address configuration (smsiaddrcfg and smsiaddrcfgh)

For machine-level interrupt domains, registers smsiaddrcfg and smsiaddrcfgh may optionally
provide parameters used by supervisor-level domains to determine the addresses to write outgoing
MSIs.

Registers smsiaddrcfg and smsiaddrcfgh are implemented by a domain if the domain implements
mmsiaddrcfg and mmsiaddrcfgh and the APLIC has at least one supervisor-level interrupt domain. If
the registers are not implemented, the eight bytes at their locations are simply read-only zeros like
other reserved bytes.

Like mmsiaddrcfg and mmsiaddrcfgh, registers smsiaddrefg and smsiaddrcfgh are potentially
writable only for the root domain. For all other machine-level domains that implement them, they are
read-only.

When implemented, smsiaddrcfg has this format:
bits 31:0 Low Base PPN (WARL)
and smsiaddrcfgh has this format:

bits 22:20 LHXS (WARL)
bits 11:0  High Base PPN (WARL)
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All other bits of smsiaddrcfgh are reserved and read as zeros.

Fields High Base PPN from smsiaddrcfgh and Low Base PPN from smsiaddrcfg concatenate to form a
44-bit Base PPN (Physical Page Number). The use of this value and field LHXS (Low Hart Index Shift)
for determining target addresses for MSIs is described later, in Section 4.9.1.

When smsiaddrefg and smsiaddrcfgh are writable (root domain only), all fields are WARL. An
implementation is free to choose what values are supported, just as for mmsiaddrcfg and
mmsiaddrcfgh.

If register mmsiaddrcfgh of the domain has bit L set to one, then smsiaddrcfg and smsiaddrcfgh are
locked as read-only alongside mmsiaddrcfg and mmsiaddrcfgh. When mmsiaddrefgh.L = 1, if the
readable values of mmsiaddrcfg and mmsiaddrcfgh are zero and 0x80000000 respectively—because
their other fields are hidden—then smsiaddrcfg and smsiaddrcfgh are hidden also and read as zeros.

For the root domain only, if mmsiaddrcfgh.L = 1 and the MSI-address-configuration fields are hidden
(so mmsiaddrcfgh reads as 0x80000000 and registers mmsiaddrcfg, smsiaddrcfg, and smsiaddrcfgh all
read as zeros), then whatever values smsiaddrcfg and smsiaddrefgh had when mmsiaddrcfgh.L was
first set are retained internally by the APLIC, though those values are no longer visible by reading the
registers. Alternatively, if system reset initializes mmsiaddrcfgh.L = 1 in the root domain, and if all
MSI-address-configuration fields never appear as anything other than zeros, then the APLIC
implementation has some other, possibly nonstandard, means for determining the addresses of
outgoing MSIs, as discussed in the previous subsection, Section 4.5.3.

Any time mmsiaddrcfg and mmsiaddrcfgh are not read-only zero and 0x80000000 respectively, the
addresses for outgoing MSI writes directed to supervisor level must be derivable from the visible
values of registers mmsiaddrcfgh, smsiaddrcfg, and smsiaddrcfgh, as specified in Section 4.9.1.

For machine-level domains that are not the root domain, if smsiaddrcfg and smsiaddrcfgh are
implemented and are not read-only zeros, then they are read-only copies of the same registers from
the root domain.

455 Set interrupt-pending bits (setip[0]-setip[31])

Reading or writing setip[k] register reads or potentially modifies the pending bits for interrupt
sources k x32 through k x32+31. For an implemented interrupt source i within that range, the
pending bit for source i corresponds with register bit (i mod 32).

A read of a setip register returns the pending bits of the corresponding interrupt sources. Bit
positions in the result value that do not correspond to an implemented interrupt source (such as bit O
of setip[@]) are zeros.

On a write to a setip register, for each bit that is one in the 32-bit value written, if that bit position
corresponds to an active interrupt source, the interrupt-pending bit for that source is set to one if
possible. See Section 4.7 for exactly when a pending bit may be set by writing to a setip register.

4.5.6. Set interrupt-pending bit by number (setipnum)

If i is an active interrupt source number in the domain, writing 32-bit value i to register setipnum
causes the pending bit for sourcei to be set to one if possible. See Section 4.7 for exactly when a
pending bit may be set by writing to setipnum.

A write to setipnum is ignored if the value written is not an active interrupt source number in the
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domain. A read of setipnum always returns zero.

457, Rectified inputs, clear interrupt-pending bits (in_clrip[0]-in_clrip[31])

Reading register in_clrip[k] returns the rectified input (Section 4.5.2) for interrupt sources k x 32
through k x 32+ 31, while writing in_clrip[k] potentially modifies the pending bits for the same
sources. For an implemented interrupt source i within the specified range, source i corresponds with
register bit (i mod 32).

A read of an in_clrip register returns the rectified input values of the corresponding interrupt
sources. Bit positions in the result value that do not correspond to an implemented interrupt source
(such as bit O of in_clrip[@]) are zeros.

On a write to an in_clrip register, for each bit that is one in the 32-bit value written, if that bit
position corresponds to an active interrupt source, the interrupt-pending bit for that source is cleared
if possible. See Section 4.7 for exactly when a pending bit may be cleared by writing to an in_clrip
register.

45.8. Clear interrupt-pending bit by number (clripnum)

If i is an active interrupt source number in the domain, writing 32-bit value i to register clripnum
causes the pending bit for source i to be cleared if possible. See Section 4.7 for exactly when a pending
bit may be cleared by writing to cLripnum.

A write to clripnum is ignored if the value written is not an active interrupt source number in the
domain. A read of cLripnum always returns zero.

459. Set interrupt-enable bits (setie[0]-setie[31])

Reading or writing register setie[k] reads or potentially modifies the enable bits for interrupt
sources k x 32 through k x32+31. For an implemented interrupt source i within that range, the
enable bit for source i corresponds with register bit i mod 32.

A read of a setie register returns the enable bits of the corresponding interrupt sources. Bit positions
in the result value that do not correspond to an implemented interrupt source (such as bit O of
setie[0]) are zeros.

On a write to a setie register, for each bit that is one in the 32-bit value written, if that bit position
corresponds to an active interrupt source, the interrupt-enable bit for that source is set to one.

4.5710. Set interrupt-enable bit by number (setienum)

If i is an active interrupt source number in the domain, writing 32-bit value i to register setienum
causes the enable bit for source i to be set to one.

A write to setienum is ignored if the value written is not an active interrupt source number in the
domain. A read of setienum always returns zero.

4.511. Clear interrupt-enable bits (clrie[@]-clrie[31])

Writing register clrie[k] potentially modifies the enable bits for interrupt sources k x 32 through
k x32+31 For an implemented interrupt source i within that range, the enable bit for source i
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corresponds with register bit i mod 32.

On a write to a clrie register, for each bit that is one in the 32-bit value written, the interrupt-enable
bit for that source is cleared.

Aread of a clrie register always returns zero.

45712, Clear interrupt-enable bit by number (clrienum)

If i is an active interrupt source number in the domain, writing 32-bit value i to register clrienum
causes the enable bit for source i to be cleared.

A write to clrienum is ignored if the value written is not an active interrupt source number in the
domain. A read of clrienum always returns zero.

4513, Set interrupt-pending bit by number, little-endian (setipnum_le)

Register setipnum_le acts identically to setipnum except that byte order is always little-endian, as
though field BE (Big-Endian) of register domaincfg is zero.

For systems that are big-endian-only, with domaincfg.BE hardwired to one, setipnum_le need not be
implemented, in which case the four bytes at this offset are simply read-only zeros like other reserved
bytes.

setipnum_le may be used as a write port for MSIs.

4.514. Set interrupt-pending bit by number, big-endian (setipnum_be)

Register setipnum_be acts identically to setipnum except that byte order is always big-endian, as
though field BE (Big-Endian) of register domaincfg is one.

For systems that are little-endian-only, with domaincfg.BE hardwired to zero, setipnum_be need not
be implemented, in which case the four bytes at this offset are simply read-only zeros like other
reserved bytes.

For systems built mainly for big-endian byte order, setipnum_be may be useful as a write port for
MSIs from some devices.

4515. Generate MSI (genmsi)

When the interrupt domain is configured in MSI delivery mode (domaincfg.DM = 1), register genmsi
can be used to cause an extempore MSI to be sent from the APLIC to a hart. The main purpose for this
function is to assist in establishing a temporary known ordering between a hart’s writes to the APLIC’s
registers and the transmission of MSIs from the APLIC to the hart, as explained later in Section 4.9.3.

For other purposes, sending an MSI to a hart is usually better done by writing directly to
| y the hart’s IMSIC, rather than employing an APLIC as an intermediary. Use of the genms1i
register should be minimized to avoid it becoming a bottleneck.

Register genms1i has this format:

bits 31:18 Hart Index (WLRL)
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bits12  Busy (read-only)
bits 10:0 EIID (WARL)

All other register bits are reserved and read as zeros.

The Busy bit is ordinarily zero (false), but a write to genmsi causes Busy to become one (true),
indicating an extempore MSI is pending. The Hart Index field specifies the destination hart, and EIID
(External Interrupt Identity) specifies the data value for the MSI. Fields Hart Index and EIID have the
same formats and behavior as in a target register, documented in the next subsection, Section 4.5.16.
For a machine-level interrupt domain, an extempore MSI is sent to the destination hart at machine
level, and for a supervisor-level interrupt domain, an extempore MSI is sent to the destination hart at
supervisor level.

A pending extempore MSI should be sent by the APLIC with minimal delay. Once it has left the APLIC
and the APLIC is able to accept a new write to genmsi for another extempore MSI, Busy reverts to false.
All MSIs previously sent from this APLIC to the same hart must be visible at the hart’s IMSIC before
the extempore MSI becomes visible at the hart’s IMSIC.

While Busy is true, writes to genmsi are ignored.

Extempore MSIs are not affected by the IE bit of the domain’s domaincfg register. An extempore MSI
is sent even if domaincfg.IE = O.

When the interrupt domain is configured in direct delivery mode (domaincfg.DM = O), register genmsi
is read-only zero.

4.576. Interrupt targets (target[1]-target[1023])

If interrupt source i is inactive in this domain, register target[i] is read-only zero. If source i is
active, target[i] determines the hart to which interrupts from the source are signaled or forwarded.
The exact interpretation of target[i] depends on the delivery mode configured by field DM of
register domaincfg.

If domaincfg.DM is changed, the target registers for all active interrupt sources within the domain
obtain UNSPECIFIED values in all fields defined for the new delivery mode.

4.516.1. Active source, direct delivery mode

For an active interrupt source i, if the domain is configured in direct delivery mode (domaincfg.DM =
0), then register target[i] has this format:

bits 31:18 Hart Index (WLRL)
bits 7:0  IPRIO (WARL)

All other register bits are reserved and read as zeros.

Hart Index is a WLRL field that specifies the hart to which interrupts from this source will be
delivered.

Field IPRIO (Interrupt Priority) specifies the priority number for the interrupt source. This field is a
WARL unsigned integer of IPRIOLEN bits, where IPRIOLEN is a constant parameter for the given
APLIC, in the range of 1 to 8. Only values 1 through 2PROLEN _ 1 are allowed for IPRIO, not zero. A write
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to a target register sets IPRIO equal to bits I[PRIOLEN —1).0 of the 32-bit value written, unless those
bits are all zeros, in which case the priority number is set to 1 instead. (If IPRIOLEN = 1, these rules
cause IPRIO to be effectively read-only with value 1.)

Smaller priority numbers convey higher priority. When interrupt sources have equal priority number,
the source with the lowest identity number has the highest priority.

y Interrupt priorities are encoded as integers, with smaller numbers denoting higher
EI priority, to match the encoding of priorities by IMSICs.

4516.2. Active source, MSI delivery mode

For an active interrupt source i, if the domain is configured in MSI delivery mode (domaincfg.DM = 1),
then register target[i] has this format:

bits 31:18 Hart Index (WLRL)
bits 17:12 Guest Index (WLRL)
bits 10:0 EIID (WARL)

Bit 11 is reserved and reads as zero.
The Hart Index field specifies the hart to which interrupts from this source will be forwarded.

If the interrupt domain is at supervisor level and the domain’s harts implement the H extension, then
Guest Index is a WLRL field that must be able to hold all integer values in the range O through
GEILEN. (Parameter GEILEN is defined by the H extension.) Otherwise, field Guest Index is read-only
zero. For a supervisor-level interrupt domain, a nonzero Guest Index is the number of the target hart’s
guest interrupt file to which MSIs will be sent. When Guest Index is zero, MSIs from a supervisor-level
domain are forwarded to the target hart at supervisor level. For a machine-level domain, Guest Index
is read-only zero, and MSIs are forwarded to a target hart always at machine level.

Together, fields Hart Index and Guest Index of register target[i] determine the address for MSls
forwarded for interrupt source i. The remaining field EIID (External Interrupt Identity) specifies the
data value for those MSIs, eventually becoming the minor identity for an external interrupt at the
target hart.

If the interrupt domain’s harts have IMSIC interrupt files that implement N distinct interrupt
identities (Section 3.1), then EIID is a k-bit unsigned integer field, where [log,N1= k <11. EIID is thus
able to hold at least values O through N. A write to a target register sets the k implemented bits of
EIID equal to the least-significant k bits of the 32-bit value written.

4 0. Reset

Upon reset of an APLIC, all its state becomes valid and consistent but otherwise UNSPECIFIED, except
for:

- the domaincfg register of each interrupt domain (Section 4.5.1);

- possibly the MSI address configuration registers of machine-level interrupt domains (Section 4.5.3
and Section 4.5.4); and

- the Busy bit of each interrupt domain’s genmsi register, if it exists (Section 4.5.15).
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4.77. Precise effects on interrupt-pending bits

An attempt to set or clear an interrupt source’s pending bit by writing to a register in the interrupt
domain’s control region may or may not be successful, depending on the corresponding source mode,
the interrupt domain’s delivery mode, and the state of the source’s rectified input value (defined in
Section 4.5.2). The following enumerates all the circumstances when a pending bit is set or cleared for
a given source mode.

If the source mode is Detached:

- The pending bit is set to one only by a relevant write to a setip or setipnum register.

- The pending bit is cleared when the interrupt is claimed at the APLIC or forwarded by MSI, or by a
relevant write to an in_clrip register or to clripnum.

If the source mode is Edgel or EdgeO:

- The pending bit is set to one by a low-to-high transition in the rectified input value, or by a
relevant write to a setip or setipnum register.

- The pending bit is cleared when the interrupt is claimed at the APLIC or forwarded by MSI, or by a
relevant write to an in_clrip register or to clripnum.

