RISC-V Specification for CHERI
Extensions

Authors: Hesham Almatary, Andres Amaya Garcia, John Baldwin, David Chisnall, Jessica
Clarke, Brooks Davis, Nathaniel Wesley Filardo, Franz A. Fuchs, Timothy Hutt, Alexandre
Joannou, Tarig Kurd, Ben Laurie, Marno van der Maas, A. Theodore Markettos, David McKay,
Jamie Melling, Stuart Menefy, Simon W. Moore, Peter G. Neumann, Robert Norton,
Alexander Richardson, Michael Roe, Peter Rugg, Peter Sewell, Carl Shaw, Robert N. M.
Watson, Jonathan Woodruff

Version v0.8.2, 2024-05-09: Draft

Table of Contents

Preamble
Copyright and license information
Contributors
1. Introduction
1.1. CHERI Concepts and Terminology
1.2. CHERI Extensions to RISC-V
1.3. Risks and Known Uncertainty
1.3.1. Pending Extensions
1.3.2. Incompatible Extensions
2. Anatomy of Capabilities in Zcheripurecap
2.1. Capability Encoding
2.2. Components of a Capability
2.2.1. Tag
2.2.2. Address
2.2.3. Architectural Permissions (AP)
Description
Permission Encoding
Permission Transitions
2.2.4. Software-Defined Permissions (SDP)
2.2.5. Sealed (S) Bit
2.2.6. Bounds (EF, T, TE, B, BE)
Concept
Decoding
Malformed Capability Bounds
2.3. Special Capabilities
2.3.1. NULL Capability
2.3.2. Infinite Capability
2.4. Representable Range Check
2.4.1. Concept

2.4.2. Practical Information

3. Integrating Zcheripurecap with the RISC-V Base Integer Instruction Set

3.1. Memory

3.2. Programmer’s Model for Zcheripurecap

3.2.1. PCC - The Program Counter Capability

3.3. Capability Instructions
3.3.1. Capability Inspection Instructions
3.3.2. Capability Manipulation Instructions

3.3.3. Capability Load and Store Instructions

3.4. Existing RISC-V Instructions

3.4.1. Integer Computational Instructions

© 0 00 W W W~ 3 O O O U b b W N —

NN O S Sy e e e e T - W VT S
PO RROO 0o oo IS8 00 o2 2R

3.4.2. Control Transfer Instructions
Unconditional Jumps
Conditional Branches
3.4.3. Integer Load and Store Instructions
3.5. Zicsr, Control and Status Register (CSR) Instructions
3.5.1. CSR Instructions
3.6. Control and Status Registers (CSRs)
3.7. Machine-Level CSRs
3.7.1. Machine Status Registers (mstatus and mstatush)
3.7.2. Machine Trap Vector Base Address Register (mtvec)
3.7.3. Machine Trap Vector Base Address Capability Register (mtvecc)
3.7.4. Machine Scratch Register (mscratch)
3.7.5. Machine Scratch Capability Register (mscratchc)
3.7.6. Machine Exception Program Counter (mepc)
3.7.7. Machine Exception Program Counter Capability (mepcc)
3.7.8. Machine Cause Register (mcause)
3.7.9. Machine Trap Delegation Register (medeleg)
3.7.10. Machine Trap Value Register (mtval)
3.8. Supervisor-Level CSRs
3.8.1. Supervisor Trap Vector Base Address Register (stvec)
3.8.2. Supervisor Trap Vector Base Address Capability Register (stvecc)
3.8.3. Supervisor Scratch Register (sscratch)
3.8.4. Supervisor Scratch Capability Register (sscratchc)
3.8.5. Supervisor Exception Program Counter (sepc)
3.8.6. Supervisor Exception Program Counter Capability (sepcc)
3.8.7. Supervisor Cause Register (scause)
3.8.8. Supervisor Trap Value Register (stval)
3.9. Unprivileged CSRs
3.10. CHERI Exception handling
3.11. CHERI Exceptions and speculative execution
3.12. Physical Memory Attributes (PMA)
3.13. Page-Based Virtual-Memory Systems
3.13.1. Invalid Address Handling
Accessing CSRs
Branches and Jumps
Memory Accesses
3.14. Integrating Zcheripurecap with Sdext
3.14.1. Debug Mode
3.14.2. Core Debug Registers
3.14.3. Debug Program Counter (dpc)
3.14.4. Debug Program Counter Capability (dpcc)
3.14.5. Debug Scratch Register O (dscratchO)
3.14.6. Debug Scratch Register O Capability (dscratchOc)

22
23
23
23
24
24
25
26
26
26
26
27
27
27
28
28
30
30
31
31
31
32
32
32
32
32
33
34
34
36
36
36
36
37
37
38
38
39
39
39
40
40
40

3.14.7. Debug Scratch Register 1 (dscratchl)
3.14.8. Debug Scratch Register 1 Capability (dscratchlc)
3.14.9. Debug Infinite Capability Register (dinfc)

3.15. Integrating Zcheripurecap with Sdtrig

4."Zcheripte" Extension for CHERI Page-Based Virtual-Memory Systems

4.1. Extending the Page Table Entry Format

4.2. Extending the Machine Environment Configuration Register (menvcfg)

5."Zcherihybrid" Extension for CHERI Integer Pointer Mode

5.1. CHERI Execution Mode

5.2. CHERI Execution Mode Encoding

5.3. Zcherihybrid Instructions
5.3.1. Capability Load and Store Instructions
5.3.2. Capability Manipulation Instructions
5.3.3. Mode Change Instructions

5.4. Existing RISC-V Instructions
5.4.1. Control Transfer Instructions
5.4.2. Conditional Branches
5.4.3. Load and Store Instructions
5.4.4. CSR Instructions

5.5. Integrating Zcherihybrid with Sdext

5.6. Debug Default Data Capability (dddc)

5.7. Disabling CHERI Registers

5.8. Added CLEN-wide CSRs
5.8.1. Machine Status Registers (mstatus and mstatush)
5.8.2. Machine Trap Default Capability Register (mtdc)
5.8.3. Machine Security Configuration Register (mseccfg)
5.8.4. Machine Environment Configuration Register (menvcfg)
5.8.5. Supervisor Trap Default Capability Register (stdc)

5.8.6. Supervisor Environment Configuration Register (senvcfg)

5.8.7. Default Data Capability (ddc)
6. "Zstid Extension for Thread Identification
6.1. Control and Status Registers (CSRs)
6.2. Supervisor-Level and Unprivileged CSRs
6.2.1. Supervisor Thread Identifier (stid)
6.2.2. User Thread Identifier (utid)
6.2.3. Supervisor Thread Identifier Capability (stidc)
6.2.4. User Thread Identifier Capability (utidc)
6.3. CHERI Compartmentalization
7. RISC-V Instructions and Extensions Reference
7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI
711. CMV
7.1.2. MODESW
7.1.3. CADDI

41
41
41
41
44
44
45
47
47
47
48
48
48
48
49
49
49
49
49
50
51
51
52
52
53
53
53
54
54
55
56
56
56
56
56
56
57
57
58
59
60

61
62

T14. CADD 62

T1.5.SCADDR . 64
71.6. ACPERM 65
1.7 SCMODE 67
C18. SCHI . 68
T1.9.SCEQ 69
C110. SENTRY . o 70
(01 SCSS 71
T2, CBLD 2
T113. GCTAG 4
T114. GCPERM . 5
CAA5. GCHI 6
1116, GCBASE Tl
T107. GCLEN. 8
T118. SCBNDSI - 79
T119. SCBNDS 79
71.20. SCBNDSR 81
T1.21 CRAM 82
(122, LG 83
(.23, SC. 85
7.2. RV32I/E and RV64I/E Base Integer Instruction Sets 87
20 AUIPC 88
7.2.2.BEQ, BNE, BLT[U], BGE[U]. 89
T23 TR 90
T2ATALR 90
T B, 92
T26.JAL. 92
0 LD 93
T2.8. LWU 93
12,9, LW . 93
(210 LHU o 93
(201 LH . 93
C2.02. LBU 93
(208, LB 94
C20A4.SD 96
(205, S 96
C2.06. SH 96
(200 SB 97
C2.08. SRET . 99
219 MRET . 99
1.2.20. DRET 100
7.3."A" Standard Extension for Atomic Instructions. 101

731 AMO<OP>W . 102

1.3.2. AMO<OP>.D . 103

7.3.3. AMOSWAP.C. . 105
(.34 LR D 107
(3.5, LR 107
0.3.6. LR H 107
(8 LR B 108
(3.8 LR G 110
1.3.9. SC. D . 112
1.3.10. SCW Lo 112
(.3 1) SCH 112
(.3.12. SC B 113
(.38, SC.C 115
74."Zicsr', Control and Status Register (CSR) Instructions. 17
741 CSRRW 118
742 CSRRWI o 119
(4.3, CSRRS 119
(44 CSRRSI 119
(4.5, CSRRC. . 119
74.6. CSRRCI 120
7.5."Zth", "Zthmin", "F" and "D" Standard Extension for Floating-Point. 122
(5.1 FLD 123
(5.2, FLW 123
(5. 3. FLH 124
(54 FSD 126
5.5, FSW 126
(5.6, FSH 127
7.6."C" Standard Extension for Compressed Instructions. 129
7.6.1. CBEQZ, C.BNEZ. . 130
1.6.2. C.MV | 131
7.6.3. CADDIIESP . 132
7.6.4. CADDIASPN 133
7.6.5. C.MODE SW 134
T6.6.CJALR 135
TOT.CIR 136
(6.8, C AL 137
T6.9.CJ 138
1.6.10. C.LD 139
611 C.LW 140
7.6.12. CLWSP. 142
(.6.13. C LD S P 143
(.6.14. CELW o 145
7.6.15. C.EFLWSP 145

7.6.16. C.ELD . 146

7.6.17. CFLDSP

7.6.18. C.LC

7.6.19. C.LCSP

7.6.20. C.SD

7.6.21. C.SW

7.6.22. C.SWSP

7.6.23. C.SDSP

7.6.24. CFSW

7.6.25. CFSWSP

7.6.26. C.FSD

7.6.27. CFSDSP

7.6.28. C.SC

7.6.29. C.SCSP
7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations

7.7.1. CBO.CLEAN

(.7.2. CBO.FLUSH

7.7.3. CBO.INVAL

7.74. CBO.ZERO

7.7.5. PREFETCH.I

7.7.6. PREFETCH.R

(.1'(. PREFETCH.W
7.8."Zba" Extension for Bit Manipulation Instructions

7.8.1. ADD.UW

7.8.2. SHIADD

7.8.3. SH2ADD

7.8.4. SH3ADD

7.8.5. SHIADD.UW

7.8.6. SH2ADD.UW

7.8.7. SH3ADD.UW

7.8.8. SH4ADD

7.8.9. SHAADD.UW
7.9."Zcb" Standard Extension For Code-Size Reduction

79.1. C.LH

79.2. CLHU

7.9.3. CLBU

7.94.C.SH

7.9.5.C.SB
7.10."Zcemp" Standard Extension For Code-Size Reduction

7.10.1. CM.PUSH

7.10.2. CM.POP

7.10.3. CM.POPRET

710.4. CM.POPRETZ

7.10.5. CM.MVSAO1

146
148
148
150
151
153
154
156
156
157
157
159
159
161
162
163
164
166
168
169
170
171
172
173
173
174
175
175
176
177
178
179
180
180
181
183
184
186
187
188
189
191
193

7.10.6. CM.MVAOQ1S
7.11. "Zcmt" Standard Extension For Code-Size Reduction
7.11.1. Jump Vector Table CSR (jvt)
7.11.2. Jump Vector Table CSR (jvtc)
711.3. CMJALT
7114. CMJT
8. Extension summary
8.1. Zabhlrsc
8.2. Zish4add
8.3. Zcheripurecap
8.4. Zcherihybrid
8.5. Instruction Modes
9. Capability Width CSR Summary
9.1. Other tables
Bibliography

194
195
195
195
196
198
200
200
200
200
208
209
216
219
222

Preamble | Page 1

Preamble

This document is in the Development state

Expect potential changes. This draft specification is likely to evolve before it is accepted as
a standard. Implementations based on this draft may not conform to the future standard.

RISC-V Specification for CHERI Extensions | © RISC-V

http://riscv.org/spec-state

Copyright and license information | Page 2

Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-
BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2024 by RISC-V International.

RISC-V Specification for CHERI Extensions | © RISC-V

https://creativecommons.org/licenses/by/4.0/

Contributors | Page 3

Contributors

This RISC-V specification has been contributed to directly or indirectly by:

- Hesham Almatary <hesham.almatary@cl.cam.ac.uk>
- Andres Amaya Garcia <andres.amaya@codasip.com>
- John Baldwin <jhb6l@cl.cam.ac.uk>

- David Chisnall <david.chisnall@cl.cam.ac.uk>

- Jessica Clarke <jessica.clarke@cl.cam.ac.uk>

- Brooks Davis <brooks.davis@sri.com>

- Nathaniel Wesley Filardo <nwf20@cam.ac.uk>

- Franz A. Fuchs <franz.fuchs@cl.cam.ac.uk>

- Timothy Hutt <timothy.hutt@codasip.com>

- Alexandre Joannou <alexandre. joannou@cl.cam.ac.uk>
- Martin Kaiser <martin kaiser@codasip.com>

- Tariq Kurd <tarig.kurd@codasip.com>

- Ben Laurie <benl@google.com>

- Marno van der Maas <mvdmaas@lowrisc.org>

- Maja Malenko <maja.malenko@codasip.com>

- A. Theodore Markettos <theo.markettos@cl.cam.ac.uk>
- David McKay <david.mckay@codasip.com>

- Jamie Melling <jamie.melling@codasip.com>

- Stuart Menefy <stuart. menefy@codasip.com>

- Simon W. Moore <simon.moore@cl.cam.ac.uk>

- Peter G. Neumann <neumann@csl.sri.com>

- Robert Norton <robert.norton@cl.cam.ac.uk>

- Alexander Richardson <alexrichardson@google.com>
- Michael Roe <mrlOl@cam.ac.uk>

- Peter Rugg <peter.rugg@cl.cam.ac.uk>

- Peter Sewell <peter.sewell@cl.cam.ac.uk>

- Carl Shaw <carl.shaw@codasip.com>

- Robert N. M. Watson <robert.watson@cl.cam.ac.uk>

- Toby Wenman <toby.wenman@codasip.com>

- Jonathan Woodruff <jonathan.woodruff@cl.cam.ac.uk>

RISC-V Specification for CHERI Extensions | © RISC-V

mailto:hesham.almatary@cl.cam.ac.uk
mailto:andres.amaya@codasip.com
mailto:jhb61@cl.cam.ac.uk
mailto:david.chisnall@cl.cam.ac.uk
mailto:jessica.clarke@cl.cam.ac.uk
mailto:brooks.davis@sri.com
mailto:nwf20@cam.ac.uk
mailto:franz.fuchs@cl.cam.ac.uk
mailto:timothy.hutt@codasip.com
mailto:alexandre.joannou@cl.cam.ac.uk
mailto:martin.kaiser@codasip.com
mailto:tariq.kurd@codasip.com
mailto:benl@google.com
mailto:mvdmaas@lowrisc.org
mailto:maja.malenko@codasip.com
mailto:theo.markettos@cl.cam.ac.uk
mailto:david.mckay@codasip.com
mailto:jamie.melling@codasip.com
mailto:stuart.menefy@codasip.com
mailto:simon.moore@cl.cam.ac.uk
mailto:neumann@csl.sri.com
mailto:robert.norton@cl.cam.ac.uk
mailto:alexrichardson@google.com
mailto:mr101@cam.ac.uk
mailto:peter.rugg@cl.cam.ac.uk
mailto:peter.sewell@cl.cam.ac.uk
mailto:carl.shaw@codasip.com
mailto:robert.watson@cl.cam.ac.uk
mailto:toby.wenman@codasip.com
mailto:jonathan.woodruff@cl.cam.ac.uk

1.1. CHERI Concepts and Terminology | Page 4

Chapter 1. Introduction
1.1. CHERI Concepts and Terminology

Current CPU architectures (including RISC-V) allow memory access solely by specifying and
dereferencing a memory address stored as an integer value in a register or in memory. Any accidental
or malicious action that modifies such an integer value can result in unrestricted access to the
memory that it addresses. Unfortunately, this weak memory protection model has resulted in the
majority of software security vulnerabilities present in software today.

CHERI enables software to efficiently implement fine-grained memory protection and scalable
software compartmentalization by providing strong, efficient hardware mechanisms to support
software execution and enable it to prevent and mitigate vulnerabilities.

Design goals include incremental adoptability from current ISAs and software stacks, low
performance overhead for memory protection, significant performance improvements for software
compartmentalization, formal grounding, and programmer-friendly underpinnings. It has been
designed to provide strong, non-probabilistic protection rather than depending on short random
numbers or truncated cryptographic hashes that can be leaked and reinjected, or that could be brute
forced.

CHERI enhances the CPU to add hardware memory access control. It has an additional memory access
mechanism that protects references to code and data (pointers), rather than the location of code and data
(integer addresses). This mechanism is implemented by providing a new primitive, called a capability,
that software components can use to implement strongly protected pointers within an address space.

Capabilities are unforgeable and delegatable tokens of authority that grant software the ability to
perform a specific set of operations. In CHERI, integer-based pointers can be replaced by capabilities
to provide memory access control. In this case, a memory access capability contains an integer
memory address that is extended with metadata to protect its integrity, limit how it is manipulated,
and control its use. This metadata includes:

- an out-of-band tag implementing strong integrity protection (differentiating valid and invalid
capabilities) that prevents confusion between data and capabilities

- bounds limiting the range of addresses that may be dereferenced
- permissions controlling the specific operations that may be performed

- sealing which is used to support higher-level software encapsulation

The CHERI model is motivated by the principle of least privilege, which argues that greater security can
be obtained by minimizing the privileges accessible to running software. A second guiding principle is
the principle of intentional use, which argues that, where many privileges are available to a piece of
software, the privilege to use should be explicitly named rather than implicitly selected. While CHERI
does not prevent the expression of vulnerable software designs, it provides strong vulnerability
mitigation: attackers have a more limited vocabulary for attacks, and should a vulnerability be
successfully exploited, they gain fewer rights, and have reduced access to further attack surfaces.

Protection properties for capabilities include the ISA ensuring that capabilities are always derived via
valid manipulations of other capabilities (provenance), that corrupted in-memory capabilities cannot
be dereferenced (integrity), and that rights associated with capabilities shall only ever be equal or less
permissive (monotonicity). Tampering or modifying capabilities in an attempt to elevate their rights

RISC-V Specification for CHERI Extensions | © RISC-V

1.2. CHERI Extensions to RISC-V | Page 5

will yield an invalid capability as the tag will be cleared. Attempting to dereference via an invalid
capability will result in a hardware exception.

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and dereferenced
using CHERI-aware instructions that expect capability operands rather than integer addresses. On
hardware reset, initial capabilities are made available to software via capability registers. All other
capabilities will be derived from these initial valid capabilities through valid capability
transformations.

Developers can use CHERI to build fine-grained spatial and temporal memory protection into their
system software and applications and significantly improve their security.

1.2. CHERI Extensions to RISC-V

This specification is based on publicly available documentation including (Watson et al., 2023) and
(Woodruff et al,, 2019). It defines the following extensions to support CHERI alongside RISC-V:

Zcheripurecap

Introduces key, minimal CHERI concepts and features to the RISC-V ISA. The resulting extended
ISA is not backwards-compatible with RISC-V.

Zcherihybrid

Extends Zcheripurecap with features to ensure that the ISA extended with CHERI allows backwards
binary compatibility with RISC-V. It also adds a mode bit in the encoding of capabilities to allow
changing the current CHERI execution mode using indirect jump instructions.

Zcheripte
CHERI extension for RISC-V harts supporting page-based virtual-memory.

Zcherivectorcap

CHERI extension for the RISC-V Vector (V) extension. It adds support for storing CHERI
capabilities in vector registers, intended for vectorised memory copying.

Zstid

Extension for supporting thread identifiers. This extension improves software
compartmentalization on CHERI systems.

0 The extension names are provisional and subject to change.

Zcheripurecap is defined as the base extension which all CHERI RISC-V implementations must
support. Zcherihybrid and Zcheripte are optional extensions in addition to Zcheripurecap.

If a standard vector extension is present (indicated in this document as "V', but it could equally be one
of the subsets defined by a Zve* extension) then Zcherivectorcap may optionally be added in addition
to Zcheripurecap.

We refer to software as purecap if it utilizes CHERI capabilities for all memory accesses — including
loads, stores and instruction fetches — rather than integer addresses. Purecap software requires the
CHERI RISC-V hart to support Zcheripurecap. We refer to software as Hybrid if it uses integer
addresses or CHERI capabilities for memory accesses. Hybrid software requires the CHERI RISC-V
hart to support Zcheripurecap and Zcherihybrid.

RISC-V Specification for CHERI Extensions | © RISC-V

1.3. Risks and Known Uncertainty | Page 6

See Chapter 7 for compatibility with other RISC-V extensions.

1.3. Risks and Known Uncertainty

- All extensions could be divided up differently in the future, including after ratification
- The RISC-V Architecture Review Committee (ARC) are likely to update all encodings

- The ARC are likely to update all CSR addresses

- Instruction mnemonics may be renamed

> Any changes will affect assembly code, but assembler aliases can provide backwards
compatibility

- There is no clarity on how the new Page Table Entry (PTE) bits from Zcheripte will be
implemented

° The PTE bits introduce a dependency between exceptions and the stored tag bit

- There is debate on whether different permission encodings are needed for MXLEN=32 and
MXLEN=64

1.3.1. Pending Extensions

The base RISC-V ISAs, along with most extensions, have been reviewed for compatibility with CHERI.
However, the following extensions are yet to be reviewed:

- "V" Standard Extension for Vector Operations
- "H" Hypervisor Extension

- Core-Local Interrupt Controller (CLIC)

) The list above is not complete!

1.3.2. Incompatible Extensions

There are RISC-V extensions in development that may duplicate some aspects of CHERI functionality
or directly conflict with CHERI and should not be available on a CHERI-enabled hart. These include:

- RISC-V CFI specification

- "]" Pointer Masking

é The list above is not complete!

RISC-V Specification for CHERI Extensions | © RISC-V

2.1. Capability Encoding | Page 7

Chapter 2. Anatomy of Capabilities in
/cheripurecap

RISC-V defines variants of the base integer instruction set characterized by the width of the integer
registers and the corresponding size of the address space. There are two primary ISA variants, RV32I
and RV641, which provide 32-bit and 64-bit address spaces respectively. The term XLEN refers to the
width of an integer register in bits (either 32 or 64). The value of XLEN may change dynamically at
run-time depending on the values written to CSRs, so we define capability behavior in terms of
MXLEN, which is the value of XLEN used in machine mode and the widest XLEN the implementation
supports.

Zcheripurecap assumes a version of the privileged architecture which defines MXLEN as

y constant and requires higher privilege modes to have at least the same XLEN as lower

EI privilege modes; these changes are present in the current draft and expected to be part of
privileged architecture 1.13.

Zcheripurecap defines capabilities of size CLEN corresponding to 2 * MXLEN without including the
tag bit. The value of CLEN is always calculated based on MXLEN regardless of the effective XLEN
value.

2.1. Capability Encoding

y CHERI v9 Note: The encoding changes eliminate the concept of the in-memory format,
EI and also increase precision for RV32.

The components of a capability, except the tag, are encoded as shown in Figure 1 for MXLEN=32 and
Figure 2 for MXLEN=64. Each memory location or register able to hold a capability must also store the
tag as out of band information that software cannot directly set or clear. The capability metadata is
held in the most significant bits and the address is held in the least significant bits.

31 30 29 25 24 212019 18 17 121110 9 210
SDP AP Reserved | S [EF|T8 T[7:2] TE B[9:2] BE
Address
32

Figure 1. Capability encoding for MXLEN=32

63 57 56 53 52 47 46 28 27 26 25 17 16 14 13 320
Reserved | SDP | AP Reserved SI|EF| T[11:3] | TE B[13:3] BE
Address
64

Figure 2. Capability encoding for MXLEN=64

Reserved bits are available for future extensions to Zcheripurecap.

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Components of a Capability | Page 8

Df Reserved bits must be O in valid capabilities.

2.2. Components of a Capability

Capabilities contain the software accessible fields described in this section.

2.2.1. Tag

The tag is an additional hardware managed bit added to addressable memory and registers. It is stored
separately and may be referred to as "out of band". It indicates whether a register or CLEN-aligned
memory location contains a valid capability. If the tag is set, the capability is valid and can be
dereferenced (contingent on checks such as permissions or bounds).

The capability is invalid if the tag is clear. Using an invalid capability to dereference memory or
authorize any operation gives rise to exceptions. All capabilities derived from invalid capabilities are
themselves invalid i.e. their tags are O.

All locations in registers or memory able to hold a capability are CLEN+1 bits wide including the tag
bit. Those locations are referred as being CLEN-bit or capability wide in this specification.

2.2.2. Address

The byte-address of a memory location is encoded as MXLEN integer value.

Table 1. Address widths depending on MXLEN

MXLEN Address width
32 32
64 64

2.2.3. Architectural Permissions (AP)

Description
A CHERI v9 Note: The permissions are encoded differently in this specification.

This field encodes architecturally defined permissions of the capability. Permissions grant access
subject to the tag being set, the capability being unsealed (see Section 2.2.5), and bounds checks (see
Section 2.2.6). An operation is also contingent on requirements imposed by other RISC-V architectural
features, such as virtual memory, PMP and PMAs, even if the capability grants sufficient permissions.
The permissions currently defined in Zcheripurecap are listed below.

Read Permission (R)

Allow reading integer data from memory. Tags are always read as zero when reading integer data.

Write Permission (W)

Allow writing integer data to memory. Tags are always written as zero when writing integer data.
Every CLEN aligned word in memory has a tag, if any byte is overwritten with integer data then the
tag for all CLEN-bits is cleared.

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Components of a Capability | Page 9

Capability Permission (C)
Allow reading capability data from memory if the authorising capability also grants R-permission.
Allow writing capability data to memory if the authorising capability also grants W-permission.

Execute Permission (X)

Allow instruction execution.

Access System Registers Permission (ASR)

Allow access to privileged CSRs.

Permission Encoding

The bit width of the permissions field depends on the value of MXLEN as shown in Table 2. A 5-bit
vector encodes the permissions when MXLEN=32. For this case, the legal encodings of permissions are
listed in Table 3. Certain combinations of permissions are impractical. For example, C-permission is
superfluous when the capability does not grant either R-permission or W-permission. Therefore, it is
only possible to encode a subset of all combinations.

Table 2. Permissions widths depending on MXLEN

MXLEN Permissions width Comment

32 5 Encodes some combinations of 5 permission
bits and the M-bit

64 6 Separate bits for each permission and the M-bit

For MXLEN=32, the permissions encoding is split into four quadrants. The quadrant is taken from
bits [4:3] of the permissions encoding. The meaning for bits [2:0] are shown in Table 3 for each
quadrant.

Quadrants 2 and 3 are arranged to implicitly grant future permissions which may be added with the
existing allocated encodings. Quadrant O does the opposite - the encodings are allocated not to
implicitly add future permissions, and so granting future permissions will require new encodings.
Quadrant 1 encodes permissions for executable capabilities and the M-bit.

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Components of a Capability | Page 10

Table 3. Encoding of architectural permissions for MXLEN=32
Encoding[2:0] R W C X ASR Mode Notes
Quadrant O: Non-capability data read/write
bit[2] - write, bit[1] - reserved (0), bit[O] - read

Reserved bits for future extensions are O so new permissions are not implicitly granted

0 N/A No permissions
1 v N/A Data RO
2-3 reserved
4 v N/A Data WO
5 v v N/A Data RW
6-7 reserved

Quadrant 1: Executable capabilities

bit[0] - M-bit (1-Capability Pointer Mode, O-Integer Pointer Mode)

0-1 v v v v v Mode Execute + ASR (see Infinite)
2-3 v v v Mode Execute + Data & Cap RO
4-5 v v v v Mode Execute + Data & Cap RW
6-7 v v v Mode Execute + Data RW

Quadrant 2: Reserved
Reserved bits for future extensions must be 1 so they are implicitly granted
0-7 reserved
Quadrant 3: Capability data read/write
[2] - write. R and C implicitly granted.

Reserved bits for future extensions must be 1 so they are implicitly granted

0-2 reserved

3 v v N/A Data & Cap RO
4-6 reserved

7 v v v N/A Data & Cap RW

When MXLEN=32 there are many reserved permission encodings (see Table 3). It is not
possible for a tagged capability to have one of these values since ACPERM will never
y create it. It is possible for untagged capabilities to have reserved values. GCPERM will
EI interpret reserved values as if it were ObOO0O0O (no permissions). Future extensions may
assign meanings to the reserved bit patterns, in which case GCPERM is allowed to report

a non-zero value.

A 6-bit vector encodes the permissions and M-bit when MXLEN=64. In this case, there is a bit per
permission as shown in Table 4. A permission is granted if its corresponding bit is set, otherwise the
capability does not grant that permission.

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Components of a Capability | Page 11

Table 4. Encoding of architectural permissions for MXLEN=64
Bit Name
O C-permission
1 W-permission
2 R-permission
3 X-permission
4 ASR-permission
5 M-bit

For both MXLEN=32 and MXLEN=64, the M-bit is only assigned meaning when the implementation
supports Zcherihybrid, otherwise the bit is reserved and must be O in valid capabilities.

Permission Transitions

Executing ACPERM can result in sets of permissions which cannot be represented when MXLEN=32
(see Table 3) or permission combinations which are not useful for MXLEN=64, such as ASR-
permission set without X-permission.

These cases are defined to return useful minimal sets of permissions, which may be no permissions.
See ACPERM for these rules.

y Future extensions may allow more combinations of permissions, especially for
EI MXLEN=64.

2.2.4. Software-Defined Permissions (SDP)

Df CHERI v9 Note: CHERI v9 had no software-defined permissions for RV32
A bit vector used by the kernel or application programs for software-defined permissions (SDP).

Software is completely free to define the usage of these bits. For example, a program may

y decide to use an SDP bit to indicate the "ownership” of objects. Therefore, a capability

EI grants permission to free the memory it references if that SDP bit is set because it "owns"
that object.

Table 5. SDP widths depending on MXLEN

MXLEN SDP width
32 2
64 4

2.2.5. Sealed (S) Bit

CHERI v9: The sealing bit is new (1-bit otype) and the old CHERI v9 otype no longer
A exists. Please note that this bit indicates the result of two instructions in CHERI v9:
CSEAL for sealed capabilities and CSEALENTRY for sealed entry capabilities.

This bit indicates that a capability is sealed if the bit is 1 or unsealed if it is O.

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Components of a Capability | Page 12

The sealing bit conflates two concepts in one bit: Sealing data capabilities and creating sealed entry
capabilities as described below.

Sealed capabilities cannot be dereferenced to access memory and are immutable such that modifying
any of its fields clears the tag of the output capability.

Sealed capabilities might be useful to software as tokens that can be passed around. The
| yl only way of removing the seal bit of a capability is by rebuilding it via a superset capability
with CBLD. Zcheripurecap does not offer an unseal instruction.

For code capabilities, the sealing bit is used to implement immutable capabilities that describe
function entry points. Such capabilities can be leveraged to establish a form of control-flow integrity
between mutually distrusting code. These capabilities are known as sealed entry (sentry) capabilities.
A program may jump to a sentry capability to begin executing the instructions it references. The jump
instruction automatically unseals the capability and installs it to the program counter capability (see
Section 3.2). The JALR instruction also seals the return address capability (if any) since it is the entry
point to the caller function.

226 Bounds (EF, T, TE, B, BE)

Concept

_ CHERI v9 Note: The bounds mantissa width is different in MXLEN=32. Also, the old IE
y; bit is renamed to Exponent Format (EF); the function of IE is the inverse of EF ie. [E=0
has the same effect as EF=1.

