RISC-V Specification for CHERI
Extensions

Authors: Hesham Almatary, Andres Amaya Garcia, John Baldwin, David Chisnall, Jessica
Clarke, Brooks Davis, Nathaniel Wesley Filardo, Franz A. Fuchs, Timothy Hutt, Alexandre
Joannou, Tarig Kurd, Ben Laurie, A. Theodore Markettos, David McKay, Jamie Melling, Stuart
Menefy, Simon W. Moore, Peter G. Neumann, Robert Norton, Alexander Richardson,
Michael Roe, Peter Rugg, Peter Sewell, Carl Shaw, Robert N. M. Watson, Jonathan Woodruff

Version v0.7.1, 2024-02-20: Draft

Table of Contents

Preamble
Copyright and license information
Contributors
1. Introduction
1.1. CHERI Concepts and Terminology
1.2. CHERI Extensions to RISC-V
1.3. Risks and Known Uncertainty
1.3.1. Pending Extensions
1.3.2. Incompatible Extensions
2. Anatomy of Capabilities in Zcheri_purecap
2.1. Components of a Capability
2.11. Tag
2.1.2. Architectural Permissions (AP)
Permission Encoding
2.1.3. Software-Defined Permissions (SDP)
2.14. Sealed (S) Bit
2.1.5. Bounds
2.1.6. Address
2.1.7. Reserved Bits
2.2. Capability Encoding
2.3. Special Capabilities
2.3.1. NULL Capability
2.3.2. Infinite Capability
2.4. Representable Range Check
2.4.1. Practical Information
2.5. Malformed Capability Bounds
3. Integrating Zcheri_purecap with the RISC-V Base Integer Instruction Set
3.1. Memory
3.2. Programmer’s Model for Zcheri_ purecap
3.2.1. PCC - The Program Counter Capability
3.3. Capability Instructions
3.3.1. Capability Inspection Instructions
3.3.2. Capability Manipulation Instructions
3.3.3. Capability Load and Store Instructions
3.3.4. Unconditional Integer Address Jumps
3.4. Existing RISC-V Instructions
3.4.1. Integer Computational Instructions
3.4.2. Control Transfer Instructions
Unconditional Jumps

Conditional Branches

© © 00 3 9 ~9 9 O 0o O U b & W N -

NN N DN = m e —_
P RRERN OO 00 nm®»H oo oo RSS2 O

3.4.3. Integer Load and Store Instructions
3.5. Zicsr, Control and Status Register (CSR) Instructions
3.5.1. CSR Instructions
3.6. Control and Status Registers (CSRs)
3.7. Machine-Level CSRs
3.7.1. Machine ISA Register (misa)
3.7.2. Machine Status Registers (mstatus and mstatush)
3.7.3. Machine Trap-Vector Base-Address Registers (mtvec)
3.7.4. Machine Trap-Vector Base-Address Capability Registers (mtvecc)
3.7.5. Machine Scratch Register (mscratch)
3.7.6. Machine Scratch Register Capability (mscratchc)
3.7.7. Machine Exception Program Counter (mepc)
3.7.8. Machine Exception Program Counter Capability (mepcc)
3.7.9. Machine Cause Register (mcause)
3.7.10. Machine Trap Delegation Register (medeleg)
3.7.11. Machine Trap Value Register (mtval)
3.8. Supervisor-Level CSRs
3.8.1. Supervisor Trap Vector Base Address Registers (stvec)
3.8.2. Supervisor Trap Vector Base Address Registers (stvecc)
3.8.3. Supervisor Scratch Register (sscratch)
3.8.4. Supervisor Scratch Registers (sscratchce)
3.8.5. Supervisor Exception Program Counter (sepc)
3.8.6. Supervisor Exception Program Counter Capability (sepcc)
3.8.7. Supervisor Cause Register (scause)
3.8.8. Supervisor Trap Value Register (stval)
3.9. Unprivileged CSRs
3.10. CHERI Exception handling
3.11. CHERI Exceptions and speculative execution
3.12. Physical Memory Attributes (PMA)
3.13. Page-Based Virtual-Memory Systems
3.13.1. Invalid Address Handling
3.14. Integrating Zcheri _purecap with Sdext
3.14.1. Debug Mode
3.14.2. Core Debug Registers
3.14.3. Debug Program Counter (dpc)
3.14.4. Debug Program Counter Capability (dpcc)
3.14.5. Debug Scratch Register O (dscratchO)
3.14.6. Debug Scratch Register O (dscratchOc)
3.14.7. Debug Scratch Register 1 (dscratchl)
3.14.8. Debug Scratch Register 1 (dscratchlc)
3.14.9. Debug Infinite Capability Register (dinfc)
4."Zcheri_pte" Extension for CHERI Page-Based Virtual-Memory Systems
4.1. Extending the Page Table Entry Format

22
23
23
24
25
26
26
26
27
27
27
28
28
28
30
30
31
31
31
32
32
32
32
32
33
34
34
35
36
36
36
37
37
37
37
37
38
38
38
39
39
40
40

4.2. Extending the Machine Environment Configuration Register (menvcfg)
5."Zcheri_legacy" Extension for CHERI Legacy Mode
5.1. CHERI Execution Mode
5.2. Zcheri_legacy Instructions
5.2.1. Capability Load and Store Instructions
5.2.2. Unconditional Capability Jumps
5.3. Existing RISC-V Instructions
5.3.1. Control Transfer Instructions
5.3.2. Conditional Branches
5.3.3. Load and Store Instructions
5.3.4. CSR Instructions
5.4. Integrating Zcheri _legacy with Sdext
5.5. Debug Default Data Capability (dddc)
5.6. Disabling CHERI Registers
5.7. Added CLEN-wide CSRs
5.7.1. Machine ISA Register (misa)
5.7.2. Machine Status Registers (mstatus and mstatush)
5.7.3. Machine Trap Default Capability Register (mtdc)
5.7.4. Machine Security Configuration Register (mseccfg)
5.7.5. Machine Environment Configuration Register (menvcfg)
5.7.6. Supervisor Trap Default Capability Register (stdc)
5.7.7. Supervisor Environment Configuration Register (senvcfg)
5.7.8. Default Data Capability (ddc)
6."Zcheri_mode" Extension for CHERI Execution Mode
6.1. CHERI Execution Mode
6.2. Zcheri _mode Instructions
6.2.1. Capability Manipulation Instructions
6.2.2. Mode Change Instructions
6.2.3. Unconditional Capability Jumps
6.3. Integrating Zcheri_mode with Sdext
7. RISC-V Instructions and Extensions Reference
7.1."Zcheri_purecap', "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI
711. JALR.MODE
71.2.CMV
7.1.3. MODESW
7.14. CADDI
7.1.5. CADD
7.1.6. SCADDR
7.1.7. ACPERM
7.1.8. SCMODE
7.1.9. SCHI
7110. SCEQ
7.111. SENTRY

41
43
43
44
44
44
44
44
45
45
45
46
46
46
47
47
47
48
48
48
49
49
49
51
51
51
52
52
52
52
53
54
55
57
58
59
59
61
62
63
64
65
66

T /T 0 67

C113. CBLD . 68
C114. GCTAG . 69
115 GCPERM 70
116, GCHIL 71
C1T0. GCBASE. 72
C118. GCLEN 73
7119, SCBNDSI 4
71.20. SCBNDS . 4
71.21. SCBNDSR . 5
T1.22. CRAM 76
(.28, LC 7
C0.24. SC . 79
7.2. RV32I/E and RV64I/E Base Integer Instruction Sets 81
21 AUIPC 82
7.2.2.BEQ,BNE, BLT[U], BGE[U] 83
. 3 R 84
T24AJALR 84
T B, 86
T26.JAL. 86
0 LD 87
2.8 LWU 87
... LW 87
210 LHU. 87
201 LH 87
(202, LBU 87
208, LB 88
C2.04.SD 90
2 05, SW . 90
(206, SH 90
(0. OB 91
(208, SRET 93
219 MRET 93
7.2.20. DRET 94
7.3."A" Standard Extension for Atomic Instructions 95
.31 AMO<OP> W . 96
7.3.2. AMO<OP>.D . 97
7.3.3. AMOSWAP.C. . 99
T34 . LR.D. 101
(.35, LR 101
1.3.6. LR H 101
(3. LR B . 102

1.3.8. LR C 104

7.3.9.SC.D
7.3.10. SC.W
7.3.11. SC.H
7.3.12. SC.B
7.3.13.SC.C
7.4."Zicsr", Control and Status Register (CSR) Instructions
74.1. CSRRW
7.4.2. CSRRWI
7.4.3. CSRRS
7.4.4. CSRRSI
7.4.5. CSRRC
7.4.6. CSRRCI
7.5."2fh","Zthmin", "F" and "D" Standard Extension for Floating-Point
7.5.1. FLD
7.5.2. FLW
7.5.3. FLH
7.5.4.FSD
7.5.5. FSW
7.5.6. FSH
7.6."C" Standard Extension for Compressed Instructions
7.6.1. CBEQZ, C.BNEZ
7.6.2. CMV
7.6.3. CADDII6SP
7.6.4. CADDI4SPN
7.6.5. CMODESW
7.6.6. CJALR
7.6.7.CJR
7.6.8. CJAL
7.69.CJ
7.6.10. C.LD
7.6.11. C.LW
7.6.12. CLWSP
7.6.13. CLDSP
7.6.14. CFLW
7.6.15. CFLWSP
7.6.16. CFLD
7.6.17. CFLDSP
7.6.18. C.LC
7.6.19. C.LCSP
7.6.20. C.SD
7.6.21. C.SW
7.6.22. C.SWSP
7.6.23. C.SDSP

106
106
106
107
109
111
112
113
113
113
113
114
116
117
117
118
120
120
121
123
124
125
126
127
128
129
130
131
132
133
134
136
137
139
139
140
140
142
142
144
145
1477
148

7.6.24. CFSW 150

7.6.25. CFSWSP 150
7.6.26. C.FSD 151
7.6.27. CFSDSP 151
7.6.28. C.SC 153
7.6.29. C.SCSP 153
7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations . .. 155
7.7.1. CBO.CLEAN 156
7.7.2. CBO.FLUSH 157
7.7.3. CBO.INVAL 158
7.74. CBO.ZERO 159
7.7.5. PREFETCH.I 161
(.7.6. PREFETCH.R 162
7.7'(. PREFETCH.W 163
7.8."Zba" Extension for Bit Manipulation Instructions 164
7.8.1. SHIADD 165
7.8.2. SH2ADD 165
7.8.3. SH3ADD 166
7.8.4. SHIADD.UW 167
7.8.5. SH2ADD.UW 167
7.8.6. SH3ADD.UW 168
7.8.7. SH4ADD 169
7.8.8. SH4ADD.UW 170
7.9."Zcb" Standard Extension For Code-Size Reduction 17
7.9.1. CLH 172
7.9.2. CLHU 172
7.9.3. CLBU 173
7.94.C.SH 175
79.5.C.SB 176
7.10."Zcmp" Standard Extension For Code-Size Reduction 178
7.10.1. CM.PUSH 179
7.10.2. CM.POP 180
7.10.3. CM.POPRET 181
710.4. CM.POPRETZ 183
7.10.5. CM.MVSAO1 185
7.10.6. CM.MVAOQ1S 186
7.11."Zcmt" Standard Extension For Code-Size Reduction 187
7.11.1. Jump Vector Table CSR (jvt) 187
7.11.2. Jump Vector Table CSR (jvtc) 187
711.3. CMJALT 188
7114.CMJT 190

8. Extension summary 192

8.1. Zbhlrsc 192

8.2. Zcheri_ purecap
8.3. Zcheri_legacy
8.4. Zcheri _mode
8.5. Instruction Modes
9. Capability Width CSR Summary
9.1. Other tables
Bibliography

192
199
207
208
215
218
221

Preamble | Page 1

Preamble

This document is in the Development state

Expect potential changes. This draft specification is likely to evolve before it is accepted as
a standard. Implementations based on this draft may not conform to the future standard.

RISC-V Specification for CHERI Extensions | © RISC-V

http://riscv.org/spec-state

Copyright and license information | Page 2

Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-
BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2024 by RISC-V International.

RISC-V Specification for CHERI Extensions | © RISC-V

https://creativecommons.org/licenses/by/4.0/

Contributors | Page 3

Contributors

This RISC-V specification has been contributed to directly or indirectly by:

- Hesham Almatary <hesham.almatary@cl.cam.ac.uk>
- Andres Amaya Garcia <andres.amaya@codasip.com>
- John Baldwin <jhb6l@cl.cam.ac.uk>

- David Chisnall <david.chisnall@cl.cam.ac.uk>

- Jessica Clarke <jessica.clarke@cl.cam.ac.uk>

- Brooks Davis <brooks.davis@sri.com>

- Nathaniel Wesley Filardo <nwf20@cam.ac.uk>

- Franz A. Fuchs <faf28@cam.ac.uk>

- Timothy Hutt <timothy.hutt@codasip.com>

- Alexandre Joannou <alexandre. joannou@cl.cam.ac.uk>
- Tariq Kurd <tariq.kurd@codasip.com>

- Ben Laurie <benl@google.com>

- A. Theodore Markettos <theo.markettos@cl.cam.ac.uk>
- David McKay <david.mckay@codasip.com>

- Jamie Melling <jamie.melling@codasip.com>

- Stuart Menefy <stuart. menefy@codasip.com>

- Simon W. Moore <simon.moore@cl.cam.ac.uk>

- Peter G. Neumann <neumann@csl.sri.com>

- Robert Norton <robert.norton@cl.cam.ac.uk>

- Alexander Richardson <alexrichardson@google.com>
- Michael Roe <mrlOl@cam.ac.uk>

- Peter Rugg <peter.rugg@cl.cam.ac.uk>

- Peter Sewell <peter.sewell@cl.cam.ac.uk>

- Carl Shaw <carl.shaw@codasip.com>

- Robert N. M. Watson <robert.watson@cl.cam.ac.uk>

- Jonathan Woodruff <jonathan.woodruff@cl.cam.ac.uk>

RISC-V Specification for CHERI Extensions | © RISC-V

mailto:hesham.almatary@cl.cam.ac.uk
mailto:andres.amaya@codasip.com
mailto:jhb61@cl.cam.ac.uk
mailto:david.chisnall@cl.cam.ac.uk
mailto:jessica.clarke@cl.cam.ac.uk
mailto:brooks.davis@sri.com
mailto:nwf20@cam.ac.uk
mailto:faf28@cam.ac.uk
mailto:timothy.hutt@codasip.com
mailto:alexandre.joannou@cl.cam.ac.uk
mailto:tariq.kurd@codasip.com
mailto:benl@google.com
mailto:theo.markettos@cl.cam.ac.uk
mailto:david.mckay@codasip.com
mailto:jamie.melling@codasip.com
mailto:stuart.menefy@codasip.com
mailto:simon.moore@cl.cam.ac.uk
mailto:neumann@csl.sri.com
mailto:robert.norton@cl.cam.ac.uk
mailto:alexrichardson@google.com
mailto:mr101@cam.ac.uk
mailto:peter.rugg@cl.cam.ac.uk
mailto:peter.sewell@cl.cam.ac.uk
mailto:carl.shaw@codasip.com
mailto:robert.watson@cl.cam.ac.uk
mailto:jonathan.woodruff@cl.cam.ac.uk

1.1. CHERI Concepts and Terminology | Page 4

Chapter 1. Introduction
1.1. CHERI Concepts and Terminology

Current CPU architectures (including RISC-V) allow memory access solely by specifying and
dereferencing a memory address stored as an integer value in a register or in memory. Any accidental
or malicious action that modifies such an integer value can result in unrestricted access to the
memory that it addresses. Unfortunately, this weak memory protection model has resulted in the
majority of software security vulnerabilities present in software today.

CHERI enables software to efficiently implement fine-grained memory protection and scalable
software compartmentalization by providing strong, efficient hardware mechanisms to support
software execution and enable it to prevent and mitigate vulnerabilities.

Design goals include incremental adoptability from current ISAs and software stacks, low
performance overhead for memory protection, significant performance improvements for software
compartmentalization, formal grounding, and programmer-friendly underpinnings. It has been
designed to provide strong, non-probabilistic protection rather than depending on short random
numbers or truncated cryptographic hashes that can be leaked and reinjected, or that could be brute
forced.

CHERI enhances the CPU to add hardware memory access control. It has an additional memory access
mechanism that protects references to code and data (pointers), rather than the location of code and data
(integer addresses). This mechanism is implemented by providing a new primitive, called a capability,
that software components can use to implement strongly protected pointers within an address space.

Capabilities are unforgeable and delegatable tokens of authority that grant software the ability to
perform a specific set of operations. In CHERI, integer-based pointers can be replaced by capabilities
to provide memory access control. In this case, a memory access capability contains an integer
memory address that is extended with metadata to protect its integrity, limit how it is manipulated,
and control its use. This metadata includes:

- an out-of-band tag implementing strong integrity protection (differentiating valid and invalid
capabilities), This prevents confusion between data and capabilities.

- bounds limiting the range of addresses that may be dereferenced
- permissions controlling the specific operations that may be performed

- sealing which is used to support higher-level software encapsulation

The CHERI model is motivated by the principle of least privilege, which argues that greater security can
be obtained by minimizing the privileges accessible to running software. A second guiding principle is
the principle of intentional use, which argues that, where many privileges are available to a piece of
software, the privilege to use should be explicitly named rather than implicitly selected. While CHERI
does not prevent the expression of vulnerable software designs, it provides strong vulnerability
mitigation: attackers have a more limited vocabulary for attacks, and should a vulnerability be
successfully exploited, they gain fewer rights, and have reduced access to further attack surfaces.

Protection properties for capabilities include the ISA ensuring that capabilities are always derived via
valid manipulations of other capabilities (provenance), that corrupted in-memory capabilities cannot
be dereferenced (integrity), and that rights associated with capabilities shall only ever be equal or less
permissive (monotonicity). Tampering or modifying capabilities in an attempt to elevate their rights will

RISC-V Specification for CHERI Extensions | © RISC-V

1.2. CHERI Extensions to RISC-V | Page 5

yield an invalid capability as the tag will be cleared. Attempting to dereference via an invalid
capability will result in a hardware exception.

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and dereferenced
using CHERI-aware instructions that expect capability operands rather than integer addresses. On
hardware reset, initial capabilities are made available to software via special and general-purpose
capability registers. All other capabilities will be derived from these initial valid capabilities through
valid capability transformations.

Developers can use CHERI to build fine-grained spatial and temporal memory protection into their
system software and applications and significantly improve their security.

1.2. CHERI Extensions to RISC-V

This specification is based on publicly available documentation including (Watson et al., 2023) and
(Woodruff et al,, 2019). It defines the following extensions to support CHERI alongside RISC-V:

Zcheri_purecap

Introduces key, minimal CHERI concepts and features to the RISC-V ISA. The resulting extended
ISA is not backwards-compatible with RISC-V

Zcheri_legacy

Extends Zcheri_purecap with features to ensure that the ISA extended with CHERI allows
backwards binary compatibility with RISC-V

Zcheri_mode

Adds a mode bit in the encoding of capabilities to allow changing the current CHERI execution
mode using indirect jump instructions

Zcheri_pte
CHERI extension for RISC-V harts supporting page-based virtual-memory

Zcheri_vectorcap

CHERI extension for the RISC-V Vector (V) extension. It adds support for storing CHERI
capabilities in vector registers, intended for vectorised memory copying

o The extension names are provisional and subject to change.

Zcheri_purecap is defined as the base extension which all CHERI RISC-V implementations must
support. Zcheri_legacy, Zcheri_mode and Zcheri_pte are optional extensions in addition to
Zcheri_purecap. Zcheri_mode requires supporting both Zcheri_purecap and Zcheri_legacy.

If a standard vector extension is present (indicated in this document as "V', but it could equally be one
of the subsets defined by a Zve* extension) then Zcheri_vectorcap may optionally be added in
addition to Zcheri_purecap.

We refer to software as purecap if it utilizes CHERI capabilities for all memory accesses — including
loads, stores and instruction fetches — rather than integer addresses. Purecap software requires the
CHERI RISC-V hart to support Zcheri_purecap. We refer to software as hybrid if it uses integer
addresses or CHERI capabilities for memory accesses. Hybrid software requires the CHERI RISC-V
hart to support Zcheri_ purecap, Zcheri_legacy and Zcheri_mode.

RISC-V Specification for CHERI Extensions | © RISC-V

1.3. Risks and Known Uncertainty | Page 6

See Chapter 7 for compatibility with other RISC-V extensions.

1.3. Risks and Known Uncertainty

- All extensions could be divided up differently in the future, including after ratification
- The RISC-V Architecture Review Committee (ARC) are likely to update all encodings
- The ARC are likely to update all CSR addresses
- Instruction mnemonics may be renamed
° The instruction mnemonics could be the same regardless of CHERI mode

> Any changes will affect assembly code, but assembler aliases can provide backwards
compatibility

- There is no clarity on how the new Page Table Entry (PTE) bits from Zcheri_pte will be
implemented

° The PTE bits introduce a dependency between exceptions and the stored tag bit

- There is debate on whether different permission encodings are needed for XLENMAX=32 and
XLENMAX=64

1.3.1. Pending Extensions

The base RISC-V ISAs, along with most extensions, have been reviewed for compatibility with CHERI.
However, the following extensions are yet to be reviewed:

- "V" Standard Extension for Vector Operations
- "H" Hypervisor Extension

- Core-Local Interrupt Controller (CLIC)

) The list above is not complete!

1.3.2. Incompatible Extensions

There are RISC-V extensions in development that may duplicate some aspects of CHERI functionality
or directly conflict with CHERI and should not be available on a CHERI-enabled hart. These include:

- RISC-V CFI specification

- "]" Pointer Masking

o The list above is not complete!

RISC-V Specification for CHERI Extensions | © RISC-V

2.1. Components of a Capability | Page 7

Chapter 2. Anatomy of Capabilities in
/cheri_purecap

RISC-V defines variants of the base integer instruction set characterized by the width of the integer
registers and the corresponding size of the address space. There are two primary ISA variants, RV32I
and RV641, which provide 32-bit and 64-bit address spaces respectively. The term XLEN refers to the
width of an integer register in bits (either 32 or 64). The value of XLEN may change dynamically at
run-time depending on the values written to CSRs, so we define XLENMAX to be widest XLEN that the
implementation supports.

Zcheri_purecap defines capabilities of size CLEN corresponding to 2 * XLENMAX without including
the tag bit. The value of CLEN is always calculated based on XLENMAX regardless of the effective
XLEN value.

2.1. Components of a Capability

Capabilities contain the software accessible fields described in this section.

2.1.1. Tag

The tag is an additional hardware managed bit added to addressable memory and registers. It is stored
separately and may be referred to as "out of band". It indicates whether a register or CLEN-aligned
memory location contains a valid capability. If the tag is set, the capability is valid and can be
dereferenced (contingent on checks such as permissions or bounds).

The capability is invalid if the tag is clear. Using an invalid capability to dereference memory or
authorize any operation gives rise to exceptions. All capabilities derived from invalid capabilities are
themselves invalid i.e. their tags are O.

All locations in registers or memory able to hold a capability are CLEN+1 bits wide including the tag
bit. Those locations are referred as being CLEN-bit or capability wide in this specification.

2.1.2. Architectural Permissions (AP)

A CHERI v9 Note: The permissions are encoded differently in this specification.

This field encodes architecturally defined permissions of the capability. Permissions grant access
subject to the tag being set, the capability being unsealed (see Section 2.14), and bounds checks (see
Section 2.1.5). An operation is also contingent on requirements imposed by other RISC-V architectural
features, such as virtual memory, PMP and PMAs, even if the capability grants sufficient permissions.
The permissions currently defined in Zcheri_purecap are listed in below.

Read Permission (R)

Allow reading integer data from memory. Tags are always read as zero when reading integer data.

Write Permission (W)

Allow writing integer data to memory. Tags are always written as zero when writing integer data.
Every CLEN aligned word in memory has a tag, if any byte is overwritten with integer data then the
tag for all CLEN-bits is cleared.

RISC-V Specification for CHERI Extensions | © RISC-V

2.1. Components of a Capability | Page 8

Capability Permission (C)
Allow reading capability data from memory if the authorising capability also grants R-permission.
Allow writing capability data to memory if the authorising capability also grants W-permission.

Execute Permission (X)

Allow instruction execution.

Access System Registers Permission (ASR)

Allow access to privileged CSRs.

Permission Encoding

The bit width of the permissions field depends on the value of XLENMAX as shown in Table 1. A 4-bit
vector encodes the permissions when XLENMAX=32. For this case, the legal encodings of permissions
are listed in Table 2. Certain combinations of permissions are impractical. For example, C-permission
is superfluous when the capability does not grant either R-permission or W-permission. Therefore, it
is only possible to encode a subset of all combinations.

Table 1. Permissions widths depending on XLENMAX

XLENMAX Permissions width
32 4
64 5

Table 2. Encoding of architectural permissions for XLENMAX=32

Encoding R w C X ASR
Ob0O000O
Ob00O01 reserved
Ob0010 4
0Oboo11 v v
Ob0100 v
0b0101 v v
0b0O110 v v
Obo111 v v v
Ob1000 v v
0b1001 v v v
0b1010 v 4 v
0b1011 v 4 v v
0b1100 v v v
0bl1101 v v v 14
0bl1110 4 v v 4
Ob1111 v v v v 4

The encoding in Table 2 is chosen to facilitate hardware implementations. Therefore, it can be worked

RISC-V Specification for CHERI Extensions | © RISC-V

2.1. Components of a Capability | Page 9

out if the permissions are granted as follows:

- C-permission: bit O is set

- W-permission: bit 1 is set

- R-permission: bits 3 or 2 are set

- X-permission: bit 3 is set

- ASR-permission: bits 3 and 2 are set

A 5-bit vector encodes the permissions when XLENMAX=64. In this case, there is a bit per permission
as shown in Table 3. A permission is granted if its corresponding bit is set, otherwise the capability

does not grant that permission.

Table 3. Encoding of architectural permissions for XLENMAX=64

Bit Name

0

C-permission

1 W-permission
2 R-permission
3 X-permission
4 ASR-permission
A TODO: Confirm that we need a separate permissions format for 32-bit and 64-bit.

When XLENMAX=32 there is a single reserved permission encoding (see Table 2). It is not
possible for a tagged capability to have this value since ACPERM will never create it. It is

Dy possible for untagged capabilities to have it. GCPERM will interpret it as if it were
0b0000 (no permissions). Future extensions may assign meaning to the reserved bit
pattern, in which case GCPERM is allowed to report a non-zero value.

2.1.3. Software-Defined Permissions (SDP)

Df CHERI v9 Note: CHERI v9 had no software-defined permissions for RV32

A bit vector used by the kernel or application programs for software-defined permissions (SDP).

Software is completely free to define the usage of these bits. For example, a program may

y decide to use an SDP bit to indicate the "ownership” of objects. Therefore, a capability
EI grants permission to free the memory it references if that SDP bit is set because it "owns"

that object.

214 Sealed (S) Bit

Table 4. SDP widths depending on XLENMAX

XLENMAX SDP width
32 2
64 4

A CHERI v9: The sealing bit is new (I-bit otype) and the old CHERI v9 otype no longer

RISC-V Specification for CHERI Extensions | © RISC-V

2.1. Components of a Capability | Page 10

exists. Please note that this bit indicates the result of two instructions in CHERI v9:
CSEAL for sealed capabilities and CSEALENTRY for sealed entry capabilities.

This bit indicates that a capability is sealed if the bit is 1 or unsealed if it is O.

The sealing bit conflates two concepts in one bit: Sealing data capabilities and creating sealed entry
capabilities as described below.

Sealed capabilities cannot be dereferenced to access memory and are immutable such that modifying
any of its fields clears the tag of the output capability.

Sealed capabilities might be useful to software as tokens that can be passed around. The
| yl only way of removing the seal bit of a capability is by rebuilding it via a superset capability
with CBLD. Zcheri_ purecap does not offer an unseal instruction.

For code capabilities, the sealing bit is used to implement immutable capabilities that describe
function entry points. Such capabilities can be leveraged to establish a form of control-flow integrity
between mutually distrusting code. These capabilities are known as sealed entry (sentry) capabilities.
A program may jump to a sentry capability to begin executing the instructions it references. The jump
instruction automatically unseals the capability and installs it to the program counter capability (see
Section 3.2). The JALR instruction also seals the return address capability (if any) since it is the entry
point to the caller function.

215 Bounds

CHERI v9 Note: The bounds mantissa width is different in XLENMAX=32. Also, the old
| yl IE bit is renamed to Exponent Format (EF); the function of IE is the inverse of EF i.e. [E=0
has the same effect as EF=1.

Df CHERI v9 Note: The mantissa width for RV32 was increased to 10.

y CHERI v9 Note: The sense of the exponent is reversed, so an encoded value of O
EI represents CAP_ MAX_E, and CAP_MAX_E represents O from the previous specification.

The bounds encode the base and top addresses that constrain memory accesses. The capability can be
used to access any memory location A in the range base < A < top. The bounds are encoded in
compressed format, so it is not possible to encode any arbitrary combination of base and top
addresses. An invalid capability with tag cleared is produced when attempting to construct a capability
that is not representable because its bounds cannot be correctly encoded. The bounds are decoded as
described in Section 2.2.

The bounds field has the following components:

- T: Value substituted into the capability’s address to decode the top address
- B: Value substituted into the capability’s address to decode the base address

- E: Exponent that determines the position at which B and T are substituted into the capability’s
address

- EF: Exponent format flag indicating the encoding for T, B and E
° The exponent is stored in T and B if EF=0, so it is 'internal’

° The exponent is zero if EF=1

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Capability Encoding | Page 11

The bit width of T and B are defined in terms of the mantissa width (MW) which is set depending on
the value of XLENMAX as shown in Table 5.

Table 5. Mantissa width (MW) values depending on XLENMAX

XLENMAX MW
32 10
64 14

The exponent E indicates the position of T and B within the capability’s address as described in
Section 2.2. The bit width of the exponent (EW) is set depending on the value of XLENMAX. The
maximum value of the exponent is calculated as follows:

CAP_MAX_E = XLENMAX - MW + 2

The possible values for EW and CAP_MAX _E are shown in Table 6.

Table 6. Exponent widths and CAP_ MAX_E depending on XLENMAX

XLENMAX EW CAP_MAX _E
32 5 24
64 6 52

y The address and bounds must be representable in valid capabilities i.e. when the tag is set
EI (see Section 2.5).

2.1.6. Address

XLENMAX integer value that encodes the byte-address of a memory location.

Table 7. Address widths depending on XLENMAX

XLENMAX Address width
32 32
64 64

2.1.7. Reserved Bits

Reserved bits available for future extensions to Zcheri_ purecap.

Df Reserved bits must be O in valid capabilities.

