RISC-V Specification for CHERI
Extensions

Authors: Hesham Almatary, Andres Amaya Garcia, John Baldwin, David Chisnall, Jessica
Clarke, Brooks Davis, Nathaniel Wesley Filardo, Franz A. Fuchs, Timothy Hutt, Alexandre
Joannou, Tarig Kurd, Ben Laurie, A. Theodore Markettos, David McKay, Jamie Melling, Stuart
Menefy, Simon W. Moore, Peter G. Neumann, Robert Norton, Alexander Richardson,
Michael Roe, Peter Rugg, Peter Sewell, Carl Shaw, Robert N. M. Watson, Jonathan Woodruff

Version v0.0.1-prerelease, 2024-01-20: Draft

Table of Contents

Preamble
Copyright and license information
Contributors
1. Introduction
1.1. CHERI Concepts and Terminology
1.2. CHERI Extensions to RISC-V
1.3. Risks and Known Uncertainty
1.3.1. Pending Extensions
1.3.2. Incompatible Extensions

1.3.3. Suggested Mnemonic Renaming

2. Anatomy of Capabilities in Zcheri_ purecap

2.1. Components of a Capability
2.11. Tag
2.1.2. Architectural Permissions (AP)

Permission Encoding

2.1.3. Software-Defined Permissions (SDP)

2.14. Sealed (S) Bit

2.1.5. Bounds

2.1.6. Address

2.1.7. Reserved Bits
2.2. Capability Encoding
2.3. NULL and Infinite Capabilities
2.4. Representable Limit Check
2.5. Malformed Capability Bounds

3. Integrating Zcheri_purecap with the RISC-V Base Integer Instruction Set

3.1. Memory

3.2. Programmer’s Model for Zcheri_ purecap

3.3. Capability Instructions

3.3.1. Capability Inspection Instructions
3.3.2. Capability Manipulation Instructions
3.3.3. Capability Load and Store Instructions
3.3.4. Unconditional Integer Address Jumps

3.4. Existing RISC-V Instructions

3.4.1 Integer Computational Instructions

3.4.2. Control Transfer Instructions
Unconditional Jumps

Conditional Branches

3.4.3. Integer Load and Store Instructions

3.5. Zicsr, Control and Status Register (CSR) Instructions

3.5.1. CSR Instructions

© 0 0 0 0 O O O O U B» B W N -

N N NN DN DN o a e S S S i S _ =
NI e Tie Jie e I IRGC I IE I ES S S G IR S S S = G IR S

3.6. Control and Status Registers (CSRs)

3.7. Machine-Level CSRs

3.7.1. Machine ISA Register (misa)
3.7.2. Machine Status Registers (mstatus and mstatush)

3.7.3. Machine Trap-Vector Base-Address Registers (mtvec)

3.7.4. Machine Trap-Vector Base-Address Capability Registers (mtvecc)

3.7.5. Machine Scratch Register (mscratch)

3.7.6. Machine Scratch Register Capability (mscratchc)

3.7.7. Machine Exception Program Counter (mepc)

3.7.8. Machine Exception Program Counter Capability (mepcc)
3.7.9. Machine Cause Register (mcause)

3.7.10. Machine Trap Delegation Register (medeleg)

3.7.11. Machine Trap Value Register (mtval)

3.8. Supervisor-Level CSRs

3.8.1. Supervisor Trap Vector Base Address Registers (stvec)
3.8.2. Supervisor Trap Vector Base Address Registers (stvecc)
3.8.3. Supervisor Scratch Register (sscratch)

3.8.4. Supervisor Scratch Registers (sscratchc)

3.8.5. Supervisor Exception Program Counter (sepc)

3.8.6. Supervisor Exception Program Counter Gapability (sepcc)
3.8.7. Supervisor Cause Register (scause)

3.8.8. Supervisor Trap Value Register (stval)

3.9. Unprivileged CSRs

3.9.1. Program Counter Capability (pcc)

3.10. CHERI Exception handling

3.11. Physical Memory Attributes (PMA)

3.12. Page-Based Virtual-Memory Systems

3.12.1. Invalid Address Handling

4. Integrating Zcheri_purecap with Sdext
4.1. Debug Mode
4.2. Core Debug Registers

4.2.1. Debug Program Counter (dpc)

4.2.2. Debug Program Counter Capability (dpcc)
4.2.3. Debug Scratch Register O (dscratchO)
4.2.4. Debug Scratch Register O (dscratchOc)
4.2.5. Debug Scratch Register 1 (dscratchl)
4.2.6. Debug Scratch Register 1 (dscratchlc)

5."Zcheri_pte" Extension for CHERI Page-Based Virtual-Memory Systems

5.1. Extending the Page Table Entry Format

5.2. Extending the Machine Environment Configuration Register (menvcfg)
6."Zcheri_legacy" Extension for CHERI Legacy Mode
6.1. CHERI Execution Mode

6.2. Zcheri_legacy Instructions

22
23
23
24
24
24
25
25
25
26
26
27
27
28
28
28
29
29
29
29
30
30
31
31
31
32
32
33
34
34
34
34
34
35
35
35
35
36
36
37
39
39
40

6.2.1. Capability Load and Store Instructions
6.2.2. Unconditional Capability Jumps
6.3. Existing RISC-V Instructions
6.3.1. Control Transfer Instructions
6.3.2. Conditional Branches
6.3.3. Load and Store Instructions
6.3.4. CSR Instructions
6.4. Integrating Zcheri_legacy with Sdext
6.5. Debug Default Data Capability (dddc)
6.6. Disabling CHERI Features
6.7. Added CLEN-wide CSRs
6.7.1. Machine ISA Register (misa)
6.7.2. Machine Status Registers (mstatus and mstatush)
6.7.3. Machine Trap Default Capability Register (mtdc)
6.7.4. Machine Environment Configuration Register (menvcfg)
6.7.5. Supervisor Trap Default Capability Register (stdc)
6.7.6. Supervisor Environment Configuration Register (senvcfg)
6.7.7. Default Data Capability (ddc)
7."Zcheri _mode" Extension for CHERI Execution Mode
7.1. CHERI Execution Mode
7.2. Zcheri_mode Instructions
7.2.1. Capability Manipulation Instructions
7.2.2. Mode Change Instructions
7.2.3. Unconditional Capability Jumps
7.3. Integrating Zcheri _mode with Sdext
8. RISC-V Instructions and Extensions Reference
8.1."Zcheri_ purecap', "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI
8.1.1. JALR.PCC
8.1.2. JALR.CAP
8.1.3. CMOVE
8.14. CMODESWITCH
8.1.5. CINCOFFSETIMM
8.1.6. CINCOFFSET
8.1.7. CSETADDR
8.1.8. CANDPERM
8.1.9. CSETMODE
8.1.10. CSETHIGH
8.1.11. CSETEQUALEXACT
8.1.12. CSEAL
8.113. CTESTSUBSET
8.1.14. CBUILDCAP
8.115. CGETTAG
8.1.16. CGETPERM

40
40
40
40
41
41
41
42
42
42
43
43
43
44
44
44
44
45
46
46
46
47
47
47
47
48
49
50
50
52
53
54
54
55
56
57
58
59
60
61
62
63
64

8110 CGETHIGH 65
8.1.18. CGETBASE . . 66
8.119. CGETLEN . . 67
8.1.20. CSETBOUNDSIMM . . . 68
8.1.21. CSETBOUNDS. . 68
8.1.22. CSETBOUNDSINEXACGCT . .. 69
8.1.23. CRAM 70
8124, LC 71
8.1.25. CLC 71
8.1.26. SC 73
8.1.27. CSC 73
8.2. RV32I/E and RV64I/E Base Integer Instruction Sets 75
8. 2.1 AUIPC . . 76
8.2.2. AUIPCC . . . 6
8.2.3.BEQ, BNE, BLT[U], BGE[U] 7
8.2.4. CJALR . 8
8.2.5. CJAL, JALR 8
8.2.6. C AL . 80
827 CIAL JAL . 80
8.2.8. CLWU . . 81
8.2.9. CLW 81
8.2.10. CLHU . . 81
8.2.11. CLH . 81
8.2.12. CLBU . . 81
8.2.13. CLB . 81
8. 204, LD, 81
8.2.15. LWU 81
8.2.16. LW . 81
8210 . LHU . 81
8. 2. 08, LH 81
8.2.19. LBU . 81
8.2.20. LB 81
8.2.21. CLD . 82
8.2.22. CSW 84
8.2.23. CSH 84
8.2.24. CSB . 84
8.2. 25, S 84
8.2.26. SW 84
8.2.270. SH . 84
8.2 28, SB 84
8.2.29. CSD . 85
8.2.30. SRET . 87

8.2. 31 MRET | 87

8.2.32. DRET 88

8.3."A" Standard Extension for Atomic Instructions 89
8.3.1. CAMO<OP>W 90
8.3.2. CAMO<OP>.D 90
8.3.3. AMO<OP>W 90
8.3.4. CAMO<OP>W 91
8.3.5. AMOSWAP.C 93
8.3.6. CAMOSWAP.C 93
8.3.7.CLR.D 95
8.3.8. CLR.W 95
8.3.9.CLRH 95
8.3.10. CLR.B 95
8.3.11. LR.D 95
8.3.12. LR'W 95
8.3.13. LR.H 95
8.3.14. LR.B 96
8.3.15.LR.C 98
8.3.16. CLR.C 98
8.3.17. CSC.D 100
8.3.18. CSC.W 100
8.3.19. CSC.H 100
8.3.20. CSC.B 100
8.3.21. SC.D 100
8.3.22. SC.W 100
8.3.23. SC.H 100
8.3.24. SC.B 101
8.3.25. SC.C 103
8.3.26. CSC.C 103

8.4."Zicsr", Control and Status Register (CSR) Instructions 105
8.41. CSRRW 106
8.4.2. CSRRWI 107
8.4.3. CSRRS 107
8.4.4. CSRRSI 107
8.4.5. CSRRC 107
8.4.6. CSRRCI 108

8.5."Zfh","Zthmin", "F" and "D" Standard Extension for Floating-Point 109
8.5.1. CFLD 110
8.5.2. CFLW 110
8.5.3. CFLH 110
8.54. FLD 110
8.5.5. FLW 110
8.5.6. FLH 111

8.5.7. CFSD 113

8.5.8. CFSW
8.5.9. CFSH
8.5.10. FSD
8.5.11. FSW
8.5.12. FSH

8.6."C" Standard Extension for Compressed Instructions
8.6.1. C.BEQZ, C.BNEZ
8.6.2. CMV
8.6.3. CCMOVE
8.6.4. CADDII6SP
8.6.5. C.CINCOFFSET16CSP
8.6.6. CADDI4SPN
8.6.7. C.CINCOFFSET4CSPN
8.6.8. CCMODESWITCH
8.6.9. CJALR
8.6.10. C.CJALR
8.6.11. C.CJR
8.612. CJR
8.6.13. CJAL
8.6.14. C.CJAL
8.615.C]J
8.6.16. C.CJ
8.6.17. C.CLD
8.6.18. C.CLW
8.6.19. C.LD
8.6.20. C.LW
8.6.21. C.CLWSP
8.6.22. C.CLDSP
8.6.23. CLWSP
8.6.24. C.LDSP
8.6.25. C.FLW
8.6.26. C.FLWSP
8.6.27. C.CFLD
8.6.28. C.FLD
8.6.29. C.CFLDSP
8.6.30. C.FLDSP
8.6.31. C.CLC
8.6.32. C.CLCSP
8.6.33. C.CSD
8.6.34. C.CSW
8.6.35.C.SD
8.6.36. C.SW
8.6.37. C.CSWSP

113

113

113

113

114
116

117
118
118
119
119
120
120
121
122
122
123
123
124
124
125
125
126
126
126
127
129
129
129
130
132
132
133
133
133
134
136
136
137
137
137
138
140

8.6.38. C.CSDSP 140

8.6.39. C.SWSP 140
8.6.40. C.SDSP 141
8.6.41. C.FSW 143
8.6.42. CFSWSP 143
8.6.43. C.CFSD 144
8.6.44. C.CFSDSP 144
8.6.45. C.FSD 144
8.6.46. C.FSDSP 145
8.6.47. C.CSC 147
8.6.48. C.CSC, C.CSCSP 147
8.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations . .. 149
8.7.1. CBO.CLEAN 150
8.7.2. CBO.CLEAN.CAP 150
8.7.3. CBO.FLUSH 151
8.7.4. CBO.FLUSH.CAP 151
8.7.5. CBO.INVAL 152
8.7.6. CBO.INVAL.CAP 152
8.7.7. CBO.ZERO 154
8.7.8. CBO.ZERO.CAP 154
8.7.9. PREFETCH.I 156
8.7.10. PREFETCH.I.CAP 156
8.7.11. PREFETCH.R 158
8.7.12. PREFETCH.R.CAP 158
8.7.13. PREFETCH.W 160
8.7.14. PREFETCH.W.CAP 160
8.8."Zba" Extension for Bit Manipulation Instructions 161
8.8.1. CSHIADD 162
8.8.2. CSH2ADD 162
8.8.3. CSH3ADD 162
8.8.4. SHIADD 162
8.8.5. SH2ADD 162
8.8.6. SH3ADD 163
8.8.7. CSHIADD.UW 164
8.8.8. CSH2ADD.UW 164
8.8.9. CSH3ADD.UW 164
8.8.10. SHIADD.UW 164
8.8.11. SH2ADD.UW 164
8.8.12. SH3ADD.UW 165
8.8.13. SH4ADD 166
8.8.14. CSH4ADD 166
8.8.15. SH4ADD.UW 167

8.8.16. CSH4ADD.UW 167

8.9."Zcb" Standard Extension For Code-Size Reduction
8.9.1. C.CLH
8.9.2. C.CLHU
8.9.3. C.CLBU
8.94.C.LH
8.9.5. CLHU
8.9.6. C.LBU
8.9.7. C.CSH
8.9.8. C.CSB
8.9.9. C.SH
8.9.10. C.CSH, C.CSB, C.SH, C.SB
8.10."Zcmp" Standard Extension For Code-Size Reduction
8.10.1. CM.PUSH
8.10.2. CM.CPUSH
8.10.3. CM.POP
8.10.4. CM.CPOP
8.10.5. CM.POPRET
8.10.6. CM.CPOPRET
8.10.7. CM.POPRETZ
8.10.8. CM.CPOPRETZ
8.10.9. CM.MVSAO1
8.10.10. CM.CMVSAO1
8.10.11. CM.MVAO1S
8.10.12. CM.CMVAO1S
8.11. "Zemt' Standard Extension For Code-Size Reduction
8.11.1. Jump Vector Table CSR (jvt)
8.11.2. Jump Vector Table CSR (jvtc)
8.11.3. CMJALT
8.11.4. CM.CJALT
8.11.5. CMJT
8.11.6. CM.CJT
9. Extension summary
9.1. Zbhlrsc
9.2. Zcheri_purecap
9.3. Zcheri_legacy
9.4. Zcheri _mode
9.5. Instruction Modes
10. Capability Width CSR Summary
10.1. Other tables
Bibliography

168
169
169
169
169
169
170
172
172
172
173
175
176
176
178
178
180
180
182
182
184
184
185
185
186
186
186
187
187
189
189
191
191
191
194
196
196
202
203
207

Preamble | Page 1

Preamble

This document is in the Development state

Expect potential changes. This draft specification is likely to evolve before it is accepted as
a standard. Implementations based on this draft may not conform to the future standard.

RISC-V Specification for CHERI Extensions | © RISC-V

http://riscv.org/spec-state

Copyright and license information | Page 2

Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-
BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2024 by RISC-V International.

RISC-V Specification for CHERI Extensions | © RISC-V

https://creativecommons.org/licenses/by/4.0/

Contributors | Page 3

Contributors

This RISC-V specification has been contributed to directly or indirectly by:

- Hesham Almatary <hesham.almatary@cl.cam.ac.uk>
- Andres Amaya Garcia <andres.amaya@codasip.com>
- John Baldwin <jhb6l@cl.cam.ac.uk>

- David Chisnall <david.chisnall@cl.cam.ac.uk>

- Jessica Clarke <jessica.clarke@cl.cam.ac.uk>

- Brooks Davis <brooks.davis@sri.com>

- Nathaniel Wesley Filardo <nwf20@cam.ac.uk>

- Franz A. Fuchs <faf28@cam.ac.uk>

- Timothy Hutt <timothy.hutt@codasip.com>

- Alexandre Joannou <alexandre. joannou@cl.cam.ac.uk>
- Tariq Kurd <tariq.kurd@codasip.com>

- Ben Laurie <benl@google.com>

- A. Theodore Markettos <theo.markettos@cl.cam.ac.uk>
- David McKay <david.mckay@codasip.com>

- Jamie Melling <jamie.melling@codasip.com>

- Stuart Menefy <stuart. menefy@codasip.com>

- Simon W. Moore <simon.moore@cl.cam.ac.uk>

- Peter G. Neumann <neumann@csl.sri.com>

- Robert Norton <robert.norton@cl.cam.ac.uk>

- Alexander Richardson <alexrichardson@google.com>
- Michael Roe <mrlOl@cam.ac.uk>

- Peter Rugg <peter.rugg@cl.cam.ac.uk>

- Peter Sewell <peter.sewell@cl.cam.ac.uk>

- Carl Shaw <carl.shaw@codasip.com>

- Robert N. M. Watson <robert.watson@cl.cam.ac.uk>

- Jonathan Woodruff <jonathan.woodruff@cl.cam.ac.uk>

RISC-V Specification for CHERI Extensions | © RISC-V

mailto:hesham.almatary@cl.cam.ac.uk
mailto:andres.amaya@codasip.com
mailto:jhb61@cl.cam.ac.uk
mailto:david.chisnall@cl.cam.ac.uk
mailto:jessica.clarke@cl.cam.ac.uk
mailto:brooks.davis@sri.com
mailto:nwf20@cam.ac.uk
mailto:faf28@cam.ac.uk
mailto:timothy.hutt@codasip.com
mailto:alexandre.joannou@cl.cam.ac.uk
mailto:tariq.kurd@codasip.com
mailto:benl@google.com
mailto:theo.markettos@cl.cam.ac.uk
mailto:david.mckay@codasip.com
mailto:jamie.melling@codasip.com
mailto:stuart.menefy@codasip.com
mailto:simon.moore@cl.cam.ac.uk
mailto:neumann@csl.sri.com
mailto:robert.norton@cl.cam.ac.uk
mailto:alexrichardson@google.com
mailto:mr101@cam.ac.uk
mailto:peter.rugg@cl.cam.ac.uk
mailto:peter.sewell@cl.cam.ac.uk
mailto:carl.shaw@codasip.com
mailto:robert.watson@cl.cam.ac.uk
mailto:jonathan.woodruff@cl.cam.ac.uk

1.1. CHERI Concepts and Terminology | Page 4

Chapter 1. Introduction
1.1. CHERI Concepts and Terminology

Current CPU architectures (including RISC-V) allow memory access solely by specifying and
dereferencing a memory address stored as an integer value in a register or in memory. Any accidental
or malicious action that modifies such an integer value can result in unrestricted access to the
memory that it addresses. Unfortunately, this weak memory protection model has resulted in the
majority of software security vulnerabilities present in software today.

CHERI enables software to efficiently implement fine-grained memory protection and scalable
software compartmentalization by providing strong, efficient hardware mechanisms to support
software execution and enable it to prevent and mitigate vulnerabilities.

Design goals include incremental adoptability from current ISAs and software stacks, low
performance overhead for memory protection, significant performance improvements for software
compartmentalization, formal grounding, and programmer-friendly underpinnings. It has been
designed to provide strong, non-probabilistic protection rather than depending on short random
numbers or truncated cryptographic hashes that can be leaked and reinjected, or that could be brute
forced.

CHERI enhances the CPU to add hardware memory access control. It has an additional memory access
mechanism that protects references to code and data (pointers), rather than the location of code and data
(integer addresses). This mechanism is implemented by providing a new primitive, called a capability,
that software components can use to implement strongly protected pointers within an address space.

Capabilities are unforgeable and delegatable tokens of authority that grant software the ability to
perform a specific set of operations. In CHERI, integer-based pointers can be replaced by capabilities
to provide memory access control. In this case, a memory access capability contains an integer
memory address that is extended with metadata to protect its integrity, limit how it is manipulated,
and control its use. This metadata includes:

- an out-of-band tag implementing strong integrity protection (differentiating valid and invalid
capabilities), This prevents confusion between data and capabilities.

- bounds limiting the range of addresses that may be dereferenced
- permissions controlling the specific operations that may be performed

- sealing which is used to support higher-level software encapsulation

The CHERI model is motivated by the principle of least privilege, which argues that greater security can
be obtained by minimizing the privileges accessible to running software. A second guiding principle is
the principle of intentional use, which argues that, where many privileges are available to a piece of
software, the privilege to use should be explicitly named rather than implicitly selected. While CHERI
does not prevent the expression of vulnerable software designs, it provides strong vulnerability
mitigation: attackers have a more limited vocabulary for attacks, and should a vulnerability be
successfully exploited, they gain fewer rights, and have reduced access to further attack surfaces.

Protection properties for capabilities include the ISA ensuring that capabilities are always derived via
valid manipulations of other capabilities (provenance), that corrupted in-memory capabilities cannot
be dereferenced (integrity), and that rights associated with capabilities shall only ever be equal or less
permissive (monotonicity). Tampering or modifying capabilities in an attempt to elevate their rights will

RISC-V Specification for CHERI Extensions | © RISC-V

1.2. CHERI Extensions to RISC-V | Page 5

yield an invalid capability as the tag will be cleared. Attempting to dereference via an invalid
capability will result in a hardware exception.

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and dereferenced
using CHERI-aware instructions that expect capability operands rather than integer addresses. On
hardware reset, initial capabilities are made available to software via special and general-purpose
capability registers. All other capabilities will be derived from these initial valid capabilities through
valid capability transformations.

Developers can use CHERI to build fine-grained spatial and temporal memory protection into their
system software and applications and significantly improve their security.

1.2. CHERI Extensions to RISC-V

This specification is based on publicly available documentation including (Watson et al., 2023) and
(Woodruff et al,, 2019). It defines the following extensions to support CHERI alongside RISC-V:

Zcheri_purecap

Introduces key, minimal CHERI concepts and features to the RISC-V ISA. The resulting extended
ISA is not backwards-compatible with RISC-V

Zcheri_legacy

Extends Zcheri_purecap with features to ensure that the ISA extended with CHERI allows
backwards binary compatibility with RISC-V

Zcheri_mode

Adds a mode bit in the encoding of capabilities to allow changing the current CHERI execution
mode using indirect jump instructions

Zcheri_pte
CHERI extension for RISC-V harts supporting page-based virtual-memory

Zcheri_vectorcap

CHERI extension for the RISC-V Vector (V) extension. It adds support for storing CHERI
capabilities in vector registers, intended for vectorised memory copying

o The extension names are provisional and subject to change.

Zcheri_purecap is defined as the base extension which all CHERI RISC-V implementations must
support. Zcheri_legacy, Zcheri_mode and Zcheri_pte are optional extensions in addition to
Zcheri_purecap. Zcheri_mode requires supporting both Zcheri_purecap and Zcheri_legacy.

If a standard vector extension is present (indicated in this document as "V', but it could equally be one
of the subsets defined by a Zve* extension) then Zcheri_vectorcap may optionally be added in
addition to Zcheri_purecap.

We refer to software as purecap if it utilizes CHERI capabilities for all memory accesses — including
loads, stores and instruction fetches — rather than integer addresses. Purecap software requires the
CHERI RISC-V hart to support Zcheri_purecap. We refer to software as hybrid if it uses integer
addresses or CHERI capabilities for memory accesses. Hybrid software requires the CHERI RISC-V
hart to support Zcheri_ purecap, Zcheri_legacy and Zcheri_mode.

RISC-V Specification for CHERI Extensions | © RISC-V

1.3. Risks and Known Uncertainty | Page 6

See Chapter 8 for compatibility with other RISC-V extensions.

1.3. Risks and Known Uncertainty

- All extensions could be divided up differently in future, including after ratification
- The RISC-V Architecture Review Committee (ARC) are likely to update all encodings
- The ARC are likely to update all CSR addresses
- Instruction mnemonics may be renamed
° The instruction mnemonics could be the same regardless of CHERI mode

> Any changes will affect assembly code, but assembler aliases can provide backwards
compatibility

- There is no clarity on how the new Page Table Entry (PTE) bits from Zcheri_pte will be
implemented

° The PTE bits introduce a dependency between exceptions and the stored tag bit

- There is debate on whether different permission encodings are needed for XLENMAX=32 and
XLENMAX=64

1.3.1. Pending Extensions

The base RISC-V ISAs, along with most extensions, have been reviewed for compatibility with CHERI.
However, the following extensions are yet to be reviewed:

- "V" Standard Extension for Vector Operations
- "H" Hypervisor Extension

- Core-Local Interrupt Controller (CLIC)

) The list above is not complete!

1.3.2. Incompatible Extensions

There are RISC-V extensions in development that may duplicate some aspects of CHERI functionality
or directly conflict with CHERI and should not be available on a CHERI-enabled hart. These include:

- RISC-V CFI specification

- "]" Pointer Masking

o The list above is not complete!

1.3.3. Suggested Mnemonic Renaming

Table 1 lists the currently proposed renames. Please update the table when new renames are proposed
or confirmed.

Current Name Suggestion
CMOVE CMV
CINCOFFSET CADD
CINCOFFSETIMM CADDI

RISC-V Specification for CHERI Extensions | © RISC-V

1.3. Risks and Known Uncertainty | Page 7

Current Name Suggestion

C.CINCOFFSET16CSP C.CADDII6SP
C.CINCOFFSET4CSPN C.CADDI4SPN
CLC/LC CLCAP/LCAP
CSc/sc CSCAP/SCAP

Table 1. Suggested instruction names

y Renaming SC is not a choice. The store capability instruction must be renamed because it
EI conflicts with store conditional from the RISC-V A extension.

Further to the new proposed mnemonics in Table 1, the following general proposals have been
discussed:

- Do not use the letter 'c’ to indicate 'capability’ or 'CHERI' because this conflicts with the already
ratified RISC-V C extension

> We previously discussed using other letters like 'p' for 'pointer’ or 'f for 'fat pointer’ although 'f is
already used for floating point

- Do not change instruction mnemonics based on the current CHERI execution mode

° For example, LW is always load word regardless of the CHERI mode, so the mnemonic CLW
disappears

o This facilitates writing the ISA specification as well as code maintenance in systems software
like Linux

> However, it also goes against intentionality and can make assembly code (which occurs very
infrequently in real-world code) more difficult to understand without additional context

> Both options could be supported by using assembler aliases

RISC-V Specification for CHERI Extensions | © RISC-V

2.1. Components of a Capability | Page 8

Chapter 2. Anatomy of Capabilities in
/cheri_purecap

RISC-V defines variants of the base integer instruction set characterized by the width of the integer
registers and the corresponding size of the address space. There are two primary ISA variants, RV32I
and RV641, which provide 32-bit and 64-bit address spaces respectively. The term XLEN refers to the
width of an integer register in bits (either 32 or 64). The value of XLEN may change dynamically at
run-time depending on the values written to CSRs, so we define XLENMAX to be widest XLEN that the
implementation supports.

Zcheri_purecap defines capabilities of size CLEN corresponding to 2 * XLENMAX without including
the tag bit. The value of CLEN is always calculated based on XLENMAX regardless of the effective
XLEN value.

2.1. Components of a Capability

Capabilities contain the software accessible fields described in this section.

2.1.1. Tag

An additional hardware managed bit added to addressable memory and registers. It is stored
separately and may be referred to as "out of band". It indicates whether a register or CLEN-aligned
memory location contains a valid capability. If the tag is set, the capability is valid and can be
dereferenced (contingent on checks such as permissions or bounds).

The capability is invalid if the tag is clear. Using an invalid capability to dereference memory or
authorize any operation gives rise to exceptions. All capabilities derived from invalid capabilities are
themselves invalid i.e. their tags are O.

All locations in registers or memory able to hold a capability are CLEN+1 bits wide including the tag
bit. Those locations are referred as being CLEN-bit or capability wide in this specification.

2.1.2. Architectural Permissions (AP)
A CHERI v9 Note: The permissions are encoded differently in this specification.

This field encodes architecturally defined permissions of the capability. Permissions grant access
subject to the tag being set, the capability being unsealed (see Section 2.14), and bounds checks (see
Section 2.1.5). An operation is also contingent on requirements imposed by other RISC-V architectural
features, such as virtual memory, PMP and PMAs, even if the capability grants sufficient permissions.
The permissions currently defined in Zcheri_purecap are listed in below.

Read Permission (R)

Allow reading integer data from memory. Tags are always read as zero when reading integer data.

Write Permission (W)

Allow writing integer data to memory. Tags are always written as zero when writing integer data.
Every CLEN aligned word in memory has a tag, if any byte is overwritten with integer data then the
tag for all CLEN-bits is cleared.

RISC-V Specification for CHERI Extensions | © RISC-V

2.1. Components of a Capability | Page 9

Capability Permission (C)
Allow reading capability data from memory if the authorising capability also grants R-permission.
Allow writing capability data to memory if the authorising capability also grants W-permission.

Execute Permission (X)

Allow instruction execution.

Access System Registers Permission (ASR)

Allow access to privileged CSRs.

Permission Encoding

The bit width of the permissions field depends on the value of XLENMAX as shown in Table 2. A 4-bit
vector encodes the permissions when XLENMAX=32. For this case, the legal encodings of permissions
are listed in Table 3. Certain combinations of permissions are impractical. For example, C-permission
is superfluous when the capability does not grant either R-permission or W-permission. Therefore, it
is only possible to encode a subset of all combinations.

XLENMAX Permissions width
32 4
64 5

Table 2. Permissions widths depending on XLENMAX

Encoding R w C X ASR
0b0000O
0b0001 reserved
0b0010
0b0OO011 v v
0b0100 v
0b0101 v v
0b0110 v
0bo111 v v
0b1000 v v
0b1001 v v v
0b1010 v v
0b1011 v v v
0b1100 v v v
0b1101 v v v v
Ob1110 v v v
Ob1111 v v v v

Table 3. Encoding of architectural permissions for XLENMAX=32

The encoding in Table 3 is chosen to facilitate hardware implementations. Therefore, it can be worked
out if the permissions are granted as follows:

- C-permission: bit O is set

- W-permission: bit 1is set

- X-permission: bit 3 is set

- R-permission: bits 3 or 2 are set

RISC-V Specification for CHERI Extensions | © RISC-V

2.1. Components of a Capability | Page 10

- ASR-permission: bits 3 and 2 are set

A 5-bit vector encodes the permissions when XLENMAX=64. In this case, there is a bit per permission
as shown in Table 4. A permission is granted if its corresponding bit is set, otherwise the capability
does not grant that permission.

Bit Name
(0] C-permission
1 W-permission
2 R-permission
3 X-permission

4 ASR-permission

Table 4. Encoding of architectural permissions for XLENMAX=64
A TODO: Confirm that we need a separate permissions format for 32-bit and 64-bit.

y Valid capabilities must not have the permissions field set to a reserved value according to
EI Table 3 when XLENMAX=32.

2.1.3. Software-Defined Permissions (SDP)
Df CHERI v9 Note: CHERI v9 had no software-defined permissions for RV32
A bit vector used by the kernel or application programs for software-defined permissions (SDP).

Software is completely free to define the usage of these bits. For example, a program may
—y decide to use an SDP bit to indicate the "ownership” of objects. Therefore, a capability
J grants permission to free the memory it references if that SDP bit is set because it "owns"

that object.
XLENMAX SDP width
32 2
64 4

Table 5. SDP widths depending on XLENMAX

2.1.4. Sealed (S) Bit

a CHERI v9: The sealing bit is new (1-bit otype) and the old CHERI v9 otype no longer
exists.

Indicates that a capability is sealed if the bit is 1 or unsealed if it is O. Sealed capabilities cannot be
dereferenced to access memory and are immutable such that modifying any of its fields clears the tag
of the output capability.

In Zcheri_purecap, the sealing bit is used to implement immutable capabilities that describe function
entry points. A program may jump to a sealed capability to begin executing the instructions it
references. The jump instruction automatically unseals the capability and installs it to the program
counter capability (see Section 3.2). The CJALR instruction also seals the return address capability (if
any) since it is the entry point to the caller function.