74 CHERI v9 Note: The mantissa width for RV32 was increased to 10.

y CHERI v9 Note: The sense of the exponent is reversed, so an encoded value of O
EI represents CAP_ MAX_E, and CAP_ MAX_E represents O from the previous specification.

The bounds encode the base and top addresses that constrain memory accesses. The capability can be
used to access any memory location A in the range base < A < top. The bounds are encoded in
compressed format, so it is not possible to encode any arbitrary combination of base and top
addresses. An invalid capability with tag cleared is produced when attempting to construct a capability
that is not representable because its bounds cannot be correctly encoded. The bounds are decoded as
described in Section 2.1.

The bounds field has the following components:

- T: Value substituted into the capability’s address to decode the top address
- B: Value substituted into the capability’s address to decode the base address

- E: Exponent that determines the position at which B and T are substituted into the capability’s
address

- EF: Exponent format flag indicating the encoding for T, B and E
° The exponent is stored in T and B if EF=0, so it is 'internal’
° The exponent is zero if EF=1

The bit width of T and B are defined in terms of the mantissa width (MW) which is set depending on
the value of MXLEN as shown in Table 6.

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Components of a Capability | Page 13

Table 6. Mantissa width (MW) values depending on MXLEN

MXLEN MW
32 10
64 14

The exponent E indicates the position of T and B within the capability’s address as described in
Section 2.1. The bit width of the exponent (EW) is set depending on the value of MXLEN. The
maximum value of the exponent is calculated as follows:

CAP_MAX_E = MXLEN - Mw + 2

The possible values for EW and CAP_MAX_E are shown in Table 7.

/4

Decoding

Table 7. Exponent widths and CAP_ MAX_E depending on MXLEN

MXLEN EW CAP_MAX _E
32 5 24
64 6 52

The address and bounds must be representable in valid capabilities i.e. when the tag is set
(see Section 2.2.6.3).

The metadata is encoded in a compressed format (Woodruff et al, 2019). It uses a floating point
representation to encode the bounds relative to the capability address. The base and top addresses
from the bounds are decoded as shown below.

A

TODO: The pseudo-code below does not have a formal notation. It is simply a place-holder
while the Sail implementation is unavailable. In this notation, / means "integer division", []
are the bit-select operators, and arithmetic is signed.

CHERI v9 Note: The IE bit from CHERI v9 is renamed EF and its value is inverted to
ensure that the NULL capability is encoded as zero without the need for CHERI v9’s in-
memory format.

When EF=1, the exponent E=0, so the address bits af[MW - 1.0] are replaced with T and B
to form the top and base addresses respectively.

When EF=0, the exponent E=CAP_MAX_E - ((MXLEN == 32) ? { T8, TE, BE } : {
TE, BE }), sothe address bits a[E + MW - 1.E] are replaced with T and B to form the top
and base addresses respectively. E is computed by subtracting from the maximum possible
exponent CAP_ MAX_E which can be efficiently implemented in hardware assuming that
T and B are at bit CAP_MAX_E and performing a logical bitwise shift right by E. In
contrast, CHERI v9 implementations computed the top and base addresses by assuming
that T and B are at bit O and performing a logical bitwise shift left by E.

EW = (MXLEN == 32) 2?5 : 6
CAP_MAX_E = MXLEN - Mw + 2
If EF = 1:

E =0

TIEW / 2 - 1:0] = TE

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Components of a Capability | Page 14

B[EW / 2 - 1:0] = BE
LCout = (T[MW - 3:0] < B[MW - 3:0]) 21 : 0
LMSB = (MXLEN ==32) 2 T8 : 0
else:
E = CAP_MAX E - ((MXLEN == 32) ? { T8, TE, BE } : { TE, BE })
TIEW / 2 - 1:0] = 0
B[EW / 2 - 1:0] = @
LCout = (T[MW - 3:EW / 2] < B[MW - 3:EW / 2]) 21 : 0
LMSB 3 1

Reconstituting the top two bits of T:

T[MW - 1:MW - 2] = B[MW - 1:MW - 2] + LCout + LMSB

Decoding the bounds:
top: t = { a[MXLEN - 1:E + MW] + ct, T[MW - 1:0] , {E{1'b0}} }
base: b = { a[MXLEN - 1:E + MW] + cb, B[MW - 1:0] , {E{1'b0}} }

The corrections ¢, and ¢, are calculated as as shown below using the definitions in Table 8 and Table 9.

A =al[E + MW - 1:E]
R =B - 2/MwW-27

Table 8. Calculation of top address correction

A<R T<R C,
false false 0
false true +1
true false -1
true true 0

Table 9. Calculation of base address correction

A<R B<R Ch
false false 0
false true +1
true false -1
true true 0

The base, b, and top, t, addresses are derived from the address by substituting a[E + MW - 1.E] with B
and T respectively and clearing the lower E bits. The most significant bits of a may be adjusted up or
down by 1 using corrections ¢, and ¢, to allow encoding memory regions that span alignment
boundaries.

The EF bit selects between two cases:

1. EF = 1: The exponent is O for regions less than 2" bytes long

2. EF = O: The exponent is internal with E stored in the lower bits of T and B along with Ty when

RISC-V Specification for CHERI Extensions | © RISC-V

2.2. Components of a Capability | Page 15

MXLEN=32. E is chosen so that the most significant non-zero bit of the length of the region aligns
with TIMW - 2] in the decoded top. Therefore, the most significant two bits of T can be derived
from B using the equality T = B + L, where LMW - 2] is known from the values of EF and E and a
carry out is implied if T[MW - 3:0] < B[MW - 3:0] since it is guaranteed that the top is larger
than the base.

The compressed bounds encoding allows the address to roam over a large representable region while
maintaining the original bounds. This is enabled by defining a lower boundary R from the out-of-
bounds values that allows us to disambiguate the location of the bounds with respect to an out-of-
bounds address. R is calculated relative to the base by subtracting 2¥* from B. If B, T or a[E + MW -
LE] is less than R, it is inferred that they lie in the 2™ aligned region above R labelled space; in
Figure 3 and the corrections c, and ¢, are computed accordingly. The overall effect is that the address
can roam 2""¥/4 bytes below the base address and at least 2°™"/4 bytes above the top address while
still allowing the bounds to be correctly decoded.

0x30000 T s
s
BRSERS
s
ox2c000 .| .| R
spacey! s
0x24000 .|}l .k t
‘ dereferenceable
0x20000 4 ¥ : [region
0x1E000 ...l fo] Rk b
oxiceee .| |
spacep s
oxie00 L __ 4 R multiple of s = 2F+HW

Figure 3. Memory address bounds encoded within a capability

A capability has infinite bounds if its bounds cover the entire address space such that the base address
b=0 and the top address t=2""*" ie. t is an MXLEN + 1 bit value. However, b is an MXLEN bit value
and the size mismatch introduces additional complications when decoding, so the following condition
is required to correct t for capabilities whose Representable Range wraps the edge of the address space:

if ((E < (CAP_MAX_E - 1)) & (t[MXLEN: MXLEN - 1] - b[MXLEN - 11 > 1))
t[MXLEN] = !t[MXLEN]

That is, invert the most significant bit of t if the decoded length of the capability is larger than E.

y A capability has infinite bounds if E=CAP_MAX_E and it is not malformed (see Section
EI 2.2.6.3); this check is equivalent to b=0 and t=2"*"*".

RISC-V Specification for CHERI Extensions | © RISC-V

2.3. Special Capabilities | Page 16

Malformed Capability Bounds
A capability is malformed if its encoding does not describe a valid capability because its bounds cannot

be correctly decoded. The following check indicates whether a capability is malformed.

malformedMSB = (E == CAP_MAX_E && B 1= 9)
|| (E == CAP_MAX_E - 1 && B[MW - 1] != @)

malformedLSB = (E < 0)

malformed = IEF && (malformedMSB || malformedLSB)

E‘f The check is for malformed bounds, so it does not include reserved bits!

Capabilities with malformed bounds are always invalid anywhere in the system i.e. their tags are
always O.

2.53. Special Capabilities

2.31. NULL Capability

y CHERI v9 Note: Encoding NULL as zeros removes the need for the difference between in-
EI memory and architectural format.

The NULL capability is represented with O in all fields. This implies that it has no permissions and its
exponent E is CAP_MAX_E (52 for MXLEN=64, 24 for MXLEN=32), so its bounds cover the entire
address space such that the expanded base is O and top is 2"*"**.

Table 10. Field values of the NULL capability

Field Value Comment

Tag zZero Capability is not valid
SDP Zeros Grants no permissions
AP Zeros Grants no permissions

S zero Unsealed

EF zero Internal exponent format
Tg Zero Top address bit (MXLEN=32 only)
T Zeros Top address bits

T Zeros Exponent bits

B Zeros Base address bits

B: Zeros Exponent bits

Address Zeros Capability address
Reserved Zeros All reserved fields

2.3.2. Infinite Capability

The Infinite capability grants all permissions while its bounds also cover the whole address space.

E‘f The Infinite capability is also known as default, 'almighty, or Toot' capability.

RISC-V Specification for CHERI Extensions | © RISC-V

2.4. Representable Range Check | Page 17

Table 11. Field values of the Infinite capability

Field Value Comment
Tag one Capability is valid
SDP ones Grants all permissions
AP (MXLEN=32) 0x8 (see Table 3) Grants all permissions
AP (MXLEN=64) OxI1F (see Table4) Grants all permissions
S zZero Unsealed
EF Zero Internal exponent format
Ts zero Top address bit (MXLEN=32 only)
T Zeros Top address bits
Te Zeros Exponent bits
B Zeros Base address bits
B: Zeros Exponent bits
Address Zeros Capability address
Reserved Zeros All reserved fields
Df The AP fields both set Integer Pointer Mode (if Zcherihybrid is supported)

2.4. Representable Range Check

2.4.1. Concept

The new address, after updating the address of a capability, is within the representable range if
decompressing the capability’s bounds with the original and new addresses yields the same base and
top addresses.

In other words, given a capability with address a and the new addressa' = a + X, the bounds b and ¢
are decoded using a and the new bounds b"and t'are decoded using a' The new address is within the
capability’s representable range if b == b" && t == t'.

Changing a capability’s address to a value outside the representable range unconditionally clears the
capability’s tag. Examples are:

- Instructions such as CADD which include pointer arithmetic.

- The SCADDR instruction which updates the capability address field.

2.42. Practical Information

In the bounds encoding in this specification, the top and bottom capability bounds are formed of two
or three sections:

- Upper bits from the address
> This is only if the other sections do not fill the available bits (E + MW < MXLEN)
- Middle bits from T and B decoded from the metadata

RISC-V Specification for CHERI Extensions | © RISC-V

2.4. Representable Range Check | Page 18

- Lower bits are set to zero

o This is only if there is an internal exponent (EF=0)

Table 12. Composition of the decoded top address bound

Configuration Upper Section (if E + MW < MXLEN) Middle Section Lower Section
EF=0 address]MXLEN:E + MW] + ct T[MW - 1.0] {E{TbO}}
EF=1ie E=0 addressf MXLEN:MW] + ct T[MW - 1:0]

The top described by Table 12 is MXLEN+1 bits wide to allow capabilities to span the whole address
space. The address is zero-extended by one bit. The malformed check (see Section 2.2.6.3) ensures that
the top never overflows into MXLEN+2 bits and that the base never overflows into MXLEN+1 bits.

The representable range defines the range of addresses which do not corrupt the bounds encoding. The
encoding was first introduced in Section 2.1, and is repeated in a different form in Table 12 to aid this
description.

For the address to be valid for the current bounds encoding, the value in the Upper Section of Table 12
must not change as this will change the meaning of the bounds.

2E+MW

This gives a range of s=2""", as shown in Figure 3.

The gap between the object bounds and the bound of the representable range is always guaranteed to
be at least 1/4 of s. This is represented by R = B - 2™ in Section 2.1. This gives useful guarantees,
such that if an executed instruction is in pcc bounds, then it is also guaranteed that the next linear
instruction is representable.

RISC-V Specification for CHERI Extensions | © RISC-V

3.1. Memory | Page 19

Chapter 3. Integrating Zcheripurecap
with the RISC-V Base Integer Instruction
Set

Zcheripurecap is an extension to the RISC-V ISA. The extension adds a carefully selected set of
instructions and CSRs that are sufficient to implement new security features in the ISA. To ensure
compatibility, Zcheripurecap also requires some changes to the primary base integer variants: RV32I,
providing 32-bit addresses with 64-bit capabilities, and RV641, providing 64-bit addresses with 128-bit
capabilities. The remainder of this chapter describes these changes for both the unprivileged and
privileged components of the base integer RISC-V ISAs.

y The changes described in this specification also ensure that Zcheripurecap is compatible
EI with RV32E.

Df RV128 is not currently supported by any CHERI extension.

3.1. Memory

A hart supporting Zcheripurecap has a single byte-addressable address space of 2**" bytes for all
memory accesses. Each memory region capable of holding a capability also stores a tag bit for each
naturally aligned CLEN bits (e.g. 16 bytes in RV64), so that capabilities with their tag set can only be
stored in naturally aligned addresses. Tags must be atomically bound to the data they protect.

The memory address space is circular, so the byte at address 2**" - 1 is adjacent to the byte at address
zero. A capability’s Representable Range described in Section 2.1 is also circular, so address O is within
the Representable Range of a capability where address 2"*"*" - 1is within the bounds.

3.2. Programmer’'s Model for Zcheripurecap

For Zcheripurecap, the 32 unprivileged x registers of the base integer ISA are extended so that they are
able to hold a capability as well as renamed to c registers. Therefore, each c register is CLEN bits wide
and has an out-of-band tag bit. The x notation refers to the address field of the capability in an
unprivileged register while the ¢ notation is used to refer to the full capability (i.e. address, metadata
and tag) held in the same unprivileged register.

The tag of the unprivileged c registers must be reset to zero. The reset values of the metadata and
address fields are UNSPECIFIED for all unprivileged c registers except cO.

Register cO is hardwired with all bits, including the capability metadata and tag, equal to O. In other
words, cO is hardwired to the NULL capability.

3.21. PCC - The Program Counter Capability

An authorising capability with appropriate permissions is required to execute instructions in
Zcheripurecap. Therefore, the unprivileged program counter (pc) register is extended so that it is able
to hold a capability. The extended register is called the program counter capability (pcc). The pece
address field is effectively the pc in the base RISC-V ISA so that the hardware automatically
increments as instructions are executed. The pcc's metadata and tag are reset to the Infinite capability

RISC-V Specification for CHERI Extensions | © RISC-V

3.3. Capability Instructions | Page 20

metadata and tag with the address field set to the core boot address.

The hardware performs the following checks on pce for each instruction executed in addition to the
checks already required by the base RISC-V ISA. A failing check causes a CHERI exception.

- The tag must be set

- The capability must not be sealed

- The capability must grant execute permission

- All bytes of the instruction must be in bounds

Operations that update pcc, such as changing privilege or executing jump instructions,

. unseal capabilities prior to writing. Therefore, implementations do not need to check that

y; that pcc is unsealed when executing each instruction. However, this property has not yet

been formally verified and may not hold if additional CHERI extensions beyond
Zcheripurecap are implemented.

y It is common for implementations to not allow executing pc relative instructions, such as
EI AUIPC or JAL, in debug mode.

MXLEN- 1 0
pcc (Metadata, WARL)

pcc (Address, WARL)
MXLEN

Figure 4. Program Counter Capability

pcc is an executable vector, so it need not be able to hold all possible invalid addresses.

3.3. Capability Instructions

CHERI v9 Note: Some instructions from the original CHERI specification were removed

y to save encoding space, or because they relate to features which are not yet in this

EI specification. Instructions were removed if they do not harm performance and can be
emulated using other instructions.

Zcheripurecap introduces new instructions to the base RISC-V integer ISA to inspect and operate on
capabilities held in registers.

3.3.1. Capability Inspection Instructions

These instructions allow software to inspect the fields of a capability held in a c register. The output is
an integer value written to an x register representing the decoded field of the capability, such as the
permissions or bounds. These instructions do not cause exceptions.

- GCTAG: inspects the tag of the input capability. The output is 1 if the tag is set and O otherwise

- GCPERM: outputs the architectural (AP) and software-defined (SDP) permission fields of the input
capability

- GCBASE: outputs the expanded base address of the input capability

- GCLEN: outputs the length of the input capability. Length is defined as top - base. The output is
2"HEN.1 when the capability’s length is 2¥*Y

- CRAM: outputs the nearest bounds alignment that a valid capability can represent

RISC-V Specification for CHERI Extensions | © RISC-V

3.3. Capability Instructions | Page 21

- GCHI: outputs the compressed capability metadata
- SCEQ: compares two capabilities including tag, metadata and address
- SCSS: tests whether the bounds and permissions of a capability are a subset of those from another

capability

—y GCBASE and GCLEN output O when a capability with malformed bounds is provided as an
J input (see Section 2.2.6.3).

3.3.2. Capability Manipulation Instructions

These instructions allow software to manipulate the fields of a capability held in a c register. The
output is a capability written to a c register with its fields modified. The output capability has its tag
set to O if the input capability did not have a tag set, the output capability has more permissions or
larger bounds compared to the input capability, or the operation results in a capability with
malformed bounds. These instructions do not give rise to exceptions.

- SCADDR: set the address of a capability to an arbitrary address

- CADD, CADDI: increment the address of the input capability by an arbitrary offset

- SCHI: replace a capability’s metadata with an arbitrary value. The output tag is always O

- ACPERM: bitwise AND of a mask value with a bit map representation of the architectural (AP) and
software-defined (SDP) permissions fields

- SCBNDS: set the base and length of a capability. The tag is cleared, if the encoding cannot
represent the bounds exactly

- SCBNDSR: set the base and length of a capability. The base will be rounded down and/or the
length will be rounded up if the encoding cannot represent the bounds exactly

- SENTRY: seal capability as a sentry capability

- CBLD: replace the base, top, address, permissions and mode fields of a capability with the fields
from another capability

- CMV: move a capability from a c register to another c register
/4 CBLD outputs a capability with tag set to O if the input capability’s bounds are malformed.

y CHERI v9 Note: SCBNDS and SCBNDSI perform the role of the old CSETBOUNDSEXACT
EI while the SCBNDSR is the old CSETBOUNDS.

3.3.3. Capability Load and Store Instructions

A load capability instruction, LC, reads CLEN bits from memory together with its tag and writes the
result to a c register. The capability authorising the memory access is provided in a c source register,
so the effective address is obtained by incrementing that capability with the sign-extended 12-bit
offset.

A store capability instruction, SC, writes CLEN bits and the tag in a c¢ register to memory. The
capability authorising the memory access is provided in a ¢ source register, so the effective address is
obtained by incrementing that capability with the sign-extended 12-bit offset.

LC and SC instructions cause CHERI exceptions if the authorising capability fails any of the following
checks:

RISC-V Specification for CHERI Extensions | © RISC-V

3.4. Existing RISC-V Instructions | Page 22

- The tag is zero

- The capability is sealed

- At least one byte of the memory access is outside the capability’s bounds
- Forloads, the read permission must be set in AP

- For stores, the write permission must be set in AP

Capability load and store instructions also cause load or store/AMO address misaligned exceptions if
the address is not naturally aligned to a CLEN boundary.

Misaligned capability loads and stores are errors. Implementations must generate exceptions for
misaligned capability loads and stores even if they allow misaligned integer loads and stores to
complete normally. Execution environments must report misaligned capability loads and stores as
errors and not attempt to emulate them using byte access. The Zicclsm extension does not affect
capability loads and stores. Software which uses capability loads and stores to copy data other than
capabilities must ensure that addresses are aligned.

Since there is only one tag per aligned CLEN bit block in memory, it is not possible to
represent a capability value complete with its tag at an address not aligned to CLEN.

Dy Therefore, LC and SC give rise to misaligned address fault exceptions when the effective
address to access is misaligned, even if the implementation supports Zicclsm. To transfer
CLEN misaligned bits without a tag, use integer loads and stores.

For loads, the tag of the capability loaded from memory is cleared if the authorising capability does
not grant permission to read capabilities (i.e. both R-permission and C-permission must be set in AP).
For stores, the tag of the capability written to memory is cleared if the authorising capability does not
grant permission to write capabilities (i.e. both W-permission and C-permission must be set in AP).

a TODO: these cases may cause exceptions in the future - we need a way for software to
discover and/or control the behaviour

3.4. Existing RISC-V Instructions

The operands or behavior of some instructions in the base RISC-V ISA changes in Zcheripurecap.

3.4]1. Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in x registers. Therefore,
these instructions only operate on the address field if the input register of the instruction holds a
capability. The output is XLEN bits written to an x register; the tag and capability metadata of that
register are zeroed.

The add upper immediate to pcc instruction (AUIPC) is used to build pcc-relative capabilities. AUIPC
forms a 32-bit offset from the 20-bit immediate and filling the lowest 12 bits with zeros. The pcc
address is then incremented by the offset and a representability check is performed so the capability’s
tag is cleared if the new address is outside the pcc's Representable Range. The resulting CLEN value
along with the new tag are written to a c register.

3.472. Control Transfer Instructions

Control transfer instructions operate as described in the base RISC-V ISA. They also may cause

RISC-V Specification for CHERI Extensions | © RISC-V

3.4. Existing RISC-V Instructions | Page 23

metadata updates and/or cause exceptions in addition to the base behaviour as described below.

Unconditional Jumps

JAL sign-extends the offset and adds it to the address of the jump instruction to form the target
address. The target address is installed in the address field of pcc. The capability with the address of
the instruction following the jump (pcc + 4) is written to a ¢ register.

JALR allows unconditional jumps to a target capability. The target capability is obtained by
incrementing the capability in the ¢ register operand by the sign-extended 12-bit immediate if the
immediate is not zero, then setting the least significant bit of the result to zero, then unsealing. The
capability with the address of the instruction following the jump (pcc + 4) is sealed and written to a ¢
register.

All jumps cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc.

JALR causes a CHERI exception when:

- The target capability’s tag is zero
- The target capability is sealed and the immediate is not zero
- A minimum sized instruction at the target capability’s address is not within bounds

- The target capability does not grant execute permission

JAL and JALR can also cause instruction address misaligned exceptions following the standard RISC-V
rules.

Conditional Branches

Branch instructions (see Conditional branches (BEQ, BNE, BLT[U], BGE[U])) encode signed offsets in
multiples of 2 bytes. The offset is sign-extended and added to the address of the branch instruction to
form the target address.

Branch instructions compare two x registers as described in the base RISC-V ISA, so the metadata and
tag values are disregarded in the comparison if the operand registers hold capabilities. If the
comparison evaluates to true, then the target address is installed in the pcc's address field. These
instructions cause CHERI exceptions when a minimum sized instruction at the target address is not
within the pcc's bounds.

3.4.3. Integer Load and Store Instructions

Integer load and store instructions transfer the amount of integer data described in the base RISC-V
ISA between the registers and memory. For example, LD and LW load 64-bit and 32-bit values
respectively from memory into an x register. However, the address operands for load and store
instructions are interpreted differently in Zcheripurecap: the capability authorising the access is in
the c register operand and the memory address is given by incrementing the address of that capability
by the sign-extended 12-bit immediate offset.

All load and store instructions cause CHERI exceptions if the authorising capability fails any of the
following checks:

- The tag is set

RISC-V Specification for CHERI Extensions | © RISC-V

3.5. Zicsr, Control and Status Register (CSR) Instructions | Page 24

- The capability is unsealed
- All bytes of accessed memory are inside the capability’s bounds
- Forloads, the read permission must be set in AP

- For stores, the write permission must be set in AP
Integer load instructions always zero the tag and metadata of the result register.

Integer stores write zero to the tag associated with the memory locations that are naturally aligned to
CLEN. Therefore, misaligned stores may clear up to two tag bits in memory.

3.5. Zicsr, Control and Status Register (CSR)
INnstructions

Zcheripurecap requires that RISC-V CSRs intended to hold addresses, like mtvec, are now able to hold
capabilities. Therefore, such registers are renamed and extended to CLEN-bit in Zcheripurecap.

Reading or writing any part of a CLEN-bit CSR may cause side effects. For example, the CSR’s tag bit
may be cleared if a new address is outside the Representable Range of a CSR capability being written.

This section describes how the CSR instructions operate on these CSRs in Zcheripurecap.

The CLEN-bit CSRs are summarised in Chapter 9.

3.51. CSR Instructions

Df CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

All CSR instructions atomically read-modify-write a single CSR. If the CSR accessed is of capability
size then the capability’s tag, metadata and address are all accessed atomically.

When the CSRRW instruction is accessing a capability width CSR, then the source and destination
operands are c registers and it atomically swaps the values in the whole CSR with the CLEN width
register operand.

There are special rules for updating specific CLEN-wide CSRs as shown in Table 37.

When CSRRS and CSRRC instructions are accessing a capability width CSR, such as mtvecc, then the
destination operand is a c register and the source operand is an x register. Therefore, the instructions
atomically read CLEN bits from the CSR, calculate the final address using standard RISC-V behaviour
(set bits, clear bits, etc.), and that final address is written to the CSR capability’s address field. The
update typically uses the semantics of a SCADDR instruction which clears the tag if the capability is
sealed, or if the updated address is not representable. Table 37 shows the exact action taken for each
capability width CSR.

The CSRRWI, CSRRSI and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC respectively,
when accessing a capability width CSR except that they update the capability’s address only using an
XLEN-bit value obtained by zero-extending a 5-bit unsigned immediate field.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is privileged.

RISC-V Specification for CHERI Extensions | © RISC-V

3.6. Control and Status Registers (CSRs) | Page 25

3.0. Control and Status Registers (CSRs)

Zcheripurecap extends the CSRs listed in Table 13, Table 14, Table 15 and Table 16 from the base RISC-
V ISA and its extensions. The CSRs are renamed to reflect the fact that they are extended to CLEN+1
bits wide, as the x registers are renamed to c registers.

Table 13. Renamed debug-mode CSRs in Zcheripurecap

Zcheripurecap Addres Extended Prerequisit Permission Description

CSR S CSR es S

dpce Ox7bl dpc Sdext DRW Debug Program Counter

Capability
dscratchOc Ox7b2 dscratchO Sdext DRW Debug Scratch Capability O
dscratchlc Ox7b3 dscratchl Sdext DRW Debug Scratch Capability 1
Table 14. Renamed machine-mode CSRs in Zcheripurecap

Zcheripureca Addre Extended Prerequis Permissions Description

p CSR Ss CSR ites

mtvecc 0x30 mtvec M-mode MRW, ASR- Machine Trap-Vector Base-

5 permission Address Capability

mscratche 0x340 mscratch M-mode MRW, ASR- Machine Scratch Capability
permission

mepcce 0x341 mepc M-mode MRW, ASR- Machine Exception Program
permission Counter Capability

Table 15. Renamed supervisor-mode CSRs in Zcheripurecap

Zcheripureca Addre Extended Prerequis Permissions Description

p CSR Ss CSR ites

stvecc 0x105 stvec S-mode SRW, ASR- Supervisor Trap-Vector Base-
permission Address Capability

sscratche Ox140 sscratch ~ S-mode SRW, ASR- Supervisor Scratch Capability
permission

sepcc Ox141 sepc S-mode SRW, ASR- Supervisor Exception Program
permission Counter Capability

stide 0x58 stid Zstid SRW, ASR- Secure thread ID

0 permission
Table 16. Renamed user-mode CSRs in Zcheripurecap

Zcheripurecap Addres Extended Prerequisite Permission Description

CSR S CSR S S

jvte 0x017 jvt Zcmt URW Jump Vector Table

Capability
utide Oxc80 utid Zstid URO Read-only copy of stidc

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 26

3.7. Machine-Level CSRs

Zcheripurecap extends some M-mode CSRs to hold capabilities or otherwise add new functions. pcc
must grant ASR-permission to access M-mode CSRs regardless of the RISC-V privilege mode.

3.71. Machine Status Registers (mstatus and mstatush)

The mstatus and mstatush registers operate as described in (RISC-V, 2023) except for the SXL and
UXL fields that control the value of XLEN for S-mode and U-mode, respectively, and the MBE, SBE,
and UBE fields that control the memory system endianness for M-mode, S-mode, and U-mode,
respectively.

The encoding of the SXL and UXL fields is the same as the MXL field of misa. Only 1 and 2 are
supported values for SXL and UXL and the fields must be read-only in implementations supporting
Zcheripurecap. The effective XLEN in S-mode and U-mode are termed SXLEN and UXLEN,
respectively.

The MBE, SBE, and UBE fields determine whether explicit loads and stores performed from M-mode,
S-mode, or U-mode, respectively, are little endian (xBE = 0) or big endian (xBE = 1). MBE must be read
only. SBE and UBE must be read only and equal to MBE, if S-mode or U-mode, respectively, is
implemented, or read only zero otherwise.

A further CHERI extension, Zcherihybrid, optionally makes SXL, UXL, MBE, SBE, and UBE
| yl writeable, so implementations that support multiple base ISAs must support both
Zcheripurecap and Zcherihybrid.

3.7.2. Machine Trap Vector Base Address Register (mtvec)

The mtvec register is as defined in (RISC-V, 2023). It is an MXLEN-bit register used as the executable
vector jumped to when taking traps into machine mode. It is extended into mtvecc.

MXLEN- 1 2 1 0
BASE [MXLEN-1:2] (WARL) | MODE (WARL) \

MXLEN-2 2

Figure 5. Machine-mode trap-vector base-address register

3.7.3. Machine Trap Vector Base Address Capability Register (mtvecc)

The mtvecc register is a renamed extension of mtvec that holds a capability. Its reset value is the
Infinite capability. The capability represents an executable vector.

MXLEN- 1 2 1 0
Metadata (WARL)

BASE [MXLEN-1:2] (WARL) MODE (WARL)
MXLEN-2 2

Figure 6. Machine-mode trap-vector base-capability register

The metadata is WARL as not all fields need to be implemented, for example the reserved fields will
always read as zero.

When interpreting mtvecc as a capability, as for mtvec, address bits [1:0] are always zero (as they are
reused by the MODE field).

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 27

When MODE=Vectored, all synchronous exceptions into machine mode cause the pcc to be set to the
capability, whereas interrupts cause the pcc to be set to the capability with its address incremented by
four times the interrupt cause number.

Capabilities written to mtvecc also include writing the MODE field in mtvecc.address[1:0]. As a result,
a representability and sealing check is performed on the capability with the legalized (WARL) MODE
field included in the address. The tag of the capability written to mtvecc is cleared if either check fails.

Additionally, when MODE=Vectored the capability has its tag bit cleared if the capability address + 4 x
HICAUSE is not within the representable bounds. HICAUSE is the largest exception cause value that
the implementation can write to mcause when an interrupt is taken.

When MODE=Vectored, it is only required that address + 4 x HICAUSE is within

y representable bounds instead of the capability’s bounds. This ensures that software is not

EI forced to allocate a capability granting access to more memory for the trap-vector than
necessary to handle the trap causes that actually occur in the system.

3.7.4. Machine Scratch Register (mscratch)

The mscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register
dedicated for use by machine mode. Typically, it is used to hold a pointer to a machine-mode hart-
local context space and swapped with a user register upon entry to an M-mode trap handler. mscratch
is extended into mscratchc.

MXLEN- 1 0
mscratch ‘

MXLEN

Figure 7. Machine-mode scratch register

3.7.5. Machine Scratch Capability Register (mscratchc)

The mscratchce register is a renamed extension of mscratch that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

It is not WARL, all capability fields must be implemented.

MXLEN- 1 0
mscratchc (Metadata)
mscratchc (Address)
MXLEN

Figure 8. Machine-mode scratch capability register

3.7.6. Machine Exception Program Counter (mepc)

The mepc register is as defined in (RISC-V, 2023). It is extended into mepcc.

MXLEN- 1 0
mepc (WARL)

MXLEN

Figure 9. Machine exception program counter register

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 28

3.7.7. Machine Exception Program Counter Capability (mepcc)

The mepcc register is a renamed extension of mepc that is able to hold a capability. Its reset value is
the Infinite capability.

