
RISC-V Specification for CHERI
Extensions

Authors: Hesham Almatary, Andres Amaya Garcia, John Baldwin, David Chisnall, Jessica
Clarke, Brooks Davis, Nathaniel Wesley Filardo, Franz A. Fuchs, Timothy Hutt, Alexandre

Joannou, Tariq Kurd, Ben Laurie, Marno van der Maas, A. Theodore Markettos, David McKay,
Jamie Melling, Stuart Menefy, Simon W. Moore, Peter G. Neumann, Robert Norton,

Alexander Richardson, Michael Roe, Peter Rugg, Peter Sewell, Carl Shaw, Robert N. M.
Watson, Jonathan Woodruff

Version v0.8.3, 2024-07-16: Draft

Table of Contents
Preamble . 1
Copyright and license information . 2
Contributors . 3
1. Introduction . 4

1.1. CHERI Concepts and Terminology . 4
1.2. CHERI Extensions to RISC-V . 5
1.3. Risks and Known Uncertainty. 6

1.3.1. Pending Extensions. 6
1.3.2. Incompatible Extensions . 6

2. Anatomy of Capabilities in Zcheripurecap . 7
2.1. Capability Encoding . 7
2.2. Components of a Capability . 8

2.2.1. Tag . 8
2.2.2. Address . 8
2.2.3. Architectural Permissions (AP) . 8

Description . 8
Permission Encoding. 9
Permission Transitions . 11

2.2.4. Software-Defined Permissions (SDP) . 11
2.2.5. Sealed (S) Bit . 11
2.2.6. Bounds (EF, T, TE, B, BE) . 12

Concept. 12
Decoding . 13
Malformed Capability Bounds . 16

2.3. Special Capabilities . 16
2.3.1. NULL Capability . 16
2.3.2. Infinite Capability. 17

2.4. Representable Range Check . 17
2.4.1. Concept . 18
2.4.2. Practical Information . 18

3. Integrating Zcheripurecap with the RISC-V Base Integer Instruction Set . 19
3.1. Memory . 19
3.2. Programmer’s Model for Zcheripurecap . 19

3.2.1. PCC - The Program Counter Capability . 20
3.3. Capability Instructions . 20

3.3.1. Capability Inspection Instructions . 20
3.3.2. Capability Manipulation Instructions . 21
3.3.3. Capability Load and Store Instructions . 21

3.4. Existing RISC-V Instructions . 22
3.4.1. Integer Computational Instructions . 22

3.4.2. Control Transfer Instructions . 23
Unconditional Jumps . 23
Conditional Branches . 23

3.4.3. Integer Load and Store Instructions. 23
3.5. Zicsr, Control and Status Register (CSR) Instructions . 24

3.5.1. CSR Instructions . 24
3.6. Control and Status Registers (CSRs) . 25
3.7. Machine-Level CSRs . 26

3.7.1. Machine Status Registers (mstatus and mstatush) . 26
3.7.2. Machine Trap Vector Base Address Register (mtvec) . 26
3.7.3. Machine Trap Vector Base Address Capability Register (mtvecc) . 26
3.7.4. Machine Scratch Register (mscratch). 27
3.7.5. Machine Scratch Capability Register (mscratchc) . 27
3.7.6. Machine Exception Program Counter (mepc) . 28
3.7.7. Machine Exception Program Counter Capability (mepcc) . 28
3.7.8. Machine Cause Register (mcause) . 28
3.7.9. Machine Trap Delegation Register (medeleg) . 30
3.7.10. Machine Trap Value Register (mtval) . 30

3.8. Supervisor-Level CSRs . 31
3.8.1. Supervisor Trap Vector Base Address Register (stvec). 31
3.8.2. Supervisor Trap Vector Base Address Capability Register (stvecc). 31
3.8.3. Supervisor Scratch Register (sscratch) . 32
3.8.4. Supervisor Scratch Capability Register (sscratchc). 32
3.8.5. Supervisor Exception Program Counter (sepc) . 32
3.8.6. Supervisor Exception Program Counter Capability (sepcc) . 32
3.8.7. Supervisor Cause Register (scause). 33
3.8.8. Supervisor Trap Value Register (stval) . 34

3.9. Unprivileged CSRs. 34
3.10. CHERI Exception handling. 34
3.11. CHERI Exceptions and speculative execution . 36
3.12. Physical Memory Attributes (PMA) . 36
3.13. Page-Based Virtual-Memory Systems . 36

3.13.1. Invalid Address Handling. 37
Accessing CSRs . 37
Branches and Jumps . 37
Memory Accesses . 38

3.14. Integrating Zcheripurecap with Sdext . 38
3.14.1. Debug Mode . 39
3.14.2. Core Debug Registers . 39
3.14.3. Debug Program Counter (dpc) . 40
3.14.4. Debug Program Counter Capability (dpcc) . 40
3.14.5. Debug Scratch Register 0 (dscratch0). 40
3.14.6. Debug Scratch Register 0 Capability (dscratch0c) . 40

3.14.7. Debug Scratch Register 1 (dscratch1) . 41
3.14.8. Debug Scratch Register 1 Capability (dscratch1c) . 41
3.14.9. Debug Infinite Capability Register (dinfc) . 41

3.15. Integrating Zcheripurecap with Sdtrig . 42
4. "Zcheripte" Extension for CHERI Page-Based Virtual-Memory Systems . 44

4.1. Extending the Page Table Entry Format . 44
4.2. Extending the Machine Environment Configuration Register (menvcfg) . 45

5. "Zcherihybrid" Extension for CHERI Integer Pointer Mode . 47
5.1. CHERI Execution Mode. 47
5.2. CHERI Execution Mode Encoding . 47

5.2.1. Observing the CHERI Execution Mode . 48
5.3. Zcherihybrid Instructions . 48

5.3.1. Capability Load and Store Instructions . 49
5.3.2. Capability Manipulation Instructions. 49
5.3.3. Mode Change Instructions . 49

5.4. Existing RISC-V Instructions . 49
5.4.1. Control Transfer Instructions. 49
5.4.2. Conditional Branches. 50
5.4.3. Load and Store Instructions. 50
5.4.4. CSR Instructions . 50

5.5. Integrating Zcherihybrid with Sdext . 51
5.6. Debug Default Data Capability (dddc) . 51
5.7. Disabling CHERI Registers . 52
5.8. Added CLEN-wide CSRs . 53

5.8.1. Machine Status Registers (mstatus and mstatush) . 53
5.8.2. Machine Trap Default Capability Register (mtdc) . 53
5.8.3. Machine Security Configuration Register (mseccfg) . 54
5.8.4. Machine Environment Configuration Register (menvcfg) . 54
5.8.5. Supervisor Trap Default Capability Register (stdc). 54
5.8.6. Supervisor Environment Configuration Register (senvcfg) . 55
5.8.7. Default Data Capability (ddc). 55

6. "Zstid Extension for Thread Identification . 56
6.1. Control and Status Registers (CSRs). 56
6.2. Machine-Level, Supervisor-Level and Unprivileged CSRs . 56

6.2.1. Machine Thread Identifier (mtid). 56
6.2.2. Supervisor Thread Identifier (stid) . 56
6.2.3. User Thread Identifier (utid) . 57
6.2.4. Machine Thread Identifier Capability (mtidc) . 57
6.2.5. Supervisor Thread Identifier Capability (stidc) . 57
6.2.6. User Thread Identifier Capability (utidc). 57

6.3. CHERI Compartmentalization . 58
7. RISC-V Instructions and Extensions Reference . 59

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI . 60

7.1.1. CMV . 61
7.1.2. MODESW . 62
7.1.3. CADDI . 63
7.1.4. CADD . 63
7.1.5. SCADDR . 65
7.1.6. ACPERM . 66
7.1.7. SCMODE . 68
7.1.8. SCHI . 69
7.1.9. SCEQ. 70
7.1.10. SENTRY . 71
7.1.11. SCSS . 72
7.1.12. CBLD . 73
7.1.13. GCTAG . 75
7.1.14. GCPERM. 76
7.1.15. GCHI . 77
7.1.16. GCBASE . 78
7.1.17. GCLEN. 79
7.1.18. SCBNDSI . 80
7.1.19. SCBNDS. 80
7.1.20. SCBNDSR . 82
7.1.21. CRAM . 83
7.1.22. LC. 84
7.1.23. SC . 86

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets . 88
7.2.1. AUIPC. 89
7.2.2. BEQ, BNE, BLT[U], BGE[U]. 90
7.2.3. JR . 91
7.2.4. JALR. 91
7.2.5. J . 93
7.2.6. JAL. 93
7.2.7. LD . 95
7.2.8. LWU . 95
7.2.9. LW. 95
7.2.10. LHU . 95
7.2.11. LH. 95
7.2.12. LBU . 95
7.2.13. LB . 96
7.2.14. SD . 98
7.2.15. SW . 98
7.2.16. SH . 98
7.2.17. SB. 99
7.2.18. SRET . 101
7.2.19. MRET . 101

7.2.20. DRET. 102
7.3. "A" Standard Extension for Atomic Instructions . 103

7.3.1. AMO<OP>.W . 104
7.3.2. AMO<OP>.D . 105
7.3.3. AMOSWAP.C . 107
7.3.4. LR.D . 109
7.3.5. LR.W. 109
7.3.6. LR.H . 109
7.3.7. LR.B . 110
7.3.8. LR.C . 112
7.3.9. SC.D . 114
7.3.10. SC.W . 114
7.3.11. SC.H . 114
7.3.12. SC.B . 115
7.3.13. SC.C . 117

7.4. "Zicsr", Control and Status Register (CSR) Instructions. 119
7.4.1. CSRRW. 120
7.4.2. CSRRWI . 122
7.4.3. CSRRS. 122
7.4.4. CSRRSI . 122
7.4.5. CSRRC . 122
7.4.6. CSRRCI . 123

7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point. 125
7.5.1. FLD . 126
7.5.2. FLW. 126
7.5.3. FLH . 127
7.5.4. FSD . 129
7.5.5. FSW. 129
7.5.6. FSH. 130

7.6. "C" Standard Extension for Compressed Instructions . 132
7.6.1. RV32 . 132
7.6.2. RV64 . 133
7.6.3. C.BEQZ, C.BNEZ. 134
7.6.4. C.MV . 135
7.6.5. C.ADDI16SP . 136
7.6.6. C.ADDI4SPN . 137
7.6.7. C.MODESW . 138
7.6.8. C.JALR . 139
7.6.9. C.JR . 140
7.6.10. C.JAL . 141
7.6.11. C.J . 142
7.6.12. C.LD. 143
7.6.13. C.LW . 144

7.6.14. C.LWSP. 146
7.6.15. C.LDSP . 147
7.6.16. C.FLW. 149
7.6.17. C.FLWSP . 149
7.6.18. C.FLD. 151
7.6.19. C.FLDSP . 151
7.6.20. C.LC . 153
7.6.21. C.LCSP . 153
7.6.22. C.SD . 155
7.6.23. C.SW. 156
7.6.24. C.SWSP . 158
7.6.25. C.SDSP . 159
7.6.26. C.FSW. 161
7.6.27. C.FSWSP . 161
7.6.28. C.FSD. 163
7.6.29. C.FSDSP . 163
7.6.30. C.SC . 165
7.6.31. C.SCSP . 165

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations . . . 167
7.7.1. CBO.CLEAN . 168
7.7.2. CBO.FLUSH . 170
7.7.3. CBO.INVAL . 172
7.7.4. CBO.ZERO . 174
7.7.5. PREFETCH.I . 176
7.7.6. PREFETCH.R . 178
7.7.7. PREFETCH.W . 180

7.8. "Zba" Extension for Bit Manipulation Instructions . 182
7.8.1. ADD.UW. 183
7.8.2. SH1ADD . 184
7.8.3. SH2ADD . 184
7.8.4. SH3ADD . 185
7.8.5. SH1ADD.UW . 186
7.8.6. SH2ADD.UW . 186
7.8.7. SH3ADD.UW . 187
7.8.8. SH4ADD . 188
7.8.9. SH4ADD.UW . 189

7.9. "Zcb" Standard Extension For Code-Size Reduction . 190
7.9.1. C.LH . 191
7.9.2. C.LHU . 191
7.9.3. C.LBU . 192
7.9.4. C.SH . 194
7.9.5. C.SB . 195

7.10. "Zcmp" Standard Extension For Code-Size Reduction . 197

7.10.1. CM.PUSH . 198
7.10.2. CM.POP . 200
7.10.3. CM.POPRET . 202
7.10.4. CM.POPRETZ. 204
7.10.5. CM.MVSA01 . 206
7.10.6. CM.MVA01S . 207

7.11. "Zcmt" Standard Extension For Code-Size Reduction. 208
7.11.1. Jump Vector Table CSR (jvt) . 208
7.11.2. Jump Vector Table CSR (jvtc) . 208
7.11.3. CM.JALT . 209
7.11.4. CM.JT . 211

8. Extension summary. 213
8.1. Zabhlrsc . 213
8.2. Zish4add . 213
8.3. Zcheripurecap . 213
8.4. Zcherihybrid . 221
8.5. Instruction Modes . 222

9. Capability Width CSR Summary . 229
9.1. Other tables . 232

Bibliography. 235

Preamble


This document is in the Development state

Expect potential changes. This draft specification is likely to evolve before it is accepted as
a standard. Implementations based on this draft may not conform to the future standard.

Preamble | Page 1

RISC-V Specification for CHERI Extensions | © RISC-V

http://riscv.org/spec-state

Copyright and license information
This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-
BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2024 by RISC-V International.

Copyright and license information | Page 2

RISC-V Specification for CHERI Extensions | © RISC-V

https://creativecommons.org/licenses/by/4.0/

Contributors
This RISC-V specification has been contributed to directly or indirectly by:

• Hesham Almatary <hesham.almatary@cl.cam.ac.uk>

• Andres Amaya Garcia <andres.amaya@codasip.com>

• John Baldwin <jhb61@cl.cam.ac.uk>

• Paul Buxton <paul.buxton@codasip.com>

• David Chisnall <david.chisnall@cl.cam.ac.uk>

• Jessica Clarke <jessica.clarke@cl.cam.ac.uk>

• Brooks Davis <brooks.davis@sri.com>

• Nathaniel Wesley Filardo <nwf20@cam.ac.uk>

• Franz A. Fuchs <franz.fuchs@cl.cam.ac.uk>

• Timothy Hutt <timothy.hutt@codasip.com>

• Alexandre Joannou <alexandre.joannou@cl.cam.ac.uk>

• Martin Kaiser <martin.kaiser@codasip.com>

• Tariq Kurd <tariq.kurd@codasip.com>

• Ben Laurie <benl@google.com>

• Marno van der Maas <mvdmaas@lowrisc.org>

• Maja Malenko <maja.malenko@codasip.com>

• A. Theodore Markettos <theo.markettos@cl.cam.ac.uk>

• David McKay <david.mckay@codasip.com>

• Jamie Melling <jamie.melling@codasip.com>

• Stuart Menefy <stuart.menefy@codasip.com>

• Simon W. Moore <simon.moore@cl.cam.ac.uk>

• Peter G. Neumann <neumann@csl.sri.com>

• Robert Norton <robert.norton@cl.cam.ac.uk>

• Alexander Richardson <alexrichardson@google.com>

• Michael Roe <mr101@cam.ac.uk>

• Peter Rugg <peter.rugg@cl.cam.ac.uk>

• Peter Sewell <peter.sewell@cl.cam.ac.uk>

• Carl Shaw <carl.shaw@codasip.com>

• Robert N. M. Watson <robert.watson@cl.cam.ac.uk>

• Toby Wenman <toby.wenman@codasip.com>

• Jonathan Woodruff <jonathan.woodruff@cl.cam.ac.uk>

Contributors | Page 3

RISC-V Specification for CHERI Extensions | © RISC-V

mailto:hesham.almatary@cl.cam.ac.uk
mailto:andres.amaya@codasip.com
mailto:jhb61@cl.cam.ac.uk
mailto:paul.buxton@codasip.com
mailto:david.chisnall@cl.cam.ac.uk
mailto:jessica.clarke@cl.cam.ac.uk
mailto:brooks.davis@sri.com
mailto:nwf20@cam.ac.uk
mailto:franz.fuchs@cl.cam.ac.uk
mailto:timothy.hutt@codasip.com
mailto:alexandre.joannou@cl.cam.ac.uk
mailto:martin.kaiser@codasip.com
mailto:tariq.kurd@codasip.com
mailto:benl@google.com
mailto:mvdmaas@lowrisc.org
mailto:maja.malenko@codasip.com
mailto:theo.markettos@cl.cam.ac.uk
mailto:david.mckay@codasip.com
mailto:jamie.melling@codasip.com
mailto:stuart.menefy@codasip.com
mailto:simon.moore@cl.cam.ac.uk
mailto:neumann@csl.sri.com
mailto:robert.norton@cl.cam.ac.uk
mailto:alexrichardson@google.com
mailto:mr101@cam.ac.uk
mailto:peter.rugg@cl.cam.ac.uk
mailto:peter.sewell@cl.cam.ac.uk
mailto:carl.shaw@codasip.com
mailto:robert.watson@cl.cam.ac.uk
mailto:toby.wenman@codasip.com
mailto:jonathan.woodruff@cl.cam.ac.uk

Chapter 1. Introduction

1.1. CHERI Concepts and Terminology
Current CPU architectures (including RISC-V) allow memory access solely by specifying and
dereferencing a memory address stored as an integer value in a register or in memory. Any accidental
or malicious action that modifies such an integer value can result in unrestricted access to the
memory that it addresses. Unfortunately, this weak memory protection model has resulted in the
majority of software security vulnerabilities present in software today.

CHERI enables software to efficiently implement fine-grained memory protection and scalable
software compartmentalization by providing strong, efficient hardware mechanisms to support
software execution and enable it to prevent and mitigate vulnerabilities.

Design goals include incremental adoptability from current ISAs and software stacks, low
performance overhead for memory protection, significant performance improvements for software
compartmentalization, formal grounding, and programmer-friendly underpinnings. It has been
designed to provide strong, non-probabilistic protection rather than depending on short random
numbers or truncated cryptographic hashes that can be leaked and reinjected, or that could be brute
forced.

CHERI enhances the CPU to add hardware memory access control. It has an additional memory access
mechanism that protects references to code and data (pointers), rather than the location of code and data
(integer addresses). This mechanism is implemented by providing a new primitive, called a capability,
that software components can use to implement strongly protected pointers within an address space.

Capabilities are unforgeable and delegatable tokens of authority that grant software the ability to
perform a specific set of operations. In CHERI, integer-based pointers can be replaced by capabilities
to provide memory access control. In this case, a memory access capability contains an integer
memory address that is extended with metadata to protect its integrity, limit how it is manipulated,
and control its use. This metadata includes:

• an out-of-band tag implementing strong integrity protection (differentiating valid and invalid
capabilities) that prevents confusion between data and capabilities

• bounds limiting the range of addresses that may be dereferenced

• permissions controlling the specific operations that may be performed

• sealing which is used to support higher-level software encapsulation

The CHERI model is motivated by the principle of least privilege, which argues that greater security can
be obtained by minimizing the privileges accessible to running software. A second guiding principle is
the principle of intentional use, which argues that, where many privileges are available to a piece of
software, the privilege to use should be explicitly named rather than implicitly selected. While CHERI
does not prevent the expression of vulnerable software designs, it provides strong vulnerability
mitigation: attackers have a more limited vocabulary for attacks, and should a vulnerability be
successfully exploited, they gain fewer rights, and have reduced access to further attack surfaces.

Protection properties for capabilities include the ISA ensuring that capabilities are always derived via
valid manipulations of other capabilities (provenance), that corrupted in-memory capabilities cannot
be dereferenced (integrity), and that rights associated with capabilities shall only ever be equal or less
permissive (monotonicity). Tampering or modifying capabilities in an attempt to elevate their rights

1.1. CHERI Concepts and Terminology | Page 4

RISC-V Specification for CHERI Extensions | © RISC-V

will yield an invalid capability as the tag will be cleared. Attempting to dereference via an invalid
capability will result in a hardware exception.

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and dereferenced
using CHERI-aware instructions that expect capability operands rather than integer addresses. On
hardware reset, initial capabilities are made available to software via capability registers. All other
capabilities will be derived from these initial valid capabilities through valid capability
transformations.

Developers can use CHERI to build fine-grained spatial and temporal memory protection into their
system software and applications and significantly improve their security.

1.2. CHERI Extensions to RISC-V
This specification is based on publicly available documentation including (Watson et al., 2023) and
(Woodruff et al., 2019). It defines the following extensions to support CHERI alongside RISC-V:

Zcheripurecap
Introduces key, minimal CHERI concepts and features to the RISC-V ISA. The resulting extended
ISA is not backwards-compatible with RISC-V.

Zcherihybrid
Extends Zcheripurecap with features to ensure that the ISA extended with CHERI allows backwards
binary compatibility with RISC-V. It also adds a mode bit in the encoding of capabilities to allow
changing the current CHERI execution mode using indirect jump instructions.

Zcheripte
CHERI extension for RISC-V harts supporting page-based virtual-memory.

Zcherivectorcap
CHERI extension for the RISC-V Vector (V) extension. It adds support for storing CHERI
capabilities in vector registers, intended for vectorised memory copying.

Zstid
Extension for supporting thread identifiers. This extension improves software
compartmentalization on CHERI systems.

 The extension names are provisional and subject to change.

Zcheripurecap is defined as the base extension which all CHERI RISC-V implementations must
support. Zcherihybrid and Zcheripte are optional extensions in addition to Zcheripurecap.

If a standard vector extension is present (indicated in this document as "V", but it could equally be one
of the subsets defined by a Zve* extension) then Zcherivectorcap may optionally be added in addition
to Zcheripurecap.

We refer to software as purecap if it utilizes CHERI capabilities for all memory accesses — including
loads, stores and instruction fetches — rather than integer addresses. Purecap software requires the
CHERI RISC-V hart to support Zcheripurecap. We refer to software as Hybrid if it uses integer
addresses or CHERI capabilities for memory accesses. Hybrid software requires the CHERI RISC-V
hart to support Zcheripurecap and Zcherihybrid.

1.2. CHERI Extensions to RISC-V | Page 5

RISC-V Specification for CHERI Extensions | © RISC-V

See Chapter 7 for compatibility with other RISC-V extensions.

1.3. Risks and Known Uncertainty
• All extensions could be divided up differently in the future, including after ratification

• The RISC-V Architecture Review Committee (ARC) are likely to update all encodings

• The ARC are likely to update all CSR addresses

• Instruction mnemonics may be renamed

◦ Any changes will affect assembly code, but assembler aliases can provide backwards
compatibility

• There is no clarity on how the new Page Table Entry (PTE) bits from Zcheripte will be
implemented

◦ The PTE bits introduce a dependency between exceptions and the stored tag bit

• There is debate on whether different permission encodings are needed for MXLEN=32 and
MXLEN=64

1.3.1. Pending Extensions

The base RISC-V ISAs, along with most extensions, have been reviewed for compatibility with CHERI.
However, the following extensions are yet to be reviewed:

• "V" Standard Extension for Vector Operations

• "H" Hypervisor Extension

• Core-Local Interrupt Controller (CLIC)

 The list above is not complete!

1.3.2. Incompatible Extensions

There are RISC-V extensions in development that may duplicate some aspects of CHERI functionality
or directly conflict with CHERI and should not be available on a CHERI-enabled hart. These include:

• RISC-V CFI specification

• "J" Pointer Masking

 The list above is not complete!

1.3. Risks and Known Uncertainty | Page 6

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 2. Anatomy of Capabilities in
Zcheripurecap
RISC-V defines variants of the base integer instruction set characterized by the width of the integer
registers and the corresponding size of the address space. There are two primary ISA variants, RV32I
and RV64I, which provide 32-bit and 64-bit address spaces respectively. The term XLEN refers to the
width of an integer register in bits (either 32 or 64). The value of XLEN may change dynamically at
run-time depending on the values written to CSRs, so we define capability behavior in terms of
MXLEN, which is the value of XLEN used in machine mode and the widest XLEN the implementation
supports.



Zcheripurecap assumes a version of the privileged architecture which defines MXLEN as
constant and requires higher privilege modes to have at least the same XLEN as lower
privilege modes; these changes are present in the current draft and expected to be part of
privileged architecture 1.13.

Zcheripurecap defines capabilities of size CLEN corresponding to 2 * MXLEN without including the
tag bit. The value of CLEN is always calculated based on MXLEN regardless of the effective XLEN
value.

2.1. Capability Encoding


CHERI v9 Note: The encoding changes eliminate the concept of the in-memory format,
and also increase precision for RV32.

The components of a capability, except the tag, are encoded as shown in Figure 1 for MXLEN=32 and
Figure 2 for MXLEN=64. Each memory location or register able to hold a capability must also store the
tag as out of band information that software cannot directly set or clear. The capability metadata is
held in the most significant bits and the address is held in the least significant bits.

31 30 29 25 24 21 20 19 18 17 12 11 10 9 2 1 0

SDP AP, M Reserved S EF L8 T[7:2] TE B[9:2] BE

Address

32

Figure 1. Capability encoding for MXLEN=32

63 57 56 53 52 51 47 46 28 27 26 25 17 16 14 13 3 2 0

Reserved SDP M AP Reserved S EF T[11:3] TE B[13:3] BE

Address

64

Figure 2. Capability encoding for MXLEN=64

Reserved bits are available for future extensions to Zcheripurecap.

2.1. Capability Encoding | Page 7

RISC-V Specification for CHERI Extensions | © RISC-V

 Reserved bits must be 0 in tagged capabilities.

2.2. Components of a Capability
Capabilities contain the software accessible fields described in this section.

2.2.1. Tag

The tag is an additional hardware managed bit added to addressable memory and registers. It is stored
separately and may be referred to as "out of band". It indicates whether a register or CLEN-aligned
memory location contains a valid capability. If the tag is set, the capability is valid and can be
dereferenced (contingent on checks such as permissions or bounds).

The capability is invalid if the tag is clear. Using an invalid capability to dereference memory or
authorize any operation gives rise to exceptions. All capabilities derived from invalid capabilities are
themselves invalid i.e. their tags are 0.

All locations in registers or memory able to hold a capability are CLEN+1 bits wide including the tag
bit. Those locations are referred as being CLEN-bit or capability wide in this specification.

2.2.2. Address

The byte-address of a memory location is encoded as MXLEN integer value.

Table 1. Address widths depending on MXLEN

MXLEN Address width

32 32

64 64

2.2.3. Architectural Permissions (AP)

Description

 CHERI v9 Note: The permissions are encoded differently in this specification.

This field encodes architecturally defined permissions of the capability. Permissions grant access
subject to the tag being set, the capability being unsealed (see Section 2.2.5), and bounds checks (see
Section 2.2.6). An operation is also contingent on requirements imposed by other RISC-V architectural
features, such as virtual memory, PMP and PMAs, even if the capability grants sufficient permissions.
The permissions currently defined in Zcheripurecap are listed below.

Read Permission (R)
Allow reading integer data from memory. Tags are always read as zero when reading integer data.

Write Permission (W)
Allow writing integer data to memory. Tags are always written as zero when writing integer data.
Every CLEN aligned word in memory has a tag, if any byte is overwritten with integer data then the
tag for all CLEN-bits is cleared.

2.2. Components of a Capability | Page 8

RISC-V Specification for CHERI Extensions | © RISC-V

Capability Permission (C)
Allow reading capability data from memory if the authorising capability also grants R-permission.
Allow writing capability data to memory if the authorising capability also grants W-permission.

Execute Permission (X)
Allow instruction execution.

Access System Registers Permission (ASR)
Allow read and write access to all privileged (M-mode and S-mode) CSRs with the following
exceptions:

1. utid, utidc, stid, stidc, mtid, mtidc all require ASR access for writing and not for reading, as well
as having a suitable privileged execution mode.

Permission Encoding

The bit width of the permissions field depends on the value of MXLEN as shown in Table 2. A 5-bit
vector encodes the permissions when MXLEN=32. For this case, the legal encodings of permissions are
listed in Table 3. Certain combinations of permissions are impractical. For example, C-permission is
superfluous when the capability does not grant either R-permission or W-permission. Therefore, it is
only possible to encode a subset of all combinations.

Table 2. Permissions widths depending on MXLEN

MXLEN AP field width Comment

32 5 Encodes some combinations of 5 permission
bits, including the M-bit if Zcherihybrid is
supported.

64 5 Separate bits for each architectural permission.

For MXLEN=32, the permissions encoding is split into four quadrants. The quadrant is taken from
bits [4:3] of the permissions encoding. The meaning for bits [2:0] are shown in Table 3 for each
quadrant.

Quadrants 2 and 3 are arranged to implicitly grant future permissions which may be added with the
existing allocated encodings. Quadrant 0 does the opposite - the encodings are allocated not to
implicitly add future permissions, and so granting future permissions will require new encodings.
Quadrant 1 encodes permissions for executable capabilities and the M-bit.

2.2. Components of a Capability | Page 9

RISC-V Specification for CHERI Extensions | © RISC-V

Table 3. Encoding of architectural permissions for MXLEN=32

Encoding[2:0] R W C X ASR Mode1 Notes

Quadrant 0: Non-capability data read/write

bit[2] - write, bit[1] - reserved (0), bit[0] - read

Reserved bits for future extensions are 0 so new permissions are not implicitly granted

0 N/A No permissions

1 ✔ N/A Data RO

2-3 reserved

4 ✔ N/A Data WO

5 ✔ ✔ N/A Data RW

6-7 reserved

Quadrant 1: Executable capabilities

bit[0] - M-bit (0-Capability Pointer Mode, 1-Integer Pointer Mode)

0-1 ✔ ✔ ✔ ✔ ✔ Mode1 Execute + ASR (see Infinite)

2-3 ✔ ✔ ✔ Mode1 Execute + Data & Cap RO

4-5 ✔ ✔ ✔ ✔ Mode1 Execute + Data & Cap RW

6-7 ✔ ✔ ✔ Mode1 Execute + Data RW

Quadrant 2: Reserved

Reserved bits for future extensions must be 1 so they are implicitly granted

0-7 reserved

Quadrant 3: Capability data read/write

[2] - write. R and C implicitly granted.

Reserved bits for future extensions must be 1 so they are implicitly granted

0-2 reserved

3 ✔ ✔ N/A Data & Cap RO

4-6 reserved

7 ✔ ✔ ✔ N/A Data & Cap RW

1 Mode (M-bit) can only be set on a tagged capability when Zcherihybrid is supported. Despite being encoded
here it is not an architectural permission.



When MXLEN=32 there are many reserved permission encodings (see Table 3). It is not
possible for a tagged capability to have one of these values since ACPERM will never
create it. It is possible for untagged capabilities to have reserved values. GCPERM will
interpret reserved values as if it were 0b00000 (no permissions). Future extensions may
assign meanings to the reserved bit patterns, in which case GCPERM is allowed to report
a non-zero value.

A 5-bit vector encodes the permissions when MXLEN=64. In this case, there is a bit per permission as
shown in Table 4. A permission is granted if its corresponding bit is set, otherwise the capability does
not grant that permission.

2.2. Components of a Capability | Page 10

RISC-V Specification for CHERI Extensions | © RISC-V

Table 4. Encoding of architectural permissions for MXLEN=64

Bit Name

0 C-permission

1 W-permission

2 R-permission

3 X-permission

4 ASR-permission

The M-bit is only assigned meaning when the implementation supports Zcherihybrid and X-
permission is set.

1. For MXLEN=64, the bit assigned to the M-bit must be zero if X-permission isn’t set.

2. For MXLEN=32, the M-bit is only encoded in quadrant 1 and does not exist in the other quadrants.

Permission Transitions

Executing ACPERM can result in sets of permissions which cannot be represented when MXLEN=32
(see Table 3) or permission combinations which are not useful for MXLEN=64, such as ASR-
permission set without X-permission.

These cases are defined to return useful minimal sets of permissions, which may be no permissions.
See ACPERM for these rules.


Future extensions may allow more combinations of permissions, especially for
MXLEN=64.

2.2.4. Software-Defined Permissions (SDP)

 CHERI v9 Note: CHERI v9 had no software-defined permissions for RV32

A bit vector used by the kernel or application programs for software-defined permissions (SDP).



Software is completely free to define the usage of these bits. For example, a program may
decide to use an SDP bit to indicate the "ownership" of objects. Therefore, a capability
grants permission to free the memory it references if that SDP bit is set because it "owns"
that object.

Table 5. SDP widths depending on MXLEN

MXLEN SDPLEN

32 2

64 4

2.2.5. Sealed (S) Bit


CHERI v9: The sealing bit is new (1-bit otype) and the old CHERI v9 otype no longer
exists. Please note that this bit indicates the result of two instructions in CHERI v9:
CSEAL for sealed capabilities and CSEALENTRY for sealed entry capabilities.

2.2. Components of a Capability | Page 11

RISC-V Specification for CHERI Extensions | © RISC-V

This bit indicates that a capability is sealed if the bit is 1 or unsealed if it is 0.

The sealing bit conflates two concepts in one bit: Sealing data capabilities and creating sealed entry
capabilities as described below.

Sealed capabilities cannot be dereferenced to access memory and are immutable such that modifying
any of its fields clears the tag of the output capability.


Sealed capabilities might be useful to software as tokens that can be passed around. The
only way of removing the seal bit of a capability is by rebuilding it via a superset capability
with CBLD. Zcheripurecap does not offer an unseal instruction.

For code capabilities, the sealing bit is used to implement immutable capabilities that describe
function entry points, known as sealed entry (sentry) capabilities. Such capabilities can be leveraged to
establish a form of control-flow integrity between mutually distrusting code. A program may jump to a
sentry capability to begin executing the instructions it references. A JALR instruction with zero offset
automatically unseals a sentry target capability and installs it in the program counter capability (see
Section 3.2). The jump-and-link instructions also seal the return address capability which serves as an
entry point the callee can return to but cannot use to authorize memory loads or stores.