RISC-V Specification for CHERI Extensions | © RISC-V

2.1. Components of a Capability | Page 11

215 Bounds

. CHERI v9 Note: The bounds mantissa width is different in XLENMAX=32. Also, the old
y; IE bit is renamed to Exponent Format (EF); the function of IE is the inverse of EF i.e. [E=0
has the same effect as EF=1.

Df CHERI v9 Note: The mantissa width for RV32 was increased to 10.

y CHERI v9 Note: The sense of the exponent is reversed, so an encoded value of O
EI represents CAP_ MAX_E, and CAP_MAX_E represents O from the previous specification.

The bounds encode the base and top addresses that constrain memory accesses. The capability can be
used to access any memory location A in the range base < A < top. The bounds are encoded in
compressed format, so it is not possible to encode any arbitrary combination of base and top
addresses. An invalid capability with tag cleared is produced when attempting to construct a capability
that is not representable because its bounds cannot be correctly encoded. The bounds are decoded as
described in Section 2.2.

The bounds field has the following components:

- T: Value substituted into the capability’s address to decode the top address
- B: Value substituted into the capability’s address to decode the base address

- E: Exponent that determines the position at which B and T are substituted into the capability’s
address

- EF: Exponent format flag indicating the encoding for T, B and E
> The exponent is stored in T and B if EF=0, so it is 'internal’
° The exponent is zero if EF=1, so it is 'embedded'

The bit width of T and B are defined in terms of the mantissa width (MW) which is set depending on
the value of XLENMAX as shown in Table 6.

XLENMAX MwW
32 10
64 14

Table 6. Mantissa width (MW) values depending on XLENMAX

The exponent E indicates the position of T and B within the capability’s address as described in
Section 2.2. The bit width of the exponent (EW) is set depending on the value of XLENMAX. The
maximum value of the exponent is calculated as follows:

CAP_MAX_E = XLENMAX - MW + 2

The possible values for EW and CAP_MAX _E are shown in Table 7.

XLENMAX EwW CAP_MAX_E
32 5 24
64 6 52

Table 7. Exponent widths and CAP_ MAX_E depending on XLENMAX

z The address and bounds must be representable in valid capabilities i.e. when the tag is set

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Capability Encoding | Page 12

(see Section 2.5).

2.1.6. Address

XLENMAX integer value that encodes the byte-address of a memory location.

XLENMAX Address width
32 32
64 64

Table 8. Address widths depending on XLENMAX

2.17. Reserved Bits

Reserved bits available for future extensions to Zcheri_ purecap.

74 Reserved bits must be O in valid capabilities.

2.2. Capability Encoding

CHERI v9 Note: The encoding changes eliminate the concept of the in-memory format,

y and also increase precision for RV32. When EF=0, T and B are now shifted right rather

EI than left within the address. Also, the bounds decoding for XLENMAX=32 uses a trick (see
bit T8) to save one bit when encoding the exponent.

The components of a capability are encoded as shown in Figure 1 and Figure 2 when XLENMAX=32
and XLENMAX=64 respectively.

31 30 29 26 25 21 2019 18 17 121110 9 210
SDP AP Reserved |S |EF|T8 T[7:2] TE B[9:2] BE
Address
32

Figure 1. Capability encoding when XLENMAX=32

63 57 56 53 52 48 47 28 27 26 25 17 16 14 13 320
Reserved | SDP | AP Reserved S|EF| T[11:3] | TE B[13:3] BE
Address
64

Figure 2. Capability encoding when XLENMAX=64

Each memory location or register able to hold a capability must also store the tag as out of band
information that software cannot directly set or clear. The capability metadata is held in the most
significant bits and the address is held in the least significant bits.

The metadata is encoded in a compressed format (Woodruff et al, 2019). It uses a floating point
representation to encode the bounds relative to the capability address. The base and top addresses
from the bounds are decoded as shown below.

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Capability Encoding | Page 13

TODO: The pseudo-code below does not have a formal notation. It is simply a place-holder
A while the Sail implementation is available. In this notation, / means "integer division", []
are the bit-select operators, and arithmetic is signed.

Ew = (XLENMAX ==32) ? 5 : 6
CAP_MAX_E = XLENMAX - MW + 2
If EF = 1:
E =0
T[EW / 2 - 1:0] = TE
B[EW / 2 - 1:0] = BE
LCout = (T[MW - 3:0] < B[MW - 3:0]) 21 : 0
LMSB = (XLENMAX == 32) ? T8 : @
else:
E = CAP_MAX_E - ((XLENMAX == 32) ? { 18, TE, BE } : { TE, BE })
TIEW / 2 - 1:0] = 0
BLEW / 2 - 1:0] = @
LCout = (T[MW - 3:EW / 2] < B[MW - 3:EW / 2]) 2?1 : 0
LMSB 3

Reconstituting the top two bits of T:

T[MW - T:MW - 2] = B[MW - 1:MW - 2] + LCout + LMSB

Decoding the bounds:
top: t = { a[XLENMAX - 1:E + MW] + ct, T[MW - 1:0] , {E{1'b0}} }
base: b = { a[XLENMAX - 1:E + MW] + cb, B[MW - 1:0] , {E{1'b0}} }

The corrections ¢, and ¢, are calculated as as shown below using the definitions in Table 9 and Table
10.

Ac = a[E + MW - 1:E + MW - 3]
Be = B[MW - 1:Mw - 3]

Te = T[MW - T:Mw - 3]

R =8Bc -1

A.<R T.<R [
false false 0
false true +1
true false -1
true true ¢}

Table 9. Calculation of top address correction

A.<R B.<R c
false false 0
false true +1
true false -1
true true ¢}

Table 10. Calculation of base address correction

The base, b, and top, t, addresses are derived from the address by substituting a[E + MW - 1:E] with B
and T respectively and clearing the lower E bits. The most significant bits of a may be adjusted up or

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Capability Encoding | Page 14

down by 1 using corrections ¢, and ¢, to allow encoding memory regions that span alignment
boundaries.

The EF bit selects between two cases:

1. EF = 1: The exponent is O for regions less than 2" bytes long

2. EF = O: The exponent is internal with E stored in the lower bits of T and B along with Ty when
XLENMAX=32. E is chosen so that the most significant non-zero bit of the length of the region
aligns with TIMW - 2] in the decoded top. Therefore, the most significant two bits of T can be
derived from B using the equality T = B + L, where L[MW - 2] is known from the values of EF and
E and a carry out is implied if T[TMW - 3:0] < B[MW - 3:0] since it is guaranteed that the top is
larger than the base.

The compressed bounds encoding allows the address to roam over a large representable region while
maintaining the original bounds. This relies on using the 'spare' encodings where T < B to define a
space boundary R, relative to the base, calculated by subtracting 1 from the top three bits of B. If B, T or
alE + MW - L:E] is less than R, it is inferred that they lie in the 2" aligned region above R labelled
spacey in Figure 3 and the corrections ¢, and ¢, are computed accordingly. The overall effect is that at
least 25"/8 bytes below the base address and 25™"/4 bytes above the top address can roam out-of-
bounds while still allowing the bounds to be correctly decoded.

0x30000 :,%.&
S
i
ox2ce00 | | R
spaceu! s
0x24000|....}...ol .k t
‘ dereferenceable
0x20000 4. & [region
Ox1E000 ... ||l b
oxiceee | .|
space, s
oxwee00 .. L _4d multiple of s = 28V

Figure 3. Memory address bounds encoded within a capability

A capability whose bounds cover the entire address space has O base and top equals 2*"""* i e t is a

XLENMAX + 1 bit value. However, b is a XLENMAX bit value and the size mismatch introduces
additional complications when decoding, so the following condition is required to correct t for
capabilities whose representable region wraps the edge of the address space:

if ((E < (CAP_MAX_E - 1)) & (t[XLENMAX: XLENMAX - 1] - b[XLENMAX - 11 > 1))
t[XLENMAX]T = !t[XLENMAX]

That is, invert the most significant bit of t if the decoded length of the capability is larger than E.

RISC-V Specification for CHERI Extensions | © RISC-V

2.3. NULL and Infinite Capabilities | Page 15

2.3. NULL and Infinite Capabilities

—y CHERI v9 Note: Encoding NULL as zeros removes the need for the difference between in-
J memory and architectural format.

The NULL capability is represented with O in all fields. This implies that NULL has no permissions
and its exponent E is CAP_MAX_E e.g. 52 when XLENMAX=64, so its bounds cover the entire address
space such that the expanded base is O and top is 2*"**"** In contrast, the Infinity capability grants all
permissions while its bounds also cover the whole address space.

Df The Infinity capability is also known as ‘default, ‘almighty’, or Toot' capability.

Field Value Comment

SDP Zeros Grants no permissions
AP Zeros Grants no permissions

S zero Unsealed

EF Z€ero Internal exponent format
T zeros Top address bit (XLENMAX=32 only)
T Z€eros Top address bits

T: Z€eros Exponent bits

B Z€ros Base address bits

B Zeros Exponent bits

Address Z€ros Capability address

Table 11. Field values of the NULL capability

Field Value Comment

SDP ones Grants all permissions
AP ones Grants all permissions

S zero Unsealed

EF Z€ero Internal exponent format
Ty zeros Top address bit (XLENMAX=32 only)
T zeros Top address bits

Te Z€eros Exponent bits

B Z€ros Base address bits

B Z€eros Exponent bits

Address Z€eros Capability address

Table 12. Field values of the Infinite capability

2.4. Representable Limit Check

Pointer arithmetic on capabilities must be checked to ensure that the new address is within the
capability’s representable region described in Section 2.2. The new address, after pointer arithmetic, is
within the representable region if decompressing the capability’s bounds with the original and new
addresses yields the same base and top addresses. In other words, given a capability with address a and
the new address @' = @ + X, the bounds b and t are decoded using a and the new bounds b'and t' are
decoded using @' The new address is within the capability’s representable region if b == b' && t ==
t'

Changing a capability’s address to a value outside the representable region unconditionally clears the

capability’s tag.

RISC-V Specification for CHERI Extensions | © RISC-V

2.5. Malformed Capability Bounds | Page 16

The encoding of the bounds depends upon the leading 1 of the address which is used to

determine the exponent. If the leading 1 of the address moves then the bounds will need to

y be recalculated. Instructions like CINCOFFSET and CSETADDR update the address field

EI but do not recalculate the bounds. Therefore, if the leading 1 moves relative to when the

bounds were calculated then the tag is cleared on the result as the encoding has been
invalidated.

2.5. Malformed Capability Bounds

A capability is malformed if its encoding does not describe a valid capability because its bounds cannot
be correctly decoded. The following check indicates whether a capability is malformed.

malformedMSB = (E == CAP_MAX_E && B[MW - 1:MW - 2] != @)

|| (E == CAP_MAX_E - 1 && B[MW - 1] 1= 0)
malformedLSB = (E < 0)
malformed = IEF && (malformedMSB || malformedLSB)
74 The check is for malformed bounds, so it does not include reserved bits!

Capabilities with malformed bounds are always invalid anywhere in the system i.e. their tags are
always O.

RISC-V Specification for CHERI Extensions | © RISC-V

3.1. Memory | Page 17

Chapter 3. Integrating Zcheri_purecap
with the RISC-V Base Integer Instruction
Set

Zcheri_purecap is an extension to the RISC-V ISA. The extension adds a carefully selected set of
instructions and CSRs that are sufficient to implement new security features in the ISA. To ensure
compatibility, Zcheri_purecap also requires some changes to the primary base integer variants:
RV32I, providing 32-bit addresses with 64-bit capabilities, and RV64I, providing 64-bit addresses with
128-bit capabilities. The remainder of this chapter describes these changes for both the unprivileged
and privileged components of the base integer RISC-V ISAs.

y The changes described in this specification also ensure that Zcheri_ purecap is compatible
EI with RV32E.

3.1. Memory

A hart supporting Zcheri_purecap has a single byte-addressable address space of 2*"*" bytes for all
memory accesses. Each memory region capable of holding a capability also stores a tag bit for each
naturally aligned CLEN bits (e.g. 16 bytes in RV64), so that capabilities with their tag set can only be
stored in naturally aligned addresses. Tags must be atomically bound to the data they protect.

The memory address space is circular, so the byte at address 2***" - 1 is adjacent to the byte at address
zero. A capability’s representable region described in Section 2.2 is also circular, so address O is within
the representable region of a capability where address 2**"™** - 1 is within the bounds.

3.2. Programmer’'s Model for Zcheri_purecap

For Zcheri_ purecap, the 32 unprivileged x registers of the base integer ISA are extended so that they
are able to hold a capability. Therefore, each x register is CLEN bits wide and has an out of band tag
bit. The x notation refers to the address field of the capability in an unprivileged register while the c
notation is used to refer to the full capability (i.e. address, metadata and tag) held in the same
unprivileged register.

Register cO is hardwired with all bits, including the capability metadata and tag, equal to O. In other
words, cO is hardwired to the NULL capability.

An authorising capability with appropriate permissions is required to execute instructions in
Zcheri_purecap. Therefore, the unprivileged program counter (pc) register is extended so that it is
able to hold a capability. The extended register is called the program counter capability (pcc). The pece
address field is effectively the pc in the base RISC-V ISA that the hardware automatically increments
as instructions are executed. The pcc's metadata and tag are reset to the Infinity capability metadata
and tag.

The hardware performs the following checks on pce for each instruction executed in addition to the
checks already required by the base RISC-V ISA. A failing check causes a CHERI exception.

- The tag must be set

- The capability must not be sealed

RISC-V Specification for CHERI Extensions | © RISC-V

3.3. Capability Instructions | Page 18

- The capability must grant execute permission

- All bytes of the instruction must be in bounds

3.3. Capability Instructions

CHERI v9 Note: Some instructions from the original CHERI specification were removed

y to save encoding space, or because they relate to features which are not yet in this

EI specification. Instructions were removed if they do not harm performance and can be
emulated using other instructions.

Zcheri_purecap introduces new instructions to the base RISC-V integer ISA to inspect and operate on
capabilities held in registers.

3.3.1. Capability Inspection Instructions

These instructions allow software to inspect the fields of a capability held in a c register. The output is
an integer value written to an x register representing the decoded field of the capability, such as the
permissions or bounds. These instructions do not cause exceptions.

- CGETTAG: inspects the tag of the input capability. The output is 1 if the tag is set and O otherwise

- CGETPERM: outputs the architectural (AP) and software-defined (SDP) permission fields of the
input capability

- CGETBASE: outputs the expanded base address of the input capability

- CGETLEN: outputs the length of the input capability. Length is defined as top - base. The output
is 2*""N-1 when the capability’s length is 2*"*""4*

- CRAM: outputs the nearest bounds alignment that a valid capability can represent

- CGETHIGH: outputs the compressed capability metadata

- CSETEQUALEXACT: compares two capabilities including tag, metadata and address

- CTESTSUBSET: tests whether the bounds and permissions of a capability are a subset of those

from another capability

y CGETBASE and CGETLEN output O when a capability with malformed bounds is provided
EI as an input (see Section 2.5).

3.3.2. Capability Manipulation Instructions

These instructions allow software to manipulate the fields of a capability held in a c register. The
output is a capability written to a c register with its fields modified. The output capability has its tag
set to O if the input capability did not have a tag set, the output capability has more permissions or
larger bounds compared to the input capability, or the operation results in a capability with
malformed bounds. These instructions do not give rise to exceptions.

- CSETADDR: set the address of a capability to an arbitrary address

- CINCOFFSET, CINCOFFSETIMM: increment the address of the input capability by an arbitrary
offset

- CSETHIGH: replace a capability’s metadata with an arbitrary value. The output tag is always O
- CANDPERM: bitwise AND of a mask value with a bit map representation of the architectural (AP)

RISC-V Specification for CHERI Extensions | © RISC-V

3.3. Capability Instructions | Page 19

and software-defined (SDP) permissions fields

- CSETBOUNDS: set the base and length of a capability. The tag is cleared, if the encoding cannot
represents the bounds exactly

- CSETBOUNDSINEXACT: set the base and length of a capability. The base will be rounded down
and/or the length will be rounded up if the encoding cannot represent the bounds exactly

- CSEAL: seal capability

- CBUILDCAP: replace the base, top, address, permissions and mode fields of a capability with the
fields from another capability

- CMOVE: move a capability from a c register to another c register

—y CBUILDCAP outputs a capability with tag set to O if the input capability’s bounds are
] malformed.

—y CHERI v9 Note: CSETBOUNDS and CSETBOUNDSIMM perform the role of the old
] CSETBOUNDSEXACT while the new CSETBOUNDSINEXACT is the old CSETBOUNDS.

3.3.3. Capability Load and Store Instructions

A load capability instruction, CLC, reads CLEN bits from memory together with its tag and writes the
result to a c register. The capability authorising the memory access is provided in a c source register,
so the effective address is obtained by incrementing that capability with the sign-extended 12-bit
offset.

A store capability instruction, CSC, writes CLEN bits and the tag in a c register to memory. The
capability authorising the memory access is provided in a ¢ source register, so the effective address is
obtained by incrementing that capability with the sign-extended 12-bit offset.

CLC and CSC instructions cause CHERI exceptions if the authorising capability fails any of the
following checks:

- The tag is zero

- The capability is sealed

- At least one byte of the memory access is outside the capability’s bounds

- For loads, the read permission must be set in AP

- For stores, the write permission must be set in AP

Capability load and store instructions also cause load or store/AMO address misaligned exceptions if
the address is not naturally aligned to a CLEN boundary.

For loads, the tag of the capability loaded from memory is cleared if the authorising capability does
not grant permission to read capabilities (i.e. both R-permission and C-permission must be set in AP).
For stores, the tag of the capability written to memory is cleared if the authorising capability does not
grant permission to write capabilities (i.e. both W-permission and C-permission must be set in AP).

a TODO: these cases may cause exceptions in the future - we need a way for software to
discover and/or control the behaviour

RISC-V Specification for CHERI Extensions | © RISC-V

3.4. Existing RISC-V Instructions | Page 20

3.3.4. Unconditional Integer Address Jumps

The indirect jump and link pcc (JALR.PCC) instruction allows unconditional jumps to a target address.
The target address is provided in an x register; the new address is installed in the address field of the
pce. The address of the instruction following the jump (pc + 4) is written to an x register. JALR.PCC
causes an exceptions when a minimum sized instruction at the target address is not within the bounds
of the pcc or the target address is misaligned.

y CHERI v9 Note: This instruction is now modal and shares the same encoding with
EI JALR.CAP when both Zcheri_ purecap and Zcheri_legacy are supported.

3.4, Existing RISC-V Instructions

The operands or behavior of some instructions in the base RISC-V ISA changes in Zcheri_purecap.

3.4]1. Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in x registers. Therefore,
these instructions only operate on the address field if the input register of the instruction holds a
capability. The output is XLEN bits written to an x register; the tag and capability metadata of that
register are zeroed.

The add upper immediate to pcc instruction (AUIPCC) replaces the add upper immediate to pc
instruction (AUIPC) at the same encoding. AUIPCC is used to build pcc-relative capabilities. AUIPCC
forms a 32-bit offset from the 20-bit immediate and filling the lowest 12 bits with zeros. The pcc
address is then incremented by the offset and a representability check is performed so the capability’s
tag is cleared if the new address is outside the pcc's representable region. The resulting CLEN value
along with the new tag are written to a c register.

3.4.2. Control Transfer Instructions

Control transfer instructions operate as described in the base RISC-V ISA. They also may cause
metadata updates and/or cause exceptions in addition to the base behaviour as described below.

Unconditional Jumps

The capability jump and link (CJAL) instruction replaces jump and link (JAL) at the same encoding.
CJAL sign-extends the offset and adds it to the address of the jump instruction to form the target
address. The target address is installed in the address field of pcc. The capability with the address of
the instruction following the jump (pcc + 4) is written to a ¢ register.

The capability jump and link register (CJALR) instruction replaces the jump and link register (JALR)
instruction at the same encoding. This instruction allows unconditional jumps to a target capability.
The target capability is obtained by incrementing the capability in the ¢ register operand by the sign-
extended 12-bit immediate, then setting the least significant bit of the result to zero. The capability
with the address of the instruction following the jump (pcc + 4) is written to a ¢ register.

All jumps cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc.

CJALR causes a CHERI exception when:

RISC-V Specification for CHERI Extensions | © RISC-V

3.5. Zicsr, Control and Status Register (CSR) Instructions | Page 21

- The target capability’s tag is zero
- A minimum sized instruction at the target capability’s address is not within bounds
- The target capability does not grant execute permission

CJAL and CJALR can also cause instruction address misaligned exceptions following the standard
RISC-V rules for JAL and JALR.

Conditional Branches

Branch instructions (see Conditional branches (BEQ, BNE, BLT[U], BGE[U])) encode signed offsets in
multiples of 2 bytes. The offset is sign-extended and added to the address of the branch instruction to
form the target address.

Branch instructions compare two x registers as described in the base RISC-V ISA, so the metadata and
tag values are disregarded in the comparison if the operand registers hold capabilities. If the
comparison evaluates to true, then the target address is installed in the pcc's address field. These
instructions cause CHERI exceptions when a minimum sized instruction at the target address is not
within the pec's bounds.

3.4.3. Integer Load and Store Instructions

Integer load and store instructions transfer the amount of integer data described in the base RISC-V
ISA between the registers and memory. For example, LD and LW load 64-bit and 32-bit values
respectively from memory into an x register. However, the address operands for load and store
instructions are interpreted differently in Zcheri_purecap: the capability authorising the access is in
the c register operand and the memory address is given by incrementing the address of that capability
by the sign-extended 12-bit immediate offset. For clarity, the mnemonics of these instructions are
prefixed with the letter 'C' (e.g. LD becomes CLD, SW becomes CSW, etc) to distinguish them from the
standard RISC-V instructions that do not have a c register operand.

All load and store instructions cause CHERI exceptions if the authorising capability fails any of the
following checks:

- The tag is set

- The capability is unsealed

- All bytes of accessed memory are inside the capability’s bounds
- Forloads, the read permission must be set in AP

- For stores, the write permission must be set in AP
Integer load instructions always zero the tag and metadata of the result register.

Integer stores write zero to the tag associated with the memory locations that are naturally aligned to
CLEN. Therefore, misaligned stores may clear up to two tag bits in memory.

3.5. Zicsr, Control and Status Register (CSR)
INnstructions

Zcheri_purecap requires that RISC-V CSRs intended to hold addresses, like mtvec, are now able to
hold capabilities. Therefore, such registers are removed in Zcheri_purecap and analogous CLEN-bit

RISC-V Specification for CHERI Extensions | © RISC-V

3.6. Control and Status Registers (CSRs) | Page 22

versions of those CSRs are added to the ISA as described in Section 3.6.

Reading or writing any part of a CLEN-bit CSR may cause side-effects. For example, the CSR’s tag bit
may be cleared if a new address is outside the representable region of a CSR capability being written.

This section describes how the CSR instructions operate on these CSRs in Zcheri_purecap.

The CLEN-bit CSRs are summarised in Chapter 10.

3.51. CSR Instructions

/4 CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

All CSR instructions atomically read-modify-write a single CSR. If the CSR accessed is of capability
size then the capability’s tag, metadata and address are all accessed atomically.

When the CSRRW instruction is accessing a capability width CSR, then the source and destination
operands are c registers and it atomically swaps the values in the whole CSR with the CLEN width
register operand.

There are special rules for updating specific CLEN-wide CSRs as shown in Table 39.

CSRRWI, CSRRS, CSRRSI, CSRRC and CSRRCI specify x registers and so only access the address field
of the capability when specifying a capability CSR such as mtvecc. They calculate the final address
using the standard RISC-V behaviour (set bits, clear bits etc.) and that final address is updated in the
capability. The update typically uses the semantics of a CSETADDR instruction which clears the tag if
the capability is sealed, or if the updated address is not representable. Table 39 shows the exact action
taken for each capability width CSR.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is privileged.

3.0. Control and Status Registers (CSRs)

Zcheri_purecap removes the CSRs listed in Table 13, Table 14, Table 15 and Table 16 from the base
RISC-V ISA and its extensions. The CSRs are removed because they are designated to hold addresses,
but are only XLEN bits wide. The removed registers are replaced with CLEN+1 bits wide registers. The
new CSRs are analogous to the original, removed RISC-V CSRs although at different CSR numbers as
shown in Table 17, Table 18, Table 19 and Table 20. Therefore, the specification of the address field for
the new capability CSRs remains the same as the corresponding, removed CSR which is described in
(RISC-V, 2023) and the specifications of relevant RISC-V extensions.

Replaced CSR Address Prerequisites Permissions Description

dpc 0x7bl Sdext DRW, ASR-permission Debug Program Counter Capability
dscratchO 0x7b2 Sdext DRW, ASR-permission Debug Scratch Capability O
dscratchl 0x7b3 Sdext DRW, ASR-permission Debug Scratch Capability 1

Table 13. Debug-mode CSRs removed in Zcheri_ purecap

Replaced CSR Address Prerequisites Permissions Description

mtvec 0x308 M-mode MRW, ASR-permission Machine Trap-Vector Base-Address Capability
mscratch 0x340 M-mode MRW, ASR-permission Machine Scratch Capability

mepc 0x341 M-mode MRW, ASR-permission Machine Exception Program Gounter Capability

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 23

Table 14. Machine-mode CSRs removed in Zcheri_ purecap

Replaced CSR Address Prerequisites Permissions Description

stvec 0x105 S-mode SRW, ASR-permission Supervisor Trap-Vector Base-Address Capability
sscratch 0x140 S-mode SRW, ASR-permission Supervisor Scratch Capability

sepc 0x141 S-mode SRW, ASR-permission Supervisor Exception Program Counter Capability

Table 15. Supervisor-mode CSRs removed in Zcheri_ purecap

Replaced CSR Address Prerequisites Permissions Description

jvt 0x017 Zemt URW Jump Vector Table Capability

Table 16. User-mode CSRs removed in Zcheri_ purecap

Zcheri_purecap CSR Address Replaced CSR Prerequisites Permissions Description

dpce 0x7b9 dpc Sdext DRW, ASR-permission Debug Program Counter Capability
dscratchOc Oxba dscratchO Sdext DRW, ASR-permission Debug Scratch Capability O
dscratchle Ox7bb dscratchl Sdext DRW, ASR-permission Debug Scratch Capability 1

Table 17. New debug-mode CSRs in Zcheri_ purecap replacing RISC-V CSRs

Zcheri_purecap CSR Address Replaced CSR Prerequisites Permissions Description

mtvecc 0x765 mtvec M-mode MRW, ASR-permission Machine Trap-Vector Base-Address Capability
mscratche 0x760 mscratch M-mode MRW, ASR-permission Machine Scratch Capability

mepce 0x761 mepc M-mode MRW, ASR-permission Machine Exception Program Counter Capability

Table 18. New machine-mode CSRs in Zcheri_ purecap replacing RISC-V CSRs

Zcheri_purecap CSR Address Replaced CSR Prerequisites Permissions Description

stvecc 0x505 stvec S-mode SRW, ASR-permission Supervisor Trap-Vector Base-Address Capability
sscratche 0x540 sscratch S-mode SRW, ASR-permission Supervisor Scratch Capability

sepcc 0x541 sepc S-mode SRW, ASR-permission Supervisor Exception Program Counter Capability

Table 19. New supervisor-mode CSRs in Zcheri_ purecap replacing RISC-V CSRs

Zcheri_purecap CSR Address Replaced CSR Prerequisites Permissions Description

jvte 0x417 jvt Zemt URW Jump Vector Table Capability

Table 20. New user-mode CSRs in Zcheri_ purecap replacing RISC-V CSRs
Zcheri_purecap also introduces the new unprivileged CSRs shown in Table 21.

Extended CSR CLEN Address Prerequisites Permissions Description

pee 0xcbO none URO User Program Counter Capability (to allow reading in legacy mode)

Table 21. User-mode CSRs added in Zcheri_ purecap

3.7. Machine-Level CSRs

Zcheri_purecap adds new M-mode capability CSRs and extends some of the existing RISC-V CSRs
with new functions. pcc must grant ASR-permission to access M-mode CSRs regardless of the RISC-V
privilege mode.

3.7.1. Machine ISA Register (misa)

The misa register operates as described in (RISC-V, 2023) except for the MXL (Machine XLEN) field.
The MXL field encodes the native base integer ISA width as shown in Table 22. Only 1 and 2 are

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 24

supported values for MXL and the field must be read-only in implementations supporting
Zcheri_purecap. The effective XLEN in M-mode, MXLEN, is given by the setting of MXL, or has a
fixed value if misa is zero.

MXL XLEN
1 32
2 64
3 28

Table 22. Encoding of MXL field in misa
/4 RV128 is not currently supported by any CHERI extension

. A further CHERI extension, Zcheri_legacy, optionally makes MXL writeable, so
y; implementations that support multiple base ISAs must support both Zcheri_ purecap and
Zcheri_legacy.

3.7.2. Machine Status Registers (mstatus and mstatush)

The mstatus and mstatush registers operate as described in (RISC-V, 2023) except for the SXL and
UXL fields that control the value of XLEN for S-mode and U-mode, respectively.

The encoding of the SXL and UXL fields is the same as the MXL field of misa, shown in Table 22. Only
1 and 2 are supported values for SXL and UXL and the fields must be read-only in implementations
supporting Zcheri_purecap. The effective XLEN in S-mode and U-mode are termed SXLEN and
UXLEN, respectively.

A further CHERI extension, Zcheri_legacy, optionally makes SXL and UXL writeable, so
| yl implementations that support multiple base ISAs must support both Zcheri_ purecap and
Zcheri_ legacy.

3.7.3. Machine Trap-Vector Base-Address Registers (mtvec)

The mtvec register is as defined in (RISC-V, 2023). It is an MXLEN-bit register used as the executable
vector jumped to when taking traps into machine mode. It is extended into mtvecc.

MXLEN- 1 1 0

’ BASE [MXLEN-1:2] (WARL) | MODE (WARL) ‘
MXLEN-2 2

Figure 4. Machine-mode trap-vector base-address register

3.7.4. Machine Trap-Vector Base-Address Capability Registers (mtvecc)

The mtvecc register is an extension to mtvec that holds a capability. Its reset value is the Infinity
capability. The capability represents an executable vector.

XLENVAX- 1 1 0
Metadata (WARL)
BASE [XLENMAX-1:2] (WARL) MODE (WARL)
XLENMAX-2 2

Figure 5. Machine-mode trap-vector base-capability register

The metadata is WARL as not all fields need to be implemented, for example the reserved fields will
always read as zero.

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 25

When interpreting mtvecc as a capability, as for mtvec, address bits [1:0] are always zero (as they are
reused by the MODE field).

When MODE=Vectored, all synchronous exceptions into machine mode cause the pcc to be set to the
capability, whereas interrupts cause the pcc to be set to the capability with its address incremented by
four times the interrupt cause number.

Capabilities written to mtvecc also include writing the MODE field in mtvecc.address[1:0]. As a result,
a representability and sealing check is performed on the capability with the legalized (WARL) MODE
field included in the address. The tag of the capability written to mtvecc is cleared if either check fails.

Additionally, when MODE=Vectored the capability has its tag bit cleared if the capability address + 4 x
HICAUSE is not within the representable bounds. HICAUSE is the largest exception cause value that
the implementation can write to to mcause when an interrupt is taken.

When MODE=Vectored, it is only required that address + 4 x HICAUSE is within

y representable bounds instead of the capability’s bounds. This ensures that software is not

EI forced to allocate a capability granting access to more memory for the trap-vector than
necessary to handle the trap causes that actually occur in the system.

3.7.5. Machine Scratch Register (mscratch)

The mscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register
dedicated for use by machine mode. Typically, it is used to hold a pointer to a machine-mode hart-
local context space and swapped with a user register upon entry to an M-mode trap handler. mscratch
is extended into mscratche.

MXLEN- 1 0
’ mscratch ‘

MXLEN

Figure 6. Machine-mode scratch register

3.7.6. Machine Scratch Register Capability (mscratchc)

The mscratchce register is an extension to mscratch that is able to hold a capability. Its reset value is
the NULL capability.
It is not WARL, all capability fields must be implemented.

XLENVAX- 1 0
mscratchc (Metadata)

mscratchc (Address)
XLENMAX

Figure 7. Machine-mode scratch capability register

3.7.7. Machine Exception Program Counter (mepc)

The mepc register is as defined in (RISC-V, 2023). It is extended into mepcc.

