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Chapter 1. Quick Start

This document describes the RISC-V extensions for supporting CHERI capabilities in hardware.
Capabilities can be used to provide memory safety, mitigating up to 70% of memory safety issues
(Joly et al., 2020), as well as to provide efficient compartmentalization. The extensions are split into
the core features required for a working capability system (Zcheripurecap), and features required to
support a mix-and-match of binaries compiled for CHERI and unchanged binaries (Zcherihybrid).
Some other smaller extensions are described that provide additional functionality relevant to CHERI.

1.1. Capability Properties

Capabilities are 2*XLEN (which we call CLEN) bit structures, containing all the information required to
identify and authorize access to a region of memory. This includes:

⚫ An XLEN bit address, describing where the capability currently points.

⚫ Bounds: a base and a top address, describing the range of addresses the capability can be used to
access.

⚫ Permissions (read, write, execute, read capability, …) describing the kinds of accesses the
capability can be used for.

⚫ Sealing information: a capability can be sealed, restricting it to only be used or modified in
particular ways.

A one-bit integrity tag is stored alongside a capability: this is maintained by hardware and cannot be
directly modified by software. It indicates whether the capability is valid. An initial Infinite capability
with access to all of memory with all permissions is provided in system registers on reset: all valid
capabilities are derived from it. This is the only way to obtain a valid capability: no software, even
machine mode, can forge a capability.

1.2. Added State

A CHERI core adds state to allow capabilities to be used from within registers, and to ensure they are
not corrupted as they flow through the system. This means the following state is added:

⚫ Metadata within architectural registers: XLEN-wide integer registers (e.g. sp, a0) are all extended
with another XLEN bits of capability metadata, including bounds and permissions. The resulting
CLEN bits in full form a capability, and we refer to the same register prefixed with a c, i.e. csp, ca0.
The integer part of the register is interpreted as the address field of the capability. The zero
register is extended with zero metadata and a cleared tag: this is called the NULL capability. As
well as general purpose registers, system registers that store addresses are extended to contain
capabilities. For example, mtvec is extended to a capability version mtvecc (the machine trap
vector capability) to allow the code bounds to be changed on an exception.

⚫ Tags in registers, caches, and memory:

⚫ Every register has a one-bit tag, indicating whether the capability in the register is valid to be
dereferenced. Among other reasons, this tag is cleared if the register is written as an integer.

⚫ The tags are also tracked through the memory subsystem: every aligned CLEN-bits wide region
has a non-addressable one-bit tag, which the hardware manages atomically with the data. The
tag is cleared if the memory region is ever written other than using a capability store from a
tagged capability register. Any caches must preserve this abstraction.
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1.3. Checking Memory

Every memory access performed by a CHERI core must be authorized by a capability. It is explicitly
defined for every instruction where to find the capability to check against. In purecap code, where all
pointers are individual capabilities, the capability and address are used together, so e.g. lw t0,
16(csp) loads a word from memory, getting the address and bounds from the csp register. For code
that has not yet been fully adapted to CHERI (hybrid code), the processor can run in a pointer mode
(not to be confused with a privilege mode) where the authorizing capability is instead taken from a
special CSR: the default data capability (ddc).

Instruction fetch is also authorized by a capability: the program counter capability (pcc) which extends
PC. This allows code fetch to be bounded, preventing a wide range of attacks that subvert control flow
with integer data. Where Zcherihybrid is supported, the pcc also contains the mode bit indicating
whether the processor is running in integer or capability pointer mode. Changing the bounds used for
instruction fetch or the pointer mode can be as easy as performing a capability-based jump (JALR in
capability pointer mode). MODESW.CAP and MODESW.INT instructions are also added to allow cheap
mode switching.

Exception codes are added for CHERI-specific exceptions on fetch, jumps, and memory access. No
other exception paths are added: in particular, capability manipulations do not trap, but may clear the
tag on the result capability if the operation is not permitted.

1.4. Added Instructions

The added instructions can be split into the following categories:

⚫ Capability manipulations (e.g. CADD, SCBNDS): for security, capabilities can only be modified in
restricted ways. Special instructions are provided to perform these allowed operations, for example
shrinking the bounds or reducing the permissions. Any attempt to manipulate capabilities without
using the instructions clears the tag, rendering them unusable for accessing memory.

⚫ Capability inspection (e.g. GCBASE, GCPERM): capability fields (for example the bounds describing
what addresses the capability gives access to) are stored compressed in registers and memory.
These instructions give convenient access to allow software to query them.

⚫ Memory access instructions (e.g. LC, SC): capabilities must be read from and written to memory
atomically along with their tag. Instructions are added to perform these wider accesses, allowing
capability flow between the memory and the register file.

1.5. Existing Instructions

Existing RISC-V instructions are largely unmodified: in Integer Pointer Mode, there is binary
compatibility. Instructions that access memory, as well as branches and jumps, are automatically
checked against ddc and pcc, raising an exception if the checks fail. However, ddc and pcc are reset to
Infinite capabilities, meaning the checks will always pass on systems that have not written to CHERI
system registers.

In Capability Pointer Mode, these instructions are instead modified to check against the full capability
from the address register (e.g. lw t0, 16(csp)). In some cases, they are also changed to return a full
capability value, e.g. AUIPC will return the full pcc including the metadata.
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Chapter 2. Introduction

2.1. CHERI Concepts and Terminology

Current CPU architectures (including RISC-V) allow memory access solely by specifying and
dereferencing a memory address stored as an integer value in a register or in memory. Any accidental
or malicious action that modifies such an integer value can result in unrestricted access to the
memory that it addresses. Unfortunately, this weak memory protection model has resulted in the
majority of software security vulnerabilities present in software today.

CHERI enables software to efficiently implement fine-grained memory protection and scalable
software compartmentalization by providing strong, efficient hardware mechanisms to support
software execution and enable it to prevent and mitigate vulnerabilities.

Design goals include incremental adoptability from current ISAs and software stacks, low performance
overhead for memory protection, significant performance improvements for software
compartmentalization, formal grounding, and programmer-friendly underpinnings. It has been
designed to provide strong, non-probabilistic protection rather than depending on short random
numbers or truncated cryptographic hashes that can be leaked and reinjected, or that could be brute
forced.

CHERI enhances the CPU to add hardware memory access control. It has an additional memory
access mechanism that protects references to code and data (pointers), rather than the location of
code and data (integer addresses). This mechanism is implemented by providing a new primitive,
called a capability, that software components can use to implement strongly protected pointers within
an address space.

Capabilities are unforgeable and delegatable tokens of authority that grant software the ability to
perform a specific set of operations. In CHERI, integer-based pointers can be replaced by capabilities
to provide memory access control. In this case, a memory access capability contains an integer
memory address that is extended with metadata to protect its integrity, limit how it is manipulated, and
control its use. This metadata includes:

⚫ an out-of-band tag implementing strong integrity protection (differentiating valid and invalid
capabilities) that prevents confusion between data and capabilities

⚫ bounds limiting the range of addresses that may be dereferenced

⚫ permissions controlling the specific operations that may be performed

⚫ type which is used to support higher-level software encapsulation

The CHERI model is motivated by the principle of least privilege, which argues that greater security
can be obtained by minimizing the privileges accessible to running software. A second guiding
principle is the principle of intentional use, which argues that, where many privileges are available to a
piece of software, the privilege to use should be explicitly named rather than implicitly selected. While
CHERI does not prevent the expression of vulnerable software designs, it provides strong vulnerability
mitigation: attackers have a more limited vocabulary for attacks, and should a vulnerability be
successfully exploited, they gain fewer rights, and have reduced access to further attack surfaces.

Protection properties for capabilities include the ISA ensuring that capabilities are always derived via
valid manipulations of other capabilities (provenance), that corrupted in-memory capabilities cannot
be dereferenced (integrity), and that rights associated with capabilities shall only ever be equal or less
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permissive (monotonicity). Tampering or modifying capabilities in an attempt to elevate their rights will
yield an invalid capability as the tag will be cleared. Attempting to dereference via an invalid capability
will result in a hardware exception.

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and dereferenced
using CHERI-aware instructions that expect capability operands rather than integer addresses. On
hardware reset, initial capabilities are made available to software via capability registers. All other
capabilities will be derived from these initial valid capabilities through valid capability transformations.

Developers can use CHERI to build fine-grained spatial and temporal memory protection into their
system software and applications and significantly improve their security.

2.2. CHERI Extensions to RISC-V

This specification is based on publicly available documentation including (Watson et al., 2023) and
(Woodruff et al., 2019). It defines the following extensions to support CHERI alongside RISC-V:

Zcheripurecap

Introduces key, minimal CHERI concepts and features to the RISC-V ISA. The resulting extended
ISA is not backwards-compatible with RISC-V.

Zcherihybrid

Extends Zcheripurecap with features to ensure that the ISA extended with CHERI allows backwards
binary compatibility with RISC-V.

Zish4add

Addition of SH4ADD and SH4ADD.UW for RV64 only, as CHERI capabilities are 16 bytes when
XLEN=64

Zabhlrsc

Addition of LR.B, LR.H, SC.B, SC.H for more accurate atomic locking as the memory ranges are
restricted by using bounds, therefore precise locking is needed.

Zcheripte

CHERI extension for RISC-V harts supporting page-based virtual-memory.

Zstid

Extension for supporting thread identifiers. This extension improves software compartmentalization
on CHERI systems.

Zcherilevels

Extension for supporting capability flow control. This extension allows limiting storing of
capabilities to specific regions and can be used e.g. for safer data sharing between compartments.

 The extension names are provisional and subject to change.

Table 1. Extension status and summary

Extension Status Comment

Zcheripurecap Stable This extension is a candidate for freezing

Zcherihybrid Stable This extension is a candidate for freezing
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Extension Status Comment

Zish4add Stable This extension is a candidate for freezing

Zabhlrsc Stable This extension is a candidate for freezing

Zcheripte Stabilizing This extension is a candidate for freeze, software
evaluation currently ongoing

Zstid Stabilizing This extension is a candidate for freeze, software
evaluation currently ongoing

Zcherilevels with
LVLBITS=1

Prototype This extension is a prototype, software is being
developed to use it to increase the maturity level.

Zcheripurecap is defined as the base extension which all CHERI RISC-V implementations must
support. Zcherihybrid and Zcheripte are optional extensions in addition to Zcheripurecap.

We refer to software as purecap if it utilizes CHERI capabilities for all memory accesses — including
loads, stores and instruction fetches — rather than integer addresses. Purecap software requires the
CHERI RISC-V hart to support Zcheripurecap. We refer to software as hybrid if it uses integer
addresses or CHERI capabilities for memory accesses. Hybrid software requires the CHERI RISC-V
hart to support Zcheripurecap and Zcherihybrid.

See Chapter 12 for compatibility with other RISC-V extensions.

2.3. Risks and Known Uncertainty

⚫ All extensions could be divided up differently in the future, including after ratification

⚫ The RISC-V Architecture Review Committee (ARC) are likely to update all encodings

⚫ The ARC are likely to update all CSR addresses

⚫ Instruction mnemonics may be renamed

⚫ Any changes will affect assembly code, but assembler aliases can provide backwards
compatibility

2.3.1. Partially Incompatible Extensions

There are RISC-V extensions in development that may duplicate some aspects of CHERI functionality
or directly conflict with CHERI and should only be available in Integer Pointer Mode on a CHERI-
enabled hart. These include:

⚫ RISC-V CFI specification

⚫ "J" Pointer Masking (see Chapter 10).
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Chapter 3. Anatomy of Capabilities in Zcheripurecap

RISC-V defines variants of the base integer instruction set characterized by the width of the integer
registers and the corresponding size of the address space. There are two primary ISA variants, RV32I
and RV64I, which provide 32-bit and 64-bit address spaces respectively. The term XLEN refers to the
width of an integer register in bits (either 32 or 64). The value of XLEN may change dynamically at run-
time depending on the values written to CSRs, so we define capability behavior in terms of MXLEN,
which is the value of XLEN used in machine mode and the widest XLEN the implementation supports.



Zcheripurecap assumes a version of the privileged architecture which defines
MXLEN as constant and requires higher privilege modes to have at least the same
XLEN as lower privilege modes; these changes are present in the current draft and
expected to be part of privileged architecture 1.13.

Zcheripurecap defines capabilities of size CLEN corresponding to 2 * MXLEN without including the tag
bit. The value of CLEN is always calculated based on MXLEN regardless of the effective XLEN value.



We briefly note that the capability encoding described in this section could be
replaced with an entirely different design without changing how CHERI integrates
with the RISC-V ISA. In particular, this capability encoding specification was
designed to run software initially ported to CHERIv9 while providing spatial safety,
temporal safety and compartmentalization support alongside a good measure of
compatibility with RISC-V software that is not aware of CHERI. Alternative capability
encoding specifications must provide key primitives, such as permissions and
bounds, from this specification while using a different encoding that, for example,
changes the granularity of bounds or adds new features. For simplicity of expression,
the text is written as if this was the only possible capability encoding for CHERI
RISC-V.

3.1. Capability Encoding

The components of a capability, except the tag, are encoded as shown in Figure 1 for MXLEN=32 and
Figure 2 for MXLEN=64. Each memory location or register able to hold a capability must also store the
tag as out of band information that software cannot directly set or clear. The capability metadata is
held in the most significant bits and the address is held in the least significant bits.

31 30 29 25 24 23 21 20 19 18 17 12 11 10 9 2 1 0

SDP AP, M CL Reserved CT EF L8 T[7:2] TE B[9:2] BE

Address

32

Figure 1. Capability encoding for MXLEN=32
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63 57 56 53 52 51 44 43 42 28 27 26 25 17 16 14 13 3 2 0

Reserved SDP M AP CL Reserved CT EF T[11:3] TE B[13:3] BE

Address

64

Figure 2. Capability encoding for MXLEN=64

Reserved bits are available for future extensions to Zcheripurecap.

 Reserved bits must be 0 in tagged capabilities.

 The CL field is only present if Zcherilevels is implemented, otherwise it is reserved.

3.2. Components of a Capability

Capabilities contain the software accessible fields described in this section.

3.2.1. Tag

The tag is an additional hardware managed bit added to addressable memory and registers. It is
stored separately and may be referred to as "out of band". It indicates whether a register or CLEN-
aligned memory location contains a valid capability. If the tag is set, the capability is valid and can be
dereferenced (contingent on checks such as permissions or bounds).

The capability is invalid if the tag is clear. Using an invalid capability to dereference memory or
authorize any operation gives rise to exceptions. All capabilities derived from invalid capabilities are
themselves invalid i.e. their tags are 0.

All locations in registers or memory able to hold a capability are CLEN+1 bits wide including the tag
bit. Those locations are referred as being CLEN-bit or capability wide in this specification.

3.2.2. Address

The byte-address of a memory location is encoded as MXLEN integer value.

Table 2. Address widths depending on MXLEN

MXLEN Address width

32 32

64 64

3.2.3. Architectural Permissions (AP)

Description

This field encodes architecturally defined permissions of the capability. Permissions grant access
subject to the tag being set, the capability being unsealed (see Section 3.2.5), and bounds checks (see
Section 3.2.6). An operation is also contingent on requirements imposed by other RISC-V architectural
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features, such as virtual memory, PMP and PMAs, even if the capability grants sufficient permissions.
The permissions currently defined in Zcheripurecap are listed below.

Read Permission (R)

Allow reading integer data from memory. Tags are always read as zero when reading integer data.

Write Permission (W)

Allow writing integer data to memory. Tags are always written as zero when writing integer data.
Every CLEN aligned word in memory has a tag, if any byte is overwritten with integer data then the
tag for all CLEN-bits is cleared.

Capability Permission (C)

Allow reading capability data from memory if the authorizing capability also grants R-permission.
Allow writing capability data to memory if the authorizing capability also grants W-permission.

Execute Permission (X)

Allow instruction execution.

Load Mutable Permission (LM)

Allow preserving the W-permission of capabilities loaded from memory. If a capability grants R-
permission and C-permission, but no LM-permission, then a capability loaded via this authorizing
capability will have W-permission and LM-permission removed provided that the loaded capability
has its tag set and is not sealed; loaded capabilities that are sealed or untagged do not have their
permissions changed. The rules specified by ACPERM are followed when W-permission and LM-
permission are removed, so additional permissions may also be removed. Clearing a capability’s
LM-permission and W-permission allows sharing a read-only version of a data structure (e.g. a tree
or linked list) without making a copy.


Implementations are allowed to retain invalid capability permissions loaded from
memory instead of following the ACPERM behavior of reducing them to no
permissions.

Access System Registers Permission (ASR)

Allow read and write access to all privileged (M-mode and S-mode) CSRs. If Zstid is supported the
utid, utidc, vstid, vstidc, stid, stidc, mtid, mtidc registers are all considered privileged for the
purposes of writing and unprivileged for reading, and thus require ASR-permission for writes but
not reads. In all cases a suitable privilege mode is required for access.

Permission Encoding

The bit width of the permissions field depends on the value of MXLEN as shown in Table 3. A 5-bit
vector encodes the permissions when MXLEN=32. For this case, the legal encodings of permissions
are listed in Table 4. Certain combinations of permissions are impractical. For example, C-permission
is superfluous when the capability does not grant either R-permission or W-permission. Therefore, it is
only possible to encode a subset of all combinations.

Table 3. Permissions widths depending on MXLEN

MXLEN AP field width Comment

32 5 Encodes some combinations of 6 permission bits,
including the M-bit if Zcherihybrid is supported.
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MXLEN AP field width Comment

64 6 Separate bits for each architectural permission.

 if Zcherilevels is supported then there are 8 architectural permission bits.

For MXLEN=32, the permissions encoding is split into four quadrants. The quadrant is taken from bits
[4:3] of the permissions encoding. The meaning for bits [2:0] are shown in Table 4 for each quadrant.

Quadrants 2 and 3 are arranged to implicitly grant future permissions which may be added with the
existing allocated encodings. Quadrant 0 does the opposite - the encodings are allocated not to
implicitly add future permissions, and so granting future permissions will require new encodings.
Quadrant 1 encodes permissions for executable capabilities and the M-bit.
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Table 4. Encoding of architectural permissions for MXLEN=32

Encoding[2:0] R W C LM X ASR Mode1 Notes

Quadrant 0: Non-capability data read/write

bit[2] - write, bit[1] - reserved (0), bit[0] - read

Reserved bits for future extensions are 0 so new permissions are not implicitly granted

0 N/A No permissions

1 ✔ N/A Data RO

2-3 reserved

4 ✔ N/A Data WO

5 ✔ ✔ N/A Data RW

6-7 reserved

Quadrant 1: Executable capabilities

bit[0] - M-bit (0-Capability Pointer Mode, 1-Integer Pointer Mode)

0-1 ✔ ✔ ✔ ✔ ✔ ✔ Mode1 Execute + ASR (see Infinite)

2-3 ✔ ✔ ✔ ✔ Mode1 Execute + Data & Cap RO

4-5 ✔ ✔ ✔ ✔ ✔ Mode1 Execute + Data & Cap RW

6-7 ✔ ✔ ✔ Mode1 Execute + Data RW

Quadrant 2: Restricted capability data read/write

R and C implicitly granted, LM dependent on W permission.

Reserved bits for future extensions must be 1 so they are implicitly granted

bit[2] is reserved to mean write for future encodings

0-2 reserved

3 ✔ ✔ N/A Data & Cap RO (no LM)

4-7 reserved

Quadrant 3: Capability data read/write

bit[2] - write, R and C implicitly granted.

Reserved bits for future extensions must be 1 so they are implicitly granted

0-2 reserved

3 ✔ ✔ ✔ N/A Data & Cap RO

4-6 reserved

7 ✔ ✔ ✔ ✔ N/A Data & Cap RW

1 Mode (M-bit) can only be set on a tagged capability when Zcherihybrid is supported. Despite being
encoded here it is not an architectural permission.



When MXLEN=32 there are many reserved permission encodings (see Table 4). It is
not possible for a tagged capability to have one of these values since ACPERM will
never create it. It is possible for untagged capabilities to have reserved values.
GCPERM will interpret reserved values as if it were 0b00000 (no permissions).
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Future extensions may assign meanings to the reserved bit patterns, in which case
GCPERM is allowed to report a non-zero value.

A 6-bit vector encodes the permissions when MXLEN=64 (8-bit if Zcherilevels is supported). In this
case, there is a bit per permission as shown in Table 5. A permission is granted if its corresponding bit
is set, otherwise the capability does not grant that permission.
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Table 5. Encoding of architectural permissions for MXLEN=64

Bit Name

0 C-permission

1 W-permission

2 R-permission

3 X-permission

4 ASR-permission

5 LM-permission

6 EL-permission1

7 SL-permission1

1 This permission is only supported if the implementation supports Zcherilevels.

The M-bit is only assigned meaning when the implementation supports Zcherihybrid and X-permission
is set.

1. For MXLEN=64, the bit assigned to the M-bit must be zero if X-permission isn’t set.

2. For MXLEN=32, the M-bit is only encoded in quadrant 1 and does not exist in the other quadrants.

Permission Transitions

Executing ACPERM can result in sets of permissions which cannot be represented when MXLEN=32
(see Table 4) or permission combinations which are not useful for MXLEN=64, such as ASR-
permission set without X-permission.

These cases are defined to return useful minimal sets of permissions, which may be no permissions.
See ACPERM for these rules.


Future extensions may allow more combinations of permissions, especially for
MXLEN=64.

3.2.4. Software-Defined Permissions (SDP)

A bit vector used by the kernel or application programs for software-defined permissions (SDP).



Software is completely free to define the usage of these bits. For example, a program
may decide to use an SDP bit to indicate the "ownership" of objects. Therefore, a
capability grants permission to free the memory it references if that SDP bit is set
because it "owns" that object.

Table 6. SDP widths depending on MXLEN

MXLEN SDPLEN

32 2

64 4
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3.2.5. Capability Type (CT) Bit

This bit indicates the type of the capability: it is a sealed capability if the bit is 1 or unsealed if it is 0.

Sealed capabilities (CT ≠ 0 ) cannot be dereferenced to access memory and are immutable such that
modifying any of its fields clears the tag of the output capability.


Sealed capabilities might be useful to software as tokens that can be passed around.
The only way of clearing the type bit of a capability is by rebuilding it via a superset
capability with CBLD. Zcheripurecap does not offer an unseal instruction.


The Capability Level (CL) field can be reduced even if the capability is sealed, see
Table 31.

For code capabilities, the sealing bit is used to implement immutable capabilities that describe
function entry points, known as sealed entry (sentry) capabilities. Such capabilities can be leveraged to
establish a form of control-flow integrity between mutually distrusting code. A program may jump to a
sentry capability to begin executing the instructions it references. A JALR instruction with zero offset
automatically unseals a sentry target capability and installs it in the program counter capability (see
Section 4.2). The jump-and-link instructions also seal the return address capability which serves as an
entry point the callee can return to but cannot use to authorize memory loads or stores.

3.2.6. Bounds (EF, T, TE, B, BE)

Concept

The bounds encode the base and top addresses that constrain memory accesses. The capability can
be used to access any memory location A in the range base ≤ A < top. The bounds are encoded in
compressed format, so it is not possible to encode any arbitrary combination of base and top
addresses. An invalid capability with tag cleared is produced when attempting to construct a capability
that is not representable because its bounds cannot be correctly encoded. The bounds are decoded as
described in Section 3.1.

The bounds field has the following components:

⚫ T: Value substituted into the capability’s address to decode the top address

⚫ B: Value substituted into the capability’s address to decode the base address

⚫ E: Exponent that determines the position at which B and T are substituted into the capability’s
address

⚫ EF: Exponent format flag indicating the encoding for T, B and E

⚫ The exponent is stored in T and B if EF=0, so it is 'internal'

⚫ The exponent is zero if EF=1

The bit width of T and B are defined in terms of the mantissa width (MW) which is set depending on
the value of MXLEN as shown in Table 7.

Table 7. Mantissa width (MW) values depending on MXLEN

MXLEN MW

32 10
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MXLEN MW

64 14

The exponent E indicates the position of T and B within the capability’s address as described in
Section 3.1. The bit width of the exponent (EW) is set depending on the value of MXLEN. The maximum
value of the exponent is calculated as follows:

CAP_MAX_E = MXLEN - MW + 2

The possible values for EW and CAP_MAX_E are shown in Table 8.

Table 8. Exponent widths and CAP_MAX_E depending on MXLEN

MXLEN EW CAP_MAX_E

32 5 24

64 6 52


The address and bounds must be representable in valid capabilities i.e. when the tag
is set (see Section 3.2.6.3).

Decoding

The metadata is encoded in a compressed format (Woodruff et al., 2019). It uses a floating point
representation to encode the bounds relative to the capability address. The base and top addresses
from the bounds are decoded as shown below.


TODO: The pseudocode below does not have a formal notation. It is simply a place-              
holder while the Sail implementation is unavailable. In this notation, / means "integer            
division", [] are the bit-select operators, and arithmetic is signed.         

EW        = (MXLEN == 32) ? 5 : 6
CAP_MAX_E = MXLEN - MW + 2

If EF = 1:
    E               = 0
    T[EW / 2 - 1:0] = TE
    B[EW / 2 - 1:0] = BE
    LCout           = (T[MW - 3:0] < B[MW - 3:0]) ? 1 : 0
    LMSB            = (MXLEN == 32) ? L8 : 0
else:
    E               = CAP_MAX_E - ( (MXLEN == 32) ? { L8, TE, BE } : { TE, BE }
)
    T[EW / 2 - 1:0] = 0
    B[EW / 2 - 1:0] = 0
    LCout           = (T[MW - 3:EW / 2] < B[MW - 3:EW / 2]) ? 1 : 0
    LMSB            = 1
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Reconstituting the top two bits of T:

T[MW - 1:MW - 2] = B[MW - 1:MW - 2] + LCout + LMSB

Decoding the bounds:

top:    t = { a[MXLEN - 1:E + MW] + ct, T[MW - 1:0]    , {E{1'b0}} }
base:   b = { a[MXLEN - 1:E + MW] + cb, B[MW - 1:0]    , {E{1'b0}} }

The corrections ct and cb are calculated as as shown below using the definitions in Table 9 and Table
10.

A = a[E + MW - 1:E]
R  = B - 2MW-2

Table 9. Calculation of top address correction

A < R T < R ct

false false 0

false true +1

true false -1

true true 0

Table 10. Calculation of base address correction

A < R B < R cb

false false 0

false true +1

true false -1

true true 0

The base, b, and top, t, addresses are derived from the address by substituting a[E + MW - 1:E] with B
and T respectively and clearing the lower E bits. The most significant bits of a may be adjusted up or
down by 1 using corrections cb and ct to allow encoding memory regions that span alignment
boundaries.

The EF bit selects between two cases:

1. EF = 1: The exponent is 0 for regions less than 2MW-2 bytes long. L8 is used to encode the MSB of
the length and is added to B along with T[MW-3:0] to form the decoded top.

2. EF = 0: The exponent is internal with E stored in the lower bits of T and B along with L8 when
MXLEN=32. E is chosen so that the most significant non-zero bit of the length of the region aligns
with T[MW - 2] in the decoded top. Therefore, the most significant two bits of T can be derived
from B using the equality T = B + L, where L[MW - 2] is known from the values of EF and E and a
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carry out is implied if T[MW - 3:0] < B[MW - 3:0] since it is guaranteed that the top is larger than
the base.

The compressed bounds encoding allows the address to roam over a large representable region while
maintaining the original bounds. This is enabled by defining a lower boundary R from the out-of-
bounds values that allows us to disambiguate the location of the bounds with respect to an out-of-
bounds address. R is calculated relative to the base by subtracting 2MW-2 from B. If B, T or a[E + MW -
1:E] is less than R, it is inferred that they lie in the 2E+MW aligned region above R labeled spaceU in
Figure 3 and the corrections ct and cb are computed accordingly. The overall effect is that the address
can roam 2E+MW/4 bytes below the base address and at least 2E+MW/4 bytes above the top address while
still allowing the bounds to be correctly decoded.

Figure 3. Memory address bounds encoded within a capability

A capability has infinite bounds if its bounds cover the entire address space such that the base
address b=0 and the top address t≥2MXLEN, i.e. t is an MXLEN + 1 bit value. However, b is an MXLEN bit
value and the size mismatch introduces additional complications when decoding, so the following
condition is required to correct t for capabilities whose Representable Range wraps the edge of the
address space:

if ( (E < (CAP_MAX_E - 1)) & (t[MXLEN: MXLEN - 1] - b[MXLEN - 1] > 1) )
    t[MXLEN] = !t[MXLEN]

That is, invert the most significant bit of t if the decoded length of the capability is larger than E.


A capability has infinite bounds if E=CAP_MAX_E and it is not malformed (see
Section 3.2.6.3); this check is equivalent to b=0 and t≥2MXLEN.

Malformed Capability Bounds

A capability is malformed if its bounds cannot be correctly decoded. The following check indicates
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whether a capability is malformed. enableL8 is true when MXLEN=32 and false otherwise, indicating
whether the L8 bit is available for extra precision when EF=1.

malformedMSB =  (E == CAP_MAX_E     && B         != 0)
             || (E == CAP_MAX_E - 1 && B[MW - 1] != 0)
malformedLSB =  (E  < 0) || (E == 0 && enableL8)
malformed    =  !EF && (malformedMSB || malformedLSB)

 The check is for malformed bounds, so it does not include reserved bits!

CHERI enforces the following invariants for all valid (i.e., tagged) capabilities:

1. The bounds are not malformed.

2. No reserved bit in the capability encoding is set.

3. The permissions can be legally produced by ACPERM.

A tagged capability that violates those invariants (i.e., a tagged but malformed capability or a tagged
capability with any reserved bit set) can only possibly be caused by a logic or memory fault (e.g., bit
flipping).

Capabilities with malformed bounds:

1. Return both base and top bounds as zero, which affects instructions like GCBASE.

2. Cause certain manipulation instructions like CADDI to always clear the tag of the result.

See specific instruction pages for full details of the effect of malformed capabilities.

3.3. Special Capabilities

3.3.1. NULL Capability

The NULL capability is represented with 0 in all fields. This implies that it has no permissions and its
exponent E is CAP_MAX_E (52 for MXLEN=64, 24 for MXLEN=32), so its bounds cover the entire
address space such that the expanded base is 0 and top is 2MXLEN.

Table 11. Field values of the NULL capability

Field Value Comment

Tag zero Capability is not valid

SDP zeros Grants no permissions

AP zeros Grants no permissions

M zero No meaning since non-executable
(MXLEN=64 only)

CL zero1 Local

CT zero Unsealed

EF zero Internal exponent format
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Field Value Comment

L8 zero Top address reconstruction bit
(MXLEN=32 only)

T zeros Top address bits

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address zeros Capability address

Reserved zeros All reserved fields

1 This field only exists if Zcherilevels is implemented.

3.3.2. Infinite Capability

The Infinite capability grants all permissions while its bounds also cover the whole address space. It
includes X-permission and so includes the M-bit if Zcherihybrid is supported.

 The Infinite capability is also known as 'default', 'almighty', or 'root' capability.

Table 12. Field values of the Infinite capability

Field Value Comment

Tag one Capability is valid

SDP ones Grants all permissions

AP (MXLEN=32) 0x8/0x91 (see Table
4)

Grants all permissions

AP (MXLEN=64) 0xFF (see Table 5) Grants all permissions

CL one2 Global

CT zero Unsealed

EF zero Internal exponent format

L8 zero Top address reconstruction bit (MXLEN=32 only)

T zeros Top address bits

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address zeros Capability address

Reserved zeros All reserved fields

1If Zcherihybrid is supported, then the Infinite capability must represent Integer Pointer Mode for
compatibility with standard RISC-V code. Therefore:

⚫ For MXLEN=32, the M-bit is set to 1 in the AP field, giving the value 0x9

⚫ For MXLEN=64, the M-bit is set to 1 in a separate M field which is not shown in the table above.
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2 This field only exists if Zcherilevels is implemented.

3.4. Representable Range Check

3.4.1. Concept

The new address, after updating the address of a capability, is within the representable range if
decompressing the capability’s bounds with the original and new addresses yields the same base and
top addresses.

In other words, given a capability with address a and the new address a' = a + x, the bounds b and t
are decoded using a and the new bounds b' and t' are decoded using a'. The new address is within the
capability’s representable range if b == b' && t == t'.

Changing a capability’s address to a value outside the representable range unconditionally clears the
capability’s tag. Examples are:

⚫ Instructions such as CADD which include pointer arithmetic.

⚫ The SCADDR instruction which updates the capability address field.

3.4.2. Practical Information

In the bounds encoding in this specification, the top and bottom capability bounds are formed of two
or three sections:

⚫ Upper bits from the address

⚫ This is only if the other sections do not fill the available bits (E + MW ≤ MXLEN)

⚫ Middle bits from T and B decoded from the metadata

⚫ Lower bits are set to zero

⚫ This is only if there is an internal exponent (EF=0)

Table 13. Composition of the decoded top address bound

Configuration Upper Section (if E + MW ≤ MXLEN) Middle Section Lower Section

EF=0 address[MXLEN:E + MW] + ct T[MW - 1:0] {E{1’b0}}

EF=1, i.e. E=0 address[MXLEN:MW] + ct T[MW - 1:0]

The top described by Table 13 is MXLEN+1 bits wide to allow capabilities to span the whole address
space. The address is zero-extended by one bit. The malformed check (see Section 3.2.6.3) ensures
that the top never overflows into MXLEN+2 bits and that the base never overflows into MXLEN+1 bits.

The representable range defines the range of addresses which do not corrupt the bounds encoding.
The encoding was first introduced in Section 3.1, and is repeated in a different form in Table 13 to aid
this description.

For the address to be valid for the current bounds encoding, the value in the Upper Section of Table 13
must not change as this will change the meaning of the bounds.

This gives a range of s=2E+MW, as shown in Figure 3.
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The gap between the object bounds and the bound of the representable range is always guaranteed to
be at least 1/4 of s. This is represented by R = B - 2MW-2 in Section 3.1. This gives useful guarantees,
such that if an executed instruction is in pcc bounds, then it is also guaranteed that the next linear
instruction is representable.
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Chapter 4. Integrating Zcheripurecap with the RISC-V Base
Integer Instruction Set

Zcheripurecap is an extension to the RISC-V ISA. The extension adds a carefully selected set of
instructions and CSRs that are sufficient to implement new security features in the ISA. To ensure
compatibility, Zcheripurecap also requires some changes to the primary base integer variants: RV32I,
providing 32-bit addresses with 64-bit capabilities, and RV64I, providing 64-bit addresses with 128-
bit capabilities. The remainder of this chapter describes these changes for both the unprivileged and
privileged components of the base integer RISC-V ISAs.


The changes described in this specification also ensure that Zcheripurecap is
compatible with RV32E.

 RV128 is not currently supported by any CHERI extension.



In line with the base RISC-V ISA, the unprivileged component with its corresponding
Zcheripurecap changes as described in this chapter can be used with an entirely
different privileged-level design. The changes for the privileged component
described in this chapter are designed to support existing popular operating systems,
and assume the standard privileged architecture specified in the RISC-V ISA.

4.1. Memory

A hart supporting Zcheripurecap has a single byte-addressable address space of 2XLEN bytes for all
memory accesses. Each memory region capable of holding a capability also stores a tag bit for each
naturally aligned CLEN bits (e.g. 16 bytes in RV64), so that capabilities with their tag set can only be
stored in naturally aligned addresses. Tags must be atomically bound to the data they protect.

The memory address space is circular, so the byte at address 2XLEN - 1 is adjacent to the byte at
address zero. A capability’s Representable Range described in Section 3.1 is also circular, so address 0
is within the Representable Range of a capability where address 2MXLEN - 1 is within the bounds.
However, the decoded top field of a capability is MXLEN + 1 bits wide and does not wrap, so a
capability with base 2MXLEN - 1 and top 2MXLEN + 1 is not a subset of the Infinite capability and does not
authorize access to the byte at address 0. Like malformed bounds (see Section 3.2.6.3), it is
impossible for a CHERI core to generate a tagged capability with top > 2MXLEN. If such a capability
exists then it must have been caused by a logic or memory fault. Unlike malformed bounds, the top
overflowing is not treated as a special case in the architecture: normal bounds check rules should be
followed.

4.2. Programmer’s Model for Zcheripurecap

For Zcheripurecap, the 32 unprivileged x registers of the base integer ISA are extended so that they
are able to hold a capability as well as renamed to c registers. Therefore, each c register is CLEN bits
wide and has an out-of-band tag bit. The x notation refers to the address field of the capability in an
unprivileged register while the c notation is used to refer to the full capability (i.e. address, metadata
and tag) held in the same unprivileged register.

The tag of the unprivileged c registers must be reset to zero. The reset values of the metadata and
address fields are UNSPECIFIED for all unprivileged c registers except c0.

Register c0 is hardwired with all bits, including the capability metadata and tag, equal to 0. In other
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words, c0 is hardwired to the NULL capability.

4.2.1. PCC - The Program Counter Capability

An authorizing capability with appropriate permissions is required to execute instructions in
Zcheripurecap. Therefore, the unprivileged program counter (pc) register is extended so that it is able
to hold a capability. The extended register is called the program counter capability (pcc). The pcc
address field is effectively the pc in the base RISC-V ISA so that the hardware automatically
increments as instructions are executed. The pcc's metadata and tag are reset to the Infinite capability
metadata and tag with the address field set to the core boot address.

The hardware performs the following checks on pcc for each instruction executed in addition to the
checks already required by the base RISC-V ISA. A failing check causes a CHERI exception.

⚫ The tag must be set

⚫ The capability must not be sealed

⚫ The capability must grant execute permission

⚫ All bytes of the instruction must be in bounds



Operations that update pcc, such as changing privilege or executing jump
instructions, unseal capabilities prior to writing. Therefore, implementations do not
need to check that that pcc is unsealed when executing each instruction. However,
this property has not yet been formally verified and may not hold if additional CHERI
extensions beyond Zcheripurecap are implemented.


It is common for implementations to not allow executing pc relative instructions,
such as AUIPC or JAL, in debug mode.

MXLEN-1 0

pcc (Metadata, WARL)
pcc (Address, WARL)

MXLEN

Figure 4. Program Counter Capability

pcc is an executable vector, so it need not be able to hold all possible invalid addresses.

4.3. Capability Instructions

Zcheripurecap introduces new instructions to the base RISC-V integer ISA to inspect and operate on
capabilities held in registers.

4.3.1. Capability Inspection Instructions

These instructions allow software to inspect the fields of a capability held in a c register. The output is
an integer value written to an x register representing the decoded field of the capability, such as the
permissions or bounds. These instructions do not cause exceptions.