2.2.6. Bounds (EF, T, TE, B, BE)

Concept


CHERI v9 Note: The bounds mantissa width is different in MXLEN=32. Also, the old IE
bit is renamed to Exponent Format (EF); the function of IE is the inverse of EF i.e. IE=0
has the same effect as EF=1.

 CHERI v9 Note: The mantissa width for RV32 was increased to 10.


CHERI v9 Note: The sense of the exponent is reversed, so an encoded value of 0
represents CAP_MAX_E, and CAP_MAX_E represents 0 from the previous specification.

The bounds encode the base and top addresses that constrain memory accesses. The capability can be
used to access any memory location A in the range base ≤ A < top. The bounds are encoded in
compressed format, so it is not possible to encode any arbitrary combination of base and top
addresses. An invalid capability with tag cleared is produced when attempting to construct a capability
that is not representable because its bounds cannot be correctly encoded. The bounds are decoded as
described in Section 2.1.

The bounds field has the following components:

• T: Value substituted into the capability’s address to decode the top address

• B: Value substituted into the capability’s address to decode the base address

• E: Exponent that determines the position at which B and T are substituted into the capability’s
address

• EF: Exponent format flag indicating the encoding for T, B and E

◦ The exponent is stored in T and B if EF=0, so it is 'internal'

◦ The exponent is zero if EF=1

The bit width of T and B are defined in terms of the mantissa width (MW) which is set depending on

2.2. Components of a Capability | Page 12

RISC-V Specification for CHERI Extensions | © RISC-V

the value of MXLEN as shown in Table 6.

Table 6. Mantissa width (MW) values depending on MXLEN

MXLEN MW

32 10

64 14

The exponent E indicates the position of T and B within the capability’s address as described in
Section 2.1. The bit width of the exponent (EW) is set depending on the value of MXLEN. The
maximum value of the exponent is calculated as follows:

CAP_MAX_E = MXLEN - MW + 2

The possible values for EW and CAP_MAX_E are shown in Table 7.

Table 7. Exponent widths and CAP_MAX_E depending on MXLEN

MXLEN EW CAP_MAX_E

32 5 24

64 6 52


The address and bounds must be representable in valid capabilities i.e. when the tag is set
(see Section 2.2.6.3).

Decoding

The metadata is encoded in a compressed format (Woodruff et al., 2019). It uses a floating point
representation to encode the bounds relative to the capability address. The base and top addresses
from the bounds are decoded as shown below.


TODO: The pseudo-code below does not have a formal notation. It is simply a place-holder
while the Sail implementation is unavailable. In this notation, / means "integer division", []
are the bit-select operators, and arithmetic is signed.



CHERI v9 Note: The IE bit from CHERI v9 is renamed EF and its value is inverted to
ensure that the NULL capability is encoded as zero without the need for CHERI v9’s in-
memory format.
When EF=1, the exponent E=0, so the address bits a[MW - 1:0] are replaced with T and B
to form the top and base addresses respectively.
When EF=0, the exponent E=CAP_MAX_E - ((MXLEN == 32) ? { L8, TE, BE } : {
TE, BE }), so the address bits a[E + MW - 1:E] are replaced with T and B to form the top
and base addresses respectively. E is computed by subtracting from the maximum possible
exponent CAP_MAX_E which can be efficiently implemented in hardware assuming that
T and B are at bit CAP_MAX_E and performing a logical bitwise shift right by E. In
contrast, CHERI v9 implementations computed the top and base addresses by assuming
that T and B are at bit 0 and performing a logical bitwise shift left by E.

EW = (MXLEN == 32) ? 5 : 6
CAP_MAX_E = MXLEN - MW + 2

If EF = 1:

2.2. Components of a Capability | Page 13

RISC-V Specification for CHERI Extensions | © RISC-V

 E = 0
 T[EW / 2 - 1:0] = TE
 B[EW / 2 - 1:0] = BE
 LCout = (T[MW - 3:0] < B[MW - 3:0]) ? 1 : 0
 LMSB = (MXLEN == 32) ? L8 : 0
else:
 E = CAP_MAX_E - ((MXLEN == 32) ? { L8, TE, BE } : { TE, BE })
 T[EW / 2 - 1:0] = 0
 B[EW / 2 - 1:0] = 0
 LCout = (T[MW - 3:EW / 2] < B[MW - 3:EW / 2]) ? 1 : 0
 LMSB = 1

Reconstituting the top two bits of T:

T[MW - 1:MW - 2] = B[MW - 1:MW - 2] + LCout + LMSB

Decoding the bounds:

top: t = { a[MXLEN - 1:E + MW] + ct, T[MW - 1:0] , {E{1'b0}} }
base: b = { a[MXLEN - 1:E + MW] + cb, B[MW - 1:0] , {E{1'b0}} }

The corrections ct and cb are calculated as as shown below using the definitions in Table 8 and Table 9.

A = a[E + MW - 1:E]
R = B - 2MW-2

Table 8. Calculation of top address correction

A < R T < R ct

false false 0

false true +1

true false -1

true true 0

Table 9. Calculation of base address correction

A < R B < R cb

false false 0

false true +1

true false -1

true true 0

The base, b, and top, t, addresses are derived from the address by substituting a[E + MW - 1:E] with B
and T respectively and clearing the lower E bits. The most significant bits of a may be adjusted up or
down by 1 using corrections cb and ct to allow encoding memory regions that span alignment
boundaries.

The EF bit selects between two cases:

1. EF = 1: The exponent is 0 for regions less than 2MW-2 bytes long. L8 is used to encode the MSB of the

2.2. Components of a Capability | Page 14

RISC-V Specification for CHERI Extensions | © RISC-V

length and is added to B along with T[MW-3:0] to form the decoded top.

2. EF = 0: The exponent is internal with E stored in the lower bits of T and B along with L8 when
MXLEN=32. E is chosen so that the most significant non-zero bit of the length of the region aligns
with T[MW - 2] in the decoded top. Therefore, the most significant two bits of T can be derived
from B using the equality T = B + L, where L[MW - 2] is known from the values of EF and E and a
carry out is implied if T[MW - 3:0] < B[MW - 3:0] since it is guaranteed that the top is larger
than the base.

The compressed bounds encoding allows the address to roam over a large representable region while
maintaining the original bounds. This is enabled by defining a lower boundary R from the out-of-
bounds values that allows us to disambiguate the location of the bounds with respect to an out-of-
bounds address. R is calculated relative to the base by subtracting 2MW-2 from B. If B, T or a[E + MW -
1:E] is less than R, it is inferred that they lie in the 2E+MW aligned region above R labelled spaceU in
Figure 3 and the corrections ct and cb are computed accordingly. The overall effect is that the address
can roam 2E+MW/4 bytes below the base address and at least 2E+MW/4 bytes above the top address while
still allowing the bounds to be correctly decoded.

Figure 3. Memory address bounds encoded within a capability

A capability has infinite bounds if its bounds cover the entire address space such that the base address
b=0 and the top address t≥2MXLEN, i.e. t is an MXLEN + 1 bit value. However, b is an MXLEN bit value
and the size mismatch introduces additional complications when decoding, so the following condition
is required to correct t for capabilities whose Representable Range wraps the edge of the address space:

if ((E < (CAP_MAX_E - 1)) & (t[MXLEN: MXLEN - 1] - b[MXLEN - 1] > 1))
 t[MXLEN] = !t[MXLEN]

That is, invert the most significant bit of t if the decoded length of the capability is larger than E.


A capability has infinite bounds if E=CAP_MAX_E and it is not malformed (see Section
2.2.6.3); this check is equivalent to b=0 and t≥2MXLEN.

2.2. Components of a Capability | Page 15

RISC-V Specification for CHERI Extensions | © RISC-V

Malformed Capability Bounds

A capability is malformed if its encoding does not describe a valid capability because its bounds cannot
be correctly decoded. The following check indicates whether a capability is malformed. enableL8 is
true when MXLEN=32 and false otherwise, indicating whether the L8 bit is available for extra
precision when EF=1.

malformedMSB = (E == CAP_MAX_E && B != 0)
 || (E == CAP_MAX_E - 1 && B[MW - 1] != 0)
malformedLSB = (E < 0) || (E == 0 && enableL8)
malformed = !EF && (malformedMSB || malformedLSB)

 The check is for malformed bounds, so it does not include reserved bits!

It is impossible for a CHERI core to generate a tagged capability with malformed bounds, or with any
reserved bits set. If such a capability exists then it must have been caused by a logic or memory fault.

Capabilities with malformed bounds:

1. Return both base and top bounds as zero, which affects instructions like GCBASE.

2. Cause certain manipulation instructions like CADDI to always clear the tag of the result.

See specific instruction pages for full details of the effect of malformed capabilities.

2.3. Special Capabilities

2.3.1. NULL Capability


CHERI v9 Note: Encoding NULL as zeros removes the need for the difference between in-
memory and architectural format.

The NULL capability is represented with 0 in all fields. This implies that it has no permissions and its
exponent E is CAP_MAX_E (52 for MXLEN=64, 24 for MXLEN=32), so its bounds cover the entire
address space such that the expanded base is 0 and top is 2MXLEN.

Table 10. Field values of the NULL capability

Field Value Comment

Tag zero Capability is not valid

SDP zeros Grants no permissions

AP zeros Grants no permissions

M zero No meaning since non-executable
(MXLEN=64 only)

S zero Unsealed

EF zero Internal exponent format

L8 zero Top address reconstruction bit
(MXLEN=32 only)

T zeros Top address bits

2.3. Special Capabilities | Page 16

RISC-V Specification for CHERI Extensions | © RISC-V

Field Value Comment

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address zeros Capability address

Reserved zeros All reserved fields

2.3.2. Infinite Capability

The Infinite capability grants all permissions while its bounds also cover the whole address space. It
includes X-permission and so includes the M-bit if Zcherihybrid is supported.

 The Infinite capability is also known as 'default', 'almighty', or 'root' capability.

Table 11. Field values of the Infinite capability

Field Value Comment

Tag one Capability is valid

SDP ones Grants all permissions

AP (MXLEN=32) 0x8/0x91 (see Table
3)

Grants all permissions

AP (MXLEN=64) 0x1F (see Table 4) Grants all permissions

S zero Unsealed

EF zero Internal exponent format

L8 zero Top address reconstruction bit (MXLEN=32
only)

T zeros Top address bits

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address zeros Capability address

Reserved zeros All reserved fields

1If Zcherihybrid is supported, then the Infinite capability must represent Integer Pointer Mode for
compatibility with standard RISC-V code. Therefore:

• For MXLEN=32, the M-bit is set to 1 in the AP field, giving the value 0x9

• For MXLEN=64, the M-bit is set to 1 in a separate M field which is not shown in the table above.

2.4. Representable Range Check

2.4. Representable Range Check | Page 17

RISC-V Specification for CHERI Extensions | © RISC-V

2.4.1. Concept

The new address, after updating the address of a capability, is within the representable range if
decompressing the capability’s bounds with the original and new addresses yields the same base and
top addresses.

In other words, given a capability with address a and the new address a' = a + x, the bounds b and t
are decoded using a and the new bounds b' and t' are decoded using a'. The new address is within the
capability’s representable range if b == b' && t == t'.

Changing a capability’s address to a value outside the representable range unconditionally clears the
capability’s tag. Examples are:

• Instructions such as CADD which include pointer arithmetic.

• The SCADDR instruction which updates the capability address field.

2.4.2. Practical Information

In the bounds encoding in this specification, the top and bottom capability bounds are formed of two
or three sections:

• Upper bits from the address

◦ This is only if the other sections do not fill the available bits (E + MW ≤ MXLEN)

• Middle bits from T and B decoded from the metadata

• Lower bits are set to zero

◦ This is only if there is an internal exponent (EF=0)

Table 12. Composition of the decoded top address bound

Configuration Upper Section (if E + MW ≤ MXLEN) Middle Section Lower Section

EF=0 address[MXLEN:E + MW] + ct T[MW - 1:0] {E{1’b0}}

EF=1, i.e. E=0 address[MXLEN:MW] + ct T[MW - 1:0]

The top described by Table 12 is MXLEN+1 bits wide to allow capabilities to span the whole address
space. The address is zero-extended by one bit. The malformed check (see Section 2.2.6.3) ensures that
the top never overflows into MXLEN+2 bits and that the base never overflows into MXLEN+1 bits.

The representable range defines the range of addresses which do not corrupt the bounds encoding. The
encoding was first introduced in Section 2.1, and is repeated in a different form in Table 12 to aid this
description.

For the address to be valid for the current bounds encoding, the value in the Upper Section of Table 12
must not change as this will change the meaning of the bounds.

This gives a range of s=2E+MW, as shown in Figure 3.

The gap between the object bounds and the bound of the representable range is always guaranteed to
be at least 1/4 of s. This is represented by R = B - 2MW-2 in Section 2.1. This gives useful guarantees,
such that if an executed instruction is in pcc bounds, then it is also guaranteed that the next linear
instruction is representable.

2.4. Representable Range Check | Page 18

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 3. Integrating Zcheripurecap
with the RISC-V Base Integer Instruction
Set
Zcheripurecap is an extension to the RISC-V ISA. The extension adds a carefully selected set of
instructions and CSRs that are sufficient to implement new security features in the ISA. To ensure
compatibility, Zcheripurecap also requires some changes to the primary base integer variants: RV32I,
providing 32-bit addresses with 64-bit capabilities, and RV64I, providing 64-bit addresses with 128-bit
capabilities. The remainder of this chapter describes these changes for both the unprivileged and
privileged components of the base integer RISC-V ISAs.


The changes described in this specification also ensure that Zcheripurecap is compatible
with RV32E.

 RV128 is not currently supported by any CHERI extension.

3.1. Memory
A hart supporting Zcheripurecap has a single byte-addressable address space of 2XLEN bytes for all
memory accesses. Each memory region capable of holding a capability also stores a tag bit for each
naturally aligned CLEN bits (e.g. 16 bytes in RV64), so that capabilities with their tag set can only be
stored in naturally aligned addresses. Tags must be atomically bound to the data they protect.

The memory address space is circular, so the byte at address 2XLEN - 1 is adjacent to the byte at address
zero. A capability’s Representable Range described in Section 2.1 is also circular, so address 0 is within
the Representable Range of a capability where address 2MXLEN - 1 is within the bounds. However, the
decoded top field of a capability is MXLEN + 1 bits wide and does not wrap, so a capability with base
2MXLEN - 1 and top 2MXLEN + 1 is not a subset of the Infinite capability and does not authorise access to
the byte at address 0. Like malformed bounds (see Section 2.2.6.3), it is impossible for a CHERI core to
generate a tagged capability with top > 2MXLEN. If such a capability exists then it must have been caused
by a logic or memory fault. Unlike malformed bounds, the top overflowing is not treated as a special
case in the architecture: normal bounds check rules should be followed.

3.2. Programmer’s Model for Zcheripurecap
For Zcheripurecap, the 32 unprivileged x registers of the base integer ISA are extended so that they are
able to hold a capability as well as renamed to c registers. Therefore, each c register is CLEN bits wide
and has an out-of-band tag bit. The x notation refers to the address field of the capability in an
unprivileged register while the c notation is used to refer to the full capability (i.e. address, metadata
and tag) held in the same unprivileged register.

The tag of the unprivileged c registers must be reset to zero. The reset values of the metadata and
address fields are UNSPECIFIED for all unprivileged c registers except c0.

Register c0 is hardwired with all bits, including the capability metadata and tag, equal to 0. In other
words, c0 is hardwired to the NULL capability.

3.1. Memory | Page 19

RISC-V Specification for CHERI Extensions | © RISC-V

3.2.1. PCC - The Program Counter Capability

An authorising capability with appropriate permissions is required to execute instructions in
Zcheripurecap. Therefore, the unprivileged program counter (pc) register is extended so that it is able
to hold a capability. The extended register is called the program counter capability (pcc). The pcc
address field is effectively the pc in the base RISC-V ISA so that the hardware automatically
increments as instructions are executed. The pcc's metadata and tag are reset to the Infinite capability
metadata and tag with the address field set to the core boot address.

The hardware performs the following checks on pcc for each instruction executed in addition to the
checks already required by the base RISC-V ISA. A failing check causes a CHERI exception.

• The tag must be set

• The capability must not be sealed

• The capability must grant execute permission

• All bytes of the instruction must be in bounds



Operations that update pcc, such as changing privilege or executing jump instructions,
unseal capabilities prior to writing. Therefore, implementations do not need to check that
that pcc is unsealed when executing each instruction. However, this property has not yet
been formally verified and may not hold if additional CHERI extensions beyond
Zcheripurecap are implemented.


It is common for implementations to not allow executing pc relative instructions, such as
AUIPC or JAL, in debug mode.

MXLEN-1 0

pcc (Metadata, WARL)
pcc (Address, WARL)

MXLEN

Figure 4. Program Counter Capability

pcc is an executable vector, so it need not be able to hold all possible invalid addresses.

3.3. Capability Instructions



CHERI v9 Note: Some instructions from the original CHERI specification were removed
to save encoding space, or because they relate to features which are not yet in this
specification. Instructions were removed if they do not harm performance and can be
emulated using other instructions.

Zcheripurecap introduces new instructions to the base RISC-V integer ISA to inspect and operate on
capabilities held in registers.

3.3.1. Capability Inspection Instructions

These instructions allow software to inspect the fields of a capability held in a c register. The output is
an integer value written to an x register representing the decoded field of the capability, such as the
permissions or bounds. These instructions do not cause exceptions.

• GCTAG: inspects the tag of the input capability. The output is 1 if the tag is set and 0 otherwise

3.3. Capability Instructions | Page 20

RISC-V Specification for CHERI Extensions | © RISC-V

• GCPERM: outputs the architectural (AP) and software-defined (SDP) permission fields of the input
capability

• GCBASE: outputs the expanded base address of the input capability

• GCLEN: outputs the length of the input capability. Length is defined as top - base. The output is
2MXLEN-1 when the capability’s length is 2MXLEN

• CRAM: outputs the nearest bounds alignment that a valid capability can represent

• GCHI: outputs the compressed capability metadata

• SCEQ: compares two capabilities including tag, metadata and address

• SCSS: tests whether the bounds and permissions of a capability are a subset of those from another
capability


GCBASE and GCLEN output 0 when a capability with malformed bounds is provided as an
input (see Section 2.2.6.3).

3.3.2. Capability Manipulation Instructions

These instructions allow software to manipulate the fields of a capability held in a c register. The
output is a capability written to a c register with its fields modified. The output capability has its tag
set to 0 if the input capability did not have a tag set, the output capability has more permissions or
larger bounds compared to the input capability, or the operation results in a capability with
malformed bounds. These instructions do not give rise to exceptions.

• SCADDR: set the address of a capability to an arbitrary address

• CADD, CADDI: increment the address of the input capability by an arbitrary offset

• SCHI: replace a capability’s metadata with an arbitrary value. The output tag is always 0

• ACPERM: bitwise AND of a mask value with a bit map representation of the architectural (AP) and
software-defined (SDP) permissions fields

• SCBNDS: set the base and length of a capability. The tag is cleared, if the encoding cannot
represent the bounds exactly

• SCBNDSR: set the base and length of a capability. The base will be rounded down and/or the
length will be rounded up if the encoding cannot represent the bounds exactly

• SENTRY: seal capability as a sentry capability

• CBLD: replace the base, top, address, permissions and mode fields of a capability with the fields
from another capability

• CMV: move a capability from a c register to another c register


CHERI v9 Note: SCBNDS and SCBNDSI perform the role of the old CSETBOUNDSEXACT
while the SCBNDSR is the old CSETBOUNDS.

3.3.3. Capability Load and Store Instructions

A load capability instruction, LC, reads CLEN bits from memory together with its tag and writes the
result to a c register. The capability authorising the memory access is provided in a c source register,
so the effective address is obtained by incrementing that capability with the sign-extended 12-bit
offset.

3.3. Capability Instructions | Page 21

RISC-V Specification for CHERI Extensions | © RISC-V

A store capability instruction, SC, writes CLEN bits and the tag in a c register to memory. The
capability authorising the memory access is provided in a c source register, so the effective address is
obtained by incrementing that capability with the sign-extended 12-bit offset.

LC and SC instructions cause CHERI exceptions if the authorising capability fails any of the following
checks:

• The tag is zero

• The capability is sealed

• At least one byte of the memory access is outside the capability’s bounds

• For loads, the read permission must be set in AP

• For stores, the write permission must be set in AP

Capability load and store instructions also cause load or store/AMO address misaligned exceptions if
the address is not naturally aligned to a CLEN boundary.

Misaligned capability loads and stores are errors. Implementations must generate exceptions for
misaligned capability loads and stores even if they allow misaligned integer loads and stores to
complete normally. Execution environments must report misaligned capability loads and stores as
errors and not attempt to emulate them using byte access. The Zicclsm extension does not affect
capability loads and stores. Software which uses capability loads and stores to copy data other than
capabilities must ensure that addresses are aligned.



Since there is only one tag per aligned CLEN bit block in memory, it is not possible to
represent a capability value complete with its tag at an address not aligned to CLEN.
Therefore, LC and SC give rise to misaligned address fault exceptions when the effective
address to access is misaligned, even if the implementation supports Zicclsm. To transfer
CLEN misaligned bits without a tag, use integer loads and stores.

For loads, the tag of the capability loaded from memory is cleared if the authorising capability does
not grant permission to read capabilities (i.e. both R-permission and C-permission must be set in AP).
For stores, the tag of the capability written to memory is cleared if the authorising capability does not
grant permission to write capabilities (i.e. both W-permission and C-permission must be set in AP).


TODO: these cases may cause exceptions in the future - we need a way for software to
discover and/or control the behaviour

3.4. Existing RISC-V Instructions
The operands or behavior of some instructions in the base RISC-V ISA changes in Zcheripurecap.

3.4.1. Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in x registers. Therefore,
these instructions only operate on the address field if the input register of the instruction holds a
capability. The output is XLEN bits written to an x register; the tag and capability metadata of that
register are zeroed.

The add upper immediate to pcc instruction (AUIPC) is used to build pcc-relative capabilities. AUIPC
forms a 32-bit offset from the 20-bit immediate and filling the lowest 12 bits with zeros. The pcc
address is then incremented by the offset and a representability check is performed so the capability’s

3.4. Existing RISC-V Instructions | Page 22

RISC-V Specification for CHERI Extensions | © RISC-V

tag is cleared if the new address is outside the pcc's Representable Range. The resulting CLEN value
along with the new tag are written to a c register.

3.4.2. Control Transfer Instructions

Control transfer instructions operate as described in the base RISC-V ISA. They also may cause
metadata updates and/or cause exceptions in addition to the base behaviour as described below.

Unconditional Jumps

JAL sign-extends the offset and adds it to the address of the jump instruction to form the target
address. The target address is installed in the address field of pcc. The capability with the address of
the instruction following the jump is sealed and written to a c register.

JALR allows unconditional, indirect jumps to a target capability. The target capability is obtained by
incrementing the capability in the c register operand by the sign-extended 12-bit offset, then setting
the least significant bit of the result to zero. The target capability is unsealed if it is a sentry with zero
offset. The capability with the address of the instruction following the jump is sealed and written to a c
register.

All jumps cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc.

JALR causes a CHERI exception when:

• The target capability’s tag is zero

• The target capability is sealed and the immediate is not zero

• A minimum sized instruction at the target capability’s address is not within bounds

• The target capability does not grant execute permission

JAL and JALR can also cause instruction address misaligned exceptions following the standard RISC-V
rules.

Conditional Branches

Branch instructions (see Conditional branches (BEQ, BNE, BLT[U], BGE[U])) encode signed offsets in
multiples of 2 bytes. The offset is sign-extended and added to the address of the branch instruction to
form the target address.

Branch instructions compare two x registers as described in the base RISC-V ISA, so the metadata and
tag values are disregarded in the comparison if the operand registers hold capabilities. If the
comparison evaluates to true, then the target address is installed in the pcc's address field. These
instructions cause CHERI exceptions when a minimum sized instruction at the target address is not
within the pcc's bounds.

3.4.3. Integer Load and Store Instructions

Integer load and store instructions transfer the amount of integer data described in the base RISC-V
ISA between the registers and memory. For example, LD and LW load 64-bit and 32-bit values
respectively from memory into an x register. However, the address operands for load and store
instructions are interpreted differently in Zcheripurecap: the capability authorising the access is in

3.4. Existing RISC-V Instructions | Page 23

RISC-V Specification for CHERI Extensions | © RISC-V

the c register operand and the memory address is given by incrementing the address of that capability
by the sign-extended 12-bit immediate offset.

All load and store instructions cause CHERI exceptions if the authorising capability fails any of the
following checks:

• The tag is set

• The capability is unsealed

• All bytes of accessed memory are inside the capability’s bounds

• For loads, the read permission must be set in AP

• For stores, the write permission must be set in AP

Integer load instructions always zero the tag and metadata of the result register.

Integer stores write zero to the tag associated with the memory locations that are naturally aligned to
CLEN. Therefore, misaligned stores may clear up to two tag bits in memory.

3.5. Zicsr, Control and Status Register (CSR)
Instructions
Zcheripurecap requires that RISC-V CSRs intended to hold addresses, like mtvec, are now able to hold
capabilities. Therefore, such registers are renamed and extended to CLEN-bit in Zcheripurecap.

Reading or writing any part of a CLEN-bit CSR may cause side effects. For example, the CSR’s tag bit
may be cleared if a new address is outside the Representable Range of a CSR capability being written.

This section describes how the CSR instructions operate on these CSRs in Zcheripurecap.

The CLEN-bit CSRs are summarised in Chapter 9.

3.5.1. CSR Instructions

 CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

All CSR instructions atomically read-modify-write a single CSR. If the CSR accessed is of capability
size then the capability’s tag, metadata and address are all accessed atomically.

When the CSRRW instruction is accessing a capability width CSR, then the source and destination
operands are c registers and it atomically swaps the values in the whole CSR with the CLEN width
register operand.

There are special rules for updating specific CLEN-wide CSRs as shown in Table 42.

When CSRRS and CSRRC instructions are accessing a capability width CSR, such as mtvecc, then the
destination operand is a c register and the source operand is an x register. Therefore, the instructions
atomically read CLEN bits from the CSR, calculate the final address using standard RISC-V behaviour
(set bits, clear bits, etc.), and that final address is written to the CSR capability’s address field. The
update typically uses the semantics of a SCADDR instruction which clears the tag if the capability is
sealed, or if the updated address is not representable. Table 42 shows the exact action taken for each
capability width CSR.

3.5. Zicsr, Control and Status Register (CSR) Instructions | Page 24

RISC-V Specification for CHERI Extensions | © RISC-V

The CSRRWI, CSRRSI and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC respectively,
when accessing a capability width CSR except that they update the capability’s address only using an
XLEN-bit value obtained by zero-extending a 5-bit unsigned immediate field.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is privileged.

3.6. Control and Status Registers (CSRs)
Zcheripurecap extends the CSRs listed in Table 13, Table 14, Table 15 and Table 16 from the base RISC-
V ISA and its extensions. The CSRs are renamed to reflect the fact that they are extended to CLEN+1
bits wide, as the x registers are renamed to c registers.

Table 13. Renamed debug-mode CSRs in Zcheripurecap

Zcheripurecap
CSR

Addres
s

Extended
CSR

Prerequisit
es

Permission
s

Description

dpcc 0x7b1 dpc Sdext DRW Debug Program Counter
Capability

dscratch0c 0x7b2 dscratch0 Sdext DRW Debug Scratch Capability 0

dscratch1c 0x7b3 dscratch1 Sdext DRW Debug Scratch Capability 1

Table 14. Renamed machine-mode CSRs in Zcheripurecap

Zcheripureca
p CSR

Addre
ss

Extended
CSR

Prerequi
sites

Permissions Description

mtvecc 0x30
5

mtvec M-mode MRW, ASR-permission Machine Trap-Vector Base-
Address Capability

mscratchc 0x34
0

mscratch M-mode MRW, ASR-permission Machine Scratch Capability

mepcc 0x341 mepc M-mode MRW, ASR-permission Machine Exception Program
Counter Capability

mtidc 0x78
0

mtid Zstid Read: M, Write: M,
ASR-permission

Machine thread ID

Table 15. Renamed supervisor-mode CSRs in Zcheripurecap

Zcheripurec
ap CSR

Addr
ess

Extended
CSR

Prerequi
sites

Permissions Description

stvecc 0x10
5

stvec S-mode SRW, ASR-permission Supervisor Trap-Vector Base-
Address Capability

sscratchc 0x140 sscratch S-mode SRW, ASR-permission Supervisor Scratch Capability

sepcc 0x141 sepc S-mode SRW, ASR-permission Supervisor Exception Program
Counter Capability

stidc 0x58
0

stid Zstid Read: S, Write: S, ASR-
permission

Supervisor thread ID

Table 16. Renamed user-mode CSRs in Zcheripurecap

3.6. Control and Status Registers (CSRs) | Page 25

RISC-V Specification for CHERI Extensions | © RISC-V

Zcheripurecap
CSR

Addre
ss

Extended
CSR

Prerequisi
tes

Permissions Description

jvtc 0x017 jvt Zcmt URW Jump Vector Table
Capability

utidc 0x480 utid Zstid Read: U, Write: U, ASR-
permission

User thread ID

3.7. Machine-Level CSRs
Zcheripurecap extends some M-mode CSRs to hold capabilities or otherwise add new functions. pcc
must grant ASR-permission to access M-mode CSRs regardless of the RISC-V privilege mode.

3.7.1. Machine Status Registers (mstatus and mstatush)

The mstatus and mstatush registers operate as described in (RISC-V, 2023) except for the SXL and
UXL fields that control the value of XLEN for S-mode and U-mode, respectively, and the MBE, SBE,
and UBE fields that control the memory system endianness for M-mode, S-mode, and U-mode,
respectively.

The encoding of the SXL and UXL fields is the same as the MXL field of misa. Only 1 and 2 are
supported values for SXL and UXL and the fields must be read-only in implementations supporting
Zcheripurecap. The effective XLEN in S-mode and U-mode are termed SXLEN and UXLEN,
respectively.

The MBE, SBE, and UBE fields determine whether explicit loads and stores performed from M-mode,
S-mode, or U-mode, respectively, are little endian (xBE = 0) or big endian (xBE = 1). MBE must be read
only. SBE and UBE must be read only and equal to MBE, if S-mode or U-mode, respectively, is
implemented, or read only zero otherwise.


A further CHERI extension, Zcherihybrid, optionally makes SXL, UXL, MBE, SBE, and UBE
writeable, so implementations that support multiple base ISAs must support both
Zcheripurecap and Zcherihybrid.

3.7.2. Machine Trap Vector Base Address Register (mtvec)

The mtvec register is as defined in (RISC-V, 2023). It is an MXLEN-bit register used as the executable
vector jumped to when taking traps into machine mode. It is extended into mtvecc.

MXLEN-1 2 1 0

BASE [MXLEN-1:2] (WARL) MODE (WARL)
MXLEN-2 2

Figure 5. Machine-mode trap-vector base-address register

3.7.3. Machine Trap Vector Base Address Capability Register (mtvecc)

The mtvecc register is a renamed extension of mtvec that holds a capability. Its reset value is the
Infinite capability. The capability represents an executable vector.

3.7. Machine-Level CSRs | Page 26

RISC-V Specification for CHERI Extensions | © RISC-V

MXLEN-1 2 1 0

Tag Metadata (WARL)

BASE [MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 6. Machine-mode trap-vector base-capability register

The metadata is WARL as not all fields need to be implemented, for example the reserved fields will
always read as zero.

When interpreting mtvecc as a capability, as for mtvec, address bits [1:0] are always zero (as they are
reused by the MODE field).

When MODE=Vectored, all synchronous exceptions into machine mode cause the pcc to be set to the
capability, whereas interrupts cause the pcc to be set to the capability with its address incremented by
four times the interrupt cause number.

Capabilities written to mtvecc also include writing the MODE field in mtvecc.address[1:0]. As a result,
a representability and sealing check is performed on the capability with the legalized (WARL) MODE
field included in the address. The tag of the capability written to mtvecc is cleared if either check fails.

Additionally, when MODE=Vectored the capability has its tag bit cleared if the capability address + 4 x
HICAUSE is not within the representable bounds. HICAUSE is the largest exception cause value that
the implementation can write to mcause when an interrupt is taken.



When MODE=Vectored, it is only required that address + 4 x HICAUSE is within
representable bounds instead of the capability’s bounds. This ensures that software is not
forced to allocate a capability granting access to more memory for the trap-vector than
necessary to handle the trap causes that actually occur in the system.

3.7.4. Machine Scratch Register (mscratch)

The mscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register
dedicated for use by machine mode. Typically, it is used to hold a pointer to a machine-mode hart-
local context space and swapped with a user register upon entry to an M-mode trap handler. mscratch
is extended into mscratchc.

MXLEN-1 0

mscratch
MXLEN

Figure 7. Machine-mode scratch register

3.7.5. Machine Scratch Capability Register (mscratchc)

The mscratchc register is a renamed extension of mscratch that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

It is not WARL, all capability fields must be implemented.

MXLEN-1 0

Tag mscratchc (Metadata)

mscratchc (Address)

MXLEN

Figure 8. Machine-mode scratch capability register

3.7. Machine-Level CSRs | Page 27

RISC-V Specification for CHERI Extensions | © RISC-V

3.7.6. Machine Exception Program Counter (mepc)

The mepc register is as defined in (RISC-V, 2023). It is extended into mepcc.

MXLEN-1 0

mepc (WARL)
MXLEN

Figure 9. Machine exception program counter register

3.7.7. Machine Exception Program Counter Capability (mepcc)

The mepcc register is a renamed extension of mepc that is able to hold a capability. Its reset value is
the Infinite capability.