MKLEN- 1 0
mepcc (Metadata, WARL)

mepcc (Address, WARL)
MXLEN

Figure 10. Machine exception program counter capability register

Capabilities written to mepcc must be legalised by implicitly zeroing bit mepcc[O]. Additionally, if an
implementation allows IALIGN to be either 16 or 32, then whenever IALIGN=32, the capability read
from mepce must be legalised by implicitly zeroing bit mepcc[1]. Therefore, the capability read or
written has its tag bit cleared if the legalised address is not within the Representable Range.

y When reading or writing a sealed capability in mepcc, the tag is not cleared if the original
EI address equals the legalized address.

When a trap is taken into M-mode, mepcc is written with the pcc including the virtual address of the
instruction that was interrupted or that encountered an exception. Otherwise, mepcc is never written
by the implementation, though it may be explicitly written by software.

As shown in Table 38, mepcc is an executable vector, so it does not need to be able to hold all possible
invalid addresses. Additionally, the capability in mepcc is unsealed when it is installed in pcc on
execution of an MRET instruction.

3.7.8. Machine Cause Register (mcause)

Zcheripurecap adds a new exception code for CHERI exceptions that mcause must be able to
represent. The new exception code and its priority are listed in Table 17 and Table 18 respectively. The
behavior and usage of mcause otherwise remains as described in (RISC-V, 2023).

MXLEN-1 MXLEN-2 0
‘ Interrupt ‘ Exception Code wiLry)
1 MXLEN-1

Figure 11. Machine cause register

Table 17. Machine cause register (mcause) values after trap. Entries added in Zcheripurecap are in bold
Interrupt Exception Code Description

1 O Reserved

1 1 Supervisor software interrupt
1 2 Reserved

1 3 Machine software interrupt

4 Reserved

5 Supervisor timer interrupt
6 Reserved

7 Machine timer interrupt

—_ = =

8 Reserved

9 Supervisor external interrupt
10 Reserved

11 Machine external interrupt

—_ = =

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 29

Interrupt Exception Code Description

12-15 Reserved
>16 Designated for platform use

—_ =

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Environment call from M-mode
Instruction page fault
Load page fault
Reserved
15 Store/AMO page fault
16-23 Reserved
24-27 Designated for custom use
28 CHERI fault

29-31 Designated for custom use
32-47 Reserved
48-63 Designated for custom use

>64 Reserved

© 0~ O b W - O

—_
o

—_
w N

oo eoNeoNoBoNoNoNoNoBoNoNoRoNoNoNoNoNoNONoONS
= =

Table 18. Synchronous exception priority in decreasing priority order. Entries added in Zcheripurecap are in bold

Priorit Exc.Cod Description

y
Highest

e

3

28

12,1

28

Instruction address breakpoint

Prior to instruction address translation:
CHERI fault due to PCC checks (tag, execute permission, invalid address and
bounds)

During instruction address translation:
First encountered page fault or access fault

With physical address for instruction:
Instruction access fault

Illegal instruction

Instruction address misaligned
Environment call

Environment break
Load/store/AMO address breakpoint

CHERI faults due to:
PCGC ASR-permission clear

Branch/jump target address checks (tag, execute permissions, invalid address
and bounds)

RISC-V Specification for CHERI Extensions | © RISC-V

3.7. Machine-Level CSRs | Page 30

Priorit Exc.Cod Description

y e
Prior to address translation for an explicit memory access:
Load/store/AMO capability address misaligned

CHERI fault due to capability checks (tag, permissions, invalid address and
28 bounds)

Optionally:
4,6 Load/store/AMO address misaligned

13,15, 5, During address translation for an explicit memory access:
7 First encountered page fault or access fault

With physical address for an explicit memory access:
5,7 Load/store/AMO access fault

If not higher priority:
Lowest 4,6 Load/store/AMO address misaligned
Df The full details of the CHERI exceptions are in Table 22.

3.79. Machine Trap Delegation Register (medeleg)

Bit 28 of medeleg now refers to a valid exception and so can be used to delegate CHERI exceptions to
supervisor mode.

3.710. Machine Trap Value Register (mtval)
A CHERI v9 Note: Encoding and values changed, and generally were simplified.

The mtval register is an MXLEN-bit read-write register. When a CHERI fault is taken into M-mode,
mtval is written with additional CHERI-specific exception information with the format shown in
Figure 12 to assist software in handling the trap.

If the hardware platform specifies that no exceptions set mtval to a nonzero value, then mtval is read-
only zero.

MXLEN- 1 20 19 16 15 4 3 0
Reserved | TYPE | Reserved | CAUSE ‘

MXLEN-20 4 12 4

Figure 12. Machine trap value register

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 19 and Table 20 respectively.

Table 19. Encoding of TYPE field
CHERI Type Code Description

0 CHERI instruction access fault

1 CHERI data fault due to load, store or AMO
2 CHERI jump or branch fault

3-15 Reserved

RISC-V Specification for CHERI Extensions | © RISC-V

3.8. Supervisor-Level CSRs | Page 31

Table 20. Encoding of CAUSE field

CHERI Cause Code Description

0 Tag violation

1 Seal violation

2 Permission violation

3 Invalid address violation
4 Length violation

5-15 Reserved

CHERI violations have the following order in priority:

—

Tag violation (Highest)
Seal violation
Permission violation

Invalid address violation

g ks W

Length violation (Lowest)

3.8. Supervisor-Level CSRs

Zcheripurecap extends some of the existing RISC-V CSRs to be able to hold capabilities or with other
new functions. pcc must grant ASR-permission to access S-mode CSRs regardless of the RISC-V
privilege mode.

3.8.1. Supervisor Trap Vector Base Address Register (stvec)

The stvec register is as defined in (RISC-V, 2023). It is an SXLEN-bit register used as the executable
vector jumped to when taking traps into supervisor mode. It is extended into stvecc.

SXLEN- 1 2 1 0
BASE (Address)[SXLEN-1:2] (WARL) ‘ MODE (WARL) ‘

SXLEN-2 2

Figure 13. Supervisor trap-vector base-address register

3.8.2. Supervisor Trap Vector Base Address Capability Register (stvecc)

The stvec register is an SXLEN-bit WARL read/write register that holds the trap vector configuration,
consisting of a vector base address (BASE) and a vector mode (MODE). The stvecc register is a
renamed extension of stvec that is able to hold a capability. Its reset value is the Infinite capability.

MXLEN- 1 2 1 0
Tag Metadata (WARL)

BASE [MXLEN-1:2] (WARL) ‘ MODE (WARL)
MXLEN-2 2

Figure 14. Supervisor trap-vector base-capability register

The handling of stvecc is otherwise identical to mtvecc, but in supervisor mode.

RISC-V Specification for CHERI Extensions | © RISC-V

3.8. Supervisor-Level CSRs | Page 32

3.8.3. Supervisor Scratch Register (sscratch)

The sscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register dedicated
for use by supervisor mode. Typically, it is used to hold a pointer to a supervisor-mode hart-local
context space and swapped with a user register upon entry to an S-mode trap handler. sscratch is
extended into sscratchc.

SXLEN- 1 0
sscratch ‘

SXLEN

Figure 15. Supervisor-mode scratch register

3.8.4. Supervisor Scratch Capability Register (sscratchc)

The sscratchc register is a renamed extension of sscratch that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

It is not WARL, all capability fields must be implemented.

MXLEN- 1 0
sscratchc (Metadata)
sscratchc (Address)
MXLEN

Figure 16. Supervisor scratch capability register

3.8.5. Supervisor Exception Program Counter (sepc)

The sepc register is as defined in (RISC-V, 2023). It is extended into sepcc.

SXLEN-1 0
sepc
SXLEN

Figure 17. Supervisor exception program counter register

3.8.6. Supervisor Exception Program Counter Capability (sepcc)

The sepcce register is a renamed extension of sepc that is able to hold a capability. Its reset value is the
Infinite capability.

As shown in Table 38, sepcc is an executable vector, so it need not be able to hold all possible invalid
addresses. Additionally, the capability in sepcc is unsealed when it is installed in pcc on execution of
an SRET instruction. The handling of sepcc is otherwise identical to mepcc, but in supervisor mode.

MXLEN- 1 0
sepcc (Metadata, WARL)

sepcc (Address, WARL)
MXLEN

Figure 18. Supervisor exception program counter capability register

3.8.7. Supervisor Cause Register (scause)

Zcheripurecap adds a new exception code for CHERI exceptions that scause must be able to represent.
The new exception code and its priority are listed in Table 21 and Table 18 respectively. The behavior

RISC-V Specification for CHERI Extensions | © RISC-V

3.8. Supervisor-Level CSRs | Page 33

and usage of scause otherwise remains as described in (RISC-V, 2023).

SXLEN-1 SXLEN-2 0
‘ Interrupt ‘ Exception Code wiry)
1 SXLEN-1

Figure 19. Supervisor cause register

Table 21. Supervisor cause register (scause) values after trap. Causes added in Zcheripurecap are in bold
Interrupt Exception Code Description

O Reserved
1 Supervisor software interrupt
2-4 Reserved
5 Supervisor timer interrupt
6-8 Reserved
9 Supervisor external interrupt
10-15 Reserved
>16 Designated for platform use

—_ = = e e e e

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
10-11 Reserved
12 Instruction page fault
13 Load page fault
14 Reserved
15 Store/AMO page fault
16-23 Reserved
24-27 Designated for custom use
28 CHERI fault
29-31 Designated for custom use
32-47 Reserved
48-63 Designated for custom use
>64 Reserved

O 0~ U1 b wWwN e~ O

oo eoBeoNoNoNoNoNoNoNoNBoNoRoNoNoRoNoNONONe

3.8.8. Supervisor Trap Value Register (stval)

The stval register is an SXLEN-bit read-write register. When a CHERI fault is taken into S-mode, stval
is written with additional CHERI-specific exception information with the format shown in Figure 20
to assist software in handling the trap.

SXLEN- 1 20 19 16 15 4 3 0
Reserved | TYPE | Reserved | CAUSE \

SXLEN-20 4 12 4

Figure 20. Supervisor trap value register

RISC-V Specification for CHERI Extensions | © RISC-V

3.9. Unprivileged CSRs | Page 34

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 19 and Table 20 respectively.

3.9. Unprivileged CSRs

Unlike machine and supervisor level CSRs, Zcheripurecap does not require pcc to grant ASR-

permission to access unprivileged CSRs.

3.10. CHERI Exception handling

Df auth_cap is ddc for Integer Pointer Mode and ¢s1 for Capability Pointer Mode

Table 22. Valid CHERI exception combination description

Instructions ~ Xcause Xtval. Xtval. Description

TYPE CAUSE

All instructions have these exception checks first

All 28 0 0 pcc tag

All 28 0 1 pcc seal

All 28 0 2 pce permission

All 28 0 3 pcc invalid address
All 28 0 4 pce length

CSR/Xret additional exception check

CSR*, MRET, 28 0 2
SRET

pcc permission

direct jumps additional exception check

JAL, 28 2 4 pcc length
Conditional

branches (BEQ,

BNE, BLT[U],

BGE[U])

indirect jumps additional exception checks

indirect jumps 28 2 0 csltag
indirect jumps 28 2 1 s seal
indirect jumps 28 2 2 ¢s1 permission
indirect jumps 28 2 3 cs1invalid address
indirect jumps 28 2 4 cs1length

Load additional exception checks

RISC-V Specification for CHERI Extensions | © RISC-V

Check

not(pcc.tag)
isCapSealed(pcc)'
not(pce.X-permission)

pcc holds an invalid address

Any byte of current instruction
out of pcc bounds

not(pcc.ASR-permission) when
required for CSR access or
execution of MRET/SRET

any byte of minimum length
instruction at target out of pcc
bounds

not(cs1.tagq)

isCapSealed(cs1) and imm12 =
0

not(cs1.X-permission)

target address is an invalid
address

any byte of minimum length
instruction at target out of ¢s
bounds

Instructions

all loads
all loads
all loads
all loads

all loads

Xcause Xtval.

28
28
28
28

28

capability loads 4

Store/atomic/cache-block-operation additional exception checks

all stores, all
atomics, all
cbos

all stores, all
atomics, all
cbos

all atomics,
CBO.INVAL*

all stores, all
atomics,
CBO.INVAL*,
CBO.ZERO*

CBO.CLEANY¥,
CBO.FLUSH*

all stores, all
atomics, all
cbos

all stores, all
atomics

CBO.ZERO?,
CBO.INVAL*

CBO.CLEANY¥,
CBO.FLUSH*

CBO.INVAL*

capability
stores

28

28

28

28

28

28

28

28

28
6

TYPE
1
1
1

N/A

1

N/A

Xtval.
CAUSE

N/A

0

N/A

Description

auth_cap tag
auth_cap seal
auth_cap permission

auth_cap invalid
address

auth_cap length

load address misaligned

auth_cap tag

auth_cap seal

auth_cap permission

auth_cap permission

auth_cap permission

auth_cap invalid
address

auth_cap length
auth_cap length
auth_cap length

pcc permission

capability alignment

3.10. CHERI Exception handling | Page 35

Check

not(auth_cap.tag)
isCapSealed(auth_cap)
not(auth_cap.R-permission)

Address is invalid (see Invalid
address conversion)

Any byte of load access out of
auth_cap bounds

Misaligned capability load

not(auth_cap.tag)

isCapSealed(auth_cap)

not(auth_cap.R-permission)

not(auth_cap.wW-permission)

not(auth_cap.R-permission) and
not(auth_cap.wW-permission)

Address is invalid (see Invalid
address conversion)

any byte of access out of
auth_cap bounds

any byte of cache block out of
auth_cap bounds

all bytes of cache block out of
auth_cap bounds

not(pcc.ASR-permission)

Misaligned capability store

" This check is architecturally required, but is impossible to encounter so may not required in an

implementatio

/4

n.

Indirect branches are JALR, conditional branches are Conditional branches (BEQ, BNE,
BLT[U], BGE[U]).

RISC-V Specification for CHERI Extensions | © RISC-V

3.11. CHERI Exceptions and speculative execution | Page 36

CBO.ZERO issues as a cache block wide store. All CMOs operate on the cache block which
contains the address. Prefetches check that the capability is tagged, not sealed, has the

Dy permission (R-permission, W-permission, X-permission) corresponding to the instruction,
and has bounds which include at least one byte of the cache block; if any check fails, the
prefetch is not performed but no exception is generated.

3.11. CHERI Exceptions and speculative execution

CHERI adds architectural guarantees that can prove to be microarchitecturally useful. Speculative-
execution attacks can — among other factors — rely on instructions that fail CHERI permission checks
not to take effect. When implementing any of the extensions proposed here, microarchitects need to
carefully consider the interaction of late-exception raising and side-channel attacks.

3.12. Physical Memory Attributes (PMA)

Typically, the entire memory space need not support tagged data. Therefore, it is desirable that harts
supporting Zcheripurecap extend PMAs with a taggable attribute indicating whether a memory region
allows storing tagged data.

Data loaded from memory regions that are not taggable will always have the tag cleared. When the
hart attempts to store data with the tag set to memory regions that are not taggable, the
implementation may:

- Cause an access fault exception

- Implicitly set the stored tag to O

3.13. Page-Based Virtual-Memory Systems

RISC-V’s page-based virtual-memory management is generally orthogonal to CHERIL In
Zcheripurecap, capability addresses are interpreted with respect to the privilege level of the processor
in line with RISC-V’s handling of integer addresses. In machine mode, capability addresses are
generally interpreted as physical addresses; if the mstatus MPRV flag is asserted, then data accesses
(but not instruction accesses) will be interpreted as if performed by the privilege mode in mstatus’s
MPP. In supervisor and user modes, capability addresses are interpreted as dictated by the current
satp configuration: addresses are virtual if paging is enabled and physical if not.

Zcheripurecap requires that the pcc grants the ASR-permission to change the page-table root satp and
other virtual-memory parameters as described in Section 3.8.

3.13.1. Invalid Address Handling

When address translation is in effect and XLEN=64, the upper bits of virtual memory addresses must
match for the address to be valid:

- For Sv39, bits [63:39] must equal bit 38
- For Sv48, bits [63:48] must equal bit 47
- For Sv57, bits [63:57] must equal bit 56

RISC-V permits that CSRs holding addresses, such as mtvec and mepc (see Table 38) as well as pc,

RISC-V Specification for CHERI Extensions | © RISC-V

3.13. Page-Based Virtual-Memory Systems | Page 37

need not hold all possible invalid addresses. Implementations may convert an invalid address into
some other invalid address that the register is capable of holding. Therefore, implementations often
support area and power optimizations by compressing invalid addresses in a lossy fashion.

Where compressed addresses are implemented, there must be also sufficient address bits to represent
all valid physical addresses. The following description is for both virtual and physical addresses.

Compressing invalid addresses allows implementations to reduce the number of flip-flops

Dy required to hold some CSRs, such as mtvec. In CHERI, invalid addresses may also be used
to reduce the number of bits to compare during a bounds check, for example, to 40 bits if
using Sv39, assuming that this also covers all valid physical addresses.

Care needs to be taken not to truncate physical addresses to the implemented number of

y physical addresses bits without also checking that the capability is still valid following the

EI rules in this section, as the capability bounds and representable range always cover the
entire MXLEN-bit address bits, but the address is likely not to.

However, the bounds encoding of capabilities in Zcheripurecap depends on the address value, so
implementations must not convert invalid addresses to other arbitrary invalid address in an
unrestricted manner. The remainder of this section describes how invalid address handling must be
supported in Zcheripurecap when accessing CSRs, branching and jumping, and accessing memory.

Accessing CSRs

The following procedure must be used when executing instructions, such as CSRRW, that write a
capability A to a CSR that cannot hold all invalid addresses:

1 If A’s address is invalid and A does not have infinite bounds (see Section 2.1), then A’s tag is set to
0.

2. Write the final (potentially modified) version of capability A to the CSR e.g. mtvecc, mepce, etc.

Branches and Jumps

Control transfer instructions jump or branch to a capability A which can be:

- pcce for branches, direct jumps and any branch when in Integer Pointer Mode (see Chapter 5).
- The capability in the ¢ input register of a jump when in Capability Pointer Mode (see Chapter 5).

The following procedure must be used when jumping or branching to the target capability A if the pcc
cannot hold all invalid addresses:

1. Calculate the effective target address T of the jump or branch as required by the instruction’s
behavior.

2. If T is invalid and A does not have infinite bounds (see Section 2.1), then the instruction gives rise
to a CHERI fault; the CHERI jump or branch fault is reported in the TYPE field and invalid address
violation is reported in the CAUSE field of mtval or stval.

3. If T is invalid and A has infinite bounds (see Section 2.1), then A’s tag is unchanged and T is
written into A’s address field. Attempting to execute the instruction at address T gives rise to an
instruction access fault or page fault as is usual in RISC-V.

4. Otherwise T is valid and the instruction behaves as normal.

RISC-V Specification for CHERI Extensions | © RISC-V

3.14. Integrating Zcheripurecap with Sdext | Page 38

RISC-V harts that do not support Zcheripurecap normally raise an instruction access fault
or page fault after jumping or branching to an invalid address. Therefore, Zcheripurecap

Dy aims to preserve that behavior to ensure that harts supporting Zcheripurecap and
Zcherihybrid are fully compatible with RISC-V harts provided that pcc and ddc are set to
the Infinite capability.

Memory Accesses

The following procedure must be used while loading or storing to memory with a capability A when
the implementation supports invalid address optimizations:

1. Calculate the effective address T of the memory access as required by the instruction’s behavior.

2. If T is invalid and A does not have infinite bounds (see Section 2.1), then the instruction gives rise
to a CHERI fault; the CHERI data fault is reported in the TYPE field and invalid address violation is
reported in the CAUSE field of mtval or stval.

3. If T is invalid and A has infinite bounds (see Section 2.1), the hart will raise an access fault or page
fault as is usual in RISC-V.

4. Otherwise T is valid and the instruction behaves as normal.

3.14. Integrating Zcheripurecap with Sdext

This section describes changes to integrate the Sdext ISA and Zcheripurecap. It must be implemented
to make external debug compatible with Zcheripurecap. Modifications to Sdext are kept to a
minimum.

a This section is preliminary as no-one has yet built debug support for CHERI-RISC-V so
change is likely.

The following features, which are optional in Sdext, must be implemented for use with Zcheripurecap:

- The hartinfo register must be implemented.

- All harts which support Zcheripurecap must provide hartinfo.nscratch of at least 1 and
implement the dscratchOc register.

- All harts which support Zcheripurecap must provide hartinfo.datasize of at least 1 and
hartinfo.dataaccess of O.

- The program buffer must be implemented, with abstractcs.progbufsize of at least 4 if
dmstatus.impebreak is 1, or at least 5 if dmstatus. impebreak is O.

These requirements allow a debugger to read and write capabilities in integer registers

without disturbing other registers. These requirements may be relaxed if some other means

of accessing capabilities in integer registers, such as an extension of the Access Register

abstract command, is added. The following sequences demonstrate how a debugger can

read and write a capability in ¢1 if MXLEN is 64, hartinfo.dataaccess is O,

y hartinfo.dataaddr is OxBFO, hartinfo.datasize is 1, dmstatus. impebreak is O, and
EI abstractcs.progbufsize is 5:

Read the high MXLEN bits into data@-datal
csrrw c2, dscratch@c, c2

gchi x2, cl

csrw OxBFO, x2

RISC-V Specification for CHERI Extensions | © RISC-V

3.14. Integrating Zcheripurecap with Sdext | Page 39

csrrw c2, dscratch@c, c2
ebreak

#f Read the tag into datal
csrrw c2, dscratch@c, c2
gctag x2, cl

csrw OxBF@, x2

csrrw c2, dscratch@c, c2
ebreak

Write the high MXLEN bits from data0-datal
csrrw c2, dscratch@c, c?

csrr - x2, OxBFO

schi «¢1, c¢1, x2

csrrw c2, dscratch@c, c2

ebreak

#f Write the tag (if nonzero)
csrrw c2, dscratch@c, c?
csrr c2, dinfc

cbld cl, c2, cl

csrrw - ¢2, dscratch@c, c2
ebreak

The low MXLEN bits of a capability are read and written using normal Access Register
abstract commands. If dscratchOc were known to be preserved between abstract
commands, it would be possible to remove the requirements on hartinfo.datasize,
hartinfo.dataaccess, and abstractcs.progbufsize, however there is no way to
discover the former property.

3.14.1. Debug Mode

When executing code due to an abstract command, the hart stays in debug mode and the rules
outlined in Section 4.1 of (RISC-V, 2022) apply.

3.14.2. Core Debug Registers

Zcheripurecap renames and extends debug CSRs that are designated to hold addresses to be able to
hold capabilities. The renamed debug CSRs are listed in Table 13.

The pcc must grant ASR-permission to access debug CSRs. This permission is automatically provided
when the hart enters debug mode as described in the dpcc section. The pcc metadata can only be
changed if the implementation supports executing control transfer instructions from the program
buffer — this is an optional feature according to (RISC-V, 2022).

3.14.3. Debug Program Counter (dpc)

The dpc register is as defined in (RISC-V, 2022). It is a DXLEN-bit register used as the PC saved when
entering debug mode. dpc is extended into dpcc.
DXLEN-1 0
dpc ‘
DXLEN

Figure 21. Debug program counter

RISC-V Specification for CHERI Extensions | © RISC-V

3.14. Integrating Zcheripurecap with Sdext | Page 40

314.4. Debug Program Counter Capability (dpcc)

The dpcc register is a renamed extension to dpc that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN- 1 0
dpcc (Metadata)

dpcc (Address)
MXLEN

Figure 22. Debug program counter capability

Upon entry to debug mode, (RISC-V, 2022), does not specify how to update the PC, and says PC
relative instructions may be illegal. This concept is extended to include any instruction which reads or
updates pcc, which refers to all jumps, conditional branches and AUIPC. The exception is MODESW
which is supported if Zcherihybrid is implemented, see dinfc for details.

As a result, the value of pcc is UNSPECIFIED in debug mode according to this specification. The pcc
metadata has no architectural effect in debug mode. Therefore ASR-permission is implicitly granted
for access to all CSRs and no PCC faults are possible.

dpce (and consequently dpc) are updated with the capability in pcc whose address field is set to the
address of the next instruction to be executed as described in (RISC-V, 2022) upon debug mode entry.

When leaving debug mode, the capability in dpcc is unsealed and written into pcc. A debugger may
write dpcc to change where the hart resumes and its mode, permissions, sealing or bounds.

3145 Debug Scratch Register O (dscratchO)

The dscratchO register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register
that can be used by implementations which need it. dscratchO is extended into dscratchOc.

DXLEN-1 0
dscratchO ‘

DXLEN

Figure 23. Debug scratch O register

3.14.6. Debug Scratch Register O Capability (dscratchOc)

The dscratchOc register is a CLEN-bit plus tag bit renamed extension to dscratchO that is able to hold
a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN- 1 0
dscratchOc (Metadata)

dscratchOc (Address)
MXLEN

Figure 24. Debug scratch O capability register

RISC-V Specification for CHERI Extensions | © RISC-V

3.15. Integrating Zcheripurecap with Sdtrig | Page 41

3.14.7. Debug Scratch Register 1 (dscratchl)

The dscratchl register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register that
can be used by implementations which need it. dscratchl is extended into dscratchlc.

DXLEN- 1 0
dscratch ‘

DXLEN

Figure 25. Debug scratch 1 register

3.14.8. Debug Scratch Register 1 Capability (dscratchlc)

The dscratchlc register is a CLEN-bit plus tag bit renamed extension to dscratchl that is able to hold a
capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN- 1 0
dscratch1c (Metadata)

dscratch1c (Address)
MXLEN

Figure 26. Debug scratch 1 capability register

3.14.9. Debug Infinite Capability Register (dinfc)

The dinfc register is a CLEN-bit plus tag bit CSR only accessible in debug mode.
The reset value is the Infinite capability.
If Zcherihybrid (see xref:section-cheri-execution-mode) is implemented:

1. the core enters Capability Pointer Mode when entering debug mode
a. therefore dinfc.M is set whenever entering debug mode for any reason.

2. the mode can be optionally switched using MODESW, and the result observed in dinfc.M.
dinfc is read /write but with no writeable fields, and so writes are ignored.

A future version of this specification may add writeable fields to allow creation of other

y; capabilities, if, for example, a future extension requires multiple formats for the Infinite
capability.
MXLEN- 1 0

dinfc (Metadata)
dinfc (Address)
MXLEN

Figure 27. Debug infinite capability register

3.15. Integrating Zcheripurecap with Sdtrig

The Sdtrig extension is generally orthogonal to Zcheripurecap. However, the priority of synchronous
exceptions and where triggers fit is adjusted as shown in Table 23.

Table 23. Synchronous exception priority (including triggers) in decreasing priority order. Entries added in

RISC-V Specification for CHERI Extensions | © RISC-V

3.15. Integrating Zcheripurecap with Sdtrig | Page 42

Zcheripurecap are in bold

Prior Exc.C Description

ity ode
Highe 3
st 3
3
3

Instruction address breakpoint
3

Prior to instruction address translation:
CHERI fault due to PCC checks (tag, execute
28 permission, invalid address and bounds)

During instruction address translation:
12,1 First encountered page fault or access fault

With physical address for instruction:
1 Instruction access fault

N

Illegal instruction

O Instruction address misaligned
8,9,11 Environment call

3 Environment break

Load/store/AMO address breakpoint

CHERI faults due to:

PCC ASR-permission clear

Branch/jump target address checks (tag, execute
28 permissions, invalid address and bounds)

Prior to address translation for an explicit memory
access:
Load/store/AMO capability address misaligned
CHERI fault due to capability checks (tag,

28 permissions, invalid address and bounds)

Optionally:
4,6 Load/store/AMO address misaligned
During address translation for an explicit memory

13, 15, access:
5,7 First encountered page fault or access fault

With physical address for an explicit memory access:
5,7 Load/store/AMO access fault

If not higher priority:
4,6 Load/store/AMO address misaligned

RISC-V Specification for CHERI Extensions | © RISC-V

Trigger

etrigger

icount

itrigger

mcontrol/mcontrol6 after (on
previous instruction)

mcontrol/mcontrol6 execute
address before

mcontrol/mcontrol6 execute
data before

mcontrol/mcontrol6
load/store address before

mcontrol/mcontrol6 store
data before

3.15. Integrating Zcheripurecap with Sdtrig | Page 43

Prior Exc.C Description Trigger

ity ode

Lowe mcontrol/mcontrol6 load data
st 3 before

RISC-V Specification for CHERI Extensions | © RISC-V

4.1. Extending the Page Table Entry Format | Page 44

Chapter 4. "Zcheripte" Extension for
CHERI Page-Based Virtual-Memory
Systems

CHERI is a security mechanism that is generally orthogonal to page-based virtual-memory
management as defined in (RISC-V, 2023). However, it is helpful in CHERI harts to extend RISC-V’s
virtual-memory management to control the flow of capabilities in memory at the page granularity. For
this reason, the Zcheripte extension adds new bits to RISC-V’s Page Table Entry (PTE) format.

41. Extending the Page Table Entry Format

y CHERI v9 Note: The current proposal is provisional and is missing PTE bits when
EI compared to CHERI v9.

The page table entry format remains unchanged for Sv32. However, two new bits, Capability Write
(CW) and Capability Dirty (CD), are added to leaf PTEs in Sv39, Sv48 and Sv57 as shown in Figure 28,
Figure 29 and Figure 30 respectively.

63 62 61 60 59 58 54 53 28 27 19 18 10 9 87 6 5 4 3 2 1 0
’ N | PBMT |CD|CW| Reserved | PPN[2] | PPN[1] PPN[O] RSW | D | A | G | u | X | W| R | \Y ‘
1 2 17 1 5 26 9 9 2 T~ 1 1 1 1 1 1 1

Figure 28. Sv39 page table entry

63 62 61 60 59 58 54 53 10 9 87 6 5 4 3 2 1 0
’N|PBMT|CD|CW| Reserved PPN RSW |D|A|G|U|X|W|R|V‘
1 2 1 1 5 44 2 1T 1 1 1 1 1 1 1
53 37 36 28 27 19 18 10
PPN[3] PPN[2] PPN[1] PPN[O]
17 9 9 9

Figure 29. Sv48 page table entry

63 62 61 60 59 58 54 53 10 9 87 6 5 4 3 2 1 0
’N|PBMT|CD|CW| Reserved PPN RSW |D|A|G|U|X|W|R|V‘
1 2 11 5 44 2 T 1 1 1 1 1 1 1
53 46 45 37 36 28 27 19 18 10
PPN[4] PPN[3] PPN[2] PPN[1] PPN[O]

8 9 9 9 9

Figure 30. SV57 page table entry

The CW bit indicates whether writing capabilities with tag set to the virtual page is permitted. Two
schemes to manage the CW bit are permitted:

- A store page fault exception is raised when a capability store or AMO instruction is executed, the
authorizing capability grants W-permission and C-permission, and the store address corresponds
to a virtual page with the CW bit clear.

RISC-V Specification for CHERI Extensions | © RISC-V

4.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 45

- When a capability store or AMO instruction is executed, the implementation clears the tag bit of
the capability written to a virtual page with the CW bit clear.

y The implementation of the CW bit does not force a dependency on the tag bit’s value of the
EI capability written, so implementations must support the CW bit.

The CD bit indicates that a capability with tag set has been written to the virtual page since the last
time the CD bit was cleared. Implementations are strongly encouraged, but not required, to support
CD. If supported, two schemes to manage the CD bit are permitted:

- A store page fault exception is raised when a capability store or AMO instruction is executed, the
authorizing capability grants W-permission and C-permission, the tag bit of the capability being
written is set and the address written corresponds to a virtual page with the CD bit clear.

- When a capability store or AMO instruction is executed, the authorizing capability grants W-
permission and C-permission, the tag bit of the capability being written is set and the store address
corresponds to a virtual page with the CD bit clear, the implementation sets the corresponding bit
in the PTE. The PTE update must be atomic with respect to other accesses to the PTE, and must
atomically check that the PTE is valid and grants sufficient permissions. Updates to the CD bit
must be exact (i.e. not speculative), and observed in program order by the local hart. Furthermore,
the PTE update must appear in the global memory order no later than the explicit memory access,
or any subsequent explicit memory access to that virtual page by the local hart. The ordering on
loads and stores provided by FENCE instructions and the acquire/release bits on atomic
instructions also orders the PTE updates associated with those loads and stores as observed by
remote harts.