⚫ GCTAG: inspects the tag of the input capability. The output is 1 if the tag is set and 0 otherwise

⚫ GCPERM: outputs the architectural (AP) and software-defined (SDP) permission fields of the input
capability
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⚫ GCTYPE: outputs the type (e.g. unsealed or sentry) of the input capability

⚫ GCBASE: outputs the expanded base address of the input capability

⚫ GCLEN: outputs the length of the input capability. Length is defined as top - base. The output is
2MXLEN-1 when the capability’s length is 2MXLEN

⚫ CRAM: outputs the nearest bounds alignment that a valid capability can represent

⚫ GCHI: outputs the compressed capability metadata

⚫ SCEQ: compares two capabilities including tag, metadata and address

⚫ SCSS: tests whether the bounds and permissions of a capability are a subset of those from another
capability


GCBASE and GCLEN output 0 when a capability with malformed bounds is provided
as an input (see Section 3.2.6.3).

4.3.2. Capability Manipulation Instructions

These instructions allow software to manipulate the fields of a capability held in a c register. The
output is a capability written to a c register with its fields modified. The output capability has its tag
set to 0 if the input capability did not have a tag set, the output capability has more permissions or
larger bounds compared to the input capability, or the operation results in a capability with malformed
bounds. These instructions do not give rise to exceptions.

⚫ SCADDR: set the address of a capability to an arbitrary address

⚫ CADD, CADDI: increment the address of the input capability by an arbitrary offset

⚫ SCHI: replace a capability’s metadata with an arbitrary value. The output tag is always 0

⚫ ACPERM: bitwise AND of a mask value with a bit map representation of the architectural (AP) and
software-defined (SDP) permissions fields

⚫ SCBNDS: set the base and length of a capability. The tag is cleared, if the encoding cannot
represent the bounds exactly

⚫ SCBNDSR: set the base and length of a capability. The base will be rounded down and/or the
length will be rounded up if the encoding cannot represent the bounds exactly

⚫ SENTRY: seal capability as a sentry capability

⚫ CBLD: replace the base, top, address, permissions and mode fields of a capability with the fields
from another capability

⚫ CMV: move a capability from a c register to another c register

4.3.3. Capability Load and Store Instructions

A load capability instruction, LC, reads CLEN bits from memory together with its tag and writes the
result to a c register. The capability authorizing the memory access is provided in a c source register,
so the effective address is obtained by incrementing that capability with the sign-extended 12-bit
offset.

A store capability instruction, SC, writes CLEN bits and the tag in a c register to memory. The
capability authorizing the memory access is provided in a c source register, so the effective address is
obtained by incrementing that capability with the sign-extended 12-bit offset.
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LC and SC instructions cause CHERI exceptions if the authorizing capability fails any of the following
checks:

⚫ The tag is zero

⚫ The capability is sealed

⚫ At least one byte of the memory access is outside the capability’s bounds

⚫ For loads, the read permission must be set in AP

⚫ For stores, the write permission must be set in AP

Capability load and store instructions also cause load or store/AMO address misaligned exceptions if
the address is not naturally aligned to a CLEN boundary.

Misaligned capability loads and stores are errors. Implementations must generate exceptions for
misaligned capability loads and stores even if they allow misaligned integer loads and stores to
complete normally. Execution environments must report misaligned capability loads and stores as
errors and not attempt to emulate them using byte access. The Zicclsm extension does not affect
capability loads and stores. Software which uses capability loads and stores to copy data other than
capabilities must ensure that addresses are aligned.



Since there is only one tag per aligned CLEN bit block in memory, it is not possible to
represent a capability value complete with its tag at an address not aligned to CLEN.
Therefore, LC and SC give rise to misaligned address fault exceptions when the
effective address to access is misaligned, even if the implementation supports
Zicclsm. To transfer CLEN misaligned bits without a tag, use integer loads and
stores.

For loads, the tag of the capability loaded from memory is cleared if the authorizing capability does
not grant permission to read capabilities (i.e. both R-permission and C-permission must be set in AP).
For stores, the tag of the capability written to memory is cleared if the authorizing capability does not
grant permission to write capabilities (i.e. both W-permission and C-permission must be set in AP).


TODO: these cases may cause exceptions in the future - we need a way for software               
to discover and/or control the behavior     

4.4. Existing RISC-V Instructions

The operands or behavior of some instructions in the base RISC-V ISA changes in Zcheripurecap.

4.4.1. Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in x registers. Therefore,
these instructions only operate on the address field if the input register of the instruction holds a
capability. The output is XLEN bits written to an x register; the tag and capability metadata of that
register are zeroed.

The add upper immediate to pcc instruction (AUIPC) is used to build pcc-relative capabilities. AUIPC
forms a 32-bit offset from the 20-bit immediate and filling the lowest 12 bits with zeros. The pcc
address is then incremented by the offset and a representability check is performed so the capability’s
tag is cleared if the new address is outside the pcc's Representable Range. The resulting CLEN value
along with the new tag are written to a c register.
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4.4.2. Control Transfer Instructions

Control transfer instructions operate as described in the base RISC-V ISA. They also may cause
metadata updates and/or cause exceptions in addition to the base behavior as described below.

Unconditional Jumps

JAL sign-extends the offset and adds it to the address of the jump instruction to form the target
address. The target address is installed in the address field of pcc. The capability with the address of
the instruction following the jump is sealed and written to a c register.

JALR allows unconditional, indirect jumps to a target capability. The target capability is obtained by
incrementing the capability in the c register operand by the sign-extended 12-bit offset, then setting
the least significant bit of the result to zero. The target capability is unsealed if it is a sentry with zero
offset. The capability with the address of the instruction following the jump is sealed and written to a c
register.

All jumps cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc.

JALR causes a CHERI exception when:

⚫ The target capability’s tag is zero

⚫ The target capability is sealed and the immediate is not zero

⚫ A minimum sized instruction at the target capability’s address is not within bounds

⚫ The target capability does not grant execute permission

JAL and JALR can also cause instruction address misaligned exceptions following the standard RISC-
V rules.

Conditional Branches

Branch instructions (see Conditional branches (BEQ, BNE, BLT[U], BGE[U])) encode signed offsets in
multiples of 2 bytes. The offset is sign-extended and added to the address of the branch instruction to
form the target address.

Branch instructions compare two x registers as described in the base RISC-V ISA, so the metadata
and tag values are disregarded in the comparison if the operand registers hold capabilities. If the
comparison evaluates to true, then the target address is installed in the pcc's address field. These
instructions cause CHERI exceptions when a minimum sized instruction at the target address is not
within the pcc's bounds.

4.4.3. Integer Load and Store Instructions

Integer load and store instructions transfer the amount of integer data described in the base RISC-V
ISA between the registers and memory. For example, LD and LW load 64-bit and 32-bit values
respectively from memory into an x register. However, the address operands for load and store
instructions are interpreted differently in Zcheripurecap: the capability authorizing the access is in the
c register operand and the memory address is given by incrementing the address of that capability by
the sign-extended 12-bit immediate offset.
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All load and store instructions cause CHERI exceptions if the authorizing capability fails any of the
following checks:

⚫ The tag is set

⚫ The capability is unsealed

⚫ All bytes of accessed memory are inside the capability’s bounds

⚫ For loads, the read permission must be set in AP

⚫ For stores, the write permission must be set in AP

Integer load instructions always zero the tag and metadata of the result register.

Integer stores write zero to the tag associated with the memory locations that are naturally aligned to
CLEN. Therefore, misaligned stores may clear up to two tag bits in memory.

4.5. Zicsr, Control and Status Register (CSR) Instructions

Zcheripurecap requires that RISC-V CSRs intended to hold addresses, like mtvec, are now able to hold
capabilities. Therefore, such registers are renamed and extended to CLEN-bit in Zcheripurecap.

Reading or writing any part of a CLEN-bit CSR may cause side effects. For example, the CSR’s tag bit
may be cleared if a new address is outside the Representable Range of a CSR capability being written.

This section describes how the CSR instructions operate on these CSRs in Zcheripurecap.

The CLEN-bit CSRs are summarized in Appendix C.

4.5.1. CSR Instructions

All CSR instructions atomically read-modify-write a single CSR. If the CSR accessed is of capability
size then the capability’s tag, metadata and address are all accessed atomically.

When the CSRRW instruction is accessing a capability width CSR, then the source and destination
operands are c registers and it atomically swaps the values in the whole CSR with the CLEN width
register operand.

There are special rules for updating specific CLEN-wide CSRs as shown in Table 49.

When CSRRS and CSRRC instructions are accessing a capability width CSR, such as mtvecc, then the
destination operand is a c register and the source operand is an x register. Therefore, the instructions
atomically read CLEN bits from the CSR, calculate the final address using standard RISC-V behavior
(set bits, clear bits, etc.), and that final address is written to the CSR capability’s address field. The
update typically uses the semantics of a SCADDR instruction which clears the tag if the capability is
sealed, or if the updated address is not representable. Table 49 shows the exact action taken for each
capability width CSR.

The CSRRWI, CSRRSI and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC respectively,
when accessing a capability width CSR except that they update the capability’s address only using an
XLEN-bit value obtained by zero-extending a 5-bit unsigned immediate field.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is privileged.
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4.6. Control and Status Registers (CSRs)

Zcheripurecap extends the CSRs listed in Table 14, Table 15, Table 16, Table 17 and Table 18 from the
base RISC-V ISA and its extensions. The CSRs are renamed to reflect the fact that they are extended
to CLEN+1 bits wide, as the x registers are renamed to c registers.

Table 14. Renamed debug-mode CSRs in Zcheripurecap

Zcheripurecap CSR Address Extended CSR Prerequisites Permissions Description

dpcc 0x7b1 dpc Sdext DRW Debug Program Counter
Capability

dscratch0c 0x7b2 dscratch0 Sdext DRW Debug Scratch Capability 0

dscratch1c 0x7b3 dscratch1 Sdext DRW Debug Scratch Capability 1

Table 15. Renamed machine-mode CSRs in Zcheripurecap

Zcheripurecap
CSR

Addre
ss

Extended
CSR

Prerequisi
tes

Permissions Description

mtvecc 0x305 mtvec M-mode MRW, ASR-permission Machine Trap-Vector Base-
Address Capability

mscratchc 0x340 mscratch M-mode MRW, ASR-permission Machine Scratch Capability

mepcc 0x341 mepc M-mode MRW, ASR-permission Machine Exception Program
Counter Capability

mtidc 0x780 mtid Zstid Read: M, Write: M, ASR-
permission

Machine thread ID

Table 16. Renamed supervisor-mode CSRs in Zcheripurecap

Zcheripurecap
CSR

Addre
ss

Extended
CSR

Prerequisi
tes

Permissions Description

stvecc 0x105 stvec S-mode SRW, ASR-permission Supervisor Trap-Vector Base-
Address Capability

sscratchc 0x140 sscratch S-mode SRW, ASR-permission Supervisor Scratch Capability

sepcc 0x141 sepc S-mode SRW, ASR-permission Supervisor Exception Program
Counter Capability

stidc 0x580 stid Zstid Read: S, Write: S, ASR-
permission

Supervisor thread ID

Table 17. Renamed virtual supervisor-mode CSRs in Zcheripurecap

Zcheripurecap
CSR

Addre
ss

Extended
CSR

Prerequisi
tes

Permissions Description

vstvecc 0x205 vstvec H HRW, ASR-
permission

Virtual Supervisor Trap-Vector Base-
Address Capability

vsscratchc 0x240 vsscratch H HRW, ASR-
permission

Virtual Supervisor Scratch Capability

vsepcc 0x241 vsepc H HRW, ASR-
permission

Virtual Supervisor Exception Program
Counter Capability
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Table 18. Renamed user-mode CSRs in Zcheripurecap

Zcheripurecap
CSR

Addres
s

Extended
CSR

Prerequisit
es

Permissions Description

jvtc 0x017 jvt Zcmt URW Jump Vector Table
Capability

utidc 0x480 utid Zstid Read: U, Write: U, ASR-
permission

User thread ID

4.7. Machine-Level CSRs

Zcheripurecap extends some M-mode CSRs to hold capabilities or otherwise add new functions. ASR-
permission in the pcc is typically required for access.

4.7.1. Machine Status Registers (mstatus and mstatush)

The mstatus and mstatush registers operate as described in (RISC-V, 2023) except for the SXL and
UXL fields that control the value of XLEN for S-mode and U-mode, respectively, and the MBE, SBE, and
UBE fields that control the memory system endianness for M-mode, S-mode, and U-mode, respectively.

The encoding of the SXL and UXL fields is the same as the MXL field of misa. Only 1 and 2 are
supported values for SXL and UXL and the fields must be read-only in implementations supporting
Zcheripurecap. The effective XLEN in S-mode and U-mode are termed SXLEN and UXLEN,
respectively.

The MBE, SBE, and UBE fields determine the endianness of memory accesses other than instruction
fetches performed from M-mode, S-mode, or U-mode, respectively. xBE=0 indicates little endian and
xBE=1 is big endian. MBE must be read-only. SBE and UBE must be read only and equal to MBE, if S-
mode or U-mode, respectively, is implemented, or read-only zero otherwise.


A further CHERI extension, Zcherihybrid, optionally makes SXL, UXL, MBE, SBE, and
UBE writeable, so implementations that support multiple base ISAs must support
both Zcheripurecap and Zcherihybrid.

4.7.2. Machine Trap Vector Base Address Register (mtvec)

The mtvec register is as defined in (RISC-V, 2023). It is an MXLEN-bit register used as the executable
vector jumped to when taking traps into machine mode. It is extended into mtvecc.

MXLEN-1 2 1 0

BASE [MXLEN-1:2] (WARL) MODE (WARL)
MXLEN-2 2

Figure 5. Machine-mode trap-vector base-address register

4.7.3. Machine Trap Vector Base Address Capability Register (mtvecc)

The mtvecc register is a renamed extension of mtvec that holds a capability. Its reset value is the
Infinite capability. The capability represents an executable vector.
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MXLEN-1 2 1 0

Tag Metadata (WARL)

BASE [MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 6. Machine-mode trap-vector base-capability register

The metadata is WARL as not all fields need to be implemented, for example the reserved fields will
always read as zero.

When interpreting mtvecc as a capability, as for mtvec, address bits [1:0] are always zero (as they are
reused by the MODE field).

When MODE=Vectored, all synchronous exceptions into machine mode cause the pcc to be set to the
capability, whereas interrupts cause the pcc to be set to the capability with its address incremented by
four times the interrupt cause number.

Capabilities written to mtvecc also include writing the MODE field in mtvecc.address[1:0]. As a result,
a representability and sealing check is performed on the capability with the legalized (WARL) MODE
field included in the address. The tag of the capability written to mtvecc is cleared if either check fails.

Additionally, when MODE=Vectored the capability has its tag bit cleared if the capability address + 4 x
HICAUSE is not within the Representable Range. HICAUSE is the largest exception cause value that
the implementation can write to mcause or scause/vscause when an interrupt is taken.



When MODE=Vectored, it is only required that address + 4 x HICAUSE is within the
Representable Range instead of the capability’s bounds. This ensures that software is
not forced to allocate a capability granting access to more memory for the trap-
vector than necessary to handle the trap causes that actually occur in the system.



When MODE=Vectored, if either the capability address or the capability address + 4
x HICAUSE are invalid then the Invalid address conversion rules are followed which
may require the tag to be cleared. In particular, if any part of the range is in the
invalid address space then clearing the tag is strongly recommended.

4.7.4. Machine Scratch Register (mscratch)

The mscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register
dedicated for use by machine mode. Typically, it is used to hold a pointer to a machine-mode hart-
local context space and swapped with a user register upon entry to an M-mode trap handler. mscratch
is extended into mscratchc.

MXLEN-1 0

mscratch
MXLEN

Figure 7. Machine-mode scratch register

4.7.5. Machine Scratch Capability Register (mscratchc)

The mscratchc register is a renamed extension of mscratch that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.
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It is not WARL, all capability fields must be implemented.

MXLEN-1 0

Tag mscratchc (Metadata)

mscratchc (Address)

MXLEN

Figure 8. Machine-mode scratch capability register

4.7.6. Machine Exception Program Counter (mepc)

The mepc register is as defined in (RISC-V, 2023). It is extended into mepcc.

MXLEN-1 0

mepc (WARL)
MXLEN

Figure 9. Machine exception program counter register

4.7.7. Machine Exception Program Counter Capability (mepcc)

The mepcc register is a renamed extension of mepc that is able to hold a capability. Its reset value is
the Infinite capability.

MXLEN-1 0

Tag mepcc (Metadata, WARL)

mepcc (Address, WARL)

MXLEN

Figure 10. Machine exception program counter capability register

Capabilities written to mepcc must be legalized by implicitly zeroing bit mepcc[0]. Additionally, if an
implementation allows IALIGN to be either 16 or 32, then whenever IALIGN=32, the capability read
from mepcc must be legalized by implicitly zeroing mepcc[1]. Therefore, the capability read or written
has its tag bit cleared if the legalized address is not within the Representable Range or if the
legalization changes the address and the capability is sealed.


When reading or writing a sealed capability in mepcc, the tag is not cleared if the
original address equals the legalized address.

When a trap is taken into M-mode, mepcc is written with the pcc including the virtual address of the
instruction that was interrupted or that encountered an exception. Otherwise, mepcc is never written by
the implementation, though it may be explicitly written by software.

As shown in Table 51, mepcc is an executable vector, so it does not need to be able to hold all possible
invalid addresses. Additionally, the capability in mepcc is unsealed when it is installed in pcc on
execution of an MRET instruction.

4.7.8. Machine Cause Register (mcause)

Zcheripurecap adds a new exception code for CHERI exceptions that mcause must be able to
represent. The new exception code and its priority are listed in Table 19 and Table 20 respectively. The
behavior and usage of mcause otherwise remains as described in (RISC-V, 2023).
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MXLEN-1 MXLEN-2 0
Interrupt Exception Code (WLRL)

1 MXLEN-1

Figure 11. Machine cause register

Table 19. Machine cause register (mcause) values after trap. Entries added in Zcheripurecap are in bold

Interrupt Exception Code Description

1
1
1
1

0
1
2
3

Reserved
Supervisor software interrupt
Reserved
Machine software interrupt

1
1
1
1

4
5
6
7

Reserved
Supervisor timer interrupt
Reserved
Machine timer interrupt

1
1
1
1

8
9

10
11

Reserved
Supervisor external interrupt
Reserved
Machine external interrupt

1
1

12-15
≥16

Reserved
Designated for platform use

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16-23
24-27

28
29-31
32-47
48-63

≥64

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Environment call from M-mode
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
Reserved
Designated for custom use
CHERI fault
Designated for custom use
Reserved
Designated for custom use
Reserved

Table 20. Synchronous exception priority in decreasing priority order. Entries added in Zcheripurecap are in
bold

Priority Exc.Code Description

Highest 3 Instruction address breakpoint
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Priority Exc.Code Description

28

Prior to instruction address translation:
CHERI fault due to PCC checks (tag, execute permission, invalid address and
bounds1)

12, 1

During instruction address translation:
First encountered page fault or access fault

1

With physical address for instruction:
Instruction access fault

2
0

8,9,11
3
3

Illegal instruction
Instruction address misaligned
Environment call
Environment break
Load/store/AMO address breakpoint

28

CHERI faults due to:
PCC ASR-permission clear
Branch/jump target address checks (tag, execute permissions, invalid address and
bounds)

28

Prior to address translation for an explicit memory access:
CHERI fault due to capability checks (tag, permissions, invalid address and
bounds)

4,6

Load/store/AMO capability address misaligned
Optionally:
Load/store/AMO address misaligned

13, 15, 5, 7

During address translation for an explicit memory access:
First encountered CHERI PTE page fault23, page fault or access fault

5,7

With physical address for an explicit memory access:
Load/store/AMO access fault

4,6 If not higher priority:

Lowest 13

If not higher priority:
CHERI load PTE fault4

1 PCC bounds are intended to be checked against all the bytes of fetched instructions. In the case of
variable length instruction encoding, and that the fetch has failed to return any data, then only a
minimum length instruction is checked against the PCC bounds.

2 The higher priority CHERI PTE page fault covers capability loads or atomics where the loaded tag is
not checked, and all capability stores and atomics where the stored tag is set.

3 CHERI PTE page fault exceptions have the same priority against access faults as normal RISC-V
page faults. If a normal RISC-V page fault and a CHERI PTE fault are both detected simultaneously,
then both are recorded as shown in Table 23.

4 The lower priority PTE fault only covers capability loads and atomics where the loaded tag is checked.

 The full details of the CHERI exceptions with cause value 28 are in Table 25.
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4.7.9. Machine Trap Delegation Register (medeleg)

Bit 28 of medeleg now refers to a valid exception and so can be used to delegate CHERI exceptions to
supervisor mode.

4.7.10. Machine Trap Value Register (mtval)

The mtval register is an MXLEN-bit read-write register formatted as shown in Figure 12. When a data
memory access gives rise to a CHERI fault taken into M-mode, mtval is written with the MXLEN-bit
effective address which caused the fault according to the existing rules for reporting load/store
addresses from (RISC-V, 2023). In this case the TYPE field of mtval2 shown in Table 21 is set to 1. For
all other CHERI faults mtval is set to zero.

The behavior of mtval is otherwise as described in (RISC-V, 2023).

If the hardware platform specifies that no exceptions set mtval to a non-zero value, then mtval is read-
only zero for all CHERI exceptions.

MXLEN-1 0

mtval
MXLEN

Figure 12. Machine trap value register

4.7.11. Machine Trap Value Register 2 (mtval2)

The mtval2 register is an MXLEN-bit read-write register, which is added as part of the Hypervisor
extension (RISC-V, 2023). Zcheripurecap also requires the implementation of this CSR.

When a CHERI fault is taken into M-mode, mtval2 is written with additional CHERI-specific exception
information with the format shown in Figure 13 to assist software in handling the trap.

If mtval is read-only zero for CHERI exceptions then mtval2 is also read-only zero for CHERI
exceptions.

mtval2 values for CHERI faults

MXLEN-1 20 19 16 15 4 3 0

WPRI TYPE WPRI CAUSE
MXLEN-20 4 12 4

Figure 13. Machine trap value register 2 format for CHERI Faults


mtval2 is also used for Hypervisor guest physical addresses, and so the implemented
bits must also cover that use case. If Hypervisor is not implemented then all WPRI
fields in Figure 13 are read-only-zero.

TYPE is a CHERI-specific fault type that caused the exception while CAUSE is the cause of the fault.
The possible CHERI types and causes are encoded as shown in Table 21 and Table 22 respectively.

Table 21. Encoding of TYPE field for CHERI Faults

CHERI Type Code Description

0 CHERI instruction fetch fault
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CHERI Type Code Description

1 CHERI data fault due to load, store or AMO

2 CHERI jump or branch fault

3-15 Reserved

Table 22. Encoding of CAUSE field

CHERI Cause Code Description

0 Tag violation

1 Seal violation

2 Permission violation

3 Invalid address violation

4 Bounds violation

5-15 Reserved

CHERI violations have the following order in priority:

1. Tag violation (Highest)

2. Seal violation

3. Permission violation

4. Invalid address violation

5. Bounds violation (Lowest)

mtval2 values for Load/Store/AMO Page Faults

Page faults can be caused by normal RISC-V page faults and also by CHERI PTE faults. If both are
detected at once, then both are recorded.

Table 23. mtval2 for page faults

Fault Value

RISC-V page fault 0

CHERI PTE fault 1

RISC-V page fault and CHERI PTE fault 2



Reporting both allows the software the choice about which action to take first, for
example a write to a page with no write permission, and the incorrect value of
PTE.CRG requires two actions. Software can then decide whether to prioritize the
copy-on-write procedure to fix the lack of write permission, or to sweep the page.

4.8. Supervisor-Level CSRs

Zcheripurecap extends some of the existing RISC-V CSRs to be able to hold capabilities or with other
new functions. ASR-permission in the pcc is typically required for access.
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4.8.1. Supervisor Trap Vector Base Address Register (stvec)

The stvec register is as defined in (RISC-V, 2023). It is an SXLEN-bit register used as the executable
vector jumped to when taking traps into supervisor mode. It is extended into stvecc.

SXLEN-1 2 1 0

BASE (Address)[SXLEN-1:2] (WARL) MODE (WARL)
SXLEN-2 2

Figure 14. Supervisor trap-vector base-address register

4.8.2. Supervisor Trap Vector Base Address Capability Register (stvecc)

The stvec register is an SXLEN-bit WARL read/write register that holds the trap vector configuration,
consisting of a vector base address (BASE) and a vector mode (MODE). The stvecc register is a
renamed extension of stvec that is able to hold a capability. Its reset value is the Infinite capability.

MXLEN-1 2 1 0

Tag Metadata (WARL)

BASE [MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 15. Supervisor trap-vector base-capability register

The handling of stvecc is otherwise identical to mtvecc, but in supervisor mode.

4.8.3. Supervisor Scratch Register (sscratch)

The sscratch register is as defined in (RISC-V, 2023). It is an MXLEN-bit read/write register dedicated
for use by supervisor mode. Typically, it is used to hold a pointer to a supervisor-mode hart-local
context space and swapped with a user register upon entry to an S-mode trap handler. sscratch is
extended into sscratchc.

SXLEN-1 0

sscratch
SXLEN

Figure 16. Supervisor-mode scratch register

4.8.4. Supervisor Scratch Capability Register (sscratchc)

The sscratchc register is a renamed extension of sscratch that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

It is not WARL, all capability fields must be implemented.

MXLEN-1 0

Tag sscratchc (Metadata)

sscratchc (Address)

MXLEN

Figure 17. Supervisor scratch capability register
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4.8.5. Supervisor Exception Program Counter (sepc)

The sepc register is as defined in (RISC-V, 2023). It is extended into sepcc.

SXLEN-1 0

sepc
SXLEN

Figure 18. Supervisor exception program counter register

4.8.6. Supervisor Exception Program Counter Capability (sepcc)

The sepcc register is a renamed extension of sepc that is able to hold a capability. Its reset value is
the Infinite capability.

As shown in Table 51, sepcc is an executable vector, so it need not be able to hold all possible invalid
addresses. Additionally, the capability in sepcc is unsealed when it is installed in pcc on execution of
an SRET instruction. The handling of sepcc is otherwise identical to mepcc, but in supervisor mode.

MXLEN-1 0

Tag sepcc (Metadata, WARL)

sepcc (Address, WARL)

MXLEN

Figure 19. Supervisor exception program counter capability register

4.8.7. Supervisor Cause Register (scause)

Zcheripurecap adds a new exception code for CHERI exceptions that scause must be able to
represent. The new exception code and its priority are listed in Table 24 and Table 20 respectively.
The behavior and usage of scause otherwise remains as described in (RISC-V, 2023).

SXLEN-1 SXLEN-2 0
Interrupt Exception Code (WLRL)

1 SXLEN-1

Figure 20. Supervisor cause register

Table 24. Supervisor cause register (scause) values after trap. Causes added in Zcheripurecap are in bold

Interrupt Exception Code Description

1
1
1
1
1
1
1
1

0
1

2-4
5

6-8
9

10-15
≥16

Reserved
Supervisor software interrupt
Reserved
Supervisor timer interrupt
Reserved
Supervisor external interrupt
Reserved
Designated for platform use
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Interrupt Exception Code Description

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10-11
12
13
14
15

16-23
24-27

28
29-31
32-47
48-63

≥64

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
Reserved
Designated for custom use
CHERI fault
Designated for custom use
Reserved
Designated for custom use
Reserved

4.8.8. Supervisor Trap Value Register (stval)

The stval register is an SXLEN-bit read-write register formatted as shown in Figure 21.

stval is updated following the same rules as mtval for CHERI exceptions which are delegated to S-
mode.

SXLEN-1 0

stval
SXLEN

Figure 21. Supervisor trap value register

4.8.9. Supervisor Trap Value Register 2 (stval2)

The stval2 register is an SXLEN-bit read-write register, which is added as part of Zcheripurecap when
the implementation supports S-mode. Its CSR address is 0x14b.

stval2 is updated following the same rules as mtval2 for CHERI exceptions which are delegated to S-
mode.

The fields are identical to mtval2 for CHERI exceptions, and for load and store/AMO page fault
exceptions if Zcheripte is implemented.

 stval2 is not a standard RISC-V CSR, but mtval2 is.

SXLEN-1 20 19 16 15 4 3 0

WPRI TYPE WPRI CAUSE
SXLEN-20 4 12 4

Figure 22. Supervisor trap value register 2
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4.9. Unprivileged CSRs

In Zcheripurecap, the only register that requires ASR-permission is utidc (for updates but not for
reads), and all other unprivileged CSRs do not require pcc to grant ASR-permission to access
unprivileged CSRs.

4.10. CHERI Exception handling

 auth_cap is ddc for Integer Pointer Mode and cs1 for Capability Pointer Mode

Table 25. Valid CHERI exception combination description

Instructions Xcause Xtval2.
TYPE

Xtval2.
CAUSE

Description Check

All instructions have these exception checks first

All 28 0 0 pcc tag not(pcc.tag)

All 28 0 1 pcc seal isCapSealed(pcc)1

All 28 0 2 pcc permission not(pcc.X-permission)

All 28 0 3 pcc invalid address pcc holds an invalid address

All 28 0 4 pcc bounds Any byte of current instruction out of
pcc bounds

CSR/Xret additional exception check

CSR*, MRET,
SRET

28 0 2 pcc permission not(pcc.ASR-permission) when
required for CSR access or
execution of MRET/SRET

direct jumps additional exception check

JAL, Conditional
branches (BEQ,
BNE, BLT[U],
BGE[U])

28 2 4 pcc bounds any byte of minimum length
instruction at target out of pcc
bounds

indirect jumps additional exception checks

indirect jumps 28 2 0 cs1 tag not(cs1.tag)

indirect jumps 28 2 1 cs1 seal isCapSealed(cs1) and imm12 != 0

indirect jumps 28 2 2 cs1 permission not(cs1.X-permission)

indirect jumps 28 2 3 cs1 invalid address target address is an invalid address

indirect jumps 28 2 4 cs1 bounds any byte of minimum length
instruction at target out of cs1
bounds

Load additional exception checks

all loads 28 1 0 auth_cap tag not(auth_cap.tag)

all loads 28 1 1 auth_cap seal isCapSealed(auth_cap)

all loads 28 1 2 auth_cap permission not(auth_cap.R-permission)

all loads 28 1 3 auth_cap invalid address Address is invalid (see Invalid
address conversion)

4.10. CHERI Exception handling | Page 42

RISC-V Specification for CHERI Extensions | © RISC-V International



Instructions Xcause Xtval2.
TYPE

Xtval2.
CAUSE

Description Check

all loads 28 1 4 auth_cap bounds Any byte of load access out of
auth_cap bounds

capability loads 4 N/A N/A load address misaligned Misaligned capability load

Store/atomic/cache-block-operation additional exception checks

all stores, all
atomics, all cbos

28 1 0 auth_cap tag not(auth_cap.tag)

all stores, all
atomics, all cbos

28 1 1 auth_cap seal isCapSealed(auth_cap)

all atomics,
CBO.INVAL*

28 1 2 auth_cap permission not(auth_cap.R-permission)

all stores, all
atomics,
CBO.INVAL*,
CBO.ZERO*

28 1 2 auth_cap permission not(auth_cap.W-permission)

CBO.CLEAN*,
CBO.FLUSH*

28 1 2 auth_cap permission not(auth_cap.R-permission) and
not(auth_cap.W-permission)

all stores, all
atomics, all cbos

28 1 3 auth_cap invalid address Address is invalid (see Invalid
address conversion)

all stores, all
atomics

28 1 4 auth_cap bounds any byte of access out of auth_cap
bounds

CBO.ZERO*,
CBO.INVAL*

28 1 4 auth_cap bounds any byte of cache block out of
auth_cap bounds

CBO.CLEAN*,
CBO.FLUSH*

28 1 4 auth_cap bounds all bytes of cache block out of
auth_cap bounds

CBO.INVAL* 28 0 2 pcc permission not(pcc.ASR-permission)

capability stores 6 N/A N/A capability alignment Misaligned capability store

1 This check is architecturally required, but is impossible to encounter so may not required in an
implementation.


Indirect branches are JALR, conditional branches are Conditional branches (BEQ,
BNE, BLT[U], BGE[U]).



CBO.ZERO issues as a cache block wide store. All CMOs operate on the cache block
which contains the address. Prefetches check that the capability is tagged, not
sealed, has the permission (R-permission, W-permission, X-permission)
corresponding to the instruction, and has bounds which include at least one byte of
the cache block; if any check fails, the prefetch is not performed but no exception is
generated.

4.11. CHERI Exceptions and speculative execution

CHERI adds architectural guarantees that can prove to be microarchitecturally useful. Speculative-
execution attacks can — among other factors — rely on instructions that fail CHERI permission checks
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not to take effect. When implementing any of the extensions proposed here, microarchitects need to
carefully consider the interaction of late-exception raising and side-channel attacks.

4.12. Physical Memory Attributes (PMA)

Typically, the entire memory space need not support tagged data. Therefore, it is desirable that harts
supporting Zcheripurecap extend PMAs with a taggable attribute indicating whether a memory region
allows storing tagged data.

Data loaded from memory regions that are not taggable will always have the tag cleared. When the hart
attempts to store data with the tag set to memory regions that are not taggable, the implementation
may:

⚫ Cause an access fault exception

⚫ Implicitly set the stored tag to 0

4.13. Page-Based Virtual-Memory Systems

RISC-V’s page-based virtual-memory management is generally orthogonal to CHERI. In
Zcheripurecap, capability addresses are interpreted with respect to the privilege level of the processor
in line with RISC-V’s handling of integer addresses. In machine mode, capability addresses are
generally interpreted as physical addresses; if the mstatus MPRV flag is asserted, then data accesses
(but not instruction accesses) will be interpreted as if performed by the privilege mode in mstatus’s
MPP. In supervisor and user modes, capability addresses are interpreted as dictated by the current
satp configuration: addresses are virtual if paging is enabled and physical if not.

Zcheripurecap requires that the pcc grants the ASR-permission to change the page-table root satp
and other virtual-memory parameters as described in Section 4.8.

4.13.1. Invalid Address Handling

When address translation is in effect and XLEN=64, the upper bits of virtual memory addresses must
match for the address to be valid:

⚫ For Sv39, bits [63:39] must equal bit 38

⚫ For Sv48, bits [63:48] must equal bit 47

⚫ For Sv57, bits [63:57] must equal bit 56

RISC-V permits that CSRs holding addresses, such as mtvec and mepc (see Table 51) as well as pc,
need not hold all possible invalid addresses. Implementations may convert an invalid address into
some other invalid address that the register is capable of holding. Therefore, implementations often
support area and power optimizations by compressing invalid addresses in a lossy fashion.

Where compressed addresses are implemented, there must be also sufficient address bits to
represent all valid physical addresses. The following description is for both virtual and physical
addresses.


Compressing invalid addresses allows implementations to reduce the number of flip-
flops required to hold some CSRs, such as mtvec. In CHERI, invalid addresses may
also be used to reduce the number of bits to compare during a bounds check, for
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example, to 40 bits if using Sv39, assuming that this also covers all valid physical
addresses.



Care needs to be taken not to truncate physical addresses to the implemented
number of physical addresses bits without also checking that the capability is still
valid following the rules in this section, as the capability bounds and representable
range always cover the entire MXLEN-bit address bits, but the address is likely not to.

However, the bounds encoding of capabilities in Zcheripurecap depends on the address value, so
implementations must not convert invalid addresses to other arbitrary invalid address in an
unrestricted manner. The remainder of this section describes how invalid address handling must be
supported in Zcheripurecap when accessing CSRs, branching and jumping, and accessing memory.

Updating CSRs

Some capability-holding CSRs need not be able to hold all invalid virtual addresses. Prior to writing to
those CSRs, implementations may convert an invalid address into some other invalid address that the
CSR is capable of holding. This is problematic for CHERI as updating the address may invalidate the
bounds as a result, if the bounds are not those of the Infinite capability.

Some situations may require that a CSR may be updated to hold a capability with an invalid address:

⚫ executing instructions, such as CSRRW

⚫ hardware updates to CSRs such as storing the pcc (which becomes capability A) into mepcc/sepcc
etc. when taking an exception.

In order to satisfy the definitions of such CSRs and preserve capability system invariants, the following
procedure must be used as part of write-back to the CSR:

1. If A’s address is invalid and A does not have infinite bounds (see Section 3.1), then A’s tag is set to
0.

2. Write the final (potentially modified) version of capability A to the CSR e.g. mtvecc, mepcc, etc.


When A’s address is invalid and happens to match an invalid address which the CSR
can hold, then it is implementation defined whether to clear A’s tag.

Branches and Jumps

Control transfer instructions jump or branch to a capability A which can be:

⚫ pcc for branches, direct jumps and any branch when in Integer Pointer Mode (see Chapter 7).

⚫ The capability in the c input register of a jump when in Capability Pointer Mode (see Chapter 7).

The following procedure must be used when jumping or branching to the target capability A if the pcc
cannot hold all invalid addresses:

1. Calculate the effective target address T of the jump or branch as required by the instruction’s
behavior.

2. If T is invalid and A does not have infinite bounds (see Section 3.1), then the instruction gives rise
to a CHERI fault; the CHERI jump or branch fault is reported in the TYPE field and invalid address
violation is reported in the CAUSE field of mtval2 or stval2.
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3. If T is invalid and A has infinite bounds (see Section 3.1), then A’s tag is unchanged and T is
written into A’s address field. Attempting to execute the instruction at address T gives rise to an
instruction access fault or page fault as is usual in RISC-V.

4. Otherwise T is valid and the instruction behaves as normal.



RISC-V harts that do not support Zcheripurecap normally raise an instruction access
fault or page fault after jumping or branching to an invalid address. Therefore,
Zcheripurecap aims to preserve that behavior to ensure that harts supporting
Zcheripurecap and Zcherihybrid are fully compatible with RISC-V harts provided that
pcc and ddc are set to the Infinite capability.

Memory Accesses

The following procedure must be used while loading or storing to memory with a capability A when the
implementation supports invalid address optimizations:

1. Calculate the effective address range R of the memory access as required by the instruction’s
behavior.

2. If any byte in R is invalid and A does not have infinite bounds (see Section 3.1), then the instruction
gives rise to a CHERI fault; the CHERI data fault is reported in the TYPE field and invalid address
violation is reported in the CAUSE field of mtval2 or stval2.

3. If any byte in R is invalid and A has infinite bounds (see Section 3.1), the hart will raise an access
fault or page fault as is usual in RISC-V.

4. Otherwise all bytes in R are valid and the instruction behaves as normal.

4.14. Integrating Zcheripurecap with Sdext

This section describes changes to integrate the Sdext ISA and Zcheripurecap. It must be
implemented to make external debug compatible with Zcheripurecap. Modifications to Sdext are kept
to a minimum.