MXLEN-1 0

Tag mepcc (Metadata, WARL)

mepcc (Address, WARL)

MXLEN

Figure 10. Machine exception program counter capability register

Capabilities written to mepcc must be legalised by implicitly zeroing bit mepcc[0]. Additionally, if an
implementation allows IALIGN to be either 16 or 32, then whenever IALIGN=32, the capability read
from mepcc must be legalised by implicitly zeroing bit mepcc[1]. Therefore, the capability read or
written has its tag bit cleared if the legalised address is not within the Representable Range.


When reading or writing a sealed capability in mepcc, the tag is not cleared if the original
address equals the legalized address.

When a trap is taken into M-mode, mepcc is written with the pcc including the virtual address of the
instruction that was interrupted or that encountered an exception. Otherwise, mepcc is never written
by the implementation, though it may be explicitly written by software.

As shown in Table 43, mepcc is an executable vector, so it does not need to be able to hold all possible
invalid addresses. Additionally, the capability in mepcc is unsealed when it is installed in pcc on
execution of an MRET instruction.

3.7.8. Machine Cause Register (mcause)

Zcheripurecap adds a new exception code for CHERI exceptions that mcause must be able to
represent. The new exception code and its priority are listed in Table 17 and Table 18 respectively. The
behavior and usage of mcause otherwise remains as described in (RISC-V, 2023).

MXLEN-1 MXLEN-2 0
Interrupt Exception Code (WLRL)

1 MXLEN-1

Figure 11. Machine cause register

Table 17. Machine cause register (mcause) values after trap. Entries added in Zcheripurecap are in bold

Interrupt Exception Code Description

1
1
1
1

0
1
2
3

Reserved
Supervisor software interrupt
Reserved
Machine software interrupt

3.7. Machine-Level CSRs | Page 28

RISC-V Specification for CHERI Extensions | © RISC-V

Interrupt Exception Code Description

1
1
1
1

4
5
6
7

Reserved
Supervisor timer interrupt
Reserved
Machine timer interrupt

1
1
1
1

8
9

10
11

Reserved
Supervisor external interrupt
Reserved
Machine external interrupt

1
1

12-15
≥16

Reserved
Designated for platform use

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16-23
24-27

28
29-31
32-47
48-63

≥64

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Environment call from M-mode
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
Reserved
Designated for custom use
CHERI fault
Designated for custom use
Reserved
Designated for custom use
Reserved

Table 18. Synchronous exception priority in decreasing priority order. Entries added in Zcheripurecap are in bold

Priorit
y

Exc.Cod
e

Description

Highest 3 Instruction address breakpoint

28

Prior to instruction address translation:
CHERI fault due to PCC checks (tag, execute permission, invalid address and
bounds)

12, 1
During instruction address translation:
First encountered page fault or access fault

1
With physical address for instruction:
Instruction access fault

3.7. Machine-Level CSRs | Page 29

RISC-V Specification for CHERI Extensions | © RISC-V

Priorit
y

Exc.Cod
e

Description

2
0

8,9,11
3
3

Illegal instruction
Instruction address misaligned
Environment call
Environment break
Load/store/AMO address breakpoint

28

CHERI faults due to:
PCC ASR-permission clear
Branch/jump target address checks (tag, execute permissions, invalid address
and bounds)

28

Prior to address translation for an explicit memory access:
CHERI fault due to capability checks (tag, permissions, invalid address and
bounds)

4,6

Load/store/AMO capability address misaligned
Optionally:
Load/store/AMO address misaligned

13, 15, 5,
7

During address translation for an explicit memory access:
First encountered page fault or access fault

5,7
With physical address for an explicit memory access:
Load/store/AMO access fault

Lowest 4,6
If not higher priority:
Load/store/AMO address misaligned

 The full details of the CHERI exceptions are in Table 22.

3.7.9. Machine Trap Delegation Register (medeleg)

Bit 28 of medeleg now refers to a valid exception and so can be used to delegate CHERI exceptions to
supervisor mode.

3.7.10. Machine Trap Value Register (mtval)

 CHERI v9 Note: Encoding and values changed, and generally were simplified.

The mtval register is an MXLEN-bit read-write register. When a CHERI fault is taken into M-mode,
mtval is written with additional CHERI-specific exception information with the format shown in
Figure 12 to assist software in handling the trap.

If the hardware platform specifies that no exceptions set mtval to a nonzero value, then mtval is read-
only zero.

MXLEN-1 20 19 16 15 4 3 0

Reserved TYPE Reserved CAUSE
MXLEN-20 4 12 4

Figure 12. Machine trap value register

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 19 and Table 20 respectively.

3.7. Machine-Level CSRs | Page 30

RISC-V Specification for CHERI Extensions | © RISC-V

Table 19. Encoding of TYPE field

CHERI Type Code Description

0 CHERI instruction access fault

1 CHERI data fault due to load, store or AMO

2 CHERI jump or branch fault

3-15 Reserved

Table 20. Encoding of CAUSE field

CHERI Cause Code Description

0 Tag violation

1 Seal violation

2 Permission violation

3 Invalid address violation

4 Length violation

5-15 Reserved

CHERI violations have the following order in priority:

1. Tag violation (Highest)

2. Seal violation

3. Permission violation

4. Invalid address violation

5. Length violation (Lowest)

3.8. Supervisor-Level CSRs
Zcheripurecap extends some of the existing RISC-V CSRs to be able to hold capabilities or with other
new functions. pcc must grant ASR-permission to access S-mode CSRs regardless of the RISC-V
privilege mode.

3.8.1. Supervisor Trap Vector Base Address Register (stvec)

The stvec register is as defined in (RISC-V, 2023). It is an SXLEN-bit register used as the executable
vector jumped to when taking traps into supervisor mode. It is extended into stvecc.

SXLEN-1 2 1 0

BASE (Address)[SXLEN-1:2] (WARL) MODE (WARL)
SXLEN-2 2

Figure 13. Supervisor trap-vector base-address register

3.8.2. Supervisor Trap Vector Base Address Capability Register (stvecc)

The stvec register is an SXLEN-bit WARL read/write register that holds the trap vector configuration,
consisting of a vector base address (BASE) and a vector mode (MODE). The stvecc register is a
renamed extension of stvec that is able to hold a capability. Its reset value is the Infinite capability.

3.8. Supervisor-Level CSRs | Page 31

RISC-V Specification for CHERI Extensions | © RISC-V

MXLEN-1 2 1 0

Tag Metadata (WARL)

BASE [MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 14. Supervisor trap-vector base-capability register

The handling of stvecc is otherwise identical to mtvecc, but in supervisor mode.

3.8.3. Supervisor Scratch Register (sscratch)

The sscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register dedicated
for use by supervisor mode. Typically, it is used to hold a pointer to a supervisor-mode hart-local
context space and swapped with a user register upon entry to an S-mode trap handler. sscratch is
extended into sscratchc.

SXLEN-1 0

sscratch
SXLEN

Figure 15. Supervisor-mode scratch register

3.8.4. Supervisor Scratch Capability Register (sscratchc)

The sscratchc register is a renamed extension of sscratch that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

It is not WARL, all capability fields must be implemented.

MXLEN-1 0

Tag sscratchc (Metadata)

sscratchc (Address)

MXLEN

Figure 16. Supervisor scratch capability register

3.8.5. Supervisor Exception Program Counter (sepc)

The sepc register is as defined in (RISC-V, 2023). It is extended into sepcc.

SXLEN-1 0

sepc
SXLEN

Figure 17. Supervisor exception program counter register

3.8.6. Supervisor Exception Program Counter Capability (sepcc)

The sepcc register is a renamed extension of sepc that is able to hold a capability. Its reset value is the
Infinite capability.

As shown in Table 43, sepcc is an executable vector, so it need not be able to hold all possible invalid
addresses. Additionally, the capability in sepcc is unsealed when it is installed in pcc on execution of
an SRET instruction. The handling of sepcc is otherwise identical to mepcc, but in supervisor mode.

3.8. Supervisor-Level CSRs | Page 32

RISC-V Specification for CHERI Extensions | © RISC-V

MXLEN-1 0

Tag sepcc (Metadata, WARL)

sepcc (Address, WARL)

MXLEN

Figure 18. Supervisor exception program counter capability register

3.8.7. Supervisor Cause Register (scause)

Zcheripurecap adds a new exception code for CHERI exceptions that scause must be able to represent.
The new exception code and its priority are listed in Table 21 and Table 18 respectively. The behavior
and usage of scause otherwise remains as described in (RISC-V, 2023).

SXLEN-1 SXLEN-2 0
Interrupt Exception Code (WLRL)

1 SXLEN-1

Figure 19. Supervisor cause register

Table 21. Supervisor cause register (scause) values after trap. Causes added in Zcheripurecap are in bold

Interrupt Exception Code Description

1
1
1
1
1
1
1
1

0
1

2-4
5

6-8
9

10-15
≥16

Reserved
Supervisor software interrupt
Reserved
Supervisor timer interrupt
Reserved
Supervisor external interrupt
Reserved
Designated for platform use

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10-11
12
13
14
15

16-23
24-27

28
29-31
32-47
48-63

≥64

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
Reserved
Designated for custom use
CHERI fault
Designated for custom use
Reserved
Designated for custom use
Reserved

3.8. Supervisor-Level CSRs | Page 33

RISC-V Specification for CHERI Extensions | © RISC-V

3.8.8. Supervisor Trap Value Register (stval)

The stval register is an SXLEN-bit read-write register. When a CHERI fault is taken into S-mode, stval
is written with additional CHERI-specific exception information with the format shown in Figure 20
to assist software in handling the trap.

SXLEN-1 20 19 16 15 4 3 0

Reserved TYPE Reserved CAUSE
SXLEN-20 4 12 4

Figure 20. Supervisor trap value register

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 19 and Table 20 respectively.

3.9. Unprivileged CSRs
Unlike machine and supervisor level CSRs, Zcheripurecap does not require pcc to grant ASR-
permission to access unprivileged CSRs.

3.10. CHERI Exception handling
 auth_cap is ddc for Integer Pointer Mode and cs1 for Capability Pointer Mode

Table 22. Valid CHERI exception combination description

Instructions Xcause Xtval.
TYPE

Xtval.
CAUSE

Description Check

All instructions have these exception checks first

All 28 0 0 pcc tag not(pcc.tag)

All 28 0 1 pcc seal isCapSealed(pcc)1

All 28 0 2 pcc permission not(pcc.X-permission)

All 28 0 3 pcc invalid address pcc holds an invalid address

All 28 0 4 pcc length Any byte of current instruction
out of pcc bounds

CSR/Xret additional exception check

CSR*, MRET,
SRET

28 0 2 pcc permission not(pcc.ASR-permission) when
required for CSR access or
execution of MRET/SRET

direct jumps additional exception check

JAL,
Conditional
branches (BEQ,
BNE, BLT[U],
BGE[U])

28 2 4 pcc length any byte of minimum length
instruction at target out of pcc
bounds

indirect jumps additional exception checks

indirect jumps 28 2 0 cs1 tag not(cs1.tag)

3.9. Unprivileged CSRs | Page 34

RISC-V Specification for CHERI Extensions | © RISC-V

Instructions Xcause Xtval.
TYPE

Xtval.
CAUSE

Description Check

indirect jumps 28 2 1 cs1 seal isCapSealed(cs1) and imm12 !=
0

indirect jumps 28 2 2 cs1 permission not(cs1.X-permission)

indirect jumps 28 2 3 cs1 invalid address target address is an invalid
address

indirect jumps 28 2 4 cs1 length any byte of minimum length
instruction at target out of cs1
bounds

Load additional exception checks

all loads 28 1 0 auth_cap tag not(auth_cap.tag)

all loads 28 1 1 auth_cap seal isCapSealed(auth_cap)

all loads 28 1 2 auth_cap permission not(auth_cap.R-permission)

all loads 28 1 3 auth_cap invalid
address

Address is invalid (see Invalid
address conversion)

all loads 28 1 4 auth_cap length Any byte of load access out of
auth_cap bounds

capability loads 4 N/A N/A load address misaligned Misaligned capability load

Store/atomic/cache-block-operation additional exception checks

all stores, all
atomics, all
cbos

28 1 0 auth_cap tag not(auth_cap.tag)

all stores, all
atomics, all
cbos

28 1 1 auth_cap seal isCapSealed(auth_cap)

all atomics,
CBO.INVAL*

28 1 2 auth_cap permission not(auth_cap.R-permission)

all stores, all
atomics,
CBO.INVAL*,
CBO.ZERO*

28 1 2 auth_cap permission not(auth_cap.W-permission)

CBO.CLEAN*,
CBO.FLUSH*

28 1 2 auth_cap permission not(auth_cap.R-permission) and
not(auth_cap.W-permission)

all stores, all
atomics, all
cbos

28 1 3 auth_cap invalid
address

Address is invalid (see Invalid
address conversion)

all stores, all
atomics

28 1 4 auth_cap length any byte of access out of
auth_cap bounds

CBO.ZERO*,
CBO.INVAL*

28 1 4 auth_cap length any byte of cache block out of
auth_cap bounds

3.10. CHERI Exception handling | Page 35

RISC-V Specification for CHERI Extensions | © RISC-V

Instructions Xcause Xtval.
TYPE

Xtval.
CAUSE

Description Check

CBO.CLEAN*,
CBO.FLUSH*

28 1 4 auth_cap length all bytes of cache block out of
auth_cap bounds

CBO.INVAL* 28 0 2 pcc permission not(pcc.ASR-permission)

capability
stores

6 N/A N/A capability alignment Misaligned capability store

1 This check is architecturally required, but is impossible to encounter so may not required in an
implementation.


Indirect branches are JALR, conditional branches are Conditional branches (BEQ, BNE,
BLT[U], BGE[U]).



CBO.ZERO issues as a cache block wide store. All CMOs operate on the cache block which
contains the address. Prefetches check that the capability is tagged, not sealed, has the
permission (R-permission, W-permission, X-permission) corresponding to the instruction,
and has bounds which include at least one byte of the cache block; if any check fails, the
prefetch is not performed but no exception is generated.

3.11. CHERI Exceptions and speculative execution
CHERI adds architectural guarantees that can prove to be microarchitecturally useful. Speculative-
execution attacks can — among other factors — rely on instructions that fail CHERI permission checks
not to take effect. When implementing any of the extensions proposed here, microarchitects need to
carefully consider the interaction of late-exception raising and side-channel attacks.

3.12. Physical Memory Attributes (PMA)
Typically, the entire memory space need not support tagged data. Therefore, it is desirable that harts
supporting Zcheripurecap extend PMAs with a taggable attribute indicating whether a memory region
allows storing tagged data.

Data loaded from memory regions that are not taggable will always have the tag cleared. When the
hart attempts to store data with the tag set to memory regions that are not taggable, the
implementation may:

• Cause an access fault exception

• Implicitly set the stored tag to 0

3.13. Page-Based Virtual-Memory Systems
RISC-V’s page-based virtual-memory management is generally orthogonal to CHERI. In
Zcheripurecap, capability addresses are interpreted with respect to the privilege level of the processor
in line with RISC-V’s handling of integer addresses. In machine mode, capability addresses are
generally interpreted as physical addresses; if the mstatus MPRV flag is asserted, then data accesses
(but not instruction accesses) will be interpreted as if performed by the privilege mode in mstatus’s
MPP. In supervisor and user modes, capability addresses are interpreted as dictated by the current
satp configuration: addresses are virtual if paging is enabled and physical if not.

3.11. CHERI Exceptions and speculative execution | Page 36

RISC-V Specification for CHERI Extensions | © RISC-V

Zcheripurecap requires that the pcc grants the ASR-permission to change the page-table root satp and
other virtual-memory parameters as described in Section 3.8.

3.13.1. Invalid Address Handling

When address translation is in effect and XLEN=64, the upper bits of virtual memory addresses must
match for the address to be valid:

• For Sv39, bits [63:39] must equal bit 38

• For Sv48, bits [63:48] must equal bit 47

• For Sv57, bits [63:57] must equal bit 56

RISC-V permits that CSRs holding addresses, such as mtvec and mepc (see Table 43) as well as pc,
need not hold all possible invalid addresses. Implementations may convert an invalid address into
some other invalid address that the register is capable of holding. Therefore, implementations often
support area and power optimizations by compressing invalid addresses in a lossy fashion.

Where compressed addresses are implemented, there must be also sufficient address bits to represent
all valid physical addresses. The following description is for both virtual and physical addresses.



Compressing invalid addresses allows implementations to reduce the number of flip-flops
required to hold some CSRs, such as mtvec. In CHERI, invalid addresses may also be used
to reduce the number of bits to compare during a bounds check, for example, to 40 bits if
using Sv39, assuming that this also covers all valid physical addresses.



Care needs to be taken not to truncate physical addresses to the implemented number of
physical addresses bits without also checking that the capability is still valid following the
rules in this section, as the capability bounds and representable range always cover the
entire MXLEN-bit address bits, but the address is likely not to.

However, the bounds encoding of capabilities in Zcheripurecap depends on the address value, so
implementations must not convert invalid addresses to other arbitrary invalid address in an
unrestricted manner. The remainder of this section describes how invalid address handling must be
supported in Zcheripurecap when accessing CSRs, branching and jumping, and accessing memory.

Accessing CSRs

The following procedure must be used when executing instructions, such as CSRRW, that write a
capability A to a CSR that cannot hold all invalid addresses:

1. If A’s address is invalid and A does not have infinite bounds (see Section 2.1), then A’s tag is set to
0.

2. Write the final (potentially modified) version of capability A to the CSR e.g. mtvecc, mepcc, etc.

Branches and Jumps

Control transfer instructions jump or branch to a capability A which can be:

• pcc for branches, direct jumps and any branch when in Integer Pointer Mode (see Chapter 5).

• The capability in the c input register of a jump when in Capability Pointer Mode (see Chapter 5).

The following procedure must be used when jumping or branching to the target capability A if the pcc

3.13. Page-Based Virtual-Memory Systems | Page 37

RISC-V Specification for CHERI Extensions | © RISC-V

cannot hold all invalid addresses:

1. Calculate the effective target address T of the jump or branch as required by the instruction’s
behavior.

2. If T is invalid and A does not have infinite bounds (see Section 2.1), then the instruction gives rise
to a CHERI fault; the CHERI jump or branch fault is reported in the TYPE field and invalid address
violation is reported in the CAUSE field of mtval or stval.

3. If T is invalid and A has infinite bounds (see Section 2.1), then A’s tag is unchanged and T is
written into A’s address field. Attempting to execute the instruction at address T gives rise to an
instruction access fault or page fault as is usual in RISC-V.

4. Otherwise T is valid and the instruction behaves as normal.



RISC-V harts that do not support Zcheripurecap normally raise an instruction access fault
or page fault after jumping or branching to an invalid address. Therefore, Zcheripurecap
aims to preserve that behavior to ensure that harts supporting Zcheripurecap and
Zcherihybrid are fully compatible with RISC-V harts provided that pcc and ddc are set to
the Infinite capability.

Memory Accesses

The following procedure must be used while loading or storing to memory with a capability A when
the implementation supports invalid address optimizations:

1. Calculate the effective address T of the memory access as required by the instruction’s behavior.

2. If T is invalid and A does not have infinite bounds (see Section 2.1), then the instruction gives rise
to a CHERI fault; the CHERI data fault is reported in the TYPE field and invalid address violation is
reported in the CAUSE field of mtval or stval.

3. If T is invalid and A has infinite bounds (see Section 2.1), the hart will raise an access fault or page
fault as is usual in RISC-V.

4. Otherwise T is valid and the instruction behaves as normal.

3.14. Integrating Zcheripurecap with Sdext
This section describes changes to integrate the Sdext ISA and Zcheripurecap. It must be implemented
to make external debug compatible with Zcheripurecap. Modifications to Sdext are kept to a
minimum.


This section is preliminary as no-one has yet built debug support for CHERI-RISC-V so
change is likely.

The following features, which are optional in Sdext, must be implemented for use with Zcheripurecap:

• The hartinfo register must be implemented.

• All harts which support Zcheripurecap must provide hartinfo.nscratch of at least 1 and
implement the dscratch0c register.

• All harts which support Zcheripurecap must provide hartinfo.datasize of at least 1 and
hartinfo.dataaccess of 0.

• The program buffer must be implemented, with abstractcs.progbufsize of at least 4 if

3.14. Integrating Zcheripurecap with Sdext | Page 38

RISC-V Specification for CHERI Extensions | © RISC-V

dmstatus.impebreak is 1, or at least 5 if dmstatus.impebreak is 0.



These requirements allow a debugger to read and write capabilities in integer registers
without disturbing other registers. These requirements may be relaxed if some other means
of accessing capabilities in integer registers, such as an extension of the Access Register
abstract command, is added. The following sequences demonstrate how a debugger can
read and write a capability in c1 if MXLEN is 64, hartinfo.dataaccess is 0,
hartinfo.dataaddr is 0xBF0, hartinfo.datasize is 1, dmstatus.impebreak is 0, and
abstractcs.progbufsize is 5:

Read the high MXLEN bits into data0-data1
csrrw c2, dscratch0c, c2
gchi x2, c1
csrw 0xBF0, x2
csrrw c2, dscratch0c, c2
ebreak

Read the tag into data0
csrrw c2, dscratch0c, c2
gctag x2, c1
csrw 0xBF0, x2
csrrw c2, dscratch0c, c2
ebreak

Write the high MXLEN bits from data0-data1
csrrw c2, dscratch0c, c2
csrr x2, 0xBF0
schi c1, c1, x2
csrrw c2, dscratch0c, c2
ebreak

Write the tag (if nonzero)
csrrw c2, dscratch0c, c2
csrr c2, dinfc
cbld c1, c2, c1
csrrw c2, dscratch0c, c2
ebreak

The low MXLEN bits of a capability are read and written using normal Access Register
abstract commands. If dscratch0c were known to be preserved between abstract
commands, it would be possible to remove the requirements on hartinfo.datasize,
hartinfo.dataaccess, and abstractcs.progbufsize, however there is no way to
discover the former property.

3.14.1. Debug Mode

When executing code due to an abstract command, the hart stays in debug mode and the rules
outlined in Section 4.1 of (RISC-V, 2022) apply.

3.14.2. Core Debug Registers

Zcheripurecap renames and extends debug CSRs that are designated to hold addresses to be able to
hold capabilities. The renamed debug CSRs are listed in Table 13.

The pcc must grant ASR-permission to access debug CSRs. This permission is automatically provided
when the hart enters debug mode as described in the dpcc section. The pcc metadata can only be
changed if the implementation supports executing control transfer instructions from the program

3.14. Integrating Zcheripurecap with Sdext | Page 39

RISC-V Specification for CHERI Extensions | © RISC-V

buffer — this is an optional feature according to (RISC-V, 2022).

3.14.3. Debug Program Counter (dpc)

The dpc register is as defined in (RISC-V, 2022). It is a DXLEN-bit register used as the PC saved when
entering debug mode. dpc is extended into dpcc.

DXLEN-1 0

dpc
DXLEN

Figure 21. Debug program counter

3.14.4. Debug Program Counter Capability (dpcc)

The dpcc register is a renamed extension to dpc that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN-1 0

Tag dpcc (Metadata)

dpcc (Address)

MXLEN

Figure 22. Debug program counter capability

Upon entry to debug mode, (RISC-V, 2022), does not specify how to update the PC, and says PC
relative instructions may be illegal. This concept is extended to include any instruction which reads or
updates pcc, which refers to all jumps, conditional branches and AUIPC. The exception is MODESW
which is supported if Zcherihybrid is implemented, see dinfc for details.

As a result, the value of pcc is UNSPECIFIED in debug mode according to this specification. The pcc
metadata has no architectural effect in debug mode. Therefore ASR-permission is implicitly granted
for access to all CSRs and no PCC faults are possible.

dpcc (and consequently dpc) are updated with the capability in pcc whose address field is set to the
address of the next instruction to be executed as described in (RISC-V, 2022) upon debug mode entry.

When leaving debug mode, the capability in dpcc is unsealed and written into pcc. A debugger may
write dpcc to change where the hart resumes and its mode, permissions, sealing or bounds.

3.14.5. Debug Scratch Register 0 (dscratch0)

The dscratch0 register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register
that can be used by implementations which need it. dscratch0 is extended into dscratch0c.

DXLEN-1 0

dscratch0
DXLEN

Figure 23. Debug scratch 0 register

3.14.6. Debug Scratch Register 0 Capability (dscratch0c)

The dscratch0c register is a CLEN-bit plus tag bit renamed extension to dscratch0 that is able to hold
a capability.

3.14. Integrating Zcheripurecap with Sdext | Page 40

RISC-V Specification for CHERI Extensions | © RISC-V

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN-1 0

Tag dscratch0c (Metadata)

dscratch0c (Address)

MXLEN

Figure 24. Debug scratch 0 capability register

3.14.7. Debug Scratch Register 1 (dscratch1)

The dscratch1 register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register that
can be used by implementations which need it. dscratch1 is extended into dscratch1c.

DXLEN-1 0

dscratch1
DXLEN

Figure 25. Debug scratch 1 register

3.14.8. Debug Scratch Register 1 Capability (dscratch1c)

The dscratch1c register is a CLEN-bit plus tag bit renamed extension to dscratch1 that is able to hold a
capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN-1 0

Tag dscratch1c (Metadata)

dscratch1c (Address)

MXLEN

Figure 26. Debug scratch 1 capability register

3.14.9. Debug Infinite Capability Register (dinfc)

The dinfc register is a CLEN-bit plus tag bit CSR only accessible in debug mode.

The reset value is the Infinite capability with the M-bit set to 0, regardless of whether Zcherihybrid
(see Section 5.1) is implemented:

dinfc is read/write but with no writeable fields, and so writes are ignored.


A future version of this specification may add writeable fields to allow creation of other
capabilities, if, for example, a future extension requires multiple formats for the Infinite
capability.

MXLEN-1 0

Tag dinfc (Metadata)

dinfc (Address)

MXLEN

Figure 27. Debug infinite capability register

3.14. Integrating Zcheripurecap with Sdext | Page 41

RISC-V Specification for CHERI Extensions | © RISC-V

3.15. Integrating Zcheripurecap with Sdtrig
The Sdtrig extension is generally orthogonal to Zcheripurecap. However, the priority of synchronous
exceptions and where triggers fit is adjusted as shown in Table 23.

Table 23. Synchronous exception priority (including triggers) in decreasing priority order. Entries added in
Zcheripurecap are in bold

Prior
ity

Exc.C
ode

Description Trigger

Highe
st

3
3
3
3

etrigger
icount
itrigger
mcontrol/mcontrol6 after (on
previous instruction)

3
Instruction address breakpoint mcontrol/mcontrol6 execute

address before

28

Prior to instruction address translation:
CHERI fault due to PCC checks (tag, execute
permission, invalid address and bounds)

12, 1
During instruction address translation:
First encountered page fault or access fault

1
With physical address for instruction:
Instruction access fault

3
mcontrol/mcontrol6 execute
data before

2
0

8,9,11
3

Illegal instruction
Instruction address misaligned
Environment call
Environment break

3
Load/store/AMO address breakpoint mcontrol/mcontrol6

load/store address before

3
mcontrol/mcontrol6 store
data before

28

CHERI faults due to:
PCC ASR-permission clear
Branch/jump target address checks (tag, execute
permissions, invalid address and bounds)

28

Prior to address translation for an explicit memory
access:
Load/store/AMO capability address misaligned
CHERI fault due to capability checks (tag,
permissions, invalid address and bounds)

4,6
Optionally:
Load/store/AMO address misaligned

3.15. Integrating Zcheripurecap with Sdtrig | Page 42

RISC-V Specification for CHERI Extensions | © RISC-V

Prior
ity

Exc.C
ode

Description Trigger

13, 15,
5, 7

During address translation for an explicit memory
access:
First encountered page fault or access fault

5,7
With physical address for an explicit memory access:
Load/store/AMO access fault

4,6
If not higher priority:
Load/store/AMO address misaligned

Lowe
st 3

mcontrol/mcontrol6 load data
before

3.15. Integrating Zcheripurecap with Sdtrig | Page 43

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 4. "Zcheripte" Extension for
CHERI Page-Based Virtual-Memory
Systems
CHERI is a security mechanism that is generally orthogonal to page-based virtual-memory
management as defined in (RISC-V, 2023). However, it is helpful in CHERI harts to extend RISC-V’s
virtual-memory management to control the flow of capabilities in memory at the page granularity. For
this reason, the Zcheripte extension adds new bits to RISC-V’s Page Table Entry (PTE) format.

4.1. Extending the Page Table Entry Format


CHERI v9 Note: The current proposal is provisional and is missing PTE bits when
compared to CHERI v9.

The page table entry format remains unchanged for Sv32. However, two new bits, Capability Write
(CW) and Capability Dirty (CD), are added to leaf PTEs in Sv39, Sv48 and Sv57 as shown in Figure 28,
Figure 29 and Figure 30 respectively.

63 62 61 60 59 58 54 53 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

N PBMT CD CW Reserved PPN[2] PPN[1] PPN[0] RSW D A G U X W R V

1 2 1 1 5 26 9 9 2 1 1 1 1 1 1 1 1

Figure 28. Sv39 page table entry

63 62 61 60 59 58 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT CD CW Reserved PPN RSW D A G U X W R V

1 2 1 1 5 44 2 1 1 1 1 1 1 1 1

53 37 36 28 27 19 18 10

PPN[3] PPN[2] PPN[1] PPN[0]

17 9 9 9

Figure 29. Sv48 page table entry

63 62 61 60 59 58 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT CD CW Reserved PPN RSW D A G U X W R V

1 2 1 1 5 44 2 1 1 1 1 1 1 1 1

53 46 45 37 36 28 27 19 18 10

PPN[4] PPN[3] PPN[2] PPN[1] PPN[0]

8 9 9 9 9

Figure 30. Sv57 page table entry

The CW bit indicates whether writing capabilities with tag set to the virtual page is permitted. Two
schemes to manage the CW bit are permitted:

• A store page fault exception is raised when a capability store or AMO instruction is executed, the
authorizing capability grants W-permission and C-permission, and the store address corresponds
to a virtual page with the CW bit clear.

4.1. Extending the Page Table Entry Format | Page 44

RISC-V Specification for CHERI Extensions | © RISC-V

• When a capability store or AMO instruction is executed, the implementation clears the tag bit of
the capability written to a virtual page with the CW bit clear.


The implementation of the CW bit does not force a dependency on the tag bit’s value of the
capability written, so implementations must support the CW bit.

The CD bit indicates that a capability with tag set has been written to the virtual page since the last
time the CD bit was cleared. Implementations are strongly encouraged, but not required, to support
CD. If supported, two schemes to manage the CD bit are permitted:

• A store page fault exception is raised when a capability store or AMO instruction is executed, the
authorizing capability grants W-permission and C-permission, the tag bit of the capability being
written is set and the address written corresponds to a virtual page with the CD bit clear.

• When a capability store or AMO instruction is executed, the authorizing capability grants W-
permission and C-permission, the tag bit of the capability being written is set and the store address
corresponds to a virtual page with the CD bit clear, the implementation sets the corresponding bit
in the PTE. The PTE update must be atomic with respect to other accesses to the PTE, and must
atomically check that the PTE is valid and grants sufficient permissions. Updates to the CD bit
must be exact (i.e. not speculative), and observed in program order by the local hart. Furthermore,
the PTE update must appear in the global memory order no later than the explicit memory access,
or any subsequent explicit memory access to that virtual page by the local hart. The ordering on
loads and stores provided by FENCE instructions and the acquire/release bits on atomic
instructions also orders the PTE updates associated with those loads and stores as observed by
remote harts.

The PTE update is not required to be atomic with respect to the explicit memory access that
caused the update, and the sequence is interruptible. However, the hart must not perform explicit
memory access before the PTE update is globally visible.


The behavior of the CW bit takes priority over the CD bit. Therefore, implementations must
not take action to change or raise an exception related to the CD bit when the CW bit is
clear.

4.2. Extending the Machine Environment
Configuration Register (menvcfg)
The menvcfg register is extended to allow discovering whether the implementation supports the CD
bit.

The menvcfg register operates as described in (RISC-V, 2023). Zcheripurecap adds a new enable bit as
shown in Figure 31 when XLEN=64.

63 62 61 60 8 7 6 5 4 3 1 0

STCE PBMTE CDE WPRI CBZE CBCFE CBIE WPRI FIOM

1 1 1 55 1 1 2 3 1

Figure 31. Machine environment configuration register (menvcfg)

The Capability Dirty Enable (CDE) bit controls whether the Capability Dirty (CD) bit is available for
use in S-mode address translation. When CDE=1, the CD bit is available for S-mode address
translation. When CDE=0, the implementation behaves as though the CD bit were not implemented.
If CD is not implemented, CDE is read-only zero. If CD is implemented although not configurable,

4.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 45

RISC-V Specification for CHERI Extensions | © RISC-V

CDE is read-only one.

4.2. Extending the Machine Environment Configuration Register (menvcfg) | Page 46

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 5. "Zcherihybrid" Extension for
CHERI Integer Pointer Mode
Zcherihybrid is an optional extension to Zcheripurecap. Implementations that support Zcheripurecap
and Zcherihybrid define a variant of the CHERI ISA that is fully binary compatible with existing
RISC-V code.

Key features in Zcherihybrid include a definition of a CHERI execution mode, a new unprivileged
register, additional instructions and extensions to some existing CSRs enabling CHERI features. The
remainder of this section describes these features in detail as well as their integration with the
primary base integer variants of the RISC-V ISA (RV32I and RV64I).

5.1. CHERI Execution Mode
Zcherihybrid adds CHERI execution modes to ensure backwards compatibility with the base RISC-V
ISA while saving instruction encoding space. There are two execution modes: Capability Pointer Mode
and Integer Pointer Mode. Additionally, there is a new unprivileged register: the default data capability,
ddc, that is used to authorise all data memory accesses when in Integer Pointer Mode.