2.2. Capability Encoding

y CHERI v9 Note: The encoding changes eliminate the concept of the in-memory format,
EI and also increase precision for RV32.

The components of a capability are encoded as shown in Figure 1 and Figure 2 when XLENMAX=32
and XLENMAX=64 respectively.

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Capability Encoding | Page 12

31 30 29 26 25 21201918 17 121110 9 210
SDP AP Reserved |S |EF|T8 T[7:2] TE B[9:2] BE
Address
32

Figure 1. Capability encoding when XLENMAX=32

63 57 56 53 52 48 47 28 27 26 25 17 16 14 13 320
Reserved | SDP | AP Reserved SIEF| T[11:3] | TE B[13:3] BE
Address
64

Figure 2. Capability encoding when XLENMAX=64

Each memory location or register able to hold a capability must also store the tag as out of band
information that software cannot directly set or clear. The capability metadata is held in the most
significant bits and the address is held in the least significant bits.

The metadata is encoded in a compressed format (Woodruff et al, 2019). It uses a floating point
representation to encode the bounds relative to the capability address. The base and top addresses
from the bounds are decoded as shown below.

TODO: The pseudo-code below does not have a formal notation. It is simply a place-holder
A while the Sail implementation is available. In this notation, / means "integer division", [|
are the bit-select operators, and arithmetic is signed.

CHERI v9 Note: The IE bit from CHERI v9 is renamed EF and its value is inverted to
ensure that the NULL capability is encoded as zero without the need for CHERI v9'’s in-
memory format.
When EF=1, the exponent E=0, so the address bits af[MW - 1.0] are replaced with T and B
to form the top and base addresses respectively.
y When EF=0, the exponent E=CAP_MAX_E - ((XLENMAX == 32) ? { T8, TE, BE } :

EI { TE, BE }), so the address bits a[E + MW - L.E| are replaced with T and B to form the
top and base addresses respectively. E is computed by subtracting from the maximum
possible exponent CAP_MAX_E which can be efficiently implemented in hardware
assuming that T and B are at bit CAP_ MAX_E and performing a logical bitwise shift right
by E. In contrast, CHERI v9 implementations computed the top and base addresses by
assumming that T and B are at bit O and performing a logical bitwise shift left by E.

Ew = (XLENMAX == 32) ? 5 : 6
CAP_MAX_E = XLENMAX - MW + 2
If EF = 1:
E =0
T[EW / 2 - 1:0] = TE
B[EW / 2 - 1:0] = BE
LCout = (T[MW - 3:0] < B[MW - 3:0]) 21 : 0
LMSB = (XLENMAX == 32) ? T8 : @
else:
E = CAP_MAX_E - ((XLENMAX == 32) ? { 78, TE, BE } : { TE, BE })
TIEW / 2 - 1:0] = 0

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Capability Encoding | Page 13

B[EW / 2 - 1:0] = @
LCout = (T[MW - 3:EW / 2] < B[MW - 3:EW / 2]) 21 : 0
LMSB 3

Reconstituting the top two bits of T:
T[MW - 1:MW - 2] = B[MW - 1:MW - 2] + LCout + LMSB
Decoding the bounds:

top: t = { a[XLENMAX - T:E + MW] + ct, T[MW - 1:0] , {E{1'b0}} }
base: b = { a[XLENMAX - 1:E + MW] + cb, B[MW - 1:0] , {E{1'b0}} }

The corrections ¢, and ¢, are calculated as as shown below using the definitions in Table 8 and Table 9.

Ac = a[E + MW - 1:E + MW - 3]
Bc = B[MW - 1:MW - 3]

Te = T[MW - T:Mw - 3]

R =Bc -1

Table 8. Calculation of top address correction

A.<R T.<R Ce
false false 0
false true +1
true false -1
true true 0

Table 9. Calculation of base address correction

A.<R B.<R Ch
false false 0
false true +1
true false -1
true true 0

The base, b, and top, t, addresses are derived from the address by substituting a[E + MW - 1.E] with B
and T respectively and clearing the lower E bits. The most significant bits of a may be adjusted up or
down by 1 using corrections ¢, and ¢, to allow encoding memory regions that span alignment
boundaries.

The EF bit selects between two cases:

1. EF = 1: The exponent is O for regions less than 2" bytes long

2. EF = O: The exponent is internal with E stored in the lower bits of T and B along with Ty when
XLENMAX=32. E is chosen so that the most significant non-zero bit of the length of the region
aligns with TIMW - 2] in the decoded top. Therefore, the most significant two bits of T can be
derived from B using the equality T = B + L, where L[MW - 2] is known from the values of EF and

RISC-V Specification for CHERI Extensions | © RISC-V

2.3. Special Capabilities | Page 14

E and a carry out is implied if T[TMW - 3:0] < B[MW - 3:0] since it is guaranteed that the top is
larger than the base.

The compressed bounds encoding allows the address to roam over a large representable region while
maintaining the original bounds. This relies on using the 'spare' encodings where T < B to define a
space boundary R, relative to the base, calculated by subtracting 1 from the top three bits of B. If B, T or
alE + MW - L.E] is less than R, it is inferred that they lie in the 2" aligned region above R labelled
spacey in Figure 3 and the corrections c; and ¢, are computed accordingly. The overall effect is that at
least 25™"/8 bytes below the base address and 25™"/4 bytes above the top address can roam out-of-
bounds while still allowing the bounds to be correctly decoded.

0x30000 T R
e
e
i w‘@é?@’&‘
0x2C000 R
spacey{ s
0x24000 | }....g| R t
‘ dereferenceable
0x20000 4. & : [region
Ox1E000 ...l)R b
exiwceeo ... | |
spacer s
oxwee00 .. L _4d BEREE multiple of s = 28V

Figure 3. Memory address bounds encoded within a capability

A capability whose bounds cover the entire address space has O base and top equals 2*"""* je. t is a

XLENMAX + 1 bit value. However, b is a XLENMAX bit value and the size mismatch introduces
additional complications when decoding, so the following condition is required to correct t for
capabilities whose Representable Range wraps the edge of the address space:

if ((E < (CAP_MAX_E - 1)) & (t[XLENMAX: XLENMAX - 1] - b[XLENMAX - 1] > 1))
t[XLENMAX]T = !t[XLENMAX]

That is, invert the most significant bit of t if the decoded length of the capability is larger than E.

2.3. Special Capabilities

2.31. NULL Capability

y CHERI v9 Note: Encoding NULL as zeros removes the need for the difference between in-
EI memory and architectural format.

The NULL capability is represented with O in all fields. This implies that it has no permissions and its

RISC-V Specification for CHERI Extensions | © RISC-V

2.3. Special Capabilities | Page 15

exponent E is CAP_MAX_E (52 for XLENMAX=64, 24 for XLENMAX=32), so its bounds cover the
entire address space such that the expanded base is O and top is 2**"™**.

Table 10. Field values of the NULL capability

Field
SDP
AP

S

EF
Ts

T

Te

B

Be
Address

Reserved

2.3.2. Infinite Capability

Value
ZEeros
Zeros
Zero
Zero

Zeros

Zeros
Zeros
Zeros
Zeros
Zeros

Zeros

Comment

Grants no permissions
Grants no permissions
Unsealed

Internal exponent format

Top address bit (XLENMAX=32
only)

Top address bits
Exponent bits
Base address bits
Exponent bits
Capability address
All reserved fields

The Infinite capability grants all permissions while its bounds also cover the whole address space.

Df The Infinite capability is also known as default,, ‘almighty, or root' capability.

Table 11. Field values of the Infinite capability

Field
SDP
AP

S

EF
Ts

Address

Reserved

Value
ones
ones
Zero
Zero

Zeros

Zeros
Zeros
Zeros
Zeros
Zeros

Zeros

Comment

Grants all permissions
Grants all permissions
Unsealed

Internal exponent format

Top address bit (XLENMAX=32
only)

Top address bits
Exponent bits
Base address bits
Exponent bits
Capability address
All reserved fields

RISC-V Specification for CHERI Extensions | © RISC-V

2.4. Representable Range Check | Page 16

2.4. Representable Range Check

The new address, after updating the address of a capability, is within the representable range if
decompressing the capability’s bounds with the original and new addresses yields the same base and
top addresses.

In other words, given a capability with address a and the new addressa' = a + x, the bounds b and ¢
are decoded using a and the new bounds b"and t'are decoded using a' The new address is within the
capability’s representable range if b == b" && t == t'.

Changing a capability’s address to a value outside the representable range unconditionally clears the
capability’s tag. Examples are:

- Instructions such as CADD which include pointer arithmetic.

- The SCADDR instruction which updates the capability address field.

2.41. Practical Information

In the bounds encoding in this specification, the top and bottom capability bounds are formed of two
or three sections:

- Upper bits from the address
- Middle bits from T and B decoded from the metadata
- Lower bits are set to zero

> This is only if there is an internal exponent (EF=0)

Table 12. Composition of address bounds

Configuration Upper section Middle Section Lower section
EF=0, ie. E>0 address] XLENMAX-L.E T[MW - 1.0] {E{T'bO}

+ MW] + ct
EF=1,ie E=0 address[XLENMAX:MW T[MW - 1:.0]

| +ct

The representable range defines the range of addresses which do not corrupt the bounds encoding. The
encoding was first introduced in Section 2.2, and is repeated in a different form in Table 12 to aid this
description.

For the address to be valid for the current bounds encoding, the address bits in the Upper Section of
Table 12 must not change as this will change the meaning of the bounds.

2E+MW

This gives a range of $=2""", which as shown in Figure 3.

The gap between the bounds of the representable range is always guaranteed to be at least 1/8 of s.
This is represented by R = Be - 1in Section 2.2. This gives useful guarantees, such that if an executed
instruction is in pcc bounds, then it is also guaranteed that the next linear instruction is representable.

2.5. Malformed Capability Bounds

A capability is malformed if its encoding does not describe a valid capability because its bounds cannot

RISC-V Specification for CHERI Extensions | © RISC-V

2.5. Malformed Capability Bounds | Page 17

be correctly decoded. The following check indicates whether a capability is malformed.

malformedMSB = (E == CAP_MAX_E && B[MW - 1:MW - 2] != @)

|| (E == CAP_MAX_E - 1 && B[MW - 1] 1= 0)
malformedLSB = (E < 0)
malformed = !EF && (malformedMSB || malformedLSB)
Df The check is for malformed bounds, so it does not include reserved bits!

Capabilities with malformed bounds are always invalid anywhere in the system i.e. their tags are
always O.

RISC-V Specification for CHERI Extensions | © RISC-V

3.1. Memory | Page 18

Chapter 3. Integrating Zcheri_purecap
with the RISC-V Base Integer Instruction
Set

Zcheri_purecap is an extension to the RISC-V ISA. The extension adds a carefully selected set of
instructions and CSRs that are sufficient to implement new security features in the ISA. To ensure
compatibility, Zcheri_purecap also requires some changes to the primary base integer variants:
RV32I, providing 32-bit addresses with 64-bit capabilities, and RV64I, providing 64-bit addresses with
128-bit capabilities. The remainder of this chapter describes these changes for both the unprivileged
and privileged components of the base integer RISC-V ISAs.

y The changes described in this specification also ensure that Zcheri_ purecap is compatible
EI with RV32E.

3.1. Memory

A hart supporting Zcheri_purecap has a single byte-addressable address space of 2*"*" bytes for all
memory accesses. Each memory region capable of holding a capability also stores a tag bit for each
naturally aligned CLEN bits (e.g. 16 bytes in RV64), so that capabilities with their tag set can only be
stored in naturally aligned addresses. Tags must be atomically bound to the data they protect.

The memory address space is circular, so the byte at address 2***" - 1 is adjacent to the byte at address
zero. A capability’s Representable Range described in Section 2.2 is also circular, so address O is within
the Representable Range of a capability where address 2*"*"** - 1 is within the bounds.

3.2. Programmer’'s Model for Zcheri_purecap

For Zcheri_ purecap, the 32 unprivileged x registers of the base integer ISA are extended so that they
are able to hold a capability as well as renamed to c registers. Therefore, each c register is CLEN bits
wide and has an out-of-band tag bit. The x notation refers to the address field of the capability in an
unprivileged register while the ¢ notation is used to refer to the full capability (i.e. address, metadata
and tag) held in the same unprivileged register.

Register cO is hardwired with all bits, including the capability metadata and tag, equal to O. In other
words, cO is hardwired to the NULL capability.

3.21. PCC - The Program Counter Capability

An authorising capability with appropriate permissions is required to execute instructions in
Zcheri_purecap. Therefore, the unprivileged program counter (pc) register is extended so that it is
able to hold a capability. The extended register is called the program counter capability (pcc). The pece
address field is effectively the pc in the base RISC-V ISA so that the hardware automatically
increments as instructions are executed. The pcc's metadata and tag are reset to the Infinite capability
metadata and tag with the address field set to the core boot address.

The hardware performs the following checks on pce for each instruction executed in addition to the
checks already required by the base RISC-V ISA. A failing check causes a CHERI exception.

RISC-V Specification for CHERI Extensions | © RISC-V

3.3. Capability Instructions | Page 19

- The tag must be set
- The capability must not be sealed
- The capability must grant execute permission

- All bytes of the instruction must be in bounds

Operations that update pcc, such as changing privilege or executing jump instructions,
unseal capabilities prior to writing. Therefore, implementations do not need to check that

Dy that pcc is unsealed when executing each instruction. However, this property has not yet
been formally verified and may not hold if additional CHERI extensions beyond
Zcheri_ purecap are implemented.

y It is common for implementations to not allow executing pc relative instructions, such as
EI AUIPC or JAL, in debug mode.

XLENMAX- 1 0
pcc (Metadata, WARL)

pcc (Address, WARL)
XLENMAX

Figure 4. Program Counter Capability

pcc is an executable vector, so it need not be able to hold all possible invalid addresses.

3.3. Capability Instructions

CHERI v9 Note: Some instructions from the original CHERI specification were removed

y to save encoding space, or because they relate to features which are not yet in this

EI specification. Instructions were removed if they do not harm performance and can be
emulated using other instructions.

Zcheri_purecap introduces new instructions to the base RISC-V integer ISA to inspect and operate on
capabilities held in registers.

3.3.1. Capability Inspection Instructions

These instructions allow software to inspect the fields of a capability held in a c register. The output is
an integer value written to an x register representing the decoded field of the capability, such as the
permissions or bounds. These instructions do not cause exceptions.

- GCTAG: inspects the tag of the input capability. The output is 1 if the tag is set and O otherwise

- GCPERM: outputs the architectural (AP) and software-defined (SDP) permission fields of the input
capability

- GCBASE: outputs the expanded base address of the input capability

- GCLEN: outputs the length of the input capability. Length is defined as top - base. The output is
2XHENVAY.] when the capability’s length is 2

- CRAM: outputs the nearest bounds alignment that a valid capability can represent
- GCHI: outputs the compressed capability metadata
- SCEQ: compares two capabilities including tag, metadata and address

- SCSS: tests whether the bounds and permissions of a capability are a subset of those from another

RISC-V Specification for CHERI Extensions | © RISC-V

3.3. Capability Instructions | Page 20
capability

y GCBASE and GCLEN output O when a capability with malformed bounds is provided as an
EI input (see Section 2.5).

3.3.2. Capability Manipulation Instructions

These instructions allow software to manipulate the fields of a capability held in a c register. The
output is a capability written to a c register with its fields modified. The output capability has its tag
set to O if the input capability did not have a tag set, the output capability has more permissions or
larger bounds compared to the input capability, or the operation results in a capability with
malformed bounds. These instructions do not give rise to exceptions.

- SCADDR: set the address of a capability to an arbitrary address

- CADD, CADDI: increment the address of the input capability by an arbitrary offset

- SCHI: replace a capability’s metadata with an arbitrary value. The output tag is always O

- ACPERM: bitwise AND of a mask value with a bit map representation of the architectural (AP) and
software-defined (SDP) permissions fields

- SCBNDS: set the base and length of a capability. The tag is cleared, if the encoding cannot
represent the bounds exactly

- SCBNDSR: set the base and length of a capability. The base will be rounded down and/or the
length will be rounded up if the encoding cannot represent the bounds exactly

- SENTRY: seal capability as a sentry capability

- CBLD: replace the base, top, address, permissions and mode fields of a capability with the fields
from another capability

- CMV: move a capability from a c register to another c register
Df CBLD outputs a capability with tag set to O if the input capability’s bounds are malformed.

y CHERI v9 Note: SCBNDS and SCBNDSI perform the role of the old CSETBOUNDSEXACT
EI while the SCBNDSR is the old CSETBOUNDS.

3.3.3. Capability Load and Store Instructions

A load capability instruction, LC, reads CLEN bits from memory together with its tag and writes the
result to a c register. The capability authorising the memory access is provided in a c source register,
so the effective address is obtained by incrementing that capability with the sign-extended 12-bit
offset.

A store capability instruction, SC, writes CLEN bits and the tag in a c¢ register to memory. The
capability authorising the memory access is provided in a ¢ source register, so the effective address is
obtained by incrementing that capability with the sign-extended 12-bit offset.

LC and SC instructions cause CHERI exceptions if the authorising capability fails any of the following
checks:

- The tag is zero

- The capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

3.4. Existing RISC-V Instructions | Page 21

- At least one byte of the memory access is outside the capability’s bounds
- For loads, the read permission must be set in AP

- For stores, the write permission must be set in AP

Capability load and store instructions also cause load or store/AMO address misaligned exceptions if
the address is not naturally aligned to a CLEN boundary.

Misaligned capability loads and stores are errors. Implementations must generate exceptions for
misaligned capability loads and stores even if they allow misaligned integer loads and stores to
complete normally. Execution environments must report misaligned capability loads and stores as
errors and not attempt to emulate them using byte access. The Zicclsm extension does not affect
capability loads and stores. Software which uses capability loads and stores to copy data other than
capabilities must ensure that addresses are aligned.

Since there is only one tag per CLEN bit block in memory, it is not possible to represent a
| y capability value complete with its tag at an address not aligned to CLEN. To transfer
CLEN unaligned bits without a tag, use integer loads and stores.

For loads, the tag of the capability loaded from memory is cleared if the authorising capability does
not grant permission to read capabilities (i.e. both R-permission and C-permission must be set in AP).
For stores, the tag of the capability written to memory is cleared if the authorising capability does not
grant permission to write capabilities (i.e. both W-permission and C-permission must be set in AP).

g TODO: these cases may cause exceptions in the future - we need a way for software to
discover and/or control the behaviour

3.3.4. Unconditional Integer Address Jumps

The JALR.MODE instruction allows access to standard RISC-V JALR, so that the target register and link
registers are both x registers, not c registers.

3.4. Existing RISC-V Instructions

The operands or behavior of some instructions in the base RISC-V ISA changes in Zcheri_purecap.

3.4]1. Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in x registers. Therefore,
these instructions only operate on the address field if the input register of the instruction holds a
capability. The output is XLEN bits written to an x register; the tag and capability metadata of that
register are zeroed.

The add upper immediate to pcc instruction (AUIPC) is used to build pcc-relative capabilities. AUTPC
forms a 32-bit offset from the 20-bit immediate and filling the lowest 12 bits with zeros. The pcc
address is then incremented by the offset and a representability check is performed so the capability’s
tag is cleared if the new address is outside the pcc's Representable Range. The resulting CLEN value
along with the new tag are written to a c register.

3.42. Control Transfer Instructions

Control transfer instructions operate as described in the base RISC-V ISA. They also may cause

RISC-V Specification for CHERI Extensions | © RISC-V

3.4. Existing RISC-V Instructions | Page 22

metadata updates and/or cause exceptions in addition to the base behaviour as described below.

Unconditional Jumps

JAL sign-extends the offset and adds it to the address of the jump instruction to form the target
address. The target address is installed in the address field of pcc. The capability with the address of
the instruction following the jump (pcc + 4) is written to a ¢ register.

JALR allows unconditional jumps to a target capability. The target capability is obtained by
incrementing the capability in the ¢ register operand by the sign-extended 12-bit immediate if the
immediate is not zero, then setting the least significant bit of the result to zero, then unsealing. The
capability with the address of the instruction following the jump (pcc + 4) is sealed and written to a ¢
register.

All jumps cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc.

JALR causes a CHERI exception when:

- The target capability’s tag is zero
- The target capability is sealed and the immediate is not zero
- A minimum sized instruction at the target capability’s address is not within bounds

- The target capability does not grant execute permission

JAL and JALR can also cause instruction address misaligned exceptions following the standard RISC-V
rules.

Additionally, JALR.MODE allows standard RISC-V JALR behaviour to be available, with a zero offset.
The target check on a minimum sized instruction is still present as for all jumps and branches.

Conditional Branches

Branch instructions (see Conditional branches (BEQ, BNE, BLT[U], BGE[U])) encode signed offsets in
multiples of 2 bytes. The offset is sign-extended and added to the address of the branch instruction to
form the target address.

Branch instructions compare two x registers as described in the base RISC-V ISA, so the metadata and
tag values are disregarded in the comparison if the operand registers hold capabilities. If the
comparison evaluates to true, then the target address is installed in the pcc's address field. These
instructions cause CHERI exceptions when a minimum sized instruction at the target address is not
within the pec's bounds.

3.4.3. Integer Load and Store Instructions

Integer load and store instructions transfer the amount of integer data described in the base RISC-V
ISA between the registers and memory. For example, LD and LW load 64-bit and 32-bit values
respectively from memory into an x register. However, the address operands for load and store
instructions are interpreted differently in Zcheri_purecap: the capability authorising the access is in
the c register operand and the memory address is given by incrementing the address of that capability
by the sign-extended 12-bit immediate offset.

All load and store instructions cause CHERI exceptions if the authorising capability fails any of the

RISC-V Specification for CHERI Extensions | © RISC-V

3.5. Zicsr, Control and Status Register (CSR) Instructions | Page 23

following checks:

- The tag is set

- The capability is unsealed

- All bytes of accessed memory are inside the capability’s bounds
- Forloads, the read permission must be set in AP

- For stores, the write permission must be set in AP
Integer load instructions always zero the tag and metadata of the result register.

Integer stores write zero to the tag associated with the memory locations that are naturally aligned to
CLEN. Therefore, misaligned stores may clear up to two tag bits in memory.

3.5. Zicsr, Control and Status Register (CSR)
INnstructions

Zcheri_purecap requires that RISC-V CSRs intended to hold addresses, like mtvec, are now able to
hold capabilities. Therefore, such registers are removed in Zcheri_purecap and analogous CLEN-bit
versions of those CSRs are added to the ISA as described in Section 3.6.

Reading or writing any part of a CLEN-bit CSR may cause side effects. For example, the CSR’s tag bit
may be cleared if a new address is outside the Representable Range of a CSR capability being written.

This section describes how the CSR instructions operate on these CSRs in Zcheri_purecap.

The CLEN-bit CSRs are summarised in Chapter 9.

3.51. CSR Instructions
74 CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

All CSR instructions atomically read-modify-write a single CSR. If the CSR accessed is of capability
size then the capability’s tag, metadata and address are all accessed atomically.

When the CSRRW instruction is accessing a capability width CSR, then the source and destination
operands are c registers and it atomically swaps the values in the whole CSR with the CLEN width
register operand.

There are special rules for updating specific CLEN-wide CSRs as shown in Table 39.

When CSRRS and CSRRC instructions are accessing a capability width CSR, such as mtvecc, then the
destination operand is a c register and the source operand is an x register. Therefore, the instructions
atomically read CLEN bits from the CSR, calculate the final address using standard RISC-V behaviour
(set bits, clear bits, etc.), and that final address is written to the CSR capability’s address field. The
update typically uses the semantics of a SCADDR instruction which clears the tag if the capability is
sealed, or if the updated address is not representable. Table 39 shows the exact action taken for each
capability width CSR.

The CSRRWI, CSRRSI and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC respectively,
when accessing a capability width CSR except that they update the capability’s address only using an

RISC-V Specification for CHERI Extensions | © RISC-V

3.6. Control and Status Registers (CSRs) | Page 24

XLEN-bit value obtained by zero-extending a 5-bit unsigned immediate field.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is privileged.

3.6. Control and Status Registers (CSRs)

Zcheri_purecap removes the CSRs listed in Table 13, Table 14, Table 15 and Table 16 from the base
RISC-V ISA and its extensions. The CSRs are removed because they are designated to hold addresses,
but are only XLEN bits wide. The removed registers are replaced with CLEN+1 bits wide registers. The
new CSRs are analogous to the original, removed RISC-V CSRs although at different CSR numbers as
shown in Table 17, Table 18, Table 19 and Table 20. Therefore, the specification of the address field for
the new capability CSRs remains the same as the corresponding, removed CSR which is described in
(RISC-V, 2023) and the specifications of relevant RISC-V extensions.

Table 13. Debug-mode CSRs removed in Zcheri_ purecap

Replaced CSR Address Prerequisites Permissions Description

dpc Ox7bl Sdext DRW Debug Program Counter Capability
dscratchO Ox7b2 Sdext DRW Debug Scratch Capability O
dscratchl Ox7b3 Sdext DRW Debug Scratch Capability 1

Table 14. Machine-mode CSRs removed in Zcheri_ purecap

Replaced Addres Prerequisit Permissions Description

CSR S es

mtvec 0x305 M-mode MRW, ASR- Machine Trap-Vector Base-Address
permission Capability

mscratch 0x340 M-mode MRW, ASR- Machine Scratch Capability
permission

mepc 0x341 M-mode MRW, ASR- Machine Exception Program Counter
permission Capability

Table 15. Supervisor-mode CSRs removed in Zcheri_ purecap

Replaced =~ Addres Prerequisit Permissions Description

CSR S es

stvec 0x105 S-mode SRW, ASR- Supervisor Trap-Vector Base-Address
permission Capability

sscratch 0x140 S-mode SRW, ASR- Supervisor Scratch Capability
permission

sepc Ox141 S-mode SRW, ASR- Supervisor Exception Program Counter
permission Capability

Table 16. User-mode CSRs removed in Zcheri_ purecap
Replaced CSR Address Prerequisites Permissions Description

jvt 0x017 Zcmt URW Jump Vector Table Capability

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 25

Table 17. New debug-mode CSRs in Zcheri_ purecap replacing RISC-V CSRs

Zcheri_purecap Addres Replaced Prerequisit Permissio Description

CSR S CSR es ns

dpce Oxb9 dpc Sdext DRW Debug Program Counter
Capability

dscratchOc Ox7ba dscratchO Sdext DRW Debug Scratch Capability O

dscratchlc Ox7bb dscratchl Sdext DRW Debug Scratch Capability 1

Table 18. New machine-mode CSRs in Zcheri_ purecap replacing RISC-V CSRs

Zcheri_pureca Addre Replaced Prerequis Permissions Description

p CSR Ss CSR ites

mtvecc 0x765 mtvec M-mode MRW, ASR- Machine Trap-Vector Base-
permission Address Capability

mscratchc 0x760 mscratch M-mode MRW, ASR- Machine Scratch Capability
permission

mepcc 0x761 mepc M-mode MRW, ASR- Machine Exception Program
permission Counter Capability

Table 19. New supervisor-mode CSRs in Zcheri_ purecap replacing RISC-V CSRs

Zcheri_pureca Addre Replaced Prerequis Permissions Description

p CSR SS CSR ites

stvecc 0x50 stvec S-mode SRW, ASR- Supervisor Trap-Vector Base-
5 permission Address Capability

sscratchc Ox54 sscratch S-mode SRW, ASR- Supervisor Scratch Capability
0 permission

sepcc 0x541 sepc S-mode SRW, ASR- Supervisor Exception Program

permission Counter Capability

Table 20. New user-mode CSRs in Zcheri_ purecap replacing RISC-V CSRs

Zcheri_purecap Addres Replaced Prerequisite Permission Description

CSR S CSR S S

jvte Ox417 jvt Zcmt URW Jump Vector Table
Capability

Zcheri_purecap also introduces the new unprivileged CSRs shown in Table 21.

Table 21. User-mode CSRs added in Zcheri_ purecap

Extended CSR CLEN Address Prerequisites Permissions Description

3.7. Machine-Level CSRs

Zcheri_purecap adds new M-mode capability CSRs and extends some of the existing RISC-V CSRs
with new functions. pcc must grant ASR-permission to access M-mode CSRs regardless of the RISC-V
privilege mode.

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 26

3.7.1. Machine ISA Register (misa)

The misa register operates as described in (RISC-V, 2023) except for the MXL (Machine XLEN) field.
The MXL field encodes the native base integer ISA width as shown in Table 22. Only 1 and 2 are
supported values for MXL and the field must be read-only in implementations supporting
Zcheri_purecap. The effective XLEN in M-mode, MXLEN, is given by the setting of MXL, or has a
fixed value if misa is zero.

Table 22. Encoding of MXL field in misa

MXL XLEN
1 32
2 64
3 28
74 RV128 is not currently supported by any CHERI extension

A further CHERI extension, Zcheri_legacy, optionally makes MXL writeable, so
| yl implementations that support multiple base ISAs must support both Zcheri_ purecap and
Zcheri_ legacy.

3.7.2. Machine Status Registers (mstatus and mstatush)

The mstatus and mstatush registers operate as described in (RISC-V, 2023) except for the SXL and
UXL fields that control the value of XLEN for S-mode and U-mode, respectively, and the MBE, SBE,
and UBE fields that control the memory system endianness for M-mode, S-mode, and U-mode,
respectively.

The encoding of the SXL and UXL fields is the same as the MXL field of misa, shown in Table 22. Only
1 and 2 are supported values for SXL and UXL and the fields must be read-only in implementations
supporting Zcheri_purecap. The effective XLEN in S-mode and U-mode are termed SXLEN and
UXLEN, respectively.

The MBE, SBE, and UBE fields determine whether explicit loads and stores performed from M-mode,
S-mode, or U-mode, respectively, are little endian (xBE = 0) or big endian (xBE = 1). MBE must be read
only. SBE and UBE must be read only and equal to MBE, if S-mode or U-mode, respectively, is
implemented, or read only zero otherwise.

A further CHERI extension, Zcheri_legacy, optionally makes SXL, UXL, MBE, SBE, and
| yl UBE writeable, so implementations that support multiple base ISAs must support both
Zcheri_ purecap and Zcheri_legacy.

3.7.3. Machine Trap-Vector Base-Address Registers (mtvec)

The mtvec register is as defined in (RISC-V, 2023). It is an MXLEN-bit register used as the executable
vector jumped to when taking traps into machine mode. It is extended into mtvecc.

MXLEN- 1 1 0
BASE [MXLEN-1:2] (WARL) | MODE (WARL) \

MXLEN-2 2

Figure 5. Machine-mode trap-vector base-address register

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 27

3.7.4. Machine Trap-Vector Base-Address Capability Registers (mtvecc)

The mtvecc register is an extension to mtvec that holds a capability. Its reset value is the Infinite
capability. The capability represents an executable vector.

