
RISC-V Specification for CHERI
Extensions

Authors: Hesham Almatary, Andres Amaya Garcia, John Baldwin, David Chisnall, Jessica
Clarke, Brooks Davis, Nathaniel Wesley Filardo, Franz A. Fuchs, Timothy Hutt, Alexandre

Joannou, Tariq Kurd, Ben Laurie, A. Theodore Markettos, David McKay, Jamie Melling, Stuart
Menefy, Simon W. Moore, Peter G. Neumann, Robert Norton, Alexander Richardson,

Michael Roe, Peter Rugg, Peter Sewell, Carl Shaw, Robert N. M. Watson, Jonathan Woodruff

Version v0.0.1-prerelease, 2024-01-20: Draft

Table of Contents
Preamble . 1
Copyright and license information . 2
Contributors . 3
1. Introduction . 4

1.1. CHERI Concepts and Terminology . 4
1.2. CHERI Extensions to RISC-V . 5
1.3. Risks and Known Uncertainty. 6

1.3.1. Pending Extensions. 6
1.3.2. Incompatible Extensions . 6
1.3.3. Suggested Mnemonic Renaming . 6

2. Anatomy of Capabilities in Zcheri_purecap . 8
2.1. Components of a Capability. 8

2.1.1. Tag . 8
2.1.2. Architectural Permissions (AP) . 8

Permission Encoding. 9
2.1.3. Software-Defined Permissions (SDP) . 10
2.1.4. Sealed (S) Bit . 10
2.1.5. Bounds. 11
2.1.6. Address . 12
2.1.7. Reserved Bits . 12

2.2. Capability Encoding. 12
2.3. NULL and Infinite Capabilities . 15
2.4. Representable Limit Check . 15
2.5. Malformed Capability Bounds . 16

3. Integrating Zcheri_purecap with the RISC-V Base Integer Instruction Set. 17
3.1. Memory. 17
3.2. Programmer’s Model for Zcheri_purecap . 17
3.3. Capability Instructions . 18

3.3.1. Capability Inspection Instructions . 18
3.3.2. Capability Manipulation Instructions . 18
3.3.3. Capability Load and Store Instructions. 19
3.3.4. Unconditional Integer Address Jumps . 20

3.4. Existing RISC-V Instructions . 20
3.4.1. Integer Computational Instructions. 20
3.4.2. Control Transfer Instructions . 20

Unconditional Jumps . 20
Conditional Branches . 21

3.4.3. Integer Load and Store Instructions . 21
3.5. Zicsr, Control and Status Register (CSR) Instructions . 21

3.5.1. CSR Instructions . 22

3.6. Control and Status Registers (CSRs) . 22
3.7. Machine-Level CSRs . 23

3.7.1. Machine ISA Register (misa) . 23
3.7.2. Machine Status Registers (mstatus and mstatush) . 24
3.7.3. Machine Trap-Vector Base-Address Registers (mtvec) . 24
3.7.4. Machine Trap-Vector Base-Address Capability Registers (mtvecc) . 24
3.7.5. Machine Scratch Register (mscratch) . 25
3.7.6. Machine Scratch Register Capability (mscratchc). 25
3.7.7. Machine Exception Program Counter (mepc) . 25
3.7.8. Machine Exception Program Counter Capability (mepcc) . 26
3.7.9. Machine Cause Register (mcause) . 26
3.7.10. Machine Trap Delegation Register (medeleg) . 27
3.7.11. Machine Trap Value Register (mtval) . 27

3.8. Supervisor-Level CSRs . 28
3.8.1. Supervisor Trap Vector Base Address Registers (stvec) . 28
3.8.2. Supervisor Trap Vector Base Address Registers (stvecc) . 28
3.8.3. Supervisor Scratch Register (sscratch) . 29
3.8.4. Supervisor Scratch Registers (sscratchc) . 29
3.8.5. Supervisor Exception Program Counter (sepc) . 29
3.8.6. Supervisor Exception Program Counter Capability (sepcc) . 29
3.8.7. Supervisor Cause Register (scause) . 30
3.8.8. Supervisor Trap Value Register (stval) . 30

3.9. Unprivileged CSRs . 31
3.9.1. Program Counter Capability (pcc) . 31

3.10. CHERI Exception handling . 31
3.11. Physical Memory Attributes (PMA). 32
3.12. Page-Based Virtual-Memory Systems . 32

3.12.1. Invalid Address Handling . 33
4. Integrating Zcheri_purecap with Sdext . 34

4.1. Debug Mode . 34
4.2. Core Debug Registers. 34

4.2.1. Debug Program Counter (dpc) . 34
4.2.2. Debug Program Counter Capability (dpcc) . 34
4.2.3. Debug Scratch Register 0 (dscratch0). 35
4.2.4. Debug Scratch Register 0 (dscratch0c). 35
4.2.5. Debug Scratch Register 1 (dscratch1) . 35
4.2.6. Debug Scratch Register 1 (dscratch1c) . 35

5. "Zcheri_pte" Extension for CHERI Page-Based Virtual-Memory Systems . 36
5.1. Extending the Page Table Entry Format . 36
5.2. Extending the Machine Environment Configuration Register (menvcfg) . 37

6. "Zcheri_legacy" Extension for CHERI Legacy Mode. 39
6.1. CHERI Execution Mode . 39
6.2. Zcheri_legacy Instructions . 40

6.2.1. Capability Load and Store Instructions. 40
6.2.2. Unconditional Capability Jumps . 40

6.3. Existing RISC-V Instructions. 40
6.3.1. Control Transfer Instructions . 40
6.3.2. Conditional Branches . 41
6.3.3. Load and Store Instructions . 41
6.3.4. CSR Instructions . 41

6.4. Integrating Zcheri_legacy with Sdext . 42
6.5. Debug Default Data Capability (dddc). 42
6.6. Disabling CHERI Features. 42
6.7. Added CLEN-wide CSRs. 43

6.7.1. Machine ISA Register (misa) . 43
6.7.2. Machine Status Registers (mstatus and mstatush) . 43
6.7.3. Machine Trap Default Capability Register (mtdc) . 44
6.7.4. Machine Environment Configuration Register (menvcfg) . 44
6.7.5. Supervisor Trap Default Capability Register (stdc) . 44
6.7.6. Supervisor Environment Configuration Register (senvcfg) . 44
6.7.7. Default Data Capability (ddc) . 45

7. "Zcheri_mode" Extension for CHERI Execution Mode . 46
7.1. CHERI Execution Mode . 46
7.2. Zcheri_mode Instructions . 46

7.2.1. Capability Manipulation Instructions . 47
7.2.2. Mode Change Instructions. 47
7.2.3. Unconditional Capability Jumps . 47

7.3. Integrating Zcheri_mode with Sdext . 47
8. RISC-V Instructions and Extensions Reference . 48

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI 49
8.1.1. JALR.PCC. 50
8.1.2. JALR.CAP . 50
8.1.3. CMOVE . 52
8.1.4. CMODESWITCH . 53
8.1.5. CINCOFFSETIMM . 54
8.1.6. CINCOFFSET. 54
8.1.7. CSETADDR. 55
8.1.8. CANDPERM. 56
8.1.9. CSETMODE . 57
8.1.10. CSETHIGH . 58
8.1.11. CSETEQUALEXACT. 59
8.1.12. CSEAL . 60
8.1.13. CTESTSUBSET. 61
8.1.14. CBUILDCAP . 62
8.1.15. CGETTAG . 63
8.1.16. CGETPERM . 64

8.1.17. CGETHIGH . 65
8.1.18. CGETBASE . 66
8.1.19. CGETLEN . 67
8.1.20. CSETBOUNDSIMM . 68
8.1.21. CSETBOUNDS. 68
8.1.22. CSETBOUNDSINEXACT . 69
8.1.23. CRAM . 70
8.1.24. LC . 71
8.1.25. CLC . 71
8.1.26. SC . 73
8.1.27. CSC . 73

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets . 75
8.2.1. AUIPC. 76
8.2.2. AUIPCC . 76
8.2.3. BEQ, BNE, BLT[U], BGE[U] . 77
8.2.4. CJALR . 78
8.2.5. CJAL, JALR . 78
8.2.6. CJAL. 80
8.2.7. CJAL, JAL. 80
8.2.8. CLWU. 81
8.2.9. CLW . 81
8.2.10. CLHU . 81
8.2.11. CLH . 81
8.2.12. CLBU. 81
8.2.13. CLB . 81
8.2.14. LD. 81
8.2.15. LWU . 81
8.2.16. LW . 81
8.2.17. LHU . 81
8.2.18. LH . 81
8.2.19. LBU . 81
8.2.20. LB . 81
8.2.21. CLD. 82
8.2.22. CSW . 84
8.2.23. CSH . 84
8.2.24. CSB . 84
8.2.25. SD . 84
8.2.26. SW . 84
8.2.27. SH . 84
8.2.28. SB . 84
8.2.29. CSD . 85
8.2.30. SRET . 87
8.2.31. MRET . 87

8.2.32. DRET. 88
8.3. "A" Standard Extension for Atomic Instructions . 89

8.3.1. CAMO<OP>.W . 90
8.3.2. CAMO<OP>.D . 90
8.3.3. AMO<OP>.W . 90
8.3.4. CAMO<OP>.W . 91
8.3.5. AMOSWAP.C . 93
8.3.6. CAMOSWAP.C . 93
8.3.7. CLR.D. 95
8.3.8. CLR.W . 95
8.3.9. CLR.H . 95
8.3.10. CLR.B. 95
8.3.11. LR.D . 95
8.3.12. LR.W. 95
8.3.13. LR.H . 95
8.3.14. LR.B . 96
8.3.15. LR.C . 98
8.3.16. CLR.C. 98
8.3.17. CSC.D. 100
8.3.18. CSC.W . 100
8.3.19. CSC.H . 100
8.3.20. CSC.B . 100
8.3.21. SC.D . 100
8.3.22. SC.W . 100
8.3.23. SC.H . 100
8.3.24. SC.B . 101
8.3.25. SC.C . 103
8.3.26. CSC.C . 103

8.4. "Zicsr", Control and Status Register (CSR) Instructions. 105
8.4.1. CSRRW . 106
8.4.2. CSRRWI. 107
8.4.3. CSRRS . 107
8.4.4. CSRRSI . 107
8.4.5. CSRRC . 107
8.4.6. CSRRCI . 108

8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point . 109
8.5.1. CFLD . 110
8.5.2. CFLW . 110
8.5.3. CFLH . 110
8.5.4. FLD . 110
8.5.5. FLW . 110
8.5.6. FLH . 111
8.5.7. CFSD . 113

8.5.8. CFSW . 113
8.5.9. CFSH. 113
8.5.10. FSD . 113
8.5.11. FSW . 113
8.5.12. FSH . 114

8.6. "C" Standard Extension for Compressed Instructions . 116
8.6.1. C.BEQZ, C.BNEZ . 117
8.6.2. C.MV . 118
8.6.3. C.CMOVE . 118
8.6.4. C.ADDI16SP . 119
8.6.5. C.CINCOFFSET16CSP . 119
8.6.6. C.ADDI4SPN. 120
8.6.7. C.CINCOFFSET4CSPN . 120
8.6.8. C.CMODESWITCH . 121
8.6.9. C.JALR . 122
8.6.10. C.CJALR. 122
8.6.11. C.CJR . 123
8.6.12. C.JR . 123
8.6.13. C.JAL . 124
8.6.14. C.CJAL . 124
8.6.15. C.J . 125
8.6.16. C.CJ . 125
8.6.17. C.CLD . 126
8.6.18. C.CLW . 126
8.6.19. C.LD . 126
8.6.20. C.LW . 127
8.6.21. C.CLWSP. 129
8.6.22. C.CLDSP . 129
8.6.23. C.LWSP. 129
8.6.24. C.LDSP . 130
8.6.25. C.FLW . 132
8.6.26. C.FLWSP . 132
8.6.27. C.CFLD . 133
8.6.28. C.FLD. 133
8.6.29. C.CFLDSP . 133
8.6.30. C.FLDSP . 134
8.6.31. C.CLC . 136
8.6.32. C.CLCSP . 136
8.6.33. C.CSD. 137
8.6.34. C.CSW . 137
8.6.35. C.SD . 137
8.6.36. C.SW . 138
8.6.37. C.CSWSP . 140

8.6.38. C.CSDSP. 140
8.6.39. C.SWSP. 140
8.6.40. C.SDSP. 141
8.6.41. C.FSW. 143
8.6.42. C.FSWSP . 143
8.6.43. C.CFSD . 144
8.6.44. C.CFSDSP . 144
8.6.45. C.FSD . 144
8.6.46. C.FSDSP . 145
8.6.47. C.CSC . 147
8.6.48. C.CSC, C.CSCSP . 147

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations . . . 149
8.7.1. CBO.CLEAN . 150
8.7.2. CBO.CLEAN.CAP . 150
8.7.3. CBO.FLUSH . 151
8.7.4. CBO.FLUSH.CAP . 151
8.7.5. CBO.INVAL. 152
8.7.6. CBO.INVAL.CAP. 152
8.7.7. CBO.ZERO. 154
8.7.8. CBO.ZERO.CAP. 154
8.7.9. PREFETCH.I . 156
8.7.10. PREFETCH.I.CAP. 156
8.7.11. PREFETCH.R . 158
8.7.12. PREFETCH.R.CAP . 158
8.7.13. PREFETCH.W . 160
8.7.14. PREFETCH.W.CAP . 160

8.8. "Zba" Extension for Bit Manipulation Instructions . 161
8.8.1. CSH1ADD . 162
8.8.2. CSH2ADD. 162
8.8.3. CSH3ADD . 162
8.8.4. SH1ADD . 162
8.8.5. SH2ADD . 162
8.8.6. SH3ADD . 163
8.8.7. CSH1ADD.UW . 164
8.8.8. CSH2ADD.UW . 164
8.8.9. CSH3ADD.UW . 164
8.8.10. SH1ADD.UW . 164
8.8.11. SH2ADD.UW . 164
8.8.12. SH3ADD.UW . 165
8.8.13. SH4ADD . 166
8.8.14. CSH4ADD . 166
8.8.15. SH4ADD.UW . 167
8.8.16. CSH4ADD.UW. 167

8.9. "Zcb" Standard Extension For Code-Size Reduction . 168
8.9.1. C.CLH. 169
8.9.2. C.CLHU. 169
8.9.3. C.CLBU . 169
8.9.4. C.LH . 169
8.9.5. C.LHU . 169
8.9.6. C.LBU. 170
8.9.7. C.CSH . 172
8.9.8. C.CSB . 172
8.9.9. C.SH . 172
8.9.10. C.CSH, C.CSB, C.SH, C.SB . 173

8.10. "Zcmp" Standard Extension For Code-Size Reduction . 175
8.10.1. CM.PUSH . 176
8.10.2. CM.CPUSH. 176
8.10.3. CM.POP. 178
8.10.4. CM.CPOP . 178
8.10.5. CM.POPRET . 180
8.10.6. CM.CPOPRET . 180
8.10.7. CM.POPRETZ . 182
8.10.8. CM.CPOPRETZ . 182
8.10.9. CM.MVSA01 . 184
8.10.10. CM.CMVSA01 . 184
8.10.11. CM.MVA01S . 185
8.10.12. CM.CMVA01S . 185

8.11. "Zcmt" Standard Extension For Code-Size Reduction . 186
8.11.1. Jump Vector Table CSR (jvt) . 186
8.11.2. Jump Vector Table CSR (jvtc) . 186
8.11.3. CM.JALT . 187
8.11.4. CM.CJALT. 187
8.11.5. CM.JT . 189
8.11.6. CM.CJT . 189

9. Extension summary . 191
9.1. Zbhlrsc . 191
9.2. Zcheri_purecap. 191
9.3. Zcheri_legacy . 194
9.4. Zcheri_mode. 196
9.5. Instruction Modes . 196

10. Capability Width CSR Summary . 202
10.1. Other tables . 203

Bibliography. 207

Preamble


This document is in the Development state

Expect potential changes. This draft specification is likely to evolve before it is accepted as
a standard. Implementations based on this draft may not conform to the future standard.

Preamble | Page 1

RISC-V Specification for CHERI Extensions | © RISC-V

http://riscv.org/spec-state

Copyright and license information
This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-
BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2024 by RISC-V International.

Copyright and license information | Page 2

RISC-V Specification for CHERI Extensions | © RISC-V

https://creativecommons.org/licenses/by/4.0/

Contributors
This RISC-V specification has been contributed to directly or indirectly by:

• Hesham Almatary <hesham.almatary@cl.cam.ac.uk>

• Andres Amaya Garcia <andres.amaya@codasip.com>

• John Baldwin <jhb61@cl.cam.ac.uk>

• David Chisnall <david.chisnall@cl.cam.ac.uk>

• Jessica Clarke <jessica.clarke@cl.cam.ac.uk>

• Brooks Davis <brooks.davis@sri.com>

• Nathaniel Wesley Filardo <nwf20@cam.ac.uk>

• Franz A. Fuchs <faf28@cam.ac.uk>

• Timothy Hutt <timothy.hutt@codasip.com>

• Alexandre Joannou <alexandre.joannou@cl.cam.ac.uk>

• Tariq Kurd <tariq.kurd@codasip.com>

• Ben Laurie <benl@google.com>

• A. Theodore Markettos <theo.markettos@cl.cam.ac.uk>

• David McKay <david.mckay@codasip.com>

• Jamie Melling <jamie.melling@codasip.com>

• Stuart Menefy <stuart.menefy@codasip.com>

• Simon W. Moore <simon.moore@cl.cam.ac.uk>

• Peter G. Neumann <neumann@csl.sri.com>

• Robert Norton <robert.norton@cl.cam.ac.uk>

• Alexander Richardson <alexrichardson@google.com>

• Michael Roe <mr101@cam.ac.uk>

• Peter Rugg <peter.rugg@cl.cam.ac.uk>

• Peter Sewell <peter.sewell@cl.cam.ac.uk>

• Carl Shaw <carl.shaw@codasip.com>

• Robert N. M. Watson <robert.watson@cl.cam.ac.uk>

• Jonathan Woodruff <jonathan.woodruff@cl.cam.ac.uk>

Contributors | Page 3

RISC-V Specification for CHERI Extensions | © RISC-V

mailto:hesham.almatary@cl.cam.ac.uk
mailto:andres.amaya@codasip.com
mailto:jhb61@cl.cam.ac.uk
mailto:david.chisnall@cl.cam.ac.uk
mailto:jessica.clarke@cl.cam.ac.uk
mailto:brooks.davis@sri.com
mailto:nwf20@cam.ac.uk
mailto:faf28@cam.ac.uk
mailto:timothy.hutt@codasip.com
mailto:alexandre.joannou@cl.cam.ac.uk
mailto:tariq.kurd@codasip.com
mailto:benl@google.com
mailto:theo.markettos@cl.cam.ac.uk
mailto:david.mckay@codasip.com
mailto:jamie.melling@codasip.com
mailto:stuart.menefy@codasip.com
mailto:simon.moore@cl.cam.ac.uk
mailto:neumann@csl.sri.com
mailto:robert.norton@cl.cam.ac.uk
mailto:alexrichardson@google.com
mailto:mr101@cam.ac.uk
mailto:peter.rugg@cl.cam.ac.uk
mailto:peter.sewell@cl.cam.ac.uk
mailto:carl.shaw@codasip.com
mailto:robert.watson@cl.cam.ac.uk
mailto:jonathan.woodruff@cl.cam.ac.uk

Chapter 1. Introduction

1.1. CHERI Concepts and Terminology
Current CPU architectures (including RISC-V) allow memory access solely by specifying and
dereferencing a memory address stored as an integer value in a register or in memory. Any accidental
or malicious action that modifies such an integer value can result in unrestricted access to the
memory that it addresses. Unfortunately, this weak memory protection model has resulted in the
majority of software security vulnerabilities present in software today.

CHERI enables software to efficiently implement fine-grained memory protection and scalable
software compartmentalization by providing strong, efficient hardware mechanisms to support
software execution and enable it to prevent and mitigate vulnerabilities.

Design goals include incremental adoptability from current ISAs and software stacks, low
performance overhead for memory protection, significant performance improvements for software
compartmentalization, formal grounding, and programmer-friendly underpinnings. It has been
designed to provide strong, non-probabilistic protection rather than depending on short random
numbers or truncated cryptographic hashes that can be leaked and reinjected, or that could be brute
forced.

CHERI enhances the CPU to add hardware memory access control. It has an additional memory access
mechanism that protects references to code and data (pointers), rather than the location of code and data
(integer addresses). This mechanism is implemented by providing a new primitive, called a capability,
that software components can use to implement strongly protected pointers within an address space.

Capabilities are unforgeable and delegatable tokens of authority that grant software the ability to
perform a specific set of operations. In CHERI, integer-based pointers can be replaced by capabilities
to provide memory access control. In this case, a memory access capability contains an integer
memory address that is extended with metadata to protect its integrity, limit how it is manipulated,
and control its use. This metadata includes:

• an out-of-band tag implementing strong integrity protection (differentiating valid and invalid
capabilities), This prevents confusion between data and capabilities.

• bounds limiting the range of addresses that may be dereferenced

• permissions controlling the specific operations that may be performed

• sealing which is used to support higher-level software encapsulation

The CHERI model is motivated by the principle of least privilege, which argues that greater security can
be obtained by minimizing the privileges accessible to running software. A second guiding principle is
the principle of intentional use, which argues that, where many privileges are available to a piece of
software, the privilege to use should be explicitly named rather than implicitly selected. While CHERI
does not prevent the expression of vulnerable software designs, it provides strong vulnerability
mitigation: attackers have a more limited vocabulary for attacks, and should a vulnerability be
successfully exploited, they gain fewer rights, and have reduced access to further attack surfaces.

Protection properties for capabilities include the ISA ensuring that capabilities are always derived via
valid manipulations of other capabilities (provenance), that corrupted in-memory capabilities cannot
be dereferenced (integrity), and that rights associated with capabilities shall only ever be equal or less
permissive (monotonicity).Tampering or modifying capabilities in an attempt to elevate their rights will

1.1. CHERI Concepts and Terminology | Page 4

RISC-V Specification for CHERI Extensions | © RISC-V

yield an invalid capability as the tag will be cleared. Attempting to dereference via an invalid
capability will result in a hardware exception.

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and dereferenced
using CHERI-aware instructions that expect capability operands rather than integer addresses. On
hardware reset, initial capabilities are made available to software via special and general-purpose
capability registers. All other capabilities will be derived from these initial valid capabilities through
valid capability transformations.

Developers can use CHERI to build fine-grained spatial and temporal memory protection into their
system software and applications and significantly improve their security.

1.2. CHERI Extensions to RISC-V
This specification is based on publicly available documentation including (Watson et al., 2023) and
(Woodruff et al., 2019). It defines the following extensions to support CHERI alongside RISC-V:

Zcheri_purecap
Introduces key, minimal CHERI concepts and features to the RISC-V ISA. The resulting extended
ISA is not backwards-compatible with RISC-V

Zcheri_legacy
Extends Zcheri_purecap with features to ensure that the ISA extended with CHERI allows
backwards binary compatibility with RISC-V

Zcheri_mode
Adds a mode bit in the encoding of capabilities to allow changing the current CHERI execution
mode using indirect jump instructions

Zcheri_pte
CHERI extension for RISC-V harts supporting page-based virtual-memory

Zcheri_vectorcap
CHERI extension for the RISC-V Vector (V) extension. It adds support for storing CHERI
capabilities in vector registers, intended for vectorised memory copying

 The extension names are provisional and subject to change.

Zcheri_purecap is defined as the base extension which all CHERI RISC-V implementations must
support. Zcheri_legacy, Zcheri_mode and Zcheri_pte are optional extensions in addition to
Zcheri_purecap. Zcheri_mode requires supporting both Zcheri_purecap and Zcheri_legacy.

If a standard vector extension is present (indicated in this document as "V", but it could equally be one
of the subsets defined by a Zve* extension) then Zcheri_vectorcap may optionally be added in
addition to Zcheri_purecap.

We refer to software as purecap if it utilizes CHERI capabilities for all memory accesses — including
loads, stores and instruction fetches — rather than integer addresses. Purecap software requires the
CHERI RISC-V hart to support Zcheri_purecap. We refer to software as hybrid if it uses integer
addresses or CHERI capabilities for memory accesses. Hybrid software requires the CHERI RISC-V
hart to support Zcheri_purecap, Zcheri_legacy and Zcheri_mode.

1.2. CHERI Extensions to RISC-V | Page 5

RISC-V Specification for CHERI Extensions | © RISC-V

See Chapter 8 for compatibility with other RISC-V extensions.

1.3. Risks and Known Uncertainty
• All extensions could be divided up differently in future, including after ratification

• The RISC-V Architecture Review Committee (ARC) are likely to update all encodings

• The ARC are likely to update all CSR addresses

• Instruction mnemonics may be renamed

◦ The instruction mnemonics could be the same regardless of CHERI mode

◦ Any changes will affect assembly code, but assembler aliases can provide backwards
compatibility

• There is no clarity on how the new Page Table Entry (PTE) bits from Zcheri_pte will be
implemented

◦ The PTE bits introduce a dependency between exceptions and the stored tag bit

• There is debate on whether different permission encodings are needed for XLENMAX=32 and
XLENMAX=64

1.3.1. Pending Extensions

The base RISC-V ISAs, along with most extensions, have been reviewed for compatibility with CHERI.
However, the following extensions are yet to be reviewed:

• "V" Standard Extension for Vector Operations

• "H" Hypervisor Extension

• Core-Local Interrupt Controller (CLIC)

 The list above is not complete!

1.3.2. Incompatible Extensions

There are RISC-V extensions in development that may duplicate some aspects of CHERI functionality
or directly conflict with CHERI and should not be available on a CHERI-enabled hart. These include:

• RISC-V CFI specification

• "J" Pointer Masking

 The list above is not complete!

1.3.3. Suggested Mnemonic Renaming

Table 1 lists the currently proposed renames. Please update the table when new renames are proposed
or confirmed.

Current Name Suggestion

CMOVE CMV

CINCOFFSET CADD

CINCOFFSETIMM CADDI

1.3. Risks and Known Uncertainty | Page 6

RISC-V Specification for CHERI Extensions | © RISC-V

Current Name Suggestion

C.CINCOFFSET16CSP C.CADDI16SP

C.CINCOFFSET4CSPN C.CADDI4SPN

CLC/LC CLCAP/LCAP

CSC/SC CSCAP/SCAP

Table 1. Suggested instruction names


Renaming SC is not a choice. The store capability instruction must be renamed because it
conflicts with store conditional from the RISC-V A extension.

Further to the new proposed mnemonics in Table 1, the following general proposals have been
discussed:

• Do not use the letter 'c' to indicate 'capability' or 'CHERI' because this conflicts with the already
ratified RISC-V C extension

◦ We previously discussed using other letters like 'p' for 'pointer' or 'f' for 'fat pointer' although 'f' is
already used for floating point

• Do not change instruction mnemonics based on the current CHERI execution mode

◦ For example, LW is always load word regardless of the CHERI mode, so the mnemonic CLW
disappears

◦ This facilitates writing the ISA specification as well as code maintenance in systems software
like Linux

◦ However, it also goes against intentionality and can make assembly code (which occurs very
infrequently in real-world code) more difficult to understand without additional context

◦ Both options could be supported by using assembler aliases

1.3. Risks and Known Uncertainty | Page 7

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 2. Anatomy of Capabilities in
Zcheri_purecap
RISC-V defines variants of the base integer instruction set characterized by the width of the integer
registers and the corresponding size of the address space. There are two primary ISA variants, RV32I
and RV64I, which provide 32-bit and 64-bit address spaces respectively. The term XLEN refers to the
width of an integer register in bits (either 32 or 64). The value of XLEN may change dynamically at
run-time depending on the values written to CSRs, so we define XLENMAX to be widest XLEN that the
implementation supports.

Zcheri_purecap defines capabilities of size CLEN corresponding to 2 * XLENMAX without including
the tag bit. The value of CLEN is always calculated based on XLENMAX regardless of the effective
XLEN value.

2.1. Components of a Capability
Capabilities contain the software accessible fields described in this section.

2.1.1. Tag

An additional hardware managed bit added to addressable memory and registers. It is stored
separately and may be referred to as "out of band". It indicates whether a register or CLEN-aligned
memory location contains a valid capability. If the tag is set, the capability is valid and can be
dereferenced (contingent on checks such as permissions or bounds).

The capability is invalid if the tag is clear. Using an invalid capability to dereference memory or
authorize any operation gives rise to exceptions. All capabilities derived from invalid capabilities are
themselves invalid i.e. their tags are 0.

All locations in registers or memory able to hold a capability are CLEN+1 bits wide including the tag
bit. Those locations are referred as being CLEN-bit or capability wide in this specification.

2.1.2. Architectural Permissions (AP)

 CHERI v9 Note: The permissions are encoded differently in this specification.

This field encodes architecturally defined permissions of the capability. Permissions grant access
subject to the tag being set, the capability being unsealed (see Section 2.1.4), and bounds checks (see
Section 2.1.5). An operation is also contingent on requirements imposed by other RISC-V architectural
features, such as virtual memory, PMP and PMAs, even if the capability grants sufficient permissions.
The permissions currently defined in Zcheri_purecap are listed in below.

Read Permission (R)
Allow reading integer data from memory. Tags are always read as zero when reading integer data.

Write Permission (W)
Allow writing integer data to memory. Tags are always written as zero when writing integer data.
Every CLEN aligned word in memory has a tag, if any byte is overwritten with integer data then the
tag for all CLEN-bits is cleared.

2.1. Components of a Capability | Page 8

RISC-V Specification for CHERI Extensions | © RISC-V

Capability Permission (C)
Allow reading capability data from memory if the authorising capability also grants R-permission.
Allow writing capability data to memory if the authorising capability also grants W-permission.

Execute Permission (X)
Allow instruction execution.

Access System Registers Permission (ASR)
Allow access to privileged CSRs.

Permission Encoding

The bit width of the permissions field depends on the value of XLENMAX as shown in Table 2. A 4-bit
vector encodes the permissions when XLENMAX=32. For this case, the legal encodings of permissions
are listed in Table 3. Certain combinations of permissions are impractical. For example, C-permission
is superfluous when the capability does not grant either R-permission or W-permission. Therefore, it
is only possible to encode a subset of all combinations.

XLENMAX Permissions width

32 4

64 5

Table 2. Permissions widths depending on XLENMAX

Encoding R W C X ASR

0b0000

0b0001 reserved

0b0010 ✔

0b0011 ✔ ✔

0b0100 ✔

0b0101 ✔ ✔

0b0110 ✔ ✔

0b0111 ✔ ✔ ✔

0b1000 ✔ ✔

0b1001 ✔ ✔ ✔

0b1010 ✔ ✔ ✔

0b1011 ✔ ✔ ✔ ✔

0b1100 ✔ ✔ ✔

0b1101 ✔ ✔ ✔ ✔

0b1110 ✔ ✔ ✔ ✔

0b1111 ✔ ✔ ✔ ✔ ✔

Table 3. Encoding of architectural permissions for XLENMAX=32

The encoding in Table 3 is chosen to facilitate hardware implementations. Therefore, it can be worked
out if the permissions are granted as follows:

• C-permission: bit 0 is set

• W-permission: bit 1 is set

• X-permission: bit 3 is set

• R-permission: bits 3 or 2 are set

2.1. Components of a Capability | Page 9

RISC-V Specification for CHERI Extensions | © RISC-V

• ASR-permission: bits 3 and 2 are set

A 5-bit vector encodes the permissions when XLENMAX=64. In this case, there is a bit per permission
as shown in Table 4. A permission is granted if its corresponding bit is set, otherwise the capability
does not grant that permission.

Bit Name

0 C-permission

1 W-permission

2 R-permission

3 X-permission

4 ASR-permission

Table 4. Encoding of architectural permissions for XLENMAX=64

 TODO: Confirm that we need a separate permissions format for 32-bit and 64-bit.


Valid capabilities must not have the permissions field set to a reserved value according to
Table 3 when XLENMAX=32.

2.1.3. Software-Defined Permissions (SDP)

 CHERI v9 Note: CHERI v9 had no software-defined permissions for RV32

A bit vector used by the kernel or application programs for software-defined permissions (SDP).



Software is completely free to define the usage of these bits. For example, a program may
decide to use an SDP bit to indicate the "ownership" of objects. Therefore, a capability
grants permission to free the memory it references if that SDP bit is set because it "owns"
that object.

XLENMAX SDP width

32 2

64 4

Table 5. SDP widths depending on XLENMAX

2.1.4. Sealed (S) Bit


CHERI v9: The sealing bit is new (1-bit otype) and the old CHERI v9 otype no longer
exists.