The current CHERI execution mode is given by the M-bit field of pcc that is encoded as described in
Section 5.1.

The CHERI execution mode impacts the instruction set in the following ways:

• The authorising capability used to execute memory access instructions. In Integer Pointer Mode,
ddc is implicitly used. In Capability Pointer Mode, the authorising capability is supplied as an
explicit c operand register to the instruction.

• The set of instructions that is available for execution. Some instructions are available in Integer
Pointer Mode but not Capability Pointer Mode and vice-versa (see Chapter 7).


The implication is that the CHERI execution mode is always Capability Pointer Mode on
implementations that support Zcheripurecap, but not Zcherihybrid.

The CHERI execution mode is effectively an extension to some RISC-V instruction encodings. For
example, the encoding of an instruction like LW remains unchanged, but the mode indicates whether
the capability authorising the load is the register operand cs1 (Capability Pointer Mode). The mode is
shown in the assembly syntax.

The CHERI execution mode is key in providing backwards compatibility with the base RISC-V ISA.
RISC-V software is able to execute unchanged in implementations supporting both Zcheripurecap and
Zcherihybrid provided that the Infinite capability is installed in ddc and pcc (with M=0, i.e. in Integer
Pointer Mode). Setting both registers to Infinite ensures that:

• All permissions are granted

• The bounds authorise accesses to the entire address space i.e base is 0 and top is 2MXLEN

5.2. CHERI Execution Mode Encoding
Zcherihybrid adds a new CHERI execution Mode field (M) to the capability format, which is only valid

5.1. CHERI Execution Mode | Page 47

RISC-V Specification for CHERI Extensions | © RISC-V

for code capabilities, i.e. when the X-permission is set.

• When MXLEN=32, the Mode is encoded in bit 0 of quadrant 1 from the AP field even though it is
not a permission as shown in Table 3.

◦ Only quadrant 1 represents executable capabilities, and so it’s the only one which encodes the
Mode.

• When MXLEN=64, the Mode is encoded separately; a new M-bit field is added to the capability
format as shown in Table 4. The M-bit is only valid for code capabilities, otherwise the field is
reserved.


Mode is encoded with permissions for MXLEN=32, but is not a permission. It is
orthogonal to permissions as it can vary arbitrarily using SCMODE.

In both encodings:

• Mode (M)=0 indicates Capability Pointer Mode.

• Mode (M)=1 indicates Integer Pointer Mode.

The current CHERI execution mode is given by the M-bit of the pcc and the CRE bits in mseccfg,
menvcfg, and senvcfg as follows:

• The Mode is Capability Pointer Mode when the M-bit of the pcc is 0, and the effective CRE=1 for the
current privilege level

• The Mode is Integer Pointer Mode when the effective CRE=0 for the current privilege level or the
M-bit of the pcc is 1

When the M-bit can be set follows the rules defined by ACPERM.

5.2.1. Observing the CHERI Execution Mode

The effective CHERI execution mode is given by the values of some CSRs and the M-bit from the PCC.
The following code sequences demonstrate how a program can observe the current, effective CHERI
execution mode depending on the machine’s privilege mode.

In debug mode, the following sequence executed from the program buffer will write 0 for Capability
Pointer Mode and 1 for Integer Pointer Mode to x1:

csrr c1, dinfc
gctag x1, c1

In any other privilege mode, the following sequence will write 0 for Capability Pointer Mode and 1 for
Integer Pointer Mode to x1:

auipc c1, 0
gctag x1, c1

5.3. Zcherihybrid Instructions
Zcherihybrid introduces a small number of new mode-switching instructions to the base RISC-V
integer ISA, as shown in Table 37. Additionally, the behavior of some existing instructions changes

5.3. Zcherihybrid Instructions | Page 48

RISC-V Specification for CHERI Extensions | © RISC-V

depending on the current CHERI execution mode.

5.3.1. Capability Load and Store Instructions

The load and store capability instructions change behaviour depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The load capability instruction is LC. When the CHERI execution mode is Capability Pointer Mode; the
instruction behaves as described in Section 3.3. In Integer Pointer Mode, the capability authorising the
memory access is ddc, so the effective address is obtained by adding the x register to the sign-extended
offset.

The store capability instruction is SC. When the CHERI execution mode is Capability Pointer Mode; the
instruction behaves as described in Section 3.3. In Integer Pointer Mode, the capability authorising the
memory access is ddc, so the effective address is obtained by adding the x register to the sign-extended
offset.

5.3.2. Capability Manipulation Instructions

A new SCMODE instruction allows setting a capability’s CHERI execution mode to the indicated value.
The output is written to an unprivileged c register, not pcc.

5.3.3. Mode Change Instructions

A new CHERI execution mode switch (MODESW) instruction allows software to toggle the hart’s
current CHERI execution mode. If the current mode in the pcc is Integer Pointer Mode, then the mode
after executing MODESW is Capability Pointer Mode and vice-versa. This instruction effectively writes
the CHERI execution mode bit M of the capability currently installed in the pcc.

5.4. Existing RISC-V Instructions
The CHERI execution mode introduced in Zcherihybrid affects the behaviour of instructions that
have at least one memory address operand. When in Capability Pointer Mode, the address input or
output operands may include c registers. When in Integer Pointer Mode, the address input or output
operands are x/f/v registers; the tag and metadata of that register are implicitly set to 0.

5.4.1. Control Transfer Instructions

The unconditional jump instructions change behaviour depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The jump and link instruction JAL when the CHERI execution mode is Capability; behaves as
described in Section 3.4. When the mode is Integer Pointer Mode. In this case, the address of the
instruction following the jump (pc + 4) is written to an x register; that register’s tag and capability
metadata are zeroed.

The jump and link register instruction is JALR when the CHERI execution mode is Capability Pointer
Mode; behaves as described in Section 3.4. When the mode is Integer Pointer Mode. In this case, the
target address is obtained by adding the sign-extended 12-bit immediate to the x register operand, then
setting the least significant bit of the result to zero. The target address is then written to the pcc
address and a representability check is performed. The address of the instruction following the jump

5.4. Existing RISC-V Instructions | Page 49

RISC-V Specification for CHERI Extensions | © RISC-V

(pc + 4) is written to an x register; that register’s tag and capability metadata are zeroed.

Zcherihybrid allows changing the current CHERI execution mode when executing JALR from
Capability Pointer Mode.

JAL and JALR cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc. An instruction address misaligned exception is raised when the target
address is misaligned.

5.4.2. Conditional Branches

The behaviour is as shown in Section 3.4.2.2.

5.4.3. Load and Store Instructions

Load and store instructions change behavior depending on the CHERI execution mode although the
instruction’s encoding remains unchanged.

Loads and stores behave as described in Section 3.4 when in Capability Pointer Mode In Integer Pointer
Mode, the instructions behave as described in the RISC-V base ISA (i.e. without the 'C' prefix) and rely
on x operands only. The capability authorising the memory access is ddc and the memory address is
given by sign-extending the 12-bit immediate offset and adding it to the base address in the x register
operand.

The exception cases remain as described in Section 3.4 regardless of the CHERI execution mode.

5.4.4. CSR Instructions

 CHERI v9 Note: CSpecialRW is removed. Its role is assumed by CSRRW.

Zcherihybrid adds the concept of CSRs which contain a capability where the address field is visible in
Integer Pointer Mode (e.g. mtvec) and the full capability is visible in Capability Pointer Mode through a
different name (e.g. mtvecc). These are referred to as extended CSRs.

Extended CSRs have only one address; the access width is determined by the execution mode.

When CSRRW is executed on an extended CSR in Integer Pointer Mode:

• The register operand is an x register.

• Only XLEN bits from the x source are written to the capability address field.

◦ The tag and metadata are updated as specified in Table 42.

• Only XLEN bits are read from the capability address field, which are extended to MXLEN bits
according to (RISC-V, 2023) (3.1.6.2. Base ISA Control in mstatus Register) and are then written to
the destination x register.

When CSRRW is executed on an extended CSR in Capability Pointer Mode:

• The register operand is a c register.

• The full capability in the c register source is written to the CSR.

◦ The capability may require modification before the final written value is determined (see Table
42).

5.4. Existing RISC-V Instructions | Page 50

RISC-V Specification for CHERI Extensions | © RISC-V

• The full capability is written to destination c register.

When an extended CSR is used with another CSR instruction (CSRRWI, CSRRC, CSRRCI, CSRRS,
CSRRSI):

• The final address is calculated according to the standard RISC-V CSR rules (set bits, clear bits etc).

• The final address is updated as specified in Table 42 for an XLEN write.

• In Integer Pointer Mode, XLEN bits are read from the capability address field and written to an
output x register. In Capability Pointer Mode, CLEN bits are read from the CSR and written to an
output c register.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is not user-mode accessible.

Accessing a capability CSR other than an extended CSR in Integer Pointer Mode results in an illegal
instruction exception. These CSRs are listed in Table 25.

5.5. Integrating Zcherihybrid with Sdext
A new debug default data capability (dddc) CSR is added at the CSR number shown in Table 25.

Zcherihybrid optionally allows MODESW to execute in debug mode.

When entering debug mode, the core always enters Capability Pointer Mode. Implementations may
optionally support switching CHERI execution mode by executing the MODESW from the program
buffer.


CHERI v9 Note: The mode change instruction MODESW is new and the requirement to
optionally support it in debug mode is also new.

5.6. Debug Default Data Capability (dddc)
dddc is a register that is able to hold a capability. The address is shown in Table 25.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN-1 0

Tag dddc (Metadata)

dddc (Address)

MXLEN

Figure 32. Debug default data capability

Upon entry to debug mode, ddc is saved in dddc. ddc's metadata is set to the Infinite capability’s
metadata (with tag set) and ddc's address remains unchanged.

When debug mode is exited by executing DRET, the hart’s ddc is updated to the capability stored in
dddc. A debugger may write dddc to change the hart’s context.

As shown in Table 43, dddc is a data pointer, so it does not need to be able to hold all possible invalid
addresses.

5.5. Integrating Zcherihybrid with Sdext | Page 51

RISC-V Specification for CHERI Extensions | © RISC-V

5.7. Disabling CHERI Registers


CHERI v9 Note: This feature is new and different from CHERI v9’s per-privilege enable
bits.


CHERI v9 Note: The rules for excepting have been tightened here. Also, it is not possible
to disable CHERI checks completely.

Zcherihybrid includes functions to disable explicit access to CHERI registers. The following occurs
when executing code in a privilege mode that has CHERI register access disabled:

• The CHERI instructions in Section 3.3 and Section 8.5 cause illegal instruction exceptions

• Executing CSR instructions accessing any CSR added by Zcherihybrid (see Table 25) causes an
illegal instruction exception

• Executing CSR instructions accessing any extended CSR (see Section 3.6) only allows XLEN access.

• All allowed instructions execute as if the CHERI execution mode is Integer Pointer Mode. The mode
bit in pcc is treated as if it was zero while CHERI register access is disabled.

CHERI register access is disabled if XLEN in the current mode is less than MXLEN, if the endianness
in the current mode is not the reset value of mstatus.MBE, or if CRE active at the current mode
(mseccfg.CRE for M-mode, menvcfg.CRE for S-mode or senvcfg.CRE for U-mode) is 0.

 CRE is always enabled in debug mode.

mseccfg.CRE, menvcfg.CRE, and senvcfg.CRE form a single WARL field. This allows higher privilege
software to restrict lower privilege software access to CHERI register state, and the ability to enter
Capability Pointer Mode. The valid configurations are shown in Table 24.

Table 24. Xenvcfg joint WARL field

mseccfg.CR
E

menvcfg.CR
E

senvcfg.CR
E

Comment

0 read-only 0 read-only
0

mseccfg.CRE=0 completely disables CHERI access

1 0 read-only
0

menvcfg.CRE=0 disables access for privilege less than M-
mode

1 1 0/1 senvcfg.CRE can be programmed to enable/disable access for
U-mode

The WARL programming nature is extended to include UXLEN and SXLEN, as they can only be
programmed to be smaller than MXLEN if the CRE bit active for the current mode is disabled.

Disabling CHERI register access has no effect on implicit accesses or security checks. The last
capability installed in pcc and ddc before disabling CHERI register access will be used to authorise
instruction execution and data memory accesses.


Disabling CHERI register access prevents low-privileged Integer Pointer Mode software
from interfering with the correct operation of higher-privileged Integer Pointer Mode
software that do not perform ddc switches on trap entry and return.

5.7. Disabling CHERI Registers | Page 52

RISC-V Specification for CHERI Extensions | © RISC-V

5.8. Added CLEN-wide CSRs
Zcherihybrid adds the CLEN-wide CSRs shown in Table 25.

Table 25. CLEN-wide CSRs added in Zcherihybrid

CLEN
CSR

Addre
ss

Prerequisites Permissions Description

dddc 0x7bc Zcherihybrid,
Sdext

DRW Debug Default Data Capability (saved/restored on
debug mode entry/exit)

mtdc 0x74c Zcherihybrid,
M-mode

MRW, ASR-
permission

Machine Trap Data Capability (scratch register)

stdc 0x163 Zcherihybrid,
S-mode

SRW, ASR-
permission

Supervisor Trap Data Capability (scratch register)

ddc 0x416 Zcherihybrid URW User Default Data Capability

5.8.1. Machine Status Registers (mstatus and mstatush)

Zcherihybrid eliminates some restrictions for SXL and UXL imposed in Zcheripurecap to allow
implementations supporting multiple base ISAs. Namely, the SXL and UXL fields may be writable.

Setting the SXL or UXL field to a value that is not MXLEN disables most CHERI features and
instructions, as described in Section 5.7, while in that privilege mode.


If CHERI register access must be disabled in a mode for security reasons, software should
set CRE to 0 regardless of the SXL and UXL fields.

Whenever XLEN in any mode is set to a value less than MXLEN, standard RISC-V rules from (RISC-V,
2023) are followed. This means that all operations must ignore source operand register bits above the
configured XLEN, and must sign-extend results to fill all MXLEN bits in the destination register.
Similarly, pc bits above XLEN are ignored, and when the pc is written, it is sign-extended to fill
MXLEN. The integer writing rule from CHERI is followed, so that every register write also zeroes the
metadata and tag of the destination register.

However, CHERI operations and security checks will continue using the entire hardware register (i.e.
CLEN bits) to correctly decode capability bounds.

Zcherihybrid eliminates some restrictions for MBE, SBE, and UBE imposed in Zcheripurecap to allow
implementations supporting multiple endiannesses. Namely, the MBE, SBE, and UBE fields may be
writable if the corresponding privilege mode is implemented.

Setting the MBE, SBE, or UBE field to a value that is not the reset value of MBE disables most CHERI
features and instructions, as described in Section 5.7, while in that privilege mode.

5.8.2. Machine Trap Default Capability Register (mtdc)

The mtdc register is Capability Pointer Mode width read/write register dedicated for use by machine
mode. Typically, it is used to hold a data capability to a machine-mode hart-local context space, to load
into ddc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are

5.8. Added CLEN-wide CSRs | Page 53

RISC-V Specification for CHERI Extensions | © RISC-V

UNSPECIFIED.

Access to this CSR is illegal if CRE for the current mode is zero (see Section 5.7).

MXLEN-1 0

Tag mtdc (Metadata)

mtdc (Address)

MXLEN

Figure 33. Machine-mode trap data capability register

5.8.3. Machine Security Configuration Register (mseccfg)

Zcherihybrid adds a new enable bit to mseccfg as shown in Figure 34.

63 34 33 32 31 10 9 8 7 4 3 2 1 0

WPRI PMM WPRI SSEED USEED WPRI CRE RLB MMWP MML

30 2 22 1 1 4 1 1 1 1

Figure 34. Machine security configuration register (mseccfg)

The CHERI Register Enable (CRE) bit controls whether M-mode has access to capability registers and
instructions. When CRE=1, all CHERI instructions and registers can be accessed. When CRE=0,
CHERI register and instruction access is prohibited for M-mode and lower privilege levels as described
in Section 5.7.

The reset value is 0.

5.8.4. Machine Environment Configuration Register (menvcfg)

Zcherihybrid adds a new enable bit to menvcfg as shown in Figure 35.

63 62 61 29 28 27 8 7 6 5 4 3 1 0

STCE PBMTE WPRI CRE WPRI CBZE CBCFE CBIE WPRI FIOM

1 1 33 1 20 1 1 2 3 1

Figure 35. Machine environment configuration register (menvcfg)

The CHERI Register Enable (CRE) bit controls whether less privileged levels can perform explicit
accesses to CHERI registers. When CRE=1, CHERI registers can be read and written by less privileged
levels. When CRE=0, CHERI registers are disabled in less privileged levels as described in Section 5.7.
CRE is read-only zero if mseccfg.CRE=0.

The reset value is 0.

5.8.5. Supervisor Trap Default Capability Register (stdc)

The stdc register is Capability Pointer Mode width read/write register dedicated for use by supervisor
mode. Typically, it is used to hold a data capability to a supervisor-mode hart-local context space, to
load into ddc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

Access to this CSR is illegal if CRE for the current mode is zero (see Section 5.7).

5.8. Added CLEN-wide CSRs | Page 54

RISC-V Specification for CHERI Extensions | © RISC-V

MXLEN-1 0

Tag stdc (Metadata)

stdc (Address)

MXLEN

Figure 36. Supervisor trap data capability register (stdc)

5.8.6. Supervisor Environment Configuration Register (senvcfg)

The senvcfg register operates as described in the RISC-V Privileged Specification. Zcherihybrid adds a
new enable bit as shown in Figure 37.

SXLEN-1 29 28 27 8 7 6 5 4 3 1 0

WPRI CRE WPRI CBZE CBCFE CBIE WPRI FIOM

SXLEN-29 1 20 1 1 2 3 1

Figure 37. Supervisor environment configuration register (senvcfg)

The CHERI Register Enable (CRE) bit controls whether U-mode can perform explicit accesses to
CHERI registers. When CRE=1, CHERI registers can be read and written by U-mode. When CRE=0,
CHERI registers are disabled in U-mode as described.

• senvcfg.CRE is read-only-zero if:

◦ mstatus.MBE is not the reset value OR

• UXLEN<MXLEN OR

• mseccfg.CRE==0 OR

• menvcfg.CRE==0

The reset value is 0.

5.8.7. Default Data Capability (ddc)

The ddc CSR is a read-write capability register implicitly used as an operand to authorise all data
memory accesses when the current CHERI mode is Integer Pointer Mode. This register must be
readable in any implementation. Its reset value is the Infinite capability.

Access to this CSR is illegal if CRE for the current mode is zero (see Section 5.7).


CRE is not required for the implicit access required by checking memory accesses against
ddc

As shown in Table 43, ddc is a data pointer, so it does not need to be able to hold all possible invalid
addresses.

MXLEN-1 0

Tag ddc (Metadata)

ddc (Address)

MXLEN

Figure 38. Unprivileged default data capability register

5.8. Added CLEN-wide CSRs | Page 55

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 6. "Zstid Extension for Thread
Identification
Zstid is an optional extension to the RISC-V base ISA. Implementations that support Zcheripurecap
and Zstid define a variant of the CHERI ISA that allows for more efficient software
compartmentalization of CHERI programs.

6.1. Control and Status Registers (CSRs)
Zstid adds two new CSRs to implement a trusted thread identifier (TID) used in
compartmentalization. These CSRs are listed in Table 26, Table 27, and Table 28.

Table 26. Added machine-mode CSRs in Zstid

Zstid CSR Address Prerequisites Read-
Permission

Write-Permission Description

mtid 0x780 M-mode M M, ASR-
permission

Machine Thread
Identifier

Table 27. Added supervisor-mode CSRs in Zstid

Zstid
CSR

Address Prerequisite
s

Read-
Permission

Write-
Permission

Description

stid 0x580 S-mode S S, ASR-
permission

Supervisor Thread
Identifier

Table 28. Added user-mode CSRs in Zstid

Zstid CSR Address Prerequisites Read-Permission Write-Permission Description

utid 0x480 U-mode U U, ASR-permission User Thread Identifier

6.2. Machine-Level, Supervisor-Level and
Unprivileged CSRs

6.2.1. Machine Thread Identifier (mtid)

The mtid register is an MXLEN-bit read-write register. It is used to identify the current thread in
machine mode. The reset value of this register is UNSPECIFIED.

MXLEN-1 0

mtid
MXLEN

Figure 39. Supervisor thread identifier register

6.2.2. Supervisor Thread Identifier (stid)

The stid register is an SXLEN-bit read-write register. It is used to identify the current thread in
supervisor mode. The reset value of this register is UNSPECIFIED.

6.1. Control and Status Registers (CSRs) | Page 56

RISC-V Specification for CHERI Extensions | © RISC-V

SXLEN-1 0

stid
SXLEN

Figure 40. Supervisor thread identifier register

6.2.3. User Thread Identifier (utid)

The utid register is an UXLEN-bit read-write register. It is used to identify the current thread in user
mode. The reset value of this register is UNSPECIFIED.

UXLEN-1 0

utid
UXLEN

Figure 41. User thread identifier register

When Zcheripurecap is implemented, the Zstid CSRs are extended as follows:

6.2.4. Machine Thread Identifier Capability (mtidc)

The mtidc register is an CLEN-bit read-write capability register. It is the capability extension of the
mtid register. It is used to identify the current thread in machine mode. On reset the tag of mtidc will
be set to 0 and the remainder of the data is UNSPECIFIED.

MXLEN-1 0

Tag mtidc (Metadata)

mtidc (Address)

MXLEN

Figure 42. Machine thread identifier capability register

6.2.5. Supervisor Thread Identifier Capability (stidc)

The stidc register is an CLEN-bit read-write capability register. It is the capability extension of the stid
register. It is used to identify the current thread in supervisor mode. On reset the tag of stidc will be set
to 0 and the remainder of the data is UNSPECIFIED.

MXLEN-1 0

Tag stidc (Metadata)

stidc (Address)

MXLEN

Figure 43. Supervisor thread identifier capability register

6.2.6. User Thread Identifier Capability (utidc)

The utidc register is an CLEN-bit read-write capability register. It is the capability extension of the
utid register. It is used to identify the current thread in user mode. On reset the tag of utidc will be set
to 0 and the remainder of the data is UNSPECIFIED.

MXLEN-1 0

Tag utidc (Metadata)

utidc (Address)

MXLEN

Figure 44. User thread identifier capability register

6.2. Machine-Level, Supervisor-Level and Unprivileged CSRs | Page 57

RISC-V Specification for CHERI Extensions | © RISC-V

6.3. CHERI Compartmentalization
This section describes how this specification enables support for compartmentalization for CHERI
systems. Compartmentalization seeks to separate the privileges between different protection units, e.g.,
two or more libraries. Code can be separated by sentries, which allow for giving out code capabilities to
untrusted code where the untrusted code can only call the code capability, but not modify it. Sentries
can be called from different threads and thus there needs to be a way of identifying the current thread.
While identifying the current thread can be done by privileged code, e.g., the kernel, the implied
performance overhead of this is not bearable for CHERI systems with many compartments.

The RISC-V ABI includes a thread pointer (tp) register, which is not usable for the purpose of reliably
identifying the current thread because the tp register is a general purpose register and can be changed
arbitrarily by untrusted code. Therefore, this specification offers three additional CSRs that facilitate a
trusted source for the thread ID. All registers are readable from their respective privilege levels and
writeable with ASR-permission.

This extension extends mtid, stid, and utid to their respective capability variants mtidc, stidc, and
utidc. This presents software with the freedom to still use these registers with capabilities or leave the
metadata untouched and only use the registers to storage integers.

6.3. CHERI Compartmentalization | Page 58

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 7. RISC-V Instructions and
Extensions Reference
These instruction pages are for the new CHERI instructions, and some existing RISC-V instructions
where the effect of CHERI needs specific details.

For existing RISC-V instructions, note that:

1. In Integer Pointer Mode, every byte of each memory access is bounds checked against ddc

2. In Integer Pointer Mode, a minimum length instruction at the target of all indirect jumps is bounds
checked against pcc

3. In Capability Pointer Mode a minimum length instruction at the target of all indirect jumps is
bounds checked against cs1 (e.g. JALR)

4. A minimum length instruction at the taken target of all direct jumps and conditional branches is
bounds checked against pcc regardless of CHERI execution mode


Not all RISC-V extensions have been checked against CHERI. Compatible extensions will
eventually be listed in a CHERI profile.

Chapter 7. RISC-V Instructions and Extensions Reference | Page 59

RISC-V Specification for CHERI Extensions | © RISC-V

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions
for CHERI

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 60

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.1. CMV

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CMOVE.

Synopsis
Capability move

Mnemonic
cmv cd, cs1

Suggested assembly syntax
mv cd, cs1

 the suggested assembly syntax distinguishes from integer mv by operand type.

Encoding

067111214151920242531

opcodecdfunct3cs1zerofunct7

7
OP=0110011

5
dest

3
CADD=000

5
src

5
rs2=x0

7
CADD=0000110

 CMV is encoded as CADD with rs2=x0.

Description
The contents of capability register cs1 are written to capability register cd. CMV unconditionally
moves the whole capability to cd .


This instruction can propagate tagged capabilities which have malformed bounds, have
reserved bits set or have a permission field which cannot be produced by ACPERM.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 61

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.2. MODESW

 CHERI v9 Note: This page has new encodings.

Synopsis
Switch CHERI execution mode

Mnemonic
modesw

Encoding

067111214151920242531

opcodefunct5funct3funct5funct5funct7

7
OP=0110011

5
MSW=00000

3
MSW=001

5
MSW=00000

5
MSW=00000

7
MSW=0001001

Description
Toggle the hart’s current CHERI execution mode in pcc.

• If the current mode in pcc is Integer Pointer Mode (1), then the M-bit in pcc is set to Capability
Pointer Mode (0).

• If the current mode is Capability Pointer Mode (0), then the M-bit in pcc is set to Integer Pointer
Mode (1).



The effective CHERI exection mode is give by the value of some CSRs and the pcc's M-bit,
so executing MODESW does not necessarily change the machine’s current mode. The
current, effective CHERI execution mode can be observed as described in Observing the
CHERI Execution Mode.


Implementations may optionally support executing C.MODESW from the program buffer
while in debug mode.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcherihybrid

Operation

TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 62

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.3. CADDI

See CADD.

7.1.4. CADD

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: these instructions were called CINCOFFSET and CINCOFFSETIMM.

 CHERI v9 Note: the immediate format has changed

Synopsis
Capability pointer increment

Mnemonic
cadd cd, cs1, rs2
caddi cd, cs1, imm

Suggested assembly syntax
add cd, cs1, rs2
add cd, cs1, imm

 the suggested assembly syntax distinguishes from integer add by operand type.

Encoding

067111214151920242531

opcodecdfunct3cs1rs2!=x0funct7

7
OP=0110011

5
dest

3
CADD=000

5
src

5
increment

7
CADD=0000110

06711121415192031

opcodecdfunct3cs1imm

7
OP-IMM-32=0011011

5
dest

3
CADDI=010

5
src

12
imm


CADD with rs2=x0 is decoded as CMV instead, the key difference being that tagged
capabilities cannot have their tag cleared by CMV.

Description
Increment the address field of the capability cs1 and write the result to cd . The tag bit of the
output capability is 0 if cs1 did not have its tag set to 1, the incremented address is outside cs1 's
Representable Range or cs1 is sealed.

For CADD, the address is incremented by the value in rs2 .
For CADDI, the address is incremented by the immediate value imm.


This instruction sets cd.tag=0 if cs1 's bounds are malformed, or if any of the reserved
fields are set.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 63

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites
Zcheripurecap

Operation (CADD)
TODO

Operation (CADDI)
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 64

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.5. SCADDR

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CSETADDR.

Synopsis
Capability set address

Mnemonic
scaddr cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
SCADDR=001

5
src

5
address

7
SCADDR=0000110

Description
Set the address field of capability cs1 to rs2 and write the output capability to cd. The tag bit of the
output capability is 0 if cs1 did not have its tag set to 1, rs2 is outside the Representable Range of
cs1 or if cs1 is sealed.


This instruction sets cd.tag=0 if cs1 's bounds are malformed, or if any of the reserved
fields are set.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 65

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.6. ACPERM


CHERI v9 Note: The implementation of this instruction changes because the permission
fields are encoded differently in the new capability format.

 CHERI v9 Note: this instruction was called CANDPERM.

 CHERI v9 Note: This page has new encodings.

Synopsis
Mask capability permissions

Mnemonics
acperm cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
ACPERM=010

5
src

5
mask

7
ACPERM=0000110

Description

XLEN-1 SDPLEN+15 16 4 3 2 1 0

Reserved SDP Reserved ASR X R W C
XLEN-SDPLEN-16 SDPLEN 11 1 1 1 1 1

ACPERM performs the following operations:

1. Convert the AP and SDP fields of capability cs1 into the format shown above

a. SDPLEN is defined in Table 5

2. Calculate the bitwise AND of the bit field with the mask rs2.

3. If the AP and M-bit field in cs1 could not have been produced by ACPERM then clear all AP
permissions and the M-bit, and skip the next step

4. Clear AP permissions as required to meet the rules below.

5. Encode the AP permissions for MXLEN=32 according to Table 3.

6. Copy cs1 to cd, and update the AP and SDP fields with the newly calculated versions.

7. Set cd.tag=0 if cs1 is sealed or if any reserved fields of cs1 are set.

Some combinations of permissions cannot be encoded for MXLEN=32, and are not useful when
MXLEN=64. These cases are defined to return useful minimal sets of permissions, which may be
no permissions.


Future extensions may allow more combinations of permissions, especially for
MXLEN=64.

The common rules are:

1. ASR-permission cannot be set without X-permission being set

a. Clear ASR-permission unless X-permission is set

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 66

RISC-V Specification for CHERI Extensions | © RISC-V

2. C-permission cannot be set without at least one of R-permission or W-permission being set.

a. Clear C-permission unless R-permission or W-permission are set.

3. M-bit cannot be set without X-permission being set

a. Clear M-bit unless X-permission is set

 The combination of X-permission clear and M-bit set is reserved for future extensions.

The MXLEN=32 additional rules are:

1. Clear ASR-permission unless all other permissions are set

2. Clear C-permission and X-permission if R-permission is not set

3. Clear X-permission if X-permission and R-permission are set, but C-permission and W-permission
are not set.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO: Sail does not have the new encoding of the permissions field.

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 67

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.7. SCMODE


CHERI v9 Note: This instruction used to be CSETFLAGS (and previously CSETMODE in
this document).

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability set CHERI execution mode

Mnemonic
scmode cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

7
SCMODE=111

5
src1

5
src2

7
SCMODE=0000110

Description
Copy cs1 to cd. Clear cd.tag if cs1 is sealed. Update the M-bit of cd to the least significant bit of
rs2 if the two following conditions are met, otherwise do not update it:

1. X-permission is set

2. The existing permissions can be produced by ACPERM

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcherihybrid

Operation

TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 68

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.8. SCHI

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CSETHIGH.

Synopsis
Capability set metadata

Mnemonic
schi cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
SCHI=011

5
src

5
metadata

7
SCHI=0000110

Description
Copy cs1 to cd , replace the capability metadata (i.e. bits [CLEN-1:MXLEN]) with rs2 and set cd.tag
to 0.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 69

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.9. SCEQ

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CSETEQUALEXACT.

Synopsis
Set if Capabilities are EQual

Mnemonic
sceq rd, cs1, cs2

Encoding

067111214151920242531

opcoderdfunct3cs1cs2funct7

7
OP=0110011

5
dest

3
SCEQ=100

5
src1

5
src2

7
SCEQ=0000110

Description
rd is set to 1 if all bits (i.e. CLEN bits and the tag) of capabilities cs1 and cs2 are equal, otherwise rd
is set to 0.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 70

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.10. SENTRY

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CSEALENTRY.

Synopsis
Seal capability as sealed entry.

Mnemonic
sentry cd, cs1

Encoding

067111214151920242531

opcodecdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
SENTRY=000

5
src

5
SENTRY=01000

7
SENTRY=0001000

Description
Capability cd is written with the capability in cs1 with its seal bit set to 1. Attempting to seal an
already sealed capability will lead to the tag of cd being set to 0.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 71

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.11. SCSS

 CHERI v9 Note: this instruction was called CTESTSUBSET.

 CHERI v9 Note: this instruction does not use ddc if cs1==0

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability test subset

Mnemonic
scss rd, cs1, cs2

Encoding

067111214151920242531

opcoderdfunct3cs1cs2funct7

7
OP=0110011

5
dest

3
SCSS=110

5
src1

5
src2

7
SCSS=0000110

Description
rd is set to 1 if the tag of capabilities cs1 and cs2 are equal and the bounds and permissions of cs2
are a subset of those of cs1.

If either cs1 or cs2:

1. Have bounds which are malformed, or

2. Have any bits set in reserved fields, or

3. Have permissions that could not have been legally produced by ACPERM

then the instruction returns zero.


The implementation of this instruction is similar to CBLD, although SCSS does not include
the sealed bit in the check.

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 72

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.12. CBLD

 CHERI v9 Note: CBLD does not use ddc if cs1==0

 CHERI v9 Note: this instruction was called CBUILDCAP.

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability build

Mnemonic
cbld cd, cs1, cs2

Encoding

067111214151920242531

opcodecdfunct3cs1cs2funct7

7
OP=0110011

5
dest

3
CBLD=101

5
src1

5
src2

7
CBLD=0000110

Description
Copy cs2 to cd and set cd.tag to 1 if

1. cs1.tag is set, and

2. cs1 's bounds are not malformed, and all reserved fields are zero, and

3. cs1 's permissions could have been legally produced by ACPERM, and

4. cs1 is not sealed, and

5. cs2 's permissions and bounds are equal to or a subset of cs1 's, and

6. cs2 's bounds are not malformed, and all reserved fields are zero, and

7. cs2 's permissions could have been legally produced by ACPERM, and

8. All reserved bits in cs2 's metadata are 0;

Otherwise, copy cs2 to cd and clear cd 's tag.