XLENMAX- 1 1 0
Metadata (WARL)
BASE [XLENMAX-1:2] (WARL) MODE (WARL)
XLENMAX-2 2

Figure 6. Machine-mode trap-vector base-capability register

The metadata is WARL as not all fields need to be implemented, for example the reserved fields will
always read as zero.

When interpreting mtvecc as a capability, as for mtvec, address bits [1:0] are always zero (as they are
reused by the MODE field).

When MODE=Vectored, all synchronous exceptions into machine mode cause the pcc to be set to the
capability, whereas interrupts cause the pcc to be set to the capability with its address incremented by
four times the interrupt cause number.

Capabilities written to mtvecc also include writing the MODE field in mtvecc.address[1:0]. As a result,
a representability and sealing check is performed on the capability with the legalized (WARL) MODE
field included in the address. The tag of the capability written to mtvecc is cleared if either check fails.

Additionally, when MODE=Vectored the capability has its tag bit cleared if the capability address + 4 x
HICAUSE is not within the representable bounds. HICAUSE is the largest exception cause value that
the implementation can write to mcause when an interrupt is taken.

When MODE=Vectored, it is only required that address + 4 x HICAUSE is within

y representable bounds instead of the capability’s bounds. This ensures that software is not

EI forced to allocate a capability granting access to more memory for the trap-vector than
necessary to handle the trap causes that actually occur in the system.

3.75. Machine Scratch Register (mscratch)

The mscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register
dedicated for use by machine mode. Typically, it is used to hold a pointer to a machine-mode hart-
local context space and swapped with a user register upon entry to an M-mode trap handler. mscratch
is extended into mscratchc.

MXLEN- 1 0
mscratch ‘

MXLEN

Figure 7. Machine-mode scratch register

3.7.6. Machine Scratch Register Capability (mscratchc)

The mscratchce register is an extension to mscratch that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

It is not WARL, all capability fields must be implemented.

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 28

XLENMAX- 1 0
mscratchc (Metadata)

mscratchc (Address)
XLENMAX

Figure 8. Machine-mode scratch capability register

3.7.7. Machine Exception Program Counter (mepc)

The mepc register is as defined in (RISC-V, 2023). It is extended into mepcc.

MXLEN- 1 0
mepc (WARL)

MXLEN

Figure 9. Machine exception program counter register

3.7.8. Machine Exception Program Counter Capability (mepcc)

The mepcc register is an extension to mepc that is able to hold a capability. Its reset value is the
Infinite capability.

XLENMAX- 1 0
mepcc (Metadata, WARL)

mepcc (Address, WARL)
XLENMAX

Figure 10. Machine exception program counter capability register

Capabilities written to mepcc must be legalised by implicitly zeroing bit mepec[O]. Additionally, if an
implementation allows IALIGN to be either 16 or 32, then whenever IALIGN=32, the capability read
from mepce must be legalised by implicitly zeroing bit mepcc[1]. Therefore, the capability read or
written has its tag bit cleared if the legalised address is not within the Representable Range.

y When reading or writing a sealed capability in mepcc, the tag is not cleared if the original
EI address equals the legalized address.

When a trap is taken into M-mode, mepcc is written with the pcc including the virtual address of the
instruction that was interrupted or that encountered an exception. Otherwise, mepcc is never written
by the implementation, though it may be explicitly written by software.

As shown in Table 40, mepcc is an executable vector, so it does not need to be able to hold all possible
invalid addresses. Additionally, the capability in mepcc is unsealed when it is installed in pcc on
execution of an MRET instruction.

3.79. Machine Cause Register (mcause)

Zcheri_purecap adds a new exception code for CHERI exceptions that mcause must be able to
represent. The new exception code and its priority are listed in Table 23 and Table 24 respectively. The
behavior and usage of mcause otherwise remains as described in (RISC-V, 2023).

MXLEN-1 MXLEN-2 0
‘ Interrupt ‘ Exception Code wiLry)
1 MXLEN-1

Figure 11. Machine cause register

Table 23. Machine cause register (mcause) values after trap. Entries added in Zcheri_ purecap are in bold

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 29

Interrupt Exception Code Description

1
1
1
1

—_ = =

—_ = =

—_

oo oNeoNoBoNoNoNoNoBoNoNoRoNoNoNoNoNoNoNoONe

Reserved

Supervisor software interrupt
Reserved

Machine software interrupt

Reserved

Supervisor timer interrupt
Reserved

Machine timer interrupt

Reserved

Supervisor external interrupt
Reserved

Machine external interrupt

O ©Wow o ;s WwWNe-O

—_ =
j—

12-15 Reserved
>16 Designated for platform use

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Environment call from M-mode
12 Instruction page fault
13 Load page fault
14 Reserved
15 Store/AMO page fault
16-23 Reserved
24-27 Designated for custom use
28 CHERI fault
29-31 Designated for custom use
32-47 Reserved
48-63 Designated for custom use
>64 Reserved

©O© 0w~ s W -~ O

,_.
—_
— O

Table 24. Synchronous exception priority in decreasing priority order. Entries added in Zcheri_ purecap are in bold

Priority Exc.Code Description

Highest 3 Instruction address breakpoint

Prior to instruction address translation:

28 CHERI fault

During instruction address translation:
12,1 First encountered page fault or access fault

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 30

Priority Exc.Code Description

With physical address for instruction:
1 Instruction access fault

2 Illegal instruction

O Instruction address misaligned
8,9,11 Environment call

3 Environment break

3 Load/store/AMO address breakpoint

Prior to address translation for an explicit memory access or jump:
28 CHERI fault

Optionally:
4,6 Load/store/AMO address misaligned

During address translation for an explicit memory access:
13,15, 5, 7 First encountered page fault or access fault

With physical address for an explicit memory access:
5,7 Load/store/AMO access fault

If not higher priority:
Lowest 4,6 Load/store/AMO address misaligned

3.710. Machine Trap Delegation Register (medeleg)

Bit 28 of medeleg now refers to a valid exception and so can be used to delegate CHERI exceptions to
supervisor mode.

3.711. Machine Trap Value Register (mtval)

A CHERI v9 Note: Encoding and values changed, and generally were simplified.

The mtval register is an MXLEN-bit read-write register. When a CHERI fault is taken into M-mode,
mtval is written with additional CHERI-specific exception information with the format shown in
Figure 12 to assist software in handling the trap.

If the hardware platform specifies that no exceptions set mtval to a nonzero value, then mtval is read-
only zero.

MXLEN- 1 20 19 16 15 4 3 0
Reserved | TYPE | Reserved | CAUSE \

MXLEN-20 4 12 4

Figure 12. Machine trap value register

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 25 and Table 26 respectively.

Table 25. Encoding of TYPE field

CHERI Type Description
Code

0 CHERI instruction access fault

RISC-V Specification for CHERI Extensions | © RISC-V

3.8. Supervisor-Level CSRs | Page 31

CHERI Type Description

Code

1 CHERI data fault due to load, store or
AMO

2 CHERI jump or branch fault

3-15 Reserved

Table 26. Encoding of CAUSE field

CHERI Cause Description

Code

0 Tag violation

1 Seal violation

2 Permission
violation

3 Length violation

4-15 Reserved

3.8. Supervisor-Level CSRs

Zcheri_purecap adds new S-mode capability CSRs and extends some of the existing RISC-V CSRs
with new functions. pcc must grant ASR-permission to access S-mode CSRs regardless of the RISC-V
privilege mode.

3.8.1. Supervisor Trap Vector Base Address Registers (stvec)

The stvec register is as defined in (RISC-V, 2023). It is an SXLEN-bit register used as the executable
vector jumped to when taking traps into supervisor mode. It is extended into stvecc.

SXLEN- 1 1 0
BASE (Address)[SXLEN-1:2] (WARL) ‘ MODE (WARL) ‘

SXLEN-2 2

Figure 13. Supervisor trap-vector base-address register

3.8.2. Supervisor Trap Vector Base Address Registers (stvecc)

The stvec register is an SXLEN-bit WARL read/write register that holds the trap vector configuration,
consisting of a vector base address (BASE) and a vector mode (MODE). The stvecc register is an
extension to stvec that is able to hold a capability. Its reset value is the Infinite capability.

XLENMAX- 1 1 0
Metadata (WARL)
BASE [XLENMAX-1:2] (WARL) ‘ MODE (WARL)
XLENMAX-2 2

Figure 14. Supervisor trap-vector base-capability register

The handling of stvecc is otherwise identical to mtvecc, but in supervisor mode.

RISC-V Specification for CHERI Extensions | © RISC-V

3.8. Supervisor-Level CSRs | Page 32

3.8.3. Supervisor Scratch Register (sscratch)

The sscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register dedicated
for use by supervisor mode. Typically, it is used to hold a pointer to a supervisor-mode hart-local
context space and swapped with a user register upon entry to an S-mode trap handler. sscratch is
extended into sscratchc.

SXLEN- 1 0
sscratch ‘

SXLEN

Figure 15. Supervisor-mode scratch register

3.8.4. Supervisor Scratch Registers (sscratchc)

The sscratchc register is an extension to sscratch that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

It is not WARL, all capability fields must be implemented.

XLENMAX- 1 0
sscratchc (Metadata)

sscratchc (Address)
XLENMAX

Figure 16. Supervisor scratch capability register

3.8.5. Supervisor Exception Program Counter (sepc)

The sepc register is as defined in (RISC-V, 202.3). It is extended into sepcc.

SXLEN-1 0
sepc
SXLEN

Figure 17. Supervisor exception program counter register

3.8.6. Supervisor Exception Program Counter Capability (sepcc)

The sepcce register is an extension to sepc that is able to hold a capability. Its reset value is the Infinite
capability.

As shown in Table 40, sepcc is an executable vector, so it need not be able to hold all possible invalid
addresses. Additionally, the capability in sepcc is unsealed when it is installed in pcc on execution of
an SRET instruction. The handling of sepcc is otherwise identical to mepcc, but in supervisor mode.

XLENMAX- 1 0
sepcc (Metadata, WARL)

sepcc (Address, WARL)
XLENMAX

Figure 18. Supervisor exception program counter capability register

3.8.7. Supervisor Cause Register (scause)

Zcheri_purecap adds a new exception code for CHERI exceptions that scause must be able to

RISC-V Specification for CHERI Extensions | © RISC-V

3.8. Supervisor-Level CSRs | Page 33

represent. The new exception code and its priority are listed in Table 27 and Table 24 respectively. The
behavior and usage of scause otherwise remains as described in (RISC-V, 2023).

SXLEN-1 SXLEN-2 0
‘ Interrupt ‘ Exception Code wiLry)
1 SXLEN-1

Figure 19. Supervisor cause register

Table 27. Supervisor cause register (scause) values after trap. Causes added in Zcheri_ purecap are in bold
Interrupt Exception Code Description

O Reserved
1 Supervisor software interrupt
2-4 Reserved
5 Supervisor timer interrupt
6-8 Reserved
9 Supervisor external interrupt
10-15 Reserved
>16 Designated for platform use

—_ = = e e e e

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
10-11 Reserved
12 Instruction page fault
13 Load page fault
14 Reserved
15 Store/AMO page fault
16-23 Reserved
24-27 Designated for custom use
28 CHERI fault
29-31 Designated for custom use
32-47 Reserved
48-63 Designated for custom use
>64 Reserved

© 0~ b W — O

ool eoBeoNoNoNoNoNBoNoNoNBoNoRoNoNONONONONONG]

3.8.8. Supervisor Trap Value Register (stval)

The stval register is an SXLEN-bit read-write register. When a CHERI fault is taken into S-mode, stval
is written with additional CHERI-specific exception information with the format shown in Figure 20
to assist software in handling the trap.

SXLEN-1 20 19 16 15 4 3 0
Reserved | TYeE | Reserved | CAUSE |

SXLEN-20 4 12 4

Figure 20. Supervisor trap value register

RISC-V Specification for CHERI Extensions | © RISC-V

3.9. Unprivileged CSRs | Page 34

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 25 and Table 26 respectively.

3.9. Unprivileged CSRs

Unlike machine and supervisor level CSRs, Zcheri_purecap does not require pcc to grant ASR-
permission to access unprivileged CSRs.

3.10. CHERI Exception handling

Df auth_cap is ddc for Legacy mode and ¢s1 for Capability Mode

Table 28. Valid CHERI exception combination description

Instructions Xcause Xtval. Xtval. Description Check
TYPE CAUSE

All instructions have these exception checks first

All 28 0 0 pce tag not(pcc.tag)

All 28 0 1 pce seal isCapSealed(pcc)

All 28 0 2 pce permission not(pce.X-permission)

All 28 0 3 pcc length Any byte of current instruction

out of pcc bounds
CSR/Xret additional exception check

CSR*, MRET, 28 0 2 pce permission not(pcc. ASR-permission) when
SRET required for CSR access or
execution of MRET/SRET

direct jumps additional exception check

JAL, 28 2 3 pcc length any byte of minimum length

Conditional instruction at target out of pcc

branches (BEQ, bounds

BNE, BLT[U],

BGE[U])

indirect jumps additional exception checks

indirect jumps 28 2 0 cs1 tag not(cs1.tagq)

indirect jumps 28 2 1 s seal isCapSealed(cs1) and imm12 =
0

indirect jumps 28 2 2 cs1 permission not(cs1.X-permission)

indirect jumps 28 2 3 cs1length any byte of minimum length
instruction at target out of ¢s'
bounds

Load additional exception checks
all loads 28 1 0 auth_cap tag not(auth_cap.tag)
all loads 28 1 1 auth_cap seal isCapSealed(auth_cap)

RISC-V Specification for CHERI Extensions | © RISC-V

Instructions

all loads
all loads

capability loads 4

Store/atomic/cache-block-operation additional exception checks

all stores, all
atomics, all
cbos

all stores, all
atomics, all
cbos

all atomics,
CBO.INVAL*

all stores, all
atomics,
CBO.INVAL*,
CBO.ZERO*

CBO.CLEANY,
CBO.FLUSH*

all stores, all
atomics

CBO.ZERO?,
CBO.INVAL*

CBO.CLEAN¥,
CBO.FLUSH*

CBO.INVAL*

capability
stores

/4

I

Xcause Xtval.
TYPE
28 1
28 1
N/A

28 1
28 1
28 1
28 1
28 1
28 1
28 1
28 1
28 0
6 N/A

Xtval.
CAUSE

2
3

N/A

0

2
N/A

3.11. CHERI Exceptions and speculative execution | Page 35

Description

auth_cap permission

auth_cap length

load address misaligned

auth_cap tag

auth_cap seal

auth_cap permission

auth_cap permission

auth_cap permission
auth_cap length
auth_cap length
auth_cap length

pce permission

capability alignment

Check

not(auth_cap.R-permission)

Any byte of load access out of
auth_cap bounds

Misaligned capability load

not(auth_cap.tag)

isCapSealed(auth_cap)

not(auth_cap.R-permission)

not(auth_cap.wW-permission)

not(auth_cap.R-permission) and
not(auth_cap.wW-permission)

any byte of access out of
auth_cap bounds

any byte of cache block out of
auth_cap bounds

all bytes of cache block out of
auth_cap bounds

not(pcc. ASR-permission)

Misaligned capability store

Indirect branches are JALR, JALR.MODE, conditional branches are Conditional branches
(BEQ, BNE, BLT[U], BGE[U]).

CBO.ZERO issues as a cache block wide store. All CMOs operate on the cache block which
contains the address. Prefetches check that the capability is tagged, not sealed, has the
permission (R-permission, W-permission, X-permission) corresponding to the instruction,
and has bounds which include at least one byte of the cache block; if any check fails, the
prefetch is not performed but no exception is generated.

3.11. CHERI Exceptions and speculative execution

CHERI adds architectural guarantees that can prove to be microarchitecturally useful. Speculative-
execution attacks can — among other factors — rely on instructions that fail CHERI permission checks
not to take effect. When implementing any of the extensions proposed here, microarchitects need to

RISC-V Specification for CHERI Extensions | © RISC-V

3.12. Physical Memory Attributes (PMA) | Page 36

carefully consider the interaction of late-exception raising and side-channel attacks.

3.12. Physical Memory Attributes (PMA)

Typically, the entire memory space need not support tagged data. Therefore, it is desirable that harts
supporting Zcheri_purecap extend PMAs with a taggable attribute indicating whether a memory
region allows storing tagged data.

Data loaded from memory regions that are not taggable will always have the tag cleared. When the
hart attempts to store data with the tag set to memory regions that are not taggable, the
implementation may:

- Cause an access fault exception

- Implicitly set the stored tag to O

3.13. Page-Based Virtual-Memory Systems

RISC-V’s page-based virtual-memory management is generally orthogonal to CHERIL In
Zcheri_purecap, capability addresses are interpreted with respect to the privilege level of the
processor in line with RISC-V’s handling of integer addresses. In machine mode, capability addresses
are generally interpreted as physical addresses; if the mstatus MPRV flag is asserted, then data
accesses (but not instruction accesses) will be interpreted as if performed by the privilege mode in
mstatus’s MPP. In supervisor and user modes, capability addresses are interpreted as dictated by the
current satp configuration: addresses are virtual if paging is enabled and physical if not.

Zcheri_purecap requires that the pcc grants the ASR-permission to change the page-table root satp
and other virtual-memory parameters as described in Section 3.8.

3.13.1. Invalid Address Handling

When address translation is in effect and XLEN=64, the upper bits of virtual memory addresses must
match for the address to be valid:

- For Sv39, bits [63:39] must equal bit 38

- For Sv48, bits [63:48] must equal bit 47

- For Sv57, bits [63:57] must equal bit 56
RISC-V permits that some CSRs, such as mtvec and mepc (see Table 40), need not be able to hold all
possible invalid addresses. Prior to writing these CSRs, implementations may convert an invalid
address into some other invalid address that the register is capable of holding. However, these registers
hold capabilities in Zcheri_purecap and the bounds encoding depends on the address value, so
implementations must not convert invalid addresses to other arbitrary invalid addresses in an
unrestricted manner. The following procedure must be used instead when writing a capability A to
these CSRs:

1. If A’s address cannot be held then convert it to another address that the CSR can hold

2. If conversion was required, then A’s tag is cleared if A is sealed or if the new address is not
representable — this is equivalent to the semantics of SCADDR

3. Write the final (potentially modified) version of capability A to the CSR e.g. mtvece, mepcc, etc.

RISC-V Specification for CHERI Extensions | © RISC-V

3.14. Integrating Zcheri_purecap with Sdext | Page 37

This implies that sealed capabilities will always get their tags cleared when written to these CSRs
unless the specification explicitly states that the CSR behaves otherwise (see mepcce and sepcc). Also
notes that pcc is available in a read-only CSR. It can be written with a JALR instruction in capability
mode or a JALR MODE instruction in legacy mode which automatically unseal the capability before
the invalid address conversion above.

314, Integrating Zcheri_purecap with Sdext

This section describes changes to integrate the Sdext ISA and Zcheri_purecap. It must be
implemented to make external debug compatible with Zcheri_purecap. Modifications to Sdext are
kept to a minimum.

a This section is preliminary as no-one has yet built debug support for CHERI-RISC-V so
change is likely.

3.14.1. Debug Mode

When executing code due to an abstract command, the hart stays in debug mode and the rules
outlined in Section 4.1 of (RISC-V, 2022) apply.

3.14.2. Core Debug Registers

Zcheri_purecap removes debug CSRs that are designated to hold addresses and replaces them with
analogous CSRs able to hold capabilities. The removed debug CSRs are listed in Table 13 and the new
CSRs are listed in Table 17.

The pcc must grant ASR-permission to access debug CSRs. This permission is automatically provided
when the hart enters debug mode as described in the dpce section. The pcc metadata can only be
changed if the implementation supports executing control transfer instructions from the program
buffer — this is an optional feature according to (RISC-V, 2022).

3.14.3. Debug Program Counter (dpc)

The dpc register is as defined in (RISC-V, 2022). It is a DXLEN-bit register used as the PC saved when
entering debug mode. dpc is extended into dpcc.

DXLEN- 1 0
dpc ‘
DXLEN

Figure 21. Debug program counter

3.14.4. Debug Program Counter Capability (dpcc)

The dpcc register is an extension to dpc that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

RISC-V Specification for CHERI Extensions | © RISC-V

3.14. Integrating Zcheri_purecap with Sdext | Page 38

XLENMAX- 1 0
dpcc (Metadata)

dpcc (Address)
XLENMAX

Figure 22. Debug program counter capability

Upon entry to debug mode, (RISC-V, 2022), does not specify how to update the PC, and says PC
relative instructions may be illegal. This concept is extended to include any instruction which reads or
updates pcc, which refers to all jumps, conditional branches and AUIPC. The exception is MODESW
which is supported if Zcheri_mode is implemented, see dinfc for details.

As a result, the value of pcc is UNSPECIFIED in debug mode according to this specification. The pcc
metadata has no architectural effect in debug mode. Therefore ASR-permission is implicitly granted
for access to all CSRs and no PCC faults are possible.

dpce (and consequently dpc) are updated with the capability in pcc whose address field is set to the
address of the next instruction to be executed as described in (RISC-V, 2022) upon debug mode entry.

When leaving debug mode, the capability in dpcc is unsealed and written into pcc. A debugger may
write dpcc to change where the hart resumes and its mode, permissions, sealing or bounds.

3.14.5. Debug Scratch Register O (dscratchO)

The dscratchO register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register
that can be used by implementations which need it. dscratchO is extended into dscratchOc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

DXLEN- 1 0
dscratchO ‘

DXLEN

Figure 23. Debug scratch O register

3.14.6. Debug Scratch Register O (dscratchOc)

The dscratchOc register is a CLEN-bit plus tag bit extension to dscratchO that is able to hold a
capability. Its reset value is the NULL capability.

XLENMAX- 1 0
dscratchOc (Metadata)

dscratchOc (Address)
XLENMAX

Figure 24. Debug scratch O capability register

3.14.7. Debug Scratch Register 1 (dscratchl)

The dscratchl register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register that
can be used by implementations which need it. dscratchl is extended into dscratchlc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

RISC-V Specification for CHERI Extensions | © RISC-V

3.14. Integrating Zcheri_purecap with Sdext | Page 39

DXLEN- 1 0
dscratch ‘

DXLEN

Figure 25. Debug scratch O register

3.14.8. Debug Scratch Register 1 (dscratchlc)

The dscratchlc register is a CLEN-bit plus tag bit extension to dscratchl that is able to hold a
capability. Its reset value is the NULL capability.

XLENMAX- 1 0
dscratch1c (Metadata)

dscratch1c (Address)
XLENMAX

Figure 26. Debug scratch 1 capability register

3.14.9. Debug Infinite Capability Register (dinfc)

The dinfc register is a CLEN-bit plus tag bit CSR only accessible in debug mode.
The reset value is the Infinite capability.
If Zcheri _mode (see xref.chapter-Zcheri-mode) is implemented:

1. the core enters Capability Mode when entering debug mode
a. therefore dinfc.M is set whenever entering debug mode for any reason.

2. the mode can be optionally switched using MODESW, and the result observed in dinfc.M.
dinfc is read/write but with no writeable fields, and so writes are ignored.

A future version of this specification may add writeable fields to allow creation of other
| y capabilities, if, for example, a future extension requires multiple formats for the Infinite
capability.

XLENMAX- 1 0
dinfc (Metadata)

dinfc (Address)
XLENMAX

Figure 27. Debug infinite capability register

RISC-V Specification for CHERI Extensions | © RISC-V

4.1. Extending the Page Table Entry Format | Page 40

Chapter 4. "Zcheri_pte" Extension for
CHERI Page-Based Virtual-Memory
Systems

CHERI is a security mechanism that is generally orthogonal to page-based virtual-memory
management as defined in (RISC-V, 2023). However, it is helpful in CHERI harts to extend RISC-V’s
virtual-memory management to control the flow of capabilities in memory at the page granularity. For
this reason, the Zcheri_ pte extension adds new bits to RISC-V’s Page Table Entry (PTE) format.

41. Extending the Page Table Entry Format

y CHERI v9 Note: The current proposal is provisional and is missing PTE bits when
EI compared to CHERI v9.

The page table entry format remains unchanged for Sv32. However, two new bits, Capability Write
(CW) and Capability Dirty (CD), are added to leaf PTEs in Sv39, Sv48 and Sv57 as shown in Figure 28,
Figure 29 and Figure 30 respectively.

63 62 61 60 59 58 54 53 28 27 19 18 10 9 87 6 5 4 3 2 1 0
’ N | PBMT |CD|CW| Reserved | PPN[2] | PPN[1] PPN[O] RSW | D | A | G | u | X | W| R | \Y ‘
1 2 17 1 5 26 9 9 2 T~ 1 1 1 1 1 1 1

Figure 28. Sv39 page table entry

63 62 61 60 59 58 54 53 10 9 87 6 5 4 3 2 1 0
’N|PBMT|CD|CW| Reserved PPN RSW |D|A|G|U|X|W|R|V‘
1 2 1 1 5 44 2 1T 1 1 1 1 1 1 1
53 37 36 28 27 19 18 10
PPN[3] PPN[2] PPN[1] PPN[O]
17 9 9 9

Figure 29. Sv48 page table entry

63 62 61 60 59 58 54 53 10 9 87 6 5 4 3 2 1 0
’N|PBMT|CD|CW| Reserved PPN RSW |D|A|G|U|X|W|R|V‘
1 2 11 5 44 2 T 1 1 1 1 1 1 1
53 46 45 37 36 28 27 19 18 10
PPN[4] PPN[3] PPN[2] PPN[1] PPN[O]

8 9 9 9 9

Figure 30. SV57 page table entry

The CW bit indicates whether writing capabilities with tag set to the virtual page is permitted. Two
schemes to manage the CW bit are permitted:

- A store page fault exception is raised when a capability store or AMO instruction is executed, the
authorizing capability grants W-permission and C-permission, and the store address corresponds
to a virtual page with the CW bit clear.

RISC-V Specification for CHERI Extensions | © RISC-V

4.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 41

- When a capability store or AMO instruction is executed, the implementation clears the tag bit of
the capability written to a virtual page with the CW bit clear.

y The implementation of the CW bit does not force a dependency on the tag bit’s value of the
EI capability written, so implementations must support the CW bit.

The CD bit indicates that a capability with tag set has been written to the virtual page since the last
time the CD bit was cleared. Implementations are strongly encouraged, but not required, to support
CD. If supported, two schemes to manage the CD bit are permitted:

- A store page fault exception is raised when a capability store or AMO instruction is executed, the
authorizing capability grants W-permission and C-permission, the tag bit of the capability being
written is set and the address written corresponds to a virtual page with the CD bit clear.

- When a capability store or AMO instruction is executed, the authorizing capability grants W-
permission and C-permission, the tag bit of the capability being written is set and the store address
corresponds to a virtual page with the CD bit clear, the implementation sets the corresponding bit
in the PTE. The PTE update must be atomic with respect to other accesses to the PTE, and must
atomically check that the PTE is valid and grants sufficient permissions. Updates to the CD bit
must be exact (i.e. not speculative), and observed in program order by the local hart. Furthermore,
the PTE update must appear in the global memory order no later than the explicit memory access,
or any subsequent explicit memory access to that virtual page by the local hart. The ordering on
loads and stores provided by FENCE instructions and the acquire/release bits on atomic
instructions also orders the PTE updates associated with those loads and stores as observed by
remote harts.

The PTE update is not required to be atomic with respect to the explicit memory access that
caused the update, and the sequence is interruptible. However, the hart must not perform explicit
memory access before the PTE update is globally visible.

The behavior of the CW bit takes priority over the CD bit. Therefore, implementations must
| yl not take action to change or raise an exception related to the CD bit when the CW bit is
clear.

4.7, Extending the Machine Environment
Configuration Register (menvcfg)

The menvcfg register is extended to allow discovering whether the implementation supports the CD

bit.

The menvcfg register operates as described in (RISC-V, 2023). Zcheri_purecap adds a new enable bit
as shown in Figure 31 when XLEN=64.

63 62 61 60 8 7 6 5 4 3 1 0
’ STCE |PBMTE| CDE | WPRI | CBZE |CBCFE| CBIE | WPRI | FIOM ‘

1 1 1 55 1 1 1 2 3

1

Figure 31. Machine environment configuration register (menvcfg)

The Capability Dirty Enable (CDE) bit controls whether the Capability Dirty (CD) bit is available for
use in S-mode address translation. When CDE=1, the CD bit is available for S-mode address
translation. When CDE=0, the implementation behaves as though the CD bit were not implemented.

RISC-V Specification for CHERI Extensions | © RISC-V

4.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 42

If CD is not implemented, CDE is read-only zero. If CD is implemented although not configurable,
CDE is read-only one.

RISC-V Specification for CHERI Extensions | © RISC-V

5.1. CHERI Execution Mode | Page 43

Chapter 5. "Zcheri_legacy" Extension for
CHERI Legacy Mode

Df CHERI v9 Note: This feature is new and different from CHERI v9’s per-privilege enable
bits.

Zcheri_legacy is an optional extension to Zcheri_purecap. Implementations that support
Zcheri_purecap and Zcheri_legacy define a variant of the CHERI ISA that is fully binary compatible
with existing RISC-V code.

Key features in Zcheri_legacy include a definition of a CHERI execution mode, a new unprivileged
register, additional instructions and extensions to some existing CSRs enabling disable CHERI
features. The remainder of this section describes these features in detail as well as their integration
with the primary base integer variants of the RISC-V ISA (RV32I and RV64I).

5.1. CHERI Execution Mode

Zcheri_legacy adds CHERI execution modes to ensure backwards compatibility with the base RISC-V
ISA while saving instruction encoding space. There are two execution modes: Capability and Legacy.
Additionally, there is a new unprivileged register: the default data capability, ddc, that is used to
authorise all data memory accesses when the current CHERI mode is Legacy.

The current CHERI execution mode is given by the current privilege level and the value of the CME
bit in mseccfg, menvcfg, and senvefg for M-mode, S-mode, and U-mode, respectively.

The CHERI execution mode impacts the instruction set in the following ways:

- The authorising capability used to execute memory access instructions. In Legacy mode, ddc is
implicitly used. In Capability mode, the authorising capability is supplied as an explicit ¢ operand
register to the instruction.

- The set of instructions that is available for execution. Some instructions are available in Legacy
mode but not Capability mode and vice-versa (see Chapter 7).

y The implication is that the CHERI execution mode is always Capability on
EI implementations that support Zcheri_ purecap, but not Zcheri_ legacy.

The CHERI execution mode is effectively an extension to some RISC-V instruction encodings. For
example, the encoding of an instruction like LW remains unchanged, but the mode indicates whether
the capability authorising the load is the register operand cs1 (Capability mode). The mode is shown
in the assembly syntax.