If the source mode is Levell or LevelO and the interrupt domain is configured in direct delivery mode
(domaincfg.DM = 0):

- The pending bit is set to one whenever the rectified input value is high. The pending bit cannot be
set by a write to a setip or setipnum register.

- The pending bit is cleared whenever the rectified input value is low. The pending bit is not cleared
by a claim of the interrupt at the APLIC, nor can it be cleared by a write to an in_clrip register or
to cLripnum.

If the source mode is Levell or LevelO and the interrupt domain is configured in MSI delivery mode
(domaincfg.DM = 1):

- The pending bit is set to one by a low-to-high transition in the rectified input value. The pending
bit may also be set by a relevant write to a setip or setipnum register when the rectified input
value is high, but not when the rectified input value is low.

- The pending bit is cleared whenever the rectified input value is low, when the interrupt is

forwarded by MSI, or by a relevant write to an in_clrip register or to clripnum.

When an interrupt domain is in direct delivery mode, the pending bit for a level-sensitive

y source is always just a copy of the rectified input value. Even in MSI delivery mode, the

EI pending bit for a level-sensitive source is never set (= 1) when the rectified input value is
low.

In addition to the rules above, a write to a sourcecfg register can cause the source’s interrupt-pending
bit to be set to one, as specified in Section 4.5.2.

4 8. Interrupt delivery directly by the APLIC

When an interrupt domain is in direct delivery mode (domaincfg.DM = O), interrupts are delivered
from the APLIC to harts by a unique signal to each hart, usually a dedicated wire. In this case, the
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domain’s memory-mapped control region contains at the end an array of interrupt delivery control
(IDC) structures, one IDC structure per potential hart index. The first IDC structure is for the domain’s
hart with index O; the second is for the hart with index 1; etc.

4.8.1. Interrupt delivery control (IDC) structure

Each IDC structure is 32 bytes (naturally aligned to a 32-byte address boundary) and has these defined
registers:

offset size  register name
0x00 4 bytes idelivery
0x04 4 bytes iforce

0x08 4 bytes ithreshold
0x18 4 bytes topi

0x1C 4 bytes claimi

If the IDC structure is for a hart index number that is not valid for any actual hart in the interrupt
domain, then these registers may optionally be all read-only zeros. Otherwise, the registers are
documented individually below.

A particular APLIC might be built to support up to some maximum number of harts
without complete knowledge of the set of hart index numbers the system will employ in

Dy each interrupt domain. In that case, for the hart index numbers that are unused, the
APLIC may have IDC structures that are functional within the APLIC (not read-only zeros)
but simply left unconnected to any physical harts.

4811 Interrupt delivery enable (idelivery)

idelivery is a WARL register that controls whether interrupts that are targeted to the corresponding
hart are delivered to the hart so they appear as a pending interrupt in the hart's mip CSR. Only two
values are currently defined for idelivery:

O = interrupt delivery is disabled

1 = interrupt delivery is enabled

The idelivery register affects only whether interrupts are delivered to the relevant hart. It has no
effect on any other APLIC state, including IDC registers topi and claimi.

If an IDC structure is for a nonexistent hart (i.e., corresponding to a hart index number that is not
valid for any actual hart in the interrupt domain), setting idelivery to 1 does not deliver interrupts to
any hart.

4.812. Interrupt force (iforce)

iforce is a WARL register useful for testing. Only values O and 1 are allowed. Setting iforce = 1 forces
an interrupt to be asserted to the corresponding hart whenever both the IE field of domaincfg is one
and interrupt delivery is enabled to the hart by the idelivery register. When topi is zero, this creates
a spurious external interrupt for the hart.

When a read of register claimi returns an interrupt identity of zero (indicating a spurious interrupt),
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iforce is automatically cleared to zero.

4.813. Interrupt enable threshold (ithreshold)

ithreshold is a WLRL register that determines the minimum interrupt priority (maximum priority
number) for an interrupt to be signaled to the corresponding hart. Register ithreshold implements
exactly IPRIOLEN bits, and thus is capable of holding all priority numbers from O to 2PRIOLEN _ 1,

When ithreshold is a nonzero value P, interrupt sources with priority numbers P and higher do not
contribute to signaling interrupts to the hart, as though those sources were not enabled, regardless of
the settings of their interrupt-enable bits. When ithreshold is zero, all enabled interrupt sources can
contribute to signaling interrupts to the hart.

4.81.4. Top interrupt (topi)

topi is a read-only register whose value indicates the current highest-priority pending-and-enabled
interrupt targeted to this hart that also exceeds the priority threshold specified by ithreshold, if not
Zero.

A read of topi returns zero either if no interrupt that is targeted to this hart is both pending and
enabled, or if ithreshold is not zero and no pending-and-enabled interrupt targeted to this hart has a
priority number less than the value of ithreshold. Otherwise, the value returned from a read of topi
has this format:

bits 25:16 Interrupt identity (source number)

bits 7:0 Interrupt priority

All other bit positions are zeros.

The interrupt identity reported in topi is the minor identity for an external interrupt at the target
hart.

The value of topi is not affected by domaincfg.IE or by idelivery.

Writes to topi are ignored.

4.815. Claim top interrupt (claimi)

Register claimi has the same value as topi. When this value is not zero, reading claimi has the
simultaneous side effect of clearing the pending bit for the reported interrupt identity, if possible. See
Section 4.7 for exactly when the pending bit is cleared by a read of claimi.

A read from claimi that returns a value of zero has the simultaneous side effect of setting the iforce
register to zero.

Writes to claimi are ignored.

4.82. Interrupt delivery and handling

When an interrupt domain is configured so the APLIC delivers interrupts directly to harts (field DM of
domaincfg is zero), the APLIC supplies the external interrupt signals, at the domain’s privilege level, for
all harts of the domain, so long as one of the following is true: (a) the harts do not have IMSICs, or (b)
the eidelivery registers of the relevant IMSIC interrupt files are set to 0x40000000 (Section 3.8.1). For
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a machine-level domain, the interrupt signals from the APLIC appear as bit MEIP (Machine External
Interrupt-Pending) in each hart’s mip CSR. For a supervisor-level domain, the interrupt signals appear
as bit SEIP (Supervisor External Interrupt-Pending) in each hart’s mip and sip CSRs. Each interrupt
signal may be arbitrarily delayed traveling from the APLIC to the proper hart.

At the APLIC, each interrupt signal to a hart is derived from the IE field of register domaincfg and the
current state of the hart’s IDC structure in the memory-mapped control region for the domain. If
either domaincfg.IE = O or interrupt delivery to the hart is disabled by the idelivery register
(idelivery = 0), the interrupt signal is held de-asserted. When domaincfg.IE = 1 and interrupt
delivery is enabled (idelivery = 1), the interrupt signal is asserted whenever either register iforce or
topi is not zero.

Due to likely delay in the communication between an APLIC and a hart, it may happen that an
external interrupt trap is taken, yet no interrupt is pending and enabled for the hart when a read of the
hart's claimi register actually occurs. In such a circumstance, the interrupt identity reported by the
claim will be zero, resulting in an apparent spurious interrupt from the APLIC. Portable software must
be prepared for the possibility of spurious interrupts at the APLIC, which can safely be ignored and
should be rare. For testing purposes, a spurious interrupt can be triggered for a hart by setting an IDC
structure’s iforce register to 1.

A trap handler solely for external interrupts via an APLIC could be written roughly as follows:

save processor registers

i = read register claimi from the hart’s IDC structure at the APLIC
1=1i>>16

call the interrupt handler for external interrupt i (minor identity)
restore processor registers

return from trap

To account for spurious interrupts, this pseudocode assumes there is an interrupt handler for "external
interrupt 0" which does nothing.

49. Interrupt forwarding by MSls

In MSI delivery mode (domaincfg.DM = 1), an interrupt domain forwards interrupts to target harts by
MSIs.

An MSI is sent for a specific source only when the source’s corresponding pending and enable bits are
both one and the IE field of register domaincfg is also one. If and when an MSI is sent, the source’s
interrupt pending bit is cleared.

491. Addresses and data for outgoing MSils

To forward interrupts by MSIs, an APLIC must know the MSI target address for each hart. For any
given system, these addresses are fixed and should be hardwired into the APLIC if possible. However,
some APLIC implementations may require that software supply the MSI target addresses. In that case,
the root domain’s registers mmsiaddrcfg, mmsiaddrcfgh, smsiaddrcfg, and smsiaddrcfgh (Section
45.3 and Section 4.54) may be used to configure the MSI addresses for all interrupt domains.
Alternatively MSI addresses may be configured by some custom means outside this standard. If MSI
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target addresses must be configured by software, this should be done only from a suitably privileged
execution mode, typically just once, early after system reset.

For a machine-level interrupt domain, if MSI target addresses are determined by mmsiaddrcfg and
mmsiaddrcfgh, then the address for an outgoing MSI for interrupt source i is computed from those
registers and from the Hart Index field of register target[i] as follows:

g = (Hart Index>>LHXW) & (2" - 1)
h = Hart Index & (2" -1)
MSI address = ( Base PPN | (g<<(HHXS+12)) | (h<<LHXS) )<<12

Here, <<k and >>k represent shifting left and right by k bits, an ampersand (&) represents bitwise
logical AND, and a vertical bar (|) represents bitwise logical OR. Assuming the recommendations of
Section 3.6 are followed for the arrangement of IMSIC interrupt files in the machine’s address space,
value ¢ is intended to be the number of a hart group (always zero if HHXW = 0), while h is the number
of the target hart within that group. Represented in the terms of Section 3.6, HHXW = j, LHXW = k,
HHXS = E —24, LHXS = C —12, and Base PPN = A>>12.

For a supervisor-level domain, if MSI target addresses are determined by the root domain’s
configuration registers (smsiaddrcfg and others), then to construct the address for an outgoing MSI
for interrupt source i, the Hart Index from register target[i] must first be converted into the index
number that machine-level domains use for the same hart. (These numbers are often the same, but
they may not be.) The address for the MSI is then computed using this machine-level hart index
together with the Base PPN and LHXS values from smsiaddrcfg and smsiaddrefgh, the other fields
(HHXW, LHXW, and HHXS) from mmsiaddrcfgh, and the Guest Index from target[i], as follows:

¢ = (machine-level hart index>>LHXW) & (27" - 1)
h = machine-level hart index & (2™ - 1)

MSI address = (Base PPN | (g<<(HHXS + 12)) | (h<<LHXS) | Guest Index)<<12

Represented in the terms of Section 3.6, HHXW = j, LHXW = k, HHXS = E-24, LHXS = D-12, and
Base PPN = B>>12.

The data for an outgoing MSI write is taken from the EIID field of target[i], zero-extended to 32 bits.
An MST’s 32-bit data is always written in little-endian byte order, regardless of the BE field of the
domain’s domaincfg register.

4.972. Special consideration for level-sensitive interrupt sources

As soon as a level-sensitive interrupt is forwarded by MSI, the APLIC clears the pending bit for the
interrupt source and then ignores the source until its incoming signal has been de-asserted. Clearing
the pending bit when an MSI is sent is obviously necessary to avoid a constant stream of repeated
MSIs from the APLIC to the target hart for the same interrupt. However, after an interrupt service
routine has addressed a cause found for the interrupt, the incoming interrupt wire might remain
asserted at the APLIC for another reason, despite that the interrupt’s pending bit at the APLIC was
cleared and will remain so without intervention from software. If the interrupt service routine then
exits without further action, a continued interrupt from this source might never receive attention.

To avoid dropping interrupts in this way, the interrupt service routine for a level-sensitive interrupt
may do one of the following before exiting:
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The first option is to test whether the interrupt wire into the APLIC is still asserted, by reading the
appropriate in_clrip register at the APLIC. If the incoming interrupt is still asserted, the body of the
interrupt service routine may be repeated to find and address an additional interrupt cause before the
source wire is tested again. Once the incoming wire is observed not asserted, the interrupt service
routine may safely exit, as any new interrupt assertion will cause the pending bit to become set and a
new MSI sent to the hart.

A second option is for the interrupt service routine to write the APLIC’s source identity number for the
interrupt to the domain’s setipnum register just before exiting. This will cause the interrupt’s pending
bit to be set to one again if the source is still asserting an interrupt, but not if the source is not asserting
an interrupt.

4.9.3. Synchronizing interactions between a hart and the APLIC

When an APLIC sends an MSI to a hart, there is an unspecified travel delay before the MSI is observed
at the hart's IMSIC. Consequently, after an APLIC’s configuration is changed by writing to an APLIC
register, harts may continue to see MSIs arrive from the APLIC from the time before the write, for an
unspecified amount of time.

It is sometimes necessary to know when no more of these late MSIs can arrive. For example, if a hart
will be turned off ("powered down"), all interrupts directed to it must be redirected to other harts,
which may involve reconfiguring one or more APLICs. Even after the APLICs are reconfigured, the
hart still cannot be safely turned off until it is known no more MSIs are destined for it.

The genmsi register (Section 4.5.15) exists to allow software to determine when all earlier MSIs have
arrived at a hart. To use genmsi for this purpose, software can dedicate one external interrupt identity
at each hart's IMSIC interrupt file solely for APLIC synchronization. Assuming there are multiple
harts, an APLIC’s genmsi register should also be protected by a standard mutual-exclusion lock. The
following sequence can then be used to synchronize between an APLIC and a specific hart:

1 At the hart's IMSIC, clear the pending bit for the specific minor interrupt identity i used
exclusively for APLIC synchronization.

Acquire the shared lock for the APLIC’s genmsi register.

Write genmsi to generate an MSI to the hart with interrupt identity i.

Repeatedly read genmsi until bit Busy is false.

Release the lock for genmsi.

S o

Repeatedly read the pending bit for minor interrupt identity i at the hart’s IMSIC until it is found
set.

The loops of steps 4 and 6 are expected normally to succeed very quickly, often on the first or second
attempt. When this sequence is complete, all earlier MSIs from the APLIC must also have arrived at
the hart’s IMSIC.
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Chapter 5. Interrupts for Machine and
Supervisor Levels

The RISC-V Privileged Architecture defines several major identities in the range 0-15 for interrupts at
a hart, including machine-level and supervisor-level external interrupts (numbers 11 and 9), machine-
and supervisor-level timer interrupts (7 and 5), and machine- and supervisor-level software interrupts
(3 and 1). Beyond these major labels, the external interrupts at each privilege level are given secondary,
minor identities by an external interrupt controller such as an APLIC or IMSIC, distinguishing
interrupts from different devices or causes. These minor identities for external interrupts were
covered in Chapter 3 and Chapter 4 specifying the IMSIC and APLIC components.

The Advanced Interrupt Architecture reserves another 24 major interrupt identities for additional
local interrupts that arise within or in close proximity to the hart, often for reporting errors. A
mechanism is also defined that allows software to selectively delegate both local and custom
interrupts to the next less-privileged level, or in some cases to inject entirely virtual interrupts into a
less-privileged level.