MXLEN- 1 0

’ mepc (WARL)
MXLEN

Figure 8. Machine exception program counter register

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 26

3.7.8. Machine Exception Program Counter Capability (mepcc)

The mepcc register is an extension to mepc that is able to hold a capability. Its reset value is the NULL
capability.
XLENVAX- 1 0
mepcc (Metadata, WARL)
mepcc (Address, WARL)
XLENMAX

Figure 9. Machine exception program counter capability register

Capabilities written to mepce must be legalised by implicitly zeroing bit mepcc[0]. Additionally, if an
implementation allows IALIGN to be either 16 or 32, then whenever IALIGN=32, the capability read
from mepce must be legalised by implicitly zeroing bit mepcc[1]. Therefore, the capability read or
written has its tag bit cleared if the legalised address is not within the representable region.

Dy When reading or writing a sealed capability in mepcc, the tag is not cleared if the original

address equals the legalized address.

When a trap is taken into M-mode, mepcc is written with the pcc including the virtual address of the
instruction that was interrupted or that encountered an exception. Otherwise, mepcc is never written
by the implementation, though it may be explicitly written by software.

As shown in Table 40, mepcc is an executable vector, so it need not be able to hold all possible invalid
addresses. Additionally the capability in mepcc is unsealed when it is installed in pcc on execution of
an MRET instruction.

3.7.9. Machine Cause Register (mcause)

Zcheri_purecap adds a new exception code for CHERI exceptions that mcause must be able to
represent. The new exception code and its priority are listed in Table 23 and Table 24 respectively. The
behavior and usage of mcause otherwise remains as described in (RISC-V, 2023).

MXLEN-1 MXLEN-2 0
‘ Interrupt ‘ Exception Code (wLry)
MXLEN-1

Figure 10. Machine cause register

Interrupt Exception Code Description

O Reserved

1 Supervisor software interrupt
2 Reserved

3 Machine software interrupt

_ ok e,

4 Reserved

5 Supervisor timer interrupt
6 Reserved

7 Machine timer interrupt

[

8 Reserved

9 Supervisor external interrupt
10 Reserved

11 Machine external interrupt

S —

1 12-15 Reserved
1 >16 Designated for platform use

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 27

Interrupt Exception Code Description

Instruction address misaligned
Instruction access fault

Illegal instruction

Breakpoint

Load address misaligned

Load access fault

Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved

Environment call from M-mode
Instruction page fault

Load page fault

Reserved

Store/AMO page fault

Reserved

Designated for custom use
CHERI fault

Designated for custom use
Reserved

Designated for custom use
Reserved

— =
W RO W©®-~0 U b WN = O

—
£

15
16-23
24-27

28
29-31
32-47
48-63
>64

leBeoleclecNoNoNoNeoloNeoNoNoNololNeolNoNoNoRololNeoNe

Table 23. Machine cause register (mcause) values after trap. Entries added in Zcheri_ purecap are in bold

Priority Exc.Code Description
Highest 3 Instruction address breakpoint
Prior to instruction address translation:
28 CHERI fault
During instruction address translation:
12,1 First encountered page fault or access fault
With physical address for instruction:
1 Instruction access fault
2 Illegal instruction
0 Instruction address misaligned
8,9,11 Environment call
3 Environment break
3 Load/store/AMO address breakpoint
Prior to address translation for an explicit memory access or jump:
28 CHERI fault
Optionally:
4,6 Load/store/AMO address misaligned
During address translation for an explicit memory access:
13,15, 5,7 First encountered page fault or access fault
With physical address for an explicit memory access:
5,7 Load/store/AMO access fault
If not higher priority:
Lowest 4,6 Load/store/AMO address misaligned

Table 24. Synchronous exception priority in decreasing priority order. Entries added in Zcheri_ purecap are in bold

3.710. Machine Trap Delegation Register (medeleg)
Bit 28 of medeleg now refers to a valid exception and so can be used to delegate CHERI exceptions to

supervisor mode.

3.711. Machine Trap Value Register (mtval)

A

The mtval register is an MXLEN-bit read-write register. When a CHERI fault is taken into M-mode,
mtval is written with additional CHERI-specific exception information with the format shown in
Figure 11 to assist software in handling the trap.

CHERI v9 Note: Encoding and values changed, and generally were simplified.

RISC-V Specification for CHERI Extensions | © RISC-V

3.8. Supervisor-Level CSRs | Page 28

If the hardware platform specifies that no exceptions set mtval to a nonzero value, then mtval is read-
only zero.

MKLEN- 1 20 19 16 15 4 3 0

’ Reserved | TYPE | Reserved | CAUSE ‘
MXLEN-20 4 12 4

Figure 11. Machine trap value register

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 25 and Table 26 respectively.

CHERI Type Code Description

0 CHERI instruction access fault

1 CHERI data fault due to load, store or AMO
2 CHERI jump or branch fault

3-15 Reserved

Table 25. Encoding of TYPE field

CHERI Cause Code Description

0 Tag violation

1 Seal violation

2 Permission violation
3 Length violation
4-15 Reserved

Table 26. Encoding of CAUSE field

3.8. Supervisor-Level CSRs

Zcheri_purecap adds new S-mode capability CSRs and extends some of the existing RISC-V CSRs
with new functions. pcc must grant ASR-permission to access S-mode CSRs regardless of the RISC-V
privilege mode.

3.8.1. Supervisor Trap Vector Base Address Registers (stvec)

The stvec register is as defined in (RISC-V, 2023). It is an SXLEN-bit register used as the executable
vector jumped to when taking traps into supervisor mode. It is extended into stvecc.

SXLEN-1 1 0

’ BASE (Address)[SXLEN-1:2] (WARL) | MODE (WARL) ‘
SXLEN-2 2

Figure 12. Supervisor trap-vector base-address register

3.8.2. Supervisor Trap Vector Base Address Registers (stvecc)

The stvec register is an SXLEN-bit WARL read/write register that holds the trap vector configuration,
consisting of a vector base address (BASE) and a vector mode (MODE). The stvecc register is an
extension to stvec that is able to hold a capability. Its reset value is the Infinity capability.

RISC-V Specification for CHERI Extensions | © RISC-V

3.8. Supervisor-Level CSRs | Page 29

XLENVAX- 1 1 0]
Metadata (WARL)
BASE [XLENMAX-1:2] (WARL) MODE (WARL)
XLENMAX-2 2

Figure 13. Supervisor trap-vector base-capability register

The handling of stvecc is otherwise identical to mtvecc, but in supervisor mode.

3.8.3. Supervisor Scratch Register (sscratch)

The sscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register dedicated
for use by supervisor mode. Typically, it is used to hold a pointer to a supervisor-mode hart-local
context space and swapped with a user register upon entry to an S-mode trap handler. sscratch is
extended into sscratchc.

SXLEN- 1 0
’ sscratch ‘

SXLEN

Figure 14. Supervisor-mode scratch register

3.8.4. Supervisor Scratch Registers (sscratchc)

The sscratchce register is an extension to sscratch that is able to hold a capability. Its reset value is the
NULL capability.
It is not WARL, all capability fields must be implemented.

XLENVAX- 1 0]
sscratchc (Metadata)

sscratchc (Address)
XLENMAX

Figure 15. Supervisor scratch capability register

3.8.5. Supervisor Exception Program Counter (sepc)

The sepc register is as defined in (RISC-V, 202.3). It is extended into sepcc.

SXLEN-1 0
’ sepc
SXLEN

Figure 16. Supervisor exception program counter register

3.8.6. Supervisor Exception Program Counter Capability (sepcc)

The sepcc register is an extension to sepc that is able to hold a capability. Its reset value is the NULL
capability.

As shown in Table 40, sepcc is an executable vector, so it need not be able to hold all possible invalid
addresses. Additionally, the capability in sepcc is unsealed when it is installed in pcc on execution of
an SRET instruction. The handling of sepcc is otherwise identical to mepcc, but in supervisor mode.

RISC-V Specification for CHERI Extensions | © RISC-V

3.8. Supervisor-Level CSRs | Page 30

XLENVAX- 1 0

sepcc (Metadata, WARL)
sepcc (Address, WARL)
XLENMAX

Figure 17. Supervisor exception program counter capability register

3.8.7. Supervisor Cause Register (scause)

Zcheri_purecap adds a new exception code for CHERI exceptions that scause must be able to
represent. The new exception code and its priority are listed in Table 27 and Table 24 respectively. The
behavior and usage of scause otherwise remains as described in (RISC-V, 2023).

SXLEN-1 SXLEN-2 0
‘ Interrupt ‘ Exception Code wirL)
1 SXLEN-1

Figure 18. Supervisor cause register

Interrupt Exception Code Description

O Reserved
1 Supervisor software interrupt
2-4 Reserved
5 Supervisor timer interrupt
6-8 Reserved
9 Supervisor external interrupt
10-15 Reserved
216 Designated for platform use

e W

O Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
9 Environment call from S-mode
10-11 Reserved
12 Instruction page fault
13 Load page fault
14 Reserved
15 Store/AMO page fault
16-23 Reserved
24-27 Designated for custom use
28 CHERI fault
29-31 Designated for custom use
32-47 Reserved
48-63 Designated for custom use
=64 Reserved

W~ U WN =

cNecloNeoNoNoNeoNoNoNeoNolBoNeoNoNoNeoNoNoNeNoNel

Table 27. Supervisor cause register (scause) values after trap. Causes added in Zcheri_ purecap are in bold

3.8.8. Supervisor Trap Value Register (stval)

The stval register is an SXLEN-bit read-write register. When a CHERI fault is taken into S-mode, stval
is written with additional CHERI-specific exception information with the format shown in Figure 19
to assist software in handling the trap.
SXLEN-1 20 19 16 15 4 3 0
’ Reserved | TYPE | Reserved | CAUSE ‘
SXLEN-20 4 12 4

Figure 19. Supervisor trap value register

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 25 and Table 26 respectively.

RISC-V Specification for CHERI Extensions | © RISC-V

3.9. Unprivileged CSRs | Page 31

3.9. Unprivileged CSRs

Unlike machine and supervisor level CSRs, Zcheri_purecap does not require pcc to grant ASR-
permission to access privileged CSRs.

3.9.1. Program Counter Capability (pcc)

The pcc is made visible in a CSR. This provides access to an Infinity capability while in debug mode
without executing AUIPCC.

y It is common for implementations to not allow executing pc relative instructions, such as
EI AUIPC or JAL, in debug mode.

XLENVAX- 1 0

pcc (Metadata, WARL)
pcc (Address, WARL)
XLENMAX

Figure 20. Program Counter Capability

As shown in Table 40, pcc is an executable vector, so it need not be able to hold all possible invalid
addresses.

3.10. CHERI Exception handling

Df auth_cap is ddc for Legacy mode and ¢s1 for Capability Mode
Instructions Xcause Xtval. TYPE Xtval. Description Check
CAUSE

All instructions have these exception checks first

All 28 0 0 pec tag not(pcc.tag)

All 28 0 1 pec seal isCapSealed(pcc)

All 28 0 2 pce permission not(pce.X-permission)

All 28 0 3 pce length Any byte of current instruction out of pcc bounds

CSR/Xret additional exception check

CSR*, MRET, SRET 28 0 2 pce permission not(pcc. ASR-permission) when required for CSR
access or execution of MRET/SRET

direct jumps additional exception check

CJAL, JAL, Conditional 28 2 3 pee length any byte of 16-bit instruction at target out of pcc
branches (BEQ, BNE, bounds
BLT[U], BGE[U])

indirect jumps and conditional branches additional exception checks

indirect jumps and 28 2 0 cst tag not(C s1. tag)

conditional branches

inditectjumpsand |28 ’ ! €51 seal isCapsealed(CS 1)

i;;igf;ggﬁf;iries 28 2 2 cs permission not(CS 1 X-permission)

indir.e(f‘t jumps and 28 2 3 cs length any byte of 16-bit instruction at target out of C s1
conditional branches bounds

Load additional exception checks

all loads 28 ! 0 auth_cap g no@uth_cap.tag)

allloads 28 ! ! auth_cap sea iscapsealed@Uth_cap)

allloads 28 1 2 aUth_Cap permission not(aUth_Cap.R—pcrmissiun)

RISC-V Specification for CHERI Extensions | © RISC-V

3.11. Physical Memory Attributes (PMA) | Page 32

Instructions Xcause Xtval. TYPE Xtval. Description Check

CAUSE
all loads 28 ! 3 aUth_Cap length Any byte of load access out of aUth_C ap bounds
capability loads 4 N/A N/A load address misaligned Misaligned capability load

Store/atomic/cache-block-operation additional exception checks

all stores, all atomics, all 28 1 0

o auth_capug not@uth_cap.tag

2 stores,all awomicsall | 28 ! ! auth_cap sl iscapsealed@Uth_cap)

cbos

all atomics, all cbos 28 ! 2 aUth_Cap permission AMO only: not(aUth_C aP.R-permission)
all stores, all atomics, all 28 1 2 auth ca P permission not(auto_cap.W-permission)

cbos - permmss

all stores, all atomics 28 ! 3 aut h _Cap length any byte of access' out of dU t h _Cap bounds
capability stores, all 6 N/A N/A Misaligned store/ AMO Misaligned capability store or AMO

atomics

Table 28. Valid CHERI exception combination description

y Indirect branches are CJALR, JALR, JALR.PCC, JALR.CAP, conditional branches are
EI Conditional branches (BEQ, BNE, BLT[U], BGE[U]).

Df CBO.ZERO.CAP, CBO.ZERO issues as a cache line wide store

'Other CBOs (CBO.FLUSH.CAP, CBO.FLUSH, CBO.CLEAN.CAP, CBO.CLEAN,
| yl CBO.INVAL.CAP, CBO.INVAL) require at least one byte of the access to be in auth_cap
bounds

3.11. Physical Memory Attributes (PMA)

Typically, the entire memory space need not support tagged data. Therefore, it is desirable that harts
supporting Zcheri_purecap extend PMAs with a taggable attribute indicating whether a memory
region allows storing tagged data.

When the hart attempts to store or load data with the tag set to memory regions that are not taggable,
the implementation may:

- Cause an access fault exception

- Implicitly set the stored tag to O

3.12. Page-Based Virtual-Memory Systems

RISC-V’s page-based virtual-memory management is generally orthogonal to CHERI In
Zcheri_purecap, capability addresses are interpreted with respect to the privilege level of the
processor in line with RISC-V’s handling of integer addresses. In machine mode, capability addresses
are generally interpreted as physical addresses; if the mstatus MPRV flag is asserted, then data
accesses (but not instruction accesses) will be interpreted as if performed by the privilege mode in
mstatus’s MPP. In supervisor and user modes, capability addresses are interpreted as dictated by the
current satp configuration: addresses are virtual if paging is enabled and physical if not.

Zcheri_purecap requires that the pcc grants the ASR-permission to change the page-table root satp
and other virtual-memory parameters as described in Section 3.8.

RISC-V Specification for CHERI Extensions | © RISC-V

3.12. Page-Based Virtual-Memory Systems | Page 33

3.12.1. Invalid Address Handling

When address translation is in effect and XLEN=64, the upper bits of virtual memory addresses must
match for the address to be valid:

- For Sv39, bits [63:39] must equal bit 38
- For Sv48, bits [63:48] must equal bit 47
- For Sv57, bits [63:57] must equal bit 56

RISC-V permits that some CSRs, such as mtvec and mepc (see Table 40), need not be able to hold all
possible invalid addresses. Prior to writing these CSRs, implementations may convert an invalid
address into some other invalid address that the register is capable of holding. However, these registers
hold capabilities in Zcheri_purecap and the bounds encoding depends on the address value, so
implementations must not convert invalid addresses to other arbitrary invalid address in an
unrestricted manner. The following procedure must be used instead when writing a capability A to
these CSRs:

1. If A’s address cannot be held then convert it to another address that the CSR can hold

2. If conversion was required, then A’s tag is cleared if A is sealed or if the new address is not
representable — this is equivalent to the semantics of CSETADDR

3. Write the final (potentially modified) version of capability A to the CSR e.g. mtvece, mepcec, ete.
This implies that sealed capabilities will always get their tags cleared when written to these CSRs
unless the specification explicitly states that the CSR behaves otherwise (see mepcc and sepcc). Also

notes that pcc is available in a read-only CSR. It can be written with CJALR instruction which
automatically unseals the capability before the invalid address conversion above.

RISC-V Specification for CHERI Extensions | © RISC-V

4.1. Debug Mode | Page 34

Chapter 4. Integrating Zcheri_purecap
with Sdext

This section describes changes to integrate the Sdext ISA and Zcheri_purecap. It must be
implemented to make external debug compatible with Zcheri_purecap. Modifications to Sdext are
kept to a minimum.

41. Debug Mode

When executing code due to an abstract command, the hart stays in debug mode and the rules
outlined in Section 4.1 of (RISC-V, 2022) apply.

4.72. Core Debug Registers

Zcheri_purecap removes debug CSRs that are designated to hold addresses and replaces them with
analogous CSRs able to hold capabilities. The removed debug CSRs are listed in Table 13 and the new
CSRs are listed in Table 17.

The pce must grant ASR-permission to access debug CSRs. This permission is automatically provided
when the hart enters debug mode as described in the dpce section. The pcc metadata can only be
changed if the implementation supports executing control transfer instructions from the program
buffer — this is an optional feature according to (RISC-V, 2022).

4.2.1. Debug Program Counter (dpc)

The dpc register is as defined in (RISC-V, 2022). It is a DXLEN-bit register used as the PC saved when
entering debug mode. dpc is extended into dpcc.

DXLEN- 1 0
| dpc |
DXLEN

Figure 21. Debug program counter

42.2. Debug Program Counter Capability (dpcc)

The dpcc register is a extension to dpc that is able to hold a capability. Its reset value is the NULL
capability.
XLENVAX- 1 0
dpcc (Metadata)
dpcc (Address)
XLENMAX

Figure 22. Debug program counter capability

Upon entry to debug mode, (RISC-V, 2022), does not specify how to update the PC, and says PC
relative instructions may be illegal. This concept is extended to include any instruction which updates
pcc.

dpce (and consequently dpc) are updated with the capability in pcc whose address field is set to the
address of the next instruction to be executed as described in (RISC-V, 2022).

RISC-V Specification for CHERI Extensions | © RISC-V

4.2. Core Debug Registers | Page 35

Additionally, the pcc is updated as follows:

- All metadata is set to the Infinity capability

> The pcc may be used as a source of the Infinity capability in debug mode to allow other
capabilities to be created and written into memory.

When resuming, the hart’s pcc is updated to the capability stored in dpcc. A debugger may write dpcc
to change where the hart resumes and its mode, permissions, sealing or bounds.

4.2.3. Debug Scratch Register O (dscratchO)

The dscratchO register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register
that can be used by implementations which need it. Its reset value is the NULL capability. dscratchO is
extended into dscratchOc.

DXLEN- 1 0
’ dscratchO ‘

DXLEN

Figure 23. Debug scratch O register

4.2.4. Debug Scratch Register O (dscratchOc)

The dscratchOc register is a CLEN-bit plus tag bit extension to dscratchO that is able to hold a
capability. Its reset value is the NULL capability.

XLENVAX- 1 0]
dscratchOc (Metadata)

dscratchOc (Address)
XLENMAX

Figure 24. Debug scratch O capability register

4.2.5. Debug Scratch Register 1 (dscratchl)

The dscratchl register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register that
can be used by implementations which need it. Its reset value is the NULL capability. dscratchl is
extended into dscratchlc.

DXLEN- 1 0
’ dscratch1 ‘

DXLEN

Figure 25. Debug scratch O register

4.2.6. Debug Scratch Register 1 (dscratchlc)

The dscratchlc register is a CLEN-bit plus tag bit extension to dscratchl that is able to hold a
capability. Its reset value is the NULL capability.

XLENVAX- 1 [0]
dscratch1c (Metadata)

dscratch1c (Address)
XLENMAX

Figure 26. Debug scratch 1 capability register

RISC-V Specification for CHERI Extensions | © RISC-V

5.1. Extending the Page Table Entry Format | Page 36

Chapter 5. "Zcheri_pte" Extension for
CHERI Page-Based Virtual-Memory
Systems

CHERI is a security mechanism that is generally orthogonal to page-based virtual-memory
management as defined in (RISC-V, 2023). However, it is helpful in CHERI harts to extend RISC-V’s
virtual-memory management to control the flow of capabilities in memory at the page granularity. For
this reason, the Zcheri_ pte extension adds new bits to RISC-V’s Page Table Entry (PTE) format.

51. Extending the Page Table Entry Format

y CHERI v9 Note: The current proposal is provisional and is missing PTE bits when
EI compared to CHERI v9.

The page table entry format remains unchanged for Sv32. However, two new bits, Capability Write
(CW) and Capability Dirty (CD), are added to leaf PTEs in Sv39, Sv48 and Sv57 as shown in Figure 27,
Figure 28 and Figure 29 respectively.

63 62 61 60 59 58 54 53 28 27 19 18 10 9 87 6 5 4 3 2 1 0

’ N | PBMT |CD|CW| Reserved | PPN[2] | PPN[1] PPN[O] RSW | D | A | G |

c
>

EHEE

1 2 1 1 5 26 9 9 2 T~ 1 1 1 1 1 1 1

Figure 27. Sv39 page table entry

63 62 61 60 59 58 54 53 10 9 8 7 6 5 4

W
N
-
o

’ N | PBMT |CD|CW| Reserved PPN RSW | D | A | G |

c
™
=
| =]
<]

1 2 1 1 5 44 2 T~ 1 1 1 1 1 1 1

53 37 36 28 27 19 18 10

PPN[3] PPN[2] PPN[1] PPN[O]

17 9 9 9

Figure 28. Sv48 page table entry

63 62 61 60 59 58 54 53 1009 87 6 5 4 3 2 1 0
’N|PBMT|CD|CW| Reserved PPN RSW |D|A|G|U|X|W|R|V‘
12 11 5 44 2 171 1 1 1 1 1 1
53 46 45 37 36 28 27 19 18 10
PPN[4] PPN[3] PPN[2] PPN[1] PPN[0]

8 9 9 9 9

Figure 29. SV57 page table entry

The CW bit indicates whether writing capabilities with tag set to the virtual page is permitted. Two
schemes to manage the CW bit are permitted:

- A store page fault exception is raised when a capability store or AMO instruction is executed, the
pcc grants store capability permission and the store address corresponds to a virtual page with the
CW bit clear.

RISC-V Specification for CHERI Extensions | © RISC-V

5.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 37

- When a capability store or AMO instruction is executed, the implementation clears the tag bit of
the capability written to a virtual page with the CW bit clear.

y The implementation of the CW bit does not force a dependency on the tag bit’s value of the
EI capability written, so implementations must support this feature.

The CD bit indicates that a capability with tag set has been written to the virtual page since the last
time the CD bit was cleared. Implementations are strongly encouraged, but not required, to support
CD. If supported, two schemes to manage the CD bit are permitted:

- A store page fault exception is raised when a capability store or AMO instruction is executed, the
pce grants store capability permission, the tag bit of the capability being written is set and the
address written corresponds to a virtual page with the CD bit clear.

- When a capability store or AMO instruction is execute, the pcc grants store capability permission,
the tag bit of the capability being written is set and the store address corresponds to a virtual page
with the CD bit clear, the implementation sets the corresponding bit in the PTE. The PTE update
must be atomic with respect to other accesses to the PTE, and must atomically check that the PTE
is valid and grants sufficient permissions. Updates to the CD bit must be exact (i.e. not speculative),
and observed in program order by the local hart. Furthermore, the PTE update must appear in the
global memory order no later than the explicit memory access, or any subsequent explicit memory
access to that virtual page by the local hart. The ordering on loads and stores provided by FENCE
instructions and the acquire/release bits on atomic instructions also orders the PTE updates
associated with those loads and stores as observed by remote harts.

The PTE update is not required to be atomic with respect to the explicit memory access that
caused the update, and the sequence is interruptible. However, the hart must not perform explicit
memory access before the PTE update is globally visible.

The behavior of the CW bit takes priority over the CD bit. Therefore, implementations must
| yl not take action to change or raise an exception related to the CD bit when the CW bit is
clear.

52. Extending the Machine Environment
Configuration Register (menvcfqg)

The menvcfg register is extended to allow discovering whether the implementation supports the CD
bit.

The menvcfg register operates as described in (RISC-V, 2023). Zcheri_purecap adds a new enable bit
as shown in Figure 30 when XLEN=64.

63 62 61 60 8 14] 5 4 3 1 0
’ STCE |PBMTE| CDE | WPRI | CBZE |CBCFE| CBIE | WPRI | FIOM ‘

1 1 1 55 1 1 1 2 3

1

Figure 30. Machine environment configuration register (menvcfg)

The Capability Dirty Enable (CDE) bit controls whether the Capability Dirty (CD) bit is available for
use in S-mode address translation. When CDE=1, the CD bit is available for S-mode address
translation. When CDE=0, the implementation behaves as though the CD bit were not implemented.
If CD is not implemented, CDE is read-only zero. If CD is implemented although not configurable,

RISC-V Specification for CHERI Extensions | © RISC-V

5.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 38

CDE is read-only one.

RISC-V Specification for CHERI Extensions | © RISC-V

6.1. CHERI Execution Mode | Page 39

Chapter 6. "Zcheri_legacy" Extension for
CHERI Legacy Mode

Df CHERI v9 Note: This feature is new and different from CHERI v9’s per-privilege enable
bits.

Zcheri_legacy is an optional extension to Zcheri_purecap. Implementations that support
Zcheri_purecap and Zcheri_legacy define a variant of the CHERI ISA that is fully binary compatible
with existing RISC-V code.

Key features in Zcheri_legacy include a definition of a CHERI execution mode, a new unprivileged
register, additional instructions and extensions to some existing CSRs enabling disable CHERI
features. The remainder of this section describes these features in detail as well as their integration
with the primary base integer variants of the the RISC-V ISA (RV32I and RV64I).

o.1. CHERI Execution Mode

Zcheri_legacy adds CHERI execution modes to ensure backwards compatibility with the base RISC-V
ISA while saving instruction encoding space. There are two execution modes: Capability and Legacy.
Additionally, there is a new unprivileged register: the default data capability, ddc, that is used to
authorise all data memory accesses when the current CHERI mode is Legacy.

The current CHERI execution mode is given by the current privilege level and the value of the CME
bit in menvcefg and senvefg for S-mode and U-mode. M-mode is always in Capability mode.

The CHERI execution mode impacts the instruction set in the following ways:

- The authorising capability used to execute memory access instructions. In Legacy mode, ddc is
implicitly used. In Capability mode, the authorising capability is supplied as an explicit ¢ operand
register to the instruction.

- The set of instructions that is available for execution. Some instructions are available in Legacy

mode but not Capability mode and vice-versa (see Chapter 8).

y The implication is that the CHERI execution mode is always Capability on
EI implementations that support Zcheri_ purecap, but not Zcheri_ legacy.

The CHERI execution mode is effectively an extension to some RISC-V instruction encodings. For
example, the encoding of an instruction like LW remains unchanged, but the mode indicates whether
the capability authorising the load is the register operand cs1 (Capability mode), so the instruction is
CLW from Zcheri_ purecap, or ddc (Legacy mode), so the instruction is simply LW.

The CHERI execution mode is key in providing backwards compatibility with the base RISC-V ISA.

RISC-V software is able to execute unchanged in implementations supporting both Zcheri_purecap

and Zcheri_legacy provided that the configured CHERI execution mode is Legacy by setting CME=0

in menvcfg or senvefg as required, and the Infinity capability is installed in the pcc and ddc such that:
- Tags are set

- Capabilities are unsealed

- All permissions are granted

RISC-V Specification for CHERI Extensions | © RISC-V

6.2. Zcheri_legacy Instructions | Page 40

- The bounds authorise accesses to the entire address space i.e base is O and top is 2**"™**

6.2. Zcheri_legacy Instructions

Zcheri_legacy does not introduce new instructions to the base RISC-V integer ISA. However, the
behavior of some existing instructions changes depending on the current CHERI execution mode.

6.2.1. Capability Load and Store Instructions

The load and store capability instructions change behaviour depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The load capability instruction is CLC when the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.3. That encoding is LC when the mode is Legacy. In this case, the
capability authorising the memory access is ddc, so the effective address is obtained by adding the x
register to the sign-extended offset.

The store capability instruction is CSC when the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.3. That encoding is SC when the mode is Legacy. In this case, the
capability authorising the memory access is ddc, so the effective address is obtained by adding the x
register to the sign-extended offset.

0.2.2. Unconditional Capability Jumps

The indirect jump and link pcc (JALR.PCC) instruction shares the same encoding with a new indirect
jump and link capability (JALR.CAP) instruction. JALR.PCC is a Zcheri_ purecap instruction executed
when the mode is Capability as described in Section 3.3.4. In Legacy mode, the encoding is executed as
JALR.CAP which allows unconditional jumps to a target capability. The target capability is provided in
a c register and is written to pcc. The pee of the next instruction following the jump (pcc + 4) is written
to a c register. JALR.CAP cause CHERI exceptions when:

- The target capability’s tag is zero

- A minimum sized instruction at the target capability’s address is not within bounds

- The target capability does not grant execute permission
JALR.CAP causes an instruction address misaligned exception when the target address is misaligned.

y JALR.CAP can be used to change the current CHERI execution mode when the
EI implementation supports Zcheri_ mode.

0.3. Existing RISC-V Instructions

The CHERI execution mode introduced in Zcheri_legacy affects the behaviour of instructions that
have at least one memory address operand. When in Capability mode, the address input or output
operands may include c registers. When in Legacy mode, the address input or output operands are
x/f/v registers; the tag and metadata of that register are implicitly set to O.

©.3.1. Control Transfer Instructions

The unconditional jump instructions change behaviour depending on the CHERI execution mode

RISC-V Specification for CHERI Extensions | © RISC-V

6.3. Existing RISC-V Instructions | Page 41

although the instruction’s encoding remains unchanged.

The jump and link instruction is CJAL when the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.4. That encoding is JAL when the mode is Legacy. In this case, the
address of the instruction following the jump (pc + 4) is written to an x register; that register’s tag and
capability metadata are zeroed.

The jump and link register instruction is CJALR when the CHERI execution mode is Capability; the
instruction behaves as described in Section 3.4. That encoding is JALR when the mode is Legacy. In
this case, the target address is obtained by adding the sign-extended 12-bit immediate to the x register
operand, then setting the least significant bit of the result to zero. The target address is then written to
the pcc address and a representability check is performed. The address of the instruction following the
jump (pc + 4) is written to an x register; that register’s tag and capability metadata are zeroed.

JAL and JALR cause CHERI exceptions when a minimum sized instruction at the target address are not
within the bounds of the pcc. An instruction address misaligned exception is raised when the target
address is misaligned.

©.3.2. Conditional Branches

The behaviour is as shown in Section 3.4.2.2.

©.3.3. Load and Store Instructions

Load and store instructions change behavior depending on the CHERI execution mode although the
instruction’s encoding remains unchanged.

Loads and stores behave as described in Section 3.4 when the CHERI execution mode is Capability. In
Legacy mode, the instructions behave as described in the RISC-V base ISA (i.e. without the 'C' prefix)
and rely on x operands only. The capability authorising the memory access is ddc and the memory
address is given by sign-extending the 12-bit immediate offset and adding it to the base address in the
x register operand.

The exception cases remain as described in Section 3.4 regardless of the CHERI execution mode.

0.3.4. CSR Instructions

Df CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

Zcheri_legacy adds the concept of CSRs which contain a capability where the address field is visible to
legacy code (e.g. mtvec) and the full capability is also visible through an alias (e.g. mtvecc). These are
referred to as extended CSRs.

Extended CSRs are accessible through two addresses, and the address determines the access width.
When the XLEN-bit alias is used by CSRRW:

- The register operand is an x register.
- Only XLEN bits from the x source are written to the capability address field.
° The tag and metadata are updated as specified in Table 39.

- Only XLEN bits are read from the capability address field, which is zero extended to the
destination x register.

RISC-V Specification for CHERI Extensions | © RISC-V

6.4. Integrating Zcheri _legacy with Sdext | Page 42

When the CLEN-bit alias is used by CSRRW:

- The register operand is a c register.
- The full capability in the c register source is written to the CSR.

o The capability may require modification before the final written value is determined (see Table
39).