The PTE update is not required to be atomic with respect to the explicit memory access that
caused the update, and the sequence is interruptible. However, the hart must not perform explicit
memory access before the PTE update is globally visible.

The behavior of the CW bit takes priority over the CD bit. Therefore, implementations must
| yl not take action to change or raise an exception related to the CD bit when the CW bit is
clear.

4.7, Extending the Machine Environment
Configuration Register (menvcfg)

The menvcfg register is extended to allow discovering whether the implementation supports the CD

bit.

The menvcfg register operates as described in (RISC-V, 2023). Zcheripurecap adds a new enable bit as
shown in Figure 31 when XLEN=64.

63 62 61 60 8 7 6 5 4 3 1 0
’ STCE |PBMTE| CDE | WPRI | CBZE |CBCFE| CBIE | WPRI | FIOM ‘

1 1 1 55 1 1 2 3 1
Figure 31. Machine environment configuration register (menvcfg)

The Capability Dirty Enable (CDE) bit controls whether the Capability Dirty (CD) bit is available for
use in S-mode address translation. When CDE=1, the CD bit is available for S-mode address

translation. When CDE=0, the implementation behaves as though the CD bit were not implemented.
If CD is not implemented, CDE is read-only zero. If CD is implemented although not configurable,

RISC-V Specification for CHERI Extensions | © RISC-V

4.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 46

CDE is read-only one.

RISC-V Specification for CHERI Extensions | © RISC-V

5.1. CHERI Execution Mode | Page 47

Chapter 5. "Zcherihybrid" Extension for
CHERI Integer Pointer Mode

Zcherihybrid is an optional extension to Zcheripurecap. Implementations that support Zcheripurecap
and Zcherihybrid define a variant of the CHERI ISA that is fully binary compatible with existing
RISC-V code.

Key features in Zcherihybrid include a definition of a CHERI execution mode, a new unprivileged
register, additional instructions and extensions to some existing CSRs enabling CHERI features. The
remainder of this section describes these features in detail as well as their integration with the
primary base integer variants of the RISC-V ISA (RV32I and RV64I).

5.1. CHERI Execution Mode

Zcherihybrid adds CHERI execution modes to ensure backwards compatibility with the base RISC-V
ISA while saving instruction encoding space. There are two execution modes: Capability Pointer Mode
and Integer Pointer Mode. Additionally, there is a new unprivileged register: the default data capability,
ddc, that is used to authorise all data memory accesses when in Integer Pointer Mode.

The current CHERI execution mode is given by the mode (M) field of pcc that is encoded as described
in Section 5.2.

The CHERI execution mode impacts the instruction set in the following ways:

- The authorising capability used to execute memory access instructions. In Integer Pointer Mode,
ddc is implicitly used. In Capability Pointer Mode, the authorising capability is supplied as an
explicit c operand register to the instruction.

- The set of instructions that is available for execution. Some instructions are available in Integer

Pointer Mode but not Capability Pointer Mode and vice-versa (see Chapter 7).

y The implication is that the CHERI execution mode is always Capability on
EI implementations that support Zcheripurecap, but not Zcherihybrid.

The CHERI execution mode is effectively an extension to some RISC-V instruction encodings. For
example, the encoding of an instruction like LW remains unchanged, but the mode indicates whether
the capability authorising the load is the register operand ¢s1 (Capability Pointer Mode). The mode is
shown in the assembly syntax.

The CHERI execution mode is key in providing backwards compatibility with the base RISC-V ISA.
RISC-V software is able to execute unchanged in implementations supporting both Zcheripurecap and
Zcherihybrid provided that the Infinite capability is installed in ddc and pce (with M=0, i.e. in Integer
Pointer Mode). Setting both registers to Infinite ensures that:

- All permissions are granted

- The bounds authorise accesses to the entire address space i.e base is O and top is 2""*"

52. CHERI Execution Mode Encoding

Zcherihybrid adds a new CHERI execution mode field (M) to capabilities within the AP field (see

RISC-V Specification for CHERI Extensions | © RISC-V

5.3. Zcherihybrid Instructions | Page 48

Section 2.2.3). When MXLEN=32, the mode is encoded in bit O of quadrant 1 from the AP field. When
MXLEN=64, the mode is encoded in bit O of the AP field: a new M bit field is added to the capability
format as shown in Table 4. In both encodings, M=0 indicates Integer Pointer Mode and M=1 indicates
Capability Pointer Mode.

The current CHERI execution mode is given by the M field of the pcc and the CRE bits in mseccfg,
menvcfg, and senvcfg as follows:

- The mode is Capability Pointer Mode when the M field of the pcc is Capability Pointer Mode and the
effective CRE=1 for the current privilege level

- The mode is Integer Pointer Mode when the effective CRE=0 for the current privilege level or the M
field of the pcc is Integer Pointer Mode

When MXLEN=32, the M field is Integer Pointer Mode in the Infinite capability, so its AP field is 8;
furthermore, the NULL capability does not grant X-permission, so the M field is superfluous in this
case.

When MXLEN=64, the M-bit can be set to 1 when the capability does not grant X-permission. In this
case, the M-bit is superfluous, so the encoding may be used to support additional features in future
extensions; furthermore, the M-bit is O in both the NULL and Infinite capabilities.

5.3. Zcherinybrid Instructions

Zcherihybrid introduces a small number of new mode-switching instructions to the base RISC-V
integer ISA, as shown in Table 32. Additionally, the behavior of some existing instructions changes
depending on the current CHERI execution mode.

5.3.1. Capability Load and Store Instructions

The load and store capability instructions change behaviour depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The load capability instruction is LC. When the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.3. In Integer Pointer Mode, the capability authorising the memory
access is ddc, so the effective address is obtained by adding the x register to the sign-extended offset.

The store capability instruction is SC. When the CHERI execution mode is Capability; the instruction
behaves as described in Section 3.3. In Integer Pointer Mode, the capability authorising the memory
access is ddc, so the effective address is obtained by adding the x register to the sign-extended offset.

53.2. Capability Manipulation Instructions

A new SCMODE instruction allows setting a capability’s CHERI execution mode to the indicated value.
The output is written to an unprivileged c register, not pcc.

53.3. Mode Change Instructions

A new CHERI execution mode switch (MODESW) instruction allows software to toggle the hart’s
current CHERI execution mode. If the current mode in the pcc is Integer Pointer Mode, then the mode
after executing MODESW is Capability Pointer Mode and vice-versa. This instruction effectively writes
the CHERI execution mode bit M of the capability currently installed in the pcc.

RISC-V Specification for CHERI Extensions | © RISC-V

5.4. Existing RISC-V Instructions | Page 49

5.4. Existing RISC-V Instructions

The CHERI execution mode introduced in Zcherihybrid affects the behaviour of instructions that
have at least one memory address operand. When in Capability Pointer Mode, the address input or
output operands may include c registers. When in Integer Pointer Mode, the address input or output
operands are x/f/v registers; the tag and metadata of that register are implicitly set to O.

5.41. Control Transfer Instructions

The unconditional jump instructions change behaviour depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The jump and link instruction JAL when the CHERI execution mode is Capability; behaves as
described in Section 3.4. When the mode is Integer Pointer Mode. In this case, the address of the
instruction following the jump (pc + 4) is written to an x register; that register’s tag and capability
metadata are zeroed.

The jump and link register instruction is JALR when the CHERI execution mode is Capability Pointer
Mode; behaves as described in Section 3.4. When the mode is Integer Pointer Mode. In this case, the
target address is obtained by adding the sign-extended 12-bit immediate to the x register operand, then
setting the least significant bit of the result to zero. The target address is then written to the pcc
address and a representability check is performed. The address of the instruction following the jump
(pc + 4) is written to an x register; that register’s tag and capability metadata are zeroed.

Zcherihybrid allows changing the current CHERI execution mode when executing JALR from
Capability Pointer Mode.

JAL and JALR cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc. An instruction address misaligned exception is raised when the target
address is misaligned.

542. Conditional Branches

The behaviour is as shown in Section 3.4.2.2.

543 Load and Store Instructions

Load and store instructions change behavior depending on the CHERI execution mode although the
instruction’s encoding remains unchanged.

Loads and stores behave as described in Section 3.4 when in Capability Pointer Mode In Integer Pointer
Mode, the instructions behave as described in the RISC-V base ISA (i.e. without the 'C' prefix) and rely
on x operands only. The capability authorising the memory access is ddc and the memory address is
given by sign-extending the 12-bit immediate offset and adding it to the base address in the x register
operand.

The exception cases remain as described in Section 3.4 regardless of the CHERI execution mode.

544 CSR Instructions

Df CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

RISC-V Specification for CHERI Extensions | © RISC-V

5.5. Integrating Zcherihybrid with Sdext | Page 50

Zcherihybrid adds the concept of CSRs which contain a capability where the address field is visible in
Integer Pointer Mode (e.g. mtvec) and the full capability is visible in Capability Pointer Mode through a
different name (e.g. mtvecc). These are referred to as extended CSRs.

Extended CSRs have only one address; the access width is determined by the execution mode.
When CSRRW is executed on an extended CSR in Integer Pointer Mode:

- The register operand is an x register.
- Only XLEN bits from the x source are written to the capability address field.
° The tag and metadata are updated as specified in Table 37.

- Only XLEN bits are read from the capability address field, which are extended to MXLEN bits
according to (RISC-V, 2023) (3.1.6.2. Base ISA Control in mstatus Register) and are then written to
the destination x register.

When CSRRW is executed on an extended CSR in Capability Pointer Mode:

- The register operand is a c register.
- The full capability in the c register source is written to the CSR.

> The capability may require modification before the final written value is determined (see Table
37).

- The full capability is written to destination c register.

When an extended CSR is used with another CSR instruction (CSRRWI, CSRRC, CSRRCI, CSRRS,
CSRRSI):

- The final address is calculated according to the standard RISC-V CSR rules (set bits, clear bits etc).
- The final address is updated as specified in Table 37 for an XLEN write.

- In Integer Pointer Mode, XLEN bits are read from the capability address field and written to an
output x register. In Capability Pointer Mode, CLEN bits are read from the CSR and written to an
output c register.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is not user-mode accessible.

Accessing a capability CSR other than an extended CSR in Integer Pointer Mode results in an illegal
instruction exception. These CSRs are listed in Table 25.

5.5 Integrating Zcherihybrid with Sdext

A new debug default data capability (dddc) CSR is added at the CSR number shown in Table 25.
Zcherihybrid optionally allows MODESW to execute in debug mode.

When entering debug mode, the core always enters Capability Pointer Mode.

1. the mode can be optionally switched using MODESW.

2. the current mode can always be observed in dinfc.M.

RISC-V Specification for CHERI Extensions | © RISC-V

5.6. Debug Default Data Capability (dddc) | Page 51

y CHERI v9 Note: The mode change instruction MODESW is new and the requirement to
EI optionally support it in debug mode is also new.

5.6. Debug Default Data Capability (dddc)

dddc is a register that is able to hold a capability. The address is shown in Table 25.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN- 1 .
dddc (Metadata)

dddc (Address)
MXLEN

Figure 32. Debug default data capability

Upon entry to debug mode, ddc is saved in dddc. ddc's metadata is set to the Infinite capability’s
metadata and ddc's address remains unchanged.

When debug mode is exited by executing DRET, the hart’s ddc is updated to the capability stored in
dddec. A debugger may write dddc to change the hart’s context.

As shown in Table 38, dddc is a data pointer, so it does not need to be able to hold all possible invalid
addresses.

5.7. Disabling CHERI Registers

CHERI v9 Note: This feature is new and different from CHERI v9’s per-privilege enable

:ly bits.
4

CHERI v9 Note: The rules for excepting have been tightened here. Also, it is not possible
to disable CHERI checks completely.

Zcherihybrid includes functions to disable explicit access to CHERI registers. The following occurs
when executing code in a privilege mode that has CHERI register access disabled:
- The CHERI instructions in Section 3.3 and Section 8.5 cause illegal instruction exceptions

- Executing CSR instructions accessing any capability wide CSR addresses (Section 3.6) cause illegal
instruction exceptions

- All allowed instructions execute as if the CHERI execution mode is Integer Pointer Mode. The mode

bitin pcc is treated as if it was zero while CHERI register access is disabled.

CHERI register access is disabled if XLEN in the current mode is less than MXLEN, if the endianness
in the current mode is not the reset value of mstatus. MBE, or if CRE active at the current mode
(mseccfg.CRE for M-mode, menvcfg.CRE for S-mode or senvefg.CRE for U-mode) is O.

mseccfg.CRE, menvcefg.CRE, and senvcfg.CRE form a single WARL field. This allows higher privilege
software to restrict lower privilege software access to CHERI register state, and the ability to enter
Capability Pointer Mode. The valid configurations are shown in Table 24.

Table 24. Xenvcfg joint WARL field

RISC-V Specification for CHERI Extensions | © RISC-V

5.8. Added CLEN-wide CSRs | Page 52

mseccfg.CR menvcfg.CR senvcfg.CR Comment

E E E
0 read-only O read-only mseccfg. CRE=0 completely disables CHERI access
0
1 0 read-only menvefg. CRE=0 disables access for privilege less than M-
0 mode
1 1 0/1 senvcfg.CRE can be programmed to enable/disable access for

U-mode

The WARL programming nature is extended to include UXLEN and SXLEN, as they can only be
programmed to be smaller than MXLEN if the CRE bit active for the current mode is disabled.

Disabling CHERI register access has no effect on implicit accesses or security checks. The last
capability installed in pcc and ddc before disabling CHERI register access will be used to authorise
instruction execution and data memory accesses.

Disabling CHERI register access prevents low-privileged Integer Pointer Mode software
| yl from interfering with the correct operation of higher-privileged Integer Pointer Mode
software that do not perform ddc switches on trap entry and return.

5.8. Added CLEN-wide CSRs

Zcherihybrid adds the CLEN-wide CSRs shown in Table 25.

Table 25. CLEN-wide CSRs added in Zcherihybrid

CLEN Addre Prerequisites Permissions Description

CSR ss

dddc Ox7bc Zcherihybrid, DRW Debug Default Data Capability (saved/restored on
Sdext debug mode entry/exit)

mtdc Ox74c Zcherihybrid, =~ MRW, ASR- Machine Trap Data Capability (scratch register)
M-mode permission

stdc 0x163 Zcherihybrid, =~ SRW, ASR- Supervisor Trap Data Capability (scratch register)
S-mode permission

dde 0x416 Zcherihybrid =~ URW User Default Data Capability

5.8.1. Machine Status Registers (mstatus and mstatush)

Zcherihybrid eliminates some restrictions for SXL and UXL imposed in Zcheripurecap to allow
implementations supporting multiple base ISAs. Namely, the SXL and UXL fields may be writable.

Setting the SXL or UXL field to a value that is not MXLEN disables most CHERI features and
instructions, as described in Section 5.7, while in that privilege mode.

y If CHERI register access must be disabled in a mode for security reasons, software should
EI set CRE to O regardless of the SXL and UXL fields.

Whenever XLEN in any mode is set to a value less than MXLEN, standard RISC-V rules from (RISC-V,
2023) are followed. This means that all operations must ignore source operand register bits above the

RISC-V Specification for CHERI Extensions | © RISC-V

5.8. Added CLEN-wide CSRs | Page 53

configured XLEN, and must sign-extend results to fill all MXLEN bits in the destination register.
Similarly, pc bits above XLEN are ignored, and when the pc is written, it is sign-extended to fill
MXLEN. The integer writing rule from CHERI is followed, so that every register write also zeroes the
metadata and tag of the destination register.

However, CHERI operations and security checks will continue using the entire hardware register (i.e.
CLEN bits) to correctly decode capability bounds.

Zcherihybrid eliminates some restrictions for MBE, SBE, and UBE imposed in Zcheripurecap to allow
implementations supporting multiple endiannesses. Namely, the MBE, SBE, and UBE fields may be
writable if the corresponding privilege mode is implemented.

Setting the MBE, SBE, or UBE field to a value that is not the reset value of MBE disables most CHERI
features and instructions, as described in Section 5.7, while in that privilege mode.

5.8.2. Machine Trap Default Capability Register (mtdc)

The mtdc register is Capability Pointer Mode width read/write register dedicated for use by machine
mode. Typically, it is used to hold a data capability to a machine-mode hart-local context space, to load
into ddc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN- 1 o
mtdc (Metadata)

mtdc (Address)
MXLEN

Figure 33. Machine-mode trap data capability register

5.8.3. Machine Security Configuration Register (mseccfqg)

Zcherihybrid adds a new enable bit to mseccfg as shown in Figure 34.

63 34 33 32 31 10 9 8 7 4 3 2 1 0
’ WPRI PMM WPRI | SSEED | USEED | WPRI | CRE | RLB | MMWP | MML ‘
30 2 22 1 1 4 1 1 1 1

Figure 34. Machine security configuration register (mseccfg)

The CHERI Register Enable (CRE) bit controls whether M-mode has access to capability registers and
instructions. When CRE=1, all CHERI instructions and registers can be accessed. When CRE=0,
CHERI register and instruction access is prohibited for M-mode and lower privilege levels as described
in Section 5.7.

The reset value is O.

5.8.4. Machine Environment Configuration Register (menvcfqg)

Zcherihybrid adds a new enable bit to menvcfg as shown in Figure 35.

RISC-V Specification for CHERI Extensions | © RISC-V

5.8. Added CLEN-wide CSRs | Page 54

63 62 61 29 28 27 8 7 6 5 4 3 1 0
’ STCE |PBMTE| WPRI | CRE | WPRI | CBZE |CBCFE| CBIE | WPRI | FIOM ‘

1 1 33 1 20 1 1 2 3 1

Figure 35. Machine environment configuration register (menvcfg)

The CHERI Register Enable (CRE) bit controls whether less privileged levels can perform explicit
accesses to CHERI registers. When CRE=1, CHERI registers can be read and written by less privileged
levels. When CRE=0, CHERI registers are disabled in less privileged levels as described in Section 5.7.
CRE is read-only zero if mseccfg. CRE=0.

The reset value is O.

5.8.5. Supervisor Trap Default Capability Register (stdc)

The stdc register is Capability Pointer Mode width read/write register dedicated for use by supervisor
mode. Typically, it is used to hold a data capability to a supervisor-mode hart-local context space, to
load into ddc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MKLEN- 1 0
Tag stdc (Metadata)

stdc (Address)
MXLEN

Figure 36. Supervisor trap data capability register (stdc)

5.8.6. Supervisor Environment Configuration Register (senvcfqg)

The senvcfg register operates as described in the RISC-V Privileged Specification. Zcherihybrid adds a
new enable bit as shown in Figure 37.

SXLEN-1 29 28 27 8 7 0
WPRI | CRE | WPRI | CBZE |CBCFE| CBIE | WPRI | FIOM \

SXLEN-29 1 20 1 1 2 3 1

Figure 37. Supervisor environment configuration register (senvcfg)

The CHERI Register Enable (CRE) bit controls whether U-mode can perform explicit accesses to
CHERI registers. When CRE=1, CHERI registers can be read and written by U-mode. When CRE=0,
CHERI registers are disabled in U-mode as described.

- senvcfg. CRE is read-only-zero if:

° mstatus.MBE is not the reset value OR

- UXLEN<MXLEN OR

- mseccfg.CRE==0 OR

- menvcfg.CRE==0

The reset value is O.

RISC-V Specification for CHERI Extensions | © RISC-V

5.8. Added CLEN-wide CSRs | Page 55

5.8.7. Default Data Capability (ddc)

The ddc CSR is a read-write capability register implicitly used as an operand to authorise all data
memory accesses when the current CHERI mode is Integer Pointer Mode. This register must be
readable in any implementation. Its reset value is the Infinite capability.

As shown in Table 38, ddc is a data pointer, so it does not need to be able to hold all possible invalid
addresses.

MXLEN- 1 0
ddc (Metadata)
ddc (Address)
MXLEN

Figure 38. Unprivileged default data capability register

RISC-V Specification for CHERI Extensions | © RISC-V

6.1. Control and Status Registers (CSRs) | Page 56

Chapter 6. "Zstid Extension for Thread
|[dentification

Zstid is an optional extension to the RISC-V base ISA. Implementations that support Zcheripurecap
and Zstid. define a variant of the CHERI ISA that allows for more efficient software
compartmentalization of CHERI programs.

6.1. Control and Status Registers (CSRs)

Zstid adds two new CSRs to implement a trusted thread identifier (TID) wused in
compartmentalization. These CSRs are listed in Table 26 and Table 27.

Table 26. Added supervisor-mode CSRs in Zstid
Zstid CSR Address Prerequisites Permissions Description

stid 0x580 S-mode SRW, ASR-permission Supervisor Thread Identifier

Table 27. Added user-mode CSRs in Zstid
Zstid CSR Address Prerequisites Permissions Description

utid 0xC80 U-mode URO User Thread Identifier

6.2. Supervisor-Level and Unprivileged CSRs

6.2.1. Supervisor Thread Identifier (stid)

The stid register is an SXLEN-bit read-write register. It is used to identify the current thread. The reset
value of this register is UNSPECIFIED.

SXLEN-1 0
stid \
SXLEN

Figure 39. Supervisor thread identifier register

6.2.2. User Thread Identifier (utid)

The utid register is an UXLEN-bit read-only register. It is a read-only copy of the stid register. The
reset value of this register is UNSPECIFIED.

UXLEN- 1 0
utid \
UXLEN

Figure 40. User thread identifier register

When Zcheripurecap is implemented, the Zstid CSRs are extended as follows:

6.2.3. Supervisor Thread ldentifier Capability (stidc)

The stidc register is an CLEN-bit read-write capability register. It is the capability extension of the stid
register. It is used to identify the current thread. On reset the tag of stidc will be set to O and the

RISC-V Specification for CHERI Extensions | © RISC-V

6.3. CHERI Compartmentalization | Page 57

remainder of the data is UNSPECIFIED.

MXLEN- 1 0
stidc (Metadata)

stidc (Address)
MXLEN

Figure 41. Supervisor thread identifier capability register

6.2.4. User Thread Identifier Capability (utidc)

The utidc register is an CLEN-wide read-only capability register. It is the capability extension of the
utid register. utidc is a read-only copy of the stidc register. On reset the tag of utidc will be set to O and
the remainder of the data is UNSPECIFIED.

MXLEN- 1 0
utidc (Metadata)

utidc (Address)
MXLEN

Figure 42. User thread identifier capability register

60.3. CHERI Compartmentalization

This section describes how this specification enables support for compartmentalization for CHERI
systems. Compartmentalization seeks to separate the privileges between different protection units, e.g.,
two or more libraries. Code can be separated by sentries, which allow for giving out code capabilities to
untrusted code where the untrusted code can only call the code capability, but not modify it. Sentries
can be called from different threads and thus there needs to be a way of identifying the current thread.
While identifying the current thread can be done by privileged code, e.g., the kernel, the implied
performance overhead of this is not bearable for CHERI systems with many compartments.

The RISC-V ABI includes a thread pointer (tp) register, which is not usable for the purpose of reliably
identifying the current thread because the tp register is a general purpose register and can be changed
arbitrarily by untrusted code. Therefore, this specification offers two additional CSRs that facilitate a
trusted source for the thread ID. The supervisor thread identifier (stid) register is readable and
writeable with ASR-permission from the supervisor mode allowing to change the thread ID on a
context switch. The user thread identifier (utid) exposes the current value of stid as a read-only copy.

This extension extends stid to its capability variant stidc and utid to its capability variant utidc. This
presents software with the freedom to still use these registers with capabilities or leave the metadata
untouched and only use the registers to storage integers.

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 7. RISC-V Instructions and Extensions Reference | Page 58

Chapter 7. RISC-V Instructions and
Extensions Reference

These instruction pages are for the new CHERI instructions, and some existing RISC-V instructions
where the effect of CHERI needs specific details.

For existing RISC-V instructions, note that:

L. In Integer Pointer Mode, every byte of each memory access is bounds checked against ddc

2. In Integer Pointer Mode, a minimum length instruction at the target of all indirect jumps is bounds
checked against pcc

3. In Capability Pointer Mode a minimum length instruction at the target of all indirect jumps is
bounds checked against cs1 (e.g. JALR)

4. A minimum length instruction at the taken target of all direct jumps and conditional branches is
bounds checked against pcc regardless of CHERI execution mode

y Not all RISC-V extensions have been checked against CHERI. Compatible extensions will
EI eventually be listed in a CHERI profile.

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 59

71."Zcheripurecap" and "Zcherihybrid" Extensions
for CHERI

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 60

7.1.1. CMV

Df CHERI v9 Note: This page has new encodings.

Df CHERI v9 Note: this instruction was called CMOVE.
Synopsis

Capability move

Mnemonic

cmv cd, csl

Suggested assembly syntax

mv cd, csi
Df the suggested assembly syntax distinguishes from integer mv by operand type.
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 zero csl funct3 cd opcode
7 5 5 3 5 7
CADD=0000110 rs2=x0 src CADD=000 dest OP=0110011
Df CMV is encoded as CADD with rs2=x80.
Description

The contents of capability register ¢s1 are written to capability register cd. CMV unconditionally
moves the whole capability to cd .

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap” and "Zcherihybrid" Extensions for CHERI | Page 61
7.1.2. MODESW

Df CHERI v9 Note: This page has new encodings.

Synopsis
Switch CHERI execution mode

Mnemonics

modesw
Encoding
31 25 24 20 19 15 14 12 11 7 6 0

funct7 funct5 functs funct3 functs opcode
7 5 5 3 5 7
MSW=0001001 MSW=00000 MSW=00000 MSW=001 MSW=00000 OP=0110011

Description

Toggle the hart’s current CHERI execution mode in pcc.

- If the current mode in pcc is Integer Pointer Mode, then the mode bit (M) in pcc is set to
Capability Pointer Mode.

- If the current mode is Capability Pointer Mode, then the mode bit (M) in pcc is set to Integer
Pointer Mode.

In debug mode MODESW can still be used to change the operating mode, and the current mode
is shown in the M bit of dinfc.

y Support of MODESW is optional in debug mode. If it is supported then it updates dinfc.M
EI instead of pcc.M to show the currrent mode.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites
Zcherihybrid

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap' and "Zcherihybrid" Extensions for CHERI | Page 62

7.1.3. CADDI

See CADD.

71.4. CADD
Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: these instructions were called CINCOFFSET and CINCOFFSETIMM.
/4 CHERI v9 Note: the immediate format has changed

Synopsis

Capability pointer increment

Mnemonic

cadd cd, cs1, rs2
caddi cd, cs1, imm

Suggested assembly syntax

add cd, cs1, rs2
add cd, cs1, imm

74 the suggested assembly syntax distinguishes from integer add by operand type.
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2!=x0 csl funct3 cd opcode
7 5 5 3 5 7
CADD=0000110 increment src CADD=000 dest OP=0110011
31 20 19 15 14 12 11 7 6 0
imm csl funct3 cd opcode
12 5 3 5 7
imm src CADDI=010 dest OP-IMM-32=0011011

y CADD with rs2=x0 is decoded as CMV instead, the key difference being that tagged and
EI sealed capabilities do not have their tag cleared by CMV.

Description

Increment the address field of the capability ¢s1 and write the result to cd . The tag bit of the
output capability is O if ¢s1 did not have its tag set to 1, the incremented address is outside ¢s1's
Representable Range or ¢s1 is sealed.

For CADD, the address is incremented by the value in rs2.
For CADDI, the address is incremented by the immediate value imm.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 63

Operation (CADD)
TODO

Operation (CADDI)
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 64

7.1.5. SCADDR
Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CSETADDR.
Synopsis
Capability set address
Mnemonic

scaddr cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
SCADDR=0000110 address src SCADDR=001 dest OP=0110011
Description

Set the address field of capability ¢s1 to rs2 and write the output capability to c¢d. The tag bit of the
output capability is O if ¢s1 did not have its tag set to 1, rs2 is outside the Representable Range of
cs1orif cs1is sealed.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap” and "Zcherihybrid" Extensions for CHERI | Page 65

7.1.6. ACPERM

y CHERI v9 Note: The implementation of this instruction changes because the permission
EI fields are encoded differently in the new capability format.

Df CHERI v9 Note: this instruction was called CANDPERM.
Df CHERI v9 Note: This page has new encodings.
Synopsis

Mask capability permissions

Mnemonics
acperm cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
ACPERM=0000110 mask src ACPERM=010 dest OP=0110011
Description

Converts the AP and SDP fields of capability ¢s1 into a bit field; one bit per permission as shown
below. Then calculate the bitwise AND of the bit field with the mask rs2 . Set the AP and SDP fields
of ¢s1 as indicated in the resulting bit field —the capability grants a permission if the
corresponding bit is set in the bit field —and write the output capability to c¢d . The output
capability has its tag set to O if ¢s1 is sealed.

The AP field is not able to encode all combinations of permissions when MXLEN=32, therefore
removing a permission may yield a capability which cannot be encoded. Valid combinations are
shown in Table 3.

Additionally some combinations of permissions are not useful when MXLEN=64. These cases are
defined to return useful minimal sets of permissions, which may be no permissions.

y Future extensions may allow more combinations of permissions, especially for
I J MXLEN=64.

The common rules are:

1. ASR-permission cannot be set without X-permission being set
a. Clear ASR-permission unless X-permission is set

2. C-permission cannot be set without at least one of R-permission or W-permission being set.
a. Clear C-permission unless R-permission or W-permission are set.

3. Clear the M-bit if clearing X-permission.
Df The combination of X-permission clear and M-bit set is reserved for future extensions.
The MXLEN=32 additional rules are:

1. Clear ASR-permission if all other permissions are not set

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 66

2. Clear C-permission and X-permission if R-permission is not set

3. Clear X-permission if X-permission and R-permission are set, but C-permission and W-permission

are not set.
XLEN- 1 SDPLEN+15 16 4 3 2 1 0
Reserved | SDP | Reserved }ASI# X | R |W| C ‘
XLEN-SDPLEN-16 SDPLEN 11 171 1 11
Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation

TODO: Sail does not have the new encoding of the permissions field.

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 67

7.1.77. SCMODE

y CHERI v9 Note: This instruction used to be CSETFLAGS (and previously CSETMODE in
EI this document).

74 CHERI v9 Note: This page has new encodings.

Synopsis
Capability set CHERI execution mode

Mnemonic
scmode cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 7 5 7
SCMODE=0000110 src2 srcl SCMODE=111 dest OP=0110011
Description

Copy ¢s1 to cd and set cd.M (the mode bit) to the least significant bit of rs2 . c¢d.tag is set to O if
cs1is sealed.

Setting the mode bit on non-executable capabilities is not supported and may be ignored.
The reason for this is that the RV32 permissions encoding does not allocate space for

Df these.

TODO: Should we require execute permission for both RV32 and RV64?

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites
Zcherihybrid

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap' and "Zcherihybrid" Extensions for CHERI | Page 68

7.1.8. SCHI

Df CHERI v9 Note: This page has new encodings.

Df CHERI v9 Note: this instruction was called CSETHIGH.
Synopsis

Capability set metadata

Mnemonic

schi cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
SCHI=0000110 metadata src SCHI=011 dest OP=0110011
Description

Copy ¢s1 to cd, replace the capability metadata (i.e. bits [CLEN-1:MXLEN]) with rs2 and set cd. tag
to O.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 69

7.1.9. SCEQ

Df CHERI v9 Note: This page has new encodings.

Df CHERI v9 Note: this instruction was called CSETEQUALEXACT.
Synopsis

Set if Capabilities are EQual

Mnemonics

sceq rd, cs1, cs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 cs2 csl funct3 rd opcode
7 5 5 3 5 7
SCEQ=0000110 src2 srcl SCEQ=100 dest OP=0110011
Description

rd is set to 1if all bits (i.e. CLEN bits and the tag) of capabilities ¢s1 and ¢s2 are equal, otherwise rd
is set to O.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 70

7.1.10. SENTRY

Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CSEALENTRY.
Synopsis

Seal capability as sealed entry.