Lastly, an optional facility lets software assign priorities to major interrupts (such as the timer and
software interrupts, and any local interrupts) such that they may mix with the priorities set for
external interrupts by a PLIC, APLIC, or IMSIC.

5.1. Defined major interrupts and default priorities

Table 8 lists all the major interrupts currently defined for RISC-V harts that conform to this Advanced
Interrupt Architecture (AIA). Besides the major interrupts specified by the RISC-V Privileged
Architecture, the AIA adds interrupt numbers 35 and 43 as local interrupts for low- and high-priority
RAS events.

Table 8. The standard major interrupt codes, listed in default priority order

Default priority order Major interrupt numbers Description

Highest 43 Local interrupt: high-priority RAS event
11,3,7 Machine interrupts: external, software, timer
9,15 Supervisor interrupts: external, software, timer
12 Supervisor guest external interrupt
10,2, 6 VS interrupts: external, software, timer
13 Local interrupt: counter overflow

Lowest 35 Local interrupt: low-priority RAS event

The default priority order in Table 8 is applicable only when multiple major interrupts would trap to
the same privilege mode. Interrupt traps to a more-privileged mode always have priority over traps to
a less-privileged mode.

Table 9. Categorization of current and future major interrupts.
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Major interrupt numbers Category

0-12 Not Local interrupts Assigned by the

13-15 Local interrupts Privileged Architecture
16-23 Local interrupts

24-31 Designated for custom use

32-47 Local interrupts

>48 Designated for custom use

Of the major interrupts controlled by the base Privileged Architecture (numbers 0-15), the AIA
categorizes the counter overflow interrupt (code 13) as a local interrupt. It is assumed furthermore that
any future definitions for reserved interrupt numbers 14 and 15 will also be local interrupts. Besides
the two RAS interrupts, the AIA additionally reserves major interrupt numbers in the ranges 16-23 and
32-47 for standard local interrupts that other RISC-V extensions may define. The remaining major
interrupts allocated to the Privileged Architecture, numbers 0-12, are categorized as not local
interrupts. Taken altogether, Table 9 summarizes the AIA’s categorization of all major interrupt
identities.

RAS is an abbreviation for Reliability, Availability, and Serviceability. Typically a RAS event corresponds
to the detection of corrupted data (e.g. as a result of a soft or hard error) and/or the use of such data.
The high-priority RAS event local interrupt may, for example, signal an occurrence of an urgent
uncorrected error that needs action from a RAS error handler to contain the error and, if possible, to
recover from it. The low-priority RAS event local interrupt may, for example, be triggered by non-
urgent deferred or corrected errors.

The AIA does not itself require that detected RAS events trigger one of the two local interrupts defined
for this purpose. Systems are free to report any or all RAS events another way, such as by external
interrupts routed through an APLIC or IMSIGC, or by custom interrupts.

In all likelihood, the method for reporting a particular RAS event will depend on where in
the system the event is detected. The AIA defines local interrupt numbers for RAS events so
systems have a standard way to report such events when detected locally at a hart, without

| ﬁ depending solely on external or custom interrupts.

As always, platform standards may further constrain how a system reports events, whether
RAS events or other.

For the standard local interrupts not defined by the base RISC-V Privileged Architecture
(numbers 16-23 and 32-47), the current plan is to assign default priorities in the order
shown in this table:
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/4

Highest 47, 23, 46, 45, 22, 44,
48, 21,42, 41, 20, 40

11,37 Machine interrupts: external, software, timer
915 Supervisor interrupts: external, software, timer
12 Supervisor guest external interrupt

10,2, 6 VS interrupts: external, software, timer

13 Counter overflow interrupt

Lowest 39,19, 38, 37, 18, 36,
35,17, 34, 33, 16, 32

Among interrupts 16-23, a higher interrupt number conveys higher default priority, and
likewise for interrupts 32-47. These two groups are interleaved together in the complete
order, and the Privileged Architecture’s standard interrupts, 0-15, are inserted into the
middle of the sequence. This proposed default priority order is arranged so that interrupts
0-31 can potentially be an adequate subset on their own for 32-bit RISC-V systems.

In actuality, future RISC-V extensions may or may not stick to this plan for the default
priority order of interrupts they define.

In addition to the existing major interrupts of Table 8, the following local interrupts are
tentatively proposed, listed in order of decreasing default priority:

23 Bus or system error
45 Per-core high-power or over-temperature event

17 Debug/trace interrupt

These local interrupts are expected to be specified by other RISC-V extensions. Be aware,
this list is not final and may change as the relevant extensions are developed and ratified.

If a future version of the RISC-V Privileged Architecture defines interrupt O, the Advanced
Interrupt Architecture needs it to have a default priority lower than certain external
interrupts. See Section 5.2.2 and Section 5.4.2 on CSRs mtopi and stop1.

Interrupt numbers 24-31 and 48 and higher are all designated for custom use. If a hart implements
any custom interrupts, their positions in the default priority order must be documented for the hart.

/4

While many of the standard registers such as mip and mie have space for major interrupts
only in the range 0-63, custom interrupts with numbers 64 and above are conceivable with
added custom support. CSRs mtopi (Section 5.2.2) and stopi (Section 5.4.2) allow for
major interrupt numbers potentially as large as 4095.

When a hart supports the arbitrary configuration of interrupt priorities by software (described in later
sections), the default priority order still remains relevant for breaking ties when two interrupt sources
are assigned the same priority number.

52. Interrupts at machine level

For whichever standard local interrupts are implemented, the corresponding bits in CSRs mip and mie
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must be writable, and the corresponding bits in mideleg (if that CSR exists because supervisor mode is
implemented) must each either be writable or be hardwired to zero. An occurrence of a local interrupt
event causes the interrupt-pending bit in mip to be set to one. This bit then remains set until cleared
by software.

As established by the base RISC-V Privileged Architecture, an interrupt traps to M-mode whenever all
of the following are true: (a) either the current privilege mode is M-mode and machine-level interrupts
are enabled by the MIE bit of mstatus, or the current privilege mode has less privilege than M-mode;
(b) matching bits in mip and mie are both one; and (c) if mideleg exists, the corresponding bit in
mideleg is zero.

When multiple interrupt causes are ready to trigger simultaneously, the interrupt taken first is
determined by priority order, which may be the default order specified in the previous section Section
5.1, or may be a modified order configured by software.

5.2.1. Configuring priorities of major interrupts at machine level

The machine-level priorities for major interrupts 0-63 may be configured by a set of registers accessed
through the miselect and mireg CSRs introduced in Chapter 2. When XLEN = 32, sixteen of these
registers are defined, listed below with their miselect addresses:

0x30 ipriod
0x31 ipriol

Ox3F ipriolb
Each register controls the priorities of four interrupts, with one 8-bit byte per interrupt. For a number

k in the range 0-15, register ‘iprio'k controls the priorities of interrupts k x4 through k x4+3,
formatted as follows:

bits 7:0 Priority number for interrupt kx4
bits 15:8 Priority number for interrupt kx4+1
bits 23:16 Priority number for interrupt k x4+2

bits 31:24 Priority number for interrupt kx4+3

When XLEN = 64, only the even-numbered registers exist:

0x30 iprio@
0x32 iprio2

0x3E ipriol4

Each register controls the priorities of eight interrupts. For even k in the range O-14, register ‘iprio’k
controls the priorities of interrupts k x 4 through k x 4 + 7, formatted as follows:

bits 7:0 Priority number for interrupt k x4

bits 15:8 Priority number for interrupt kx4+1
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bits 23:16 Priority number for interrupt kx4+2
bits 31:24 Priority number for interrupt k x4+3
bits 39:32 Priority number for interrupt k x4+4
bits 47:40 Priority number for interrupt kx4+5
bits 55:48 Priority number for interrupt k x4+6

bits 63:56 Priority number for interrupt kx4+7

When XLEN = 64 and miselect is an odd value in the range 0x31-0x3F, attempting to access mireg
raises an illegal instruction exception.

The valid registers iprio8-iprio15 are known collectively as the iprio array for machine level.

The width of priority numbers for external interrupts is IPRIOLEN. This parameter is affected by the
main external interrupt controller for the hart, whether a PLIC, APLIC, or IMSIC.

For an APLIC, IPRIOLEN is in the range 1-8 as specified in Chapter 4 on the APLIC.

For an IMSIC, IPRIOLEN is 6, 7, or 8. IPRIOLEN may be 6 only if the number of external interrupt
identities implemented by the IMSIC is 63. IPRIOLEN may be 7 only if the number of external
interrupt identities implemented by the IMSIC is no more than 127. IPRIOLEN may be 8 for any
IMSIC, regardless of the number of external interrupt identities implemented.

Each byte of a valid ipriok register is either a read-only zero or a WARL unsigned integer field
implementing exactly IPRIOLEN bits. For a given interrupt number, if the corresponding bit in mie is
read-only zero, then the interrupt’s priority number in the iprio array must be read-only zero as well.
The priority number for a machine-level external interrupt (bits 31:24 of register iprio2) must also be
read-only zero. Aside from these two restrictions, implementations may freely choose which priority
number fields are settable and which are read-only zeros. If all bytes in the iprio array are read-only
zeros, priorities can be configured only for external interrupts, not for any other interrupts.

Df Platform standards may require that priorities be configurable for certain interrupt

causes.

The iprio array accessed via miselect and mireg affects the prioritization of interrupts only when
they trap to M-mode. When an interrupt’s priority number in the array is zero (either read-only zero
or set to zero), its priority is the default order from Section 5.1. Setting an interrupt’s priority number
instead to a nonzero value P gives that interrupt nominally the same priority as a machine-level
external interrupt with priority number P. For a major interrupt that defaults to a higher priority than
machine external interrupts, setting its priority number to a nonzero value lowers its priority. For a
major interrupt that defaults to a lower priority than machine external interrupts, setting its priority
number to a nonzero value raises its priority. When two interrupt causes have been assigned the same
nominal priority, ties are broken by the default priority order. Table 10 summarizes the effect of
priority numbers on interrupt priority.

When a hart has an IMSIC supporting more than 255 minor identities for external

y interrupts, the only non-default priorities that can be configured for other interrupts are

EI those corresponding to external interrupt identities 1-255, not those of identities 256 or
higher.

Table 10. Effect of the machine-level iprio array on the priorities of interrupts taken in M-mode. For interrupts
with the same priority number, the default order of Section 5.1 prevails.
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Interrupts with default ~ Machine external Interrupts with default
priority above machine interrupts priority below machine
external interrupts external interrupts
Priority Priority number in Priority number from Priority number in
order machine-level iprio interrupt controller machine-level iprio
array (APLIC or IMSIC) array
Highest 0
1 1 1
2 2 2
254 254 254
255 255 255
256 and above (IMSIC
only)
Lowest 0

Implementing the priority configurability of this section requires that a RISC-V hart’s
external interrupt controller communicate to the hart not only the existence of a pending-
and-enabled external interrupt but also the interrupt’s priority number. Typically this
implies that the width of the connection for signaling an external interrupt to the hart is
y not just a single wire as usual but now IPRIOLEN + 1 wires.

E’ It is expected that many systems will forego priority configurability of major interrupts and
simply have the array be all read-only zeros. Systems that need this priority configurability
can try to arrange for each hart’s external interrupt controller to be relatively close to the
hart, by, for example, limiting the system to at most a few small cores connected to an
APLIC, or alternatively by giving every hart its own IMSIC.

If supported, setting the priority number for supervisor-level external interrupts (bits 15:8 of iprio2)
to a nonzero value P has the effect of giving the entire category of supervisor external interrupts
nominally the same priority as a machine external interrupt with priority number p. But note that this
applies only to the case when supervisor external interrupts trap to M-mode.

(Because supervisor guest external interrupts and VS-level external interrupts are required to be
delegated to supervisor level when the H extension is implemented, the machine-level priority
numbers for these interrupts are always ignored and should be read-only zeros.)

If the system has an original PLIC for backward compatibility with older software, reset should
initialize the machine-level iprio array to all zeros.

52.2. Machine top interrupt CSR (mtop1)

Machine-level CSR mtopi is read-only with width MXLEN. A read of mtop1i returns information about
the highest-priority pending-and-enabled interrupt for machine level, in this format:

bits 27:16 IID
bits 7:0  IPRIO

All other bits of mtop1i are reserved and read as zeros.
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The value of mtopi is zero unless there is an interrupt pending in mip and enabled in mie that is not
delegated to a less-privileged level. When there is a pending-and-enabled major interrupt for machine
level, field 1ID (Interrupt Identity) is the major identity number of the highest-priority interrupt, and
field IPRIO indicates its priority.

If all bytes of the machine-level iprio array are read-only zeros, a simplified implementation of field
IPRIO is allowed in which its value is always 1 whenever mtop1 is not zero.

Otherwise, when mtop1 is not zero, if the priority number for the reported interrupt is in the range 1 to
255, IPRIO is simply that number. If the interrupt’s priority number is zero or greater than 255, IPRIO
is set to either O or 255 as follows:

- If the interrupt’s priority number is greater than 255, then IPRIO is 255 (lowest representable
priority).

- If the interrupt’s priority number is zero and interrupt number IID has a default priority higher
than a machine external interrupt, then IPRIO is O (highest priority).

- If the interrupt’s priority number is zero and interrupt number IID has a default priority lower
than a machine external interrupt, then IPRIO is 255 (lowest representable priority).

To ensure that mtop1 is never zero when an interrupt is pending and enabled for machine
| y level, if major interrupt O can trap to M-mode, it must have a default priority lower than a
machine external interrupt.

The value of mtopi is not affected by the global interrupt enable MIE in CSR mstatus.

The RISC-V Privileged Architecture ensures that, when the value of mtopi is not zero, a trap is taken to
M-mode for the interrupt indicated by field IID if either the current privilege mode is M and
mstatus.MIE is one, or the current privilege mode has less privilege than M-mode. The trap itself does
not cause the value of mtopi to change.

The following pseudocode shows how a machine-level trap handler might read mtopi to avoid
redundant restoring and saving of processor registers when an interrupt arrives during the handling
of another trap (either a synchronous exception or an earlier interrupt):

save processor registers

i = read CSR mcause

if (i>=0){
handle synchronous exception i
restore mstatus if necessary

}
if (mstatus.MPIE == 1) {
loop {
i = read CSR mtopi
if (i == 0) exit loop
i=1>>16
call the interrupt handler for major interrupt i
}
}

restore processor registers
return from trap

(This example can be further optimized, but with an increase in complexity.)

In order for this algorithm to function correctly, mstatus.MPIE must be set to 1 before executing an
MRET that changes the privilege mode.
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Assuming mstatus is saved and restored by trap handlers at entry and exit as is common,
it is sufficient to set mstatus.MPIE = 1 only once, before the first use of MRET that

Dy changes privilege mode. After an MRET, a trap back to M-mode will restore
mstatus.MPIE = I; and if the trap handler preserves mstatus, it will still be true before the
next MRET that ends the handler.