CBLD is typically used alongside SCHI to build capabilities from integer values.


When cs1 is c0 this will copy cs2 to cd and clear cd.tag. However this may change in
future extensions, and so software should not assume cs1==0 to be a pseudo instruction
for tag clearing.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Simplified Operation TODO not debugged much easier to read than the existing SAIL

let cs1_val = C(cs1);
let cs2_val = C(cs2) [with tag=1];

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 73

RISC-V Specification for CHERI Extensions | © RISC-V

//isCapSubset includes derivability checks on both operands
let subset = isCapSubset(cs1_val, cs2_val);
//Clear cd.tag if cs2 isn't a subset of cs1, or if
//cs1 is untagged or sealed, or if either is underivable
C(cd) = clearTagIf(cs2_val, not(subset) |
 not(cs1_val.tag) |
 isCapSealed(cs1_val));
RETIRE_SUCCESS

Operation
TODO: Original Sail looks at otype field, etc that don’t exist

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 74

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.13. GCTAG

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CGETTAG.

Synopsis
Capability get tag

Mnemonic
gctag rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCTAG=000

5
src

5
GCTAG=00000

7
GCTAG=0001000

Description
Zero extend the value of cs1.tag and write the result to rd.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 75

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.14. GCPERM

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CGETPERM.

Synopsis
Capability get permissions

Mnemonic
gcperm rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCPERM=000

5
src

5
GCPERM=00001

7
GCPERM=0001000

Description
If MXLEN=32 unpack permissions from the format in Table 3.

Convert the unpacked AP permissions, and the SDP fields of capability cs1 into a bit field, as
shown below, and write the result to rd. A bit set to 1 in the bit field indicates that cs1 grants the
corresponding permission.

If the AP field cannot be produced by ACPERM then all architectural permission bits in rd are set
to 0.

XLEN-1 SDPLEN+15 16 4 3 2 1 0

Reserved SDP Reserved ASR X R W C
XLEN-SDPLEN-16 SDPLEN 11 1 1 1 1 1

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO: The encoding of permissions changed.

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 76

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.15. GCHI

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CGETHIGH.

Synopsis
Capability get metadata

Mnemonic
gchi rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCHI=000

5
src

5
GCHI=00100

7
GCHI=0001000

Description
Copy the metadata (bits [CLEN-1:MXLEN]) of capability cs1 into rd.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 77

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.16. GCBASE

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CGETBASE.

Synopsis
Capability get base address

Mnemonic
gcbase rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCBASE=000

5
src

5
GCBASE=00101

7
GCBASE=0001000

Description
Decode the base integer address from cs1 's bounds and write the result to rd. It is not required that
the input capability cs1 has its tag set to 1.


If cs1 's bounds are malformed then the bounds decode as zero, which causes this
instruction to return zero.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 78

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.17. GCLEN

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: this instruction was called CGETLEN.

Synopsis
Capability get length

Mnemonic
gclen rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCLEN=000

5
src

5
GCLEN=00110

7
GCLEN=0001000

Description
Calculate the length of cs1 's bounds and write the result in rd. The length is defined as the
difference between the decoded bounds' top and base addresses i.e. top - base. It is not required
that the input capability cs1 has its tag set to 1. GCLEN outputs 0 if cs1 's bounds are malformed
(see Section 2.2.6.3), and 2MXLEN-1 if the length of cs1 is 2MXLEN.


If cs1 's bounds are malformed then the bounds decode as zero, which causes this
instruction to return zero.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 79

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.18. SCBNDSI

See SCBNDS.

7.1.19. SCBNDS

 CHERI v9 Note: SCBNDS was called CSETBOUNDSEXACT.

 CHERI v9 Note: SCBNDSI would have been CSETBOUNDSEXACTIMM if it had existed.

 CHERI v9 Note: This page has new encodings.

 CHERI v9 Note: the immediate format has changed

Synopsis
Capability set bounds

Mnemonics
scbnds cd, cs1, rs2
scbndsi cd, cs1, uimm

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
SCBNDS=000

5
src1

5
src2

7
SCBNDS=0000111

06711121415192024252631

opcodecdfunct3cs1uimmsfunct6

7
OP-IMM=0010011

5
dest

3
SCBNDSI=101

5
src

5
uimm

1
scaled

6
SCBNDSI
=000001

Description
Capability register cd is set to capability register cs1 with the base address of its bounds replaced
with the value of cs1.address and the length of its bounds set to rs2 (or imm). If the resulting
capability cannot be represented exactly then set cd.tag to 0. In all cases, cd.tag is set to 0 if its
bounds exceed cs1 's bounds, cs1 's tag is 0 or cs1 is sealed.

SCBNDSI uses the s bit to scale the immediate by 4 places

immediate = ZeroExtend(s ? uimm<<4 : uimm)


This instruction sets cd.tag=0 if cs1 's bounds are malformed, or if any of the reserved
fields are set.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 80

RISC-V Specification for CHERI Extensions | © RISC-V

Operation for SCBNDS
TODO

Operation for SCBNDSI
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 81

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.20. SCBNDSR

 CHERI v9 Note: This instruction was called CSETBOUNDS.

 CHERI v9 Note: This page has new encodings.

Synopsis
Capability set bounds, rounding up if necessary

Mnemonic
scbndsr cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
SCBNDSR=001

5
src1

5
src2

7
SCBNDSR=0000111

Description
Capability register cd is set to capability register cs1 with the base address of its bounds replaced
with the value of cs1.address field and the length of its bounds set to rs2. The base is rounded
down and the length is rounded up by the smallest amount needed to form a representable
capability covering the requested bounds. In all cases, cd.tag is set to 0 if its bounds exceed cs1 's
bounds, cs1 's tag is 0 or cs1 is sealed.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).


This instruction sets cd.tag=0 if cs1 's bounds are malformed, or if any of the reserved
fields are set.

Prerequisites
Zcheripurecap

Operation for SCBNDSR
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 82

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.21. CRAM

Synopsis
Get Capability Representable Alignment Mask (CRAM)

Mnemonic
cram rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
CRAM=000

5
src

5
CRAM=00111

7
CRAM=0001000

Description
Integer register rd is set to a mask that can be used to round addresses down to a value that is
sufficiently aligned to set exact bounds for the nearest representable length of rs1.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
Zcheripurecap

Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 83

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.22. LC

 CHERI v9 Note: This page has new encodings.

 The RV64 encoding is intended to also allocate the encoding for LQ for RV128.

Synopsis
Load capability

Capability Pointer Mode Mnemonic
lc cd, offset(cs1)

Integer Pointer Mode Mnemonic
lc cd, offset(rs1)

 These instructions have different encodings for RV64 and RV32.

Encoding

06711121415192031

opcodecdfunct3rs1/cs1imm[11:0]

7
MISCMEM=0001111

LOAD=0000011

5
dest

3
rv64: LC=100
rv32: LC=011

5
base

12
offset[11:0]

Capability Pointer Mode Description
Load a CLEN+1 bit value from memory and writes it to cd. The capability in cs1 authorizes the
operation. The effective address of the memory access is obtained by adding the address of cs1 to
the sign-extended 12-bit offset. The tag value written to cd is 0 if the tag of the memory location
loaded is 0 or cs1 does not grant C-permission.

Integer Pointer Mode Description
Loads a CLEN+1 bit value from memory and writes it to cd. The capability authorising the
operation is ddc. The effective address of the memory access is obtained by adding rs1 to the sign-
extended 12-bit offset. The tag value written to cd is 0 if the tag of the memory location loaded is 0
or ddc does not grant C-permission.


This instruction can propagate tagged capabilities which have malformed bounds, have
reserved bits set or have a permission field which cannot be produced by ACPERM.

Exceptions
Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 84

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites for Capability Pointer Mode
Zcheripurecap

Prerequisites for Integer Pointer Mode
Zcherihybrid

LC Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 85

RISC-V Specification for CHERI Extensions | © RISC-V

7.1.23. SC

 The RV64 encoding is intended to also allocate the encoding for SQ for RV128.

Synopsis
Store capability

Capability Pointer Mode Mnemonic
sc cs2, offset(cs1)

Integer Pointer Mode Mnemonic
sc cs2, offset(rs1)

 These instructions have different encodings for RV64 and RV32.

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1/cs1cs2imm[11:5]

7
STORE=0100011

5
offset[4:0]

3
rv64: SC=100
rv32: SC=011

5
base

5
src

7
offset[11:5]

Capability Pointer Mode Description
Store the CLEN+1 bit value in cs2 to memory. The capability in cs1 authorizes the operation. The
effective address of the memory access is obtained by adding the address of cs1 to the sign-
extended 12-bit offset. The capability written to memory has the tag set to 0 if the tag of cs2 is 0 or
cs1 does not grant C-permission.

Integer Pointer Mode Description
Store the CLEN+1 bit value in cs2 to memory. The capability authorising the operation is ddc. The
effective address of the memory access is obtained by adding rs1 to the sign-extended 12-bit offset.
The capability written to memory has the tag set to 0 if cs2 's tag is 0 or ddc does not grant C-
permission.


This instruction can propagate tagged capabilities which have malformed bounds, have
reserved bits set or have a permission field which cannot be produced by ACPERM.

Exceptions
Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 86

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites for Capability Pointer Mode
Zcheripurecap

Prerequisites for Integer Pointer Mode
Zcherihybrid

SC Operation
TODO

7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 87

RISC-V Specification for CHERI Extensions | © RISC-V

7.2. RV32I/E and RV64I/E Base Integer Instruction
Sets

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 88

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.1. AUIPC

Synopsis
Add upper immediate to pc/pcc

Capability Pointer Mode Mnemonic
auipc cd, imm

Integer Pointer Mode Mnemonic
auipc rd, imm

Encoding

067111231

opcodecd/rdimm[31:12]

7
AUIPC=0010111

5
dest

20
U-immediate[31:12]

Capability Pointer Mode Description
Form a 32-bit offset from the 20-bit immediate filling the lowest 12 bits with zeros. Increment the
address of the AUIPC instruction’s pcc by the 32-bit offset, then write the output capability to cd.
The tag bit of the output capability is 0 if the incremented address is outside the pcc's
Representable Range.

Integer Pointer Mode Description
Form a 32-bit offset from the immediate, filling in the lowest 12 bits with zeros, adds this offset to
the address of the AUIPC instruction, then places the result in register rd.


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode
Zcheripurecap

Prerequisites for Integer Pointer Mode
Zcherihybrid

Operation for AUIPC
TODO

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 89

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.2. BEQ, BNE, BLT[U], BGE[U]

Synopsis
Conditional branches (BEQ, BNE, BLT[U], BGE[U])

Mnemonics
beq rs1, rs2, imm
bne rs1, rs2, imm
blt rs1, rs2, imm
bge rs1, rs2, imm
bltu rs1, rs2, imm
bgeu rs1, rs2, imm

Encoding

067111214151920242531

opcodeimm[4:1|11]funct3rs1rs2imm[12|10:5]

7
BRANCH=1100011

5
offset[4:1|11]

3
BEQ=000
BNE=001
BLT=100
BGE=101
BLTU=110
BGEU=111

5
src1

5
src2

7
offset[12|10:5]

Description
Compare two integer registers rs1 and rs2 according to the indicated opcode as described in
(RISC-V, 2023). The 12-bit immediate encodes signed offsets in multiples of 2 bytes. The offset is
sign-extended and added to the address of the branch instruction to give the target address. Then
the target address is written into the address field of pcc.

Exceptions
When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of
mtval or stval:


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Operation
TODO

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 90

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.3. JR

Expands to JALR following the expansion rule from (RISC-V, 2023).

7.2.4. JALR

Synopsis
Jump and link register

Capability Pointer Mode Mnemonic
jalr cd, cs1, offset

Integer Pointer Mode Mnemonic
jalr rd, rs1, offset

Encoding

06711121415192031

opcodecd/rdfunct3cs1/rs1imm[11:0]

7
JALR=1100111

5
dest

3
0

5
base

12
offset[11:0]

Capability Pointer Mode Description
JALR allows unconditional, indirect jumps to a target capability. The target capability is unsealed if
the offset is zero. The target address is obtained by adding the sign-extended 12-bit offset to
cs1.address, then setting the least-significant bit of the result to zero. The target capability may
have Invalid address conversion performed and is then installed in pcc. The pcc of the next
instruction following the jump is sealed and written to cd.

Integer Pointer Mode Description
JALR allows unconditional, indirect jumps to a target address. The target address is obtained by
adding the sign-extended 12-bit immediate to rs1, then setting the least-significant bit of the result
to zero. The target address is installed in the address field of the pcc which may require Invalid
address conversion. The address of the instruction following the jump is written to rd.

Exceptions
When these instructions cause CHERI exceptions, CHERI jump or branch fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE Integer
Pointer
Mode

Capability
Pointer Mode

Reason

Tag violation ✔ cs1 has tag set to 0, or has any reserved bits set

Seal violation ✔ cs1 is sealed and the immediate is not 0

Permission
violation

✔ cs1 does not grant X-permission, or the AP field could
not have been produced by ACPERM

Invalid
address
violation

✔ ✔ The target address is invalid according to Invalid address
conversion

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 91

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Integer
Pointer
Mode

Capability
Pointer Mode

Reason

Length
violation

✔ ✔ Minimum length instruction is not within the target
capability’s bounds, which will fail if cs1 has malformed
bounds in Capability Pointer Mode.


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites Capability Pointer Mode
Zcheripurecap

Prerequisites Integer Pointer Mode
Zcherihybrid

Operation
TBD

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 92

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.5. J

Expands to JAL following the expansion rule from (RISC-V, 2023).

7.2.6. JAL

Synopsis
Jump and link

Capability Pointer Mode Mnemonic
jal cd, offset

Integer Pointer Mode Mnemonic
jal rd, offset

Encoding

06711121920213031

opcodecd/rdimm[19:12][11]imm[10:1][20]

7
JAL=1101111

5
dest

8
offset[19:12]

110
offset[20:1]

1

Capability Pointer Mode Description
JAL’s immediate encodes a signed offset in multiple of 2 bytes. The pcc is incremented by the sign-
extended offset to form the jump target capability. The target capability is written to pcc. The pcc of
the next instruction following the jump is sealed and written to cd.

Integer Pointer Mode Description
JAL’s immediate encodes a signed offset in multiple of 2 bytes. The sign-extended offset is added to
the pcc's address to form the target address which is written to the pcc's address field. The address
of the instruction following the jump is written to rd.

Exceptions

CAUSE Integer Pointer
Mode

Capability
Pointer Mode

Reason

Invalid address
violation

✔ ✔ The target address is invalid according to Invalid
address conversion

Length violation ✔ ✔ Minimum length instruction is not within the
target capability’s bounds.


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode
Zcheripurecap

Prerequisites for Integer Pointer Mode
Zcherihybrid

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 93

RISC-V Specification for CHERI Extensions | © RISC-V

Operation
TODO

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 94

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.7. LD

See LB.

7.2.8. LWU

See LB.

7.2.9. LW

See LB.

7.2.10. LHU

See LB.

7.2.11. LH

See LB.

7.2.12. LBU

See LB.

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 95

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.13. LB

Synopsis
Load (LD, LW[U], LH[U], LB[U])

Capability Pointer Mode Mnemonics (RV64)
ld rd, offset(cs1)
lw[u] rd, offset(cs1)
lh[u] rd, offset(cs1)
lb[u] rd, offset(cs1)

Integer Pointer Mode Mnemonics (RV64)
ld rd, offset(rs1)
lw[u] rd, offset(rs1)
lh[u] rd, offset(rs1)
lb[u] rd, offset(rs1)

Capability Pointer Mode Mnemonics (RV32)
lw rd, offset(cs1)
lh[u] rd, offset(cs1)
lb[u] rd, offset(cs1)

Integer Pointer Mode Mnemonics (RV32)
lw rd, offset(rs1)
lh[u] rd, offset(rs1)
lb[u] rd, offset(rs1)

Encoding

06711121415192031

opcoderdfunct3rs1/cs1imm[11:0]

7
LOAD=0000011

5
dest

3
width

LB=000
LH=001
LW=010
LBU=100
LHU=101

rv64: LWU=110
rv64: LD=011

5
base

12
offset[11:0]

Capability Pointer Mode Description
Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorising capability for the operation is cs1. A copy of the loaded value is written to rd.

Integer Pointer Mode Description
Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to rs1. The
authorising capability for the operation is ddc. A copy of the loaded value is written to rd.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 96

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode LD
RV64, Zcheripurecap

Prerequisites for Integer Pointer Mode LD
RV64, Zcherihybrid

Prerequisites for Capability Pointer Mode LW[U], LH[U], LB[U]
Zcheripurecap, OR
Zcherihybrid

Capability Pointer Mode Operation
TBD

Integer Pointer Mode Operation
TODO

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 97

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.14. SD

See SB

7.2.15. SW

See SB

7.2.16. SH

See SB

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 98

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.17. SB

Synopsis
Stores (SD, SW, SH, SB)

Capability Pointer Mode Mnemonics (RV64)
sd rs2, offset(cs1)
sw rs2, offset(cs1)
sh rs2, offset(cs1)
sb rs2, offset(cs1)

Integer Pointer Mode Mnemonics (RV64)
sd rs2, offset(rs1)
sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Capability Pointer Mode Mnemonics (RV32)
sw rs2, offset(cs1)
sh rs2, offset(cs1)
sb rs2, offset(cs1)

Integer Pointer Mode Mnemonics (RV32)
sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1/cs1rs2imm[11:5]

7
STORE=0100011

5
offset[4:0]

3
SB=000
SH=001
SW=010

rv64: SD=011

5
base

5
src

7
offset[11:5]

Capability Pointer Mode Description
Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorising capability for the operation is cs1. A copy of rs2 is written to memory at the
location indicated by the effective address and the tag bit of each block of memory naturally
aligned to CLEN/8 is cleared.

Integer Pointer Mode Description
Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The
effective address of the store is obtained by adding the sign-extended 12-bit offset to rs1. The
authorising capability for the operation is ddc. A copy of rs2 is written to memory at the location
indicated by the effective address and the tag bit of each block of memory naturally aligned to
CLEN/8 is cleared.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 99

RISC-V Specification for CHERI Extensions | © RISC-V

case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode SD
RV64, Zcheripurecap

Prerequisites for Integer Pointer Mode SD
RV64, Zcherihybrid

Prerequisites for Capability Pointer Mode SW, SH, SB
Zcheripurecap

Prerequisites for Integer Pointer Mode SW, SH, SB
Zcherihybrid

Operation

TBD

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 100

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.18. SRET

See MRET.

7.2.19. MRET

Synopsis
Trap Return (MRET, SRET)

Mnemonics
mret
sret

Encoding

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM=111011

5
0

3
PRIV=0

5
0

12
MRET=001100000010
SRET=000100000010

Description
Return from machine mode (MRET) or supervisor mode (SRET) trap handler as defined by (RISC-
V, 2023). MRET unseals mepcc and writes the result into pcc. SRET unseals sepcc and writes the
result into pcc.

Exceptions
CHERI fault exceptions occur when pcc does not grant ASR-permission because MRET and SRET
require access to privileged CSRs. When that exception occurs, CHERI instruction access fault is
reported in the TYPE field and the Permission Violation codes is reported in the CAUSE field of
mtval or stval.

Operation

TBD

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 101

RISC-V Specification for CHERI Extensions | © RISC-V

7.2.20. DRET

Synopsis
Debug Return (DRET)

Mnemonic
dret

Encoding

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM=111011

5
0

3
PRIV=0

5
0

12
DRET=011110110010

Description
DRET return from debug mode. It unseals dpcc and writes the result into pcc.


The DRET instruction is the recommended way to exit debug mode. However, it is a pseudo
instruction to return that technically does not execute from the program buffer or memory.
It currently does not require the pcc to grant ASR-permission so it never excepts.

Prerequisites
Sdext

Operation

TBD

7.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 102

RISC-V Specification for CHERI Extensions | © RISC-V

7.3. "A" Standard Extension for Atomic Instructions

7.3. "A" Standard Extension for Atomic Instructions | Page 103

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.1. AMO<OP>.W

See AMO<OP>.D.

7.3. "A" Standard Extension for Atomic Instructions | Page 104

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.2. AMO<OP>.D

Synopsis
Atomic Operations (AMO<OP>.W, AMO<OP>.D), 32-bit encodings

Capability Pointer Mode Mnemonics (RV64)
amo<op>.[w|d] rd, rs2, offset(cs1)

Capability Pointer Mode Mnemonics (RV32)
amo<op>.w rd, rs2, offset(cs1)

Integer Pointer Mode Mnemonics (RV64)
amo<op>.[w|d] rd, rs2, offset(rs1)

Integer Pointer Mode Mnemonics (RV32)
amo<op>.w rd, rs2, offset(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
.W=010

rv64: .D=011

5
base

5
src

1
rl

1
aq

5
op

SWAP=00001
ADD=00000
XOR=00100
AND=01100
OR=01000
MIN=10000
MAX=10100
MINU=11000
MAXU=11100

Capability Pointer Mode Description
Standard atomic instructions, authorised by the capability in cs1.

Integer Pointer Mode Description
Standard atomic instructions, authorised by the capability in ddc.

Permissions
Requires R-permission and W-permission in the authorising capability.

Requires all bytes of the access to be in capability bounds.

Exceptions
All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

7.3. "A" Standard Extension for Atomic Instructions | Page 105

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission or W-permission, or the AP
field could not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode AMO<OP>.W, AMO<OP>.D
Zcheripurecap, and A

Prerequisites for Integer Pointer Mode AMO<OP>.W, AMO<OP>.D
Zcherihybrid, and A

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation
TODO

7.3. "A" Standard Extension for Atomic Instructions | Page 106

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.3. AMOSWAP.C

 The RV64 encoding is intended to also allocate the encoding for AMOSWAP.Q for RV128.

Synopsis
Atomic Operation (AMOSWAP.C), 32-bit encoding

 These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonic
amoswap.c cd, cs2, offset(cs1)

Integer Pointer Mode Mnemonic
amoswap.c cd, cs2, offset(rs1)

Encoding

0671112141519202425262731

opcodecdfunct3cs1cs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

rv32: .C=011
rv64: .C=100

5
base

5
src

1
rl

1
aq

5
op

SWAP=00001

Capability Pointer Mode Description
Atomic swap of capability type, authorised by the capability in cs1.

Integer Pointer Mode Description
Atomic swap of capability type, authorised by the capability in ddc.


This instruction can propagate tagged capabilities which have malformed bounds, have
reserved bits set or have a permission field which cannot be produced by ACPERM.

Permissions
Requires the authorising capability to be tagged and not sealed.

Requires R-permission and W-permission in the authorising capability.

If C-permission is not granted then store the memory tag as zero, and load cd.tag as zero.

(This tag clearing behaviour may become a data dependent exception in future.)

Requires all bytes of the access to be in capability bounds.

Exceptions
All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval or stval:

7.3. "A" Standard Extension for Atomic Instructions | Page 107

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission or W-permission, or the AP
field could not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites for Capability Pointer Mode AMOSWAP.C
Zcheripurecap, and A

Prerequisites for Integer Pointer Mode AMOSWAP.C
Zcherihybrid, and A

Operation
TODO

7.3. "A" Standard Extension for Atomic Instructions | Page 108

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.4. LR.D

See LR.B.

7.3.5. LR.W

See LR.B.

7.3.6. LR.H

See LR.B.

7.3. "A" Standard Extension for Atomic Instructions | Page 109

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.7. LR.B

Synopsis
Load Reserved (LR.D, LR.W, LR.H, LR.B), 32-bit encodings

Capability Pointer Mode Mnemonics (RV64)
lr.[d|w|h|b] rd, 0(cs1)

Capability Pointer Mode Mnemonics (RV32)
lr.[w|h|b] rd, 0(cs1)

Integer Pointer Mode Mnemonics (RV64)
lr.[d|w|h|b] rd, 0(rs1)

Integer Pointer Mode Mnemonics (RV32)
lr.[w|h|b] rd, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
.B=000
.H=001
.W=010

rv64: .D=011

5
base

5
LR.*=00000

1
rl

1
aq

5
op

LR.*=00010

Capability Pointer Mode Description
Load reserved instructions, authorised by the capability in cs1.

Integer Pointer Mode Description
Load reserved instructions, authorised by the capability in ddc.

Exceptions
All misaligned load reservations cause a load address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a load access
fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

7.3. "A" Standard Extension for Atomic Instructions | Page 110

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Capability Pointer Mode LR.D
RV64, Zcheripurecap, and A

Prerequisites for Capability Pointer Mode LR.W
Zcheripurecap, and A

Prerequisites for Capability Pointer Mode LR.H, LR.B
Zabhlrsc, and Zcheripurecap

Prerequisites for LR.D
RV64, Zcherihybrid, and A

Prerequisites for LR.W
Zcherihybrid, and A

Prerequisites for LR.H, LR.B
Zabhlrsc, Zcherihybrid

Operation

TBD

7.3. "A" Standard Extension for Atomic Instructions | Page 111

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.8. LR.C

 The RV64 encoding is intended to also allocate the encoding for LR.Q for RV128.

Synopsis
Load Reserved Capability (LR.C), 32-bit encodings

 These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonic
lr.c cd, 0(cs1)

Integer Pointer Mode Mnemonic
lr.c cd, 0(rs1)

Encoding

0671112141519202425262731

opcodecdfunct3cs1/rs1funct5rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
rv32: .C=011
rv64: .C=100

5
base

5
LR.*=00000

1
rl

1
aq

5
op

LR.*=00010

Capability Pointer Mode Description
Load reserved instructions, authorised by the capability in cs1. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-
V, 2023)).

Integer Pointer Mode Description
Load reserved instructions, authorised by the capability in ddc. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-
V, 2023)).


This instruction can propagate tagged capabilities which have malformed bounds, have
reserved bits set or have a permission field which cannot be produced by ACPERM.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

7.3. "A" Standard Extension for Atomic Instructions | Page 112

RISC-V Specification for CHERI Extensions | © RISC-V

This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites for Capability Pointer Mode
Zcheripurecap, and A

Prerequisites for Integer Pointer Mode
Zcherihybrid, and A

Operation

TBD

7.3. "A" Standard Extension for Atomic Instructions | Page 113

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.9. SC.D

See SC.B.

7.3.10. SC.W

See SC.B.

7.3.11. SC.H

See SC.B.

7.3. "A" Standard Extension for Atomic Instructions | Page 114

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.12. SC.B

Synopsis
Store Conditional (SC.D, SC.W, SC.H, SC.B), 32-bit encodings

Capability Pointer Mode Mnemonics (RV64)
sc.[d|w|h|b] rd, rs2, 0(cs1)

Capability Pointer Mode Mnemonics (RV32)
sc.[w|h|b] rd, rs2, 0(cs1)

Integer Pointer Mode Mnemonics (RV64)
sc.[d|w|h|b] rd, rs2, 0(rs1)

Integer Pointer Mode Mnemonics (RV32)
sc.[w|h|b] rd, rs2, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

.B=000

.H=001
.W=010

rv64: .D=011

5
base

5
src

1
rl

1
aq

5
op

SC=00011

Capability Pointer Mode Description
Store conditional instructions, authorised by the capability in cs1.

Integer Pointer Mode Description
Store conditional instructions, authorised by the capability in ddc.

Exceptions
All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

7.3. "A" Standard Extension for Atomic Instructions | Page 115

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode SC.D
RV64, and Zcheripurecap, and A

Prerequisites for Integer Pointer Mode SC.D
RV64, and Zcherihybrid, and A

Prerequisites for Capability Pointer Mode SC.W
Zcheripurecap, and A

Prerequisites for Integer Pointer Mode SC.W
Zcherihybrid, and A

Prerequisites for Capability Pointer Mode SC.H, SC.B
Zcheripurecap, and Zabhlrsc

Prerequisites for Integer Pointer Mode SC.H, SC.B
Zcherihybrid, and Zabhlrsc

Operation

TBD

7.3. "A" Standard Extension for Atomic Instructions | Page 116

RISC-V Specification for CHERI Extensions | © RISC-V

7.3.13. SC.C

 The RV64 encoding is intended to also allocate the encoding for SC.Q for RV128.

Synopsis
Store Conditional (SC.C), 32-bit encoding

 These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonic
sc.c rd, cs2, 0(cs1)

Integer Pointer Mode Mnemonic
sc.c rd, cs2, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3cs1/rs1cs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

rv32: .C=011
rv64: .C=100

5
base

5
src

1
rl

1
aq

5
op

SC=00011

Capability Pointer Mode Description
Store conditional instructions, authorised by the capability in cs1. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 2023)).

Integer Pointer Mode Description
Store conditional instructions, authorised by the capability in ddc. All misaligned store
conditionals cause a store/AMO address misaligned exception to allow software emulation (Zam
extension, see (RISC-V, 2023)).


This instruction can propagate tagged capabilities which have malformed bounds, have
reserved bits set or have a permission field which cannot be produced by ACPERM.

Exceptions
All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

7.3. "A" Standard Extension for Atomic Instructions | Page 117

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites for Capability Pointer Mode
Zcheripurecap, and A

Prerequisites for Integer Pointer Mode
Zcherihybrid, and A

Operation

TBD

7.3. "A" Standard Extension for Atomic Instructions | Page 118

RISC-V Specification for CHERI Extensions | © RISC-V

7.4. "Zicsr", Control and Status Register (CSR)
Instructions

7.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 119

RISC-V Specification for CHERI Extensions | © RISC-V

7.4.1. CSRRW

 CHERI v9 Note: CSpecialRW is removed and this functionality replaces it

Synopsis
CSR access (CSRRW) 32-bit encodings

Mnemonic for accessing capability CSRs in Capability Pointer Mode
csrrw cd, csr, cs1

Mnemonic for accessing XLEN-wide CSRs or extended CSRs in Integer Pointer Mode
csrrw rd, csr, rs1

Encoding

06711121415192031

opcoderd/cdfunct3rs1/cs1csr

7
SYSTEM=1110011

5
dest

3
CSRRW=001

5
source

12
source/dest CSR

Description
This is a standard RISC-V CSR instructions with extended functionality for accessing CLEN-wide
CSRs, such as mtvec/mtvecc.

See Table 41 for a list of CLEN-wide CSRs and Table 42 for the action taken on writing each one.

CSRRW writes cs1 to extended CSRs in Capability Pointer Mode, and reads a full capability into cd.

CSRRW writes rs1 to extended CSRs in Integer Pointer Mode, and reads the address field into rd.

If cd is c0 (or rd is x0), then the instruction shall not read the CSR and shall not cause any of the
side effects that might occur on a CSR read.

The assembler pseudo-instruction to write a capability CSR in Capability Pointer Mode, csrw csr,
cs1, is encoded as csrrw c0, csr, cs1.

Access to XLEN-wide CSRs from other extensions is as specified by RISC-V.


When writing cs1, if the bounds are malformed, any reserved bits are set or the permission
could not have been produced by ACPERM then clear the tag before writing to the CSR.

Permissions
Accessing privileged CSRs require ASR-permission, including existing RISC-V CSRs, as described
in Section 3.5.1. The list of privileged and unprivileged CSRs is shown in (RISC-V, 2023).

Prerequisites for Capability Pointer Mode
Zcheripurecap

Prerequisites for Integer Pointer Mode
Zcherihybrid

Operation

7.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 120

RISC-V Specification for CHERI Extensions | © RISC-V

TBD

7.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 121

RISC-V Specification for CHERI Extensions | © RISC-V

7.4.2. CSRRWI

See CSRRCI.

7.4.3. CSRRS

See CSRRCI.

7.4.4. CSRRSI

See CSRRCI.

7.4.5. CSRRC

See CSRRCI.

7.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 122

RISC-V Specification for CHERI Extensions | © RISC-V

7.4.6. CSRRCI

 CHERI v9 Note: CSpecialRW is removed and this functionality replaces it

Synopsis
CSR access (CSRRWI, CSRRS, CSRRSI, CSRRC, CSRRCI) 32-bit encodings

Mnemonics for accessing capability CSRs in Capability Pointer Mode
csrrs cd, csr, rs1
csrrc cd, csr, rs1
csrrwi cd, csr, imm
csrrsi cd, csr, imm
csrrci cd, csr, imm

Mnemonics for accessing XLEN-wide CSRs or extended CSRs in Integer Pointer Mode
csrrs rd, csr, rs1
csrrc rd, csr, rs1
csrrwi rd, csr, imm
csrrsi rd, csr, imm
csrrci rd, csr, imm

Encoding

06711121415192031

opcoderd/cdfunct3rs1/uimmcsr

7
SYSTEM=1110011

5
dest

3
CSRRS=010
CSRRC=011
CSRRWI=101
CSRRSI=110
CSRRCI=111

5
source
source

uimm[4:0]
uimm[4:0]
uimm[4:0]

12
source/dest CSR

Description
These are standard RISC-V CSR instructions with extended functionality for accessing capability
CSRs, such as mtvec/mtvecc.

For capability CSRs, the full capability is read into cd in Capability Pointer Mode. In Integer Pointer
Mode, the address field is instead read into rd.

Unlike CSRRW, these instructions only update the address field and the tag as defined in Table 42
when writing capability CSRs regardless of the execution mode. The final address to write to the
capability CSR is determined as defined by RISC-V for these instructions.

See Table 41 for a list of capability CSRs and Table 42 for the action taken on writing an XLEN-wide
value to each one.

If cd is c0 (or rd is x0), then CSRRWI shall not read the CSR and and shall not cause any of the side
effects that might occur on a CSR read. If rs1 is x0 for CSRRS and CSRRC, or imm is 0 for CSRRSI
and CSRRCI, then the instruction will not write to the CSR at all, and so shall not cause any of the
side effects that might otherwise occur on a CSR write.