Mnemonics

sentry cd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 cd opcode
7 5 5 3 5 7
SENTRY=0001000 SENTRY=01000 src SENTRY=000 dest OP=0110011
Description

Capability cd is written with the capability in ¢s1 with its seal bit set to 1. Attempting to seal an
already sealed capability will lead to the tag of cd being set to O.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap” and "Zcherihybrid" Extensions for CHERI | Page 71

7.0.11. SCSS
Df CHERI v9 Note: ctestsubset does not use ddc if cs1==0
Df CHERI v9 Note: this instruction was called CTESTSUBSET.
74 CHERI v9 Note: This page has new encodings.
Synopsis
Capability test subset
Mnemonic

scss rd, cs1, cs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 cs2 csl funct3 rd opcode
7 5 5 3 5 7
SCSS=0000110 src2 srcl SCSS=110 dest OP=0110011
Description

rd is set to 1 if the tag of capabilities ¢s1 and ¢s2 are equal and the bounds and permissions of ¢s2
are a subset of those of ¢s1.

—y The implementation of this instruction is similar to CBLD, although SCSS does not include
J the sealed bit in the check.

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap' and "Zcherihybrid" Extensions for CHERI | Page 72

7.1.12. CBLD
Df CHERI v9 Note: CBLD does not use ddc if csI==0
Df CHERI v9 Note: this instruction was called CBUILDCAP.
74 CHERI v9 Note: This page has new encodings.
Synopsis
Capability build
Mnemonic

cbld cd, cs1, cs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 cs2 csl funct3 cd opcode
7 5 5 3 5 7
CBLD=0000110 src2 srcl CBLD=101 dest OP=0110011
Description

Copy €s2 to cd and set cd.tag to 1 if

1. ¢s1.tagis set, and

2. ¢sis not sealed, and

3. €s2's permissions and bounds are equal to or a subset of ¢s1's, and

4. ¢s2's bounds are not malformed (see Section 2.2.6.3), and

5. ¢s2's permissions could have been legally produced by ACPERM, and

6. All reserved bits in €52 's metadata are O;
Otherwise, copy €s2 to cd and clear cd 's tag.
CBLD is typically used alongside SCHI to build capabilities from integer values.

When ¢s1 is ¢@ this will set the tag to O and leave the metadata otherwise unchanged.
| y However this may change in future extensions, and so software should not assume ¢s1==0
to be a pseudo instruction for tag clearing.

Exceptions
This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Simplified Operation TODO not debugged much easier to read than the existing SAIL

let cs1_val = C(cs1);

let cs2_val = C(cs2) [with tag=1];

//isCapSubset includes derivability checks on both operands
let subset = isCapSubset(csl_val, cs2_val);

//Clear cd.tag if cs2 isn't a subset of cs1, or if

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap” and "Zcherihybrid" Extensions for CHERI | Page 73

//cs1 is untagged or sealed, or if either is underivable
C(cd) = clearTagIf(cs2_val, not(subset) |
not(cs1_val.tag) |
isCapSealed(cs1_val));
RETIRE_SUCCESS

Operation
TODO: Original Sail looks at otype field, etc that don’t exist

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap' and "Zcherihybrid" Extensions for CHERI | Page 74

7.1.15. GCTAG
Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CGETTAG.
Synopsis
Capability get tag
Mnemonic

gctag rd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
GCTAG=0001000 GCTAG=00000 src GCTAG=000 dest OP=0110011
Description

Zero extend the value of ¢s1.tag and write the result to rd.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap” and "Zcherihybrid" Extensions for CHERI | Page 75

7.1.14. GCPERM

Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CGETPERM.
Synopsis

Capability get permissions

Mnemonic

gcperm rd, cs

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
GCPERM=0001000 GCPERM=00001 src GCPERM=000 dest OP=0110011
Description

Converts the AP and SDP fields of capability ¢s1 into a bit field; one bit per permission, as shown
below, and write the result to rd. A bit set to 1 in the bit field indicates that ¢s1 grants the
corresponding permission.

If the AP field is a reserved value then all architectural permission bits in rd are set to O. This is
only possible for MXLEN=32 and the reserved values are shown in Table 3.

XLEN- 1 SDPLEN+15 16 4 3 2 1 0
Reserved ‘ SDP ‘ Reserved PSI{ X ‘ R ‘W‘ C ‘
XLEN-SDPLEN-16 SDPLEN 11 71 1 1 1
Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation

TODO: The encoding of permissions changed.

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap' and "Zcherihybrid" Extensions for CHERI | Page 76

7.1.15. GCH|

Df CHERI v9 Note: This page has new encodings.

Df CHERI v9 Note: this instruction was called CGETHIGH.
Synopsis

Capability get metadata

Mnemonic

gchi rd, csi

Encoding
31 25 24 20 19 15 14 12 11
funct7 funct5 csl funct3 rd opcode
7 5 5 3 7
GCHI=0001000 GCHI=00100 src GCHI=000 dest OP=0110011
Description

Copy the metadata (bits [CLEN-1:MXLEN]) of capability cs1 into rd.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap” and "Zcherihybrid" Extensions for CHERI | Page 77

7.1.16. GCBASE

Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CGETBASE.
Synopsis

Capability get base address

Mnemonic

gcbase rd, csT

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
GCBASE=0001000 GCBASE=00101 src GCBASE=000 dest OP=0110011
Description

Decode the base integer address from ¢s1's bounds and write the result to rd. It is not required that
the input capability cs1 has its tag set to 1. GCBASE outputs O if ¢s1's bounds are malformed (see
Section 2.2.6.3).

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO need to check that it returns O if malformed

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 78

7.1.17. GCLEN
Df CHERI v9 Note: This page has new encodings.
Df CHERI v9 Note: this instruction was called CGETLEN.
Synopsis
Capability get length
Mnemonic

gclen rd, csi

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 funct5 csl funct3 rd opcode
7 5 5 3 5 7
GCLEN=0001000 GCLEN=00110 src GCLEN=000 dest OP=0110011
Description

Calculate the length of ¢s1's bounds and write the result in rd. The length is defined as the
difference between the decoded bounds' top and base addresses i.e. top - base. It is not required
that the input capability ¢s1 has its tag set to 1. GCLEN outputs O if ¢s1's bounds are malformed
(see Section 2.2.6.3), and 2""* -1 if the length of ¢s1 is 2",

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 79

7.1.18. SCBNDS|

See SCBNDS.

7.1.19. SCBNDS

Df CHERI v9 Note: SCBNDS was called CSETBOUNDSEXACT.
Df CHERI v9 Note: SCBNDSI would have been CSETBOUNDSEXACTIMM if it had existed.
/4 CHERI v9 Note: This page has new encodings.
/4 CHERI v9 Note: the immediate format has changed
Synopsis
Capability set bounds
Mnemonic

scbnds cd, cs1, rs2
scbndsi cd, cs1, uimm

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
SCBNDS=0000111 src2 srcl SCBNDS=000 dest OP=0110011
31 26 25 24 20 19 15 14 12 11 7 6 0
funct6 S uimm csl funct3 cd opcode
6 1 5 5 3 5 7
SCBNDSI scaled uimm src SCBNDSI=101 dest OP-IMM=0010011
=000001
Description

Capability register cd is set to capability register ¢s1 with the base address of its bounds replaced
with the value of cs1.address and the length of its bounds set to rs2 (or imm). If the resulting
capability cannot be represented exactly then set c¢d.tag to O. In all cases, cd. tag is set to O if its
bounds exceed ¢s1's bounds, ¢s1's tag is O or ¢s1 is sealed.

SCBNDSI uses the s bit to scale the immediate by 4 places

immediate = ZeroExtend(s 7 uimm<<4 : uimm)

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation for SCBNDS
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 80

Operation for SCBNDSI
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 81

7.1.20. SCBNDSR

Df CHERI v9 Note: This instruction was called CSETBOUNDS.
Df CHERI v9 Note: This page has new encodings.
Synopsis

Capability set bounds, rounding up if necessary

Mnemonic

scbndsr cd, cs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 csl funct3 cd opcode
7 5 5 3 5 7
SCBNDSR=0000111 src2 srcl SCBNDSR=001 dest OP=0110011
Description

Capability register cd is set to capability register ¢s1 with the base address of its bounds replaced
with the value of c¢s1.address field and the length of its bounds set to rs2. The base is rounded
down and the length is rounded up by the smallest amount needed to form a representable
capability covering the requested bounds. In all cases, cd.tag is set to O if its bounds exceed ¢s1''s
bounds, cs1's tagis O or cs1 is sealed.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation for SCBNDSR
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 82

7.1.21. CRAM

Synopsis
Get Capability Representable Alignment Mask (CRAM)

Mnemonic

cram rd, rsT

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
funct7 functs rsl funct3 rd opcode
7 5 5 3 5 7
CRAM=0001000 CRAM=00111 src CRAM=000 dest OP=0110011
Description

Integer register rd is set to a mask that can be used to round addresses down to a value that is
sufficiently aligned to set exact bounds for the nearest representable length of rs1.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites

Zcheripurecap

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 83

7.1.22. LC
Df CHERI v9 Note: This page has new encodings.
Df The RV64 encoding is intended to also allocate the encoding for LQ for RVI128.
Synopsis
Load capability

Capability Pointer Mode Mnemonics
lc cd, offset(cs1)

Integer Pointer Mode Mnemonics
lc cd, offset(rs1)

Df These instructions have different encodings for RV64 and RV32.
Encoding
31 20 19 15 14 12 11 7 6 0
imm[11:0] rsl/csl funct3 cd opcode
12 5 3 5 7
offset[11:0] base rvé4: LC=100 dest MISCMEM=0001111
rv32: LC=011 LOAD=0000011

Capability Pointer Mode Description
Load a CLEN+1 bit value from memory and writes it to c¢d. The capability in ¢s1 authorizes the
operation. The effective address of the memory access is obtained by adding the address of ¢s1 to
the sign-extended 12-bit offset. The tag value written to ¢d is O if the tag of the memory location
loaded is O or €¢s1 does not grant C-permission.

Integer Pointer Mode Description

Loads a CLEN+1 bit value from memory and writes it to cd. The capability authorising the
operation is ddc. The effective address of the memory access is obtained by adding rs1 to the sign-
extended 12-bit offset. The tag value written to cd is O if the tag of the memory location loaded is O
or ddc does not grant C-permission.

Exceptions
Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap' and "Zcherihybrid" Extensions for CHERI | Page 84

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode

Zcherihybrid

LC Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 85

7.1.25. 5C
Df The RV64 encoding is intended to also allocate the encoding for SQ for RVI28.
Synopsis
Store capability

Capability Pointer Mode Mnemonics
sc cs2, offset(cs1)

Integer Pointer Mode Mnemonics
sc cs2, offset(rs1)

Df These instructions have different encodings for RV64 and RV32.
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] cs2 rsl/csl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base rvé4: SC=100 offset[4:0] STORE=0100011
rv32: SC=011

Capability Pointer Mode Description
Store the CLEN+1 bit value in ¢s2 to memory. The capability in ¢s1 authorizes the operation. The
effective address of the memory access is obtained by adding the address of ¢s1 to the sign-
extended 12-bit offset. The capability written to memory has the tag set to O if the tag of ¢s2is O or
¢s1 does not grant C-permission.

Integer Pointer Mode Description

Store the CLEN+1 bit value in ¢s2 to memory. The capability authorising the operation is ddc. The
effective address of the memory access is obtained by adding rs1 to the sign-extended 12-bit offset.
The capability written to memory has the tag set to O if ¢s2's tag is O or ddc does not grant C-
permission.

Exceptions
Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

RISC-V Specification for CHERI Extensions | © RISC-V

7.1."Zcheripurecap' and "Zcherihybrid" Extensions for CHERI | Page 86

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode

Zcherihybrid

SC Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 87

7.2. RV32I/E and RV64I/E Base Integer Instruction
Sets

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 88

7.2.1. AUIPC

Synopsis
Add upper immediate to pc/pcc

Capability Pointer Mode Mnemonic
auipc cd, imm

Integer Pointer Mode Mnemonic
auipc rd, imm

Encoding
31 12 11
imm[31:12] cd/rd opcode
20 5 7
U-immediate[31:12] dest AUIPC=0010111

Capability Pointer Mode Description

Form a 32-bit offset from the 20-bit immediate filling the lowest 12 bits with zeros. Increment the
address of the AUIPC instruction’s pcc by the 32-bit offset, then write the output capability to cd.
The tag bit of the output capability is O if the incremented address is outside the pcc's

Representable Range.

Integer Pointer Mode Description

Form a 32-bit offset from the immediate, filling in the lowest 12 bits with zeros, adds this offset to
the address of the AUIPC instruction, then places the result in register rd.

The instructions on this page are either PC relative or may update the pcc. Therefore an

| yl implementation may make them illegal in debug mode. If they are supported then the

value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode
Zcherihybrid

Operation for AUIPC
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 89

7.22. BEQ, BNE, BLT[U], BGE[U]

Synopsis
Conditional branches (BEQ, BNE, BLT[U], BGE[U])

Mnemonics

beq rs1, rs2, imm
bne rs1, rs2, imm
blt rs1, rs2, imm
bge rs1, rs2, imm
bltu rs1, rs2, imm
bgeu rs1, rs2, imm

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
| imm[12|10:5] rs2 rsl funct3 imm[4:1]11] opcode
7 5 5 3 5 7
offset[12]10:5] src2 srcl BEQ=000 offset[4:1]11] BRANCH=1100011
BNE=001
BLT=100
BGE=101
BLTU=110
BGEU=111
Description

Compare two integer registers rs1 and rs2 according to the indicated opcode as described in
(RISC-V, 2023). The 12-bit immediate encodes signed offsets in multiples of 2 bytes. The offset is
sign-extended and added to the address of the branch instruction to give the target address. Then
the target address is written into the address field of pcc.

Exceptions

When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of
mtval or stval:

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 90

7.2.3. IR

Expands to JALR following the expansion rule from (RISC-V, 2023).

7.2.4. JALR

Synopsis

Jump and link register

Capability Pointer Mode Mnemonic

jalr cd, cs1, offset

Integer Pointer Mode Mnemonic

jalr rd, rs1, offset

Encoding
31 20 19 15 14 12 11 7 6 0
imm[11:0] csl/rsl funct3 cd/rd opcode
12 5 3 5 7
offset[11:0] base 0 dest JALR=1100111

Capability Pointer Mode Description

JALR allows unconditional, indirect jumps to a target capability. The target capability is obtained by
unsealing c¢s1 if the immediate is zero and incrementing its address by the sign-extended 12-bit
immediate otherwise, and then setting the least-significant bit of the result to zero. The target
capability may have Invalid address conversion performed and is then installed in pcc. The pcc of
the next instruction following the jump (pcc + 4) is sealed and written to cd.

Integer Pointer Mode Description

JALR allows unconditional, indirect jumps to a target address. The target address is obtained by
adding the sign-extended 12-bit immediate to rs1, then setting the least-significant bit of the result
to zero. The target address is installed in the address field of the pcc which may require Invalid
address conversion. The address of the instruction following the jump (pcc + 4) is written to rd.

Exceptions

When these instructions cause CHERI exceptions, CHERI jump or branch fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE Integer
Pointer
Mode

Tag

violation

Seal
violation

Permission
violation

Capability Reason
Pointer Mode

v cs1 hastagsetto O
v cs1is sealed and the immediate is not O
v ¢s1 does not grant X-permission

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE

Length
violation

I

Integer
Pointer
Mode

v

Capability
Pointer Mode

v

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 91

Reason

Minimum length instruction is not within the target
capability’s bounds. This check uses the address after it
has undergone Invalid address conversion but with the
original bounds.

The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites Capability Pointer Mode

Zcheripurecap

Prerequisites Integer Pointer Mode

Zcherihybrid

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 92

7.2.5.]

Expands to JAL following the expansion rule from (RISC-V, 2023).

7.2.6. JAL

Synopsis
Jump and link

Capability Pointer Mode Mnemonic
jal cd, offset

Integer Pointer Mode Mnemonic
jal rd, offset

Encoding

31 30 21 20 19 12 11 7 6 0
|[20] | imm[10:1] |[11] | imm[19:12] cd/rd opcode

1 10 1 5

8 7
offset[20:1] offset[19:12] dest JAL=1101111

Capability Pointer Mode Description

JAL’s immediate encodes a signed offset in multiple of 2 bytes. The pcc is incremented by the sign-
extended offset to form the jump target capability. The target capability is written to pcc. The pcc of
the next instruction following the jump (pcc + 4) is sealed and written to cd.

Integer Pointer Mode Description

JAL’s immediate encodes a signed offset in multiple of 2 bytes. The sign-extended offset is added to
the pcc's address to form the target address which is written to the pcc's address field. The address
of the instruction following the jump (pcc + 4) is written to rd.

Exceptions

CHERI fault exceptions occur when a minimum length instruction at the target address is not
within the bounds of the pcc. In this case, CHERI jump or branch fault is reported in the TYPE field
and Length Violation is reported in the CAUSE field of mtval or stval.

The instructions on this page are either PC relative or may update the pcc. Therefore an
| yl implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode

Zcherihybrid

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.7. LD

See LB.

7.2.8. LWU

See LB.

7.29. LW

See LB.

7.2.10. LHU

See LB.

7.2.11. LH

See LB.

7.2.12. LBU

See LB.

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 93

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV641/E Base Integer Instruction Sets | Page 94
7.2.13. LB

Synopsis
Load (LD, LW[U], LH[U], LB[U])

Capability Pointer Mode Mnemonics (RV64)
1d rd, offset(cs1)
lw[u] rd, offset(cs1)
1h[u] rd, offset(cs1)
1b[u] rd, offset(cs1)

Integer Pointer Mode Mnemonics (RV64)
1d rd, offset(rs1)
lw[u] rd, offset(rs1)
1h[u] rd, offset(rs1)
1b[u] rd, offset(rs1)

Capability Pointer Mode Mnemonics (RV32)
lw rd, offset(cs1)
1h[u] rd, offset(cs1)
1b[u] rd, offset(cs1)

Integer Pointer Mode Mnemonics (RV32)
lw rd, offset(rs1)
Llh[u] rd, offset(rs1)
1b[u] rd, offset(rs1)

Encoding

31

20 19
imm[11:0] rsl/csl rd opcode
12 5 3 5 7
offset[11:0] base width dest LOAD=0000011
LB=000
LH=001
LwW=010
LBU=100
LHU=101
rvé4: LwuU=110

rvé4: LD=011
Capability Pointer Mode Description

15 14

12 11
funct3

Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to the address of

cs1. The authorising capability for the operation is ¢s1. A copy of the loaded value is written to rd.
Integer Pointer Mode Description

Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The

effective address of the load is obtained by adding the sign-extended 12-bit offset to rs1. The

authorising capability for the operation is ddc. A copy of the loaded value is written to rd.
Exceptions

written to CAUSE.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 95

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode LD
RV64, Zcheripurecap

Prerequisites for Integer Pointer Mode LD
RV64, Zcherihybrid

Prerequisites for Capability Pointer Mode LW[U], LH[U], LB[U]

Zcheripurecap, OR
Zcherihybrid

Capability Pointer Mode Operation
TBD

Integer Pointer Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 96

7.2.14. 5D

See SB

7.2.15. SW

See SB

7.2.16. SH

See SB

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 97

7.2.17.5B

Synopsis
Stores (SD, SW, SH, SB)

Capability Pointer Mode Mnemonics (RV64)
sd rs2, offset(cs1)
sw rs2, offset(cs1)
sh rs2, offset(cs1)
sb rs2, offset(cs1)

Integer Pointer Mode Mnemonics (RV64)

sd rs2, offset(rs1)
sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Capability Pointer Mode Mnemonics (RV32)

sw rs2, offset(cs1)
sh rs2, offset(cs1)
sb rs2, offset(cs1)

Integer Pointer Mode Mnemonics (RV32)

sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsl/csl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base SB=000 offset[4:0] STORE=0100011
SH=001
SW=010
rvé4: SD=011

Capability Pointer Mode Description

Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorising capability for the operation is ¢s1. A copy of rs2 is written to memory at the
location indicated by the effective address and the tag bit of each block of memory naturally
aligned to CLEN/8 is cleared.

Integer Pointer Mode Description

Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to rs1. The
authorising capability for the operation is ddc. A copy of rs2 is written to memory at the location
indicated by the effective address and the tag bit of each block of memory naturally aligned to
CLEN/8 is cleared.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 98

case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode SD
RV64, Zcheripurecap

Prerequisites for Integer Pointer Mode SD
RV64, Zcherihybrid

Prerequisites for Capability Pointer Mode SW, SH, SB

Zcheripurecap

Prerequisites for Integer Pointer Mode SW, SH, SB
Zcherihybrid

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV641/E Base Integer Instruction Sets | Page 99

7.2.18. SRET

See MRET.

7.219. MRET

Synopsis
Trap Return (MRET, SRET)

Mnemonics

mret

sret
Encoding
31 20 19 15 14 12 11 7 6 0

funct12 rsl funct3 rd opcode
12 5 3 5 7
MRET=001100000010 0 PRIV=0 0 SYSTEM=111011

SRET=000100000010

Description

Return from machine mode (MRET) or supervisor mode (SRET) trap handler as defined by (RISC-
V, 2023). MRET unseals mepce and writes the result into pce. SRET unseals sepce and writes the
result into pcc.

Exceptions

CHERI fault exceptions occur when pcc does not grant ASR-permission because MRET and SRET
require access to privileged CSRs. When that exception occurs, CHERI instruction access fault is
reported in the TYPE field and the Permission Violation codes is reported in the CAUSE field of
mtval or stval.

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 100

7.2.20. DRET
Synopsis

Debug Return (DRET)
Mnemonics

dret
Encoding
31 20 19 15 14 12 11 7 6 0

funct12 rsl funct3 rd opcode
12 5 3 5 7
DRET=011110110010 0 PRIV=0 0 SYSTEM=111011

Description

DRET return from debug mode. It unseals dpcc and writes the result into pcc.

The DRET instruction is the recommended way to exit debug mode. However, it is a pseudo
| y instruction to return that technically does not execute from the program buffer or memory.
It currently does not require the pcc to grant ASR-permission so it never excepts.

Prerequisites
Sdext

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 101

7.3."A" Standard Extension for Atomic Instructions

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 102

7.3.1. AMO<OP>W

See AMO<OP>.D.

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 103

7.3.2. AMO<OP>D

Synopsis
Atomic Operations (AMO<OP>W, AMO<OP>.D), 32-bit encodings

Capability Pointer Mode Mnemonics (RV64)
amo<op>.[w|d] rd, rs2, offset(cs1)

Capability Pointer Mode Mnemonics (RV32)
amo<op>.w rd, rs2, offset(cs1)

Integer Pointer Mode Mnemonics (RV64)
amo<op>.[w|d] rd, rs2, offset(rs1)

Integer Pointer Mode Mnemonics (RV32)
amo<op>.w rd, rs2, offset(rs1)

Encoding

31 27 26 25 24 20 19 15 14 12 11 7 6 0

functs aq| rl rs2 rsl funct3 rd opcode
5 11 5 5 3 5 7
op aq Tl src base .W=010 rdest[4:0] AMO=0101111
SWAP=00001 rvé4: .D=011
ADD=00000
XOR=00100
AND=01100
OR=01000
MIN=10000
MAX=10100
MINU=11000
MAXU=11100

Capability Pointer Mode Description

Standard atomic instructions, authorised by the capability in ¢s1.

Integer Pointer Mode Description

Standard atomic instructions, authorised by the capability in ddc.

Permissions

Requires R-permission and W-permission in the authorising capability.
Requires all bytes of the access to be in capability bounds.

Exceptions

All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 104

CAUSE

Tag violation

Seal violation

Permission violation

Length violation

Reason

Authority
capability tag
setto O

Authority
capability is
sealed

Authority
capability does
not grant R-
permission or
W-permission

At least one
byte accessed is
outside the
authority
capability
bounds

Prerequisites for Capability Pointer Mode AMO<OP>W, AMO<OP>.D

Zcheripurecap, and A

Prerequisites for Integer Pointer Mode AMO<OP>W, AMO<OP>.D

Zcherihybrid, and A

Capability Pointer Mode Operation
TBD

Integer Pointer Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 105

7.3.3. AMOSWAP.C
Df The RV64 encoding is intended to also allocate the encoding for AMOSWAP.Q for RVI28.

Synopsis
Atomic Operation (AMOSWAP.C), 32-bit encoding

Df These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonics
amoswap.c cd, cs2, offset(cs1)

Integer Pointer Mode Mnemonics
amoswap.c cd, cs2, offset(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
functs aq| rl cs2 csl funct3 cd opcode
5 1 1 5 5 3 5 7
op aq rl src base width rdest[4:0] AMO=0101111
SWAP=00001 rv32: .C=011

rve4: .C=100

Capability Pointer Mode Description
Atomic swap of capability type, authorised by the capability in ¢s1.

Integer Pointer Mode Description

Atomic swap of capability type, authorised by the capability in ddc.

Permissions

Requires the authorising capability to be tagged and not sealed.

Requires R-permission and W-permission in the authorising capability.

If C-permission is not granted then store the memory tag as zero, and load cd. tag as zero.
(This tag clearing behaviour may become a data dependent exception in future.)

Requires all bytes of the access to be in capability bounds.

Exceptions

All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE Reason
Tag violation Authority
capability tag
setto O

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 106

CAUSE Reason
Seal violation Authority
capability is
sealed
Permission violation Authority
capability does
not grant R-
permission or
W-permission

Length violation At least one
byte accessed is
outside the
authority
capability
bounds

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites for Capability Pointer Mode AMOSWAP.C
Zcheripurecap, and A

Prerequisites for Integer Pointer Mode AMOSWAP.C
Zcherihybrid, and A

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.4. LR.D

See LR.B.

7.3.5. LR.W

See LR.B.

7.3.6. LR.H

See LR.B.

7.3."A" Standard Extension for Atomic Instructions | Page 107

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 108

7.37.LR.B

Synopsis

Load Reserved (LR.D, LR.W, LR.H, LR.B), 32-bit encodings

Capability Pointer Mode Mnemonics (RV64)

1r.[d|w|h|b] rd, @(cs1)

Capability Pointer Mode Mnemonics (RV32)

Ir.[w|h|b] rd, @(cs1)

Integer Pointer Mode Mnemonics (RV64)

1r.[d|w|h|b] rd, @(rs1)

Integer Pointer Mode Mnemonics (RV32)

Ir.[w|h|b] rd, @(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6
functs aq| rl rs2 rsl funct3 rd opcode

5 11 5 5 3 5 7

op ag rl cap: CLR.*=00000 base .B=000 rdest[4:0] AMO=0101111
cap: CLR.*=00010 leg: LR.*=00000 .H=001

leg: LR.*=00010 .W=010
rvé4: .D=011

Capability Pointer Mode Description

Load reserved instructions, authorised by the capability in ¢s1.

Integer Pointer Mode Description

Load reserved instructions, authorised by the capability in ddc.

Exceptions

All misaligned load reservations cause a load address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 202.3)), otherwise they take a load access

fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE
Tag violation

Seal violation

Reason
Authority capability tag set to O

Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation

At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode LR.D
RV64, Zcheripurecap, and A

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 109

Prerequisites for Capability Pointer Mode LR W
Zcheripurecap, and A

Prerequisites for Capability Pointer Mode LR.H, LR.B
Zabhlrsc, and Zcheripurecap

Prerequisites for LR.D
RV64, Zcherihybrid, and A

Prerequisites for LR W
Zcherihybrid, and A

Prerequisites for LR.H, LR.B
Zabhlrsc, Zcherihybrid

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 110

7.3.8. LR.C

Df The RV64 encoding is intended to also allocate the encoding for LR.Q for RV128.

Synopsis

Load Reserved Capability (LR.C), 32-bit encodings

Df These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonics

1lr.c cd, 0(cs1)

Integer Pointer Mode Mnemonics

1r.c cd, 0(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11
functs aq| rl funct5 csl/rs1 funct3 cd opcode
5 11 5 5 3 5 7
op aq rl cap: CLR.*=00000 base rv32: .C=011 rdest[4:0] AMO=0101111
cap: CLR.*=00010 leg: LR.*=00000 rve4: .C=100

leg: LR.*=00010

Capability Pointer Mode Description

Load reserved instructions, authorised by the capability in ¢s1. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-

V,2023)).

Integer Pointer Mode Description

Load reserved instructions, authorised by the capability in ddc. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-

V, 2023)).

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE
Tag violation

Seal violation

Permission violation Authority capability does not grant R-permission

Length violation

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Reason

Authority capability tag set to O

Authority capability is sealed

At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode

Zcheripurecap, and A

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 111

Prerequisites for Integer Pointer Mode
Zcherihybrid, and A

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 112

7.39.5C.D

See SC.B.

7.3.10. SC.W

See SC.B.

7.3.11. SC.H

See SC.B.

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 113

7.312. SC.B

Synopsis
Store Conditional (SC.D, SC.W, SC.H, SC.B), 32-bit encodings

Capability Pointer Mode Mnemonics (RV64)
sc.[d|w|h|b] rd, rs2, @(cs1)

Capability Pointer Mode Mnemonics (RV32)
sc.[w|h|b] rd, rs2, @(cs1)

Integer Pointer Mode Mnemonics (RV64)
sc.[d|w|h|b] rd, rs2, @(rs1)

Integer Pointer Mode Mnemonics (RV32)
sc.[w|h|b] rd, rs2, 0(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
functs aq| rl rs2 rsl funct3 rd opcode
5 11 5 5 3 5 7
op aq Tl src base width rdest[4:0] AMO=0101111
SC=00011 .B=000
.H=001
.W=010
rvé4: .D=011

Capability Pointer Mode Description

Store conditional instructions, authorised by the capability in ¢s1.

Integer Pointer Mode Description

Store conditional instructions, authorised by the capability in ddc.

Exceptions

All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode SC.D
RV64, and Zcheripurecap, and A

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 114

Prerequisites for Integer Pointer Mode SC.D
RV64, and Zcherihybrid, and A

Prerequisites for Capability Pointer Mode SC.W
Zcheripurecap, and A

Prerequisites for Integer Pointer Mode SC.W
Zcherihybrid, and A

Prerequisites for Capability Pointer Mode SC.H, SC.B
Zcheripurecap, and Zabhlrsc

Prerequisites for Integer Pointer Mode SC.H, SC.B
Zcherihybrid, and Zabhlrsc

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 115

7.313. SC.C

Df The RV64 encoding is intended to also allocate the encoding for SC.Q for RV128.

Synopsis
Store Conditional (SC.C), 32-bit encoding

Df These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonics
sc.c rd, cs2, 0(cs1)

Integer Pointer Mode Mnemonics
sc.c rd, cs2, 0(rs1)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
functs aq| rl cs2 csl/rs1 funct3 rd opcode
5 1 1 5 5 3 5 7
op aq rl src base width rdest[4:0] AMO=0101111
SC=00011 rv32: .C=011

rve4: .C=100

Capability Pointer Mode Description

Store conditional instructions, authorised by the capability in ¢s1. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 202.3)).

Integer Pointer Mode Description

Store conditional instructions, authorised by the capability in ddc. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 202.3)).

Exceptions

All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

RISC-V Specification for CHERI Extensions | © RISC-V

7.3."A" Standard Extension for Atomic Instructions | Page 116

Prerequisites for Capability Pointer Mode
Zcheripurecap, and A

Prerequisites for Integer Pointer Mode
Zcherihybrid, and A

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

74."Zicsr", Control and Status Register (CSR) Instructions | Page 117

7.4, "Zicsr", Control and Status Register (CSR)
INnstructions

RISC-V Specification for CHERI Extensions | © RISC-V

7.4."Zicsr", Control and Status Register (CSR) Instructions | Page 118

7.4.1. CSRRW
Df CHERI v9 Note: CSpecialRW is removed and this functionality replaces it
Synopsis

CSR access (CSRRW) 32-bit encodings

Mnemonic for accessing capability CSRs in Capability Pointer Mode
csrrw cd, csr, csT

Mnemonic for accessing XLEN-wide CSRs or extended CSRs in Integer Pointer Mode

csrrw rd, csr, rst

Encoding
31 20 19 15 14 12 11 7 6 0
csr rsl/csl funct3 rd/cd opcode
12 5 3 5 7
source/dest CSR source CSRRW=001 dest SYSTEM=1110011
Description

This is a standard RISC-V CSR instructions with extended functionality for accessing CLEN-wide
CSRs, such as mtvec/mtvecc.