53. Interrupt filtering and virtual interrupts for
supervisor level

When supervisor mode is implemented, the Advanced Interrupt Architecture adds a facility for
software filtering of interrupts and for virtual interrupts, making use of new CSRs mvien (Machine
Virtual Interrupt Enables) and mvip (Machine Virtual Interrupt-Pending bits). Interrupt filtering
permits a supervisor-level interrupt (SEI or SSI) or local or custom interrupt to trap to M-mode and
then be selectively delegated by software to supervisor level, even while the corresponding bit in
mideleg remains zero. The same hardware may also, under the right circumstances, allow machine
level to assert virtual interrupts to supervisor level that have no connection to any real interrupt events.

Just as with CSRs mip, mie, and mideleg, each bit of registers mvien and mvip corresponds with an
interrupt number in the range 0-63. When a bit in mideleg is zero and the matching bit in mvien is
one, then the same bit position in sip is an alias for the corresponding bit in mvip. A bit in Sip is read-
only zero when the corresponding bits in mideleg and mvien are both zero. The combined effects of
mideleg and mvien on sip and sie are summarized in Table 11.

Table 11. The effects of mideleg and mvien on Sip and Sie (except for the H extension’s VS-level interrupts,
which appear in hip and hie instead of S1p and Sie). A bit in mvien can be set to 1 only for major interrupts 1, 9,
and 13-63. For interrupts 0-12, some aliases of Mip bits in S1p may be read-only copies, as specified by the base
Privileged Architecture.

mideleg[n] mvien[n] sip[n] sie[n]
0 0 Read-only O  Read-only O
0 1 Alias of mvip[n]  Writable
1 - Alias of mip[n] Alias of mie[n]

The name of CSR mvien is not "mvie" because the function of this register is more
analogous to mcounteren than to mie. The bits of mvien control whether the virtual

Dy interrupt-pending bits in register mvip are active and visible at supervisor level. This is
different than how the usual interrupt-enable bits (such as in mie) mask pending
interrupts.

A bit in sie is writable if and only if the corresponding bit is set in either mideleg or mvien. When an
interrupt is delegated by mideleg, the writable bit in sie is an alias of the corresponding bit in mie; else
it is an independent writable bit. As usual, bits that are not writable in sie must be read-only zeros.

If a bit of mideleg is zero and the corresponding bit in mvien is changed from zero to one, then the
value of the matching bit in sie becomes UNSPECIFIED. Likewise, if a bit of mvien is one and the
corresponding bit in mideleg is changed from one to zero, the value of the matching bit in sie again
becomes UNSPECIFIED.

For interrupt numbers 13-63, implementations may freely choose which bits of mvien are writable and
which bits are read-only zero or one. If such a bit in mvien is read-only zero (preventing the virtual
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interrupt from being enabled), the same bit should be read-only zero in mvip. All other bits for
interrupts 13-63 must be writable in mvip.

y Platform standards or other extensions may require that bits of mvien for certain interrupt
EI causes be writable, or be read-only zero or one.

The bits of mvien for supervisor software interrupts (code 1) and supervisor external interrupts (code
9) are each either writable or read-only zero; they cannot be read-only ones. The other bits of mvien for
interrupts 0-12 are reserved and must be read-only zeros.

It is strongly recommended that bit 9 of mvien be writable. Furthermore, if bit 1 (SSIP) of mip can be
set automatically by an interrupt controller and not just by explicit writes to mip or sip, it is strongly
recommended that bit 1 of mvien also be writable.

When bit 1 of mvien is zero, bit 1 of mvip is an alias of the same bit (SSIP) of mip. But when bit 1 of
mvien is one, bit 1 of mvip is a separate writable bit independent of mip.SSIP. When the value of bit 1 of
mvien is changed from zero to one, the value of bit 1 of mvip becomes UNSPECIFIED.

Bit 5 of mvip is an alias of the same bit (STIP) in mip when that bit is writable in mip. When STIP is not
writable in mip (such as when menvefg.STCE = 1), bit 5 of mvip is read-only zero.

When bit 9 of mvien is zero, bit 9 of mvip is an alias of the software-writable bit 9 of mip (SEIP). But
when bit 9 of mvien is one, bit 9 of mvip is a writable bit independent of mip.SEIP. Unlike for bit 1,
changing the value of bit 9 of mvien does not affect the value of bit 9 of mvip.

The base Privileged Architecture specifies unusual read/write behavior for what it calls the
software-writable SEIP bit of register mip. When bit 9 of mvien is zero, bit 9 of mvip makes

Dy the software-writable SEIP bit of mip directly accessible by itself. Furthermore, as
explained below, setting bit 9 of mvien to one separates the software-writable SEIP bit
from mip entirely, so it is then just a writable bit in mvip.

Except for bits 1, 5, and 9 as specified above, the bits of mvip in the range 12:0 are reserved and must be
read-only zeros.

The value of bit 9 of mvien has some additional consequences for supervisor external interrupts:

- When bit 9 of mvien is zero, the software-writable SEIP bit (bit 9 of mvip) interacts with reads and
writes of mip in the way specified by the base RISC-V Privileged Architecture. In particular, for
most purposes, the value of bit 9 of mvip is logically ORed into the readable value of mip.SEIP. But
when bit 9 of mvien is one, bit SEIP in mip is read-only and does not include the value of bit 9 of
mvip. Rather, the value of mip.SEIP is simply the supervisor external interrupt signal from the
hart’s external interrupt controller (APLIC or IMSIC).

- If the hart has an IMSIC, then when bit 9 of mvien is one, attempts from S-mode to explicitly
access the supervisor-level interrupt file raise an illegal instruction exception. The exception is
raised for attempts to access CSR stopei, or to access sireg when siselect has a value in the
range @x70-0xFF. Accesses to guest interrupt files (through vstopei or viselect+vsireg) are not
affected.

When the H extension is implemented, if a bit is zero in the same position in both mideleg and mvien,
then that bit is read-only zero in hideleg (in addition to being read-only zero in sip, sie, hip, and
hie). But if a bit for one of interrupts 13-63 is a one in either mideleg or mvien, then the same bit in
hideleg may be writable or may be read-only zero, depending on the implementation. No bits in
hideleg are ever read-only ones. The H extension further constrains bits 12:0 of hideleg.
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When supervisor mode is implemented, the minimal required implementation of mvien and mvip has
all bits being read-only zeros except for mvip bits 1 and 9, and sometimes bit 5, each of which is an
alias of an existing writable bit in mip. (Although, as noted, it is strongly recommended that bit 9 of
mvien also be writable.) When supervisor mode is not implemented, registers mvien and mvip do not
exist.

5.4 Interrupts at supervisor level

If a standard local interrupt becomes pending (= 1) in sip, the bit in sip is writable and will remain set
until cleared by software.

Just as for machine level, the taking of interrupt traps at supervisor level remains essentially the same
as specified by the base RISC-V Privileged Architecture. An interrupt traps into S-mode (or HS-mode)
whenever all of the following are true: (a) either the current privilege mode is S-mode and supervisor-
level interrupts are enabled by the SIE bit of sstatus, or the current privilege mode has less privilege
than S-mode; (b) matching bits in sip and sie are both one, or, if the H extension is implemented,
matching bits in hip and hie are both one; and (c) if the H extension is implemented, the
corresponding bit in hideleg is zero.

5.4.1. Configuring priorities of major interrupts at supervisor level

Supervisor-level priorities for major interrupts 0-63 are optionally configurable in an array of
supervisor-level ipriok registers accessed through siselect and sireg. This array has the same
structure when XLEN = 32 or 64 as does the machine-level iprio array. To summarize, when XLEN =
32, there are sixteen 32-bit registers with these siselect addresses:

0x30 ipriod
0x31 ipriol

Ox3F ipriolb

Each register controls the priorities of four interrupts, one 8-bit byte per interrupt. When XLEN = 64,
only the even-numbered registers exist:

0x30 iprio@
0x32 iprio2

0x3E ipriol4

Each register controls the priorities of eight interrupts. If XLEN = 64 and siselect is an odd value in
the range 0x31-0x3F, attempting to access sireg raises an illegal instruction exception.

The valid registers iprio@-iprio15 are known collectively as the iprio array for supervisor level. Each
byte of a valid ipriok register is either a read-only zero or a WARL unsigned integer field
implementing exactly IPRIOLEN bits.

For a given interrupt number, if the corresponding bit is not writable either in sie or, if the H
extension is implemented, in hie, then the interrupt’s priority number in the supervisor-level iprio
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array must be read-only zero as well. The priority number for a supervisor-level external interrupt
(bits 15:8 of iprio2) must also be read-only zero. Aside from these two restrictions, implementations
may freely choose which priority number fields are settable and which are read-only zeros.

Dy As always, platform standards may require that priorities be configurable for certain
interrupt causes.

It is expected that many higher-end systems will not support the ability to configure the

y priorities of major interrupts at supervisor level as described in this section. Linux in

EI particular is not designed to take advantage of such facilities if provided. The iprio array
must be accessible but may simply be all read-only zeros.

The supervisor-level iprio array accessed via siselect and sireg affects the prioritization of
interrupts only when they trap to S-mode. When an interrupt’s priority number in the array is zero
(either read-only zero or set to zero), its priority is the default order from Section 5.1. Setting an
interrupt’s priority number instead to a nonzero value P gives that interrupt nominally the same
priority as a supervisor-level external interrupt with priority number p. For an interrupt that defaults
to a higher priority than supervisor external interrupts, setting its priority number to a nonzero value
lowers its priority. For an interrupt that defaults to a lower priority than supervisor external interrupts,
setting its priority number to a nonzero value raises its priority. When two interrupt causes have been
assigned the same nominal priority, ties are broken by the default priority order. Table 12 summarizes
the effect of priority numbers on interrupt priority.

If supported, setting the priority number for VS-level external interrupts (bits 23:16 of iprio2) to a
nonzero value P has the effect of giving the entire category of VS external interrupts nominally the
same priority as a supervisor external interrupt with priority number P, when VS external interrupts
trap to S-mode.

Table 12. Effect of the supervisor-level iprio array on the priorities of interrupts taken in S-mode. For interrupts
with the same priority number, the default order of Section 5.1 prevails.

Interrupts with default ~ Supervisor external  Interrupts with default

priority above interrupts priority below
supervisor external supervisor external
interrupts interrupts
Priority Priority number in Priority number from Priority number in
order supervisor-level iprio  interruptcontroller  supervisor-level iprio
array (APLIC or IMSIC) array
Highest 0
1 1 1
2
254 254 254
255 255 255
256 and above (IMSIC
only)
Lowest 0

If bit 9 for a supervisor external interrupt (SEI) is one in mideleg or mvien and in mvip, causing
Sip.SEIP to be one, but there is no supervisor-level interrupt from the hart’s external interrupt
controller (APLIC or IMSIC), then a priority number for the SEI is not supplied by the external
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interrupt controller as usual. In that case, the SEI is assigned a priority number of 256.

If the system has an original PLIC for backward compatibility with older software, reset should
initialize the supervisor-level iprio array to all zeros.

5.4.2. Supervisor top interrupt CSR (stopi)

Supervisor-level CSR stopi is read-only with width SXLEN. A read of stopi returns information
about the highest-priority pending-and-enabled interrupt for supervisor level, in this format:

bits 27:16 IID
bits 7:0  IPRIO

All other bits of stopi are reserved and read as zeros.

The value of stopi is zero unless: (a) there is an interrupt that is both pending in sip and enabled in
sie, or, if the H extension is implemented, both pending in hip and enabled in hie; and (b) the
interrupt is not delegated to a less-privileged level (by hideleg, if the H extension is implemented).
When there is a pending-and-enabled major interrupt for supervisor level, field IID is the major
identity number of the highest-priority interrupt, and field IPRIO indicates its priority.

If all bytes of the supervisor-level iprio array are read-only zeros, a simplified implementation of field
IPRIO is allowed in which its value is always 1 whenever stop1 is not zero.

Otherwise, when stopi is not zero, if the priority number for the reported interrupt is in the range 1 to
255, IPRIO is simply that number. If the interrupt’s priority number is zero or greater than 255, IPRIO
is set to either O or 255 as follows:

- If the interrupt’s priority number is greater than 255, then IPRIO is 255 (lowest representable
priority).

- If the interrupt’s priority number is zero and interrupt number IID has a default priority higher
than a supervisor external interrupt, then IPRIO is O (highest priority).

- If the interrupt’s priority number is zero and interrupt number IID has a default priority lower
than a supervisor external interrupt, then IPRIO is 255 (lowest representable priority).

To ensure that stopi is never zero when an interrupt is pending and enabled for
| y supervisor level, if major interrupt O can trap to S-mode, it must have a default priority
lower than a supervisor external interrupt.

The value of stopi is not affected by the global interrupt enable SIE in CSR sstatus.

The RISC-V Privileged Architecture ensures that, when the value of stop1i is not zero, a trap is taken to
S-mode for the interrupt indicated by field IID if either the current privilege mode is S and
sstatus.SIE is one, or the current privilege mode has less privilege than S-mode. The trap itself does
not cause the value of stopi to change.

The following pseudocode shows how a supervisor-level trap handler might read stopi to avoid
redundant restoring and saving of processor registers when an interrupt arrives during the handling
of another trap (either a synchronous exception or an earlier interrupt):

save processor registers
i = read CSR scause
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if (i >=0) {
handle synchronous exception i
restore sstatus if necessary

}
if (sstatus.SPIE == 1) {
loop {
i = read CSR stopi
if (i == @) exit loop
i = 1>>16
call the interrupt handler for major interrupt i
}
}

restore processor registers
return from trap

(This example can be further optimized, but with an increase in complexity.)

In order for this algorithm to function correctly, sstatus.SPIE must be set to 1 before executing an
SRET that changes the privilege mode.

Assuming sstatus is saved and restored by trap handlers at entry and exit as is common,
it is sufficient to set sstatus.SPIE = 1 only once, before the first use of SRET that changes

Ely privilege mode. After an SRET, a trap back to S-mode will restore sstatus.SPIE = 1; and if
the trap handler preserves sstatus, it will still be true before the next SRET that ends the
handler.

55 WFI (Wait for Interrupt) instruction

The RISC-V Privileged Architecture specifies that instruction WFI (Wait for Interrupt) may suspend
execution at a hart until an interrupt is pending for the hart. The Advanced Interrupt Architecture
(AIA) redefines when execution must resume following a WFI.