The CHERI execution mode is key in providing backwards compatibility with the base RISC-V ISA.
RISC-V software is able to execute unchanged in implementations supporting both Zcheri_purecap
and Zcheri_legacy provided that the configured CHERI execution mode is Legacy by setting CME=0
in mseccfg, menvefg or senvefg as required, and the Infinite capability is installed in the pcc and dde
such that:

- Tags are set

- Capabilities are unsealed

RISC-V Specification for CHERI Extensions | © RISC-V

5.2. Zcheri_legacy Instructions | Page 44

- All permissions are granted

- The bounds authorise accesses to the entire address space i.e base is O and top is 2**"™**

52. Zcheri_legacy Instructions

Zcheri_legacy does not introduce new instructions to the base RISC-V integer ISA. However, the
behavior of some existing instructions changes depending on the current CHERI execution mode.

5.2.1. Capability Load and Store Instructions

The load and store capability instructions change behaviour depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The load capability instruction is LC. When the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.3. In legacy mode, the capability authorising the memory access is
ddc, so the effective address is obtained by adding the x register to the sign-extended offset.

The store capability instruction is SC. When the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.3. In legacy mode, the capability authorising the memory access is
ddc, so the effective address is obtained by adding the x register to the sign-extended offset.

52.2. Unconditional Capability Jumps

The JALR.MODE instruction is modal, giving access to the functionality of JALR from either operating
mode.

y JALR.MODE can be used to change the current CHERI execution mode when the
EI implementation supports Zcheri_ mode.

5.3. Existing RISC-V Instructions

The CHERI execution mode introduced in Zcheri_legacy affects the behaviour of instructions that
have at least one memory address operand. When in Capability mode, the address input or output
operands may include c registers. When in Legacy mode, the address input or output operands are
x/f/v registers; the tag and metadata of that register are implicitly set to O.

5.3.1. Control Transfer Instructions

The unconditional jump instructions change behaviour depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The jump and link instruction JAL when the CHERI execution mode is Capability; behaves as
described in Section 3.4. When the mode is Legacy. In this case, the address of the instruction
following the jump (pc + 4) is written to an x register; that register’s tag and capability metadata are
zeroed.

The jump and link register instruction is JALR when the CHERI execution mode is Capability; behaves
as described in Section 3.4. When the mode is Legacy. In this case, the target address is obtained by
adding the sign-extended 12-bit immediate to the x register operand, then setting the least significant
bit of the result to zero. The target address is then written to the pcc address and a representability
check is performed. The address of the instruction following the jump (pc + 4) is written to an x

RISC-V Specification for CHERI Extensions | © RISC-V

5.3. Existing RISC-V Instructions | Page 45

register; that register’s tag and capability metadata are zeroed.

JAL and JALR cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc. An instruction address misaligned exception is raised when the target
address is misaligned.

5.3.2. Conditional Branches

The behaviour is as shown in Section 3.4.2.2.

5.3.3. Load and Store Instructions

Load and store instructions change behavior depending on the CHERI execution mode although the
instruction’s encoding remains unchanged.

Loads and stores behave as described in Section 3.4 when the CHERI execution mode is Capability. In
Legacy mode, the instructions behave as described in the RISC-V base ISA (i.e. without the 'C' prefix)
and rely on x operands only. The capability authorising the memory access is ddc and the memory
address is given by sign-extending the 12-bit immediate offset and adding it to the base address in the
x register operand.

The exception cases remain as described in Section 3.4 regardless of the CHERI execution mode.

53.4. CSR Instructions

Df CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

Zcheri_legacy adds the concept of CSRs which contain a capability where the address field is visible to
legacy code (e.g. mtvec) and the full capability is also visible through an alias (e.g. mtvecc). These are
referred to as extended CSRs.

Extended CSRs are accessible through two addresses, and the address determines the access width.
When the XLEN-bit alias is used by CSRRW:

- The register operand is an x register.
- Only XLEN bits from the x source are written to the capability address field.
° The tag and metadata are updated as specified in Table 39.

- Only XLEN bits are read from the capability address field, which are extended to XLENMAX bits
according to (RISC-V, 2023) (3.1.6.2. Base ISA Control in mstatus Register) and are then written to
the destination x register.

When the CLEN-bit alias is used by CSRRW:

- The register operand is a c register.
- The full capability in the c register source is written to the CSR.

> The capability may require modification before the final written value is determined (see Table
39).

- The full capability is written to destination c register.

When either alias is used by another CSR instruction (CSRRWI, CSRRC, CSRRCI, CSRRS, CSRRSI):.

RISC-V Specification for CHERI Extensions | © RISC-V

5.4. Integrating Zcheri _legacy with Sdext | Page 46

- The final address is calculated according to the standard RISC-V CSR rules (set bits, clear bits etc).
- The final address is updated as specified in Table 39 for an XLEN write.

- XLEN bits are read from the capability address field and written to an output x register.

There is no distinction between accessing either alias in this case - the XLEN access is always
performed, and the assembly syntax always uses x registers.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is not user-mode accessible.

5.4 Integrating Zcheri_legacy with Sdext

A new debug default data capability (dddc) CSR is added at the CSR number shown in Table 29.

55. Debug Default Data Capability (dddc)

dddc is a register that is able to hold a capability. The address is shown in Table 29.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

XLENMAX- 1 0
dddc (Metadata)

dddc (Address)
XLENMAX

Figure 32. Debug default data capability

Upon entry to debug mode, ddc is saved in dddc. ddc's metadata is set to the Infinite capability’s
metadata and ddc's address remains unchanged.

When debug mode is exited by executing DRET, the hart’s ddc is updated to the capability stored in
dddc. A debugger may write dddc to change the hart’s context.

As shown in Table 40, dddc is a data pointer, so it does not need to be able to hold all possible invalid
addresses.

5.6. Disabling CHERI Registers

y CHERI v9 Note: The rules for excepting have been tightened here. Also, it is not possible
EI to disable CHERI checks completely.

Zcheri_legacy includes functions to disable explicit access to CHERI registers. The following occurs
when executing code in a privilege mode that has CHERI register access disabled:

- The CHERI instructions in Section 3.3 (and Section 8.5 if Zcheri_mode is supported) cause illegal
instruction exceptions

- Executing CSR instructions accessing any capability wide CSR addresses (Section 3.6) cause illegal
instruction exceptions

- All allowed instructions execute as if the CHERI execution mode is Legacy. The CME bits in
mseccfg, menvefg, and senvefg have no effect whilst CHERI register access is disabled.

RISC-V Specification for CHERI Extensions | © RISC-V

5.7. Added CLEN-wide CSRs | Page 47

CHERI register access is disabled if XLEN in the current mode is less than XLENMAX or if CRE active
at the current mode (menvefg.CRE for S-mode or senvefg.CRE for U-mode) is O.

Disabling CHERI register access has no effect on implicit accesses or security checks. The last
capability installed in pcc and ddc before disabling CHERI register access will be used to authorise
instruction execution and data memory accesses.

Disabling CHERI register access prevents a low-privileged Legacy mode from interfering
| yl with the correct operation of higher-privileged Legacy modes that do not perform ddc

switches on trap entry and return.

5.7. Added CLEN-wide CSRs

Zcheri_legacy adds the CLEN-wide CSRs shown in Table 29.

Table 29. CLEN-wide CSRs added in Zcheri_ legacy

Extended CLEN Prerequi Permissions Description

CSR Address sites

dddc Ox7bc Sdext DRW Debug Default Data Capabilty (saved/restored on

debug mode entry/exit)

mtdc Ox74c M-mode MRW, ASR- Machine Trap Data Capability (scratch register)
permission

stdc 0x163 S-mode SRW, ASR- Supervisor Trap Data Capability (scratch
permission register)

dde 0x416 none URW User Default Data Capability

571. Machine ISA Register (misa)

Zcheri_legacy eliminates some restrictions for MXL imposed in Zcheri_purecap to allow
implementations supporting multiple base ISAs. Namely, the MXL field, that encodes the native base
integer ISA width as shown in Table 22, may be writable.

Setting the MXL field to a value that is not XLENMAX disables most CHERI features and instructions
as described in Section 5.6.

57.2. Machine Status Registers (mstatus and mstatush)

Zcheri_legacy eliminates some restrictions for SXL and UXL imposed in Zcheri_purecap to allow
implementations supporting multiple base ISAs. Namely, the SXL and UXL fields may be writable.

Zcheri_legacy requires that lower-privilege modes have XLEN settings less than or equal to the next-
higher privilege mode. WARL field behaviour restricts programming so that it is not possible to
program MXL, SXL or UXL to violate this rule.

Setting the SXL or UXL field to a value that is not XLENMAX disables most CHERI features and
instructions, as described in Section 5.6, while in that privilege mode.

y If CHERI register access must be disabled in a mode for security reasons, software should
EI set CRE to O regardless of the SXL and UXL fields.

RISC-V Specification for CHERI Extensions | © RISC-V

5.7. Added CLEN-wide CSRs | Page 48

Whenever XLEN in any mode is set to a value less than XLENMAX, standard RISC-V rules from
(RISC-V, 2023) are followed. This means that all operations must ignore source operand register bits
above the configured XLEN, and must sign-extend results to fill the entire widest supported XLEN in
the destination register. Similarly, pc bits above XLEN are ignored, and when the pc is written, it is
sign-extended to fill XLENMAX. The integer writing rule from CHERI is followed, so that every
register write also zeroes the metadata and tag of the destination register.

However, CHERI operations and security checks will continue using the entire hardware register (i.e.
CLEN bits) to correctly decode capability bounds.

Zcheri_legacy eliminates some restrictions for MBE, SBE, and UBE imposed in Zcheri_purecap to
allow implementations supporting multiple endiannesses. Namely, the MBE, SBE, and UBE fields may
be writable if the corresponding privilege mode is implemented.

Setting the MBE, SBE, or UBE field to a value that is not the reset value of MBE disables most CHERI
features and instructions, as described in Section 5.6, while in that privilege mode.

57.3. Machine Trap Default Capability Register (mtdc)

The mtdc register is capability width read/write register dedicated for use by machine mode.

Typically, it is used to hold a data capability to a machine-mode hart-local context space, to load into
ddc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

value is the NULL capability.

XLENMAX- 1 0
mtdc (Metadata)

mtdc (Address)
XLENMAX

Figure 33. Machine-mode trap data capability register

5.7.4. Machine Security Configuration Register (mseccfg)

Zcheri_legacy adds a new enable bit to mseccfg as shown in Figure 34.

63 34 33 32 31 10 9 8 7 4 3 2 1 0
’ WPRI PMM WPRI | SSEED | USEED | WPRI | CME | RLB | MMWP | MML ‘
30 2 22 1 1 4 1 1 1 1

Figure 34. Machine security configuration register (mseccfg)

The CHERI Mode Enable (CME) bit controls whether M-mode executes in Capability or Legacy mode.
When CME=1, the CHERI execution mode is Capability. When CME=0, the mode is Legacy. Its reset
value is O.

5.7.5. Machine Environment Configuration Register (menvcfg)

Zcheri_legacy adds two new enable bits to menvcfg as shown in Figure 35.

RISC-V Specification for CHERI Extensions | © RISC-V

5.7. Added CLEN-wide CSRs | Page 49

63 62 61 30 29 28 27 8 7 6 5 4 3 1 0
’ STCE |PBMTE| WPRI | CRE | CME | WPRI | CBZE |CBCFE| CBIE | WPRI | FIOM ‘

1 1 32 1 1 20 1 1 2 3 1

Figure 35. Machine environment configuration register (menvcfg)

The CHERI Mode Enable (CME) bit controls whether less privileged levels (e.g. S-mode and U-mode)
execute in Capability or Legacy mode. When CME=1, the CHERI execution mode is Capability. When
CME=0, the mode is Legacy.

The CHERI Register Enable (CRE) bit controls whether less privileged levels can perform explicit
accesses to CHERI registers. When CRE=1, CHERI registers can be read and written by less privileged
levels. When CRE=0, CHERI registers are disabled in less privileged levels as described in Section 5.6.

5.7.6. Supervisor Trap Default Capability Register (stdc)

The stdc register is capability width read/write register dedicated for use by supervisor mode.
Typically, it is used to hold a data capability to a supervisor-mode hart-local context space, to load into
ddc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

XLENMAX- 1 0
stdc (Metadata)

stdc (Address)
XLENMAX

Figure 36. Supervisor trap data capability register (stdc)

5.7.7. Supervisor Environment Configuration Register (senvcfg)

The senvcfg register operates as described in the RISC-V Privileged Specification. Zcheri_legacy adds
two new enable bits as shown in Figure 37.

SXLEN- 1 30 29 28 27 8 7 0
WPRI | CRE | CME | WPRI | CBZE |CBCFE| CBIE |WPRI | FIOM \
SXLEN-30 1 1 20 1 1 2 3 1

Figure 37. Supervisor environment configuration register (senvefg)

The CHERI Mode Enable (CME) bit controls whether U-mode executes in Capability or Legacy mode.
When CME=1, the CHERI execution mode is Capability. When CME=0, the mode is Legacy.

The CHERI Register Enable (CRE) bit controls whether U-mode can perform explicit accesses to
CHERI registers. When CRE=1, CHERI registers can be read and written by U-mode. When CRE=0,
CHERI registers are in U-mode disabled as described in Section 5.6. CRE is read-only zero if
menvcfg. CRE=0.

5.7.8. Default Data Capability (ddc)

The ddc CSR is a read-write capability register implicitly used as an operand to authorise all data
memory accesses when the current CHERI mode is Legacy. This register must be readable in any
implementation. Its reset value is the Infinite capability.

As shown in Table 40, ddc is a data pointer, so it does not need to be able to hold all possible invalid

RISC-V Specification for CHERI Extensions | © RISC-V

5.7. Added CLEN-wide CSRs | Page 50

addresses.

XLENMAX- 1

ddc (Metadata)

ddc (Address)

XLENMAX

Figure 38. Unprivileged default data capability register

RISC-V Specification for CHERI Extensions | © RISC-V

6.1. CHERI Execution Mode | Page 51

Chapter 6. "Zcheri_mode" Extension for
CHERI Execution Mode

Zcheri_mode is an optional extension to Zcheri_legacy. Implementations that support Zcheri_mode
allow fine-grained switching between Capability and Legacy modes using indirect jump instructions.

©.1. CHERI Execution Mode

Zcheri_mode adds a new CHERI execution mode bit (M) to capabilities. The mode bit is encoded as
shown in Figure 39 and Figure 40. The current CHERI execution mode is give by the M bit of the pcc
and the CME bits in mseccfg, menvcefg, and senvefg as follows:

- The mode is Capability when the M bit of the pcc is 1 and the effective CME=1 for the current
privilege level
- The mode is Legacy when the effective CME=0 for the current privilege level

- The mode is Legacy when the M bit of the pcc is O and the effective CME=1 for the current
privilege level

313029 26 25 24 21201918 17 121110 9 210
SDP AP M| Reserved | S [EF|T8 T[7:2] TE B[9:2] BE
Address
32

Figure 39. Capability encoding when XLENMAX=32 and Zcheri_mode is supported

63 57 56 53 52 48 47 46 28 27 26 25 17 16 14 13 320
Reserved | SDP| AP |M Reserved SI|EF| T[11:3] | TE B[13:3] BE
Address
64

Figure 40. Capability encoding when XLENMAX=64 and Zcheri_mode is supported

Zcheri_mode allows the M bit to be set to 1 when the capability does not grant X-permission. In this
case, the M bit is superfluous, so the encoding may be used to support additional features in future
extensions.

The M bitis O in both the NULL and Infinite capabilities.

©.2. Zcheri_mode Instructions

Zcheri_mode introduces new instructions to the base RISC-V integer ISA in addition to the
instructions added in Zcheri_purecap. The new instructions in Zcheri_mode allows inspecting the
CHERI mode bit in capabilities and changing the current CHERI execution mode.

RISC-V Specification for CHERI Extensions | © RISC-V

6.3. Integrating Zcheri_mode with Sdext | Page 52

6.2.1. Capability Manipulation Instructions

A new SCMODE instruction allows setting a capability’s CHERI execution mode to the indicated value.
The output is written to an unprivileged c register, not pcc.

6.2.2. Mode Change Instructions

A new CHERI execution mode switch (MODESW) instruction allows software to toggle the hart’s
current CHERI execution mode. If the current mode in the pcc is Legacy, then the mode after
executing MODESW is Capability and vice-versa. This instruction effectively writes the CHERI
execution mode bit M of the capability currently installed in the pcc.

6.2.3. Unconditional Capability Jumps

Zcheri_mode allows changing the current CHERI execution mode when executing either JALR from
capability mode or JALR.MODE from legacy mode.

6.3. Integrating Zcheri_mode with Sdext

y CHERI v9 Note: The mode change instruction MODESW is new and the requirement to
EI optionally support it in debug mode is also new.

In addition to the changes described in Section 3.14 and Section 5.4, Zcheri_mode optionally allows
MODESW to execute in debug mode.

When entering debug mode, the core always enters Capability Mode.
If Zcheri_mode is implemented:

1. the mode can be optionally switched using MODESW.

2. the current mode can always be observed in dinfc.M.

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 7. RISC-V Instructions and Extensions Reference | Page 53

Chapter 7. RISC-V Instructions and
Extensions Reference

These instruction pages are for the new CHERI instructions, and some existing RISC-V instructions
where the effect of CHERI needs specific details.

For existing RISC-V instructions, note that:

1 In Legacy mode, every byte of each memory access is bounds checked against ddc

2. In Legacy mode, a minimum length instruction at the target of all indirect jumps is bounds
checked against pcc

3. In Capability mode a minimum length instruction at the target of all indirect jumps is bounds
checked against cs1 (e.g. JALR)

4. A minimum length instruction at the taken target of all direct jumps and conditional branches is
bounds checked against pcc regardless of CHERI execution mode

y Not all RISC-V extensions have been checked against CHERI. Compatible extensions will
EI eventually be listed in a CHERI profile.

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 54

71."Zcheri_purecap", "Zcheri_legacy" and
"Zcheri_mode" Extensions for CHERI

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 55

711 JALRMODE

. CHERI v9 Note: This instruction used to have separate encodings in CHERI v9 for each
y; mode. The behaviour depends on the CHERI execution mode and now only use a single
new encoding.

Synopsis

Indirect jump and link (via integer address or capability)

Capability Mode Mnemonic
jalr.mode rd, rsi

Legacy Mode Mnemonic
jalr.mode cd, cs1

Suggested assembly syntax

jalr rd, 0(rs1)
jalr cd, 0@(cs1)

E‘f the suggested assembly syntax distinguishes from jalr by operand type.
Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 cd opcode
5 3 5 7
JALR.MODE=00..00 base JALR.MODE=001 dest JALR=1100111

Capability Mode Description

JALR.MODE allows unconditional jumps to a target integer address. The target address in rs1 is
installed in the address field of the pcc. The address of the instruction following the jump (pcc + 4)
is written to rd. This is identical to the legacy mode JALR instruction, but with zero offset.

Legacy Mode Description

JALR.MODE allows unconditional jumps to a target capability. The capability in ¢s1 is installed in
pce. The pee of the next instruction following the jump (pcc + 4) is sealed and written to cd. This
instruction can be used to change the current CHERI execution mode and is identical to JALR in
capability mode but with zero offset.

Exception

When these instructions cause CHERI exceptions, CHERI jump or branch fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE Legacy Capability =~ Reason

Mode Mode
Tag violation v csThastagsetto O
Seal violation v cs1is sealed and the immediate is not O
Permission v cs1 does not grant X-permission
violation

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 56

CAUSE Legacy Capability =~ Reason
Mode Mode
Length violation v v Minimum length instruction is not within the target
capability’s bounds

The instructions on this page are either PC relative or may update the pcc. Therefore an
| yl implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Mode

Zcheri_purecap

Prerequisites Legacy Mode
Zcheri_legacy

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 57

7.1.2. CMV

Df CHERI v9 Note: This page has new encodings.

Df CHERI v9 Note: this instruction was called CMOVE.
Synopsis

Capability move

Mnemonic

cmv cd, csl

Suggested assembly syntax

mv cd, csl
Df the suggested assembly syntax distinguishes from integer mv by operand type.
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 zero csl funct3 cd opcode
7 5 5 3 5 7
CADD=0000110 rs2=x0 src CADD=000 dest OP=0110011
E‘f CMV is encoded as CADD with rs2=x80.
Description

The contents of capability register ¢s1 are written to capability register cd. CMV unconditionally
moves the whole capability to cd .

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 58

7.1.3. MODESW
Df CHERI v9 Note: This page has new encodings.

Synopsis
Switch CHERI execution mode

Mnemonics

modesw
Encoding
31 25 24 20 19 15 14 12 11 7 6 0

funct7 funct5 functs funct3 functs opcode
7 5 5 3 5 7
CMS=0001001 CMS=00000 CMS=00000 CMS=001 CMS=000 OP=0110011

Description

Toggle the hart’s current CHERI execution mode in pcc. If the current mode in pcce is Legacy, then
the mode bit (M) in pcc is set to Capability. If the current mode is Capability, then the mode bit (M)
in pcc is set to Legacy.

In debug mode MODESW can still be used to change the operating mode, and the current mode is
shown in the M bit of dinfc.

y Support of MODESW is optional in debug mode. If it is supported then it updates dinfc.M
EI instead of pcc.M to show the currrent mode.

Prerequisites

Zcheri_mode

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 59

7.1.4. CADDI

See CADD.

7.1.5. CADD
Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: these instructions were called CINCOFFSET and CINCOFFSETIMM.
/4 CHERI v9 Note: the immediate format has changed

Synopsis

Capability pointer increment

Mnemonic

cadd cd, cs1, rs2
caddi cd, cs1, imm

Suggested assembly syntax

add cd, cs1, rs2
add cd, cs1, imm

74 the suggested assembly syntax distinguishes from integer add by operand type.
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2!=x0 csl funct3 cd opcode
7 5 5 3 5 7
CADD=0000110 increment src CADD=000 dest OP=0110011
31 20 19 15 14 12 11 7 6 0
imm csl funct3 cd opcode
12 5 3 5 7
imm src CADDI=010 dest OP-IMM-32=0011011

y CADD with rs2=x0 is decoded as CMV instead, the key difference being that tagged and
EI sealed capabilities do not have their tag cleared by CMV.

Description

Increment the address field of the capability ¢s1 and write the result to cd . The tag bit of the
output capability is O if ¢s1 did not have its tag set to 1, the incremented address is outside ¢s1's
Representable Range or ¢s1 is sealed.

For CADD, the address is incremented by the value in rs2.
For CADDI, the address is incremented by the immediate value imm.

Prerequisites

Zcheri_purecap

Operation (CADD)
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 60

Operation (CADDI)
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 61

7.1.6. SCADDR
Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CSETADDR.
Synopsis
Capability set address
Mnemonic

scaddr cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
SCADDR=0000110 address src SCADDR=001 dest OP=0110011
Description

Set the address field of capability ¢s1 to rs2 and write the output capability to c¢d. The tag bit of the
output capability is O if ¢s1 did not have its tag set to 1, rs1 is outside the Representable Range of
cs1orif cs1is sealed.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 62

7.1.7. ACPERM

y CHERI v9 Note: The implementation of this instruction changes because the permission
EI fields are encoded differently in the new capability format.

Df CHERI v9 Note: this instruction was called CANDPERM.
/4 CHERI v9 Note: This page has new encodings.
Synopsis

Mask capability permissions

Mnemonics
acperm cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
ACPERM=0000110 mask src ACPERM=010 dest OP=0110011
Description

Converts the AP and SDP fields of capability ¢s1 into a bit field; one bit per permission as shown
below. Then calculate the bitwise AND of the bit field with the mask rs2 . Set the AP and SDP fields
of ¢s1 as indicated in the resulting bit field —the capability grants a permission if the
corresponding bit is set in the bit field —and write the output capability to c¢d . The output
capability has its tag set to O if ¢s1 is sealed.

XLEN- 1 SDPLEN+15 16 4 3 2 1 0
Reserved ‘ SDP ‘ Reserved FSF{ X ‘ R ‘W‘ C
XLEN-SDPLEN-16 SDPLEN 11 71 1 1 1

The AP field is not able to encode all combinations of permissions when XLENMAX=32. If
| yl permissions that cannot be encoded are indicated, ACPERM outputs a capability with all
architectural permissions cleared.

TODO: this may not be correct - we should work through the different combinations which
o are possible for removing a permission for RV32, where it is restricted, and decide what to
do in each case

Prerequisites

Zcheri_purecap

Operation
TODO: Sail does not have the new encoding of the permissions field.

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 63

7.1.8. SCMODE

2

this document).

CHERI v9 Note: This instruction used to be CSETFLAGS (and previously CSETMODE in

74 CHERI v9 Note: This page has new encodings.

Synopsis
Capability set CHERI execution mode

Mnemonic

scmode cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 7 5 7
SCMODE=0000110 src2 srcl SCMODE=111 dest OP=0110011
Description

Copy ¢s1 to cd and set cd.M (the mode bit) to the least significant bit of rs2 . c¢d.tag is set to O if

cs1 is sealed.

Prerequisites

Zcheri_mode

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 64

7.1.9. SCH|

Df CHERI v9 Note: This page has new encodings.

Df CHERI v9 Note: this instruction was called CSETHIGH.
Synopsis

Capability set metadata

Mnemonic

schi cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
SCHI=0000110 metadata src SCHI=011 dest OP=0110011
Description

Copy cs1 to cd , replace the capability metadata (i.e. bits [CLEN-1:XLENMAX]) with rs2 and set
cd.tag to O.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 65

7.1.10. SCEQ

Df CHERI v9 Note: This page has new encodings.

Df CHERI v9 Note: this instruction was called CSETEQUALEXACT.
Synopsis

Set if Capabilities are EQual

Mnemonics

sceq rd, cs1, cs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 cs2 csl funct3 rd opcode
7 5 5 3 5 7
SCEQ=0000110 src2 srcl SCEQ=100 dest OP=0110011

Description

rd is set to 1if all bits (i.e

issetto O.

Prerequisites

Zcheri_purecap

Operation
TODO

CLEN bits and the tag) of capabilities ¢s1 and €52 are equal, otherwise rd

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 66

711 SENTRY

Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CSEALENTRY.
Synopsis

Seal capability as sealed entry.

Mnemonics

sentry cd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 cd opcode
7 5 5 3 5 7
SENTRY=0001000 SENTRY=01000 src SENTRY=000 dest OP=0110011
Description

Capability cd is written with the capability in ¢s1 with its seal bit set to 1. Attempting to seal an
already sealed capability will lead to the tag of cd being set to O.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 67

7.1.12. SCSS
Df CHERI v9 Note: ctestsubset does not use ddc if cs1==0
Df CHERI v9 Note: this instruction was called CTESTSUBSET.
74 CHERI v9 Note: This page has new encodings.
Synopsis
Capability test subset
Mnemonic

ctestsubset rd, cs1, cs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 cs2 csl funct3 rd opcode
7 5 5 3 5 7
SCSS=0000110 src2 srcl SCSS=110 dest OP=0110011
Description

rd is set to 1 if the tag of capabilities ¢s1 and ¢s2 are equal and the bounds and permissions of ¢s2
are a subset of those of ¢s1.

—y The implementation of this instruction is similar to CBLD, although SCSS does not include
J the sealed bit in the check.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 68

7.1.15.CBLD
Df CHERI v9 Note: CBLD does not use ddc if csI==0
Df CHERI v9 Note: this instruction was called CBUILDCAP.
74 CHERI v9 Note: This page has new encodings.
Synopsis
Capability build
Mnemonic

cbld cd, cs1, cs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 cs2 csl funct3 cd opcode
7 5 5 3 5 7
CBLD=0000110 src2 srcl!=0 CBLD=101 dest OP=0110011
Description

Copy €52 to cd and set the tag to 1if ¢s1.tag is set, cs1 is not sealed, ¢s1's permissions and bounds
are equal or a superset of €s2 's, €52 's bounds are not malformed (see Section 2.5), and all reserved
bits in €s2 's metadata are 0. CBLD is typically used alongside SCHI to build capabilities from
integer values.

Although currently this will set the tag to O and leave the metadata otherwise unchanged
y when ¢s1 is €0, this may change in future extensions, and so software should not assume
this.

Prerequisites

Zcheri_purecap

Simplified Operation TODO not debugged much easier to read than the existing SAIL

let cs1_val = C(cs1);

let cs2_val = C(cs2) [with tag=1];

//isCapSubset includes derivability checks on both operands

let subset = isCapSubset(csl_val, cs2_val);

//Clear cd.tag if cs2 isn't a subset of cs1, or if

//cs1 is untagged or sealed, or if either is underivable

C(cd) = clearTagIf(cs2_val, not(subset) |
not(cs1_val.tag) |
isCapSealed(cs1_val));

RETIRE_SUCCESS

Operation
TODO: Original Sail looks at otype field, etc that don’t exist

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 69

7.1.14. GCTAG
Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CGETTAG.
Synopsis
Capability get tag
Mnemonic

gctag rd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
GCTAG=0001000 GCTAG=00000 src GCTAG=000 dest OP=0110011
Description

Zero extend the value of ¢s1.tag and write the result to rd.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 70

7.1.15. GCPERM

Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CGETPERM.
Synopsis

Capability get permissions

Mnemonic

gcperm rd, cs

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
GCPERM=0001000 GCPERM=00001 src GCPERM=000 dest OP=0110011
Description

Converts the AP and SDP fields of capability ¢s1 into a bit field; one bit per permission, as shown
below, and write the result to rd. A bit set to 1 in the bit field indicates that ¢s1 grants the

corresponding permission.

If the AP field is a reserved value then all architectural permission bits in rd are set to O.

XLEN- 1 SDPLEN+15 16 4 3 2 1 0
Reserved ‘ SDP ‘ Reserved FSI# X ‘ R ‘W‘ C
XLEN-SDPLEN-16 SDPLEN 11 71 1 1 1

Prerequisites

Zcheri_purecap

Operation
TODO: The encoding of permissions changed.

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 71

7.1.16. GCHI

Df CHERI v9 Note: This page has new encodings.

Df CHERI v9 Note: this instruction was called CGETHIGH.
Synopsis

Capability get metadata

Mnemonic

gchi rd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
GCHI=0001000 GCHI=00100 src GCHI=000 dest OP=0110011
Description

Copy the metadata (bits [CLEN-1:XLENMAX]) of capability ¢s1 into rd.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 72

7.1.17. GCBASE

Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CGETBASE.
Synopsis

Capability get base address

Mnemonic

gcbase rd, csT

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 cd opcode
7 5 5 3 5 7
GCBASE=0001000 GCBASE=00101 src GCBASE=000 dest OP=0110011
Description

Decode the base integer address from ¢s1's bounds and write the result to rd. It is not required that
the input capability cs1 has its tag set to 1. GCBASE outputs O if ¢s1's bounds are malformed (see
Section 2.5).