See Table 36 for a list of CLEN-wide CSRs and Table 37 for the action taken on writing each one.
CSRRW writes ¢s1 to extended CSRs in Capability Pointer Mode, and reads a full capability into cd.
CSRRW writes rs1 to extended CSRs in Integer Pointer Mode, and reads the address field into rd.

If cd is @ (or rd is x@), then the instruction shall not read the CSR and shall not cause any of the
side effects that might occur on a CSR read.

The assembler pseudo-instruction to write a capability CSR in Capability Pointer Mode, CSTW €S,
csl, isencoded as csrrw ¢@, csr, csl.

Access to XLEN-wide CSRs from other extensions is as specified by RISC-V.

Permissions

Accessing privileged CSRs require ASR-permission, including existing RISC-V CSRs, as described
in Section 3.5.1. The list of privileged and unprivileged CSRs is shown in (RISC-V, 2023).

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode
Zcherihybrid

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.4.2. CSRRWI

See CSRRCI.

7.4.3. CSRRS

See CSRRCI.

7.4.4. CSRRSI

See CSRRCI.

7.4.5. CSRRC

See CSRRCI.

74."Zicsr', Control and Status Register (CSR) Instructions | Page 119

RISC-V Specification for CHERI Extensions | © RISC-V

7.4."Zicsr", Control and Status Register (CSR) Instructions | Page 120

7.4.6. CSRRC]
Df CHERI v9 Note: CSpecialRW is removed and this functionality replaces it
Synopsis

CSR access (CSRRWI, CSRRS, CSRRSI, CSRRC, CSRRCI) 32-bit encodings

Mnemonics for accessing capability CSRs in Capability Pointer Mode

csrrs cd, csr, rsi
csrrc ¢d, csr, rsi
csrrwi cd, csr, imm
csrrsi cd, csr, imm
csrrci cd, csr, imm

Mnemonics for accessing XLEN-wide CSRs or extended CSRs in Integer Pointer Mode

csrrs rd, csr, rsi
csrrc rd, csr, rsi
csrrwi rd, csr, imm
csrrsi rd, csr, imm
csrrci rd, csr, imm

Encoding
31 20 19 15 14 12 11 7 6 0
csr rs1/uimm funct3 rd opcode
12 5 3 5 7
source/dest CSR source CSRRS=010 dest SYSTEM=1110011
source CSRRC=011
uimm[4:0] CSRRWI=101
uimm[4:0] CSRRSI=110
uimm[4:0] CSRRCI=111
Description

These are standard RISC-V CSR instructions with extended functionality for accessing capability
CSRs, such as mtvec/mtvecc.

Unlike CSRRW, these instructions only update the address field and the tag as defined in Table 37
when writing capability CSRs regardless of the execution mode. The final address to write to the
capability CSR is determined as defined by RISC-V for these instructions.

See Table 36 for a list of capability CSRs and Table 37 for the action taken on writing an XLEN-
wide value to each one.

If cd is ¢ (or rd is x@), then CSRRWI shall not read the CSR and and shall not cause any of the side
effects that might occur on a CSR read. If rs1is x@ for CSRRS and CSRRC, or imm is O for CSRRSI
and CSRRCI, then the instruction will not write to the CSR at all, and so shall not cause any of the
side effects that might otherwise occur on a CSR write.

The assembler pseudoinstruction to read a capability CSR in Capability Mode, csrr cd, csr, is
encoded as csrrs cd, csr, x0.

Access to XLEN-wide CSRs is as specified by RISC-V.
Dy If the CSR accessed is a capability, and rs1 is x@ for CSRRS and CSRRC, or imm is O for

CSRRSI and CSRRCI, then the CSR is not written so no representability check is needed in

RISC-V Specification for CHERI Extensions | © RISC-V

74."Zicsr'", Control and Status Register (CSR) Instructions | Page 121

this case.

Permissions

Accessing privileged CSRs requires ASR-permission, including existing RISC-V CSRs, as described
in Section 3.5.1. The list of privileged and unprivileged CSRs is shown in (RISC-V, 2023).

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode
Zcherihybrid

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 122

75."Zth" "Zfthmin", "F" and "D" Standard Extension
for Floating-Point

RISC-V Specification for CHERI Extensions | © RISC-V

7.5.1. FLD

See FLH.

7.52. FLW

See FLH.

7.5."2th", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 123

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 124

7.5.3. FLH

Synopsis
Floating point loads (FLD, FLW, FLH), 32-bit encodings

Capability Pointer Mode Mnemonics
fld/flw/flh frd, offset(cs1)

Integer Pointer Mode Mnemonics
fld/flw/flh rd, offset(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
imm[11:0] rsl/csl width frd opcode
12 5 3 5 7
offset[11:0] base FLD=011 dest LOAD-FP=0000111
FLW=010
FLH=001

Capability Pointer Mode Description
Standard floating point load instructions, authorised by the capability in ¢s1.

Integer Pointer Mode Description

Standard floating point load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode FLD
Zcheripurecap, and D

Prerequisites for Integer Pointer Mode FLD
Zcherihybrid, and D

Prerequisites for Capability Pointer Mode FLW

Zcheripurecap, and F

Prerequisites for Integer Pointer Mode FLW
Zcherihybrid, and F

Prerequisites for Capability Pointer Mode FLH
Zcheripurecap, and Zfhmin or Zth

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2th", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 125

Prerequisites for Integer Pointer Mode FLH
Zcherihybrid, and Zfhmin or Zth

Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 126

7.5.4. FSD

See FSH.

7.55. FSW

See FSH.

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."Zth", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 127

7.5.6. FSH

Synopsis
Floating point stores (FSD, FSW, FSH), 32-bit encodings

Capability Pointer Mode Mnemonics
fsd/fsw/fsh fs2, offset(cs1)

Integer Pointer Mode Mnemonics
fsd/fsw/fsh fs2, offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] fs2 rsl/csl width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base FSD=011 offset[4:0] STORE-FP=0100111
FSW=010
FSH=001

Capability Pointer Mode Description
Standard floating point store instructions, authorised by the capability in ¢s1.

Integer Pointer Mode Description

Standard floating point store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode FSD
Zcheripurecap, and D

Prerequisites for Integer Pointer Mode FSD
Zcherihybrid, and D

Prerequisites for Capability Pointer Mode FSW

Zcheripurecap, and F

Prerequisites for Integer Pointer Mode FSW
Zcherihybrid, and F

Prerequisites for Capability Pointer Mode FSH
Zcheripurecap, and Zfh or Zthmin

RISC-V Specification for CHERI Extensions | © RISC-V

7.5."2fh", "Zthmin", "F" and "D" Standard Extension for Floating-Point | Page 128

Prerequisites for Integer Pointer Mode FSH
Zcherihybrid, and Zfh or Zthmin

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 129

7.6."C" Standard Extension for Compressed
INnstructions

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 130

7.6.1. CBEQZ, CBNEZ

Synopsis
Conditional branches (C.BEQZ, C.BNEZ), 16-bit encodings

Mnemonics
c.beqz/c.bnez rs1', offset

Expansions
beq/bne rs1’, x@, offset

Encoding
15 13 12 10 9 7 6 2 1 0
funct3 imm rsl' imm op
3 3 3 5 2
C.BEQZ offset[8|4:3] src offset[7:6]2:1|5] C1
C.BNEZ offset[8|4:3] src offset[7:6]2:1|5] C1l
Exceptions

When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of
mtval or stval:

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites

CorZca

Operation (after expansion to 32-bit encodings)
See Conditional branches (BEQ, BNE, BLT[U], BGE[U])

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 131

7.6.2. CMV

Synopsis
Capability move (C.MV), 16-bit encoding

Capability Pointer Mode Mnemonic

c.mv cd, cs2

Capability Pointer Mode Expansion

cmv cd, cs2

Suggested assembly syntax

mv rd, rs2
mv cd, cs2

Df the suggested assembly syntax distinguishes from integer mv by operand type.

Integer Pointer Mode Mnemonic

c.mv rd, rs2

Integer Pointer Mode Expansion
add rd, xO, rs2

Encoding
15 12 11 7 6 2 1 0
funct4 rd/cd rs2/cs2 op
4 5 5 2
C.MV=1000 dest!=0 src!=0 Cc2=10

Capability Pointer Mode Description
Capability register cd is replaced with the contents of ¢s2.

Integer Pointer Mode Description
Standard RISC-V C.MV instruction.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Capability Pointer Mode Operation (after expansion to 32-bit encodings)
See CMV

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 132

7.6.5. CADDI6SP

Synopsis
Stack pointer increment in blocks of 16 (C.ADDI16SP), 16-bit encodings

Capability Pointer Mode Mnemonic
c.addi16sp imm

Capability Pointer Mode Expansion
cadd csp, csp, imm

Integer Pointer Mode Mnemonic

c.addi16sp imm

Integer Pointer Mode Expansion
add sp, sp, imm

Encoding
15 13 12 11 7 6 2 1 0
funct3 r|\zimm[9 rd/rs1 nzimm([4|6|8:7|5] op
3 1 5 5 2
C.ADDI16SP=011 [9] 2 offset[4|6]8:7|5] C1=01

Capability Pointer Mode Description

Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (csp=c2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496). Clear the tag if the
resulting capability is unrepresentable or csp is sealed.

Integer Pointer Mode Description

Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496).

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Capability Pointer Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 133

7.6.4. CADDI4SPN

See C ADDI4SPN.

Synopsis
Stack pointer increment in blocks of 4 (C.ADDI4SPN), 16-bit encoding

Capability Pointer Mode Mnemonic
c.addi4spn cd', uimm

Capability Pointer Mode Expansion
cadd cd', csp, uimm

Integer Pointer Mode Mnemonic
c.addidspn rd', uimm

Integer Pointer Mode Expansion
add rd', sp, uimm

Encoding
15 13 12 5 4 2 1 0
funct3 nzimm rd' op
3 8 3 2
C.ADDI4SPN=000 uimm[5:4/9:6|2|3]!=0 dest C0=00

Capability Pointer Mode Description

Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, csp, and writes the
result to cd'. This instruction is used to generate pointers to stack-allocated variables. Clear the tag
if the resulting capability is unrepresentable or ¢sp is sealed.

Integer Pointer Mode Description

Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, sp, and writes the result
to rd". This instruction is used to generate pointers to stack-allocated variables.

Prerequisites for CADDI4SPN

C or Zca, Zcheripurecap

Prerequisites for CADDI4SPN
C or Zca, Zcherihybrid

Capability Pointer Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 134

7.6.5. CMODESW

Df CHERI v9 Note: This instruction is new.

Synopsis
Capability/Integer Pointer Mode switching (C.MODESW), 16-bit encoding

Mnemonics

c.modesw

Expansions

modesw

Encoding

15 13 12 10 9 7 6 5 4 2 1 0
1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1
3 3 3 2 3 2
FUNCT3 FUNCT3 FUNCT3 FUNCT2 C.MODESW Cl=1

Description

Toggle the hart’s current CHERI execution mode in pcc.

- If the current mode in pcc is Integer Pointer Mode, then the mode bit (M) in pcc is set to
Capability Pointer Mode.

- If the current mode is Capability Pointer Mode, then the mode bit (M) in pcc is set to Integer
Pointer Mode.

In debug mode MODESW can still be used to change the operating mode, and the current mode
is shown in the M bit of dinfc.

Exceptions

This instruction is illegal if CRE for the current mode is zero (see Section 5.7).

Prerequisites
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See MODESW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 135

'7.6.0. CJALR

Synopsis
Register based jumps with link, 16-bit encodings

Capability Pointer Mode Mnemonic
c.jalr c1, cs

Capability Pointer Mode Expansion
jalr c1, 0(cs1)

Integer Pointer Mode Mnemonic

c.jalr x1, rsl

Integer Pointer Mode Expansion
jalr x1, 0(rs1)

Encoding
15 12 11 7 6 2 1 0
funct4 csl/rsl cs2/rs2 op
4 5 5 2
C.JALR=1001 src!=0 0 C2=10

Capability Pointer Mode Description

Link the next linear pcc to cd and seal. Jump to cs1.address+offset. pcc metadata is copied from
cs1, and is unsealed if necessary. Note that execution has several exception checks.

Integer Pointer Mode Description

Set the next PC and link to rd according to the standard JALR definition. Check a minimum length
instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Exceptions
See JALR

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See JALR

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 136

7.6.7. CJR

Synopsis

Register based jumps without link, 16-bit encodings

Capability Pointer Mode Mnemonic
c.jr csl

Capability Pointer Mode Expansion
jalr c@, 0(cs1)

Integer Pointer Mode Mnemonic

c.jr rsi

Integer Pointer Mode Expansion
jalr x@, 0(rs1)

Encoding
15 12 11 7 6 2 1 0
funct4 csl/rsl cs2/rs2 op
4 5 5 2
C.JR=1000 src!=0 0 C2=10

Capability Pointer Mode Description

Jump to cs1.address+offset. pcc metadata is copied from cs1, and is unsealed if necessary. Note
that execution has several exception checks.

Integer Pointer Mode Description

Set the next PC according to the standard jalr definition. Check a minimum length instruction is
in pce bounds at the target PC, take a CHERI Length Violation exception on error.

Exceptions
See JALR

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See JALR

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 137

7.6.8. CJAL

Synopsis
Register based jumps with link, 16-bit encodings

Capability Pointer Mode Mnemonic (RV32)
c.jal c1, offset

Capability Pointer Mode Expansion (RV32)
jal c1, offset

Integer Pointer Mode Mnemonic (RV32)
c.jal x1, offset

Integer Pointer Mode Expansion (RV32)
jal x1, offset

Encoding (RV32)
15 13 12 2 1 0
funct3 imm op
3 11 2
leg: C.JAL=001 offset[11]4/9:81067|3:1/5] c1=01

Capability Pointer Mode Description

Link the next linear pcc to cd and seal. Jump to pcc.address+offset. Check a minimum length
instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Integer Pointer Mode Description

Set the next PC and link to rd according to the standard JAL definition. Check a minimum length
instruction is in pcc bounds at the target PC, take a CHERI Length Violation exception on error.

Exceptions
See JAL

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See JAL

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 138

7.069.CJ

Synopsis

Register based jumps without link, 16-bit encodings

Mnemonic

c.j offset

Capability Pointer Mode Expansion
jal c@, offset

Integer Pointer Mode Expansion

jal x@, offset

Encoding
15 13 12 2 1 0
funct3 imm op
3 11 2
C.J=101 offset[11]4]9:8|10|6|7|3:1|5] Cc1=01
Description

Set the next PC following the standard jal definition. Check a minimum length instruction is in
pcc bounds at the target PC, take a CHERI Length Violation exception on error. There is no
difference in Capability Pointer Mode or Integer Pointer Mode execution for this instruction.

Exceptions
See JAL

The instructions on this page are either PC relative or may update the pcc. Therefore an
| yl implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See JAL

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 139

7.6.10. C.LD

See C.LW.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 140

7.6.11. C.LW

Synopsis
Load (C.LD, C.LW), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)
c.ld/c.lw rd', offset(cs1')

Capability Pointer Mode Expansions (RV64)
1d/1w rd', offset(cs1')

Integer Pointer Mode Mnemonics (RV64)
c.ld/c.lw rd', offset(rs1')

Integer Pointer Mode Expansions (RV64)
1d/1w rd', offset(rs1')

Capability Pointer Mode Mnemonics (RV32)
c.lw rd', offset(cs1’)

Capability Pointer Mode Expansions (RV32)
lw rd", offset(cs1')

Integer Pointer Mode Mnemonics (RV32)
c.lw rd', offset(rs1')

Integer Pointer Mode Expansions (RV32)
lw rd', offset(rs1')

Encoding
15 13 12 10 9 7 6 5
funct3 imm rsl'/csl' imm rd' op
3 3 3 2 3 2
C.LwW=010 offset[5:3] base offset[2|6] dest C0=00
rv64: C.LD=011 offset[7:6]

Capability Pointer Mode Description
Standard load instructions, authorised by the capability in ¢s1.

Integer Pointer Mode Description

Standard load instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 141

CAUSE Reason

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode C.LD
RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.LD
RV64, C or Zca, Zcherihybrid

Prerequisites Capability Pointer Mode C.LW

C or Zca, Zcheripurecap

Prerequisites Integer Pointer Mode C.LW
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See LD, LW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 142

7.6.12. CLWSP

See C.LDSP.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 143

7.6.13. C.LDSP

Synopsis
Load (C.LWSP, C.LDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)
c.ld/c.1w rd, offset(csp)

Capability Pointer Mode Expansions (RV64)
1d/1w rd, offset(csp)

Integer Pointer Mode Mnemonics (RV64)
c.ld/c.1w rd, offset(sp)

Integer Pointer Mode Expansions (RV64)
1d/1w rd, offset(sp)

Capability Pointer Mode Mnemonics (RV32)
c.lw rd, offset(csp)

Capability Pointer Mode Expansions (RV32)
1w rd, offset(csp)

Integer Pointer Mode Mnemonics (RV32)
c.lw rd, offset(sp)

Integer Pointer Mode Expansions (RV32)
1w rd, offset(sp)

Encoding
15 13 12 11 7 6 2 1 0
funct3 imm rd imm op
3 1 5 5 2
C.LWSP=010 [5] dest!=0 offset[4:2|7:6] C2=10
rv64: C.LDSP=011 offset[4:3]8:6]

Capability Pointer Mode Description

Standard stack pointer relative load instructions, authorised by the capability in ¢sp.

Integer Pointer Mode Description

Standard stack pointer relative load instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 144

CAUSE Reason
Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode C.LDSP
RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.LDSP
RV64, and C or Zca, Zcherihybrid

Prerequisites for Capability Pointer Mode C.LWSP

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.LWSP
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See LW, LD

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 145

7.614. CFLW

See C.FLWSP.

7.6.15. CFLWSP

Synopsis
Floating point load (C.FLW, C.FLWSP), 16-bit encodings

Integer Pointer Mode Mnemonics (RV32)
c.flw rd', offset(rs1'/sp)

Integer Pointer Mode Expansions (RV32)
flw rd', offset(rs1'/sp)

Encoding (RV32)
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm rsl' imm rd' op
3 3 3 2 3 2
leg rv32: C.FLW=011 offset[5:3] base offset[2|6] dest C0=00
15 13 12 11 7 6 2 1 0
funct3 uimm([5] frd uimm op
3 1 5 5 2
leg rv32: C.FLWSP=011offset[5] src offset[4:2|7:6] C2=10

Integer Pointer Mode Description
Standard floating point load instructions, authorised by the capability in ddc. Note that these
instructions are not available in Capability Pointer Mode, as they have been remapped to C.LC,
C.LCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, and Zcfor F

Operation (after expansion to 32-bit encodings)
See FLW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 146

7.6.16. CFLD

7.6.17. CFLDSP

Synopsis
Double precision floating point loads (C.FLD, C.FLDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV32)
c.fld frd', offset(cs1'/csp)

Capability Pointer Mode Expansions (RV32)
fld frd', offset(csp)

Integer Pointer Mode Mnemonics

c.fld fs2, offset(rs1'/sp)

Integer Pointer Mode Expansions
fld fs2, offset(rs1'/sp)

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm rsl’/csl’ imm frd® op
3 3 3 2 3 2
leg C.FLD=001 offset[5:3] base offset[7:6] dest C0=00

cap rv32: C.FLD=001

15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg: C.FLDSP=001 offset[5:3]8:6] src C2=10

cap rv32: C.FLDSP=001

Integer Pointer Mode Description
Standard floating point stack pointer relative load instructions, authorised by the capability in ddc.
Note that these instructions are not available in Capability Pointer Mode, as they have been
remapped to C.LC, C.LCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode (RV32 only)
Zcheripurecap, C and D; or

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 147

Zcheripurecap, Zca and Zcd

Prerequisites for Integer Pointer Mode

Zcherihybrid, C and D; or
Zcherihybrid, Zca and Zcd

Operation (after expansion to 32-bit encodings)
See FLD

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 148

7.06.18. C.LC

see C.LCSP.

7.6.19. C.LCSP

Synopsis
Capability loads (C.LC, C.LCSP), 16-bit encodings

Capability Pointer Mode Mnemonics
c.lc cd', offset(cs1'/csp)

Capability Pointer Mode Expansions
lc cd', offset(cs1'/csp)

Encoding
15 13 12 11 7 6
funct3 imm cd!=0 imm op
3 1 5 5 2
cap rv32: CLCSP=011 [5] dest offset[4:3]8:6] C2=10
cap rv64: C.LCSP=001 offset[4]9:6]
15 13 12 10 9 7 6 4
funct3 imm csl' rd' op
3 3 3 2 3 2
cap rv32: C.LC=011 offset[5:3] base offset[7:6] dest C0=00

cap rvé4: C.LC=001 offset[5:4|8]

Capability Pointer Mode Description

Load capability instruction, authorised by the capability in ¢s1. Take a load address misaligned

exception if not naturally aligned.

Integer Pointer Mode Description

These mnemonics do not exist in Integer Pointer Mode. The RV32 encodings map to C.FLW
/C.FLWSP and the RV64 encodings map to C.FLD/C.FLDSP.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites

C or Zca, Zcheripurecap

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 149

Operation (after expansion to 32-bit encodings)
See LC

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 150

7.6.20. C.SD

See C.SW.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 151

7.021. CSW

Synopsis
Stores (C.SD, C.SW), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)
c.sd/c.sw rs2', offset(cs1')

Capability Pointer Mode Expansions (RV64)
sd/sw rs2', offset(cs1')

Integer Pointer Mode Mnemonics (RV64)
c.sd/c.sw rs2', offset(rs1')

Integer Pointer Mode Expansions (RV64)
sd/sw rs2', offset(rs1')

Capability Pointer Mode Mnemonics (RV32)
c.sw rs2', offset(es1')

Capability Pointer Mode Expansion (RV32)
sw rs2', offset(cs1')

Integer Pointer Mode Mnemonics (RV32)
c.sw rs2', offset(rs1')

Integer Pointer Mode Expansion (RV32)
sw rs2', offset(rs1')

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
funct3 uimm rsl'/csl’ uimm rs2'/cs2' op
3 3 3 2 3 2
C.SwW=110 offset[5:3] base offset[2|6] src C0=00
rv64: C.SD=111 offset[7:6]

Capability Pointer Mode Description
Standard store instructions, authorised by the capability in cs1.

Integer Pointer Mode Description

Standard store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 152

CAUSE Reason
Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode C.SD
RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SD
RV64, and C or Zca, Zcherihybrid

Prerequisites for Capability Pointer Mode C.SW

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SW
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See SD, SW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 153

7.0.22. CSWSP

See C.SDSP.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 154

7.025. CSDSP

Synopsis

Stack pointer relative stores (C.SWSP, C.SDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)
c.sd/c.sw rs2, offset(csp)

Capability Pointer Mode Expansions (RV64)
sd/csw rs2, offset(csp)

Integer Pointer Mode Mnemonics (RV64)
c.sd/c.sw rs2, offset(sp)

Integer Pointer Mode Expansions (RV64)
sd/sw rs2, offset(sp)

Capability Pointer Mode Mnemonics (RV32)
c.sw rs2, offset(csp)

Capability Pointer Mode Expansion (RV32)
sw rs2, offset(csp)

Integer Pointer Mode Mnemonics (RV32)
c.sw rs2, offset(sp)

Integer Pointer Mode Expansion (RV32)
sw rs2, offset(sp)

Encoding
15 13 12
funct3 imm rs2/cs2 op
3 6 5 2
rvé4: C.SDSP=111 offset[5:3|8:6] src C2=10
C.SWSP=110 offset[5:2|7:6]

Capability Pointer Mode Description

Standard stack pointer relative store instructions, authorised by the capability in esp.

Integer Pointer Mode Description

Standard stack pointer relative store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is

written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 155

CAUSE Reason

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode C.SDSP
RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SDSP
RV64, and C or Zca, Zcherihybrid

Prerequisites for Capability Pointer Mode C.SWSP

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SWSP
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See SD, SW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 156

7.6.24. CFSW

See C.FSWSP.

7.6.25. CFSWSP

Synopsis
Floating point stores (C.FSW, C.FSWSP), 16-bit encodings

Integer Pointer Mode Mnemonics (RV32)
c.fsw rs2', offset(rs1'/sp)

Integer Pointer Mode Expansions (RV32)
fsw rs2', offset(rs1'/sp)

Encoding (RV32)
15 13 12 10 9 7 6 5 4 2 1 0
funct3 uimm rsl' uimm rs2' op
3 3 3 2 3 2
leg rv32: C.FSW=111 offset[5:3] base offset[2|6] src C0=00
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg rv32: C.FSWSP=111 offset[5:2|7:6] src C2=10

Integer Pointer Mode Description
Standard floating point store instructions, authorised by the capability in ddc.

y these instructions are not available in Capability Pointer Mode, as they have been
EI remapped to C.SC, C.SCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites
C or Zca, Zcherihybrid, Zcfor F

Operation (after expansion to 32-bit encodings)
See FSW

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 157

7.0.26. CFSD

See C.FSDSP.

7.627. CFSDSP
Synopsis
Double precision floating point stores (C.FSD, C.FSDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV32CD/RV32D _Zca)
c.fsd fs2, offset(cs1'/csp)

Capability Pointer Mode Expansions (RV32)
fsd fs2, offset(csp)

Integer Pointer Mode Mnemonics (RV32CD/RV32D _Zca)
c.fsd fs2, offset(rs1'/sp)

Integer Pointer Mode Expansions (RV32)
fsd fs2, offset(rs1'/sp)

Integer Pointer Mode Mnemonics (RV64CD/RV64D _Zca)
c.fsd fs2, offset(rs1'/sp)

Integer Pointer Mode Expansion (RV64)
fsd fs2, offset(rs1'/sp)

Encoding
15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg C.FSD=101 offset[5:3|8:6] src C0=00

cap rv32: C.FSD=101

15 13 12 7 6 2 1 0
funct3 imm fs2 op
3 6 5 2
leg C.FSDSP=101 offset[5:3]8:6] src C2=10

cap rv32: C.FSDSP=101

Capability Pointer Mode Description

Standard floating point stack pointer relative store instructions, authorised by the capability in ¢s1
or CSp.

Integer Pointer Mode Description

Standard floating point stack pointer relative store instructions, authorised by the capability in ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 158

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode C.FSD, C.FSDSP (RV32 only)

Zcheripurecap, C and D; or
Zcheripurecap, Zca and Zcd

Prerequisites for Integer Pointer Mode C.FSD, C.FSDSP

Zcherihybrid, C and D; or
Zcherihybrid, Zca and Zcd

Operation (after expansion to 32-bit encodings)
See FSD

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 159

7.0.28. C.SC

see C.SCSP.

7.6.29. CSCSP

Synopsis
Stores (C.SC, C.SCSP), 16-bit encodings

Df These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonics
c.sc c¢s2', offset(cs1'/csp)

Capability Pointer Mode Expansions
sc cs2', offset(cs1'/csp)

Encoding
15 13 12 7 6 2 1 0
funct3 imm cs2 op
3 6 5 2
cap rv32: C.SCSP=111 offset[5:3|8:6] src C2=10
cap rvé4: C.SCSP=101 offset[5:4|9:6]
15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm csl' imm cs2' op
3 3 3 2 3 2
cap rv32: C.SC=111 offset[5:3] base offset[7:6] src C0=00
cap rve4: C.SC=101 offset[5:4|8] offset[7:6]

Capability Pointer Mode Description

Store capability instruction, authorised by the capability in cs1. Take a store/AMO address
misaligned exception if not naturally aligned.

Integer Pointer Mode Description

These mnemonics do not exist in Integer Pointer Mode. The RV32 encodings map to C.FSW
/C.ESWSP and the RV64 encodings map to C.FSD/C.FSDSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

7.6."C" Standard Extension for Compressed Instructions | Page 160

Prerequisites

C or Zca, Zcheripurecap

Operation (after expansion to 32-bit encodings)
See SC

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop', "Zicboz" Standard Extensions for Base Cache Management Operations | Page 161

77."Zicbom", "Zicbop", "Zicboz" Standard
Extensions for Base Cache Management
Operations

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 162

7.7.1. CBO.CLEAN

Synopsis

Perform a clean operation on a cache block

_Capability Pointer Mode _ Mnemonic
cbo.clean 0(cs1)

Integer Pointer Mode Mnemonic
cbo.clean 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
CBO.CLEAN=00.001 base CBO=010 CBO=00000 MISC-MEM=0001111

_Capability Pointer Mode _ Description

A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in ¢s1. The authorising capability for this operation is ¢s1.

_Integer Pointer Mode _ Description

A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation The tag set to O
Seal violation It is sealed

Permission violation It does not grant W-permission and R-permission

Length violation None of the bytes accessed are within the bounds

Prerequisites for _Capability Pointer Mode _

Zicbom, Zcheripurecap

Prerequisites for _Integer Pointer Mode _
Zicbom, Zcherihybrid

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 163

7.7.2. CBO.FLUSH

Synopsis

Perform a flush operation on a cache block

_Capability Pointer Mode _ Mnemonic
cbo.flush 0(cs1)

Integer Pointer Mode Mnemonic
cbo.flush 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
cap: CBO.FLUSH=00.0010 base CBO=010 CBO=00000 MISC-MEM=0001111

_Capability Pointer Mode _ Description

A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in ¢s1. The authorising capability for this operation is ¢s1.

_Integer Pointer Mode _ Description

A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation The tag set to O
Seal violation It is sealed

Permission violation It does not grant W-permission and R-permission

Length violation None of the bytes accessed are within the bounds

Prerequisites for _Capability Pointer Mode _

Zicbom, Zcheripurecap

Prerequisites for _Integer Pointer Mode _
Zicbom, Zcherihybrid

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 164

7.7.5. CBO.INVAL

Synopsis

Perform an invalidate operation on a cache block

_Capability Pointer Mode _ Mnemonic
cbo.inval 0(cs1)

Integer Pointer Mode Mnemonic
cbo.inval 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
CBO.INVAL=00.0000 base CBO=010 CBO=00000 MISC-MEM=0001111

_Capability Pointer Mode _ Description

A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in ¢s1. The authorising capability for this operation is ¢s1.

_Integer Pointer Mode _ description

A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in rs1. The authorising capability for this operation in ddc.

Exceptions

CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

The CBIE bit in menvcfg and senvcfg indicates whether CBO.INVAL performs cache block flushes
instead of invalidations for less privileged modes. The instruction checks shown in the table below
remain unchanged regardless of the value of CBIE and the privilege mode.

Invalidating a cache block can re-expose capabilities previously stored to it after the most

y recent flush, not just secret values. As such, CBO.INVAL has stricter checks on its use than

EI CBO.FLUSH, and should only be made available to, and used by, sufficiently-trusted
software. Untrusted software should use CBO.FLUSH instead.

CAUSE Reason
Tag violation The tag set to O
Seal violation It is sealed

Permission violation It does not grant W-permission, R-permission or ASR-permission

Length violation None of the bytes accessed are within the bounds

Prerequisites for _Capability Pointer Mode _

Zicbom, Zcheripurecap

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 165

Prerequisites for _Integer Pointer Mode _
Zicbom, Zcherihybrid

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 166

7.77.4. CBO.ZERO

Synopsis

Store zeros to the full set of bytes corresponding to a cache block

_Capability Pointer Mode _ Mnemonic
cbo.zero 0(cs1)

Integer Pointer Mode Mnemonic
cbo.zero 0(rs1)

Encoding
31 20 19 15 14 12 11 7 6 0
funct12 csl/rsl funct3 functs opcode
12 5 3 5 7
CBO.ZERO=00.0100 base CBO=010 CBO=00000 MISC-MEM=0001111

_Capability Pointer Mode _ Description

A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in ¢s1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is ¢s’.