According to the base RISC-V Privileged Architecture, instruction execution must resume from a WFI
whenever any interrupt is both pending and enabled in CSRs mip and mie, ignoring any delegation
indicated by mideleg. With the AIA, this succinct rule is no longer appropriate, due to the mechanisms
the AIA adds for virtual interrupts. Instead, execution must resume from a WFI whenever an interrupt
is pending at any privilege level (regardless of whether the interrupt privilege level is higher or lower
than the hart’s current privilege mode).

An interrupt is pending at machine level if register mtopi is not zero. If S-mode is implemented, an
interrupt is pending at supervisor level if stopi is not zero. And if the H extension is implemented, an
interrupt is pending at VS level if vstopi (Section 6.3.3) is not zero.

The AIA’s rule for WFI gives the same behavior as the base Privileged Architecture’s rule

y when mvien = O and, if the H extension is implemented, also hvien = 0 and hvict1.VTI =

EI 0, thus disabling all virtual interrupts not visible in mip. (The AIA’s hypervisor registers
are covered in the next chapter, "Interrupts for Virtual Machines (VS Level)")
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Chapter 6. Interrupts for Virtual Machines
(VS Level)

When the H extension is implemented, a hart’s set of possible privilege modes includes the virtual
supervisor (VS) and virtual user (VU) modes for hosting virtual harts. The Advanced Interrupt
Architecture adds to the H extension new interrupt facilities aligned with those described earlier for
supervisor-level interrupts.

As introduced in Chapter 2, several hypervisor and VS CSRs are added: hvien, hvictl, hviprio1l,
hviprio2, vsiselect, vsireg, vstopei, and vstopi. (And for RV32, the following high-half CSRs are
also added: hidelegh, hvienh, hviph, hvipriolh, hviprio2h, vsiph and vsieh) As always, when
executing in VS-mode or VU-mode, the VS CSRs substitute for the corresponding supervisor CSRs.

To give software that runs in a virtual machine the appearance of executing on a real machine that
implements the Advanced Interrupt Architecture at supervisor level, responsibility is shared between
hypervisor software and the hardware facilities described in this chapter. While some behaviors can be
handled directly by hardware, others require significant emulation by the hypervisor, sometimes with
hardware assistance.

6.1. VS-level external interrupts with a guest
Interrupt file

When a hart implements the H extension, it is recommended that the hart also have an IMSIC with
guest interrupt files. Assuming guest interrupt files are available, each can be assigned to a virtual hart
at the physical hart to act as the supervisor-level interrupt file for that virtual hart. If there are N guest
interrupt files, then N virtual harts at that physical hart may each have a physical guest interrupt file
to serve as its (virtual) supervisor-level interrupt file. The guest interrupt file for the current virtual
hart is always indicated by the VGEIN field of CSR hstatus. When VGEIN is not the valid number of a
guest interrupt file, the current virtual hart has no guest interrupt file to act as its supervisor-level
interrupt file.

When hstatus.VGEIN is the valid number of a guest interrupt file, values of vsiselect in the range
0x70-0xFF select registers of this guest interrupt file, just as values of siselect in the same range
select registers of the IMSIC'’s true supervisor-level interrupt file. The registers of an interrupt file that
are accessed indirectly through vsiselect and vsireg are documented in Chapter 3 on the IMSIC,
along with IMSIC-only CSR vstopei. Because all IMSIC interrupt files act identically, the guest
interrupt file that a virtual hart accesses through CSRs siselect, sireg, and stopei is
indistinguishable from a true supervisor-level interrupt file as seen from S-mode (or HS-mode).

In addition to an IMSIC at each hart, a virtual machine may also need to see a PLIC or APLIC.
However, unlike an IMSIC’s ability to provide physical guest interrupt files for virtual harts, a PLIC or
APLIC must be emulated for a virtual machine by the hypervisor.

The Advanced Interrupt Architecture does not currently include hardware assistance for
virtualizing an APLIC. For small numbers of harts, such hardware would be substantially
larger than that required to implement guest interrupt files for an IMSIC. It is assumed
Df that most high-performance I/O can be done through devices that can send MSIs directly
to guest interrupt files (such as devices attached through a PCI Express interconnect). For
the types of devices whose interrupts must go through a (virtual) APLIC, the overhead cost
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of emulating the APLIC is expected to be less significant.

When a virtual hart appears to have an IMSIC because a guest interrupt file is assigned to it, all
external interrupts, real or emulated, destined for the virtual hart must go through this perceived
IMSIC. A hypervisor can easily inject an emulated external interrupt into the guest interrupt file
selected by hstatus.VGEIN by setting a bit in the interrupt-pending array indirectly accessed through
vsiselect and vsireg. When a virtual hart has a guest interrupt file, a hypervisor is not normally
expected to set bit VSEIP in CSR hvip.

In the special case that an emulated APLIC for a virtual machine has a wired interrupt source that
equates to an actual interrupt source of a real APLIC, if software running in this virtual machine
configures its virtual APLIC to forward interrupts from that source as MSIs to a specific virtual hart,
the hypervisor can configure the real APLIC to forward the actual interrupts directly as MSIs to the
virtual hart's guest interrupt file. In this way, although the hypervisor must trap and emulate the
virtual machine’s memory accesses that configure the forwarding of interrupts at the virtual APLIC,
the interrupts themselves can be converted automatically into real MSIs for the guest interrupt file,
without the hypervisor being invoked for each arriving interrupt.

6.1.1. Direct control of a device by a guest OS

To ensure proper support for interrupts, two conditions must be met before a hypervisor may allow a
guest OS running in a virtual machine to directly control a physical device that sends MSIs: First, each
virtual hart must have a guest interrupt file assigned to it, giving each its own apparent IMSIC within
the virtual machine. Second, interrupts from the device must be signaled by wire through an APLIC
that can translate these interrupts into MSIs, or the system must have an IOMMU that can translate
the addresses of MSI memory writes made by the device itself.

If a guest OS directly controls a device capable of sending MSIs, it will naturally configure MSIs at the
device with the guest physical addresses the OS sees for the IMSICs of its virtual harts, not knowing
that these addresses are only virtual. When the device performs a memory write for an MSI, the
destination address of this write must be translated by the IOMMU from the guest physical address
assigned by the guest OS into the true physical address of the target guest interrupt file, using a
translation table supplied by the hypervisor.

By design, the translation an IOMMU must do for device MSIs is fundamentally no different than the
address translation the IOMMU already must perform for other memory accesses from the same
device, converting guest physical addresses into true physical addresses. Because each virtual hart is
assigned a dedicated, physical guest interrupt file that is indistinguishable from a true supervisor-level
interrupt file, no translation is needed for the data of an MSI write, which specifies the interrupt’s
identity number in the target interrupt file.

6.1.2. Migrating a virtual hart to a different guest interrupt file

When it is necessary to move a virtual hart from one physical hart to another, if the virtual hart uses a
guest interrupt file, the specific guest interrupt file assigned to it must change from the one in use at
the old physical hart to a different one at the new physical hart. Because each guest interrupt file is
physically tied to a single physical hart, a virtual hart cannot bring its guest interrupt file with it when
it moves.

The process of migrating a virtual hart from one guest interrupt file to another is more complex than
moving most other state held by the virtual hart. After the destination guest interrupt file has been
chosen at the new physical hart, the following steps are recommended:
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1. At the old interrupt file, save to memory the values of registers eidelivery and eithreshold, and
seteidelivery = O.

2. At the new interrupt file, set eidelivery = O, and zero all implemented interrupt-pending bits (the
eip array).

3. Modify the relevant translation tables at all IOMMUs so that MSIs for this virtual interrupt file are
now sent to the new physical interrupt file. Likewise, if any interrupts at an APLIC are forwarded
by MSIs to the old interrupt file, reconfigure the APLIC to send them to the new interrupt file. As
needed, synchronize with all IOMMUs and APLICs to ensure that no straggler MSIs will arrive at
the old interrupt file after this step. Synchronizing with an APLIC can be accomplished using the
algorithm of Section 4.9.3.

4. At the old interrupt file, dump to memory all implemented interrupt-pending and interrupt-
enable bits (the eip and eie arrays). After this step is done, the old interrupt file is no longer in use.

5. At the new interrupt file, logically OR the interrupt-pending bits that were saved in step 4 into the
new interrupt file, using instruction CSRS to write to the eip array. Also, load the interrupt-enable
bits that were saved in step 4 into the eie array.

6. At the new interrupt file, load registers eithreshold and eidelivery with the values that were
saved in step 1.

Resuming execution of the virtual hart at the new physical hart is not recommended until the entire
interrupt file has been fully migrated.

Resuming execution of the virtual hart before the interrupt file is fully migrated could
allow software running in the virtual machine to see multiple MSIs arriving from a single

Ely device in an order that should not happen. While this would rarely matter in practice, it
runs the risk of wedging a device driver that depends (perhaps inadvertently) on a valid
ordering of events.

0.2. VS-level external interrupts without a guest
Interrupt file

Although it is recommended that harts implementing the hypervisor extension also have IMSICs with
guest interrupt files, this is not a requirement. Even assuming guest interrupt files exist, it may happen
that there are more virtual harts at a physical hart than guest interrupt files, leaving some virtual harts
without one. In either case, a hypervisor must emulate an external interrupt controller for a virtual
hart without the benefit of a guest interrupt file allocated to the virtual hart.

When emulating an external interrupt controller for a virtual hart, if configurable interrupt priority is
not supported for the virtual hart other than for external interrupts, then external interrupts may be
asserted to VS level simply by setting bit VSEIP in hvip, as defined by the H extension. However, to
emulate both an external interrupt controller and priority configurability for non-external interrupts,
a hypervisor must make use of CSR hvictl (Hypervisor Virtual Interrupt Control), described later in
the next section.

0.3. Interrupts at VS level

6.3.1. Configuring priorities of major interrupts at VS level

Like for supervisor level, the Advanced Interrupt Architecture optionally allows major VS-level
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interrupts to be configured by software to intermix in priority with VS-level external interrupts. As
documented in Section 5.4, interrupt priorities for supervisor level are configured by the iprio array
accessed indirectly through CSRs siselect and sireg. The siselect addresses for the iprio array
registers are @x30-0x3F.

VS level has its own vsiselect and vsireg, but unlike supervisor level, there are no registers at
vsiselect addresses 0x30-0x3F. When vsiselect has a value in the range 0x30-0x3F, an attempt from
VS-mode to access sireg (really vsireg) causes a virtual instruction exception. To give a virtual hart
the illusion of an array of iprio registers accessed through siselect and sireg, a hypervisor must
emulate the VS-level iprio array when accesses to sireg from VS-mode cause virtual instruction
traps.

Instead of a physical VS-level iprio array, a separate hardware mechanism is provided for configuring
the priorities of a subset of interrupts for VS level, using hypervisor CSRs hvipriol and hviprio2. The
subset of major interrupt numbers whose priority may be configured in hardware are these:

1 Supervisor software interrupt
5  Supervisor timer interrupt
13 Counter overflow interrupt

14-23 Reserved for standard local interrupts

For interrupts directed to VS level, software-configurable priorities are not supported in hardware for
standard local interrupts in the range 32-48.

y For custom interrupts, priority configurability may be supported in hardware by custom
EI CSRs, expanding upon hvipriol and hviprio2 for standard interrupts.

Registers hvipriol and hviprio2 have these formats:
hvipriol:

bits 7.0 Reserved for priority number for interrupt O; reads as zero

bits 15:8  Priority number for interrupt 1, supervisor software interrupt
bits 23:16 Reserved for priority number for interrupt 4; reads as zero

bits 31:24 Priority number for interrupt 5, supervisor timer interrupt
bits 39:32 Reserved for priority number for interrupt 8; reads as zero

bits 47:40 Priority number for interrupt 13, counter overflow interrupt
bits 55:48 Priority number for interrupt 14

bits 63:56 Priority number for interrupt 15
hviprio2:

bits 20 Priority number for interrupt 16
bits 15:8  Priority number for interrupt 17
bits 23:16 Priority number for interrupt 18

bits 31:24 Priority number for interrupt 19
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bits 39:32 Priority number for interrupt 20
bits 47:40 Priority number for interrupt 21
bits 55:48 Priority number for interrupt 22

bits 63:56 Priority number for interrupt 23

Each priority number in hvipriol and hviprio2 is a WARL unsigned integer field that is either read-
only zero or implements a minimum of IPRIOLEN bits or 6 bits, whichever is larger, and preferably all
8 bits. Implementations may freely choose which priority number fields are read-only zeros, but all
other fields must implement the same number of integer bits. A minimal implementation of these
CSRs has them both be read-only zeros.

A hypervisor can choose to employ registers hvipriol and hviprio2 when emulating the (virtual)
supervisor-level iprio array accessed indirectly through siselect and sireg (really vsiselect and
vsireg) for a virtual hart. For interrupts not in the subset supported by hvipriol and hviprio2, the
priority number bytes in the emulated iprio array can be read-only zeros.

Providing hardware support for configurable priority for only a subset of major interrupts
at VS level is a compromise. The utility of being able to control interrupt priorities at VS
level is arguably illusory when all traps to M-mode and HS-mode—both interrupts and
synchronous exceptions—have absolute priority, and when each virtual hart may also be
competing for resources against other virtual harts well beyond its control. Nevertheless,

Df priority configurability has been made possible for the most likely subset of interrupts,
while minimizing the number of added CSRs that must be swapped on a virtual hart
switch.

Major interrupts outside the priority-configurable subset can still be directed to VS level,
but their priority will simply be the default order defined in Section 5.1.

If a hypervisor really must emulate configurability of priority for interrupts beyond the subset
supported by hvipriol and hviprio2, it can do so with extra effort by setting bit VTT of CSR hvictl,
described in the next subsection.

6.3.2. Virtual interrupts for VS level

Assuming a virtual hart does not need configurable priority for major interrupts beyond the subset
supported in hardware by hvipriol and hviprio2, a hypervisor can assert interrupts to the virtual
hart using CSRs hvien (Hypervisor Virtual-Interrupt-Enable) and hvip (Hypervisor Virtual-Interrupt-
Pending bits). These CSRs affect interrupts for VS level much the same way that mvien and mvip do for
supervisor level, as explained in Section 5.3.

Each bit of registers hvien and hvip corresponds with an interrupt number in the range 0-63. Bits
12:0 of hvien are reserved and must be read-only zeros, while bits 12:0 of hvip are defined by the H
extension. Specifically, bits 10, 6, and 2 of hvip are writable bits that correspond to VS-level external
interrupts (VSEIP), VS-level timer interrupts (VSTIP), and VS-level software interrupts (VSSIP),
respectively.

The following applies only to the CSR bits for interrupt numbers 13-63: When a bit in hideleg is one,
then the same bit position in vsip is an alias for the corresponding bit in sip. Else, when a bit in
hideleg is zero and the matching bit in hvien is one, the same bit position in vsip is an alias for the
corresponding bit in hvip. A bit in vsip is read-only zero when the corresponding bits in hideleg and
hvien are both zero. The combined effects of hideleg and hvien on vsip and vsie are summarized in
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Table 13.