Prerequisites

Zcheri_purecap

Operation
TODO need to check that it returns O if malformed

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy"and "Zcheri _mode" Extensions for CHERI | Page 73

7.1.18. GCLEN
Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CGETLEN.
Synopsis
Capability get length
Mnemonic

gclen rd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 cd opcode
7 5 5 3 5 7
GCLEN=0001000 GCLEN=00110 src GCLEN=000 dest OP=0110011
Description

Calculate the length of ¢s1's bounds and write the result in rd. The length is defined as the
difference between the decoded bounds' top and base addresses i.e. top - base. It is not required
that the input capability ¢s1 has its tag set to 1. GCLEN outputs O if ¢s1's bounds are malformed
(see Section 2.5), and 2*"*"M**-1 if the length of €51 is 2*"*"M*%,

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 74

7.1.19. SCBNDSI

See SCBNDS.

7.1.20. SCBNDS

Df CHERI v9 Note: SCBNDS was called CSETBOUNDSEXACT.
Df CHERI v9 Note: SCBNDSI would have been CSETBOUNDSEXACTIMM if it had existed.
/4 CHERI v9 Note: This page has new encodings.
/4 CHERI v9 Note: the immediate format has changed
Synopsis
Capability set bounds
Mnemonic

scbnds cd, cs1, rs2
scbndsi cd, cs1, uimm

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
SCBNDS=0000111 src2 srcl SCBNDS=000 dest OP=0110011
31 26 25 24 20 19 15 14 12 11 7 6 0
funct6 S uimm csl funct3 cd opcode
6 1 5 5 3 5 7
SCBNDSI scaled uimm src SCBNDSI=101 dest OP-IMM=0010011
=000001
Description

Capability register cd is set to capability register ¢s1 with the base address of its bounds replaced
with the value of cs1.address and the length of its bounds set to rs2 (or imm). If the resulting
capability cannot be represented exactly then set c¢d.tag to O. In all cases, cd. tag is set to O if its
bounds exceed ¢s1's bounds, ¢s1's tag is O or ¢s1 is sealed.

SCBNDSI uses the s bit to scale the immediate by 4 places

immediate = ZeroExtend(s 7 uimm<<4 : uimm)

Prerequisites

Zcheri_purecap

Operation for SCBNDS
TODO

Operation for SCBNDSI
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 75

7.1.21. SCBNDSR

Df CHERI v9 Note: This instruction was called CSETBOUNDS.
Df CHERI v9 Note: This page has new encodings.
Synopsis

Capability set bounds, rounding up if necessary

Mnemonic

scbndsr cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
SCBNDSR=0000111 src2 srcl SCBNDSR=001 dest OP=0110011
Description

Capability register cd is set to capability register ¢s1 with the base address of its bounds replaced
with the value of c¢s1.address field and the length of its bounds set to rs2. The base is rounded
down and the length is rounded up by the smallest amount needed to form a representable
capability covering the requested bounds. In all cases, cd.tag is set to O if its bounds exceed ¢s1''s
bounds, cs1's tagis O or cs1 is sealed.

Prerequisites

Zcheri_purecap

Operation for SCBNDSR
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 76

7.1.22. CRAM

Synopsis
Get Capability Representable Alignment Mask (CRAM)

Mnemonic

cram rd, rsT

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 rsl funct3 rd opcode
7 5 5 3 5 7
CRAM=0001000 CRAM=00111 src CRAM=000 dest OP=0110011
Description

Integer register rd is set to a mask that can be used to round addresses down to a value that is
sufficiently aligned to set exact bounds for the nearest representable length of rs1.

Prerequisites

Zcheri_purecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 77

7.1.23. LC
Df CHERI v9 Note: This page has new encodings.
Df The RV64 encoding is intended to also allocate the encoding for LQ for RVI128.
Synopsis
Load capability

Capability Mode Mnemonics
lc cd, offset(cst)

Legacy Mode Mnemonics
lc cd, offset(rs1)

Df These instructions have different encodings for RV64 and RV32.
Encoding
31 20 19 15 14 12 11 7 6 0
imm[11:0] rsl/csl funct3 cd opcode
12 5 3 5 7
offset[11:0] base rvé4: LC=100 dest MISCMEM=0001111
rv32: LC=011 LOAD=0000011

Capability Mode Description
Load a CLEN+1 bit value from memory and writes it to c¢d. The capability in ¢s1 authorizes the
operation. The effective address of the memory access is obtained by adding the address of ¢s1 to
the sign-extended 12-bit offset. The tag value written to ¢d is O if the tag of the memory location
loaded is O or €¢s1 does not grant C-permission.

Legacy Mode Description

Loads a CLEN+1 bit value from memory and writes it to cd. The capability authorising the
operation is ddc. The effective address of the memory access is obtained by adding rs1 to the sign-
extended 12-bit offset. The tag value written to cd is O if the tag of the memory location loaded is O
or ddc does not grant C-permission.

Exceptions
Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 78

Prerequisites for Capability Mode

Zcheri_purecap

Prerequisites for Legacy Mode

Zcheri_legacy

LC Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

.1."Zcheri_purecap’, "Zcheri_legacy" and "Zcheri _mode" Extensions for CHERI | Page 79

7.1.24. 5C
Df The RV64 encoding is intended to also allocate the encoding for SQ for RVI28.
Synopsis
Store capability

Capability Mode Mnemonics
sc cs2, offset(es)

Legacy Mode Mnemonics
sc cs2, offset(rs1)

Df These instructions have different encodings for RV64 and RV32.
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] cs2 rsl/csl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base rvé4: SC=100 offset[4:0] STORE=0100011
rv32: SC=011

Capability Mode Description
Store the CLEN+1 bit value in ¢s2 to memory. The capability in ¢s1 authorizes the operation. The
effective address of the memory access is obtained by adding the address of ¢s1 to the sign-
extended 12-bit offset. The capability written to memory has the tag set to O if the tag of ¢s2is O or
¢s1 does not grant C-permission.

Legacy Mode Description

Store the CLEN+1 bit value in ¢s2 to memory. The capability authorising the operation is ddc. The
effective address of the memory access is obtained by adding rs1 to the sign-extended 12-bit offset.
The capability written to memory has the tag set to O if ¢s2's tag is O or ddc does not grant C-
permission.

Exceptions
Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability mode

Zcheri_purecap

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI | Page 80

Prerequisites for legacy Mode

Zcheri_legacy

SC Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 81

7.2. RV32I/E and RV64I/E Base Integer Instruction
Sets

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 82

7.2.1. AUIPC

Synopsis
Add upper immediate to pc/pcc

Capability Mode Mnemonic
auipc cd, imm

Legacy Mode Mnemonic
auipc rd, imm

Encoding
31 12 11
imm[31:12] cd/rd opcode
20 5 7
U-immediate[31:12] dest AUIPC=0010111

Capability Mode Description

Form a 32-bit offset from the 20-bit immediate filling the lowest 12 bits with zeros. Increment the
address of the AUIPC instruction’s pcc by the 32-bit offset, then write the output capability to cd.
The tag bit of the output capability is O if the incremented address is outside the pcc's

Representable Range.

Legacy Mode Description

Form a 32-bit offset from the immediate, filling in the lowest 12 bits with zeros, adds this offset to
the address of the AUIPC instruction, then places the result in register rd.

The instructions on this page are either PC relative or may update the pcc. Therefore an

| yl implementation may make them illegal in debug mode. If they are supported then the

value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Mode

Zcheri_purecap

Prerequisites for Legacy Mode

Zcheri_legacy

Operation for AUIPC
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 83

7.22. BEQ, BNE, BLT[U], BGE[U]

Synopsis
Conditional branches (BEQ, BNE, BLT[U], BGE[U])

Mnemonics

beq rs1, rs2, imm
bne rs1, rs2, imm
blt rs1, rs2, imm
bge rs1, rs2, imm
bltu rs1, rs2, imm
bgeu rs1, rs2, imm

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
| imm[12|10:5] rs2 rsl funct3 imm[4:1]11] opcode
7 5 5 3 5 7
offset[12]10:5] src2 srcl BEQ=000 offset[4:1]11] BRANCH=1100011
BNE=001
BLT=100
BGE=101
BLTU=110
BGEU=111
Description

Compare two integer registers rs1 and rs2 according to the indicated opcode as described in
(RISC-V, 2023). The 12-bit immediate encodes signed offsets in multiples of 2 bytes. The offset is
sign-extended and added to the address of the branch instruction to give the target address. Then
the target address is written into the address field of pcc.

Exceptions

When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of
mtval or stval:

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

ERROR: TODO: Sail doesn’t have target exceptions - wrong code included?

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 84

7.2.3. IR

Expands to JALR following the expansion rule from (RISC-V, 2023).

7.2.4. JALR

Synopsis

Jump and link register

Capability Mode Mnemonic
jalr cd, cs1, offset

Legacy Mode Mnemonic
jalr rd, rs1, offset

Encoding
31 20 19 15 14 12 11
imm[11:0] csl/rsl funct3 cd/rd opcode
12 5 3 5 7
offset[11:0] base 0 dest JALR=1100111

Capability Mode Description

JALR allows unconditional, indirect jumps to a target capability. The target capability is obtained by
unsealing c¢s1 if the immediate is zero and incrementing its address by the sign-extended 12-bit
immediate otherwise, and then setting the least-significant bit of the result to zero. The target
capability may have Invalid address conversion performed and is then installed in pcc. The pcc of
the next instruction following the jump (pcc + 4) is sealed and written to cd.

Legacy Mode Description

JALR allows unconditional, indirect jumps to a target address. The target address is obtained by
adding the sign-extended 12-bit immediate to rs1, then setting the least-significant bit of the result
to zero. The target address is installed in the address field of the pcc which may require Invalid

address conversion. The address of the instruction following the jump (pcc + 4) is written to rd.

Exceptions

When these instructions cause CHERI exceptions, CHERI jump or branch fault is reported in the

TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE Legacy Capability Reason
Mode Mode
Tag violation v cs1 hastagsetto O
Seal violation v cs1is sealed and the immediate is not O
Permission v ¢s1 does not grant X-permission
violation
Length v v Minimum length instruction is not within the target
violation capability’s bounds. This check uses the address after it has

undergone Invalid address conversion but with the original

bounds.

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 85

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites Capability Mode

Zcheri_purecap

Prerequisites Legacy Mode
Zcheri_legacy

Operation
TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 86

7.2.5.]

Expands to JAL following the expansion rule from (RISC-V, 2023).

7.2.6. JAL

Synopsis
Jump and link

Capability Mode Mnemonic
jal cd, offset

Legacy Mode Mnemonic
jal rd, offset

Encoding

31 30 21 20 19 12 11 7 6 0
|[20] | imm[10:1] |[11] | imm[19:12] cd/rd opcode

1 10 1 5

8 7
offset[20:1] offset[19:12] dest JAL=1101111

Capability Mode Description

JAL’s immediate encodes a signed offset in multiple of 2 bytes. The pcc is incremented by the sign-
extended offset to form the jump target capability. The target capability is written to pcc. The pcc of
the next instruction following the jump (pcc + 4) is sealed and written to cd.

Legacy Mode Description

JAL’s immediate encodes a signed offset in multiple of 2 bytes. The sign-extended offset is added to
the pcc's address to form the target address which is written to the pcc's address field. The address
of the instruction following the jump (pcc + 4) is written to rd.

Exceptions

CHERI fault exceptions occur when a minimum length instruction at the target address is not
within the bounds of the pcc. In this case, CHERI jump or branch fault is reported in the TYPE field
and Length Violation is reported in the CAUSE field of mtval or stval.

The instructions on this page are either PC relative or may update the pcc. Therefore an
| yl implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Mode

Zcheri_purecap

Prerequisites for Legacy Mode

Zcheri_legacy

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.7. LD

See LB.

7.2.8. LWU

See LB.

7.29. LW

See LB.

7.2.10. LHU

See LB.

7.2.11. LH

See LB.

7.2.12. LBU

See LB.

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 87

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV641/E Base Integer Instruction Sets | Page 88

7.2.13. LB

Synopsis
Load (LD, LW[U], LH[U], LB[U])

Capability Mode Mnemonics (RV64)

1d rd, offset(cs1)

lw[u] rd, offset(cs1)
1h[u] rd, offset(cs1)
1b[u] rd, offset(cs1)

Legacy Mode Mnemonics (RV64)
1d rd, offset(rs1)
lw[u] rd, offset(rs1)
1h[u] rd, offset(rs1)
1b[u] rd, offset(rs1)

Capability Mode Mnemonics (RV32)

lw rd, offset(cs1)
1h[u] rd, offset(cs1)
1b[u] rd, offset(cs1)

Legacy Mode Mnemonics (RV32)

lw rd, offset(rs1)
1lh[u] rd, offset(rs1)
1b[u] rd, offset(rs1)

Encoding

31 20 19 15 14 12 11

imm[11:0] rsl/csl funct3

rd

opcode

12 5 3
offset[11:0] base width
LB=000
LH=001
LwW=010
LBU=100
LHU=101
rvé4: LwuU=110
rvé4: LD=011

Capability Mode Description

Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorising capability for the operation is ¢s1. A copy of the loaded value is written to rd.

Legacy Mode Description

Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to rs1. The

dest

7
LOAD=0000011

authorising capability for the operation is ddc. A copy of the loaded value is written to rd.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 89

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode LD
RV64, Zcheri_purecap

Prerequisites for Legacy Mode LD
RV64, Zcheri _legacy

Prerequisites for Capability Mode LW[U], LH[U], LB[U]

Zcheri_purecap, OR
Zcheri_legacy

Capability Mode Operation
TBD

Legacy Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 90

7.2.14. 5D

See SB

7.2.15. SW

See SB

7.2.16. SH

See SB

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 91

7.2.17.5B

Synopsis
Stores (SD, SW, SH, SB)

Capability Mode Mnemonics (RV64)
sd rs2, offset(cs1)
sw rs2, offset(cs1)
sh rs2, offset(cs1)
sb rs2, offset(cs1)

Legacy Mode Mnemonics (RV64)
sd rs2, offset(rs1)
sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Capability Mode Mnemonics (RV32)

sw rs2, offset(cs1)
sh rs2, offset(cs1)
sb rs2, offset(cs1)

Legacy Mode Mnemonics (RV32)

sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsl/csl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base SB=000 offset[4:0] STORE=0100011
SH=001
SW=010
rvé4: SD=011

Capability Mode Description

Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorising capability for the operation is ¢s1. A copy of rs2 is written to memory at the
location indicated by the effective address and the tag bit of each block of memory naturally
aligned to CLEN/8 is cleared.

Legacy Mode Description

Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to rs1. The
authorising capability for the operation is ddc. A copy of rs2 is written to memory at the location
indicated by the effective address and the tag bit of each block of memory naturally aligned to
CLEN/8 is cleared.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 92

case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode SD
RV64, Zcheri_purecap

Prerequisites for Legacy Mode SD
RV64, Zcheri_legacy

Prerequisites for Capability Mode SW, SH, SB

Zcheri_purecap

Prerequisites for Legacy Mode SW, SH, SB
Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 93

7.2.18. SRET

See MRET.

7.219. MRET

Synopsis
Trap Return (MRET, SRET)

Mnemonics

mret

sret
Encoding
31 20 19 15 14 12 11 7 6 0

funct12 rsl funct3 rd opcode
12 5 3 5 7
MRET=001100000010 0 PRIV=0 0 SYSTEM=111011

SRET=000100000010

Description

Return from machine mode (MRET) or supervisor mode (SRET) trap handler as defined by (RISC-
V, 2023). MRET unseals mepce and writes the result into pce. SRET unseals sepce and writes the
result into pcc.

Exceptions

CHERI fault exceptions occur when pcc does not grant ASR-permission because MRET and SRET
require access to privileged CSRs. When that exception occurs, CHERI instruction access fault is
reported in the TYPE field and the Permission Violation codes is reported in the CAUSE field of
mtval or stval.

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV641/E Base Integer Instruction Sets | Page 94

7.2.20. DRET
Synopsis

Debug Return (DRET)
Mnemonics

dret
Encoding
31 20 19 15 14 12 11 7 6 0

funct12 rsl funct3 rd opcode
12 5 3 5 7
DRET=011110110010 0 PRIV=0 0 SYSTEM=111011

Description

DRET return from debug mode. It unseals dpcc and writes the result into pcc.

The DRET instruction is the recommended way to exit debug mode. However, it is a pseudo
| y instruction to return that technically does not execute from the program buffer or memory.
It currently does not require the pcc to grant ASR-permission so it never excepts.

Prerequisites
Sdext

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 95

7.3."A" Standard Extension for Atomic Instructions

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 96

7.3.1. AMO<OP>W

See AMO<OP>.D.

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 97

7.3.2. AMO<OP>D

Synopsis
Atomic Operations (AMO<OP>W, AMO<OP>.D), 32-bit encodings

Capability Mode Mnemonics (RV64)
amo<op>.[w|d], offset(cs1)

Capability Mode Mnemonics (RV32)
amo<op>.w, offset(cs1)

Legacy Mode Mnemonics (RV64)
amo<op>.[w|d], offset(rs1)

Legacy Mode Mnemonics (RV32)
amo<op>.w, offset(rs1)

Encoding

31 27 26 25 24 20 19 15 14 12 11 7 6 0

functb aq| rl rs2 rsl funct3 rd opcode

5 11 5 5 3 5 7
op aq Tl src base .W=010 rdest[4:0] AMO=0101111

SWAP=00001 rvé4: .D=011

ADD=00000

XOR=00100

AND=01100

OR=01000

MIN=10000

MAX=10100

MINU=11000

MAXU=11100

Capability Mode Description

Standard atomic instructions, authorised by the capability in ¢s1.

Legacy Mode Description

Standard atomic instructions, authorised by the capability in ddc.

Permissions

Requires R-permission and W-permission in the authorising capability.
Requires all bytes of the access to be in capability bounds.

Exceptions

All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 98

CAUSE

Tag violation

Seal violation

Permission violation

Length violation

Reason

Authority
capability tag
setto O

Authority
capability is
sealed

Authority
capability does
not grant R-
permission or
W-permission

At least one
byte accessed is
outside the
authority
capability
bounds

Prerequisites for Capability Mode AMO<OP>.W, AMO<OP>.D

Zcheri_purecap, and A

Prerequisites for Legacy Mode AMO<OP>.W, AMO<OP>.D
Zcheri_legacy, and A

Capability Mode Operation
TBD

Legacy Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 99

7.3.3. AMOSWAP.C
Df The RV64 encoding is intended to also allocate the encoding for AMOSWAP.Q for RVI28.

Synopsis
Atomic Operation (AMOSWAP.C), 32-bit encoding

Df These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics
amoswap.c, offset(cs1)

Legacy Mode Mnemonics
amoswap.c, offset(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
functb aq| rl cs2 csl funct3 rd opcode
5 1 1 5 5 3 5 7
op aq rl src base width rdest[4:0] AMO=0101111
SWAP=00001 rv32: .C=011

rve4: .C=100

Capability Mode Description
Atomic swap of capability type, authorised by the capability in ¢s1.

Legacy Mode Description
Atomic swap of capability type, authorised by the capability in ddc.

Permissions

Requires the authorising capability to be tagged and not sealed.

Requires R-permission and W-permission in the authorising capability.

If C-permission is not granted then store the memory tag as zero, and load cd. tag as zero.
(This tag clearing behaviour may become a data dependent exception in future.)

Requires all bytes of the access to be in capability bounds.

Exceptions

All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE Reason
Tag violation Authority
capability tag
setto O

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 100

CAUSE

Seal violation

Permission violation

Length violation

Prerequisites for Capability Mode AMOSWAP.C
Zcheri_purecap, and A

Prerequisites for Legacy Mode AMOSWAP.C
Zcheri_legacy, and A

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

Reason

Authority
capability is
sealed

Authority
capability does
not grant R-
permission or
W-permission

At least one
byte accessed is
outside the
authority
capability
bounds

7.3.4. LR.D

See LR.B.

7.3.5. LR.W

See LR.B.

7.3.6. LR.H

See LR.B.

7.3."A" Standard Extension for Atomic Instructions | Page 101

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 102

7.37.LR.B

Synopsis

Load Reserved (LR.D, LR.W, LR.H, LR.B), 32-bit encodings

Capability Mode Mnemonics (RV64)
1r.[d|w|h|b] rd, @(cs1)

Capability Mode Mnemonics (RV32)

Ir.[w|h|b] rd, @(cs1)

Legacy Mode Mnemonics (RV64)
1r.[d|w|h|b] rd, @(rs1)

Legacy Mode Mnemonics (RV32)

Ir.[w|h|b] rd, @(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6
functb aq| rl rs2 rsl funct3 rd opcode

5 11 5 5 3 5 7

op ag rl cap: CLR.*=00000 base .B=000 rdest[4:0] AMO=0101111
cap: CLR.*=00010 leg: LR.*=00000 .H=001

leg: LR.*=00010 .W=010
rvé4: .D=011

Capability Mode Description

Load reserved instructions, authorised by the capability in ¢s1.

Legacy Mode Description

Load reserved instructions, authorised by the capability in ddc.

Exceptions

All misaligned load reservations cause a load address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 202.3)), otherwise they take a load access

fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE
Tag violation

Seal violation

Reason
Authority capability tag set to O
Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation

At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode LR.D
RV64, Zcheri_purecap, and A

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Capability Mode LR.W
Zcheri_purecap, and A

Prerequisites for Capability Mode LR.H, LR.B
Zbhlrsc, and Zcheri_ purecap

Prerequisites for LR.D
RV64, Zcheri_legacy, and A

Prerequisites for LR W
Zcheri_legacy, and A

Prerequisites for LR.H, LR.B
Zbhlrsc, Zcheri_legacy

Operation

TBD

7.3."A" Standard Extension for Atomic Instructions | Page 103

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 104

7.3.8. LR.C

Df The RV64 encoding is intended to also allocate the encoding for LR.Q for RV128.

Synopsis

Load Reserved Capability (LR.C), 32-bit encodings

Df These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics

1lr.c cd, 0(cs1)

Legacy Mode Mnemonics

1r.c cd, 0(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11
functb aq| rl funct5 csl/rs1 funct3 cd opcode
5 11 5 5 3 5 7
op aq rl cap: CLR.*=00000 base rv32: .C=011 rdest[4:0] AMO=0101111
cap: CLR.*=00010 leg: LR.*=00000 rve4: .C=100

leg: LR.*=00010

Capability Mode Description

Load reserved instructions, authorised by the capability in ¢s1. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-

V,2023)).

Legacy Mode Description

Load reserved instructions, authorised by the capability in ddc. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-

V, 2023)).

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE
Tag violation

Seal violation

Permission violation Authority capability does not grant R-permission

Length violation

Prerequisites for Capability Mode
Zcheri_purecap, and A

Reason

Authority capability tag set to O

Authority capability is sealed

At least one byte accessed is outside the authority capability bounds

Prerequisites for Legacy Mode

Zcheri_legacy, and A

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 105

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 106

7.39.5C.D

See SC.B.

7.3.10. SC.W

See SC.B.

7.3.11. SC.H

See SC.B.

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 107

7.312. SC.B

Synopsis
Store Conditional (SC.D, SC.W, SC.H, SC.B), 32-bit encodings

Capability Mode Mnemonics (RV64)
sc.[d|w|h|b] rd, rs2, @(cs1)

Capability Mode Mnemonics (RV32)
sc.[w|h|b] rd, rs2, @(cs1)

Legacy Mode Mnemonics (RV64)
sc.[d|w|h|b] rd, rs2, @(rs1)

Legacy Mode Mnemonics (RV32)
sc.[w|h|b] rd, rs2, 0(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
functb aq| rl rs2 rsl funct3 rd opcode
5 11 5 5 3 5 7
op aq Tl src base width rdest[4:0] AMO=0101111
SC=00011 .B=000
.H=001
.W=010
rvé4: .D=011

Capability Mode Description

Store conditional instructions, authorised by the capability in ¢s1.

Legacy Mode Description

Store conditional instructions, authorised by the capability in ddc.

Exceptions

All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode SC.D
RV64, and Zcheri_purecap, and A

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 108

Prerequisites for Legacy Mode SC.D
RV64, and Zcheri_legacy, and A

Prerequisites for Capability Mode SC.W
Zcheri_purecap, and A

Prerequisites for Legacy Mode SC.W
Zcheri_legacy, and A

Prerequisites for Capability Mode SC.H, SC.B
Zcheri_ purecap, and Zbhlrsc

Prerequisites for Legacy Mode SC.H, SC.B
Zcheri_legacy, and Zbhlrsc

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 109

7.313. SC.C

Df The RV64 encoding is intended to also allocate the encoding for SC.Q for RV128.

Synopsis
Store Conditional (SC.C), 32-bit encoding

Df These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics
sc.c rd, cs2, 0(cs1)

Legacy Mode Mnemonics
sc.c rd, cs2, 0(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
functb aq| rl cs2 csl/rs1 funct3 rd opcode
5 1 1 5 5 3 5 7
op aq rl src base width rdest[4:0] AMO=0101111
SC=00011 rv32: .C=011

rve4: .C=100

Capability Mode Description

Store conditional instructions, authorised by the capability in cs1. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 202.3)).

Legacy Mode Description

Store conditional instructions, authorised by the capability in ddc. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 202.3)).

Exceptions

All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode
Zcheri_purecap, and A

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 110

Prerequisites for Legacy Mode

Zcheri_legacy, and A

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.4."Zicsr", Control and Status Register (CSR) Instructions | Page 111

7.4, "Zicsr", Control and Status Register (CSR)
INnstructions

RISC-V Specification for CHERI Extensions | © RISC-V

74."Zicsr", Control and Status Register (CSR) Instructions | Page 112

7.4.1. CSRRW
Df CHERI v9 Note: CSpecialRW is removed and this functionality replaces it
Synopsis

CSR access (CSRRW) 32-bit encodings

Mnemonics for accessing capability CSRs at CLEN-wide aliases

csrrw cd, cs1, csr

Mnemonics for accessing XLEN-wide CSRs or capability CSRs at XLEN-wide aliases
csrrw rd, rs1, csr

Encoding
31 20 19 15 14 12 11 7 6 0
csr rsl/csl funct3 rd/cd opcode
12 5 3 5 7
source/dest CSR source CSRRW=001 dest SYSTEM=1110011
Description

This is a standard RISC-V CSR instructions with extended functionality for accessing CLEN-wide
CSRs, such as mtvec/mtvecc, which can be accessed through either the RISC-V address or the
capability address alias.

See Table 38 for a list of CLEN-wide CSRs and Table 39 for the action taken on writing each one.
CSRRW writes ¢s1 to the CLEN-wide alias of extended CSRs, and reads a full capability into cd.
CSRRW writes rs1 to the XLEN-wide alias of extended CSRs, and reads the address field into rd.

If cd is c@ (or rd is x@), then the instruction shall not read the CSR and shall not cause any of the
side effects that might occur on a CSR read.

The assembler pseudoinstruction to write a capability CSR at its CLEN alias, ecsrw csr, cs1, is
encoded as esrrw ¢@, csr, csl.

Access to XLEN-wide CSRs from other extensions is as specified by RISC-V.

Permissions

All non-user mode accessible CSRs require ASR-permission, including existing RISC-V CSRs.

Prerequisites for capability address aliases

Zcheri_purecap

Prerequisites for legacy address aliases

Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.4.2. CSRRWI

See CSRRCI.

7.4.3. CSRRS

See CSRRCI.

7.4.4. CSRRSI

See CSRRCI.

7.4.5. CSRRC

See CSRRCI.

74."Zicsr", Control and Status Register (CSR) Instructions | Page 113

RISC-V Specification for CHERI Extensions | © RISC-V

74."Zicsr", Control and Status Register (CSR) Instructions | Page 114

7.4.6. CSRRC]
Df CHERI v9 Note: CSpecialRW is removed and this functionality replaces it
Synopsis

CSR access (CSRRWI, CSRRS, CSRRSI, CSRRC, CSRRCI) 32-bit encodings

Mnemonics for accessing capability CSRs at CLEN-wide aliases

csrrs cd, rs1, csr
csrrc cd, rs1, csr
csrrwi cd, imm, csr
csrrsi cd, imm, csr
csrrci cd, imm, csr

Mnemonics for accessing XLEN-wide CSRs or capability CSRs at XLEN-wide aliases

csrrs rd, rs1, csr
csrrc rd, rs1, csr
csrrwi rd, imm, csr
csrrsi rd, imm, csr
csrrci rd, imm, csr

Encoding
31 20 19 15 14 12 11 7 6 0
csr rs1/uimm funct3 rd opcode
12 5 3 5 7
source/dest CSR source CSRRS=010 dest SYSTEM=1110011
source CSRRC=011
uimm[4:0] CSRRWI=101
uimm[4:0] CSRRSI=110
uimm[4:0] CSRRCI=111
Description

These are standard RISC-V CSR instructions with extended functionality for accessing CLEN-wide
CSRs, such as mtvec/mtvece, which can be accessed through either the RISC-V address or the
capability address alias.

Unlike CSRRW, these instructions only update the address field and the tag as defined in Table 39
when writing capability CSRs regardless of the CSR alias used. The final address to write to the
capability CSR is determined as defined by RISC-V for these instructions.

See Table 38 for a list of CLEN-wide CSRs and Table 39 for the action taken on writing an XLEN-
wide value to each one.

If cd is €@ (or rd is x@), then CSRRWI shall not read the CSR and and shall not cause any of the side
effects that might occur on a CSR read. If rs1 is x@ for CSRRS and CSRRC, or imm is O for CSRRSI
and CSRRCI, then the instruction will not write to the CSR at all, and so shall not cause any of the
side effects that might otherwise occur on a CSR write.

The assembler pseudoinstruction to read a capability CSR at its CLEN alias, esrr rd, csr, is
encoded as csrrs cd, csr, c@.

Access to XLEN-wide CSRs from other extensions is as specified by RISC-V.

Df If the CSR accessed is a capability, and rs1 is x@ for CSRRS and CSRRC, or imm is O for

RISC-V Specification for CHERI Extensions | © RISC-V

74."Zicsr", Control and Status Register (CSR) Instructions | Page 115

CSRRSI and CSRRCI, then the CSR is not written so no representability check is needed in
this case.

Permissions

All non-user mode accessible CSRs require ASR-permission, including existing RISC-V CSRs.

Prerequisites for capability address aliases

Zcheri_purecap

Prerequisites for legacy address aliases

Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 116

75."Zth" "Zfthmin", "F" and "D" Standard Extension
for Floating-Point

RISC-V Specification for CHERI Extensions | © RISC-V

7.5.1. FLD

See FLH.

7.52. FLW

See FLH.

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 117

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 118

7.5.3. FLH

Synopsis
Floating point loads (FLD, FLW, FLH), 32-bit encodings

Capability Mode Mnemonics
fld/flw/flh frd, offset(cs1)

Legacy Mode Mnemonics
fld/flw/flh rd, offset(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
imm[11:0] rsl/csl width frd opcode
12 5 3 5 7
offset[11:0] base FLD=011 dest LOAD-FP=0000111
FLW=010
FLH=001

Capability Mode Description
Standard floating point load instructions, authorised by the capability in ¢s1.