- The full capability is written to destination c register.
When either alias is used by another CSR instruction (CSRRWI, CSRRC, CSRRCI, CSRRS, CSRRSI):.

- The final address is calculated according to the standard RISC-V CSR rules (set bits, clear bits etc).
- The final address is updated as specified in Table 39 for an XLEN write.
- XLEN bits are read from the capability address field and written to an output x register.

There is no distinction between accessing either alias in this case - the XLEN access is always
performed, and the assembly syntax always uses x registers.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is not user-mode accessible.

6.4. Integrating Zcheri_legacy with Sdext

A new debug default data capability (dddc) CSR is added at the CSR number shown in Table 29.

0.5. Debug Default Data Capability (dddc)

dddc is a register that is able to hold a capability. Its reset value is the NULL capability. The address is
shown in Table 29.

XLENVAX- 1 0

dddc (Metadata)
dddc (Address)
XLENMAX

Figure 31. Debug default data capability

Upon entry to debug mode, ddc is saved in dddc. ddc's metadata is set to the Infinity capability’s
metadata and ddc's address remains unchanged.

When debug mode is exited by executing DRET, the hart’s ddc is updated to the capability stored in
ddde. A debugger may write dddc to change the hart’s context.

6.0. Disabling CHERI Features

y CHERI v9 Note: The rules for excepting have been tightened here. Also, it is not possible
EI to disable CHERI checks completely.

Zcheri_legacy includes functions to disable most CHERI features. For example, executing in a
privilege mode where the effective XLEN is less than XLENMAX. The following occurs when executing
code in a privileged that has CHERI disabled:

RISC-V Specification for CHERI Extensions | © RISC-V

6.7. Added CLEN-wide CSRs | Page 43

- The CHERI instructions in Section 3.3 (and Section 9.5 if Zcheri_mode is supported) cause illegal
instruction exceptions

- Executing CSR instructions accessing any capability wide CSR addresses (Section 3.6) cause illegal
instruction exceptions

- All allowed instructions execute as if the CHERI execution mode is Legacy. The CME bits in
menvcfg and senvefg have no effect whilst CHERI is disabled.

Security checks continue to be enforced when CHERI is disabled regardless of the reason. The last
capability installed in pcc and ddc before disabling CHERI will be used to authorise instruction
execution and data memory accesses.

o.7. Added CLEN-wide CSRs

Zcheri_legacy adds the CLEN-wide CSRs shown in Table 29.

Extended CSR CLEN Address Prerequisites ~ Permissions Description

dddc 0x7bc Sdext DRW, ASR-permission Debug Default Data Capabilty (saved/restored on debug mode entry/exit)
mtdc 0x74c M-mode MRW, ASR-permission Machine Trap Data Capability (scratch register)

stde 0x163 S-mode SRW, ASR-permission Supervisor Trap Data Capability (scratch register)

ddc 0x416 none URW User Default Data Capability

Table 29. CLEN-wide CSRs added in Zcheri_ legacy

6.7.1. Machine ISA Register (misa)

Zcheri_legacy eliminates some restrictions for MXL imposed in Zcheri_purecap to allow
implementations supporting multiple base ISAs. Namely, the MXL field, that encodes the native base
integer ISA width as shown in Table 22, may be writable.

Setting the MXL field to a value that is not XLENMAX disables most CHERI features and instructions
as described in Section 6.6.

6.7.2. Machine Status Registers (mstatus and mstatush)

Zcheri_legacy eliminates some restrictions for SXL and UXL imposed in Zcheri_purecap to allow
implementations supporting multiple base ISAs. Namely, the SXL and UXL fields may be writable.

Zcheri_legacy requires that lower-privilege modes have XLEN settings less than or equal to the next-
higher privilege mode. WARL field behaviour restricts programming so that it is not possible to
program MXL, SXL or UXL to violate this rule.

Setting the SXL or UXL field to a value that is not XLENMAX disables most CHERI features and
instructions, as described in Section 6.6, while in that privilege mode.

Whenever XLEN in any mode is set to a value less than XLENMAX, standard RISC-V rules from
(RISC-V, 2023) are followed. This means that all operations must ignore source operand register bits
above the configured XLEN, and must sign-extend results to fill the entire widest supported XLEN in
the destination register. Similarly, pc bits above XLEN are ignored, and when the pc is written, it is
sign-extended to fill XLENMAX. The integer writing rule from CHERI is followed, so that every
register write also zeroes the metadata and tag of the destination register.

However, CHERI operations and security checks will continue using the entire hardware register (i.e.

RISC-V Specification for CHERI Extensions | © RISC-V

6.7. Added CLEN-wide CSRs | Page 44

CLEN bits) to correctly decode capability bounds.

6.7.3. Machine Trap Default Capability Register (mtdc)

The mtdc register is capability width read/write register dedicated for use by machine mode.
Typically, it is used to hold a data capability to a machine-mode hart-local context space, to load into
ddc. mtdc's reset value is the NULL capability.

XLENVAX- 1 0
mtdc (Metadata)

mtdc (Address)
XLENMAX

Figure 32. Machine-mode trap data capability register

6.7.4. Machine Environment Configuration Register (menvcfg)

Zcheri_legacy adds a new enable bit to menvcfg as shown in Figure 33.

63 62 61 29 28 27 8 7 6 5 4 3 1 0]
’ STCE |PBMTE| WPRI | CME | WPRI | CBZE |CBCFE| CBIE | WPRI | FIOM ‘

1 1 34 1 19 1 1 2 3 1

Figure 33. Machine environment configuration register (menvcfg)

The CHERI Mode Enable (CME) bit controls whether less privileged levels (e.g. S-mode and U-mode)
execute in Capability or Legacy mode. When CME=1, the CHERI execution mode is Capability. When
CME=0, the mode is Legacy.

6.7.5. Supervisor Trap Default Capability Register (stdc)

The stdc register is capability width read/write register dedicated for use by supervisor mode.
Typically, it is used to hold a data capability to a supervisor-mode hart-local context space, to load into
ddc. stdc's reset value is the NULL capability.

XLENVAX- 1 0
stdc (Metadata)

stdc (Address)
XLENMAX

Figure 34. Supervisor trap data capability register (stdc)

6.7.6. Supervisor Environment Configuration Register (senvcfg)

The senvcfg register operates as described in the RISC-V Privileged Specification. Zcheri_legacy adds
one new enable bit as shown in Figure 35.

SXLEN- 1 29 28 27 8 7 6 5 4 3 1 0
’ WPRI | CME | WPRI | CBZE |CBCFE| CBIE | WPRI | FIOM ‘
SXLEN-29 1 20 1 1 2 3 1

Figure 35. Supervisor environment configuration register (senvefg)

The CHERI Mode Enable (CME) bit controls whether U-mode executes in Capability or Legacy mode.
When CME-=1, the CHERI execution mode is Capability. When CME=0, the mode is Legacy.

RISC-V Specification for CHERI Extensions | © RISC-V

6.7. Added CLEN-wide CSRs | Page 45

6.7.7. Default Data Capability (ddc)

The ddc CSR is a read-write capability register implicitly used as an operand to authorise all data
memory accesses when the current CHERI mode is Legacy. This register must be readable in any
implementation. Its reset value is the Infinity capability.

XLENVAX- 1 0

ddc (Metadata)
ddc (Address)
XLENMAX

Figure 36. Unprivileged default data capability register

RISC-V Specification for CHERI Extensions | © RISC-V

7.1. CHERI Execution Mode | Page 46

Chapter 7. "Zcheri_mode" Extension for
CHERI Execution Mode

Zcheri_mode is an optional extension to Zcheri_legacy. Implementations that support Zcheri_mode
allow fine-grained switching between Capability and Legacy modes using indirect jump instructions.

7.1. CHERI Execution Mode

Zcheri_mode adds a new CHERI execution mode bit (M) to capabilities. The mode bit is encoded as
shown in Figure 37 and Figure 38. The current CHERI execution mode is give by the M bit of the pcc
and the CME bits in menvefg and senvefg as follows:

- The mode is Capability when the M bit of the pcc is 1 and the effective CME=1 for the current
privilege level
- The mode is Legacy when the effective CME=0 for the current privilege level

- The mode is Legacy when the M bit of the pcc is O and the effective CME=1 for the current
privilege level

31 30 29 26 25 24 212019 18 17 121110 9 210
SDP AP M| Reserved | S [EFT8 T[7:2] TE B[9:2] BE
Address
32

Figure 37. Capability encoding when XLENMAX=32 and Zcheri_mode is supported

63 57 56 53 52 48 47 46 28 27 26 25 17 16 14 13 320
Reserved | SDP | AP |M Reserved S|EF| T[11:3] | TE B[13:3] BE
Address
64

Figure 38. Capability encoding when XLENMAX=64 and Zcheri_mode is supported

Zcheri_mode allows the M bit to be set to 1 when the capability does not grant X-permission. In this
case, the M bit is superfluous, so the encoding may be used to support additional features in future
extensions.

7.2. Zcheri_mode Instructions

Zcheri_mode introduces new instructions to the base RISC-V integer ISA in addition to the
instructions added in Zcheri_purecap. The new instructions in Zcheri_mode allows inspecting the
CHERI mode bit in capabilities and changing the current CHERI execution mode.

RISC-V Specification for CHERI Extensions | © RISC-V

7.3. Integrating Zcheri_mode with Sdext | Page 47

7.2.1. Capability Manipulation Instructions

A new Section 8.1.9 instruction allows setting a capability’s CHERI execution mode to the indicated
value. The output is written to an unprivileged c register, not pcc.

7.2.2. Mode Change Instructions

A new CHERI execution mode switch (CMODESWITCH) instruction allows software to toggle the
hart’s current CHERI execution mode. If the current mode in the pcc is Legacy, then the mode after
executing CMODESWITCH is Capability and vice-versa. This instruction effectively writes the CHERI
execution mode bit M of the capability currently installed in the pcc.

7.2.3. Unconditional Capability Jumps

Zcheri_mode allows changing the current CHERI execution mode when executing CJALR or
JALR.CAP.

7.3. Integrating Zcheri_mode with Sdext

y CHERI v9 Note: The mode change instruction CMODESWITCH 1is new and the
EI requirement to optionally support it in debug mode is also new.

In addition to the changes described in Chapter 4 and Section 6.4, Zcheri_mode allows
CMODESWITCH to act as an illegal instruction when it is executed while in debug mode.

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 8. RISC-V Instructions and Extensions Reference | Page 48

Chapter 8. RISC-V Instructions and
Extensions Reference

These instruction pages are for the new CHERI instructions, and some existing RISC-V instructions
where the effect of CHERI needs specific details.

For existing RISC-V instructions, note that:

1. In Legacy mode, every byte of each memory access access is bounds checked against ddc

2. In Legacy mode, a minimum length instruction at the target of all indirect jumps is bounds
checked against pcc

3. In Capability mode a minimum length instruction at the target of all indirect jumps is bounds
checked against cs1 (e.g. CJALR)

4. A minimum length instruction at the taken target of all direct jumps and conditional branches is
bounds checked against pcc regardless of CHERI execution mode

y Not all RISC-V extensions have been checked against CHERI. Compatible extensions, will
EI eventually be listed in a CHERI profile.

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap’, "Zcheri _legacy" and "Zcheri_mode" Extensions for CHERI | Page 49

8.1."Zcheri_purecap", "Zcheri_legacy" and
"Zcheri_mode" Extensions for CHERI

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 50

8.1.1. JALR.PCC

See JALR.CAP.

8.1.2. JALR.CAP

CHERI v9 Note: These instructions used to have separate encodings in CHERI v9. The

| yl instructions depend on the CHERI execution mode and now they share the same new
encoding.

Synopsis
Indirect jump and link (via integer address or capability)

Capability Mode Mnemonic
jalr.pcc rd, rsi

Legacy Mode Mnemonic
jalr.cap cd, cs1

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 cd opcode
12 5 3 5 7
cap: JALR.PCC=00..00 base cap: JALR.PCC=001 dest JALR=1100111
leg: JALR.CAP=00..00 leg: JALR.CAP=001

Capability Mode Description

JALR.PCC allows unconditional jumps to a target integer address. The target address in rsi is
installed in the address field of the pcc. The address of the instruction following the jump (pcc + 4)
is written to rd. This is identical to the standard JALR instruction, but with zero offset.

Legacy Mode Description

JALR.CAP allows unconditional jumps to a target capability. The capability in ¢s1 is installed in
pce. The pee of the next instruction following the jump (pcc + 4) is sealed and written to cd. This
instruction can be used to change the current CHERI execution mode and is identical to CJALR but
with zero offset.

Exception

When these instructions cause CHERI exceptions, CHERI jump or branch fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE JALR.PCC JALR.CAP Reason

Tag violation v €S T has tag set to O

Seal violation v C 51 is sealed and the immediate is not O

Permission violation v ¢S 7T does not grant X-permission

Length violation v v Minimum length instruction is not within the target capability’s bounds

y The instructions on this page are either PC relative or may update the pcc. Therefore an
EI implementation may make them illegal in debug mode.

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites JALR.PCC

Zcheri_purecap

Prerequisites JALR.CAP
Zcheri_legacy

Operation JALR.PCC
TODO

Operation JALR.CAP
TODO

8.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 51

RISC-V Specification for CHERI Extensions | © RISC-V

B

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 52

8.1.3. CMOVE
Df CHERI v9 Note: This page has new encodings.
Synopsis

Capability move

Mnemonic

cmove cd, csl

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 zero csl funct3 cd opcode
7 5 5 3 5 7
CINCOFFSET=0000110 rs2=x0 src CINCOFFSET=000 dest OP=0110011
/4 CMOVE is encoded as CINCOFFSET with rs2=x®.
Description

The contents of capability register ¢s1 are written to capability register cd. CMOVE unconditionally
moves the whole capability to cd .

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 53

8.1.4. CMODESWITCH

Df CHERI v9 Note: This page has new encodings.

Synopsis
Switch CHERI execution mode

Mnemonics
cmodeswitch
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 functs funct3 functs opcode
7 5 5 3 5 7
CMS=0001001 CMS=00000 CMS=00000 CMS=001 CMS=000 OP=0110011

Description

Toggle the hart’s current CHERI execution mode in pcc. If the current mode in pcce is Legacy, then
the mode bit (M) in pcc is set to Capability. If the current mode is Capability, then the mode bit (M)
in pcc is set to Legacy.

y The instructions on this page are either PC relative or may update the pcc. Therefore an
EI implementation may make them illegal in debug mode.

Prerequisites

Zcheri_mode

CModeSwitch Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 54

8.1.5. CINCOFFSETIMM

See CINCOFFSET.

8.1.6. CINCOFFSET

Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: the immediate format has changed
Synopsis

Capability pointer increment

Mnemonic

cincoffset cd, cs1, rs2
cincoffsetimm cd, cs1, imm

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2!=x0 csl funct3 cd opcode
7 5 5 3 5 7
CINCOFFSET=0000110 increment src CINCOFFSET=000 dest OP=0110011
31 20 19 15 14 12 11 7 6 0
imm csl funct3 cd opcode
12 5 3 5 7
imm src CINCOFFSETIMM=010 dest OP-IMM-32=0011011

y CINCOFFSET with rs2=x0 is decoded as CMOVE instead, the key difference being that
EI tagged and sealed capabilities do not have their tag cleared by CMOVE.

Description

Increment the address field of the capability ¢s1 and write the result to c¢d . The tag bit of the
output capability is O if ¢s1 did not have its tag set to 1, the incremented address is outside ¢s1''s
representable region or ¢s1 is sealed.

For CINCOFFSET, the address is incremented by the value in rs2.

For CINCOFFSETIMM, the address is incremented by the immediate value imm.

Prerequisites

Zcheri_purecap

Operation (CINCOFFSET)
TODO

Operation (CINCOFFSETIMM)
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 55

8.1.7. CSETADDR

Df CHERI v9 Note: This page has new encodings.
Synopsis
Capability set address
Mnemonic

csetaddr cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
CSETADDR=0000110 address src CSETADDR=001 dest OP=0110011
Description

Set the address field of capability ¢s1 to rs2 and write the output capability to c¢d. The tag bit of the
output capability is O if ¢s1 did not have its tag set to 1, rs1 is outside the representable range of
cs1orif cs1is sealed.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 56

8.1.8. CANDPERM

y CHERI v9 Note: The implementation of this instruction changes because the permission
EI fields are encoded differently in the new capability format.

74 CHERI v9 Note: This page has new encodings.

Synopsis

Mask capability permissions

Mnemonics
candperm cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
CANDPERM=0000110 mask src CANDPERM=010 dest OP=0110011
Description

Converts the AP and SDP fields of capability ¢s1 into a bit field; one bit per permission as shown
below. Then calculate the bitwise AND of the bit field with the mask rs2 . Set the AP and SDP fields
of ¢s1 as indicated in the resulting bit field —the capability grants a permission if the
corresponding bit is set in the bit field —and write the output capability to c¢d . The output
capability has its tag set to O if ¢s1 is sealed.

XLEN- 1 SDPLEN+15 16 4 3 2 1 0
’ Reserved ‘ SDP ‘ Reserved ﬁSlﬁ X ‘ C ‘W‘ R ‘
XLEN-SDPLEN-16 SDPLEN 11 11 1 1 1

The AP field is not able to encode all combinations of permissions when XLENMAX=32. If
| y permissions that cannot be encoded are indicated, CANDPERM outputs a capability with
all architectural permissions cleared.

TODO: this may not be correct - we should work through the different combinations which
o are possible for removing a permission for RV32, where it is restricted, and decide what to
do in each case

Prerequisites

Zcheri_purecap

Operation
TODO: Sail does not have the new encoding of the permissions field.

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 57

8.1.9. CSETMODE

Df CHERI v9 Note: This instruction used to be CSetFlags.
Df CHERI v9 Note: This page has new encodings.
Synopsis

Capability set CHERI execution mode

Mnemonic

csetmode cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
CSETMODE=0001000 CSETMODE=0011 srcl CSETMODE=000 dest OP=0110011
Description

Copy ¢s1 to cd and set cd.M (the mode bit) to the least significant bit of rs2 . c¢d.tag is set to O if
cs1is sealed.

Prerequisites

Zcheri_mode

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”,"Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 58

8.1.10. CSETHIGH

Df CHERI v9 Note: This page has new encodings.

Synopsis
Capability set metadata

Mnemonic

csethigh cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
CSETHIGH=0000110 metadata src CSETHIGH=011 dest OP=0110011
Description

Copy cs1 to cd , replace the capability metadata (i.e. bits [CLEN-1:XLENMAX]) with rs2 and set
cd.tag to O.

Prerequisites

Zcheri_purecap

Operation
TODO this is correct but capToMemBits is redundant, as it's now XORed with zero (null-cap)

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 59

8.1.11. CSETEQUALEXACT

Df CHERI v9 Note: This page has new encodings.
Synopsis
Capability equals
Mnemonics

csetequalexact rd, cs1, cs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 cs2 csl funct3 rd opcode
7 5 5 3 5 7
SSETEQUALEXACT=0000110 src2 srcl CSETEQUALEXACT=100 dest OP=0110011
Description

rd is set to 1if all bits (i.e. CLEN bits and the tag) of capabilities ¢s1 and ¢s2 are equal, otherwise rd
issetto O.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 60

8.1.12. CSEAL

Df CHERI v9 Note: This page has new encodings.

Synopsis
Capability seal

Mnemonics

cseal cd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6
funct7 funct5 csl funct3 cd opcode
7 5 5 3 5 7
CSEAL=0001000 CSEAL=01000 src CSEAL=000 dest OP=0110011
Description

Capability cd is written with the capability in ¢s1 with its seal bit set to 1.

Prerequisites

Zcheri_purecap

Operation
TODO: The SAIL definition for CSEAL writes the OTYPE which does not exist anymore.

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 61

8.1.13. CTESTSUBSET

Df CHERI v9 Note: This page has new encodings.
Synopsis
Capability test subset
Mnemonic

ctestsubset rd, cs1, cs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 cs2 csl funct3 rd opcode
7 5 5 3 5 7
CTESTSUBSET=0000110 src2 srcl CTESTSUBSET=110 dest OP=0110011
Description

rd is set to 1 if the tag of capabilities ¢s1 and ¢s2 are equal and the bounds and permissions of ¢s2
are a subset of those of ¢s1 .

y The implementation of this instruction is similar to CBUILDCAP, although CTESTSUBSET
EI does not include the sealed bit in the check.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”,"Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 62

8.1.14. CBUILDCAP

Df CHERI v9 Note: This page has new encodings.
Synopsis
Capability build
Mnemonic

cbuildcap cd, cs1, cs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 cs2 csl funct3 cd opcode
7 5 5 3 5 7
CBUILDCAP=0000110 src2 srcl CBUILDCAP=101 dest OP=0110011
Description

Copy ¢s2 to cd and set the tag to 1if c¢s1.tag is set, ¢s1 is not sealed, ¢s1's permissions and bounds
are equal or a superset of €52 's, €52 's bounds are not malformed (see Section 2.5), and all reserved
bits in ¢s2 's metadata are 0. CBUILDCAP is typically used alongside CSETHIGH to build
capabilities from integer values.

Prerequisites

Zcheri_purecap

Simplified Operation TODO not debugged much easier to read than the existing SAIL

let cs1_val = if unsigned(cs1) == @ then DDC else C(cs1);

let cs2_val = C(cs2) [with tag=1];

//isCapSubset includes derivability checks on both operands

let subset = isCapSubset(csl_val, cs2_val);

//Clear cd.tag if cs1 isn't a subset of cs1, or if

//cs1 is untagged or sealed, or if either is underivable

C(cd) = clearTagIf(cs2_val, not(subset) |
not(cs1_val.tag) |
isCapSealed(cs1_val));

RETIRE_SUCCESS

Operation
TODO: Original Sail looks at otype field, etc that don’t exist

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 63

8.1.15. CGETTAG

Df CHERI v9 Note: This page has new encodings.
Synopsis
Capability get tag
Mnemonic

cgettag rd, cs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
CGETTAG=0001000 CGETTAG=00000 src CGETTAG=000 dest OP=0110011
Description

Zero extend the value of ¢s1.tag and write the result to rd.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 64

B

8.1.16. CGETPERM

Df CHERI v9 Note: This page has new encodings.

Synopsis

Capability get permissions

Mnemonic

cgetperm rd, csi

Encoding
31 25 24 20 19 15 14 12 11 0
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
CGETPERM=0001000 CGETPERM=00001 src CGETPERM=000 dest OP=0110011
Description

Converts the AP and SDP fields of capability ¢s1 into a bit field; one bit per permission, as shown
below, and write the result to rd. A bit set to 1 in the bit field indicates that ¢s1 grants the

corresponding permission.

XLEN- 1 SDPLEN+1S 16 4 3 2 1 0
’ Reserved ‘ SDP Reserved P«Sﬂ X ‘ C ‘W‘ R ‘
XLEN-SDPLEN-16 SDPLEN 11 171 1 1 1
Prerequisites

Zcheri_purecap

Operation
TODO: The encoding of permissions changed.

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 65

8.1.17. CGETHIGH

Df CHERI v9 Note: This page has new encodings.

Synopsis
Capability get metadata

Mnemonic

cgethigh rd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
CGETHIGH=0001000 CGETHIGH=00100 src CGETHIGH=000 dest OP=0110011
Description

Copy the metadata (bits [CLEN-1:XLENMAX]) of capability ¢s1 into rd.

Prerequisites

Zcheri_purecap

Operation

TODO this is correct but capToMemBits is redundant, as it's now XORed with zero (null-cap)

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 66

8.1.18. CGETBASE

Df CHERI v9 Note: This page has new encodings.

Synopsis
Capability get base address

Mnemonic

cgetbase rd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 cd opcode
7 5 5 3 5 7
CGETBASE=0001000 CGETBASE=00101 src CGETBASE=000 dest OP=0110011
Description

Decode the base integer address from ¢s1's bounds and write the result to rd. It is not required that
the input capability ¢s1 has its tag set to 1. CGETBASE outputs O if ¢s1's bounds are malformed
(see Section 2.5).

Prerequisites

Zcheri_purecap

Operation

TODO need to check that it returns O if malformed

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 67

8.1.19. CGETLEN

Df CHERI v9 Note: This page has new encodings.
Synopsis
Capability get length
Mnemonic

cgetlen rd, cs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 cd opcode
7 5 5 3 5 7
CGETLEN=0001000 CGETLEN=00110 src CGETLEN=000 dest OP=0110011
Description

Calculate the length of ¢s1's bounds and write the result in rd. The length is defined as the
difference between the decoded bounds' top and base addresses i.e. top - base. It is not required
that the input capability ¢s1 has its tag set to 1. CGETLEN outputs O if ¢s1's bounds are malformed
(see Section 2.5).

Prerequisites

Zcheri_purecap

Operation

TODO need to check that it returns O if malformed

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 68

8.1.20. CSETBOUNDSIMM

See CSETBOUNDS.

8.1.21. CSETBOUNDS

y CHERI v9 Note: CSETBOUNDS was CSETBOUNDSEXACT, CSETBOUNDSIMM would
EI have been CSETBOUNDSEXACTIMM if it had existed.

/4 CHERI v9 Note: This page has new encodings.
/4 CHERI v9 Note: the immediate format has changed
Synopsis
Capability set bounds
Mnemonic

csetbounds cd, cs1, rs2
csetboundsimm cd, cs1, uimm

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
CSETBOUNDS=0000111 src2 srcl CSETBOUNDS=000 dest OP=0110011
31 26 25 24 20 19 15 14 12 11 7 6 0
funct6 S uimm csl funct3 cd opcode
6 1 5 5 3 5 7
CSETBOUNDSIMM scaled uimm src CSETBOUNDSIMM=101 dest OP-IMM=0010011
=000001
Description

Capability register cd is set to capability register ¢s1 with the base address of its bounds replaced
with the value of cs1.address and the length of its bounds set to rs2 (or imm). If the resulting
capability cannot be represented exactly then set cd.tag to O. In all cases, cd. tag is set to O if its
bounds exceed ¢s1's bounds, ¢s1's tag is O or ¢s1 is sealed.

CSETBOUNDSIMM uses the s bit to scale the immediate by 4 places

immediate = ZeroExtend(s 7 uimm<<4 : uimm)

Prerequisites

Zcheri_purecap
TODO: this is the CSetBoundsExact() function which will be renamed

Operation for CSETBOUNDS
TODO

Operation for CSETBOUNDSIMM
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 69

8.122. CSETBOUNDSINEXACT

Df CHERI v9 Note: This instruction was called CSETBOUNDS.
Df CHERI v9 Note: This page has new encodings.
Synopsis

Capability set bounds, rounding up if necessary

Mnemonic

csetboundsinexact cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
~SETBOUNDSINEX=0000111 src2 srcl CSETBOUNDSINEX=001 dest OP=0110011
Description

Capability register cd is set to capability register ¢s1 with the base address of its bounds replaced
with the value of c¢s1.address field and the length of its bounds set to rs2. The base is rounded
down and the length is rounded up by the smallest amount needed to form a representable
capability covering the requested bounds. In all cases, cd.tag is set to O if its bounds exceed ¢s1''s
bounds, cs1's tagis O or cs1 is sealed.

Prerequisites

Zcheri_purecap
A TODO this is the CSetBounds() function which will be renamed

Operation for CSETBOUNDSINEXACT
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”,"Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 70

8.1.23. CRAM

Synopsis
Get Capability Representable Alignment Mask (CRAM)

Mnemonic

cram rd, rsT

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 rsl funct3 rd opcode
7 5 5 3 5 7
CRAM=0001000 CRAM=00111 src CRAM=000 dest OP=0110011
Description

Integer register rd is set to a mask that can be used to round addresses down to a value that is
sufficiently aligned to set exact bounds for the nearest representable length of rs1.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”,"Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 71

8.124. LC

See CLC.

8.1.25. CLC

Df CHERI v9 Note: This page has new encodings.
Df The RV64 encoding is intended to also allocate the encoding for LQ for RVI128.

Synopsis
Load capability

Capability Mode Mnemonics
cle cd, offset(cs?)

Legacy Mode Mnemonics
lc cd, offset(rs1)

Df These instructions have different encodings for RV64 and RV32.
Encoding
31 20 19 15 14 12 11 7 6 0
imm[11:0] rsl/csl funct3 cd opcode
12 5 3 5 7
offset[11:0] base caprv64: CLC=100 dest!=cO MISCMEM=0001111
leg rv64: LC=100 MISCMEM=0001111
cap rv32: CLC=011 LOAD=0000011
leg rv32: LC=011 LOAD=0000011

Capability Mode Description
Load a CLEN+1 bit value from memory and writes it to c¢d. The capability in ¢s1 authorizes the
operation. The effective address of the memory access is obtained by adding the address of ¢s1 to
the sign-extended 12-bit offset. The tag value written to ¢d is O if the tag of the memory location
loaded is O or €s1 does not grant C-permission.

Legacy Mode Description

Loads a CLEN+1 bit value from memory and writes it to cd. The capability authorising the
operation is ddc. The effective address of the memory access is obtained by adding rs1 to the sign-
extended 12-bit offset. The tag value written to cd is O if the tag of the memory location loaded is O
or ddc does not grant C-permission.

Exceptions

Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 72

>

CAUSE Reason

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CLC

Zcheri_purecap

Prerequisites for LC

Zcheri_legacy

CLC Operation
TODO

LC Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap”, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 73

8.1.26. 5C

See CSC.

8.1.27.CSC

Df The RV64 encoding is intended to also allocate the encoding for SQ for RVI28.

Synopsis
Store capability

Capability Mode Mnemonics
csc cs2, offset(es)

Legacy Mode Mnemonics
sc cs2, offset(rs1)

Df These instructions have different encodings for RV64 and RV32.
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] cs2 rsl/csl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base caprv64: CSC=100 offset[4:0] STORE=0100011

leg rv64: SC=100
cap rv32: CSC=011
leg rv32: SC=011

Capability Mode Description

Store the CLEN+1 bit value in €52 to memory. The capability in ¢s1 authorizes the operation. The
effective address of the memory access is obtained by adding the address of ¢s1 to the sign-
extended 12-bit offset. The capability written to memory has the tag set to O if the tag of ¢s2 is O or
¢s1 does not grant C-permission.

Legacy Mode Description

Store the CLEN+1 bit value in ¢s2 to memory. The capability authorising the operation is ddc. The
effective address of the memory access is obtained by adding rs1 to the sign-extended 12-bit offset.
The capability written to memory has the tag set to O if ¢s2 's tag is O or ddc does not grant C-
permission.

Exceptions

Misaligned address fault exception when the effective address is not aligned to CLEN/S8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

8.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 74

B

Prerequisites for CSC

Zcheri_purecap

Prerequisites for SC

Zcheri_legacy

CSC Operation
TODO

SC Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 75

8.2. RV32I/E and RV64I/E Base Integer Instruction
Sets

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 76

8.2.1. AUIPC

See AUIPCC

8.2.2. AUIPCC

Synopsis
Add upper immediate to pc/pcc

Capability Mode Mnemonic
auipcc cd, imm

Legacy Mode Mnemonic
auipc rd, imm

Encoding
31 12 11 7 6 0
imm[31:12] cd/rd opcode
20 5 7
U-immediate[31:12] dest cap: AUIPCC=0010111

leg: AUIPC=0010111

Capability Mode Description

Form a 32-bit offset from the 20-bit immediate filling the lowest 12 bits with zeros. Increment the
address of the AUIPCC instruction’s pcc by the 32-bit offset, then write the output capability to cd.
The tag bit of the output capability is O if the incremented address is outside the pcc's representable
region.

Legacy Mode Description

Form a 32-bit offset from the immediate, filling in the lowest 12 bits with zeros, adds this offset to
the address of the AUIPC instruction, then places the result in register rd.

—y The instructions on this page are either PC relative or may update the pcc. Therefore an
J implementation may make them illegal in debug mode.

Prerequisites for AUIPCC

Zcheri_purecap

Prerequisites for AUIPC
Zcheri_legacy

Operation for AUIPCC
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 77

82.3. BEQ, BNE, BLT[U], BGE[U]

Synopsis
Conditional branches (BEQ, BNE, BLT[U], BGE[U])

Mnemonics

beq rs1, rs2, imm
bne rs1, rs2, imm
blt rs1, rs2, imm
bge rs1, rs2, imm
bltu rs1, rs2, imm
bgeu rs1, rs2, imm

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
| imm[12|10:5] rs2 rsl funct3 imm[4:1]11] opcode
7 5 5 3 5 7
offset[12]10:5] src2 srcl BEQ=000 offset[4:1]11] BRANCH=1100011
BNE=001
BLT=100
BGE=101
BLTU=110
BGEU=111
Description

Compare two integer registers rs1 and rs2 according to the indicated opcode as described in
(RISC-V, 2023). The 12-bit immediate encodes signed offsets in multiples of 2 bytes. The offset is
sign-extended and added to the address of the branch instruction to give the target address. Then
the target address is written into the address field of pcc.