The following features, which are optional in Sdext, must be implemented for use with Zcheripurecap:

⚫ The hartinfo register must be implemented.

⚫ All harts which support Zcheripurecap must provide hartinfo.nscratch of at least 1 and implement
the dscratch0c register.

⚫ All harts which support Zcheripurecap must provide hartinfo.datasize of at least 1 and
hartinfo.dataaccess of 0.

⚫ The program buffer must be implemented, with abstractcs.progbufsize of at least 4 if
dmstatus.impebreak is 1, or at least 5 if dmstatus.impebreak is 0.



These requirements allow a debugger to read and write capabilities in integer
registers without disturbing other registers. These requirements may be relaxed if
some other means of accessing capabilities in integer registers, such as an
extension of the Access Register abstract command, is added. The following
sequences demonstrate how a debugger can read and write a capability in c1 if MXLEN
is 64, hartinfo.dataaccess is 0, hartinfo.dataaddr is 0xBF0, hartinfo.datasize is
1, dmstatus.impebreak is 0, and abstractcs.progbufsize is 5:
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# Read the high MXLEN bits into data0-data1
csrrw  c2, dscratch0c, c2
gchi   x2, c1
csrw   0xBF0, x2
csrrw  c2, dscratch0c, c2
ebreak

# Read the tag into data0
csrrw  c2, dscratch0c, c2
gctag  x2, c1
csrw   0xBF0, x2
csrrw  c2, dscratch0c, c2
ebreak

# Write the high MXLEN bits from data0-data1
csrrw  c2, dscratch0c, c2
csrr   x2, 0xBF0
schi   c1, c1, x2
csrrw  c2, dscratch0c, c2
ebreak

# Write the tag (if nonzero)
csrrw   c2, dscratch0c, c2
csrr    c2, dinfc
cbld    c1, c2, c1
csrrw   c2, dscratch0c, c2
ebreak

The low MXLEN bits of a capability are read and written using normal Access Register
abstract commands. If dscratch0c were known to be preserved between abstract
commands, it would be possible to remove the requirements on hartinfo.datasize,
hartinfo.dataaccess, and abstractcs.progbufsize, however there is no way to
discover the former property.

4.14.1. Debug Mode

When executing code due to an abstract command, the hart stays in debug mode and the rules
outlined in Section 4.1 of (RISC-V, 2022) apply.

4.14.2. Core Debug Registers

Zcheripurecap renames and extends debug CSRs that are designated to hold addresses to be able to
hold capabilities. The renamed debug CSRs are listed in Table 14.

The pcc must grant ASR-permission to access debug CSRs. This permission is automatically provided
when the hart enters debug mode as described in the dpcc section. The pcc metadata can only be
changed if the implementation supports executing control transfer instructions from the program
buffer — this is an optional feature according to (RISC-V, 2022).
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4.14.3. Debug Program Counter (dpc)

The dpc register is as defined in (RISC-V, 2022). It is a DXLEN-bit register used as the PC saved when
entering debug mode. dpc is extended into dpcc.

DXLEN-1 0

dpc
DXLEN

Figure 23. Debug program counter

4.14.4. Debug Program Counter Capability (dpcc)

The dpcc register is a renamed extension to dpc that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN-1 0

Tag dpcc (Metadata)

dpcc (Address)

MXLEN

Figure 24. Debug program counter capability

Upon entry to debug mode, (RISC-V, 2022), does not specify how to update the PC, and says PC
relative instructions may be illegal. This concept is extended to include any instruction which reads or
updates pcc, which refers to all jumps, conditional branches and AUIPC. The exceptions are
MODESW.CAP and MODESW.INT which are supported if Zcherihybrid is implemented, see dinfc for
details.

As a result, the value of pcc is UNSPECIFIED in debug mode according to this specification. The pcc
metadata has no architectural effect in debug mode. Therefore ASR-permission is implicitly granted
for access to all CSRs and no CHERI instruction fetch faults are possible.

dpcc (and consequently dpc) are updated with the capability in pcc whose address field is set to the
address of the next instruction to be executed as described in (RISC-V, 2022) upon debug mode entry.

When leaving debug mode, the capability in dpcc is unsealed and written into pcc. A debugger may
write dpcc to change where the hart resumes and its mode, permissions, sealing or bounds.

The legalization of dpcc follows the same rules described for mepcc.

4.14.5. Debug Scratch Register 0 (dscratch0)

The dscratch0 register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register
that can be used by implementations which need it. dscratch0 is extended into dscratch0c.

DXLEN-1 0

dscratch0
DXLEN

Figure 25. Debug scratch 0 register

4.14.6. Debug Scratch Register 0 Capability (dscratch0c)

The dscratch0c register is a CLEN-bit plus tag bit renamed extension to dscratch0 that is able to hold
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a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN-1 0

Tag dscratch0c (Metadata)

dscratch0c (Address)

MXLEN

Figure 26. Debug scratch 0 capability register

4.14.7. Debug Scratch Register 1 (dscratch1)

The dscratch1 register is as defined in (RISC-V, 2022). It is an optional DXLEN-bit scratch register that
can be used by implementations which need it. dscratch1 is extended into dscratch1c.

DXLEN-1 0

dscratch1
DXLEN

Figure 27. Debug scratch 1 register

4.14.8. Debug Scratch Register 1 Capability (dscratch1c)

The dscratch1c register is a CLEN-bit plus tag bit renamed extension to dscratch1 that is able to hold a
capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

MXLEN-1 0

Tag dscratch1c (Metadata)

dscratch1c (Address)

MXLEN

Figure 28. Debug scratch 1 capability register

4.14.9. Debug Infinite Capability Register (dinfc)

The dinfc register is a CLEN-bit plus tag bit CSR only accessible in debug mode.

The reset value is the Infinite capability.

If Zcherihybrid is implemented:

⚫ The M-bit is reset to Integer Pointer Mode (1).

⚫ The debugger can set the M-bit to Capability Pointer Mode (0) by executing MODESW.CAP from
the program buffer.

⚫ Executing MODESW.CAP causes subsequent instructions execution from the program buffer,
starting from the next instruction, to be executed in Capability Pointer Mode. It also sets the
CHERI execution mode to Capability Pointer Mode on future entry into debug mode.

⚫ Therefore to enable use of a CHERI debugger, a single MODESW.CAP only needs to be
executed once from the program buffer after resetting the core.

4.14. Integrating Zcheripurecap with Sdext | Page 49

RISC-V Specification for CHERI Extensions | © RISC-V International



⚫ The debugger can also execute MODESW.INT to change the mode back to Integer Pointer
Mode, which also affects the execution of the next instruction in the program buffer, updates
the M-bit of dinfc and controls which CHERI execution mode to enter on the next entry into
debug mode.

The M-bit of dinfc is only updated by executing MODESW.CAP or MODESW.INT from the program
buffer.


A future version of this specification may add writeable fields to allow creation of
other capabilities, if, for example, a future extension requires multiple formats for the
Infinite capability.

MXLEN-1 0

Tag dinfc (Metadata)

dinfc (Address)

MXLEN

Figure 29. Debug infinite capability register

4.15. Integrating Zcheripurecap with Sdtrig

The Sdtrig extension is generally orthogonal to Zcheripurecap. However, the priority of synchronous
exceptions and where triggers fit is adjusted as shown in Table 26.

Table 26. Synchronous exception priority (including triggers) in decreasing priority order. Entries added in
Zcheripurecap are in bold

Priority Exc. Code Description Trigger

Highest 3
3
3
3

etrigger
icount
itrigger
mcontrol/mcontrol6 after
(on previous instruction)

3

Instruction address breakpoint mcontrol/mcontrol6
execute address before

28

Prior to instruction address translation:
CHERI fault due to PCC checks (tag, execute
permission, invalid address and bounds)

12, 1

During instruction address translation:
First encountered CHERI PTE page fault, page fault or
access fault

1

With physical address for instruction:
Instruction access fault

3

mcontrol/mcontrol6
execute data before

2
0

8,9,11
3

Illegal instruction
Instruction address misaligned
Environment call
Environment break

3

Load/store/AMO address breakpoint mcontrol/mcontrol6
load/store address before
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Priority Exc. Code Description Trigger

3

mcontrol/mcontrol6 store
data before

28

CHERI faults due to:
PCC ASR-permission clear
Branch/jump target address checks (tag, execute
permissions, invalid address and bounds)

28

Prior to address translation for an explicit memory
access:
Load/store/AMO capability address misaligned
CHERI fault due to capability checks (tag,
permissions, invalid address and bounds)

4,6

Optionally:
Load/store/AMO address misaligned

13, 15, 5, 7

During address translation for an explicit memory
access:
First encountered CHERI PTE page fault, page fault or
access fault

5,7

With physical address for an explicit memory access:
Load/store/AMO access fault

4,6

If not higher priority:
Load/store/AMO address misaligned

13

If not higher priority:
CHERI load PTE fault

Lowest

3

mcontrol/mcontrol6 load
data before

 See the notes beneath Table 20 for details about CHERI PTE page fault priority.
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Chapter 5. Extending Page-Based Virtual-Memory Systems for
CHERI (RV64 only), including "Zcheripte"


Sv32 (for RV32) does not have any spare PTE bits, and so no features from this
chapter can be implemented.

In CHERI harts the Page Table Entry (PTE) format is extended to control the flow of capabilities in
memory (see Section 5.1). This is achieved by adding the PTE.CW bit described below and is a
mandatory feature when any virtual memory translation scheme (Sv39, Sv48 or Sv57) is implemented
on an RV64 system. By default PTE.CW=0 which will prevent legacy OSs from being able to load or
store tagged capabilities without software modification.

Additionally the Zcheripte extension adds the ability to perform capability revocation of user mode
pages (see Section 5.2) by adding the PTE.CRG bit, and sstatus.UCRG as described below.


Zcheripte is strongly recommended but not mandatory as a future version of this
specification may specify an improved method.

 There is no explicit mechanism for enabling or disabling Zcheripte.


If software ignores the new PTE bits then there is no change in functionality unless
capabilities are accessed.


A future version of this specification may include kernel revocation which may
require an sstatus.SCRG bit.

The remainder of this chapter jointly specifies the behavior of PTE.CW, PTE.CRG and sstatus.UCRG.



The description below assumes that Zcheripte has been implemented. If that is not
the case then PTE.CRG and sstatus.UCRG should be taken as read-only-zero for
purpose of the description in the remainder of this chapter only. PTE.CRG and
sstatus.UCRG remain reserved in this case.

The minimum level of PTE support is to set CW to 1 in all PTEs intended for storing capabilities (i.e.
private anonymous mappings) and leave sstatus.UCRG and CRG in all PTEs set to 0, which will allow
capabilities with their tags set to be loaded and stored successfully.

5.1. Limiting Capability Propagation

Page table enforcement can allow the operating system to limit the flow of capabilities between
processes. It is highly desirable that a process should only possess capabilities that have been issued
for that address space by the operating system. Unix processes may share memory for efficient
communication, but capability pointers must not be shared across these channels into a foreign
address space. An operating system might defend against this by only issuing a capability to the
shared region that does not grant the load/store capability permission. However, there are
circumstances where portions of general-purpose, mmapped* memory become shared, and the
operating system must prevent future capability communication through those pages. This is not
possible without restructuring software, as the capability for the original allocation, which spans both
shared memory and private memory, would need to be deleted and replaced with a list of distinct
capabilities with appropriate permissions for each range. Such a change would not be transparent to
the program. Such sharing through virtual memory is on the page granularity, so preventing capability
writes with a PTE permission is a natural solution.
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* allocated using mmap

5.2. Capability Revocation

Page table enforcement can accelerate concurrent capability revocation for temporal safety. Without
page table capability protection, a concurrent capability revocation sweep must begin by visiting all
PTEs to mark them unreadable, henceforth trapping on any read to a new page to sweep it clean
before proceeding. With a page-granularity generational capability read permission, we can eliminate
the initial permission change of all PTEs. In addition, a page-granularity capability write control can
eliminate many pages from the sweep that are known to not contain capabilities.

5.3. Extending the Page Table Entry Format

The page table entry format remains unchanged for Sv32. However, two new bits, Capability Write (CW)
and Capability Read Generation (CRG), are added to leaf PTEs in Sv39, Sv48 and Sv57 as shown in
Figure 30, Figure 31 and Figure 32 respectively. For non-leaf PTEs these bits remain reserved and
must be cleared by software for forward compatibility, or else a page-fault exception is raised.

63 62 61 60 59 58 57 54 53 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

N PBMT CW CRG Reserved PPN[2] PPN[1] PPN[0] RSW D A G U X W R V

1 2 1 1 1 4 26 9 9 2 1 1 1 1 1 1 1 1

Figure 30. Sv39 page table entry

63 62 61 60 59 58 57 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT CW CRG Reserved PPN RSW D A G U X W R V

1 2 1 1 1 4 44 2 1 1 1 1 1 1 1 1

53 37 36 28 27 19 18 10

PPN[3] PPN[2] PPN[1] PPN[0]

17 9 9 9

Figure 31. Sv48 page table entry

63 62 61 60 59 58 57 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT CW CRG Reserved PPN RSW D A G U X W R V

1 2 1 1 1 4 44 2 1 1 1 1 1 1 1 1

53 46 45 37 36 28 27 19 18 10

PPN[4] PPN[3] PPN[2] PPN[1] PPN[0]

8 9 9 9 9

Figure 32. Sv57 page table entry

 The behavior in this section isn’t relevant if:

1. The authorizing capability doesn’t have C-permission, for loads, stores and AMOs.

2. Zcherilevels has cleared the stored tag, for stores and AMOs.

The CW bit indicates whether reading or writing capabilities with the tag set to the virtual page is
permitted. When the CW bit is set, capabilities are written as usual, and capability reads are controlled
by the CRG bit.
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If the CW bit is clear then:

⚫ When a capability load or AMO instruction is executed, the implementation clears the tag bit of the
capability read from the virtual page.

⚫ When CRG is clear, the "no capability state", a store/AMO page fault exception is raised when a
capability store or AMO instruction is executed and the tag bit of the capability being written is set.

⚫ When CRG is set, the "pre-CW state", two schemes are permitted (also see Section 5.4):


The tag bit of the stored capability is checked after it is potentially cleared due to
lack of permissions.

⚫ The same behavior as when CRG is clear, allowing software interpretation of this state.

⚫ When a capability store or AMO instruction is executed and the tag bit of the capability being
written is set, the implementation sets the CW bit and assigns the CRG bit equal to sstatus.UCRG.

The PTE update must be atomic with respect to other accesses to the PTE, and must atomically
check that the PTE is valid and grants sufficient permissions. Updates to the CW bit and CRG bit
must be exact (i.e. not speculative), and observed in program order by the local hart. Furthermore,
the PTE update must appear in the global memory order no later than the explicit memory access,
or any subsequent explicit memory access to that virtual page by the local hart. The ordering on
loads and stores provided by FENCE instructions and the acquire/release bits on atomic
instructions also orders the PTE updates associated with those loads and stores as observed by
remote harts.

The PTE update is not required to be atomic with respect to the explicit memory access that
caused the update, and the sequence is interruptible. However, the hart must not perform explicit
memory access before the PTE update is globally visible.

When CW is set, the CRG bit indicates the current generation of the virtual memory page with regards
to the ongoing capability revocation cycle. Two schemes are permitted:

⚫ A load page fault exception is raised when a capability load or AMO instruction is executed with C-
permission granted and the virtual page’s CRG bit does not equal sstatus.UCRG in user mode.

⚫ A load page fault exception is raised when a capability load or AMO instruction is executed with C-
permission granted and the virtual page’s CRG bit does not equal sstatus.UCRG in user mode. and
the capability read from memory optionally has its tag set1.

Table 27. Summary of Load CW and CRG behavior in the PTEs

PTE.CW PTE.U PTE.CRG Load/AMO

0 X X Clear loaded tag

1 1 ≠ sstatus.UCRG Page fault, or page fault if tag is set1

1 1 = sstatus.UCRG Normal operation

1 0 X Normal operation2

1 The choice here is whether to take data dependent exceptions on loads or atomic operations. It is
legal for the implementation to fault even if the tag is not set since this behavior is only an
optimization for software. This means it is also legal to only check the tag under certain conditions and
conservatively fault otherwise. Taking a trap when the tag is not set will introduce additional traps
during revocation sweeps. Checking the loaded tag affects the exception priority, see Table 20.
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2 A future version of this specification may check an SCRG bit in sstatus for kernel revocation.

Table 28. Summary of Store CW and CRG behavior in the PTEs

PTE.CW PTE.CRG Store/AMO

0 0 Page fault if stored tag is set

0 1 Page fault if stored tag is set, or hardware CW and CRG update

1 X Normal operation

The exceptions added by Zcheripte reuse the load page fault and store/AMO page fault exception
cause values, and so the cause of the exception can be determined by software by checking the value
in mtval2, stval2 etc.

The behavior when multiple page fault types are detected at once is shown in Table 23.

5.4. Enabling Software or Hardware PTE updates

The decision about whether to take exceptions on capability stores with the tag set to a page with
PTE.CW=0 and PTE.CRG=1 is determined by whether the Svade and Svadu extensions are enabled.
These cause PTE Accessed and Dirty updates to be done in software, via the exception handler, or by a
hardware mechanism respectively.

⚫ If only Svade is implemented, or enabled through henvcfg.ADUE or menvcfg.ADUE, then take a
page fault.

⚫ If only Svadu is implemented, or enabled through henvcfg.ADUE or menvcfg.ADUE, then do the
hardware update of setting PTE.CW=1 and setting PTE.CRG=sstatus.UCRG as described in Section
5.3.

5.5. Extending the Supervisor (sstatus) and Virtual Supervisor (vsstatus) Status
Registers

The sstatus and vsstatus CSRs are extended to include the new Capability Read Generation (CRG) bit
as shown.

When V=1 vsstatus.UCRG is in effect.

mstatus.UCRG also exists. Reading or writing it is equivalent to reading or writing sstatus.UCRG.

0123456789101112131415

WPRISIEWPRIMIEWPRISPIEUBEMPIESPPVS[1:0]MPP[1:0]FS[1:0]XS[1:0]

1617181920212223242531

XS[1:0]MPRVSUMMXRTVMTWTSRSPELPSDTWPRI

32333435363738394041424347

UXL[1:0]SXL[1:0]SBEMBEGVAMPVWPRIMPELPMDTWPRI

4860616263

WPRIUCRGWPRISD

Figure 33. Virtual Supervisor-mode status (mstatus) register when MXLEN=64
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012456789101112131415

WPRISIEWPRISPIEUBEWPRISPPVS[1:0]WPRIFS[1:0]XS[1:0]
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XS[1:0]WPRISUMMXRWPRISPELPSDTWPRI

32333447

UXL[1:0]WPRI
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WPRIUCRGWPRISD

Figure 34. Supervisor-mode status (sstatus) register when SXLEN=64

012456789101112131415

WPRISIEWPRISPIEUBEWPRISPPVS[1:0]WPRIFS[1:0]XS[1:0]

161718192031

XS[1:0]WPRIMXRSUMWPRI

32333447

UXL[1:0]WPRI

4860616263

WPRIUCRGWPRISD

Figure 35. Virtual Supervisor-mode status (vsstatus) register when VSXLEN=64
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Chapter 6. "Zcherilevels" Extension for Capability Levels

Zcherilevels is an extension to Zcheripurecap that adds support for associating a level with
capabilities and limiting the flow of capabilities to specific memory region subsets. This extension
allows assigning a level to capabilities, which in conjunction with two new permissions allows enforcing
invariants on capability propagation. For example, this can be used to ensure that a callee can only
write a copy of the passed-in argument capability to specific locations in memory (e.g. the callee’s
stack frame but not the heap). It can also be used to avoid sharing of compartment-local data (such as
pointers to a stack object) between compartments.


This specification only defines the architectural mechanics of this feature, for further
information on how this can be used by software please refer to (Watson et al., 2023).

The number of supported capability levels is implementation-defined, but this specification currently
only requires supporting two levels (local and global).

6.1. Capability format changes

Zcherilevels adds a new LVLBITS-bit field to the capability encoding, the Capability Level (CL). It also
adds two new permission fields, EL-permission and SL-permission.

⚫ For MXLEN=64 capability encoding, the AP field is widened by LVLBITS+1 bits (i.e. 2 bits for
LVLBITS=1)

 The MXLEN=64 capability encoding diagram shows the layout for LVLBITS=1

⚫ For MXLEN=32 the capability’s AP field is able to encode these permissions without increasing in
size (provided that LVLBITS≤2).


Zcherilevels requires that LVLBITS≥1 although LVLBITS>1 is considered an
experimental enhancement of this extension. See Section 6.4 for the mechanics
when LVLBITS>1.

6.1.1. Capability Level (CL)

The Capability Level (CL) is a new field added to the capability encoding, as shown in Section 3.1.

With LVLBITS=1, the Capability Level can hold two values: when set to 1 the capability is global (in
general allowing it to be stored using any authorizing capability), and when set to 0 the capability is
local, and can only be stored by authorizing capabilities with the SL-permission set. Furthermore, the
EL-permission can be used to restrict loading of global capabilities — causing the hardware to
automatically set the level of loaded capabilities to local instead.


The current specification only defines two levels, equivalent to local and global
capabilities from CHERI v9, Morello and CHERIoT.

As with permissions, the capability level can only be decreased but never increased (without deriving
from a capability with a higher level). Therefore, the capability level is adjusted using the ACPERM
instruction (see Section 6.2) and are queried using GCPERM.

6.1.2. New capability permissions
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Zcherilevels introduces two new capability permissions:

Store Level Permission (SL)

This is a LVLBITS wide field that allows limiting the propagation of capabilities using the following
logic: capabilities with a Capability Level (CL) less than the inverse of the authorizing capability’s
SL-permission will be stored with the tag cleared. With LVLBITS=1 there is a single bit comparison,
so it behaves as follows:

⚫ If this field (as well as C-permission and W-permission) is set to 1 then capabilities may be
stored via this capability regardless of their associated Capability Level (CL).

⚫ If this field is zero, then any capability with a Capability Level (CL) of zero (i.e. local), will be
stored with the tag cleared.


For LVLBITS=1 this permission is equivalent to StoreLocal in CHERI v9, Morello and
CHERIoT.

Elevate Level Permission (EL)

Any unsealed capability with its tag set to 1 that is loaded from memory has its EL-permission
cleared and its Capability Level (CL) restricted to the authorizing capability’s Capability Level (CL) if
the authorizing capability does not grant EL-permission. If sealed, then only CL is modified, EL-
permission is unchanged. This permission is similar to the existing LM-permission, but instead of
applying to the W-permission on the loaded capability it restricts the CL field.

Table 29. Encoding of architectural permissions for MXLEN=32 when Zcherilevels is implemented

Bits[4:3] R W C LM EL SL X ASR Mode1 Notes

Quadrant 0: Non-capability data read/write

bit[2] - write, bit[1] - reserved (0), bit[0] - read

Reserved bits for future extensions are 0 so new permissions are not implicitly granted

0 N/A No permissions

1 ✔ N/A Data RO

2-3 reserved

4 ✔ N/A Data WO

5 ✔ ✔ N/A Data RW

6-7 reserved

Quadrant 1: Executable capabilities

bit[0] - M-bit (0-Capability Pointer Mode, 1-Integer Pointer Mode)

Bits[4:3] R W C LM EL SL X ASR Mode1

0-1 ✔ ✔ ✔ ✔ ✔ ∞ ✔ ✔ Mode1 Execute + ASR (see
Infinite)

2-3 ✔ ✔ ✔ ✔ ∞2 ✔ Mode1 Execute + Data & Cap RO

4-5 ✔ ✔ ✔ ✔ ✔ ∞ ✔ Mode1 Execute + Data & Cap RW

6-7 ✔ ✔ 02 ✔ Mode1 Execute + Data RW

Quadrant 2: Restricted capability data read/write
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Bits[4:3] R W C LM EL SL X ASR Mode1 Notes

bit[2] = write, bit[1:0] = store level. R and C implicitly granted, LM dependent on W permission.

Bits[4:3] R W C LM EL SL X ASR Mode1

0-2 reserved

3 ✔ ✔ 01 N/A Data & Cap R0 (without
LM-permission)

4 ✔ ✔ ✔ ✔ (3) N/A Reserved when LVLBITS=1
3

5 ✔ ✔ ✔ ✔ (2) N/A Reserved when LVLBITS=1
3

6 ✔ ✔ ✔ ✔ 1 N/A Data & Cap RW (with store
local, no EL-permission)

7 ✔ ✔ ✔ ✔ 0 N/A Data & Cap RW (no store
local, no EL-permission)

Quadrant 3: Capability data read/write

bit[2] = write, bit[1:0] = store level. R and C implicitly granted.

Reserved bits for future extensions must be 1 so they are implicitly granted

Bits[4:3] R W C LM EL SL X ASR Mode1

0-2 reserved

3 ✔ ✔ ✔ ✔ 02 N/A Data & Cap R0

4 ✔ ✔ ✔ ✔ ✔ (3) N/A Reserved when LVLBITS=1
3

5 ✔ ✔ ✔ ✔ ✔ (2) N/A Reserved when LVLBITS=1
3

6 ✔ ✔ ✔ ✔ ✔ 1 N/A Data & Cap RW (with store
local)

7 ✔ ✔ ✔ ✔ ✔ 0 N/A Data & Cap RW (no store
local)

1 Mode (M-bit) can only be set on a tagged capability when Zcherihybrid is supported, otherwise such
encodings are reserved. Despite being encoded here it is not an architectural permission.
2 SL isn’t applicable in these cases, but this value is reported by GCPERM to simplify the rules followed
by ACPERM
3 These entries are reserved when LVLBITS=1 and in use when LVLBITS=2

6.2. Changing capability levels and permissions

While capability levels (CL) are conceptually a label on the capability rather than a permission granted
by the capability, they are adjusted using the ACPERM instruction. This avoids the need for a dedicated
instruction and allows reducing the level and removing EL-permission in a single instruction.
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6.3. Capability level summary table

 A capability with CL=1 is global and with CL=0 is local.

Table 30. Zcherilevels LVLBITS=1 summary table for stored capabilities

Auth cap field Data cap
field

W C SL CL Notes

1 1

1 X Store data capability unmodified

0
1 Store data capability unmodified (CL ≥ ~SL)

0 Store data capability with tag cleared (CL < ~SL)

 if W=0 or C=0 then SL is irrelevant

Table 31. Zcherilevels additional rules for loading capabilities

Auth cap field Data cap field

R C EL CL Tag Sealed Action

1 1 0 X 1

Yes Load data capability with CL=min(auth.CL, data.CL),
EL unchanged

No Load data capability with EL=0, CL=min(auth.CL,
data.CL)

All other cases Load data capability with EL, CL unmodified

6.4. Extending Zcherilevels to more than two levels

When LVLBITS>1, the behavior of ACPERM can no longer use masking to adjust the Capability Level
(CL) or SL-permission, but instead must perform an integer minimum operation on those LVLBITS-wide
fields. The CL field of the resulting capability is set to min(rs2[CL], cs1[CL]) (equivalent to rs2[CL] &
cs1[CL] for LVLBITS=1). Similarly, SL-permission is set to min(rs2[SL], cs1[SL]) (equivalent to
rs2[SL] & cs1[SL] for LVLBITS=1).

When storing capabilities, the SL-permission checks need to perform a LVLBITS-wide integer
comparison instead of just testing a single bit. Considering for an example LVLBITS=2:

SL-permission Permitted for levels Resulting semantics

3 As low as ~0b11=0 Authorizes stores of capabilities with any level

2 As low as ~0b10=1 Strip tag for level 0 (most local), keep for 1,2,3

1 As low as ~0b01=2 Strip tag for level 0&1, keep for 2&3

0 As low as ~0b00=3 Strip tag for level 0,1,2, i.e. only the most global can be
stored


While this extra negation is non-intuitive, it is required such that ACPERM can use a
monotonically decreasing operation for both CL SL-permission.


The layout of the ACPERM input / GCPERM result is not yet defined, but existing bits
will not be moved around so the SL/CL fields will be non-contiguous.

6.3. Capability level summary table | Page 60

RISC-V Specification for CHERI Extensions | © RISC-V International



Chapter 7. "Zcherihybrid" Extension for CHERI Integer Pointer
Mode

Zcherihybrid is an optional extension to Zcheripurecap. Implementations that support Zcheripurecap
and Zcherihybrid define a variant of the CHERI ISA that is fully binary compatible with existing RISC-V
code.

Key features in Zcherihybrid include a definition of a CHERI execution mode, a new unprivileged
register, additional instructions and extensions to some existing CSRs enabling CHERI features. The
remainder of this section describes these features in detail as well as their integration with the primary
base integer variants of the RISC-V ISA (RV32I and RV64I).

7.1. CHERI Execution Mode

Zcherihybrid adds CHERI execution modes to ensure backwards compatibility with the base RISC-V
ISA while saving instruction encoding space. There are two execution modes: Capability Pointer Mode
and Integer Pointer Mode. Additionally, there is a new unprivileged register: the default data capability,
ddc, that is used to authorize all data memory accesses when in Integer Pointer Mode.

The current CHERI execution mode is given by the M-bit of pcc that is encoded as described in M-bit.

The CHERI execution mode impacts the instruction set in the following ways:

⚫ The authorizing capability used to execute memory access instructions. In Integer Pointer Mode,
ddc is implicitly used. In Capability Pointer Mode, the authorizing capability is supplied as an
explicit c operand register to the instruction.

⚫ The set of instructions that is available for execution. Some instructions are available in Integer
Pointer Mode but not Capability Pointer Mode and vice-versa (see Chapter 12).


The implication is that the CHERI execution mode is always Capability Pointer Mode
on implementations that support Zcheripurecap, but not Zcherihybrid.

The CHERI execution mode is effectively an extension to some RISC-V instruction encodings. For
example, the encoding of an instruction like LW remains unchanged, but the mode indicates whether
the capability authorizing the load is the register operand cs1 (Capability Pointer Mode). The mode is
shown in the assembly syntax.

The CHERI execution mode is key in providing backwards compatibility with the base RISC-V ISA.
RISC-V software is able to execute unchanged in implementations supporting both Zcheripurecap and
Zcherihybrid provided that the Infinite capability is installed in ddc and pcc (with M=1, i.e. in Integer
Pointer Mode). Setting both registers to Infinite ensures that:

⚫ All permissions are granted

⚫ The bounds authorize accesses to the entire address space i.e base is 0 and top is 2MXLEN

7.2. CHERI Execution Mode Encoding

Zcherihybrid adds a new CHERI execution Mode field (M) to the capability format, which is only valid
for code capabilities, i.e. when the X-permission is set.
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⚫ When MXLEN=32, the Mode is encoded in bit 0 of quadrant 1 from the AP field even though it is
not a permission as shown in Table 4.

⚫ Only quadrant 1 represents executable capabilities, and so it’s the only one which encodes the
Mode.

⚫ If Zcherihybrid not implemented, then setting the M-bit to 1 for Integer Pointer Mode in
quadrant 1 causes the permissions to be invalid, i.e. an encoding which cannot be produced by
ACPERM.

⚫ When MXLEN=64, the Mode is encoded separately; a new M-bit is added to the capability format
as shown in Table 5. The M-bit is only valid for code capabilities, otherwise the field is reserved.

⚫ When Zcherihybrid is not implemented then the bit allocated to the M-bit is reserved for future
use.


Mode is encoded with permissions for MXLEN=32, but is not a permission. It is
orthogonal to permissions as it can vary arbitrarily using SCMODE.

In both encodings:

⚫ Mode (M)=0 indicates Capability Pointer Mode.

⚫ Mode (M)=1 indicates Integer Pointer Mode.

The current CHERI execution mode is given by the M-bit of the pcc and the CHERI register and
instruction access settings as follows:

⚫ The Mode is Capability Pointer Mode when the M-bit of the pcc is 0, and CHERI register and
instruction access is enabled for the current privilege.

⚫ Otherwise the Mode is Integer Pointer Mode.

When the M-bit can be set, the rules defined by ACPERM must be followed.

7.2.1. Observing the CHERI Execution Mode

The effective CHERI execution mode is given by the values of some CSRs and the M-bit from the pcc.
The following code sequences demonstrate how a program can observe the current, effective CHERI
execution mode depending on the machine’s privilege mode.

In debug mode, the following sequence executed from the program buffer will write 0 for Capability
Pointer Mode and 1 for Integer Pointer Mode to x1:

csrr   c1, dinfc
gcmode x1, c1

In any other privilege mode, the following sequence will write 0 for Capability Pointer Mode and 1 for
Integer Pointer Mode to x1:

auipc c1, 0
gctag x1, c1
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7.3. Zcherihybrid Instructions

Zcherihybrid introduces a small number of new mode-switching and capability manipulation
instructions to the base RISC-V integer ISA, as shown in Table 47. Additionally, the behavior of some
existing instructions changes depending on the current CHERI execution mode.

7.3.1. Capability Load and Store Instructions

The load and store capability instructions change behavior depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The load capability instruction is LC. When the CHERI execution mode is Capability Pointer Mode; the
instruction behaves as described in Section 4.3. In Integer Pointer Mode, the capability authorizing
the memory access is ddc, so the effective address is obtained by adding the x register to the sign-
extended offset.

The store capability instruction is SC. When the CHERI execution mode is Capability Pointer Mode; the
instruction behaves as described in Section 4.3. In Integer Pointer Mode, the capability authorizing
the memory access is ddc, so the effective address is obtained by adding the x register to the sign-
extended offset.

7.3.2. Capability Manipulation Instructions

A new SCMODE instruction allows setting a capability’s CHERI execution mode to the indicated value.
The output is written to an unprivileged c register, not pcc.

A new GCMODE instruction allows decoding the CHERI execution mode from an arbitrary capability
held in an x register. The output is written to an unprivileged x register.

7.3.3. Mode Change Instructions

New CHERI execution mode switch instructions, MODESW.CAP and MODESW.INT, allow software to
change the hart’s current M-bit in pcc. If the current mode in the pcc is Integer Pointer Mode, then the
mode after executing MODESW.CAP is Capability Pointer Mode and similarly for MODESW.INT when in
Capability Pointer Mode. This instruction effectively writes the CHERI execution mode M-bit of the
capability currently installed in the pcc.

7.4. Existing RISC-V Instructions

The CHERI execution mode introduced in Zcherihybrid affects the behavior of instructions that have at
least one memory address operand. When in Capability Pointer Mode, the address input or output
operands may include c registers. When in Integer Pointer Mode, the address input or output operands
are x/f/v registers; the tag and metadata of that register are implicitly set to 0.

7.4.1. Control Transfer Instructions

The unconditional jump instructions change behavior depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

The jump and link instruction JAL when the CHERI execution mode is Capability Pointer Mode;
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behaves as described in Section 4.4. When the mode is Integer Pointer Mode. In this case, the
address of the instruction following the jump (pc + 4) is written to an x register; that register’s tag and
capability metadata are zeroed.

The jump and link register instruction is JALR when the CHERI execution mode is Capability Pointer
Mode; behaves as described in Section 4.4. When the mode is Integer Pointer Mode. In this case, the
target address is obtained by adding the sign-extended 12-bit immediate to the x register operand,
then setting the least significant bit of the result to zero. The target address is then written to the pcc
address and a representability check is performed. The address of the instruction following the jump
(pc + 4) is written to an x register; that register’s tag and capability metadata are zeroed.

Zcherihybrid allows changing the current CHERI execution mode when executing JALR from Capability
Pointer Mode.

JAL and JALR cause CHERI exceptions when a minimum sized instruction at the target address is not
within the bounds of the pcc. An instruction address misaligned exception is raised when the target
address is misaligned.

7.4.2. Conditional Branches

The behavior is as shown in Section 4.4.2.2.

7.4.3. Load and Store Instructions

Load and store instructions change behavior depending on the CHERI execution mode although the
instruction’s encoding remains unchanged.

Loads and stores behave as described in Section 4.4 when in Capability Pointer Mode. In Integer
Pointer Mode, the instructions behave as described in the RISC-V base ISA and rely on x operands
only. The capability authorizing the memory access is ddc and the memory address is given by sign-
extending the 12-bit immediate offset and adding it to the base address in the x register operand.

The exception cases remain as described in Section 4.4 regardless of the CHERI execution mode.

7.4.4. CSR Instructions

Zcherihybrid adds the concept of CSRs which contain a capability where the address field is visible in
Integer Pointer Mode (e.g. mtvec) and the full capability is visible in Capability Pointer Mode through a
different name (e.g. mtvecc). These are referred to as extended CSRs. Also, Zcherihybrid adds the new
capability CSRs listed in Table 32.

Extended CSRs have only one address; the access width is determined by the execution mode.

When CSRRW is executed on an extended CSR in Integer Pointer Mode:

⚫ The register operand is an x register.

⚫ Only XLEN bits from the x source are written to the capability address field.

⚫ The tag and metadata are updated as specified in Table 49.

⚫ Only XLEN bits are read from the capability address field, which are extended to MXLEN bits
according to (RISC-V, 2023) (3.1.6.2. Base ISA Control in mstatus Register) and are then written to
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the destination x register.

When CSRRW is executed on an extended CSR in Capability Pointer Mode, or on a new capability CSR
regardless of the CHERI execution mode:

⚫ The register operand is a c register.

⚫ The full capability in the c register source is written to the CSR.

⚫ The capability may require modification before the final written value is determined (see Table
49).

⚫ The full capability is written to destination c register.

When an extended CSR or a new capability CSR is used with another CSR instruction (CSRRWI,
CSRRC, CSRRCI, CSRRS, CSRRSI):

⚫ The final address is calculated according to the standard RISC-V CSR rules (set bits, clear bits etc).

⚫ The final address is updated as specified in Table 49 for an XLEN write.

⚫ When accessing an extended CSR:

⚫ In Integer Pointer Mode, XLEN bits are read from the capability address field and written to an
output x register.

⚫ In Capability Pointer Mode, CLEN bits are read from the CSR and written to an output c
register.

⚫ When accessing a new capability CSR:

⚫ CLEN bits are read from the CSR and written to an output c register.

All CSR instructions cause CHERI exceptions if the pcc does not grant ASR-permission and the CSR
accessed is not user-mode accessible.

7.5. Integrating Zcherihybrid with Sdext

A new debug default data capability (dddc) CSR is added at the CSR number shown in Table 32.

Zcherihybrid allows MODESW.CAP and MODESW.INT to execute in debug mode.

When entering debug mode, whether the core enters Integer Pointer Mode or Capability Pointer Mode
is controlled by the M-bit in dinfc.

The current mode can be read from dinfc.