Indicates that a capability is sealed if the bit is 1 or unsealed if it is 0. Sealed capabilities cannot be
dereferenced to access memory and are immutable such that modifying any of its fields clears the tag
of the output capability.

In Zcheri_purecap, the sealing bit is used to implement immutable capabilities that describe function
entry points. A program may jump to a sealed capability to begin executing the instructions it
references. The jump instruction automatically unseals the capability and installs it to the program
counter capability (see Section 3.2). The CJALR instruction also seals the return address capability (if
any) since it is the entry point to the caller function.

2.1. Components of a Capability | Page 10

RISC-V Specification for CHERI Extensions | © RISC-V

2.1.5. Bounds


CHERI v9 Note: The bounds mantissa width is different in XLENMAX=32. Also, the old
IE bit is renamed to Exponent Format (EF); the function of IE is the inverse of EF i.e. IE=0
has the same effect as EF=1.

 CHERI v9 Note: The mantissa width for RV32 was increased to 10.


CHERI v9 Note: The sense of the exponent is reversed, so an encoded value of 0
represents CAP_MAX_E, and CAP_MAX_E represents 0 from the previous specification.

The bounds encode the base and top addresses that constrain memory accesses. The capability can be
used to access any memory location A in the range base ≤ A < top. The bounds are encoded in
compressed format, so it is not possible to encode any arbitrary combination of base and top
addresses. An invalid capability with tag cleared is produced when attempting to construct a capability
that is not representable because its bounds cannot be correctly encoded. The bounds are decoded as
described in Section 2.2.

The bounds field has the following components:

• T: Value substituted into the capability’s address to decode the top address

• B: Value substituted into the capability’s address to decode the base address

• E: Exponent that determines the position at which B and T are substituted into the capability’s
address

• EF: Exponent format flag indicating the encoding for T, B and E

◦ The exponent is stored in T and B if EF=0, so it is 'internal'

◦ The exponent is zero if EF=1, so it is 'embedded'

The bit width of T and B are defined in terms of the mantissa width (MW) which is set depending on
the value of XLENMAX as shown in Table 6.

XLENMAX MW

32 10

64 14

Table 6. Mantissa width (MW) values depending on XLENMAX

The exponent E indicates the position of T and B within the capability’s address as described in
Section 2.2. The bit width of the exponent (EW) is set depending on the value of XLENMAX. The
maximum value of the exponent is calculated as follows:

CAP_MAX_E = XLENMAX - MW + 2

The possible values for EW and CAP_MAX_E are shown in Table 7.

XLENMAX EW CAP_MAX_E

32 5 24

64 6 52

Table 7. Exponent widths and CAP_MAX_E depending on XLENMAX

 The address and bounds must be representable in valid capabilities i.e. when the tag is set

2.1. Components of a Capability | Page 11

RISC-V Specification for CHERI Extensions | © RISC-V

(see Section 2.5).

2.1.6. Address

XLENMAX integer value that encodes the byte-address of a memory location.

XLENMAX Address width

32 32

64 64

Table 8. Address widths depending on XLENMAX

2.1.7. Reserved Bits

Reserved bits available for future extensions to Zcheri_purecap.

 Reserved bits must be 0 in valid capabilities.

2.2. Capability Encoding



CHERI v9 Note: The encoding changes eliminate the concept of the in-memory format,
and also increase precision for RV32. When EF=0, T and B are now shifted right rather
than left within the address. Also, the bounds decoding for XLENMAX=32 uses a trick (see
bit T8) to save one bit when encoding the exponent.

The components of a capability are encoded as shown in Figure 1 and Figure 2 when XLENMAX=32
and XLENMAX=64 respectively.

31 30 29 26 25 21 20 19 18 17 12 11 10 9 2 1 0

SDP AP Reserved S EFT8 T[7:2] TE B[9:2] BE

Address

32

Figure 1. Capability encoding when XLENMAX=32

63 57 56 53 52 48 47 28 27 26 25 17 16 14 13 3 2 0

Reserved SDP AP Reserved S EF T[11:3] TE B[13:3] BE

Address

64

Figure 2. Capability encoding when XLENMAX=64

Each memory location or register able to hold a capability must also store the tag as out of band
information that software cannot directly set or clear. The capability metadata is held in the most
significant bits and the address is held in the least significant bits.

The metadata is encoded in a compressed format (Woodruff et al., 2019). It uses a floating point
representation to encode the bounds relative to the capability address. The base and top addresses
from the bounds are decoded as shown below.

2.2. Capability Encoding | Page 12

RISC-V Specification for CHERI Extensions | © RISC-V


TODO: The pseudo-code below does not have a formal notation. It is simply a place-holder
while the Sail implementation is available. In this notation, / means "integer division", []
are the bit-select operators, and arithmetic is signed.

EW = (XLENMAX == 32) ? 5 : 6
CAP_MAX_E = XLENMAX - MW + 2

If EF = 1:
 E = 0
 T[EW / 2 - 1:0] = TE
 B[EW / 2 - 1:0] = BE
 LCout = (T[MW - 3:0] < B[MW - 3:0]) ? 1 : 0
 LMSB = (XLENMAX == 32) ? T8 : 0
else:
 E = CAP_MAX_E - ((XLENMAX == 32) ? { T8, TE, BE } : { TE, BE })
 T[EW / 2 - 1:0] = 0
 B[EW / 2 - 1:0] = 0
 LCout = (T[MW - 3:EW / 2] < B[MW - 3:EW / 2]) ? 1 : 0
 LMSB = 1

Reconstituting the top two bits of T:

T[MW - 1:MW - 2] = B[MW - 1:MW - 2] + LCout + LMSB

Decoding the bounds:

top: t = { a[XLENMAX - 1:E + MW] + ct, T[MW - 1:0] , {E{1'b0}} }
base: b = { a[XLENMAX - 1:E + MW] + cb, B[MW - 1:0] , {E{1'b0}} }

The corrections ct and cb are calculated as as shown below using the definitions in Table 9 and Table
10.

Ac = a[E + MW - 1:E + MW - 3]
Bc = B[MW - 1:MW - 3]
Tc = T[MW - 1:MW - 3]
R = Bc - 1

Ac < R Tc < R ct

false false 0

false true +1

true false -1

true true 0

Table 9. Calculation of top address correction

Ac < R Bc < R cb

false false 0

false true +1

true false -1

true true 0

Table 10. Calculation of base address correction

The base, b, and top, t, addresses are derived from the address by substituting a[E + MW - 1:E] with B
and T respectively and clearing the lower E bits. The most significant bits of a may be adjusted up or

2.2. Capability Encoding | Page 13

RISC-V Specification for CHERI Extensions | © RISC-V

down by 1 using corrections cb and ct to allow encoding memory regions that span alignment
boundaries.

The EF bit selects between two cases:

1. EF = 1: The exponent is 0 for regions less than 2MW-2 bytes long

2. EF = 0: The exponent is internal with E stored in the lower bits of T and B along with T8 when
XLENMAX=32. E is chosen so that the most significant non-zero bit of the length of the region
aligns with T[MW - 2] in the decoded top. Therefore, the most significant two bits of T can be
derived from B using the equality T = B + L, where L[MW - 2] is known from the values of EF and
E and a carry out is implied if T[MW - 3:0] < B[MW - 3:0] since it is guaranteed that the top is
larger than the base.

The compressed bounds encoding allows the address to roam over a large representable region while
maintaining the original bounds. This relies on using the 'spare' encodings where T < B to define a
space boundary R, relative to the base, calculated by subtracting 1 from the top three bits of B. If B, T or
a[E + MW - 1:E] is less than R, it is inferred that they lie in the 2E+MW aligned region above R labelled
spaceU in Figure 3 and the corrections ct and cb are computed accordingly. The overall effect is that at
least 2E+MW/8 bytes below the base address and 2E+MW/4 bytes above the top address can roam out-of-
bounds while still allowing the bounds to be correctly decoded.

Figure 3. Memory address bounds encoded within a capability

A capability whose bounds cover the entire address space has 0 base and top equals 2XLENMAX, i.e. t is a
XLENMAX + 1 bit value. However, b is a XLENMAX bit value and the size mismatch introduces
additional complications when decoding, so the following condition is required to correct t for
capabilities whose representable region wraps the edge of the address space:

if ((E < (CAP_MAX_E - 1)) & (t[XLENMAX: XLENMAX - 1] - b[XLENMAX - 1] > 1))
 t[XLENMAX] = !t[XLENMAX]

That is, invert the most significant bit of t if the decoded length of the capability is larger than E.

2.2. Capability Encoding | Page 14

RISC-V Specification for CHERI Extensions | © RISC-V

2.3. NULL and Infinite Capabilities


CHERI v9 Note: Encoding NULL as zeros removes the need for the difference between in-
memory and architectural format.

The NULL capability is represented with 0 in all fields. This implies that NULL has no permissions
and its exponent E is CAP_MAX_E e.g. 52 when XLENMAX=64, so its bounds cover the entire address
space such that the expanded base is 0 and top is 2XLENMAX. In contrast, the Infinity capability grants all
permissions while its bounds also cover the whole address space.

 The Infinity capability is also known as 'default', 'almighty', or 'root' capability.

Field Value Comment

SDP zeros Grants no permissions

AP zeros Grants no permissions

S zero Unsealed

EF zero Internal exponent format

T8 zeros Top address bit (XLENMAX=32 only)

T zeros Top address bits

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address zeros Capability address

Table 11. Field values of the NULL capability

Field Value Comment

SDP ones Grants all permissions

AP ones Grants all permissions

S zero Unsealed

EF zero Internal exponent format

T8 zeros Top address bit (XLENMAX=32 only)

T zeros Top address bits

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address zeros Capability address

Table 12. Field values of the Infinite capability

2.4. Representable Limit Check
Pointer arithmetic on capabilities must be checked to ensure that the new address is within the
capability’s representable region described in Section 2.2. The new address, after pointer arithmetic, is
within the representable region if decompressing the capability’s bounds with the original and new
addresses yields the same base and top addresses. In other words, given a capability with address a and
the new address a' = a + x, the bounds b and t are decoded using a and the new bounds b' and t' are
decoded using a'. The new address is within the capability’s representable region if b == b' && t ==
t'.

Changing a capability’s address to a value outside the representable region unconditionally clears the
capability’s tag.

2.3. NULL and Infinite Capabilities | Page 15

RISC-V Specification for CHERI Extensions | © RISC-V



The encoding of the bounds depends upon the leading 1 of the address which is used to
determine the exponent. If the leading 1 of the address moves then the bounds will need to
be recalculated. Instructions like CINCOFFSET and CSETADDR update the address field
but do not recalculate the bounds. Therefore, if the leading 1 moves relative to when the
bounds were calculated then the tag is cleared on the result as the encoding has been
invalidated.

2.5. Malformed Capability Bounds
A capability is malformed if its encoding does not describe a valid capability because its bounds cannot
be correctly decoded. The following check indicates whether a capability is malformed.

malformedMSB = (E == CAP_MAX_E && B[MW - 1:MW - 2] != 0)
 || (E == CAP_MAX_E - 1 && B[MW - 1] != 0)
malformedLSB = (E < 0)
malformed = !EF && (malformedMSB || malformedLSB)

 The check is for malformed bounds, so it does not include reserved bits!

Capabilities with malformed bounds are always invalid anywhere in the system i.e. their tags are
always 0.

2.5. Malformed Capability Bounds | Page 16

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 3. Integrating Zcheri_purecap
with the RISC-V Base Integer Instruction
Set
Zcheri_purecap is an extension to the RISC-V ISA. The extension adds a carefully selected set of
instructions and CSRs that are sufficient to implement new security features in the ISA. To ensure
compatibility, Zcheri_purecap also requires some changes to the primary base integer variants:
RV32I, providing 32-bit addresses with 64-bit capabilities, and RV64I, providing 64-bit addresses with
128-bit capabilities. The remainder of this chapter describes these changes for both the unprivileged
and privileged components of the base integer RISC-V ISAs.


The changes described in this specification also ensure that Zcheri_purecap is compatible
with RV32E.

3.1. Memory
A hart supporting Zcheri_purecap has a single byte-addressable address space of 2XLEN bytes for all
memory accesses. Each memory region capable of holding a capability also stores a tag bit for each
naturally aligned CLEN bits (e.g. 16 bytes in RV64), so that capabilities with their tag set can only be
stored in naturally aligned addresses. Tags must be atomically bound to the data they protect.

The memory address space is circular, so the byte at address 2XLEN - 1 is adjacent to the byte at address
zero. A capability’s representable region described in Section 2.2 is also circular, so address 0 is within
the representable region of a capability where address 2XLENMAX - 1 is within the bounds.

3.2. Programmer’s Model for Zcheri_purecap
For Zcheri_purecap, the 32 unprivileged x registers of the base integer ISA are extended so that they
are able to hold a capability. Therefore, each x register is CLEN bits wide and has an out of band tag
bit. The x notation refers to the address field of the capability in an unprivileged register while the c
notation is used to refer to the full capability (i.e. address, metadata and tag) held in the same
unprivileged register.

Register c0 is hardwired with all bits, including the capability metadata and tag, equal to 0. In other
words, c0 is hardwired to the NULL capability.

An authorising capability with appropriate permissions is required to execute instructions in
Zcheri_purecap. Therefore, the unprivileged program counter (pc) register is extended so that it is
able to hold a capability. The extended register is called the program counter capability (pcc). The pcc
address field is effectively the pc in the base RISC-V ISA that the hardware automatically increments
as instructions are executed. The pcc's metadata and tag are reset to the Infinity capability metadata
and tag.

The hardware performs the following checks on pcc for each instruction executed in addition to the
checks already required by the base RISC-V ISA. A failing check causes a CHERI exception.

• The tag must be set

• The capability must not be sealed

3.1. Memory | Page 17

RISC-V Specification for CHERI Extensions | © RISC-V

• The capability must grant execute permission

• All bytes of the instruction must be in bounds

3.3. Capability Instructions



CHERI v9 Note: Some instructions from the original CHERI specification were removed
to save encoding space, or because they relate to features which are not yet in this
specification. Instructions were removed if they do not harm performance and can be
emulated using other instructions.

Zcheri_purecap introduces new instructions to the base RISC-V integer ISA to inspect and operate on
capabilities held in registers.

3.3.1. Capability Inspection Instructions

These instructions allow software to inspect the fields of a capability held in a c register. The output is
an integer value written to an x register representing the decoded field of the capability, such as the
permissions or bounds. These instructions do not cause exceptions.

• CGETTAG: inspects the tag of the input capability. The output is 1 if the tag is set and 0 otherwise

• CGETPERM: outputs the architectural (AP) and software-defined (SDP) permission fields of the
input capability

• CGETBASE: outputs the expanded base address of the input capability

• CGETLEN: outputs the length of the input capability. Length is defined as top - base. The output
is 2XLEN-1 when the capability’s length is 2XLENMAX

• CRAM: outputs the nearest bounds alignment that a valid capability can represent

• CGETHIGH: outputs the compressed capability metadata

• CSETEQUALEXACT: compares two capabilities including tag, metadata and address

• CTESTSUBSET: tests whether the bounds and permissions of a capability are a subset of those
from another capability


CGETBASE and CGETLEN output 0 when a capability with malformed bounds is provided
as an input (see Section 2.5).

3.3.2. Capability Manipulation Instructions

These instructions allow software to manipulate the fields of a capability held in a c register. The
output is a capability written to a c register with its fields modified. The output capability has its tag
set to 0 if the input capability did not have a tag set, the output capability has more permissions or
larger bounds compared to the input capability, or the operation results in a capability with
malformed bounds. These instructions do not give rise to exceptions.

• CSETADDR: set the address of a capability to an arbitrary address

• CINCOFFSET, CINCOFFSETIMM: increment the address of the input capability by an arbitrary
offset

• CSETHIGH: replace a capability’s metadata with an arbitrary value. The output tag is always 0

• CANDPERM: bitwise AND of a mask value with a bit map representation of the architectural (AP)

3.3. Capability Instructions | Page 18

RISC-V Specification for CHERI Extensions | © RISC-V

and software-defined (SDP) permissions fields

• CSETBOUNDS: set the base and length of a capability. The tag is cleared, if the encoding cannot
represents the bounds exactly

• CSETBOUNDSINEXACT: set the base and length of a capability. The base will be rounded down
and/or the length will be rounded up if the encoding cannot represent the bounds exactly

• CSEAL: seal capability

• CBUILDCAP: replace the base, top, address, permissions and mode fields of a capability with the
fields from another capability

• CMOVE: move a capability from a c register to another c register


CBUILDCAP outputs a capability with tag set to 0 if the input capability’s bounds are
malformed.


CHERI v9 Note: CSETBOUNDS and CSETBOUNDSIMM perform the role of the old
CSETBOUNDSEXACT while the new CSETBOUNDSINEXACT is the old CSETBOUNDS.

3.3.3. Capability Load and Store Instructions

A load capability instruction, CLC, reads CLEN bits from memory together with its tag and writes the
result to a c register. The capability authorising the memory access is provided in a c source register,
so the effective address is obtained by incrementing that capability with the sign-extended 12-bit
offset.

A store capability instruction, CSC, writes CLEN bits and the tag in a c register to memory. The
capability authorising the memory access is provided in a c source register, so the effective address is
obtained by incrementing that capability with the sign-extended 12-bit offset.

CLC and CSC instructions cause CHERI exceptions if the authorising capability fails any of the
following checks:

• The tag is zero

• The capability is sealed

• At least one byte of the memory access is outside the capability’s bounds

• For loads, the read permission must be set in AP

• For stores, the write permission must be set in AP

Capability load and store instructions also cause load or store/AMO address misaligned exceptions if
the address is not naturally aligned to a CLEN boundary.

For loads, the tag of the capability loaded from memory is cleared if the authorising capability does
not grant permission to read capabilities (i.e. both R-permission and C-permission must be set in AP).
For stores, the tag of the capability written to memory is cleared if the authorising capability does not
grant permission to write capabilities (i.e. both W-permission and C-permission must be set in AP).


TODO: these cases may cause exceptions in the future - we need a way for software to
discover and/or control the behaviour

3.3. Capability Instructions | Page 19

RISC-V Specification for CHERI Extensions | © RISC-V

3.3.4. Unconditional Integer Address Jumps

The indirect jump and link pcc (JALR.PCC) instruction allows unconditional jumps to a target address.
The target address is provided in an x register; the new address is installed in the address field of the
pcc. The address of the instruction following the jump (pc + 4) is written to an x register. JALR.PCC
causes an exceptions when a minimum sized instruction at the target address is not within the bounds
of the pcc or the target address is misaligned.


CHERI v9 Note: This instruction is now modal and shares the same encoding with
JALR.CAP when both Zcheri_purecap and Zcheri_legacy are supported.

3.4. Existing RISC-V Instructions
The operands or behavior of some instructions in the base RISC-V ISA changes in Zcheri_purecap.

3.4.1. Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in x registers. Therefore,
these instructions only operate on the address field if the input register of the instruction holds a
capability. The output is XLEN bits written to an x register; the tag and capability metadata of that
register are zeroed.

The add upper immediate to pcc instruction (AUIPCC) replaces the add upper immediate to pc
instruction (AUIPC) at the same encoding. AUIPCC is used to build pcc-relative capabilities. AUIPCC
forms a 32-bit offset from the 20-bit immediate and filling the lowest 12 bits with zeros. The pcc
address is then incremented by the offset and a representability check is performed so the capability’s
tag is cleared if the new address is outside the pcc's representable region. The resulting CLEN value
along with the new tag are written to a c register.

3.4.2. Control Transfer Instructions

Control transfer instructions operate as described in the base RISC-V ISA. They also may cause
metadata updates and/or cause exceptions in addition to the base behaviour as described below.

Unconditional Jumps

The capability jump and link (CJAL) instruction replaces jump and link (JAL) at the same encoding.
CJAL sign-extends the offset and adds it to the address of the jump instruction to form the target
address. The target address is installed in the address field of pcc. The capability with the address of
the instruction following the jump (pcc + 4) is written to a c register.

The capability jump and link register (CJALR) instruction replaces the jump and link register (JALR)
instruction at the same encoding. This instruction allows unconditional jumps to a target capability.
The target capability is obtained by incrementing the capability in the c register operand by the sign-
extended 12-bit immediate, then setting the least significant bit of the result to zero. The capability
with the address of the instruction following the jump (pcc + 4) is written to a c register.

All jumps cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc.

CJALR causes a CHERI exception when:

3.4. Existing RISC-V Instructions | Page 20

RISC-V Specification for CHERI Extensions | © RISC-V

• The target capability’s tag is zero

• A minimum sized instruction at the target capability’s address is not within bounds

• The target capability does not grant execute permission

CJAL and CJALR can also cause instruction address misaligned exceptions following the standard
RISC-V rules for JAL and JALR.

Conditional Branches

Branch instructions (see Conditional branches (BEQ, BNE, BLT[U], BGE[U])) encode signed offsets in
multiples of 2 bytes. The offset is sign-extended and added to the address of the branch instruction to
form the target address.

Branch instructions compare two x registers as described in the base RISC-V ISA, so the metadata and
tag values are disregarded in the comparison if the operand registers hold capabilities. If the
comparison evaluates to true, then the target address is installed in the pcc's address field. These
instructions cause CHERI exceptions when a minimum sized instruction at the target address is not
within the pcc's bounds.

3.4.3. Integer Load and Store Instructions

Integer load and store instructions transfer the amount of integer data described in the base RISC-V
ISA between the registers and memory. For example, LD and LW load 64-bit and 32-bit values
respectively from memory into an x register. However, the address operands for load and store
instructions are interpreted differently in Zcheri_purecap: the capability authorising the access is in
the c register operand and the memory address is given by incrementing the address of that capability
by the sign-extended 12-bit immediate offset. For clarity, the mnemonics of these instructions are
prefixed with the letter 'C' (e.g. LD becomes CLD, SW becomes CSW, etc) to distinguish them from the
standard RISC-V instructions that do not have a c register operand.

All load and store instructions cause CHERI exceptions if the authorising capability fails any of the
following checks:

• The tag is set

• The capability is unsealed

• All bytes of accessed memory are inside the capability’s bounds

• For loads, the read permission must be set in AP

• For stores, the write permission must be set in AP

Integer load instructions always zero the tag and metadata of the result register.

Integer stores write zero to the tag associated with the memory locations that are naturally aligned to
CLEN. Therefore, misaligned stores may clear up to two tag bits in memory.

3.5. Zicsr, Control and Status Register (CSR)
Instructions
Zcheri_purecap requires that RISC-V CSRs intended to hold addresses, like mtvec, are now able to
hold capabilities. Therefore, such registers are removed in Zcheri_purecap and analogous CLEN-bit

3.5. Zicsr, Control and Status Register (CSR) Instructions | Page 21

RISC-V Specification for CHERI Extensions | © RISC-V

versions of those CSRs are added to the ISA as described in Section 3.6.

Reading or writing any part of a CLEN-bit CSR may cause side-effects. For example, the CSR’s tag bit
may be cleared if a new address is outside the representable region of a CSR capability being written.

This section describes how the CSR instructions operate on these CSRs in Zcheri_purecap.

The CLEN-bit CSRs are summarised in Chapter 10.

3.5.1. CSR Instructions

 CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

All CSR instructions atomically read-modify-write a single CSR. If the CSR accessed is of capability
size then the capability’s tag, metadata and address are all accessed atomically.

When the CSRRW instruction is accessing a capability width CSR, then the source and destination
operands are c registers and it atomically swaps the values in the whole CSR with the CLEN width
register operand.

There are special rules for updating specific CLEN-wide CSRs as shown in Table 39.

CSRRWI, CSRRS, CSRRSI, CSRRC and CSRRCI specify x registers and so only access the address field
of the capability when specifying a capability CSR such as mtvecc. They calculate the final address
using the standard RISC-V behaviour (set bits, clear bits etc.) and that final address is updated in the
capability. The update typically uses the semantics of a CSETADDR instruction which clears the tag if
the capability is sealed, or if the updated address is not representable. Table 39 shows the exact action
taken for each capability width CSR.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is privileged.

3.6. Control and Status Registers (CSRs)
Zcheri_purecap removes the CSRs listed in Table 13, Table 14, Table 15 and Table 16 from the base
RISC-V ISA and its extensions. The CSRs are removed because they are designated to hold addresses,
but are only XLEN bits wide. The removed registers are replaced with CLEN+1 bits wide registers. The
new CSRs are analogous to the original, removed RISC-V CSRs although at different CSR numbers as
shown in Table 17, Table 18, Table 19 and Table 20. Therefore, the specification of the address field for
the new capability CSRs remains the same as the corresponding, removed CSR which is described in
(RISC-V, 2023) and the specifications of relevant RISC-V extensions.

Replaced CSR Address Prerequisites Permissions Description

dpc 0x7b1 Sdext DRW, ASR-permission Debug Program Counter Capability

dscratch0 0x7b2 Sdext DRW, ASR-permission Debug Scratch Capability 0

dscratch1 0x7b3 Sdext DRW, ASR-permission Debug Scratch Capability 1

Table 13. Debug-mode CSRs removed in Zcheri_purecap

Replaced CSR Address Prerequisites Permissions Description

mtvec 0x305 M-mode MRW, ASR-permission Machine Trap-Vector Base-Address Capability

mscratch 0x340 M-mode MRW, ASR-permission Machine Scratch Capability

mepc 0x341 M-mode MRW, ASR-permission Machine Exception Program Counter Capability

3.6. Control and Status Registers (CSRs) | Page 22

RISC-V Specification for CHERI Extensions | © RISC-V

Table 14. Machine-mode CSRs removed in Zcheri_purecap

Replaced CSR Address Prerequisites Permissions Description

stvec 0x105 S-mode SRW, ASR-permission Supervisor Trap-Vector Base-Address Capability

sscratch 0x140 S-mode SRW, ASR-permission Supervisor Scratch Capability

sepc 0x141 S-mode SRW, ASR-permission Supervisor Exception Program Counter Capability

Table 15. Supervisor-mode CSRs removed in Zcheri_purecap

Replaced CSR Address Prerequisites Permissions Description

jvt 0x017 Zcmt URW Jump Vector Table Capability

Table 16. User-mode CSRs removed in Zcheri_purecap

Zcheri_purecap CSR Address Replaced CSR Prerequisites Permissions Description

dpcc 0x7b9 dpc Sdext DRW, ASR-permission Debug Program Counter Capability

dscratch0c 0x7ba dscratch0 Sdext DRW, ASR-permission Debug Scratch Capability 0

dscratch1c 0x7bb dscratch1 Sdext DRW, ASR-permission Debug Scratch Capability 1

Table 17. New debug-mode CSRs in Zcheri_purecap replacing RISC-V CSRs

Zcheri_purecap CSR Address Replaced CSR Prerequisites Permissions Description

mtvecc 0x765 mtvec M-mode MRW, ASR-permission Machine Trap-Vector Base-Address Capability

mscratchc 0x760 mscratch M-mode MRW, ASR-permission Machine Scratch Capability

mepcc 0x761 mepc M-mode MRW, ASR-permission Machine Exception Program Counter Capability

Table 18. New machine-mode CSRs in Zcheri_purecap replacing RISC-V CSRs

Zcheri_purecap CSR Address Replaced CSR Prerequisites Permissions Description

stvecc 0x505 stvec S-mode SRW, ASR-permission Supervisor Trap-Vector Base-Address Capability

sscratchc 0x540 sscratch S-mode SRW, ASR-permission Supervisor Scratch Capability

sepcc 0x541 sepc S-mode SRW, ASR-permission Supervisor Exception Program Counter Capability

Table 19. New supervisor-mode CSRs in Zcheri_purecap replacing RISC-V CSRs

Zcheri_purecap CSR Address Replaced CSR Prerequisites Permissions Description

jvtc 0x417 jvt Zcmt URW Jump Vector Table Capability

Table 20. New user-mode CSRs in Zcheri_purecap replacing RISC-V CSRs

Zcheri_purecap also introduces the new unprivileged CSRs shown in Table 21.

Extended CSR CLEN Address Prerequisites Permissions Description

pcc 0xcb0 none URO User Program Counter Capability (to allow reading in legacy mode)

Table 21. User-mode CSRs added in Zcheri_purecap

3.7. Machine-Level CSRs
Zcheri_purecap adds new M-mode capability CSRs and extends some of the existing RISC-V CSRs
with new functions. pcc must grant ASR-permission to access M-mode CSRs regardless of the RISC-V
privilege mode.

3.7.1. Machine ISA Register (misa)

The misa register operates as described in (RISC-V, 2023) except for the MXL (Machine XLEN) field.
The MXL field encodes the native base integer ISA width as shown in Table 22. Only 1 and 2 are

3.7. Machine-Level CSRs | Page 23

RISC-V Specification for CHERI Extensions | © RISC-V

supported values for MXL and the field must be read-only in implementations supporting
Zcheri_purecap. The effective XLEN in M-mode, MXLEN, is given by the setting of MXL, or has a
fixed value if misa is zero.

MXL XLEN

1 32

2 64

3 128

Table 22. Encoding of MXL field in misa

 RV128 is not currently supported by any CHERI extension


A further CHERI extension, Zcheri_legacy, optionally makes MXL writeable, so
implementations that support multiple base ISAs must support both Zcheri_purecap and
Zcheri_legacy.

3.7.2. Machine Status Registers (mstatus and mstatush)

The mstatus and mstatush registers operate as described in (RISC-V, 2023) except for the SXL and
UXL fields that control the value of XLEN for S-mode and U-mode, respectively.

The encoding of the SXL and UXL fields is the same as the MXL field of misa, shown in Table 22. Only
1 and 2 are supported values for SXL and UXL and the fields must be read-only in implementations
supporting Zcheri_purecap. The effective XLEN in S-mode and U-mode are termed SXLEN and
UXLEN, respectively.


A further CHERI extension, Zcheri_legacy, optionally makes SXL and UXL writeable, so
implementations that support multiple base ISAs must support both Zcheri_purecap and
Zcheri_legacy.

3.7.3. Machine Trap-Vector Base-Address Registers (mtvec)

The mtvec register is as defined in (RISC-V, 2023). It is an MXLEN-bit register used as the executable
vector jumped to when taking traps into machine mode. It is extended into mtvecc.

MXLEN-1 1 0

BASE [MXLEN-1:2] (WARL) MODE (WARL)
MXLEN-2 2

Figure 4. Machine-mode trap-vector base-address register

3.7.4. Machine Trap-Vector Base-Address Capability Registers (mtvecc)

The mtvecc register is an extension to mtvec that holds a capability. Its reset value is the Infinity
capability. The capability represents an executable vector.

XLENMAX-1 1 0

Metadata (WARL)
BASE [XLENMAX-1:2] (WARL) MODE (WARL)

XLENMAX-2 2

Figure 5. Machine-mode trap-vector base-capability register

The metadata is WARL as not all fields need to be implemented, for example the reserved fields will
always read as zero.

3.7. Machine-Level CSRs | Page 24

RISC-V Specification for CHERI Extensions | © RISC-V

When interpreting mtvecc as a capability, as for mtvec, address bits [1:0] are always zero (as they are
reused by the MODE field).

When MODE=Vectored, all synchronous exceptions into machine mode cause the pcc to be set to the
capability, whereas interrupts cause the pcc to be set to the capability with its address incremented by
four times the interrupt cause number.

Capabilities written to mtvecc also include writing the MODE field in mtvecc.address[1:0]. As a result,
a representability and sealing check is performed on the capability with the legalized (WARL) MODE
field included in the address. The tag of the capability written to mtvecc is cleared if either check fails.

Additionally, when MODE=Vectored the capability has its tag bit cleared if the capability address + 4 x
HICAUSE is not within the representable bounds. HICAUSE is the largest exception cause value that
the implementation can write to to mcause when an interrupt is taken.



When MODE=Vectored, it is only required that address + 4 x HICAUSE is within
representable bounds instead of the capability’s bounds. This ensures that software is not
forced to allocate a capability granting access to more memory for the trap-vector than
necessary to handle the trap causes that actually occur in the system.

3.7.5. Machine Scratch Register (mscratch)

The mscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register
dedicated for use by machine mode. Typically, it is used to hold a pointer to a machine-mode hart-
local context space and swapped with a user register upon entry to an M-mode trap handler. mscratch
is extended into mscratchc.

MXLEN-1 0

mscratch
MXLEN

Figure 6. Machine-mode scratch register

3.7.6. Machine Scratch Register Capability (mscratchc)

The mscratchc register is an extension to mscratch that is able to hold a capability. Its reset value is
the NULL capability.

It is not WARL, all capability fields must be implemented.