Legacy Mode Description
Standard floating point load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode FLD
Zcheri_purecap, and D

Prerequisites for Legacy Mode FLD
Zcheri_legacy, and D

Prerequisites for Capability Mode FLW

Zcheri_purecap, and F

Prerequisites for Legacy Mode FLW
Zcheri_legacy, and F

Prerequisites for Capability Mode FLH
Zcheri_purecap, and Zfthmin or Zth

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2th", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 119

Prerequisites for Legacy Mode FLH
Zcheri_legacy, and Zthmin or Zfh

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 120

7.5.4. FSD

See FSH.

7.55. FSW

See FSH.

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 121

7.5.6. FSH

Synopsis
Floating point stores (FSD, FSW, FSH), 32-bit encodings

Capability Mode Mnemonics
fsd/fsw/fsh fs2, offset(cs1)

Legacy Mode Mnemonics
fsd/fsw/fsh fs2, offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsl/csl width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base FSD=011 offset[4:0] STORE-FP=0100111
FSW=010
FSH=001

Capability Mode Description
Standard floating point store instructions, authorised by the capability in ¢s1.

Legacy Mode Description
Standard floating point store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode FSD
Zcheri_purecap, and D

Prerequisites for Legacy Mode FSD
Zcheri_legacy, and D

Prerequisites for Capability Mode FSW

Zcheri_purecap, and F

Prerequisites for Legacy Mode FSW
Zcheri_legacy, and F

Prerequisites for Capability Mode FSH
Zcheri_purecap, and Zth or Zthmin

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 122

Prerequisites for Legacy Mode FSH
Zcheri_legacy, and Zfh or Zthmin

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 123

7.6."C" Standard Extension for Compressed
INnstructions

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 124

7.6.1. CBEQZ, CBNEZ

Synopsis
Conditional branches (C.BEQZ, C.BNEZ), 16-bit encodings

Mnemonics
c.beqz/c.bnez rs1', offset

Expansions
beq/bne rs1’, x@, offset

Encoding
15 13 12 10 9 7 6 2 1 0
funct3 imm rsl' imm op
3 3 3 5 2
C.BEQZ offset[8|4:3] src offset[7:6]2:1|5] C1
C.BNEZ offset[8|4:3] src offset[7:6]2:1|5] C1l
Exceptions

When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of
mtval or stval:

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites

CorZca

Operation (after expansion to 32-bit encodings)
See Conditional branches (BEQ, BNE, BLT[U], BGE[U])

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 125

7.6.2. CMV

Synopsis
Capability move (C.MV), 16-bit encoding

Capability Mode Mnemonic

c.mv cd, cs2

Capability Mode Expansion

cmv cd, cs2

Suggested assembly syntax

mv cd, cs2
mv cd, cs2

Df the suggested assembly syntax distinguishes from integer mv by operand type.

Legacy Mode Mnemonic

c.mv rd, rs2

Legacy Mode Expansion
add rd, xO, rs2

Encoding
15 12 11 7 6 2 1 0
funct4 rd/cd rs2/cs2 op
4 5 5 2
C.MV=1000 dest!=0 src!=0 Cc2=10

Capability Mode Description
Capability register cd is replaced with the contents of ¢s2.

Legacy Mode Description
Standard RISC-V C.MV instruction.

Prerequisites for Capability Mode

Cor Zca, Zcheri_purecap

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy

Capability Mode Operation (after expansion to 32-bit encodings)
See CMV

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 126

7.6.5. CADDI6SP

Synopsis
Stack pointer increment in blocks of 16 (C.ADDI16SP), 16-bit encodings

Capability Mode Mnemonic
c.addi16sp imm

Capability Mode Expansion
cadd csp, csp, imm

Legacy Mode Mnemonic

c.addi16sp imm

Legacy Mode Expansion
add sp, sp, imm

Encoding
15 13 12 11 7 6 2 1 0
funct3 r|\zimm[9 rd/rs1 nzimm([4|6|8:7|5] op
3 1 5 5 2
C.ADDI16SP=011 [9] 2 offset[4|6]8:7|5] C1=01

Capability Mode Description

Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (csp=c2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496). Clear the tag if the
resulting capability is unrepresentable or csp is sealed.

Legacy Mode Description

Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496).

Prerequisites for Capability Mode

Cor Zca, Zcheri_purecap

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy

Capability Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 127

7.6.4. CADDI4SPN

See C ADDI4SPN.

Synopsis
Stack pointer increment in blocks of 4 (C.ADDI4SPN), 16-bit encoding

Capability Mode Mnemonic
c.addi4spn cd', uimm

Capability Mode Expansion
cadd cd', csp, uimm

Legacy Mode Mnemonic
c.addidspn rd', uimm

Legacy Mode Expansion
add rd', sp, uimm

Encoding
15 13 12 5 4 2 1 0
funct3 nzimm rd' op
3 8 3 2
C.ADDI4SPN=000 uimm[5:4/9:6|2|3]!=0 dest C0=00

Capability Mode Description

Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, csp, and writes the
result to cd'. This instruction is used to generate pointers to stack-allocated variables. Clear the tag
if the resulting capability is unrepresentable or ¢sp is sealed.

Legacy Mode Description

Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, sp, and writes the result
to rd". This instruction is used to generate pointers to stack-allocated variables.

Prerequisites for CADDI4SPN

Cor Zca, Zcheri_purecap

Prerequisites for CADDI4SPN
Cor Zca, Zcheri_legacy

Capability Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 128

7.6.5. CMODESW

Df CHERI v9 Note: This instruction is new.

Synopsis
Capability/Legacy Mode switching (C.MODESW), 16-bit encoding

Mnemonics

c.modesw

Expansions

modesw
Encoding

15 13 12 10 9 7 6 5 4 2 1 0
1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1
3 3 3 2 3 2
FUNCT3 FUNCT3 FUNCT3 FUNCT2 C.MODESW Cl=1

Description

Toggle the hart’s current CHERI execution mode in pcc. If the current mode in pcc is Legacy, then
the mode bit (M) in pcc is set to Capability. If the current mode is Capability, then the mode bit (M)
in pcc is set to Legacy.

In debug mode MODESW can still be used to change the operating mode, and the current mode is
shown in the M bit of dinfc.

Exceptions

None

Prerequisites

CorZca, Zcheri mode

Operation (after expansion to 32-bit encodings)
See MODESW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 129

'7.6.0. CJALR

Synopsis
Register based jumps with link, 16-bit encodings

Capability Mode Mnemonic
c.jalr c1, cs

Capability Mode Expansion
jalr c1, 0(cs1)

Legacy Mode Mnemonic

c.jalr x1, rsl

Legacy Mode Expansion
jalr x1, 0(rs1)

Encoding
15 12 11 7 6 2 1 0
funct4 csl/rsl cs2/rs2 op
4 5 5 2
C.JALR=1001 src!=0 0 C2=10

Capability Mode Description

Link the next linear pcc to cd and seal. Jump to cs1.address+offset. pcc metadata is copied from
cs1, and is unsealed if necessary. Note that execution has several exception checks.

Legacy Mode Description

Set the next PC and link to rd according to the standard JALR definition. Check a minimum length
instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Exceptions
See JALR

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Mode

Cor Zca, Zcheri_purecap

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See JALR

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 130

7.6.7. CJR

Synopsis

Register based jumps without link, 16-bit encodings

Capability Mode Mnemonic
c.jr csl

Capability Mode Expansion
jalr c@, 0(cs1)

Legacy Mode Mnemonic

c.jr rsi

Legacy Mode Expansion
jalr x@, 0(rs1)

Encoding
15 12 11 7 6 2 1 0
funct4 csl/rsl cs2/rs2 op
4 5 5 2
C.JR=1000 src!=0 0 C2=10

Capability Mode Description

Jump to cs1.address+offset. pcc metadata is copied from cs1, and is unsealed if necessary. Note
that execution has several exception checks.

Legacy Mode Description

Set the next PC according to the standard jalr definition. Check a minimum length instruction is
in pce bounds at the target PC, take a CHERI Length Violation exception on error.

Exceptions
See JALR

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Mode

Cor Zca, Zcheri_purecap

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See JALR

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 131

7.0.8. CJAL
Synopsis
Register based jumps with link, 16-bit encodings

Capability Mode Mnemonic (RV32)
c.jal c1, offset

Capability Mode Expansion (RV32)
jal c1, offset

Legacy Mode Mnemonic (RV32)
c.jal x1, offset

Legacy Mode Expansion (RV32)
jal x1, offset

Encoding (RV32)
15 13 12 2 1 0
funct3 imm op
3 11 2
leg: C.JAL=001 offset[11]4/9:81067|3:1/5] c1=01

Capability Mode Description

Link the next linear pcc to cd and seal. Jump to pcc.address+offset. Check a minimum length
instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Legacy Mode Description

Set the next PC and link to rd according to the standard JAL definition. Check a minimum length
instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Exceptions
See JAL

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Mode

Cor Zca, Zcheri_purecap

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See JAL

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 132

7.069.CJ

Synopsis

Register based jumps without link, 16-bit encodings

Mnemonic

c.j offset

Capability Mode Expansion
jal c@, offset

Legacy Mode Expansion
jal x@, offset

Encoding
15 13 12 2 1 0
funct3 imm op
3 11 2
C.J=101 offset[11]4]9:8|10|6|7|3:1|5] Cc1=01
Description

Set the next PC following the standard jal definition. Check a minimum length instruction is in
pcc bounds at the target PC, take a CHERI Length Violation exception on error. There is no
difference in Capability Mode or Legacy Mode execution for this instruction.

Exceptions
See JAL

The instructions on this page are either PC relative or may update the pcc. Therefore an
| yl implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Mode

Cor Zca, Zcheri_purecap

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See JAL

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 133

7.6.10. C.LD

See C.LW.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 134

7.6.11. C.LW

Synopsis
Load (C.LD, C.LW), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.ld/c.lw rd', offset(cs1')

Capability Mode Expansions (RV64)
1d/1w rd', offset(cs1')

Legacy Mode Mnemonics (RV64)
c.ld/c.lw rd', offset(rs1')

Legacy Mode Expansions (RV64)
1d/1w rd', offset(rs1')

Capability Mode Mnemonics (RV32)
c.lw rd', offset(cs1’)

Capability Mode Expansions (RV32)
lw rd', offset(es1')

Legacy Mode Mnemonics (RV32)
c.lw rd', offset(rs1')

Legacy Mode Expansions (RV32)
lw rd', offset(rs1')

Encoding
15 13 12 10 9 7 6 5
funct3 imm rsl'/csl' imm rd' op
3 3 3 2 3 2
C.LwW=010 offset[5:3] base offset[2|6] dest C0=00
rv64: C.LD=011 offset[7:6]

Capability Mode Description
Standard load instructions, authorised by the capability in ¢s1.

Legacy Mode Description
Standard load instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 135

CAUSE Reason

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode C.LD
RV64, and C or Zca, Zcheri_ purecap

Prerequisites for Legacy Mode C.LD
RV64, C or Zca, Zcheri_legacy

Prerequisites Capability Mode C.LW

Cor Zca, Zcheri_purecap

Prerequisites Legacy Mode C.LW
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See LD, LW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 136

7.6.12. CLWSP

See C.LDSP.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 137

7.6.13. C.LDSP

Synopsis
Load (C.LWSP, C.LDSP), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.ld/c.1w rd, offset(csp)

Capability Mode Expansions (RV64)
1d/1w rd, offset(csp)

Legacy Mode Mnemonics (RV64)
c.ld/c.1w rd, offset(sp)

Legacy Mode Expansions (RV64)
1d/1w rd, offset(sp)

Capability Mode Mnemonics (RV32)
c.lw rd, offset(csp)

Capability Mode Expansions (RV32)
lw rd, offset(csp)

Legacy Mode Mnemonics (RV32)
c.lw rd, offset(sp)

Legacy Mode Expansions (RV32)
lw rd, offset(sp)

Encoding
15 13 12 11 7 6 2 1 0
funct3 imm rd imm op
3 1 5 5 2
C.LWSP=010 [5] dest!=0 offset[4:2|7:6] C2=10
rv64: C.LDSP=011 offset[4:3]8:6]

Capability Mode Description

Standard stack pointer relative load instructions, authorised by the capability in ¢sp.

Legacy Mode Description

Standard stack pointer relative load instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 138

CAUSE Reason
Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode C.LDSP
RV64, and C or Zca, Zcheri_ purecap

Prerequisites for Legacy Mode C.LDSP
RV64, and C or Zca, Zcheri_legacy

Prerequisites for Capability Mode C.LWSP

Cor Zca, Zcheri_purecap

Prerequisites for Legacy Mode C.LWSP
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See LW, LD

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 139

7.614. CFLW

See C.FLWSP.

7.6.15. CFLWSP

Synopsis
Floating point load (C.FLW, C.FLWSP), 16-bit encodings

Legacy Mode Mnemonics (RV32)
c.flw rd', offset(rs1'/sp)

Legacy Mode Expansions (RV32)
flw rd', offset(rs1'/sp)

Encoding (RV32)
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm rsl' imm rd' op
3 3 3 2 3 2
leg rv32: C.FLW=011 offset[5:3] base offset[2|6] dest C0=00
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg rv32: C.FLWSP=011 offset[5:2|7:6] src C2=10

Legacy Mode Description

Standard floating point load instructions, authorised by the capability in ddc. Note that these
instructions are not available in Capability Mode, as they have been remapped to C.LC, C.LCSP.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy, and Zcfor F

Operation (after expansion to 32-bit encodings)
See FLW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 140

7.6.16. CFLD

7.6.17. CFLDSP

Synopsis
Double precision floating point loads (C.FLD, C.FLDSP), 16-bit encodings

Capability Mode Mnemonics (RV32)
c.fld frd', offset(cs1'/csp)

Capability Mode Expansions (RV32)
fld frd', offset(csp)

Legacy Mode Mnemonics

c.fld fs2, offset(rs1'/sp)

Legacy Mode Expansions
fld fs2, offset(rs1'/sp)

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm rsl’/csl’ imm frd® op
3 3 3 2 3 2
leg C.FLD=001 offset[5:3] base offset[7:6] dest C0=00

cap rv32: C.FLD=001

15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg: C.FLDSP=001 offset[5:3]8:6] src C2=10

cap rv32: C.FLDSP=001

Legacy Mode Description

Standard floating point stack pointer relative load instructions, authorised by the capability in ddc.
Note that these instructions are not available in Capability Mode, as they have been remapped to
C.LC, C.LCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode (RV32 only)
Zcheri_purecap, Cand D;or

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 141

Zcheri_purecap, Zca and Zcd

Prerequisites for Legacy Mode

Zcheri_legacy, C and D; or
Zcheri_legacy, Zca and Zcd

Operation (after expansion to 32-bit encodings)
See FLD

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 142

7.06.18. C.LC

see C.LCSP.

7.6.19. C.LCSP

Synopsis
Capability loads (C.LC, C.LCSP), 16-bit encodings

Capability Mode Mnemonics
c.lc cd', offset(cs1'/csp)

Capability Mode Expansions
lc cd', offset(cs1'/csp)

Encoding
15 13 12 11 7 6
funct3 imm cd!=0 imm op
3 1 5 5 2
cap rv32: CLCSP=011 [5] dest offset[4:3]8:6] C2=10
cap rv64: C.LCSP=001 offset[4]9:6]
15 13 12 10 9 7 6 4
funct3 imm csl' rd' op
3 3 3 2 3 2
cap rv32: C.LC=011 offset[5:3] base offset[7:6] dest C0=00

cap rvé4: C.LC=001 offset[5:4|8]

Capability Mode Description

Load capability instruction, authorised by the capability in ¢s1. Take a load address misaligned

exception if not naturally aligned.

Legacy Mode Description

These mnemonics do not exist in Legacy Mode. The RV32 encodings map to C.FLW/C.FLWSP and

the RV64 encodings map to C.FLD/C.FLDSP.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites

Cor Zca, Zcheri_purecap

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 143

Operation (after expansion to 32-bit encodings)
See LC

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 144

7.6.20. C.SD

See C.SW.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 145

7.021. CSW

Synopsis
Stores (C.SD, C.SW), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.sd/c.sw rs2', offset(es1')

Capability Mode Expansions (RV64)
sd/sw rs2', offset(cs1')

Legacy Mode Mnemonics (RV64)
c.sd/c.sw rs2', offset(rs1')

Legacy Mode Expansions (RV64)
sd/sw rs2', offset(rs1')

Capability Mode Mnemonics (RV32)
c.sw rs2', offset(cs1')

Capability Mode Expansion (RV32)
sw rs2', offset(es1')

Legacy Mode Mnemonics (RV32)
c.sw rs2', offset(rs1')

Legacy Mode Expansion (RV32)
sw rs2', offset(rs1')

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
funct3 uimm rsl'/csl' uimm rs2'/cs2' op
3 3 3 2 3 2
C.SwW=110 offset[5:3] base offset[2|6] src C0=00
rv64: C.SD=111 offset[7:6]

Capability Mode Description
Standard store instructions, authorised by the capability in cs1.

Legacy Mode Description
Standard store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 146

CAUSE Reason
Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode C.SD
RV64, and C or Zca, Zcheri_ purecap

Prerequisites for Legacy Mode C.SD
RV64, and C or Zca, Zcheri_legacy

Prerequisites for Capability Mode C.SW

Cor Zca, Zcheri_purecap

Prerequisites for Legacy Mode C.SW
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See SD, SW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 147

7.0.22. CSWSP

See C.SDSP.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 148

7.025. CSDSP

Synopsis
Stack pointer relative stores (C.SWSP, C.SDSP), 16-bit encodings

Capability Mode Mnemonics (RV64)
c.sd/c.sw rs2, offset(csp)

Capability Mode Expansions (RV64)
sd/csw rs2, offset(csp)

Legacy Mode Mnemonics (RV64)
c.sd/c.sw rs2, offset(sp)

Legacy Mode Expansions (RV64)
sd/sw rs2, offset(sp)

Capability Mode Mnemonics (RV32)
c.sw rs2, offset(csp)

Capability Mode Expansion (RV32)
sw rs2, offset(csp)

Legacy Mode Mnemonics (RV32)
c.sw rs2, offset(sp)

Legacy Mode Expansion (RV32)
sw rs2, offset(sp)

Encoding
15 13 12 7 6 2 1 0
funct3 imm rs2/cs2 op
3 6 5 2
rvé4: C.SDSP=111 offset[5:3|8:6] src C2=10
C.SWSP=110 offset[5:2|7:6]

Capability Mode Description

Standard stack pointer relative store instructions, authorised by the capability in esp.

Legacy Mode Description

Standard stack pointer relative store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 149

CAUSE Reason

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode C.SDSP
RV64, and C or Zca, Zcheri_ purecap

Prerequisites for Legacy Mode C.SDSP
RV64, and C or Zca, Zcheri_legacy

Prerequisites for Capability Mode C.SWSP

Cor Zca, Zcheri_purecap

Prerequisites for Legacy Mode C.SWSP
Cor Zca, Zcheri_legacy

Operation (after expansion to 32-bit encodings)
See SD, SW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 150

7.6.24. CFSW

See C.FSWSP.

7.6.25. CFSWSP

Synopsis
Floating point stores (C.FSW, C.FSWSP), 16-bit encodings

Legacy Mode Mnemonics (RV32)
c.fsw rs2', offset(rs1'/sp)

Legacy Mode Expansions (RV32)
fsw rs2', offset(rs1'/sp)

Encoding (RV32)
15 13 12 10 9 7 6 5 4 2 1 0
funct3 uimm rsl' uimm rs2' op
3 3 3 2 3 2
leg rv32: C.FSW=111 offset[5:3] base offset[2|6] src C0=00
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg rv32: C.FSWSP=111 offset[5:2|7:6] src C2=10

Legacy Mode Description
Standard floating point store instructions, authorised by the capability in ddc.

y these instructions are not available in Capability Mode, as they have been remapped to
EI C.SC, C.SCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites

Cor Zca, Zcheri_legacy, Zcfor F

Operation (after expansion to 32-bit encodings)
See FSW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 151

7.0.26. CFSD

See C.FSDSP.

7.627. CFSDSP
Synopsis
Double precision floating point stores (C.FSD, C.FSDSP), 16-bit encodings

Capability Mode Mnemonics (RV32CD/RV32D_Zca)
c.fsd fs2, offset(cs1'/csp)

Capability Mode Expansions (RV32)
fsd fs2, offset(csp)

Legacy Mode Mnemonics (RV32CD/RV32D_Zca)
c.fsd fs2, offset(rs1'/sp)

Legacy Mode Expansions (RV32)
fsd fs2, offset(rs1'/sp)

Legacy Mode Mnemonics (RV64CD/RV64D _Zca)
c.fsd fs2, offset(rs1'/sp)

Legacy Mode Expansion (RV64)
fsd fs2, offset(rs1'/sp)

Encoding
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg C.FSD=101 offset[5:3|8:6] src C0=00
cap rv32: C.FSD=101
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg C.FSDSP=101 offset[5:3]8:6] src C2=10

cap rv32: C.FSDSP=101

Capability Mode Description

Standard floating point stack pointer relative store instructions, authorised by the capability in ¢s1
or CSp.

Legacy Mode Description

Standard floating point stack pointer relative store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 152

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode C.FSD, C.FSDSP (RV32 only)

Zcheri_purecap, C and D; or
Zcheri_purecap, Zca and Zcd

Prerequisites for Legacy Mode C.FSD, C.FSDSP

Zcheri_legacy, C and D; or
Zcheri_legacy, Zca and Zcd

Operation (after expansion to 32-bit encodings)
See FSD

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 153

7.0.28. C.SC

see C.SCSP.

7.6.29. CSCSP

Synopsis
Stores (C.SC, C.SCSP), 16-bit encodings

Df These instructions have different encodings for RV64 and RV32.

Capability Mode Mnemonics
c.sc c¢s2', offset(cs1'/csp)

Capability Mode Expansions
sc cs2', offset(cs1'/csp)

Encoding
15 13 12 7 6 2 1 0
funct3 imm cs2 op
3 6 5 2
cap rv32: C.SCSP=111 offset[5:2|7:6] src C2=10
cap rvé4: C.SCSP=101 offset[5:4|9:6]
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm csl' imm cs2' op
3 3 3 2 3 2
cap rv32: C.SC=111 offset[5:3] base offset[2|6] src C0=00
cap rve4: C.SC=101 offset[5:4|8] offset[7:6]

Capability Mode Description

Store capability instruction, authorised by the capability in cs1. Take a store/AMO address
misaligned exception if not naturally aligned.

Legacy Mode Description

These mnemonics do not exist in Legacy Mode. The RV32 encodings map to C.FSW/C.FSWSP and
the RV64 encodings map to C.FSD/C.FSDSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 154

Prerequisites

Cor Zca, Zcheri_purecap

Operation (after expansion to 32-bit encodings)
See SC

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 155

77."Zicbom", "Zicbop", "Zicboz" Standard
Extensions for Base Cache Management
Operations

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 156

7.7.1. CBO.CLEAN

Synopsis

Perform a clean operation on a cache block

Capability Mode Mnemonic
cbo.clean 0(cs1)

Legacy Mode Mnemonic
cbo.clean 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
CBO.CLEAN=00.001 base CBO=010 CBO=0000 MISC-MEM=0001111

Capability Mode Description

A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in ¢s1. The authorising capability for this operation is ¢s1.

Legacy Mode Description

A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation The tag set to O
Seal violation It is sealed

Permission violation It does not grant W-permission and R-permission

Length violation At least one byte accessed is within the bounds

Prerequisites for Capability Mode

Zicbom, Zcheri_purecap

Prerequisites for Legacy Mode

Zicbom, Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 157

7.7.2. CBO.FLUSH

Synopsis

Perform a flush operation on a cache block

Capability Mode Mnemonic
cbo.flush @(cs1)

Legacy Mode Mnemonic
cbo.flush @(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
cap: CBO.FLUSH=00.0010 base CBO=010 CBO=0000 MISC-MEM=0001111

Capability Mode Description

A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in ¢s1. The authorising capability for this operation is ¢s1.

Legacy Mode Description

A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation The tag set to O
Seal violation It is sealed

Permission violation It does not grant W-permission and R-permission

Length violation At least one byte accessed is within the bounds

Prerequisites for Capability Mode

Zicbom, Zcheri_purecap

Prerequisites for Legacy Mode

Zicbom, Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 158

7.7.5. CBO.INVAL

Synopsis

Perform an invalidate operation on a cache block

Capability Mode Mnemonic
cbo.inval 0@(cs1)

Legacy Mode Mnemonic
cbo.inval 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
CBO.INVAL=00.0000 base CBO=010 CBO=0000 MISC-MEM=0001111

Capability Mode Description

A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in ¢s1. The authorising capability for this operation is ¢s1.

Legacy Mode description

A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in rs1. The authorising capability for this operation in ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

The CBIE bit in menvcfg and senvcfg indicates whether CBO.INVAL performs cache block flushes
instead of invalidations for less privileged modes. The instruction checks shown in the table below
remain unchanged regardless of the value of CBIE and the privilege mode.

CAUSE Reason
Tag violation The tag set to O
Seal violation [t is sealed

Permission violation It does not grant W-permission, R-permission or ASR-permission

Length violation At least one byte accessed is outside the bounds

Prerequisites for Capability Mode

Zicbom, Zcheri_purecap

Prerequisites for Legacy Mode
Zicbom, Zcheri_legacy

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 159

7.77.4. CBO.ZERO

Synopsis

Store zeros to the full set of bytes corresponding to a cache block

Capability Mode Mnemonic
cbo.zero 0(cs1)

Legacy Mode Mnemonic
cbo.zero 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
CBO.ZERO=00.0100 base CBO=010 CBO=0000 MISC-MEM=0001111

Capability Mode Description

A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in ¢s1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is ¢s’.

Legacy Mode Description

A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in ¢s1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode

Zicboz, Zcheri_ purecap

Prerequisites for Legacy Mode

Zicboz, Zcheri_legacy

Operation

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 160

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop', "Zicboz" Standard Extensions for Base Cache Management Operations | Page 161

775 PREFETCH.|

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by an instruction fetch in the
near future

Capability Mode Mnemonic
prefetch.i offset(cs1)

Legacy Mode Mnemonic
prefetch.i offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] functs csl/rsl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] PREFETCH.I=00000 base ORI=110 Zero OP-IMM=0010011

Capability Mode Description

A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in ¢s1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00O0O, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is ¢s1. This
instruction does not throw any exceptions. However, following CHERI Exceptions and speculative
execution, this instruction does not perform a prefetch if it is not authorized by cs1. This
instruction does not perform a memory access if one or more of the following conditions of ¢s1 are
met:

- The tag is not set
- The sealed bit is set
- No bytes of the cache line requested is in bounds

- The X-permission is not set

Legacy Mode Description

A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00O0O, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is ddc.

Prerequisites for Capability Mode
Zicbop, Zcheri_purecap

Prerequisites for Legacy Mode

Zicbop, Zcheri_legacy

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 162

7.77.6. PREFETCH.R

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data read in the near
future

Capability Mode Mnemonic
prefetch.r offset(cs1)

Legacy Mode Mnemonic
prefetch.r offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] functs csl/rsl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] PREFETCH.R=00001 base ORI=110 Zero OP-IMM=0010011

Capability Mode Description

A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in ¢s1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00OO, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
cs1. This instruction does not throw any exceptions. However, in following CHERI Exceptions and
speculative execution, this instruction does not perform a prefetch if it is not authorized by c¢s1.
This instruction does not perform a memory access if one or more of the following conditions of
csTare met:

- The tag is not set
- The sealed bit is set
- No bytes of the cache line requested is in bounds

- The R-permission is not set

Legacy Mode Description

A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00OO, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

Prerequisites for Capability Mode
Zicbop, Zcheri_purecap

Prerequisites for Legacy Mode

Zicbop, Zcheri_legacy

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 163

7.77.7. PREFETCH.W

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data write in the near
future

Capability Mode Mnemonic
prefetch.w offset(cs1)

Legacy Mode Mnemonic
prefetch.w offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] functs csl/rsl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] PREFETCH.W=00011 base ORI=110 Zero OP-IMM=0010011

Capability Mode Description

A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in ¢s1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00OO, is likely to be accessed by a data write (i.e. store) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
cs1. This instruction does not throw any exceptions. However, following CHERI Exceptions and
speculative execution, this instruction does not perform a prefetch if it is not authorized by c¢s1.
This instruction does not perform a memory access if one or more of the following conditions of
csTare met:

- The tag is not set

- The sealed bit is set

- No bytes of the cache line requested is in bounds
- The W-permission is not set

Legacy Mode Description

A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00O0O, is likely to be accessed by a data write (i.e. store) in the near

future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

Prerequisites for Capability Mode
Zicbop, Zcheri_purecap

Prerequisites for Legacy Mode

Zicbop, Zcheri_legacy

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 164

7.8."Zba" Extension for Bit Manipulation
INnstructions

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.1. SHIADD

See SH3ADD.

7.8.2. SH2ADD

See SH3ADD.

7.8."Zba" Extension for Bit Manipulation Instructions | Page 165

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 166

7.8.3. SHZADD

Synopsis
Shift by n and add for address generation (SHIADD, SH2ADD, SH3ADD)

Capability Mode Mnemonics
sh[1]2]|3]add cd, rs1, cs2

Legacy Mode Mnemonics
sh[1]|2]|3]add rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 01 0 0 0O cs2/rs2 rsl 0 1 0 rd 0 1.1 0 0 1 1
SHI1|2|3]ADD SHIADD=010 oP
SH2ADD=100
SH3ADD=110

Capability Mode Description

Increment the address field of ¢s2 by rs1 shifted left by n bit positions. Clear the tag if the resulting
capability is unrepresentable or ¢s2 is sealed.

Legacy Mode Description
Increment rs2 by rs1 shifted left by n bit positions.

Prerequisites for Capability Mode
Zcheri_purecap, Zba

Prerequisites for Legacy Mode

Zcheri_legacy, Zba

Capability Mode Operation
TBD

Legacy Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.4. SHIADD.UW

See SH3ADD.UW.

7.8.5. SH2ADD.UW

See SH3ADD.UW.

7.8."Zba" Extension for Bit Manipulation Instructions | Page 167

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 168

7.8.6. SH3ADD.UW

Synopsis
shift by n and add unsigned word for address generation (SHIADD.UW, SH2ADD.UW,
SH3ADD.UW)

Capability Mode Mnemonic (RV64)
sh[1|2|3]add.uw cd, rs1, cs2

Legacy Mode Mnemonics (RV64)
sh[1]|2|3]add.uw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0
0O 01 0 0 OO0 cs2/rs2 rsl 0 1 O rd 0 1 1 0 0 1 1
rv64: SH[1|2|3]ADD.UW rv64: SH1IADD.UW=010 OoP

rv64: SH2ADD.UW=100
rv64: SH3ADD.UW=110

Capability Mode Description

Increment the address field of ¢s2 by the unsigned word in rs1 shifted left by n bit positions. Clear
the tag if the resulting capability is unrepresentable or ¢s2 is sealed.