7.6. Debug Default Data Capability (dddc)

dddc is a register that is able to hold a capability. The address is shown in Table 32.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

This CSR is only implemented if Zcherihybrid is implemented.

7.5. Integrating Zcherihybrid with Sdext | Page 65

RISC-V Specification for CHERI Extensions | © RISC-V International



MXLEN-1 0

Tag dddc (Metadata)

dddc (Address)

MXLEN

Figure 36. Debug default data capability

Upon entry to debug mode, ddc is saved in dddc. ddc's metadata is set to the Infinite capability’s
metadata (with tag set) and ddc's address remains unchanged.

When debug mode is exited by executing DRET, the hart’s ddc is updated to the capability stored in
dddc. A debugger may write dddc to change the hart’s context.

As shown in Table 51, dddc is a data pointer, so it does not need to be able to hold all possible invalid
addresses.

7.7. Disabling CHERI Registers and Instructions

Zcherihybrid includes functions to disable explicit access to CHERI registers and instructions. The
following occurs when executing code in a privilege mode that has CHERI register access disabled:

⚫ The CHERI instructions in Section 4.3 and Appendix D cause illegal instruction exceptions

⚫ Executing CSR instructions accessing any CSR added by Zcherihybrid (see Table 32) causes an
illegal instruction exception

⚫ Executing CSR instructions accessing any extended CSR (see Section 4.6) only allows XLEN
access.

⚫ All allowed instructions execute as if the CHERI execution mode is Integer Pointer Mode. The
mode bit in pcc is treated as if it was zero while CHERI register access is disabled.

CHERI register access is disabled if

⚫ XLEN in the current mode is less than MXLEN, or

⚫ the endianness in the current mode is not the reset value of mstatus.MBE, or

⚫ the effective CRE for the current privilege is 0.

The effective CRE for the current privilege is:

⚫ Machine: mseccfg.CRE

⚫ Supervisor: mseccfg.CRE & menvcfg.CRE

⚫ User: mseccfg.CRE & menvcfg.CRE & senvcfg.CRE

 The effective CRE is always 1 in debug mode.

Disabling CHERI register access has no effect on implicit accesses or security checks. The last
capability installed in pcc and ddc before disabling CHERI register access will be used to authorize
instruction execution and data memory accesses.



Disabling CHERI register access prevents low-privileged Integer Pointer Mode
software from interfering with the correct operation of higher-privileged Integer
Pointer Mode software that do not perform ddc switches on trap entry and return.
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Disable CHERI register access also allows harts supporting CHERI to be fully
compatible with standard RISC-V, so CHERI instructions, such as CRAM, that do not
change the state of CHERI CSRs raise exceptions when CRE=0.


Table 60 summarizes the behavior of a hart in connection with the CRE and the
CHERI execution mode.

7.8. Added CLEN-wide CSRs

Zcherihybrid adds the CLEN-wide CSRs shown in Table 32.

Table 32. CLEN-wide CSRs added in Zcherihybrid

CLEN
CSR

Addre
ss

Prerequisites Permissions Description

dddc 0x7bc Zcherihybrid,
Sdext

DRW Debug Default Data Capability (saved/restored on debug
mode entry/exit)

mtdc 0x74c Zcherihybrid, M-
mode

MRW, ASR-
permission

Machine Trap Data Capability (scratch register)

stdc 0x163 Zcherihybrid, S-
mode

SRW, ASR-
permission

Supervisor Trap Data Capability (scratch register)

vstdc 0x245 Zcherihybrid, H HRW, ASR-
permission

Virtual Supervisor Trap Data Capability (scratch register)

ddc 0x416 Zcherihybrid URW User Default Data Capability

7.8.1. Machine Status Registers (mstatus and mstatush)

Zcherihybrid eliminates some restrictions for SXL and UXL imposed in Zcheripurecap to allow
implementations supporting multiple base ISAs. Namely, the SXL and UXL fields may be writable.

Setting the SXL or UXL field to a value that is not MXLEN disables most CHERI features and
instructions, as described in Section 7.7, while in that privilege mode.


If CHERI register access must be disabled in a mode for security reasons, software
should set CRE to 0 regardless of the SXL and UXL fields.

Whenever XLEN in any mode is set to a value less than MXLEN, standard RISC-V rules from (RISC-V,
2023) are followed. This means that all operations must ignore source operand register bits above the
configured XLEN, and must sign-extend results to fill all MXLEN bits in the destination register.
Similarly, pc bits above XLEN are ignored, and when the pc is written, it is sign-extended to fill MXLEN.
The integer writing rule from CHERI is followed, so that every register write also zeroes the metadata
and tag of the destination register.

However, CHERI operations and security checks will continue using the entire hardware register (i.e.
CLEN bits) to correctly decode capability bounds.

Zcherihybrid eliminates some restrictions for MBE, SBE, and UBE imposed in Zcheripurecap to allow
implementations supporting multiple endiannesses. Namely, the MBE, SBE, and UBE fields may be
writable if the corresponding privilege mode is implemented.
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Setting the MBE, SBE, or UBE field to a value that is not the reset value of MBE disables most CHERI
features and instructions, as described in Section 7.7, while in that privilege mode.

7.8.2. Machine Trap Default Capability Register (mtdc)

The mtdc register is a capability width read/write register dedicated for use by machine mode.
Typically, it is used to hold a data capability to a machine-mode hart-local context space, to load into
ddc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

Access to this CSR is illegal if CHERI register and instruction access is disabled for the current
privilege.

This CSR is only implemented if Zcherihybrid is implemented.

MXLEN-1 0

Tag mtdc (Metadata)

mtdc (Address)

MXLEN

Figure 37. Machine-mode trap data capability register

7.8.3. Machine Security Configuration Register (mseccfg)

Zcherihybrid adds a new enable bit to mseccfg as shown in Figure 38.

63 34 33 32 31 10 9 8 7 4 3 2 1 0

WPRI PMM WPRI SSEED USEED WPRI CRE RLB MMWP MML

30 2 22 1 1 4 1 1 1 1

Figure 38. Machine security configuration register (mseccfg)

The CHERI Register Enable (CRE) bit controls whether M-mode and lower privilege levels have access
to capability registers and instructions. When mseccfg.CRE=1, all CHERI instructions and registers can
be accessed. When mseccfg.CRE=0, CHERI register and instruction access is prohibited for M-mode
and lower privilege levels as described in Section 7.7.

The reset value is 0.

7.8.4. Machine Environment Configuration Register (menvcfg)

Zcherihybrid adds a new enable bit to menvcfg as shown in Figure 39.

63 62 61 29 28 27 8 7 6 5 4 3 1 0

STCE PBMTE WPRI CRE WPRI CBZE CBCFE CBIE WPRI FIOM

1 1 33 1 20 1 1 2 3 1

Figure 39. Machine environment configuration register (menvcfg)

The CHERI Register Enable (CRE) bit controls whether less privileged levels can perform explicit
accesses to CHERI registers and execute CHERI instructions. When menvcfg.CRE=1 and
mseccfg.CRE=1, CHERI registers can be read and written by less privileged levels. When
menvcfg.CRE=0, CHERI registers are disabled in less privileged levels as described in Section 7.7.
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The reset value is 0.

7.8.5. Supervisor Trap Default Capability Register (stdc)

The stdc register is a capability width read/write register dedicated for use by supervisor mode.
Typically, it is used to hold a data capability to a supervisor-mode hart-local context space, to load into
ddc.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

Access to this CSR is illegal if CHERI register and instruction access is disabled for the current
privilege.

This CSR is only implemented if Zcherihybrid is implemented.

MXLEN-1 0

Tag stdc (Metadata)

stdc (Address)

MXLEN

Figure 40. Supervisor trap data capability register (stdc)

7.8.6. Supervisor Environment Configuration Register (senvcfg)

The senvcfg register operates as described in the RISC-V Privileged Specification. Zcherihybrid adds
a new enable bit as shown in Figure 41.

SXLEN-1 29 28 27 8 7 6 5 4 3 1 0

WPRI CRE WPRI CBZE CBCFE CBIE WPRI FIOM

SXLEN-29 1 20 1 1 2 3 1

Figure 41. Supervisor environment configuration register (senvcfg)

The CHERI Register Enable (CRE) bit controls whether U-mode can perform explicit accesses to
CHERI registers and execute CHERI instructions. When senvcfg.CRE=1 and menvcfg.CRE=1 and
mseccfg.CRE=1 CHERI registers can be read and written by U-mode. When senvcfg.CRE=0, CHERI
registers are disabled in U-mode as described in Section 7.7.

The reset value is 0.

7.8.7. Default Data Capability (ddc)

The ddc CSR is a read-write capability register implicitly used as an operand to authorize all data
memory accesses when the current CHERI mode is Integer Pointer Mode. This register must be
readable in any implementation. Its reset value is the Infinite capability.

Access to this CSR is illegal if CHERI register and instruction access is disabled for the current
privilege.


CRE is not required for the implicit access required by checking memory accesses
against ddc

This CSR is only implemented if Zcherihybrid is implemented.
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As shown in Table 51, ddc is a data pointer, so it does not need to be able to hold all possible invalid
addresses.

MXLEN-1 0

Tag ddc (Metadata)

ddc (Address)

MXLEN

Figure 42. Unprivileged default data capability register
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Chapter 8. Integrating Zcheripurecap and Zcherihybrid with the
Hypervisor Extension

The RISC-V hypervisor (H) extension virtualizes the supervisor-level architecture to support the
efficient hosting of guest operating systems atop a type-1 or type-2 hypervisor (RISC-V, 2023). The
hypervisor extension is generally orthogonal to CHERI; the main requirements, when integrating with
Zcheripurecap and Zcherihybrid, is that address CSRs added for hypervisors are extended to CLEN
size so that they are able to hold capabilities. The remainder of this chapter describes these changes
in detail.

8.1. Hypervisor Status Register (hstatus)

The hstatus register operates as described in (RISC-V, 2023) except for the VSXL field that controls
the value of XLEN for VS-mode (known as VSXLEN).

The encoding of the VSXL field is the same as the MXL field of misa. Only 1 and 2 are supported
values for VSXL. When the implementation supports Zcheripurecap (but not Zcherihybrid), then
hstatus's VSXL must be read-only as described in mstatus for mstatus.SXL. When the implementation
supports both Zcheripurecap and Zcherihybrid, then VSXL behaves as described in Section 7.8.1 for
mstatus.SXL.

The VSBE field determines controls the endianness of explicit memory accesses from VS-mode and
implicit memory accesses to VS-level memory management data structures. VSBE=0 indicates little
endian and VSBE=1 is big endian. VSBE must be read-only and equal to MBE when the implementation
only supports Zcheripurecap. VSBE is optionally writeable when Zcherihybrid is also supported.

8.2. Hypervisor Environment Configuration Register (henvcfg)

The henvcfg register operates as described in the RISC-V Privileged Specification. A new enable bit is
added to henvcfg when the implementation supports Zcherihybrid as shown in Figure 43.

63 62 61 29 28 27 8 7 6 5 4 3 1 0

STCE PBMTE WPRI CRE WPRI CBZE CBCFE CBIE WPRI FIOM

1 1 33 1 20 1 1 2 3 1

Figure 43. Hypervisor environment configuration register (henvcfg)

The CHERI Register Enable (CRE) bit controls whether explicit access to CHERI registers is permitted
when V=1. When henvcfg.CRE=1 and menvcfg.CRE=1 and mseccfg.CRE=1, CHERI registers can be read
and written by VS-mode and VU-mode. When henvcfg.CRE=0, CHERI registers are disabled in VS-
mode and VU-mode as described in Section 7.7.

The reset value is 0.

8.3. Hypervisor Exception Delegation Register (hedeleg)

Bit 28 of hedeleg now refers to a valid exception and so can be used to delegate CHERI exceptions to
virtual supervisor mode.
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8.4. Virtual Supervisor Status Register (vsstatus)

The vsstatus register operates as described in (RISC-V, 2023) except for the UXL field that controls
the value of XLEN for VU-mode.

The encoding of the UXL field is the same as the MXL field of misa. Only 1 and 2 are supported values
for UXL. When the implementation supports Zcheripurecap (but not Zcherihybrid), then vsstatus.UXL
must be read-only as described in mstatus for mstatus.UXL. When the implementation supports both
Zcheripurecap and Zcherihybrid, then UXL behaves as described in Section 7.8.1 for mstatus.UXL.

8.5. Virtual Supervisor Trap Vector Base Address Register (vstvec)

The vstvec register is as defined in (RISC-V, 2023). It is the VSXLEN-bit read/write register that is the
VS mode’s version of the supervisor register stvec.

VSXLEN-1 2 1 0

BASE [VSXLEN-1:2] (WARL) MODE (WARL)

VSXLEN-2 2

Figure 44. Virtual supervisor trap vector base address register

8.6. Virtual Supervisor Trap Vector Base Address Capability Register (vstvecc)

The vstvecc register is a renamed extension of vstvec that is able to hold a capability. Its reset value is
the Infinite capability.

MXLEN-1 2 1 0

Tag Metadata (WARL)

BASE[MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 45. Virtual supervisor trap vector base address capability register

The handling of vstvecc is otherwise identical to mtvecc, but in virtual supervisor mode.

8.7. Virtual Supervisor Scratch Register (vsscratch)

The vsscratch register is as defined in (RISC-V, 2023). It is a VSXLEN read/write register that is VS-
mode’s version of supervisor register sscratch. vsscratch is extended into vsscratchc.

VSXLEN-1 0

vsscratch

VSXLEN

Figure 46. Virtual supervisor scratch register

8.8. Virtual Supervisor Scratch Register (vsscratchc)

The vsscratchc register is a renamed version of vsscratch that is able to hold a capability.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

It is not WARL, all capability fields must be implemented.
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MXLEN-1 0

Tag vsscratchc (Metadata)

vsscratchc (Address)

MXLEN

Figure 47. Virtual supervisor scratch capability register

8.9. Virtual Supervisor Exception Program Counter (vsepc)

The vsepc register is as defined in (RISC-V, 2023). It is extended into vsepcc.

VSXLEN-1 0

vsepc

VSXLEN

Figure 48. Virtual supervisor exception program counter

8.10. Virtual Supervisor Exception Program Counter Capability (vsepcc)

The vsepcc register is a renamed extension of vsepc that is able to hold a capability. Its reset value is
the Infinite capability.

As shown in Table 51, vsepcc is an executable vector, so it need not be able to hold all possible invalid
addresses. Additionally, the capability in vsepcc is unsealed when it is installed in pcc on execute of an
SRET instruction. The handling of vsepcc is otherwise identical to mepcc, but in virtual supervisor
mode.

MXLEN-1 0

Tag vsepcc (Metadata)

vsepcc (Address)

MXLEN

Figure 49. Virtual supervisor exception program counter capability

8.11. Virtual Supervisor Cause Register (vscause)

The vscause register is as defined in (RISC-V, 2023). It must additionally support the new exception
code for CHERI exceptions that scause supports.

8.12. Virtual Supervisor Trap Default Capability Register (vstdc)

The vstdc register is a capability width read/write register that is VS-mode’s version of supervisor
register stdc. This register is only present when the implementation supports Zcherihybrid.

The tag of the CSR must be reset to zero. The reset values of the metadata and address fields are
UNSPECIFIED.

Access to this CSR is illegal if CHERI register and instruction access is disabled for the current
privilege.

This CSR is only implemented if Zcherihybrid is implemented.
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MXLEN-1 0

Tag vstdc (Metadata)

vstdc (Address)

MXLEN

Figure 50. Virtual supervisor trap default capability register

8.13. Virtual Supervisor Trap Value Register (vstval)

The vstval register is a VSXLEN-bit read-write register.

vstval is updated following the same rules as mtval for CHERI exceptions, load page fault and store
page faults which are taken in VS-mode.

VSXLEN-1 0

vstval
VSXLEN

Figure 51. Virtual supervisor trap value register

8.14. Virtual Supervisor Trap Value Register 2 (vstval2)

The vstval2 register is a VSXLEN-bit read-write register, which is added as part of Zcheripurecap when
the hypervisor extension is supported. Its CSR address is 0x24b.

vstval2 is updated following the same rules as mtval2 for CHERI exceptions which are taken in VS-
mode.

The fields are identical to mtval2 for CHERI exceptions.

 vstval2 is not a standard RISC-V CSR, but mtval2 is.

VSXLEN-1 20 19 16 15 4 3 0

WPRI TYPE WPRI CAUSE
VSXLEN-20 4 12 4

Figure 52. Virtual supervisor trap value register 2

8.15. Existing Hypervisor Load and Store Instructions

The hypervisor extension defines several integer load and store instructions (such as HLV.W, HSV.W
and HLVX.WU) that transfer the amount of integer data described in (RISC-V, 2023) between the
registers and memory as though V=1. These instructions change behavior depending on the CHERI
execution mode although the instruction’s encoding remains unchanged.

When in Capability Pointer Mode, the hypervisor load and store instructions behave as described in
Section 4.4. In Integer Pointer Mode, the instructions behave as described in (RISC-V, 2023) and rely
on an x register operand providing the effective address for the memory access; the capability
authorizing the memory access is ddc.

The exception cases remain as described in Section 4.4 regardless of the CHERI execution mode.

8.16. Hypervisor Load and Store Capability Instructions

Hypervisor virtual-machine load (HLV.C) and store (HSV.C) capability instructions read or write CLEN
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bits from memory as though V=1. These instructions change behavior depending on the CHERI
execution mode although the instruction’s encoding remains unchanged.

When in Capability Pointer Mode, the hypervisor load and store capability instructions behave as
described in Section 4.4. In Integer Pointer Mode, the instructions behave as rely on an x register
operand providing the effective address for the memory access and the capability authorizing the
memory access is ddc.
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Chapter 9. Integrating Zcheripurecap and Zcherihybrid with the
Vector Extension

The RISC-V vector (V) extension is orthogonal to CHERI because the vector registers only hold integer
or floating-point data. The vector registers are not extended to hold capabilities.



A future extension may allow tags to be stored in vector registers. Until that time,
vector load and store instructions must not be used to implement generic memory
copying in software, such as the memcpy() standard C library function, because the
vector registers do not hold capabilities, so the tags of any copied capabilities will be
set to 0 in the destination memory.

Vector loads and stores all follow the behavior as described in Section 4.4.3.

The assembly syntax of all vector loads and stores are updated in Capability Pointer Mode, so that the
address operand becomes a c operand instead of an x operand.

According to the vector extension (RISC-V, 2021) only active elements are accessed or updated in
memory. Therefore only active elements are subject to CHERI exception checks. If a vector load or
store has no active elements then no CHERI fault will be taken.

This is consistent with other exceptions such as page faults which are only taken on active elements.

In the case of fault-only-first loads, a CHERI bounds violation is only taken if any bytes of element 0
are out of bounds, or if the CHERI bounds are malformed and there are any active elements. If another
active element causes a CHERI bounds violation then it is treated the same way as other exceptions,
the trap is not taken and instead vl is reduced. All other CHERI fault types, such as tag violations, are
taken if there are any active elements.


Indexed loads in Capability Pointer Mode check the bounds of every access against
the authority capability in cs1. Therefore the approach of having a zero base register
and treating every element as an absolute address may not work well in this mode.
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Chapter 10. Integrating Zcheripurecap and Zcherihybrid with
Pointer Masking

The pointer masking extensions Smmpm, Smnpm, SSnpm, Sspm and Supm are compatible with
Zcherihybrid.

For instructions using integer addresses (e.g. loads/stores in Integer Pointer Mode), they are
interpreted as being XLEN-wide, and may be subject to pointer masking. All data accesses are
checked against ddc which is unaffected by pointer masking. Therefore no capability bounds encoding
is affected.

For instructions using capabilities (e.g. loads/stores in Capability Pointer Mode), the final access
address is subject to pointer masking, but the computed bounds are not. The entire address field,
including any bits representing the pointer mask, are used for bounds calculation. When pointer
masking is enabled, the dereferenced address has the masked bits replaced by sign extension before
the bounds check.



This scheme doesn’t seem very useful, but the problem is the dynamic configuration
of pointer masking which can arbitrarily update the meaning of the address within
the capability, so the full address field must be used to calculate bounds. There is
future work required to determine a more useful way of applying pointer masking to
capabilities.
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Chapter 11. "Zstid" Extension for Software Thread Identification

Zstid is an optional extension to the RISC-V base ISA. Implementations that support Zcheripurecap
and Zstid define a variant of the CHERI ISA that allows for more efficient software
compartmentalization of CHERI programs.

11.1. Control and Status Registers (CSRs)

Zstid adds new CSRs to implement a trusted software thread identifier (TID) used in
compartmentalization. These CSRs are listed in Table 33, Table 34, Table 35 and Table 36.

Table 33. Added machine-mode CSRs in Zstid

Zstid CSR Address Prerequisites Read-Permission Write-Permission Description

mtid 0x780 M-mode M M, ASR-permission Machine Thread Identifier

Table 34. Added supervisor-mode CSRs in Zstid

Zstid CSR Address Prerequisites Read-Permission Write-Permission Description

stid 0x580 S-mode S S, ASR-permission Supervisor Thread Identifier

Table 35. Added virtual supervisor-mode CSRs in Zstid

Zstid CSR Address Prerequisites Read-Permission Write-Permission Description

vstid 0xA80 VS-mode S H, ASR-permission Virtual Supervisor Thread
Identifier

Table 36. Added user-mode CSRs in Zstid

Zstid CSR Address Prerequisites Read-Permission Write-Permission Description

utid 0x480 U-mode U U, ASR-permission User Thread Identifier

11.2. Machine-Level, Supervisor-Level and Unprivileged CSRs

11.2.1. Machine Thread Identifier (mtid)

The mtid register is an MXLEN-bit read-write register. It is used to identify the current software thread
in machine mode. The reset value of this register is UNSPECIFIED.

MXLEN-1 0

mtid
MXLEN

Figure 53. Supervisor thread identifier register

11.2.2. Supervisor Thread Identifier (stid)

The stid register is an SXLEN-bit read-write register. It is used to identify the current software thread
in supervisor mode. The reset value of this register is UNSPECIFIED.

11.1. Control and Status Registers (CSRs) | Page 78

RISC-V Specification for CHERI Extensions | © RISC-V International



SXLEN-1 0

stid
SXLEN

Figure 54. Supervisor thread identifier register

11.2.3. Virtual Supervisor Thread Identifier (vstid)

The vstid register is a VSLEN-bit read-write register. It is VS-mode’s version of supervisor register stid
used to identify the current software thread in virtual supervisor mode. As other Virtual Supervisor
registers when V=1, vstid substitutes for stid, so that instructions that normally read or modify stid
actually access vstid instead. When V=0, vstid does not directly affect the behavior of the machine.

The reset value of this register is UNSPECIFIED.

VSXLEN-1 0

vstid
VSXLEN

Figure 55. Virtual supervisor thread identifier register

11.2.4. User Thread Identifier (utid)

The utid register is an UXLEN-bit read-write register. It is used to identify the current software thread
in user mode. The reset value of this register is UNSPECIFIED.

UXLEN-1 0

utid
UXLEN

Figure 56. User thread identifier register

When Zcheripurecap is implemented, the Zstid CSRs are extended as follows:

11.2.5. Machine Thread Identifier Capability (mtidc)

The mtidc register is an CLEN-bit read-write capability register. It is the capability extension of the
mtid register. It is used to identify the current software thread in machine mode. On reset the tag of
mtidc will be set to 0 and the remainder of the data is UNSPECIFIED.

MXLEN-1 0

Tag mtidc (Metadata)

mtidc (Address)

MXLEN

Figure 57. Machine thread identifier capability register

11.2.6. Supervisor Thread Identifier Capability (stidc)

The stidc register is an CLEN-bit read-write capability register. It is the capability extension of the stid
register. It is used to identify the current software thread in supervisor mode. On reset the tag of stidc
will be set to 0 and the remainder of the data is UNSPECIFIED.
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MXLEN-1 0

Tag stidc (Metadata)

stidc (Address)

MXLEN

Figure 58. Supervisor thread identifier capability register

11.2.7. Virtual Supervisor Thread Identifier Capability (vstidc)

The vstidc register is a CLEN-bit read-write capability register. It is the capability extension of the
vstid register used to identify the current software thread in virtual supervisor mode. As other Virtual
Supervisor registers when V=1, vstidc substitutes for stidc, so that instructions that normally read or
modify stidc actually access vstidc instead. When V=0, vstidc does not directly affect the behavior of
the machine. On reset the tag of vstidc will be set to 0 and the remainder of the data is UNSPECIFIED.

MXLEN-1 0

Tag vstidc (Metadata)

vstidc (Address)

MXLEN

Figure 59. Virtual supervisor thread identifier capability register

11.2.8. User Thread Identifier Capability (utidc)

The utidc register is an CLEN-bit read-write capability register. It is the capability extension of the utid
register. It is used to identify the current software thread in user mode. On reset the tag of utidc will be
set to 0 and the remainder of the data is UNSPECIFIED.

MXLEN-1 0

Tag utidc (Metadata)

utidc (Address)

MXLEN

Figure 60. User thread identifier capability register

11.3. "Smstateen/Ssstateen" Integration

The TID bit controls access to the CSRs in Table 34, Table 35 and Table 36 provided by the Zstid
extension.

0123415

CFCSRJVTTIDWPRI

1631

WPRI

3247

WPRI

48555657585960616263

WPRIP1P13CONTEXTIMSICAIACSRINDWPRIENVCFGSE0

Figure 61. Machine State Enable 0 Register (mstateen0)
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0123415

CFCSRJVTTIDWPRI

1631

WPRI

3247

WPRI

485657585960616263

WPRICONTEXTIMSICAIACSRINDWPRIENVCFGSE0

Figure 62. Hypervisor State Enable 0 Register (hstateen0)

0123415

CFCSRJVTTIDWPRI

1631

WPRI

Figure 63. Supervisor State Enable 0 Register (sstateen0)

11.4. CHERI Compartmentalization

This section describes how this specification enables support for compartmentalization for CHERI
systems. Compartmentalization seeks to separate the privileges between different protection units,
e.g., two or more libraries. Code can be separated by sentries, which allow for giving out code
capabilities to untrusted code where the untrusted code can only call the code capability, but not
modify it. Sentries can be called from different software threads and thus there needs to be a way of
identifying the current software thread. While identifying the current software thread can be done by
privileged code, e.g., the kernel, the implied performance overhead of this is not bearable for CHERI
systems with many compartments.

The RISC-V ABI includes a thread pointer (tp) register, which is not usable for the purpose of reliably
identifying the current software thread because the tp register is a general purpose register and can
be changed arbitrarily by untrusted code. Therefore, this specification offers additional CSRs that
facilitate a trusted source for the thread ID. All registers are readable from their respective privilege
levels and writeable with ASR-permission.

This extension extends mtid, stid, vstid and utid to their respective capability variants mtidc, stidc,
vstidc and utidc. This presents software with the freedom to still use these registers with capabilities
or leave the metadata untouched and only use the registers to store integers.
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Chapter 12. RISC-V Instructions and Extensions Reference

These instruction pages are for the new CHERI instructions, and some existing RISC-V instructions
where the effect of CHERI needs specific details.

For existing RISC-V instructions, note that:

1. In Integer Pointer Mode, every byte of each memory access is bounds checked against ddc

2. In Integer Pointer Mode, a minimum length instruction at the target of all indirect jumps is bounds
checked against pcc

3. In Capability Pointer Mode a minimum length instruction at the target of all indirect jumps is
bounds checked against cs1 (e.g. JALR)

4. A minimum length instruction at the taken target of all direct jumps and conditional branches is
bounds checked against pcc regardless of CHERI execution mode


Not all RISC-V extensions have been checked against CHERI. Compatible extensions
will eventually be listed in a CHERI profile.
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12.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI
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12.1.1. CMV

Synopsis

Capability move

Mnemonic

cmv cd, cs1

Suggested assembly syntax

mv cd, cs1

 the suggested assembly syntax distinguishes from integer mv by operand type.

Encoding

067111214151920242531

opcodecdfunct3cs1zerofunct7

7
OP=0110011

5
dest

3
CADD=000

5
src

5
rs2=x0

7
CADD=0000110

 CMV is encoded as CADD with rs2=x0.

Description

The contents of capability register cs1 are written to capability register cd. CMV unconditionally
moves the whole capability to cd .


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

C(cd) = C(cs1);
RETIRE_SUCCESS

12.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 84

RISC-V Specification for CHERI Extensions | © RISC-V International



12.1.2. MODESW.INT

See MODESW.CAP.

12.1.3. MODESW.CAP

Synopsis

Switch execution mode to Capability Pointer Mode (MODESW.CAP), or Integer Pointer Mode
(MODESW.INT), 32-bit encodings

Mnemonic

modesw.cap
modesw.int

Encoding

067111214151920242531

opcodefunct5funct3funct5funct5funct7

7
OP=0110011

5
MSW=00000

3
MSW=001

5
MSW=00000

5
MSW=00000

7
MSW.CAP=0001001
MSW.INT=0001010

Description

Set the hart’s current CHERI execution mode in pcc.

⚫ MODESW.CAP: If the current mode in pcc is Integer Pointer Mode (1), then the M-bit in pcc is
set to Capability Pointer Mode (0). Otherwise no effect.

⚫ MODESW.INT: If the current mode in pcc is Capability Pointer Mode (0), then the M-bit in pcc is
set to Integer Pointer Mode (1). Otherwise no effect.



Executing MODESW.CAP or MODESW.INT from the program buffer in debug mode
updates the M-bit of dinfc. The M-bit of dinfc sets the CHERI execution mode for the
execution of the next instruction from the program buffer, and is used to control
which CHERI execution mode to enter next time debug mode is entered. The CHERI
execution mode is only controlled by the M-bit of dinfc in debug mode.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcherihybrid

Operation

let mode : ExecutionMode = match effective_cheri_mode() {
  IntPtrMode => CapPtrMode,
  CapPtrMode => IntPtrMode,
};
if debug_mode_active then dinfc = setCapMode(infinite_cap, mode);
set_next_pcc(setCapMode(PCC, mode));
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RETIRE_SUCCESS
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12.1.4. CADDI

See CADD.

12.1.5. CADD

Synopsis

Capability pointer increment

Mnemonic

cadd cd, cs1, rs2
caddi cd, cs1, imm

Suggested assembly syntax

add cd, cs1, rs2
add cd, cs1, imm

 the suggested assembly syntax distinguishes from integer add by operand type.

Encoding

067111214151920242531

opcodecdfunct3cs1rs2!=x0funct7

7
OP=0110011

5
dest

3
CADD=000

5
src

5
increment

7
CADD=0000110

06711121415192031

opcodecdfunct3cs1imm

7
OP-IMM-32=0011011

5
dest

3
CADDI=010

5
src

12
imm


CADD with rs2=x0 is decoded as CMV instead, the key difference being that tagged
capabilities cannot have their tag cleared by CMV.

Description

Increment the address field of the capability cs1 and write the result to cd . The tag bit of the
output capability is 0 if cs1 did not have its tag set to 1, the incremented address is outside cs1 's
Representable Range or cs1 is sealed.

For CADD, the address is incremented by the value in rs2 .
For CADDI, the address is incremented by the immediate value imm.


This instruction sets cd.tag=0 if cs1 's bounds are malformed, or if any of the
reserved fields are set.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap
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Operation (CADD)

  let cs1_val = C(cs1);
  let rs2_val = X(rs2);

  let newCap = incCapAddrChecked(cs1_val, rs2_val);

  C(cd) = newCap;
  RETIRE_SUCCESS

Operation (CADDI)

  let cs1_val = C(cs1);
  let immBits : xlenbits = sign_extend(imm);

  let newCap = incCapAddrChecked(cs1_val, immBits);

  C(cd) = newCap;
  RETIRE_SUCCESS
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12.1.6. SCADDR

Synopsis

Capability set address

Mnemonic

scaddr cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
SCADDR=001

5
src

5
address

7
SCADDR=0000110

Description

Set the address field of capability cs1 to rs2 and write the output capability to cd. The tag bit of the
output capability is 0 if cs1 did not have its tag set to 1, rs2 is outside the Representable Range of
cs1 or if cs1 is sealed.


This instruction sets cd.tag=0 if cs1 's bounds are malformed, or if any of the
reserved fields are set.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

C(cd) = setCapAddrChecked(C(cs1), X(rs2));
RETIRE_SUCCESS
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12.1.7. ACPERM

Synopsis

Mask capability permissions

Mnemonics

acperm cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
ACPERM=010

5
src

5
mask

7
ACPERM=0000110

Description

ACPERM performs the following operations:

1. Convert the AP and SDP fields of capability cs1 into a bit field with the format shown in Figure
64.

2. Calculate the bitwise AND of the bit field with the mask rs2.

3. If the AP and M-bit field in cs1 could not have been produced by ACPERM then clear all AP
permissions, and the M-bit to 0. Skip the next step.

4. Clear AP permissions as required to meet the rules below.

5. Encode the AP permissions for RV32 according to Table 4.

6. Copy cs1 to cd, and update the AP and SDP fields with the newly calculated versions.

7. Set cd.tag=0 if cs1 is sealed or if any reserved fields of cs1 are set.

Some combinations of permissions cannot be encoded for MXLEN=32, and are not useful when
MXLEN=64. These cases are defined to return useful minimal sets of permissions, which may
be no permissions.


Future extensions may allow more combinations of permissions, especially for
MXLEN=64. The rules from Table 37 must be followed when removing
permissions.

Table 37. ACPERM common rules

Rule Permission Only valid if

1 (RV32 only) ASR-permission All other permissions are set.

2 C-permission R-permission or W-permission

3 (RV32 only) C-permission R-permission

4 (RV32 only) X-permission R-permission

5 (RV32 only) W-permission not(C-permission) or LM-permission

6 (RV32 only) X-permission W-permission or C-permission

7 EL-permission C-permission and R-permission

8 (RV32 only) EL-permission LM-permission
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Rule Permission Only valid if

9 LM-permission C-permission and R-permission

10 (RV32 only) LM-permission (W-permission or EL-permission)

11 SL-permission C-permission

12 (RV32 only) SL-permission (LM-permission and (X-permission or W-permission))

13 (RV32 only) X-permission (C-permission and LM-permission and EL-permission
and (SL-permission == ∞)) or
(not(C-permission and not(LM-permission) and not(EL-
permission) and (SL-permission==0)))1

14 ASR-permission X-permission

152 (RV32 only) M-bit X-permission and Zcherihybrid is implemented

1 All the listed permissions in the set are either minimum or maximum.
2 For RV32, the encodings which have the M-bit set to 1 for Integer Pointer Mode are only valid if
Zcherihybrid is implemented. Otherwise those encodings represent invalid permissions.


For RV64 without Zcherihybrid, the M-bit is a reserved bit, and so is not relevant to
ACPERM.

The behavior of currently illegal combinations from Table 37 is to clear the permission if invalid (or in
the case of SL-permission set it to 0 (local)).

⚫ For RV64 all such combinations may be redefined by future extensions.

⚫ The RV32 only rules are added because they remove combinations which do not meet the
encoding requirements for Table 4, or Table 29 if Zcherilevels is implemented.

XLEN-1 19 18 17 16 15 SDPLEN+5 6 5 4 3 2 1 0

Reserved R X ASR Reserved SDP C CL SL EL LM W

XLEN-19 1 1 1 10-SDPLEN SDPLEN 1 1 1 1 1 1

Figure 64. Capability permissions bit field


The EL, SL and CL fields are only defined if the implementation supports
Zcherilevels.

 Even though being included here CL is not considered an architectural permission.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

  let cs1_val = C(cs1);
  let rs2_val = X(rs2);

  let cond = capIsSealed(cs1_val) | not(capReservedValid(cs1_val));
  let inCap = clearTagIf(cs1_val, cond);
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  let old_perms = packPerms(getArchPermsLegalized(inCap),
inCap.sd_perms).bits;

  let new_perms = old_perms & rs2_val;

  let (new_arch_perms, new_sd_perms) = unpackPerms(struct {bits =
new_perms});
  let newCap = { setArchPerms(inCap, new_arch_perms) with sd_perms =
new_sd_perms };

  C(cd) = newCap;
  RETIRE_SUCCESS
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12.1.8. SCMODE

Synopsis

Capability set CHERI execution mode

Mnemonic

scmode cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

7
SCMODE=111

5
src1

5
src2

7
SCMODE=0000110

Description

Copy cs1 to cd. Clear cd.tag if cs1 is sealed. Update the M-bit of cd to Capability Pointer Mode if
the least significant bit of rs2 is 0 and to Integer Pointer Mode if the bit is 1 provided that the
following conditions are met, otherwise do not update the M-bit:

1. X-permission is set

2. The existing permissions can be produced by ACPERM

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcherihybrid

Operation

  let cap = C(cs1);
  let mode = execution_mode_encdec(X(rs2)[0 .. 0]);

  let cap = clearTagIf(cap, capIsSealed(cap));
  let hasMode = not(permsMalformed(cap)) & canX(cap);
  let newCap = if hasMode then setCapMode(cap, mode) else cap;

  C(cd) = newCap;
  RETIRE_SUCCESS
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12.1.9. SCHI

Synopsis

Capability set metadata

Mnemonic

schi cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
SCHI=011

5
src

5
metadata

7
SCHI=0000110

Description

Copy cs1 to cd , replace the capability metadata (i.e. bits [CLEN-1:MXLEN]) with rs2 and set cd.tag
to 0.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let capVal = C(cs1);
let intVal = X(rs2);
let newCap = bitsToCap(false, intVal @ capVal.address);
C(cd) = newCap;
RETIRE_SUCCESS
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12.1.10. SCEQ

Synopsis

Set if Capabilities are EQual

Mnemonic

sceq rd, cs1, cs2

Encoding

067111214151920242531

opcoderdfunct3cs1cs2funct7

7
OP=0110011

5
dest

3
SCEQ=100

5
src1

5
src2

7
SCEQ=0000110

Description

rd is set to 1 if all bits (i.e. CLEN bits and the tag) of capabilities cs1 and cs2 are equal, otherwise rd
is set to 0.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let cs1_val = C(cs1);
let cs2_val = C(cs2);
X(rd) = zero_extend(bool_to_bits(cs1_val == cs2_val));
RETIRE_SUCCESS

12.1. "Zcheripurecap" and "Zcherihybrid" Extensions for CHERI | Page 95

RISC-V Specification for CHERI Extensions | © RISC-V International



12.1.11. SENTRY

Synopsis

Seal capability as sealed entry.

Mnemonic

sentry cd, cs1

Encoding

067111214151920242531

opcodecdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
SENTRY=000

5
src

5
SENTRY=01000

7
SENTRY=0001000

Description

Capability cd is written with the capability in cs1 with its type bit set to 1. Attempting to seal an
already sealed capability will lead to the tag of cd being set to 0.