XLENMAX-1 0

mscratchc (Metadata)
mscratchc (Address)

XLENMAX

Figure 7. Machine-mode scratch capability register

3.7.7. Machine Exception Program Counter (mepc)

The mepc register is as defined in (RISC-V, 2023). It is extended into mepcc.

MXLEN-1 0

mepc (WARL)
MXLEN

Figure 8. Machine exception program counter register

3.7. Machine-Level CSRs | Page 25

RISC-V Specification for CHERI Extensions | © RISC-V

3.7.8. Machine Exception Program Counter Capability (mepcc)

The mepcc register is an extension to mepc that is able to hold a capability. Its reset value is the NULL
capability.

XLENMAX-1 0

mepcc (Metadata, WARL)
mepcc (Address, WARL)

XLENMAX

Figure 9. Machine exception program counter capability register

Capabilities written to mepcc must be legalised by implicitly zeroing bit mepcc[0]. Additionally, if an
implementation allows IALIGN to be either 16 or 32, then whenever IALIGN=32, the capability read
from mepcc must be legalised by implicitly zeroing bit mepcc[1]. Therefore, the capability read or
written has its tag bit cleared if the legalised address is not within the representable region.


When reading or writing a sealed capability in mepcc, the tag is not cleared if the original
address equals the legalized address.

When a trap is taken into M-mode, mepcc is written with the pcc including the virtual address of the
instruction that was interrupted or that encountered an exception. Otherwise, mepcc is never written
by the implementation, though it may be explicitly written by software.

As shown in Table 40, mepcc is an executable vector, so it need not be able to hold all possible invalid
addresses. Additionally the capability in mepcc is unsealed when it is installed in pcc on execution of
an MRET instruction.

3.7.9. Machine Cause Register (mcause)

Zcheri_purecap adds a new exception code for CHERI exceptions that mcause must be able to
represent. The new exception code and its priority are listed in Table 23 and Table 24 respectively. The
behavior and usage of mcause otherwise remains as described in (RISC-V, 2023).

MXLEN-1 MXLEN-2 0
Interrupt Exception Code (WLRL)

1 MXLEN-1

Figure 10. Machine cause register

Interrupt Exception Code Description

1
1
1
1

0
1
2
3

Reserved
Supervisor software interrupt
Reserved
Machine software interrupt

1
1
1
1

4
5
6
7

Reserved
Supervisor timer interrupt
Reserved
Machine timer interrupt

1
1
1
1

8
9

10
11

Reserved
Supervisor external interrupt
Reserved
Machine external interrupt

1
1

12-15
≥16

Reserved
Designated for platform use

3.7. Machine-Level CSRs | Page 26

RISC-V Specification for CHERI Extensions | © RISC-V

Interrupt Exception Code Description

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16-23
24-27

28
29-31
32-47
48-63

≥64

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Environment call from M-mode
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
Reserved
Designated for custom use
CHERI fault
Designated for custom use
Reserved
Designated for custom use
Reserved

Table 23. Machine cause register (mcause) values after trap. Entries added in Zcheri_purecap are in bold

Priority Exc.Code Description

Highest 3 Instruction address breakpoint

28
Prior to instruction address translation:
CHERI fault

12, 1
During instruction address translation:
First encountered page fault or access fault

1
With physical address for instruction:
Instruction access fault

2
0

8,9,11
3
3

Illegal instruction
Instruction address misaligned
Environment call
Environment break
Load/store/AMO address breakpoint

28
Prior to address translation for an explicit memory access or jump:
CHERI fault

4,6
Optionally:
Load/store/AMO address misaligned

13, 15, 5, 7
During address translation for an explicit memory access:
First encountered page fault or access fault

5,7
With physical address for an explicit memory access:
Load/store/AMO access fault

Lowest 4,6
If not higher priority:
Load/store/AMO address misaligned

Table 24. Synchronous exception priority in decreasing priority order. Entries added in Zcheri_purecap are in bold

3.7.10. Machine Trap Delegation Register (medeleg)

Bit 28 of medeleg now refers to a valid exception and so can be used to delegate CHERI exceptions to
supervisor mode.

3.7.11. Machine Trap Value Register (mtval)

 CHERI v9 Note: Encoding and values changed, and generally were simplified.

The mtval register is an MXLEN-bit read-write register. When a CHERI fault is taken into M-mode,
mtval is written with additional CHERI-specific exception information with the format shown in
Figure 11 to assist software in handling the trap.

3.7. Machine-Level CSRs | Page 27

RISC-V Specification for CHERI Extensions | © RISC-V

If the hardware platform specifies that no exceptions set mtval to a nonzero value, then mtval is read-
only zero.

MXLEN-1 20 19 16 15 4 3 0

Reserved TYPE Reserved CAUSE
MXLEN-20 4 12 4

Figure 11. Machine trap value register

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 25 and Table 26 respectively.

CHERI Type Code Description

0 CHERI instruction access fault

1 CHERI data fault due to load, store or AMO

2 CHERI jump or branch fault

3-15 Reserved

Table 25. Encoding of TYPE field

CHERI Cause Code Description

0 Tag violation

1 Seal violation

2 Permission violation

3 Length violation

4-15 Reserved

Table 26. Encoding of CAUSE field

3.8. Supervisor-Level CSRs
Zcheri_purecap adds new S-mode capability CSRs and extends some of the existing RISC-V CSRs
with new functions. pcc must grant ASR-permission to access S-mode CSRs regardless of the RISC-V
privilege mode.

3.8.1. Supervisor Trap Vector Base Address Registers (stvec)

The stvec register is as defined in (RISC-V, 2023). It is an SXLEN-bit register used as the executable
vector jumped to when taking traps into supervisor mode. It is extended into stvecc.

SXLEN-1 1 0

BASE (Address)[SXLEN-1:2] (WARL) MODE (WARL)
SXLEN-2 2

Figure 12. Supervisor trap-vector base-address register

3.8.2. Supervisor Trap Vector Base Address Registers (stvecc)

The stvec register is an SXLEN-bit WARL read/write register that holds the trap vector configuration,
consisting of a vector base address (BASE) and a vector mode (MODE). The stvecc register is an
extension to stvec that is able to hold a capability. Its reset value is the Infinity capability.

3.8. Supervisor-Level CSRs | Page 28

RISC-V Specification for CHERI Extensions | © RISC-V

XLENMAX-1 1 0

Metadata (WARL)
BASE [XLENMAX-1:2] (WARL) MODE (WARL)

XLENMAX-2 2

Figure 13. Supervisor trap-vector base-capability register

The handling of stvecc is otherwise identical to mtvecc, but in supervisor mode.

3.8.3. Supervisor Scratch Register (sscratch)

The sscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register dedicated
for use by supervisor mode. Typically, it is used to hold a pointer to a supervisor-mode hart-local
context space and swapped with a user register upon entry to an S-mode trap handler. sscratch is
extended into sscratchc.

SXLEN-1 0

sscratch
SXLEN

Figure 14. Supervisor-mode scratch register

3.8.4. Supervisor Scratch Registers (sscratchc)

The sscratchc register is an extension to sscratch that is able to hold a capability. Its reset value is the
NULL capability.

It is not WARL, all capability fields must be implemented.

XLENMAX-1 0

sscratchc (Metadata)
sscratchc (Address)

XLENMAX

Figure 15. Supervisor scratch capability register

3.8.5. Supervisor Exception Program Counter (sepc)

The sepc register is as defined in (RISC-V, 2023). It is extended into sepcc.

SXLEN-1 0

sepc
SXLEN

Figure 16. Supervisor exception program counter register

3.8.6. Supervisor Exception Program Counter Capability (sepcc)

The sepcc register is an extension to sepc that is able to hold a capability. Its reset value is the NULL
capability.

As shown in Table 40, sepcc is an executable vector, so it need not be able to hold all possible invalid
addresses. Additionally, the capability in sepcc is unsealed when it is installed in pcc on execution of
an SRET instruction. The handling of sepcc is otherwise identical to mepcc, but in supervisor mode.

3.8. Supervisor-Level CSRs | Page 29

RISC-V Specification for CHERI Extensions | © RISC-V

XLENMAX-1 0

sepcc (Metadata, WARL)
sepcc (Address, WARL)

XLENMAX

Figure 17. Supervisor exception program counter capability register

3.8.7. Supervisor Cause Register (scause)

Zcheri_purecap adds a new exception code for CHERI exceptions that scause must be able to
represent. The new exception code and its priority are listed in Table 27 and Table 24 respectively. The
behavior and usage of scause otherwise remains as described in (RISC-V, 2023).

SXLEN-1 SXLEN-2 0
Interrupt Exception Code (WLRL)

1 SXLEN-1

Figure 18. Supervisor cause register

Interrupt Exception Code Description

1
1
1
1
1
1
1
1

0
1

2-4
5

6-8
9

10-15
≥16

Reserved
Supervisor software interrupt
Reserved
Supervisor timer interrupt
Reserved
Supervisor external interrupt
Reserved
Designated for platform use

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10-11
12
13
14
15

16-23
24-27

28
29-31
32-47
48-63

≥64

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
Reserved
Designated for custom use
CHERI fault
Designated for custom use
Reserved
Designated for custom use
Reserved

Table 27. Supervisor cause register (scause) values after trap. Causes added in Zcheri_purecap are in bold

3.8.8. Supervisor Trap Value Register (stval)

The stval register is an SXLEN-bit read-write register. When a CHERI fault is taken into S-mode, stval
is written with additional CHERI-specific exception information with the format shown in Figure 19
to assist software in handling the trap.

SXLEN-1 20 19 16 15 4 3 0

Reserved TYPE Reserved CAUSE
SXLEN-20 4 12 4

Figure 19. Supervisor trap value register

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 25 and Table 26 respectively.

3.8. Supervisor-Level CSRs | Page 30

RISC-V Specification for CHERI Extensions | © RISC-V

3.9. Unprivileged CSRs
Unlike machine and supervisor level CSRs, Zcheri_purecap does not require pcc to grant ASR-
permission to access privileged CSRs.

3.9.1. Program Counter Capability (pcc)

The pcc is made visible in a CSR. This provides access to an Infinity capability while in debug mode
without executing AUIPCC.


It is common for implementations to not allow executing pc relative instructions, such as
AUIPC or JAL, in debug mode.

XLENMAX-1 0

pcc (Metadata, WARL)
pcc (Address, WARL)

XLENMAX

Figure 20. Program Counter Capability

As shown in Table 40, pcc is an executable vector, so it need not be able to hold all possible invalid
addresses.

3.10. CHERI Exception handling
 auth_cap is ddc for Legacy mode and cs1 for Capability Mode

Instructions Xcause Xtval. TYPE Xtval.
CAUSE

Description Check

All instructions have these exception checks first

All 28 0 0 pcc tag not(pcc.tag)

All 28 0 1 pcc seal isCapSealed(pcc)

All 28 0 2 pcc permission not(pcc.X-permission)

All 28 0 3 pcc length Any byte of current instruction out of pcc bounds

CSR/Xret additional exception check

CSR*, MRET, SRET 28 0 2 pcc permission not(pcc.ASR-permission) when required for CSR
access or execution of MRET/SRET

direct jumps additional exception check

CJAL, JAL, Conditional
branches (BEQ, BNE,
BLT[U], BGE[U])

28 2 3 pcc length any byte of 16-bit instruction at target out of pcc
bounds

indirect jumps and conditional branches additional exception checks

indirect jumps and
conditional branches

28 2 0 cs1 tag not(cs1.tag)

indirect jumps and
conditional branches

28 2 1 cs1 seal isCapSealed(cs1)

indirect jumps and
conditional branches

28 2 2 cs1 permission not(cs1.X-permission)

indirect jumps and
conditional branches

28 2 3 cs1 length any byte of 16-bit instruction at target out of cs1
bounds

Load additional exception checks

all loads 28 1 0 auth_cap tag not(auth_cap.tag)

all loads 28 1 1 auth_cap seal isCapSealed(auth_cap)

all loads 28 1 2 auth_cap permission not(auth_cap.R-permission)

3.9. Unprivileged CSRs | Page 31

RISC-V Specification for CHERI Extensions | © RISC-V

Instructions Xcause Xtval. TYPE Xtval.
CAUSE

Description Check

all loads 28 1 3 auth_cap length Any byte of load access out of auth_cap bounds

capability loads 4 N/A N/A load address misaligned Misaligned capability load

Store/atomic/cache-block-operation additional exception checks

all stores, all atomics, all
cbos

28 1 0 auth_cap tag not(auth_cap.tag)

all stores, all atomics, all
cbos

28 1 1 auth_cap seal isCapSealed(auth_cap)

all atomics, all cbos 28 1 2 auth_cap permission AMO only: not(auth_cap.R-permission)

all stores, all atomics, all
cbos

28 1 2 auth_cap permission not(auto_cap.W-permission)

all stores, all atomics 28 1 3 auth_cap length any byte of access! out of auth_cap bounds

capability stores, all
atomics

6 N/A N/A Misaligned store/AMO Misaligned capability store or AMO

Table 28. Valid CHERI exception combination description


Indirect branches are CJALR, JALR, JALR.PCC, JALR.CAP, conditional branches are
Conditional branches (BEQ, BNE, BLT[U], BGE[U]).

 CBO.ZERO.CAP, CBO.ZERO issues as a cache line wide store


1Other CBOs (CBO.FLUSH.CAP, CBO.FLUSH, CBO.CLEAN.CAP, CBO.CLEAN,
CBO.INVAL.CAP, CBO.INVAL) require at least one byte of the access to be in auth_cap
bounds

3.11. Physical Memory Attributes (PMA)
Typically, the entire memory space need not support tagged data. Therefore, it is desirable that harts
supporting Zcheri_purecap extend PMAs with a taggable attribute indicating whether a memory
region allows storing tagged data.

When the hart attempts to store or load data with the tag set to memory regions that are not taggable,
the implementation may:

• Cause an access fault exception

• Implicitly set the stored tag to 0

3.12. Page-Based Virtual-Memory Systems
RISC-V’s page-based virtual-memory management is generally orthogonal to CHERI. In
Zcheri_purecap, capability addresses are interpreted with respect to the privilege level of the
processor in line with RISC-V’s handling of integer addresses. In machine mode, capability addresses
are generally interpreted as physical addresses; if the mstatus MPRV flag is asserted, then data
accesses (but not instruction accesses) will be interpreted as if performed by the privilege mode in
mstatus’s MPP. In supervisor and user modes, capability addresses are interpreted as dictated by the
current satp configuration: addresses are virtual if paging is enabled and physical if not.

Zcheri_purecap requires that the pcc grants the ASR-permission to change the page-table root satp
and other virtual-memory parameters as described in Section 3.8.

3.11. Physical Memory Attributes (PMA) | Page 32

RISC-V Specification for CHERI Extensions | © RISC-V

3.12.1. Invalid Address Handling

When address translation is in effect and XLEN=64, the upper bits of virtual memory addresses must
match for the address to be valid:

• For Sv39, bits [63:39] must equal bit 38

• For Sv48, bits [63:48] must equal bit 47

• For Sv57, bits [63:57] must equal bit 56

RISC-V permits that some CSRs, such as mtvec and mepc (see Table 40), need not be able to hold all
possible invalid addresses. Prior to writing these CSRs, implementations may convert an invalid
address into some other invalid address that the register is capable of holding. However, these registers
hold capabilities in Zcheri_purecap and the bounds encoding depends on the address value, so
implementations must not convert invalid addresses to other arbitrary invalid address in an
unrestricted manner. The following procedure must be used instead when writing a capability A to
these CSRs:

1. If A’s address cannot be held then convert it to another address that the CSR can hold

2. If conversion was required, then A’s tag is cleared if A is sealed or if the new address is not
representable — this is equivalent to the semantics of CSETADDR

3. Write the final (potentially modified) version of capability A to the CSR e.g. mtvecc, mepcc, etc.

This implies that sealed capabilities will always get their tags cleared when written to these CSRs
unless the specification explicitly states that the CSR behaves otherwise (see mepcc and sepcc). Also
notes that pcc is available in a read-only CSR. It can be written with CJALR instruction which
automatically unseals the capability before the invalid address conversion above.

3.12. Page-Based Virtual-Memory Systems | Page 33

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 4. Integrating Zcheri_purecap
with Sdext
This section describes changes to integrate the Sdext ISA and Zcheri_purecap. It must be
implemented to make external debug compatible with Zcheri_purecap. Modifications to Sdext are
kept to a minimum.

4.1. Debug Mode
When executing code due to an abstract command, the hart stays in debug mode and the rules
outlined in Section 4.1 of (RISC-V, 2022) apply.

4.2. Core Debug Registers
Zcheri_purecap removes debug CSRs that are designated to hold addresses and replaces them with
analogous CSRs able to hold capabilities. The removed debug CSRs are listed in Table 13 and the new
CSRs are listed in Table 17.

The pcc must grant ASR-permission to access debug CSRs. This permission is automatically provided
when the hart enters debug mode as described in the dpcc section. The pcc metadata can only be
changed if the implementation supports executing control transfer instructions from the program
buffer — this is an optional feature according to (RISC-V, 2022).

4.2.1. Debug Program Counter (dpc)

The dpc register is as defined in (RISC-V, 2022). It is a DXLEN-bit register used as the PC saved when
entering debug mode. dpc is extended into dpcc.

DXLEN-1 0

dpc
DXLEN

Figure 21. Debug program counter

4.2.2. Debug Program Counter Capability (dpcc)

The dpcc register is a extension to dpc that is able to hold a capability. Its reset value is the NULL
capability.

XLENMAX-1 0

dpcc (Metadata)
dpcc (Address)

XLENMAX

Figure 22. Debug program counter capability

Upon entry to debug mode, (RISC-V, 2022), does not specify how to update the PC, and says PC
relative instructions may be illegal. This concept is extended to include any instruction which updates
pcc.

dpcc (and consequently dpc) are updated with the capability in pcc whose address field is set to the
address of the next instruction to be executed as described in (RISC-V, 2022).

4.1. Debug Mode | Page 34

RISC-V Specification for CHERI Extensions | © RISC-V

Additionally, the pcc is updated as follows:

• All metadata is set to the Infinity capability

◦ The pcc may be used as a source of the Infinity capability in debug mode to allow other
capabilities to be created and written into memory.

When resuming, the hart’s pcc is updated to the capability stored in dpcc. A debugger may write dpcc
to change where the hart resumes and its mode, permissions, sealing or bounds.

4.2.3. Debug Scratch Register 0 (dscratch0)

The dscratch0 register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register
that can be used by implementations which need it. Its reset value is the NULL capability. dscratch0 is
extended into dscratch0c.

DXLEN-1 0

dscratch0
DXLEN

Figure 23. Debug scratch 0 register

4.2.4. Debug Scratch Register 0 (dscratch0c)

The dscratch0c register is a CLEN-bit plus tag bit extension to dscratch0 that is able to hold a
capability. Its reset value is the NULL capability.

XLENMAX-1 0

dscratch0c (Metadata)
dscratch0c (Address)

XLENMAX

Figure 24. Debug scratch 0 capability register

4.2.5. Debug Scratch Register 1 (dscratch1)

The dscratch1 register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register that
can be used by implementations which need it. Its reset value is the NULL capability. dscratch1 is
extended into dscratch1c.

DXLEN-1 0

dscratch1
DXLEN

Figure 25. Debug scratch 0 register

4.2.6. Debug Scratch Register 1 (dscratch1c)

The dscratch1c register is a CLEN-bit plus tag bit extension to dscratch1 that is able to hold a
capability. Its reset value is the NULL capability.

XLENMAX-1 0

dscratch1c (Metadata)
dscratch1c (Address)

XLENMAX

Figure 26. Debug scratch 1 capability register

4.2. Core Debug Registers | Page 35

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 5. "Zcheri_pte" Extension for
CHERI Page-Based Virtual-Memory
Systems
CHERI is a security mechanism that is generally orthogonal to page-based virtual-memory
management as defined in (RISC-V, 2023). However, it is helpful in CHERI harts to extend RISC-V’s
virtual-memory management to control the flow of capabilities in memory at the page granularity. For
this reason, the Zcheri_pte extension adds new bits to RISC-V’s Page Table Entry (PTE) format.

5.1. Extending the Page Table Entry Format


CHERI v9 Note: The current proposal is provisional and is missing PTE bits when
compared to CHERI v9.

The page table entry format remains unchanged for Sv32. However, two new bits, Capability Write
(CW) and Capability Dirty (CD), are added to leaf PTEs in Sv39, Sv48 and Sv57 as shown in Figure 27,
Figure 28 and Figure 29 respectively.

63 62 61 60 59 58 54 53 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

N PBMT CD CW Reserved PPN[2] PPN[1] PPN[0] RSW D A G U X W R V

1 2 1 1 5 26 9 9 2 1 1 1 1 1 1 1 1

Figure 27. Sv39 page table entry

63 62 61 60 59 58 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT CD CW Reserved PPN RSW D A G U X W R V

1 2 1 1 5 44 2 1 1 1 1 1 1 1 1

53 37 36 28 27 19 18 10

PPN[3] PPN[2] PPN[1] PPN[0]

17 9 9 9

Figure 28. Sv48 page table entry

63 62 61 60 59 58 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT CD CW Reserved PPN RSW D A G U X W R V

1 2 1 1 5 44 2 1 1 1 1 1 1 1 1

53 46 45 37 36 28 27 19 18 10

PPN[4] PPN[3] PPN[2] PPN[1] PPN[0]

8 9 9 9 9

Figure 29. Sv57 page table entry

The CW bit indicates whether writing capabilities with tag set to the virtual page is permitted. Two
schemes to manage the CW bit are permitted:

• A store page fault exception is raised when a capability store or AMO instruction is executed, the
pcc grants store capability permission and the store address corresponds to a virtual page with the
CW bit clear.

5.1. Extending the Page Table Entry Format | Page 36

RISC-V Specification for CHERI Extensions | © RISC-V

• When a capability store or AMO instruction is executed, the implementation clears the tag bit of
the capability written to a virtual page with the CW bit clear.


The implementation of the CW bit does not force a dependency on the tag bit’s value of the
capability written, so implementations must support this feature.

The CD bit indicates that a capability with tag set has been written to the virtual page since the last
time the CD bit was cleared. Implementations are strongly encouraged, but not required, to support
CD. If supported, two schemes to manage the CD bit are permitted:

• A store page fault exception is raised when a capability store or AMO instruction is executed, the
pcc grants store capability permission, the tag bit of the capability being written is set and the
address written corresponds to a virtual page with the CD bit clear.

• When a capability store or AMO instruction is execute, the pcc grants store capability permission,
the tag bit of the capability being written is set and the store address corresponds to a virtual page
with the CD bit clear, the implementation sets the corresponding bit in the PTE. The PTE update
must be atomic with respect to other accesses to the PTE, and must atomically check that the PTE
is valid and grants sufficient permissions. Updates to the CD bit must be exact (i.e. not speculative),
and observed in program order by the local hart. Furthermore, the PTE update must appear in the
global memory order no later than the explicit memory access, or any subsequent explicit memory
access to that virtual page by the local hart. The ordering on loads and stores provided by FENCE
instructions and the acquire/release bits on atomic instructions also orders the PTE updates
associated with those loads and stores as observed by remote harts.

The PTE update is not required to be atomic with respect to the explicit memory access that
caused the update, and the sequence is interruptible. However, the hart must not perform explicit
memory access before the PTE update is globally visible.


The behavior of the CW bit takes priority over the CD bit. Therefore, implementations must
not take action to change or raise an exception related to the CD bit when the CW bit is
clear.

5.2. Extending the Machine Environment
Configuration Register (menvcfg)
The menvcfg register is extended to allow discovering whether the implementation supports the CD
bit.

The menvcfg register operates as described in (RISC-V, 2023). Zcheri_purecap adds a new enable bit
as shown in Figure 30 when XLEN=64.

63 62 61 60 8 7 6 5 4 3 1 0

STCE PBMTE CDE WPRI CBZE CBCFE CBIE WPRI FIOM

1 1 1 55 1 1 1 2 3

1

Figure 30. Machine environment configuration register (menvcfg)

The Capability Dirty Enable (CDE) bit controls whether the Capability Dirty (CD) bit is available for
use in S-mode address translation. When CDE=1, the CD bit is available for S-mode address
translation. When CDE=0, the implementation behaves as though the CD bit were not implemented.
If CD is not implemented, CDE is read-only zero. If CD is implemented although not configurable,

5.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 37

RISC-V Specification for CHERI Extensions | © RISC-V

CDE is read-only one.

5.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 38

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 6. "Zcheri_legacy" Extension for
CHERI Legacy Mode


CHERI v9 Note: This feature is new and different from CHERI v9’s per-privilege enable
bits.

Zcheri_legacy is an optional extension to Zcheri_purecap. Implementations that support
Zcheri_purecap and Zcheri_legacy define a variant of the CHERI ISA that is fully binary compatible
with existing RISC-V code.

Key features in Zcheri_legacy include a definition of a CHERI execution mode, a new unprivileged
register, additional instructions and extensions to some existing CSRs enabling disable CHERI
features. The remainder of this section describes these features in detail as well as their integration
with the primary base integer variants of the the RISC-V ISA (RV32I and RV64I).

6.1. CHERI Execution Mode
Zcheri_legacy adds CHERI execution modes to ensure backwards compatibility with the base RISC-V
ISA while saving instruction encoding space. There are two execution modes: Capability and Legacy.
Additionally, there is a new unprivileged register: the default data capability, ddc, that is used to
authorise all data memory accesses when the current CHERI mode is Legacy.

The current CHERI execution mode is given by the current privilege level and the value of the CME
bit in menvcfg and senvcfg for S-mode and U-mode. M-mode is always in Capability mode.

The CHERI execution mode impacts the instruction set in the following ways:

• The authorising capability used to execute memory access instructions. In Legacy mode, ddc is
implicitly used. In Capability mode, the authorising capability is supplied as an explicit c operand
register to the instruction.

• The set of instructions that is available for execution. Some instructions are available in Legacy
mode but not Capability mode and vice-versa (see Chapter 8).


The implication is that the CHERI execution mode is always Capability on
implementations that support Zcheri_purecap, but not Zcheri_legacy.

The CHERI execution mode is effectively an extension to some RISC-V instruction encodings. For
example, the encoding of an instruction like LW remains unchanged, but the mode indicates whether
the capability authorising the load is the register operand cs1 (Capability mode), so the instruction is
CLW from Zcheri_purecap, or ddc (Legacy mode), so the instruction is simply LW.

The CHERI execution mode is key in providing backwards compatibility with the base RISC-V ISA.
RISC-V software is able to execute unchanged in implementations supporting both Zcheri_purecap
and Zcheri_legacy provided that the configured CHERI execution mode is Legacy by setting CME=0
in menvcfg or senvcfg as required, and the Infinity capability is installed in the pcc and ddc such that:

• Tags are set

• Capabilities are unsealed

• All permissions are granted

6.1. CHERI Execution Mode | Page 39

RISC-V Specification for CHERI Extensions | © RISC-V

• The bounds authorise accesses to the entire address space i.e base is 0 and top is 2XLENMAX

6.2. Zcheri_legacy Instructions
Zcheri_legacy does not introduce new instructions to the base RISC-V integer ISA. However, the
behavior of some existing instructions changes depending on the current CHERI execution mode.

6.2.1. Capability Load and Store Instructions

The load and store capability instructions change behaviour depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The load capability instruction is CLC when the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.3. That encoding is LC when the mode is Legacy. In this case, the
capability authorising the memory access is ddc, so the effective address is obtained by adding the x
register to the sign-extended offset.

The store capability instruction is CSC when the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.3. That encoding is SC when the mode is Legacy. In this case, the
capability authorising the memory access is ddc, so the effective address is obtained by adding the x
register to the sign-extended offset.

6.2.2. Unconditional Capability Jumps

The indirect jump and link pcc (JALR.PCC) instruction shares the same encoding with a new indirect
jump and link capability (JALR.CAP) instruction. JALR.PCC is a Zcheri_purecap instruction executed
when the mode is Capability as described in Section 3.3.4. In Legacy mode, the encoding is executed as
JALR.CAP which allows unconditional jumps to a target capability. The target capability is provided in
a c register and is written to pcc. The pcc of the next instruction following the jump (pcc + 4) is written
to a c register. JALR.CAP cause CHERI exceptions when:

• The target capability’s tag is zero

• A minimum sized instruction at the target capability’s address is not within bounds

• The target capability does not grant execute permission

JALR.CAP causes an instruction address misaligned exception when the target address is misaligned.


JALR.CAP can be used to change the current CHERI execution mode when the
implementation supports Zcheri_mode.

6.3. Existing RISC-V Instructions
The CHERI execution mode introduced in Zcheri_legacy affects the behaviour of instructions that
have at least one memory address operand. When in Capability mode, the address input or output
operands may include c registers. When in Legacy mode, the address input or output operands are
x/f/v registers; the tag and metadata of that register are implicitly set to 0.

6.3.1. Control Transfer Instructions

The unconditional jump instructions change behaviour depending on the CHERI execution mode

6.2. Zcheri_legacy Instructions | Page 40

RISC-V Specification for CHERI Extensions | © RISC-V

although the instruction’s encoding remains unchanged.

The jump and link instruction is CJAL when the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.4. That encoding is JAL when the mode is Legacy. In this case, the
address of the instruction following the jump (pc + 4) is written to an x register; that register’s tag and
capability metadata are zeroed.

The jump and link register instruction is CJALR when the CHERI execution mode is Capability; the
instruction behaves as described in Section 3.4. That encoding is JALR when the mode is Legacy. In
this case, the target address is obtained by adding the sign-extended 12-bit immediate to the x register
operand, then setting the least significant bit of the result to zero. The target address is then written to
the pcc address and a representability check is performed. The address of the instruction following the
jump (pc + 4) is written to an x register; that register’s tag and capability metadata are zeroed.

JAL and JALR cause CHERI exceptions when a minimum sized instruction at the target address are not
within the bounds of the pcc. An instruction address misaligned exception is raised when the target
address is misaligned.

6.3.2. Conditional Branches

The behaviour is as shown in Section 3.4.2.2.

6.3.3. Load and Store Instructions

Load and store instructions change behavior depending on the CHERI execution mode although the
instruction’s encoding remains unchanged.

Loads and stores behave as described in Section 3.4 when the CHERI execution mode is Capability. In
Legacy mode, the instructions behave as described in the RISC-V base ISA (i.e. without the 'C' prefix)
and rely on x operands only. The capability authorising the memory access is ddc and the memory
address is given by sign-extending the 12-bit immediate offset and adding it to the base address in the
x register operand.

The exception cases remain as described in Section 3.4 regardless of the CHERI execution mode.

6.3.4. CSR Instructions

 CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

Zcheri_legacy adds the concept of CSRs which contain a capability where the address field is visible to
legacy code (e.g. mtvec) and the full capability is also visible through an alias (e.g. mtvecc). These are
referred to as extended CSRs.

Extended CSRs are accessible through two addresses, and the address determines the access width.

When the XLEN-bit alias is used by CSRRW:

• The register operand is an x register.

• Only XLEN bits from the x source are written to the capability address field.

◦ The tag and metadata are updated as specified in Table 39.

• Only XLEN bits are read from the capability address field, which is zero extended to the
destination x register.

6.3. Existing RISC-V Instructions | Page 41

RISC-V Specification for CHERI Extensions | © RISC-V

When the CLEN-bit alias is used by CSRRW:

• The register operand is a c register.

• The full capability in the c register source is written to the CSR.

◦ The capability may require modification before the final written value is determined (see Table
39).

• The full capability is written to destination c register.

When either alias is used by another CSR instruction (CSRRWI, CSRRC, CSRRCI, CSRRS, CSRRSI):.

• The final address is calculated according to the standard RISC-V CSR rules (set bits, clear bits etc).

• The final address is updated as specified in Table 39 for an XLEN write.

• XLEN bits are read from the capability address field and written to an output x register.

There is no distinction between accessing either alias in this case - the XLEN access is always
performed, and the assembly syntax always uses x registers.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is not user-mode accessible.

6.4. Integrating Zcheri_legacy with Sdext
A new debug default data capability (dddc) CSR is added at the CSR number shown in Table 29.

6.5. Debug Default Data Capability (dddc)
dddc is a register that is able to hold a capability. Its reset value is the NULL capability. The address is
shown in Table 29.

XLENMAX-1 0

dddc (Metadata)
dddc (Address)

XLENMAX

Figure 31. Debug default data capability

Upon entry to debug mode, ddc is saved in dddc. ddc's metadata is set to the Infinity capability’s
metadata and ddc's address remains unchanged.

When debug mode is exited by executing DRET, the hart’s ddc is updated to the capability stored in
dddc. A debugger may write dddc to change the hart’s context.