Exceptions

When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of
mtval or stval:

y The instructions on this page are either PC relative or may update the pcc. Therefore an
EI implementation may make them illegal in debug mode.

ERROR: TODO: Sail doesn’t have target exceptions - wrong code included?

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 78

8.2.4. CJALR

See JALR

8.2.5. CJAL, JALR

Synopsis

Jump and link register

Capability Mode Mnemonic
cjalr cd, cs1, offset

Legacy Mode Mnemonic
jalr rd, rs1, offset

Encoding
31 20 19 15 14 12 11
imm[11:0] csl/rsl funct3 cd/rd opcode
12 5 3 5 7
offset[11:0] base 0 dest cap: CJALR=1100111

Capability Mode Description

CJALR allows unconditional, indirect jumps to a target capability. The target capability is obtained
by unsealing ¢s1 and incrementing its address by the sign-extended 12-bit immediate, and then
setting the least-significant bit of the result to zero. The target capability may have Invalid address
conversion performed and is then installed in pcc. The pec of the next instruction following the

jump (pcc + 4) is sealed and written to cd.

Legacy Mode Description

JALR allows unconditional, indirect jumps to a target address. The target address is obtained by
adding the sign-extended 12-bit immediate to rs1, then setting the least-significant bit of the result
to zero. The target address is installed in the address field of the pcc which may require Invalid

leg: JALR=1100111

address conversion. The address of the instruction following the jump (pcc + 4) is written to rd.

Exceptions

When these instructions cause CHERI exceptions, CHERI jump or branch fault is reported in the

TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE JALR CJALR
Tag violation v
Seal violation v
Permission violation v
Length violation v v

Reason
€S T has tag set to O
C 51 is sealed and the immediate is not O

C 51 does not grant X-permission

Minimum length instruction is not within the target capability’s bounds

y The instructions on this page are either PC relative or may update the pcc. Therefore an
EI implementation may make them illegal in debug mode.

Prerequisites CJALR

Zcheri_purecap

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites JALR
Zcheri_legacy

CJALR Operation
TBD

JALR Operation
TBD

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 79

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 80

8.2.6. CJAL

See JAL

8.2.7. CJAL, JAL

Synopsis
Jump and link

Capability Mode Mnemonic
cjal cd, offset

Legacy Mode Mnemonic
jal rd, offset

Encoding
31 30 21 20 19 12 11 7 6 0
|[20] | imm[10:1] |[11] | imm[19:12] cd/rd opcode
1 10 1 8 5 7
offset[20:1] offset[19:12] dest cap: CJAL=1101111

leg: JAL=1101111

Capability Mode Description

CJAL’s immediate encodes a signed offset in multiple of 2 bytes. The pcc is incremented by the
sign-extended offset to form the jump target capability. The target capability is written to pcc. The
pce of the next instruction following the jump (pcc + 4) is sealed and written to cd.

Legacy Mode Description

JAL’s immediate encodes a signed offset in multiple of 2 bytes. The sign-extended offset is added to
the pec's address to form the target address which is written to the pcc's address field. The address
of the instruction following the jump (pcc + 4) is written to rd.

Exceptions

CHERI fault exceptions occur when a minimum length instruction at the target address is not
within the bounds of the pcc. In this case, CHERI jump or branch fault is reported in the TYPE field
and Length Violation is reported in the CAUSE field of mtval or stval.

Prerequisites for CJAL

Zcheri_purecap

Prerequisites for JAL
Zcheri_legacy

CJAL Operation
TODO

JAL Operation TODO where’s the target check?
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.8. CLWU

See CLD.

8.29. CLW

See CLD.

8.2.10. CLHU

See CLD.

8.2.11. CLH

See CLD.

8.2.12. CLBU

See CLD.

82.13.CLB

See CLD.

82.14. LD

See CLD.

8.2.15. LWU

See CLD.

8.2.16. LW

See CLD.

82.17. LHU

See CLD.

8.2.18. LH

See CLD.

8.2.19. LBU

See CLD.

8220.LB

See CLD.

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 81

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 82

8221.CLD

Synopsis
Load (CLD, CLW[U], CLH[U], CLB[U], LD, LW[U], LH[U], LB[U])

Capability Mode Mnemonics (RV64)
cld rd, offset(cs?1)
clw[u] rd, offset(cs1)
clh[u] rd, offset(cs1)
clb[u] rd, offset(cs1)

Legacy Mode Mnemonics (RV64)

1d rd, offset(rs1)

lw[u] rd, offset(rs1)
1h[u] rd, offset(rs1)
1b[u] rd, offset(rs1)

Capability Mode Mnemonics (RV32)

clw rd, offset(cs1)
clhfu] rd, offset(cs1)
clb[u] rd, offset(cs1)

Legacy Mode Mnemonics (RV32)

lw rd, offset(rs1)
1lh[u] rd, offset(rs1)
1b[u] rd, offset(rs1)

Encoding

31 20 19 15 14 12 11

imm[11:0] rsl/csl funct3

rd

opcode

12 5 3
offset[11:0] base width
cap: CLB=000
leg: LB=000
cap: CLH=001
leg: LH=001
cap: CLW=010
leg: LW=010
cap: CLBU=100
leg: LBU=100
cap: CLHU=101
leg: LHU=101
cap rv64: CLWU=110
leg rv64: LWU=110
cap rve4: CLD=011
leg rv64: LD=011

Capability Mode Description

Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorising capability for the operation is ¢s1. A copy of the loaded value is written to rd.

Legacy Mode Description

Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to rs1. The

dest

7
LOAD=0000011

authorising capability for the operation is ddc. A copy of the loaded value is written to rd.

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 83

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CLD
RV64, Zcheri _purecap

Prerequisites for CLW[U], CLH[U], CLB[U]

Zcheri_purecap

Prerequisites for LD
RV64, Zcheri_legacy

Prerequisites for LW[U], LH[U], LB[U]
Zcheri_legacy

Capability Mode Operation
TBD

Legacy Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 84

8.2.22. CSW

See CSD

8.2.23. CSH

See CSD

8.2.24. CSB

See CSD

8.2.25.5D

See CSD

8.2.26. SW

See CSD

8.2.27.S5H

See CSD

8.2.28.5B

See CSD

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 85

8.2.29.CSD

Synopsis
Stores (CSD, CSW, CSH, CSB, SD, SW, SH, SB)

Capability Mode Mnemonics (RV64)

csd rs2, offset(cs?)
csw rs2, offset(es?)
csh rs2, offset(cs1)
csb rs2, offset(cs?)

Legacy Mode Mnemonics (RV64)

sd rs2, offset(rs1)
sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Capability Mode Mnemonics (RV32)

csw rs2, offset(cs1)
csh rs2, offset(cs1)
csb rs2, offset(cs1)

Legacy Mode Mnemonics (RV32)

sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rsl/csl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base cap: CSB=000 offset[4:0] STORE=0100011
cap: CSH=001
cap: CSW=010
cap rv64: CSD=011
leg: SB=000
leg: SH=001
leg: SW=010
leg rv64: SD=011

Capability Mode Description

Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorising capability for the operation is ¢s1. A copy of rs2 is written to memory at the
location indicated by the effective address and the tag bit of each block of memory naturally
aligned to CLEN/8 is cleared.

Legacy Mode Description

Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to rs1. The
authorising capability for the operation is ddc. A copy of rs2 is written to memory at the location
indicated by the effective address and the tag bit of each block of memory naturally aligned to
CLEN/8 is cleared.

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 86

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CSD
RV64, Zcheri_purecap

Prerequisites for CSW, CSH, CSB

Zcheri_purecap

Prerequisites for SD
RV64, Zcheri_legacy

Prerequisites for SW, SH, SB
Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 87

82.30. SRET

See MRET.

82.31. MRET

Synopsis
Trap Return (MRET, SRET)

Mnemonics

mret

sret
Encoding
31 20 19 15 14 12 11 7 6 0

funct12 rsl funct3 rd opcode
12 5 3 5 7
MRET=001100000010 0 PRIV=0 0 SYSTEM=111011

SRET=000100000010

Description

Return from machine mode (MRET) or supervisor mode (SRET) trap handler as defined by (RISC-
V, 2023). MRET unseals mepce and writes the result into pce. SRET unseals sepce and writes the
result into pcc.

Exceptions

CHERI fault exceptions occur when pcc does not grant ASR-permission because MRET and SRET
require access to privileged CSRs. When that exception occurs, CHERI instruction access fault is
reported in the TYPE field and the Permission Violation codes is reported in the CAUSE field of
mtval or stval.

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 88

8.2.32. DRET
Synopsis

Debug Return (DRET)
Mnemonics

dret
Encoding
31 20 19 15 14 12 11 7 6 0

funct12 rsl funct3 rd opcode
12 5 3 5 7
DRET=011110110010 0 PRIV=0 0 SYSTEM=111011

Description

DRET return from debug mode. It unseals dpcc and writes the result into pcc.

The DRET instruction is the recommended way to exit debug mode. However, it is a pseudo
| y instruction to return that technically does not execute from the program buffer or memory.
It currently does not require the pcc to grant ASR-permission so it never excepts.

Prerequisites
Sdext

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 89

8.3."A" Standard Extension for Atomic Instructions

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 90

8.3.1. CAMO<OP>W

See AMO<OP>.D.

8.3.2. CAMO<OP>.D

See AMO<OP>.D.

8.3.3. AMO<OP>W

See AMO<OP>.D.

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 91

8.3.4. CAMO<OP>W

Synopsis
Atomic Operations (CAMO<OP>W, CAMO<OP>.D, AMO<OP>W, AMO<OP>.D), 32-bit encodings

Capability Mode Mnemonics (RV64)
camo<op>.[w|d], offset(cs1)

Capability Mode Mnemonics (RV32)
camo<op>.w, offset(cs1)

Legacy Mode Mnemonics (RV64)
amo<op>.[w|d], offset(rs1)

Legacy Mode Mnemonics (RV32)
amo<op>.w, offset(rs1)

Encoding

31 27 26 25 24 20 19 15 14 12 11 7 6 0

functb aq| rl rs2 rsl funct3 rd opcode

5 11 5 5 3 5 7
op aq Tl src base .W=010 rdest[4:0] AMO=0101111

SWAP=00001 rvé4: .D=011

ADD=00000

XOR=00100

AND=01100

OR=01000

MIN=10000

MAX=10100

MINU=11000

MAXU=11100

Capability Mode Description

Standard atomic instructions, authorised by the capability in ¢s1.

Legacy Mode Description

Standard atomic instructions, authorised by the capability in ddc.

Permissions

Requires R-permission and W-permission in the authorising capability.
Requires all bytes of the access to be in capability bounds.

Exceptions

All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE Reason

Tag violation Authority capability tag
setto O

Seal violation Authority capability is

sealed

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 92

CAUSE Reason

Permission violation Authority capability does
not grant R-permission or
W-permission

Length violation At least one byte accessed
is outside the authority
capability bounds

Prerequisites for CAMO<OP>.W, CAMO<OP>.D

Zcheri_purecap

Prerequisites for AMO<OP>.W, AMO<OP>.D
Zcheri_legacy

Capability Mode Operation
TBD

Legacy Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 93

8.3.5. AMOSWAP.C

See CAMOSWAP.C.

8.3.6. CAMOSWAP.C
Df The RV64 encoding is intended to also allocate the encoding for AMOSWAP.Q for RVI28.

Synopsis
Atomic Operations (CAMOSWAP.C, AMOSWAP.C), 32-bit encodings

Df These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics
camoswap.c, offset(cs1)

Legacy Mode Mnemonics
amoswap.c, offset(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
functb aq| rl cs2 csl funct3 rd opcode
5 1 1 5 5 3 5 7
op aq rl src base width rdest[4:0] AMO=0101111
SWAP=00001 rv32: .C=011
rvé4: .C=100

Capability Mode Description
Atomic swap of capability type, authorised by the capability in ¢s1.

Legacy Mode Description
Atomic swap of capability type, authorised by the capability in ddc.

Permissions

Requires the authorising capability to be tagged and not sealed.

Requires R-permission and W-permission in the authorising capability.

If C-permission is not granted then store the memory tag as zero, and load cd. tag as zero.
(This tag clearing behaviour may become a data dependent exception in future.)

Requires all bytes of the access to be in capability bounds.

Exceptions

All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 94

CAUSE

Tag violation
Seal violation

Permission violation

Length violation

Prerequisites for CAMOSWAP.C

Zcheri_purecap

Prerequisites for AMOSWAP.C
Zcheri_legacy

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

Reason

Authority capability tag
setto O

Authority capability is
sealed

Authority capability does
not grant R-permission or
W-permission

At least one byte accessed
is outside the authority
capability bounds

83.7.CLR.D

See LR.B.

8.3.8. CLR.W

See LR.B.

8.3.9. CLR.H

See LR.B.

8.3.10. CLR.B

See LR.B.

8.3.11. LR.D

See LR.B.

8.3.12. LRW

See LR.B.

8.3.13. LR.H

See LR.B.

8.3."A" Standard Extension for Atomic Instructions | Page 95

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 96

8.3.14. LR.B

Synopsis

Load Reserved (CLR.D, CLR.W, CLR.H, CLR.B, LR.D, LR W, LR.H, LR.B), 32-bit encodings

Capability Mode Mnemonics (RV64)
clr.[d|w|h|b] rd, @(cs1)

Capability Mode Mnemonics (RV32)
clr.[w|h|b] rd, 0(cs1)

Legacy Mode Mnemonics (RV64)
1r.[d|w|h|b] rd, @(rs1)

Legacy Mode Mnemonics (RV32)
Ir.[w|h|b] rd, @(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11
functb aq| rl rs2 rsl funct3 rd opcode

5 11 5 5 3 5 7

op ag rl cap: CLR.*=00000 base .B=000 rdest[4:0] AMO=0101111
cap: CLR.*=00010 leg: LR.*=00000 .H=001

leg: LR.*=00010 .W=010
rvé4: .D=011

Capability Mode Description

Load reserved instructions, authorised by the capability in ¢s1.

Legacy Mode Description

Load reserved instructions, authorised by the capability in ddc.

Exceptions

All misaligned load reservations cause a load address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 202.3)), otherwise they take a load access

fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds
Prerequisites for CLR.D

RV64, and Zcheri_ purecap

Prerequisites for CLR.W

Zcheri_purecap

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CLR.H, CLR.B
Zbhlrsc and Zcheri_purecap

Prerequisites for LR.D
RV64, and Zcheri_legacy

Prerequisites for LR'W
Zcheri_legacy

Prerequisites for LR.H, LR.B
Zbhlrsc and Zcheri_legacy

Operation

TBD

8.3."A" Standard Extension for Atomic Instructions | Page 97

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 98

8.3.15. LR.C

See CLR.C.

8.3.16. CLR.C

Df The RV64 encoding is intended to also allocate the encoding for LR.Q for RV128.

Synopsis

Load Reserved (CLR.C, LR.C), 32-bit encodings

Df These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics (RV64)

clr.c cd, 0(cs1)

Capability Mode Mnemonics (RV32)

clr.c cd, 0(cs1)

Legacy Mode Mnemonics (RV64)

1lr.c cd, 0(rs1)

Legacy Mode Mnemonics (RV32)

1r.c cd, 0(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11
functs aq| rl funct5 csl/rs1 funct3 cd opcode
5 11 5 5 3 5 7
op ag rl cap: CLR.*=00000 base rv32: .C=011 rdest[4:0] AMO=0101111
cap: CLR.*=00010 leg: LR.*=00000 rvé4: .C=100

leg: LR.*=00010

Capability Mode Description

Load reserved instructions, authorised by the capability in ¢s1. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-

V,2023)).

Legacy Mode Description

Load reserved instructions, authorised by the capability in ddc. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-

V,2023)).

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE
Tag violation
Seal violation

Permission violation

Reason

Authority capability tag set to O

Authority capability is sealed

Authority capability does not grant R-permission

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE

Length violation

Prerequisites for CLC

Zcheri_purecap

Prerequisites for LC

Zcheri_legacy

Operation

TBD

8.3."A" Standard Extension for Atomic Instructions | Page 99

Reason

At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 100

8.3.17.CSC.D

See SC.B.

8.3.18. CSC.W

See SC.B.

8.3.19. CSC.H

See SC.B.

8.3.20. CSC.B

See SC.B.

8.3.21.5C.D

See SC.B.

8.3.22. SC.W

See SC.B.

8.3.23. SC.H

See SC.B.

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 101

8.3.24. SC.B

Synopsis
Store Conditional (CSC.D, CSC.W, CSC.H, CSC.B, SC.D, SC.W, SC.H, SC.B), 32-bit encodings

Capability Mode Mnemonics (RV64)
csc.[d|w|h|b] rd, rs2, @(cs1)

Capability Mode Mnemonics (RV32)
csc.[w|h|b] rd, rs2, @(cs1)

Legacy Mode Mnemonics (RV64)
sc.[d|w|h|b] rd, rs2, @(rs1)

Legacy Mode Mnemonics (RV32)
sc.[w|h|b] rd, rs2, 0(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
functb aq| rl rs2 rsl funct3 rd opcode
5 11 5 5 3 5 7
op aq Tl src base width rdest[4:0] AMO=0101111
cap: CSC=00011 .B=000
leg: SC=00011 .H=001
.W=010
rvé4: .D=011

Capability Mode Description

Store conditional instructions, authorised by the capability in ¢s1.

Legacy Mode Description

Store conditional instructions, authorised by the capability in ddc.

Exceptions

All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CSC.D
RV64, and Zcheri_purecap

Prerequisites for CSC.W

Zcheri_purecap

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 102

Prerequisites for CSC.H, CSC.B
Zcheri_purecap, and Zbhlrsc

Prerequisites for SC.D
RV64, and Zcheri_legacy

Prerequisites for SC.W
Zcheri_legacy

Prerequisites for SC.H, SC.B
Zcheri_legacy, and Zbhlrsc

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 103

8.3.25. 5C.C

See CSC.C.

8.3.26. CSC.C

Df The RV64 encoding is intended to also allocate the encoding for SC.Q for RV128.

Synopsis
Store Conditional (CSC.C, SC.C), 32-bit encodings

Df These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics
csc.c cd, cs2, 0(cs1)

Legacy Mode Mnemonics
sc.c cd, cs2, 0(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
functb aq| rl cs2 csl/rs1 funct3 rd opcode
5 1 1 5 5 3 5 7
op aq rl src base width rdest[4:0] AMO=0101111
cap: CSC=00011 rv32: .C=011
leg: SC=00011 rvé4: .C=100

Capability Mode Description

Store conditional instructions, authorised by the capability in cs1. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 202.3)).

Legacy Mode Description

Store conditional instructions, authorised by the capability in ddc. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 202.3)).

Exceptions

All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

8.3."A" Standard Extension for Atomic Instructions | Page 104

Prerequisites for CSC.C

Zcheri_purecap

Prerequisites for SC.C

Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.4."Zicsr", Control and Status Register (CSR) Instructions | Page 105

8.4."Zicsr", Control and Status Register (CSR)
INnstructions

RISC-V Specification for CHERI Extensions | © RISC-V

8.4."Zicsr", Control and Status Register (CSR) Instructions | Page 106

8.4.1. CSRRW
Df CHERI v9 Note: CSpecialRW is removed and this functionality replaces it
Synopsis

CSR access (CSRRW) 32-bit encodings

Mnemonic (XLEN-wide target, and XLEN-wide aliases of CLEN-wide CSRs)
csrrw rd, rs1, csr

Mnemonics (CLEN-wide target)
csrrw cd, cs1, csr

Encoding
31 20 19 15 14 12 11 7 6 0
csr rsl/csl funct3 rd/cd opcode
12 5 3 5 7
source/dest CSR source CSRRW=001 dest SYSTEM=1110011
Description

This is a standard RISC-V CSR instructions with extended functionality for accessing CLEN-wide
CSRs, such as mtvec/mtvecc which can be accessed through either the RISC-V address or the
capability address alias.

See Table 38 for a list of CLEN-wide CSRs and Table 39 for the action taken on writing each one.
CSRRW writes ¢s1 to the CLEN-wide alias of extended CSRs, and reads a full capability into cd.
CSRRW writes rs1 to the XLEN-wide alias of extended CSRs, and reads the address field into rd.
Access to XLEN-wide CSRs from other extensions is as specified by RISC-V.

Permissions

All non-user mode accessible CSRs require ASR-permission, including existing RISC-V CSRs.

Prerequisites for capability address aliases

Zcheri_purecap

Prerequisites for legacy address aliases

Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.4.2. CSRRWI

See CSRRCI.

8.4.5. CSRRS

See CSRRCI.

8.4.4. CSRRSI

See CSRRCI.

8.4.5. CSRRC

See CSRRCI.

8.4."Zicsr", Control and Status Register (CSR) Instructions | Page 107

RISC-V Specification for CHERI Extensions | © RISC-V

8.4."Zicsr", Control and Status Register (CSR) Instructions | Page 108

8.4.6. CSRRC]
Df CHERI v9 Note: CSpecialRW is removed and this functionality replaces it
Synopsis

CSR access (CSRRWI, CSRRS, CSRRSI, CSRRC, CSRRCI) 32-bit encodings

Register Source Mnemonics

csrrs|c] rd, rs1, csr

Immediate Source Mnemonics

csrrw|s|c]i rd, imm, csr

Encoding
31 20 19 15 14 12 11 7 6 0
csr rsl/uimm funct3 rd opcode
12 5 3 5 7
source/dest CSR source CSRRS=010 dest SYSTEM=1110011
source CSRRC=011
uimm[4:0] CSRRWI=101
uimm[4:0] CSRRSI=110
uimm[4:0] CSRRCI=111
Description

These are standard RISC-V CSR instructions with extended functionality for accessing CLEN-wide
CSRs, such as mtvec/mtvecc which can be accessed through either the RISC-V address or the
capability address alias.

Unlike CSRRW these instruction perform the same update to CLEN-wide CSRs to either the XLEN
or CLEN-wide alias as they only every perform an XLEN-wide update. Where a CLEN-wide CSR is
updated, through either alias, the final address is determined as defined by RISC-V for these
instructions. The metadata and tag are updated as defined in Table 39.

See Table 38 for a list of CLEN-wide CSRs and Table 39 for the action taken on writing an XLEN-
wide value to each one.

Access to XLEN-wide CSRs from other extensions is as specified by RISC-V.

Permissions

All non-user mode accessible CSRs require ASR-permission, including existing RISC-V CSRs.

Prerequisites for capability address aliases

Zcheri_purecap

Prerequisites for legacy address aliases

Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.5."Zth", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 109

8.5."Zfth" "Zfhmin" "F"and "D" Standard Extension
for Floating-Point

RISC-V Specification for CHERI Extensions | © RISC-V

8.5."Zth","Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 110

8.5.1. CFLD

See FLH.

852. CFLW

See FLH.

85.3. CFLH

See FLH.

854 FLD

See FLH.

855 FLW

See FLH.

RISC-V Specification for CHERI Extensions | © RISC-V

8.5."Zfh","Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 111

8.5.6. FLH
Synopsis
Floating point loads (CFLD, CFLW, CFLH, FLD, FLW, FLH), 32-bit encodings

Capability Mode Mnemonics
cfld/cflw/cflh frd, offset(cs1)

Legacy Mode Mnemonics
fld/flw/flh rd, offset(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
imm[11:0] rsl/csl width frd opcode
12 5 3 5 7
offset[11:0] base cap: CFLD=011 dest LOAD-FP=0000111

cap: CFLW=010

cap: CFLH=001
leg: FLD=011
leg: FLW=010
leg: FLH=001

Capability Mode Description
Standard floating point load instructions, authorised by the capability in ¢s1.

Legacy Mode Description
Standard floating point load instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this

case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds
Prerequisites for CFLD

Zcheri_purecap, and D

Prerequisites for CFLW

Zcheri_purecap, and F

Prerequisites for CFLH
Zcheri_purecap, and Zfhmin or Zth

Prerequisites for FLD

Zcheri_legacy, and D

Prerequisites for FLW
Zcheri_legacy, and F

RISC-V Specification for CHERI Extensions | © RISC-V

8.5."Zth", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 112

Prerequisites for FLH

Zcheri_legacy, and Zthmin or Zfh

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

85.7.CFSD

See FLH.

8.5.8. CFSW

See FLH.

8.59. CFSH

See FSH.

8.5.10. FSD

See FSH.

8.5.11. FSW

See FSH.

8.5."Zth", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 113

RISC-V Specification for CHERI Extensions | © RISC-V

8.5."Zth","Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 114

8.5.12. FSH

Synopsis
Floating point stores (CFSD, CFSW, CFSH, FSD, FSW, FSH), 32-bit encodings

Capability Mode Mnemonics
cfsd/cfsw/cfsh fs2, offset(cs1)

Legacy Mode Mnemonics
fsd/fsw/fsh fs2, offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsl/csl width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base cap: CFSD=011 offset[4:0] STORE-FP=0100111

cap: CFSW=010
cap: CFSH=001
leg: FSD=011
leg: FSW=010
leg: FSH=001
Capability Mode Description

Standard floating point store instructions, authorised by the capability in ¢s1.

Legacy Mode Description
Standard floating point store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds
Prerequisites for CFSD

Zcheri_purecap, and D

Prerequisites for CFSW

Zcheri_purecap, and F

Prerequisites for CFSH
Zcheri_purecap, and Zfh or Zfhmin

Prerequisites for FSD
Zcheri_legacy, and D

Prerequisites for FSW
Zcheri_legacy, and F

RISC-V Specification for CHERI Extensions | © RISC-V

8.5."Zth", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 115

Prerequisites for FSH

Zcheri_legacy, and Zfh or Zthmin

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 116

8.6."C" Standard Extension for Compressed
INnstructions

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 117

8.6.1. C.BEQZ, C.BNEZ

Synopsis

Conditional branches (C.BEQZ, C.BNEZ), 16-bit encodings

Mnemonics

c.beqz/c.bnez rs1', offset

Expansions

beq/bne rs1’, x@, offset

Encoding
15 13 12 10 9 7 6 2 1 0
funct3 imm rsl' imm op
3 3 3 5 2
C.BEQZ offset[8|4:3] src offset[7:6]2:1|5] C1
C.BNEZ offset[8|4:3] src offset[7:6]2:1|5] C1l
Exceptions

When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of

mtval or stval:

/4

Prerequisites

CorZca

Operation (after expansion to 32-bit encodings)

The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

See Conditional branches (BEQ, BNE, BLT[U], BGE[U])

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 118

8.6.2. CMV

See C.CMOVE.

8.6.5. CCMOVE

Synopsis
Capability move (C.MV, C.CMOVE), 16-bit encoding

Capability Mode Mnemonic

c.cmove cd, cs2°

Capability Mode Expansion

cmove cd, cs2°

Legacy Mode Mnemonic

cmvrd, rs2°

Legacy Mode Expansion
add rd, xO, rs2’

Encoding
15 12 11 7 6
funct4 rd/cd rs2/cs2 op
4 5 5 2
leg: C.MV=1000 dest!=0 src!=0 C2=10

cap: C.CMove=1000

Capability Mode Description
Capability register cd is replaced with the contents of csl.

Legacy Mode Description
Standard RISC-V C.MV instruction.

Prerequisites C.CMOVE

Cor Zca, Zcheri_purecap

Prerequisites C.MV
Cor Zca, Zcheri_legacy

Capability Mode Operation (after expansion to 32-bit encodings)
See CMOVE

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 119

8.6.4. CADDII6SP

See C.CINCOFFSETI6CSP.

8.6.5. C.CINCOFFSETI6CSP

Synopsis
Stack pointer increment in blocks of 16 (C.CINCOFFSET16CSP, C.ADDI16SP), 16-bit encodings

Capability Mode Mnemonic
c.cincoffset16csp imm

Capability Mode Expansion
cincoffset csp, csp, imm

Legacy Mode Mnemonic

c.addi16sp imm

Legacy Mode Expansion
add sp, sp, imm

Encoding
15 13 12 11 7 6 2 1 0
funct3 r|\zimm[9 rd/rs1 nzimm([4|6|8:7|5] op
3 1 5 5 2
C.CINCOFFSET16CSP=019] 2 offset[4|6|8:7|5] C1=01

leg: C.ADDI16SP=011

Capability Mode Description

Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (csp=c2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496). Clear the tag if the
resulting capability is unrepresentable or ¢sp is sealed.

Legacy Mode Description

Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496).

Prerequisites for C.CINCOFFSET16CSP

Cor Zca, Zcheri_purecap

Prerequisites for CADDI16SP
Cor Zca, Zcheri_legacy

Capability Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 120

8.6.6. CADDI4SPN

See C.CINCOFFSET4CSPN.

8.6.7. CCINCOFFSET4CSPN

Synopsis
Stack pointer increment in blocks of 4 (C.CINCOFFSET4CSPN, C.ADDI4SPN), 16-bit encodings

Capability Mode Mnemonic
c.cincoffsetdcspn rd', uimm

Capability Mode Expansion
cincoffset rd', csp, uimm

Legacy Mode Mnemonic
c.addi4spn rd', uimm

Legacy Mode Expansion
add rd', sp, uimm

Encoding
15 13 12 5 4 2 1 0
funct3 nzimm rd' op
3 8 3 2
C.CINCOFFSET4CSPN=000 uimm[5:4|9:6|2|3]!=0 dest C0=00

leg: C.ADDI4SPN=000

Capability Mode Description

Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, ¢sp, and writes the
result to rd'. This instruction is used to generate pointers to stack-allocated variables. Clear the tag
if the resulting capability is unrepresentable or ¢sp is sealed.

Legacy Mode Description

Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, sp, and writes the result
to rd". This instruction is used to generate pointers to stack-allocated variables.

Prerequisites for C.CINCOFFSET4CSPN

Cor Zca, Zcheri_purecap

Prerequisites for CADDI4SPN
Cor Zca, Zcheri_legacy

Capability Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.8. CCMODESWITCH

Df CHERI v9 Note: This instruction is new.

Synopsis

8.6."C" Standard Extension for Compressed Instructions | Page 121

Capability/Legacy Mode switching (C.CMODESWITCH), 16-bit encodings

Mnemonics

c.cmodeswitch

Expansions
cmodeswitch
Encoding
15 13 12 10 7 6 5 4 2 1 0
1 0 0 1 1 1 0 0 0 0 1 1 1 0 1
3 3 3 2 3 2
FUNCT3 FUNCT3 FUNCT3 FUNCT2 C.CMODESWITCH Cl=1

Capability Mode Description
Directly switch to Legacy Mode.

Legacy Mode Description

Directly switch to Capability Mode.

Exceptions

None

y The instructions on this page are either PC relative or may update the pcc. Therefore an
EI implementation may make them illegal in debug mode.

Prerequisites

CorZca, Zcheri_mode

Operation (after expansion to 32-bit encodings)

See CMODESWITCH

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 122

8.6.9. CJALR

See C.CJALR.

8.6.10. C.CJALR

Synopsis
Register based jumps with link, 16-bit encodings

Capability Mode Mnemonic
c.cjalr c1, cs1

Capability Mode Expansion
cjalr c1, @(cs1)

Legacy Mode Mnemonic
c.jalr x1, rsi

Legacy Mode Expansion
jalr x1, 0(rs1)

Encoding
15 12 11 7
funct4 rsl rs2 op
4 5 5 2
cap: C.CJALR=1001 src!=0 0 C2=10

leg: C.JALR=1001

Capability Mode Description

Link the next linear pcc to ¢d and seal. Jump to c¢s1.address+offset. pcc metadata is copied from
cs1, and is unsealed if necessary. Note that execution has several exception checks.

Legacy Mode Description

Set the next PC and link to rd according to the standard JALR definition. Check a minimum length

instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Prerequisites C.CJALR

Cor Zca, Zcheri_purecap

Prerequisites C.JALR
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CJALR,JALR

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 123

8.6.11. C.CIJR

See CJR.