Legacy Mode Description
Increment rs2 by the unsigned word in rs1 shifted left by n bit positions.

Prerequisites for Capability Mode
Zcheri_purecap, Zba

Prerequisites for Legacy Mode

Zcheri_legacy, Zba

Capability Mode Operation
TBD

Legacy Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 169

7.8.7. SH4ADD
Df CHERI v9 Note: This instruction is new.
Synopsis

Shift by 4 and add for address generation (SH4ADD)

Capability Mode Mnemonics
shdadd cd, rs1, cs2

Legacy Mode Mnemonics
shdadd rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 01 00 OO cs2/rs2 rsl 1 1 1 rd 0 1 1 0 0 1 1
SH4ADD SH4ADD OoP

Capability Mode Description

Increment the address field of ¢s2 by rs1 shifted left by 4 bit positions. Clear the tag if the resulting
capability is unrepresentable or ¢s2 is sealed.

Legacy Mode Description
Increment rs2 by rs1 shifted left by 4 bit positions.

Prerequisites for Capability Mode

Zcheri_purecap

Prerequisites for legacy Mode

Zcheri_legacy

Capability Mode Operation
TBD

Legacy Mode Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 170

7.8.8. SH4AADD.UW

Synopsis
Shift by 4 and add unsigned words for address generation (SH4ADD.UW)

Capability Mode Mnemonics
shd4add.uw cd, rs1, cs2

Legacy Mode Mnemonics
shd4add.uw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 01 0 0 0O cs2/rs2 rsl 1 1 1 rd 110 0 0 1 1
SH4ADD.UW SH4ADD.UW OoP

Capability Mode Description

Increment the address field of ¢s2 by the unsigned word in rs1 shifted left by 4 bit positions. Clear
the tag if the resulting capability is unrepresentable or ¢s2 is sealed.

Legacy Mode Description
Increment rs2 by the unsigned word in rs1 shifted left by 4 bit positions.

Prerequisites for Capability Mode

Zcheri_purecap

Prerequisites for Legacy Mode

Zcheri_legacy

Capability Mode Operation
TBD

Legacy Mode Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 171

7.9."/cb" Standard Extension For Code-Size
Reduction

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 172

7.9.1. C.LH

See C.LBU.

79.2.C.LHU

See C.LBU.

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 173

79.5.C.LBU

Synopsis
Load (C.LH, C.LHU, C.LBU), 16-bit encodings

Capability Mode Mnemonics
c.lh/c.lhu/c.1bu rd', offset(cs1')

Capability Mode Expansions
1h/1hu/1bu rd, offset(cs1)

Legacy Mode Mnemonics

c.lh/c.lhu/c.1bu rd', offset(rs1')

Legacy Mode Expansions
Lh/1hu/1bu rd, offset(rs1)

Encoding
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' functl uimm[1] rd'/cd' op
6 3 1 1 3 2
C.LH=100001 base 1 offset[1] dest C0=00
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' functl uimm[1] rd'/cd' op
6 3 1 1 3 2
C.LHU=100001 base 0 offset[1] dest C0=00
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' uimm([0]1] rd'/cd' op
6 3 2 3 2
C.LBU=100000 base offset[0|1] dest C0=00

Capability Mode Description
Subword load instructions, authorised by the capability in ¢s1.

Legacy Mode Description
Subword load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 174

Prerequisites for Capability Mode
Cor Zca, Zcheri_purecap, and Zcb

Prerequisites for Legacy Mode
Cor Zca, Zcheri_legacy, and Zcb

Operation (after expansion to 32-bit encodings)
See LHU, LH, LBU

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 175

7.9.4. C.SH

See C.SB.

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 176

7.9.5. CSB

Synopsis

Stores (C.SH, C.SB), 16-bit encodings

Capability Mode Mnemonics
c.sh/c.sb rs2', offset(cs1')

Capability Mode Expansions

sh/sb rs2', offset(cs1')

Legacy Mode

Mnemonics

c.sh/c.sb rs2', offset(rs1')

Legacy Mode

sh/sb rs2', offset(rs1')

Expansions

Encoding
15 10 6 5
funct6 rsl'/csl' functl uimm[1] rs2'/cs2' op
6 3 1 1 3 2
C.SH=100011 base 0 offset[1] src C0=00
15 10 6 5
funct6 rsl'/csl' uimm[O0|1] rs2'/cs2' op
6 3 2 3 2
C.SB=100010 base offset[0|1] src C0=00

Capability Mode Description

Subword store instructions, authorised by the capability in ¢s1.

Legacy Mode Description

Subword store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed
Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode
Cor Zca, Zcheri_ purecap, and Zcb

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 177

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy, and Zcb

Operation (after expansion to 32-bit encodings)
See SH, SB

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 178

710."Zcmp" Standard Extension For Code-Size
Reduction

The push (CM.PUSH) and pop (CM.POP, CM.POPRET, CM.POPRETZ) instructions are redefined in
capability mode to save/restore full capabilities.

The double move instructions (CM.MVSAO1, CM.MVAO1S) are redefined in capability mode to move
full capabilities between registers. The saved register mapping is as shown in

Table 30. saved register mapping for Zcmp

saved register specifier xreg integer ABI CHERI ABI
0 x8 sO csO

1 x9 sl csl

2 x18 S2 cs2

3 x19 s3 cs3

4 x20 s4 cs4

5 x21 s5 cs5

6 x22 s6 cs6

7 x23 s7 csv

All instructions are defined in (RISC-V, 202.3).

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 179

7.10.1. CM.PUSH

Synopsis
Create stack frame (CM.PUSH): store the return address register and O to 12 saved registers to the
stack frame, optionally allocate additional stack space. 16-bit encodings.

Capability Mode Mnemonic
cm.push {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.push {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 0 0 0 rlist spimm[5:4] 1 0
FUNCT3 c2
/4 rlist values O to 3 are reserved for a future EABI variant

Capability Mode Description

Create stack frame, store capability registers as specified in creg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against ¢sp.

Legacy Mode Description

Create stack frame, store integer registers as specified in reg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode

Cor Zca, Zcheri_ purecap, Zcmp

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 180

7.10.2. CM.POP

Synopsis
Destroy stack frame (CM.POP): load the return address register and O to 12 saved registers from the
stack frame, deallocate the stack frame. 16-bit encodings.

Capability Mode Mnemonic
cm.pop {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.pop {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 0 1 0 rlist spimm[5:4] 1 0
FUNCT3 c2
/4 rlist values O to 3 are reserved for a future EABI variant

Capability Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. All accesses are checked
against CSp.

Legacy Mode Description

Load integer registers as specified in reg_list. Deallocate stack frame. All accesses are checked
against ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Mode

Cor Zca, Zcheri_ purecap, Zcmp

Prerequisites for Legacy Mode
Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 181

7.10.3. CM.POPRET

Synopsis
Destroy stack frame (CM.POPRET): load the return address register and O to 12 saved registers

from the stack frame, deallocate the stack frame. Return through the return address register. 16-bit
encodings.

Capability Mode Mnemonic
cm.popret {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.popret {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 1 1 0 rlist spimm[5:4] 1 0
FUNCT3 Cc2
74 rlist values O to 3 are reserved for a future EABI variant

Capability Mode Description

Load capability registers as specified in creg_ list. Deallocate stack frame. Return by calling JALR to
cra. All data accesses are checked against ¢sp. The return destination is checked against cra.

Legacy Mode Description

Load integer registers as specified in reg_ list. Deallocate stack frame. Return by calling JALR to ra.
All data accesses are checked against ddc. The return destination is checked against pcc.

Permissions

Loads are checked as for LC in both Capability and Legacy Modes.
The return is checked as for JALR in both Capability and Legacy Modes.

Exceptions

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field if
a load causes an exception, or CHERI instruction access fault if the return causes an exception. The
following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation

Seal violation

Permission violation

< < < X

Length violation

. The instructions on this page are either PC relative or may update the pcc. Therefore an
y; implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 182

Prerequisites for Capability Mode
Cor Zca, Zcheri_purecap, Zcmp

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 183

7.10.4. CM.POPRETZ

Synopsis
Destroy stack frame (CM.POPRETZ): load the return address register and register O to 12 saved

registers from the stack frame, deallocate the stack frame. Move zero into argument register zero.
Return through the return address register. 16-bit encodings.

Capability Mode Mnemonic
cm.popretz {creg_list}, -stack_adj

Legacy Mode Mnemonics
cm.popretz {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 1 0 0 rlist spimm[5:4] 1 0
FUNCT3 Cc2
74 rlist values O to 3 are reserved for a future EABI variant

Capability Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. Move zero into ca@.
Return by calling JALR to cra. All data accesses are checked against csp. The return destination is
checked against cra.

Legacy Mode Description

Load integer registers as specified in reg_list. Deallocate stack frame. Move zero into a@. Return by
calling JALR to ra. All data accesses are checked against ddc. The return destination is checked
against pcc.

Permissions

Loads are checked as for LC in both Capability and Legacy Modes.
The return is checked as for JALR in both Capability and Legacy Modes.

Exceptions

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field if
a load causes an exception, or CHERI instruction access fault if the return causes an exception. The
following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation

Seal violation

Permission violation

< < < X

Length violation
The instructions on this page are either PC relative or may update the pcc. Therefore an

Dy implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 184

Prerequisites for Capability Mode
Cor Zca, Zcheri_purecap, Zcmp

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 185

7.10.5. CM.MVSAO]

Synopsis
CM.MVSAOL: Move argument registers O and 1 into two saved registers.

Capability Mode Mnemonic
cm.mvsa@l cri1s', cr2s'

Legacy Mode Mnemonics
cm.mvsadl rls', r2s

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
1 0 1 0 1 1 ris' 0 1 r2s' 1 0
FUNCT3 Cc2

y The encoding uses sreg number specifiers instead of xreqg number specifiers to save
EI encoding space. The saved register encoding is shown in Table 30.

Capability Mode Description
Atomically move two saved capability registers ¢s@-cs7 into ca@ and cal.

Legacy Mode Description

Atomically move two saved integer registers s@-s7 into a@ and al.

Prerequisites for Capability Mode

C or Zca, Zcheri_purecap, Zcmp

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 186

7.10.6. CM.MVAO1S

Synopsis

Move two saved registers into argument registers O and 1.

Capability Mode Mnemonic
cm.mva@ls cri1s', cr2s'

Legacy Mode Mnemonics
cm.mvadls ris', r2s

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
1 0 1 0 1 1 ris' 1 1 r2s' 1 0
FUNCT3 Cc2

y The encoding uses sreg number specifiers instead of xreqg number specifiers to save
EI encoding space. The saved register encoding is shown in Table 30.

Capability Mode Description
Atomically move two capability registers ca@ and cal into cs@-cs7.

Legacy Mode Description
Atomically move two integer registers a@ and a1 into s@-s7/.

Prerequisites for Capability Mode

C or Zca, Zcheri_purecap, Zcmp

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zcmt" Standard Extension For Code-Size Reduction | Page 187

711 "Zcmt" Standard Extension For Code-Size
Reduction

The table jump instructions (CMJT, CMJALT) defined in (RISC-V, 2023) are not redefined in
capability mode to have capabilities in the jump table. This is to prevent the code-size growth caused
by doubling the size of the jump table.

In the future, new jump table modes or new encodings can be added to have capabilities in the jump
table.

The jump vector table CSR jvt has a capability alias jvtc so that it can only be configured to point to
accessible memory. All accesses to the jump table are checked against jvtc, and not against pcc. This
allows the jump table to be accessed when the pcc bounds are set narrowly to the local function only.

the implementation doesn’t need to expand and bounds check against jvtc on every access,
| y it is sufficient to decode the valid accessible range of entries after every write to jvtc, and
then check that the accessed entry is in that range.

711.1. Jump Vector Table CSR (jvt)

The JVT CSR is exactly as defined by (RISC-V, 2023). It is aliased to jvtc.

71.2. Jump Vector Table CSR (jvtc)

jvtc extends jvt to be a capability width CSR, as shown in Table 20.

XLENMAX- 1 0
jvtc (Metadata)

jvtc (Address)
XLENMAX

Figure 41. Jump Vector Table Capability register

All instruction fetches from the jump vector table are checked against jvtc.

See CM JALT, CMJT.

If the access to the jump table succeeds, then the instructions execute as follows:

« CMJT executes as] or AUIPC+JR
« CMJALT executes as JAL or AUIPC+JALR

As a result the capability metadata is retained in the pcc during execution.

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zcmt" Standard Extension For Code-Size Reduction | Page 188

7.11.5. CMJALT

Synopsis
Jump via table with link (CMJALT), 16-bit encodings

Capability Mode Mnemonic
cm.jalt index

Legacy Mode Mnemonics
cm.jalt index

Encoding
15 13 12 10 9 2 1 0
1 0 1 0 0 0 index 1 0
FUNCT3 c2
Df For this encoding to decode as <CM.JALT, index>=32, otherwise it decodes as CM.JT.

Capability Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission. Link to cra.

Legacy Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission. Link to ra.

Permissions

Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

Exceptions

When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation

Seal violation

Permission violation

S < < X

Length violation

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Mode

CorZca, Zcheri_purecap, Zcmt

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zcmt" Standard Extension For Code-Size Reduction | Page 189

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy, Zcmt

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zcmt" Standard Extension For Code-Size Reduction | Page 190

7.4 CMJIT

Synopsis
Jump via table with link (CMJT), 16-bit encodings

Capability Mode Mnemonic
cm.jt index

Legacy Mode Mnemonics

cm.jt index
Encoding
15 13 12 10 9 2 1 0
1 0 1 0 0 0 index 1 0
FUNCT3 Cc2
Df For this encoding to decode as CM.JT, index<32, otherwise it decodes as CM.JALT.

Capability Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission.

Legacy Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of jump table access against jvtc bounds (not against pcc) and
requiring X-permission.

Permissions

Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

Exceptions

When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation

Seal violation

Permission violation

S < < X

Length violation

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Mode

CorZca, Zcheri_purecap, Zcmt

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zemt" Standard Extension For Code-Size Reduction | Page 191

Prerequisites for Legacy Mode

Cor Zca, Zcheri_legacy, Zcmt

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.1. Zbhlrsc | Page 192

Chapter 8. Extension summary

8.1. Zbhlrsc

Zbhlrsc is a separate extension independent of CHERI, but is required for CHERI software.

Mnemonic Zcheri_leg Zcheri_pu Function

LRH
LR.B
SC.H
SC.B

acy recap
v v
v v
v v
v v

Table 31. Zbhlrsc instruction extension

Load reserve half via int pointer, authorise with DDC

Load reserve byte via int pointer, authorise with DDC

Store conditional half via int pointer, authorise with DDC

Store conditional byte via int pointer, authorise with DDC

8.2. Zcheri_purecap

Zcheri_purecap defines the set of instructions used by a purecap core.

Some instructions depend on the presence of other extensions, as listed in Table 32

Mnemonic

LC

SC

C.LCSP

C.SCSP

C.LC
C.SC
C.LWSP

C.SWSP

C.LW
C.SW

RISC-V Specification for CHERI Extensions | © RISC-V

Table 32. Zcheri_ purecap instruction extension - Pure Capability Mode instructions

RV RV A Zb
32 64 hlr
sc
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv

Zic C

bo[or
mp Zca

2

<

Zb Zc Zc Zc Zfh F

Function

Load cap via int
pointer, authorise
with DDC

Store cap via int
pointer, authorise
with DDC

Load cap via cap,
SP relative

Store cap via cap,
SP relative

Load cap via cap
Store cap via cap

Load word via
cap, SP relative

Store word via
cap, SP relative

Load word via cap

Store word via cap

8.2. Zcheri_purecap | Page 193

Mnemonic RV RV A Zb Zic C Zb Zc¢c Zc Zc Zth F D V Function
32 64 hlr bof or a b mp mt
sc mp Zca

z]

C.LD v v Load word via cap

C.SD v v Store word via cap

C.LDSP v v Load word via cap

C.SDSP v v Store word via cap

LB v Vv Load signed byte

LH v Vv Load signed half

C.LH v Vv v Load signed half

LW v Vv Load signed word

LBU v Vv Load unsigned
byte

C.LBU v Vv v Load unsigned
byte

LHU v Vv Load unsigned
half

C.LHU v v v Load unsigned
half

LwWU v Load unsigned
word

LD v Load double

SB v Vv Store byte

C.SB v Vv v Store byte

SH v Vv Store half

C.SH v Vv v Store half

SW v Vv Store word

SD v Store double

AUIPC v Vv Add immediate to
PCC address

CADD v v Increment cap
address by
register,
representability
check

CADDI v Vv Increment cap
address by
immediate,
representability
check

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. Zcheri_purecap | Page 194

Mnemonic

SCADDR

GCTAG
GCPERM

CMV

ACPERM

GCHI
SCHI

SCEQ

SENTRY
SCSS

CBLD

SCBNDS

RISC-V Specification for CHERI Extensions | © RISC-V

RV RV A
32 64
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v v
v Vv

Zb
hlr

SC

Zic C
bo[or
mp Zca

z]

Zb Zc Zc Zc Zfh F

Function

Replace capability
address,
representability
check

Get tag field

Get hperm and
uperm fields as 1-
bit per
permission,
packed together

Move capability
register

AND capability
permissions

(expand to 1-bit
per permission
before ANDing)

Get metadata

Set metadata and
clear tag

Full capability
bitwise compare,
set result true if
both are fully
equal

Seal capability

Set result true if
csl and csl tags
match and cs2
bounds and
permissions are a
subset of csl

Set cd to cs2 with
its tag set after
checking that cs2
is a subset of csl

Set register
bounds on
capability with
rounding, clear
tag if rounding is
required

Mnemonic

SCBNDSI

SCBNDSR

CRAM

GCBASE

GCLEN

C.ADDI16SP

C.ADDI4SPN

C.MV

CJ

CJAL

RV RV A
32 64
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v

Zb
hlr

SC

8.2. Zcheri_purecap | Page 195

Zic C Zb Zc Zc Zc Zfth F D V Function

bo[or a b mp mt

mp Zca

z]
Set immediate
bounds on
capability with
rounding, clear
tag if rounding is
required

Set bounds on
capability with
rounding up as
required

Representable
Alignment Mask:
Return mask to
apply to address
to get the
requested bounds

Get capability
base

Get capability
length

v ADD immediate
to stack pointer,
CADD in
capability mode

v ADD immediate
to stack pointer,
CADDI in
capability mode

v Register Move,
cap reg move in
capability mode

v Jump to
PC+offset, bounds
check minimum
size target
instruction

v Jump to
PC+offset, bounds
check minimum
size target
instruction, link
to cd

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. Zcheri_purecap | Page 196

Mnemonic RV RV A Zb Zic C Zb Zc Zc Zc Zfth F

32 64 hlr bo[or a
sc mp Zca

z]

JAL v v v

JALRMODE v Vv

JALR v v

CJALR v v v
CJR v v v
CBO.INVAL v v
CBO.CLEAN v v v
CBOFLUSH v v
CBO.ZERO v v

RISC-V Specification for CHERI Extensions | © RISC-V

b

mp mt

D

\Y%

Function

Jump to
PC+offset, bounds
check minimum
size target
instruction, link
to cd

JALR executes as
in the other mode
(with zero offset)

Indirect cap jump
and link, bounds
check minimum
Size target
instruction,
unseal target cap,
seal link cap

Indirect cap jump
and link, bounds
check minimum
size target
instruction,
unseal target cap,
seal link cap

Indirect cap jump,
bounds check
minimum size
target instruction,
unseal target cap

Cache block
invalidate
(implemented as
clean), authorise
with DDC

Cache block clean,
authorise with
DDC

Cache block flush,
authorise with
DDC

Cache block zero,
authorise with
DDC

8.2. Zcheri_purecap | Page 197

Mnemonic RV RV A Zb Zic C Zb Zc¢c Zc Zc Zth F D V Function
32 64 hlr bof or a b mp mt
sc mp Zca

z]

PREFETCH. v V v Prefetch

R instruction cache
line, always valid

PREFETCH. v V v Prefetch read-

\Y only data cache
line, authorise
with DDC

PREFETCH.I v V v Prefetch writeable

data cache line,
authorise with
DDC

LR.C v v V Load reserve cap
via int pointer,
authorise with

DDC

LR.D v

LRW v

LR.H v v v Load reserve half
via int pointer,
authorise with
DDC

LR.B v v v Load reserve byte
via int pointer,
authorise with
DDC

SC.C v Vv Vv Store conditional
cap via int
pointer, authorise
with DDC

SC.D v

SC.W v

SC.H v Vv v Store conditional
half via int
pointer, authorise
with DDC

SC.B v Vv v Store conditional
byte via int
pointer, authorise
with DDC

AMOSWAP. v Vv Atomic swap of

C cap

RISC-V Specification for CHERI Extensions | © RISC-V

8.2. Zcheri_purecap | Page 198

Mnemonic

AMO<OP>. v
W
AMO<OP>D

C.FLD v

C.FLDSP v

C.FSD v

C.FSDSP v

FLH v
FSH v
FLW v
FSW v
FLD v
FSD v

CM.PUSH v

CM.POP v

CM.POPRET v

CM.POPRET v
Z

CM.MVSAO1 v

RV RV A
32 64

v

Zic C Zb Zc Zc Zc Zfth F D
bo[or a b mp mt
mp Zca
z]
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

RISC-V Specification for CHERI Extensions | © RISC-V

\Y%

Function

Atomic op of word

Atomic op of
double

Load floating
point double

Load floating
point double, sp
relative

Store floating
point double

Store floating
point double, sp

relative

Load floating
point half via cap

Store floating
point half via cap

Load floating
point word via cap

Store floating
point word via cap

Load floating
point double via
cap

Store floating
point double via
cap

Push integer stack
frame

Pop integer stack
frame

Pop integer stack
frame and return

Pop integer stack
frame and return
Zero

Move two integer
registers

8.3. Zcheri_legacy | Page 199

Mnemonic RV RV A Zb Zic C Zb Zc¢c Zc Zc Zth F D V Function
32 64 hlr bof or a b mp mt
sc mp Zca

z]

CM.MVAQOIS vV v Move two integer
registers

CMJALT v Vv v Table jump and
link

CMJT v v v Table jump

SHIADD v Vv v shift and add,
representability

check on the
result

SHIADD.UW v V v shift and add,
representability
check on the
result

SH2ADD v Vv v shift and add,
representability
check on the
result

SH2ADD.UW v V v shift and add,
representability
check on the
result

SH3ADD v Vv 4 shift and add,
representability
check on the
result

SH3ADD.UW v V v shift and add,
representability
check on the
result

SH4ADD v shift and add
SH4ADD.UW v shift and add

8.3. Zcheri_legacy

Zcheri_legacy defines the set of instructions added by the legacy mode, in addition to
Zcheri_purecap.

74 Zcheri_legacy implies Zcheri_ purecap

Table 33. Zcheri_legacy instruction extension - legacy mode instructions

RISC-V Specification for CHERI Extensions | © RISC-V

8.3. Zcheri_legacy | Page 200

Mnemonic RV RV A Zb Zic C Zb Zc¢c Zc Zc Zth F D V Function
32 64 hlr bof or a b mp mt
sc mp Zca

z]
LC v v Load cap via int

pointer, authorise
with DDC

SC v Vv Store cap via int
pointer, authorise
with DDC

C.LWSP v Vv 4 Load word via
cap, SP relative

C.SWSP v v v Store word via
cap, SP relative

C.LwW v Vv v Load word via cap

C.SW v Vv v Store word via cap

C.LD v v Load word via cap

C.SD v v Store word via cap

C.LDSP v v Load word via cap

C.SDSP v v Store word via cap

LB v Vv Load signed byte

LH v Vv Load signed half

C.LH v Vv v Load signed half

LW v Vv Load signed word

LBU v Vv Load unsigned
byte

C.LBU v v v Load unsigned
byte

LHU v v Load unsigned
half

C.LHU v Vv v Load unsigned
half

LwWU v Load unsigned
word

LD v Load double

SB v Vv Store byte

C.SB v v v Store byte

SH v Vv Store half

C.SH v v v Store half

SW v Vv Store word

RISC-V Specification for CHERI Extensions | © RISC-V

8.3. Zcheri_legacy | Page 201

Mnemonic RV RV A Zb Zic C Zb Zc¢c Zc Zc Zth F D V Function
32 64 hlr bof or a b mp mt
sc mp Zca

z]
SD v Store double

AUIPC v Vv Add immediate to
PCC address

CADD v Vv Increment cap
address by
register,
representability
check

CADDI v v Increment cap
address by
immediate,

representability
check

SCADDR v Vv Replace capability
address,

representability
check

GCTAG v v Get tag field

GCPERM v v Get hperm and
uperm fields as 1-
bit per
permission,
packed together

CMV v Vv Move capability
register

ACPERM v v AND capability
permissions
(expand to 1-bit
per permission

before ANDing)
GCHI v Vv Get metadata
SCHI v Vv Set metadata and
clear tag
SCEQ v Vv Full capability

bitwise compare,
set result true if
both are fully

equal

SENTRY v Vv Seal capability

RISC-V Specification for CHERI Extensions | © RISC-V

8.3. Zcheri_legacy | Page 202

Mnemonic RV RV A Zb Zic C Zb Zc Zc Zc ZthF D V
32 64 hlr bof or a b mp mt
sc mp Zca

z]

SCSS v Vv

CBLD v Vv

SCBNDS v Vv

SCBNDSI v Vv

SCBNDSR v Vv

CRAM v Vv

GCBASE v v
GCLEN v Vv

C.ADDIIGSP v v

RISC-V Specification for CHERI Extensions | © RISC-V

Function

Set result true if
csl and csl tags
match and cs2
bounds and
permissions are a
subset of csl

Set cd to cs2 with
its tag set after
checking that cs2
is a subset of csl

Set register
bounds on
capability with
rounding, clear
tag if rounding is
required

Set immediate
bounds on
capability with
rounding, clear
tag if rounding is
required

Set bounds on
capability with
rounding up as
required

Representable
Alignment Mask:
Return mask to
apply to address
to get the
requested bounds

Get capability
base

Get capability
length

ADD immediate
to stack pointer,
CADD in

capability mode

Mnemonic

C.ADDI4ASPN

C.MV

CJ

CJAL

JAL

JALR.MODE

JALR

CJALR

RV RV A
32 64

v Vv

v Vv

v Vv

v

v Vv

v Vv

v Vv

v Vv

Zb
hlr

SC

8.3. Zcheri_legacy | Page 203

Zic C Zb Zc Zc Zc Zfth F D V Function

bo[or a b mp mt

mp Zca

z]

v ADD immediate

to stack pointer,
CADDI in
capability mode

v Register Move,
cap reg move in

capability mode

v Jump to
PC+offset, bounds
check minimum
size target
instruction

v Jump to
PC+offset, bounds
check minimum
size target
instruction, link
to cd

v Jump to
PC+offset, bounds
check minimum
Size target
instruction, link
to cd

JALR executes as
in the other mode
(with zero offset)

Indirect cap jump
and link, bounds
check minimum
Size target
instruction,
unseal target cap,
seal link cap

v Indirect cap jump
and link, bounds
check minimum
size target
instruction,
unseal target cap,
seal link cap

RISC-V Specification for CHERI Extensions | © RISC-V

8.3. Zcheri_legacy | Page 204

Mnemonic

CJR v

CBO.INVAL v

CBO.CLEAN Vv

CBO.FLUSH v

CBO.ZERO Vv

PREFETCH. Vv

R

PREFETCH. Vv

W

PREFETCH.I v

LR.C v
LR.D
LR'W
LRH v

RISC-V Specification for CHERI Extensions | © RISC-V

RV RV A
32 64

Zb Zic C

hlr bo[or

mp Zca

SC

z]

v

Zb Zc Zc Zc Zfh F

a

b

mp mt

D

\Y%

Function

Indirect cap jump,
bounds check
minimum size
target instruction,
unseal target cap

Cache block
invalidate
(implemented as
clean), authorise
with DDC

Cache block clean,
authorise with
DDC

Cache block flush,
authorise with
DDC

Cache block zero,
authorise with
DDC

Prefetch
instruction cache
line, always valid

Prefetch read-
only data cache
line, authorise
with DDC

Prefetch writeable
data cache line,
authorise with
DDC

Load reserve cap
via int pointer,
authorise with
DDC

Load reserve half
via int pointer,
authorise with
DDC

8.3. Zcheri_legacy | Page 205

Mnemonic RV RV A Zb Zic C Zb Zc¢c Zc Zc Zth F D V Function
32 64 hlr bof or a b mp mt
sc mp Zca
z]
LR.B v Vv v Load reserve byte
via int pointer,
authorise with

DDC

SC.C v v Vv Store conditional
cap via int
pointer, authorise
with DDC

SC.D v

SC.W v

SC.H v Vv v Store conditional
half via int
pointer, authorise
with DDC

SC.B v Vv v Store conditional
byte via int
pointer, authorise
with DDC

AMOSWAP. v v vV Atomic swap of

C cap

AMO<OP>. v Vv V Atomic op of word

W

AMO<OP>.D v Vv Atomic op of
double

C.FLW v v Load floating
point word via cap

C.FLWSP v v Load floating
point word, sp
relative

C.FSW v v Store floating
point word via cap

C.FSWSP v v Store floating
point word, sp
relative

C.FLD v v Load floating
point double

C.FLDSP v v Load floating
point double, sp
relative

RISC-V Specification for CHERI Extensions | © RISC-V

8.3. Zcheri_legacy | Page 206

Mnemonic RV RV A Zb Zic C Zb Zc Zc Zc Zfth F

32 64 hlr bo[or a
sc mp Zca

z]

C.FLD v
C.FLDSP v
C.FSD v

C.FSDSP v

C.FSD v
C.FSDSP v
FLH v Vv
FSH v Vv
FLW v Vv
FSW v Vv
FLD v Vv
FSD v Vv

CM.PUSH v Vv

CM.POP v Vv

CM.POPRET v V

CM.POPRET v V
Z

CM.MVSAOl v

RISC-V Specification for CHERI Extensions | © RISC-V

b

mp mt

D

\Y%

Function

Load floating
point double

Load floating
point double, sp

relative

Store floating
point double

Store floating
point double, sp
relative

Store floating
point double

Store floating
point double, sp

relative

Load floating
point half via cap

Store floating
point half via cap

Load floating
point word via cap

Store floating
point word via cap

Load floating
point double via
cap

Store floating
point double via
cap

Push integer stack
frame

Pop integer stack
frame

Pop integer stack
frame and return

Pop integer stack
frame and return
Zero

Move two integer
registers

8.4. Zcheri_mode | Page 207

Mnemonic RV RV A Zb Zic C Zb Zc¢c Zc Zc Zth F D V Function
32 64 hlr bof or a b mp mt
sc mp Zca

z]

CM.MVAQOIS vV v Move two integer
registers

CMJALT v Vv v Table jump and
link

CMJT v v v Table jump

SHIADD v Vv v shift and add,
representability

check on the
result

SHIADD.UW v V v shift and add,
representability
check on the
result

SH2ADD v Vv v shift and add,
representability
check on the
result

SH2ADD.UW v V v shift and add,
representability
check on the
result

SH3ADD v Vv 4 shift and add,
representability
check on the
result

SH3ADD.UW v V v shift and add,
representability
check on the
result

SH4ADD v shift and add
SH4ADD.UW v shift and add

8.4. Zcheri_mode

Zcheri_legacy defines the set of instructions added by the mode switching mode, in addition to
Zcheri_legacy.