The SENTRY instruction may give rise to an illegal instruction fault when the
implementation does not support capability type 1 (unrestricted sentry; see Section
3.2.5). This is not the case when the implementation supports the capability encoding
described in Chapter 3.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let cs1_val = C(cs1);
let inCap = clearTagIf(cs1_val, capIsSealed(cs1_val));
C(cd) = sealCap(inCap);
RETIRE_SUCCESS
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12.1.12. SCSS

Synopsis

Set Capability Subset

Mnemonic

scss rd, cs1, cs2

Encoding

067111214151920242531

opcoderdfunct3cs1cs2funct7

7
OP=0110011

5
dest

3
SCSS=110

5
src1

5
src2

7
SCSS=0000110

Description

rd is set to 1 if:

1. the tag of capabilities cs1 and cs2 are equal, and

2. the bounds and permissions of cs2 are a subset of those of cs1, and

3. cs2 's Capability Level (CL) is equal to or lower than cs1 's

a. This is only relevant if Zcherilevels is implemented.

4. neither cs1 or cs2 have bounds which are malformed, and

5. neither cs1 or cs2 have any bits set in reserved fields, and

6. neither cs1 or cs2 have permissions that could not have been legally produced by ACPERM

Otherwise set rd to 0.


The implementation of this instruction is similar to CBLD, although SCSS does not
include the sealed bit in the check.

Prerequisites

Zcheripurecap

Operation

  let cs1_val = C(cs1);
  let cs2_val = C(cs2);

  X(rd) = zero_extend(bool_bits(
    (cs1_val.tag == cs2_val.tag) &
    capIsSubset(cs2_val, cs1_val) /* capIsSubset returns false if either
input
                                     has malformed bounds, perms, or non-zero
                                     reserved bits */
  ));
  RETIRE_SUCCESS
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12.1.13. CBLD

Synopsis

Capability build

Mnemonic

cbld cd, cs1, cs2

Encoding

067111214151920242531

opcodecdfunct3cs1cs2funct7

7
OP=0110011

5
dest

3
CBLD=101

5
src1

5
src2

7
CBLD=0000110

Description

Copy cs2 to cd and set cd.tag to 1 if

1. cs1.tag is set, and

2. cs1 's bounds are not malformed, and all reserved fields are zero, and

3. cs1 's permissions could have been legally produced by ACPERM, and

4. cs1 is not sealed, and

5. cs2 's permissions and bounds are equal to or a subset of cs1 's, and

6. cs2 's Capability Level (CL) is equal to or lower than cs1 's, and

a. This is only relevant if Zcherilevels is implemented.

7. cs2 's bounds are not malformed, and all reserved fields are zero, and

8. cs2 's permissions could have been legally produced by ACPERM, and

9. All reserved bits in cs2 's metadata are 0;

Otherwise, copy cs2 to cd and clear cd 's tag.

CBLD is typically used alongside SCHI to build capabilities from integer values.


When cs1 is c0 this will copy cs2 to cd and clear cd.tag. However this may change in
future extensions, and so software should not assume cs1==0 to be a
pseudoinstruction for tag clearing.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

  let cs1_val = C(cs1);
  let cs2_val = C(cs2);
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  let tag = cs1_val.tag &
            not(capIsSealed(cs1_val)) &
            capIsSubset(cs2_val, cs1_val); /* Subset checks for malformed
bounds,
                                              perms, and reserved bits */

  C(cd) = { cs2_val with tag = tag };
  RETIRE_SUCCESS
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12.1.14. GCTAG

Synopsis

Capability get tag

Mnemonic

gctag rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCTAG=000

5
src

5
GCTAG=00000

7
GCTAG=0001000

Description

Zero extend the value of cs1.tag and write the result to rd.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let capVal = C(cs1);
X(rd) = zero_extend(bool_to_bits(capVal.tag));
RETIRE_SUCCESS
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12.1.15. GCPERM

Synopsis

Capability get permissions

Mnemonic

gcperm rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCPERM=000

5
src

5
GCPERM=00001

7
GCPERM=0001000

Description

If MXLEN=32 unpack permissions from the format in Table 4.

Convert the unpacked AP permissions as well as the SDP fields of capability cs1 into a bit field, with
the format shown in Figure 65, and write the result to rd. A bit set to 1 in the bit field indicates that
cs1 grants the corresponding permission.

If the AP field cannot be produced by ACPERM then all architectural permission bits in rd are set to
0.

XLEN-1 19 18 17 16 15 SDPLEN+5 6 5 4 3 2 1 0

Reserved R X ASR Reserved SDP C CL SL EL LM W

XLEN-19 1 1 1 10-SDPLEN SDPLEN 1 1 1 1 1 1

Figure 65. Capability permissions bit field

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let capVal = C(cs1);
X(rd) = packPerms(getArchPermsLegalized(capVal), capVal.sd_perms).bits;
RETIRE_SUCCESS
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12.1.16. GCHI

Synopsis

Capability get metadata

Mnemonic

gchi rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCHI=000

5
src

5
GCHI=00100

7
GCHI=0001000

Description

Copy the metadata (bits [CLEN-1:MXLEN]) of capability cs1 into rd.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let capVal = C(cs1);
X(rd) = capToMetadataBits(capVal).bits;
RETIRE_SUCCESS
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12.1.17. GCBASE

Synopsis

Capability get base address

Mnemonic

gcbase rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCBASE=000

5
src

5
GCBASE=00101

7
GCBASE=0001000

Description

Decode the base integer address from cs1 's bounds and write the result to rd. It is not required
that the input capability cs1 has its tag set to 1.


If cs1 's bounds are malformed then the bounds decode as zero, which causes this
instruction to return zero.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let capVal = C(cs1);
X(rd) = match getCapBoundsBits(capVal) {
  None() => zeros(),
  Some(base, _) => base
};
RETIRE_SUCCESS
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12.1.18. GCLEN

Synopsis

Capability get length

Mnemonic

gclen rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCLEN=000

5
src

5
GCLEN=00110

7
GCLEN=0001000

Description

Calculate the length of cs1 's bounds and write the result in rd. The length is defined as the
difference between the decoded bounds' top and base addresses i.e. top - base. It is not required
that the input capability cs1 has its tag set to 1. GCLEN outputs 0 if cs1 's bounds are malformed
(see Section 3.2.6.3), and 2MXLEN-1 if the length of cs1 is 2MXLEN.


If cs1 's bounds are malformed then the bounds decode as zero, which causes this
instruction to return zero.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let capVal = C(cs1);
// getCapLength returns 0 if the bounds are malformed
let len = getCapLength(capVal);
X(rd) = to_bits(xlen, if len > cap_max_addr then cap_max_addr else len);
RETIRE_SUCCESS
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12.1.19. GCMODE

Synopsis

Capability get CHERI execution mode

Mnemonic

gcmode rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCMODE=000

5
src

5
GCMODE=00011

7
GCMODE=0001000

Description

Decode the CHERI execution mode from the capability in cs1 and write the result to rd. It is not
required that cs1 has its tag set to 1. The output in rd is 0 if the capability in cs1 does not have X-
permission set or the AP field cannot be produced by ACPERM; otherwise, the output is 0 if cs1 's
CHERI execution mode is Capability Pointer Mode or 1 if the mode is Integer Pointer Mode.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcherihybrid

Operation

let capVal = C(cs1);
X(rd) = zero_extend(execution_mode_encdec(getCapMode(capVal)));
RETIRE_SUCCESS
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12.1.20. GCTYPE

Synopsis

Capability get type

Mnemonic

gctype rd, cs1

Encoding

067111214151920242531

opcoderdfunct3cs1funct5funct7

7
OP=0110011

5
dest

3
GCTYPE=000

5
src

5
GCTYPE=00010

7
GCTYPE=0001000

Description

Decode the architectural capability type from cs1 and write the result to rd. It is not required that
the input capability cs1 has its tag set to 1.



While the architectural capability type maps directly to the value of the CT capability
bit in Zcheripurecap, future extensions may define an alternate mapping. Therefore,
software should always use GCTYPE to obtain the capability type rather than directly
reading the high bits of the capability using GCHI.

Table 38. Capability types in Zcheripurecap

Type Hardware interpretation

0 Unsealed capability

1 Sentry capability

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let capVal = C(cs1);
X(rd) = zero_extend(bool_to_bits(capVal.sealed));
RETIRE_SUCCESS
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12.1.21. SCBNDSI

See SCBNDS.

12.1.22. SCBNDS

Synopsis

Capability set bounds

Mnemonics

scbnds cd, cs1, rs2
scbndsi cd, cs1, uimm

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
SCBNDS=000

5
src1

5
src2

7
SCBNDS=0000111

06711121415192024252631

opcodecdfunct3cs1uimmsfunct6

7
OP-IMM=0010011

5
dest

3
SCBNDSI=101

5
src

5
uimm

(> 1 if s=1)

1
scaled

6
SCBNDSI
=000001

Description

Capability register cd is set to capability register cs1 with the base address of its bounds replaced
with the value of cs1.address and the length of its bounds set to rs2 (or imm). If the resulting
capability cannot be represented exactly then set cd.tag to 0. In all cases, cd.tag is set to 0 if its
bounds exceed cs1 's bounds, cs1 's tag is 0 or cs1 is sealed.

SCBNDSI uses the s bit to scale the immediate by 4 places

immediate = ZeroExtend(s ? uimm<<4 : uimm)


The SCBNDSI encoding with s=1 and uimm ≤ 1 is RESERVED since these immediates
can also be encoded with s=0.


This instruction sets cd.tag=0 if cs1 's bounds are malformed, or if any of the
reserved fields are set.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation for SCBNDS

let cs1_val = C(cs1);
let length = X(rs2);
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let newBase = cs1_val.address;
let newTop : CapLenBits = zero_extend(newBase) + zero_extend(length);
// inCapBoundsNoWrap returns false if the input bounds are malformed.
let inBounds = inCapBoundsNoWrap(cs1_val, newBase, unsigned(length));
let (exact, newCap) : (bool, Capability) = setCapBounds(cs1_val, newBase,
newTop);
let cond = not(inBounds & exact) |
           boundsMalformed(newCap) |
           not(capReservedValid(newCap)) |
           capIsSealed(newCap);
C(cd) = clearTagIf(newCap, cond);
RETIRE_SUCCESS

Operation for SCBNDSI

let cs1_val = C(cs1);
let length = if s == 0b1 then uimm5 @ 0b0000 else 0b0000 @ uimm5;
let newBase = cs1_val.address;
let newTop : CapLenBits = zero_extend(newBase) + zero_extend(length);
// inCapBoundsNoWrap returns false if the input bounds are malformed.
let inBounds = inCapBoundsNoWrap(cs1_val, newBase, unsigned(length));
let (exact, newCap) : (bool, Capability) = setCapBounds(cs1_val, newBase,
newTop);
assert(exact, "SCBNDSI immediate too small for non-exact lengths");
let cond = not(inBounds) |
           boundsMalformed(newCap) |
           not(capReservedValid(newCap)) |
           capIsSealed(newCap);
C(cd) = clearTagIf(newCap, cond);
RETIRE_SUCCESS
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12.1.23. SCBNDSR

Synopsis

Capability set bounds, rounding up if necessary

Mnemonic

scbndsr cd, cs1, rs2

Encoding

067111214151920242531

opcodecdfunct3cs1rs2funct7

7
OP=0110011

5
dest

3
SCBNDSR=001

5
src1

5
src2

7
SCBNDSR=0000111

Description

Capability register cd is set to capability register cs1 with the base address of its bounds replaced
with the value of cs1.address field and the length of its bounds set to rs2. The base is rounded
down and the length is rounded up by the smallest amount needed to form a representable
capability covering the requested bounds. In all cases, cd.tag is set to 0 if its bounds exceed cs1 's
bounds, cs1 's tag is 0 or cs1 is sealed.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.


This instruction sets cd.tag=0 if cs1 's bounds are malformed, or if any of the
reserved fields are set.

Prerequisites

Zcheripurecap

Operation for SCBNDSR

let cs1_val = C(cs1);
let length = X(rs2);
let newBase = cs1_val.address;
let newTop : CapLenBits = zero_extend(newBase) + zero_extend(length);
// inCapBoundsNoWrap returns false if the input bounds are malformed.
let inBounds = inCapBoundsNoWrap(cs1_val, newBase, unsigned(length));
let (_, newCap) : (bool, Capability) = setCapBounds(cs1_val, newBase,
newTop);
let cond = not(inBounds) |
           boundsMalformed(newCap) |
           not(capReservedValid(newCap)) |
           capIsSealed(newCap);
C(cd) = clearTagIf(newCap, cond);
RETIRE_SUCCESS
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12.1.24. CRAM

Synopsis

Get Capability Representable Alignment Mask (CRAM)

Mnemonic

cram rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
CRAM=000

5
src

5
CRAM=00111

7
CRAM=0001000

Description

Integer register rd is set to a mask that can be used to round addresses down to a value that is
sufficiently aligned to set exact bounds for the nearest representable length of rs1.

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites

Zcheripurecap

Operation

let len = X(rs1);
X(rd) = getRepresentableAlignmentMask(len);
RETIRE_SUCCESS
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12.1.25. LC

 The RV64 encoding is intended to also allocate the encoding for LQ for RV128.

Synopsis

Load capability

Capability Pointer Mode Mnemonic

lc cd, offset(cs1)

Integer Pointer Mode Mnemonic

lc cd, offset(rs1)

Encoding

06711121415192031

opcodecdfunct3rs1/cs1!=0imm[11:0]

7
MISCMEM=0001111

5
dest

3
LC=100

5
base

12
offset[11:0]

Capability Pointer Mode Description

Load a CLEN+1 bit value from memory and writes it to cd. The capability in cs1 authorizes the
operation. The effective address of the memory access is obtained by adding the address of cs1 to
the sign-extended 12-bit offset.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Loads a CLEN+1 bit value from memory and writes it to cd. The capability authorizing the operation
is ddc. The effective address of the memory access is obtained by adding rs1 to the sign-extended
12-bit offset.

Resulting value of cd

The tag value written to cd is 0 if the tag of the memory location loaded is 0 or the authorizing
capability (ddc or cs1) does not grant C-permission.

If the authorizing capability does not grant LM-permission, and the tag of cd is 1 and cd is not
sealed, then an implicit ACPERM clearing W-permission and LM-permission is performed to obtain
the intermediate permissions on cd.

If the authorizing capability does not grant EL-permission, and the tag of cd is 1, then an implicit
ACPERM restricting the Capability Level (CL) to the level of the authorizing capability is performed.
If cd is not sealed, this implicit ACPERM also clears EL-permission to obtain the final permissions
on cd (see Table 31).


Missing LM-permission does not affect untagged values since this could result in
surprising bit patterns when copying non-capability data. Similarly, sealed
capabilities are not modified as they are not directly dereferenceable.


Missing EL-permission also affects the level of sealed capabilities since notionally
the Capability Level (CL) of a capability is not a permission but rather a data flow
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label attached to the loaded value. However, untagged values are not affected by EL-
permission.



While the implicit ACPERM introduces a dependency on the loaded data,
implementations can avoid this by deferring the actual masking of permissions until
the loaded capability is dereferenced or the metadata bits are inspected using
GCPERM or GCHI.


When sending load data to a trace interface implementations can choose whether to
trace the value before or after ACPERM has modified the data. The recommendation
is to trace the value after ACPERM.


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Exceptions

Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode

Zcherihybrid

LC Operation

TODO
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12.1.26. SC

 The RV64 encoding is intended to also allocate the encoding for SQ for RV128.

Synopsis

Store capability

Capability Pointer Mode Mnemonic

sc cs2, offset(cs1)

Integer Pointer Mode Mnemonic

sc cs2, offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1/cs1!=0cs2imm[11:5]

7
STORE=0100011

5
offset[4:0]

3
SC=100

5
base

5
src

7
offset[11:5]

Capability Pointer Mode Description

Store the CLEN+1 bit value in cs2 to memory. The capability in cs1 authorizes the operation. The
effective address of the memory access is obtained by adding the address of cs1 to the sign-
extended 12-bit offset.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Store the CLEN+1 bit value in cs2 to memory. The capability authorizing the operation is ddc. The
effective address of the memory access is obtained by adding rs1 to the sign-extended 12-bit
offset.

Tag of the written capability value

The capability written to memory has the tag set to 0 if the tag of cs2 is 0 or if the authorizing
capability (ddc or cs1) does not grant C-permission.

The stored tag is also set to zero if the authorizing capability does not have SL-permission set but
the stored data has a Capability Level (CL) of 0 (local).


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Exceptions

Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.
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CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode

Zcherihybrid

SC Operation

TODO
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12.2. RV32I/E and RV64I/E Base Integer Instruction Sets
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12.2.1. AUIPC

Synopsis

Add upper immediate to pc/pcc


CHERI extensions which use an alternative capability format may choose to redefine
the handling of the immediate operand for this instruction in Capability Pointer
Mode.

Capability Pointer Mode Mnemonic

auipc cd, imm

Integer Pointer Mode Mnemonic

auipc rd, imm

Encoding

067111231

opcodecd/rdimm[31:12]

7
AUIPC=0010111

5
dest

20
U-immediate[31:12]

Capability Pointer Mode Description

Form a 32-bit offset from the 20-bit immediate filling the lowest 12 bits with zeros. Increment the
address of the AUIPC instruction’s pcc by the 32-bit offset, then write the output capability to cd.
The tag bit of the output capability is 0 if the incremented address is outside the pcc's
Representable Range.

Integer Pointer Mode Description

Form a 32-bit offset from the immediate, filling in the lowest 12 bits with zeros, adds this offset to
the address of the AUIPC instruction, then places the result in register rd.


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode

Zcherihybrid

Operation for AUIPC

let off : xlenbits = sign_extend(imm @ 0x000);
let (representable, newCap) = setCapAddr(PCC, PC + off);
C(cd) = clearTagIf(newCap, not(representable));
RETIRE_SUCCESS
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12.2.2. BEQ, BNE, BLT[U], BGE[U]

Synopsis

Conditional branches (BEQ, BNE, BLT[U], BGE[U])

Mnemonics

beq rs1, rs2, imm
bne rs1, rs2, imm
blt rs1, rs2, imm
bge rs1, rs2, imm
bltu rs1, rs2, imm
bgeu rs1, rs2, imm

Encoding

067111214151920242531

opcodeimm[4:1|11]funct3rs1rs2imm[12|10:5]

7
BRANCH=1100011

5
offset[4:1|11]

3
BEQ=000
BNE=001
BLT=100
BGE=101
BLTU=110
BGEU=111

5
src1

5
src2

7
offset[12|10:5]

Description

Compare two integer registers rs1 and rs2 according to the indicated opcode as described in
(RISC-V, 2023). The 12-bit immediate encodes signed offsets in multiples of 2 bytes. The offset is
sign-extended and added to the address of the branch instruction to give the target address. Then
the target address is written into the address field of pcc.

Exceptions

When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Bounds violation is reported in the CAUSE field of
mtval2 or stval2:


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.

Operation

TODO
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12.2.3. JR

Expands to JALR following the expansion rule from (RISC-V, 2023).

12.2.4. JALR

Synopsis

Jump and link register

Capability Pointer Mode Mnemonic

jalr cd, cs1, offset

Integer Pointer Mode Mnemonic

jalr rd, rs1, offset

Encoding

06711121415192031

opcodecd/rdfunct3cs1/rs1imm[11:0]

7
JALR=1100111

5
dest

3
0

5
base

12
offset[11:0]

Capability Pointer Mode Description

JALR allows unconditional, indirect jumps to a target capability. The target capability is unsealed if
the offset is zero. The target address is obtained by adding the sign-extended 12-bit offset to
cs1.address, then setting the least-significant bit of the result to zero. The target capability may
have Invalid address conversion performed and is then installed in pcc. The pcc of the next
instruction following the jump is sealed and written to cd.

Integer Pointer Mode Description

JALR allows unconditional, indirect jumps to a target address. The target address is obtained by
adding the sign-extended 12-bit immediate to rs1, then setting the least-significant bit of the result
to zero. The target address is installed in the address field of the pcc which may require Invalid
address conversion. The address of the instruction following the jump is written to rd.

Exceptions

When these instructions cause CHERI exceptions, CHERI jump or branch fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval2 or stval2:

CAUSE Integer
Pointer Mode

Capability
Pointer Mode

Reason

Tag violation ✔ cs1 has tag set to 0, or has any reserved bits set

Seal violation ✔ cs1 is sealed and the immediate is not 0

Permission
violation

✔ cs1 does not grant X-permission, or the AP field could not have
been produced by ACPERM

Invalid address
violation

✔ ✔ The target address is invalid according to Invalid address
conversion

12.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 118

RISC-V Specification for CHERI Extensions | © RISC-V International



CAUSE Integer
Pointer Mode

Capability
Pointer Mode

Reason

Bounds
violation

✔ ✔ Minimum length instruction is not within the target capability’s
bounds, which will fail if cs1 has malformed bounds in
Capability Pointer Mode.


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites Capability Pointer Mode

Zcheripurecap

Prerequisites Integer Pointer Mode

Zcherihybrid

Capability Pointer Mode Operation

  let cs1_val = C(cs1);

  // Calculate new PC which may be offset from the capability address.
  let off : xlenbits = sign_extend(imm);
  let newPC = [cs1_val.address + off with 0 = bitzero]; /* clear bit zero as
for RISCV JALR */

  if not(capTaggedAndReservedValid(cs1_val)) then {
    handle_cheri_exception(CapCheckType_JBr, CapEx_TagViolation);
    RETIRE_FAIL
  } else if capIsSealed(cs1_val) & imm != zeros() then {
    handle_cheri_exception(CapCheckType_JBr, CapEx_SealViolation);
    RETIRE_FAIL
  } else if not(canX(cs1_val)) then {
    handle_cheri_exception(CapCheckType_JBr, CapEx_PermissionViolation);
    RETIRE_FAIL
  } else if not(validAddr(newPC) | capBoundsInfinite(cs1_val)) then {
    handle_cheri_exception(CapCheckType_JBr, CapEx_InvalidAddressViolation);
    RETIRE_FAIL
  } else if not(inCapBounds(cs1_val, newPC, min_instruction_bytes())) then {
    handle_cheri_exception(CapCheckType_JBr, CapEx_LengthViolation);
    RETIRE_FAIL
  } else if newPC[1] == bitone & not(extensionEnabled(Ext_Zca)) then {
    handle_mem_exception(newPC, E_Fetch_Addr_Align());
    RETIRE_FAIL
  } else {
    let (success, linkCap) = setCapAddr(PCC, nextPC); /* Note that nextPC
accounts for compressed instructions */
    assert(success, "Link cap should always be representable.");
    assert(not(capIsSealed(linkCap)), "Link cap should always be unsealed");
    C(cd) = sealCap(linkCap);
    set_next_pc(newPC);
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    // Construct the new capability pointing to the address + offset.
    let (representable, newPCC) = setCapAddr(cs1_val, newPC);
    assert(representable, "If bounds checks passed then new PCC must be
representable");
    set_next_pcc(unsealCap(newPCC));

    RETIRE_SUCCESS
  }
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12.2.5. J

Expands to JAL following the expansion rule from (RISC-V, 2023).

12.2.6. JAL

Synopsis

Jump and link

Capability Pointer Mode Mnemonic

jal cd, offset

Integer Pointer Mode Mnemonic

jal rd, offset

Encoding

06711121920213031

opcodecd/rdimm[19:12][11]imm[10:1][20]

7
JAL=1101111

5
dest

8
offset[19:12]

110
offset[20:1]

1

Capability Pointer Mode Description

JAL’s immediate encodes a signed offset in multiple of 2 bytes. The pcc is incremented by the
sign-extended offset to form the jump target capability. The target capability is written to pcc. The
pcc of the next instruction following the jump is sealed and written to cd.

Integer Pointer Mode Description

JAL’s immediate encodes a signed offset in multiple of 2 bytes. The sign-extended offset is added
to the pcc's address to form the target address which is written to the pcc's address field. The
address of the instruction following the jump is written to rd.

Exceptions

CAUSE Integer Pointer
Mode

Capability Pointer
Mode

Reason

Invalid address
violation

✔ ✔ The target address is invalid according to Invalid
address conversion

Bounds violation ✔ ✔ Minimum length instruction is not within the target
capability’s bounds.


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode

Zcherihybrid
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Capability Pointer Mode Operation

let off : xlenbits = sign_extend(imm);
let newPC = PC + off;
if not(validAddr(newPC) | capBoundsInfinite(PCC)) then {
  handle_cheri_exception(CapCheckType_JBr, CapEx_InvalidAddressViolation);
  RETIRE_FAIL
} else if not(inCapBounds(PCC, newPC, min_instruction_bytes())) then {
  handle_cheri_exception(CapCheckType_JBr, CapEx_LengthViolation);
  RETIRE_FAIL
} else if newPC[1] == bitone & not(extensionEnabled(Ext_Zca)) then {
  handle_mem_exception(newPC, E_Fetch_Addr_Align());
  RETIRE_FAIL
} else {
  let (success, linkCap) = setCapAddr(PCC, nextPC); /* Note that nextPC
accounts for compressed instructions */
  assert(success, "Link cap should always be representable.");
  assert(not(capIsSealed(linkCap)), "Link cap should always be unsealed");
  C(cd) = sealCap(linkCap);
  set_next_pc(newPC);
  RETIRE_SUCCESS
}
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12.2.7. LD

See LB.

12.2.8. LWU

See LB.

12.2.9. LW

See LB.

12.2.10. LHU

See LB.

12.2.11. LH

See LB.

12.2.12. LBU

See LB.
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12.2.13. LB

Synopsis

Load (LD, LW[U], LH[U], LB[U])

Capability Pointer Mode Mnemonics (RV64)

ld rd, offset(cs1)
lw[u] rd, offset(cs1)
lh[u] rd, offset(cs1)
lb[u] rd, offset(cs1)

Integer Pointer Mode Mnemonics (RV64)

ld rd, offset(rs1)
lw[u] rd, offset(rs1)
lh[u] rd, offset(rs1)
lb[u] rd, offset(rs1)

Capability Pointer Mode Mnemonics (RV32)

lw rd, offset(cs1)
lh[u] rd, offset(cs1)
lb[u] rd, offset(cs1)

Integer Pointer Mode Mnemonics (RV32)

lw rd, offset(rs1)
lh[u] rd, offset(rs1)
lb[u] rd, offset(rs1)

Encoding

06711121415192031

opcoderdfunct3rs1/cs1!=0imm[11:0]

7
LOAD=0000011

5
dest

3
width

LB=000
LH=001
LW=010
LBU=100
LHU=101

rv64: LWU=110
rv64: LD=011

5
base

12
offset[11:0]

Capability Pointer Mode Description

Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to the address of
cs1. The authorizing capability for the operation is cs1. A copy of the loaded value is written to rd.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Load integer data of the indicated size (byte, halfword, word, double-word) from memory. The
effective address of the load is obtained by adding the sign-extended 12-bit offset to rs1. The
authorizing capability for the operation is ddc. A copy of the loaded value is written to rd.
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Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites for Capability Pointer Mode LD

RV64, Zcheripurecap

Prerequisites for Integer Pointer Mode LD

RV64, Zcherihybrid

Prerequisites for Capability Pointer Mode LW[U], LH[U], LB[U]

Zcheripurecap, OR
Zcherihybrid

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation

TODO
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12.2.14. SD

See SB

12.2.15. SW

See SB

12.2.16. SH

See SB

12.2. RV32I/E and RV64I/E Base Integer Instruction Sets | Page 126

RISC-V Specification for CHERI Extensions | © RISC-V International



12.2.17. SB

Synopsis

Stores (SD, SW, SH, SB)

Capability Pointer Mode Mnemonics (RV64)

sd rs2, offset(cs1)
sw rs2, offset(cs1)
sh rs2, offset(cs1)
sb rs2, offset(cs1)

Integer Pointer Mode Mnemonics (RV64)

sd rs2, offset(rs1)
sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Capability Pointer Mode Mnemonics (RV32)

sw rs2, offset(cs1)
sh rs2, offset(cs1)
sb rs2, offset(cs1)

Integer Pointer Mode Mnemonics (RV32)

sw rs2, offset(rs1)
sh rs2, offset(rs1)
sb rs2, offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1/cs1!=0rs2imm[11:5]

7
STORE=0100011

5
offset[4:0]

3
SB=000
SH=001
SW=010

rv64: SD=011

5
base

5
src

7
offset[11:5]

Capability Pointer Mode Description

Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The effective
address of the store is obtained by adding the sign-extended 12-bit offset to the address of cs1.
The authorizing capability for the operation is cs1. A copy of rs2 is written to memory at the
location indicated by the effective address and the tag bit of each block of memory naturally
aligned to CLEN/8 is cleared.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Store integer data of the indicated size (byte, halfword, word, double-word) to memory. The effective
address of the store is obtained by adding the sign-extended 12-bit offset to rs1. The authorizing
capability for the operation is ddc. A copy of rs2 is written to memory at the location indicated by
the effective address and the tag bit of each block of memory naturally aligned to CLEN/8 is
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cleared.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites for Capability Pointer Mode SD

RV64, Zcheripurecap

Prerequisites for Integer Pointer Mode SD

RV64, Zcherihybrid

Prerequisites for Capability Pointer Mode SW, SH, SB

Zcheripurecap

Prerequisites for Integer Pointer Mode SW, SH, SB

Zcherihybrid

Operation

TBD
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12.2.18. SRET

See MRET.

12.2.19. MRET

Synopsis

Trap Return (MRET, SRET)

Mnemonics

mret
sret

Encoding

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM=111011

5
0

3
PRIV=0

5
0

12
MRET=001100000010
SRET=000100000010

Description

Return from machine mode (MRET) or supervisor mode (SRET) trap handler as defined by (RISC-V,
2023). MRET unseals mepcc and writes the result into pcc. SRET unseals sepcc and writes the
result into pcc.

Exceptions

CHERI fault exceptions occur when pcc does not grant ASR-permission because MRET and SRET
require access to privileged CSRs. When that exception occurs, CHERI instruction fetch fault is
reported in the TYPE field and the Permission violation code is reported in the CAUSE field of mtval
or stval.

Operation

TBD
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12.2.20. DRET

Synopsis

Debug Return (DRET)

Mnemonic

dret

Encoding

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM=111011

5
0

3
PRIV=0

5
0

12
DRET=011110110010

Description

DRET return from debug mode. It unseals dpcc and writes the result into pcc.



The DRET instruction is the recommended way to exit debug mode. However, it is a
pseudoinstruction to return that technically does not execute from the program
buffer or memory. It currently does not require the pcc to grant ASR-permission so it
never excepts.

Prerequisites

Sdext

Operation

TBD
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12.3. "A" Standard Extension for Atomic Instructions
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12.3.1. AMO<OP>.W

See AMO<OP>.D.
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12.3.2. AMO<OP>.D

Synopsis

Atomic Operations (AMO<OP>.W, AMO<OP>.D), 32-bit encodings

Capability Pointer Mode Mnemonics (RV64)

amo<op>.[w|d] rd, rs2, 0(cs1)

Capability Pointer Mode Mnemonics (RV32)

amo<op>.w rd, rs2, 0(cs1)

Integer Pointer Mode Mnemonics (RV64)

amo<op>.[w|d] rd, rs2, 0(rs1)

Integer Pointer Mode Mnemonics (RV32)

amo<op>.w rd, rs2, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1/cs1!=0rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
.W=010

rv64: .D=011

5
base

5
src

1
rl

1
aq

5
op

SWAP=00001
ADD=00000
XOR=00100
AND=01100
OR=01000

MIN=10000
MAX=10100
MINU=11000
MAXU=11100

Capability Pointer Mode Description

Standard atomic instructions, authorized by the capability in cs1.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Standard atomic instructions, authorized by the capability in ddc.

Permissions

Requires R-permission and W-permission in the authorizing capability.

Requires all bytes of the access to be in capability bounds.

Exceptions

All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a store/AMO
access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval2 or stval2:
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CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission or W-permission, or the AP field could
not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability has
malformed bounds

Prerequisites for Capability Pointer Mode AMO<OP>.W, AMO<OP>.D

Zcheripurecap, and A

Prerequisites for Integer Pointer Mode AMO<OP>.W, AMO<OP>.D

Zcherihybrid, and A

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation

TODO
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12.3.3. AMOSWAP.C

Synopsis

Atomic Operation (AMOSWAP.C), 32-bit encoding

Capability Pointer Mode Mnemonic

amoswap.c cd, cs2, 0(cs1)

Integer Pointer Mode Mnemonic

amoswap.c cd, cs2, 0(rs1)

Encoding

0671112141519202425262731

opcodecdfunct3cs1!=0cs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

.C=100

5
base

5
src

1
rl

1
aq

5
op

SWAP=00001

Capability Pointer Mode Description

Atomic swap of capability type, authorized by the capability in cs1.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Atomic swap of capability type, authorized by the capability in ddc.


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Permissions

Requires the authorizing capability to be tagged and not sealed.

Requires R-permission and W-permission in the authorizing capability.

If C-permission is not granted then store the memory tag as zero, and load cd.tag as zero.

If the authorizing capability does not grant LM-permission, and the tag of cd is 1 and cd is not
sealed, then an implicit ACPERM clearing W-permission and LM-permission is performed to obtain
the intermediate permissions on cd (see LC).

If the authorizing capability does not grant EL-permission, and the tag of cd is 1, then an implicit
ACPERM restricting the Capability Level (CL) to the level of the authorizing capability is performed.
If cd is not sealed, this implicit ACPERM also clears EL-permission to obtain the final permissions
on cd (see Table 31 and LC).

The stored tag is also set to zero if the authorizing capability does not have SL-permission set but
the stored data has a Capability Level (CL) of 0 (see SC).

Requires all bytes of the access to be in capability bounds.
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Exceptions

All misaligned atomics cause a store/AMO address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a store/AMO
access fault exception.

When these instructions cause CHERI exceptions, CHERI data fault is reported in the TYPE field
and the following codes may be reported in the CAUSE field of mtval2 or stval2:
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CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission or W-permission, or the AP field could
not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability has
malformed bounds

Exceptions

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites for Capability Pointer Mode AMOSWAP.C

Zcheripurecap, and A

Prerequisites for Integer Pointer Mode AMOSWAP.C

Zcherihybrid, and A

Operation

TODO
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12.3.4. LR.D

See LR.B.

12.3.5. LR.W

See LR.B.

12.3.6. LR.H

See LR.B.
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12.3.7. LR.B

Synopsis

Load Reserved (LR.D, LR.W, LR.H, LR.B), 32-bit encodings

Capability Pointer Mode Mnemonics (RV64)

lr.[d|w|h|b] rd, 0(cs1)

Capability Pointer Mode Mnemonics (RV32)

lr.[w|h|b] rd, 0(cs1)

Integer Pointer Mode Mnemonics (RV64)

lr.[d|w|h|b] rd, 0(rs1)

Integer Pointer Mode Mnemonics (RV32)

lr.[w|h|b] rd, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1/cs1!=0rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
.B=000
.H=001
.W=010

rv64: .D=011

5
base

5
LR.*=00000

1
rl

1
aq

5
op

LR.*=00010

Capability Pointer Mode Description

Load reserved instructions, authorized by the capability in cs1.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Load reserved instructions, authorized by the capability in ddc.

Exceptions

All misaligned load reservations cause a load address misaligned exception to allow software
emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a load
access fault exception.

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM
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CAUSE Reason

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites for Capability Pointer Mode LR.D

RV64, Zcheripurecap, and A

Prerequisites for Capability Pointer Mode LR.W

Zcheripurecap, and A

Prerequisites for Capability Pointer Mode LR.H, LR.B

Zabhlrsc, and Zcheripurecap

Prerequisites for LR.D

RV64, Zcherihybrid, and A

Prerequisites for LR.W

Zcherihybrid, and A

Prerequisites for LR.H, LR.B

Zabhlrsc, Zcherihybrid

Operation

TBD
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12.3.8. LR.C

Synopsis

Load Reserved Capability (LR.C), 32-bit encodings

Capability Pointer Mode Mnemonic

lr.c cd, 0(cs1)

Integer Pointer Mode Mnemonic

lr.c cd, 0(rs1)

Encoding

0671112141519202425262731

opcodecdfunct3rs1/cs1!=0funct5rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
.C=100

5
base

5
LR.*=00000

1
rl

1
aq

5
op

LR.*=00010

Capability Pointer Mode Description

Load reserved instructions, authorized by the capability in cs1. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-
V, 2023)).


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Load reserved instructions, authorized by the capability in ddc. All misaligned load reservations
cause a load address misaligned exception to allow software emulation (Zam extension, see (RISC-
V, 2023)).

Resulting value of cd

The tag value written to cd is 0 if the tag of the memory location loaded is 0 or the authorizing
capability (ddc or cs1) does not grant C-permission.

If the authorizing capability does not grant LM-permission, and the tag of cd is 1 and cd is not
sealed, then an implicit ACPERM clearing W-permission and LM-permission is performed to obtain
the intermediate permissions on cd.

If the authorizing capability does not grant EL-permission, and the tag of cd is 1, then an implicit
ACPERM restricting the Capability Level (CL) to the level of the authorizing capability is performed.
If cd is not sealed, this implicit ACPERM also clears EL-permission to obtain the final permissions
on cd (see Table 31).


Missing LM-permission does not affect untagged values since this could result in
surprising bit patterns when copying non-capability data. Similarly, sealed
capabilities are not modified as they are not directly dereferenceable.


Missing EL-permission also affects the level of sealed capabilities since notionally
the Capability Level (CL) of a capability is not a permission but rather a data flow
label attached to the loaded value. However, untagged values are not affected by EL-
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permission.



While the implicit ACPERM introduces a dependency on the loaded data,
implementations can avoid this by deferring the actual masking of permissions until
the loaded capability is dereferenced or the metadata bits are inspected using
GCPERM or GCHI.


When sending load data to a trace interface implementations can choose whether to
trace the value before or after ACPERM has modified the data. The recommendation
is to trace the value after ACPERM.


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites for Capability Pointer Mode

Zcheripurecap, and A

Prerequisites for Integer Pointer Mode

Zcherihybrid, and A

Operation

TBD

12.3. "A" Standard Extension for Atomic Instructions | Page 142

RISC-V Specification for CHERI Extensions | © RISC-V International



12.3.9. SC.D

See SC.B.

12.3.10. SC.W

See SC.B.