8.6.12. CJR

Synopsis

Register based jumps without link, 16-bit encodings

Capability Mode Mnemonic
c.cjr csl

Capability Mode Expansion
cjalr c@, 0(cs1)

Legacy Mode Mnemonic

c.jr rsi

Legacy Mode Expansion
jalr x@, 0(rs1)

Encoding
15 12 11 7 6 2 1 0
funct4 rsl rs2 op
4 5 5 2
cap: C.CJR=1000 src!=0 0 C2=10
leg: C.JR=1000

Capability Mode Description

Jump to cs1.address+offset. pcc metadata is copied from cs1, and is unsealed if necessary. Note
that execution has several exception checks.

Legacy Mode Description

Set the next PC according to the standard jalr definition. Check a minimum length instruction is
in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Exceptions
See CJALR, JALR

y The instructions on this page are either PC relative or may update the pcc. Therefore an
EI implementation may make them illegal in debug mode.

Prerequisites for C.CJALR

Cor Zca, Zcheri_purecap

Prerequisites for CJALR
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CJALR,JALR

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 124

8.6.13. CJAL

See C.CJAL.

8.6.14. C.CJAL

Synopsis

Register based jumps with link, 16-bit encodings

Capability Mode Mnemonic (RV32)
c.cjal c1, offset

Capability Mode Expansion (RV32)
cjal c1, offset

Legacy Mode Mnemonic (RV32)
c.jal x1, offset

Legacy Mode Expansion (RV32)
jal x1, offset

Encoding (RV32)
15 13 12
funct3 imm op
3 11 2
cap rv32: C.CJAL=001 offset[11]4/9:81067|3:1/5] c1=01

leg rv32: C.JAL=001

Capability Mode Description

Link the next linear pcc to cd and seal. Jump to pcc.address+offset. Check a minimum length

instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Legacy Mode Description

Set the next PC and link to rd according to the standard JAL definition. Check a minimum length

instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Prerequisites for C.CJAL

Cor Zca, Zcheri_purecap

Prerequisites for CJAL
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)

See CJAL, JAL

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 125

8.6.15. C.J

See C.CJ.

8.6.16. C.CJ

Synopsis

Register based jumps without link, 16-bit encodings

Capability Mode Mnemonic
c.cj offset

Capability Mode Expansion
cjal c@, offset

Legacy Mode Mnemonic

c.j offset

Legacy Mode Expansion
jal x@, offset

Encoding
15 13 12 2 1 0
funct3 imm op
3 11 2
cap: C.CJ=101 offset[11|4|9:8|10|6|7|3:1|5] C1=01
leg: C.J=101
Description

Set the next PC following the standard jal definition. Check a minimum length instruction is in
pcc bounds at the target PC, take a CHERI Length Violation exception on error. There is no
difference in Capability Mode or Legacy Mode execution for this instruction.

Exceptions
CHERI Length Violation

Prerequisites for C.CJ

Cor Zca, Zcheri_purecap

Prerequisites for C.J

Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CJAL, JAL

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 126

8.6.17. C.CLD

See C.LW.

8.6.18. C.CLW

See C.LW.

8.6.19. C.LD

See C.LW.

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 127

8.6.20. C.LW

Synopsis
Load (C.CLD, C.CLW, C.LD, C.LW), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.cld/c.clw rd', offset(cs1')

Capability Mode Expansions (RV64)
cld/clw rd', offset(cs1')

Legacy Mode Mnemonics (RV64)
c.ld/c.lw rd', offset(rs1')

Legacy Mode Expansions (RV64)
1d/1w rd', offset(rs1')

Capability Mode Mnemonics (RV32)
c.clw rd', offset(es1')

Capability Mode Expansions (RV32)
clw rd', offset(es1')

Legacy Mode Mnemonics (RV32)
c.lw rd', offset(rs1')

Legacy Mode Expansions (RV32)
lw rd', offset(rs1')

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm rsl'/csl' imm rd' op
3 3 3 2 3 2
cap: C.CLW=010 offset[5:3] base offset[2|6] dest C0=00

leg: C.LW=010 offset[2|6]
cap rv64: C.CLD=011 offset[7:6]
leg rv64: C.LD=011 offset[7:6]

Capability Mode Description
Standard load instructions, authorised by the capability in ¢s1.

Legacy Mode Description
Standard load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 128

CAUSE Reason
Permission violation Authority capability does not grant R-permission
Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites C.CLD
RV64, and C or Zca, Zcheri_ purecap

Prerequisites C.CLW

Cor Zca, Zcheri_purecap

Prerequisites C.LD
RV64, C or Zca, Zcheri _legacy

Prerequisites C.LW
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CLD, CLW, LD, LW

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.21. CCLWSP

See C.LDSP.

8.6.22. C.CLDSP

See C.LDSP.

8.6.25. CLWSP

See C.LDSP.

8.6."C" Standard Extension for Compressed Instructions | Page 129

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 130

8.6.24. C.LDSP

Synopsis
Load (C.CLWSP, C.CLDSP, C.LWSP, C.LDSP), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.cld/c.clw rd, offset(csp)

Capability Mode Expansions (RV64)
cld/clw rd, offset(csp)

Legacy Mode Mnemonics (RV64)
c.ld/c.1w rd, offset(sp)

Legacy Mode Expansions (RV64)
1d/1w rd, offset(sp)

Capability Mode Mnemonics (RV32)
c.clw rd, offset(csp)

Capability Mode Expansions (RV32)
clw rd, offset(csp)

Legacy Mode Mnemonics (RV32)
c.lw rd, offset(sp)

Legacy Mode Expansions (RV32)
lw rd, offset(sp)

Encoding
15 13 12 11 7 6 2 1 0
funct3 imm rd imm op
3 1 5 5 2
cap: C.CLWSP=010 [5] dest!=0 offset[4:2|7:6] C2=10
leg: C.LWSP=010 offset[4:2|7:6]
cap rv64: C.CLDSP=011 offset[4:3|8:6]
leg rv64: C.LDSP=011 offset[4:3]8:6]

Capability Mode Description

Standard stack pointer relative load instructions, authorised by the capability in ¢sp.

Legacy Mode Description

Standard stack pointer relative load instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 131

CAUSE Reason
Permission violation Authority capability does not grant R-permission
Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.CLDSP
RV64, and C or Zca, Zcheri_ purecap

Prerequisites for C.CLWSP

Cor Zca, Zcheri_purecap

Prerequisites for C.LDSP
RV64, and C or Zca, Zcheri_legacy

Prerequisites for C.LWSP
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CLW, CLD, LW, LD

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 132

8.6.25. CFLW

See C.FLWSP.

8.6.20. CFLWSP

Synopsis
Floating point load (C.FLW, C.FLWSP), 16-bit encodings

Legacy Mode Mnemonics (RV32)
c.flw rd', offset(rs1'/sp)

Legacy Mode Expansions (RV32)
flw rd', offset(rs1'/sp)

Encoding (RV32)
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm rsl' imm rd' op
3 3 3 2 3 2
leg rv32: C.FLW=011 offset[5:3] base offset[2|6] dest C0=00
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg rv32: C.FLWSP=011 offset[5:2|7:6] src C2=10

Legacy Mode Description

Standard floating point load instructions, authorised by the capability in ddc. Note that these
instructions are not available in Capability Mode, as they have been remapped to C.CLC, C.CLCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds
Prerequisites

Cor Zca, Zcheri_legacy, and F

Operation (after expansion to 32-bit encodings)
See FLW

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.27. CCFLD

See C.FLDSP.

8.6.28. C.FLD

See C.FLDSP.

8.6.29. CCFLDSP

See C.FLDSP.

8.6."C" Standard Extension for Compressed Instructions | Page 133

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 134

8.6.30. C.FLDSP

Synopsis
Double precision floating point loads (C.CFLD, C.FLD, C.CFLDSP, C.FLDSP), 16-bit encodings

Capability Mode Mnemonics (RV32)
c.cfld frd', offset(cs1'/csp)

Capability Mode Expansions (RV32)
cfld frd', offset(csp)

Legacy Mode Mnemonics (RV32)
c.fld fs2, offset(rs1'/sp)

Legacy Mode Expansions (RV32)
fld fs2, offset(rs1'/sp)

Legacy Mode Mnemonics (RV64)
c.fld fs2, offset(rs1'/sp)

Legacy Mode Expansion (RV64)
fld fs2, offset(rs1'/sp)

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm rsl’/csl’ imm frd® op
3 3 3 2 3 2
C.FLD=001 offset[5:3] base offset[7:6] dest C0=00
cap rv32: C.CFLD=001
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg: C.FLDSP=001 offset[5:3|8:6] src C2=10

cap rv32: C.CFLDSP=001

Legacy Mode Description

Standard floating point stack pointer relative load instructions, authorised by the capability in ddc.
Note that these instructions are not available in Capability Mode, as they have been remapped to
C.CLC, C.CLCSP.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 135

Prerequisites for C.CFLD, C.CFLDSP

Cor Zca, Zcheri_purecap, and D

Prerequisites for C.FLD, C.FLDSP
Cor Zca, Zcheri_legacy, and D

Operation (after expansion to 32-bit encodings)
See FLD

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 136

8.6.31. C.CLC

see C.CLCSP.

8.6.52. C.CLCSP

Synopsis
Capability loads (C.CLC, C.CLCSP), 16-bit encodings

Capability Mode Mnemonics
c.clc cd', offset(cs1'/csp)

Capability Mode Expansions
clc cd', offset(cs1'/csp)

Encoding
15 13 12 11 7 6
funct3 imm cd!=0 imm op
3 1 5 5 2
cap rv32: C.CLCSP=011 [5] dest offset[4:3]8:6] C2=10

cap rve4: C.CLCSP=001

offset[4]9:6]

15 13 12 10 9 7 6 4
funct3 imm csl' rd' op
3 3 3 2 3 2
cap rv32: C.CLC=011 offset[5:3] base offset[7:6] dest C0=00
cap rv64: C.CLC=001 offset[5:4|8]

Capability Mode Description

Load capability instruction, authorised by the capability in ¢s1. Take a load address misaligned

exception if not naturally aligned.

Legacy Mode Description

These mnemonics do not exist in Legacy Mode. The RV32 encodings map to C.FLW/C.FLWSP and

the RV64 encodings map to C.FLD/C.FLDSP.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds
Prerequisites

Cor Zca, Zcheri_purecap

Operation (after expansion to 32-bit encodings)
See CLC

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.35. C.CSD

See C.SW.

8.6.54. C.CSW

See C.SW.

8.6.35. C.5D

See C.SW.

8.6."C" Standard Extension for Compressed Instructions | Page 137

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 138

8.6.50. C.SW

Synopsis
Stores (C.CSD, C.CSW, C.SD, C.SW), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.csd/c.csw rs2', offset(cs1')

Capability Mode Expansions (RV64)
csd/csw rs2', offset(es1')

Legacy Mode Mnemonics (RV64)
c.sd/c.sw rs2', offset(rs1')

Legacy Mode Expansions (RV64)
sd/sw rs2', offset(rs1')

Capability Mode Mnemonics (RV32)
c.csw rs2', offset(es1')

Capability Mode Expansion (RV32)
csw rs2', offset(csl')

Legacy Mode Mnemonics (RV32)
c.sw rs2', offset(rs1')

Legacy Mode Expansion (RV32)
sw rs2', offset(rs1')

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
funct3 uimm rsl'/csl' uimm rs2'/cs2' op
3 3 3 2 3 2
cap: C.CSW=110 offset[5:3] base offset[2|6] src C0=00

leg: C.SW=110 offset[2|6]
cap rve4: C.CSD=111 offset[7:6]
leg rv64: C.SD=111 offset[7:6]

Capability Mode Description
Standard store instructions, authorised by the capability in ¢s1.

Legacy Mode Description
Standard store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 139

CAUSE Reason

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds
Prerequisites for C.CSD

RV64, and C or Zca, Zcheri_ purecap

Prerequisites for C.CSW

Cor Zca, Zcheri_purecap

Prerequisites for C.SD
RV64, and C or Zca, Zcheri_legacy

Prerequisites for C.SW
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CSD, CSW, SD, SW

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 140

8.6.57. CCSWSP

See C.SDSP.

8.6.58. C.CSDSP

See C.SDSP.

8.6.59. CSWSP

See C.SDSP.

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 141

8.6.40. C.5DSP

Synopsis
Stack pointer relative stores (C.CSWSP, C.CSDSP, C.SWSP, C.SDSP), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.csw/c.csd rs2, offset(csp)

Capability Mode Expansions (RV64)
csd/csw rs2, offset(csp)

Legacy Mode Mnemonics (RV64)
c.sd/c.sw rs2, offset(sp)

Legacy Mode Expansions (RV64)
sd/sw rs2, offset(sp)

Capability Mode Mnemonics (RV32)
c.csw rs2, offset(csp)

Capability Mode Expansion (RV32)
csw rs2, offset(esp)

Legacy Mode Mnemonics (RV32)
c.sw rs2, offset(sp)

Legacy Mode Expansion (RV32)
sw rs2, offset(sp)

Encoding
15 13 12 7 6 2 1 0
funct3 imm rs2/cs2 op
3 6 5 2
cap rv64: C.CSDSP=111 offset[5:3|8:6] src C2=10
leg rv64: C.SDSP=111 offset[5:3|8:6]
cap: C.CSWSP=110 offset[5:2|7:6]
leg: C.SWSP=110 offset[5:2|7:6]

Capability Mode Description

Standard stack pointer relative store instructions, authorised by the capability in esp.

Legacy Mode Description

Standard stack pointer relative store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 142

CAUSE Reason
Permission violation Authority capability does not grant W-permission
Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.CSDSP
RV64, and C or Zca, Zcheri_ purecap

Prerequisites for C.CSWSP
Cor Zca, Zcheri_purecap

Prerequisites for C.SDSP
RV64, and C or Zca, Zcheri_purecap

Prerequisites for C.SWSP
Cor Zca, Zcheri_purecap

Operation (after expansion to 32-bit encodings)
See CSD, CSW, SD, SW

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 143

8.6.41. CFSW

See C.FSWSP.

8.6.42. CFSWSP

Synopsis
Floating point stores (C.FSW, C.FSWSP), 16-bit encodings

Legacy Mode Mnemonics (RV32)
c.fsw rs2', offset(rs1'/sp)

Legacy Mode Expansions (RV32)
fsw rs2', offset(rs1'/sp)

Encoding (RV32)
15 13 12 10 9 7 6 5 4 2 1 0
funct3 uimm rsl' uimm rs2' op
3 3 3 2 3 2
leg rv32: C.FSW=111 offset[5:3] base offset[2|6] src C0=00
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg rv32: C.FSWSP=111 offset[5:2|7:6] src C2=10

Legacy Mode Description
Standard floating point store instructions, authorised by the capability in ddc.

y these instructions are not available in Capability Mode, as they have been remapped to
EI C.CSC, C.CSCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.FSW, C.FSWSP
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See FSW

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 144

8.6.43. CCFSD

See C.FSDSP.

8.6.44. C.CFSDSP

See C.FSDSP.

8.6.45. C.FSD

See C.FSDSP.

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 145

8.6.46. C.FSDSP

Synopsis
Double precision floating point stores (C.CFSD, C.FSD, C.CFSDSP, C.FSDSP), 16-bit encodings

Capability Mode Mnemonics (RV32CD/RV32D _Zca)
c.cfsd fs2, offset(cs1'/csp)

Capability Mode Expansions (RV32)
cfsd fs2, offset(csp)

Legacy Mode Mnemonics (RV32CD/RV32D _Zca)
c.fsd fs2, offset(rs1'/sp)

Legacy Mode Expansions (RV32)
fsd fs2, offset(rs1'/sp)

Legacy Mode Mnemonics (RV64CD/RV64D _Zca)
c.fsd fs2, offset(rs1'/sp)

Legacy Mode Expansion (RV64)
fsd fs2, offset(rs1'/sp)

Encoding
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
int C.FSD=101 offset[5:3|8:6] src C0=00
cap rv32: C.CFSD=101
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
int C.FSDSP=101 offset[5:3|8:6] src C2=10

sap rv32: C.CFSDSP=101

Capability Mode Description

Standard floating point stack pointer relative store instructions, authorised by the capability in ¢s1
or CSp.

Legacy Mode Description

Standard floating point stack pointer relative store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 146

CAUSE Reason

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.CFSD, C.CFSDSP

Cor Zca, Zcheri_purecap

Prerequisites for C.FSD, C.FSDSP
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CFSD, FSD

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 147

8.6.47. C.CSC

see C.CSCSP.

8.6.48. C.CSC, C.CSCSP

Synopsis
Stores (C.CSC, C.CSCSP), 16-bit encodings

Df These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics
c.csc cs2', offset(cs1'/csp)

Capability Mode Expansions
csc cs2', offset(es1'/csp)

Encoding
15 13 12 7 6 2 1 0
funct3 imm cs2 op
3 6 5 2
cap rv32: C.CSCSP=111 offset[5:2|7:6] src C2=10
cap rv64: C.CSCSP=101 offset[5:4|9:6]
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm csl' imm cs2' op
3 3 3 2 3 2
cap rv32: C.CSC=111 offset[5:3] base offset[2|6] src C0=00
cap rv64: C.CSC=101 offset[5:4|8] offset[7:6]

Capability Mode Description

Store capability instruction, authorised by the capability in cs1. Take a store/AMO address

misaligned exception if not naturally aligned.

Legacy Mode Description

These mnemonics do not exist in Legacy Mode. The RV32 encodings map to C.FSW/C.FSWSP and

the RV64 encodings map to C.FSD/C.FSDSP.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed
Permission violation

Length violation

Prerequisites

Cor Zca, Zcheri_purecap

Authority capability does not grant W-permission

At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

8.6."C" Standard Extension for Compressed Instructions | Page 148

Operation (after expansion to 32-bit encodings)
See CSC

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom'", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 149

8.7."Zicbom", "Zicbop", "Zicboz" Standard
Extensions for Base Cache Management
Operations

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom', "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 150

8.7.1. CBO.CLEAN

See CBO.CLEAN.CAP.

8.7.2. CBO.CLEAN.CAP

Synopsis

Perform a clean operation on a cache block

Capability Mode Mnemonic
cbo.clean.cap 0(cs1)

Legacy Mode Mnemonic
cbo.clean 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
cap: CBO.CLEAN.CAP=00.001 base CBO=010 CBO=0000 MISC-MEM=0001111

leg: CBO.CLEAN=00.001

Capability Mode Description

A CBO.CLEAN.CAP instruction performs a clean operation on the cache block whose effective
address is the base address specified in ¢s1. The authorising capability for this operation is ¢s1.

Legacy Mode Description

A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation The tag set to O

Seal violation It is sealed

Permission violation It does not grant W-permission and R-permission
Length violation At least one byte accessed is within the bounds

Prerequisites for CBO.CLEAN.CAP

Zicbom, Zcheri_purecap

Prerequisites for CBO.CLEAN
Zicbom, Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom', "Zicbop'", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 151

8.7.5. CBO.FLUSH

See CBO.FLUSH.CAP.

8.7.4. CBO.FLUSH.CAP

Synopsis

Perform a flush operation on a cache block

Capability Mode Mnemonic
cbo.flush.cap 0(cs1)

Legacy Mode Mnemonic
cbo.flush @(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
cap: CBO.FLUSH.CAP=00.0010 base CBO=010 CBO=0000 MISC-MEM=0001111

leg: CBO.FLUSH=00.0010

Capability Mode Description

A CBO.FLUSH.CAP instruction performs a flush operation on the cache block whose effective
address is the base address specified in ¢s1. The authorising capability for this operation is ¢s1.

Legacy Mode Description

A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation The tag set to O

Seal violation It is sealed

Permission violation It does not grant W-permission and R-permission
Length violation At least one byte accessed is within the bounds

Prerequisites for CBO.FLUSH.CAP

Zicbom, Zcheri_purecap

Prerequisites for CBO.FLUSH
Zicbom, Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom'", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 152

8.7.5. CBO.INVAL

See CBO.INVAL.CAP.

8.7.6. CBO.INVAL.CAP

Synopsis

Perform an invalidate operation on a cache block

Capability Mode Mnemonic
cbo.inval.cap 0(cs1)

Legacy Mode Mnemonic
cbo.inval 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
cap: CBO.INVAL.CAP=00.0000 base CBO=010 CBO=0000 MISC-MEM=0001111

leg: CBO.INVAL=00.0000

Capability Mode Description

A CBO.INVAL.CAP instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in ¢s1. The authorising capability for this operation is ¢s1.

Legacy Mode description

A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in rs1. The authorising capability for this operation in ddc.

Exceptions
CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

The CBIE bit in menvefg and senvefg indicates whether CBO.INVAL.CAP and CBO.INVAL perform
cache block flushes instead of invalidations for less privileged modes. The instruction checks
shown in the table below remain unchanged regardless of the value of CBIE and the privilege mode.

CAUSE Reason

Tag violation The tag set to O

Seal violation It is sealed

Permission violation It does not grant W-permission, R-permission or ASR-permission
Length violation At least one byte accessed is outside the bounds

Prerequisites for CBO.INVAL.CAP

Zicbom, Zcheri_purecap

Prerequisites for CBO.INVAL
Zicbom, Zcheri_legacy

Operation

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom', "Zicbop'", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 153

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.7.

"Zicbom'", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 154

8.7.7. CBO.ZERO

See CBO.ZERO.CAP.

8.7.8. CBO.ZERO.CAP

Synopsis

Store zeros to the full set of bytes corresponding to a cache block

Capability Mode Mnemonic

cbho.zero.cap 0(cs1)

Legacy Mode Mnemonic

cbo.zero 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
cap: CBO.ZERO.CAP=00.0100 base CBO=010 CBO=0000 MISC-MEM=0001111

leg: CBO.ZERO=00.0100

Capability Mode Description

A cbo.zero.cap instruction performs stores of zeros to the full set of bytes corresponding to the
cache block whose effective address is the base address specified in ¢s1. An implementation may or
may not update the entire set of bytes atomically although each individual write must atomically
clear the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is ¢s1.

Legacy Mode Description

A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in ¢s1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CBO.ZERO.CAP

Zicboz, Zcheri_ purecap

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom', "Zicbop'", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 155

Prerequisites for CBO.ZERO
Zicboz, Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom', "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 156

8.79. PREFETCH.I

See PREFETCH.I.CAP.

8.7.10. PREFETCH.I.CAP

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by an instruction fetch in the
near future

Capability Mode Mnemonic
prefetch.i.cap offset(cs1)

Legacy Mode Mnemonic
prefetch.i offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] functs csl/rsl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] cap: PREFETCH.|.CAP=00000 base ORI=110 Zero OP-IMM=0010011

leg: PREFETCH.I=00000

Capability Mode Description

A PREFETCH.L.CAP instruction indicates to hardware that the cache block whose effective address
is the sum of the base address specified in ¢s1 and the sign-extended offset encoded in imm|[11:0],
where imm[4:0] equals ObO00OO, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is ¢s1.

Legacy Mode Description

A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00OO, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation The tag set to O

Seal violation It is sealed

Permission violation It does not grant X-permission

Length violation At least one byte accessed is within the bounds

Prerequisites for PREFETCH.I.CAP
Zicbop, Zcheri_ purecap

Prerequisites for PREFETCH.I
Zicbop, Zcheri_legacy

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom', "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 157

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom', "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 158

8.7.11. PREFETCH.R

See PREFETCH.R.CAP.

8.712. PREFETCH.R.CAP

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data read in the near
future

Capability Mode Mnemonic
prefetch.r.cap offset(cs1)

Legacy Mode Mnemonic
prefetch.r offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] functs csl/rsl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] cap: PREFETCH.R.CAP=00001 base ORI=110 Zero OP-IMM=0010011

leg: PREFETCH.R=00001

Capability Mode Description

A PREFETCH.R.CAP instruction indicates to hardware that the cache block whose effective address
is the sum of the base address specified in ¢s1 and the sign-extended offset encoded in imm|[11:0],
where imm[4:0] equals ObO00O0O, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
csl.

Legacy Mode Description

A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00O0O, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation The tag set to O

Seal violation Itis sealed

Permission violation It does not grant R-permission

Length violation At least one byte accessed is within the bounds

Prerequisites for PREFETCH.R.CAP
Zicbop, Zcheri_ purecap

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom", "Zicbop'", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 159

Prerequisites for PREFETCH.R
Zicbop, Zcheri_legacy

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.7."Zicbom', "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 160

8.7.15. PREFETCH.W

See PREFETCH.W.CAP.

8.7.14. PREFETCHW.CAP

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data write in the near
future

Capability Mode Mnemonic
prefetch.w.cap offset(cs1)

Legacy Mode Mnemonic
prefetch.w offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] functs csl/rsl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] cap: PREFETCH.W.CAP=00011 base ORI=110 Zero OP-IMM=0010011

leg: PREFETCH.W=00011

Capability Mode Description

A PREFETCH.W.CAP instruction indicates to hardware that the cache block whose effective
address is the sum of the base address specified in ¢s1 and the sign-extended offset encoded in
imm[11:0], where imm[4:0] equals ObO00O0O, is likely to be accessed by a data write (i.e. store) in
the near future. The encoding is only valid if imm[4:0]=0. The authorising capability for this
operation is ¢s1.

Legacy Mode Description

A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00O0O, is likely to be accessed by a data write (i.e. store) in the near

future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

Prerequisites for PREFETCH.W.CAP

Zcheri_purecap

Prerequisites for PREFETCH.W
Zcheri_legacy

Operation

T0DO

RISC-V Specification for CHERI Extensions | © RISC-V

8.8."Zba" Extension for Bit Manipulation Instructions | Page 161

8.8."Zba" Extension for Bit Manipulation
INnstructions

RISC-V Specification for CHERI Extensions | © RISC-V

8.8."Zba" Extension for Bit Manipulation Instructions | Page 162

8.8.1. CSHIADD

See SH3ADD.

8.8.2. CSH2ADD

See SH3ADD.

8.8.3. CSH3ADD

See SH3ADD.

8.8.4. SHIADD

See SH3ADD.

8.8.5. SH2ADD

See SH3ADD.

RISC-V Specification for CHERI Extensions | © RISC-V

8.8.6. SH3ADD

Synopsis

Shift by n and add for address generation

Capability Mode Mnemonics
csh[1]2]3]add cd, rs1, cs2

Legacy Mode Mnemonics
sh[1]|2]|3]add rd, rs1, rs2

8.8."Zba" Extension for Bit Manipulation Instructions | Page 163

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 01 0 0O O o rs2 rsl 0 1 0 rd 0 1 1 0 0 1 1
SHI1|2|3]ADD SH1IADD=010 oP
CSHI[1|2|3]ADD CSH1ADD=010
SH2ADD=100
CSH2ADD=100
SH3ADD=110

Capability Mode Description

CSH3ADD=110

Increment the address field of ¢s1 by rs2 shifted left by n bit positions. Clear the tag if the resulting

capability is unrepresentable or ¢s1 is sealed.

Legacy Mode Description

Increment the address field of rs1 by rs2 shifted left by n bit positions.

Prerequisites CSH[1|2|3]JADD
Zcheri_purecap, Zba

Prerequisites for SH[1|2|3]JADD
Zcheri_legacy, Zba

Capability Mode Operation
TBD

Legacy Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.8."Zba" Extension for Bit Manipulation Instructions | Page 164

8.8.7. CSHIADD.UW

See SH3ADD.UW.

8.8.8. CSH2ADD.UW

See SH3ADD.UW.

8.8.9. CSH3ADD.UW

See SH3ADD.UW.

8.8.10. SHIADD.UW

See SH3ADD.UW.

8.8.11. SH2ADD.UW

See SH3ADD.UW.

RISC-V Specification for CHERI Extensions | © RISC-V

8.8.12. SH3ADD.UW

Synopsis

8.8."Zba" Extension for Bit Manipulation Instructions | Page 165

Shift by n and add unsigned word for address generation

Capability Mode Mnemonic (RV64)
csh[1]2]|3]add.uw cd, rs1, cs2

Legacy Mode Mnemonics (RV64)

sh[1]|2|3]add.uw rd, rs1, rs2

Encoding

31 25 24

20 19

15 14 12 11

7 6 0

0 01 0 0 OO

rs2

rsl

0 1 0

rd

0 1.1 0 0 1 1

rv64: SH[1|2|3]ADD.UW
rv64: CSH[1|2|3JADD.UW

Capability Mode Description

T 1v64: SHIADD.UW=010

rv64: CSH1ADD.UW=010
rv64: SH2ADD.UW=100
rv64: CSH2ADD.UW=100
rv64: SH3ADD.UW=110
rv64: CSH3ADD.UW=110

OoP

Increment the address field of ¢s1 by the unsigned word in rs2 shifted left by n bit positions. Clear

the tag if the resulting capability is unrepresentable or ¢s1 is sealed.

Legacy Mode Description

Increment the address field of rs1 by the unsigned word in rs2 shifted left by n bit positions.

Prerequisites CSH[1|2|3]ADD.UW

Zcheri_purecap, Zba

Prerequisites for SH[1|2|3]JADD.UW

Zcheri_legacy, Zba

Capability Mode Operation

TBD

Legacy Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

8.8."Zba" Extension for Bit Manipulation Instructions | Page 166

8.8.13. SH4ADD

See CSH4ADD.

8.8.14. CSH4ADD

Df CHERI v9 Note: This instruction is new.

Synopsis
Shift by 4 and add for address generation (CSH4ADD, SH4ADD)

Capability Mode Mnemonics
cshd4add cd, rs1, cs2

Legacy Mode Mnemonics
shdadd rd, rs1, rs2

Encoding

31 25 24 20 19 1514 12 11 7 6 0

001 0000 rs2 rsl 11 1 rd 01100 11
CSH4ADD CSH4ADD oP
SH4ADD SH4ADD

Capability Mode Description

Increment the address field of ¢s1 by rs2 shifted left by 4 bit positions. Clear the tag if the resulting
capability is unrepresentable or ¢s1 is sealed.

Legacy Mode Description
Increment the address field of rs1 by rs2 shifted left by 4 bit positions.

Prerequisites CSH4ADD

Zcheri_purecap

Prerequisites for SH4ADD
Zcheri_legacy

Capability Mode Operation
TBD

Legacy Mode Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.8."Zba" Extension for Bit Manipulation Instructions | Page 167

8.8.15. SH4ADD.UW

See CSH4ADD.UW.

8.8.16. CSH4ADD.UW

Synopsis
Shift by 4 and add unsigned words for address generation (CSH4ADD.UW, SH4ADD.UW)

Capability Mode Mnemonics
cshdadd.uw cd, rs1, cs2?

Legacy Mode Mnemonics
shd4add.uw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 01 0 0 0O rs2 rsl 1 1 1 rd 110 0 0 1 1
CSH4ADD.UW CSH4ADD.UW OoP
SH4ADD.UW SH4ADD.UW

Capability Mode Description

Increment the address field of ¢s1 by the unsigned word in rs2 shifted left by 4 bit positions. Clear
the tag if the resulting capability is unrepresentable or ¢s1 is sealed.

Legacy Mode Description
Increment the address field of rs1 by the unsigned word in rs2 shifted left by 4 bit positions.

Prerequisites CSH4ADD

Zcheri_purecap

Prerequisites for SH4ADD
Zcheri_legacy

Capability Mode Operation
TBD

Legacy Mode Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.9."Zcb" Standard Extension For Code-Size Reduction | Page 168

89."/Zch" Standard Extension For Code-Size
Reduction

RISC-V Specification for CHERI Extensions | © RISC-V

8.9.1. C.CLH

See C.LBU.

89.2. CCLHU

See C.LBU.

89.3. C.CLBU

See C.LBU.

89.4. C.LH

See C.LBU.

89.5. C.LHU

See C.LBU.

8.9."Zcb" Standard Extension For Code-Size Reduction | Page 169

RISC-V Specification for CHERI Extensions | © RISC-V

8.9."Zcb" Standard Extension For Code-Size Reduction | Page 170

8.9.6. C.LBU

Synopsis
Load (C.CLH, C.CLHU, C.CLBU, C.LH, C.LHU, C.LBU), 16-bit encodings

Capability Mode Mnemonics
c.clh/c.clhu/c.clbu rd', offset(cs1")

Capability Mode Expansions
clh/clhu/clbu rd, offset(cs1)

Legacy Mode Mnemonics

c.lh/c.lhu/c.1bu rd', offset(rs1')

Legacy Mode Expansions
Lh/1hu/1bu rd, offset(rs1)

Encoding
15 10 9 7 6 5 4 0
funct6 rsl'/csl' functl uimm[1] rd'/cd' op
6 3 1 1 3 2
cap: C.CLH=100001 base 1 offset[1] dest C0=00
leg: C.LH=100001
15 10 9 7 6 5 4
funct6 rsl'/csl' functl uimm[1] rd'/cd' op
6 3 1 1 3 2
cap: C.CLHU=100001 base 0 offset[1] dest C0=00
leg: C.LHU=100001
15 10 9 7 6 5 4
funct6 rsl'/csl' uimm[0|1] rd'/cd' op
6 3 2 3 2
cap: C.CLBU=100000 base offset[0|1] dest C0=00

leg: C.LBU=100000

Capability Mode Description
Subword load instructions, authorised by the capability in ¢s1.