6.6. Disabling CHERI Features


CHERI v9 Note: The rules for excepting have been tightened here. Also, it is not possible
to disable CHERI checks completely.

Zcheri_legacy includes functions to disable most CHERI features. For example, executing in a
privilege mode where the effective XLEN is less than XLENMAX. The following occurs when executing
code in a privileged that has CHERI disabled:

6.4. Integrating Zcheri_legacy with Sdext | Page 42

RISC-V Specification for CHERI Extensions | © RISC-V

• The CHERI instructions in Section 3.3 (and Section 9.5 if Zcheri_mode is supported) cause illegal
instruction exceptions

• Executing CSR instructions accessing any capability wide CSR addresses (Section 3.6) cause illegal
instruction exceptions

• All allowed instructions execute as if the CHERI execution mode is Legacy. The CME bits in
menvcfg and senvcfg have no effect whilst CHERI is disabled.

Security checks continue to be enforced when CHERI is disabled regardless of the reason. The last
capability installed in pcc and ddc before disabling CHERI will be used to authorise instruction
execution and data memory accesses.

6.7. Added CLEN-wide CSRs
Zcheri_legacy adds the CLEN-wide CSRs shown in Table 29.

Extended CSR CLEN Address Prerequisites Permissions Description

dddc 0x7bc Sdext DRW, ASR-permission Debug Default Data Capabilty (saved/restored on debug mode entry/exit)

mtdc 0x74c M-mode MRW, ASR-permission Machine Trap Data Capability (scratch register)

stdc 0x163 S-mode SRW, ASR-permission Supervisor Trap Data Capability (scratch register)

ddc 0x416 none URW User Default Data Capability

Table 29. CLEN-wide CSRs added in Zcheri_legacy

6.7.1. Machine ISA Register (misa)

Zcheri_legacy eliminates some restrictions for MXL imposed in Zcheri_purecap to allow
implementations supporting multiple base ISAs. Namely, the MXL field, that encodes the native base
integer ISA width as shown in Table 22, may be writable.

Setting the MXL field to a value that is not XLENMAX disables most CHERI features and instructions
as described in Section 6.6.

6.7.2. Machine Status Registers (mstatus and mstatush)

Zcheri_legacy eliminates some restrictions for SXL and UXL imposed in Zcheri_purecap to allow
implementations supporting multiple base ISAs. Namely, the SXL and UXL fields may be writable.

Zcheri_legacy requires that lower-privilege modes have XLEN settings less than or equal to the next-
higher privilege mode. WARL field behaviour restricts programming so that it is not possible to
program MXL, SXL or UXL to violate this rule.

Setting the SXL or UXL field to a value that is not XLENMAX disables most CHERI features and
instructions, as described in Section 6.6, while in that privilege mode.

Whenever XLEN in any mode is set to a value less than XLENMAX, standard RISC-V rules from
(RISC-V, 2023) are followed. This means that all operations must ignore source operand register bits
above the configured XLEN, and must sign-extend results to fill the entire widest supported XLEN in
the destination register. Similarly, pc bits above XLEN are ignored, and when the pc is written, it is
sign-extended to fill XLENMAX. The integer writing rule from CHERI is followed, so that every
register write also zeroes the metadata and tag of the destination register.

However, CHERI operations and security checks will continue using the entire hardware register (i.e.

6.7. Added CLEN-wide CSRs | Page 43

RISC-V Specification for CHERI Extensions | © RISC-V

CLEN bits) to correctly decode capability bounds.

6.7.3. Machine Trap Default Capability Register (mtdc)

The mtdc register is capability width read/write register dedicated for use by machine mode.
Typically, it is used to hold a data capability to a machine-mode hart-local context space, to load into
ddc. mtdc's reset value is the NULL capability.

XLENMAX-1 0

mtdc (Metadata)
mtdc (Address)

XLENMAX

Figure 32. Machine-mode trap data capability register

6.7.4. Machine Environment Configuration Register (menvcfg)

Zcheri_legacy adds a new enable bit to menvcfg as shown in Figure 33.

63 62 61 29 28 27 8 7 6 5 4 3 1 0

STCE PBMTE WPRI CME WPRI CBZE CBCFE CBIE WPRI FIOM

1 1 34 1 19 1 1 2 3 1

Figure 33. Machine environment configuration register (menvcfg)

The CHERI Mode Enable (CME) bit controls whether less privileged levels (e.g. S-mode and U-mode)
execute in Capability or Legacy mode. When CME=1, the CHERI execution mode is Capability. When
CME=0, the mode is Legacy.

6.7.5. Supervisor Trap Default Capability Register (stdc)

The stdc register is capability width read/write register dedicated for use by supervisor mode.
Typically, it is used to hold a data capability to a supervisor-mode hart-local context space, to load into
ddc. stdc's reset value is the NULL capability.

XLENMAX-1 0

stdc (Metadata)
stdc (Address)

XLENMAX

Figure 34. Supervisor trap data capability register (stdc)

6.7.6. Supervisor Environment Configuration Register (senvcfg)

The senvcfg register operates as described in the RISC-V Privileged Specification. Zcheri_legacy adds
one new enable bit as shown in Figure 35.

SXLEN-1 29 28 27 8 7 6 5 4 3 1 0

WPRI CME WPRI CBZE CBCFE CBIE WPRI FIOM

SXLEN-29 1 20 1 1 2 3 1

Figure 35. Supervisor environment configuration register (senvcfg)

The CHERI Mode Enable (CME) bit controls whether U-mode executes in Capability or Legacy mode.
When CME=1, the CHERI execution mode is Capability. When CME=0, the mode is Legacy.

6.7. Added CLEN-wide CSRs | Page 44

RISC-V Specification for CHERI Extensions | © RISC-V

6.7.7. Default Data Capability (ddc)

The ddc CSR is a read-write capability register implicitly used as an operand to authorise all data
memory accesses when the current CHERI mode is Legacy. This register must be readable in any
implementation. Its reset value is the Infinity capability.

XLENMAX-1 0

ddc (Metadata)
ddc (Address)

XLENMAX

Figure 36. Unprivileged default data capability register

6.7. Added CLEN-wide CSRs | Page 45

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 7. "Zcheri_mode" Extension for
CHERI Execution Mode
Zcheri_mode is an optional extension to Zcheri_legacy. Implementations that support Zcheri_mode
allow fine-grained switching between Capability and Legacy modes using indirect jump instructions.

7.1. CHERI Execution Mode
Zcheri_mode adds a new CHERI execution mode bit (M) to capabilities. The mode bit is encoded as
shown in Figure 37 and Figure 38. The current CHERI execution mode is give by the M bit of the pcc
and the CME bits in menvcfg and senvcfg as follows:

• The mode is Capability when the M bit of the pcc is 1 and the effective CME=1 for the current
privilege level

• The mode is Legacy when the effective CME=0 for the current privilege level

• The mode is Legacy when the M bit of the pcc is 0 and the effective CME=1 for the current
privilege level

31 30 29 26 25 24 21 20 19 18 17 12 11 10 9 2 1 0

SDP AP M Reserved S EFT8 T[7:2] TE B[9:2] BE

Address

32

Figure 37. Capability encoding when XLENMAX=32 and Zcheri_mode is supported

63 57 56 53 52 48 47 46 28 27 26 25 17 16 14 13 3 2 0

Reserved SDP AP M Reserved S EF T[11:3] TE B[13:3] BE

Address

64

Figure 38. Capability encoding when XLENMAX=64 and Zcheri_mode is supported

Zcheri_mode allows the M bit to be set to 1 when the capability does not grant X-permission. In this
case, the M bit is superfluous, so the encoding may be used to support additional features in future
extensions.

7.2. Zcheri_mode Instructions
Zcheri_mode introduces new instructions to the base RISC-V integer ISA in addition to the
instructions added in Zcheri_purecap. The new instructions in Zcheri_mode allows inspecting the
CHERI mode bit in capabilities and changing the current CHERI execution mode.

7.1. CHERI Execution Mode | Page 46

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.1. Capability Manipulation Instructions

A new Section 8.1.9 instruction allows setting a capability’s CHERI execution mode to the indicated
value. The output is written to an unprivileged c register, not pcc.

7.2.2. Mode Change Instructions

A new CHERI execution mode switch (CMODESWITCH) instruction allows software to toggle the
hart’s current CHERI execution mode. If the current mode in the pcc is Legacy, then the mode after
executing CMODESWITCH is Capability and vice-versa. This instruction effectively writes the CHERI
execution mode bit M of the capability currently installed in the pcc.

7.2.3. Unconditional Capability Jumps

Zcheri_mode allows changing the current CHERI execution mode when executing CJALR or
JALR.CAP.

7.3. Integrating Zcheri_mode with Sdext


CHERI v9 Note: The mode change instruction CMODESWITCH is new and the
requirement to optionally support it in debug mode is also new.

In addition to the changes described in Chapter 4 and Section 6.4, Zcheri_mode allows
CMODESWITCH to act as an illegal instruction when it is executed while in debug mode.

7.3. Integrating Zcheri_mode with Sdext | Page 47

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 8. RISC-V Instructions and
Extensions Reference
These instruction pages are for the new CHERI instructions, and some existing RISC-V instructions
where the effect of CHERI needs specific details.

For existing RISC-V instructions, note that:

1. In Legacy mode, every byte of each memory access access is bounds checked against ddc

2. In Legacy mode, a minimum length instruction at the target of all indirect jumps is bounds
checked against pcc

3. In Capability mode a minimum length instruction at the target of all indirect jumps is bounds
checked against cs1 (e.g. CJALR)

4. A minimum length instruction at the taken target of all direct jumps and conditional branches is
bounds checked against pcc regardless of CHERI execution mode


Not all RISC-V extensions have been checked against CHERI. Compatible extensions, will
eventually be listed in a CHERI profile.

Chapter 8. RISC-V Instructions and Extensions Reference | Page 48

RISC-V Specification for CHERI Extensions | © RISC-V

8.1. "Zcheri_purecap", "Zcheri_legacy" and
"Zcheri_mode" Extensions for CHERI

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 49

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.1. JALR.PCC

See JALR.CAP.

8.1.2. JALR.CAP


CHERI v9 Note: These instructions used to have separate encodings in CHERI v9. The
instructions depend on the CHERI execution mode and now they share the same new
encoding.

Synopsis
Indirect jump and link (via integer address or capability)

Capability Mode Mnemonic
jalr.pcc rd, rs1

Legacy Mode Mnemonic
jalr.cap cd, cs1

Encoding

06711121415192031

opcodecdfunct3cs1/rs1funct12

7
JALR=1100111

5
dest

3
cap: JALR.PCC=001
leg: JALR.CAP=001

5
base

12
cap: JALR.PCC=00..00
leg: JALR.CAP=00..00

Capability Mode Description
JALR.PCC allows unconditional jumps to a target integer address. The target address in rs1 is
installed in the address field of the pcc. The address of the instruction following the jump (pcc + 4)
is written to rd. This is identical to the standard JALR instruction, but with zero offset.

Legacy Mode Description
JALR.CAP allows unconditional jumps to a target capability. The capability in cs1 is installed in
pcc. The pcc of the next instruction following the jump (pcc + 4) is sealed and written to cd. This
instruction can be used to change the current CHERI execution mode and is identical to CJALR but
with zero offset.

Exception
When these instructions cause CHERI exceptions, CHERI jump or branch fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE JALR.PCC JALR.CAP Reason

Tag violation ✔ cs1 has tag set to 0

Seal violation ✔ cs1 is sealed and the immediate is not 0

Permission violation ✔ cs1 does not grant X-permission

Length violation ✔ ✔ Minimum length instruction is not within the target capability’s bounds


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 50

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites JALR.PCC
Zcheri_purecap

Prerequisites JALR.CAP
Zcheri_legacy

Operation JALR.PCC
TODO

Operation JALR.CAP
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 51

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.3. CMOVE

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability move

Mnemonic
cmove cd, cs1

Encoding

067111214151920242531

opcodecdfunct3cs1zerofunct7

7
OP=0110011

5
dest

3
CINCOFFSET=000

5
src

5
rs2=x0

7
CINCOFFSET=0000110

 CMOVE is encoded as CINCOFFSET with rs2=x0.

Description
The contents of capability register cs1 are written to capability register cd. CMOVE unconditionally
moves the whole capability to cd .

Prerequisites
Zcheri_purecap

Operation
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 52

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.4. CMODESWITCH

 CHERI v9 Note: This page has new encodings.

Synopsis
Switch CHERI execution mode

Mnemonics
cmodeswitch

Encoding

067111214151920242531

opcodefunct5funct3funct5funct5funct7

7
OP=0110011

5
CMS=000

3
CMS=001

5
CMS=00000

5
CMS=00000

7
CMS=0001001

Description
Toggle the hart’s current CHERI execution mode in pcc. If the current mode in pcc is Legacy, then
the mode bit (M) in pcc is set to Capability. If the current mode is Capability, then the mode bit (M)
in pcc is set to Legacy.


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

Prerequisites
Zcheri_mode

CModeSwitch Operation

TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 53

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.5. CINCOFFSETIMM

See CINCOFFSET.

8.1.6. CINCOFFSET

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: the immediate format has changed

Synopsis
Capability pointer increment

Mnemonic
cincoffset cd, cs1, rs2
cincoffsetimm cd, cs1, imm

Encoding

067111214151920242531

opcodecdfunct3cs1rs2!=x0funct7

7
OP=0110011

5
dest

3
CINCOFFSET=000

5
src

5
increment

7
CINCOFFSET=0000110

06711121415192031

opcodecdfunct3cs1imm

7
OP-IMM-32=0011011

5
dest

3
CINCOFFSETIMM=010

5
src

12
imm


CINCOFFSET with rs2=x0 is decoded as CMOVE instead, the key difference being that
tagged and sealed capabilities do not have their tag cleared by CMOVE.

Description
Increment the address field of the capability cs1 and write the result to cd . The tag bit of the
output capability is 0 if cs1 did not have its tag set to 1, the incremented address is outside cs1 's
representable region or cs1 is sealed.
For CINCOFFSET, the address is incremented by the value in rs2 .
For CINCOFFSETIMM, the address is incremented by the immediate value imm.

Prerequisites
Zcheri_purecap

Operation (CINCOFFSET)
TODO

Operation (CINCOFFSETIMM)
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 54

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.7. CSETADDR

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability set address

Mnemonic
csetaddr cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
CSETADDR=001

5
src

5
address

7
CSETADDR=0000110

Description
Set the address field of capability cs1 to rs2 and write the output capability to cd. The tag bit of the
output capability is 0 if cs1 did not have its tag set to 1, rs1 is outside the representable range of
cs1 or if cs1 is sealed.

Prerequisites
Zcheri_purecap

Operation
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 55

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.8. CANDPERM


CHERI v9 Note: The implementation of this instruction changes because the permission
fields are encoded differently in the new capability format.

 CHERI v9 Note: This page has new encodings.

Synopsis
Mask capability permissions

Mnemonics
candperm cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
CANDPERM=010

5
src

5
mask

7
CANDPERM=0000110

Description
Converts the AP and SDP fields of capability cs1 into a bit field; one bit per permission as shown
below. Then calculate the bitwise AND of the bit field with the mask rs2 . Set the AP and SDP fields
of cs1 as indicated in the resulting bit field — the capability grants a permission if the
corresponding bit is set in the bit field — and write the output capability to cd . The output
capability has its tag set to 0 if cs1 is sealed.

XLEN-1 SDPLEN+15 16 4 3 2 1 0

Reserved SDP Reserved ASR X C W R
XLEN-SDPLEN-16 SDPLEN 11 1 1 1 1 1


The AP field is not able to encode all combinations of permissions when XLENMAX=32. If
permissions that cannot be encoded are indicated, CANDPERM outputs a capability with
all architectural permissions cleared.


TODO: this may not be correct - we should work through the different combinations which
are possible for removing a permission for RV32, where it is restricted, and decide what to
do in each case

Prerequisites
Zcheri_purecap

Operation
TODO: Sail does not have the new encoding of the permissions field.

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 56

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.9. CSETMODE

 CHERI v9 Note: This instruction used to be CSetFlags.

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability set CHERI execution mode

Mnemonic
csetmode cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
CSETMODE=000

5
src1

5
CSETMODE=0011

7
CSETMODE=0001000

Description
Copy cs1 to cd and set cd.M (the mode bit) to the least significant bit of rs2 . cd.tag is set to 0 if
cs1 is sealed.

Prerequisites
Zcheri_mode

Operation

TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 57

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.10. CSETHIGH

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability set metadata

Mnemonic
csethigh cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
CSETHIGH=011

5
src

5
metadata

7
CSETHIGH=0000110

Description
Copy cs1 to cd , replace the capability metadata (i.e. bits [CLEN-1:XLENMAX]) with rs2 and set
cd.tag to 0.

Prerequisites
Zcheri_purecap

Operation
TODO this is correct but capToMemBits is redundant, as it’s now XORed with zero (null-cap)

TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 58

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.11. CSETEQUALEXACT

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability equals

Mnemonics
csetequalexact rd, cs1, cs2

Encoding

067111214151920242531

opcoderdfunct3cs1cs2funct7

7
OP=0110011

5
dest

3
CSETEQUALEXACT=100

5
src1

5
src2

7
CSETEQUALEXACT=0000110

Description
rd is set to 1 if all bits (i.e. CLEN bits and the tag) of capabilities cs1 and cs2 are equal, otherwise rd
is set to 0.

Prerequisites
Zcheri_purecap

Operation
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 59

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.12. CSEAL

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability seal

Mnemonics
cseal cd, cs1

Encoding

067111214151920242531

opcodecdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
CSEAL=000

5
src

5
CSEAL=01000

7
CSEAL=0001000

Description
Capability cd is written with the capability in cs1 with its seal bit set to 1.

Prerequisites
Zcheri_purecap

Operation
TODO: The SAIL definition for CSEAL writes the OTYPE which does not exist anymore.

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 60

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.13. CTESTSUBSET

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability test subset

Mnemonic
ctestsubset rd, cs1, cs2

Encoding

067111214151920242531

opcoderdfunct3cs1cs2funct7

7
OP=0110011

5
dest

3
CTESTSUBSET=110

5
src1

5
src2

7
CTESTSUBSET=0000110

Description
rd is set to 1 if the tag of capabilities cs1 and cs2 are equal and the bounds and permissions of cs2
are a subset of those of cs1 .


The implementation of this instruction is similar to CBUILDCAP, although CTESTSUBSET
does not include the sealed bit in the check.

Prerequisites
Zcheri_purecap

Operation
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 61

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.14. CBUILDCAP

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability build

Mnemonic
cbuildcap cd, cs1, cs2

Encoding

067111214151920242531

opcodecdfunct3cs1cs2funct7

7
OP=0110011

5
dest

3
CBUILDCAP=101

5
src1

5
src2

7
CBUILDCAP=0000110

Description
Copy cs2 to cd and set the tag to 1 if cs1.tag is set, cs1 is not sealed, cs1 's permissions and bounds
are equal or a superset of cs2 's, cs2 's bounds are not malformed (see Section 2.5), and all reserved
bits in cs2 's metadata are 0. CBUILDCAP is typically used alongside CSETHIGH to build
capabilities from integer values.

Prerequisites
Zcheri_purecap

Simplified Operation TODO not debugged much easier to read than the existing SAIL

let cs1_val = if unsigned(cs1) == 0 then DDC else C(cs1);
let cs2_val = C(cs2) [with tag=1];
//isCapSubset includes derivability checks on both operands
let subset = isCapSubset(cs1_val, cs2_val);
//Clear cd.tag if cs1 isn't a subset of cs1, or if
//cs1 is untagged or sealed, or if either is underivable
C(cd) = clearTagIf(cs2_val, not(subset) |
 not(cs1_val.tag) |
 isCapSealed(cs1_val));
RETIRE_SUCCESS

Operation
TODO: Original Sail looks at otype field, etc that don’t exist

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 62

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.15. CGETTAG

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability get tag

Mnemonic
cgettag rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
CGETTAG=000

5
src

5
CGETTAG=00000

7
CGETTAG=0001000

Description
Zero extend the value of cs1.tag and write the result to rd.

Prerequisites
Zcheri_purecap

Operation
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 63

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.16. CGETPERM

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability get permissions

Mnemonic
cgetperm rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
CGETPERM=000

5
src

5
CGETPERM=00001

7
CGETPERM=0001000

Description
Converts the AP and SDP fields of capability cs1 into a bit field; one bit per permission, as shown
below, and write the result to rd. A bit set to 1 in the bit field indicates that cs1 grants the
corresponding permission.

XLEN-1 SDPLEN+15 16 4 3 2 1 0

Reserved SDP Reserved ASR X C W R
XLEN-SDPLEN-16 SDPLEN 11 1 1 1 1 1

Prerequisites
Zcheri_purecap

Operation
TODO: The encoding of permissions changed.

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 64

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.17. CGETHIGH

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability get metadata

Mnemonic
cgethigh rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
CGETHIGH=000

5
src

5
CGETHIGH=00100

7
CGETHIGH=0001000

Description
Copy the metadata (bits [CLEN-1:XLENMAX]) of capability cs1 into rd.

Prerequisites
Zcheri_purecap

Operation
TODO this is correct but capToMemBits is redundant, as it’s now XORed with zero (null-cap)

TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 65

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.18. CGETBASE

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability get base address

Mnemonic
cgetbase rd, cs1

Encoding

067111214151920242531

opcodecdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
CGETBASE=000

5
src

5
CGETBASE=00101

7
CGETBASE=0001000

Description
Decode the base integer address from cs1 's bounds and write the result to rd. It is not required that
the input capability cs1 has its tag set to 1. CGETBASE outputs 0 if cs1 's bounds are malformed
(see Section 2.5).

Prerequisites
Zcheri_purecap

Operation
TODO need to check that it returns 0 if malformed

TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 66

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.19. CGETLEN

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability get length

Mnemonic
cgetlen rd, cs1

Encoding

067111214151920242531

opcodecdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
CGETLEN=000

5
src

5
CGETLEN=00110

7
CGETLEN=0001000

Description
Calculate the length of cs1 's bounds and write the result in rd. The length is defined as the
difference between the decoded bounds' top and base addresses i.e. top - base. It is not required
that the input capability cs1 has its tag set to 1. CGETLEN outputs 0 if cs1 's bounds are malformed
(see Section 2.5).

Prerequisites
Zcheri_purecap

Operation
TODO need to check that it returns 0 if malformed

TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 67

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.20. CSETBOUNDSIMM

See CSETBOUNDS.

8.1.21. CSETBOUNDS


CHERI v9 Note: CSETBOUNDS was CSETBOUNDSEXACT, CSETBOUNDSIMM would
have been CSETBOUNDSEXACTIMM if it had existed.

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: the immediate format has changed

Synopsis
Capability set bounds

Mnemonic
csetbounds cd, cs1, rs2
csetboundsimm cd, cs1, uimm

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
CSETBOUNDS=000

5
src1

5
src2

7
CSETBOUNDS=0000111

06711121415192024252631

opcodecdfunct3cs1uimmsfunct6

7
OP-IMM=0010011

5
dest

3
CSETBOUNDSIMM=101

5
src

5
uimm

1
scaled

6
CSETBOUNDSIMM

=000001

Description
Capability register cd is set to capability register cs1 with the base address of its bounds replaced
with the value of cs1.address and the length of its bounds set to rs2 (or imm). If the resulting
capability cannot be represented exactly then set cd.tag to 0. In all cases, cd.tag is set to 0 if its
bounds exceed cs1 's bounds, cs1 's tag is 0 or cs1 is sealed.

CSETBOUNDSIMM uses the s bit to scale the immediate by 4 places

immediate = ZeroExtend(s ? uimm<<4 : uimm)

Prerequisites
Zcheri_purecap

TODO: this is the CSetBoundsExact() function which will be renamed

Operation for CSETBOUNDS
TODO

Operation for CSETBOUNDSIMM
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 68

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.22. CSETBOUNDSINEXACT

 CHERI v9 Note: This instruction was called CSETBOUNDS.

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability set bounds, rounding up if necessary

Mnemonic
csetboundsinexact cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
CSETBOUNDSINEX=001

5
src1

5
src2

7
CSETBOUNDSINEX=0000111

Description
Capability register cd is set to capability register cs1 with the base address of its bounds replaced
with the value of cs1.address field and the length of its bounds set to rs2. The base is rounded
down and the length is rounded up by the smallest amount needed to form a representable
capability covering the requested bounds. In all cases, cd.tag is set to 0 if its bounds exceed cs1 's
bounds, cs1 's tag is 0 or cs1 is sealed.

Prerequisites
Zcheri_purecap

 TODO this is the CSetBounds() function which will be renamed

Operation for CSETBOUNDSINEXACT
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 69

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.23. CRAM

Synopsis
Get Capability Representable Alignment Mask (CRAM)

Mnemonic
cram rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
CRAM=000

5
src

5
CRAM=00111

7
CRAM=0001000

Description
Integer register rd is set to a mask that can be used to round addresses down to a value that is
sufficiently aligned to set exact bounds for the nearest representable length of rs1.

Prerequisites
Zcheri_purecap

Operation
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 70

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.24. LC

See CLC.

8.1.25. CLC

 CHERI v9 Note: This page has new encodings.

 The RV64 encoding is intended to also allocate the encoding for LQ for RV128.

Synopsis
Load capability

Capability Mode Mnemonics
clc cd, offset(cs1)

Legacy Mode Mnemonics
lc cd, offset(rs1)

 These instructions have different encodings for RV64 and RV32.

Encoding

06711121415192031

opcodecdfunct3rs1/cs1imm[11:0]

7
MISCMEM=0001111
MISCMEM=0001111

LOAD=0000011
LOAD=0000011

5
dest!=c0

3
cap rv64: CLC=100
leg rv64: LC=100

cap rv32: CLC=011
leg rv32: LC=011

5
base

12
offset[11:0]

Capability Mode Description
Load a CLEN+1 bit value from memory and writes it to cd. The capability in cs1 authorizes the
operation. The effective address of the memory access is obtained by adding the address of cs1 to
the sign-extended 12-bit offset. The tag value written to cd is 0 if the tag of the memory location
loaded is 0 or cs1 does not grant C-permission.

Legacy Mode Description
Loads a CLEN+1 bit value from memory and writes it to cd. The capability authorising the
operation is ddc. The effective address of the memory access is obtained by adding rs1 to the sign-
extended 12-bit offset. The tag value written to cd is 0 if the tag of the memory location loaded is 0
or ddc does not grant C-permission.

Exceptions
Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 71

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CLC
Zcheri_purecap

Prerequisites for LC
Zcheri_legacy

CLC Operation
TODO

LC Operation
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 72

RISC-V Specification for CHERI Extensions | © RISC-V

8.1.26. SC

See CSC.

8.1.27. CSC

 The RV64 encoding is intended to also allocate the encoding for SQ for RV128.

Synopsis
Store capability

Capability Mode Mnemonics
csc cs2, offset(cs1)

Legacy Mode Mnemonics
sc cs2, offset(rs1)

 These instructions have different encodings for RV64 and RV32.

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1/cs1cs2imm[11:5]

7
STORE=0100011

5
offset[4:0]

3
cap rv64: CSC=100
leg rv64: SC=100

cap rv32: CSC=011
leg rv32: SC=011

5
base

5
src

7
offset[11:5]

Capability Mode Description
Store the CLEN+1 bit value in cs2 to memory. The capability in cs1 authorizes the operation. The
effective address of the memory access is obtained by adding the address of cs1 to the sign-
extended 12-bit offset. The capability written to memory has the tag set to 0 if the tag of cs2 is 0 or
cs1 does not grant C-permission.

Legacy Mode Description
Store the CLEN+1 bit value in cs2 to memory. The capability authorising the operation is ddc. The
effective address of the memory access is obtained by adding rs1 to the sign-extended 12-bit offset.
The capability written to memory has the tag set to 0 if cs2 's tag is 0 or ddc does not grant C-
permission.

Exceptions
Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 73

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CSC
Zcheri_purecap

Prerequisites for SC
Zcheri_legacy

CSC Operation
TODO

SC Operation
TODO

8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 74

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. RV32I/E and RV64I/E Base Integer Instruction
Sets

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 75

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.1. AUIPC

See AUIPCC

8.2.2. AUIPCC

Synopsis
Add upper immediate to pc/pcc

Capability Mode Mnemonic
auipcc cd, imm

Legacy Mode Mnemonic
auipc rd, imm

Encoding

067111231

opcodecd/rdimm[31:12]

7
cap: AUIPCC=0010111
leg: AUIPC=0010111

5
dest

20
U-immediate[31:12]

Capability Mode Description
Form a 32-bit offset from the 20-bit immediate filling the lowest 12 bits with zeros. Increment the
address of the AUIPCC instruction’s pcc by the 32-bit offset, then write the output capability to cd.
The tag bit of the output capability is 0 if the incremented address is outside the pcc's representable
region.

Legacy Mode Description
Form a 32-bit offset from the immediate, filling in the lowest 12 bits with zeros, adds this offset to
the address of the AUIPC instruction, then places the result in register rd.


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

Prerequisites for AUIPCC
Zcheri_purecap

Prerequisites for AUIPC
Zcheri_legacy

Operation for AUIPCC
TODO

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 76

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.3. BEQ, BNE, BLT[U], BGE[U]

Synopsis
Conditional branches (BEQ, BNE, BLT[U], BGE[U])

Mnemonics
beq rs1, rs2, imm
bne rs1, rs2, imm
blt rs1, rs2, imm
bge rs1, rs2, imm
bltu rs1, rs2, imm
bgeu rs1, rs2, imm

Encoding

067111214151920242531

opcodeimm[4:1|11]funct3rs1rs2imm[12|10:5]

7
BRANCH=1100011

5
offset[4:1|11]

3
BEQ=000
BNE=001
BLT=100
BGE=101
BLTU=110
BGEU=111

5
src1

5
src2

7
offset[12|10:5]

Description
Compare two integer registers rs1 and rs2 according to the indicated opcode as described in
(RISC-V, 2023). The 12-bit immediate encodes signed offsets in multiples of 2 bytes. The offset is
sign-extended and added to the address of the branch instruction to give the target address. Then
the target address is written into the address field of pcc.

Exceptions
When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of
mtval or stval:


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

ERROR: TODO: Sail doesn’t have target exceptions - wrong code included?

Operation
TODO

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 77

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.4. CJALR

See JALR

8.2.5. CJAL, JALR

Synopsis
Jump and link register

Capability Mode Mnemonic
cjalr cd, cs1, offset

Legacy Mode Mnemonic
jalr rd, rs1, offset

Encoding

06711121415192031

opcodecd/rdfunct3cs1/rs1imm[11:0]

7
cap: CJALR=1100111
leg: JALR=1100111

5
dest

3
0

5
base

12
offset[11:0]

Capability Mode Description
CJALR allows unconditional, indirect jumps to a target capability. The target capability is obtained
by unsealing cs1 and incrementing its address by the sign-extended 12-bit immediate, and then
setting the least-significant bit of the result to zero. The target capability may have Invalid address
conversion performed and is then installed in pcc. The pcc of the next instruction following the
jump (pcc + 4) is sealed and written to cd.

Legacy Mode Description
JALR allows unconditional, indirect jumps to a target address. The target address is obtained by
adding the sign-extended 12-bit immediate to rs1, then setting the least-significant bit of the result
to zero. The target address is installed in the address field of the pcc which may require Invalid
address conversion. The address of the instruction following the jump (pcc + 4) is written to rd.

Exceptions
When these instructions cause CHERI exceptions, CHERI jump or branch fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE JALR CJALR Reason

Tag violation ✔ cs1 has tag set to 0

Seal violation ✔ cs1 is sealed and the immediate is not 0

Permission violation ✔ cs1 does not grant X-permission

Length violation ✔ ✔ Minimum length instruction is not within the target capability’s bounds


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

Prerequisites CJALR
Zcheri_purecap

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 78

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites JALR
Zcheri_legacy

CJALR Operation
TBD

JALR Operation
TBD

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 79

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.6. CJAL

See JAL

8.2.7. CJAL, JAL

Synopsis
Jump and link

Capability Mode Mnemonic
cjal cd, offset

Legacy Mode Mnemonic
jal rd, offset

Encoding

06711121920213031

opcodecd/rdimm[19:12][11]imm[10:1][20]

7
cap: CJAL=1101111
leg: JAL=1101111

5
dest

8
offset[19:12]

110
offset[20:1]

1

Capability Mode Description
CJAL’s immediate encodes a signed offset in multiple of 2 bytes. The pcc is incremented by the
sign-extended offset to form the jump target capability. The target capability is written to pcc. The
pcc of the next instruction following the jump (pcc + 4) is sealed and written to cd.