The assembler pseudoinstruction to read a capability CSR in Capability Mode, csrr cd, csr, is
encoded as csrrs cd, csr, x0.

Access to XLEN-wide CSRs is as specified by RISC-V.

7.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 123

RISC-V Specification for CHERI Extensions | © RISC-V


If the CSR accessed is a capability, and rs1 is x0 for CSRRS and CSRRC, or imm is 0 for
CSRRSI and CSRRCI, then the CSR is not written so no representability check is needed in
this case.

Permissions
Accessing privileged CSRs requires ASR-permission, including existing RISC-V CSRs, as described
in Section 3.5.1. The list of privileged and unprivileged CSRs is shown in (RISC-V, 2023).

Prerequisites for Capability Pointer Mode
Zcheripurecap

Prerequisites for Integer Pointer Mode
Zcherihybrid

Operation

TBD

7.4. "Zicsr", Control and Status Register (CSR) Instructions | Page 124

RISC-V Specification for CHERI Extensions | © RISC-V

7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension
for Floating-Point

7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 125

RISC-V Specification for CHERI Extensions | © RISC-V

7.5.1. FLD

See FLH.

7.5.2. FLW

See FLH.

7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 126

RISC-V Specification for CHERI Extensions | © RISC-V

7.5.3. FLH

Synopsis
Floating point loads (FLD, FLW, FLH), 32-bit encodings

Capability Pointer Mode Mnemonics
fld frd, offset(cs1)
flw frd, offset(cs1)
flh frd, offset(cs1)

Integer Pointer Mode Mnemonics
fld rd, offset(rs1)
flw rd, offset(rs1)
flh rd, offset(rs1)

Encoding

06711121415192031

opcodefrdwidthrs1/cs1imm[11:0]

7
LOAD-FP=0000111

5
dest

3
FLD=011
FLW=010
FLH=001

5
base

12
offset[11:0]

Capability Pointer Mode Description
Standard floating point load instructions, authorised by the capability in cs1.

Integer Pointer Mode Description
Standard floating point load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode FLD
Zcheripurecap, and D

Prerequisites for Integer Pointer Mode FLD
Zcherihybrid, and D

7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 127

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Capability Pointer Mode FLW
Zcheripurecap, and F

Prerequisites for Integer Pointer Mode FLW
Zcherihybrid, and F

Prerequisites for Capability Pointer Mode FLH
Zcheripurecap, and Zfhmin or Zfh

Prerequisites for Integer Pointer Mode FLH
Zcherihybrid, and Zfhmin or Zfh

Operation
TODO

7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 128

RISC-V Specification for CHERI Extensions | © RISC-V

7.5.4. FSD

See FSH.

7.5.5. FSW

See FSH.

7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 129

RISC-V Specification for CHERI Extensions | © RISC-V

7.5.6. FSH

Synopsis
Floating point stores (FSD, FSW, FSH), 32-bit encodings

Capability Pointer Mode Mnemonics
fsd fs2, offset(cs1)
fsw fs2, offset(cs1)
fsh fs2, offset(cs1)

Integer Pointer Mode Mnemonics
fsd fs2, offset(rs1)
fsw fs2, offset(rs1)
fsh fs2, offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]widthrs1/cs1fs2imm[11:5]

7
STORE-FP=0100111

5
offset[4:0]

3
FSD=011
FSW=010
FSH=001

5
base

5
src

7
offset[11:5]

Capability Pointer Mode Description
Standard floating point store instructions, authorised by the capability in cs1.

Integer Pointer Mode Description
Standard floating point store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode FSD
Zcheripurecap, and D

Prerequisites for Integer Pointer Mode FSD
Zcherihybrid, and D

7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 130

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Capability Pointer Mode FSW
Zcheripurecap, and F

Prerequisites for Integer Pointer Mode FSW
Zcherihybrid, and F

Prerequisites for Capability Pointer Mode FSH
Zcheripurecap, and Zfh or Zfhmin

Prerequisites for Integer Pointer Mode FSH
Zcherihybrid, and Zfh or Zfhmin

Operation

TBD

7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point | Page 131

RISC-V Specification for CHERI Extensions | © RISC-V

7.6. "C" Standard Extension for Compressed
Instructions
One group of 16-bit encodings are remapped to different instructions dependant upon the CHERI
execution mode, MXLEN and which extensions are supported.

 Zcf and Zilsd are incompatible

 Zcd and Zcmp/Zcmt incompatible

7.6.1. RV32

Table 29. 16-bit instruction remapping in Integer Pointer Mode

Encoding Supported Extensions

[15:13] [1:0] Zca Zcf Zcd Zcmp/ Zcmt Zilsd

111 00 N/A C.FSW N/A N/A C.SD

011 00 N/A C.FLW N/A N/A C.LD

111 10 N/A C.FSWSP N/A N/A C.SDSP

011 10 N/A C.FLWSP N/A N/A C.LDSP

101 00 N/A N/A C.FSD reserved1 N/A

001 00 N/A N/A C.FLD reserved1 N/A

101 10 N/A N/A C.FSDSP Zcmp/Zcmt N/A

001 10 N/A N/A C.FLDSP reserved1 N/A

1 reserved for future standard Zcm extensions

Table 30. 16-bit instruction remapping in Capability Pointer Mode

Encoding Supported Extensions

[15:13] [1:0] Zca Zcf Zcd Zcmp/ Zcmt Zilsd

111 00 C.SC

011 00 C.LC

111 10 C.SCSP

011 10 C.LCSP

101 00 N/A N/A C.FSD reserved1 N/A

001 00 N/A N/A C.FLD reserved1 N/A

101 10 N/A N/A C.FSDSP Zcmp/Zcmt N/A

001 10 N/A N/A C.FLDSP reserved1 N/A

1 reserved for future standard Zcm extensions

7.6. "C" Standard Extension for Compressed Instructions | Page 132

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.2. RV64

Table 31. 16-bit instruction remapping in Integer Pointer Mode

Encoding Supported Extensions

[15:13] [1:0] Zca Zcf Zcd Zcmp/ Zcmt Zilsd

111 00 C.SD N/A N/A N/A N/A

011 00 C.LD N/A N/A N/A N/A

111 10 C.SDSP N/A N/A N/A N/A

011 10 C.LDSP N/A N/A N/A N/A

101 00 N/A N/A C.FSD reserved1 N/A

001 00 N/A N/A C.FLD reserved1 N/A

101 10 N/A N/A C.FSDSP Zcmp/Zcmt N/A

001 10 N/A N/A C.FLDSP reserved1 N/A

Table 32. 16-bit instruction remapping in Capability Pointer Mode

Encoding Supported Extensions

[15:13] [1:0] Zca Zcf Zcd Zcmp/ Zcmt Zilsd

111 00 C.SD N/A N/A N/A N/A

011 00 C.LD N/A N/A N/A N/A

111 10 C.SDSP N/A N/A N/A N/A

011 10 C.LDSP N/A N/A N/A N/A

101 00 C.SC

001 00 C.LC

101 10 C.SCSP

001 10 C.LCSP

7.6. "C" Standard Extension for Compressed Instructions | Page 133

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.3. C.BEQZ, C.BNEZ

Synopsis
Conditional branches (C.BEQZ, C.BNEZ), 16-bit encodings

Mnemonics
c.beqz rs1', offset
c.bnez rs1', offset

Expansions
beq rs1′, x0, offset
bne rs1′, x0, offset

Encoding

01267910121315

opimmrs1'immfunct3

2
C1
C1

5
offset[7:6|2:1|5]
offset[7:6|2:1|5]

3
src
src

3
offset[8|4:3]
offset[8|4:3]

3
C.BEQZ
C.BNEZ

Exceptions
When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Length Violation is reported in the CAUSE field of
mtval or stval:


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites
C or Zca

Operation (after expansion to 32-bit encodings)
See Conditional branches (BEQ, BNE, BLT[U], BGE[U])

7.6. "C" Standard Extension for Compressed Instructions | Page 134

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.4. C.MV

Synopsis
Capability move (C.MV), 16-bit encoding

Capability Pointer Mode Mnemonic
c.mv cd, cs2

Capability Pointer Mode Expansion
cmv cd, cs2

Suggested assembly syntax
mv rd, rs2
mv cd, cs2

 the suggested assembly syntax distinguishes from integer mv by operand type.

Integer Pointer Mode Mnemonic
c.mv rd, rs2

Integer Pointer Mode Expansion
add rd, x0, rs2

Encoding

01267111215

oprs2/cs2rd/cdfunct4

2
C2=10

5
src!=0

5
dest!=0

4
C.MV=1000

Capability Pointer Mode Description
Capability register cd is replaced with the contents of cs2.

Integer Pointer Mode Description
Standard RISC-V C.MV instruction.


This instruction can propagate tagged capabilities which have malformed bounds, have
reserved bits set or have a permission field which cannot be produced by ACPERM.

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Capability Pointer Mode Operation (after expansion to 32-bit encodings)
See CMV

7.6. "C" Standard Extension for Compressed Instructions | Page 135

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.5. C.ADDI16SP

Synopsis
Stack pointer increment in blocks of 16 (C.ADDI16SP), 16-bit encodings

Capability Pointer Mode Mnemonic
c.addi16sp imm

Capability Pointer Mode Expansion
cadd csp, csp, imm

Integer Pointer Mode Mnemonic
c.addi16sp imm

Integer Pointer Mode Expansion
add sp, sp, imm

Encoding

0126711121315

opnzimm[4|6|8:7|5]rd/rs1nzimm[9]funct3

2
C1=01

5
offset[4|6|8:7|5]

5
2

1
[9]

3
C.ADDI16SP=011

Capability Pointer Mode Description
Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (csp=c2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496). Clear the tag if the
resulting capability is unrepresentable or csp is sealed.

Integer Pointer Mode Description
Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496).

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Capability Pointer Mode Operation
TODO

7.6. "C" Standard Extension for Compressed Instructions | Page 136

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.6. C.ADDI4SPN

See C.ADDI4SPN.

Synopsis
Stack pointer increment in blocks of 4 (C.ADDI4SPN), 16-bit encoding

Capability Pointer Mode Mnemonic
c.addi4spn cd', uimm

Capability Pointer Mode Expansion
cadd cd', csp, uimm

Integer Pointer Mode Mnemonic
c.addi4spn rd', uimm

Integer Pointer Mode Expansion
add rd', sp, uimm

Encoding

01245121315

oprd'nzimmfunct3

2
C0=00

3
dest

8
uimm[5:4|9:6|2|3]!=0

3
C.ADDI4SPN=000

Capability Pointer Mode Description
Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, csp, and writes the
result to cd'. This instruction is used to generate pointers to stack-allocated variables. Clear the tag
if the resulting capability is unrepresentable or csp is sealed.

Integer Pointer Mode Description
Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, sp, and writes the result
to rd'. This instruction is used to generate pointers to stack-allocated variables.

Prerequisites for C.ADDI4SPN
C or Zca, Zcheripurecap

Prerequisites for C.ADDI4SPN
C or Zca, Zcherihybrid

Capability Pointer Mode Operation
TODO

7.6. "C" Standard Extension for Compressed Instructions | Page 137

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.7. C.MODESW

 CHERI v9 Note: This instruction is new.

Synopsis
Capability/Integer Pointer Mode switching (C.MODESW), 16-bit encoding

Mnemonic
c.modesw

Expansion
modesw

Encoding

0124567910121315

1011111000111001

2
C1=1

3
C.MODESW

2
FUNCT2

3
FUNCT3

3
FUNCT3

3
FUNCT3

Description
Toggle the hart’s current CHERI execution mode in pcc.

• If the current mode in pcc is Integer Pointer Mode (1), then the M-bit in pcc is set to Capability
Pointer Mode (0).

• If the current mode is Capability Pointer Mode (0), then the M-bit in pcc is set to Integer Pointer
Mode (1).



The effective CHERI exection mode is give by the value of some CSRs and the pcc's M-bit,
so executing MODESW does not necessarily change the machine’s current mode. The
current, effective CHERI execution mode can be observed as described in Observing the
CHERI Execution Mode.


Implementations may optionally support executing C.MODESW from the program buffer
while in debug mode.

Exceptions
This instruction is illegal if CRE for the current privilege mode is zero (see Section 5.7).

Prerequisites
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See MODESW

7.6. "C" Standard Extension for Compressed Instructions | Page 138

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.8. C.JALR

Synopsis
Jump register with link, 16-bit encodings

Capability Pointer Mode Mnemonic
c.jalr c1, cs1

Capability Pointer Mode Expansion
jalr c1, 0(cs1)

Integer Pointer Mode Mnemonic
c.jalr x1, rs1

Integer Pointer Mode Expansion
jalr x1, 0(rs1)

Encoding

01267111215

opfunct5cs1/rs1funct4

2
C2=10

5
C.JALR=00000

5
src!=0

4
C.JALR=1001

Capability Pointer Mode Description
See JALR for execution of the expanded instruction as shown above. Note that the offset is zero in
the expansion.

Integer Pointer Mode Description
See JALR for execution of the expanded instruction as shown above. Note that the offset is zero in
the expansion.

Exceptions
See JALR


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See JALR

7.6. "C" Standard Extension for Compressed Instructions | Page 139

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.9. C.JR

Synopsis
Jump register without link, 16-bit encodings

Capability Pointer Mode Mnemonic
c.jr cs1

Capability Pointer Mode Expansion
jalr c0, 0(cs1)

Integer Pointer Mode Mnemonic
c.jr rs1

Integer Pointer Mode Expansion
jalr x0, 0(rs1)

Encoding

01267111215

opfunct5cs1/rs1funct4

2
C2=10

5
C.JR=00000

5
src!=0

4
C.JR=1000

Capability Pointer Mode Description
See JALR for execution of the expanded instruction as shown above. Note that the offset is zero in
the expansion.

Integer Pointer Mode Description
See JALR for execution of the expanded instruction as shown above. Note that the offset is zero in
the expansion.

Exceptions
See JALR


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See JALR

7.6. "C" Standard Extension for Compressed Instructions | Page 140

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.10. C.JAL

Synopsis
Jump with link, 16-bit encodings

Capability Pointer Mode Mnemonic (RV32)
c.jal c1, offset

Capability Pointer Mode Expansion (RV32)
jal c1, offset

Integer Pointer Mode Mnemonic (RV32)
c.jal x1, offset

Integer Pointer Mode Expansion (RV32)
jal x1, offset

Encoding (RV32)

012121315

opimmfunct3

2
C1=01

11
offset[11|4|9:8|10|6|7|3:1|5]

3
leg: C.JAL=001

Capability Pointer Mode Description
Link the next linear pcc to cd and seal. Jump to pcc.address+offset.

Integer Pointer Mode Description
Set the next PC and link to rd according to the standard JAL definition.

Exceptions
See JAL


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See JAL

7.6. "C" Standard Extension for Compressed Instructions | Page 141

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.11. C.J

Synopsis
Jump without link, 16-bit encodings

Mnemonic
c.j offset

Capability Pointer Mode Expansion
jal c0, offset

Integer Pointer Mode Expansion
jal x0, offset

Encoding

012121315

opimmfunct3

2
C1=01

11
offset[11|4|9:8|10|6|7|3:1|5]

3
C.J=101

Description
Set the next PC following the standard JAL definition.

There is no difference in Capability Pointer Mode or Integer Pointer Mode execution for this
instruction.

Exceptions
See JAL


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See JAL

7.6. "C" Standard Extension for Compressed Instructions | Page 142

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.12. C.LD

See C.LW.

7.6. "C" Standard Extension for Compressed Instructions | Page 143

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.13. C.LW

Synopsis
Load (C.LD, C.LW), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)
c.ld rd', offset(cs1')
c.lw rd', offset(cs1')

Capability Pointer Mode Expansions (RV64)
ld rd', offset(cs1')
lw rd', offset(cs1')

Integer Pointer Mode Mnemonics (RV64)
c.ld rd', offset(rs1')
c.lw rd', offset(rs1')

Integer Pointer Mode Expansions (RV64)
ld rd', offset(rs1')
lw rd', offset(rs1')

Capability Pointer Mode Mnemonic (RV32)
c.lw rd', offset(cs1')

Capability Pointer Mode Expansion (RV32)
lw rd', offset(cs1')

Integer Pointer Mode Mnemonic (RV32)
c.lw rd', offset(rs1')

Integer Pointer Mode Expansion (RV32)
lw rd', offset(rs1')

Encoding

0124567910121315

oprd'immrs1'/cs1'immfunct3

2
C0=00

3
dest

2
offset[2|6]
offset[7:6]

3
base

3
offset[5:3]

3
C.LW=010

rv64: C.LD=011

Capability Pointer Mode Description
Standard load instructions, authorised by the capability in cs1.

Integer Pointer Mode Description
Standard load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

7.6. "C" Standard Extension for Compressed Instructions | Page 144

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode C.LD
RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.LD
RV64, C or Zca, Zcherihybrid

Prerequisites Capability Pointer Mode C.LW
C or Zca, Zcheripurecap

Prerequisites Integer Pointer Mode C.LW
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See LD, LW

7.6. "C" Standard Extension for Compressed Instructions | Page 145

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.14. C.LWSP

See C.LDSP.

7.6. "C" Standard Extension for Compressed Instructions | Page 146

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.15. C.LDSP

Synopsis
Load (C.LWSP, C.LDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)
c.ld/c.lw rd, offset(csp)

Capability Pointer Mode Expansions (RV64)
ld/lw rd, offset(csp)

Integer Pointer Mode Mnemonics (RV64)
c.ld/c.lw rd, offset(sp)

Integer Pointer Mode Expansions (RV64)
ld/lw rd, offset(sp)

Capability Pointer Mode Mnemonic (RV32)
c.lw rd, offset(csp)

Capability Pointer Mode Expansion (RV32)
lw rd, offset(csp)

Integer Pointer Mode Mnemonic (RV32)
c.lw rd, offset(sp)

Integer Pointer Mode Expansion (RV32)
lw rd, offset(sp)

Encoding

0126711121315

opimmrdimmfunct3

2
C2=10

5
offset[4:2|7:6]
offset[4:3|8:6]

5
dest!=0

1
[5]

3
C.LWSP=010

rv64: C.LDSP=011

Capability Pointer Mode Description
Standard stack pointer relative load instructions, authorised by the capability in csp.

Integer Pointer Mode Description
Standard stack pointer relative load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

7.6. "C" Standard Extension for Compressed Instructions | Page 147

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode C.LDSP
RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.LDSP
RV64, and C or Zca, Zcherihybrid

Prerequisites for Capability Pointer Mode C.LWSP
C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.LWSP
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See LW, LD

7.6. "C" Standard Extension for Compressed Instructions | Page 148

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.16. C.FLW

See C.FLWSP.

7.6.17. C.FLWSP

Synopsis
Floating point load (C.FLW, C.FLWSP), 16-bit encodings

Integer Pointer Mode Mnemonics (RV32)
c.flw rd', offset(rs1'/sp)

Integer Pointer Mode Expansions (RV32)
flw rd', offset(rs1'/sp)

Encoding (RV32)

0124567910121315

oprd'immrs1'immfunct3

2
C0=00

3
dest

2
offset[2|6]

3
base

3
offset[5:3]

3
leg rv32: C.FLW=011

0126711121315

opuimmfrduimm[5]funct3

2
C2=10

5
offset[4:2|7:6]

5
src

1
offset[5]

3
leg rv32: C.FLWSP=011

Integer Pointer Mode Description
Standard floating point load instructions, authorised by the capability in ddc.


These instructions are available in RV32 Integer Pointer Mode only. In Capability Pointer
Mode they are remapped to C.LC/C.LCSP.



In Integer Pointer Mode, these instructions may be remapped to other encodings by future
RV32 only extensions such as Zilsd. If this is the case, then the Zilsd encodings will be
valid in Integer Pointer Mode only. In Capability Pointer Mode the instructions will still be
C.LC/C.LCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

7.6. "C" Standard Extension for Compressed Instructions | Page 149

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, and Zcf or F

Operation (after expansion to 32-bit encodings)
See FLW

7.6. "C" Standard Extension for Compressed Instructions | Page 150

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.18. C.FLD

See C.FLDSP

7.6.19. C.FLDSP

Synopsis
Double precision floating point loads (C.FLD, C.FLDSP), 16-bit encodings

Capability Pointer Mode Mnemonic (RV32)
c.fld frd', offset(cs1'/csp)

Capability Pointer Mode Expansion (RV32)
fld frd', offset(csp)

Integer Pointer Mode Mnemonic
c.fld fs2, offset(rs1'/sp)

Integer Pointer Mode Expansion
fld fs2, offset(rs1'/sp)

Encoding

0124567910121315

opfrd`immrs1`/cs1`immfunct3

2
C0=00

3
dest

2
offset[7:6]

3
base

3
offset[5:3]

3
leg C.FLD=001

cap rv32: C.FLD=001

01267121315

opfs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]

3
leg: C.FLDSP=001

cap rv32: C.FLDSP=001

Integer Pointer Mode Description
Standard floating point stack pointer relative load instructions, authorised by the capability in ddc.


These instructions are available in RV64 Integer Pointer Mode only. In RV64 Capability
Pointer Mode they are remapped to C.LC/C.LCSP.


These encodings may be remapped by future code-size Zcm standard extensions, similar to
Zcmp and Zcmt. The rule is that in RV64 Capability Pointer Mode they are always
remapped to C.SC/C.SCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

7.6. "C" Standard Extension for Compressed Instructions | Page 151

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode (RV32 only)
Zcheripurecap, C and D; or
Zcheripurecap, Zca and Zcd

Prerequisites for Integer Pointer Mode
Zcherihybrid, C and D; or
Zcherihybrid, Zca and Zcd

Operation (after expansion to 32-bit encodings)
See FLD

7.6. "C" Standard Extension for Compressed Instructions | Page 152

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.20. C.LC

see C.LCSP.

7.6.21. C.LCSP

Synopsis
Capability loads (C.LC, C.LCSP), 16-bit encodings

Capability Pointer Mode Mnemonics
c.lc cd', offset(cs1')
c.lc cd', offset(csp)

Capability Pointer Mode Expansions
lc cd', offset(cs1')
lc cd', offset(csp)

Encoding

0126711121315

opimmcd!=0immfunct3

2
C2=10

5
offset[4:3|8:6]
offset[4|9:6]

5
dest

1
[5]

3
cap rv32: C.LCSP=011
cap rv64: C.LCSP=001

0124567910121315

oprd'immcs1'immfunct3

2
C0=00

3
dest

2
offset[7:6]

3
base

3
offset[5:3]

offset[5:4|8]

3
cap rv32: C.LC=011
cap rv64: C.LC=001

Capability Pointer Mode Description
Load capability instruction, authorised by the capability in cs1. Take a load address misaligned
exception if not naturally aligned.

 These mnemonics do not exist in Integer Pointer Mode.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

7.6. "C" Standard Extension for Compressed Instructions | Page 153

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites
C or Zca, Zcheripurecap

Operation (after expansion to 32-bit encodings)
See LC

7.6. "C" Standard Extension for Compressed Instructions | Page 154

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.22. C.SD

See C.SW.

7.6. "C" Standard Extension for Compressed Instructions | Page 155

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.23. C.SW

Synopsis
Stores (C.SD, C.SW), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)
c.sd rs2', offset(cs1')
c.sw rs2', offset(cs1')

Capability Pointer Mode Expansions (RV64)
sd rs2', offset(cs1')
sw rs2', offset(cs1')

Integer Pointer Mode Mnemonics (RV64)
c.sd rs2', offset(rs1')
c.sw rs2', offset(rs1')

Integer Pointer Mode Expansions (RV64)
sd rs2', offset(rs1')
sw rs2', offset(rs1')

Capability Pointer Mode Mnemonic (RV32)
c.sw rs2', offset(cs1')

Capability Pointer Mode Expansion (RV32)
sw rs2', offset(cs1')

Integer Pointer Mode Mnemonic (RV32)
c.sw rs2', offset(rs1')

Integer Pointer Mode Expansion (RV32)
sw rs2', offset(rs1')

Encoding

0124567910121315

oprs2'/cs2'uimmrs1'/cs1'uimmfunct3

2
C0=00

3
src

2
offset[2|6]
offset[7:6]

3
base

3
offset[5:3]

3
C.SW=110

rv64: C.SD=111

Capability Pointer Mode Description
Standard store instructions, authorised by the capability in cs1.

Integer Pointer Mode Description
Standard store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

7.6. "C" Standard Extension for Compressed Instructions | Page 156

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode C.SD
RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SD
RV64, and C or Zca, Zcherihybrid

Prerequisites for Capability Pointer Mode C.SW
C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SW
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See SD, SW

7.6. "C" Standard Extension for Compressed Instructions | Page 157

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.24. C.SWSP

See C.SDSP.

7.6. "C" Standard Extension for Compressed Instructions | Page 158

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.25. C.SDSP

Synopsis
Stack pointer relative stores (C.SWSP, C.SDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)
c.sd rs2, offset(csp)
c.sw rs2, offset(csp)

Capability Pointer Mode Expansions (RV64)
sd rs2, offset(csp)
sw rs2, offset(csp)

Integer Pointer Mode Mnemonics (RV64)
c.sd rs2, offset(sp)
c.sw rs2, offset(sp)

Integer Pointer Mode Expansions (RV64)
sd rs2, offset(sp)
sw rs2, offset(sp)

Capability Pointer Mode Mnemonic (RV32)
c.sw rs2, offset(csp)

Capability Pointer Mode Expansion (RV32)
sw rs2, offset(csp)

Integer Pointer Mode Mnemonic (RV32)
c.sw rs2, offset(sp)

Integer Pointer Mode Expansion (RV32)
sw rs2, offset(sp)

Encoding

01267121315

oprs2/cs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]
offset[5:2|7:6]

3
rv64: C.SDSP=111

C.SWSP=110

Capability Pointer Mode Description
Standard stack pointer relative store instructions, authorised by the capability in csp.

Integer Pointer Mode Description
Standard stack pointer relative store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

7.6. "C" Standard Extension for Compressed Instructions | Page 159

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode C.SDSP
RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SDSP
RV64, and C or Zca, Zcherihybrid

Prerequisites for Capability Pointer Mode C.SWSP
C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SWSP
C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)
See SD, SW

7.6. "C" Standard Extension for Compressed Instructions | Page 160

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.26. C.FSW

See C.FSWSP.

7.6.27. C.FSWSP

Synopsis
Floating point stores (C.FSW, C.FSWSP), 16-bit encodings

Integer Pointer Mode Mnemonics (RV32)
c.fsw rs2', offset(rs1')
c.fsw rs2', offset(sp)

Integer Pointer Mode Expansions (RV32)
fsw rs2', offset(rs1')
fsw rs2', offset(sp)

Encoding (RV32)

0124567910121315

oprs2'uimmrs1'uimmfunct3

2
C0=00

3
src

2
offset[2|6]

3
base

3
offset[5:3]

3
leg rv32: C.FSW=111

01267121315

opfs2immfunct3

2
C2=10

5
src

6
offset[5:2|7:6]

3
leg rv32: C.FSWSP=111

Integer Pointer Mode Description
Standard floating point store instructions, authorised by the capability in ddc.


These instructions are available in RV32 Integer Pointer Mode only. In Capability Pointer
Mode they are remapped to C.SC/C.SCSP.



In Integer Pointer Mode, these instructions may be remapped to other encodings by future
RV32 only extensions such as Zilsd. If this is the case, then the Zilsd encodings will be
valid in Integer Pointer Mode only. In Capability Pointer Mode the instructions will still be
C.SC/C.SCSP.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

7.6. "C" Standard Extension for Compressed Instructions | Page 161

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites
C or Zca, Zcherihybrid, Zcf or F

Operation (after expansion to 32-bit encodings)
See FSW

7.6. "C" Standard Extension for Compressed Instructions | Page 162

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.28. C.FSD

See C.FSDSP.

7.6.29. C.FSDSP

Synopsis
Double precision floating point stores (C.FSD, C.FSDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV32)
c.fsd fs2, offset(cs1')
c.fsd fs2, offset(csp)

Capability Pointer Mode Expansions (RV32)
fsd fs2, offset(cs1')
fsd fs2, offset(csp)

Integer Pointer Mode Mnemonics
c.fsd fs2, offset(rs1')
c.fsd fs2, offset(sp)

Integer Pointer Mode Expansions
fsd fs2, offset(rs1)
fsd fs2, offset(sp)

Encoding

01267121315

opfs2immfunct3

2
C0=00

5
src

6
offset[5:3|8:6]

3
leg C.FSD=101

cap rv32: C.FSD=101

01267121315

opfs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]

3
leg C.FSDSP=101

cap rv32: C.FSDSP=101

Capability Pointer Mode Description
Standard floating point stack pointer relative store instructions, authorised by the capability in cs1
or csp.

Integer Pointer Mode Description
Standard floating point stack pointer relative store instructions, authorised by the capability in ddc.


These instructions are available in RV64 Integer Pointer Mode only. In RV64 Capability
Pointer Mode they are remapped to C.SC/C.SCSP.


C.FSDSP may be remapped by the Zcmp, Zcmt standard extensions. C.FSD may be
remapped by future code-size reduction extensions. The rule is that in RV64 Capability
Pointer Mode they are always remapped to C.LC/C.LCSP.

7.6. "C" Standard Extension for Compressed Instructions | Page 163

RISC-V Specification for CHERI Extensions | © RISC-V

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode C.FSD, C.FSDSP (RV32 only)
Zcheripurecap, C and D; or
Zcheripurecap, Zca and Zcd

Prerequisites for Integer Pointer Mode C.FSD, C.FSDSP
Zcherihybrid, C and D; or
Zcherihybrid, Zca and Zcd

Operation (after expansion to 32-bit encodings)
See FSD

7.6. "C" Standard Extension for Compressed Instructions | Page 164

RISC-V Specification for CHERI Extensions | © RISC-V

7.6.30. C.SC

see C.SCSP.

7.6.31. C.SCSP

Synopsis
Stores (C.SC, C.SCSP), 16-bit encodings

 These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonics
c.sc cs2', offset(cs1')
c.sc cs2', offset(csp)

Capability Pointer Mode Expansions
sc cs2', offset(cs1')
sc cs2', offset(csp)

Encoding

01267121315

opcs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]
offset[5:4|9:6]

3
cap rv32: C.SCSP=111
cap rv64: C.SCSP=101

0124567910121315

opcs2'immcs1'immfunct3

2
C0=00

3
src

2
offset[7:6]
offset[7:6]

3
base

3
offset[5:3]

offset[5:4|8]

3
cap rv32: C.SC=111
cap rv64: C.SC=101

Capability Pointer Mode Description
Store capability instruction, authorised by the capability in cs1. Take a store/AMO address
misaligned exception if not naturally aligned.

 These mnemonics do not exist in Integer Pointer Mode.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

7.6. "C" Standard Extension for Compressed Instructions | Page 165

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites
C or Zca, Zcheripurecap

Operation (after expansion to 32-bit encodings)
See SC

7.6. "C" Standard Extension for Compressed Instructions | Page 166

RISC-V Specification for CHERI Extensions | © RISC-V

7.7. "Zicbom", "Zicbop", "Zicboz" Standard
Extensions for Base Cache Management
Operations

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 167

RISC-V Specification for CHERI Extensions | © RISC-V

7.7.1. CBO.CLEAN

Synopsis
Perform a clean operation on a cache block

Capability Pointer Mode Mnemonic
cbo.clean 0(cs1)

Integer Pointer Mode Mnemonic
cbo.clean 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
CBO.CLEAN=00.001

Capability Pointer Mode Description
A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in cs1. The authorising capability for this operation is cs1.

Integer Pointer Mode Description
A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions
CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission and R-permission, or the AP
field could not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation None of the bytes accessed are within the bounds, or the capability has
malformed bounds

Prerequisites for Capability Pointer Mode
Zicbom, Zcheripurecap

Prerequisites for Integer Pointer Mode
Zicbom, Zcherihybrid

Operation

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 168

RISC-V Specification for CHERI Extensions | © RISC-V

TBD

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 169

RISC-V Specification for CHERI Extensions | © RISC-V

7.7.2. CBO.FLUSH

Synopsis
Perform a flush operation on a cache block

Capability Pointer Mode Mnemonic
cbo.flush 0(cs1)

Integer Pointer Mode Mnemonic
cbo.flush 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
cap: CBO.FLUSH=00.0010

Capability Pointer Mode Description
A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in cs1. The authorising capability for this operation is cs1.

Integer Pointer Mode Description
A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in rs1. The authorising capability for this operation is ddc.

Exceptions
CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission and R-permission, or the AP
field could not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation None of the bytes accessed are within the bounds, or the capability has
malformed bounds

Prerequisites for Capability Pointer Mode
Zicbom, Zcheripurecap

Prerequisites for Integer Pointer Mode
Zicbom, Zcherihybrid

Operation

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 170

RISC-V Specification for CHERI Extensions | © RISC-V

TBD

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 171

RISC-V Specification for CHERI Extensions | © RISC-V

7.7.3. CBO.INVAL

Synopsis
Perform an invalidate operation on a cache block

Capability Pointer Mode Mnemonic
cbo.inval 0(cs1)

Integer Pointer Mode Mnemonic
cbo.inval 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
CBO.INVAL=00.0000

Capability Pointer Mode Description
A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in cs1. The authorising capability for this operation is cs1.

Integer Pointer Mode Description
A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in rs1. The authorising capability for this operation in ddc.

Exceptions
CHERI fault exceptions when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

The CBIE bit in menvcfg and senvcfg indicates whether CBO.INVAL performs cache block flushes
instead of invalidations for less privileged modes. The instruction checks shown in the table below
remain unchanged regardless of the value of CBIE and the privilege mode.