Table 13. The effects of hideleg and hvien on vsip and vsie for major interrupts 13-63.

hideleg[n]| hvien[n] vsip[n] vsie[n]
0 0 Read-only O  Read-only O
0 1 Alias of hvip[n] ~ Writable
1 - Alias of sip[n] Alias of sie[n]

For interrupt numbers 13-63, a bit in vsie is writable if and only if the corresponding bit is set in
either hideleg or hvien. When an interrupt is delegated by hideleg, the writable bit in vsie is an alias
of the corresponding bit in sie; else it is an independent writable bit. The H extension specifies when
bits 12:0 of vsie are aliases of bits in hie. As usual, bits that are not writable in vsie must be read-only
Zeros.

If a bit of hideleg is zero and the corresponding bit in hvien is changed from zero to one, then the
value of the matching bit in vsie becomes UNSPECIFIED. Likewise, if a bit of hvien is one and the
corresponding bit in hideleq is changed from one to zero, the value of the matching bit in vsie again
becomes UNSPECIFIED.

For interrupt numbers 13-63, implementations may freely choose which bits of hvien are writable and
which bits are read-only zero or one. If such a bit in hvien is read-only zero (preventing the virtual
interrupt from being enabled), the same bit should be read-only zero in hvip. All other bits for
interrupts 13-63 must be writable in hvip.

CSR hvictl (Hypervisor Virtual Interrupt Control) provides further flexibility for injecting interrupts
into VS level in situations not fully supported by the facilities described thus far, but only with more
active involvement of the hypervisor. A hypervisor must use hvict1 for any of the following:

- asserting for VS level a major interrupt not supported by hvien and hvip;

- implementing configurability of priorities at VS level for major interrupts beyond those supported
by hviprioland hviprio2; or

- emulating an external interrupt controller for a virtual hart without the use of an IMSIC’s guest
interrupt file, while also supporting configurable priorities both for external interrupts and for
major interrupts to the virtual hart.

Among the possible uses, hvictl is needed for a hypervisor to fully emulate HS-mode in
| yl VS-mode, which is a requirement for the hosting of nested hypervisors without

paravirtualization.

The format of hvictl is:

bit30  VTI
bits 27:16 11D (WARL)
bit 9 DPR

bit 8 [PRIOM
bits .0  IPRIO

All other bits of hvictl are reserved and read as zeros.
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When bit VTI (Virtual Trap Interrupt control) = 1, attempts from VS-mode to explicitly access CSRs
sip and sie (or, for RV32 only, siph and sieh) cause a virtual instruction exception. Furthermore, for
any given CSR, if there is some circumstance in which a write to the register may cause a bit of vsip to
change from one to zero, excluding bit 9 for external interrupts (SEIP), then when VTI = 1, a virtual
instruction exception is raised also for any attempt by the guest to write this register. Both the value
being written to the CSR and the value of vsip (before or after) are ignored for determining whether to
raise the exception. (Hence a write would not actually need to change a bit of vsip from one to zero for
the exception to be raised.) In particular, if register vstimecmp is implemented (from extension Sstc),
then attempts from VS-mode to write to stimeemp (or, for RV32 only, stimecmph) cause a virtual
instruction exception when VTI = 1.

For the standard local interrupts (major identities 13-23 and 32-47), and for software
interrupts (SSI), the corresponding interrupt-pending bits in vsip are defined as "sticky,"

Dy meaning a guest can clear them only by writing directly to sip (really vsip). Among the
standard-defined interrupts, that leaves only timer interrupts (STI), which can potentially
be cleared in vsip by writing a new value to vstimecmp.

All hvictl fields together can affect the value of CSR vstopi (Virtual Supervisor Top Interrupt) and
therefore the interrupt identity reported in vscause when an interrupt traps to VS-mode. IID is a
WARL unsigned integer field with at least 6 implemented bits, while IPRIO is always the full 8 bits. If
k bits are implemented for 1ID, then all values O through 2% —1 are supported, and a write to hvictl
sets 1D equal to bits (15 + k):16 of the value written.

For a virtual interrupt specified for VS level by hvictl, if VTI = 1 and IID =9, field DPR (Default
Priority Rank) determines the interrupt's presumed default priority order relative to a (virtual)
supervisor external interrupt (SEI), major identity 9, as follows:

O = interrupt has higher default priority than an SEI

1 = interrupt has lower default priority than an SEI
When hvictL.IID = 9, DPR is ignored.

y Register hvictl has no effect on any of mip, sip, hip, or vsip; it affects only vstopi and
EI the trapping of some instructions.

6.3.3. Virtual supervisor top interrupt CSR (vstopi)

Read-only CSR vstopi is VSXLEN bits wide and has the same format as stopi:

bits 27:16 11D
bits 7:0 IPRIO

vstopi returns information about the highest-priority interrupt for VS level, found from among these
candidates (prefixed by + signs):

- if bit 9 is one in both vsip and vsie, hstatus.VGEIN is the valid number of a guest interrupt file,
and vstopei is not zero:
° + a supervisor external interrupt (code 9) with the priority number indicated by vstopei;

- if bit 9 is one in both vsip and vsie, hstatus.VGEIN = O, and hvictl fields IID = 9 and IPRIO = 0:

° + a supervisor external interrupt (code 9) with priority number hvict1.IPRIO;
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- if bit 9 is one in both vsip and vsie, and neither of the first two cases applies:
° + a supervisor external interrupt (code 9) with priority number 256;
- ifhvictl.VTI = O:

o + the highest-priority pending-and-enabled major interrupt indicated by vsip and vsie other
than a supervisor external interrupt (code 9), using the priority numbers assigned by hviprio1
and hviprio2;

- ifhvictl fields VTT = 1and IID = 9:
° + the major interrupt specified by hvictl fields IID, DPR, and IPRIO.

In the list above, all "supervisor" external interrupts are virtual, directed to VS level, having major
code 9 at VS level.

The list of candidate interrupts can be reduced to two finalists relatively easily by
| y observing that the first three list items are mutually exclusive of one another, and the
remaining two items are also mutually exclusive of one another.

When hvictl.VTI = 1, the absence of an interrupt for VS level can be indicated only by
| yl setting hvict.IID = 9. Software might want to use the pair IID = 9, IPRIO = O generally to
represent no interrupt in hvictl.

When no interrupt candidates satisfy the conditions of the list above, vstopi is zero. Else, vstopi
fields IID and IPRIO are determined by the highest-priority interrupt from among the candidates. The
usual priority order for supervisor level applies, as specified by Table 12, except that priority numbers
are taken from the candidate list above, not from the supervisor-level iprio array. Ties in nominal
priority are broken as usual by the default priority order from Table 8, unless hvictl fields VTI = 1 and
11D = 9 (last item in the candidate list above), in which case default priority order is determined solely
by hvict1.DPR. If bit IPRIOM (IPRIO Mode) of hvictl is zero, IPRIO in vstopi is 1; else, if the priority
number for the highest-priority candidate is within the range 1 to 255, IPRIO is that value; else, IPRIO
is set to either O or 255 in the manner documented for stopi in Section 5.4.2.

0.3.4. Interrupt traps to VS-mode

The Advanced Interrupt Architecture modifies the H extension such that an interrupt is pending at VS
level if and only if vstopi is not zero. CSRs vsip and vsie do not by themselves determine whether a
VS-level interrupt is pending, though they may do so indirectly through their effect on vstopi.

Whenever vstopi is not zero, if either the current privilege mode is VS-mode and the SIE bit in CSR
vsstatus is one, or the current privilege mode is VU-mode, a trap is taken to VS-mode for the
interrupt indicated by field IID of vstopi.

The Exception Code field of vscause must implement at least as many bits as needed to represent the
largest value that field IID of vstopi can have for the given hart.
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Chapter 7. Interprocessor Interrupts (IPls)

By default, unless a platform has a different mechanism for interprocessor interrupts (IPIs), the base
RISC-V Privileged Architecture specifies that a machine with multiple harts must provide for each
hart an implementation-defined memory address that can be written to signal a machine-level
software interrupt (major code 3) at that hart. IPIs at machine level can thus be sent to any hart as
machine-level software interrupts.

A RISC-V software interrupt acts only as a minimal "doorbell" signal. Software at the

y receiving hart is responsible for recognizing an incoming software interrupt as an IPI and

EI decoding its purpose further, usually making use of additional data stored by the sender in
ordinary memory.

The same kind of mechanism (but with a different set of memory addresses) may or may not exist for
signaling supervisor-level software interrupts (major code 1) at remote harts as well. If not directly
supported in this way, a supervisor-level software interrupt is typically sent to another hart instead
through an environment call from supervisor mode to machine mode. An operating system running
in S-mode thus invokes a specific SBI function for delivering a software interrupt to another hart,
causing machine-level software at the originating hart to send a machine-level IPI to the destination
hart, where software then sets the supervisor-level software interrupt-pending bit (SSIP) in CSR mip.

When harts have IMSICs, instead of using the base Privileged Architecture’s mechanism for signaling
software interrupts at remote harts, an IPI can be sent to a hart by writing to the destination hart’s
IMSIC, the same as a regular message-signaled interrupt (MSI). In that case, an incoming IPI appears
at the destination hart as an external interrupt routed through the IMSIC, rather than as a software
interrupt as before. However, so long as the same software (e.g. an operating system or machine
monitor) is in control at both endpoints of an IPI, source and destination, there should be no reason
for a destination hart to misinterpret the purpose of an incoming external interrupt that represents an
[PL

If harts do not have IMSICs, then the method specified by the base Privileged Architecture is assumed
to be used for IPIs, signaling software interrupts at destination harts. On the other hand, when harts
have IMSICs, the machinery for triggering software interrupts at remote harts is redundant with the
capabilities of the IMSICs, so it is downgraded from a requirement to an option, useful perhaps only to
provide software compatibility across a range of RISC-V systems, with and without IMSICs. If a
machine implements IMSICs and not the earlier software-interrupt mechanism, then the bits of CSRs
mip and mie for machine-level software interrupts, MSIP and MSIE, are hardwired to zero in harts.

If a machine implements IMSICs but not the software-interrupt mechanism, the latter can
still be fully emulated at supervisor level for S-mode or VS-mode, by trapping on writes to
the special memory addresses that should signal supervisor-level software interrupts at
remote harts. On such a trap, software can send a higher-level IPI via IMSIC to the
—y destination hart, where the higher-level software then can set the SSIP bit in sip at the
J intended privilege level, S or VS.

Similarly, SBI environment calls for sending IPIs can easily continue to be supported
without clients being at all aware of a change in the underlying hardware for delivering
IPIs between harts.

When software sends IPIs by writing MSIs to the IMSICs of other harts, programmers
| y should consider also the need to execute a FENCE instruction before each store
instruction that writes such an MSI. In the absence of FENCEs, many systems guarantee
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to preserve the order of a hart’s loads and stores only to/from individual devices, not
among multiple devices, and not at all for accesses to main memory. With such a system,
it must be remembered that each IMSIC is likely to be considered a separate device among
the many. For example, if hart A wants to notify hart B that it has completed a task
involving accesses to some I/0 device, hart A may need to execute a FENCE before sending
an MSI to B’s IMSIC, to ensure that all of A’s accesses to the device have actually
completed before the MSI could arrive at B. Similarly, if hart A stores anything to memory
that should be visible at hart B, a FENCE is likely needed before a subsequent store
sending an MSI to B’s IMSIC.
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Chapter 8. IOMMU Support for MSls to
Virtual Machines

The existence of an IOMMU in a system makes it possible for a guest operating system, running in a
virtual machine, to be given direct control of an I/O device with only minimal hypervisor
intervention. A guest OS with direct control of a device will program the device with guest physical
addresses, because that is all the OS knows. When the device then performs memory accesses using
those addresses, an IOMMU is responsible for translating those guest physical addresses into machine
physical addresses, referencing address-translation data structures supplied by the hypervisor.

To handle MSIs from a device controlled by a guest OS, an IOMMU must be able to redirect those
MSIs to a guest interrupt file in an IMSIC. Systems that do not have IMSICs with guest interrupt files
do not need to implement the facilities described in this chapter.

Because MSIs from devices are simply memory writes, they would naturally be subject to the same
address translation that an IOMMU applies to other memory writes. However, the Advanced Interrupt
Architecture requires that IOMMUs treat MSIs directed to virtual machines specially, in part to
simplify software, and in part to allow optional support for memory-resident interrupt files.

This chapter uses the term IOMMU in a generic sense that encompasses all translation and transaction
processing services required to virtualize device accesses and is concerned only with how an IOMMU
recognizes and processes MSIs directed to virtual machines. Most other functions and details of an
IOMMU are beyond the scope of this standard, and must be specified elsewhere.

The RISC-V IOMMU Architecture Specification provides a detailed description of the

y IOMMU architecture, dividing translation and transaction processing functionality into

EI blocks such as IOMMU, 10 Bridge, etc. and describing how those blocks are integrated
into a system.

If a single physical I/O device can be subdivided for control by multiple separate device drivers, each
sub-device is referred to here as one device.

8.1. Device contexts at an IOMMU

The following assumptions are made about the IOMMUs in a system:

- For each I/O device connected to the system through an IOMMU, software can configure at the
IOMMU a device context, which associates with the device a specific virtual address space and any
other per-device parameters the IOMMU may support. By giving devices each their own separate
device context at an IOMMU, each device can be individually configured for a separate operating
system, which may be a guest OS or the main (host) OS. On every memory access initiated by a
device, hardware indicates to the IOMMU the originating device by some form of unique device
identifier, which the IOMMU uses to locate the appropriate device context within data structures
supplied by software. For PCI, for example, the originating device may be identified by the unique
triple of PCI bus number, device number, and function number.

- An IOMMU optionally translates the addresses of a device’s memory accesses using address-
translation data structures—typically page tables—specified by software via the corresponding
device context. The smallest granularity of address translation implemented by all IOMMUs is not
larger than a 4-KiB page, matching that of standard RISC-V address-translation page tables. (An
IOMMU may in fact employ page tables in the same format as the page-based address translation
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defined by the RISC-V Privileged Architecture, but this is not required.)
The Advanced Interrupt Architecture adds to device contexts these fields, as needed:

- an MSI address mask and address pattern, used together to identify pages in the guest physical
address space that are the destinations of MSIs; and

- the real physical address of an MSI page table for controlling the translation and/or conversion of
MSIs from the device.

The MSI address mask and address pattern are each unsigned integers with the same width as guest
physical page numbers, i.e., 12 bits narrower than the maximum supported width of a guest physical
address. Their use is explained in Section 8.4.