Legacy Mode Description
JAL’s immediate encodes a signed offset in multiple of 2 bytes. The sign-extended offset is added to
the pcc's address to form the target address which is written to the pcc's address field. The address
of the instruction following the jump (pcc + 4) is written to rd.

Exceptions
CHERI fault exceptions occur when a minimum length instruction at the target address is not
within the bounds of the pcc. In this case, CHERI jump or branch fault is reported in the TYPE field
and Length Violation is reported in the CAUSE field of mtval or stval.

Prerequisites for CJAL
Zcheri_purecap

Prerequisites for JAL
Zcheri_legacy

CJAL Operation
TODO

JAL Operation TODO where’s the target check?
TODO

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 80

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.8. CLWU

See CLD.

8.2.9. CLW

See CLD.

8.2.10. CLHU

See CLD.

8.2.11. CLH

See CLD.

8.2.12. CLBU

See CLD.

8.2.13. CLB

See CLD.

8.2.14. LD

See CLD.

8.2.15. LWU

See CLD.

8.2.16. LW

See CLD.

8.2.17. LHU

See CLD.

8.2.18. LH

See CLD.

8.2.19. LBU

See CLD.

8.2.20. LB

See CLD.

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 81

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.21. CLD

Synopsis
Load (CLD, CLW[U], CLH[U], CLB[U], LD, LW[U], LH[U], LB[U])

Capability Mode Mnemonics (RV64)
cld rd, offset(cs1)
clw[u] rd, offset(cs1)
clh[u] rd, offset(cs1)
clb[u] rd, offset(cs1)

Legacy Mode Mnemonics (RV64)
ld rd, offset(rs1)
lw[u] rd, offset(rs1)
lh[u] rd, offset(rs1)
lb[u] rd, offset(rs1)

Capability Mode Mnemonics (RV32)
clw rd, offset(cs1)
clh[u] rd, offset(cs1)
clb[u] rd, offset(cs1)

Legacy Mode Mnemonics (RV32)
lw rd, offset(rs1)
lh[u] rd, offset(rs1)
lb[u] rd, offset(rs1)

Encoding

06711121415192031

opcoderdfunct3rs1/cs1imm[11:0]

7
LOAD=0000011

5
dest

3
width

cap: CLB=000
leg: LB=000

cap: CLH=001
leg: LH=001

cap: CLW=010
leg: LW=010

cap: CLBU=100
leg: LBU=100

cap: CLHU=101
leg: LHU=101

cap rv64: CLWU=110
leg rv64: LWU=110
cap rv64: CLD=011
leg rv64: LD=011

5
base

12
offset[11:0]

Capability Mode Description
Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorising capability for the operation is cs1. A copy of the loaded value is written to rd.

Legacy Mode Description
Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to rs1. The
authorising capability for the operation is ddc. A copy of the loaded value is written to rd.

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 82

RISC-V Specification for CHERI Extensions | © RISC-V

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CLD
RV64, Zcheri_purecap

Prerequisites for CLW[U], CLH[U], CLB[U]
Zcheri_purecap

Prerequisites for LD
RV64, Zcheri_legacy

Prerequisites for LW[U], LH[U], LB[U]
Zcheri_legacy

Capability Mode Operation
TBD

Legacy Mode Operation
TODO

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 83

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.22. CSW

See CSD

8.2.23. CSH

See CSD

8.2.24. CSB

See CSD

8.2.25. SD

See CSD

8.2.26. SW

See CSD

8.2.27. SH

See CSD

8.2.28. SB

See CSD

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 84

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.29. CSD

Synopsis
Stores (CSD, CSW, CSH, CSB, SD, SW, SH, SB)

Capability Mode Mnemonics (RV64)
csd rs2, offset(cs1)
csw rs2, offset(cs1)
csh rs2, offset(cs1)
csb rs2, offset(cs1)

Legacy Mode Mnemonics (RV64)
sd rs2, offset(rs1)
sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Capability Mode Mnemonics (RV32)
csw rs2, offset(cs1)
csh rs2, offset(cs1)
csb rs2, offset(cs1)

Legacy Mode Mnemonics (RV32)
sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1/cs1rs2imm[11:5]

7
STORE=0100011

5
offset[4:0]

3
cap: CSB=000
cap: CSH=001
cap: CSW=010

cap rv64: CSD=011
leg: SB=000
leg: SH=001
leg: SW=010

leg rv64: SD=011

5
base

5
src

7
offset[11:5]

Capability Mode Description
Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorising capability for the operation is cs1. A copy of rs2 is written to memory at the
location indicated by the effective address and the tag bit of each block of memory naturally
aligned to CLEN/8 is cleared.

Legacy Mode Description
Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to rs1. The
authorising capability for the operation is ddc. A copy of rs2 is written to memory at the location
indicated by the effective address and the tag bit of each block of memory naturally aligned to
CLEN/8 is cleared.

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 85

RISC-V Specification for CHERI Extensions | © RISC-V

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CSD
RV64, Zcheri_purecap

Prerequisites for CSW, CSH, CSB
Zcheri_purecap

Prerequisites for SD
RV64, Zcheri_legacy

Prerequisites for SW, SH, SB
Zcheri_legacy

Operation

TBD

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 86

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.30. SRET

See MRET.

8.2.31. MRET

Synopsis
Trap Return (MRET, SRET)

Mnemonics
mret
sret

Encoding

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM=111011

5
0

3
PRIV=0

5
0

12
MRET=001100000010
SRET=000100000010

Description
Return from machine mode (MRET) or supervisor mode (SRET) trap handler as defined by (RISC-
V, 2023). MRET unseals mepcc and writes the result into pcc. SRET unseals sepcc and writes the
result into pcc.

Exceptions
CHERI fault exceptions occur when pcc does not grant ASR-permission because MRET and SRET
require access to privileged CSRs. When that exception occurs, CHERI instruction access fault is
reported in the TYPE field and the Permission Violation codes is reported in the CAUSE field of
mtval or stval.

Operation

TBD

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 87

RISC-V Specification for CHERI Extensions | © RISC-V

8.2.32. DRET

Synopsis
Debug Return (DRET)

Mnemonics
dret

Encoding

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM=111011

5
0

3
PRIV=0

5
0

12
DRET=011110110010

Description
DRET return from debug mode. It unseals dpcc and writes the result into pcc.


The DRET instruction is the recommended way to exit debug mode. However, it is a pseudo
instruction to return that technically does not execute from the program buffer or memory.
It currently does not require the pcc to grant ASR-permission so it never excepts.

Prerequisites
Sdext

Operation

TBD

8.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 88

RISC-V Specification for CHERI Extensions | © RISC-V

8.3. "A" Standard Extension for Atomic Instructions

8.3. "A" Standard Extension for Atomic Instructions | Page 89

RISC-V Specification for CHERI Extensions | © RISC-V

8.3.1. CAMO<OP>.W

See AMO<OP>.D.

8.3.2. CAMO<OP>.D

See AMO<OP>.D.

8.3.3. AMO<OP>.W

See AMO<OP>.D.

8.3. "A" Standard Extension for Atomic Instructions | Page 90

RISC-V Specification for CHERI Extensions | © RISC-V

8.3.4. CAMO<OP>.W

Synopsis
Atomic Operations (CAMO<OP>.W, CAMO<OP>.D, AMO<OP>.W, AMO<OP>.D), 32-bit encodings

Capability Mode Mnemonics (RV64)
camo<op>.[w|d], offset(cs1)

Capability Mode Mnemonics (RV32)
camo<op>.w, offset(cs1)

Legacy Mode Mnemonics (RV64)
amo<op>.[w|d], offset(rs1)

Legacy Mode Mnemonics (RV32)
amo<op>.w, offset(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
.W=010

rv64: .D=011

5
base

5
src

1
rl

1
aq

5
op

SWAP=00001
ADD=00000
XOR=00100
AND=01100
OR=01000
MIN=10000
MAX=10100
MINU=11000
MAXU=11100

Capability Mode Description
Standard atomic instructions, authorised by the capability in cs1.

Legacy Mode Description
Standard atomic instructions, authorised by the capability in ddc.

Permissions
Requires R-permission and W-permission in the authorising capability.

Requires all bytes of the access to be in capability bounds.

Exceptions
All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE Reason

Tag violation Authority capability tag
set to 0

Seal violation Authority capability is
sealed

8.3. "A" Standard Extension for Atomic Instructions | Page 91

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Permission violation Authority capability does
not grant R-permission or

W-permission

Length violation At least one byte accessed
is outside the authority

capability bounds

Prerequisites for CAMO<OP>.W, CAMO<OP>.D
Zcheri_purecap

Prerequisites for AMO<OP>.W, AMO<OP>.D
Zcheri_legacy

Capability Mode Operation

TBD

Legacy Mode Operation
TODO

8.3. "A" Standard Extension for Atomic Instructions | Page 92

RISC-V Specification for CHERI Extensions | © RISC-V

8.3.5. AMOSWAP.C

See CAMOSWAP.C.

8.3.6. CAMOSWAP.C

 The RV64 encoding is intended to also allocate the encoding for AMOSWAP.Q for RV128.

Synopsis
Atomic Operations (CAMOSWAP.C, AMOSWAP.C), 32-bit encodings

 These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics
camoswap.c, offset(cs1)

Legacy Mode Mnemonics
amoswap.c, offset(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3cs1cs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

rv32: .C=011
rv64: .C=100

5
base

5
src

1
rl

1
aq

5
op

SWAP=00001

Capability Mode Description
Atomic swap of capability type, authorised by the capability in cs1.

Legacy Mode Description
Atomic swap of capability type, authorised by the capability in ddc.

Permissions
Requires the authorising capability to be tagged and not sealed.

Requires R-permission and W-permission in the authorising capability.

If C-permission is not granted then store the memory tag as zero, and load cd.tag as zero.

(This tag clearing behaviour may become a data dependent exception in future.)

Requires all bytes of the access to be in capability bounds.

Exceptions
All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

8.3. "A" Standard Extension for Atomic Instructions | Page 93

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Tag violation Authority capability tag
set to 0

Seal violation Authority capability is
sealed

Permission violation Authority capability does
not grant R-permission or

W-permission

Length violation At least one byte accessed
is outside the authority

capability bounds

Prerequisites for CAMOSWAP.C
Zcheri_purecap

Prerequisites for AMOSWAP.C
Zcheri_legacy

Operation
TODO

8.3. "A" Standard Extension for Atomic Instructions | Page 94

RISC-V Specification for CHERI Extensions | © RISC-V

8.3.7. CLR.D

See LR.B.

8.3.8. CLR.W

See LR.B.

8.3.9. CLR.H

See LR.B.

8.3.10. CLR.B

See LR.B.

8.3.11. LR.D

See LR.B.

8.3.12. LR.W

See LR.B.

8.3.13. LR.H

See LR.B.

8.3. "A" Standard Extension for Atomic Instructions | Page 95

RISC-V Specification for CHERI Extensions | © RISC-V

8.3.14. LR.B

Synopsis
Load Reserved (CLR.D, CLR.W, CLR.H, CLR.B, LR.D, LR.W, LR.H, LR.B), 32-bit encodings

Capability Mode Mnemonics (RV64)
clr.[d|w|h|b] rd, 0(cs1)

Capability Mode Mnemonics (RV32)
clr.[w|h|b] rd, 0(cs1)

Legacy Mode Mnemonics (RV64)
lr.[d|w|h|b] rd, 0(rs1)

Legacy Mode Mnemonics (RV32)
lr.[w|h|b] rd, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
.B=000
.H=001
.W=010

rv64: .D=011

5
base

5
cap: CLR.*=00000
leg: LR.*=00000

1
rl

1
aq

5
op

cap: CLR.*=00010
leg: LR.*=00010

Capability Mode Description
Load reserved instructions, authorised by the capability in cs1.

Legacy Mode Description
Load reserved instructions, authorised by the capability in ddc.

Exceptions
All misaligned load reservations cause a load address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a load access
fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CLR.D
RV64, and Zcheri_purecap

Prerequisites for CLR.W
Zcheri_purecap

8.3. "A" Standard Extension for Atomic Instructions | Page 96

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CLR.H, CLR.B
Zbhlrsc and Zcheri_purecap

Prerequisites for LR.D
RV64, and Zcheri_legacy

Prerequisites for LR.W
Zcheri_legacy

Prerequisites for LR.H, LR.B
Zbhlrsc and Zcheri_legacy

Operation

TBD

8.3. "A" Standard Extension for Atomic Instructions | Page 97

RISC-V Specification for CHERI Extensions | © RISC-V

8.3.15. LR.C

See CLR.C.

8.3.16. CLR.C

 The RV64 encoding is intended to also allocate the encoding for LR.Q for RV128.

Synopsis
Load Reserved (CLR.C, LR.C), 32-bit encodings

 These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics (RV64)
clr.c cd, 0(cs1)

Capability Mode Mnemonics (RV32)
clr.c cd, 0(cs1)

Legacy Mode Mnemonics (RV64)
lr.c cd, 0(rs1)

Legacy Mode Mnemonics (RV32)
lr.c cd, 0(rs1)

Encoding

0671112141519202425262731

opcodecdfunct3cs1/rs1funct5rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
rv32: .C=011
rv64: .C=100

5
base

5
cap: CLR.*=00000
leg: LR.*=00000

1
rl

1
aq

5
op

cap: CLR.*=00010
leg: LR.*=00010

Capability Mode Description
Load reserved instructions, authorised by the capability in cs1. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-
V, 2023)).

Legacy Mode Description
Load reserved instructions, authorised by the capability in ddc. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-
V, 2023)).

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

8.3. "A" Standard Extension for Atomic Instructions | Page 98

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CLC
Zcheri_purecap

Prerequisites for LC
Zcheri_legacy

Operation

TBD

8.3. "A" Standard Extension for Atomic Instructions | Page 99

RISC-V Specification for CHERI Extensions | © RISC-V

8.3.17. CSC.D

See SC.B.

8.3.18. CSC.W

See SC.B.

8.3.19. CSC.H

See SC.B.

8.3.20. CSC.B

See SC.B.

8.3.21. SC.D

See SC.B.

8.3.22. SC.W

See SC.B.

8.3.23. SC.H

See SC.B.

8.3. "A" Standard Extension for Atomic Instructions | Page 100

RISC-V Specification for CHERI Extensions | © RISC-V

8.3.24. SC.B

Synopsis
Store Conditional (CSC.D, CSC.W, CSC.H, CSC.B, SC.D, SC.W, SC.H, SC.B), 32-bit encodings

Capability Mode Mnemonics (RV64)
csc.[d|w|h|b] rd, rs2, 0(cs1)

Capability Mode Mnemonics (RV32)
csc.[w|h|b] rd, rs2, 0(cs1)

Legacy Mode Mnemonics (RV64)
sc.[d|w|h|b] rd, rs2, 0(rs1)

Legacy Mode Mnemonics (RV32)
sc.[w|h|b] rd, rs2, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

.B=000

.H=001
.W=010

rv64: .D=011

5
base

5
src

1
rl

1
aq

5
op

cap: CSC=00011
leg: SC=00011

Capability Mode Description
Store conditional instructions, authorised by the capability in cs1.

Legacy Mode Description
Store conditional instructions, authorised by the capability in ddc.

Exceptions
All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CSC.D
RV64, and Zcheri_purecap

Prerequisites for CSC.W
Zcheri_purecap

8.3. "A" Standard Extension for Atomic Instructions | Page 101

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CSC.H, CSC.B
Zcheri_purecap, and Zbhlrsc

Prerequisites for SC.D
RV64, and Zcheri_legacy

Prerequisites for SC.W
Zcheri_legacy

Prerequisites for SC.H, SC.B
Zcheri_legacy, and Zbhlrsc

Operation

TBD

8.3. "A" Standard Extension for Atomic Instructions | Page 102

RISC-V Specification for CHERI Extensions | © RISC-V

8.3.25. SC.C

See CSC.C.

8.3.26. CSC.C

 The RV64 encoding is intended to also allocate the encoding for SC.Q for RV128.

Synopsis
Store Conditional (CSC.C, SC.C), 32-bit encodings

 These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics
csc.c cd, cs2, 0(cs1)

Legacy Mode Mnemonics
sc.c cd, cs2, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3cs1/rs1cs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

rv32: .C=011
rv64: .C=100

5
base

5
src

1
rl

1
aq

5
op

cap: CSC=00011
leg: SC=00011

Capability Mode Description
Store conditional instructions, authorised by the capability in cs1. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 2023)).

Legacy Mode Description
Store conditional instructions, authorised by the capability in ddc. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 2023)).

Exceptions
All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

8.3. "A" Standard Extension for Atomic Instructions | Page 103

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CSC.C
Zcheri_purecap

Prerequisites for SC.C
Zcheri_legacy

Operation

TBD

8.3. "A" Standard Extension for Atomic Instructions | Page 104

RISC-V Specification for CHERI Extensions | © RISC-V

8.4. "Zicsr", Control and Status Register (CSR)
Instructions

8.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 105

RISC-V Specification for CHERI Extensions | © RISC-V

8.4.1. CSRRW

 CHERI v9 Note: CSpecialRW is removed and this functionality replaces it

Synopsis
CSR access (CSRRW) 32-bit encodings

Mnemonic (XLEN-wide target, and XLEN-wide aliases of CLEN-wide CSRs)
csrrw rd, rs1, csr

Mnemonics (CLEN-wide target)
csrrw cd, cs1, csr

Encoding

06711121415192031

opcoderd/cdfunct3rs1/cs1csr

7
SYSTEM=1110011

5
dest

3
CSRRW=001

5
source

12
source/dest CSR

Description
This is a standard RISC-V CSR instructions with extended functionality for accessing CLEN-wide
CSRs, such as mtvec/mtvecc which can be accessed through either the RISC-V address or the
capability address alias.

See Table 38 for a list of CLEN-wide CSRs and Table 39 for the action taken on writing each one.

CSRRW writes cs1 to the CLEN-wide alias of extended CSRs, and reads a full capability into cd.

CSRRW writes rs1 to the XLEN-wide alias of extended CSRs, and reads the address field into rd.

Access to XLEN-wide CSRs from other extensions is as specified by RISC-V.

Permissions
All non-user mode accessible CSRs require ASR-permission, including existing RISC-V CSRs.

Prerequisites for capability address aliases
Zcheri_purecap

Prerequisites for legacy address aliases
Zcheri_legacy

Operation

TBD

8.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 106

RISC-V Specification for CHERI Extensions | © RISC-V

8.4.2. CSRRWI

See CSRRCI.

8.4.3. CSRRS

See CSRRCI.

8.4.4. CSRRSI

See CSRRCI.

8.4.5. CSRRC

See CSRRCI.

8.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 107

RISC-V Specification for CHERI Extensions | © RISC-V

8.4.6. CSRRCI

 CHERI v9 Note: CSpecialRW is removed and this functionality replaces it

Synopsis
CSR access (CSRRWI, CSRRS, CSRRSI, CSRRC, CSRRCI) 32-bit encodings

Register Source Mnemonics
csrr[s|c] rd, rs1, csr

Immediate Source Mnemonics
csrr[w|s|c]i rd, imm, csr

Encoding

06711121415192031

opcoderdfunct3rs1/uimmcsr

7
SYSTEM=1110011

5
dest

3
CSRRS=010
CSRRC=011
CSRRWI=101
CSRRSI=110
CSRRCI=111

5
source
source

uimm[4:0]
uimm[4:0]
uimm[4:0]

12
source/dest CSR

Description
These are standard RISC-V CSR instructions with extended functionality for accessing CLEN-wide
CSRs, such as mtvec/mtvecc which can be accessed through either the RISC-V address or the
capability address alias.

Unlike CSRRW these instruction perform the same update to CLEN-wide CSRs to either the XLEN
or CLEN-wide alias as they only every perform an XLEN-wide update. Where a CLEN-wide CSR is
updated, through either alias, the final address is determined as defined by RISC-V for these
instructions. The metadata and tag are updated as defined in Table 39.

See Table 38 for a list of CLEN-wide CSRs and Table 39 for the action taken on writing an XLEN-
wide value to each one.

Access to XLEN-wide CSRs from other extensions is as specified by RISC-V.

Permissions
All non-user mode accessible CSRs require ASR-permission, including existing RISC-V CSRs.

Prerequisites for capability address aliases
Zcheri_purecap

Prerequisites for legacy address aliases
Zcheri_legacy

Operation

TBD

8.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 108

RISC-V Specification for CHERI Extensions | © RISC-V

8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension
for Floating-Point

8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 109

RISC-V Specification for CHERI Extensions | © RISC-V

8.5.1. CFLD

See FLH.

8.5.2. CFLW

See FLH.

8.5.3. CFLH

See FLH.

8.5.4. FLD

See FLH.

8.5.5. FLW

See FLH.

8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 110

RISC-V Specification for CHERI Extensions | © RISC-V

8.5.6. FLH

Synopsis
Floating point loads (CFLD, CFLW, CFLH, FLD, FLW, FLH), 32-bit encodings

Capability Mode Mnemonics
cfld/cflw/cflh frd, offset(cs1)

Legacy Mode Mnemonics
fld/flw/flh rd, offset(rs1)

Encoding

06711121415192031

opcodefrdwidthrs1/cs1imm[11:0]

7
LOAD-FP=0000111

5
dest

3
cap: CFLD=011
cap: CFLW=010
cap: CFLH=001
leg: FLD=011
leg: FLW=010
leg: FLH=001

5
base

12
offset[11:0]

Capability Mode Description
Standard floating point load instructions, authorised by the capability in cs1.

Legacy Mode Description
Standard floating point load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CFLD
Zcheri_purecap, and D

Prerequisites for CFLW
Zcheri_purecap, and F

Prerequisites for CFLH
Zcheri_purecap, and Zfhmin or Zfh

Prerequisites for FLD
Zcheri_legacy, and D

Prerequisites for FLW
Zcheri_legacy, and F

8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 111

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for FLH
Zcheri_legacy, and Zfhmin or Zfh

Operation
TODO

8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 112

RISC-V Specification for CHERI Extensions | © RISC-V

8.5.7. CFSD

See FLH.

8.5.8. CFSW

See FLH.

8.5.9. CFSH

See FSH.

8.5.10. FSD

See FSH.

8.5.11. FSW

See FSH.

8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 113

RISC-V Specification for CHERI Extensions | © RISC-V

8.5.12. FSH

Synopsis
Floating point stores (CFSD, CFSW, CFSH, FSD, FSW, FSH), 32-bit encodings

Capability Mode Mnemonics
cfsd/cfsw/cfsh fs2, offset(cs1)

Legacy Mode Mnemonics
fsd/fsw/fsh fs2, offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]widthrs1/cs1rs2imm[11:5]

7
STORE-FP=0100111

5
offset[4:0]

3
cap: CFSD=011
cap: CFSW=010
cap: CFSH=001
leg: FSD=011
leg: FSW=010
leg: FSH=001

5
base

5
src

7
offset[11:5]

Capability Mode Description
Standard floating point store instructions, authorised by the capability in cs1.

Legacy Mode Description
Standard floating point store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CFSD
Zcheri_purecap, and D

Prerequisites for CFSW
Zcheri_purecap, and F

Prerequisites for CFSH
Zcheri_purecap, and Zfh or Zfhmin

Prerequisites for FSD
Zcheri_legacy, and D

Prerequisites for FSW
Zcheri_legacy, and F

8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 114

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for FSH
Zcheri_legacy, and Zfh or Zfhmin

Operation

TBD

8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 115

RISC-V Specification for CHERI Extensions | © RISC-V

8.6. "C" Standard Extension for Compressed
Instructions

8.6. "C" Standard Extension for Compressed Instructions | Page 116

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.1. C.BEQZ, C.BNEZ

Synopsis
Conditional branches (C.BEQZ, C.BNEZ), 16-bit encodings

Mnemonics
c.beqz/c.bnez rs1', offset

Expansions
beq/bne rs1′, x0, offset

Encoding

01267910121315

opimmrs1'immfunct3

2
C1
C1

5
offset[7:6|2:1|5]
offset[7:6|2:1|5]

3
src
src

3
offset[8|4:3]
offset[8|4:3]

3
C.BEQZ
C.BNEZ

Exceptions
When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of
mtval or stval:


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

Prerequisites
C or Zca

Operation (after expansion to 32-bit encodings)
See Conditional branches (BEQ, BNE, BLT[U], BGE[U])

8.6. "C" Standard Extension for Compressed Instructions | Page 117

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.2. C.MV

See C.CMOVE.

8.6.3. C.CMOVE

Synopsis
Capability move (C.MV, C.CMOVE), 16-bit encoding

Capability Mode Mnemonic
c.cmove cd, cs2`

Capability Mode Expansion
cmove cd, cs2`

Legacy Mode Mnemonic
c.mv rd, rs2`

Legacy Mode Expansion
add rd, x0, rs2`

Encoding

01267111215

oprs2/cs2rd/cdfunct4

2
C2=10

5
src!=0

5
dest!=0

4
leg: C.MV=1000

cap: C.CMove=1000

Capability Mode Description
Capability register cd is replaced with the contents of cs1.

Legacy Mode Description
Standard RISC-V C.MV instruction.

Prerequisites C.CMOVE
C or Zca, Zcheri_purecap

Prerequisites C.MV
C or Zca, Zcheri_legacy

Capability Mode Operation (after expansion to 32-bit encodings)
See CMOVE

8.6. "C" Standard Extension for Compressed Instructions | Page 118

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.4. C.ADDI16SP

See C.CINCOFFSET16CSP.

8.6.5. C.CINCOFFSET16CSP

Synopsis
Stack pointer increment in blocks of 16 (C.CINCOFFSET16CSP, C.ADDI16SP), 16-bit encodings

Capability Mode Mnemonic
c.cincoffset16csp imm

Capability Mode Expansion
cincoffset csp, csp, imm

Legacy Mode Mnemonic
c.addi16sp imm

Legacy Mode Expansion
add sp, sp, imm

Encoding

0126711121315

opnzimm[4|6|8:7|5]rd/rs1nzimm[9]funct3

2
C1=01

5
offset[4|6|8:7|5]

5
2

1
[9]

3
cap: C.CINCOFFSET16CSP=011

leg: C.ADDI16SP=011

Capability Mode Description
Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (csp=c2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496). Clear the tag if the
resulting capability is unrepresentable or csp is sealed.

Legacy Mode Description
Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496).

Prerequisites for C.CINCOFFSET16CSP
C or Zca, Zcheri_purecap

Prerequisites for C.ADDI16SP
C or Zca, Zcheri_legacy

Capability Mode Operation
TODO

8.6. "C" Standard Extension for Compressed Instructions | Page 119

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.6. C.ADDI4SPN

See C.CINCOFFSET4CSPN.

8.6.7. C.CINCOFFSET4CSPN

Synopsis
Stack pointer increment in blocks of 4 (C.CINCOFFSET4CSPN, C.ADDI4SPN), 16-bit encodings

Capability Mode Mnemonic
c.cincoffset4cspn rd', uimm

Capability Mode Expansion
cincoffset rd', csp, uimm

Legacy Mode Mnemonic
c.addi4spn rd', uimm

Legacy Mode Expansion
add rd', sp, uimm

Encoding

01245121315

oprd'nzimmfunct3

2
C0=00

3
dest

8
uimm[5:4|9:6|2|3]!=0

3
cap: C.CINCOFFSET4CSPN=000

leg: C.ADDI4SPN=000

Capability Mode Description
Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, csp, and writes the
result to rd'. This instruction is used to generate pointers to stack-allocated variables. Clear the tag
if the resulting capability is unrepresentable or csp is sealed.

Legacy Mode Description
Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, sp, and writes the result
to rd'. This instruction is used to generate pointers to stack-allocated variables.

Prerequisites for C.CINCOFFSET4CSPN
C or Zca, Zcheri_purecap

Prerequisites for C.ADDI4SPN
C or Zca, Zcheri_legacy

Capability Mode Operation
TODO

8.6. "C" Standard Extension for Compressed Instructions | Page 120

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.8. C.CMODESWITCH

 CHERI v9 Note: This instruction is new.

Synopsis
Capability/Legacy Mode switching (C.CMODESWITCH), 16-bit encodings

Mnemonics
c.cmodeswitch

Expansions
cmodeswitch

Encoding

0124567910121315

1011100000111001

2
C1=1

3
C.CMODESWITCH

2
FUNCT2

3
FUNCT3

3
FUNCT3

3
FUNCT3

Capability Mode Description
Directly switch to Legacy Mode.

Legacy Mode Description
Directly switch to Capability Mode.

Exceptions
None


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

Prerequisites
C or Zca, Zcheri_mode

Operation (after expansion to 32-bit encodings)
See CMODESWITCH

8.6. "C" Standard Extension for Compressed Instructions | Page 121

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.9. C.JALR

See C.CJALR.

8.6.10. C.CJALR

Synopsis
Register based jumps with link, 16-bit encodings

Capability Mode Mnemonic
c.cjalr c1, cs1

Capability Mode Expansion
cjalr c1, 0(cs1)

Legacy Mode Mnemonic
c.jalr x1, rs1

Legacy Mode Expansion
jalr x1, 0(rs1)

Encoding

01267111215

oprs2rs1funct4

2
C2=10

5
0

5
src!=0

4
cap: C.CJALR=1001
leg: C.JALR=1001

Capability Mode Description
Link the next linear pcc to cd and seal. Jump to cs1.address+offset. pcc metadata is copied from
cs1, and is unsealed if necessary. Note that execution has several exception checks.

Legacy Mode Description
Set the next PC and link to rd according to the standard JALR definition. Check a minimum length
instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Prerequisites C.CJALR
C or Zca, Zcheri_purecap

Prerequisites C.JALR
C or Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CJALR, JALR

8.6. "C" Standard Extension for Compressed Instructions | Page 122

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.11. C.CJR

See C.JR.

8.6.12. C.JR

Synopsis
Register based jumps without link, 16-bit encodings

Capability Mode Mnemonic
c.cjr cs1

Capability Mode Expansion
cjalr c0, 0(cs1)

Legacy Mode Mnemonic
c.jr rs1

Legacy Mode Expansion
jalr x0, 0(rs1)

Encoding

01267111215

oprs2rs1funct4

2
C2=10

5
0

5
src!=0

4
cap: C.CJR=1000
leg: C.JR=1000

Capability Mode Description
Jump to cs1.address+offset. pcc metadata is copied from cs1, and is unsealed if necessary. Note
that execution has several exception checks.

Legacy Mode Description
Set the next PC according to the standard jalr definition. Check a minimum length instruction is
in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Exceptions
See CJALR, JALR


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

Prerequisites for C.CJALR
C or Zca, Zcheri_purecap

Prerequisites for C.JALR
C or Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CJALR, JALR

8.6. "C" Standard Extension for Compressed Instructions | Page 123

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.13. C.JAL

See C.CJAL.

8.6.14. C.CJAL

Synopsis
Register based jumps with link, 16-bit encodings

Capability Mode Mnemonic (RV32)
c.cjal c1, offset

Capability Mode Expansion (RV32)
cjal c1, offset

Legacy Mode Mnemonic (RV32)
c.jal x1, offset

Legacy Mode Expansion (RV32)
jal x1, offset

Encoding (RV32)

012121315

opimmfunct3

2
C1=01

11
offset[11|4|9:8|10|6|7|3:1|5]

3
cap rv32: C.CJAL=001
leg rv32: C.JAL=001

Capability Mode Description
Link the next linear pcc to cd and seal. Jump to pcc.address+offset. Check a minimum length
instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Legacy Mode Description
Set the next PC and link to rd according to the standard JAL definition. Check a minimum length
instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Prerequisites for C.CJAL
C or Zca, Zcheri_purecap

Prerequisites for C.JAL
C or Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CJAL, JAL

8.6. "C" Standard Extension for Compressed Instructions | Page 124

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.15. C.J

See C.CJ.

8.6.16. C.CJ

Synopsis
Register based jumps without link, 16-bit encodings

Capability Mode Mnemonic
c.cj offset

Capability Mode Expansion
cjal c0, offset

Legacy Mode Mnemonic
c.j offset

Legacy Mode Expansion
jal x0, offset

Encoding

012121315

opimmfunct3

2
C1=01

11
offset[11|4|9:8|10|6|7|3:1|5]

3
cap: C.CJ=101
leg: C.J=101

Description
Set the next PC following the standard jal definition. Check a minimum length instruction is in
pcc bounds at the target PC, take a CHERI Length Violation exception on error. There is no
difference in Capability Mode or Legacy Mode execution for this instruction.

Exceptions
CHERI Length Violation

Prerequisites for C.CJ
C or Zca, Zcheri_purecap

Prerequisites for C.J
C or Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CJAL, JAL

8.6. "C" Standard Extension for Compressed Instructions | Page 125

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.17. C.CLD

See C.LW.