_Integer Pointer Mode _ Description

A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in ¢s1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for _Capability Pointer Mode _

Zicboz, Zcheripurecap

Prerequisites for _Integer Pointer Mode _
Zicboz, Zcherihybrid

Operation

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 167

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 168

775 PREFETCH.|

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by an instruction fetch in the
near future

_Capability Pointer Mode _ Mnemonic
prefetch.i offset(cs1)

Integer Pointer Mode Mnemonic
prefetch.i offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] functs csl/rsl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] PREFETCH.I=00000 base ORI=110 Zero OP-IMM=0010011

_Capability Pointer Mode _ Description

A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in ¢s1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00O0O, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is ¢s1. This
instruction does not throw any exceptions. However, following CHERI Exceptions and speculative
execution, this instruction does not perform a prefetch if it is not authorized by cs1. This
instruction does not perform a memory access if one or more of the following conditions of ¢s1 are
met:

- The tag is not set
- The sealed bit is set
- No bytes of the cache line requested is in bounds

- The X-permission is not set

_Integer Pointer Mode _ Description

A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00O0O, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is ddc.

Prerequisites for _Capability Pointer Mode _
Zicbop, Zcheripurecap

Prerequisites for _Integer Pointer Mode _
Zicbop, Zcherihybrid

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop', "Zicboz" Standard Extensions for Base Cache Management Operations | Page 169

7.77.6. PREFETCH.R

Synopsis

Provide a HINT to hardware that a cache block is likely to be accessed by a data read in the near
future

_Capability Pointer Mode _ Mnemonic
prefetch.r offset(cs1)

Integer Pointer Mode Mnemonic
prefetch.r offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] functs csl/rsl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] PREFETCH.R=00001 base ORI=110 Zero OP-IMM=0010011

_Capability Pointer Mode _ Description

A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in ¢s1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00OO, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
cs1. This instruction does not throw any exceptions. However, in following CHERI Exceptions and
speculative execution, this instruction does not perform a prefetch if it is not authorized by c¢s1.
This instruction does not perform a memory access if one or more of the following conditions of
csTare met:

- The tag is not set
- The sealed bit is set
- No bytes of the cache line requested is in bounds

- The R-permission is not set

_Integer Pointer Mode _ Description

A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00OO, is likely to be accessed by a data read (i.e. load) in the near

future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

Prerequisites for _Capability Pointer Mode _
Zicbop, Zcheripurecap

Prerequisites for _Integer Pointer Mode _
Zicbop, Zcherihybrid

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.7."Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 170

7.77.7. PREFETCH.W

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data write in the near
future

_Capability Pointer Mode _ Mnemonic
prefetch.w offset(cs1)

Integer Pointer Mode Mnemonic
prefetch.w offset(rs1)

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] functs csl/rsl funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] PREFETCH.W=00011 base ORI=110 Zero OP-IMM=0010011

_Capability Pointer Mode _ Description

A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in ¢s1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00OO, is likely to be accessed by a data write (i.e. store) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
cs1. This instruction does not throw any exceptions. However, following CHERI Exceptions and
speculative execution, this instruction does not perform a prefetch if it is not authorized by c¢s1.
This instruction does not perform a memory access if one or more of the following conditions of
csTare met:

- The tag is not set

- The sealed bit is set

- No bytes of the cache line requested is in bounds
- The W-permission is not set

_Integer Pointer Mode _ Description

A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals ObO00O0O, is likely to be accessed by a data write (i.e. store) in the near

future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

Prerequisites for _Capability Pointer Mode _
Zicbop, Zcheripurecap

Prerequisites for _Integer Pointer Mode _
Zicbop, Zcherihybrid

Operation

TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 171

7.8."Zba" Extension for Bit Manipulation
INnstructions

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 172

7.8.1. ADD.UW

Synopsis

Add unsigned word for address generation

Capability Pointer Mode Mnemonic (RV64)
add.uw cd, rs1, cs2

Integer Pointer Mode Mnemonics (RV64)
add.uw rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 01 0O cs2/rs2 rsl 0 0 O cd/rd 0 1 1 1 0 1 1
rve4: ADD.UW rvé4: ADD.UW OoP

Capability Pointer Mode Description

Increment the address field of ¢s2 by the unsigned word in rs1. Clear the tag if the resulting
capability is unrepresentable or ¢s2 is sealed.

Integer Pointer Mode Description

Increment rs2 by the unsigned word in rs1.

Prerequisites for Capability Pointer Mode
RV64, Zcheripurecap, Zba

Prerequisites for Integer Pointer Mode
RV64, Zcherihybrid, Zba

Capability Pointer Mode Operation
TBD

Integer Pointer Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.2. SHIADD

See SH3ADD.

7.8.3. SH2ADD

See SH3ADD.

7.8."Zba" Extension for Bit Manipulation Instructions | Page 173

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 174

7.8.4. SHEADD

Synopsis
Shift by n and add for address generation (SHIADD, SH2ADD, SH3ADD)

Capability Pointer Mode Mnemonics
sh[1]2]|3]add cd, rs1, cs2

_Integer Pointer Mode _ Mnemonics
sh[1]|2]|3]add rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 01 0 0 OO cs2/rs2 rsl 0 1 0 cd/rd 0 1.1 0 0 1 1
SH[1|2|3]ADD SH1ADD=010 oP
SH2ADD=100
SH3ADD=110

Capability Pointer Mode Description

Increment the address field of ¢s2 by rs1 shifted left by n bit positions. Clear the tag if the resulting
capability is unrepresentable or ¢s2 is sealed.

_Integer Pointer Mode _ Description

Increment rs2 by rs1 shifted left by n bit positions.

Exceptions

None

Prerequisites for _Capability Pointer Mode _
Zcheripurecap, Zba

Prerequisites for _Integer Pointer Mode _
Zcherihybrid, Zba

_Capability Pointer Mode _ Operation
TBD

Integer Pointer Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.5. SHIADD.UW

See SH3ADD.UW.

7.8.6. SH2ADD.UW

See SH3ADD.UW.

7.8."Zba" Extension for Bit Manipulation Instructions | Page 175

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 176

7.8.7. SH3ADD.UW

Synopsis
shift by n and add unsigned word for address generation (SHIADD.UW, SH2ADD.UW,
SH3ADD.UW)

_Capability Pointer Mode _ Mnemonic (RV64)
sh[1|2|3]add.uw cd, rs1, cs2

Integer Pointer Mode Mnemonics (RV64)
sh[1]|2|3]add.uw rd, rs1, rs2

Encoding

31 25 24 20 19 1514 12 11 7 6 0
0 01 0 0 0O cs2/rs2 rsl 0 1 0 cd/rd 0 1.1 1 0 1 1
rv64: SH[1[2|3]JADD.UW rv64: SHIADD.UW=010 oP

rv64: SH2ADD.UW=100
rv64: SH3ADD.UW=110

Capability Pointer Mode Description

Increment the address field of ¢s2 by the unsigned word in rs1 shifted left by n bit positions. Clear
the tag if the resulting capability is unrepresentable or ¢s2 is sealed.

_Integer Pointer Mode _ Description

Increment rs2 by the unsigned word in rs1 shifted left by n bit positions.

Exceptions

None

Prerequisites for _Capability Pointer Mode _
RV64, Zcheripurecap, Zba

Prerequisites for _Integer Pointer Mode _
RV64, Zcherihybrid, Zba

_Capability Pointer Mode _ Operation
TBD

Integer Pointer Mode Operation
TODO

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 177

7.8.8. SH4ADD
Df CHERI v9 Note: This instruction is new.
Synopsis

Shift by 4 and add for address generation (SH4ADD)

Capability Pointer Mode Mnemonics (RV64)
shdadd cd, rs1, cs2

Integer Pointer Mode Mnemonics (RV64)
shdadd rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 01 0 0 OO cs2/rs2 rsl 1 1 1 cd/rd 0 11 0 0 1 1
rvé4: SH4ADD rv64: SH4ADD OoP

Capability Pointer Mode Description

Increment the address field of ¢s2 by rs1 shifted left by 4 bit positions. Clear the tag if the resulting
capability is unrepresentable or ¢s2 is sealed.

Integer Pointer Mode Description

Increment rs2 by rs1 shifted left by 4 bit positions.

Exceptions

None

Prerequisites for Capability Pointer Mode
RV64, Zish4add

Prerequisites for Integer Pointer Mode
RV64, Zish4add

Capability Pointer Mode Operation
TBD

Integer Pointer Mode Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.8."Zba" Extension for Bit Manipulation Instructions | Page 178

7.8.9. SH4ADD.UW

Synopsis
Shift by 4 and add unsigned words for address generation (SH4ADD.UW)

Capability Pointer Mode Mnemonics (RV64)
sh4add.uw cd, rs1, cs2

Integer Pointer Mode Mnemonics (RV64)
shd4add.uw rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 01 0 0 OO cs2/rs2 rsl 1 1 1 cd/rd 0 1 1 1 0 1 1
rvé4: SH4ADD.UW rv64: SH4ADD.UW OoP

Capability Pointer Mode Description

Increment the address field of ¢s2 by the unsigned word in rs1 shifted left by 4 bit positions. Clear
the tag if the resulting capability is unrepresentable or ¢s2 is sealed.

Integer Pointer Mode Description

Increment rs2 by the unsigned word in rs1 shifted left by 4 bit positions.

Exceptions

None

Prerequisites for Capability Pointer Mode
RV64, Zish4add

Prerequisites for Integer Pointer Mode
RV64, Zish4add

Capability Pointer Mode Operation
TBD

Integer Pointer Mode Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 179

7.9."/cb" Standard Extension For Code-Size
Reduction

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 180

7.9.1. C.LH

See C.LBU.

79.2.C.LHU

See C.LBU.

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 181

79.5.C.LBU

Synopsis
Load (C.LH, C.LHU, C.LBU), 16-bit encodings

Capability Pointer Mode Mnemonics
c.lh/c.lhu/c.1bu rd', offset(cs1")

Capability Pointer Mode Expansions
1h/1hu/1bu rd, offset(cs1)

Integer Pointer Mode Mnemonics

c.lh/c.lhu/c.1bu rd', offset(rs1')

Integer Pointer Mode Expansions
Lh/1hu/1bu rd, offset(rs1)

Encoding
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' functl uimm[1] rd'/cd' op
6 3 1 1 3 2
C.LH=100001 base 1 offset[1] dest C0=00
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' functl uimm[1] rd'/cd' op
6 3 1 1 3 2
C.LHU=100001 base 0 offset[1] dest C0=00
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' uimm([0]1] rd'/cd' op
6 3 2 3 2
C.LBU=100000 base offset[0|1] dest C0=00

Capability Pointer Mode Description
Subword load instructions, authorised by the capability in ¢s1.

Integer Pointer Mode Description
Subword load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 182

Prerequisites for Capability Pointer Mode
Cor Zca, Zcheripurecap, and Zcb

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, and Zcb

Operation (after expansion to 32-bit encodings)
See LHU, LH, LBU

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 183

7.9.4. C.SH

See C.SB.

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 184

7.9.5. CSB

Synopsis
Stores (C.SH, C.SB), 16-bit encodings

Capability Pointer Mode Mnemonics
c.sh/c.sb rs2', offset(cs1")

Capability Pointer Mode Expansions
sh/sb rs2', offset(cs1')

Integer Pointer Mode Mnemonics

c.sh/c.sb rs2', offset(rs1')

Integer Pointer Mode Expansions
sh/sb rs2', offset(rs1')

Encoding
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' functl uimm[1] rs2'/cs2' op
6 3 1 1 3 2
C.SH=100011 base 0 offset[1] src C0=00
15 10 9 7 6 5 4 2 1 0
funct6 rsl'/csl' uimm[0|1] rs2'/cs2' op
6 3 2 3 2
C.SB=100010 base offset[0|1] src C0=00

Capability Pointer Mode Description
Subword store instructions, authorised by the capability in ¢s1.

Integer Pointer Mode Description
Subword store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, and Zcb

RISC-V Specification for CHERI Extensions | © RISC-V

7.9."Zcb" Standard Extension For Code-Size Reduction | Page 185

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, and Zcb

Operation (after expansion to 32-bit encodings)
See SH, SB

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 186

710."Zcmp" Standard Extension For Code-Size
Reduction

The push (CM.PUSH) and pop (CM.POP, CM.POPRET, CM.POPRETZ) instructions are redefined in
Capability Pointer Mode to save/restore full capabilities.

The double move instructions (CM.MVSAO1, CM.MVAO1S) are redefined in Capability Pointer Mode to
move full capabilities between registers. The saved register mapping is as shown in

Table 28. saved register mapping for Zcmp

saved register specifier xreg integer ABI CHERI ABI
0 x8 sO csO
1 x9 sl csl
2 x18 S2 cs2
3 x19 s3 cs3
4 x20 s4 cs4
5 x21 s5 cs5
6 x22 s6 cs6
7 x23 s7 csv

All instructions are defined in (RISC-V, 202.3).

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 187

7.10.1. CM.PUSH

Synopsis
Create stack frame (CM.PUSH): store the return address register and O to 12 saved registers to the
stack frame, optionally allocate additional stack space. 16-bit encodings.

_Capability Pointer Mode _ Mnemonic
cm.push {creg_list}, -stack_adj

_Integer Pointer Mode _ Mnemonics
cm.push {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 0 0 0 rlist spimm[5:4] 1 0
FUNCT3 c2
/4 rlist values O to 3 are reserved for a future EABI variant

Capability Pointer Mode Description

Create stack frame, store capability registers as specified in creg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against ¢sp.

_Integer Pointer Mode _ Description

Create stack frame, store integer registers as specified in reg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for _Capability Pointer Mode _

C or Zca, Zcheripurecap, Zcmp

Prerequisites for _Integer Pointer Mode _

C or Zca, Zcherihybrid, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 188

7.10.2. CM.POP

Synopsis
Destroy stack frame (CM.POP): load the return address register and O to 12 saved registers from the
stack frame, deallocate the stack frame. 16-bit encodings.

Capability Pointer Mode Mnemonic
cm.pop {creg_list}, -stack_adj

Integer Pointer Mode Mnemonics
cm.pop {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 0 1 0 rlist spimm[5:4] 1 0
FUNCT3 c2
/4 rlist values O to 3 are reserved for a future EABI variant

Capability Pointer Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. All accesses are checked
against CSp.

Integer Pointer Mode Description

Load integer registers as specified in reg_list. Deallocate stack frame. All accesses are checked
against ddc.

Exceptions

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason
Tag violation Authority capability tag set to O
Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission

Length violation At least one byte accessed is outside the authority capability bounds

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zecmp" Standard Extension For Code-Size Reduction | Page 189

7.10.3. CM.POPRET

Synopsis
Destroy stack frame (CM.POPRET): load the return address register and O to 12 saved registers

from the stack frame, deallocate the stack frame. Return through the return address register. 16-bit
encodings.

_Capability Pointer Mode _ Mnemonic
cm.popret {creg_list}, -stack_adj

_Integer Pointer Mode _ Mnemonics
cm.popret {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 1 1 0 rlist spimm[5:4] 1 0
FUNCT3 Cc2
74 rlist values O to 3 are reserved for a future EABI variant

Capability Pointer Mode Description

Load capability registers as specified in creg_ list. Deallocate stack frame. Return by calling JALR to
cra. All data accesses are checked against ¢sp. The return destination is checked against cra.

_Integer Pointer Mode _ Description

Load integer registers as specified in reg_ list. Deallocate stack frame. Return by calling JALR to ra.
All data accesses are checked against ddc. The return destination is checked against pcc.

Permissions

Loads are checked as for LC in both _Integer Pointer Mode _ and _ Capability Pointer Mode _.
The return is checked as for JALR in both _Integer Pointer Mode _ and _ Capability Pointer Mode _.

Exceptions

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field if
a load causes an exception, or CHERI instruction access fault if the return causes an exception. The
following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation

Seal violation

Permission violation

< < < X

Length violation

. The instructions on this page are either PC relative or may update the pcc. Therefore an
y; implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 190

Prerequisites for _Capability Pointer Mode _

C or Zca, Zcheripurecap, Zcmp

Prerequisites for _Integer Pointer Mode _

C or Zca, Zcherihybrid, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 191

7.10.4. CM.POPRETZ

Synopsis
Destroy stack frame (CM.POPRETZ): load the return address register and register O to 12 saved

registers from the stack frame, deallocate the stack frame. Move zero into argument register zero.
Return through the return address register. 16-bit encodings.

_Capability Pointer Mode _ Mnemonic
cm.popretz {creg_list}, -stack_adj

_Integer Pointer Mode _ Mnemonics
cm.popretz {reg_list}, -stack_adj

Encoding
15 13 12 8 7 4 3 2 1 0
1 0 1 1 1 1 0 0 rlist spimm[5:4] 1 0
FUNCT3 Cc2
74 rlist values O to 3 are reserved for a future EABI variant

Capability Pointer Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. Move zero into ca@.
Return by calling JALR to cra. All data accesses are checked against csp. The return destination is
checked against cra.

_Integer Pointer Mode _ Description

Load integer registers as specified in reg_list. Deallocate stack frame. Move zero into a@. Return by
calling JALR to ra. All data accesses are checked against ddc. The return destination is checked
against pcc.

Permissions

Loads are checked as for LC in both _Integer Pointer Mode _ and _ Capability Pointer Mode _.
The return is checked as for JALR in both _Integer Pointer Mode _ and _ Capability Pointer Mode _.

Exceptions

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field if
a load causes an exception, or CHERI instruction access fault if the return causes an exception. The
following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation

Seal violation

Permission violation

< < < X

Length violation
The instructions on this page are either PC relative or may update the pcc. Therefore an

Dy implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 192

Prerequisites for _Capability Pointer Mode _

C or Zca, Zcheripurecap, Zcmp

Prerequisites for _Integer Pointer Mode _

C or Zca, Zcherihybrid, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 193

7.10.5. CM.MVSAO]

Synopsis
CM.MVSAOL: Move argument registers O and 1 into two saved registers.

_Capability Pointer Mode _ Mnemonic
cm.mvsa@l cri1s', cr2s'

_Integer Pointer Mode _ Mnemonics
cm.mvsa@dl r1s', r2s

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
1 0 1 0 1 1 ris' 0 1 r2s' 1 0
FUNCT3 Cc2

y The encoding uses sreg number specifiers instead of xreqg number specifiers to save
EI encoding space. The saved register encoding is shown in Table 28.

Capability Pointer Mode Description
Atomically move two saved capability registers ¢s@-cs7 into ca@ and cal.

_Integer Pointer Mode _ Description

Atomically move two saved integer registers s@-s7 into a@ and al.

Prerequisites for _Capability Pointer Mode _

C or Zca, Zcheripurecap, Zcmp

Prerequisites for _Integer Pointer Mode _

C or Zca, Zcherihybrid, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.10."Zcmp" Standard Extension For Code-Size Reduction | Page 194

7.10.6. CM.MVAO1S

Synopsis
Move two saved registers into argument registers O and 1.

Capability Pointer Mode Mnemonic
cm.mva@ls cris', cr2s’

Integer Pointer Mode Mnemonics
cm.mva@ls rls', r2s

Encoding
15 13 12 10 9 7 6 5 4 2 1 0
1 0 1 0 1 1 ris' 1 1 r2s' 1 0
FUNCT3 Cc2

y The encoding uses sreg number specifiers instead of xreqg number specifiers to save
EI encoding space. The saved register encoding is shown in Table 28.

Capability Pointer Mode Description
Atomically move two capability registers ca@ and cal into cs@-cs7.

Integer Pointer Mode Description

Atomically move two integer registers a@ and a1 into s@-s7/.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmp

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zcmt" Standard Extension For Code-Size Reduction | Page 195

711 "Zcmt" Standard Extension For Code-Size
Reduction

The table jump instructions (CMJT, CMJALT) defined in (RISC-V, 2023) are not redefined in
Capability Pointer Mode to have capabilities in the jump table. This is to prevent the code-size growth
caused by doubling the size of the jump table.

In the future, new jump table modes or new encodings can be added to have capabilities in the jump
table.

The jump vector table CSR jvt has a capability alias jvtc so that it can only be configured to point to
accessible memory. All accesses to the jump table are checked against jvtc in Capability Pointer Mode,
and against pcc bounds in Integer Pointer Mode. This allows the jump table to be accessed when the pcc
bounds are set narrowly to the local function only in Capability Pointer Mode.

Zcmt defines that the fetch from the jump table is from instruction memory. The overall

y instruction executed is effectively 48-bit, with 16-bits from CM.JALT/CM.JT, the other 32-
EI bits (for RV32) from the table. Therefore pcc is used to authorise the fetch in Integer
Pointer Mode, as the fetch is designated to be from instruction memory in (RISC-V, 2023).

In Capability Pointer Mode the implementation doesn’t need to expand and bounds check
| y against jvtc on every access, it is sufficient to decode the valid accessible range of entries
after every write to jvtc, and then check that the accessed entry is in that range.

7.11.1. Jump Vector Table CSR (jvt)

The JVT CSR is exactly as defined by (RISC-V, 2023). It is renamed to jvtc.

711.2. Jump Vector Table CSR (jvtc)

jvtc extends jvt to be a capability width CSR, as shown in Table 16.

MXLEN- 1 0
jvtc (Metadata)
jvtc (Address)
MXLEN

Figure 43. Jump Vector Table Capability register

All instruction fetches from the jump vector table are checked against jvtc in Capability Pointer Mode.
In Integer Pointer Mode the address field gives the base address of the table, and the access is checked
against pcc bounds.

See CM JALT, CMJT.
If the access to the jump table succeeds, then the instructions execute as follows:

« CMJT executes as] or AUIPC+JR
- CMJALT executes as JAL or AUIPC+JALR

As a result the capability metadata is retained in pcc during execution.

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zcmt" Standard Extension For Code-Size Reduction | Page 196

7.11.5. CMJALT

Synopsis
Jump via table with link (CMJALT), 16-bit encodings

_Capability Pointer Mode _ Mnemonic
cm.jalt index

_Integer Pointer Mode _ Mnemonics
cm.jalt index

Encoding
15 13 12 10 9 2 1 0
1 0 1 0 0 0 index 1 0
FUNCT3 c2
Df For this encoding to decode as <CM.JALT, index>=32, otherwise it decodes as CM.JT.

_Capability Pointer Mode _ Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against jvtc bounds (not against pcc)
and requiring X-permission. Link to cra.

_Integer Pointer Mode _ Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against pcc bounds and requiring X-
permission. Link to ra.

_Capability Pointer Mode _ Permissions

Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

_Capability Pointer Mode _ Exceptions

When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation

Seal violation

Permission violation

S < < X

Length violation

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for _Capability Pointer Mode _

CorZca, Zcheripurecap, Zcmt

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zcmt" Standard Extension For Code-Size Reduction | Page 197

Prerequisites for _Integer Pointer Mode _
C or Zca, Zcherihybrid, Zcmt

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zcmt' Standard Extension For Code-Size Reduction | Page 198

7.4 CMJIT

Synopsis
Jump via table with link (CMJT), 16-bit encodings

Capability Pointer Mode Mnemonic
cm.jt index

Integer Pointer Mode Mnemonics

cm.jt index
Encoding
15 13 12 10 9 2 1 0
1 0 1 0 0 0 index 1 0
FUNCT3 Cc2
Df For this encoding to decode as CM.JT, index<32, otherwise it decodes as CM.JALT.

Capability Pointer Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against jvtc bounds (not against pcc)
and requiring X-permission.

Integer Pointer Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against pcc bounds and requiring X-
permission.

Capability Pointer Mode Permissions

Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

Capability Pointer Mode Exceptions

When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE
Tag violation

Seal violation

Permission violation

S < < X

Length violation

The instructions on this page are either PC relative or may update the pcc. Therefore an
| y implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

CorZca, Zcheripurecap, Zcmt

RISC-V Specification for CHERI Extensions | © RISC-V

7.11."Zcmt" Standard Extension For Code-Size Reduction | Page 199

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, Zcmt

Operation

TBD

RISC-V Specification for CHERI Extensions | © RISC-V

8.1. Zabhlrsc | Page 200

Chapter 8. Extension summary

8.1. Zabhlrsc

Zabhlrsc is a separate extension independent of CHERI, but is required for CHERI software.
These instructions are not controlled by the CRE bits in mseccfg, menvcefg or senvefg.

Table 29. Zabhlrsc instruction extension

Mnemonic Zabhlrsc Function

LR.H v Load reserved half
LR.B v Load reserved byte
SC.H v Store conditional half
SC.B v Store conditional byte

8.2. Zish4add

Zish4add is a separate extension independent of CHERI, but improves performance for CHERI code as
the natural data width of pointers has doubled.

These instructions are not controlled by the CRE bits in mseccfg, menvcfg or senvefg.

Table 30. Zish4add instruction extension

Mnemonic Zish4add Function

SH4ADD v shift and add, representability check in Capability Mode

SH4ADD.UW v shift and add unsigned words, representability check in Capability
Mode

8.3. Zcheripurecap

Zcheripurecap defines the set of instructions used by a purecap core.
Some instructions depend on the presence of other extensions, as listed in Table 31

Table 31. Zcheripurecap instruction extension - Pure Capability Pointer Mode instructions

Mnemonic RV RV A Za Zic C Zb Zc Zc Zc Zfh F D V Function
32 64 bhl bo[or a b mp mt
rsc mp Zca

z]

LC v Vv Load cap via
capability register

SC v Vv Store cap via
capability register

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic

C.LCSP

C.SCSP

C.LC

C.S8C

C.LWSP

C.SWSP

C.Lw

C.SW

C.LD

C.SD

C.LDSP

C.SDSP

LB
LH
C.LH
LW
LBU

C.LBU

LHU

8.3. Zcheripurecap | Page 201

RV RV A Za Zic C Zb Zc Zc Zc Zfth F D V Function
32 64 bhl bo[or a b mp mt
rsc mp Zca

z]

v Vv v Load cap
capability, SP
relative

v Vv v Store cap
capability, SP
relative

v Vv v Load cap
capability

v Vv v Store cap
capability

v Vv v Load word
capability, SP
relative

v Vv v Store word
capability, SP
relative

v Vv v Load word
capability

v Vv v Store word
capability

v v Load word
capability
v v Store word
capability
v v Load word
capability
v v Store word
capability

v Vv Load signed byte

v Vv Load signed half

v Vv v Load signed half

v Vv Load signed word

v Vv Load unsigned
byte

v Vv v Load unsigned
byte

v Vv Load unsigned
half

RISC-V Specification for CHERI Extensions | © RISC-V

8.3. Zcheripurecap | Page 202

Mnemonic RV RV A Za Zic C Zb Zc Zc Zc Zth F D V Function
32 64 bhl bo[or a b mp mt
rsc mp Zca

z]

C.LHU v Vv v Load unsigned
half

LWU v Load unsigned
word

LD v Load double

SB v Vv Store byte

C.SB v Vv v Store byte

SH v v Store half

C.SH v v v Store half

SW v Vv Store word

SD v Store double

AUIPC v Vv Add immediate to
PCC address

CADD v Vv Increment cap
address by
register,
representability
check

CADDI v v Increment cap
address by
immediate,
representability
check

SCADDR v Vv Replace capability
address,
representability
check

GCTAG v v Get tag field

GCPERM v v Get hperm and
uperm fields as 1-
bit per
permission,
packed together

CMV v Vv Move capability
register

ACPERM v Vv AND capability
permissions

(expand to 1-bit
per permission
before ANDing)

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic

GCHI
SCHI

SCEQ

SENTRY
SCSS

CBLD

SCBNDS

SCBNDSI

SCBNDSR

CRAM

8.3. Zcheripurecap | Page 203

RV RV A Za Zic C Zb Zc Zc Zc Zfth F D V Function
32 64 bhl bo[or a b mp mt
rsc mp Zca

z]

v Vv Get metadata

v Vv Set metadata and
clear tag

v Vv Full capability

bitwise compare,
set result true if

both are fully
equal
v Vv Seal capability
v Vv Set result true if

csl and csl tags
match and cs2
bounds and
permissions are a
subset of csl

v v Set cd to cs2 with
its tag set after
checking that cs2
is a subset of csl

v Vv Set register
bounds on
capability with
rounding, clear
tag if rounding is
required

v Vv Set immediate
bounds on
capability with
rounding, clear
tag if rounding is
required

v Vv Set bounds on
capability with
rounding up as
required

v Vv Representable
Alignment Mask:
Return mask to
apply to address
to get the
requested bounds

RISC-V Specification for CHERI Extensions | © RISC-V

8.3. Zcheripurecap | Page 204

Mnemonic

GCBASE

GCLEN

C.ADDI16SP

C.ADDI4SPN

C.MV

CJ

CJAL

JAL

JALR

RISC-V Specification for CHERI Extensions | © RISC-V

RV RV A
32 64

v

v

v

v

Za Zic C
bhl bo[or

rsc mp Zca

z]

Zb Zc Zc Zc Zfh F

Function

Get capability
base

Get capability
length

ADD immediate
to stack pointer,
CADD in

Capability Mode

ADD immediate
to stack pointer,
CADDI in

Capability Mode

Register Move,
cap reg move in
Capability Mode

Jump to
PC+offset, bounds
check minimum
size target
instruction

Jump to
PC+offset, bounds
check minimum
size target
instruction, link
to cd

Jump to
PC+offset, bounds
check minimum
size target
instruction, link
to cd

Indirect cap jump
and link, bounds
check minimum
size target
instruction,
unseal target cap,
seal link cap

Mnemonic

CJALR

CJR

CBO.INVAL

CBO.CLEAN
CBO.FLUSH
CBO.ZERO
PREFETCH.
R

PREFETCH.
W

PREFETCH.I

LR.C

LR.D

LRW

LR.H
LR.B

SC.C

SC.D

8.3. Zcheripurecap | Page 205

RV RV A Za Zic C Zb Zc Zc Zc Zth F D V Function
32 64 bhl bo[or a b mp mt
rsc mp Zca
z]

v Vv v Indirect cap jump
and link, bounds
check minimum
size target
instruction,
unseal target cap,
seal link cap

v Vv v Indirect cap jump,
bounds check
minimum size
target instruction,
unseal target cap

v Vv v Cache block
invalidate
(implemented as
clean)

v Vv v Cache block clean

v Vv v Cache block flush

v Vv v Cache block zero

v Vv v Prefetch

instruction cache
line, always valid

v Vv v Prefetch read-
only data cache
line

v Vv v Prefetch writeable
data cache line

v v Vv Load reserved
capability

v Load reserved
double

v Load reserved
word

v Vv v Load reserved half

v Vv v Load reserved
byte

v Vv Vv Store conditional
capability

v Store conditional
double

RISC-V Specification for CHERI Extensions | © RISC-V

8.3. Zcheripurecap | Page 206

Mnemonic

SC.W

SC.H

SC.B

AMOSWAP.