A device context’s MSI page table is separate from the usual address-translation data structures used
to translate other memory accesses from the same device. The form and function of MSI page tables
are the subject of most of the rest of this chapter.

A device context is given an independent page table for MSIs for two reasons:

First, hypervisors running under Linux or a similar OS can benefit from separate control of

MSI translations to help simplify the case when virtual harts are migrated from one

physical hart to another. As noted in Section 6.1.2, when a virtual hart’s interrupt files are

mapped to guest interrupt files in the real machine, migration of the virtual hart causes

the physical guest interrupt files underlying those virtual interrupt files to change.

However, because on other systems (not RISC-V) the migration of a virtual hart does not

affect the mapping from guest physical addresses to real physical addresses, the internal

—y functions of Linux that perform this migration are not set up to modify an IOMMU’s

J address-translation tables to adjust for the changing physical locations of RISC-V virtual

interrupt files. Giving a hypervisor control of a separate MSI translation table at an

IOMMU bypasses this limitation. The MSI page table can be modified at will by the

hypervisor and/or by the subsystem that manages interrupts without coordinating with
the many other OS components concerned with reqular address translation.

Second, specifying a separate MSI page table facilitates the use of memory-resident
interrupt files (MRIFs), which are introduced in Section 8.3. A dedicated MSI page table
can easily support a special table entry format for MRIFs (Section 8.5.2) that would be
entirely foreign and difficult to retrofit to any other address-translation data structures.

8.2. Translation of addresses for MSIs from devices

To support the delivery of MSIs from I/O devices directly to RISC-V virtual machines without
hypervisor intervention, an IOMMU must be able to translate the guest physical address of an MSI to
the real physical address of an IMSIC’s guest interrupt file in the machine, as illustrated in Figure 6.
This address translation is controlled by the MSI page table configured in the appropriate device
context at the IOMMU. Because every interrupt file, real or virtual, occupies a naturally aligned 4-KiB
page of address space, the required address translation is from a virtual (guest) page address to a
physical page address, the same as supported by regular RISC-V page-based address translation.
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Figure 6. Translation of a device-sourced MSI that a guest OS intended to go to a (virtual) IMSIC interrupt file in
the OS’s virtual machine. Referencing an MSI page table supplied by the controlling hypervisor, the [OMMU
redirects the MSI to a guest interrupt file of the real machine.

Memory writes from a device are recognized as MSIs by the destination address of the write. If an
IOMMU determines that a 32-bit write is to the location of a (virtual) interrupt file in the relevant
virtual machine, the write is considered an MSI within the VM, else not. The exact formula for
recognizing MSIs is documented in Section 8.4.

Although the translation of MSIs is controlled by its own separate page table, the fact that
MSI translations are at the same page granularity as reqular RISC-V address translations
y implies that an address translation cache within an IOMMU requires little modification to
EI also cache MSI translations. Only on a translation cache miss does the IOMMU need to
treat MSIs significantly differently than other memory accesses from the same device, to

choose the correct translation table and to access and interpret the table properly.

8.3. Memory-resident interrupt files

An IOMMU may optionally support memory-resident interrupt files (MRIFs). If implemented, the use
of memory-resident interrupt files can greatly increase the number of virtual harts that can be given
direct control of one or more physical devices in a system, assuming the rest of the system can still

handle the added load.

Without memory-resident interrupt files, the number of virtual RISC-V harts that can directly receive
MSIs from devices is limited by the total number of guest interrupt files implemented by all IMSICs in
the system, because all MSIs to RISC-V harts must go through IMSICs. For a single RISC-V hart, the
number of guest interrupt files is the GEILEN parameter defined by the H extension, which can be at
most 31 for RV32 and 63 for RV64.

With the use of memory-resident interrupt files, on the other hand, the total number of virtual RISC-V
harts able to receive device MSIs is almost unbounded, constrained only by the amount of real
physical memory and the additional processing time needed to handle them. As its name implies, a
memory-resident interrupt file is located in memory instead of within an IMSIC. Figure 7 depicts how
an IOMMU can record an incoming MSI in an MRIF. When properly configured by a hypervisor, an
IOMMU recognizes certain incoming MSIs as intended for a specific virtual interrupt file, and records
each such MSI by setting an interrupt-pending bit stored within the MRIF data structure in ordinary
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memory. After each MSI is recorded in an MRIF, the IOMMU also sends a notice MSI to the hypervisor
to inform it that the MRIF contents may have changed.

/f Bus network \’ Main memory

IOMMU

. MSI| write set bit (AMOOR) !
PCle device >

. S

Figure 7. Recording an incoming MSI into a memory-resident interrupt file (MRIF) instead of sending it to a guest
interrupt file as in Figure 6.

While a memory-resident interrupt file provides a place to record MSIs, it cannot interrupt a hart
directly the way an IMSIC’s guest interrupt files can. The notice MSIs that hypervisors receive only
indicate that a virtual hart might need interrupting; a hypervisor is responsible for examining the
MRIF contents each time to determine whether actually to interrupt the virtual hart. Furthermore,
whereas an IMSIC’s guest interrupt file can directly act as a supervisor-level interrupt file for a virtual
hart, keeping a virtual hart’s interrupt file in an MRIF while the virtual hart executes requires that the
hypervisor emulate a supervisor-level interrupt file for the virtual hart, hiding the underlying MRIF.
Depending on how often the virtual hart touches its interrupt file and the implementation’s level of
support for MRIFs, the cost of this emulation may be significant.

Consequently, MRIFs are expected most often to be used for virtual harts that are more-or-less
"swapped out" of a physical hart due to being idle, or nearly so. When a hypervisor determines that an
MSI that landed in an MRIF should wake up a particular virtual hart that was idle, the virtual hart can
be assigned a guest interrupt file in an IMSIC and its interrupt file moved from the MRIF into this
guest interrupt file before the virtual hart is resumed. The process of allocating a guest interrupt file
for the newly wakened virtual hart may of course force the interrupt file of another virtual hart to be
evicted to its own MRIF.

Not all systems need to accommodate large numbers of idle virtual harts. Many batch-
processing servers, for example, strive to keep all virtual worker threads as busy as

Dy possible from start to finish, throttled only by I/O delays and limits on processing
resources. In such environments, support for MRIFs may not be useful, so long as
parameter GEILEN is not too small.

An IOMMU can have one of these three levels of support for memory-resident interrupt files:

- no memory-resident interrupt files;

- memory-resident interrupt files without atomic update; or

- memory-resident interrupt files with atomic update.
Memory-resident interrupt files are most efficient when the memory system supports logical atomic
memory operations (AMOs) corresponding to RISC-V instructions AMOAND and AMOOR, for
memory accesses made both from harts and from the IOMMU. The AMOAND and AMOOR

operations are required for atomic update of a memory-resident interrupt file. A reduced level of
support is possible without AMOs, relying solely on basic memory reads and writes.
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8.3.1. Format of a memory-resident interrupt file

A memory-resident interrupt file occupies 512 bytes of memory, naturally aligned to a 512-byte
address boundary. The 512 bytes are organized as an array of 32 pairs of 64-bit doublewords, 64
doublewords in all. Each doubleword is in little-endian byte order (even for systems where all harts are
big-endian-only).

Big-endian-configured harts that make use of MRIFs are expected to implement the REVS8
| yl byte-reversal instruction defined by standard RISC-V extension Zbb, or pay the cost of
endianness conversion using a sequence of instructions.

The pairs of doublewords contain the interrupt-pending and interrupt-enable bits for external
interrupt identities 1-2047, in this arrangement:

offset size contents

0x000 8 bytes interrupt-pending bits for (minor) identities 1-63
0x008 8 bytes interrupt-enable bits for identities 1-63

0x010 8 bytes interrupt-pending bits for identities 64-127

0x018 8 bytes interrupt-enable bits for identities 64-127

0x1F0 8 bytes interrupt-pending bits for identities 1984-2047
0x1F8 8 bytes interrupt-enable bits for identities 1984-2047

In general, the pair of doublewords at address offsets k x 16 and k x16+8 for integer k contain the
interrupt-pending and interrupt-enable bits for external interrupt minor identities in the range k x 64
to k x 64+63. For identity i in this range, bit (i mod 64) of the first (even) doubleword is the interrupt-
pending bit, and the same bit of the second (odd) doubleword is the interrupt-enable bit.

The interrupt-pending and interrupt-enable bits are stored interleaved by doublewords
within an MRIF to facilitate the possibility of an IOMMU examining the relevant enable
y bit to determine whether to send a notice MSI after updating a pending bit, rather than
EI the default behavior of always sending a notice MSI after an update without regard for the
interrupt-enable bits. The memory arrangement matters only when MRIFs are supported

without atomic update.

Bit O of the first doubleword of an MRIF stores a faux interrupt-pending bit for nonexistent interrupt
0. If a write from an I/O device appears to be an MSI that should be stored in an MRIF, yet the data to
write (the interrupt identity) is zero, the IOMMU acts as though zero were a valid interrupt identity,
setting bit O of the target MRIF’s first doubleword and sending a notice MSI as usual.

All MRIFs are the size to accommodate 2047 valid interrupt identities, the maximum allowed for an
IMSIC interrupt file. If a system’s actual IMSICs have interrupt files that implement only N interrupt
identities, N<2047, then the contents of MRIFs for identities greater than N may be ignored by
software. IOMMUs, however, treat every MRIF as though all interrupt identities in the range 0-2047
are valid, even as software ignores invalid identity O and all identities greater than N.

There is no need to specify to an IOMMU a desired size N for an MRIF smaller than 2047
Ely valid interrupt identities. The only use an IOMMU would make of this information would
be to discard any MSIs indicating an interrupt identity greater than N. If devices are
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properly configured by software, such errant MSIs should not occur; but even if they do, it
is just as effective for software to ignore spurious interrupt identities after they have been
recorded in an MRIF as for an IOMMU to discard them before recording them in the
MRIF.

It is likewise unnecessary for IOMMUSs to check for and discard MSIs indicating an invalid
interrupt identity of zero.

8.3.2. Recording of incoming MSls to memory-resident interrupt files

The data component of an MSI write specifies the interrupt identity to raise in the destination
interrupt file. (Recall Section 3.2.) This data may be in little-endian or big-endian byte order. If an
IOMMU supports memory-resident interrupt files, it can store to an MRIF MSIs of the same
endianness that the machine’s IMSICs accept. All IMSIC interrupt files are required to accept MSIs in
little-endian byte order written to memory-mapped register seteipnum_le (Section 3.5). IMSIC
interrupt files may also accept MSIs in big-endian byte order if register seteipnum_be is implemented
alongside seteipnum_le.

If the interrupt identity indicated by an MSI’s data (when interpreted in the correct byte order) is in
the range 0-2047, an IOMMU stores the MSI to an MRIF by setting to one the interrupt-pending bit in
the MRIF for that identity. If atomic update is supported for MRIFs, the pending bit is set using an
AMOOR operation, else it is set using a non-atomic read-modify-write sequence. After the interrupt-
pending bit is set in the MRIF, the IOMMU sends the notice MSI that software has configured for the
MRIF.

The exact process of storing an MSI to an MRIF is specified more precisely in Section 8.5.2, which
covers MSI page table entries configured in MRIF mode.

It is an open question whether an IOMMU might optionally examine the matching
interrupt-enable bit within a destination MRIF to decide whether to send a notice MSI

Dy after setting an interrupt-pending bit. Currently, an IOMMU is required always to send a
notice MSI after storing an MSI to an MRIF, even when the corresponding enable bit for
the interrupt identity is zero.

8.3.3. Use of memory-resident interrupt files with atomic update

To make use of a memory-resident interrupt file with support for atomic update, software must have
memory locations to save an IMSIC interrupt file’s eidelivery and eithreshold registers, in addition
to the MRIF structure itself from Section 8.3.1.

Moving a virtual hart’s interrupt file from an IMSIC into an MRIF involves these steps:

1. Prepare the MRIF by zeroing all of its interrupt-pending bits (the even doublewords) and by
copying the IMSIC interrupt file’s eie array to the MRIF’s interrupt-enable bits (the odd
doublewords).

2. Save to memory the existing values of the IMSIC interrupt file’s registers eidelivery and
eithreshold, and set eidelivery = O.

3. Modify all relevant translation tables at IOMMUs so that MSIs for this virtual interrupt file are
now stored in the MRIF. If necessary, synchronize with all IOMMUs to ensure that no straggler
MSIs will arrive at the IMSIC interrupt file after this step.

4. Logically OR the contents of the IMSIC interrupt file’s eip array into the interrupt-pending bits of
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the MRIF, using AMOOR operations.
Once this sequence is complete, the IMSIC interrupt file is no longer in use.

Each time a notice MSI arrives indicating that an MSI has been stored in the MRIF, the controlling
hypervisor should scan the MRIF’s interrupt-pending and interrupt-enable bits to determine if any
enabled interrupt is now both pending and enabled and thus should interrupt the virtual hart.

With atomic update of MRIFs, a virtual hart may continue executing with its interrupt file contained
in an MRIF, so long as the hypervisor emulates for the virtual hart a proper IMSIC interrupt file to
hide the underlying MRIF. Hypervisor software can safely set and clear the interrupt-pending and
interrupt-enable bits of the MRIF using AMOOR and AMOAND operations, even as an IOMMU may
be storing incoming MSIs into the same MRIF.

If an IOMMU is ever configured to examine an MRIF’s interrupt-enable bits to decide

y whether to send notice MSIs, then modifying those enable bits will generally require

EI coordination with the IOMMU. But so long as IOMMUSs ignore the interrupt-enable bits as
is currently assumed, the bits can be changed by software without risk.

To move the same interrupt file from the MRIF back to an IMSIC:

1. At the new IMSIC interrupt file, set eidelivery = O, and zero the eip array.

2. Modify all relevant translation tables at IOMMUs so that MSIs for this virtual interrupt file are
now sent to the IMSIC interrupt file. If necessary, synchronize with all IOMMUs to ensure that no
straggler MSIs will be stored in the MRIF after this step.

3. Logically OR the interrupt-pending bits from the MRIF into the IMSIC interrupt file, using
instruction CSRS to write to the eip array. Also, copy the interrupt-enable bits from the MRIF to
the IMSIC interrupt file’s eie array.

4. Load the IMSIC interrupt file’s registers eithreshold and eidelivery with the values that were
earlier saved.

8.3.4. Use of memory-resident interrupt files without atomic update

Without support for atomic update, the use of memory-resident interrupt files is similar to the atomic-
update case of the previous subsection, but with some added complexities.

First, if the I/O devices that a virtual hart controls are behind multiple IOMMUs, then multiple MRIF
structures are needed, one per IOMMU, not just a single MRIF structure. Furthermore, in addition to
locations for storing eidelivery and eithreshold, software needs a place for a complete copy of the
interrupt file’s implemented eip array, apart from the MRIFs. While a virtual interrupt file is in
memory, its interrupt-pending bits will be split across all the MRIFs and the saved eip array. The
interrupt-enable bits may exist only in the MRIFs.