Invalidating a cache block can re-expose capabilities previously stored to it after the most
recent flush, not just secret values. As such, CBO.INVAL has stricter checks on its use than
CBO.FLUSH, and should only be made available to, and used by, sufficiently-trusted
software. Untrusted software should use CBO.FLUSH instead.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, R-permission or ASR-
permission, or the AP field could not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation None of the bytes accessed are within the bounds, or the capability has
malformed bounds

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 172

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Capability Pointer Mode
Zicbom, Zcheripurecap

Prerequisites for Integer Pointer Mode
Zicbom, Zcherihybrid

Operation

TBD

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 173

RISC-V Specification for CHERI Extensions | © RISC-V

7.7.4. CBO.ZERO

Synopsis
Store zeros to the full set of bytes corresponding to a cache block

Capability Pointer Mode Mnemonic
cbo.zero 0(cs1)

Integer Pointer Mode Mnemonic
cbo.zero 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
CBO.ZERO=00.0100

Capability Pointer Mode Description
A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in cs1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is cs1.

Integer Pointer Mode Description
A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in cs1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorising capability for this
operation is ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode
Zicboz, Zcheripurecap

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 174

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Integer Pointer Mode
Zicboz, Zcherihybrid

Operation

TBD

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 175

RISC-V Specification for CHERI Extensions | © RISC-V

7.7.5. PREFETCH.I

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by an instruction fetch in the
near future

Capability Pointer Mode Mnemonic
prefetch.i offset(cs1)

Integer Pointer Mode Mnemonic
prefetch.i offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3cs1/rs1funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
PREFETCH.I=00000

7
offset[11:5]

Capability Pointer Mode Description
A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in cs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is cs1. This
instruction does not throw any exceptions. However, following CHERI Exceptions and speculative
execution, this instruction does not perform a prefetch if it is not authorized by cs1.

Integer Pointer Mode Description
A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by an instruction fetch in the near future.
The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is pcc.

In either mode, PREFETCH.I does not perform a memory access if one or more of the following
conditions of the authorising capability are met:

• The tag is not set

• The sealed bit is set

• No bytes of the cache line requested is in bounds

• The X-permission is not set

• Any reserved bits are set

• The permissions could not have been produced by ACPERM

• The bounds are malformed

Prerequisites for Capability Pointer Mode
Zicbop, Zcheripurecap

Prerequisites for Integer Pointer Mode
Zicbop, Zcherihybrid

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 176

RISC-V Specification for CHERI Extensions | © RISC-V

Operation

TODO

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 177

RISC-V Specification for CHERI Extensions | © RISC-V

7.7.6. PREFETCH.R

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data read in the near
future

Capability Pointer Mode Mnemonic
prefetch.r offset(cs1)

Integer Pointer Mode Mnemonic
prefetch.r offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3cs1/rs1funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
PREFETCH.R=00001

7
offset[11:5]

Capability Pointer Mode Description
A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in cs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
cs1. This instruction does not throw any exceptions. However, in following CHERI Exceptions and
speculative execution, this instruction does not perform a prefetch if it is not authorized by cs1.

Integer Pointer Mode Description
A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

In either mode, PREFETCH.R does not perform a memory access if one or more of the following
conditions of the authorising capability are met:

• The tag is not set

• The sealed bit is set

• No bytes of the cache line requested is in bounds

• The R-permission is not set

• Any reserved bits are set

• The permissions could not have been produced by ACPERM

• The bounds are malformed

Prerequisites for Capability Pointer Mode
Zicbop, Zcheripurecap

Prerequisites for Integer Pointer Mode
Zicbop, Zcherihybrid

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 178

RISC-V Specification for CHERI Extensions | © RISC-V

Operation

TODO

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 179

RISC-V Specification for CHERI Extensions | © RISC-V

7.7.7. PREFETCH.W

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data write in the near
future

Capability Pointer Mode Mnemonic
prefetch.w offset(cs1)

Integer Pointer Mode Mnemonic
prefetch.w offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3cs1/rs1funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
PREFETCH.W=00011

7
offset[11:5]

Capability Pointer Mode Description
A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in cs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data write (i.e. store) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
cs1. This instruction does not throw any exceptions. However, following CHERI Exceptions and
speculative execution, this instruction does not perform a prefetch if it is not authorized by cs1.

Integer Pointer Mode Description
A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data write (i.e. store) in the near
future. The encoding is only valid if imm[4:0]=0. The authorising capability for this operation is
ddc.

In either mode, PREFETCH.W does not perform a memory access if one or more of the following
conditions of the authorising capability are met:

• The tag is not set

• The sealed bit is set

• No bytes of the cache line requested is in bounds

• The W-permission is not set

• Any reserved bits are set

• The permissions could not have been produced by ACPERM

• The bounds are malformed

Prerequisites for Capability Pointer Mode
Zicbop, Zcheripurecap

Prerequisites for Integer Pointer Mode
Zicbop, Zcherihybrid

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 180

RISC-V Specification for CHERI Extensions | © RISC-V

Operation

TODO

7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations | Page 181

RISC-V Specification for CHERI Extensions | © RISC-V

7.8. "Zba" Extension for Bit Manipulation
Instructions

7.8. "Zba" Extension for Bit Manipulation Instructions | Page 182

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.1. ADD.UW

Synopsis
Add unsigned word for address generation

Capability Pointer Mode Mnemonic (RV64)
add.uw cd, rs1, cs2

Integer Pointer Mode Mnemonic (RV64)
add.uw rd, rs1, rs2

Encoding

067111214151920242531

1101110cd/rd000rs1cs2/rs20010000

OPrv64: ADD.UWrv64: ADD.UW

Capability Pointer Mode Description
Increment the address field of cs2 by the unsigned word in rs1. Clear the tag if the resulting
capability is unrepresentable or cs2 is sealed.

Integer Pointer Mode Description
Increment rs2 by the unsigned word in rs1.

Prerequisites for Capability Pointer Mode
RV64, Zcheripurecap, Zba

Prerequisites for Integer Pointer Mode
RV64, Zcherihybrid, Zba

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation
TODO

7.8. "Zba" Extension for Bit Manipulation Instructions | Page 183

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.2. SH1ADD

See SH3ADD.

7.8.3. SH2ADD

See SH3ADD.

7.8. "Zba" Extension for Bit Manipulation Instructions | Page 184

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.4. SH3ADD

Synopsis
Shift by n and add for address generation (SH1ADD, SH2ADD, SH3ADD)

Capability Pointer Mode Mnemonics
sh[1|2|3]add cd, rs1, cs2

Integer Pointer Mode Mnemonics
sh[1|2|3]add rd, rs1, rs2

Encoding

067111214151920242531

1100110cd/rd010rs1cs2/rs20000100

OPSH1ADD=010
SH2ADD=100
SH3ADD=110

SH[1|2|3]ADD

Capability Pointer Mode Description
Increment the address field of cs2 by rs1 shifted left by n bit positions and write the result to cd.
The tag bit of the output capability is 0 if cs2 did not have its tag set to 1, the incremented address
is outside cs2 's Representable Range or cs2 is sealed.


This instruction sets cd.tag=0 if cs2 's bounds are malformed, or if any of the reserved
fields are set.

Integer Pointer Mode Description
Increment rs2 by rs1 shifted left by n bit positions and write the result to rd.

Exceptions
None

Prerequisites for Capability Pointer Mode
Zcheripurecap, Zba

Prerequisites for Integer Pointer Mode
Zcherihybrid, Zba

Capability Pointer Mode Operation

TODO

Integer Pointer Mode Operation
TODO

7.8. "Zba" Extension for Bit Manipulation Instructions | Page 185

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.5. SH1ADD.UW

See SH3ADD.UW.

7.8.6. SH2ADD.UW

See SH3ADD.UW.

7.8. "Zba" Extension for Bit Manipulation Instructions | Page 186

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.7. SH3ADD.UW

Synopsis
Shift by n and add unsigned word for address generation (SH1ADD.UW, SH2ADD.UW,
SH3ADD.UW)

Capability Pointer Mode Mnemonics (RV64)
sh[1|2|3]add.uw cd, rs1, cs2

Integer Pointer Mode Mnemonics (RV64)
sh[1|2|3]add.uw rd, rs1, rs2

Encoding

067111214151920242531

1101110cd/rd010rs1cs2/rs20000100

OPrv64: SH1ADD.UW=010
rv64: SH2ADD.UW=100
rv64: SH3ADD.UW=110

rv64: SH[1|2|3]ADD.UW

Capability Pointer Mode Description
Increment the address field of cs2 by the unsigned word in rs1 shifted left by n bit positions and
write the result to cd. The tag bit of the output capability is 0 if cs2 did not have its tag set to 1, the
incremented address is outside cs2 's Representable Range or cs2 is sealed.


This instruction sets cd.tag=0 if cs2 's bounds are malformed, or if any of the reserved
fields are set.

Integer Pointer Mode Description
Increment rs2 by the unsigned word in rs1 shifted left by n bit positions and write the result to rd.

Exceptions
None

Prerequisites for Capability Pointer Mode
RV64, Zcheripurecap, Zba

Prerequisites for Integer Pointer Mode
RV64, Zcherihybrid, Zba

Capability Pointer Mode Operation

TODO

Integer Pointer Mode Operation
TODO

7.8. "Zba" Extension for Bit Manipulation Instructions | Page 187

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.8. SH4ADD

 CHERI v9 Note: This instruction is new.

Synopsis
Shift by 4 and add for address generation (SH4ADD)

Capability Pointer Mode Mnemonic (RV64)
sh4add cd, rs1, cs2

Integer Pointer Mode Mnemonic (RV64)
sh4add rd, rs1, rs2

Encoding

067111214151920242531

1100110cd/rd111rs1cs2/rs20000100

OPrv64: SH4ADDrv64: SH4ADD

Capability Pointer Mode Description
Increment the address field of cs2 by rs1 shifted left by 4 bit positions and write the result to cd.
The tag bit of the output capability is 0 if cs2 did not have its tag set to 1, the incremented address
is outside cs2 's Representable Range or cs2 is sealed.


This instruction sets cd.tag=0 if cs2 's bounds are malformed, or if any of the reserved
fields are set.

Integer Pointer Mode Description
Increment rs2 by rs1 shifted left by 4 bit positions and write the result to rd.

Exceptions
None

Prerequisites for Capability Pointer Mode
RV64, Zish4add

Prerequisites for Integer Pointer Mode
RV64, Zish4add

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation

TBD

7.8. "Zba" Extension for Bit Manipulation Instructions | Page 188

RISC-V Specification for CHERI Extensions | © RISC-V

7.8.9. SH4ADD.UW

Synopsis
Shift by 4 and add unsigned words for address generation (SH4ADD.UW)

Capability Pointer Mode Mnemonic (RV64)
sh4add.uw cd, rs1, cs2

Integer Pointer Mode Mnemonic (RV64)
sh4add.uw rd, rs1, rs2

Encoding

067111214151920242531

1101110cd/rd111rs1cs2/rs20000100

OPrv64: SH4ADD.UWrv64: SH4ADD.UW

Capability Pointer Mode Description
Increment the address field of cs2 by the unsigned word in rs1 shifted left by 4 bit positions and
write the result to cd. The tag bit of the output capability is 0 if cs2 did not have its tag set to 1, the
incremented address is outside cs2 's Representable Range or cs2 is sealed.


This instruction sets cd.tag=0 if cs2 's bounds are malformed, or if any of the reserved
fields are set.

Integer Pointer Mode Description
Increment rs2 by the unsigned word in rs1 shifted left by 4 bit positions and write the result to rd.

Exceptions
None

Prerequisites for Capability Pointer Mode
RV64, Zish4add

Prerequisites for Integer Pointer Mode
RV64, Zish4add

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation

TBD

7.8. "Zba" Extension for Bit Manipulation Instructions | Page 189

RISC-V Specification for CHERI Extensions | © RISC-V

7.9. "Zcb" Standard Extension For Code-Size
Reduction

7.9. "Zcb" Standard Extension For Code-Size Reduction | Page 190

RISC-V Specification for CHERI Extensions | © RISC-V

7.9.1. C.LH

See C.LBU.

7.9.2. C.LHU

See C.LBU.

7.9. "Zcb" Standard Extension For Code-Size Reduction | Page 191

RISC-V Specification for CHERI Extensions | © RISC-V

7.9.3. C.LBU

Synopsis
Load (C.LH, C.LHU, C.LBU), 16-bit encodings

Capability Pointer Mode Mnemonics
c.lh rd', offset(cs1')
c.lhu rd', offset(cs1')
c.lbu rd', offset(cs1')

Capability Pointer Mode Expansions
lh rd, offset(cs1)
lhu rd, offset(cs1)
lbu rd, offset(cs1)

Integer Pointer Mode Mnemonics
c.lh rd', offset(rs1')
c.lhu rd', offset(rs1')
c.lbu rd', offset(rs1')

Integer Pointer Mode Expansions
lh rd, offset(rs1)
lhu rd, offset(rs1)
lbu rd, offset(rs1)

Encoding

012456791015

oprd'/cd'uimm[1]funct1rs1'/cs1'funct6

2
C0=00

3
dest

1
offset[1]

1
1

3
base

6
C.LH=100001

012456791015

oprd'/cd'uimm[1]funct1rs1'/cs1'funct6

2
C0=00

3
dest

1
offset[1]

1
0

3
base

6
C.LHU=100001

012456791015

oprd'/cd'uimm[0|1]rs1'/cs1'funct6

2
C0=00

3
dest

2
offset[0|1]

3
base

6
C.LBU=100000

Capability Pointer Mode Description
Subword load instructions, authorised by the capability in cs1.

Integer Pointer Mode Description
Subword load instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

7.9. "Zcb" Standard Extension For Code-Size Reduction | Page 192

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, and Zcb

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, and Zcb

Operation (after expansion to 32-bit encodings)
See LHU, LH, LBU

7.9. "Zcb" Standard Extension For Code-Size Reduction | Page 193

RISC-V Specification for CHERI Extensions | © RISC-V

7.9.4. C.SH

See C.SB.

7.9. "Zcb" Standard Extension For Code-Size Reduction | Page 194

RISC-V Specification for CHERI Extensions | © RISC-V

7.9.5. C.SB

Synopsis
Stores (C.SH, C.SB), 16-bit encodings

Capability Pointer Mode Mnemonics
c.sh rs2', offset(cs1')
c.sb rs2', offset(cs1')

Capability Pointer Mode Expansions
sh rs2', offset(cs1')
sb rs2', offset(cs1')

Integer Pointer Mode Mnemonics
c.sh rs2', offset(rs1')
c.sb rs2', offset(rs1')

Integer Pointer Mode Expansions
sh rs2', offset(rs1')
sb rs2', offset(rs1')

Encoding

012456791015

oprs2'/cs2'uimm[1]funct1rs1'/cs1'funct6

2
C0=00

3
src

1
offset[1]

1
0

3
base

6
C.SH=100011

012456791015

oprs2'/cs2'uimm[0|1]rs1'/cs1'funct6

2
C0=00

3
src

2
offset[0|1]

3
base

6
C.SB=100010

Capability Pointer Mode Description
Subword store instructions, authorised by the capability in cs1.

Integer Pointer Mode Description
Subword store instructions, authorised by the capability in ddc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

7.9. "Zcb" Standard Extension For Code-Size Reduction | Page 195

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, and Zcb

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, and Zcb

Operation (after expansion to 32-bit encodings)
See SH, SB

7.9. "Zcb" Standard Extension For Code-Size Reduction | Page 196

RISC-V Specification for CHERI Extensions | © RISC-V

7.10. "Zcmp" Standard Extension For Code-Size
Reduction
The push (CM.PUSH) and pop (CM.POP, CM.POPRET, CM.POPRETZ) instructions are redefined in
Capability Pointer Mode to save/restore full capabilities.

The double move instructions (CM.MVSA01, CM.MVA01S) are redefined in Capability Pointer Mode to
move full capabilities between registers. The saved register mapping is as shown in

Table 33. saved register mapping for Zcmp

saved register specifier xreg integer ABI CHERI ABI

0 x8 s0 cs0

1 x9 s1 cs1

2 x18 s2 cs2

3 x19 s3 cs3

4 x20 s4 cs4

5 x21 s5 cs5

6 x22 s6 cs6

7 x23 s7 cs7

All instructions are defined in (RISC-V, 2023).

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 197

RISC-V Specification for CHERI Extensions | © RISC-V

7.10.1. CM.PUSH

Synopsis
Create stack frame (CM.PUSH): store the return address register and 0 to 12 saved registers to the
stack frame, optionally allocate additional stack space. 16-bit encodings.

Capability Pointer Mode Mnemonic (RV32)
cm.push {creg_list}, -stack_adj

Integer Pointer Mode Mnemonic
cm.push {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist00011101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Pointer Mode Description
Create stack frame, store capability registers as specified in creg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against csp.

Integer Pointer Mode Description
Create stack frame, store integer registers as specified in reg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against ddc.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64 Capability
Pointer Mode.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant W-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, Zcmp

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 198

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, Zcmp

Operation

TBD

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 199

RISC-V Specification for CHERI Extensions | © RISC-V

7.10.2. CM.POP

Synopsis
Destroy stack frame (CM.POP): load the return address register and 0 to 12 saved registers from the
stack frame, deallocate the stack frame. 16-bit encodings.

Capability Pointer Mode Mnemonic (RV32)
cm.pop {creg_list}, -stack_adj

Integer Pointer Mode Mnemonic
cm.pop {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist01011101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Pointer Mode Description
Load capability registers as specified in creg_list. Deallocate stack frame. All accesses are checked
against csp.

Integer Pointer Mode Description
Load integer registers as specified in reg_list. Deallocate stack frame. All accesses are checked
against ddc.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64 Capability
Pointer Mode.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, Zcmp

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 200

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, Zcmp

Operation

TBD

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 201

RISC-V Specification for CHERI Extensions | © RISC-V

7.10.3. CM.POPRET

Synopsis
Destroy stack frame (CM.POPRET): load the return address register and 0 to 12 saved registers
from the stack frame, deallocate the stack frame. Return through the return address register. 16-bit
encodings.

Capability Pointer Mode Mnemonic (RV32)
cm.popret {creg_list}, -stack_adj

Integer Pointer Mode Mnemonic
cm.popret {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist01111101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Pointer Mode Description
Load capability registers as specified in creg_list. Deallocate stack frame. Return by calling JALR to
cra. All data accesses are checked against csp. The return destination is checked against cra.

Integer Pointer Mode Description
Load integer registers as specified in reg_list. Deallocate stack frame. Return by calling JALR to ra.
All data accesses are checked against ddc. The return destination is checked against pcc.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, Zcmp

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 202

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, Zcmp

Operation

TBD

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 203

RISC-V Specification for CHERI Extensions | © RISC-V

7.10.4. CM.POPRETZ

Synopsis
Destroy stack frame (CM.POPRETZ): load the return address register and register 0 to 12 saved
registers from the stack frame, deallocate the stack frame. Move zero into argument register zero.
Return through the return address register. 16-bit encodings.

Capability Pointer Mode Mnemonic (RV32)
cm.popretz {creg_list}, -stack_adj

Integer Pointer Mode Mnemonic
cm.popretz {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist00111101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Pointer Mode Description
Load capability registers as specified in creg_list. Deallocate stack frame. Move zero into ca0.
Return by calling JALR to cra. All data accesses are checked against csp. The return destination is
checked against cra.

Integer Pointer Mode Description
Load integer registers as specified in reg_list. Deallocate stack frame. Move zero into a0. Return by
calling JALR to ra. All data accesses are checked against ddc. The return destination is checked
against pcc.

Permissions
Loads are checked as for LC in both Integer Pointer Mode and Capability Pointer Mode.

The return is checked as for JALR in both Integer Pointer Mode and Capability Pointer Mode.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64 Capability
Pointer Mode.

Exceptions
CHERI fault exception when the authorising capability fails one of the checks listed below; in this
case, CHERI data fault is reported in the mtval or stval TYPE field and the corresponding code is
written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission
violation

Authority capability does not grant R-permission, or the AP field could not
have been produced by ACPERM

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 204

RISC-V Specification for CHERI Extensions | © RISC-V

CAUSE Reason

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Length violation At least one byte accessed is outside the authority capability bounds, or the
capability has malformed bounds


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, Zcmp

Operation

TBD

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 205

RISC-V Specification for CHERI Extensions | © RISC-V

7.10.5. CM.MVSA01

Synopsis
CM.MVSA01: Move argument registers 0 and 1 into two saved registers.

Capability Pointer Mode Mnemonic (RV32)
cm.mvsa01 cr1s', cr2s'

Integer Pointer Mode Mnemonic
cm.mvsa01 r1s', r2s'

Encoding

0124567910121315

01r2s'10r1s'110101

C2FUNCT3


The encoding uses sreg number specifiers instead of xreg number specifiers to save
encoding space. The saved register encoding is shown in Table 33.

Capability Pointer Mode Description
Atomically move two saved capability registers cs0-cs7 into ca0 and ca1.

Integer Pointer Mode Description
Atomically move two saved integer registers s0-s7 into a0 and a1.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64 Capability
Pointer Mode.

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, Zcmp

Operation

TBD

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 206

RISC-V Specification for CHERI Extensions | © RISC-V

7.10.6. CM.MVA01S

Synopsis
Move two saved registers into argument registers 0 and 1.

Capability Pointer Mode Mnemonic (RV32)
cm.mva01s cr1s', cr2s'

Integer Pointer Mode Mnemonic
cm.mva01s r1s', r2s'

Encoding

0124567910121315

01r2s'11r1s'110101

C2FUNCT3


The encoding uses sreg number specifiers instead of xreg number specifiers to save
encoding space. The saved register encoding is shown in Table 33.

Capability Pointer Mode Description
Atomically move two capability registers ca0 and ca1 into cs0-cs7.

Integer Pointer Mode Description
Atomically move two integer registers a0 and a1 into s0-s7.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64 Capability
Pointer Mode.

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, Zcmp

Operation

TBD

7.10. "Zcmp" Standard Extension For Code-Size Reduction | Page 207

RISC-V Specification for CHERI Extensions | © RISC-V

7.11. "Zcmt" Standard Extension For Code-Size
Reduction
The table jump instructions (CM.JT, CM.JALT) defined in (RISC-V, 2023) are not redefined in
Capability Pointer Mode to have capabilities in the jump table. This is to prevent the code-size growth
caused by doubling the size of the jump table.

In the future, new jump table modes or new encodings can be added to have capabilities in the jump
table.

The jump vector table CSR jvt has a capability alias jvtc so that it can only be configured to point to
accessible memory. All accesses to the jump table are checked against jvtc in Capability Pointer Mode,
and against pcc bounds in Integer Pointer Mode. This allows the jump table to be accessed when the pcc
bounds are set narrowly to the local function only in Capability Pointer Mode.



Zcmt defines that the fetch from the jump table is from instruction memory. The overall
instruction executed is effectively 48-bit, with 16-bits from CM.JALT/CM.JT, the other 32-
bits (for RV32) from the table. Therefore pcc is used to authorise the fetch in Integer
Pointer Mode, as the fetch is designated to be from instruction memory in (RISC-V, 2023).


In Capability Pointer Mode the implementation doesn’t need to expand and bounds check
against jvtc on every access, it is sufficient to decode the valid accessible range of entries
after every write to jvtc, and then check that the accessed entry is in that range.

7.11.1. Jump Vector Table CSR (jvt)

The JVT CSR is exactly as defined by (RISC-V, 2023). It is renamed to jvtc.

7.11.2. Jump Vector Table CSR (jvtc)

jvtc extends jvt to be a capability width CSR, as shown in Table 16.

MXLEN-1 0

Tag jvtc (Metadata)

jvtc (Address)

MXLEN

Figure 45. Jump Vector Table Capability register

All instruction fetches from the jump vector table are checked against jvtc in Capability Pointer Mode.
In Integer Pointer Mode the address field gives the base address of the table, and the access is checked
against pcc bounds.

See CM.JALT, CM.JT.

If the access to the jump table succeeds, then the instructions execute as follows:

• CM.JT executes as J or AUIPC+JR

• CM.JALT executes as JAL or AUIPC+JALR

As a result the capability metadata is retained in pcc during execution.

7.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 208

RISC-V Specification for CHERI Extensions | © RISC-V

7.11.3. CM.JALT

Synopsis
Jump via table with link (CM.JALT), 16-bit encodings

Capability Pointer Mode Mnemonic (RV32)
cm.jalt index

Integer Pointer Mode Mnemonic
cm.jalt index

Encoding

012910121315

01index000101

C2FUNCT3

 For this encoding to decode as <CM.JALT, index>=32, otherwise it decodes as CM.JT.

Capability Pointer Mode Description
Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against jvtc bounds (not against pcc)
and requiring X-permission. Link to cra.

Integer Pointer Mode Description
Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against pcc bounds and requiring X-
permission. Link to ra.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64 Capability
Pointer Mode.

Capability Pointer Mode Permissions
Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

Capability Pointer Mode Exceptions
When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE

Tag violation ✔

Seal violation ✔

Permission violation ✔

Invalid address violation ✔

Length violation ✔


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

7.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 209

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, Zcmt

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, Zcmt

Operation

TBD

7.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 210

RISC-V Specification for CHERI Extensions | © RISC-V

7.11.4. CM.JT

Synopsis
Jump via table with link (CM.JT), 16-bit encodings

Capability Pointer Mode Mnemonic
cm.jt index

Integer Pointer Mode Mnemonic
cm.jt index

Encoding

012910121315

01index000101

C2FUNCT3

 For this encoding to decode as CM.JT, index<32, otherwise it decodes as CM.JALT.

Capability Pointer Mode Description
Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against jvtc bounds (not against pcc)
and requiring X-permission.

Integer Pointer Mode Description
Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against pcc bounds and requiring X-
permission.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64 Capability
Pointer Mode.

Capability Pointer Mode Permissions
Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be in
jvtc bounds.

Capability Pointer Mode Exceptions
When these instructions cause CHERI exceptions, CHERI instruction access fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval or stval:

CAUSE

Tag violation ✔

Seal violation ✔

Permission violation ✔

Invalid address violation ✔

Length violation ✔


The instructions on this page are either PC relative or may update the pcc. Therefore an
implementation may make them illegal in debug mode. If they are supported then the
value of the pcc in debug mode is UNSPECIFIED by this document.

7.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 211

RISC-V Specification for CHERI Extensions | © RISC-V

Prerequisites for Capability Pointer Mode
C or Zca, Zcheripurecap, Zcmt

Prerequisites for Integer Pointer Mode
C or Zca, Zcherihybrid, Zcmt

Operation

TBD

7.11. "Zcmt" Standard Extension For Code-Size Reduction | Page 212

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 8. Extension summary

8.1. Zabhlrsc
Zabhlrsc is a separate extension independent of CHERI, but is required for CHERI software.

These instructions are not controlled by the CRE bits in mseccfg, menvcfg or senvcfg.

Table 34. Zabhlrsc instruction extension

Mnemonic Zabhlrsc Function

LR.H ✔ Load reserved half

LR.B ✔ Load reserved byte

SC.H ✔ Store conditional half

SC.B ✔ Store conditional byte

8.2. Zish4add
Zish4add is a separate extension independent of CHERI, but improves performance for CHERI code as
the natural data width of pointers has doubled.

These instructions are not controlled by the CRE bits in mseccfg, menvcfg or senvcfg.

Table 35. Zish4add instruction extension

Mnemonic Zish4add Function

SH4ADD ✔ shift and add, representability check in Capability Mode

SH4ADD.UW ✔ shift and add unsigned words, representability check in Capability
Mode

8.3. Zcheripurecap
Zcheripurecap defines the set of instructions used by a purecap core.

Some instructions depend on the presence of other extensions, as listed in Table 36

Table 36. Zcheripurecap instruction extension - Pure Capability Pointer Mode instructions

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

LC ✔ ✔ Load cap via
capability register

SC ✔ ✔ Store cap via
capability register

8.1. Zabhlrsc | Page 213

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

C.LCSP ✔ ✔ ✔ Load cap
capability, SP
relative

C.SCSP ✔ ✔ ✔ Store cap
capability, SP
relative

C.LC ✔ ✔ ✔ Load cap
capability

C.SC ✔ ✔ ✔ Store cap
capability

C.LWSP ✔ ✔ ✔ Load word
capability, SP
relative

C.SWSP ✔ ✔ ✔ Store word
capability, SP
relative

C.LW ✔ ✔ ✔ Load word
capability

C.SW ✔ ✔ ✔ Store word
capability

C.LD ✔ ✔ Load word
capability

C.SD ✔ ✔ Store word
capability

C.LDSP ✔ ✔ Load word
capability

C.SDSP ✔ ✔ Store word
capability

LB ✔ ✔ Load signed byte

LH ✔ ✔ Load signed half

C.LH ✔ ✔ ✔ Load signed half

LW ✔ ✔ Load signed word

LBU ✔ ✔ Load unsigned
byte

C.LBU ✔ ✔ ✔ Load unsigned
byte

LHU ✔ ✔ Load unsigned
half

8.3. Zcheripurecap | Page 214

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

C.LHU ✔ ✔ ✔ Load unsigned
half

LWU ✔ Load unsigned
word

LD ✔ Load double

SB ✔ ✔ Store byte

C.SB ✔ ✔ ✔ Store byte

SH ✔ ✔ Store half

C.SH ✔ ✔ ✔ Store half

SW ✔ ✔ Store word

SD ✔ Store double

AUIPC ✔ ✔ Add immediate to
PCC address

CADD ✔ ✔ Increment cap
address by
register,
representability
check

CADDI ✔ ✔ Increment cap
address by
immediate,
representability
check

SCADDR ✔ ✔ Replace capability
address,
representability
check

GCTAG ✔ ✔ Get tag field

GCPERM ✔ ✔ Get hperm and
uperm fields as 1-
bit per
permission,
packed together

CMV ✔ ✔ Move capability
register

ACPERM ✔ ✔ AND capability
permissions
(expand to 1-bit
per permission
before ANDing)

8.3. Zcheripurecap | Page 215

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

GCHI ✔ ✔ Get metadata

SCHI ✔ ✔ Set metadata and
clear tag

SCEQ ✔ ✔ Full capability
bitwise compare,
set result true if
both are fully
equal

SENTRY ✔ ✔ Seal capability

SCSS ✔ ✔ Set result true if
cs1 and cs1 tags
match and cs2
bounds and
permissions are a
subset of cs1

CBLD ✔ ✔ Set cd to cs2 with
its tag set after
checking that cs2
is a subset of cs1

SCBNDS ✔ ✔ Set register
bounds on
capability with
rounding, clear
tag if rounding is
required

SCBNDSI ✔ ✔ Set immediate
bounds on
capability with
rounding, clear
tag if rounding is
required

SCBNDSR ✔ ✔ Set bounds on
capability with
rounding up as
required

CRAM ✔ ✔ Representable
Alignment Mask:
Return mask to
apply to address
to get the
requested bounds

8.3. Zcheripurecap | Page 216

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

GCBASE ✔ ✔ Get capability
base

GCLEN ✔ ✔ Get capability
length

C.ADDI16SP ✔ ✔ ✔ ADD immediate
to stack pointer,
CADD in
Capability Mode

C.ADDI4SPN ✔ ✔ ✔ ADD immediate
to stack pointer,
CADDI in
Capability Mode

C.MV ✔ ✔ ✔ Register Move,
cap reg move in
Capability Mode

C.J ✔ ✔ ✔ Jump to
PC+offset, bounds
check minimum
size target
instruction

C.JAL ✔ ✔ Jump to
PC+offset, bounds
check minimum
size target
instruction, link
to cd

JAL ✔ ✔ ✔ Jump to
PC+offset, bounds
check minimum
size target
instruction, link
to cd

JALR ✔ ✔ Indirect cap jump
and link, bounds
check minimum
size target
instruction,
unseal target cap,
seal link cap

8.3. Zcheripurecap | Page 217

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

C.JALR ✔ ✔ ✔ Indirect cap jump
and link, bounds
check minimum
size target
instruction,
unseal target cap,
seal link cap

C.JR ✔ ✔ ✔ Indirect cap jump,
bounds check
minimum size
target instruction,
unseal target cap

CBO.INVAL ✔ ✔ ✔ Cache block
invalidate
(implemented as
clean)

CBO.CLEAN ✔ ✔ ✔ Cache block clean

CBO.FLUSH ✔ ✔ ✔ Cache block flush

CBO.ZERO ✔ ✔ ✔ Cache block zero

PREFETCH.
R

✔ ✔ ✔ Prefetch
instruction cache
line, always valid

PREFETCH.
W

✔ ✔ ✔ Prefetch read-
only data cache
line

PREFETCH.I ✔ ✔ ✔ Prefetch writeable
data cache line

LR.C ✔ ✔ ✔ Load reserved
capability

LR.D ✔ Load reserved
double

LR.W ✔ Load reserved
word

LR.H ✔ ✔ ✔ Load reserved half

LR.B ✔ ✔ ✔ Load reserved
byte

SC.C ✔ ✔ ✔ Store conditional
capability

SC.D ✔ Store conditional
double

8.3. Zcheripurecap | Page 218

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

SC.W ✔ Store conditional
word

SC.H ✔ ✔ ✔ Store conditional
half

SC.B ✔ ✔ ✔ Store conditional
byte

AMOSWAP.
C

✔ ✔ ✔ Atomic swap of
cap

AMO<OP>.
W

✔ ✔ ✔ Atomic op of word

AMO<OP>.D ✔ ✔ Atomic op of
double

C.FLD ✔ ✔ Load floating
point double

C.FLDSP ✔ ✔ Load floating
point double, sp
relative

C.FSD ✔ ✔ Store floating
point double

C.FSDSP ✔ ✔ Store floating
point double, sp
relative

FLH ✔ ✔ ✔ Load floating
point half
capability

FSH ✔ ✔ ✔ Store floating
point half
capability

FLW ✔ ✔ ✔ Load floating
point word
capability

FSW ✔ ✔ ✔ Store floating
point word
capability

FLD ✔ ✔ ✔ Load floating
point double
capability

FSD ✔ ✔ ✔ Store floating
point double
capability

8.3. Zcheripurecap | Page 219

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

CM.PUSH ✔ ✔ ✔ Push integer stack
frame

CM.POP ✔ ✔ ✔ Pop integer stack
frame

CM.POPRET ✔ ✔ ✔ Pop integer stack
frame and return

CM.POPRET
Z

✔ ✔ ✔ Pop integer stack
frame and return
zero

CM.MVSA01 ✔ ✔ ✔ Move two integer
registers

CM.MVA01S ✔ ✔ ✔ Move two integer
registers

CM.JALT ✔ ✔ ✔ Table jump and
link

CM.JT ✔ ✔ ✔ Table jump

ADD.UW ✔ ✔ add unsigned
words,
representability
check in
Capability Mode

SH1ADD ✔ ✔ ✔ shift and add,
representability
check in
Capability Mode

SH1ADD.UW ✔ ✔ shift and add
unsigned words,
representability
check in
Capability Mode

SH2ADD ✔ ✔ ✔ shift and add,
representability
check in
Capability Mode

SH2ADD.UW ✔ ✔ shift and add
unsigned words,
representability
check in
Capability Mode

8.3. Zcheripurecap | Page 220

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

SH3ADD ✔ ✔ ✔ shift and add,
representability
check in
Capability Mode

SH3ADD.UW ✔ ✔ shift and add
unsigned words,
representability
check in
Capability Mode

8.4. Zcherihybrid
Zcherihybrid defines the set of instructions added by the Integer Pointer Mode, in addition to
Zcheripurecap.