Legacy Mode Description
Subword load instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE

Reason

Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed
Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

8.9."Zcb" Standard Extension For Code-Size Reduction | Page 171

Prerequisites C.CLH, C.CLHU, C.CLBU
Cor Zca, Zcheri_purecap, and Zcb

Prerequisites C.LH, C.LHU, C.LBU
Cor Zca, Zcheri_legacy, and Zcb

Operation (after expansion to 32-bit encodings)
See C.CLH, CLHU, CLBU, LH, LHU, LBU

RISC-V Specification for CHERI Extensions | © RISC-V

8.9."Zcb" Standard Extension For Code-Size Reduction | Page 172

8.9.7. C.CSH

See C.SB.

8.9.8. C.CSB

See C.SB.

8.9.9. C.SH

See C.SB.

RISC-V Specification for CHERI Extensions | © RISC-V

8.9."Zcb" Standard Extension For Code-Size Reduction | Page 173

8.9.10. C.CSH, C.CSB, C.SH, C.SB

Synopsis
Stores (C.CSH, C.CSB, C.SH, C.SB), 16-bit encodings

Capability Mode Mnemonics
c.csh/c.csb rs2', offset(ecs1')

Capability Mode Expansions
csh/esb rs2', offset(es1')

Legacy Mode Mnemonics

c.sh/c.sb rs2', offset(rs1')

Legacy Mode Expansions
sh/sb rs2', offset(rs1')

Encoding
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' functl uimm[1] rs2'/cs2' op
6 3 1 1 3 2
cap: C.CSH=100011 base 0 offset[1] src C0=00
leg: C.SH=100011
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' uimm([0]1] rs2'/cs2' op
6 3 2 3 2
cap: C.CSB=100010 base offset[0|1] src C0=00

leg: C.SB=100010

Capability Mode Description

Subword store instructions, authorised by the capability in ¢s1.

Legacy Mode Description

Subword store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.CSH, C.CSB

Cor Zca, Zcheri_ purecap, and Zcb

Prerequisites for C.SH, C.SB
Cor Zca, Zcheri_legacy, and Zcb

RISC-V Specification for CHERI Extensions | © RISC-V

8.9."Zcb" Standard Extension For Code-Size Reduction | Page 174

Operation (after expansion to 32-bit encodings)
See CSH, CSB, SH, SB

RISC-V Specification for CHERI Extensions | © RISC-V

8.10."Zcmp" Standard Extension For Code-Size Reduction | Page 175

8.10."Zcmp" Standard Extension For Code-Size

Reduction

The push (CM.PUSH) and pop (CM.POP, CM.POPRET, CM.POPRETZ) instructions are redefined in

capability mode to save/restore full capabilities.

The double move instructions (CM.MVSAO1, CM.MVAO1S) are redefined in capability mode to move
full capabilities between registers. The saved register mapping is as shown in

saved register specifier xreg
(¢} x8

1 x9

2 x18
3 x19
4 x20
5 x21
6 x22
7 x23

integer ABI CHERI ABI

sO

sl

s2

s3

s4

s5

s6

s7

csO

csl

cs2

cs3

cs4

cs5

cs6

cs7

Table 30. saved register mapping for Zcmp

All instructions are defined in (RISC-V, 2023).

RISC-V Specification for CHERI Extensions | © RISC-V

8.10."Zcmp" Standard Extension For Code-Size Reduction | Page 176

8.10.1. CM.PUSH

See CM.CPUSH and (RISC-V, 2023).

8.10.2. CM.CPUSH

Synopsis
Create stack frame (CM.CPUSH, CM.PUSH): store the return address register and O to 12 saved
registers to the stack frame, optionally allocate additional stack space. 16-bit encodings.

Capability Mode Mnemonic
cm.cpush {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.push {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 0 0 0 rlist spimm[5:4] 1 0
FUNCT3 Cc2
/4 rlist values O to 3 are reserved for a future EABI variant

Capability Mode Description

Create stack frame, store capability registers as specified in creg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against ¢sp.

Legacy Mode Description

Create stack frame, store integer registers as specified in reg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CM.CPUSH

C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.PUSH
Cor Zca, Zcheri_legacy, Zcmp

Operation

RISC-V Specification for CHERI Extensions | © RISC-V

8.10."Zcmp' Standard Extension For Code-Size Reduction | Page 177

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.10."Zcmp" Standard Extension For Code-Size Reduction | Page 178

8.10.3. CM.POP

See CM.CPOP and (RISC-V, 2023).

8.10.4. CM.CPOP

Synopsis
Destroy stack frame (CM.CPOP, CM.POP): load the return address register and O to 12 saved
registers from the stack frame, deallocate the stack frame. 16-bit encodings.

Capability Mode Mnemonic
cm.cpop {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.pop {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 0 1 0 rlist spimm[5:4] 1 0
FUNCT3 Cc2
/4 rlist values O to 3 are reserved for a future EABI variant

Capability Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. All accesses are checked
against CSp.

Legacy Mode Description

Load integer registers as specified in reg_list. Deallocate stack frame. All accesses are checked
against ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CM.CPOP

C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.POP
Cor Zca, Zcheri_legacy, Zcmp

Operation

RISC-V Specification for CHERI Extensions | © RISC-V

8.10."Zcmp" Standard Extension For Code-Size Reduction | Page 179

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.10."Zcmp" Standard Extension For Code-Size Reduction | Page 180

8.10.5. CM.POPRET

See CM.CPOPRET and (RISC-V, 2023).

8.10.6. CM.CPOPRET

Synopsis
Destroy stack frame (CM.CPOPRET, CM.POPRET): load the return address register and O to 12
saved registers from the stack frame, deallocate the stack frame. Return through the return address
register. 16-bit encodings.

Capability Mode Mnemonic
cm.cpopret {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.popret {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 1 1 0 rlist spimm[5:4] 1 0
FUNCT3 c2
/4 rlist values O to 3 are reserved for a future EABI variant

Capability Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. Return by calling CJALR
to cra. All data accesses are checked against csp. The return destination is checked against cra.

Legacy Mode Description

Load integer registers as specified in reg_ list. Deallocate stack frame. Return by calling JALR to ra.
All data accesses are checked against ddc. The return destination is checked against pcc.

Permissions
Loads are checked as for CLC for Capability Mode or LC for Legacy Mode.

The return is checked as for CJALR for Capability Mode, or JALR for Legacy Mode.

Exceptions

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field if
a load causes an exception, or CHERI instruction access fault if the return causes an exception. The
following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation
Seal violation

Permission violation

< < < X

Length violation

—y The instructions on this page are either PC relative or may update the pcc. Therefore an
J implementation may make them illegal in debug mode.

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CM.CPOPRET

Cor Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.POPRET
Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 181

RISC-V Specification for CHERI Extensions | © RISC-V

8.10."Zcmp" Standard Extension For Code-Size Reduction | Page 182

8.10.7. CM.POPRETZ

See CM.CPOPRETZ and (RISC-V, 2023).

8.10.8. CM.CPOPRETZ

Synopsis
Destroy stack frame (CM.CPOPRETZ, CM.POPRETZ): load the return address register and O to 12

saved registers from the stack frame, deallocate the stack frame. Move zero into argument register
zero. Return through the return address register. 16-bit encodings.

Capability Mode Mnemonic
cm.cpopretz {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.popretz {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 1 0 0 rlist spimm[5:4] 1 0
FUNCT3 c2
/4 rlist values O to 3 are reserved for a future EABI variant

Capability Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. Move zero into ca@.
Return by calling CJALR to cra. All data accesses are checked against ¢sp. The return destination is
checked against cra.

Legacy Mode Description

Load integer registers as specified in reg_list. Deallocate stack frame. Move zero into a@. Return by
calling JALR to ra. All data accesses are checked against ddc. The return destination is checked
against pcc.

Permissions
Loads are checked as for CLC for Capability Mode or LC for Legacy Mode.

The return is checked as for CJALR for Capability Mode, or JALR for Legacy Mode.

Exceptions

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field if
a load causes an exception, or CHERI instruction access fault if the return causes an exception. The
following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation
Seal violation

Permission violation

< < < X

Length violation

_y The instructions on this page are either PC relative or may update the pcc. Therefore an
(B

RISC-V Specification for CHERI Extensions | © RISC-V

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 183

implementation may make them illegal in debug mode.

Prerequisites for CM.CPOPRETZ

Cor Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.POPRETZ
Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.10."Zcmp" Standard Extension For Code-Size Reduction | Page 184

8.10.9. CM.MVSAO]

See CM.CMVSAO1 and (RISC-V, 2023).

8.10.10. CM.CMVSAO]

Synopsis
CM.CMVSAO1, CM.MVSAOQ1: Move argument registers O and 1 into two saved registers.

Capability Mode Mnemonic

cm.cmvsadl cri1s', cr2s

Legacy Mode Mnemonics
cm.mvsadl rls', r2s'

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
1 0 1 0 1 1 ris' 0 1 r2s' 1 0
FUNCT3 Cc2

y The encoding uses sreg number specifiers instead of xreqg number specifiers to save
EI encoding space. The saved register encoding is shown in Table 30.

Capability Mode Description
Atomically move two saved capability registers ¢s@-cs7 into ca@ and cal.

Legacy Mode Description

Atomically move two saved integer registers s@-s7 into a@ and al.

Prerequisites for CM.CMVSAO1

C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.MVSAO1
Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.10."Zcmp" Standard Extension For Code-Size Reduction | Page 185

8.10.11. CM.MVAOQOIS

See CM.CMVAOIS and (RISC-V, 2023).

8.10.12. CM.CMVAOIS

Synopsis
CM.CMVAO1S, CM.MVAOQ1S: Move two saved registers into argument registers O and 1.

Capability Mode Mnemonic
cm.cmva@ls cri1s', cr2s'

Legacy Mode Mnemonics
cm.mvadls ris', r2s'

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
1 0 1 0 1 1 ris' 1 1 r2s' 1 0
FUNCT3 Cc2

y The encoding uses sreg number specifiers instead of xreqg number specifiers to save
EI encoding space. The saved register encoding is shown in Table 30.

Capability Mode Description
Atomically move two capability registers ca@ and cal into cs@-cs7.

Legacy Mode Description

Atomically move two integer registers a@ and a1 into s@-s7/.

Prerequisites for CM.CMVAO1S

C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.MVAO1S
Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.11."Zcmt" Standard Extension For Code-Size Reduction | Page 186

811."Zcmt" Standard Extension For Code-Size
Reduction

The table jump instructions (CMJT, CMJALT) defined in (RISC-V, 2023) are not redefined in
capability mode to have capabilities in the jump table. This is to prevent the code-size growth caused
by doubling the size of the jump table.

In the future, new jump table modes or new encodings can be added to have capabilities in the jump
table.

The jump vector table CSR jvt has a capability alias jvtc so that it can only be configured to point to
accessible memory. All accesses to the jump table are checked against jvtc, and not against pcc. This
allows the jump table to be accessed when the pcc bounds are set narrowly to the local function only.

the implementation doesn’t need to expand and bounds check against jvtc on every access,
| y it is sufficient to decode the valid accessible range of entries after every write to jvtc, and
then check that the accessed entry is in that range.

8.11.1. Jump Vector Table CSR (jvt)

The JVT CSR is exactly as defined by (RISC-V, 2023). It is aliased to jvtc.

8.11.2. Jump Vector Table CSR (jvtc)

jvtc extends jvt to be a capability width CSR, as shown in Table 20.

XLENVAX- 1 0]
jvtc (Metadata)

jvtc (Address)
XLENMAX

Figure 39. Jump Vector Table Capability register
All instruction fetches from the jump vector table are checked against jvtc.

See CM.CJALT, CMJALT, CM.CJT, CM/JT.

RISC-V Specification for CHERI Extensions | © RISC-V

8.11."Zcmt" Standard Extension For Code-Size Reduction | Page 187

8.11.3. CM.JALT

See CM.CJALT and (RISC-V, 2023).

8.11.4. CM.CIJALT

Synopsis
Jump via table with link (CM.CJALT, CM.JALT), 16-bit encodings

Capability Mode Mnemonic
cm.cjalt index

Legacy Mode Mnemonics
cm.jalt index

Encoding
15 13 12 10 9 2 1 0
1 0 1 0 0 0 index 1 0
FUNCT3 Cc2

y For this encoding to decode as CM.CJALT/CM JALT, index>=32, otherwise it decodes as
I:I CM.CJT/CM,JT.

Capability Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission. Link to cra.

Legacy Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission. Link to ra.

Permissions

Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

Exceptions

When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation
Seal violation

Permission violation

< < < X

Length violation

y The instructions on this page are either PC relative or may update the pcc. Therefore an
EI implementation may make them illegal in debug mode.

RISC-V Specification for CHERI Extensions | © RISC-V

8.11."Zcmt" Standard Extension For Code-Size Reduction | Page 188

Prerequisites for CM.CJALT

Cor Zca, Zcheri_purecap, Zcmt

Prerequisites for CM.JALT
C or Zca, Zcheri_legacy, Zcmt

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.11."Zcmt" Standard Extension For Code-Size Reduction | Page 189

8.11.5. CM.JT

See CM.CJT and (RISC-V, 2023).

8.11.6. CM.CJT

Synopsis
Jump via table with link (CM.CJT, CMJT), 16-bit encodings

Capability Mode Mnemonic
cm.cjt index

Legacy Mode Mnemonics

cm.jt index
Encoding
15 13 12 10 9 2 1 0
1 0 1 0 0 0 index 1 0
FUNCT3 c2

y For this encoding to decode as CM.CJT/CMJT, index<32, otherwise it decodes as
El CM.CJALT/CM JALT.

Capability Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission.

Legacy Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission.

Permissions

Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

Exceptions

When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation
Seal violation

Permission violation

< < < X

Length violation

y The instructions on this page are either PC relative or may update the pcc. Therefore an
EI implementation may make them illegal in debug mode.

RISC-V Specification for CHERI Extensions | © RISC-V

8.11."Zcmt" Standard Extension For Code-Size Reduction | Page 190

Prerequisites for CM.CJT

Cor Zca, Zcheri_purecap, Zcmt

Prerequisites for CM.JT
C or Zca, Zcheri_legacy, Zcmt

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

9.1. Zbhlrsc | Page 191

Chapter 9. Extension summary

9.1. Zbhlrsc

Zbhlrsc is a separate extension independent of CHERI, but is required for CHERI software.

Mnemonic

LR.H

LRB

CLR.H

CLR.B

SC.H

SC.B

CSC.H

CSC.B

v

v

Zcheri_legacy

Zcheri_purecap Function

Load reserve half via int pointer, authorise with DDC
Load reserve byte via int pointer, authorise with DDC
Load reserve half via cap

Load reserve byte via cap

Store conditional half via int pointer, authorise with DDC
Store conditional byte via int pointer, authorise with DDC
Store conditional half via cap

Store conditional byte via cap

Table 31. Zbhlrsc instruction extension

9.2. Zcheri_purecap

Zcheri_purecap defines the set of instructions used by a purecap core.

Some instructions depend on the presence of other extensions, as listed in Table 32

Mnemonic

CLC

CSC

C.CLCSP

C.CSCSP

C.CLC

C.CSC

C.CLWSP

C.CSWSP

C.CLW

C.CSW

C.CLD

C.CSD

C.CLDSP

C.CSDSP

CLB

CLH

C.CLH

CLW

CLBU

C.CLBU

CLHU

C.CLHU

CLWU

CLD

LR < < < < < < < < X

LR < < < < < < &

RV32 RV64 A

LR R < R < < R R < R R < < R < < R < < < < < < &

Zbhlr Zicbo Cor Zba Zcb Zemp Zemt Zfh F D A Function

[mpz] Zca

Load cap via cap

Store cap via cap

Load cap via cap, SP relative
Store cap via cap, SP relative
Load cap via cap

Store cap via cap

Load word via cap, SP relative
Store word via cap, SP relative
Load word via cap

Store word via cap

Load word via cap

Store word via cap

Load word via cap

L R R < < < < < < < < X

Store word via cap
Load signed byte via cap
Load signed half via cap
v Load signed half via cap
Load signed word via cap
Load unsigned byte via cap
v Load unsigned byte via cap
Load unsigned half via cap
v Load unsigned half via cap
Load unsigned word via cap

Load double via cap

RISC-V Specification for CHERI Extensions | © RISC-V

9.2. Zcheri_purecap | Page 192

Mnemonic

CSB
C.CSB
CSH
C.CSH
CSw
CSD

AUIPCC

CINCOFFSET

CINCOFFSETIMM

CSETADDR

CGETTAG

CGETPERM

CMOVE

CANDPERM

CGETHIGH
CSETHIGH

CSETEQUALEXACT

CSEAL

CTESTSUBSET

CBUILDCAP

CSETBOUNDS

CSETBOUNDSIMM

CSETBOUNDSINEXA
CT

CRAM

CGETBASE
CGETLEN

C.CINCOFFSET16CS
P

C.CINCOFFSET4CSP
N

C.CMOVE

RISC-V Specification for CHERI Extensions | © RISC-V

RV32 RV64 A

L < < <

<

<

< = < < < <

Zbhlr Zicbo Cor

sC

[mpz] Zca

Zba

Zcb

Zcmp Zcemt

Zth

F

Function

Store byte via cap
Store byte via cap
Store half via cap
Store half via cap
Store word via cap
Store double via cap

Add immediate to PCC
address, representability
check

Increment cap address by
register, representability
check

Increment cap address by
immediate, representability
check

Replace capability address,
representability check

Get tag field

Get hperm and uperm fields
as 1-bit per permission,
packed together

Move capability register

AND capability permissions
(expand to 1-bit per
permission before ANDing)

Get metadata
Set metadata and clear tag

Full capability bitwise
compare

Seal capability

Set register bounds on
capability with rounding,
clear tag if rounding is
required

Set cd to cs2 with its tag set
after checking that cs2 is a
subset of csl

Set register bounds on
capability with rounding,
clear tag if rounding is
required

Set immediate bounds on
capability with rounding,
clear tag if rounding is
required

Set bounds on capability with
rounding up as required

Representable Alignment
Mask: Return mask to apply
to address to get the requested
bounds

Get capability base
Get capability length

ADD immediate to stack
pointer, representability
check

ADD immediate to stack
pointer, representability
check

Same as CMove

Mnemonic

c.qJ

C.CJAL

CJAL

JALR.PCC

CJALR

C.CJALR

C.CJR

CBO.INVAL.CAP

CBO.CLEAN.CAP
CBO.FLUSH.CAP
CBO.ZERO.CAP

PREFETCH.R.CAP

PREFETCH.W.CAP

PREFETCH.L.CAP

CLR.C
CLR.D
CLR.W
CLR.H
CLR.B
CSC.C

CSC.D

CSC.wW

CSC.H

CSC.B
CAMOSWAP.C
CAMO<OP>W
CAMO<OP>.D

C.CFLD

C.CFLDSP

C.CESD

C.CFSDSP

CFLH

RV32 RV64 A Zbhlr Zicbo Cor Zba Zcb Zemp Zemt

sc [mpz] Zca
v v v
v v
v v v
v v
v v
v v v
v v v
v v v
v v v
v v v
v v v
v v v
v v v
v v v
v

< < < < X
< < < < < < < s
<

L < < X
X < < < X

Zth

F

9.2. Zcheri_purecap | Page 193

Function

Jump to PC+offset, bounds
check minimum size target
instruction

Jump to PC+offset, bounds
check minimum size target
instruction, link to cd

Jump to PC+offset, bounds
check minimum size target
instruction, link to cd

RISC-V JALR available in
capability modes (with zero
offset)

Indirect cap jump and link,
bounds check minimum size
target instruction, unseal
target cap, seal link cap

Indirect cap jump and link,
bounds check minimum size
target instruction, unseal
target cap, seal link cap

Indirect cap jump, bounds
check minimum size target
instruction, unseal target cap

Cache block invalidate
(implemented as clean), via
cap

Cache block clean, via cap
Cache block flush, via cap
Cache block zero, via cap

Prefetch read-only data cache
line, via cap

Prefetch writeable data cache
line, via cap

Prefetch instruction cache
line, via cap

Load reserve cap via cap
Load reserve double via cap
Load reserve word via cap
Load reserve half via cap
Load reserve byte via cap
Store conditional cap via cap

Store conditional double via
cap

Store conditional word via
cap

Store conditional half via cap
Store conditional byte via cap
Atomic swap of cap via cap
Atomic op of word via cap
Atomic op of double via cap

Load floating point double via
cap

Load floating point double via
cap, sp relative

Store floating point double via
cap

Store floating point double via
cap, sp relative

Load floating point half via
cap

RISC-V Specification for CHERI Extensions | © RISC-V

9.3. Zcheri_legacy | Page 194

Mnemonic RV32 RV64 A Zbhlr Zicbo Cor Zba Zcb Zemp Zemt Zfh F D A Function
sc [mpz] Zca

CFSH v v v Store floating point half via
cap

CFLW v v v Load floating point word via
cap

CFSW v v v Store floating point word via
cap

CFLD v v v Load floating point double via
cap

CFSD v v v Store floating point double via
cap

CM.CPUSH v v v Push capability stack frame

CM.CPOP v v v Pop capability stack frame

CM.CPOPRET v v v Pop capability stack frame
and return

CM.CPOPRETZ v v v Pop capability stack frame

and return zero
CM.CMVSAOQ1 Move two capability registers

CM.CMVAOIS Move two capability registers

L < < < X
L < < < X

CM.CJALT Table jump and link
CM.CJT Table jump
CSHIADD v shift and add, representability
check on the result
CSH1ADD.UW v v v shift and add, representability
check on the result
CSH2ADD v v v shift and add, representability
check on the result
CSH2ADD.UW v v v shift and add, representability
check on the result
CSH3ADD v v v shift and add, representability
check on the result
CSH3ADD.UW v v v shift and add, representability
check on the result
CSH4ADD v shift and add, representability
check on the result
CSH4ADD.UW v shift and add, representability

check on the result

Table 32. Zcheri_ purecap instruction extension - Pure Capability Mode instructions

9.3. Zcheri_legacy

Zcheri_legacy defines the set of instructions added by the legacy mode, in addition to
Zcheri_purecap.

/4 Zcheri_legacy implies Zcheri_ purecap
Mnemonic RV32 RV64 A Zbhlr Zicbo Cor Zba Zcb Zemp Zemt Zfh F D A Function
sc [mpz] Zca

LC 4 v Load cap via int pointer,
authorise with DDC

SC v v Store cap via int pointer,
authorise with DDC

LB v v Load signed byte

LH v v Load signed half

C.LH v v v Load signed half

LW v v Load signed word

LBU v v Load unsigned byte

RISC-V Specification for CHERI Extensions | © RISC-V

9.3. Zcheri_legacy | Page 195

Mnemonic RV32 RV64 A Zbhlr Zicbo Cor Zba Zcb Zemp Zemt Zfh F D A Function
sc [mpz] Zca

C.LBU v v Load unsigned byte

LHU v Load unsigned half

C.LHU v v Load unsigned half

LWU v Load unsigned word

LD v Load double

SB v v Store byte

C.SB v v v Store byte

SH v v Store half

C.SH v v v Store half

Sw v v Store word

SD v Store double

AUIPC v v Add immediate to PCC
address

C.ADDII6SP v v v ADD immediate to stack
pointer

C.ADDI4SPN v v v ADD immediate to stack
pointer, representability
check

C.MV v v v Register Move

JALR.CAP v v CJALR available in legacy
mode (with zero offset)

CBO.INVAL v v v Cache block invalidate
(implemented as clean),
authorise with DDC

CBO.CLEAN v v v Cache block clean, authorise
with DDC

CBO.FLUSH v v v Cache block flush, authorise
with DDC

CBO.ZERO v v v Cache block zero, authorise
with DDC

PREFETCH.R v v v Prefetch instruction cache
line, always valid

PREFETCH.W v v v Prefetch read-only data cache
line, authorise with DDC

PREFETCH.I v v v Prefetch writeable data cache
line, authorise with DDC

LR.C v v v Load reserve cap via int
pointer, authorise with DDC

LR.H v v v Load reserve half via int
pointer, authorise with DDC

LR.B v v v Load reserve byte via int
pointer, authorise with DDC

SC.C v v v Store conditional cap via int
pointer, authorise with DDC

SC.H v v v Store conditional half via int
pointer, authorise with DDC

SC.B v v v Store conditional byte via int
pointer, authorise with DDC

AMOSWAP.C v v v Atomic swap of cap

AMO<OP>W v v v Atomic op of word

AMO<OP>.D v v Atomic op of double

C.FLW v v Load floating point word via
cap

C.FLWSP v v Load floating point word, sp
relative

C.FSwW v v Store floating point word via
cap

RISC-V Specification for CHERI Extensions | © RISC-V

9.4. Zcheri_mode | Page 196

Mnemonic RV32 RV64 A Zbhlr Zicbo Cor Zba Zcb Zemp Zemt

sc [mpz] Zca

C.FSWSP v

C.FLD

C.FLDSP

C.FSD

C.FSDSP

CM.PUSH v
CM.POP

CM.POPRET

CM.POPRETZ v v v

CM.MVSAO1
CM.MVAOQ1S

CMJALT

L < < X

CMJT

SH4ADD

L < < < < X

SH4ADD.UW

Zth

F D \Y% Function
v Store floating point word, sp
relative

Load floating point double

Load floating point double, sp
relative

Store floating point double

Store floating point double, sp
relative

Push integer stack frame
Pop integer stack frame

Pop integer stack frame and
return

Pop integer stack frame and
return zero

Move two integer registers
Move two integer registers
Table jump and link
Table jump

shift and add

shift and add

Table 33. Zcheri_ legacy instruction extension - legacy mode instructions

9.4. /Zcheri_mode

Zcheri_legacy defines the set of instructions added by the mode switching mode, in addition to

Zcheri_legacy.

/4 Zcheri_mode implies Zcheri_ legacy
Mnemonic RV32 RV64 A Zbhlr Zicbo Cor Zba Zcb Zemp Zemt
sc [mpz] Zca
Section 8.1.9 v v
CMODESWITCH v v
C.CMODESWITCH 4 v

Zth

F D \Y% Function

Set the mode bit of a
capability, no permissions
required

Directly switch mode (legacy /
capability)

Directly switch mode (legacy /
capability)

Table 34. Zcheri_mode instruction extension - mode switching instructions

9.5. Instruction Modes

The tables summarise which operating modes each instruction may be executed in.

Mnemonic Zcheri_mode Zcheri_legacy
CLC

CSC

C.CLCSP

C.CSCSP

C.CLC

C.CSC

C.CLWSP

RISC-V Specification for CHERI Extensions | © RISC-V

Zcheri_purecap Function

<L R < < <

Load cap via cap
Store cap via cap
Load cap via cap, SP relative
Store cap via cap, SP relative
Load cap via cap
Store cap via cap

Load word via cap, SP relative

Mnemonic

C.CSWSP

C.CLW

C.CSW

C.CLD

C.CSD

C.CLDSP

C.CSDSP

CLB

CLH

C.CLH

CLW

CLBU

C.CLBU

CLHU

C.CLHU

CLWU

CLD

CSB

C.CSB

CSH

C.CSH

CSw

CSD

AUIPCC

C.CINCOFFSET16CSP

C.CINCOFFSET4CSPN

C.CMOVE

c.qJ

C.CJAL

CJAL

JALR.PCC

CJALR

C.CJALR

C.CJR

CBO.INVAL.CAP

CBO.CLEAN.CAP
CBO.FLUSH.CAP
CBO.ZERO.CAP
PREFETCH.R.CAP
PREFETCH.W.CAP
PREFETCH.L.CAP
CLR.C

CLR.D

9.5. Instruction Modes | Page 197

Zcheri_legacy Zcheri_purecap Function

Store word via cap, SP relative
Load word via cap

Store word via cap

Load word via cap

Store word via cap

Load word via cap

Store word via cap

Load signed byte via cap
Load signed half via cap
Load signed half via cap
Load signed word via cap
Load unsigned byte via cap
Load unsigned byte via cap
Load unsigned half via cap
Load unsigned half via cap
Load unsigned word via cap
Load double via cap

Store byte via cap

Store byte via cap

Store half via cap

Store half via cap

Store word via cap

Store double via cap

Add immediate to PCC address, representability check

L R R < < < <= < < <R R < < 8 8 < < < < < <& & < ¥

ADD immediate to stack pointer, representability

check

v ADD immediate to stack pointer, representability
check
Same as CMove
Jump to PC+offset, bounds check minimum size target
instruction

v Jump to PC+offset, bounds check minimum size target
instruction, link to cd

v Jump to PC+offset, bounds check minimum size target
instruction, link to cd

v RISC-V JALR available in capability modes (with zero
offset)

v Indirect cap jump and link, bounds check minimum
size target instruction, unseal target cap, seal link cap

v Indirect cap jump and link, bounds check minimum
size target instruction, unseal target cap, seal link cap

v Indirect cap jump, bounds check minimum size target
instruction, unseal target cap

v Cache block invalidate (implemented as clean), via
cap

v Cache block clean, via cap

v Cache block flush, via cap

v Cache block zero, via cap

v Prefetch read-only data cache line, via cap

v Prefetch writeable data cache line, via cap

v Prefetch instruction cache line, via cap

v Load reserve cap via cap

v Load reserve double via cap

RISC-V Specification for CHERI Extensions | © RISC-V

9.5. Instruction Modes | Page 198

Mnemonic
CLRW

CLR.H

CLR.B

CSC.C

CSC.D

CSC.W

CSC.H

CSC.B
CAMOSWAP.C
CAMO<OP>W
CAMO<OP>.D
C.CFLD
C.CFLDSP
C.CFSD
C.CFSDSP
CFLH

CFSH

CFLW

CFSW

CFLD

CFSD
CM.CPUSH
CM.CPOP
CM.CPOPRET
CM.CPOPRETZ
CM.CMVSAO1
CM.CMVAO1S
CM.CJALT
CM.CJT
CSHIADD
CSHIADD.UW
CSH2ADD
CSH2ADD.UW
CSH3ADD
CSH3ADD.UW
CSH4ADD

CSH4ADD.UW

Zcheri_mode

Zcheri_legacy

Zcheri_purecap Function

L R R < < < 8 R R R R < 8 8 8 < <R <R < < 8 8 8 < < < < 8 8 8 < < < < <

Load reserve word via cap

Load reserve half via cap

Load reserve byte via cap

Store conditional cap via cap

Store conditional double via cap

Store conditional word via cap

Store conditional half via cap

Store conditional byte via cap

Atomic swap of cap via cap

Atomic op of word via cap

Atomic op of double via cap

Load floating point double via cap

Load floating point double via cap, sp relative
Store floating point double via cap

Store floating point double via cap, sp relative
Load floating point half via cap

Store floating point half via cap

Load floating point word via cap

Store floating point word via cap

Load floating point double via cap

Store floating point double via cap

Push capability stack frame

Pop capability stack frame

Pop capability stack frame and return

Pop capability stack frame and return zero
Move two capability registers

Move two capability registers

Table jump and link

Table jump

shift and add, representability check on the result
shift and add, representability check on the result
shift and add, representability check on the result
shift and add, representability check on the result
shift and add, representability check on the result
shift and add, representability check on the result
shift and add, representability check on the result

shift and add, representability check on the result

Table 35. Instructions valid for execution in capability mode only

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic
LC

SC

LB

LH
C.LH
LW
LBU
C.LBU
LHU
C.LHU
LWU
LD

SB

SH

C.SH

SwW

SD

AUIPC
C.ADDI16SP

C.ADDI4SPN

C.MV
JALR.CAP

DRET

CBO.INVAL

CBO.CLEAN
CBO.FLUSH
CBO.ZERO
PREFETCH.R

PREFETCH.W

PREFETCH.I

LR.C
LR.H
LR.B

SC.C

SC.H

SC.B

AMOSWAP.C
AMO<OP>W
AMO<OP>.D
C.FLW
C.FLWSP
C.FSW
C.FSWSP

C.FLD

Zcheri_mode

Zcheri_legacy

L R R < < < < < R < < < < < < < < < < X

L R R < < < < < < < X <

<

<

< R < < < < < X

9.5. Instruction Modes | Page 199

Zcheri_purecap Function

Load cap via int pointer, authorise with DDC
Store cap via int pointer, authorise with DDC
Load signed byte