8.6.18. C.CLW

See C.LW.

8.6.19. C.LD

See C.LW.

8.6. "C" Standard Extension for Compressed Instructions | Page 126

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.20. C.LW

Synopsis
Load (C.CLD, C.CLW, C.LD, C.LW), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.cld/c.clw rd', offset(cs1')

Capability Mode Expansions (RV64)
cld/clw rd', offset(cs1')

Legacy Mode Mnemonics (RV64)
c.ld/c.lw rd', offset(rs1')

Legacy Mode Expansions (RV64)
ld/lw rd', offset(rs1')

Capability Mode Mnemonics (RV32)
c.clw rd', offset(cs1')

Capability Mode Expansions (RV32)
clw rd', offset(cs1')

Legacy Mode Mnemonics (RV32)
c.lw rd', offset(rs1')

Legacy Mode Expansions (RV32)
lw rd', offset(rs1')

Encoding

0124567910121315

oprd'immrs1'/cs1'immfunct3

2
C0=00

3
dest

2
offset[2|6]
offset[2|6]
offset[7:6]
offset[7:6]

3
base

3
offset[5:3]

3
cap: C.CLW=010
leg: C.LW=010

cap rv64: C.CLD=011
leg rv64: C.LD=011

Capability Mode Description
Standard load instructions, authorised by the capability in cs1.

Legacy Mode Description
Standard load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

8.6. "C" Standard Extension for Compressed Instructions | Page 127

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites C.CLD
RV64, and C or Zca, Zcheri_purecap

Prerequisites C.CLW
C or Zca, Zcheri_purecap

Prerequisites C.LD
RV64, C or Zca, Zcheri_legacy

Prerequisites C.LW
C or Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CLD, CLW, LD, LW

8.6. "C" Standard Extension for Compressed Instructions | Page 128

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.21. C.CLWSP

See C.LDSP.

8.6.22. C.CLDSP

See C.LDSP.

8.6.23. C.LWSP

See C.LDSP.

8.6. "C" Standard Extension for Compressed Instructions | Page 129

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.24. C.LDSP

Synopsis
Load (C.CLWSP, C.CLDSP, C.LWSP, C.LDSP), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.cld/c.clw rd, offset(csp)

Capability Mode Expansions (RV64)
cld/clw rd, offset(csp)

Legacy Mode Mnemonics (RV64)
c.ld/c.lw rd, offset(sp)

Legacy Mode Expansions (RV64)
ld/lw rd, offset(sp)

Capability Mode Mnemonics (RV32)
c.clw rd, offset(csp)

Capability Mode Expansions (RV32)
clw rd, offset(csp)

Legacy Mode Mnemonics (RV32)
c.lw rd, offset(sp)

Legacy Mode Expansions (RV32)
lw rd, offset(sp)

Encoding

0126711121315

opimmrdimmfunct3

2
C2=10

5
offset[4:2|7:6]
offset[4:2|7:6]
offset[4:3|8:6]
offset[4:3|8:6]

5
dest!=0

1
[5]

3
cap: C.CLWSP=010
leg: C.LWSP=010

cap rv64: C.CLDSP=011
leg rv64: C.LDSP=011

Capability Mode Description
Standard stack pointer relative load instructions, authorised by the capability in csp.

Legacy Mode Description
Standard stack pointer relative load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

8.6. "C" Standard Extension for Compressed Instructions | Page 130

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.CLDSP
RV64, and C or Zca, Zcheri_purecap

Prerequisites for C.CLWSP
C or Zca, Zcheri_purecap

Prerequisites for C.LDSP
RV64, and C or Zca, Zcheri_legacy

Prerequisites for C.LWSP
C or Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CLW, CLD, LW, LD

8.6. "C" Standard Extension for Compressed Instructions | Page 131

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.25. C.FLW

See C.FLWSP.

8.6.26. C.FLWSP

Synopsis
Floating point load (C.FLW, C.FLWSP), 16-bit encodings

Legacy Mode Mnemonics (RV32)
c.flw rd', offset(rs1'/sp)

Legacy Mode Expansions (RV32)
flw rd', offset(rs1'/sp)

Encoding (RV32)

0124567910121315

oprd'immrs1'immfunct3

2
C0=00

3
dest

2
offset[2|6]

3
base

3
offset[5:3]

3
leg rv32: C.FLW=011

01267121315

opfs2immfunct3

2
C2=10

5
src

6
offset[5:2|7:6]

3
leg rv32: C.FLWSP=011

Legacy Mode Description
Standard floating point load instructions, authorised by the capability in ddc. Note that these
instructions are not available in Capability Mode, as they have been remapped to C.CLC, C.CLCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites
C or Zca, Zcheri_legacy, and F

Operation (after expansion to 32-bit encodings)
See FLW

8.6. "C" Standard Extension for Compressed Instructions | Page 132

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.27. C.CFLD

See C.FLDSP.

8.6.28. C.FLD

See C.FLDSP.

8.6.29. C.CFLDSP

See C.FLDSP.

8.6. "C" Standard Extension for Compressed Instructions | Page 133

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.30. C.FLDSP

Synopsis
Double precision floating point loads (C.CFLD, C.FLD, C.CFLDSP, C.FLDSP), 16-bit encodings

Capability Mode Mnemonics (RV32)
c.cfld frd', offset(cs1'/csp)

Capability Mode Expansions (RV32)
cfld frd', offset(csp)

Legacy Mode Mnemonics (RV32)
c.fld fs2, offset(rs1'/sp)

Legacy Mode Expansions (RV32)
fld fs2, offset(rs1'/sp)

Legacy Mode Mnemonics (RV64)
c.fld fs2, offset(rs1'/sp)

Legacy Mode Expansion (RV64)
fld fs2, offset(rs1'/sp)

Encoding

0124567910121315

opfrd`immrs1`/cs1`immfunct3

2
C0=00

3
dest

2
offset[7:6]

3
base

3
offset[5:3]

3
C.FLD=001

cap rv32: C.CFLD=001

01267121315

opfs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]

3
leg: C.FLDSP=001

cap rv32: C.CFLDSP=001

Legacy Mode Description
Standard floating point stack pointer relative load instructions, authorised by the capability in ddc.
Note that these instructions are not available in Capability Mode, as they have been remapped to
C.CLC, C.CLCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

8.6. "C" Standard Extension for Compressed Instructions | Page 134

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for C.CFLD, C.CFLDSP
C or Zca, Zcheri_purecap, and D

Prerequisites for C.FLD, C.FLDSP
C or Zca, Zcheri_legacy, and D

Operation (after expansion to 32-bit encodings)
See FLD

8.6. "C" Standard Extension for Compressed Instructions | Page 135

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.31. C.CLC

see C.CLCSP.

8.6.32. C.CLCSP

Synopsis
Capability loads (C.CLC, C.CLCSP), 16-bit encodings

Capability Mode Mnemonics
c.clc cd', offset(cs1'/csp)

Capability Mode Expansions
clc cd', offset(cs1'/csp)

Encoding

0126711121315

opimmcd!=0immfunct3

2
C2=10

5
offset[4:3|8:6]
offset[4|9:6]

5
dest

1
[5]

3
cap rv32: C.CLCSP=011
cap rv64: C.CLCSP=001

0124567910121315

oprd'immcs1'immfunct3

2
C0=00

3
dest

2
offset[7:6]

3
base

3
offset[5:3]

offset[5:4|8]

3
cap rv32: C.CLC=011
cap rv64: C.CLC=001

Capability Mode Description
Load capability instruction, authorised by the capability in cs1. Take a load address misaligned
exception if not naturally aligned.

Legacy Mode Description
These mnemonics do not exist in Legacy Mode. The RV32 encodings map to C.FLW/C.FLWSP and
the RV64 encodings map to C.FLD/C.FLDSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites
C or Zca, Zcheri_purecap

Operation (after expansion to 32-bit encodings)
See CLC

8.6. "C" Standard Extension for Compressed Instructions | Page 136

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.33. C.CSD

See C.SW.

8.6.34. C.CSW

See C.SW.

8.6.35. C.SD

See C.SW.

8.6. "C" Standard Extension for Compressed Instructions | Page 137

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.36. C.SW

Synopsis
Stores (C.CSD, C.CSW, C.SD, C.SW), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.csd/c.csw rs2', offset(cs1')

Capability Mode Expansions (RV64)
csd/csw rs2', offset(cs1')

Legacy Mode Mnemonics (RV64)
c.sd/c.sw rs2', offset(rs1')

Legacy Mode Expansions (RV64)
sd/sw rs2', offset(rs1')

Capability Mode Mnemonics (RV32)
c.csw rs2', offset(cs1')

Capability Mode Expansion (RV32)
csw rs2', offset(cs1')

Legacy Mode Mnemonics (RV32)
c.sw rs2', offset(rs1')

Legacy Mode Expansion (RV32)
sw rs2', offset(rs1')

Encoding

0124567910121315

oprs2'/cs2'uimmrs1'/cs1'uimmfunct3

2
C0=00

3
src

2
offset[2|6]
offset[2|6]
offset[7:6]
offset[7:6]

3
base

3
offset[5:3]

3
cap: C.CSW=110
leg: C.SW=110

cap rv64: C.CSD=111
leg rv64: C.SD=111

Capability Mode Description
Standard store instructions, authorised by the capability in cs1.

Legacy Mode Description
Standard store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

8.6. "C" Standard Extension for Compressed Instructions | Page 138

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.CSD
RV64, and C or Zca, Zcheri_purecap

Prerequisites for C.CSW
C or Zca, Zcheri_purecap

Prerequisites for C.SD
RV64, and C or Zca, Zcheri_legacy

Prerequisites for C.SW
C or Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CSD, CSW, SD, SW

8.6. "C" Standard Extension for Compressed Instructions | Page 139

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.37. C.CSWSP

See C.SDSP.

8.6.38. C.CSDSP

See C.SDSP.

8.6.39. C.SWSP

See C.SDSP.

8.6. "C" Standard Extension for Compressed Instructions | Page 140

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.40. C.SDSP

Synopsis
Stack pointer relative stores (C.CSWSP, C.CSDSP, C.SWSP, C.SDSP), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.csw/c.csd rs2, offset(csp)

Capability Mode Expansions (RV64)
csd/csw rs2, offset(csp)

Legacy Mode Mnemonics (RV64)
c.sd/c.sw rs2, offset(sp)

Legacy Mode Expansions (RV64)
sd/sw rs2, offset(sp)

Capability Mode Mnemonics (RV32)
c.csw rs2, offset(csp)

Capability Mode Expansion (RV32)
csw rs2, offset(csp)

Legacy Mode Mnemonics (RV32)
c.sw rs2, offset(sp)

Legacy Mode Expansion (RV32)
sw rs2, offset(sp)

Encoding

01267121315

oprs2/cs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]
offset[5:3|8:6]
offset[5:2|7:6]
offset[5:2|7:6]

3
cap rv64: C.CSDSP=111
leg rv64: C.SDSP=111
cap: C.CSWSP=110
leg: C.SWSP=110

Capability Mode Description
Standard stack pointer relative store instructions, authorised by the capability in csp.

Legacy Mode Description
Standard stack pointer relative store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

8.6. "C" Standard Extension for Compressed Instructions | Page 141

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.CSDSP
RV64, and C or Zca, Zcheri_purecap

Prerequisites for C.CSWSP
C or Zca, Zcheri_purecap

Prerequisites for C.SDSP
RV64, and C or Zca, Zcheri_purecap

Prerequisites for C.SWSP
C or Zca, Zcheri_purecap

Operation (after expansion to 32-bit encodings)
See CSD, CSW, SD, SW

8.6. "C" Standard Extension for Compressed Instructions | Page 142

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.41. C.FSW

See C.FSWSP.

8.6.42. C.FSWSP

Synopsis
Floating point stores (C.FSW, C.FSWSP), 16-bit encodings

Legacy Mode Mnemonics (RV32)
c.fsw rs2', offset(rs1'/sp)

Legacy Mode Expansions (RV32)
fsw rs2', offset(rs1'/sp)

Encoding (RV32)

0124567910121315

oprs2'uimmrs1'uimmfunct3

2
C0=00

3
src

2
offset[2|6]

3
base

3
offset[5:3]

3
leg rv32: C.FSW=111

01267121315

opfs2immfunct3

2
C2=10

5
src

6
offset[5:2|7:6]

3
leg rv32: C.FSWSP=111

Legacy Mode Description
Standard floating point store instructions, authorised by the capability in ddc.


these instructions are not available in Capability Mode, as they have been remapped to
C.CSC, C.CSCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.FSW, C.FSWSP
C or Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See FSW

8.6. "C" Standard Extension for Compressed Instructions | Page 143

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.43. C.CFSD

See C.FSDSP.

8.6.44. C.CFSDSP

See C.FSDSP.

8.6.45. C.FSD

See C.FSDSP.

8.6. "C" Standard Extension for Compressed Instructions | Page 144

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.46. C.FSDSP

Synopsis
Double precision floating point stores (C.CFSD, C.FSD, C.CFSDSP, C.FSDSP), 16-bit encodings

Capability Mode Mnemonics (RV32CD/RV32D_Zca)
c.cfsd fs2, offset(cs1'/csp)

Capability Mode Expansions (RV32)
cfsd fs2, offset(csp)

Legacy Mode Mnemonics (RV32CD/RV32D_Zca)
c.fsd fs2, offset(rs1'/sp)

Legacy Mode Expansions (RV32)
fsd fs2, offset(rs1'/sp)

Legacy Mode Mnemonics (RV64CD/RV64D_Zca)
c.fsd fs2, offset(rs1'/sp)

Legacy Mode Expansion (RV64)
fsd fs2, offset(rs1'/sp)

Encoding

01267121315

opfs2immfunct3

2
C0=00

5
src

6
offset[5:3|8:6]

3
int C.FSD=101

cap rv32: C.CFSD=101

01267121315

opfs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]

3
int C.FSDSP=101

cap rv32: C.CFSDSP=101

Capability Mode Description
Standard floating point stack pointer relative store instructions, authorised by the capability in cs1
or csp.

Legacy Mode Description
Standard floating point stack pointer relative store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

8.6. "C" Standard Extension for Compressed Instructions | Page 145

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.CFSD, C.CFSDSP
C or Zca, Zcheri_purecap

Prerequisites for C.FSD, C.FSDSP
C or Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See CFSD, FSD

8.6. "C" Standard Extension for Compressed Instructions | Page 146

RISC-V Specification for CHERI Extensions | © RISC-V

8.6.47. C.CSC

see C.CSCSP.

8.6.48. C.CSC, C.CSCSP

Synopsis
Stores (C.CSC, C.CSCSP), 16-bit encodings

 These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics
c.csc cs2', offset(cs1'/csp)

Capability Mode Expansions
csc cs2', offset(cs1'/csp)

Encoding

01267121315

opcs2immfunct3

2
C2=10

5
src

6
offset[5:2|7:6]
offset[5:4|9:6]

3
cap rv32: C.CSCSP=111
cap rv64: C.CSCSP=101

0124567910121315

opcs2'immcs1'immfunct3

2
C0=00

3
src

2
offset[2|6]
offset[7:6]

3
base

3
offset[5:3]

offset[5:4|8]

3
cap rv32: C.CSC=111
cap rv64: C.CSC=101

Capability Mode Description
Store capability instruction, authorised by the capability in cs1. Take a store/AMO address
misaligned exception if not naturally aligned.

Legacy Mode Description
These mnemonics do not exist in Legacy Mode. The RV32 encodings map to C.FSW/C.FSWSP and
the RV64 encodings map to C.FSD/C.FSDSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites
C or Zca, Zcheri_purecap

8.6. "C" Standard Extension for Compressed Instructions | Page 147

RISC-V Specification for CHERI Extensions | © RISC-V

Operation (after expansion to 32-bit encodings)
See CSC

8.6. "C" Standard Extension for Compressed Instructions | Page 148

RISC-V Specification for CHERI Extensions | © RISC-V

8.7. "Zicbom", "Zicbop", "Zicboz" Standard
Extensions for Base Cache Management
Operations

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 149

RISC-V Specification for CHERI Extensions | © RISC-V

8.7.1. CBO.CLEAN

See CBO.CLEAN.CAP.

8.7.2. CBO.CLEAN.CAP

Synopsis
Perform a clean operation on a cache block

Capability Mode Mnemonic
cbo.clean.cap 0(cs1)

Legacy Mode Mnemonic
cbo.clean 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=0000

3
CBO=010

5
base

12
cap: CBO.CLEAN.CAP=00.001

leg: CBO.CLEAN=00.001

Capability Mode Description
A CBO.CLEAN.CAP instruction performs a clean operation on the cache block whose effective
address is the base address specified in cs1. The authorising capability for this operation is cs1.

Legacy Mode Description
A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions
CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation The tag set to 0

Seal violation It is sealed

Permission violation It does not grant W-permission and R-permission

Length violation At least one byte accessed is within the bounds

Prerequisites for CBO.CLEAN.CAP
Zicbom, Zcheri_purecap

Prerequisites for CBO.CLEAN
Zicbom, Zcheri_legacy

Operation

TBD

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 150

RISC-V Specification for CHERI Extensions | © RISC-V

8.7.3. CBO.FLUSH

See CBO.FLUSH.CAP.

8.7.4. CBO.FLUSH.CAP

Synopsis
Perform a flush operation on a cache block

Capability Mode Mnemonic
cbo.flush.cap 0(cs1)

Legacy Mode Mnemonic
cbo.flush 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=0000

3
CBO=010

5
base

12
cap: CBO.FLUSH.CAP=00.0010

leg: CBO.FLUSH=00.0010

Capability Mode Description
A CBO.FLUSH.CAP instruction performs a flush operation on the cache block whose effective
address is the base address specified in cs1. The authorising capability for this operation is cs1.

Legacy Mode Description
A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions
CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation The tag set to 0

Seal violation It is sealed

Permission violation It does not grant W-permission and R-permission

Length violation At least one byte accessed is within the bounds

Prerequisites for CBO.FLUSH.CAP
Zicbom, Zcheri_purecap

Prerequisites for CBO.FLUSH
Zicbom, Zcheri_legacy

Operation

TBD

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 151

RISC-V Specification for CHERI Extensions | © RISC-V

8.7.5. CBO.INVAL

See CBO.INVAL.CAP.

8.7.6. CBO.INVAL.CAP

Synopsis
Perform an invalidate operation on a cache block

Capability Mode Mnemonic
cbo.inval.cap 0(cs1)

Legacy Mode Mnemonic
cbo.inval 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=0000

3
CBO=010

5
base

12
cap: CBO.INVAL.CAP=00.0000

leg: CBO.INVAL=00.0000

Capability Mode Description
A CBO.INVAL.CAP instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in cs1. The authorising capability for this operation is cs1.

Legacy Mode description
A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in rs1. The authorising capability for this operation in ddc.

Exceptions
CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

The CBIE bit in menvcfg and senvcfg indicates whether CBO.INVAL.CAP and CBO.INVAL perform
cache block flushes instead of invalidations for less privileged modes. The instruction checks
shown in the table below remain unchanged regardless of the value of CBIE and the privilege mode.

CAUSE Reason

Tag violation The tag set to 0

Seal violation It is sealed

Permission violation It does not grant W-permission, R-permission or ASR-permission

Length violation At least one byte accessed is outside the bounds

Prerequisites for CBO.INVAL.CAP
Zicbom, Zcheri_purecap

Prerequisites for CBO.INVAL
Zicbom, Zcheri_legacy

Operation

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 152

RISC-V Specification for CHERI Extensions | © RISC-V

TBD

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 153

RISC-V Specification for CHERI Extensions | © RISC-V

8.7.7. CBO.ZERO

See CBO.ZERO.CAP.

8.7.8. CBO.ZERO.CAP

Synopsis
Store zeros to the full set of bytes corresponding to a cache block

Capability Mode Mnemonic
cbo.zero.cap 0(cs1)

Legacy Mode Mnemonic
cbo.zero 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=0000

3
CBO=010

5
base

12
cap: CBO.ZERO.CAP=00.0100

leg: CBO.ZERO=00.0100

Capability Mode Description
A cbo.zero.cap instruction performs stores of zeros to the full set of bytes corresponding to the
cache block whose effective address is the base address specified in cs1. An implementation may or
may not update the entire set of bytes atomically although each individual write must atomically
clear the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is cs1.

Legacy Mode Description
A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in cs1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CBO.ZERO.CAP
Zicboz, Zcheri_purecap

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 154

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CBO.ZERO
Zicboz, Zcheri_legacy

Operation

TBD

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 155

RISC-V Specification for CHERI Extensions | © RISC-V

8.7.9. PREFETCH.I

See PREFETCH.I.CAP.

8.7.10. PREFETCH.I.CAP

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by an instruction fetch in the
near future

Capability Mode Mnemonic
prefetch.i.cap offset(cs1)

Legacy Mode Mnemonic
prefetch.i offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3cs1/rs1funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
cap: PREFETCH.I.CAP=00000

leg: PREFETCH.I=00000

7
offset[11:5]

Capability Mode Description
A PREFETCH.I.CAP instruction indicates to hardware that the cache block whose effective address
is the sum of the base address specified in cs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is cs1.

Legacy Mode Description
A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is ddc.

Exceptions
CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation The tag set to 0

Seal violation It is sealed

Permission violation It does not grant X-permission

Length violation At least one byte accessed is within the bounds

Prerequisites for PREFETCH.I.CAP
Zicbop, Zcheri_purecap

Prerequisites for PREFETCH.I
Zicbop, Zcheri_legacy

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 156

RISC-V Specification for CHERI Extensions | © RISC-V

Operation

TODO

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 157

RISC-V Specification for CHERI Extensions | © RISC-V

8.7.11. PREFETCH.R

See PREFETCH.R.CAP.

8.7.12. PREFETCH.R.CAP

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data read in the near
future

Capability Mode Mnemonic
prefetch.r.cap offset(cs1)

Legacy Mode Mnemonic
prefetch.r offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3cs1/rs1funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
cap: PREFETCH.R.CAP=00001

leg: PREFETCH.R=00001

7
offset[11:5]

Capability Mode Description
A PREFETCH.R.CAP instruction indicates to hardware that the cache block whose effective address
is the sum of the base address specified in cs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
cs1.

Legacy Mode Description
A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

Exceptions
CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation The tag set to 0

Seal violation It is sealed

Permission violation It does not grant R-permission

Length violation At least one byte accessed is within the bounds

Prerequisites for PREFETCH.R.CAP
Zicbop, Zcheri_purecap

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 158

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for PREFETCH.R
Zicbop, Zcheri_legacy

Operation

TODO

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 159

RISC-V Specification for CHERI Extensions | © RISC-V

8.7.13. PREFETCH.W

See PREFETCH.W.CAP.

8.7.14. PREFETCH.W.CAP

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data write in the near
future

Capability Mode Mnemonic
prefetch.w.cap offset(cs1)

Legacy Mode Mnemonic
prefetch.w offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3cs1/rs1funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
cap: PREFETCH.W.CAP=00011

leg: PREFETCH.W=00011

7
offset[11:5]

Capability Mode Description
A PREFETCH.W.CAP instruction indicates to hardware that the cache block whose effective
address is the sum of the base address specified in cs1 and the sign-extended offset encoded in
imm[11:0], where imm[4:0] equals 0b00000, is likely to be accessed by a data write (i.e. store) in
the near future. The encoding is only valid if imm[4:0]=0. The authorising capability for this
operation is cs1.

Legacy Mode Description
A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data write (i.e. store) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

Prerequisites for PREFETCH.W.CAP
Zcheri_purecap

Prerequisites for PREFETCH.W
Zcheri_legacy

Operation

TODO

8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 160

RISC-V Specification for CHERI Extensions | © RISC-V

8.8. "Zba" Extension for Bit Manipulation
Instructions

8.8. "Zba" Extension for Bit Manipulation Instructions | Page 161

RISC-V Specification for CHERI Extensions | © RISC-V

8.8.1. CSH1ADD

See SH3ADD.

8.8.2. CSH2ADD

See SH3ADD.

8.8.3. CSH3ADD

See SH3ADD.

8.8.4. SH1ADD

See SH3ADD.

8.8.5. SH2ADD

See SH3ADD.

8.8. "Zba" Extension for Bit Manipulation Instructions | Page 162

RISC-V Specification for CHERI Extensions | © RISC-V

8.8.6. SH3ADD

Synopsis
Shift by n and add for address generation

Capability Mode Mnemonics
csh[1|2|3]add cd, rs1, cs2

Legacy Mode Mnemonics
sh[1|2|3]add rd, rs1, rs2

Encoding

067111214151920242531

1100110rd010rs1rs20000100

OPSH1ADD=010
CSH1ADD=010
SH2ADD=100

CSH2ADD=100
SH3ADD=110

CSH3ADD=110

SH[1|2|3]ADD
CSH[1|2|3]ADD

Capability Mode Description
Increment the address field of cs1 by rs2 shifted left by n bit positions. Clear the tag if the resulting
capability is unrepresentable or cs1 is sealed.

Legacy Mode Description
Increment the address field of rs1 by rs2 shifted left by n bit positions.

Prerequisites CSH[1|2|3]ADD
Zcheri_purecap, Zba

Prerequisites for SH[1|2|3]ADD
Zcheri_legacy, Zba

Capability Mode Operation

TBD

Legacy Mode Operation
TODO

8.8. "Zba" Extension for Bit Manipulation Instructions | Page 163

RISC-V Specification for CHERI Extensions | © RISC-V

8.8.7. CSH1ADD.UW

See SH3ADD.UW.

8.8.8. CSH2ADD.UW

See SH3ADD.UW.

8.8.9. CSH3ADD.UW

See SH3ADD.UW.

8.8.10. SH1ADD.UW

See SH3ADD.UW.

8.8.11. SH2ADD.UW

See SH3ADD.UW.

8.8. "Zba" Extension for Bit Manipulation Instructions | Page 164

RISC-V Specification for CHERI Extensions | © RISC-V

8.8.12. SH3ADD.UW

Synopsis
Shift by n and add unsigned word for address generation

Capability Mode Mnemonic (RV64)
csh[1|2|3]add.uw cd, rs1, cs2

Legacy Mode Mnemonics (RV64)
sh[1|2|3]add.uw rd, rs1, rs2

Encoding

067111214151920242531

1100110rd010rs1rs20000100

OPrv64: SH1ADD.UW=010
rv64: CSH1ADD.UW=010
rv64: SH2ADD.UW=100

rv64: CSH2ADD.UW=100
rv64: SH3ADD.UW=110

rv64: CSH3ADD.UW=110

rv64: SH[1|2|3]ADD.UW
rv64: CSH[1|2|3]ADD.UW

Capability Mode Description
Increment the address field of cs1 by the unsigned word in rs2 shifted left by n bit positions. Clear
the tag if the resulting capability is unrepresentable or cs1 is sealed.

Legacy Mode Description
Increment the address field of rs1 by the unsigned word in rs2 shifted left by n bit positions.

Prerequisites CSH[1|2|3]ADD.UW
Zcheri_purecap, Zba

Prerequisites for SH[1|2|3]ADD.UW
Zcheri_legacy, Zba

Capability Mode Operation

TBD

Legacy Mode Operation
TODO

8.8. "Zba" Extension for Bit Manipulation Instructions | Page 165

RISC-V Specification for CHERI Extensions | © RISC-V

8.8.13. SH4ADD

See CSH4ADD.

8.8.14. CSH4ADD

 CHERI v9 Note: This instruction is new.

Synopsis
Shift by 4 and add for address generation (CSH4ADD, SH4ADD)

Capability Mode Mnemonics
csh4add cd, rs1, cs2

Legacy Mode Mnemonics
sh4add rd, rs1, rs2

Encoding

067111214151920242531

1100110rd111rs1rs20000100

OPCSH4ADD
SH4ADD

CSH4ADD
SH4ADD

Capability Mode Description
Increment the address field of cs1 by rs2 shifted left by 4 bit positions. Clear the tag if the resulting
capability is unrepresentable or cs1 is sealed.

Legacy Mode Description
Increment the address field of rs1 by rs2 shifted left by 4 bit positions.

Prerequisites CSH4ADD
Zcheri_purecap

Prerequisites for SH4ADD
Zcheri_legacy

Capability Mode Operation

TBD

Legacy Mode Operation

TBD

8.8. "Zba" Extension for Bit Manipulation Instructions | Page 166

RISC-V Specification for CHERI Extensions | © RISC-V

8.8.15. SH4ADD.UW

See CSH4ADD.UW.

8.8.16. CSH4ADD.UW

Synopsis
Shift by 4 and add unsigned words for address generation (CSH4ADD.UW, SH4ADD.UW)

Capability Mode Mnemonics
csh4add.uw cd, rs1, cs2

Legacy Mode Mnemonics
sh4add.uw rd, rs1, rs2

Encoding

067111214151920242531

1100011rd111rs1rs20000100

OPCSH4ADD.UW
SH4ADD.UW

CSH4ADD.UW
SH4ADD.UW

Capability Mode Description
Increment the address field of cs1 by the unsigned word in rs2 shifted left by 4 bit positions. Clear
the tag if the resulting capability is unrepresentable or cs1 is sealed.

Legacy Mode Description
Increment the address field of rs1 by the unsigned word in rs2 shifted left by 4 bit positions.

Prerequisites CSH4ADD
Zcheri_purecap

Prerequisites for SH4ADD
Zcheri_legacy

Capability Mode Operation

TBD

Legacy Mode Operation

TBD

8.8. "Zba" Extension for Bit Manipulation Instructions | Page 167

RISC-V Specification for CHERI Extensions | © RISC-V

8.9. "Zcb" Standard Extension For Code-Size
Reduction

8.9. "Zcb" Standard Extension For Code-Size Reduction | Page 168

RISC-V Specification for CHERI Extensions | © RISC-V

8.9.1. C.CLH

See C.LBU.

8.9.2. C.CLHU

See C.LBU.

8.9.3. C.CLBU

See C.LBU.

8.9.4. C.LH

See C.LBU.

8.9.5. C.LHU

See C.LBU.

8.9. "Zcb" Standard Extension For Code-Size Reduction | Page 169

RISC-V Specification for CHERI Extensions | © RISC-V

8.9.6. C.LBU

Synopsis
Load (C.CLH, C.CLHU, C.CLBU, C.LH, C.LHU, C.LBU), 16-bit encodings

Capability Mode Mnemonics
c.clh/c.clhu/c.clbu rd', offset(cs1')

Capability Mode Expansions
clh/clhu/clbu rd, offset(cs1)

Legacy Mode Mnemonics
c.lh/c.lhu/c.lbu rd', offset(rs1')

Legacy Mode Expansions
lh/lhu/lbu rd, offset(rs1)

Encoding

012456791015

oprd'/cd'uimm[1]funct1rs1'/cs1'funct6

2
C0=00

3
dest

1
offset[1]

1
1

3
base

6
cap: C.CLH=100001
leg: C.LH=100001

012456791015

oprd'/cd'uimm[1]funct1rs1'/cs1'funct6

2
C0=00

3
dest

1
offset[1]

1
0

3
base

6
cap: C.CLHU=100001
leg: C.LHU=100001

012456791015

oprd'/cd'uimm[0|1]rs1'/cs1'funct6

2
C0=00

3
dest

2
offset[0|1]

3
base

6
cap: C.CLBU=100000
leg: C.LBU=100000

Capability Mode Description
Subword load instructions, authorised by the capability in cs1.

Legacy Mode Description
Subword load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

8.9. "Zcb" Standard Extension For Code-Size Reduction | Page 170

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites C.CLH, C.CLHU, C.CLBU
C or Zca, Zcheri_purecap, and Zcb

Prerequisites C.LH, C.LHU, C.LBU
C or Zca, Zcheri_legacy, and Zcb

Operation (after expansion to 32-bit encodings)
See C.CLH, CLHU, CLBU, LH, LHU, LBU

8.9. "Zcb" Standard Extension For Code-Size Reduction | Page 171

RISC-V Specification for CHERI Extensions | © RISC-V

8.9.7. C.CSH

See C.SB.

8.9.8. C.CSB

See C.SB.

8.9.9. C.SH

See C.SB.