12.3.11. SC.H

See SC.B.
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12.3.12. SC.B

Synopsis

Store Conditional (SC.D, SC.W, SC.H, SC.B), 32-bit encodings

Capability Pointer Mode Mnemonics (RV64)

sc.[d|w|h|b] rd, rs2, 0(cs1)

Capability Pointer Mode Mnemonics (RV32)

sc.[w|h|b] rd, rs2, 0(cs1)

Integer Pointer Mode Mnemonics (RV64)

sc.[d|w|h|b] rd, rs2, 0(rs1)

Integer Pointer Mode Mnemonics (RV32)

sc.[w|h|b] rd, rs2, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1/cs1!=0rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

.B=000
.H=001
.W=010

rv64: .D=011

5
base

5
src

1
rl

1
aq

5
op

SC=00011

Capability Pointer Mode Description

Store conditional instructions, authorized by the capability in cs1.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Store conditional instructions, authorized by the capability in ddc.

Exceptions

All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM
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CAUSE Reason

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites for Capability Pointer Mode SC.D

RV64, and Zcheripurecap, and A

Prerequisites for Integer Pointer Mode SC.D

RV64, and Zcherihybrid, and A

Prerequisites for Capability Pointer Mode SC.W

Zcheripurecap, and A

Prerequisites for Integer Pointer Mode SC.W

Zcherihybrid, and A

Prerequisites for Capability Pointer Mode SC.H, SC.B

Zcheripurecap, and Zabhlrsc

Prerequisites for Integer Pointer Mode SC.H, SC.B

Zcherihybrid, and Zabhlrsc

Operation

TBD
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12.3.13. SC.C

Synopsis

Store Conditional (SC.C), 32-bit encoding

Capability Pointer Mode Mnemonic

sc.c rd, cs2, 0(cs1)

Integer Pointer Mode Mnemonic

sc.c rd, cs2, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1/cs1!=0cs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

.C=100

5
base

5
src

1
rl

1
aq

5
op

SC=00011

Capability Pointer Mode Description

Store conditional instructions, authorized by the capability in cs1. All misaligned store conditionals
cause a store/AMO address misaligned exception to allow software emulation (Zam extension, see
(RISC-V, 2023)).


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Store conditional instructions, authorized by the capability in ddc. All misaligned store conditionals
cause a store/AMO address misaligned exception to allow software emulation (Zam extension, see
(RISC-V, 2023)).

Tag of the written capability value

The capability written to memory has the tag set to 0 if the tag of cs2 is 0 or if the authorizing
capability (ddc or cs1) does not grant C-permission.

The stored tag is also set to zero if the authorizing capability does not have SL-permission set but
the stored data has a Capability Level (CL) of 0 (local).


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Exceptions

All misaligned store conditionals cause a store/AMO address misaligned exception to allow
software emulation (if the Zam extension is supported, see (RISC-V, 2023)), otherwise they take a
store/AMO access fault exception.

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.
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CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites for Capability Pointer Mode

Zcheripurecap, and A

Prerequisites for Integer Pointer Mode

Zcherihybrid, and A

Operation

TBD
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12.4. "Zicsr", Control and Status Register (CSR) Instructions
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12.4.1. CSRRW

Synopsis

CSR access (CSRRW) 32-bit encodings

Mnemonic for accessing capability CSRs in Capability Pointer Mode

csrrw cd, csr, cs1

Mnemonic for accessing XLEN-wide CSRs or extended CSRs in Integer Pointer Mode

csrrw rd, csr, rs1

Encoding

06711121415192031

opcoderd/cdfunct3rs1/cs1csr

7
SYSTEM=1110011

5
dest

3
CSRRW=001

5
source

12
source/dest CSR

Description

This is a standard RISC-V CSR instructions with extended functionality for accessing CLEN-wide
CSRs, such as mtvec/mtvecc.

See Table 48 for a list of CLEN-wide CSRs and Table 49 for the action taken on writing each one.

CSRRW writes cs1 to extended CSRs in Capability Pointer Mode, and reads a full capability into cd.

CSRRW writes rs1 to extended CSRs in Integer Pointer Mode, and reads the address field into rd.

If cd is c0 (or rd is x0), then the instruction shall not read the CSR and shall not cause any of the
side effects that might occur on a CSR read.

The assembler pseudoinstruction to write a capability CSR in Capability Pointer Mode, csrw csr,
cs1, is encoded as csrrw c0, csr, cs1.

Access to XLEN-wide CSRs from other extensions is as specified by RISC-V.


When writing cs1, if the bounds are malformed, any reserved bits are set, or the
permission could not have been produced by ACPERM then clear the tag before
writing to the CSR.

Permissions

Accessing privileged CSRs require ASR-permission, including existing RISC-V CSRs, as described
in Section 4.5.1. The list of privileged and unprivileged CSRs is shown in (RISC-V, 2023).

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode

Zcherihybrid

Operation
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TBD
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12.4.2. CSRRWI

See CSRRCI.

12.4.3. CSRRS

See CSRRCI.

12.4.4. CSRRSI

See CSRRCI.

12.4.5. CSRRC

See CSRRCI.
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12.4.6. CSRRCI

Synopsis

CSR access (CSRRWI, CSRRS, CSRRSI, CSRRC, CSRRCI) 32-bit encodings

Mnemonics for accessing capability CSRs in Capability Pointer Mode

csrrs cd, csr, rs1
csrrc cd, csr, rs1
csrrwi cd, csr, imm
csrrsi cd, csr, imm
csrrci cd, csr, imm

Mnemonics for accessing XLEN-wide CSRs or extended CSRs in Integer Pointer Mode

csrrs rd, csr, rs1
csrrc rd, csr, rs1
csrrwi rd, csr, imm
csrrsi rd, csr, imm
csrrci rd, csr, imm

Encoding

06711121415192031

opcoderd/cdfunct3rs1/uimmcsr

7
SYSTEM=1110011

5
dest

3
CSRRS=010
CSRRC=011

CSRRWI=101
CSRRSI=110
CSRRCI=111

5
source
source

uimm[4:0]
uimm[4:0]
uimm[4:0]

12
source/dest CSR

Description

These are standard RISC-V CSR instructions with extended functionality for accessing capability
CSRs, such as mtvec/mtvecc.

For capability CSRs, the full capability is read into cd in Capability Pointer Mode. In Integer Pointer
Mode, the address field is instead read into rd.

Unlike CSRRW, these instructions only update the address field and the tag as defined in Table 49
when writing capability CSRs regardless of the execution mode. The final address to write to the
capability CSR is determined as defined by RISC-V for these instructions.

See Table 48 for a list of capability CSRs and Table 49 for the action taken on writing an XLEN-
wide value to each one.

If cd is c0 (or rd is x0), then CSRRWI shall not read the CSR and and shall not cause any of the side
effects that might occur on a CSR read. If rs1 is x0 for CSRRS and CSRRC, or imm is 0 for CSRRSI
and CSRRCI, then the instruction will not write to the CSR at all, and so shall not cause any of the
side effects that might otherwise occur on a CSR write.

The assembler pseudoinstruction to read a capability CSR in Capability Mode, csrr cd, csr, is
encoded as csrrs cd, csr, x0.

Access to XLEN-wide CSRs is as specified by RISC-V.

 If the CSR accessed is a capability, and rs1 is x0 for CSRRS and CSRRC, or imm is 0
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for CSRRSI and CSRRCI, then the CSR is not written so no representability check is
needed in this case.

Permissions

Accessing privileged CSRs requires ASR-permission, including existing RISC-V CSRs, as described
in Section 4.5.1. The list of privileged and unprivileged CSRs is shown in (RISC-V, 2023).

Prerequisites for Capability Pointer Mode

Zcheripurecap

Prerequisites for Integer Pointer Mode

Zcherihybrid

Operation

TBD
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12.5. "Zfh", "Zfhmin", "F" and "D" Standard Extension for Floating-Point
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12.5.1. FLD

See FLH.

12.5.2. FLW

See FLH.
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12.5.3. FLH

Synopsis

Floating point loads (FLD, FLW, FLH), 32-bit encodings

Capability Pointer Mode Mnemonics

fld frd, offset(cs1)
flw frd, offset(cs1)
flh frd, offset(cs1)

Integer Pointer Mode Mnemonics

fld rd, offset(rs1)
flw rd, offset(rs1)
flh rd, offset(rs1)

Encoding

06711121415192031

opcoderdwidthrs1/cs1!=0imm[11:0]

7
LOAD-FP=0000111

5
dest

3
FLD=011
FLW=010
FLH=001

5
base

12
offset[11:0]

Capability Pointer Mode Description

Standard floating point load instructions, authorized by the capability in cs1.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Standard floating point load instructions, authorized by the capability in ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
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RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites for Capability Pointer Mode FLD

Zcheripurecap, and D

Prerequisites for Integer Pointer Mode FLD

Zcherihybrid, and D

Prerequisites for Capability Pointer Mode FLW

Zcheripurecap, and F

Prerequisites for Integer Pointer Mode FLW

Zcherihybrid, and F

Prerequisites for Capability Pointer Mode FLH

Zcheripurecap, and Zfhmin or Zfh

Prerequisites for Integer Pointer Mode FLH

Zcherihybrid, and Zfhmin or Zfh

Operation

TODO
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12.5.4. FSD

See FSH.

12.5.5. FSW

See FSH.
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12.5.6. FSH

Synopsis

Floating point stores (FSD, FSW, FSH), 32-bit encodings

Capability Pointer Mode Mnemonics

fsd fs2, offset(cs1)
fsw fs2, offset(cs1)
fsh fs2, offset(cs1)

Integer Pointer Mode Mnemonics

fsd fs2, offset(rs1)
fsw fs2, offset(rs1)
fsh fs2, offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]widthrs1/cs1!=0rs2imm[11:5]

7
STORE-FP=0100111

5
offset[4:0]

3
FSD=011
FSW=010
FSH=001

5
base

5
src

7
offset[11:5]

Capability Pointer Mode Description

Standard floating point store instructions, authorized by the capability in cs1.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Standard floating point store instructions, authorized by the capability in ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
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normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites for Capability Pointer Mode FSD

Zcheripurecap, and D

Prerequisites for Integer Pointer Mode FSD

Zcherihybrid, and D

Prerequisites for Capability Pointer Mode FSW

Zcheripurecap, and F

Prerequisites for Integer Pointer Mode FSW

Zcherihybrid, and F

Prerequisites for Capability Pointer Mode FSH

Zcheripurecap, and Zfh or Zfhmin

Prerequisites for Integer Pointer Mode FSH

Zcherihybrid, and Zfh or Zfhmin

Operation

TBD
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12.6. "C" Standard Extension for Compressed Instructions

One group of 16-bit encodings are remapped to different instructions dependent upon the CHERI
execution mode, MXLEN and which extensions are supported.

 Zcf and Zilsd are incompatible

 Zcd and Zcmp/Zcmt incompatible

12.6.1. RV32

Table 39. 16-bit instruction remapping in Integer Pointer Mode

Encoding Supported Extensions

[15:13] [1:0] Zca Zcf Zcd Zcmp/ Zcmt Zilsd

111 00 N/A C.FSW N/A N/A C.SD

011 00 N/A C.FLW N/A N/A C.LD

111 10 N/A C.FSWSP N/A N/A C.SDSP

011 10 N/A C.FLWSP N/A N/A C.LDSP

101 00 N/A N/A C.FSD reserved1 N/A

001 00 N/A N/A C.FLD reserved1 N/A

101 10 N/A N/A C.FSDSP Zcmp/Zcmt N/A

001 10 N/A N/A C.FLDSP reserved1 N/A

1 reserved for future standard Zcm extensions

Table 40. 16-bit instruction remapping in Capability Pointer Mode

Encoding Supported Extensions

[15:13] [1:0] Zca Zcf Zcd Zcmp/ Zcmt Zilsd

111 00 C.SC

011 00 C.LC

111 10 C.SCSP

011 10 C.LCSP

101 00 N/A N/A C.FSD reserved1 N/A

001 00 N/A N/A C.FLD reserved1 N/A

101 10 N/A N/A C.FSDSP Zcmp/Zcmt N/A

001 10 N/A N/A C.FLDSP reserved1 N/A

1 reserved for future standard Zcm extensions
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12.6.2. RV64

Table 41. 16-bit instruction remapping in Integer Pointer Mode

Encoding Supported Extensions

[15:13] [1:0] Zca Zcf Zcd Zcmp/ Zcmt Zilsd

111 00 C.SD N/A N/A N/A N/A

011 00 C.LD N/A N/A N/A N/A

111 10 C.SDSP N/A N/A N/A N/A

011 10 C.LDSP N/A N/A N/A N/A

101 00 N/A N/A C.FSD reserved1 N/A

001 00 N/A N/A C.FLD reserved1 N/A

101 10 N/A N/A C.FSDSP Zcmp/Zcmt N/A

001 10 N/A N/A C.FLDSP reserved1 N/A

Table 42. 16-bit instruction remapping in Capability Pointer Mode

Encoding Supported Extensions

[15:13] [1:0] Zca Zcf Zcd Zcmp/ Zcmt Zilsd

111 00 C.SD N/A N/A N/A N/A

011 00 C.LD N/A N/A N/A N/A

111 10 C.SDSP N/A N/A N/A N/A

011 10 C.LDSP N/A N/A N/A N/A

101 00 C.SC

001 00 C.LC

101 10 C.SCSP

001 10 C.LCSP
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12.6.3. C.BEQZ, C.BNEZ

Synopsis

Conditional branches (C.BEQZ, C.BNEZ), 16-bit encodings

Mnemonics

c.beqz rs1', offset
c.bnez rs1', offset

Expansions

beq rs1′, x0, offset
bne rs1′, x0, offset

Encoding

01267910121315

opimmrs1'immfunct3

2
C1
C1

5
offset[7:6|2:1|5]
offset[7:6|2:1|5]

3
src
src

3
offset[8|4:3]
offset[8|4:3]

3
C.BEQZ
C.BNEZ

Exceptions

When the target address is not within the pcc's bounds, and the branch is taken, a CHERI jump or
branch fault is reported in the TYPE field and Bounds violation is reported in the CAUSE field of
mtval2 or stval2:


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites

C or Zca

Operation (after expansion to 32-bit encodings)

See Conditional branches (BEQ, BNE, BLT[U], BGE[U])
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12.6.4. C.MV

Synopsis

Capability move (C.MV), 16-bit encoding

Capability Pointer Mode Mnemonic

c.mv cd, cs2

Capability Pointer Mode Expansion

cmv cd, cs2

Suggested assembly syntax

mv rd, rs2
mv cd, cs2

 the suggested assembly syntax distinguishes from integer mv by operand type.

Integer Pointer Mode Mnemonic

c.mv rd, rs2

Integer Pointer Mode Expansion

add rd, x0, rs2

Encoding

01267111215

oprs2/cs2rd/cdfunct4

2
C2=10

5
src!=0

5
dest!=0

4
C.MV=1000

Capability Pointer Mode Description

Capability register cd is replaced with the contents of cs2.

Integer Pointer Mode Description

Standard RISC-V C.MV instruction.


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid

Capability Pointer Mode Operation (after expansion to 32-bit encodings)

See CMV
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12.6.5. C.ADDI16SP

Synopsis

Stack pointer increment in blocks of 16 (C.ADDI16SP), 16-bit encodings

Capability Pointer Mode Mnemonic

c.addi16sp imm

Capability Pointer Mode Expansion

cadd csp, csp, imm

Integer Pointer Mode Mnemonic

c.addi16sp imm

Integer Pointer Mode Expansion

add sp, sp, imm

Encoding

0126711121315

opnzimm[4|6|8:7|5]rd/rs1nzimm[9]funct3

2
C1=01

5
offset[4|6|8:7|5]

5
2

1
[9]

3
C.ADDI16SP=011

Capability Pointer Mode Description

Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (csp=c2), where
the immediate is scaled to represent multiples of 16 in the range (-512,496). Clear the tag if the
resulting capability is unrepresentable or csp is sealed.

Integer Pointer Mode Description

Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where the
immediate is scaled to represent multiples of 16 in the range (-512,496).

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid

Capability Pointer Mode Operation

execute(CADDI(sp, sp, sign_extend(nzimm)))

12.6. "C" Standard Extension for Compressed Instructions | Page 165

RISC-V Specification for CHERI Extensions | © RISC-V International



12.6.6. C.ADDI4SPN

Synopsis

Stack pointer increment in blocks of 4 (C.ADDI4SPN), 16-bit encoding

Capability Pointer Mode Mnemonic

c.addi4spn cd', uimm

Capability Pointer Mode Expansion

cadd cd', csp, uimm

Integer Pointer Mode Mnemonic

c.addi4spn rd', uimm

Integer Pointer Mode Expansion

add rd', sp, uimm

Encoding

01245121315

oprd'nzimmfunct3

2
C0=00

3
dest

8
uimm[5:4|9:6|2|3]!=0

3
C.ADDI4SPN=000

Capability Pointer Mode Description

Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, csp, and writes the
result to cd'. This instruction is used to generate pointers to stack-allocated variables. Clear the tag
if the resulting capability is unrepresentable or csp is sealed.

Integer Pointer Mode Description

Add a zero-extended non-zero immediate, scaled by 4, to the stack pointer, sp, and writes the result
to rd'. This instruction is used to generate pointers to stack-allocated variables.

Prerequisites for C.ADDI4SPN

C or Zca, Zcheripurecap

Prerequisites for C.ADDI4SPN

C or Zca, Zcherihybrid

Capability Pointer Mode Operation

let cd = creg2reg_idx(cdc) in
execute(CADDI(cd, sp, zero_extend(nzuimm)))
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12.6.7. C.JALR

Synopsis

Jump register with link, 16-bit encodings

Capability Pointer Mode Mnemonic

c.jalr c1, cs1

Capability Pointer Mode Expansion

jalr c1, 0(cs1)

Integer Pointer Mode Mnemonic

c.jalr x1, rs1

Integer Pointer Mode Expansion

jalr x1, 0(rs1)

Encoding

01267111215

opfunct5cs1/rs1funct4

2
C2=10

5
C.JALR=00000

5
src!=0

4
C.JALR=1001

Capability Pointer Mode Description

See JALR for execution of the expanded instruction as shown above. Note that the offset is zero in
the expansion.

Integer Pointer Mode Description

See JALR for execution of the expanded instruction as shown above. Note that the offset is zero in
the expansion.

Exceptions

See JALR


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)

See JALR
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12.6.8. C.JR

Synopsis

Jump register without link, 16-bit encodings

Capability Pointer Mode Mnemonic

c.jr cs1

Capability Pointer Mode Expansion

jalr c0, 0(cs1)

Integer Pointer Mode Mnemonic

c.jr rs1

Integer Pointer Mode Expansion

jalr x0, 0(rs1)

Encoding

01267111215

opfunct5cs1/rs1funct4

2
C2=10

5
C.JR=00000

5
src!=0

4
C.JR=1000

Capability Pointer Mode Description

See JALR for execution of the expanded instruction as shown above. Note that the offset is zero in
the expansion.

Integer Pointer Mode Description

See JALR for execution of the expanded instruction as shown above. Note that the offset is zero in
the expansion.

Exceptions

See JALR


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)

See JALR
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12.6.9. C.JAL

Synopsis

Jump with link, 16-bit encodings

Capability Pointer Mode Mnemonic (RV32)

c.jal c1, offset

Capability Pointer Mode Expansion (RV32)

jal c1, offset

Integer Pointer Mode Mnemonic (RV32)

c.jal x1, offset

Integer Pointer Mode Expansion (RV32)

jal x1, offset

Encoding (RV32)

012121315

opimmfunct3

2
C1=01

11
offset[11|4|9:8|10|6|7|3:1|5]

3
int: C.JAL=001

Capability Pointer Mode Description

Link the next linear pcc to cd and seal. Jump to pcc.address+offset.

Integer Pointer Mode Description

Set the next PC and link to rd according to the standard JAL definition.

Exceptions

See JAL


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)

See JAL
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12.6.10. C.J

Synopsis

Jump without link, 16-bit encodings

Mnemonic

c.j offset

Capability Pointer Mode Expansion

jal c0, offset

Integer Pointer Mode Expansion

jal x0, offset

Encoding

012121315

opimmfunct3

2
C1=01

11
offset[11|4|9:8|10|6|7|3:1|5]

3
C.J=101

Description

Set the next PC following the standard JAL definition.

There is no difference in Capability Pointer Mode or Integer Pointer Mode execution for
this instruction.

Exceptions

See JAL


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)

See JAL
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12.6.11. C.LD

See C.LW.
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12.6.12. C.LW

Synopsis

Load (C.LD, C.LW), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)

c.ld rd', offset(cs1')
c.lw rd', offset(cs1')

Capability Pointer Mode Expansions (RV64)

ld rd', offset(cs1')
lw rd', offset(cs1')

Integer Pointer Mode Mnemonics (RV64)

c.ld rd', offset(rs1')
c.lw rd', offset(rs1')

Integer Pointer Mode Expansions (RV64)

ld rd', offset(rs1')
lw rd', offset(rs1')

Capability Pointer Mode Mnemonic (RV32)

c.lw rd', offset(cs1')

Capability Pointer Mode Expansion (RV32)

lw rd', offset(cs1')

Integer Pointer Mode Mnemonic (RV32)

c.lw rd', offset(rs1')

Integer Pointer Mode Expansion (RV32)

lw rd', offset(rs1')

Encoding

0124567910121315

oprd'immrs1'/cs1'immfunct3

2
C0=00

3
dest

2
offset[2|6]
offset[7:6]

3
base

3
offset[5:3]

3
C.LW=010

rv64: C.LD=011

Capability Pointer Mode Description

Standard load instructions, authorized by the capability in cs1.

Integer Pointer Mode Description

Standard load instructions, authorized by the capability in ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.
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CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites for Capability Pointer Mode C.LD

RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.LD

RV64, C or Zca, Zcherihybrid

Prerequisites Capability Pointer Mode C.LW

C or Zca, Zcheripurecap

Prerequisites Integer Pointer Mode C.LW

C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)

See LD, LW
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12.6.13. C.LWSP

See C.LDSP.
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12.6.14. C.LDSP

Synopsis

Load (C.LWSP, C.LDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)

c.ld/c.lw rd, offset(csp)

Capability Pointer Mode Expansions (RV64)

ld/lw rd, offset(csp)

Integer Pointer Mode Mnemonics (RV64)

c.ld/c.lw rd, offset(sp)

Integer Pointer Mode Expansions (RV64)

ld/lw rd, offset(sp)

Capability Pointer Mode Mnemonic (RV32)

c.lw rd, offset(csp)

Capability Pointer Mode Expansion (RV32)

lw rd, offset(csp)

Integer Pointer Mode Mnemonic (RV32)

c.lw rd, offset(sp)

Integer Pointer Mode Expansion (RV32)

lw rd, offset(sp)

Encoding

0126711121315

opimmrdimmfunct3

2
C2=10

5
offset[4:2|7:6]
offset[4:3|8:6]

5
dest!=0

1
[5]

3
C.LWSP=010

rv64: C.LDSP=011

Capability Pointer Mode Description

Standard stack pointer relative load instructions, authorized by the capability in csp.

Integer Pointer Mode Description

Standard stack pointer relative load instructions, authorized by the capability in ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed
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CAUSE Reason

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites for Capability Pointer Mode C.LDSP

RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.LDSP

RV64, and C or Zca, Zcherihybrid

Prerequisites for Capability Pointer Mode C.LWSP

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.LWSP

C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)

See LW, LD
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12.6.15. C.FLW

See C.FLWSP.

12.6.16. C.FLWSP

Synopsis

Floating point load (C.FLW, C.FLWSP), 16-bit encodings

Integer Pointer Mode Mnemonics (RV32)

c.flw rd', offset(rs1'/sp)

Integer Pointer Mode Expansions (RV32)

flw rd', offset(rs1'/sp)

Encoding (RV32)

0124567910121315

oprd'immrs1'immfunct3

2
C0=00

3
dest

2
offset[2|6]

3
base

3
offset[5:3]

3
int rv32: C.FLW=011

0126711121315

opuimmrduimm[5]funct3

2
C2=10

5
offset[4:2|7:6]

5
src

1
offset[5]

3
int rv32: C.FLWSP=011

Integer Pointer Mode Description

Standard floating point load instructions, authorized by the capability in ddc.


These instructions are available in RV32 Integer Pointer Mode only. In Capability
Pointer Mode they are remapped to C.LC/C.LCSP.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
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RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, and Zcf or F

Operation (after expansion to 32-bit encodings)

See FLW
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12.6.17. C.FLD

See C.FLDSP

12.6.18. C.FLDSP

Synopsis

Double precision floating point loads (C.FLD, C.FLDSP), 16-bit encodings

Capability Pointer Mode Mnemonic (RV32)

c.fld frd', offset(cs1'/csp)

Capability Pointer Mode Expansion (RV32)

fld frd', offset(csp)

Integer Pointer Mode Mnemonic

c.fld fs2, offset(rs1'/sp)

Integer Pointer Mode Expansion

fld fs2, offset(rs1'/sp)

Encoding

0124567910121315

oprd`immrs1`/cs1`immfunct3

2
C0=00

3
dest

2
offset[7:6]

3
base

3
offset[5:3]

3
int C.FLD=001

cap rv32: C.FLD=001

01267121315

oprs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]

3
int: C.FLDSP=001

cap rv32: C.FLDSP=001

Integer Pointer Mode Description

Standard floating point stack pointer relative load instructions, authorized by the capability in ddc.


These instructions are available in RV64 Integer Pointer Mode only. In RV64
Capability Pointer Mode they are remapped to C.LC/C.LCSP.


These encodings may be remapped by future code-size Zcm standard extensions,
similar to Zcmp and Zcmt. The rule is that in RV64 Capability Pointer Mode they are
always remapped to C.SC/C.SCSP.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set
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CAUSE Reason

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites for Capability Pointer Mode (RV32 only)

Zcheripurecap, C and D; or
Zcheripurecap, Zca and Zcd

Prerequisites for Integer Pointer Mode

Zcherihybrid, C and D; or
Zcherihybrid, Zca and Zcd

Operation (after expansion to 32-bit encodings)

See FLD
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12.6.19. C.LC

see C.LCSP.

12.6.20. C.LCSP

Synopsis

Capability loads (C.LC, C.LCSP), 16-bit encodings

 These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonics

c.lc cd', offset(cs1')
c.lc cd', offset(csp)

Capability Pointer Mode Expansions

lc cd', offset(cs1')
lc cd', offset(csp)

Encoding

0126711121315

opimmcd!=0immfunct3

2
C2=10

5
offset[4:3|8:6]
offset[4|9:6]

5
dest

1
[5]

3
cap rv32: C.LCSP=011
cap rv64: C.LCSP=001

0124567910121315

oprd'immcs1'immfunct3

2
C0=00

3
dest

2
offset[7:6]

3
base

3
offset[5:3]

offset[5:4|8]

3
cap rv32: C.LC=011
cap rv64: C.LC=001

Capability Pointer Mode Description

Load capability instruction, authorized by the capability in cs1. Take a load address misaligned
exception if not naturally aligned.

 These mnemonics do not exist in Integer Pointer Mode.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion
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CAUSE Reason

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites

C or Zca, Zcheripurecap

Operation (after expansion to 32-bit encodings)

See LC
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12.6.21. C.SD

See C.SW.
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12.6.22. C.SW

Synopsis

Stores (C.SD, C.SW), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)

c.sd rs2', offset(cs1')
c.sw rs2', offset(cs1')

Capability Pointer Mode Expansions (RV64)

sd rs2', offset(cs1')
sw rs2', offset(cs1')

Integer Pointer Mode Mnemonics (RV64)

c.sd rs2', offset(rs1')
c.sw rs2', offset(rs1')

Integer Pointer Mode Expansions (RV64)

sd rs2', offset(rs1')
sw rs2', offset(rs1')

Capability Pointer Mode Mnemonic (RV32)

c.sw rs2', offset(cs1')

Capability Pointer Mode Expansion (RV32)

sw rs2', offset(cs1')

Integer Pointer Mode Mnemonic (RV32)

c.sw rs2', offset(rs1')

Integer Pointer Mode Expansion (RV32)

sw rs2', offset(rs1')

Encoding

0124567910121315

oprs2'/cs2'uimmrs1'/cs1'uimmfunct3

2
C0=00

3
src

2
offset[2|6]
offset[7:6]

3
base

3
offset[5:3]

3
C.SW=110

rv64: C.SD=111

Capability Pointer Mode Description

Standard store instructions, authorized by the capability in cs1.

Integer Pointer Mode Description

Standard store instructions, authorized by the capability in ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.
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CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites for Capability Pointer Mode C.SD

RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SD

RV64, and C or Zca, Zcherihybrid

Prerequisites for Capability Pointer Mode C.SW

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SW

C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)

See SD, SW
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12.6.23. C.SWSP

See C.SDSP.
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12.6.24. C.SDSP

Synopsis

Stack pointer relative stores (C.SWSP, C.SDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV64)

c.sd rs2, offset(csp)
c.sw rs2, offset(csp)

Capability Pointer Mode Expansions (RV64)

sd rs2, offset(csp)
sw rs2, offset(csp)

Integer Pointer Mode Mnemonics (RV64)

c.sd rs2, offset(sp)
c.sw rs2, offset(sp)

Integer Pointer Mode Expansions (RV64)

sd rs2, offset(sp)
sw rs2, offset(sp)

Capability Pointer Mode Mnemonic (RV32)

c.sw rs2, offset(csp)

Capability Pointer Mode Expansion (RV32)

sw rs2, offset(csp)

Integer Pointer Mode Mnemonic (RV32)

c.sw rs2, offset(sp)

Integer Pointer Mode Expansion (RV32)

sw rs2, offset(sp)

Encoding

01267121315

oprs2/cs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]
offset[5:2|7:6]

3
rv64: C.SDSP=111

C.SWSP=110

Capability Pointer Mode Description

Standard stack pointer relative store instructions, authorized by the capability in csp.

Integer Pointer Mode Description

Standard stack pointer relative store instructions, authorized by the capability in ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.
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CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites for Capability Pointer Mode C.SDSP

RV64, and C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SDSP

RV64, and C or Zca, Zcherihybrid

Prerequisites for Capability Pointer Mode C.SWSP

C or Zca, Zcheripurecap

Prerequisites for Integer Pointer Mode C.SWSP

C or Zca, Zcherihybrid

Operation (after expansion to 32-bit encodings)

See SD, SW
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12.6.25. C.FSW

See C.FSWSP.

12.6.26. C.FSWSP

Synopsis

Floating point stores (C.FSW, C.FSWSP), 16-bit encodings

Integer Pointer Mode Mnemonics (RV32)

c.fsw rs2', offset(rs1')
c.fsw rs2', offset(sp)

Integer Pointer Mode Expansions (RV32)

fsw rs2', offset(rs1')
fsw rs2', offset(sp)

Encoding (RV32)

0124567910121315

oprs2'uimmrs1'uimmfunct3

2
C0=00

3
src

2
offset[2|6]

3
base

3
offset[5:3]

3
int rv32: C.FSW=111

01267121315

oprs2immfunct3

2
C2=10

5
src

6
offset[5:2|7:6]

3
int rv32: C.FSWSP=111

Integer Pointer Mode Description

Standard floating point store instructions, authorized by the capability in ddc.


These instructions are available in RV32 Integer Pointer Mode only. In Capability
Pointer Mode they are remapped to C.SC/C.SCSP.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds
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If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites

C or Zca, Zcherihybrid, Zcf or F

Operation (after expansion to 32-bit encodings)

See FSW
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12.6.27. C.FSD

See C.FSDSP.

12.6.28. C.FSDSP

Synopsis

Double precision floating point stores (C.FSD, C.FSDSP), 16-bit encodings

Capability Pointer Mode Mnemonics (RV32)

c.fsd fs2, offset(cs1')
c.fsd fs2, offset(csp)

Capability Pointer Mode Expansions (RV32)

fsd fs2, offset(cs1')
fsd fs2, offset(csp)

Integer Pointer Mode Mnemonics

c.fsd fs2, offset(rs1')
c.fsd fs2, offset(sp)

Integer Pointer Mode Expansions

fsd fs2, offset(rs1)
fsd fs2, offset(sp)

Encoding

01267121315

oprs2immfunct3

2
C0=00

5
src

6
offset[5:3|8:6]

3
int C.FSD=101

cap rv32: C.FSD=101

01267121315

oprs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]

3
int C.FSDSP=101

cap rv32: C.FSDSP=101

Capability Pointer Mode Description

Standard floating point stack pointer relative store instructions, authorized by the capability in cs1
or csp.

Integer Pointer Mode Description

Standard floating point stack pointer relative store instructions, authorized by the capability in ddc.


These instructions are available in RV64 Integer Pointer Mode only. In RV64
Capability Pointer Mode they are remapped to C.SC/C.SCSP.


C.FSDSP may be remapped by the Zcmp, Zcmt standard extensions. C.FSD may be
remapped by future code-size reduction extensions. The rule is that in RV64
Capability Pointer Mode they are always remapped to C.LC/C.LCSP.
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Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites for Capability Pointer Mode C.FSD, C.FSDSP (RV32 only)

Zcheripurecap, C and D; or
Zcheripurecap, Zca and Zcd

Prerequisites for Integer Pointer Mode C.FSD, C.FSDSP

Zcherihybrid, C and D; or
Zcherihybrid, Zca and Zcd

Operation (after expansion to 32-bit encodings)

See FSD
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12.6.29. C.SC

see C.SCSP.

12.6.30. C.SCSP

Synopsis

Capability stores (C.SC, C.SCSP), 16-bit encodings

 These instructions have different encodings for RV64 and RV32.

Capability Pointer Mode Mnemonics

c.sc cs2', offset(cs1')
c.sc cs2', offset(csp)

Capability Pointer Mode Expansions

sc cs2', offset(cs1')
sc cs2', offset(csp)

Encoding

01267121315

opcs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]
offset[5:4|9:6]

3
cap rv32: C.SCSP=111
cap rv64: C.SCSP=101

0124567910121315

opcs2'immcs1'immfunct3

2
C0=00

3
src

2
offset[7:6]
offset[7:6]

3
base

3
offset[5:3]

offset[5:4|8]

3
cap rv32: C.SC=111
cap rv64: C.SC=101

Capability Pointer Mode Description

Store the CLEN+1 bit value in cs2' to memory. The capability in cs1/csp authorizes the operation.
The effective address of the memory access is obtained by adding the address of cs1/csp to the
sign-extended 12-bit offset.

 These mnemonics do not exist in Integer Pointer Mode.

Tag of the written capability value

The capability written to memory has the tag set to 0 if the tag of cs2' is 0 or if the authorizing
capability (cs1/csp) does not grant C-permission.

The stored tag is also set to zero if the authorizing capability does not have SL-permission set but
the stored data has a Capability Level (CL) of 0 (local).


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Exceptions

Misaligned address fault exception when the effective address is not aligned to CLEN/8.
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CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites

C or Zca, Zcheripurecap

Operation (after expansion to 32-bit encodings)

See SC
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12.7. "Zicbom", "Zicbop", "Zicboz" Standard Extensions for Base Cache
Management Operations
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12.7.1. CBO.CLEAN

Synopsis

Perform a clean operation on a cache block

Capability Pointer Mode Mnemonic

cbo.clean 0(cs1)

Integer Pointer Mode Mnemonic

cbo.clean 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
CBO.CLEAN=00.001

Capability Pointer Mode Description

A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in cs1. The authorizing capability for this operation is cs1.

Integer Pointer Mode Description

A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is
the base address specified in rs1. The authorizing capability for this operation is ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission and R-permission, or the AP field could
not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation None of the bytes accessed are within the bounds, or the capability has malformed
bounds

Prerequisites for Capability Pointer Mode

Zicbom, Zcheripurecap

Prerequisites for Integer Pointer Mode

Zicbom, Zcherihybrid

Operation
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TBD
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12.7.2. CBO.FLUSH

Synopsis

Perform a flush operation on a cache block

Capability Pointer Mode Mnemonic

cbo.flush 0(cs1)

Integer Pointer Mode Mnemonic

cbo.flush 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
cap: CBO.FLUSH=00.0010

Capability Pointer Mode Description

A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in cs1. The authorizing capability for this operation is cs1.

Integer Pointer Mode Description

A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is
the base address specified in rs1. The authorizing capability for this operation is ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission and R-permission, or the AP field could
not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation None of the bytes accessed are within the bounds, or the capability has malformed
bounds

Prerequisites for Capability Pointer Mode

Zicbom, Zcheripurecap

Prerequisites for Integer Pointer Mode

Zicbom, Zcherihybrid

Operation
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TBD
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12.7.3. CBO.INVAL

Synopsis

Perform an invalidate operation on a cache block

Capability Pointer Mode Mnemonic

cbo.inval 0(cs1)

Integer Pointer Mode Mnemonic

cbo.inval 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
CBO.INVAL=00.0000

Capability Pointer Mode Description

A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in cs1. The authorizing capability for this operation is cs1.

Integer Pointer Mode Description

A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in rs1. The authorizing capability for this operation in ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

The CBIE bit in menvcfg and senvcfg indicates whether CBO.INVAL performs cache block flushes
instead of invalidations for less privileged modes. The instruction checks shown in the table below
remain unchanged regardless of the value of CBIE and the privilege mode.



Invalidating a cache block can re-expose capabilities previously stored to it after the
most recent flush, not just secret values. As such, CBO.INVAL has stricter checks on
its use than CBO.FLUSH, and should only be made available to, and used by,
sufficiently-trusted software. Untrusted software should use CBO.FLUSH instead.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, R-permission or ASR-permission, or the
AP field could not have been produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation None of the bytes accessed are within the bounds, or the capability has malformed
bounds
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Prerequisites for Capability Pointer Mode

Zicbom, Zcheripurecap

Prerequisites for Integer Pointer Mode

Zicbom, Zcherihybrid

Operation

TBD
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12.7.4. CBO.ZERO

Synopsis

Store zeros to the full set of bytes corresponding to a cache block

Capability Pointer Mode Mnemonic

cbo.zero 0(cs1)

Integer Pointer Mode Mnemonic

cbo.zero 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3cs1/rs1funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
CBO.ZERO=00.0100

Capability Pointer Mode Description

A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in cs1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorizing capability for this
operation is cs1.

Integer Pointer Mode Description

A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in cs1. An implementation may or may
not update the entire set of bytes atomically although each individual write must atomically clear
the tag bit of the corresponding aligned CLEN-bit location. The authorizing capability for this
operation is ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
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this case.