Load signed half

Load signed half

Load signed word

Load unsigned byte

Load unsigned byte

Load unsigned half

Load unsigned half

Load unsigned word

Load double

Store byte

Store byte

Store half

Store half

Store word

Store double

Add immediate to PCC address

ADD immediate to stack pointer

ADD immediate to stack pointer, representability
check

Register Move
CJALR available in legacy mode (with zero offset)

Return from debug mode, sets DDC from DDDC and
PCC from DPCC

Cache block invalidate (implemented as clean),
authorise with DDC

Cache block clean, authorise with DDC
Cache block flush, authorise with DDC
Cache block zero, authorise with DDC
Prefetch instruction cache line, always valid

Prefetch read-only data cache line, authorise with
DDC

Prefetch writeable data cache line, authorise with
DDC

Load reserve cap via int pointer, authorise with DDC
Load reserve half via int pointer, authorise with DDC
Load reserve byte via int pointer, authorise with DDC

Store conditional cap via int pointer, authorise with
DDC

Store conditional half via int pointer, authorise with
DDC

Store conditional byte via int pointer, authorise with
DDC

Atomic swap of cap

Atomic op of word

Atomic op of double

Load floating point word via cap
Load floating point word, sp relative
Store floating point word via cap
Store floating point word, sp relative

Load floating point double

RISC-V Specification for CHERI Extensions | © RISC-V

9.5. Instruction Modes | Page 200

Mnemonic
C.FLDSP
C.FSD
C.FSDSP
CM.PUSH
CM.POP
CM.POPRET
CM.POPRETZ
CM.MVSAO1
CM.MVAO1S
CMJALT
CMJT
SH4ADD

SH4ADD.UW

Mnemonic

CINCOFFSET

CINCOFFSETIMM

CSETADDR
CGETTAG

CGETPERM

CMOVE

CANDPERM

CGETHIGH
CSETHIGH
CSETEQUALEXACT
CSEAL

CTESTSUBSET

CBUILDCAP

CSETBOUNDS

CSETBOUNDSIMM

CSETBOUNDSINEXACT

CRAM

CGETBASE
CGETLEN

Section 8.1.9

CMODESWITCH
C.CMODESWITCH

MRET

SRET

CSRRW

Zcheri_mode Zcheri_legacy Zcheri_purecap Function

L R R < < < < < < < < X

Load floating point double, sp relative
Store floating point double

Store floating point double, sp relative
Push integer stack frame

Pop integer stack frame

Pop integer stack frame and return
Pop integer stack frame and return zero
Move two integer registers

Move two integer registers

Table jump and link

Table jump

shift and add

shift and add

Table 36. Instructions valid for execution in legacy mode only

Zcheri_mode Zcheri_legacy Zcheri_purecap Function

v

<

< R < <

RISC-V Specification for CHERI Extensions | © RISC-V

Increment cap address by register, representability
check

Increment cap address by immediate, representability
check

Replace capability address, representability check
Get tag field

Get hperm and uperm fields as 1-bit per permission,
packed together

Move capability register

AND capability permissions (expand to 1-bit per
permission before ANDing)

Get metadata

Set metadata and clear tag

Full capability bitwise compare
Seal capability

Set register bounds on capability with rounding, clear
tag if rounding is required

Set cd to cs2 with its tag set after checking that cs2 is a
subset of cs1

Set register bounds on capability with rounding, clear
tag if rounding is required

Set immediate bounds on capability with rounding,
clear tag if rounding is required

Set bounds on capability with rounding up as required

Representable Alignment Mask: Return mask to apply
to address to get the requested bounds

Get capability base
Get capability length

Set the mode bit of a capability, no permissions
required

Directly switch mode (legacy / capability)
Directly switch mode (legacy / capability)

Return from machine mode handler, sets PCC from
MTVECG, needs ASR permission

Return from supervisor mode handler, sets PCC from
STVECC, needs ASR permission

CSR write - can also read/write a full capability
through an address alias

9.5. Instruction Modes | Page 201

Mnemonic Zcheri_mode Zcheri_legacy Zcheri_purecap Function

CSRRS CSR set - can also read/write a full capability through
an address alias

CSRRC CSR clear - can also read/write a full capability
through an address alias

CSRRWI CSR write - can also read/write a full capability
through an address alias

CSRRSI CSR set - can also read/write a full capability through
an address alias

CSRRCI CSR clear - can also read/write a full capability
through an address alias

Table 37. Instructions valid for execution in both capability and legacy modes

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 10. Capability Width CSR Summary | Page 202

Chapter 10. Capability Width CSR
summary

Extended CSR
dpce
dscratchOc
dscratchle
mtvecc
mscratche
mepce

stvecc
sscratche
sepce

jvte

Extended CSR

dpcc

dscratchOc
dscratchlc

mtvecc

mscratche

mepcc

stvecc

sscratche

sepcc

jvte

Alias

dpc
dscratchO
dscratchl
mtvec
mscratch
mepc
stvec
sscratch
sepc

jvt

Prerequisites
Sdext

Sdext

Sdext
M-mode
M-mode
M-mode
S-mode
S-mode
S-mode

Zcmt

Table 38. CSRs extended to capability width, accessible through an alias

Action on XLEN write

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change.

Update the CSR using CSETADDR.
Update the CSR using CSETADDR.

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change, including the
MODE field in the address for simplicity. Vector range check " if
vectored mode is programmed.

Update the CSR using CSETADDR.

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change.

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change, including the
MODE field in the address for simplicity. Vector range check " if
vectored mode is programmed.

Update the CSR using CSETADDR.

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change.

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change.

Action on CLEN write

Apply Invalid address conversion and update the CSR with the
result if the address changed, direct write if address didn’t change

direct write
direct write

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change, including the
MODE field in the address for simplicity. Vector range check " if
vectored mode is programmed.

direct write

Apply Invalid address conversion and update the CSR with the
result if the address changed, direct write if address didn’t change

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change, including the
MODE field in the address for simplicity. Vector range check " if
vectored mode is programmed.

direct write

Apply Invalid address conversion and update the CSR with the
result if the address changed, direct write if address didn’t change

Apply Invalid address conversion and update the CSR with the
result if the address changed, direct write if address didn’t change

Table 39. Action taken on writing to extended CSRs.

" The vector range check is to ensure that vectored entry to the handler in within bounds of the
capability written to Xtvecc. The check on writing must include the lowest (O offset) and highest
possible offset (e.g. 64 * XLENMAX bits where HICAUSE=16).

/4
/4

Extended CSR

dpce

Implementations which allow misa.C to be writable need to legalise Xepcc on reading if
the misa.C value has changed since the value was written as this can cause the read value
of bit [1] to change state.

CSRRW make an XLEN-wide access to the XLEN-wide CSR aliases or a CLEN-wide
access to the CLEN-wide aliases for all extended CSRs. CSRRWI, CSRRS, CSRRSI, CSRRC
and CSRRCI only make XLEN-wide accesses even if the CLEN-wide alias is specified.

Executable Vector Unseal On Execution

v v

RISC-V Specification for CHERI Extensions | © RISC-V

Extended CSR
mtvecc

mepce

stvecc

sepce

jvte

pec

Executable Vector

< < < <

10.1. Other tables | Page 203

Unseal On Execution

Table 40. CLEN-wide CSRs storing executable vectors

Some CSRs store executable vectors as shown in Table 40. These CSRs do not need to store the full
width address on RV64. If they store fewer address bits then writes are subject to the invalid address
check in Invalid address conversion.

Extended CSR
dscratchOc
dscratchlc
mscratche

sscratche

Store full metadata

v

v
v
v

Table 41. CLEN-wide CSRs which store all CLEN+1 bits

Table 41 shows which CLEN-wide CSRs store all CLEN+1 bits. No other CLEN-wide CSRs store any
reserved bits. All CLEN-wide CSRs store all non-reserved metadata fields.

Extended CSR

dpce
dscratchOc
dscratchlc
mtvecc
mscratche
mepcc
stvecc
sscratchc
sepcc

jvte

10.1. Other tables

Mnemonic

CLC

CSC

C.CLCSP

C.CSCSP

C.CLC

Zcheri_lega
cy

LR R < R < < R < < < < < < < «

Zcheri_pure Prerequisite

cap

L R < < < < < < < X

CLEN
s Address
Sdext 0x7b9
Sdext Ox7ba
Sdext Ox7bb
M-mode 0x765
M-mode 0x760
M-mode 0x761
S-mode 0x505
S-mode 0x540
S-mode 0x541
Zcemt 0x417
Sdext Ox7bc
M-mode 0x74c
S-mode 0x163
none 0x416
none 0xcbO

Permissions Reset Value
DRW, ASR-permission Infinity
DRW, ASR-permission Infinity
DRW, ASR-permission NULL
MRW, ASR-permission lnfinity
MRW, ASR-permission NULL
MRW, ASR-permission Inﬁnity
SRW, ASR-permission Infinity
SRW, ASR-permission NULL
SRW, ASR-permission Infinity
URW Infinity
DRW, ASR-permission NULL
MRW, ASR-permission NULL
SRW, ASR-permission NULL
URW Infinity
URO Infinity (address = boot
address)

Table 42. All CLEN-wide CSRs

Legacy mnemonic RV32
LC

SC

C.FLWSP

C.FSWSP

CFLW

Legacy mnemonic RV64
LC

SC

C.FLDSP

C.FSDSP

C.FLD

RISC-V Specification for CHERI Extensions | © RISC-V

10.1. Other tables | Page 204

Mnemonic
C.CSC

C.CLWSP
C.CSWSP

C.CLW

C.CSW

C.CLD

C.CSD

C.CLDSP
C.CSDSP

CLB

CLH

C.CLH

CLW

CLBU

C.CLBU

CLHU

C.CLHU

CLWU

CLD

CSB

C.CSB

CSH

C.CSH

Csw

CSD

AUIPCC
C.CINCOFFSET16CSP
C.ADDI4SPN
C.CINCOFFSET4CSPN
C.CMOVE

C.CJ

C.CJAL

CJAL

JALR.CAP

CJALR

C.CJALR

C.CJR
CBO.INVAL.CAP
CBO.CLEAN.CAP
CBO.FLUSH.CAP
CBO.ZERO.CAP
PREFETCH.R.CAP
PREFETCH.W.CAP
PREFETCH.L.CAP
CLR.C

CLR.D

CLRW

CLR.H

CLR.B

Legacy mnemonic RV32
C.FSwW
C.LWSP
C.SWsP
CLW

C.sw

C.LD

C.SD

C.LDSP
C.SDSP

LB

LH

C.LH

Lw

LBU

C.LBU

LHU

C.LHU

LWU

LD

SB

C.SB

SH

C.SH

Sw

SD

AUIPC
C.ADDII6SP
C.ADDI4SPN
C.ADDI4SPN
C.MV

CJ

CJAL

JAL
JALR.PCC
JALR

CJALR

CJR
CBO.INVAL
CBO.CLEAN
CBO.FLUSH
CBO.ZERO
PREFETCH.R
PREFETCH.W
PREFETCH.I
LR.C

LR.D

LRW

LR.H

LR.B

RISC-V Specification for CHERI Extensions | © RISC-V

Legacy mnemonic RV64
C.FSD
C.LWSP
C.SWspP
CLW

C.sw

C.LD

C.SD

C.LDSP
C.SDSP

LB

LH

C.LH

LW

LBU

C.LBU

LHU

C.LHU

LWU

LD

SB

C.SB

SH

C.SH

Sw

SD

AUIPC
C.ADDII6SP
C.ADDI4SPN
C.ADDI4SPN
C.MV

CJ

CJAL

JAL
JALR.PCC
JALR

CJALR

CJR
CBO.INVAL
CBO.CLEAN
CBO.FLUSH
CBO.ZERO
PREFETCH.R
PREFETCH.W
PREFETCH.I
LR.C

LR.D

LRW

LR.H

LR.B

Mnemonic
CSC.C

CSC.D

CSC.W

CSC.H
CAMOSWAP.C
CAMO<OP>W
CAMO<OP>.D
CFLH

CFSH

CFLW

CFSW

CFLD

CFSD
CM.CPUSH
CM.CPOP
CM.CPOPRET
CM.CPOPRETZ
CM.CMVSAO1
CM.CMVAOI1S
CM.CJALT
CM.CJT
CSHIADD
CSHIADD.UW
CSH2ADD
CSH2ADD.UW
CSH3ADD
CSH3ADD.UW
CSH4ADD

CSH4ADD.UW

Legacy mnemonic RV32
SC.C

SC.D

sCw

SC.H
AMOSWAP.C
AMO<OP>W
AMO<OP>D
FLH

FSH

FLW

FSW

FLD

FSD
CM.PUSH
CM.POP
CM.POPRET
CM.POPRETZ
CM.MVSAO1
CM.MVAOIS
CMJALT
CMJT
SHIADD
SHIADD.UW
SH2ADD
SH2ADD.UW
SH3ADD
SH3ADD.UW
SH4ADD

SH4ADD.UW

10.1. Other tables | Page 205

Legacy mnemonic RV64
SC.C

SC.D

SCwW

SC.H
AMOSWAP.C
AMO<OP>W
AMO<OP>.D
FLH

FSH

FLW

FSW

FLD

FSD
CM.PUSH
CM.POP
CM.POPRET
CM.POPRETZ
CM.MVSAO1
CM.MVAOIS
CMJALT
CMJT
SHIADD
SHIADD.UW
SH2ADD
SH2ADD.UW
SH3ADD
SH3ADD.UW
SH4ADD

SH4ADD.UW

Table 43. Mnemonics with the same encoding but mapped to different instructions in Legacy and Capability Mode

Mnemonic
LC

SC

CLC

CsC
C.CLCSP
C.CSCSP
C.CLC
C.CSC

LR.C

CLR.C
SC.C

CSC.C
AMOSWAP.C

CAMOSWAP.C

I

Function

Load cap via int pointer, authorise with DDC

Store cap via int pointer, authorise with DDC

Load cap via cap

Store cap via cap

Load cap via cap, SP relative

Store cap via cap, SP relative

Load cap via cap

Store cap via cap

Load reserve cap via int pointer, authorise with DDC

Load reserve cap via cap

Store conditional cap via int pointer, authorise with DDC

Store conditional cap via cap
Atomic swap of cap

Atomic swap of cap via cap

Table 44. Instruction encodings which vary depending on the current XLEN

CMODESWITCH and Section 8.1.9 only exist in capability mode if legacy mode is also

RISC-V Specification for CHERI Extensions | © RISC-V

10.1. Other tables | Page 206

Mnemonic
CMODESWITCH
C.CMODESWITCH
C.CJ

C.CJAL

CJAL

JALR.CAP
JALR.PCC

CJALR

C.CJALR

C.CJR

DRET

MRET

SRET

CSRRW

CSRRS

CSRRC

CSRRWI
CSRRSI

CSRRCI
CBO.INVAL
CBO.CLEAN
CBO.FLUSH
CBO.ZERO
CBO.INVAL.CAP
CBO.CLEAN.CAP
CBO.FLUSH.CAP
CBO.ZERO.CAP
C.FLW

C.FLWSP

C.FSW

C.FSWSP

C.FLD

C.FLDSP

C.FSD

C.FSDSP
C.CFLD
C.CFLDSP
C.CFSD
C.CFSDSP
CFLH

CFSH

CFLW

CFSW

CFLD

CFSD

illegal insn if (1)

mode==D (optional
mode==D (optional
mode==D (optional
mode==D (optional

mode==D (optional

mode==D (optional
mode==D (optional

mode==D (optional

()
()
()
()
()
mode==D (optional)
()
()
D)
mode==D (optional)

MODE<D

MODE<M

MODE<S

CSR permission fault

CSR permission fault

CSR permission fault

CSR permission fault

CSR permission fault

CSR permission fault

MODE<M AND menvefg.CBIE[O
MODE<M AND menvcfg.CBIE[O]==
MODE<M AND menvcfg.CBIE[O]==
MODE<M AND menvcfg.CBIE[O]==
MODE<M AND menvcfg.CBIE[O]==
MODE<M AND menvcfg.CBIE[O

]
]
]
]
MODE<M AND menvcfg.CBIE[O]==
|
]
]

MODE<M AND menvcfg.CBIE[O
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0

Xstatus.fs==0

Table 45. Illegal instruction detect for CHERI instructions

RISC-V Specification for CHERI Extensions | © RISC-V

OR illegal insn if (2)

MODE<S AND senvcfg.CBIE
MODE<S AND senvcfg.CBIE
MODE<S AND senvcfg.CBIE
MODE<S AND senvcfg.CBIE
MODE<S AND senvcfg.CBIE
MODE<S AND senvcfg.CBIE
MODE<S AND senvcfg.CBIE

MODE<S AND senvcfg.CBIE

present. A purecap core does not implement the mode bit in the capability.

ORillegal insn if (3)

mstatus.TSR==1 AND MODE==§

Bibliography | Page 207

Bibliography

RISC-V. (2022). RISC-V Debug Specification. github.com/riscv/riscv-debug-spec/raw/
c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf

RISC-V. (2023). RISC-V Privileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6{f-2023-10-02/priv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Unprivileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6{f-2023-10-02/unpriv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Code-size Reduction Specification. github.com/riscv/riscv-code-size-
reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf

Watson, R. N. M., Neumann, P. G., Woodruff,], Roe, M., Almatary, H., Anderson, J., Baldwin, J,
Barnes, G., Chisnall, D., Clarke, J., Davis, B., Eisen, L., Filardo, N. W., Fuchs, F. A., Grisenthwaite, R,
Joannou, A, Laurie, B, Markettos, A. T., Moore, S. W., ... Xia, H. (2023). Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (Version 9) (UCAM-CL-TR-987; Issue UCAM-CL-
TR-987). University of Cambridge, Computer Laboratory. doi.org/10.48456/tr-987

Woodruff, J., Joannou, A, Xia, H., Fox, A., Norton, R. M., Chisnall, D, Davis, B., Gudka, K, Filardo, N.
W., Markettos, A. T., & others. (2019). Cheri concentrate: Practical compressed capabilities. IEEE
Transactions on Computers, 68(10), 1455—1469.

RISC-V Specification for CHERI Extensions | © RISC-V

https://github.com/riscv/riscv-debug-spec/raw/
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://doi.org/10.48456/tr-987

	RISC-V Specification for CHERI Extensions
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	1.1. CHERI Concepts and Terminology
	1.2. CHERI Extensions to RISC-V
	1.3. Risks and Known Uncertainty
	1.3.1. Pending Extensions
	1.3.2. Incompatible Extensions
	1.3.3. Suggested Mnemonic Renaming

	Chapter 2. Anatomy of Capabilities in Zcheri_purecap
	2.1. Components of a Capability
	2.1.1. Tag
	2.1.2. Architectural Permissions (AP)
	Permission Encoding

	2.1.3. Software-Defined Permissions (SDP)
	2.1.4. Sealed (S) Bit
	2.1.5. Bounds
	2.1.6. Address
	2.1.7. Reserved Bits

	2.2. Capability Encoding
	2.3. NULL and Infinite Capabilities
	2.4. Representable Limit Check
	2.5. Malformed Capability Bounds

	Chapter 3. Integrating Zcheri_purecap with the RISC-V Base Integer Instruction Set
	3.1. Memory
	3.2. Programmer’s Model for Zcheri_purecap
	3.3. Capability Instructions
	3.3.1. Capability Inspection Instructions
	3.3.2. Capability Manipulation Instructions
	3.3.3. Capability Load and Store Instructions
	3.3.4. Unconditional Integer Address Jumps

	3.4. Existing RISC-V Instructions
	3.4.1. Integer Computational Instructions
	3.4.2. Control Transfer Instructions
	Unconditional Jumps
	Conditional Branches

	3.4.3. Integer Load and Store Instructions

	3.5. Zicsr, Control and Status Register (CSR) Instructions
	3.5.1. CSR Instructions

	3.6. Control and Status Registers (CSRs)
	3.7. Machine-Level CSRs
	3.7.1. Machine ISA Register (misa)
	3.7.2. Machine Status Registers (mstatus and mstatush)
	3.7.3. Machine Trap-Vector Base-Address Registers (mtvec)
	3.7.4. Machine Trap-Vector Base-Address Capability Registers (mtvecc)
	3.7.5. Machine Scratch Register (mscratch)
	3.7.6. Machine Scratch Register Capability (mscratchc)
	3.7.7. Machine Exception Program Counter (mepc)
	3.7.8. Machine Exception Program Counter Capability (mepcc)
	3.7.9. Machine Cause Register (mcause)
	3.7.10. Machine Trap Delegation Register (medeleg)
	3.7.11. Machine Trap Value Register (mtval)

	3.8. Supervisor-Level CSRs
	3.8.1. Supervisor Trap Vector Base Address Registers (stvec)
	3.8.2. Supervisor Trap Vector Base Address Registers (stvecc)
	3.8.3. Supervisor Scratch Register (sscratch)
	3.8.4. Supervisor Scratch Registers (sscratchc)
	3.8.5. Supervisor Exception Program Counter (sepc)
	3.8.6. Supervisor Exception Program Counter Capability (sepcc)
	3.8.7. Supervisor Cause Register (scause)
	3.8.8. Supervisor Trap Value Register (stval)

	3.9. Unprivileged CSRs
	3.9.1. Program Counter Capability (pcc)

	3.10. CHERI Exception handling
	3.11. Physical Memory Attributes (PMA)
	3.12. Page-Based Virtual-Memory Systems
	3.12.1. Invalid Address Handling

	Chapter 4. Integrating Zcheri_purecap with Sdext
	4.1. Debug Mode
	4.2. Core Debug Registers
	4.2.1. Debug Program Counter (dpc)
	4.2.2. Debug Program Counter Capability (dpcc)
	4.2.3. Debug Scratch Register 0 (dscratch0)
	4.2.4. Debug Scratch Register 0 (dscratch0c)
	4.2.5. Debug Scratch Register 1 (dscratch1)
	4.2.6. Debug Scratch Register 1 (dscratch1c)

	Chapter 5. "Zcheri_pte" Extension for CHERI Page-Based Virtual-Memory Systems
	5.1. Extending the Page Table Entry Format
	5.2. Extending the Machine Environment Configuration Register (menvcfg)

	Chapter 6. "Zcheri_legacy" Extension for CHERI Legacy Mode
	6.1. CHERI Execution Mode
	6.2. Zcheri_legacy Instructions
	6.2.1. Capability Load and Store Instructions
	6.2.2. Unconditional Capability Jumps

	6.3. Existing RISC-V Instructions
	6.3.1. Control Transfer Instructions
	6.3.2. Conditional Branches
	6.3.3. Load and Store Instructions
	6.3.4. CSR Instructions

	6.4. Integrating Zcheri_legacy with Sdext
	6.5. Debug Default Data Capability (dddc)
	6.6. Disabling CHERI Features
	6.7. Added CLEN-wide CSRs
	6.7.1. Machine ISA Register (misa)
	6.7.2. Machine Status Registers (mstatus and mstatush)
	6.7.3. Machine Trap Default Capability Register (mtdc)
	6.7.4. Machine Environment Configuration Register (menvcfg)
	6.7.5. Supervisor Trap Default Capability Register (stdc)
	6.7.6. Supervisor Environment Configuration Register (senvcfg)
	6.7.7. Default Data Capability (ddc)

	Chapter 7. "Zcheri_mode" Extension for CHERI Execution Mode
	7.1. CHERI Execution Mode
	7.2. Zcheri_mode Instructions
	7.2.1. Capability Manipulation Instructions
	7.2.2. Mode Change Instructions
	7.2.3. Unconditional Capability Jumps

	7.3. Integrating Zcheri_mode with Sdext

	Chapter 8. RISC-V Instructions and Extensions Reference
	8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI
	8.1.1. JALR.PCC
	8.1.2. JALR.CAP
	8.1.3. CMOVE
	8.1.4. CMODESWITCH
	8.1.5. CINCOFFSETIMM
	8.1.6. CINCOFFSET
	8.1.7. CSETADDR
	8.1.8. CANDPERM
	8.1.9. CSETMODE
	8.1.10. CSETHIGH
	8.1.11. CSETEQUALEXACT
	8.1.12. CSEAL
	8.1.13. CTESTSUBSET
	8.1.14. CBUILDCAP
	8.1.15. CGETTAG
	8.1.16. CGETPERM
	8.1.17. CGETHIGH
	8.1.18. CGETBASE
	8.1.19. CGETLEN
	8.1.20. CSETBOUNDSIMM
	8.1.21. CSETBOUNDS
	8.1.22. CSETBOUNDSINEXACT
	8.1.23. CRAM
	8.1.24. LC
	8.1.25. CLC
	8.1.26. SC
	8.1.27. CSC

	8.2. RV32I/E and RV64I/E Base Integer Instruction Sets
	8.2.1. AUIPC
	8.2.2. AUIPCC
	8.2.3. BEQ, BNE, BLT[U], BGE[U]
	8.2.4. CJALR
	8.2.5. CJAL, JALR
	8.2.6. CJAL
	8.2.7. CJAL, JAL
	8.2.8. CLWU
	8.2.9. CLW
	8.2.10. CLHU
	8.2.11. CLH
	8.2.12. CLBU
	8.2.13. CLB
	8.2.14. LD
	8.2.15. LWU
	8.2.16. LW
	8.2.17. LHU
	8.2.18. LH
	8.2.19. LBU
	8.2.20. LB
	8.2.21. CLD
	8.2.22. CSW
	8.2.23. CSH
	8.2.24. CSB
	8.2.25. SD
	8.2.26. SW
	8.2.27. SH
	8.2.28. SB
	8.2.29. CSD
	8.2.30. SRET
	8.2.31. MRET
	8.2.32. DRET

	8.3. "A" Standard Extension for Atomic Instructions
	8.3.1. CAMO<OP>.W
	8.3.2. CAMO<OP>.D
	8.3.3. AMO<OP>.W
	8.3.4. CAMO<OP>.W
	8.3.5. AMOSWAP.C
	8.3.6. CAMOSWAP.C
	8.3.7. CLR.D
	8.3.8. CLR.W
	8.3.9. CLR.H
	8.3.10. CLR.B
	8.3.11. LR.D
	8.3.12. LR.W
	8.3.13. LR.H
	8.3.14. LR.B
	8.3.15. LR.C
	8.3.16. CLR.C
	8.3.17. CSC.D
	8.3.18. CSC.W
	8.3.19. CSC.H
	8.3.20. CSC.B
	8.3.21. SC.D
	8.3.22. SC.W
	8.3.23. SC.H
	8.3.24. SC.B
	8.3.25. SC.C
	8.3.26. CSC.C

	8.4. "Zicsr", Control and Status Register (CSR) Instructions
	8.4.1. CSRRW
	8.4.2. CSRRWI
	8.4.3. CSRRS
	8.4.4. CSRRSI
	8.4.5. CSRRC
	8.4.6. CSRRCI

	8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point
	8.5.1. CFLD
	8.5.2. CFLW
	8.5.3. CFLH
	8.5.4. FLD
	8.5.5. FLW
	8.5.6. FLH
	8.5.7. CFSD
	8.5.8. CFSW
	8.5.9. CFSH
	8.5.10. FSD
	8.5.11. FSW
	8.5.12. FSH

	8.6. "C" Standard Extension for Compressed Instructions
	8.6.1. C.BEQZ, C.BNEZ
	8.6.2. C.MV
	8.6.3. C.CMOVE
	8.6.4. C.ADDI16SP
	8.6.5. C.CINCOFFSET16CSP
	8.6.6. C.ADDI4SPN
	8.6.7. C.CINCOFFSET4CSPN
	8.6.8. C.CMODESWITCH
	8.6.9. C.JALR
	8.6.10. C.CJALR
	8.6.11. C.CJR
	8.6.12. C.JR
	8.6.13. C.JAL
	8.6.14. C.CJAL
	8.6.15. C.J
	8.6.16. C.CJ
	8.6.17. C.CLD
	8.6.18. C.CLW
	8.6.19. C.LD
	8.6.20. C.LW
	8.6.21. C.CLWSP
	8.6.22. C.CLDSP
	8.6.23. C.LWSP
	8.6.24. C.LDSP
	8.6.25. C.FLW
	8.6.26. C.FLWSP
	8.6.27. C.CFLD
	8.6.28. C.FLD
	8.6.29. C.CFLDSP
	8.6.30. C.FLDSP
	8.6.31. C.CLC
	8.6.32. C.CLCSP
	8.6.33. C.CSD
	8.6.34. C.CSW
	8.6.35. C.SD
	8.6.36. C.SW
	8.6.37. C.CSWSP
	8.6.38. C.CSDSP
	8.6.39. C.SWSP
	8.6.40. C.SDSP
	8.6.41. C.FSW
	8.6.42. C.FSWSP
	8.6.43. C.CFSD
	8.6.44. C.CFSDSP
	8.6.45. C.FSD
	8.6.46. C.FSDSP
	8.6.47. C.CSC
	8.6.48. C.CSC, C.CSCSP

	8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations
	8.7.1. CBO.CLEAN
	8.7.2. CBO.CLEAN.CAP
	8.7.3. CBO.FLUSH
	8.7.4. CBO.FLUSH.CAP
	8.7.5. CBO.INVAL
	8.7.6. CBO.INVAL.CAP
	8.7.7. CBO.ZERO
	8.7.8. CBO.ZERO.CAP
	8.7.9. PREFETCH.I
	8.7.10. PREFETCH.I.CAP
	8.7.11. PREFETCH.R
	8.7.12. PREFETCH.R.CAP
	8.7.13. PREFETCH.W
	8.7.14. PREFETCH.W.CAP

	8.8. "Zba" Extension for Bit Manipulation Instructions
	8.8.1. CSH1ADD
	8.8.2. CSH2ADD
	8.8.3. CSH3ADD
	8.8.4. SH1ADD
	8.8.5. SH2ADD
	8.8.6. SH3ADD
	8.8.7. CSH1ADD.UW
	8.8.8. CSH2ADD.UW
	8.8.9. CSH3ADD.UW
	8.8.10. SH1ADD.UW
	8.8.11. SH2ADD.UW
	8.8.12. SH3ADD.UW
	8.8.13. SH4ADD
	8.8.14. CSH4ADD
	8.8.15. SH4ADD.UW
	8.8.16. CSH4ADD.UW

	8.9. "Zcb" Standard Extension For Code-Size Reduction
	8.9.1. C.CLH
	8.9.2. C.CLHU
	8.9.3. C.CLBU
	8.9.4. C.LH
	8.9.5. C.LHU
	8.9.6. C.LBU
	8.9.7. C.CSH
	8.9.8. C.CSB
	8.9.9. C.SH
	8.9.10. C.CSH, C.CSB, C.SH, C.SB

	8.10. "Zcmp" Standard Extension For Code-Size Reduction
	8.10.1. CM.PUSH
	8.10.2. CM.CPUSH
	8.10.3. CM.POP
	8.10.4. CM.CPOP
	8.10.5. CM.POPRET
	8.10.6. CM.CPOPRET
	8.10.7. CM.POPRETZ
	8.10.8. CM.CPOPRETZ
	8.10.9. CM.MVSA01
	8.10.10. CM.CMVSA01
	8.10.11. CM.MVA01S
	8.10.12. CM.CMVA01S

	8.11. "Zcmt" Standard Extension For Code-Size Reduction
	8.11.1. Jump Vector Table CSR (jvt)
	8.11.2. Jump Vector Table CSR (jvtc)
	8.11.3. CM.JALT
	8.11.4. CM.CJALT
	8.11.5. CM.JT
	8.11.6. CM.CJT

	Chapter 9. Extension summary
	9.1. Zbhlrsc
	9.2. Zcheri_purecap
	9.3. Zcheri_legacy
	9.4. Zcheri_mode
	9.5. Instruction Modes

	Chapter 10. Capability Width CSR Summary
	10.1. Other tables

	
	Bibliography