 Zcherihybrid implies Zcheripurecap

Table 37. Zcherihybrid instruction extension - Integer Pointer Mode instructions

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

SCMODE ✔ ✔ Set the mode bit
of a capability, no
permissions
required

MODESW ✔ ✔ Directly switch
mode (_Integer
Pointer Mode_/
_Capability
Pointer Mode_)

C.MODESW ✔ ✔ Directly switch
mode (_Integer
Pointer Mode_/
_Capability
Pointer Mode_)

C.FLW ✔ ✔ Load floating
point word
capability

C.FLWSP ✔ ✔ Load floating
point word, sp
relative

8.4. Zcherihybrid | Page 221

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic RV
32

RV
64

A Za
bhl
rsc

Zic
bo[
mp
z]

C
or
Zca

Zb
a

Zc
b

Zc
mp

Zc
mt

Zfh F D V Function

C.FSW ✔ ✔ Store floating
point word
capability

C.FSWSP ✔ ✔ Store floating
point word, sp
relative

C.FLD ✔ ✔ Load floating
point double

C.FLDSP ✔ ✔ Load floating
point double, sp
relative

C.FSD ✔ ✔ Store floating
point double

C.FSDSP ✔ ✔ Store floating
point double, sp
relative

8.5. Instruction Modes
The tables summarise which operating modes each instruction may be executed in.

Table 38. Instructions valid for execution in Capability Pointer Mode only

Mnemonic Zcherihybr
id

Zcheripure
cap

Function

C.LCSP ✔ Load cap capability, SP relative

C.SCSP ✔ Store cap capability, SP relative

C.LC ✔ Load cap capability

C.SC ✔ Store cap capability

8.5. Instruction Modes | Page 222

RISC-V Specification for CHERI Extensions | © RISC-V

Table 39. Instructions valid for execution in Integer Pointer Mode only

Mnemonic Zcherihybr
id

Zcheripure
cap

Function

C.FLW ✔ Load floating point word capability

C.FLWSP ✔ Load floating point word, sp relative

C.FSW ✔ Store floating point word capability

C.FSWSP ✔ Store floating point word, sp relative

C.FLD ✔ Load floating point double

C.FLDSP ✔ Load floating point double, sp
relative

C.FSD ✔ Store floating point double

C.FSDSP ✔ Store floating point double, sp
relative

Table 40. Instructions valid for execution in both Integer Pointer Mode and Capability Pointer Mode

Mnemonic Zcherihybr
id

Zcheripure
cap

Function

LC ✔ ✔ Load cap via int pointer

SC ✔ ✔ Store cap via int pointer

C.LWSP ✔ ✔ Load word capability, SP relative

C.SWSP ✔ ✔ Store word capability, SP relative

C.LW ✔ ✔ Load word capability

C.SW ✔ ✔ Store word capability

C.LD ✔ ✔ Load word capability

C.SD ✔ ✔ Store word capability

C.LDSP ✔ ✔ Load word capability

C.SDSP ✔ ✔ Store word capability

LB ✔ ✔ Load signed byte

LH ✔ ✔ Load signed half

C.LH ✔ ✔ Load signed half

LW ✔ ✔ Load signed word

LBU ✔ ✔ Load unsigned byte

C.LBU ✔ ✔ Load unsigned byte

LHU ✔ ✔ Load unsigned half

C.LHU ✔ ✔ Load unsigned half

LWU ✔ ✔ Load unsigned word

LD ✔ ✔ Load double

SB ✔ ✔ Store byte

8.5. Instruction Modes | Page 223

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcherihybr
id

Zcheripure
cap

Function

C.SB ✔ ✔ Store byte

SH ✔ ✔ Store half

C.SH ✔ ✔ Store half

SW ✔ ✔ Store word

SD ✔ ✔ Store double

AUIPC ✔ ✔ Add immediate to PCC address

CADD ✔ ✔ Increment cap address by register,
representability check

CADDI ✔ ✔ Increment cap address by
immediate, representability check

SCADDR ✔ ✔ Replace capability address,
representability check

GCTAG ✔ ✔ Get tag field

GCPERM ✔ ✔ Get hperm and uperm fields as 1-bit
per permission, packed together

CMV ✔ ✔ Move capability register

ACPERM ✔ ✔ AND capability permissions (expand
to 1-bit per permission before
ANDing)

GCHI ✔ ✔ Get metadata

SCHI ✔ ✔ Set metadata and clear tag

SCEQ ✔ ✔ Full capability bitwise compare, set
result true if both are fully equal

SENTRY ✔ ✔ Seal capability

SCSS ✔ ✔ Set result true if cs1 and cs1 tags
match and cs2 bounds and
permissions are a subset of cs1

CBLD ✔ ✔ Set cd to cs2 with its tag set after
checking that cs2 is a subset of cs1

SCBNDS ✔ ✔ Set register bounds on capability
with rounding, clear tag if rounding
is required

SCBNDSI ✔ ✔ Set immediate bounds on capability
with rounding, clear tag if rounding
is required

SCBNDSR ✔ ✔ Set bounds on capability with
rounding up as required

8.5. Instruction Modes | Page 224

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcherihybr
id

Zcheripure
cap

Function

CRAM ✔ ✔ Representable Alignment Mask:
Return mask to apply to address to
get the requested bounds

GCBASE ✔ ✔ Get capability base

GCLEN ✔ ✔ Get capability length

SCMODE ✔ Set the mode bit of a capability, no
permissions required

MODESW ✔ Directly switch mode (_Integer
Pointer Mode_/ _Capability Pointer
Mode_)

C.MODESW ✔ Directly switch mode (_Integer
Pointer Mode_/ _Capability Pointer
Mode_)

C.ADDI16SP ✔ ✔ ADD immediate to stack pointer,
CADD in Capability Mode

C.ADDI4SPN ✔ ✔ ADD immediate to stack pointer,
CADDI in Capability Mode

C.MV ✔ ✔ Register Move, cap reg move in
Capability Mode

C.J ✔ ✔ Jump to PC+offset, bounds check
minimum size target instruction

C.JAL ✔ ✔ Jump to PC+offset, bounds check
minimum size target instruction,
link to cd

JAL ✔ ✔ Jump to PC+offset, bounds check
minimum size target instruction,
link to cd

JALR ✔ ✔ Indirect cap jump and link, bounds
check minimum size target
instruction, unseal target cap, seal
link cap

C.JALR ✔ ✔ Indirect cap jump and link, bounds
check minimum size target
instruction, unseal target cap, seal
link cap

C.JR ✔ ✔ Indirect cap jump, bounds check
minimum size target instruction,
unseal target cap

DRET Return from debug mode, sets ddc
from dddc and pcc from dpcc

8.5. Instruction Modes | Page 225

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcherihybr
id

Zcheripure
cap

Function

MRET Return from machine mode handler,
sets pcc from mtvecc , needs ASR-
permission

SRET Return from supervisor mode
handler, sets pcc from stvecc, needs
ASR-permission

CSRRW CSR write - can also read/write a full
capability through an address alias

CSRRS CSR set - can also read/write a full
capability through an address alias

CSRRC CSR clear - can also read/write a full
capability through an address alias

CSRRWI CSR write - can also read/write a full
capability through an address alias

CSRRSI CSR set - can also read/write a full
capability through an address alias

CSRRCI CSR clear - can also read/write a full
capability through an address alias

CBO.INVAL ✔ ✔ Cache block invalidate (implemented
as clean)

CBO.CLEAN ✔ ✔ Cache block clean

CBO.FLUSH ✔ ✔ Cache block flush

CBO.ZERO ✔ ✔ Cache block zero

PREFETCH.R ✔ ✔ Prefetch instruction cache line,
always valid

PREFETCH.W ✔ ✔ Prefetch read-only data cache line

PREFETCH.I ✔ ✔ Prefetch writeable data cache line

LR.C ✔ ✔ Load reserved capability

LR.D ✔ ✔ Load reserved double

LR.W ✔ ✔ Load reserved word

LR.H ✔ ✔ Load reserved half

LR.B ✔ ✔ Load reserved byte

SC.C ✔ ✔ Store conditional capability

SC.D ✔ ✔ Store conditional double

SC.W ✔ ✔ Store conditional word

SC.H ✔ ✔ Store conditional half

SC.B ✔ ✔ Store conditional byte

AMOSWAP.C ✔ ✔ Atomic swap of cap

8.5. Instruction Modes | Page 226

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcherihybr
id

Zcheripure
cap

Function

AMO<OP>.W ✔ ✔ Atomic op of word

AMO<OP>.D ✔ ✔ Atomic op of double

C.FLD ✔ ✔ Load floating point double

C.FLDSP ✔ ✔ Load floating point double, sp
relative

C.FSD ✔ ✔ Store floating point double

C.FSDSP ✔ ✔ Store floating point double, sp
relative

FLH ✔ ✔ Load floating point half capability

FSH ✔ ✔ Store floating point half capability

FLW ✔ ✔ Load floating point word capability

FSW ✔ ✔ Store floating point word capability

FLD ✔ ✔ Load floating point double capability

FSD ✔ ✔ Store floating point double capability

CM.PUSH ✔ ✔ Push integer stack frame

CM.POP ✔ ✔ Pop integer stack frame

CM.POPRET ✔ ✔ Pop integer stack frame and return

CM.POPRETZ ✔ ✔ Pop integer stack frame and return
zero

CM.MVSA01 ✔ ✔ Move two integer registers

CM.MVA01S ✔ ✔ Move two integer registers

CM.JALT ✔ ✔ Table jump and link

CM.JT ✔ ✔ Table jump

ADD.UW ✔ ✔ add unsigned words, representability
check in Capability Mode

SH1ADD ✔ ✔ shift and add, representability check
in Capability Mode

SH1ADD.UW ✔ ✔ shift and add unsigned words,
representability check in Capability
Mode

SH2ADD ✔ ✔ shift and add, representability check
in Capability Mode

SH2ADD.UW ✔ ✔ shift and add unsigned words,
representability check in Capability
Mode

SH3ADD ✔ ✔ shift and add, representability check
in Capability Mode

8.5. Instruction Modes | Page 227

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Zcherihybr
id

Zcheripure
cap

Function

SH3ADD.UW ✔ ✔ shift and add unsigned words,
representability check in Capability
Mode

SH4ADD shift and add, representability check
in Capability Mode

SH4ADD.UW shift and add unsigned words,
representability check in Capability
Mode

8.5. Instruction Modes | Page 228

RISC-V Specification for CHERI Extensions | © RISC-V

Chapter 9. Capability Width CSR
Summary

Table 41. CSRs renamed and extended to capability width

CLEN CSR Alias Prerequisites

dpcc dpc Sdext

dscratch0c dscratch0 Sdext

dscratch1c dscratch1 Sdext

mtvecc mtvec M-mode

mscratchc mscratch M-mode

mepcc mepc M-mode

stvecc stvec S-mode

sscratchc sscratch S-mode

sepcc sepc S-mode

jvtc jvt Zcmt

utidc utid Zstid

stidc stid Zstid

mtidc mtid Zstid

Table 42. Action taken on writing to extended CSRs.

CLEN CSR Action on XLEN write Action on CLEN write

dpcc Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

dscratch0c Update the CSR using SCADDR. direct write

dscratch1c Update the CSR using SCADDR. direct write

mtvecc Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check * if vectored mode is
programmed.

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check * if vectored mode is
programmed.

mscratchc Update the CSR using SCADDR. direct write

mepcc Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

Chapter 9. Capability Width CSR Summary | Page 229

RISC-V Specification for CHERI Extensions | © RISC-V

CLEN CSR Action on XLEN write Action on CLEN write

stvecc Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check * if vectored mode is
programmed.

Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change,
including the MODE field in the
address for simplicity. Vector range
check * if vectored mode is
programmed.

sscratchc Update the CSR using SCADDR. direct write

sepcc Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

jvtc Apply Invalid address conversion.
Always update the CSR with SCADDR
even if the address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

utidc Update the CSR using SCADDR. direct write

stidc Update the CSR using SCADDR. direct write

mtidc Update the CSR using SCADDR. direct write

* The vector range check is to ensure that vectored entry to the handler in within bounds of the
capability written to Xtvecc. The check on writing must include the lowest (0 offset) and highest
possible offset (e.g. 64 * MXLEN bits where HICAUSE=16).

 XLEN writing is only available if Zcherihybrid is implemented.


Implementations which allow misa.C to be writable need to legalise Xepcc on reading if
the misa.C value has changed since the value was written as this can cause the read value
of bit [1] to change state.


CSRRW make an XLEN-wide access to the XLEN-wide CSR aliases or a CLEN-wide
access to the CLEN-wide aliases for all extended CSRs. CSRRWI, CSRRS, CSRRSI, CSRRC
and CSRRCI only make XLEN-wide accesses even if the CLEN-wide alias is specified.

Table 43. CLEN-wide CSRs storing executable vectors or data pointers

CLEN CSR Executable Vector Data Pointer Unseal On Execution

dpcc ✔ ✔

mtvecc ✔

mepcc ✔ ✔

stvecc ✔

sepcc ✔ ✔

jvtc ✔

dddc ✔

ddc ✔

Chapter 9. Capability Width CSR Summary | Page 230

RISC-V Specification for CHERI Extensions | © RISC-V

Some CSRs store executable vectors or data pointers as shown in Table 43. These CSRs do not need to
store the full width address on RV64. If they store fewer address bits then writes are subject to the
invalid address check in Invalid address conversion.

Table 44. CLEN-wide CSRs which store all CLEN+1 bits

CLEN CSR Store full metadata

dscratch0c ✔

dscratch1c ✔

mscratchc ✔

sscratchc ✔

dinfc ✔

utidc ✔

stidc ✔

mtidc ✔

Table 44 shows which CLEN-wide CSRs store all CLEN+1 bits. No other CLEN-wide CSRs store any
reserved bits. All CLEN-wide CSRs store all non-reserved metadata fields.

Table 45. All CLEN-wide CSRs. Zcheripurecap is a prerequisite for all CSRs in this table

CLEN CSR Prereq
uisites

Addres
s

Permissions Reset Value Description

dpcc Sdext 0x7b1 DRW tag=0,
otherwise
undefined

Debug Program Counter
Capability

dscratch0c Sdext 0x7b2 DRW tag=0,
otherwise
undefined

Debug Scratch Capability 0

dscratch1c Sdext 0x7b3 DRW tag=0,
otherwise
undefined

Debug Scratch Capability 1

mtvecc M-
mode

0x305 MRW, ASR-
permission

Infinite Machine Trap-Vector Base-
Address Capability

mscratchc M-
mode

0x340 MRW, ASR-
permission

tag=0,
otherwise
undefined

Machine Scratch Capability

mepcc M-
mode

0x341 MRW, ASR-
permission

Infinite Machine Exception Program
Counter Capability

stvecc S-
mode

0x105 SRW, ASR-
permission

Infinite Supervisor Trap-Vector Base-
Address Capability

sscratchc S-
mode

0x140 SRW, ASR-
permission

tag=0,
otherwise
undefined

Supervisor Scratch Capability

sepcc S-
mode

0x141 SRW, ASR-
permission

Infinite Supervisor Exception Program
Counter Capability

Chapter 9. Capability Width CSR Summary | Page 231

RISC-V Specification for CHERI Extensions | © RISC-V

CLEN CSR Prereq
uisites

Addres
s

Permissions Reset Value Description

jvtc Zcmt 0x017 URW tag=0,
otherwise
undefined

Jump Vector Table Capability

dddc Zcheri
hybrid,
Sdext

0x7bc DRW tag=0,
otherwise
undefined

Debug Default Data Capability
(saved/restored on debug mode
entry/exit)

mtdc Zcheri
hybrid,
M-
mode

0x74c MRW, ASR-
permission

tag=0,
otherwise
undefined

Machine Trap Data Capability
(scratch register)

stdc Zcheri
hybrid,
S-
mode

0x163 SRW, ASR-
permission

tag=0,
otherwise
undefined

Supervisor Trap Data Capability
(scratch register)

ddc Zcheri
hybrid

0x416 URW Infinite User Default Data Capability

dinfc Sdext 0x7bd DRW Infinite Source of Infinite capability in
debug mode, writes are ignored

utidc Zstid 0x480 Read: U, Write:
U, ASR-
permission

tag=0,
otherwise
undefined

User thread ID

stidc Zstid 0x580 Read: S, Write:
S, ASR-
permission

tag=0,
otherwise
undefined

Supervisor thread ID

mtidc Zstid 0x780 Read: M, Write:
M, ASR-
permission

tag=0,
otherwise
undefined

Machine thread ID

9.1. Other tables
Table 46. Mnemonics with the same encoding but mapped to different instructions in Integer Pointer Mode and

Capability Pointer Mode

Mnemonic _Integer Pointer Mode_
mnemonic RV32

Integer Pointer Mode
mnemonic RV64

C.LCSP C.FLWSP C.FLDSP

C.SCSP C.FSWSP C.FSDSP

C.LC C.FLW C.FLD

C.SC C.FSW C.FSD

Table 47. Instruction encodings which vary depending on the current XLEN

Mnemonic Function

LC Load cap via int pointer

9.1. Other tables | Page 232

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic Function

SC Store cap via int pointer

C.LCSP Load cap capability, SP relative

C.SCSP Store cap capability, SP relative

C.LC Load cap capability

C.SC Store cap capability

LR.C Load reserved capability

SC.C Store conditional capability

AMOSWAP.C Atomic swap of cap


MODESW and SCMODE only exist in Capability Pointer Mode if Integer Pointer Mode is
also present. A purecap core does not implement the mode bit in the capability.

Table 48. Illegal instruction detect for CHERI instructions

Mnemonic illegal insn if (1) OR illegal insn if (2) OR illegal insn if (3)

MODESW mode==D (optional)

C.MODESW mode==D (optional)

C.J mode==D (optional)

C.JAL mode==D (optional)

JAL mode==D (optional)

JALR mode==D (optional)

C.JALR mode==D (optional)

C.JR mode==D (optional)

DRET MODE<D

MRET MODE<M PCC.ASR==0

SRET MODE<S PCC.ASR==0 mstatus.TSR==1 AND
MODE==S

CSRRW CSR permission fault

CSRRS CSR permission fault

CSRRC CSR permission fault

CSRRWI CSR permission fault

CSRRSI CSR permission fault

CSRRCI CSR permission fault

CBO.INVAL MODE<M AND
menvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

CBO.CLEAN MODE<M AND
menvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

CBO.FLUSH MODE<M AND
menvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

9.1. Other tables | Page 233

RISC-V Specification for CHERI Extensions | © RISC-V

Mnemonic illegal insn if (1) OR illegal insn if (2) OR illegal insn if (3)

CBO.ZERO MODE<M AND
menvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

C.FLW Xstatus.fs==0

C.FLWSP Xstatus.fs==0

C.FSW Xstatus.fs==0

C.FSWSP Xstatus.fs==0

C.FLD Xstatus.fs==0

C.FLDSP Xstatus.fs==0

C.FLD Xstatus.fs==0

C.FLDSP Xstatus.fs==0

C.FSD Xstatus.fs==0

C.FSDSP Xstatus.fs==0

C.FSD Xstatus.fs==0

C.FSDSP Xstatus.fs==0

FLH Xstatus.fs==0

FSH Xstatus.fs==0

FLW Xstatus.fs==0

FSW Xstatus.fs==0

FLD Xstatus.fs==0

FSD Xstatus.fs==0

9.1. Other tables | Page 234

RISC-V Specification for CHERI Extensions | © RISC-V

Bibliography
RISC-V. (2022). RISC-V Debug Specification. github.com/riscv/riscv-debug-spec/raw/
c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf

RISC-V. (2023). RISC-V Privileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Unprivileged Specification. github.com/riscv/riscv-isa-manual/releases/
download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Code-size Reduction Specification. github.com/riscv/riscv-code-size-
reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf

Watson, R. N. M., Neumann, P. G., Woodruff, J., Roe, M., Almatary, H., Anderson, J., Baldwin, J.,
Barnes, G., Chisnall, D., Clarke, J., Davis, B., Eisen, L., Filardo, N. W., Fuchs, F. A., Grisenthwaite, R.,
Joannou, A., Laurie, B., Markettos, A. T., Moore, S. W., … Xia, H. (2023). Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (Version 9) (UCAM-CL-TR-987; Issue UCAM-CL-
TR-987). University of Cambridge, Computer Laboratory. doi.org/10.48456/tr-987

Woodruff, J., Joannou, A., Xia, H., Fox, A., Norton, R. M., Chisnall, D., Davis, B., Gudka, K., Filardo, N.
W., Markettos, A. T., & others. (2019). Cheri concentrate: Practical compressed capabilities. IEEE
Transactions on Computers, 68(10), 1455–1469. doi.org/10.1109/TC.2019.2914037

Bibliography | Page 235

RISC-V Specification for CHERI Extensions | © RISC-V

https://github.com/riscv/riscv-debug-spec/raw/c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf
https://github.com/riscv/riscv-debug-spec/raw/c93823ef349286dc71a00928bddb7254e46bc3b5/riscv-debug-stable.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://github.com/riscv/riscv-code-size-reduction/releases/download/v1.0.4-3/Zc-1.0.4-3.pdf
https://doi.org/10.48456/tr-987
https://doi.org/10.1109/TC.2019.2914037

	RISC-V Specification for CHERI Extensions
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	1.1. CHERI Concepts and Terminology
	1.2. CHERI Extensions to RISC-V
	1.3. Risks and Known Uncertainty
	1.3.1. Pending Extensions
	1.3.2. Incompatible Extensions

	Chapter 2. Anatomy of Capabilities in Zcheripurecap
	2.1. Capability Encoding
	2.2. Components of a Capability
	2.2.1. Tag
	2.2.2. Address
	2.2.3. Architectural Permissions (AP)
	Description
	Permission Encoding
	Permission Transitions

	2.2.4. Software-Defined Permissions (SDP)
	2.2.5. Sealed (S) Bit
	2.2.6. Bounds (EF, T, TE, B, BE)
	Concept
	Decoding
	Malformed Capability Bounds

	2.3. Special Capabilities
	2.3.1. NULL Capability
	2.3.2. Infinite Capability

	2.4. Representable Range Check
	2.4.1. Concept
	2.4.2. Practical Information

	Chapter 3. Integrating Zcheripurecap with the RISC-V Base Integer Instruction Set
	3.1. Memory
	3.2. Programmer’s Model for Zcheripurecap
	3.2.1. PCC - The Program Counter Capability

	3.3. Capability Instructions
	3.3.1. Capability Inspection Instructions
	3.3.2. Capability Manipulation Instructions
	3.3.3. Capability Load and Store Instructions

	3.4. Existing RISC-V Instructions
	3.4.1. Integer Computational Instructions
	3.4.2. Control Transfer Instructions
	Unconditional Jumps
	Conditional Branches

	3.4.3. Integer Load and Store Instructions

	3.5. Zicsr, Control and Status Register (CSR) Instructions
	3.5.1. CSR Instructions

	3.6. Control and Status Registers (CSRs)
	3.7. Machine-Level CSRs
	3.7.1. Machine Status Registers (mstatus and mstatush)
	3.7.2. Machine Trap Vector Base Address Register (mtvec)
	3.7.3. Machine Trap Vector Base Address Capability Register (mtvecc)
	3.7.4. Machine Scratch Register (mscratch)
	3.7.5. Machine Scratch Capability Register (mscratchc)
	3.7.6. Machine Exception Program Counter (mepc)
	3.7.7. Machine Exception Program Counter Capability (mepcc)
	3.7.8. Machine Cause Register (mcause)
	3.7.9. Machine Trap Delegation Register (medeleg)
	3.7.10. Machine Trap Value Register (mtval)

	3.8. Supervisor-Level CSRs
	3.8.1. Supervisor Trap Vector Base Address Register (stvec)
	3.8.2. Supervisor Trap Vector Base Address Capability Register (stvecc)
	3.8.3. Supervisor Scratch Register (sscratch)
	3.8.4. Supervisor Scratch Capability Register (sscratchc)
	3.8.5. Supervisor Exception Program Counter (sepc)
	3.8.6. Supervisor Exception Program Counter Capability (sepcc)
	3.8.7. Supervisor Cause Register (scause)
	3.8.8. Supervisor Trap Value Register (stval)

	3.9. Unprivileged CSRs
	3.10. CHERI Exception handling
	3.11. CHERI Exceptions and speculative execution
	3.12. Physical Memory Attributes (PMA)
	3.13. Page-Based Virtual-Memory Systems
	3.13.1. Invalid Address Handling
	Accessing CSRs
	Branches and Jumps
	Memory Accesses

	3.14. Integrating Zcheripurecap with Sdext
	3.14.1. Debug Mode
	3.14.2. Core Debug Registers
	3.14.3. Debug Program Counter (dpc)
	3.14.4. Debug Program Counter Capability (dpcc)
	3.14.5. Debug Scratch Register 0 (dscratch0)
	3.14.6. Debug Scratch Register 0 Capability (dscratch0c)
	3.14.7. Debug Scratch Register 1 (dscratch1)
	3.14.8. Debug Scratch Register 1 Capability (dscratch1c)
	3.14.9. Debug Infinite Capability Register (dinfc)

	3.15. Integrating Zcheripurecap with Sdtrig

	Chapter 4. "Zcheripte" Extension for CHERI Page-Based Virtual-Memory Systems
	4.1. Extending the Page Table Entry Format
	4.2. Extending the Machine Environment Configuration Register (menvcfg)

	Chapter 5. "Zcherihybrid" Extension for CHERI Integer Pointer Mode
	5.1. CHERI Execution Mode
	5.2. CHERI Execution Mode Encoding
	5.2.1. Observing the CHERI Execution Mode

	5.3. Zcherihybrid Instructions
	5.3.1. Capability Load and Store Instructions
	5.3.2. Capability Manipulation Instructions
	5.3.3. Mode Change Instructions

	5.4. Existing RISC-V Instructions
	5.4.1. Control Transfer Instructions
	5.4.2. Conditional Branches
	5.4.3. Load and Store Instructions
	5.4.4. CSR Instructions

	5.5. Integrating Zcherihybrid with Sdext
	5.6. Debug Default Data Capability (dddc)
	5.7. Disabling CHERI Registers
	5.8. Added CLEN-wide CSRs
	5.8.1. Machine Status Registers (mstatus and mstatush)
	5.8.2. Machine Trap Default Capability Register (mtdc)
	5.8.3. Machine Security Configuration Register (mseccfg)
	5.8.4. Machine Environment Configuration Register (menvcfg)
	5.8.5. Supervisor Trap Default Capability Register (stdc)
	5.8.6. Supervisor Environment Configuration Register (senvcfg)
	5.8.7. Default Data Capability (ddc)

	Chapter 6. "Zstid Extension for Thread Identification
	6.1. Control and Status Registers (CSRs)
	6.2. Machine-Level, Supervisor-Level and Unprivileged CSRs
	6.2.1. Machine Thread Identifier (mtid)
	6.2.2. Supervisor Thread Identifier (stid)
	6.2.3. User Thread Identifier (utid)
	6.2.4. Machine Thread Identifier Capability (mtidc)
	6.2.5. Supervisor Thread Identifier Capability (stidc)
	6.2.6. User Thread Identifier Capability (utidc)

	6.3. CHERI Compartmentalization

	Chapter 7. RISC-V Instructions and Extensions Reference
	7.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI
	7.1.1. CMV
	7.1.2. MODESW
	7.1.3. CADDI
	7.1.4. CADD
	7.1.5. SCADDR
	7.1.6. ACPERM
	7.1.7. SCMODE
	7.1.8. SCHI
	7.1.9. SCEQ
	7.1.10. SENTRY
	7.1.11. SCSS
	7.1.12. CBLD
	7.1.13. GCTAG
	7.1.14. GCPERM
	7.1.15. GCHI
	7.1.16. GCBASE
	7.1.17. GCLEN
	7.1.18. SCBNDSI
	7.1.19. SCBNDS
	7.1.20. SCBNDSR
	7.1.21. CRAM
	7.1.22. LC
	7.1.23. SC

	7.2. RV32I/E and RV64I/E Base Integer Instruction Sets
	7.2.1. AUIPC
	7.2.2. BEQ, BNE, BLT[U], BGE[U]
	7.2.3. JR
	7.2.4. JALR
	7.2.5. J
	7.2.6. JAL
	7.2.7. LD
	7.2.8. LWU
	7.2.9. LW
	7.2.10. LHU
	7.2.11. LH
	7.2.12. LBU
	7.2.13. LB
	7.2.14. SD
	7.2.15. SW
	7.2.16. SH
	7.2.17. SB
	7.2.18. SRET
	7.2.19. MRET
	7.2.20. DRET

	7.3. "A" Standard Extension for Atomic Instructions
	7.3.1. AMO<OP>.W
	7.3.2. AMO<OP>.D
	7.3.3. AMOSWAP.C
	7.3.4. LR.D
	7.3.5. LR.W
	7.3.6. LR.H
	7.3.7. LR.B
	7.3.8. LR.C
	7.3.9. SC.D
	7.3.10. SC.W
	7.3.11. SC.H
	7.3.12. SC.B
	7.3.13. SC.C

	7.4. "Zicsr", Control and Status Register (CSR) Instructions
	7.4.1. CSRRW
	7.4.2. CSRRWI
	7.4.3. CSRRS
	7.4.4. CSRRSI
	7.4.5. CSRRC
	7.4.6. CSRRCI

	7.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point
	7.5.1. FLD
	7.5.2. FLW
	7.5.3. FLH
	7.5.4. FSD
	7.5.5. FSW
	7.5.6. FSH

	7.6. "C" Standard Extension for Compressed Instructions
	7.6.1. RV32
	7.6.2. RV64
	7.6.3. C.BEQZ, C.BNEZ
	7.6.4. C.MV
	7.6.5. C.ADDI16SP
	7.6.6. C.ADDI4SPN
	7.6.7. C.MODESW
	7.6.8. C.JALR
	7.6.9. C.JR
	7.6.10. C.JAL
	7.6.11. C.J
	7.6.12. C.LD
	7.6.13. C.LW
	7.6.14. C.LWSP
	7.6.15. C.LDSP
	7.6.16. C.FLW
	7.6.17. C.FLWSP
	7.6.18. C.FLD
	7.6.19. C.FLDSP
	7.6.20. C.LC
	7.6.21. C.LCSP
	7.6.22. C.SD
	7.6.23. C.SW
	7.6.24. C.SWSP
	7.6.25. C.SDSP
	7.6.26. C.FSW
	7.6.27. C.FSWSP
	7.6.28. C.FSD
	7.6.29. C.FSDSP
	7.6.30. C.SC
	7.6.31. C.SCSP

	7.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache Management Operations
	7.7.1. CBO.CLEAN
	7.7.2. CBO.FLUSH
	7.7.3. CBO.INVAL
	7.7.4. CBO.ZERO
	7.7.5. PREFETCH.I
	7.7.6. PREFETCH.R
	7.7.7. PREFETCH.W

	7.8. "Zba" Extension for Bit Manipulation Instructions
	7.8.1. ADD.UW
	7.8.2. SH1ADD
	7.8.3. SH2ADD
	7.8.4. SH3ADD
	7.8.5. SH1ADD.UW
	7.8.6. SH2ADD.UW
	7.8.7. SH3ADD.UW
	7.8.8. SH4ADD
	7.8.9. SH4ADD.UW

	7.9. "Zcb" Standard Extension For Code-Size Reduction
	7.9.1. C.LH
	7.9.2. C.LHU
	7.9.3. C.LBU
	7.9.4. C.SH
	7.9.5. C.SB

	7.10. "Zcmp" Standard Extension For Code-Size Reduction
	7.10.1. CM.PUSH
	7.10.2. CM.POP
	7.10.3. CM.POPRET
	7.10.4. CM.POPRETZ
	7.10.5. CM.MVSA01
	7.10.6. CM.MVA01S

	7.11. "Zcmt" Standard Extension For Code-Size Reduction
	7.11.1. Jump Vector Table CSR (jvt)
	7.11.2. Jump Vector Table CSR (jvtc)
	7.11.3. CM.JALT
	7.11.4. CM.JT

	Chapter 8. Extension summary
	8.1. Zabhlrsc
	8.2. Zish4add
	8.3. Zcheripurecap
	8.4. Zcherihybrid
	8.5. Instruction Modes

	Chapter 9. Capability Width CSR Summary
	9.1. Other tables

	
	Bibliography