To move a virtual hart’s interrupt file from an IMSIC into memory, with one MRIF per IOMMU:
1. Prepare all MRIFs by zeroing their interrupt-pending bits (the even doublewords) and by copying

the IMSIC interrupt file’s eie array to the MRIFs' interrupt-enable bits (the odd doublewords).

2. Save to memory the existing values of the IMSIC interrupt file’s registers eidelivery and
eithreshold, and set eidelivery = O.

3. At each IOMMU, modify all relevant translation tables so that MSIs for this virtual interrupt file
are now stored in the individual MRIF matched to the IOMMU. If necessary, synchronize with all
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IOMMUs to ensure that no straggler MSIs will arrive at the IMSIC interrupt file after this step.

4. Dump the IMSIC interrupt file’s eip array to its separate location outside the MRIFs.
Once this sequence is complete, the IMSIC interrupt file is no longer in use.

While a virtual hart’s interrupt file remains in memory, an interrupt identity’s true pending bit is the
logical OR of its bit in all MRIFs and its bit in the saved eip array. All pending bits in the MRIFs start
as zeros, but interrupts may become pending there as MSIs for this virtual hart arrive at IOMMUs and
are stored in the corresponding MRIFs.

Without atomic update of MRIFs, an interrupt-pending bit is not easily cleared in an MRIF. (Clearing
a single pending bit in one MRIF requires that a new MRIF be allocated and initialized and the
corresponding IOMMU reconfigured to store MSIs into the new MRIF.) For this reason, it may or may
not be practical to have a virtual hart execute while keeping one of its interrupt files in memory. When
an MRIF records an interrupt that should wake a virtual hart, the simplest strategy is to always move
the interrupt file back into an IMSIC’s guest interrupt file before resuming execution of the virtual
hart.

To transfer an interrupt file from memory back to an IMSIC:

1. At the new IMSIC interrupt file, set eidelivery = O, and zero the eip array.

2. Modify all relevant translation tables at IOMMUs so that MSIs for this virtual interrupt file are
now sent to the IMSIC interrupt file. If necessary, synchronize with all IOMMUs to ensure that no
straggler MSIs will be stored in MRIFs after this step.

3. Merge by bitwise logical OR the interrupt-pending bits of all MRIFs and the saved eip array, and
logically OR these merged bits into the IMSIC interrupt file, using instruction CSRS to write to the
eip array. Also, copy the interrupt-enable bits from one of the MRIFs to the IMSIC interrupt file’s
eie array.

4. Load the IMSIC interrupt file’s registers eithreshold and eidelivery with the values that were
earlier saved.

8.3.5. Allocation of guest interrupt files for receiving notice MSls

The processing a hypervisor does in response to notice MSIs can be minimized by assigning a separate
interrupt identity for each MRIF, so the identity encoded in a notice MSI always indicates which one
MRIF may have changed. However, if there are very many MRIFs (potentially in the thousands), a
hypervisor may run short of interrupt identities within the supervisor-level interrupt files available in
IMSICs. In that case, the hypervisor can increase its supply of interrupt identities by allocating one or
more of the IMSICs’ guest interrupt files to itself for the purpose of receiving notice MSIs.

y Although guest interrupt files exist primarily to act as supervisor-level interrupt files for
EI virtual harts, the IMSIC hardware does not police exactly how they are used by software.

8.4. ldentification of page addresses of a VM's
interrupt files

When an I/O device is configured directly by a guest operating system, MSIs from the device are
expected to be targeted to virtual IMSICs within the guest OS’s virtual machine, using guest physical
addresses that are inappropriate and unsafe for the real machine. An IOMMU must recognize certain
incoming writes from such devices as MSIs and convert them as needed for the real machine. (Recall
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Figure 6.)

MSTIs originating from a single device that require conversion are expected to have been configured at
the device by a single guest OS running within one RISC-V virtual machine. Assuming the VM itself
conforms to the Advanced Interrupt Architecture, MSIs are sent to virtual harts within the VM by
writing to the memory-mapped registers of the interrupt files of virtual IMSICs. Each of these virtual
interrupt files occupies a separate 4-KiB page in the VM’s guest physical address space, the same as
real interrupt files do in a real machine’s physical address space. A write to a guest physical address
can thus be recognized as an MSI to a virtual hart if the write is to a page occupied by an interrupt file
of a virtual IMSIC within the VM.

The MSI address mask and address pattern specified in a device context (Section 8.1) are used to
identify the 4-KiB pages of virtual interrupt files in the guest physical address space of the relevant
VM. An incoming 32-bit write made by a device is recognized as an MSI write to a virtual interrupt file
if the destination guest physical page matches the supplied address pattern in all bit positions that are
zeros in the supplied address mask. In detail, a memory access to guest physical address A is an access
to a virtual interrupt file’s memory-mapped page if

((A >>12) & ~address mask) = (address pattern & ~address mask)

where >> 12 represents shifting right by 12 bits, an ampersand (&) represents bitwise logical AND, and
"~address mask" is the bitwise logical complement of the address mask.

When a memory access is found to be to a virtual interrupt file, an interrupt file number is extracted
from the original guest physical address as

interrupt file number = extract(A >> 12, address mask)

Here, extract(x, ¥) is a "bit extract" that discards all bits from x whose matching bits in the same
positions in the mask ¥ are zeros, and packs the remaining bits from x contiguously at the least-
significant end of the result, keeping the same bit order as x and filling any other bits at the most-
significant end of the result with zeros. For example, if the bits of x and ¥ are

x=abcdefgh
¥y=10100110

then the value of extract(x, ¥) has bits 000 Oacfg.

8.5. MS| page tables

When an IOMMU determines that a memory access is to a virtual interrupt file as specified in the
previous section, the access is translated or converted by consulting the MSI page table configured for
the device, instead of using the regular translation data structures that apply to all other memory
accesses from the same device.

An MSI page table is a flat array of MSI page table entries (MSI PTEs), each 16 bytes. MSI page tables
have no multi-level hierarchy like regular RISC-V page tables do. Rather, every MSI PTE is a leaf entry
specifying the translation or conversion of accesses made to a particular 4-KiB guest physical page that
a virtual interrupt file occupies (or may occupy) in the relevant virtual machine. To select an
individual MSI PTE from an MSI page table, the PTE array is indexed by the interrupt file number
extracted from the destination guest physical address of the incoming memory access by the formula
of the previous section. Each MSI PTE may specify either the address of a real guest interrupt file that
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substitutes for the targeted virtual interrupt file (as in Figure 6), or a memory-resident interrupt file in
which to store incoming MSIs for the virtual interrupt file (as in Figure 7).

The number of entries in an MSI page table is 2k where k is the number of bits that are ones in the
MSI address mask used to extract the interrupt file number from the destination guest physical
address. If an MSI page table has 256 or fewer entries, the start of the table is aligned to a 4-KiB page
address in real physical memory. If an MSI page table has 2¥>256 entries, the table must be naturally
aligned to a 2¥ x 16 — by te address boundary. If an MSI page table is not aligned as required, all entries
in the table appear to an IOMMU as UNSPECIFED, and any address an IOMMU may compute and use
for reading an individual MSI PTE from the table is also UNSPECIFIED.

Every 16-byte MSI PTE is interpreted as two 64-bit doublewords. If an IOMMU also references
standard RISC-V page tables, defined by the RISC-V Privileged Architecture, for regular address
translation, then the byte order for each of the two doublewords in memory, little-endian or big-
endian, should be the same as the endianness of the regular RISC-V page tables configured for the

same device context. Otherwise, the endianness of the doublewords of an MSI PTE is implementation-
defined.

Bit O of the first doubleword of an MSI PTE is field V (Valid). When V = 0, the PTE is invalid, and all
other bits of both doublewords are ignored by an IOMMU, making them free for software to use.

If V = 1, bit 63 of the first doubleword is field C (Custom), designated for custom use. If an MSI PTE
has V =1and C = 1, interpretation of the rest of the PTE is implementation-defined.

If V = 1and the custom-use bit C = O, then bits 2:1 of the first doubleword contain field M (Mode). If M
= 3, the MSI PTE specifies basic translate mode for accesses to the page, and if M = 1, it specifies MRIF
mode. Values of O and 2 for M are reserved. The interpretation of an MSI PTE for each of the two
defined modes is detailed further in the next two subsections.

8.5.1. MSI| PTE, basic translate mode

When an MSI PTE has fields V =1, C = 0, and M = 3 (basic translate mode), the PTE’s complete format
is:

First doubleword: bit 63 ¢, =0
bits 53:10 PPN
bits 2:1 M, =
bit @ v,

1" 1
- W

Second doubleword: ignored

All other bits of the first doubleword are reserved and must be set to zeros by software. The second
doubleword is ignored by an IOMMU so is free for software to use.

A memory access within the page covered by the MSI PTE is translated by replacing the access’s
original address bits 12 and above (the guest physical page number) with field PPN (Physical Page
Number) from the PTE, while retaining the original address bits 11:0 (the page offset). This translated
address is either zero-extended or clipped at the upper end as needed to make it the width of a real
physical address for the machine. The original memory access from the device is then passed onward
to the memory system with the new address.

An MSI PTE in basic translate mode allows a hypervisor to route an MSI write intended for a virtual
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interrupt file to go instead to a guest interrupt file of a real IMSIC in the machine.

An IOMMU that also employs standard RISC-V page tables for regular address
translation can maximize the overlap between the handling of MSI PTEs and regular
RISC-V leaf PTEs as follows:

For RV64, the first doubleword of an MSI PTE in basic translate mode has the same
encoding as a regular RISC-V leaf PTE for Sv39, Sv48, Sv57, Sv39x4, Sv48x4, or Sv57x4
page-based address translation, with PTE fields D, A, G, U, and X all zeros and W =R = 1.
Hence, the MSI PTE’s first doubleword appears the same as a reqular PTE that grants
read and write permission (R = W = 1) but not execute permissions (X = 0). This same-
encoded regular PTE would translate an MSI write the same as the actual MSI PTE, except
that what would be the PTE’s accessed (A), dirty (D), and user (U) bits are all zeros. An

Df IOMMU needs to treat only these three bits differently for an MSI PTE versus a regular
RV64 leaf PTE.

The address computation used to select a PTE from a reqular RISC-V page table must be
modified to select an MSI PTE’s first doubleword from an MSI page table. However, the
extraction of an interrupt file number from a guest physical address to obtain the index for
accessing the MSI page table already creates an unavoidable difference in PTE
addressing.

For RV32, the lower 32-bit word of an MSI PTE's first doubleword has the same format as
a leaf PTE for Sv32 or Sv32x4 page-based address translation, except again for what
would be PTE bits A, D, and U, which must be treated differently.

8.52. MSI PTE, MRIF mode

If memory-resident interrupt files are supported and an MSI PTE has fields V=1, C = 0,and M =1
(MRIF mode), the PTE’s complete format is:

First doubleword: bit 63 ¢, =0
bits 53:7 MRIF Address[55:9]
bits 2:1 M, =1
bit 0 V, =1
Second doubleword: bit 60 NID[10]
bits 53:10 NPPN
bits 9:0  NID[9:0]

All other PTE bits are reserved and must be set to zeros by software.

The PTE’s MRIF Address field provides bits 55:9 of the physical address of a memory-resident
interrupt file in which to store incoming MSIs, referred to as the destination MRIF. As every memory-
resident interrupt file is naturally aligned to a 512-byte address boundary, bits 8:0 of the destination
MRIF’s address must be zero and are not specified in the PTE.

Field NPPN (Notice Physical Page Number) and the two NID (Notice Identifier) fields together specify
a destination and value for a notice MSI that is sent after each time the destination MRIF is updated as
a result of consulting this PTE to store an incoming MSI.
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Typically, NPPN will be the page address of an IMSIC’s interrupt file in the real machine,
and NID will be the interrupt identity to make pending in that interrupt file to indicate

Dy that the destination MRIF may have changed. However, NPPN is not required to be a valid
interrupt file address, and an IOMMU must not attempt to restrict it to only such
addresses. Any page address must be accepted for NPPN.

Memory accesses by 1/O devices to addresses within a page covered by an MRIF-mode PTE are
handled by the IOMMU instead of being passed through to the memory system. If a memory access,
read or write, is not for 32 bits of data, or if the access address is not aligned to a 4-byte boundary
(including accesses that straddle the page boundary), the access should be aborted as unsupported. For
a naturally aligned 32-bit read, the IOMMU should preferably return zero as the read value but may
alternatively abort the access. A naturally aligned 32-bit write is either interpreted as an MSI, resulting
in an update of the destination MRIF, or is discarded.

When the IMSIC interrupt files in the system implement memory-mapped register seteipnum_be for
receiving MSIs in big-endian byte order (Section 3.5), then an IOMMU must be able to store MSIs in
both little-endian and big-endian byte orders to the destination MRIF. If the IMSIC interrupt files in
the system do not implement register seteipnum_be, an IOMMU should ordinarily store only little-
endian MSIs to the destination MRIF. The data of an incoming MSI is assumed to be in little-endian
byte order if bit 2 of the destination address is zero, and in big-endian byte order if bit 2 of the
destination address is one.

If a naturally aligned 32-bit write is to guest physical address A within a page covered by an MRIF-
mode PTE, and if the write data is D when interpreted in the byte order indicated by bit 2 of A, then
the write is processed as follows: If either A[11:3] or D[31:11] is not zero, or if bit 2 of A is one and big-
endian MSIs are not supported, then the incoming write is accepted but discarded. Else, the original
incoming write is recognized as an MSI and is replaced by one of the following memory accesses,
setting the interrupt-pending bit that corresponds to the interrupt identity D in the destination MRIF
to one:

- an atomic AMOOR operation, if atomic updates are supported; or

- anon-atomic read-modify-write sequence, if atomic updates are not supported.

Once the MRIF update operation is visible to all agents in the system, the 11-bit NID value is zero-
extended to 32 bits, and this value is written to the address NPPN<<12 (i.e,, physical page number
NPPN, page offset zero) in little-endian byte order.

While IOMMUs are expected typically to cache MSI PTEs that are configured in basic
translate mode (M = 3), they might not cache PTEs configured in MRIF mode (M = 1). Two
reasons together justify not caching MSI PTEs in MRIF mode: First, the information and
y actions required to store an MSI to an MRIF are far different than normal address
EI translation; and second, by their nature, MSIs to MRIFs should occur less frequently.
Hence, an IOMMU might perform MRIF-mode processing solely as an extension of cache-
miss page table walks, leaving its address translation cache oblivious to MRIF-mode MSI
PTEs.
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