8.9. "Zcb" Standard Extension For Code-Size Reduction | Page 172

RISC-V Specification for CHERI Extensions | © RISC-V

8.9.10. C.CSH, C.CSB, C.SH, C.SB

Synopsis
Stores (C.CSH, C.CSB, C.SH, C.SB), 16-bit encodings

Capability Mode Mnemonics
c.csh/c.csb rs2', offset(cs1')

Capability Mode Expansions
csh/csb rs2', offset(cs1')

Legacy Mode Mnemonics
c.sh/c.sb rs2', offset(rs1')

Legacy Mode Expansions
sh/sb rs2', offset(rs1')

Encoding

012456791015

oprs2'/cs2'uimm[1]funct1rs1'/cs1'funct6

2
C0=00

3
src

1
offset[1]

1
0

3
base

6
cap: C.CSH=100011
leg: C.SH=100011

012456791015

oprs2'/cs2'uimm[0|1]rs1'/cs1'funct6

2
C0=00

3
src

2
offset[0|1]

3
base

6
cap: C.CSB=100010
leg: C.SB=100010

Capability Mode Description
Subword store instructions, authorised by the capability in cs1.

Legacy Mode Description
Subword store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for C.CSH, C.CSB
C or Zca, Zcheri_purecap, and Zcb

Prerequisites for C.SH, C.SB
C or Zca, Zcheri_legacy, and Zcb

8.9. "Zcb" Standard Extension For Code-Size Reduction | Page 173

RISC-V Specification for CHERI Extensions | © RISC-V

Operation (after expansion to 32-bit encodings)
See CSH, CSB, SH, SB

8.9. "Zcb" Standard Extension For Code-Size Reduction | Page 174

RISC-V Specification for CHERI Extensions | © RISC-V

8.10. "Zcmp" Standard Extension For Code-Size
Reduction
The push (CM.PUSH) and pop (CM.POP, CM.POPRET, CM.POPRETZ) instructions are redefined in
capability mode to save/restore full capabilities.

The double move instructions (CM.MVSA01, CM.MVA01S) are redefined in capability mode to move
full capabilities between registers. The saved register mapping is as shown in

saved register specifier xreg integer ABI CHERI ABI

0 x8 s0 cs0

1 x9 s1 cs1

2 x18 s2 cs2

3 x19 s3 cs3

4 x20 s4 cs4

5 x21 s5 cs5

6 x22 s6 cs6

7 x23 s7 cs7

Table 30. saved register mapping for Zcmp

All instructions are defined in (RISC-V, 2023).

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 175

RISC-V Specification for CHERI Extensions | © RISC-V

8.10.1. CM.PUSH

See CM.CPUSH and (RISC-V, 2023).

8.10.2. CM.CPUSH

Synopsis
Create stack frame (CM.CPUSH, CM.PUSH): store the return address register and 0 to 12 saved
registers to the stack frame, optionally allocate additional stack space. 16-bit encodings.

Capability Mode Mnemonic
cm.cpush {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.push {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist00011101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Mode Description
Create stack frame, store capability registers as specified in creg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against csp.

Legacy Mode Description
Create stack frame, store integer registers as specified in reg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CM.CPUSH
C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.PUSH
C or Zca, Zcheri_legacy, Zcmp

Operation

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 176

RISC-V Specification for CHERI Extensions | © RISC-V

TBD

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 177

RISC-V Specification for CHERI Extensions | © RISC-V

8.10.3. CM.POP

See CM.CPOP and (RISC-V, 2023).

8.10.4. CM.CPOP

Synopsis
Destroy stack frame (CM.CPOP, CM.POP): load the return address register and 0 to 12 saved
registers from the stack frame, deallocate the stack frame. 16-bit encodings.

Capability Mode Mnemonic
cm.cpop {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.pop {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist01011101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Mode Description
Load capability registers as specified in creg_list. Deallocate stack frame. All accesses are checked
against csp.

Legacy Mode Description
Load integer registers as specified in reg_list. Deallocate stack frame. All accesses are checked
against ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for CM.CPOP
C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.POP
C or Zca, Zcheri_legacy, Zcmp

Operation

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 178

RISC-V Specification for CHERI Extensions | © RISC-V

TBD

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 179

RISC-V Specification for CHERI Extensions | © RISC-V

8.10.5. CM.POPRET

See CM.CPOPRET and (RISC-V, 2023).

8.10.6. CM.CPOPRET

Synopsis
Destroy stack frame (CM.CPOPRET, CM.POPRET): load the return address register and 0 to 12
saved registers from the stack frame, deallocate the stack frame. Return through the return address
register. 16-bit encodings.

Capability Mode Mnemonic
cm.cpopret {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.popret {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist01111101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Mode Description
Load capability registers as specified in creg_list. Deallocate stack frame. Return by calling CJALR
to cra. All data accesses are checked against csp. The return destination is checked against cra.

Legacy Mode Description
Load integer registers as specified in reg_list. Deallocate stack frame. Return by calling JALR to ra.
All data accesses are checked against ddc. The return destination is checked against pcc.

Permissions
Loads are checked as for CLC for Capability Mode or LC for Legacy Mode.

The return is checked as for CJALR for Capability Mode, or JALR for Legacy Mode.

Exceptions
When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field if
a load causes an exception, or CHERI instruction access fault if the return causes an exception. The
following codes may be reported in the CAUSE field of mtval or stval:

CAUSE

Tag violation ✔

Seal violation ✔

Permission violation ✔

Length violation ✔


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 180

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CM.CPOPRET
C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.POPRET
C or Zca, Zcheri_legacy, Zcmp

Operation

TBD

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 181

RISC-V Specification for CHERI Extensions | © RISC-V

8.10.7. CM.POPRETZ

See CM.CPOPRETZ and (RISC-V, 2023).

8.10.8. CM.CPOPRETZ

Synopsis
Destroy stack frame (CM.CPOPRETZ, CM.POPRETZ): load the return address register and 0 to 12
saved registers from the stack frame, deallocate the stack frame. Move zero into argument register
zero. Return through the return address register. 16-bit encodings.

Capability Mode Mnemonic
cm.cpopretz {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.popretz {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist00111101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Mode Description
Load capability registers as specified in creg_list. Deallocate stack frame. Move zero into ca0.
Return by calling CJALR to cra. All data accesses are checked against csp. The return destination is
checked against cra.

Legacy Mode Description
Load integer registers as specified in reg_list. Deallocate stack frame. Move zero into a0. Return by
calling JALR to ra. All data accesses are checked against ddc. The return destination is checked
against pcc.

Permissions
Loads are checked as for CLC for Capability Mode or LC for Legacy Mode.

The return is checked as for CJALR for Capability Mode, or JALR for Legacy Mode.

Exceptions
When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field if
a load causes an exception, or CHERI instruction access fault if the return causes an exception. The
following codes may be reported in the CAUSE field of mtval or stval:

CAUSE

Tag violation ✔

Seal violation ✔

Permission violation ✔

Length violation ✔

 The instructions on this page are either PC relative or may update the pcc. Therefore an

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 182

RISC-V Specification for CHERI Extensions | © RISC-V

implementation may make them illegal in debug mode.

Prerequisites for CM.CPOPRETZ
C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.POPRETZ
C or Zca, Zcheri_legacy, Zcmp

Operation

TBD

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 183

RISC-V Specification for CHERI Extensions | © RISC-V

8.10.9. CM.MVSA01

See CM.CMVSA01 and (RISC-V, 2023).

8.10.10. CM.CMVSA01

Synopsis
CM.CMVSA01, CM.MVSA01: Move argument registers 0 and 1 into two saved registers.

Capability Mode Mnemonic
cm.cmvsa01 cr1s', cr2s'

Legacy Mode Mnemonics
cm.mvsa01 r1s', r2s'

Encoding

0124567910121315

01r2s'10r1s'110101

C2FUNCT3


The encoding uses sreg number specifiers instead of xreg number specifiers to save
encoding space. The saved register encoding is shown in Table 30.

Capability Mode Description
Atomically move two saved capability registers cs0-cs7 into ca0 and ca1.

Legacy Mode Description
Atomically move two saved integer registers s0-s7 into a0 and a1.

Prerequisites for CM.CMVSA01
C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.MVSA01
C or Zca, Zcheri_legacy, Zcmp

Operation

TBD

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 184

RISC-V Specification for CHERI Extensions | © RISC-V

8.10.11. CM.MVA01S

See CM.CMVA01S and (RISC-V, 2023).

8.10.12. CM.CMVA01S

Synopsis
CM.CMVA01S, CM.MVA01S: Move two saved registers into argument registers 0 and 1.

Capability Mode Mnemonic
cm.cmva01s cr1s', cr2s'

Legacy Mode Mnemonics
cm.mva01s r1s', r2s'

Encoding

0124567910121315

01r2s'11r1s'110101

C2FUNCT3


The encoding uses sreg number specifiers instead of xreg number specifiers to save
encoding space. The saved register encoding is shown in Table 30.

Capability Mode Description
Atomically move two capability registers ca0 and ca1 into cs0-cs7.

Legacy Mode Description
Atomically move two integer registers a0 and a1 into s0-s7.

Prerequisites for CM.CMVA01S
C or Zca, Zcheri_purecap, Zcmp

Prerequisites for CM.MVA01S
C or Zca, Zcheri_legacy, Zcmp

Operation

TBD

8.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 185

RISC-V Specification for CHERI Extensions | © RISC-V

8.11. "Zcmt" Standard Extension For Code-Size
Reduction
The table jump instructions (CM.JT, CM.JALT) defined in (RISC-V, 2023) are not redefined in
capability mode to have capabilities in the jump table. This is to prevent the code-size growth caused
by doubling the size of the jump table.

In the future, new jump table modes or new encodings can be added to have capabilities in the jump
table.

The jump vector table CSR jvt has a capability alias jvtc so that it can only be configured to point to
accessible memory. All accesses to the jump table are checked against jvtc, and not against pcc. This
allows the jump table to be accessed when the pcc bounds are set narrowly to the local function only.


the implementation doesn’t need to expand and bounds check against jvtc on every access,
it is sufficient to decode the valid accessible range of entries after every write to jvtc, and
then check that the accessed entry is in that range.

8.11.1. Jump Vector Table CSR (jvt)

The JVT CSR is exactly as defined by (RISC-V, 2023). It is aliased to jvtc.

8.11.2. Jump Vector Table CSR (jvtc)

jvtc extends jvt to be a capability width CSR, as shown in Table 20.

XLENMAX-1 0

jvtc (Metadata)
jvtc (Address)

XLENMAX

Figure 39. Jump Vector Table Capability register

All instruction fetches from the jump vector table are checked against jvtc.

See CM.CJALT, CM.JALT, CM.CJT, CM.JT.

8.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 186

RISC-V Specification for CHERI Extensions | © RISC-V

8.11.3. CM.JALT

See CM.CJALT and (RISC-V, 2023).

8.11.4. CM.CJALT

Synopsis
Jump via table with link (CM.CJALT, CM.JALT), 16-bit encodings

Capability Mode Mnemonic
cm.cjalt index

Legacy Mode Mnemonics
cm.jalt index

Encoding

012910121315

01index000101

C2FUNCT3


For this encoding to decode as CM.CJALT/CM.JALT, index>=32, otherwise it decodes as
CM.CJT/CM.JT.

Capability Mode Description
Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission. Link to cra.

Legacy Mode Description
Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission. Link to ra.

Permissions
Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

Exceptions
When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE

Tag violation ✔

Seal violation ✔

Permission violation ✔

Length violation ✔


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

8.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 187

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CM.CJALT
C or Zca, Zcheri_purecap, Zcmt

Prerequisites for CM.JALT
C or Zca, Zcheri_legacy, Zcmt

Operation

TBD

8.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 188

RISC-V Specification for CHERI Extensions | © RISC-V

8.11.5. CM.JT

See CM.CJT and (RISC-V, 2023).

8.11.6. CM.CJT

Synopsis
Jump via table with link (CM.CJT, CM.JT), 16-bit encodings

Capability Mode Mnemonic
cm.cjt index

Legacy Mode Mnemonics
cm.jt index

Encoding

012910121315

01index000101

C2FUNCT3


For this encoding to decode as CM.CJT/CM.JT, index<32, otherwise it decodes as
CM.CJALT/CM.JALT.

Capability Mode Description
Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission.

Legacy Mode Description
Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission.

Permissions
Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

Exceptions
When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE

Tag violation ✔

Seal violation ✔

Permission violation ✔

Length violation ✔


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode.

8.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 189

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for CM.CJT
C or Zca, Zcheri_purecap, Zcmt

Prerequisites for CM.JT
C or Zca, Zcheri_legacy, Zcmt

Operation

TBD

8.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 190

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 9. Extension summary

9.1. Zbhlrsc
Zbhlrsc is a separate extension independent of CHERI, but is required for CHERI software.

Mnemonic Zcheri_legacy Zcheri_purecap Function

LR.H ✔ Load reserve half via int pointer, authorise with DDC

LR.B ✔ Load reserve byte via int pointer, authorise with DDC

CLR.H ✔ Load reserve half via cap

CLR.B ✔ Load reserve byte via cap

SC.H ✔ Store conditional half via int pointer, authorise with DDC

SC.B ✔ Store conditional byte via int pointer, authorise with DDC

CSC.H ✔ Store conditional half via cap

CSC.B ✔ Store conditional byte via cap

Table 31. Zbhlrsc instruction extension

9.2. Zcheri_purecap
Zcheri_purecap defines the set of instructions used by a purecap core.

Some instructions depend on the presence of other extensions, as listed in Table 32

Mnemonic RV32 RV64 A Zbhlr
sc

Zicbo
[mpz]

C or
Zca

Zba Zcb Zcmp Zcmt Zfh F D V Function

CLC ✔ ✔ Load cap via cap

CSC ✔ ✔ Store cap via cap

C.CLCSP ✔ ✔ ✔ Load cap via cap, SP relative

C.CSCSP ✔ ✔ ✔ Store cap via cap, SP relative

C.CLC ✔ ✔ ✔ Load cap via cap

C.CSC ✔ ✔ ✔ Store cap via cap

C.CLWSP ✔ ✔ ✔ Load word via cap, SP relative

C.CSWSP ✔ ✔ ✔ Store word via cap, SP relative

C.CLW ✔ ✔ ✔ Load word via cap

C.CSW ✔ ✔ ✔ Store word via cap

C.CLD ✔ ✔ Load word via cap

C.CSD ✔ ✔ Store word via cap

C.CLDSP ✔ ✔ Load word via cap

C.CSDSP ✔ ✔ Store word via cap

CLB ✔ ✔ Load signed byte via cap

CLH ✔ ✔ Load signed half via cap

C.CLH ✔ ✔ ✔ Load signed half via cap

CLW ✔ ✔ Load signed word via cap

CLBU ✔ ✔ Load unsigned byte via cap

C.CLBU ✔ ✔ ✔ Load unsigned byte via cap

CLHU ✔ ✔ Load unsigned half via cap

C.CLHU ✔ ✔ ✔ Load unsigned half via cap

CLWU ✔ Load unsigned word via cap

CLD ✔ Load double via cap

9.1. Zbhlrsc | Page 191

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV32 RV64 A Zbhlr
sc

Zicbo
[mpz]

C or
Zca

Zba Zcb Zcmp Zcmt Zfh F D V Function

CSB ✔ ✔ Store byte via cap

C.CSB ✔ ✔ ✔ Store byte via cap

CSH ✔ ✔ Store half via cap

C.CSH ✔ ✔ ✔ Store half via cap

CSW ✔ ✔ Store word via cap

CSD ✔ Store double via cap

AUIPCC ✔ ✔ Add immediate to PCC
address, representability
check

CINCOFFSET ✔ ✔ Increment cap address by
register, representability
check

CINCOFFSETIMM ✔ ✔ Increment cap address by
immediate, representability
check

CSETADDR ✔ ✔ Replace capability address,
representability check

CGETTAG ✔ ✔ Get tag field

CGETPERM ✔ ✔ Get hperm and uperm fields
as 1-bit per permission,
packed together

CMOVE ✔ ✔ Move capability register

CANDPERM ✔ ✔ AND capability permissions
(expand to 1-bit per
permission before ANDing)

CGETHIGH ✔ ✔ Get metadata

CSETHIGH ✔ ✔ Set metadata and clear tag

CSETEQUALEXACT ✔ ✔ Full capability bitwise
compare

CSEAL ✔ ✔ Seal capability

CTESTSUBSET ✔ ✔ Set register bounds on
capability with rounding,
clear tag if rounding is
required

CBUILDCAP ✔ ✔ Set cd to cs2 with its tag set
after checking that cs2 is a
subset of cs1

CSETBOUNDS ✔ ✔ Set register bounds on
capability with rounding,
clear tag if rounding is
required

CSETBOUNDSIMM ✔ ✔ Set immediate bounds on
capability with rounding,
clear tag if rounding is
required

CSETBOUNDSINEXA
CT

✔ ✔ Set bounds on capability with
rounding up as required

CRAM ✔ ✔ Representable Alignment
Mask: Return mask to apply
to address to get the requested
bounds

CGETBASE ✔ ✔ Get capability base

CGETLEN ✔ ✔ Get capability length

C.CINCOFFSET16CS
P

✔ ✔ ✔ ADD immediate to stack
pointer, representability
check

C.CINCOFFSET4CSP
N

✔ ✔ ✔ ADD immediate to stack
pointer, representability
check

C.CMOVE ✔ ✔ ✔ Same as CMove

9.2. Zcheri_purecap | Page 192

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV32 RV64 A Zbhlr
sc

Zicbo
[mpz]

C or
Zca

Zba Zcb Zcmp Zcmt Zfh F D V Function

C.CJ ✔ ✔ ✔ Jump to PC+offset, bounds
check minimum size target
instruction

C.CJAL ✔ ✔ Jump to PC+offset, bounds
check minimum size target
instruction, link to cd

CJAL ✔ ✔ ✔ Jump to PC+offset, bounds
check minimum size target
instruction, link to cd

JALR.PCC ✔ ✔ RISC-V JALR available in
capability modes (with zero
offset)

CJALR ✔ ✔ Indirect cap jump and link,
bounds check minimum size
target instruction, unseal
target cap, seal link cap

C.CJALR ✔ ✔ ✔ Indirect cap jump and link,
bounds check minimum size
target instruction, unseal
target cap, seal link cap

C.CJR ✔ ✔ ✔ Indirect cap jump, bounds
check minimum size target
instruction, unseal target cap

CBO.INVAL.CAP ✔ ✔ ✔ Cache block invalidate
(implemented as clean), via
cap

CBO.CLEAN.CAP ✔ ✔ ✔ Cache block clean, via cap

CBO.FLUSH.CAP ✔ ✔ ✔ Cache block flush, via cap

CBO.ZERO.CAP ✔ ✔ ✔ Cache block zero, via cap

PREFETCH.R.CAP ✔ ✔ ✔ Prefetch read-only data cache
line, via cap

PREFETCH.W.CAP ✔ ✔ ✔ Prefetch writeable data cache
line, via cap

PREFETCH.I.CAP ✔ ✔ ✔ Prefetch instruction cache
line, via cap

CLR.C ✔ ✔ ✔ Load reserve cap via cap

CLR.D ✔ ✔ Load reserve double via cap

CLR.W ✔ ✔ ✔ Load reserve word via cap

CLR.H ✔ ✔ ✔ Load reserve half via cap

CLR.B ✔ ✔ ✔ Load reserve byte via cap

CSC.C ✔ ✔ ✔ Store conditional cap via cap

CSC.D ✔ ✔ Store conditional double via
cap

CSC.W ✔ ✔ ✔ Store conditional word via
cap

CSC.H ✔ ✔ ✔ Store conditional half via cap

CSC.B ✔ ✔ ✔ Store conditional byte via cap

CAMOSWAP.C ✔ ✔ ✔ Atomic swap of cap via cap

CAMO<OP>.W ✔ ✔ ✔ Atomic op of word via cap

CAMO<OP>.D ✔ ✔ Atomic op of double via cap

C.CFLD ✔ ✔ ✔ Load floating point double via
cap

C.CFLDSP ✔ ✔ Load floating point double via
cap, sp relative

C.CFSD ✔ ✔ Store floating point double via
cap

C.CFSDSP ✔ ✔ Store floating point double via
cap, sp relative

CFLH ✔ ✔ ✔ Load floating point half via
cap

9.2. Zcheri_purecap | Page 193

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV32 RV64 A Zbhlr
sc

Zicbo
[mpz]

C or
Zca

Zba Zcb Zcmp Zcmt Zfh F D V Function

CFSH ✔ ✔ ✔ Store floating point half via
cap

CFLW ✔ ✔ ✔ Load floating point word via
cap

CFSW ✔ ✔ ✔ Store floating point word via
cap

CFLD ✔ ✔ ✔ Load floating point double via
cap

CFSD ✔ ✔ ✔ Store floating point double via
cap

CM.CPUSH ✔ ✔ ✔ Push capability stack frame

CM.CPOP ✔ ✔ ✔ Pop capability stack frame

CM.CPOPRET ✔ ✔ ✔ Pop capability stack frame
and return

CM.CPOPRETZ ✔ ✔ ✔ Pop capability stack frame
and return zero

CM.CMVSA01 ✔ ✔ ✔ Move two capability registers

CM.CMVA01S ✔ ✔ ✔ Move two capability registers

CM.CJALT ✔ ✔ ✔ Table jump and link

CM.CJT ✔ ✔ ✔ Table jump

CSH1ADD ✔ ✔ ✔ shift and add, representability
check on the result

CSH1ADD.UW ✔ ✔ ✔ shift and add, representability
check on the result

CSH2ADD ✔ ✔ ✔ shift and add, representability
check on the result

CSH2ADD.UW ✔ ✔ ✔ shift and add, representability
check on the result

CSH3ADD ✔ ✔ ✔ shift and add, representability
check on the result

CSH3ADD.UW ✔ ✔ ✔ shift and add, representability
check on the result

CSH4ADD ✔ shift and add, representability
check on the result

CSH4ADD.UW ✔ shift and add, representability
check on the result

Table 32. Zcheri_purecap instruction extension - Pure Capability Mode instructions

9.3. Zcheri_legacy
Zcheri_legacy defines the set of instructions added by the legacy mode, in addition to
Zcheri_purecap.

 Zcheri_legacy implies Zcheri_purecap

Mnemonic RV32 RV64 A Zbhlr
sc

Zicbo
[mpz]

C or
Zca

Zba Zcb Zcmp Zcmt Zfh F D V Function

LC ✔ ✔ Load cap via int pointer,
authorise with DDC

SC ✔ ✔ Store cap via int pointer,
authorise with DDC

LB ✔ ✔ Load signed byte

LH ✔ ✔ Load signed half

C.LH ✔ ✔ ✔ Load signed half

LW ✔ ✔ Load signed word

LBU ✔ ✔ Load unsigned byte

9.3. Zcheri_legacy | Page 194

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV32 RV64 A Zbhlr
sc

Zicbo
[mpz]

C or
Zca

Zba Zcb Zcmp Zcmt Zfh F D V Function

C.LBU ✔ ✔ ✔ Load unsigned byte

LHU ✔ ✔ Load unsigned half

C.LHU ✔ ✔ ✔ Load unsigned half

LWU ✔ Load unsigned word

LD ✔ Load double

SB ✔ ✔ Store byte

C.SB ✔ ✔ ✔ Store byte

SH ✔ ✔ Store half

C.SH ✔ ✔ ✔ Store half

SW ✔ ✔ Store word

SD ✔ Store double

AUIPC ✔ ✔ Add immediate to PCC
address

C.ADDI16SP ✔ ✔ ✔ ADD immediate to stack
pointer

C.ADDI4SPN ✔ ✔ ✔ ADD immediate to stack
pointer, representability
check

C.MV ✔ ✔ ✔ Register Move

JALR.CAP ✔ ✔ CJALR available in legacy
mode (with zero offset)

CBO.INVAL ✔ ✔ ✔ Cache block invalidate
(implemented as clean),
authorise with DDC

CBO.CLEAN ✔ ✔ ✔ Cache block clean, authorise
with DDC

CBO.FLUSH ✔ ✔ ✔ Cache block flush, authorise
with DDC

CBO.ZERO ✔ ✔ ✔ Cache block zero, authorise
with DDC

PREFETCH.R ✔ ✔ ✔ Prefetch instruction cache
line, always valid

PREFETCH.W ✔ ✔ ✔ Prefetch read-only data cache
line, authorise with DDC

PREFETCH.I ✔ ✔ ✔ Prefetch writeable data cache
line, authorise with DDC

LR.C ✔ ✔ ✔ Load reserve cap via int
pointer, authorise with DDC

LR.H ✔ ✔ ✔ Load reserve half via int
pointer, authorise with DDC

LR.B ✔ ✔ ✔ Load reserve byte via int
pointer, authorise with DDC

SC.C ✔ ✔ ✔ Store conditional cap via int
pointer, authorise with DDC

SC.H ✔ ✔ ✔ Store conditional half via int
pointer, authorise with DDC

SC.B ✔ ✔ ✔ Store conditional byte via int
pointer, authorise with DDC

AMOSWAP.C ✔ ✔ ✔ Atomic swap of cap

AMO<OP>.W ✔ ✔ ✔ Atomic op of word

AMO<OP>.D ✔ ✔ Atomic op of double

C.FLW ✔ ✔ Load floating point word via
cap

C.FLWSP ✔ ✔ Load floating point word, sp
relative

C.FSW ✔ ✔ Store floating point word via
cap

9.3. Zcheri_legacy | Page 195

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV32 RV64 A Zbhlr
sc

Zicbo
[mpz]

C or
Zca

Zba Zcb Zcmp Zcmt Zfh F D V Function

C.FSWSP ✔ ✔ Store floating point word, sp
relative

C.FLD ✔ ✔ ✔ Load floating point double

C.FLDSP ✔ ✔ ✔ Load floating point double, sp
relative

C.FSD ✔ ✔ ✔ Store floating point double

C.FSDSP ✔ ✔ ✔ Store floating point double, sp
relative

CM.PUSH ✔ ✔ ✔ Push integer stack frame

CM.POP ✔ ✔ ✔ Pop integer stack frame

CM.POPRET ✔ ✔ ✔ Pop integer stack frame and
return

CM.POPRETZ ✔ ✔ ✔ Pop integer stack frame and
return zero

CM.MVSA01 ✔ ✔ ✔ Move two integer registers

CM.MVA01S ✔ ✔ ✔ Move two integer registers

CM.JALT ✔ ✔ ✔ Table jump and link

CM.JT ✔ ✔ ✔ Table jump

SH4ADD ✔ shift and add

SH4ADD.UW ✔ shift and add

Table 33. Zcheri_legacy instruction extension - legacy mode instructions

9.4. Zcheri_mode
Zcheri_legacy defines the set of instructions added by the mode switching mode, in addition to
Zcheri_legacy.

 Zcheri_mode implies Zcheri_legacy

Mnemonic RV32 RV64 A Zbhlr
sc

Zicbo
[mpz]

C or
Zca

Zba Zcb Zcmp Zcmt Zfh F D V Function

Section 8.1.9 ✔ ✔ Set the mode bit of a
capability, no permissions
required

CMODESWITCH ✔ ✔ Directly switch mode (legacy /
capability)

C.CMODESWITCH ✔ ✔ Directly switch mode (legacy /
capability)

Table 34. Zcheri_mode instruction extension - mode switching instructions

9.5. Instruction Modes
The tables summarise which operating modes each instruction may be executed in.

Mnemonic Zcheri_mode Zcheri_legacy Zcheri_purecap Function

CLC ✔ Load cap via cap

CSC ✔ Store cap via cap

C.CLCSP ✔ Load cap via cap, SP relative

C.CSCSP ✔ Store cap via cap, SP relative

C.CLC ✔ Load cap via cap

C.CSC ✔ Store cap via cap

C.CLWSP ✔ Load word via cap, SP relative

9.4. Zcheri_mode | Page 196

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcheri_mode Zcheri_legacy Zcheri_purecap Function

C.CSWSP ✔ Store word via cap, SP relative

C.CLW ✔ Load word via cap

C.CSW ✔ Store word via cap

C.CLD ✔ Load word via cap

C.CSD ✔ Store word via cap

C.CLDSP ✔ Load word via cap

C.CSDSP ✔ Store word via cap

CLB ✔ Load signed byte via cap

CLH ✔ Load signed half via cap

C.CLH ✔ Load signed half via cap

CLW ✔ Load signed word via cap

CLBU ✔ Load unsigned byte via cap

C.CLBU ✔ Load unsigned byte via cap

CLHU ✔ Load unsigned half via cap

C.CLHU ✔ Load unsigned half via cap

CLWU ✔ Load unsigned word via cap

CLD ✔ Load double via cap

CSB ✔ Store byte via cap

C.CSB ✔ Store byte via cap

CSH ✔ Store half via cap

C.CSH ✔ Store half via cap

CSW ✔ Store word via cap

CSD ✔ Store double via cap

AUIPCC ✔ Add immediate to PCC address, representability check

C.CINCOFFSET16CSP ✔ ADD immediate to stack pointer, representability
check

C.CINCOFFSET4CSPN ✔ ADD immediate to stack pointer, representability
check

C.CMOVE ✔ Same as CMove

C.CJ ✔ Jump to PC+offset, bounds check minimum size target
instruction

C.CJAL ✔ Jump to PC+offset, bounds check minimum size target
instruction, link to cd

CJAL ✔ Jump to PC+offset, bounds check minimum size target
instruction, link to cd

JALR.PCC ✔ RISC-V JALR available in capability modes (with zero
offset)

CJALR ✔ Indirect cap jump and link, bounds check minimum
size target instruction, unseal target cap, seal link cap

C.CJALR ✔ Indirect cap jump and link, bounds check minimum
size target instruction, unseal target cap, seal link cap

C.CJR ✔ Indirect cap jump, bounds check minimum size target
instruction, unseal target cap

CBO.INVAL.CAP ✔ Cache block invalidate (implemented as clean), via
cap

CBO.CLEAN.CAP ✔ Cache block clean, via cap

CBO.FLUSH.CAP ✔ Cache block flush, via cap

CBO.ZERO.CAP ✔ Cache block zero, via cap

PREFETCH.R.CAP ✔ Prefetch read-only data cache line, via cap

PREFETCH.W.CAP ✔ Prefetch writeable data cache line, via cap

PREFETCH.I.CAP ✔ Prefetch instruction cache line, via cap

CLR.C ✔ Load reserve cap via cap

CLR.D ✔ Load reserve double via cap

9.5. Instruction Modes | Page 197

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcheri_mode Zcheri_legacy Zcheri_purecap Function

CLR.W ✔ Load reserve word via cap

CLR.H ✔ Load reserve half via cap

CLR.B ✔ Load reserve byte via cap

CSC.C ✔ Store conditional cap via cap

CSC.D ✔ Store conditional double via cap

CSC.W ✔ Store conditional word via cap

CSC.H ✔ Store conditional half via cap

CSC.B ✔ Store conditional byte via cap

CAMOSWAP.C ✔ Atomic swap of cap via cap

CAMO<OP>.W ✔ Atomic op of word via cap

CAMO<OP>.D ✔ Atomic op of double via cap

C.CFLD ✔ Load floating point double via cap

C.CFLDSP ✔ Load floating point double via cap, sp relative

C.CFSD ✔ Store floating point double via cap

C.CFSDSP ✔ Store floating point double via cap, sp relative

CFLH ✔ Load floating point half via cap

CFSH ✔ Store floating point half via cap

CFLW ✔ Load floating point word via cap

CFSW ✔ Store floating point word via cap

CFLD ✔ Load floating point double via cap

CFSD ✔ Store floating point double via cap

CM.CPUSH ✔ Push capability stack frame

CM.CPOP ✔ Pop capability stack frame

CM.CPOPRET ✔ Pop capability stack frame and return

CM.CPOPRETZ ✔ Pop capability stack frame and return zero

CM.CMVSA01 ✔ Move two capability registers

CM.CMVA01S ✔ Move two capability registers

CM.CJALT ✔ Table jump and link

CM.CJT ✔ Table jump

CSH1ADD ✔ shift and add, representability check on the result

CSH1ADD.UW ✔ shift and add, representability check on the result

CSH2ADD ✔ shift and add, representability check on the result

CSH2ADD.UW ✔ shift and add, representability check on the result

CSH3ADD ✔ shift and add, representability check on the result

CSH3ADD.UW ✔ shift and add, representability check on the result

CSH4ADD ✔ shift and add, representability check on the result

CSH4ADD.UW ✔ shift and add, representability check on the result

Table 35. Instructions valid for execution in capability mode only

9.5. Instruction Modes | Page 198

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcheri_mode Zcheri_legacy Zcheri_purecap Function