Prerequisites for Capability Pointer Mode

Zicboz, Zcheripurecap

Prerequisites for Integer Pointer Mode

Zicboz, Zcherihybrid

Operation

TBD
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12.7.5. PREFETCH.I

Synopsis

Provide a HINT to hardware that a cache block is likely to be accessed by an instruction fetch in the
near future

Capability Pointer Mode Mnemonic

prefetch.i offset(cs1)

Integer Pointer Mode Mnemonic

prefetch.i offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3cs1/rs1funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
PREFETCH.I=00000

7
offset[11:5]

Capability Pointer Mode Description

A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in cs1 and the sign-extended offset encoded in imm[11:0], where
imm[4:0] equals 0b00000, is likely to be accessed by an instruction fetch in the near future. The
encoding is only valid if imm[4:0]=0. The authorizing capability for this operation is cs1. This
instruction does not throw any exceptions. However, following CHERI Exceptions and speculative
execution, this instruction does not perform a prefetch if it is not authorized by cs1.

Integer Pointer Mode Description

A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0], where
imm[4:0] equals 0b00000, is likely to be accessed by an instruction fetch in the near future. The
encoding is only valid if imm[4:0]=0. The authorizing capability for this operation is pcc.

In either mode, PREFETCH.I does not perform a memory access if one or more of the following
conditions of the authorizing capability are met:

⚫ The tag is not set

⚫ The sealed bit is set

⚫ No bytes of the cache line requested is in bounds

⚫ The X-permission is not set

⚫ Any reserved bits are set

⚫ The permissions could not have been produced by ACPERM

⚫ The bounds are malformed

Prerequisites for Capability Pointer Mode

Zicbop, Zcheripurecap

Prerequisites for Integer Pointer Mode

Zicbop, Zcherihybrid
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Operation

TODO
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12.7.6. PREFETCH.R

Synopsis

Provide a HINT to hardware that a cache block is likely to be accessed by a data read in the near
future

Capability Pointer Mode Mnemonic

prefetch.r offset(cs1)

Integer Pointer Mode Mnemonic

prefetch.r offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3cs1/rs1funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
PREFETCH.R=00001

7
offset[11:5]

Capability Pointer Mode Description

A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in cs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorizing capability for this operation is cs1.
This instruction does not throw any exceptions. However, in following CHERI Exceptions and
speculative execution, this instruction does not perform a prefetch if it is not authorized by cs1.

Integer Pointer Mode Description

A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data read (i.e. load) in the near
future. The encoding is only valid if imm[4:0]=0. The authorizing capability for this operation is ddc.

In either mode, PREFETCH.R does not perform a memory access if one or more of the following
conditions of the authorizing capability are met:

⚫ The tag is not set

⚫ The sealed bit is set

⚫ No bytes of the cache line requested is in bounds

⚫ The R-permission is not set

⚫ Any reserved bits are set

⚫ The permissions could not have been produced by ACPERM

⚫ The bounds are malformed

Prerequisites for Capability Pointer Mode

Zicbop, Zcheripurecap

Prerequisites for Integer Pointer Mode

Zicbop, Zcherihybrid
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Operation

TODO
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12.7.7. PREFETCH.W

Synopsis

Provide a HINT to hardware that a cache block is likely to be accessed by a data write in the near
future

Capability Pointer Mode Mnemonic

prefetch.w offset(cs1)

Integer Pointer Mode Mnemonic

prefetch.w offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3cs1/rs1funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
PREFETCH.W=00011

7
offset[11:5]

Capability Pointer Mode Description

A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in cs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data write (i.e. store) in the near
future. The encoding is only valid if imm[4:0]=0. The authorizing capability for this operation is cs1.
This instruction does not throw any exceptions. However, following CHERI Exceptions and
speculative execution, this instruction does not perform a prefetch if it is not authorized by cs1.

Integer Pointer Mode Description

A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is
the sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0],
where imm[4:0] equals 0b00000, is likely to be accessed by a data write (i.e. store) in the near
future. The encoding is only valid if imm[4:0]=0. The authorizing capability for this operation is ddc.

In either mode, PREFETCH.W does not perform a memory access if one or more of the following
conditions of the authorizing capability are met:

⚫ The tag is not set

⚫ The sealed bit is set

⚫ No bytes of the cache line requested is in bounds

⚫ The W-permission is not set

⚫ Any reserved bits are set

⚫ The permissions could not have been produced by ACPERM

⚫ The bounds are malformed

Prerequisites for Capability Pointer Mode

Zicbop, Zcheripurecap

Prerequisites for Integer Pointer Mode

Zicbop, Zcherihybrid
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Operation

TODO
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12.8. "Zba" Extension for Bit Manipulation Instructions
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12.8.1. ADD.UW

Synopsis

Add unsigned word for address generation

Capability Pointer Mode Mnemonic (RV64)

add.uw cd, rs1, cs2

Integer Pointer Mode Mnemonic (RV64)

add.uw rd, rs1, rs2

Encoding

067111214151920242531

1101110cd/rd000rs1cs2/rs20010000

OPrv64: ADD.UWrv64: ADD.UW

Capability Pointer Mode Description

Increment the address field of cs2 by the unsigned word in rs1. Clear the tag if the resulting
capability is unrepresentable or cs2 is sealed.

Integer Pointer Mode Description

Increment rs2 by the unsigned word in rs1.

Prerequisites for Capability Pointer Mode

RV64, Zcheripurecap, Zba

Prerequisites for Integer Pointer Mode

RV64, Zcherihybrid, Zba

Capability Pointer Mode Operation

let rs1_val = X(rs1);
let cs2_val = C(cs2);
let shamt : range(0,3) = match op {
  RISCV_ADDUW    => 0,
  RISCV_SH1ADDUW => 1,
  RISCV_SH2ADDUW => 2,
  RISCV_SH3ADDUW => 3,
};
let result = incCapAddrChecked(cs2_val, zero_extend(rs1_val[31..0]) <<
shamt);
C(cd) = result;
RETIRE_SUCCESS

Integer Pointer Mode Operation

let rs1_val = X(rs1);
let rs2_val = X(rs2);
let shamt : bits(2) = match op {
  RISCV_ADDUW    => 0b00,
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  RISCV_SH1ADDUW => 0b01,
  RISCV_SH2ADDUW => 0b10,
  RISCV_SH3ADDUW => 0b11
};
let result : xlenbits = (zero_extend(rs1_val[31..0]) << shamt) + rs2_val;
X(rd) = result;
RETIRE_SUCCESS
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12.8.2. SH1ADD

See SH3ADD.

12.8.3. SH2ADD

See SH3ADD.
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12.8.4. SH3ADD

Synopsis

Shift by n and add for address generation (SH1ADD, SH2ADD, SH3ADD)

Capability Pointer Mode Mnemonics

sh[1|2|3]add cd, rs1, cs2

Integer Pointer Mode Mnemonics

sh[1|2|3]add rd, rs1, rs2

Encoding

067111214151920242531

1100110cd/rdfunc3rs1cs2/rs20000100

OPSH1ADD=010
SH2ADD=100
SH3ADD=110

SH[1|2|3]ADD

Capability Pointer Mode Description

Increment the address field of cs2 by rs1 shifted left by n bit positions and write the result to cd.
The tag bit of the output capability is 0 if cs2 did not have its tag set to 1, the incremented address
is outside cs2 's Representable Range or cs2 is sealed.


This instruction sets cd.tag=0 if cs2 's bounds are malformed, or if any of the
reserved fields are set.

Integer Pointer Mode Description

Increment rs2 by rs1 shifted left by n bit positions and write the result to rd.

Exceptions

None

Prerequisites for Capability Pointer Mode

Zcheripurecap, Zba

Prerequisites for Integer Pointer Mode

Zcherihybrid, Zba

Capability Pointer Mode Operation

let rs1_val = X(rs1);
let cs2_val = C(cs2);
let shamt : range(0,3) = match op {
  RISCV_SH1ADD => 1,
  RISCV_SH2ADD => 2,
  RISCV_SH3ADD => 3,
};
let result = incCapAddrChecked(cs2_val, rs1_val << shamt);
C(cd) = result;
RETIRE_SUCCESS
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Integer Pointer Mode Operation

let rs1_val = X(rs1);
let rs2_val = X(rs2);
let shamt : bits(2) = match op {
  RISCV_SH1ADD => 0b01,
  RISCV_SH2ADD => 0b10,
  RISCV_SH3ADD => 0b11
};
let result : xlenbits = (rs1_val << shamt) + rs2_val;
X(rd) = result;
RETIRE_SUCCESS
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12.8.5. SH1ADD.UW

See SH3ADD.UW.

12.8.6. SH2ADD.UW

See SH3ADD.UW.
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12.8.7. SH3ADD.UW

Synopsis

Shift by n and add unsigned word for address generation (SH1ADD.UW, SH2ADD.UW, SH3ADD.UW)

Capability Pointer Mode Mnemonics (RV64)

sh[1|2|3]add.uw cd, rs1, cs2

Integer Pointer Mode Mnemonics (RV64)

sh[1|2|3]add.uw rd, rs1, rs2

Encoding

067111214151920242531

1101110cd/rdfunc3rs1cs2/rs20000100

OPrv64: SH1ADD.UW=010
rv64: SH2ADD.UW=100
rv64: SH3ADD.UW=110

rv64: SH[1|2|3]ADD.UW

Capability Pointer Mode Description

Increment the address field of cs2 by the unsigned word in rs1 shifted left by n bit positions and
write the result to cd. The tag bit of the output capability is 0 if cs2 did not have its tag set to 1, the
incremented address is outside cs2 's Representable Range or cs2 is sealed.


This instruction sets cd.tag=0 if cs2 's bounds are malformed, or if any of the
reserved fields are set.

Integer Pointer Mode Description

Increment rs2 by the unsigned word in rs1 shifted left by n bit positions and write the result to rd.

Exceptions

None

Prerequisites for Capability Pointer Mode

RV64, Zcheripurecap, Zba

Prerequisites for Integer Pointer Mode

RV64, Zcherihybrid, Zba

Capability Pointer Mode Operation

let rs1_val = X(rs1);
let cs2_val = C(cs2);
let shamt : range(0,3) = match op {
  RISCV_ADDUW    => 0,
  RISCV_SH1ADDUW => 1,
  RISCV_SH2ADDUW => 2,
  RISCV_SH3ADDUW => 3,
};
let result = incCapAddrChecked(cs2_val, zero_extend(rs1_val[31..0]) <<
shamt);
C(cd) = result;
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RETIRE_SUCCESS

Integer Pointer Mode Operation

let rs1_val = X(rs1);
let rs2_val = X(rs2);
let shamt : bits(2) = match op {
  RISCV_ADDUW    => 0b00,
  RISCV_SH1ADDUW => 0b01,
  RISCV_SH2ADDUW => 0b10,
  RISCV_SH3ADDUW => 0b11
};
let result : xlenbits = (zero_extend(rs1_val[31..0]) << shamt) + rs2_val;
X(rd) = result;
RETIRE_SUCCESS
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12.8.8. SH4ADD

Synopsis

Shift by 4 and add for address generation (SH4ADD)

Capability Pointer Mode Mnemonic (RV64)

sh4add cd, rs1, cs2

Integer Pointer Mode Mnemonic (RV64)

sh4add rd, rs1, rs2

Encoding

067111214151920242531

1100110cd/rd111rs1cs2/rs20000100

OPrv64: SH4ADDrv64: SH4ADD

Capability Pointer Mode Description

Increment the address field of cs2 by rs1 shifted left by 4 bit positions and write the result to cd.
The tag bit of the output capability is 0 if cs2 did not have its tag set to 1, the incremented address
is outside cs2 's Representable Range or cs2 is sealed.


This instruction sets cd.tag=0 if cs2 's bounds are malformed, or if any of the
reserved fields are set.

Integer Pointer Mode Description

Increment rs2 by rs1 shifted left by 4 bit positions and write the result to rd.

Exceptions

None

Prerequisites for Capability Pointer Mode

RV64, Zish4add

Prerequisites for Integer Pointer Mode

RV64, Zish4add

Capability Pointer Mode Operation

let rs1_val = X(rs1);
let cs2_val = C(cs2);
let shamt = 4;
let result = incCapAddrChecked(cs2_val, rs1_val << shamt);
C(cd) = result;
RETIRE_SUCCESS

Integer Pointer Mode Operation

let rs1_val = X(rs1);
let rs2_val = X(rs2);
let shamt = 4;
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let result = (rs1_val << shamt) + rs2_val;
X(rd) = result;
RETIRE_SUCCESS
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12.8.9. SH4ADD.UW

Synopsis

Shift by 4 and add unsigned words for address generation (SH4ADD.UW)

Capability Pointer Mode Mnemonic (RV64)

sh4add.uw cd, rs1, cs2

Integer Pointer Mode Mnemonic (RV64)

sh4add.uw rd, rs1, rs2

Encoding

067111214151920242531

1101110cd/rd111rs1cs2/rs20000100

OPrv64: SH4ADD.UWrv64: SH4ADD.UW

Capability Pointer Mode Description

Increment the address field of cs2 by the unsigned word in rs1 shifted left by 4 bit positions and
write the result to cd. The tag bit of the output capability is 0 if cs2 did not have its tag set to 1, the
incremented address is outside cs2 's Representable Range or cs2 is sealed.


This instruction sets cd.tag=0 if cs2 's bounds are malformed, or if any of the
reserved fields are set.

Integer Pointer Mode Description

Increment rs2 by the unsigned word in rs1 shifted left by 4 bit positions and write the result to rd.

Exceptions

None

Prerequisites for Capability Pointer Mode

RV64, Zish4add

Prerequisites for Integer Pointer Mode

RV64, Zish4add

Capability Pointer Mode Operation

let rs1_val = X(rs1);
let cs2_val = C(cs2);
let shamt = 4;
let result = incCapAddrChecked(cs2_val, zero_extend(rs1_val[31..0]) <<
shamt);
C(cd) = result;
RETIRE_SUCCESS

Integer Pointer Mode Operation

let rs1_val = X(rs1);
let rs2_val = X(rs2);
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let shamt = 4;
let result : xlenbits = (zero_extend(rs1_val[31..0]) << shamt) + rs2_val;
X(rd) = result;
RETIRE_SUCCESS
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12.9. "Zcb" Standard Extension For Code-Size Reduction
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12.9.1. C.LH

See C.LBU.

12.9.2. C.LHU

See C.LBU.
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12.9.3. C.LBU

Synopsis

Load (C.LH, C.LHU, C.LBU), 16-bit encodings

Capability Pointer Mode Mnemonics

c.lh rd', offset(cs1')
c.lhu rd', offset(cs1')
c.lbu rd', offset(cs1')

Capability Pointer Mode Expansions

lh rd, offset(cs1)
lhu rd, offset(cs1)
lbu rd, offset(cs1)

Integer Pointer Mode Mnemonics

c.lh rd', offset(rs1')
c.lhu rd', offset(rs1')
c.lbu rd', offset(rs1')

Integer Pointer Mode Expansions

lh rd, offset(rs1)
lhu rd, offset(rs1)
lbu rd, offset(rs1)

Encoding

012456791015

oprd'/cd'uimm[1]funct1rs1'/cs1'funct6

2
C0=00

3
dest

1
offset[1]

1
1

3
base

6
C.LH=100001

012456791015

oprd'/cd'uimm[1]funct1rs1'/cs1'funct6

2
C0=00

3
dest

1
offset[1]

1
0

3
base

6
C.LHU=100001

012456791015

oprd'/cd'uimm[0|1]rs1'/cs1'funct6

2
C0=00

3
dest

2
offset[0|1]

3
base

6
C.LBU=100000

Capability Pointer Mode Description

Subword load instructions, authorized by the capability in cs1.

Integer Pointer Mode Description

Subword load instructions, authorized by the capability in ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.
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CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, and Zcb

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, and Zcb

Operation (after expansion to 32-bit encodings)

See LHU, LH, LBU
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12.9.4. C.SH

See C.SB.
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12.9.5. C.SB

Synopsis

Stores (C.SH, C.SB), 16-bit encodings

Capability Pointer Mode Mnemonics

c.sh rs2', offset(cs1')
c.sb rs2', offset(cs1')

Capability Pointer Mode Expansions

sh rs2', offset(cs1')
sb rs2', offset(cs1')

Integer Pointer Mode Mnemonics

c.sh rs2', offset(rs1')
c.sb rs2', offset(rs1')

Integer Pointer Mode Expansions

sh rs2', offset(rs1')
sb rs2', offset(rs1')

Encoding

012456791015

oprs2'/cs2'uimm[1]funct1rs1'/cs1'funct6

2
C0=00

3
src

1
offset[1]

1
0

3
base

6
C.SH=100011

012456791015

oprs2'/cs2'uimm[0|1]rs1'/cs1'funct6

2
C0=00

3
src

2
offset[0|1]

3
base

6
C.SB=100010

Capability Pointer Mode Description

Subword store instructions, authorized by the capability in cs1.

Integer Pointer Mode Description

Subword store instructions, authorized by the capability in ddc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion
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CAUSE Reason

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, and Zcb

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, and Zcb

Operation (after expansion to 32-bit encodings)

See SH, SB
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12.10. "Zcmp" Standard Extension For Code-Size Reduction

The push (CM.PUSH) and pop (CM.POP, CM.POPRET, CM.POPRETZ) instructions are redefined in
Capability Pointer Mode to save/restore full capabilities.

The double move instructions (CM.MVSA01, CM.MVA01S) are redefined in Capability Pointer Mode to
move full capabilities between registers. The saved register mapping is as shown in

Table 43. saved register mapping for Zcmp

saved register specifier xreg integer ABI CHERI ABI

0 x8 s0 cs0

1 x9 s1 cs1

2 x18 s2 cs2

3 x19 s3 cs3

4 x20 s4 cs4

5 x21 s5 cs5

6 x22 s6 cs6

7 x23 s7 cs7

All instructions are defined in (RISC-V, 2023).
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12.10.1. CM.PUSH

Synopsis

Create stack frame (CM.PUSH): store the return address register and 0 to 12 saved registers to the
stack frame, optionally allocate additional stack space. 16-bit encodings.

Capability Pointer Mode Mnemonic (RV32)

cm.push {creg_list}, -stack_adj

Integer Pointer Mode Mnemonic

cm.push {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist00011101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Pointer Mode Description

Create stack frame, store capability registers as specified in creg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against csp.

Integer Pointer Mode Description

Create stack frame, store integer registers as specified in reg_list. Optionally allocate additional
multiples of 16-byte stack space. All accesses are checked against ddc.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64
Capability Pointer Mode.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.
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Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmp

Operation

TBD
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12.10.2. CM.POP

Synopsis

Destroy stack frame (CM.POP): load the return address register and 0 to 12 saved registers from the
stack frame, deallocate the stack frame. 16-bit encodings.

Capability Pointer Mode Mnemonic (RV32)

cm.pop {creg_list}, -stack_adj

Integer Pointer Mode Mnemonic

cm.pop {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist01011101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Pointer Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. All accesses are checked
against csp.

Integer Pointer Mode Description

Load integer registers as specified in reg_list. Deallocate stack frame. All accesses are checked
against ddc.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64
Capability Pointer Mode.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.
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Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmp

Operation

TBD
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12.10.3. CM.POPRET

Synopsis

Destroy stack frame (CM.POPRET): load the return address register and 0 to 12 saved registers from
the stack frame, deallocate the stack frame. Return through the return address register. 16-bit
encodings.

Capability Pointer Mode Mnemonic (RV32)

cm.popret {creg_list}, -stack_adj

Integer Pointer Mode Mnemonic

cm.popret {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist01111101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Pointer Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. Return by calling JALR to
cra. All data accesses are checked against csp. The return destination is checked against cra.

Integer Pointer Mode Description

Load integer registers as specified in reg_list. Deallocate stack frame. Return by calling JALR to ra.
All data accesses are checked against ddc. The return destination is checked against pcc.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.


The instructions on this page are either PC relative or may update the pcc.
Therefore an implementation may make them illegal in debug mode. If they are
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supported then the value of the pcc in debug mode is UNSPECIFIED by this
document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmp

Operation

TBD
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12.10.4. CM.POPRETZ

Synopsis

Destroy stack frame (CM.POPRETZ): load the return address register and register 0 to 12 saved
registers from the stack frame, deallocate the stack frame. Move zero into argument register zero.
Return through the return address register. 16-bit encodings.

Capability Pointer Mode Mnemonic (RV32)

cm.popretz {creg_list}, -stack_adj

Integer Pointer Mode Mnemonic

cm.popretz {reg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist00111101

C2FUNCT3

 rlist values 0 to 3 are reserved for a future EABI variant

Capability Pointer Mode Description

Load capability registers as specified in creg_list. Deallocate stack frame. Move zero into ca0.
Return by calling JALR to cra. All data accesses are checked against csp. The return destination is
checked against cra.

Integer Pointer Mode Description

Load integer registers as specified in reg_list. Deallocate stack frame. Move zero into a0. Return by
calling JALR to ra. All data accesses are checked against ddc. The return destination is checked
against pcc.

Permissions

Loads are checked as for LC in both Integer Pointer Mode and Capability Pointer Mode.

The return is checked as for JALR in both Integer Pointer Mode and Capability Pointer Mode.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64
Capability Pointer Mode.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM
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CAUSE Reason

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.



The instructions on this page are either PC relative or may update the pcc.
Therefore an implementation may make them illegal in debug mode. If they are
supported then the value of the pcc in debug mode is UNSPECIFIED by this
document.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmp

Operation

TBD
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12.10.5. CM.MVSA01

Synopsis

CM.MVSA01: Move argument registers 0 and 1 into two saved registers.

Capability Pointer Mode Mnemonic (RV32)

cm.mvsa01 cr1s', cr2s'

Integer Pointer Mode Mnemonic

cm.mvsa01 r1s', r2s'

Encoding

0124567910121315

01r2s'10r1s'110101

C2FUNCT3


The encoding uses sreg number specifiers instead of xreg number specifiers to save
encoding space. The saved register encoding is shown in Table 43.

Capability Pointer Mode Description

Atomically move two saved capability registers cs0-cs7 into ca0 and ca1.

Integer Pointer Mode Description

Atomically move two saved integer registers s0-s7 into a0 and a1.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64
Capability Pointer Mode.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmp

Operation

TBD
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12.10.6. CM.MVA01S

Synopsis

Move two saved registers into argument registers 0 and 1.

Capability Pointer Mode Mnemonic (RV32)

cm.mva01s cr1s', cr2s'

Integer Pointer Mode Mnemonic

cm.mva01s r1s', r2s'

Encoding

0124567910121315

01r2s'11r1s'110101

C2FUNCT3


The encoding uses sreg number specifiers instead of xreg number specifiers to save
encoding space. The saved register encoding is shown in Table 43.

Capability Pointer Mode Description

Atomically move two capability registers ca0 and ca1 into cs0-cs7.

Integer Pointer Mode Description

Atomically move two integer registers a0 and a1 into s0-s7.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64
Capability Pointer Mode.

Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmp

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmp

Operation

TBD
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12.11. "Zcmt" Standard Extension For Code-Size Reduction

The table jump instructions (CM.JT, CM.JALT) defined in (RISC-V, 2023) are not redefined in
Capability Pointer Mode to have capabilities in the jump table. This is to prevent the code-size growth
caused by doubling the size of the jump table.

In the future, new jump table modes or new encodings can be added to have capabilities in the jump
table.

The jump vector table CSR jvt has a capability alias jvtc so that it can only be configured to point to
accessible memory. All accesses to the jump table are checked against jvtc in Capability Pointer Mode,
and against pcc bounds in Integer Pointer Mode. This allows the jump table to be accessed when the
pcc bounds are set narrowly to the local function only in Capability Pointer Mode.



Zcmt defines that the fetch from the jump table is from instruction memory. The
overall instruction executed is effectively 48-bit, with 16-bits from CM.JALT/CM.JT,
the other 32-bits (for RV32) from the table. Therefore pcc is used to authorize the
fetch in Integer Pointer Mode, as the fetch is designated to be from instruction
memory in (RISC-V, 2023).



In Capability Pointer Mode the implementation doesn’t need to expand and bounds
check against jvtc on every access, it is sufficient to decode the valid accessible
range of entries after every write to jvtc, and then check that the accessed entry is in
that range.

12.11.1. Jump Vector Table CSR (jvt)

The JVT CSR is exactly as defined by (RISC-V, 2023). It is renamed to jvtc.

12.11.2. Jump Vector Table CSR (jvtc)

jvtc extends jvt to be a capability width CSR, as shown in Table 18.

MXLEN-1 0

Tag jvtc (Metadata)

jvtc (Address)

MXLEN

Figure 66. Jump Vector Table Capability register

All instruction fetches from the jump vector table are checked against jvtc in Capability Pointer Mode.
In Integer Pointer Mode the address field gives the base address of the table, and the access is
checked against pcc bounds.

See CM.JALT, CM.JT.

If the access to the jump table succeeds, then the instructions execute as follows:

⚫ CM.JT executes as J or AUIPC+JR

⚫ CM.JALT executes as JAL or AUIPC+JALR

As a result the capability metadata is retained in pcc during execution.
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12.11.3. CM.JALT

Synopsis

Jump via table with link (CM.JALT), 16-bit encodings

Capability Pointer Mode Mnemonic (RV32)

cm.jalt index

Integer Pointer Mode Mnemonic

cm.jalt index

Encoding

012910121315

01index000101

C2FUNCT3

 For this encoding to decode as CM.JALT, index≥32, otherwise it decodes as CM.JT.

Capability Pointer Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against jvtc bounds (not against pcc)
and requiring X-permission. Link to cra.

Integer Pointer Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against pcc bounds and requiring X-
permission. Link to ra.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64
Capability Pointer Mode.

Capability Pointer Mode Permissions

Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be
in jvtc bounds.

Capability Pointer Mode Exceptions

When these instructions cause CHERI exceptions, CHERI instruction fetch fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval2 or stval2:

CAUSE

Tag violation ✔

Seal violation ✔

Permission violation ✔

Invalid address violation ✔

Bounds violation ✔


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.
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Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmt

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmt

Operation

TBD
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12.11.4. CM.JT

Synopsis

Jump via table with link (CM.JT), 16-bit encodings

Capability Pointer Mode Mnemonic

cm.jt index

Integer Pointer Mode Mnemonic

cm.jt index

Encoding

012910121315

01index000101

C2FUNCT3

 For this encoding to decode as CM.JT, index<32, otherwise it decodes as CM.JALT.

Capability Pointer Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against jvtc bounds (not against pcc)
and requiring X-permission.

Integer Pointer Mode Description

Redirect instruction fetch via the jump table defined by the indexing via jvtc.address+
index*XLEN/8, checking every byte of the jump table access against pcc bounds and requiring X-
permission.


This encoding conflicts with C.FSDSP which is remapped to C.SCSP in RV64
Capability Pointer Mode.

Capability Pointer Mode Permissions

Requires jvtc to be tagged, not sealed, have X-permission and for the full XLEN-wide access to be
in jvtc bounds.

Capability Pointer Mode Exceptions

When these instructions cause CHERI exceptions, CHERI instruction fetch fault is reported in the
TYPE field and the following codes may be reported in the CAUSE field of mtval2 or stval2:

CAUSE

Tag violation ✔

Seal violation ✔

Permission violation ✔

Invalid address violation ✔

Bounds violation ✔


The instructions on this page are either PC relative or may update the pcc. Therefore
an implementation may make them illegal in debug mode. If they are supported then
the value of the pcc in debug mode is UNSPECIFIED by this document.
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Prerequisites for Capability Pointer Mode

C or Zca, Zcheripurecap, Zcmt

Prerequisites for Integer Pointer Mode

C or Zca, Zcherihybrid, Zcmt

Operation

TBD
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12.12. "H" Extension for Hypervisor Support
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12.12.1. HLV.B

See HLV.W.

12.12.2. HLV.BU

See HLV.W.

12.12.3. HLV.H

See HLV.W.

12.12.4. HLV.HU

See HLV.W.

12.12.5. HLV.WU

See HLV.W.

12.12.6. HLV.D

See HLV.W.
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12.12.7. HLV.W

Synopsis

Hypervisor virtual-machine load

Capability Pointer Mode Mnemonics (RV64)

hlv.b[u] rd, cs1
hlv.h[u] rd, cs1
hlv.w[u] rd, cs1
hlv.d rd, cs1

Integer Pointer Mode Mnemonics (RV64)

hlv.b[u] rd, rs1
hlv.h[u] rd, rs1
hlv.w[u] rd, rs1
hlv.d rd, rs1

Capability Pointer Mode Mnemonics (RV32)

hlv.b[u] rd, cs1
hlv.h[u] rd, cs1
hlv.w rd, cs1

Integer Pointer Mode Mnemonics (RV32)

hlv.b[u] rd, rs1
hlv.h[u] rd, rs1
hlv.w rd, rs1

Encoding

067111214151920242531

1100111rd001rs1/cs1!=0typefunct7

7535
src1

5
HLV.B=00000
HLV.BU=00001
HLV.H=00000
HLV.HU=00001
HLV.W=00000
HLV.WU=00001
HLV.D=00000

7
HLV.B=0110000

HLV.BU=0110000
HLV.H=0110010

HLV.HU=0110010
HLV.W=0110100

HLV.WU=0110100
HLV.D=0110110

Capability Pointer Mode Description

Performs a load as though V=1; i.e., with the address translation and protection, and endianness,
that apply to memory accesses in either VS-mode or VU-mode. The effective address is the address
of cs1. The authorizing capability for the operation is cs1. A copy of the loaded value is written to rd.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Performs a load as though V=1; i.e., with the address translation and protection, and endianness,
that apply to memory accesses in either VS-mode or VU-mode. The effective address is the is rs1.
The authorizing capability for the operation is ddc. A copy of the loaded value is written to rd.
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Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

Prerequisites for Capability Pointer Mode HLV.B[U], HLV.H[U], HLV.W

Zcheripurecap, H

Prerequisites for Integer Pointer Mode HLV.B[U], HLV.H[U], HLV.W

Zcheripurecap, Zcherihybrid, H

Prerequisites for Capability Pointer Mode HLV.WU, HLV.D

RV64, Zcheripurecap, H

Prerequisites for Integer Pointer Mode HLV.WU, HLV.D

RV64, Zcheripurecap, Zcherihybrid, H

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation

TBD
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12.12.8. HLV.C

Synopsis

Hypervisor virtual-machine load capability

Capability Pointer Mode Mnemonic

hlv.c cd, cs1

Integer Pointer Mode Mnemonic

hlv.c cd, rs1

Encoding

067111214151920242531

1100111cd001rs1/cs1!=0typefunct7

7535
src1

5
HLV.C=00000

7
HLV.C=0111000

Capability Pointer Mode Description

Load a CLEN+1 bit value from memory as though V=1; i.e., with the address translation and
protection, and endianness, that apply to memory accesses in either VS-mode or VU-mode. The
effective address is the address of cs1. The authorizing capability for the operation is cs1. A copy of
the loaded value is written to cd.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Load a CLEN+1 bit value from memory as though V=1; i.e., with the address translation and
protection, and endianness, that apply to memory accesses in either VS-mode and VU-mode. The
effective address is rs1. The authorizing capability for the operation is ddc. A copy of the loaded
value is written to cd.

Resulting value of cd

The tag value written to cd is 0 if the tag of the memory location loaded is 0 or the authorizing
capability (ddc or cs1) does not grant C-permission.

If the authorizing capability does not grant LM-permission, and the tag of cd is 1 and cd is not
sealed, then an implicit ACPERM clearing W-permission and LM-permission is performed to obtain
the intermediate permissions on cd.

If the authorizing capability does not grant EL-permission, and the tag of cd is 1, then an implicit
ACPERM restricting the Capability Level (CL) to the level of the authorizing capability is performed.
If cd is not sealed, this implicit ACPERM also clears EL-permission to obtain the final permissions
on cd (see Table 31).


Missing LM-permission does not affect untagged values since this could result in
surprising bit patterns when copying non-capability data. Similarly, sealed
capabilities are not modified as they are not directly dereferenceable.


Missing EL-permission also affects the level of sealed capabilities since notionally
the Capability Level (CL) of a capability is not a permission but rather a data flow
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label attached to the loaded value. However, untagged values are not affected by EL-
permission.



While the implicit ACPERM introduces a dependency on the loaded data,
implementations can avoid this by deferring the actual masking of permissions until
the loaded capability is dereferenced or the metadata bits are inspected using
GCPERM or GCHI.


When sending load data to a trace interface implementations can choose whether to
trace the value before or after ACPERM has modified the data. The recommendation
is to trace the value after ACPERM.


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Exceptions

Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If virtual memory is enabled, then the state of PTE.CW, and, if Zcheripte is implemented, PTE.CRG,
PTE.U and sstatus.UCRG, may cause a CHERI PTE page fault exception in addition to a normal
RISC-V page fault exception. See Table 23 for the exception reporting in this case.

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites for Capability Pointer Mode

Zcheripurecap, H

Prerequisites for Integer Pointer Mode

Zcheripurecap, Zcherihybrid, H

Capability Pointer Mode Operation

TBD
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Integer Pointer Mode Operation

TBD
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12.12.9. HSV.B

See HSV.W.

12.12.10. HSV.H

See HSV.W.

12.12.11. HSV.D

See HSV.W.
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12.12.12. HSV.W

Synopsis

Hypervisor virtual-machine store

Capability Pointer Mode Mnemonics (RV64)

hsv.b rs2, cs1
hsv.h rs2, cs1
hsv.w rs2, cs1
hsv.d rs2, cs1

Integer Pointer Mode Mnemonics (RV64)

hsv.b rs2, rs1
hsv.h rs2, rs1
hsv.w rs2, rs1
hsv.d rs2, rs1

Capability Pointer Mode Mnemonics (RV32)

hsv.b rs2, cs1
hsv.h rs2, cs1
hsv.w rs2, cs1

Integer Pointer Mode Mnemonics (RV32)

hsv.b rs2, rs1
hsv.h rs2, rs1
hsv.w rs2, rs1

Encoding

067111214151920242531

110011100000001rs1/cs1!=0rs2funct7

7535
src1

5
src2

7
HSV.B=0110001
HSV.H=0110011
HSV.W=0110101
HSV.D=0110111

Capability Pointer Mode Description

Performs a store as though V=1; i.e., with the address translation and protection, and endianness,
that apply to memory accesses in either VS-mode or VU-mode. The effective address is the address
of cs1. The authorizing capability for the operation is cs1. A copy of rs2 is written to memory at the
location indicated by the effective address and the tag bit of each block of memory naturally
aligned to CLEN/8 is cleared.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Performs a store as though V=1; i.e., with address translation and protection, and endianness, that
apply to memory accesses in either VS-mode or VU-mode. The effective address is rs1. The
authorizing capability for the operation is ddc. A copy of rs2 is written to memory at the location
indicated by the effective address and the tag bit of each block of memory naturally aligned to
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CLEN/8 is cleared.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

Prerequisites for Capability Pointer Mode HSV.B, HSV.H, HSV.W

Zcheripurecap, H

Prerequisites for Integer Pointer Mode HSV.B, HSV.H, HSV.W

Zcheripurecap, Zcherihybrid H

Prerequisites for Capability Pointer Mode HSV.D

RV64, Zcheripurecap, H

Prerequisites for Integer Pointer Mode HSV.D

RV64, Zcheripurecap, Zcherihybrid H

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation

TBD
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12.12.13. HSV.C

Synopsis

Hypervisor virtual-machine store capability

Capability Pointer Mode Mnemonic

hsv.c cs2, cs1

Integer Pointer Mode Mnemonic

hsv.c cs2, rs1

Encoding

067111214151920242531

110011100000001rs1/cs1!=0cs2funct7

7535
src1

5
src2

7
HSV.C=0111001

Capability Pointer Mode Description

Store a CLEN+1 bit value in cs2 to memory as though V=1; i.e., with the address translation and
protection, and endianness, that apply to memory accesses in either VS-mode or VU-mode. The
effective address is the address of cs1. The authorizing capability for the operation is cs1.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Store a CLEN+1 bit value in cs2 to memory as though V=1; i.e., with the address translation and
protection, and endianness, that apply to memory accesses in either VS-mode or VU-mode. The
effective address is the rs1. The authorizing capability for the operation is ddc.

Tag of the written capability value

The capability written to memory has the tag set to 0 if the tag of cs2 is 0 or if the authorizing
capability (ddc or cs1) does not grant C-permission.

The stored tag is also set to zero if the authorizing capability does not have SL-permission set but
the stored data has a Capability Level (CL) of 0 (local).


This instruction can propagate tagged capabilities which have malformed bounds,
have reserved bits set or have a permission field which cannot be produced by
ACPERM.

Exceptions

Misaligned address fault exception when the effective address is not aligned to CLEN/8.

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

12.12. "H" Extension for Hypervisor Support | Page 256

RISC-V Specification for CHERI Extensions | © RISC-V International



CAUSE Reason

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant W-permission, or the AP field could not have been
produced by ACPERM

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

If Zcheripte is implemented, and virtual memory is enabled, then the state of PTE.CW and PTE.CRG
from the current virtual memory page may cause a CHERI PTE page fault exception in addition to a
normal RISC-V page fault when operating in user mode. See Table 23 for the exception reporting in
this case.

This instruction is illegal if the CHERI register and instruction access is disabled for the current
privilege.

Prerequisites for Capability Pointer Mode

Zcheripurecap, H

Prerequisites for Integer Pointer Mode

Zcheripurecap, Zcherihybrid, H

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation

TBD
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12.12.14. HLVX.HU

See HLVX.WU.

12.12.15. HLVX.WU

Synopsis

Hypervisor virtual machine load from executable memory

Capability Pointer Mode Mnemonics

hlvx.hu rd, cs1
hlvx.wu rd, cs1

Integer Pointer Mode Mnemonics

hlvx.hu rd, rs1
hlvx.wu rd, rs1

Encoding

067111214151920242531

1100111rd001rs1/cs1!=011000funct7

75
dest

35
src1

57
HLVX.HU=0110010
HLVX.WU=0110100

Capability Pointer Mode Description

Performs a load with the execute permission taking the place of read permission during address
translation and as though V=1; i.e., with the address translation and protection, and endianness, that
apply to memory access in either VS-mode or VU-mode. The effective address is the address of
cs1. The authorizing capability for the operation is cs1. A copy of the loaded value is written to rd.


Any instance of this instruction with a cs1 of c0 would certainly trap (with a CHERI
tag violation), as c0 is defined to always hold a NULL capability. As such, the
encodings with a cs1 of c0 are RESERVED for use by future extensions.

Integer Pointer Mode Description

Performs a load with the execute permission taking the place of read permission during address
translation and as though V=1; i.e., with the address translation and protection, and endianness, that
apply to memory access in either VS-mode or VU-mode. The effective address is rs1. The
authorizing capability for the operation is ddc. A copy of the loaded value is written to rd.

Exceptions

CHERI fault exceptions occur when the authorizing capability fails one of the checks listed below; in
this case, CHERI data fault is reported in the mtval2 or stval2 TYPE field and the corresponding
code is written to CAUSE.