C

AMO<OP>.
W

AMO<OP>.D

C.FLD

C.FLDSP

C.FSD

C.FSDSP

FLH

FSH

FLW

FSW

FLD

FSD

RV RV A
32 64
v
v Vv
v Vv
v Vv Vv
v Vv Vv
v Vv
v
v
v
v
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv

Za Zic C Zb Zc Zc Zc Zfth F
bhl bo[or a b mp mt

rsc mp Zca

z]

RISC-V Specification for CHERI Extensions | © RISC-V

D

\Y%

Function

Store conditional
word

Store conditional
half

Store conditional
byte

Atomic swap of
cap

Atomic op of word

Atomic op of
double

Load floating
point double

Load floating
point double, sp

relative

Store floating
point double

Store floating
point double, sp

relative

Load floating
point half
capability

Store floating
point half
capability

Load floating
point word
capability

Store floating
point word
capability

Load floating
point double
capability

Store floating
point double
capability

Mnemonic

CM.PUSH

CM.POP

CM.POPRET

CM.POPRET
Z

CM.MVSAO1

CM.MVAO1S

CMJALT

CMJT
ADD.UW

SHIADD

SHIADD.UW

SH2ADD

SH2ADD.UW

RV RV A
32 64
v Vv
v Vv
v Vv
v Vv
v Vv
v Vv
v v
v Vv
v
v Vv
v
v Vv
v

Za Zic C
bhl bo[or

rsc mp Zca

z]

8.3. Zcheripurecap | Page 207

Zb Zc Zc Zc Zth F D V Function

a

b

mp mt

v Push integer stack
frame

v Pop integer stack
frame

v Pop integer stack
frame and return

v Pop integer stack
frame and return
Zero

v Move two integer
registers

v Move two integer
registers

v Table jump and
link

v Table jump
add unsigned

words,
representability
check in
Capability Mode

shift and add,
representability
check in
Capability Mode

shift and add
unsigned words,
representability
check in
Capability Mode

shift and add,
representability
check in
Capability Mode

shift and add
unsigned words,
representability
check in
Capability Mode

RISC-V Specification for CHERI Extensions | © RISC-V

8.4. Zcherihybrid | Page 208

Mnemonic RV RV A Za Zic C Zb Zc Zc Zc Zth F
32 64 bhl bo[or a b mp mt
rsc mp Zca

z]

SH3ADD v Vv v

SH3ADD.UW v 4

8.4. Zcherihybrid

D

\Y%

Function

shift and add,
representability
check in
Capability Mode

shift and add
unsigned words,
representability
check in
Capability Mode

Zcherihybrid defines the set of instructions added by the Integer Pointer Mode, in addition to

Zcheripurecap.

Df Zcherihybrid implies Zcheripurecap

Table 32. Zcherihybrid instruction extension - Integer Pointer Mode instructions

Mnemonic RV RV A Za Zic C Zb Zc¢ Zc Zc Zth F
32 64 bhl bo[or a b mp mt
rsc mp Zca

z]

SCMODE v Vv

MODESW v Vv

C.MODESW Vv Vv

C.FLW v v

C.FLWSP v v

RISC-V Specification for CHERI Extensions | © RISC-V

D

\Y

Function

Set the mode bit
of a capability, no
permissions
required

Directly switch
mode (_Integer
Pointer Mode _/
_Capability
Pointer Mode)

Directly switch
mode (_Integer
Pointer Mode /
_Capability
Pointer Mode _)

Load floating
point word
capability

Load floating
point word, sp
relative

Mnemonic

C.FSwW

C.FSWSP

C.FLD

C.FLDSP

C.FSD

C.FSDSP

RV RV A Za Zic C
32 64 bhl bo[or
rsc mp Zca

z]

8.5. Instruction Modes

8.5. Instruction Modes | Page 209

Zb Zc Zc Zc Zth F D V Function

a

b

mp mt

v Store floating
point word
capability

v Store floating
point word, sp
relative

v Load floating
point double

v Load floating
point double, sp

relative

v Store floating
point double

v Store floating
point double, sp

relative

The tables summarise which operating modes each instruction may be executed in.

Mnemonic

C.LCSP
C.SCSP
C.LC
C.SC

Table 33. Instructions valid for execution in Capability Pointer Mode only

Zcherihybr Zcheripure Function

id

cap
v Load cap capability, SP relative
v Store cap capability, SP relative
v Load cap capability
v Store cap capability

RISC-V Specification for CHERI Extensions | © RISC-V

8.5. Instruction Modes | Page 210

Table 34. Instructions valid for execution in Integer Pointer Mode only

Mnemonic Zcherihybr Zcheripure Function

id cap
C.FLW v Load floating point word capability
C.FLWSP v Load floating point word, sp relative
C.FSw v Store floating point word capability
C.FSWSP v Store floating point word, sp relative
C.FLD v Load floating point double
C.FLDSP v Load floating point double, sp

relative

C.FSD v Store floating point double
C.FSDSP v Store floating point double, sp

relative

Table 35. Instructions valid for execution in both Integer Pointer Mode and Capability Pointer Mode

Mnemonic Zcherihybr Zcheripure Function

id cap
LC v v Load cap via int pointer
SC v v Store cap via int pointer
C.LWSP v v Load word capability, SP relative
C.SWSP v v Store word capability, SP relative
C.LW v v Load word capability
C.SW v v Store word capability
C.LD v v Load word capability
C.SD v v Store word capability
C.LDSP v v Load word capability
C.SDSP v v Store word capability
LB v v Load signed byte
LH v v Load signed half
C.LH v v Load signed half
LW v v Load signed word
LBU v v Load unsigned byte
C.LBU v v Load unsigned byte
LHU v v Load unsigned half
C.LHU v v Load unsigned half
LwWU v v Load unsigned word
LD v v Load double
SB v v Store byte

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic

C.SB
SH
C.SH
SW

SD
AUIPC
CADD

CADDI

SCADDR

GCTAG
GCPERM

CMV

ACPERM

GCHI
SCHI
SCEQ

SENTRY
SCSS

CBLD

SCBNDS

SCBNDSI

SCBNDSR

id

S S < < < <

<

<

<

<

cap

S S < < < <

<

<

<

8.5. Instruction Modes | Page 211

Zcherihybr Zcheripure Function

Store byte

Store half

Store half

Store word

Store double

Add immediate to PCC address

Increment cap address by register,
representability check

Increment cap address by
immediate, representability check

Replace capability address,
representability check

Get tag field

Get hperm and uperm fields as 1-bit
per permission, packed together

Move capability register

AND capability permissions (expand
to 1-bit per permission before
ANDing)

Get metadata
Set metadata and clear tag

Full capability bitwise compare, set
result true if both are fully equal

Seal capability

Set result true if csl and csl tags
match and cs2 bounds and
permissions are a subset of csl

Set cd to cs2 with its tag set after
checking that cs2 is a subset of csl

Set register bounds on capability
with rounding, clear tag if rounding
is required

Set immediate bounds on capability
with rounding, clear tag if rounding
is required

Set bounds on capability with
rounding up as required

RISC-V Specification for CHERI Extensions | © RISC-V

8.5. Instruction Modes | Page 212

Mnemonic Zcherihybr Zcheripure Function
id cap
CRAM v v Representable Alignment Mask:

GCBASE v
GCLEN v
SCMODE v
MODESW v
C.MODESW v
C.ADDI16SP v
C.ADDI4SPN v
C.MV v
CJ v
CJAL v
JAL v
JALR v
CJALR v
CJR v
DRET

RISC-V Specification for CHERI Extensions | © RISC-V

<

Return mask to apply to address to
get the requested bounds

Get capability base
Get capability length

Set the mode bit of a capability, no
permissions required

Directly switch mode (_Integer
Pointer Mode_/ _Capability Pointer
Mode_)

Directly switch mode (_Integer
Pointer Mode_/ _Capability Pointer
Mode _)

ADD immediate to stack pointer,
CADD in Capability Mode

ADD immediate to stack pointer,
CADDI in Capability Mode

Register Move, cap reg move in
Capability Mode

Jump to PC+offset, bounds check
minimum size target instruction

Jump to PC+offset, bounds check
minimum size target instruction,
link to cd

Jump to PC+offset, bounds check
minimum size target instruction,
link to cd

Indirect cap jump and link, bounds
check minimum size target
instruction, unseal target cap, seal
link cap

Indirect cap jump and link, bounds
check minimum size target
instruction, unseal target cap, seal
link cap

Indirect cap jump, bounds check
minimum size target instruction,
unseal target cap

Return from debug mode, sets ddc
from dddc and pcc from dpce

Mnemonic

MRET

SRET

CSRRW

CSRRS

CSRRC

CSRRWI

CSRRSI

CSRRCI

CBO.INVAL

CBO.CLEAN
CBO.FLUSH
CBO.ZERO
PREFETCH.R

PREFETCH.W

PREFETCH.I
LR.C

LR.D

LR'W

LR.H

LR.B

SC.C

SC.D

SC.W

SC.H

SC.B
AMOSWAP.C

id

<

S < < X

R S S S < < < < < < <

cap

<

S < < X

R S S S S < < < < < < K«

8.5. Instruction Modes | Page 213

Zcherihybr Zcheripure Function

Return from machine mode handler,
sets pcc from mtvecc , needs ASR-
permission

Return from supervisor mode
handler, sets pcc from stvecc, needs
ASR-permission

CSR write - can also read/write a full
capability through an address alias

CSR set - can also read/write a full
capability through an address alias

CSR clear - can also read/write a full
capability through an address alias

CSR write - can also read/write a full
capability through an address alias

CSR set - can also read/write a full
capability through an address alias

CSR clear - can also read/write a full
capability through an address alias

Cache block invalidate (implemented
as clean)

Cache block clean
Cache block flush
Cache block zero

Prefetch instruction cache line,
always valid

Prefetch read-only data cache line
Prefetch writeable data cache line
Load reserved capability

Load reserved double

Load reserved word

Load reserved half

Load reserved byte

Store conditional capability

Store conditional double

Store conditional word

Store conditional half

Store conditional byte

Atomic swap of cap

RISC-V Specification for CHERI Extensions | © RISC-V

8.5. Instruction Modes | Page 214

Mnemonic

AMO<OP>W
AMO<OP>D
C.FLD
C.FLDSP

C.FSD
C.FSDSP

FLH

FSH

FLW

FSW

FLD

FSD
CM.PUSH
CM.POP
CM.POPRET
CM.POPRETZ

CM.MVSAO1
CM.MVAO1S
CMJALT
CMJT
ADD.UW

SHIADD

SHIADD.UW

SH2ADD

SH2ADD.UW

SH3ADD

RISC-V Specification for CHERI Extensions | © RISC-V

id

S < < X

< <

SR S S < S < < <

S < < < <

<

cap

S < < X

< <

S S S < S < < < 8 «

S < < < X

<

Zcherihybr Zcheripure Function

Atomic op of word
Atomic op of double
Load floating point double

Load floating point double, sp
relative

Store floating point double

Store floating point double, sp
relative

Load floating point half capability
Store floating point half capability
Load floating point word capability
Store floating point word capability
Load floating point double capability
Store floating point double capability
Push integer stack frame

Pop integer stack frame

Pop integer stack frame and return

Pop integer stack frame and return
zZero

Move two integer registers
Move two integer registers
Table jump and link
Table jump

add unsigned words, representability
check in Capability Mode

shift and add, representability check
in Capability Mode

shift and add unsigned words,
representability check in Capability
Mode

shift and add, representability check
in Capability Mode

shift and add unsigned words,
representability check in Capability
Mode

shift and add, representability check
in Capability Mode

8.5. Instruction Modes | Page 215

Mnemonic Zcherihybr Zcheripure Function
id cap

SH3ADD.UW 4 v shift and add unsigned words,
representability check in Capability
Mode

SH4ADD shift and add, representability check
in Capability Mode

SH4ADD.UW shift and add unsigned words,
representability check in Capability
Mode

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 9. Capability Width CSR Summary | Page 216

Chapter 9. Capability Width CSR
summary

CLEN CSR
dpcc
dscratchOc
dscratchlc
mtvecc
mscratchc
mepce
stvecc
sscratchc
sepcc

jvte

utide

stidc

CLEN CSR
dpcc

dscratchOc
dscratchlc

mtvecc

mscratchce

mepcc

Table 36. CSRs renamed and extended to capability width

Alias

dpc
dscratchO
dscratchl
mtvec
mscratch
mepc
stvec
sscratch
sepc

jvt

utid

stid

Prerequisites
Sdext
Sdext
Sdext
M-mode
M-mode
M-mode
S-mode
S-mode
S-mode
Zcmt
Zstid
Zstid

Table 37. Action taken on writing to extended CSRs.

Action on XLEN write

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

Update the CSR using SCADDR.
Update the CSR using SCADDR.

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check " if vectored mode is
programmed.

Update the CSR using SCADDR.

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

RISC-V Specification for CHERI Extensions | © RISC-V

Action on CLEN write

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

direct write
direct write

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check " if vectored mode is
programmed.

direct write

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address

didn’t change

CLEN CSR

stvecc

sscratche

sepcc

jvte

utide

stide

Chapter 9. Capability Width CSR Summary | Page 217

Action on XLEN write

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check " if vectored mode is
programmed.

Update the CSR using SCADDR.

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

N/A
Update the CSR using SCADDR.

Action on CLEN write

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check " if vectored mode is
programmed.

direct write

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

N/A

direct write

" The vector range check is to ensure that vectored entry to the handler in within bounds of the
capability written to Xtvecc. The check on writing must include the lowest (O offset) and highest
possible offset (e.g. 64 * MXLEN bits where HICAUSE=16).

2

I
4

CLEN CSR
dpcc
mtvecc
mepcc
stvecc
sepcc

jvtc

ddde

ddc

XLEN writing is only available if Zcherihybrid is implemented.

Implementations which allow misa.C to be writable need to legalise Xepcc on reading if
the misa.C value has changed since the value was written as this can cause the read value
of bit [1] to change state.

CSRRW make an XLEN-wide access to the XLEN-wide CSR aliases or a CLEN-wide
access to the CLEN-wide aliases for all extended CSRs. CSRRWI, CSRRS, CSRRSI, CSRRC
and CSRRCI only make XLEN-wide accesses even if the CLEN-wide alias is specified.

Table 38. CLEN-wide CSRs storing executable vectors or data pointers

Executable Vector

S S < < <

Data Pointer

Unseal On Execution

v

Some CSRs store executable vectors as shown in Table 38. These CSRs do not need to store the full

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 9. Capability Width CSR Summary | Page 218

width address on RV64. If they store fewer address bits then writes are subject to the invalid address
check in Invalid address conversion.

Table 39. CLEN-wide CSRs which store all CLEN+1 bits
CLEN CSR Store full metadata
dscratchOc v
dscratchlc
mscratchc
sscratchce
dinfc

utide

S S < < <

stide

Table 39 shows which CLEN-wide CSRs store all CLEN+1 bits. No other CLEN-wide CSRs store any
reserved bits. All CLEN-wide CSRs store all non-reserved metadata fields.

Table 40. All CLEN-wide CSRs. Zcheripurecap is a prerequisite for all CSRs in this table

CLEN CSR Prereq Addres Permissions Reset Value Description
uisites s
dpce Sdext 0x7bl DRW tag=0, Debug Program Counter
otherwise Capability
undefined
dscratchOc Sdext Ox7b2 DRW tag=0, Debug Scratch Capability O
otherwise
undefined
dscratchlc Sdext O0x7b3 DRW tag=0, Debug Scratch Capability 1
otherwise
undefined
mtvecc M- 0x305 MRW, ASR- Infinite Machine Trap-Vector Base-
mode permission Address Capability
mscratchc M- 0x340 MRW, ASR- tag=0, Machine Scratch Capability
mode permission otherwise
undefined
mepcc M- O0x341 MRW, ASR- Infinite Machine Exception Program
mode permission Counter Capability
stvecc S- 0x105 SRW, ASR- Infinite Supervisor Trap-Vector Base-
mode permission Address Capability
sscratche S- 0x140 SRW, ASR- tag=0, Supervisor Scratch Capability
mode permission otherwise
undefined
sepcc S- 0x141 SRW, ASR- Infinite Supervisor Exception Program
mode permission Counter Capability

RISC-V Specification for CHERI Extensions | © RISC-V

9.1. Other tables | Page 219

CLEN CSR Prereq Addres Permissions Reset Value Description
uisites s
jvtc Zcmt 0x017 URW tag=0, Jump Vector Table Capability
otherwise
undefined
dddc Zcheri Ox7bc DRW tag=0, Debug Default Data Capability
hybrid, otherwise (saved/restored on debug mode
Sdext undefined entry/exit)
mtdc Zcheri Ox74c MRW, ASR- tag=0, Machine Trap Data Capability
hybrid, permission otherwise (scratch register)
M- undefined
mode
stde Zcheri 0x163 SRW, ASR- tag=0, Supervisor Trap Data Capability
hybrid, permission otherwise (scratch register)
S- undefined
mode
ddc Zcheri 0x416 URW Infinite User Default Data Capability
hybrid
dinfc Sdext Ox7bd DRW Infinite Source of Infinite capability in
debug mode, writes are ignored
utide Zstid 0xc80 URO tag=0, Read-only copy of stidc
otherwise
undefined
stide Zstid 0x580 SRW, ASR- tag=0, Secure thread ID
permission otherwise
undefined

9.1. Other tables

Table 41. Mnemonics with the same encoding but mapped to different instructions in Integer Pointer Mode and
Capability Pointer Mode

Mnemonic _Integer Pointer Mode _ _Integer Pointer Mode _
mnemonic RV32 mnemonic RV64
C.LCSP C.FLWSP C.FLDSP
C.SCSP C.FSWSP C.FSDSP
C.LC C.FLW C.FLD
C.SC C.FSW C.FSD
Table 42. Instruction encodings which vary depending on the current XLEN
Mnemonic Function
LC Load cap via int pointer
SC Store cap via int pointer
C.LCSP Load cap capability, SP relative

RISC-V Specification for CHERI Extensions | © RISC-V

9.1. Other tables | Page 220

Mnemonic Function

C.SCSP Store cap capability, SP relative
C.LC Load cap capability

C.SC Store cap capability

LR.C Load reserved capability

SC.C Store conditional capability
AMOSWAP.C Atomic swap of cap

y MODESW and SCMODE only exist in Capability Pointer Mode if Integer Pointer Mode is
EI also present. A purecap core does not implement the mode bit in the capability.

Table 43. Illegal instruction detect for CHERI instructions

Mnemonic
MODESW
C.MODESW
CJ

CJAL

JAL

JALR
CJALR
CJR

DRET
MRET
SRET

CSRRW
CSRRS
CSRRC
CSRRWI
CSRRSI
CSRRCI
CBO.INVAL

CBO.CLEAN

CBO.FLUSH

CBO.ZERO

illegal insn if (1)

mode==D (optional
mode==D (optional
mode==D (optional
mode==D (optional
mode==D (optional

mode==

)

D ()

D ()

D ()
mode==D (optional)
D ()

D (optional)

D ()

mode==D (optional
MODE<D

MODE<M
MODE<S

CSR permission fault
CSR permission fault
CSR permission fault
CSR permission fault
CSR permission fault

CSR permission fault

MODE<M AND
menvcfg. CBIE[0]==0
MODE<M AND
menvcfg.CBIE[O]==0
MODE<M AND
menvcfg.CBIE[O]==0
MODE<M AND
menvcfg. CBIE[O]==0

RISC-V Specification for CHERI Extensions | © RISC-V

OR illegal insn if (2) OR illegal insn if (3)

PCC.ASR==0

PCC.ASR==0 mstatus. TSR==1 AND
MODE==8§

MODE<S AND

senvcfg.CBIE[0]==0

MODE<S AND

senvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

9.1. Other tables | Page 221

Mnemonic illegal insn if (1) OR illegal insn if (2) ORillegal insn if (3)
C.FLW Xstatus.fs==0
C.FLWSP Xstatus.fs==0
C.FSW Xstatus.fs==0
C.FSWSP Xstatus.fs==0
C.FLD Xstatus.fs==0
C.FLDSP Xstatus.fs==0
C.FLD Xstatus.fs==0
C.FLDSP Xstatus.fs==0
C.FSD Xstatus.fs==0
C.FSDSP Xstatus.fs==0
C.FSD Xstatus.fs==0
C.FSDSP Xstatus.fs==0
FLH Xstatus.fs==0
FSH Xstatus.fs==0
FLW Xstatus.fs==0
FSW Xstatus.fs==0
FLD Xstatus.fs==0
FSD Xstatus.fs==0

RISC-V Specification for CHERI Extensions | © RISC-V

Bibliography | Page 222

Bibliography

RISC-V. (2022). RISC-V Debug Specification. github.com/riscv/riscv-debug-spec/raw/
c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf

RISC-V. (2023). RISC-V Privileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6{f-2023-10-02/priv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Unprivileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6{f-2023-10-02/unpriv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Code-size Reduction Specification. github.com/riscv/riscv-code-size-
reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf

Watson, R. N. M., Neumann, P. G., Woodruff,], Roe, M., Almatary, H., Anderson, J., Baldwin, J,
Barnes, G., Chisnall, D., Clarke, J., Davis, B., Eisen, L., Filardo, N. W., Fuchs, F. A., Grisenthwaite, R,
Joannou, A, Laurie, B, Markettos, A. T., Moore, S. W., ... Xia, H. (2023). Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (Version 9) (UCAM-CL-TR-987; Issue UCAM-CL-
TR-987). University of Cambridge, Computer Laboratory. doi.org/10.48456/tr-987

Woodruff, J., Joannou, A, Xia, H., Fox, A., Norton, R. M., Chisnall, D, Davis, B., Gudka, K, Filardo, N.
W., Markettos, A. T., & others. (2019). Cheri concentrate: Practical compressed capabilities. IEEE
Transactions on Computers, 68(10), 1455-1469. doi.org/10.1109/TC.2019.2914037

RISC-V Specification for CHERI Extensions | © RISC-V

https://github.com/riscv/riscv-debug-spec/raw/c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf
https://github.com/riscv/riscv-debug-spec/raw/c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://doi.org/10.48456/tr-987
https://doi.org/10.1109/TC.2019.2914037

	RISC-V Specification for CHERI Extensions
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	1.1. CHERI Concepts and Terminology
	1.2. CHERI Extensions to RISC-V
	1.3. Risks and Known Uncertainty
	1.3.1. Pending Extensions
	1.3.2. Incompatible Extensions

	Chapter 2. Anatomy of Capabilities in Zcheripurecap
	2.1. Capability Encoding
	2.2. Components of a Capability
	2.2.1. Tag
	2.2.2. Address
	2.2.3. Architectural Permissions (AP)
	Description
	Permission Encoding
	Permission Transitions

	2.2.4. Software-Defined Permissions (SDP)
	2.2.5. Sealed (S) Bit
	2.2.6. Bounds (EF, T, TE, B, BE)
	Concept
	Decoding
	Malformed Capability Bounds

	2.3. Special Capabilities
	2.3.1. NULL Capability
	2.3.2. Infinite Capability

	2.4. Representable Range Check
	2.4.1. Concept
	2.4.2. Practical Information

	Chapter 3. Integrating Zcheripurecap with the RISC-V Base Integer Instruction Set
	3.1. Memory
	3.2. Programmer’s Model for Zcheripurecap
	3.2.1. PCC - The Program Counter Capability

	3.3. Capability Instructions
	3.3.1. Capability Inspection Instructions
	3.3.2. Capability Manipulation Instructions
	3.3.3. Capability Load and Store Instructions

	3.4. Existing RISC-V Instructions
	3.4.1. Integer Computational Instructions
	3.4.2. Control Transfer Instructions
	Unconditional Jumps
	Conditional Branches

	3.4.3. Integer Load and Store Instructions

	3.5. Zicsr, Control and Status Register (CSR) Instructions
	3.5.1. CSR Instructions

	3.6. Control and Status Registers (CSRs)
	3.7. Machine-Level CSRs
	3.7.1. Machine Status Registers (mstatus and mstatush)
	3.7.2. Machine Trap Vector Base Address Register (mtvec)
	3.7.3. Machine Trap Vector Base Address Capability Register (mtvecc)
	3.7.4. Machine Scratch Register (mscratch)
	3.7.5. Machine Scratch Capability Register (mscratchc)
	3.7.6. Machine Exception Program Counter (mepc)
	3.7.7. Machine Exception Program Counter Capability (mepcc)
	3.7.8. Machine Cause Register (mcause)
	3.7.9. Machine Trap Delegation Register (medeleg)
	3.7.10. Machine Trap Value Register (mtval)

	3.8. Supervisor-Level CSRs
	3.8.1. Supervisor Trap Vector Base Address Register (stvec)
	3.8.2. Supervisor Trap Vector Base Address Capability Register (stvecc)
	3.8.3. Supervisor Scratch Register (sscratch)
	3.8.4. Supervisor Scratch Capability Register (sscratchc)
	3.8.5. Supervisor Exception Program Counter (sepc)
	3.8.6. Supervisor Exception Program Counter Capability (sepcc)
	3.8.7. Supervisor Cause Register (scause)
	3.8.8. Supervisor Trap Value Register (stval)

	3.9. Unprivileged CSRs
	3.10. CHERI Exception handling
	3.11. CHERI Exceptions and speculative execution
	3.12. Physical Memory Attributes (PMA)
	3.13. Page-Based Virtual-Memory Systems
	3.13.1. Invalid Address Handling
	Accessing CSRs
	Branches and Jumps
	Memory Accesses

	3.14. Integrating Zcheripurecap with Sdext
	3.14.1. Debug Mode
	3.14.2. Core Debug Registers
	3.14.3. Debug Program Counter (dpc)
	3.14.4. Debug Program Counter Capability (dpcc)
	3.14.5. Debug Scratch Register 0 (dscratch0)
	3.14.6. Debug Scratch Register 0 Capability (dscratch0c)
	3.14.7. Debug Scratch Register 1 (dscratch1)
	3.14.8. Debug Scratch Register 1 Capability (dscratch1c)
	3.14.9. Debug Infinite Capability Register (dinfc)

	3.15. Integrating Zcheripurecap with Sdtrig

	Chapter 4. "Zcheripte" Extension for CHERI Page-Based Virtual-Memory Systems
	4.1. Extending the Page Table Entry Format
	4.2. Extending the Machine Environment Configuration Register (menvcfg)

	Chapter 5. "Zcherihybrid" Extension for CHERI Integer Pointer Mode
	5.1. CHERI Execution Mode
	5.2. CHERI Execution Mode Encoding
	5.3. Zcherihybrid Instructions
	5.3.1. Capability Load and Store Instructions
	5.3.2. Capability Manipulation Instructions
	5.3.3. Mode Change Instructions

	5.4. Existing RISC-V Instructions
	5.4.1. Control Transfer Instructions
	5.4.2. Conditional Branches
	5.4.3. Load and Store Instructions
	5.4.4. CSR Instructions

	5.5. Integrating Zcherihybrid with Sdext
	5.6. Debug Default Data Capability (dddc)
	5.7. Disabling CHERI Registers
	5.8. Added CLEN-wide CSRs
	5.8.1. Machine Status Registers (mstatus and mstatush)
	5.8.2. Machine Trap Default Capability Register (mtdc)
	5.8.3. Machine Security Configuration Register (mseccfg)
	5.8.4. Machine Environment Configuration Register (menvcfg)
	5.8.5. Supervisor Trap Default Capability Register (stdc)
	5.8.6. Supervisor Environment Configuration Register (senvcfg)
	5.8.7. Default Data Capability (ddc)

	Chapter 6. "Zstid Extension for Thread Identification
	6.1. Control and Status Registers (CSRs)
	6.2. Supervisor-Level and Unprivileged CSRs
	6.2.1. Supervisor Thread Identifier (stid)
	6.2.2. User Thread Identifier (utid)
	6.2.3. Supervisor Thread Identifier Capability (stidc)
	6.2.4. User Thread Identifier Capability (utidc)

	6.3. CHERI Compartmentalization

	Chapter 7. RISC-V Instructions and Extensions Reference
	7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI
	7.1.1. CMV
	7.1.2. MODESW
	7.1.3. CADDI
	7.1.4. CADD
	7.1.5. SCADDR
	7.1.6. ACPERM
	7.1.7. SCMODE
	7.1.8. SCHI
	7.1.9. SCEQ
	7.1.10. SENTRY
	7.1.11. SCSS
	7.1.12. CBLD
	7.1.13. GCTAG
	7.1.14. GCPERM
	7.1.15. GCHI
	7.1.16. GCBASE
	7.1.17. GCLEN
	7.1.18. SCBNDSI
	7.1.19. SCBNDS
	7.1.20. SCBNDSR
	7.1.21. CRAM
	7.1.22. LC
	7.1.23. SC

	7.2. RV32I/E and RV64I/E Base Integer Instruction Sets
	7.2.1. AUIPC
	7.2.2. BEQ, BNE, BLT[U], BGE[U]
	7.2.3. JR
	7.2.4. JALR
	7.2.5. J
	7.2.6. JAL
	7.2.7. LD
	7.2.8. LWU
	7.2.9. LW
	7.2.10. LHU
	7.2.11. LH
	7.2.12. LBU
	7.2.13. LB
	7.2.14. SD
	7.2.15. SW
	7.2.16. SH
	7.2.17. SB
	7.2.18. SRET
	7.2.19. MRET
	7.2.20. DRET

	7.3. "A" Standard Extension for Atomic Instructions
	7.3.1. AMO<OP>.W
	7.3.2. AMO<OP>.D
	7.3.3. AMOSWAP.C
	7.3.4. LR.D
	7.3.5. LR.W
	7.3.6. LR.H
	7.3.7. LR.B
	7.3.8. LR.C
	7.3.9. SC.D
	7.3.10. SC.W
	7.3.11. SC.H
	7.3.12. SC.B
	7.3.13. SC.C

	7.4. "Zicsr", Control and Status Register (CSR) Instructions
	7.4.1. CSRRW
	7.4.2. CSRRWI
	7.4.3. CSRRS
	7.4.4. CSRRSI
	7.4.5. CSRRC
	7.4.6. CSRRCI

	7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point
	7.5.1. FLD
	7.5.2. FLW
	7.5.3. FLH
	7.5.4. FSD
	7.5.5. FSW
	7.5.6. FSH

	7.6. "C" Standard Extension for Compressed Instructions
	7.6.1. C.BEQZ, C.BNEZ
	7.6.2. C.MV
	7.6.3. C.ADDI16SP
	7.6.4. C.ADDI4SPN
	7.6.5. C.MODESW
	7.6.6. C.JALR
	7.6.7. C.JR
	7.6.8. C.JAL
	7.6.9. C.J
	7.6.10. C.LD
	7.6.11. C.LW
	7.6.12. C.LWSP
	7.6.13. C.LDSP
	7.6.14. C.FLW
	7.6.15. C.FLWSP
	7.6.16. C.FLD
	7.6.17. C.FLDSP
	7.6.18. C.LC
	7.6.19. C.LCSP
	7.6.20. C.SD
	7.6.21. C.SW
	7.6.22. C.SWSP
	7.6.23. C.SDSP
	7.6.24. C.FSW
	7.6.25. C.FSWSP
	7.6.26. C.FSD
	7.6.27. C.FSDSP
	7.6.28. C.SC
	7.6.29. C.SCSP

	7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations
	7.7.1. CBO.CLEAN
	7.7.2. CBO.FLUSH
	7.7.3. CBO.INVAL
	7.7.4. CBO.ZERO
	7.7.5. PREFETCH.I
	7.7.6. PREFETCH.R
	7.7.7. PREFETCH.W

	7.8. "Zba" Extension for Bit Manipulation Instructions
	7.8.1. ADD.UW
	7.8.2. SH1ADD
	7.8.3. SH2ADD
	7.8.4. SH3ADD
	7.8.5. SH1ADD.UW
	7.8.6. SH2ADD.UW
	7.8.7. SH3ADD.UW
	7.8.8. SH4ADD
	7.8.9. SH4ADD.UW

	7.9. "Zcb" Standard Extension For Code-Size Reduction
	7.9.1. C.LH
	7.9.2. C.LHU
	7.9.3. C.LBU
	7.9.4. C.SH
	7.9.5. C.SB

	7.10. "Zcmp" Standard Extension For Code-Size Reduction
	7.10.1. CM.PUSH
	7.10.2. CM.POP
	7.10.3. CM.POPRET
	7.10.4. CM.POPRETZ
	7.10.5. CM.MVSA01
	7.10.6. CM.MVA01S

	7.11. "Zcmt" Standard Extension For Code-Size Reduction
	7.11.1. Jump Vector Table CSR (jvt)
	7.11.2. Jump Vector Table CSR (jvtc)
	7.11.3. CM.JALT
	7.11.4. CM.JT

	Chapter 8. Extension summary
	8.1. Zabhlrsc
	8.2. Zish4add
	8.3. Zcheripurecap
	8.4. Zcherihybrid
	8.5. Instruction Modes

	Chapter 9. Capability Width CSR Summary
	9.1. Other tables

	
	Bibliography