LC ✔ Load cap via int pointer, authorise with DDC

SC ✔ Store cap via int pointer, authorise with DDC

LB ✔ Load signed byte

LH ✔ Load signed half

C.LH ✔ Load signed half

LW ✔ Load signed word

LBU ✔ Load unsigned byte

C.LBU ✔ Load unsigned byte

LHU ✔ Load unsigned half

C.LHU ✔ Load unsigned half

LWU ✔ Load unsigned word

LD ✔ Load double

SB ✔ Store byte

C.SB ✔ Store byte

SH ✔ Store half

C.SH ✔ Store half

SW ✔ Store word

SD ✔ Store double

AUIPC ✔ Add immediate to PCC address

C.ADDI16SP ✔ ADD immediate to stack pointer

C.ADDI4SPN ✔ ADD immediate to stack pointer, representability
check

C.MV ✔ Register Move

JALR.CAP ✔ CJALR available in legacy mode (with zero offset)

DRET Return from debug mode, sets DDC from DDDC and
PCC from DPCC

CBO.INVAL ✔ Cache block invalidate (implemented as clean),
authorise with DDC

CBO.CLEAN ✔ Cache block clean, authorise with DDC

CBO.FLUSH ✔ Cache block flush, authorise with DDC

CBO.ZERO ✔ Cache block zero, authorise with DDC

PREFETCH.R ✔ Prefetch instruction cache line, always valid

PREFETCH.W ✔ Prefetch read-only data cache line, authorise with
DDC

PREFETCH.I ✔ Prefetch writeable data cache line, authorise with
DDC

LR.C ✔ Load reserve cap via int pointer, authorise with DDC

LR.H ✔ Load reserve half via int pointer, authorise with DDC

LR.B ✔ Load reserve byte via int pointer, authorise with DDC

SC.C ✔ Store conditional cap via int pointer, authorise with
DDC

SC.H ✔ Store conditional half via int pointer, authorise with
DDC

SC.B ✔ Store conditional byte via int pointer, authorise with
DDC

AMOSWAP.C ✔ Atomic swap of cap

AMO<OP>.W ✔ Atomic op of word

AMO<OP>.D ✔ Atomic op of double

C.FLW ✔ Load floating point word via cap

C.FLWSP ✔ Load floating point word, sp relative

C.FSW ✔ Store floating point word via cap

C.FSWSP ✔ Store floating point word, sp relative

C.FLD ✔ Load floating point double

9.5. Instruction Modes | Page 199

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcheri_mode Zcheri_legacy Zcheri_purecap Function

C.FLDSP ✔ Load floating point double, sp relative

C.FSD ✔ Store floating point double

C.FSDSP ✔ Store floating point double, sp relative

CM.PUSH ✔ Push integer stack frame

CM.POP ✔ Pop integer stack frame

CM.POPRET ✔ Pop integer stack frame and return

CM.POPRETZ ✔ Pop integer stack frame and return zero

CM.MVSA01 ✔ Move two integer registers

CM.MVA01S ✔ Move two integer registers

CM.JALT ✔ Table jump and link

CM.JT ✔ Table jump

SH4ADD ✔ shift and add

SH4ADD.UW ✔ shift and add

Table 36. Instructions valid for execution in legacy mode only

Mnemonic Zcheri_mode Zcheri_legacy Zcheri_purecap Function

CINCOFFSET ✔ Increment cap address by register, representability
check

CINCOFFSETIMM ✔ Increment cap address by immediate, representability
check

CSETADDR ✔ Replace capability address, representability check

CGETTAG ✔ Get tag field

CGETPERM ✔ Get hperm and uperm fields as 1-bit per permission,
packed together

CMOVE ✔ Move capability register

CANDPERM ✔ AND capability permissions (expand to 1-bit per
permission before ANDing)

CGETHIGH ✔ Get metadata

CSETHIGH ✔ Set metadata and clear tag

CSETEQUALEXACT ✔ Full capability bitwise compare

CSEAL ✔ Seal capability

CTESTSUBSET ✔ Set register bounds on capability with rounding, clear
tag if rounding is required

CBUILDCAP ✔ Set cd to cs2 with its tag set after checking that cs2 is a
subset of cs1

CSETBOUNDS ✔ Set register bounds on capability with rounding, clear
tag if rounding is required

CSETBOUNDSIMM ✔ Set immediate bounds on capability with rounding,
clear tag if rounding is required

CSETBOUNDSINEXACT ✔ Set bounds on capability with rounding up as required

CRAM ✔ Representable Alignment Mask: Return mask to apply
to address to get the requested bounds

CGETBASE ✔ Get capability base

CGETLEN ✔ Get capability length

Section 8.1.9 ✔ Set the mode bit of a capability, no permissions
required

CMODESWITCH ✔ Directly switch mode (legacy / capability)

C.CMODESWITCH ✔ Directly switch mode (legacy / capability)

MRET Return from machine mode handler, sets PCC from
MTVECC, needs ASR permission

SRET Return from supervisor mode handler, sets PCC from
STVECC, needs ASR permission

CSRRW CSR write - can also read/write a full capability
through an address alias

9.5. Instruction Modes | Page 200

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcheri_mode Zcheri_legacy Zcheri_purecap Function

CSRRS CSR set - can also read/write a full capability through
an address alias

CSRRC CSR clear - can also read/write a full capability
through an address alias

CSRRWI CSR write - can also read/write a full capability
through an address alias

CSRRSI CSR set - can also read/write a full capability through
an address alias

CSRRCI CSR clear - can also read/write a full capability
through an address alias

Table 37. Instructions valid for execution in both capability and legacy modes

9.5. Instruction Modes | Page 201

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 10. Capability Width CSR
Summary
Extended CSR Alias Prerequisites

dpcc dpc Sdext

dscratch0c dscratch0 Sdext

dscratch1c dscratch1 Sdext

mtvecc mtvec M-mode

mscratchc mscratch M-mode

mepcc mepc M-mode

stvecc stvec S-mode

sscratchc sscratch S-mode

sepcc sepc S-mode

jvtc jvt Zcmt

Table 38. CSRs extended to capability width, accessible through an alias

Extended CSR Action on XLEN write Action on CLEN write

dpcc Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change.

Apply Invalid address conversion and update the CSR with the
result if the address changed, direct write if address didn’t change

dscratch0c Update the CSR using CSETADDR. direct write

dscratch1c Update the CSR using CSETADDR. direct write

mtvecc Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change, including the
MODE field in the address for simplicity. Vector range check * if
vectored mode is programmed.

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change, including the
MODE field in the address for simplicity. Vector range check * if
vectored mode is programmed.

mscratchc Update the CSR using CSETADDR. direct write

mepcc Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change.

Apply Invalid address conversion and update the CSR with the
result if the address changed, direct write if address didn’t change

stvecc Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change, including the
MODE field in the address for simplicity. Vector range check * if
vectored mode is programmed.

Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change, including the
MODE field in the address for simplicity. Vector range check * if
vectored mode is programmed.

sscratchc Update the CSR using CSETADDR. direct write

sepcc Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change.

Apply Invalid address conversion and update the CSR with the
result if the address changed, direct write if address didn’t change

jvtc Apply Invalid address conversion. Always update the CSR with
CSETADDR even if the address didn’t change.

Apply Invalid address conversion and update the CSR with the
result if the address changed, direct write if address didn’t change

Table 39. Action taken on writing to extended CSRs.

* The vector range check is to ensure that vectored entry to the handler in within bounds of the
capability written to Xtvecc. The check on writing must include the lowest (0 offset) and highest
possible offset (e.g. 64 * XLENMAX bits where HICAUSE=16).


Implementations which allow misa.C to be writable need to legalise Xepcc on reading if
the misa.C value has changed since the value was written as this can cause the read value
of bit [1] to change state.


CSRRW make an XLEN-wide access to the XLEN-wide CSR aliases or a CLEN-wide
access to the CLEN-wide aliases for all extended CSRs. CSRRWI, CSRRS, CSRRSI, CSRRC
and CSRRCI only make XLEN-wide accesses even if the CLEN-wide alias is specified.

Extended CSR Executable Vector Unseal On Execution

dpcc ✔ ✔

Chapter 10. Capability Width CSR Summary | Page 202

RISC-V Specification for CHERI Extensions | © RISC-V

Extended CSR Executable Vector Unseal On Execution

mtvecc ✔

mepcc ✔ ✔

stvecc ✔

sepcc ✔ ✔

jvtc ✔

pcc ✔

Table 40. CLEN-wide CSRs storing executable vectors

Some CSRs store executable vectors as shown in Table 40. These CSRs do not need to store the full
width address on RV64. If they store fewer address bits then writes are subject to the invalid address
check in Invalid address conversion.

Extended CSR Store full metadata

dscratch0c ✔

dscratch1c ✔

mscratchc ✔

sscratchc ✔

Table 41. CLEN-wide CSRs which store all CLEN+1 bits

Table 41 shows which CLEN-wide CSRs store all CLEN+1 bits. No other CLEN-wide CSRs store any
reserved bits. All CLEN-wide CSRs store all non-reserved metadata fields.

Extended CSR Zcheri_lega
cy

Zcheri_pure
cap

Prerequisite
s

CLEN
Address

Permissions Reset Value

dpcc ✔ ✔ Sdext 0x7b9 DRW, ASR-permission Infinity

dscratch0c ✔ ✔ Sdext 0x7ba DRW, ASR-permission Infinity

dscratch1c ✔ ✔ Sdext 0x7bb DRW, ASR-permission NULL

mtvecc ✔ ✔ M-mode 0x765 MRW, ASR-permission Infinity

mscratchc ✔ ✔ M-mode 0x760 MRW, ASR-permission NULL

mepcc ✔ ✔ M-mode 0x761 MRW, ASR-permission Infinity

stvecc ✔ ✔ S-mode 0x505 SRW, ASR-permission Infinity

sscratchc ✔ ✔ S-mode 0x540 SRW, ASR-permission NULL

sepcc ✔ ✔ S-mode 0x541 SRW, ASR-permission Infinity

jvtc ✔ ✔ Zcmt 0x417 URW Infinity

dddc ✔ Sdext 0x7bc DRW, ASR-permission NULL

mtdc ✔ M-mode 0x74c MRW, ASR-permission NULL

stdc ✔ S-mode 0x163 SRW, ASR-permission NULL

ddc ✔ none 0x416 URW Infinity

pcc ✔ ✔ none 0xcb0 URO Infinity (address = boot
address)

Table 42. All CLEN-wide CSRs

10.1. Other tables
Mnemonic Legacy mnemonic RV32 Legacy mnemonic RV64

CLC LC LC

CSC SC SC

C.CLCSP C.FLWSP C.FLDSP

C.CSCSP C.FSWSP C.FSDSP

C.CLC C.FLW C.FLD

10.1. Other tables | Page 203

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Legacy mnemonic RV32 Legacy mnemonic RV64

C.CSC C.FSW C.FSD

C.CLWSP C.LWSP C.LWSP

C.CSWSP C.SWSP C.SWSP

C.CLW C.LW C.LW

C.CSW C.SW C.SW

C.CLD C.LD C.LD

C.CSD C.SD C.SD

C.CLDSP C.LDSP C.LDSP

C.CSDSP C.SDSP C.SDSP

CLB LB LB

CLH LH LH

C.CLH C.LH C.LH

CLW LW LW

CLBU LBU LBU

C.CLBU C.LBU C.LBU

CLHU LHU LHU

C.CLHU C.LHU C.LHU

CLWU LWU LWU

CLD LD LD

CSB SB SB

C.CSB C.SB C.SB

CSH SH SH

C.CSH C.SH C.SH

CSW SW SW

CSD SD SD

AUIPCC AUIPC AUIPC

C.CINCOFFSET16CSP C.ADDI16SP C.ADDI16SP

C.ADDI4SPN C.ADDI4SPN C.ADDI4SPN

C.CINCOFFSET4CSPN C.ADDI4SPN C.ADDI4SPN

C.CMOVE C.MV C.MV

C.CJ C.J C.J

C.CJAL C.JAL C.JAL

CJAL JAL JAL

JALR.CAP JALR.PCC JALR.PCC

CJALR JALR JALR

C.CJALR C.JALR C.JALR

C.CJR C.JR C.JR

CBO.INVAL.CAP CBO.INVAL CBO.INVAL

CBO.CLEAN.CAP CBO.CLEAN CBO.CLEAN

CBO.FLUSH.CAP CBO.FLUSH CBO.FLUSH

CBO.ZERO.CAP CBO.ZERO CBO.ZERO

PREFETCH.R.CAP PREFETCH.R PREFETCH.R

PREFETCH.W.CAP PREFETCH.W PREFETCH.W

PREFETCH.I.CAP PREFETCH.I PREFETCH.I

CLR.C LR.C LR.C

CLR.D LR.D LR.D

CLR.W LR.W LR.W

CLR.H LR.H LR.H

CLR.B LR.B LR.B

10.1. Other tables | Page 204

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Legacy mnemonic RV32 Legacy mnemonic RV64

CSC.C SC.C SC.C

CSC.D SC.D SC.D

CSC.W SC.W SC.W

CSC.H SC.H SC.H

CAMOSWAP.C AMOSWAP.C AMOSWAP.C

CAMO<OP>.W AMO<OP>.W AMO<OP>.W

CAMO<OP>.D AMO<OP>.D AMO<OP>.D

CFLH FLH FLH

CFSH FSH FSH

CFLW FLW FLW

CFSW FSW FSW

CFLD FLD FLD

CFSD FSD FSD

CM.CPUSH CM.PUSH CM.PUSH

CM.CPOP CM.POP CM.POP

CM.CPOPRET CM.POPRET CM.POPRET

CM.CPOPRETZ CM.POPRETZ CM.POPRETZ

CM.CMVSA01 CM.MVSA01 CM.MVSA01

CM.CMVA01S CM.MVA01S CM.MVA01S

CM.CJALT CM.JALT CM.JALT

CM.CJT CM.JT CM.JT

CSH1ADD SH1ADD SH1ADD

CSH1ADD.UW SH1ADD.UW SH1ADD.UW

CSH2ADD SH2ADD SH2ADD

CSH2ADD.UW SH2ADD.UW SH2ADD.UW

CSH3ADD SH3ADD SH3ADD

CSH3ADD.UW SH3ADD.UW SH3ADD.UW

CSH4ADD SH4ADD SH4ADD

CSH4ADD.UW SH4ADD.UW SH4ADD.UW

Table 43. Mnemonics with the same encoding but mapped to different instructions in Legacy and Capability Mode

Mnemonic Function

LC Load cap via int pointer, authorise with DDC

SC Store cap via int pointer, authorise with DDC

CLC Load cap via cap

CSC Store cap via cap

C.CLCSP Load cap via cap, SP relative

C.CSCSP Store cap via cap, SP relative

C.CLC Load cap via cap

C.CSC Store cap via cap

LR.C Load reserve cap via int pointer, authorise with DDC

CLR.C Load reserve cap via cap

SC.C Store conditional cap via int pointer, authorise with DDC

CSC.C Store conditional cap via cap

AMOSWAP.C Atomic swap of cap

CAMOSWAP.C Atomic swap of cap via cap

Table 44. Instruction encodings which vary depending on the current XLEN


CMODESWITCH and Section 8.1.9 only exist in capability mode if legacy mode is also

10.1. Other tables | Page 205

RISC-V Specification for CHERI Extensions | © RISC-V

present. A purecap core does not implement the mode bit in the capability.

Mnemonic illegal insn if (1) OR illegal insn if (2) OR illegal insn if (3)

CMODESWITCH mode==D (optional)

C.CMODESWITCH mode==D (optional)

C.CJ mode==D (optional)

C.CJAL mode==D (optional)

CJAL mode==D (optional)

JALR.CAP mode==D (optional)

JALR.PCC mode==D (optional)

CJALR mode==D (optional)

C.CJALR mode==D (optional)

C.CJR mode==D (optional)

DRET MODE<D

MRET MODE<M PCC.ASR==0

SRET MODE<S PCC.ASR==0 mstatus.TSR==1 AND MODE==S

CSRRW CSR permission fault

CSRRS CSR permission fault

CSRRC CSR permission fault

CSRRWI CSR permission fault

CSRRSI CSR permission fault

CSRRCI CSR permission fault

CBO.INVAL MODE<M AND menvcfg.CBIE[0]==0 MODE<S AND senvcfg.CBIE[0]==0

CBO.CLEAN MODE<M AND menvcfg.CBIE[0]==0 MODE<S AND senvcfg.CBIE[0]==0

CBO.FLUSH MODE<M AND menvcfg.CBIE[0]==0 MODE<S AND senvcfg.CBIE[0]==0

CBO.ZERO MODE<M AND menvcfg.CBIE[0]==0 MODE<S AND senvcfg.CBIE[0]==0

CBO.INVAL.CAP MODE<M AND menvcfg.CBIE[0]==0 MODE<S AND senvcfg.CBIE[0]==0

CBO.CLEAN.CAP MODE<M AND menvcfg.CBIE[0]==0 MODE<S AND senvcfg.CBIE[0]==0

CBO.FLUSH.CAP MODE<M AND menvcfg.CBIE[0]==0 MODE<S AND senvcfg.CBIE[0]==0

CBO.ZERO.CAP MODE<M AND menvcfg.CBIE[0]==0 MODE<S AND senvcfg.CBIE[0]==0

C.FLW Xstatus.fs==0

C.FLWSP Xstatus.fs==0

C.FSW Xstatus.fs==0

C.FSWSP Xstatus.fs==0

C.FLD Xstatus.fs==0

C.FLDSP Xstatus.fs==0

C.FSD Xstatus.fs==0

C.FSDSP Xstatus.fs==0

C.CFLD Xstatus.fs==0

C.CFLDSP Xstatus.fs==0

C.CFSD Xstatus.fs==0

C.CFSDSP Xstatus.fs==0

CFLH Xstatus.fs==0

CFSH Xstatus.fs==0

CFLW Xstatus.fs==0

CFSW Xstatus.fs==0

CFLD Xstatus.fs==0

CFSD Xstatus.fs==0

Table 45. Illegal instruction detect for CHERI instructions

10.1. Other tables | Page 206

RISC-V Specification for CHERI Extensions | © RISC-V

Bibliography
RISC-V. (2022). RISC-V Debug Specification. github.com/riscv/riscv-debug-spec/raw/
c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf

RISC-V. (2023). RISC-V Privileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Unprivileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Code-size Reduction Specification. github.com/riscv/riscv-code-size-
reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf

Watson, R. N. M., Neumann, P. G., Woodruff, J., Roe, M., Almatary, H., Anderson, J., Baldwin, J.,
Barnes, G., Chisnall, D., Clarke, J., Davis, B., Eisen, L., Filardo, N. W., Fuchs, F. A., Grisenthwaite, R.,
Joannou, A., Laurie, B., Markettos, A. T., Moore, S. W., … Xia, H. (2023). Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (Version 9) (UCAM-CL-TR-987; Issue UCAM-CL-
TR-987). University of Cambridge, Computer Laboratory. doi.org/10.48456/tr-987

Woodruff, J., Joannou, A., Xia, H., Fox, A., Norton, R. M., Chisnall, D., Davis, B., Gudka, K., Filardo, N.
W., Markettos, A. T., & others. (2019). Cheri concentrate: Practical compressed capabilities. IEEE
Transactions on Computers, 68(10), 1455–1469.

Bibliography | Page 207

RISC-V Specification for CHERI Extensions | © RISC-V

https://github.com/riscv/riscv-debug-spec/raw/
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://doi.org/10.48456/tr-987

	RISC-V Specification for CHERI Extensions
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	1.1. CHERI Concepts and Terminology
	1.2. CHERI Extensions to RISC-V
	1.3. Risks and Known Uncertainty
	1.3.1. Pending Extensions
	1.3.2. Incompatible Extensions
	1.3.3. Suggested Mnemonic Renaming

	Chapter 2. Anatomy of Capabilities in Zcheri_purecap
	2.1. Components of a Capability
	2.1.1. Tag
	2.1.2. Architectural Permissions (AP)
	Permission Encoding

	2.1.3. Software-Defined Permissions (SDP)
	2.1.4. Sealed (S) Bit
	2.1.5. Bounds
	2.1.6. Address
	2.1.7. Reserved Bits

	2.2. Capability Encoding
	2.3. NULL and Infinite Capabilities
	2.4. Representable Limit Check
	2.5. Malformed Capability Bounds

	Chapter 3. Integrating Zcheri_purecap with the RISC-V Base Integer Instruction Set
	3.1. Memory
	3.2. Programmer’s Model for Zcheri_purecap
	3.3. Capability Instructions
	3.3.1. Capability Inspection Instructions
	3.3.2. Capability Manipulation Instructions
	3.3.3. Capability Load and Store Instructions
	3.3.4. Unconditional Integer Address Jumps

	3.4. Existing RISC-V Instructions
	3.4.1. Integer Computational Instructions
	3.4.2. Control Transfer Instructions
	Unconditional Jumps
	Conditional Branches

	3.4.3. Integer Load and Store Instructions

	3.5. Zicsr, Control and Status Register (CSR) Instructions
	3.5.1. CSR Instructions

	3.6. Control and Status Registers (CSRs)
	3.7. Machine-Level CSRs
	3.7.1. Machine ISA Register (misa)
	3.7.2. Machine Status Registers (mstatus and mstatush)
	3.7.3. Machine Trap-Vector Base-Address Registers (mtvec)
	3.7.4. Machine Trap-Vector Base-Address Capability Registers (mtvecc)
	3.7.5. Machine Scratch Register (mscratch)
	3.7.6. Machine Scratch Register Capability (mscratchc)
	3.7.7. Machine Exception Program Counter (mepc)
	3.7.8. Machine Exception Program Counter Capability (mepcc)
	3.7.9. Machine Cause Register (mcause)
	3.7.10. Machine Trap Delegation Register (medeleg)
	3.7.11. Machine Trap Value Register (mtval)

	3.8. Supervisor-Level CSRs
	3.8.1. Supervisor Trap Vector Base Address Registers (stvec)
	3.8.2. Supervisor Trap Vector Base Address Registers (stvecc)
	3.8.3. Supervisor Scratch Register (sscratch)
	3.8.4. Supervisor Scratch Registers (sscratchc)
	3.8.5. Supervisor Exception Program Counter (sepc)
	3.8.6. Supervisor Exception Program Counter Capability (sepcc)
	3.8.7. Supervisor Cause Register (scause)
	3.8.8. Supervisor Trap Value Register (stval)

	3.9. Unprivileged CSRs
	3.9.1. Program Counter Capability (pcc)

	3.10. CHERI Exception handling
	3.11. Physical Memory Attributes (PMA)
	3.12. Page-Based Virtual-Memory Systems
	3.12.1. Invalid Address Handling

	Chapter 4. Integrating Zcheri_purecap with Sdext
	4.1. Debug Mode
	4.2. Core Debug Registers
	4.2.1. Debug Program Counter (dpc)
	4.2.2. Debug Program Counter Capability (dpcc)
	4.2.3. Debug Scratch Register 0 (dscratch0)
	4.2.4. Debug Scratch Register 0 (dscratch0c)
	4.2.5. Debug Scratch Register 1 (dscratch1)
	4.2.6. Debug Scratch Register 1 (dscratch1c)

	Chapter 5. "Zcheri_pte" Extension for CHERI Page-Based Virtual-Memory Systems
	5.1. Extending the Page Table Entry Format
	5.2. Extending the Machine Environment Configuration Register (menvcfg)

	Chapter 6. "Zcheri_legacy" Extension for CHERI Legacy Mode
	6.1. CHERI Execution Mode
	6.2. Zcheri_legacy Instructions
	6.2.1. Capability Load and Store Instructions
	6.2.2. Unconditional Capability Jumps

	6.3. Existing RISC-V Instructions
	6.3.1. Control Transfer Instructions
	6.3.2. Conditional Branches
	6.3.3. Load and Store Instructions
	6.3.4. CSR Instructions

	6.4. Integrating Zcheri_legacy with Sdext
	6.5. Debug Default Data Capability (dddc)
	6.6. Disabling CHERI Features
	6.7. Added CLEN-wide CSRs
	6.7.1. Machine ISA Register (misa)
	6.7.2. Machine Status Registers (mstatus and mstatush)
	6.7.3. Machine Trap Default Capability Register (mtdc)
	6.7.4. Machine Environment Configuration Register (menvcfg)
	6.7.5. Supervisor Trap Default Capability Register (stdc)
	6.7.6. Supervisor Environment Configuration Register (senvcfg)
	6.7.7. Default Data Capability (ddc)

	Chapter 7. "Zcheri_mode" Extension for CHERI Execution Mode
	7.1. CHERI Execution Mode
	7.2. Zcheri_mode Instructions
	7.2.1. Capability Manipulation Instructions
	7.2.2. Mode Change Instructions
	7.2.3. Unconditional Capability Jumps

	7.3. Integrating Zcheri_mode with Sdext

	Chapter 8. RISC-V Instructions and Extensions Reference
	8.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI
	8.1.1. JALR.PCC
	8.1.2. JALR.CAP
	8.1.3. CMOVE
	8.1.4. CMODESWITCH
	8.1.5. CINCOFFSETIMM
	8.1.6. CINCOFFSET
	8.1.7. CSETADDR
	8.1.8. CANDPERM
	8.1.9. CSETMODE
	8.1.10. CSETHIGH
	8.1.11. CSETEQUALEXACT
	8.1.12. CSEAL
	8.1.13. CTESTSUBSET
	8.1.14. CBUILDCAP
	8.1.15. CGETTAG
	8.1.16. CGETPERM
	8.1.17. CGETHIGH
	8.1.18. CGETBASE
	8.1.19. CGETLEN
	8.1.20. CSETBOUNDSIMM
	8.1.21. CSETBOUNDS
	8.1.22. CSETBOUNDSINEXACT
	8.1.23. CRAM
	8.1.24. LC
	8.1.25. CLC
	8.1.26. SC
	8.1.27. CSC

	8.2. RV32I/E and RV64I/E Base Integer Instruction Sets
	8.2.1. AUIPC
	8.2.2. AUIPCC
	8.2.3. BEQ, BNE, BLT[U], BGE[U]
	8.2.4. CJALR
	8.2.5. CJAL, JALR
	8.2.6. CJAL
	8.2.7. CJAL, JAL
	8.2.8. CLWU
	8.2.9. CLW
	8.2.10. CLHU
	8.2.11. CLH
	8.2.12. CLBU
	8.2.13. CLB
	8.2.14. LD
	8.2.15. LWU
	8.2.16. LW
	8.2.17. LHU
	8.2.18. LH
	8.2.19. LBU
	8.2.20. LB
	8.2.21. CLD
	8.2.22. CSW
	8.2.23. CSH
	8.2.24. CSB
	8.2.25. SD
	8.2.26. SW
	8.2.27. SH
	8.2.28. SB
	8.2.29. CSD
	8.2.30. SRET
	8.2.31. MRET
	8.2.32. DRET

	8.3. "A" Standard Extension for Atomic Instructions
	8.3.1. CAMO<OP>.W
	8.3.2. CAMO<OP>.D
	8.3.3. AMO<OP>.W
	8.3.4. CAMO<OP>.W
	8.3.5. AMOSWAP.C
	8.3.6. CAMOSWAP.C
	8.3.7. CLR.D
	8.3.8. CLR.W
	8.3.9. CLR.H
	8.3.10. CLR.B
	8.3.11. LR.D
	8.3.12. LR.W
	8.3.13. LR.H
	8.3.14. LR.B
	8.3.15. LR.C
	8.3.16. CLR.C
	8.3.17. CSC.D
	8.3.18. CSC.W
	8.3.19. CSC.H
	8.3.20. CSC.B
	8.3.21. SC.D
	8.3.22. SC.W
	8.3.23. SC.H
	8.3.24. SC.B
	8.3.25. SC.C
	8.3.26. CSC.C

	8.4. "Zicsr", Control and Status Register (CSR) Instructions
	8.4.1. CSRRW
	8.4.2. CSRRWI
	8.4.3. CSRRS
	8.4.4. CSRRSI
	8.4.5. CSRRC
	8.4.6. CSRRCI

	8.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point
	8.5.1. CFLD
	8.5.2. CFLW
	8.5.3. CFLH
	8.5.4. FLD
	8.5.5. FLW
	8.5.6. FLH
	8.5.7. CFSD
	8.5.8. CFSW
	8.5.9. CFSH
	8.5.10. FSD
	8.5.11. FSW
	8.5.12. FSH

	8.6. "C" Standard Extension for Compressed Instructions
	8.6.1. C.BEQZ, C.BNEZ
	8.6.2. C.MV
	8.6.3. C.CMOVE
	8.6.4. C.ADDI16SP
	8.6.5. C.CINCOFFSET16CSP
	8.6.6. C.ADDI4SPN
	8.6.7. C.CINCOFFSET4CSPN
	8.6.8. C.CMODESWITCH
	8.6.9. C.JALR
	8.6.10. C.CJALR
	8.6.11. C.CJR
	8.6.12. C.JR
	8.6.13. C.JAL
	8.6.14. C.CJAL
	8.6.15. C.J
	8.6.16. C.CJ
	8.6.17. C.CLD
	8.6.18. C.CLW
	8.6.19. C.LD
	8.6.20. C.LW
	8.6.21. C.CLWSP
	8.6.22. C.CLDSP
	8.6.23. C.LWSP
	8.6.24. C.LDSP
	8.6.25. C.FLW
	8.6.26. C.FLWSP
	8.6.27. C.CFLD
	8.6.28. C.FLD
	8.6.29. C.CFLDSP
	8.6.30. C.FLDSP
	8.6.31. C.CLC
	8.6.32. C.CLCSP
	8.6.33. C.CSD
	8.6.34. C.CSW
	8.6.35. C.SD
	8.6.36. C.SW
	8.6.37. C.CSWSP
	8.6.38. C.CSDSP
	8.6.39. C.SWSP
	8.6.40. C.SDSP
	8.6.41. C.FSW
	8.6.42. C.FSWSP
	8.6.43. C.CFSD
	8.6.44. C.CFSDSP
	8.6.45. C.FSD
	8.6.46. C.FSDSP
	8.6.47. C.CSC
	8.6.48. C.CSC, C.CSCSP

	8.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations
	8.7.1. CBO.CLEAN
	8.7.2. CBO.CLEAN.CAP
	8.7.3. CBO.FLUSH
	8.7.4. CBO.FLUSH.CAP
	8.7.5. CBO.INVAL
	8.7.6. CBO.INVAL.CAP
	8.7.7. CBO.ZERO
	8.7.8. CBO.ZERO.CAP
	8.7.9. PREFETCH.I
	8.7.10. PREFETCH.I.CAP
	8.7.11. PREFETCH.R
	8.7.12. PREFETCH.R.CAP
	8.7.13. PREFETCH.W
	8.7.14. PREFETCH.W.CAP

	8.8. "Zba" Extension for Bit Manipulation Instructions
	8.8.1. CSH1ADD
	8.8.2. CSH2ADD
	8.8.3. CSH3ADD
	8.8.4. SH1ADD
	8.8.5. SH2ADD
	8.8.6. SH3ADD
	8.8.7. CSH1ADD.UW
	8.8.8. CSH2ADD.UW
	8.8.9. CSH3ADD.UW
	8.8.10. SH1ADD.UW
	8.8.11. SH2ADD.UW
	8.8.12. SH3ADD.UW
	8.8.13. SH4ADD
	8.8.14. CSH4ADD
	8.8.15. SH4ADD.UW
	8.8.16. CSH4ADD.UW

	8.9. "Zcb" Standard Extension For Code-Size Reduction
	8.9.1. C.CLH
	8.9.2. C.CLHU
	8.9.3. C.CLBU
	8.9.4. C.LH
	8.9.5. C.LHU
	8.9.6. C.LBU
	8.9.7. C.CSH
	8.9.8. C.CSB
	8.9.9. C.SH
	8.9.10. C.CSH, C.CSB, C.SH, C.SB

	8.10. "Zcmp" Standard Extension For Code-Size Reduction
	8.10.1. CM.PUSH
	8.10.2. CM.CPUSH
	8.10.3. CM.POP
	8.10.4. CM.CPOP
	8.10.5. CM.POPRET
	8.10.6. CM.CPOPRET
	8.10.7. CM.POPRETZ
	8.10.8. CM.CPOPRETZ
	8.10.9. CM.MVSA01
	8.10.10. CM.CMVSA01
	8.10.11. CM.MVA01S
	8.10.12. CM.CMVA01S

	8.11. "Zcmt" Standard Extension For Code-Size Reduction
	8.11.1. Jump Vector Table CSR (jvt)
	8.11.2. Jump Vector Table CSR (jvtc)
	8.11.3. CM.JALT
	8.11.4. CM.CJALT
	8.11.5. CM.JT
	8.11.6. CM.CJT

	Chapter 9. Extension summary
	9.1. Zbhlrsc
	9.2. Zcheri_purecap
	9.3. Zcheri_legacy
	9.4. Zcheri_mode
	9.5. Instruction Modes

	Chapter 10. Capability Width CSR Summary
	10.1. Other tables

	
	Bibliography