74 Zcheri_mode implies Zcheri_ legacy

Table 34. Zcheri_mode instruction extension - mode switching instructions

RISC-V Specification for CHERI Extensions | © RISC-V

8.5. Instruction Modes | Page 208

Mnemonic RV RV A Zb Zic C Zb Zc¢c Zc Zc Zth F D V Function
32 64 hlr bof or a b mp mt
sc mp Zca

z]

SCMODE v Vv Set the mode bit
of a capability, no
permissions
required

MODESW v vV Directly switch
mode (legacy /
capability)

CMODESW v v Directly switch
mode (legacy /
capability)

8.5. Instruction Modes

The tables summarise which operating modes each instruction may be executed in.

Table 35. Instructions valid for execution in capability mode only

Mnemonic Zcheri_ Zcheri_le Zcheri_p Function

mode gacy urecap
C.LCSP v Load cap via cap, SP relative
C.SCSP v Store cap via cap, SP relative
C.LC v Load cap via cap
C.SC v Store cap via cap

RISC-V Specification for CHERI Extensions | © RISC-V

8.5. Instruction Modes | Page 209

Table 36. Instructions valid for execution in legacy mode only

Mnemonic Zcheri
mode

DRET

C.FLW

C.FLWSP

C.FSW
C.FSWSP

C.FLD
C.FLDSP

C.FSD
C.FSDSP

Zcheri_le Zcheri_p Function

gacy

urecap

Return from debug mode, sets
ddc from dddc and pcc from
dpcc

Load floating point word via cap

Load floating point word, sp
relative

Store floating point word via cap

Store floating point word, sp
relative

Load floating point double

Load floating point double, sp
relative

Store floating point double

Store floating point double, sp
relative

Table 37. Instructions valid for execution in both capability and legacy modes

Mnemonic Zcheri _
mode

LC

SC

C.LWSP
C.SWSP
C.Lw
C.SW
C.LD
C.SD
C.LDSP
C.SDSP
LB

LH
C.LH
LW
LBU
C.LBU

Zcheri_le Zcheri_p Function

gacy

v

<

LR S S KR S < < < < < < < < X

urecap

v

<

SR S S S < < < < < < < <

Load cap via int pointer,
authorise with DDC

Store cap via int pointer,
authorise with DDC

Load word via cap, SP relative
Store word via cap, SP relative
Load word via cap

Store word via cap

Load word via cap

Store word via cap

Load word via cap

Store word via cap

Load signed byte

Load signed half

Load signed half

Load signed word

Load unsigned byte

Load unsigned byte

RISC-V Specification for CHERI Extensions | © RISC-V

8.5. Instruction Modes | Page 210

Mnemonic Zcheri_ Zcheri_le Zcheri_p Function
mode gacy urecap

LHU v v Load unsigned half

C.LHU v v Load unsigned half

LwWU v v Load unsigned word

LD v v Load double

SB v v Store byte

C.SB v v Store byte

SH v v Store half

C.SH v v Store half

SW v v Store word

SD v v Store double

AUIPC v v Add immediate to PCC address

CADD v v Increment cap address by
register, representability check

CADDI v v Increment cap address by
immediate, representability
check

SCADDR v v Replace capability address,
representability check

GCTAG v v Get tag field

GCPERM v v Get hperm and uperm fields as
1-bit per permission, packed
together

CMV v v Move capability register

ACPERM v v AND capability permissions
(expand to 1-bit per permission
before ANDing)

GCHI v v Get metadata

SCHI v v Set metadata and clear tag

SCEQ v v Full capability bitwise compare,
set result true if both are fully
equal

SENTRY v v Seal capability

SCSS v v Set result true if csl and csl tags
match and cs2 bounds and
permissions are a subset of csl

CBLD v v Set cd to cs2 with its tag set after

RISC-V Specification for CHERI Extensions | © RISC-V

checking that cs2 is a subset of
csl

Mnemonic

SCBNDS

SCBNDSI

SCBNDSR

CRAM

GCBASE

GCLEN
SCMODE

MODESW

C.MODESW

C.ADDI16SP

C.ADDI4SPN

C.MV

CJ

CJAL

JAL

JALR.MODE

JALR

8.5. Instruction Modes | Page 211

Zcheri_le Zcheri_p Function

gacy
v

urecap

v

Set register bounds on capability
with rounding, clear tag if
rounding is required

Set immediate bounds on
capability with rounding, clear
tag if rounding is required

Set bounds on capability with
rounding up as required

Representable Alignment Mask:
Return mask to apply to address
to get the requested bounds

Get capability base
Get capability length

Set the mode bit of a capability,
no permissions required

Directly switch mode (legacy /
capability)

Directly switch mode (legacy /
capability)

ADD immediate to stack pointer,
CADD in capability mode

ADD immediate to stack pointer,
CADDI in capability mode

Register Move, cap reg move in
capability mode

Jump to PC+offset, bounds check
minimum size target instruction

Jump to PC+offset, bounds check
minimum size target instruction,
link to cd

Jump to PC+offset, bounds check
minimum size target instruction,
link to cd

JALR executes as in the other
mode (with zero offset)

Indirect cap jump and link,
bounds check minimum size
target instruction, unseal target
cap, seal link cap

RISC-V Specification for CHERI Extensions | © RISC-V

8.5. Instruction Modes | Page 212

Mnemonic Zcheri_ Zcheri_le Zcheri_p Function
mode gacy urecap
CJALR v v Indirect cap jump and link,

MRET

SRET

CSRRW

CSRRS

CSRRC

CSRRWI

CSRRSI

CSRRCI

CBO.INVAL v

CBO.CLEAN v

CBO.FLUSH v

CBO.ZERO v

PREFETCH.R v

RISC-V Specification for CHERI Extensions | © RISC-V

bounds check minimum size
target instruction, unseal target
cap, seal link cap

Indirect cap jump, bounds check
minimum size target instruction,
unseal target cap

Return from machine mode
handler, sets PCC from
MTVECC, needs ASR permission

Return from supervisor mode
handler, sets PCC from STVECC,
needs ASR permission

CSR write - can also read/write a
full capability through an
address alias

CSR set - can also read/write a
full capability through an
address alias

CSR clear - can also read/write a
full capability through an
address alias

CSR write - can also read/write a
full capability through an
address alias

CSR set - can also read/write a
full capability through an
address alias

CSR clear - can also read/write a
full capability through an
address alias

Cache block invalidate
(implemented as clean),
authorise with DDC

Cache block clean, authorise
with DDC

Cache block flush, authorise
with DDC

Cache block zero, authorise with
DDC

Prefetch instruction cache line,
always valid

Mnemonic

PREFETCH.W

PREFETCH.I

LR.C

LR.D
LR'W
LRH

LR.B

SC.C

SC.D
SC.W
SC.H

SC.B

AMOSWAP.C
AMO<OP>W
AMO<OP>.D
C.FLD
C.FLDSP

C.FSD
C.FESDSP

FLH
FSH
FLW
FSW
FLD

FSD

CM.PUSH

8.5. Instruction Modes | Page 213

Zcheri_le Zcheri_p Function

gacy
v

v

< <

S < < < < < < S < < < < X

<

urecap

v

v

< <

S < < < X < < S S < < < X

<

Prefetch read-only data cache
line, authorise with DDC

Prefetch writeable data cache
line, authorise with DDC

Load reserve cap via int pointer,
authorise with DDC

Load reserve half via int pointer,
authorise with DDC

Load reserve byte via int pointer,
authorise with DDC

Store conditional cap via int
pointer, authorise with DDC

Store conditional half via int
pointer, authorise with DDC

Store conditional byte via int
pointer, authorise with DDC

Atomic swap of cap
Atomic op of word

Atomic op of double

Load floating point double

Load floating point double, sp
relative

Store floating point double

Store floating point double, sp
relative

Load floating point half via cap
Store floating point half via cap
Load floating point word via cap
Store floating point word via cap

Load floating point double via
cap

Store floating point double via
cap

Push integer stack frame

RISC-V Specification for CHERI Extensions | © RISC-V

8.5. Instruction Modes | Page 214

Mnemonic

CM.POP
CM.POPRET

CM.POPRETZ

CM.MVSAO1
CM.MVAOIS
CMJALT
CMJT
SHIADD

SHIADD.UW

SH2ADD

SH2ADD.UW

SH3ADD

SH3ADD.UW

SH4ADD
SH4ADD.UW

Zcheri
mode

Zcheri_le Zcheri_p Function

gacy
v

v

S S < < < X

<

RISC-V Specification for CHERI Extensions | © RISC-V

urecap

v
v

S S < < < X

<

Pop integer stack frame

Pop integer stack frame and
return

Pop integer stack frame and
return zero

Move two integer registers
Move two integer registers
Table jump and link
Table jump

shift and add, representability
check on the result

shift and add, representability
check on the result

shift and add, representability
check on the result

shift and add, representability
check on the result

shift and add, representability
check on the result

shift and add, representability
check on the result

shift and add
shift and add

Extended CSR
dpcc
dscratchOc
dscratchlc
mtvecc
mscratchc
mepce

stvecc
sscratchc
sepcc

jvte

Extended CSR
dpcc

dscratchOc
dscratchlc

mtvecc

mscratchce

mepcc

Chapter 9. Capability Width CSR Summary | Page 215

Chapter 9. Capability Width CSR
summary

Table 38. CSRs extended to capability width, accessible through an alias

Alias

dpc
dscratchO
dscratchl
mtvec
mscratch
mepc
stvec
sscratch
sepc

jvt

Prerequisites
Sdext

Sdext

Sdext
M-mode
M-mode
M-mode
S-mode
S-mode
S-mode

Zcmt

Table 39. Action taken on writing to extended CSRs.

Action on XLEN write

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

Update the CSR using SCADDR.
Update the CSR using SCADDR.

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check " if vectored mode is
programmed.

Update the CSR using SCADDR.

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

Action on CLEN write

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

direct write
direct write

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check " if vectored mode is
programmed.

direct write

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 9. Capability Width CSR Summary | Page 216

Extended CSR Action on XLEN write Action on CLEN write

stvecc Apply Invalid address conversion. Apply Invalid address conversion.
Always update the CSR with SCADDR Always update the CSR with SCADDR
even if the address didn’t change, even if the address didn’t change,
including the MODE field in the including the MODE field in the
address for simplicity. Vector range address for simplicity. Vector range
check " if vectored mode is check " if vectored mode is
programmed. programmed.

sscratchce Update the CSR using SCADDR. direct write

sepce Apply Invalid address conversion. Apply Invalid address conversion and
Always update the CSR with SCADDR update the CSR with the result if the
even if the address didn’t change. address changed, direct write if address

didn’t change
jvte Apply Invalid address conversion. Apply Invalid address conversion and

Always update the CSR with SCADDR
even if the address didn’t change.

update the CSR with the result if the
address changed, direct write if address
didn’t change

" The vector range check is to ensure that vectored entry to the handler in within bounds of the
capability written to Xtvecc. The check on writing must include the lowest (O offset) and highest
possible offset (e.g. 64 * XLENMAX bits where HICAUSE=16).

Df XLEN writing is only available if Zcheri_mode is implemented.

/4

Implementations which allow misa.C to be writable need to legalise Xepcc on reading if
the misa.C value has changed since the value was written as this can cause the read value
of bit [1] to change state.

CSRRW make an XLEN-wide access to the XLEN-wide CSR aliases or a CLEN-wide

I

Extended CSR

dpcc
mtvecc
mepcc
stvecc
sepcc
jvtc
dddc
dde

access to the CLEN-wide aliases for all extended CSRs. CSRRWI, CSRRS, CSRRSI, CSRRC
and CSRRCI only make XLEN-wide accesses even if the CLEN-wide alias is specified.

Table 40. CLEN-wide CSRs storing executable vectors or data pointers

Executable Vector

S S < < <

v
v

Data Pointer

Unseal On Execution

v

Some CSRs store executable vectors as shown in Table 40. These CSRs do not need to store the full
width address on RV64. If they store fewer address bits then writes are subject to the invalid address
check in Invalid address conversion.

RISC-V Specification for CHERI Extensions | © RISC-V

Extended CSR
dscratchOc
dscratchlc
mscratchc

sscratche

dinfc

Chapter 9. Capability Width CSR Summary | Page 217

Table 41. CLEN-wide CSRs which store all CLEN+1 bits

Store full metadata

v

< < < X

Table 41 shows which CLEN-wide CSRs store all CLEN+1 bits. No other CLEN-wide CSRs store any
reserved bits. All CLEN-wide CSRs store all non-reserved metadata fields.

Zcher Zcher Prere CLEN Permissions Reset Value

Extended
CSR i_leg i_pur quisit
acy ecap es
dpce v v Sdext
dscratchOc v 4 Sdext
dscratchlc v v Sdext
mtvecc v v M-
mode
mscratchce v 4 M-
mode
mepce v v M-
mode
stvecc v v S-
mode
sscratche v v S-
mode
sepcc v v S-
mode
jvte v v Zcmt

Table 42. All CLEN-wide CSRs

Description

Addr

ess

Ox7b DRW

9

Ox7ba DRW

Ox7bb DRW

0x76 MRW, ASR-

5 permission

0x76 MRW, ASR-

0 permission

0x761 MRW, ASR-
permission

0x50 SRW, ASR-

5 permission

0x54 SRW, ASR-

0 permission

0x541 SRW, ASR-
permission

0x417 URW

tag=0,
otherwise
undefined
tag=0,
otherwise
undefined
tag=0,
otherwise
undefined

Infinite

tag=0,
otherwise
undefined

Infinite

Infinite

tag=0,
otherwise
undefined

Infinite

Infinite

Debug Program Counter
Capability

Debug Scratch Capability O

Debug Scratch Capability 1

Machine Trap-Vector Base-
Address Capability

Machine Scratch Capability

Machine Exception
Program Counter
Capability

Supervisor Trap-Vector
Base-Address Capability

Supervisor Scratch
Capability

Supervisor Exception
Program Counter
Capability

Jump Vector Table
Capability

RISC-V Specification for CHERI Extensions | © RISC-V

9.1. Other tables | Page 218

Extended Zcher Zcher Prere CLEN Permissions ResetValue Description
CSR i_leg i_pur quisit Addr
acy ecap es ess
ddde v Sdext Ox7bc DRW tag=0, Debug Default Data

otherwise Capabilty (saved/restored
undefined on debug mode entry/exit)

mtdc v M- Ox74c MRW, ASR- tag=0, Machine Trap Data
mode permission otherwise Capability (scratch register)
undefined
stdc v S- 0x163 SRW, ASR- tag=0, Supervisor Trap Data
mode permission otherwise Capability (scratch register)
undefined
ddc v none 0x416 URW Infinite User Default Data
Capability
dinfc v v Sdext Ox7b DRW Infinite Source of Infinite capability
d in debug mode, writes are
ignored

9.1. Other tables

Table 43. Mnemonics with the same encoding but mapped to different instructions in Legacy and Capability Mode

Mnemonic Legacy mnemonic RV32 Legacy mnemonic RV64
C.LCSP C.FLWSP C.FLDSP

C.SCSP C.FSWSP C.FSDSP

C.LC C.FLW C.FLD

C.SC C.FSW C.FSD

Table 44. Instruction encodings which vary depending on the current XLEN

Mnemonic Function

LC Load cap via int pointer, authorise with DDC

SC Store cap via int pointer, authorise with DDC

C.LCSP Load cap via cap, SP relative

C.SCSP Store cap via cap, SP relative

C.LC Load cap via cap

C.SC Store cap via cap

LR.C Load reserve cap via int pointer, authorise with DDC
SC.C Store conditional cap via int pointer, authorise with DDC
AMOSWAP.C Atomic swap of cap

y MODESW and SCMODE only exist in capability mode if legacy mode is also present. A
EI purecap core does not implement the mode bit in the capability.

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic
MODESW
C.MODESW
CJ

CJAL

JAL
JALR.MODE
JALR
CJALR

CJR

DRET
MRET
SRET

CSRRW
CSRRS
CSRRC
CSRRWI
CSRRSI
CSRRCI
CBO.INVAL

CBO.CLEAN

CBO.FLUSH

CBO.ZERO

C.FLW
C.FLWSP
C.FSw
C.FSWSP
C.FLD
C.FLDSP
C.FLD
C.FLDSP
C.FSD

9.1. Other tables | Page 219

Table 45. Illegal instruction detect for CHERI instructions

illegal insn if (1)

mode==D (optional
mode==D (optional
mode==D (optional
mode==D (optional
mode==
mode==D (optional

mode==D (optional

)
D ()
D ()
D ()
D (optional)
mode==D (optional)
D ()
D ()
mode==D (optional)
MODE<D

MODE<M
MODE<S

CSR permission fault
CSR permission fault
CSR permission fault
CSR permission fault
CSR permission fault
CSR permission fault

MODE<M AND
menvcfg.CBIE[O]==0
MODE<M AND
menvcfg.CBIE[O]==0
MODE<M AND
menvcfg.CBIE[O]

MODE<M AND
menvcfg CBIE[0]==0

=0

Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0

Xstatus.fs==0

OR illegal insn if (2) OR illegal insn if (3)

PCC.ASR==0

PCC.ASR==0 mstatus. TSR==1 AND

MODE<S AND
senvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

MODE<S AND
senvefg. CBIE[0]==0

RISC-V Specification for CHERI Extensions | © RISC-V

9.1. Other tables | Page 220

Mnemonic
C.FSDSP
C.FSD
C.FSDSP
FLH

FSH

FLW

FSW

FLD

ESD

RISC-V Specification for CHERI Extensions | © RISC-V

illegal insn if (1)
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0
Xstatus.fs==0

Xstatus.fs==0

OR illegal insn if (2)

ORillegal insn if (3)

Bibliography | Page 221

Bibliography

RISC-V. (2022). RISC-V Debug Specification. github.com/riscv/riscv-debug-spec/raw/
c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf

RISC-V. (2023). RISC-V Privileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6{f-2023-10-02/priv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Unprivileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6{f-2023-10-02/unpriv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Code-size Reduction Specification. github.com/riscv/riscv-code-size-
reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf

Watson, R. N. M., Neumann, P. G., Woodruff,], Roe, M., Almatary, H., Anderson, J., Baldwin, J,
Barnes, G., Chisnall, D., Clarke, J., Davis, B., Eisen, L., Filardo, N. W., Fuchs, F. A., Grisenthwaite, R,
Joannou, A, Laurie, B, Markettos, A. T., Moore, S. W., ... Xia, H. (2023). Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (Version 9) (UCAM-CL-TR-987; Issue UCAM-CL-
TR-987). University of Cambridge, Computer Laboratory. doi.org/10.48456/tr-987

Woodruff, J., Joannou, A, Xia, H., Fox, A., Norton, R. M., Chisnall, D, Davis, B., Gudka, K, Filardo, N.
W., Markettos, A. T., & others. (2019). Cheri concentrate: Practical compressed capabilities. IEEE
Transactions on Computers, 68(10), 1455-1469. doi.org/10.1109/TC.2019.2914037

RISC-V Specification for CHERI Extensions | © RISC-V

https://github.com/riscv/riscv-debug-spec/raw/c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf
https://github.com/riscv/riscv-debug-spec/raw/c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://doi.org/10.48456/tr-987
https://doi.org/10.1109/TC.2019.2914037

	RISC-V Specification for CHERI Extensions
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	1.1. CHERI Concepts and Terminology
	1.2. CHERI Extensions to RISC-V
	1.3. Risks and Known Uncertainty
	1.3.1. Pending Extensions
	1.3.2. Incompatible Extensions

	Chapter 2. Anatomy of Capabilities in Zcheri_purecap
	2.1. Components of a Capability
	2.1.1. Tag
	2.1.2. Architectural Permissions (AP)
	Permission Encoding

	2.1.3. Software-Defined Permissions (SDP)
	2.1.4. Sealed (S) Bit
	2.1.5. Bounds
	2.1.6. Address
	2.1.7. Reserved Bits

	2.2. Capability Encoding
	2.3. Special Capabilities
	2.3.1. NULL Capability
	2.3.2. Infinite Capability

	2.4. Representable Range Check
	2.4.1. Practical Information

	2.5. Malformed Capability Bounds

	Chapter 3. Integrating Zcheri_purecap with the RISC-V Base Integer Instruction Set
	3.1. Memory
	3.2. Programmer’s Model for Zcheri_purecap
	3.2.1. PCC - The Program Counter Capability

	3.3. Capability Instructions
	3.3.1. Capability Inspection Instructions
	3.3.2. Capability Manipulation Instructions
	3.3.3. Capability Load and Store Instructions
	3.3.4. Unconditional Integer Address Jumps

	3.4. Existing RISC-V Instructions
	3.4.1. Integer Computational Instructions
	3.4.2. Control Transfer Instructions
	Unconditional Jumps
	Conditional Branches

	3.4.3. Integer Load and Store Instructions

	3.5. Zicsr, Control and Status Register (CSR) Instructions
	3.5.1. CSR Instructions

	3.6. Control and Status Registers (CSRs)
	3.7. Machine-Level CSRs
	3.7.1. Machine ISA Register (misa)
	3.7.2. Machine Status Registers (mstatus and mstatush)
	3.7.3. Machine Trap-Vector Base-Address Registers (mtvec)
	3.7.4. Machine Trap-Vector Base-Address Capability Registers (mtvecc)
	3.7.5. Machine Scratch Register (mscratch)
	3.7.6. Machine Scratch Register Capability (mscratchc)
	3.7.7. Machine Exception Program Counter (mepc)
	3.7.8. Machine Exception Program Counter Capability (mepcc)
	3.7.9. Machine Cause Register (mcause)
	3.7.10. Machine Trap Delegation Register (medeleg)
	3.7.11. Machine Trap Value Register (mtval)

	3.8. Supervisor-Level CSRs
	3.8.1. Supervisor Trap Vector Base Address Registers (stvec)
	3.8.2. Supervisor Trap Vector Base Address Registers (stvecc)
	3.8.3. Supervisor Scratch Register (sscratch)
	3.8.4. Supervisor Scratch Registers (sscratchc)
	3.8.5. Supervisor Exception Program Counter (sepc)
	3.8.6. Supervisor Exception Program Counter Capability (sepcc)
	3.8.7. Supervisor Cause Register (scause)
	3.8.8. Supervisor Trap Value Register (stval)

	3.9. Unprivileged CSRs
	3.10. CHERI Exception handling
	3.11. CHERI Exceptions and speculative execution
	3.12. Physical Memory Attributes (PMA)
	3.13. Page-Based Virtual-Memory Systems
	3.13.1. Invalid Address Handling

	3.14. Integrating Zcheri_purecap with Sdext
	3.14.1. Debug Mode
	3.14.2. Core Debug Registers
	3.14.3. Debug Program Counter (dpc)
	3.14.4. Debug Program Counter Capability (dpcc)
	3.14.5. Debug Scratch Register 0 (dscratch0)
	3.14.6. Debug Scratch Register 0 (dscratch0c)
	3.14.7. Debug Scratch Register 1 (dscratch1)
	3.14.8. Debug Scratch Register 1 (dscratch1c)
	3.14.9. Debug Infinite Capability Register (dinfc)

	Chapter 4. "Zcheri_pte" Extension for CHERI Page-Based Virtual-Memory Systems
	4.1. Extending the Page Table Entry Format
	4.2. Extending the Machine Environment Configuration Register (menvcfg)

	Chapter 5. "Zcheri_legacy" Extension for CHERI Legacy Mode
	5.1. CHERI Execution Mode
	5.2. Zcheri_legacy Instructions
	5.2.1. Capability Load and Store Instructions
	5.2.2. Unconditional Capability Jumps

	5.3. Existing RISC-V Instructions
	5.3.1. Control Transfer Instructions
	5.3.2. Conditional Branches
	5.3.3. Load and Store Instructions
	5.3.4. CSR Instructions

	5.4. Integrating Zcheri_legacy with Sdext
	5.5. Debug Default Data Capability (dddc)
	5.6. Disabling CHERI Registers
	5.7. Added CLEN-wide CSRs
	5.7.1. Machine ISA Register (misa)
	5.7.2. Machine Status Registers (mstatus and mstatush)
	5.7.3. Machine Trap Default Capability Register (mtdc)
	5.7.4. Machine Security Configuration Register (mseccfg)
	5.7.5. Machine Environment Configuration Register (menvcfg)
	5.7.6. Supervisor Trap Default Capability Register (stdc)
	5.7.7. Supervisor Environment Configuration Register (senvcfg)
	5.7.8. Default Data Capability (ddc)

	Chapter 6. "Zcheri_mode" Extension for CHERI Execution Mode
	6.1. CHERI Execution Mode
	6.2. Zcheri_mode Instructions
	6.2.1. Capability Manipulation Instructions
	6.2.2. Mode Change Instructions
	6.2.3. Unconditional Capability Jumps

	6.3. Integrating Zcheri_mode with Sdext

	Chapter 7. RISC-V Instructions and Extensions Reference
	7.1. "Zcheri_purecap", "Zcheri_legacy" and "Zcheri_mode" Extensions for CHERI
	7.1.1. JALR.MODE
	7.1.2. CMV
	7.1.3. MODESW
	7.1.4. CADDI
	7.1.5. CADD
	7.1.6. SCADDR
	7.1.7. ACPERM
	7.1.8. SCMODE
	7.1.9. SCHI
	7.1.10. SCEQ
	7.1.11. SENTRY
	7.1.12. SCSS
	7.1.13. CBLD
	7.1.14. GCTAG
	7.1.15. GCPERM
	7.1.16. GCHI
	7.1.17. GCBASE
	7.1.18. GCLEN
	7.1.19. SCBNDSI
	7.1.20. SCBNDS
	7.1.21. SCBNDSR
	7.1.22. CRAM
	7.1.23. LC
	7.1.24. SC

	7.2. RV32I/E and RV64I/E Base Integer Instruction Sets
	7.2.1. AUIPC
	7.2.2. BEQ, BNE, BLT[U], BGE[U]
	7.2.3. JR
	7.2.4. JALR
	7.2.5. J
	7.2.6. JAL
	7.2.7. LD
	7.2.8. LWU
	7.2.9. LW
	7.2.10. LHU
	7.2.11. LH
	7.2.12. LBU
	7.2.13. LB
	7.2.14. SD
	7.2.15. SW
	7.2.16. SH
	7.2.17. SB
	7.2.18. SRET
	7.2.19. MRET
	7.2.20. DRET

	7.3. "A" Standard Extension for Atomic Instructions
	7.3.1. AMO<OP>.W
	7.3.2. AMO<OP>.D
	7.3.3. AMOSWAP.C
	7.3.4. LR.D
	7.3.5. LR.W
	7.3.6. LR.H
	7.3.7. LR.B
	7.3.8. LR.C
	7.3.9. SC.D
	7.3.10. SC.W
	7.3.11. SC.H
	7.3.12. SC.B
	7.3.13. SC.C

	7.4. "Zicsr", Control and Status Register (CSR) Instructions
	7.4.1. CSRRW
	7.4.2. CSRRWI
	7.4.3. CSRRS
	7.4.4. CSRRSI
	7.4.5. CSRRC
	7.4.6. CSRRCI

	7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point
	7.5.1. FLD
	7.5.2. FLW
	7.5.3. FLH
	7.5.4. FSD
	7.5.5. FSW
	7.5.6. FSH

	7.6. "C" Standard Extension for Compressed Instructions
	7.6.1. C.BEQZ, C.BNEZ
	7.6.2. C.MV
	7.6.3. C.ADDI16SP
	7.6.4. C.ADDI4SPN
	7.6.5. C.MODESW
	7.6.6. C.JALR
	7.6.7. C.JR
	7.6.8. C.JAL
	7.6.9. C.J
	7.6.10. C.LD
	7.6.11. C.LW
	7.6.12. C.LWSP
	7.6.13. C.LDSP
	7.6.14. C.FLW
	7.6.15. C.FLWSP
	7.6.16. C.FLD
	7.6.17. C.FLDSP
	7.6.18. C.LC
	7.6.19. C.LCSP
	7.6.20. C.SD
	7.6.21. C.SW
	7.6.22. C.SWSP
	7.6.23. C.SDSP
	7.6.24. C.FSW
	7.6.25. C.FSWSP
	7.6.26. C.FSD
	7.6.27. C.FSDSP
	7.6.28. C.SC
	7.6.29. C.SCSP

	7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations
	7.7.1. CBO.CLEAN
	7.7.2. CBO.FLUSH
	7.7.3. CBO.INVAL
	7.7.4. CBO.ZERO
	7.7.5. PREFETCH.I
	7.7.6. PREFETCH.R
	7.7.7. PREFETCH.W

	7.8. "Zba" Extension for Bit Manipulation Instructions
	7.8.1. SH1ADD
	7.8.2. SH2ADD
	7.8.3. SH3ADD
	7.8.4. SH1ADD.UW
	7.8.5. SH2ADD.UW
	7.8.6. SH3ADD.UW
	7.8.7. SH4ADD
	7.8.8. SH4ADD.UW

	7.9. "Zcb" Standard Extension For Code-Size Reduction
	7.9.1. C.LH
	7.9.2. C.LHU
	7.9.3. C.LBU
	7.9.4. C.SH
	7.9.5. C.SB

	7.10. "Zcmp" Standard Extension For Code-Size Reduction
	7.10.1. CM.PUSH
	7.10.2. CM.POP
	7.10.3. CM.POPRET
	7.10.4. CM.POPRETZ
	7.10.5. CM.MVSA01
	7.10.6. CM.MVA01S

	7.11. "Zcmt" Standard Extension For Code-Size Reduction
	7.11.1. Jump Vector Table CSR (jvt)
	7.11.2. Jump Vector Table CSR (jvtc)
	7.11.3. CM.JALT
	7.11.4. CM.JT

	Chapter 8. Extension summary
	8.1. Zbhlrsc
	8.2. Zcheri_purecap
	8.3. Zcheri_legacy
	8.4. Zcheri_mode
	8.5. Instruction Modes

	Chapter 9. Capability Width CSR Summary
	9.1. Other tables

	
	Bibliography