CAUSE Reason

Tag violation Authority capability tag set to 0, or has any reserved bits set

Seal violation Authority capability is sealed

Permission violation Authority capability does not grant R-permission or X-permission, or the AP field could
not have been produced by ACPERM
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CAUSE Reason

Invalid address
violation

The effective address is invalid according to Invalid address conversion

Bounds violation At least one byte accessed is outside the authority capability bounds, or the capability
has malformed bounds

Prerequisites for Capability Pointer Mode

Zcheripurecap, H

Prerequisites for Integer Pointer Mode

Zcheripurecap, Zcherihybrid, H

Capability Pointer Mode Operation

TBD

Integer Pointer Mode Operation

TBD
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Appendix A: CHERI System Implications

CHERI processors need memory systems which support the capability validity tags in memory.

There are, or will soon be, a wide range of CHERI systems in existence from tiny IoT devices up to
server chips.

There are two types of bus connections used in SoCs which contain CHERI CPUs:

1. Tag-aware busses, where the bus protocol is extended to carry the tag along with the data. This is
typically done using user defined bits in the protocol.

a. These busses will read tags from memory (if tags are present in the target memory) and return
them to the requestor.

b. These busses will write the tag to memory as an extension of the data write.

2. Non-tag aware busses, i.e. current non-CHERI aware busses.

a. Reads of tagged memory will not read the tag.

b. Writes to tagged memory will clear the tag of any CLEN-aligned CLEN-wide memory location
where any byte matches the memory write.

The fundamental rule for any CHERI system is that the tag and data are always accessed atomically.
For every naturally aligned CLEN-wide memory location, it must never be possible to:

1. Update any data bytes without also writing the tag

a. This implies clearing the tag if a non-CHERI aware bus master overwrites a capability in
memory

2. Read a tagged value with mismatched (stale or newer) data

3. Set the tag without also writing the data.

 Clearing tags in memory does not necessarily require updating the associated data.

A.1. Small CHERI system example

Figure 67. Example small CHERI system with local capability tag storage
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This example shows a minimum sized system where only the local memory is extended to support
capability tags. The tag-aware region is highlighted. All tags are created by the CHERI CPU, and only
stored locally. The memory is shared with the system, probably via a secure DMA, which is not tag
aware.

Therefore the connection between CPU and memory is tag-aware, and the connection to the system is
not tag aware.

All writes from the system port to the memory must clear any memory tags to follow the rules from
above.

A.2. Large CHERI system example

Figure 68. Example large CHERI system with tag cache
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In the case of a large CHERI SoC with caches, all the cached memory visible to the CHERI CPUs must
support tags. All memory is backed up by DRAM, and standard DRAM does not offer CLEN+1 bit words
and so a typical system will have a tag cache IP.

A region of DRAM is reserved for CHERI tag storage.

The tag cache sits on the boundary of the tag-aware and non-tag-aware memory domains, and it
provides the bridge between the two. It stores tags locally in its cache, and if there is a miss, it will
create an extra bus request to access the region of DRAM reserved for tag storage. Therefore in the
case of a miss a single access is split into two - one to access the data and one to access the tag.

The key property of the tag cache is to preserve the atomic access of data and tags in the memory
system so that all CPUs have a consistent view of tags and data.

The region of DRAM reserved for tag storage must be only accessible by the tag cache, therefore no
bus initiators should be able to write to the DRAM without the transactions passing through the tag
cache.

Therefore the GPUs and peripherals cannot write to the tag storage in the DRAM, or the tagged
memory data storage region. These constraints will be part of the design of the network-on-chip. It is
possible for the GPU and peripherals to read the tagged memory data storage region of the DRAM, if
required.



It would be possible to allow a DMA to access the tagged memory region of the
DRAM directly to allow swap to/from DRAM and external devices such as flash. This
will require the highest level of security in the SoC, as the CHERI protection model
relies on the integrity of the tags, and so the root-of-trust will need to authenticate
and encrypt the transfer, with anti-rollback protection.

For further information on the tag cache see (Efficient Tagged Memory, 2017).

A.2. Large CHERI system example | Page 262

RISC-V Specification for CHERI Extensions | © RISC-V International



A.3. Large CHERI pure-capability system example

Figure 69. Example large CHERI system with only tag-aware bus masters

In this example every DRAM access passes through the tag cache, and so all bus masters are tag-
aware and can access the tagged memory if permitted by the network-on-chip.

The system topology is simpler than in Figure 68.

There is likely to be a performance difference between the two systems. The main motivation for
Figure 68 is to avoid the GPU DRAM traffic needing to look-up every tag in the tag cache, potentially
adding overhead to every transaction.
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Appendix B: Extension summary

B.1. Zabhlrsc

Zabhlrsc is a separate extension independent of CHERI, but is required for CHERI software.

These instructions are not controlled by the CRE bits in mseccfg, menvcfg or senvcfg.

Table 44. Zabhlrsc instruction extension

Mnemonic Zabhlrsc Function

LR.H ✔ Load reserved half

LR.B ✔ Load reserved byte

SC.H ✔ Store conditional half

SC.B ✔ Store conditional byte

B.2. Zish4add

Zish4add is a separate extension independent of CHERI, but improves performance for CHERI code
as the natural data width of pointers has doubled.

These instructions are not controlled by the CRE bits in mseccfg, menvcfg or senvcfg.

Table 45. Zish4add instruction extension

Mnemonic Zish4add Function

SH4ADD ✔ shift and add, representability check in Capability Pointer Mode

SH4ADD.UW ✔ shift and add unsigned words, representability check in Capability Pointer Mode

B.3. Zcheripurecap

Zcheripurecap defines the set of instructions supported by a core when in Capability Pointer Mode.

Some instructions depend on the presence of other extensions, as listed in Table 46.

Table 46. Zcheripurecap instruction extension - Pure Capability Pointer Mode instructions

Mnemonic RV
32

RV
64

A Zab
hlrs
c

Zic
bo[
mp
z]

C
or
Zca

Zba Zcb Zc
mp

Zc
mt

Zfh F D V Function

LC ✔ ✔ Load capability

SC ✔ ✔ Store capability

C.LCSP ✔ ✔ ✔ Load capability, SP
relative

C.SCSP ✔ ✔ ✔ Store capability, SP
relative
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Mnemonic RV
32

RV
64

A Zab
hlrs
c

Zic
bo[
mp
z]

C
or
Zca

Zba Zcb Zc
mp

Zc
mt

Zfh F D V Function

C.LC ✔ ✔ ✔ Load capability

C.SC ✔ ✔ ✔ Store capability

C.LWSP ✔ ✔ ✔ Load word, SP
relative

C.SWSP ✔ ✔ ✔ Store word, SP
relative

C.LW ✔ ✔ ✔ Load word

C.SW ✔ ✔ ✔ Store word

C.LD ✔ ✔ Load double

C.SD ✔ ✔ Store double

C.LDSP ✔ ✔ Load double, SP
relative

C.SDSP ✔ ✔ Store double, SP
relative

LB ✔ ✔ Load signed byte

LH ✔ ✔ Load signed half

C.LH ✔ ✔ ✔ Load signed half

LW ✔ ✔ Load signed word

LBU ✔ ✔ Load unsigned byte

C.LBU ✔ ✔ ✔ Load unsigned byte

LHU ✔ ✔ Load unsigned half

C.LHU ✔ ✔ ✔ Load unsigned half

LWU ✔ Load unsigned word

LD ✔ Load double

SB ✔ ✔ Store byte

C.SB ✔ ✔ ✔ Store byte

SH ✔ ✔ Store half

C.SH ✔ ✔ ✔ Store half

SW ✔ ✔ Store word

SD ✔ Store double

AUIPC ✔ ✔ Add immediate to
PCC address
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Mnemonic RV
32

RV
64

A Zab
hlrs
c

Zic
bo[
mp
z]

C
or
Zca

Zba Zcb Zc
mp

Zc
mt

Zfh F D V Function

CADD ✔ ✔ Increment
capability address
by register,
representability
check

CADDI ✔ ✔ Increment
capability address
by immediate,
representability
check

SCADDR ✔ ✔ Replace capability
address,
representability
check

GCTAG ✔ ✔ Get tag field

GCPERM ✔ ✔ Get hperm and
uperm fields as 1-bit
per permission,
packed together

CMV ✔ ✔ Move capability
register

ACPERM ✔ ✔ AND capability
permissions
(expand to 1-bit per
permission before
ANDing)

GCHI ✔ ✔ Get metadata

SCHI ✔ ✔ Set metadata and
clear tag

SCEQ ✔ ✔ Full capability
bitwise compare, set
result true if both
are fully equal

SENTRY ✔ ✔ Seal capability

SCSS ✔ ✔ Set result true if cs1
and cs1 tags match
and cs2 bounds and
permissions are a
subset of cs1

CBLD ✔ ✔ Set cd to cs2 with
its tag set after
checking that cs2 is
a subset of cs1

B.3. Zcheripurecap | Page 266

RISC-V Specification for CHERI Extensions | © RISC-V International



Mnemonic RV
32

RV
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Zba Zcb Zc
mp

Zc
mt

Zfh F D V Function

SCBNDS ✔ ✔ Set register bounds
on capability with
rounding, clear tag
if rounding is
required

SCBNDSI ✔ ✔ Set immediate
bounds on
capability with
rounding, clear tag
if rounding is
required

SCBNDSR ✔ ✔ Set bounds on
capability with
rounding up as
required

CRAM ✔ ✔ Representable
Alignment Mask:
Return mask to
apply to address to
get the requested
bounds

GCBASE ✔ ✔ Get capability base

GCLEN ✔ ✔ Get capability
length

GCTYPE ✔ ✔ Get capability type

C.ADDI16SP ✔ ✔ ✔ ADD immediate to
stack pointer in
Integer Pointer
Mode, CADD in
Capability Pointer
Mode

C.ADDI4SPN ✔ ✔ ✔ ADD immediate to
stack pointer in
Integer Pointer
Mode, CADD in
Capability Pointer
Mode

C.MV ✔ ✔ ✔ Integer register
move in Integer
Pointer Mode,
capability register
move in Capability
Pointer Mode
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C.J ✔ ✔ ✔ Jump to PC+offset,
bounds check
minimum size target
instruction

C.JAL ✔ ✔ Jump to PC+offset,
bounds check
minimum size target
instruction, link to
cd

JAL ✔ ✔ ✔ Jump to PC+offset,
bounds check
minimum size target
instruction, link to
cd

JALR ✔ ✔ Indirect jump and
link, bounds check
minimum size target
instruction. In
Capability Pointer
Mode set
PCC=unseal(cs1),cd
=seal(nextPCC)

C.JALR ✔ ✔ ✔ Indirect jump and
link, bounds check
minimum size target
instruction. In
Capability Pointer
Mode set
PCC=unseal(cs1),cd
=seal(nextPCC)

C.JR ✔ ✔ ✔ Indirect jump,
bounds check
minimum size target
instruction. In
Capability Pointer
Mode set
PCC=unseal(cs1)

DRET ✔ ✔ Return from debug
mode, sets ddc from
dddc and pcc from
dpcc

MRET ✔ ✔ Return from
machine mode
handler, sets pcc
from mtvecc , needs
ASR-permission
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Zc
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SRET ✔ ✔ Return from
supervisor mode
handler, sets pcc
from stvecc, needs
ASR-permission

CSRRW ✔ ✔ CSR write - can also
read/write a full
capability through
an address alias

CSRRS ✔ ✔ CSR set - can also
read/write a full
capability through
an address alias

CSRRC ✔ ✔ CSR clear - can also
read/write a full
capability through
an address alias

CSRRWI ✔ ✔ CSR write - can also
read/write a full
capability through
an address alias

CSRRSI ✔ ✔ CSR set - can also
read/write a full
capability through
an address alias

CSRRCI ✔ ✔ CSR clear - can also
read/write a full
capability through
an address alias

CBO.INVAL ✔ ✔ ✔ Cache block
invalidate
(implemented as
clean)

CBO.CLEAN ✔ ✔ ✔ Cache block clean

CBO.FLUSH ✔ ✔ ✔ Cache block flush

CBO.ZERO ✔ ✔ ✔ Cache block zero

PREFETCH.R ✔ ✔ ✔ Prefetch instruction
cache line, always
valid

PREFETCH.W ✔ ✔ ✔ Prefetch read-only
data cache line

PREFETCH.I ✔ ✔ ✔ Prefetch writeable
data cache line
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mp

Zc
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LR.C ✔ ✔ ✔ Load reserved
capability

LR.D ✔ Load reserved
double

LR.W ✔ Load reserved word

LR.H ✔ ✔ ✔ Load reserved half

LR.B ✔ ✔ ✔ Load reserved byte

SC.C ✔ ✔ ✔ Store conditional
capability

SC.D ✔ Store conditional
double

SC.W ✔ Store conditional
word

SC.H ✔ ✔ ✔ Store conditional
half

SC.B ✔ ✔ ✔ Store conditional
byte

AMOSWAP.C ✔ ✔ ✔ Atomic swap of cap

AMO<OP>.W ✔ ✔ ✔ Atomic op of word

AMO<OP>.D ✔ ✔ Atomic op of double

C.FLD ✔ ✔ Load floating point
double

C.FLDSP ✔ ✔ Load floating point
double, sp relative

C.FSD ✔ ✔ Store floating point
double

C.FSDSP ✔ ✔ Store floating point
double, sp relative

FLH ✔ ✔ ✔ Load floating point
half capability

FSH ✔ ✔ ✔ Store floating point
half capability

FLW ✔ ✔ ✔ Load floating point
word capability

FSW ✔ ✔ ✔ Store floating point
word capability

FLD ✔ ✔ ✔ Load floating point
double capability
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FSD ✔ ✔ ✔ Store floating point
double capability

CM.PUSH ✔ ✔ ✔ Push integer stack
frame

CM.POP ✔ ✔ ✔ Pop integer stack
frame

CM.POPRET ✔ ✔ ✔ Pop integer stack
frame and return

CM.POPRETZ ✔ ✔ ✔ Pop integer stack
frame and return
zero

CM.MVSA01 ✔ ✔ ✔ Move two integer
registers

CM.MVA01S ✔ ✔ ✔ Move two integer
registers

CM.JALT ✔ ✔ ✔ Table jump and link

CM.JT ✔ ✔ ✔ Table jump

ADD.UW ✔ ✔ add unsigned words,
representability
check in Capability
Pointer Mode

SH1ADD ✔ ✔ ✔ shift and add,
representability
check in Capability
Pointer Mode

SH1ADD.UW ✔ ✔ shift and add
unsigned words,
representability
check in Capability
Pointer Mode

SH2ADD ✔ ✔ ✔ shift and add,
representability
check in Capability
Pointer Mode

SH2ADD.UW ✔ ✔ shift and add
unsigned words,
representability
check in Capability
Pointer Mode

SH3ADD ✔ ✔ ✔ shift and add,
representability
check in Capability
Pointer Mode
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SH3ADD.UW ✔ ✔ shift and add
unsigned words,
representability
check in Capability
Pointer Mode

SH4ADD ✔ shift and add,
representability
check in Capability
Pointer Mode

SH4ADD.UW ✔ shift and add
unsigned words,
representability
check in Capability
Pointer Mode

HLV.B ✔ ✔ Hypervisor virtual
machine load byte

HLV.BU ✔ ✔ Hypervisor virtual
machine load
unsigned byte

HLV.H ✔ ✔ Hypervisor virtual
machine load half
word

HLV.HU ✔ ✔ Hypervisor virtual
machine load
unsigned half word

HLV.W ✔ ✔ Hypervisor virtual
machine load word

HLV.WU ✔ Hypervisor virtual
machine load
unsigned word

HLV.D ✔ Hypervisor virtual
machine load
double

HLV.C ✔ ✔ Hypervisor virtual
machine load
capability

HSV.B ✔ ✔ Hypervisor virtual
machine store byte

HSV.H ✔ ✔ Hypervisor virtual
machine store half
word

HSV.W ✔ ✔ Hypervisor virtual
machine store word
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HSV.D ✔ Hypervisor virtual
machine store
double

HSV.C ✔ ✔ Hypervisor virtual
machine store
capability

HLVX.HU ✔ ✔ Hypervisor virtual
machine load half
word from
executable memory

HLVX.WU ✔ ✔ Hypervisor virtual
machine load word
from executable
memory

B.4. Zcherihybrid

Zcherihybrid defines the set of instructions added by the Integer Pointer Mode, in addition to
Zcheripurecap.

 Zcherihybrid implies Zcheripurecap

Table 47. Zcherihybrid instruction extension - Integer Pointer Mode instructions

Mnemonic RV
32

RV
64

A Zab
hlrs
c

Zic
bo[
mp
z]

C
or
Zca

Zba Zcb Zc
mp

Zc
mt

Zfh F D V Function

SCMODE ✔ ✔ Set the mode bit of
a capability, no
permissions
required

GCMODE ✔ ✔ Get the mode bit of
a capability, no
permissions
required

MODESW.CAP ✔ ✔ Directly switch
mode into
Capability Pointer
Mode

MODESW.INT ✔ ✔ Directly switch
mode into Integer
Pointer Mode

C.FLW ✔ ✔ Load floating point
word capability
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C.FLWSP ✔ ✔ Load floating point
word, sp relative

C.FSW ✔ ✔ Store floating point
word capability

C.FSWSP ✔ ✔ Store floating point
word, sp relative

C.FLD ✔ ✔ Load floating point
double

C.FLDSP ✔ ✔ Load floating point
double, sp relative

C.FSD ✔ ✔ Store floating point
double

C.FSDSP ✔ ✔ Store floating point
double, sp relative
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Appendix C: Capability Width CSR Summary

Table 48. CSRs renamed and extended to capability width

CLEN CSR Alias Prerequisites

dpcc dpc Sdext

dscratch0c dscratch0 Sdext

dscratch1c dscratch1 Sdext

mtvecc mtvec M-mode

mscratchc mscratch M-mode

mepcc mepc M-mode

stvecc stvec S-mode

sscratchc sscratch S-mode

sepcc sepc S-mode

vstvecc vstvec H

vsscratchc vsscratch H

vsepcc vsepc H

jvtc jvt Zcmt

utidc utid Zstid

stidc stid Zstid

vstidc vstid Zstid

mtidc mtid Zstid

Table 49. Action taken on writing to extended CSRs**

CLEN CSR Action on XLEN write Action on CLEN write

dpcc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

dscratch0c Update the CSR using SCADDR. direct write

dscratch1c Update the CSR using SCADDR. direct write

mtvecc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

mscratchc Update the CSR using SCADDR. direct write

mepcc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change
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CLEN CSR Action on XLEN write Action on CLEN write

stvecc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

sscratchc Update the CSR using SCADDR. direct write

sepcc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

vstvecc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

vsscratchc Update the CSR using SCADDR. direct write

vsepcc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

jvtc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

utidc Update the CSR using SCADDR. direct write

stidc Update the CSR using SCADDR. direct write

vstidc Update the CSR using SCADDR. direct write

mtidc Update the CSR using SCADDR. direct write

* The vector range check is to ensure that vectored entry to the handler is within bounds of the
capability written to Xtvecc. The check on writing must include the lowest (0 offset) and highest
possible offset (e.g. 64 * MXLEN bits where HICAUSE=16).

** XLEN bits of extended capability CSRs are written when executing CSRRWI, CSRRC, CSRRS, CSRRCI
or CSRRSI regardless of the CHERI execution mode. When using CSRRW, CLEN bits are written when
the CHERI execution mode is Capability Pointer Mode and XLEN bits are written when the mode is
Integer Pointer Mode; therefore, writing XLEN bits with CSRRW is only possible when Zcherihybrid is
implemented.

Table 50. Action taken on writing to new capability CSRs+

CLEN CSR Action on XLEN write Action on CLEN write

dddc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change
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CLEN CSR Action on XLEN write Action on CLEN write

mtdc Update the CSR using SCADDR. direct write

stdc Update the CSR using SCADDR. direct write

vstdc Update the CSR using SCADDR. direct write

ddc Apply Invalid address conversion. Always
update the CSR with SCADDR even if the
address didn’t change.

Apply Invalid address conversion and
update the CSR with the result if the
address changed, direct write if address
didn’t change

dinfc Ignore Ignore

+ XLEN bits of new capability CSRs added in Zcherihybrid are written when executing CSRRWI, CSRRC,
CSRRS, CSRRCI or CSRRSI regardless of the CHERI execution mode. CLEN bits are always written
when using CSRRW regardless of the CHERI execution mode.


Implementations which allow misa.C to be writable need to legalize Xepcc on
reading if the misa.C value has changed since the value was written as this can cause
the read value of bit [1] to change state.

Table 51. CLEN-wide CSRs storing executable vectors or data pointers

CLEN CSR Executable Vector Data Pointer Unseal On Execution

dpcc ✔ ✔

mtvecc ✔

mepcc ✔ ✔

stvecc ✔

sepcc ✔ ✔

vstvecc ✔

vsepcc ✔ ✔

jvtc ✔

dddc ✔

ddc ✔

Some CSRs store executable vectors or data pointers as shown in Table 51. These CSRs do not need to
store the full width address on RV64. If they store fewer address bits then writes are subject to the
invalid address check in Invalid address conversion.

Table 52. CLEN-wide CSRs which store all CLEN+1 bits

CLEN CSR Store full metadata

dscratch0c ✔

dscratch1c ✔

mscratchc ✔

sscratchc ✔

vsscratchc ✔
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CLEN CSR Store full metadata

dinfc ✔

utidc ✔

stidc ✔

vstidc ✔

mtidc ✔

Table 52 shows which CLEN-wide CSRs store all CLEN+1 bits. No other CLEN-wide CSRs store any
reserved bits. All CLEN-wide CSRs store all non-reserved metadata fields.

Table 53. All CLEN-wide CSRs. Zcheripurecap is a prerequisite for all CSRs in this table

CLEN CSR Prerequ
isites

Addres
s

Permissions Reset Value Description

dpcc Sdext 0x7b1 DRW tag=0, otherwise
undefined

Debug Program Counter Capability

dscratch0c Sdext 0x7b2 DRW tag=0, otherwise
undefined

Debug Scratch Capability 0

dscratch1c Sdext 0x7b3 DRW tag=0, otherwise
undefined

Debug Scratch Capability 1

mtvecc M-mode 0x305 MRW, ASR-
permission

Infinite Machine Trap-Vector Base-Address
Capability

mscratchc M-mode 0x340 MRW, ASR-
permission

tag=0, otherwise
undefined

Machine Scratch Capability

mepcc M-mode 0x341 MRW, ASR-
permission

Infinite Machine Exception Program Counter
Capability

stvecc S-mode 0x105 SRW, ASR-
permission

Infinite Supervisor Trap-Vector Base-
Address Capability

sscratchc S-mode 0x140 SRW, ASR-
permission

tag=0, otherwise
undefined

Supervisor Scratch Capability

sepcc S-mode 0x141 SRW, ASR-
permission

Infinite Supervisor Exception Program
Counter Capability

vstvecc H 0x205 HRW, ASR-
permission

Infinite Virtual Supervisor Trap-Vector Base-
Address Capability

vsscratchc H 0x240 HRW, ASR-
permission

tag=0, otherwise
undefined

Virtual Supervisor Scratch Capability

vsepcc H 0x241 HRW, ASR-
permission

Infinite Virtual Supervisor Exception
Program Counter Capability

jvtc Zcmt 0x017 URW tag=0, otherwise
undefined

Jump Vector Table Capability

dddc Zcherih
ybrid,
Sdext

0x7bc DRW tag=0, otherwise
undefined

Debug Default Data Capability
(saved/restored on debug mode
entry/exit)
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CLEN CSR Prerequ
isites

Addres
s

Permissions Reset Value Description

mtdc Zcherih
ybrid,
M-mode

0x74c MRW, ASR-
permission

tag=0, otherwise
undefined

Machine Trap Data Capability
(scratch register)

stdc Zcherih
ybrid, S-
mode

0x163 SRW, ASR-
permission

tag=0, otherwise
undefined

Supervisor Trap Data Capability
(scratch register)

vstdc Zcherih
ybrid, H

0x245 HRW, ASR-
permission

tag=0, otherwise
undefined

Virtual Supervisor Trap Data
Capability (scratch register)

ddc Zcherih
ybrid

0x416 URW Infinite User Default Data Capability

dinfc Sdext 0x7bd DRW Infinite Source of Infinite capability in
debug mode, writes are ignored

utidc Zstid 0x480 Read: U, Write: U,
ASR-permission

tag=0, otherwise
undefined

User thread ID

stidc Zstid 0x580 Read: S, Write: S,
ASR-permission

tag=0, otherwise
undefined

Supervisor thread ID

vstidc Zstid 0xA80 Read: VS, Write:
VS, ASR-
permission

tag=0, otherwise
undefined

Virtual supervisor thread ID

mtidc Zstid 0x780 Read: M, Write: M,
ASR-permission

tag=0, otherwise
undefined

Machine thread ID
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Appendix D: Instructions and CHERI Execution Mode

Table 54, Table 55 and Table 56 summarize on which CHERI execution mode each instruction may be
executed in.

Table 54. Instructions valid for execution in Capability Pointer Mode only

Mnemonic Zcherihybrid Zcheripurecap Function

C.LCSP ✔ Load capability, SP relative

C.SCSP ✔ Store capability, SP relative

C.LC ✔ Load capability

C.SC ✔ Store capability

Table 55. Instructions valid for execution in Integer Pointer Mode only

Mnemonic Zcherihybrid Zcheripurecap Function

C.FLW ✔ Load floating point word capability

C.FLWSP ✔ Load floating point word, sp relative

C.FSW ✔ Store floating point word capability

C.FSWSP ✔ Store floating point word, sp relative

C.FLD ✔ Load floating point double

C.FLDSP ✔ Load floating point double, sp relative

C.FSD ✔ Store floating point double

C.FSDSP ✔ Store floating point double, sp relative

Table 56. Instructions valid for execution in both Integer Pointer Mode and Capability Pointer Mode

Mnemonic Zcherihybrid Zcheripurecap Function

LC ✔ ✔ Load capability

SC ✔ ✔ Store capability

C.LWSP ✔ ✔ Load word, SP relative

C.SWSP ✔ ✔ Store word, SP relative

C.LW ✔ ✔ Load word

C.SW ✔ ✔ Store word

C.LD ✔ ✔ Load double

C.SD ✔ ✔ Store double

C.LDSP ✔ ✔ Load double, SP relative

C.SDSP ✔ ✔ Store double, SP relative

LB ✔ ✔ Load signed byte

LH ✔ ✔ Load signed half

C.LH ✔ ✔ Load signed half

LW ✔ ✔ Load signed word
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Mnemonic Zcherihybrid Zcheripurecap Function

LBU ✔ ✔ Load unsigned byte

C.LBU ✔ ✔ Load unsigned byte

LHU ✔ ✔ Load unsigned half

C.LHU ✔ ✔ Load unsigned half

LWU ✔ ✔ Load unsigned word

LD ✔ ✔ Load double

SB ✔ ✔ Store byte

C.SB ✔ ✔ Store byte

SH ✔ ✔ Store half

C.SH ✔ ✔ Store half

SW ✔ ✔ Store word

SD ✔ ✔ Store double

AUIPC ✔ ✔ Add immediate to PCC address

CADD ✔ ✔ Increment capability address by register, representability
check

CADDI ✔ ✔ Increment capability address by immediate,
representability check

SCADDR ✔ ✔ Replace capability address, representability check

GCTAG ✔ ✔ Get tag field

GCPERM ✔ ✔ Get hperm and uperm fields as 1-bit per permission,
packed together

CMV ✔ ✔ Move capability register

ACPERM ✔ ✔ AND capability permissions (expand to 1-bit per
permission before ANDing)

GCHI ✔ ✔ Get metadata

SCHI ✔ ✔ Set metadata and clear tag

SCEQ ✔ ✔ Full capability bitwise compare, set result true if both are
fully equal

SENTRY ✔ ✔ Seal capability

SCSS ✔ ✔ Set result true if cs1 and cs1 tags match and cs2 bounds
and permissions are a subset of cs1

CBLD ✔ ✔ Set cd to cs2 with its tag set after checking that cs2 is a
subset of cs1

SCBNDS ✔ ✔ Set register bounds on capability with rounding, clear tag
if rounding is required

SCBNDSI ✔ ✔ Set immediate bounds on capability with rounding, clear
tag if rounding is required

SCBNDSR ✔ ✔ Set bounds on capability with rounding up as required
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Mnemonic Zcherihybrid Zcheripurecap Function

CRAM ✔ ✔ Representable Alignment Mask: Return mask to apply to
address to get the requested bounds

GCBASE ✔ ✔ Get capability base

GCLEN ✔ ✔ Get capability length

GCTYPE ✔ ✔ Get capability type

SCMODE ✔ Set the mode bit of a capability, no permissions required

GCMODE ✔ Get the mode bit of a capability, no permissions required

MODESW.CAP ✔ Directly switch mode into Capability Pointer Mode

MODESW.INT ✔ Directly switch mode into Integer Pointer Mode

C.ADDI16SP ✔ ✔ ADD immediate to stack pointer in Integer Pointer
Mode, CADD in Capability Pointer Mode

C.ADDI4SPN ✔ ✔ ADD immediate to stack pointer in Integer Pointer
Mode, CADD in Capability Pointer Mode

C.MV ✔ ✔ Integer register move in Integer Pointer Mode, capability
register move in Capability Pointer Mode

C.J ✔ ✔ Jump to PC+offset, bounds check minimum size target
instruction

C.JAL ✔ ✔ Jump to PC+offset, bounds check minimum size target
instruction, link to cd

JAL ✔ ✔ Jump to PC+offset, bounds check minimum size target
instruction, link to cd

JALR ✔ ✔ Indirect jump and link, bounds check minimum size
target instruction. In Capability Pointer Mode set
PCC=unseal(cs1),cd=seal(nextPCC)

C.JALR ✔ ✔ Indirect jump and link, bounds check minimum size
target instruction. In Capability Pointer Mode set
PCC=unseal(cs1),cd=seal(nextPCC)

C.JR ✔ ✔ Indirect jump, bounds check minimum size target
instruction. In Capability Pointer Mode set
PCC=unseal(cs1)

DRET ✔ ✔ Return from debug mode, sets ddc from dddc and pcc
from dpcc

MRET ✔ ✔ Return from machine mode handler, sets pcc from
mtvecc , needs ASR-permission

SRET ✔ ✔ Return from supervisor mode handler, sets pcc from
stvecc, needs ASR-permission

CSRRW ✔ ✔ CSR write - can also read/write a full capability through
an address alias

CSRRS ✔ ✔ CSR set - can also read/write a full capability through an
address alias

CSRRC ✔ ✔ CSR clear - can also read/write a full capability through
an address alias
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Mnemonic Zcherihybrid Zcheripurecap Function

CSRRWI ✔ ✔ CSR write - can also read/write a full capability through
an address alias

CSRRSI ✔ ✔ CSR set - can also read/write a full capability through an
address alias

CSRRCI ✔ ✔ CSR clear - can also read/write a full capability through
an address alias

CBO.INVAL ✔ ✔ Cache block invalidate (implemented as clean)

CBO.CLEAN ✔ ✔ Cache block clean

CBO.FLUSH ✔ ✔ Cache block flush

CBO.ZERO ✔ ✔ Cache block zero

PREFETCH.R ✔ ✔ Prefetch instruction cache line, always valid

PREFETCH.W ✔ ✔ Prefetch read-only data cache line

PREFETCH.I ✔ ✔ Prefetch writeable data cache line

LR.C ✔ ✔ Load reserved capability

LR.D ✔ ✔ Load reserved double

LR.W ✔ ✔ Load reserved word

LR.H ✔ ✔ Load reserved half

LR.B ✔ ✔ Load reserved byte

SC.C ✔ ✔ Store conditional capability

SC.D ✔ ✔ Store conditional double

SC.W ✔ ✔ Store conditional word

SC.H ✔ ✔ Store conditional half

SC.B ✔ ✔ Store conditional byte

AMOSWAP.C ✔ ✔ Atomic swap of cap

AMO<OP>.W ✔ ✔ Atomic op of word

AMO<OP>.D ✔ ✔ Atomic op of double

C.FLD ✔ ✔ Load floating point double

C.FLDSP ✔ ✔ Load floating point double, sp relative

C.FSD ✔ ✔ Store floating point double

C.FSDSP ✔ ✔ Store floating point double, sp relative

FLH ✔ ✔ Load floating point half capability

FSH ✔ ✔ Store floating point half capability

FLW ✔ ✔ Load floating point word capability

FSW ✔ ✔ Store floating point word capability

FLD ✔ ✔ Load floating point double capability

FSD ✔ ✔ Store floating point double capability
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Mnemonic Zcherihybrid Zcheripurecap Function

CM.PUSH ✔ ✔ Push integer stack frame

CM.POP ✔ ✔ Pop integer stack frame

CM.POPRET ✔ ✔ Pop integer stack frame and return

CM.POPRETZ ✔ ✔ Pop integer stack frame and return zero

CM.MVSA01 ✔ ✔ Move two integer registers

CM.MVA01S ✔ ✔ Move two integer registers

CM.JALT ✔ ✔ Table jump and link

CM.JT ✔ ✔ Table jump

ADD.UW ✔ ✔ add unsigned words, representability check in Capability
Pointer Mode

SH1ADD ✔ ✔ shift and add, representability check in Capability
Pointer Mode

SH1ADD.UW ✔ ✔ shift and add unsigned words, representability check in
Capability Pointer Mode

SH2ADD ✔ ✔ shift and add, representability check in Capability
Pointer Mode

SH2ADD.UW ✔ ✔ shift and add unsigned words, representability check in
Capability Pointer Mode

SH3ADD ✔ ✔ shift and add, representability check in Capability
Pointer Mode

SH3ADD.UW ✔ ✔ shift and add unsigned words, representability check in
Capability Pointer Mode

SH4ADD ✔ ✔ shift and add, representability check in Capability
Pointer Mode

SH4ADD.UW ✔ ✔ shift and add unsigned words, representability check in
Capability Pointer Mode

HLV.B ✔ ✔ Hypervisor virtual machine load byte

HLV.BU ✔ ✔ Hypervisor virtual machine load unsigned byte

HLV.H ✔ ✔ Hypervisor virtual machine load half word

HLV.HU ✔ ✔ Hypervisor virtual machine load unsigned half word

HLV.W ✔ ✔ Hypervisor virtual machine load word

HLV.WU ✔ ✔ Hypervisor virtual machine load unsigned word

HLV.D ✔ ✔ Hypervisor virtual machine load double

HLV.C ✔ ✔ Hypervisor virtual machine load capability

HSV.B ✔ ✔ Hypervisor virtual machine store byte

HSV.H ✔ ✔ Hypervisor virtual machine store half word

HSV.W ✔ ✔ Hypervisor virtual machine store word

HSV.D ✔ ✔ Hypervisor virtual machine store double
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Mnemonic Zcherihybrid Zcheripurecap Function

HSV.C ✔ ✔ Hypervisor virtual machine store capability

HLVX.HU ✔ ✔ Hypervisor virtual machine load half word from
executable memory

HLVX.WU ✔ ✔ Hypervisor virtual machine load word from executable
memory

Table 57. Mnemonics with the same encoding but mapped to different instructions in Integer Pointer Mode
and Capability Pointer Mode

Mnemonic Integer Pointer Mode mnemonic RV32 Integer Pointer Mode mnemonic RV64

C.LCSP C.FLWSP C.FLDSP

C.SCSP C.FSWSP C.FSDSP

C.LC C.FLW C.FLD

C.SC C.FSW C.FSD

Table 58. Instruction encodings which vary depending on the current XLEN

Mnemonic Function

C.LCSP Load capability, SP relative

C.SCSP Store capability, SP relative

C.LC Load capability

C.SC Store capability


MODESW.CAP, MODESW.INT and SCMODE only exist in Capability Pointer Mode if
Integer Pointer Mode is also present. A hart does not support the M-bit if it does not
implement the Zcherihybrid extension.

Table 59. Conditions for detecting illegal CHERI instructions

Mnemonic illegal insn if (1) OR illegal insn if (2) OR illegal insn if (3)

C.J MODE==D (optional)

C.JAL MODE==D (optional)

JAL MODE==D (optional)

JALR MODE==D (optional)

C.JALR MODE==D (optional)

C.JR MODE==D (optional)

DRET MODE<D

MRET MODE<M PCC.ASR==0

SRET MODE<S PCC.ASR==0 mstatus.TSR==1 AND
MODE==S

CSRRW CSR permission fault

CSRRS CSR permission fault
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Mnemonic illegal insn if (1) OR illegal insn if (2) OR illegal insn if (3)

CSRRC CSR permission fault

CSRRWI CSR permission fault

CSRRSI CSR permission fault

CSRRCI CSR permission fault

CBO.INVAL MODE<M AND
menvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

CBO.CLEAN MODE<M AND
menvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

CBO.FLUSH MODE<M AND
menvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

CBO.ZERO MODE<M AND
menvcfg.CBIE[0]==0

MODE<S AND
senvcfg.CBIE[0]==0

C.FLW Xstatus.fs==0

C.FLWSP Xstatus.fs==0

C.FSW Xstatus.fs==0

C.FSWSP Xstatus.fs==0

C.FLD Xstatus.fs==0

C.FLDSP Xstatus.fs==0

C.FLD Xstatus.fs==0

C.FLDSP Xstatus.fs==0

C.FSD Xstatus.fs==0

C.FSDSP Xstatus.fs==0

C.FSD Xstatus.fs==0

C.FSDSP Xstatus.fs==0

FLH Xstatus.fs==0

FSH Xstatus.fs==0

FLW Xstatus.fs==0

FSW Xstatus.fs==0

FLD Xstatus.fs==0

FSD Xstatus.fs==0

HLV.B V=1 MODE==U AND hstatus.HU=0

HLV.BU V=1 MODE==U AND hstatus.HU=0

HLV.H V=1 MODE==U AND hstatus.HU=0

HLV.HU V=1 MODE==U AND hstatus.HU=0

HLV.W V=1 MODE==U AND hstatus.HU=0

HLV.WU V=1 MODE==U AND hstatus.HU=0
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Mnemonic illegal insn if (1) OR illegal insn if (2) OR illegal insn if (3)

HLV.D V=1 MODE==U AND hstatus.HU=0

HLV.C V=1 MODE==U AND hstatus.HU=0

HSV.B V=1 MODE==U AND hstatus.HU=0

HSV.H V=1 MODE==U AND hstatus.HU=0

HSV.W V=1 MODE==U AND hstatus.HU=0

HSV.D V=1 MODE==U AND hstatus.HU=0

HSV.C V=1 MODE==U AND hstatus.HU=0

HLVX.HU V=1 MODE==U AND hstatus.HU=0

HLVX.WU V=1 MODE==U AND hstatus.HU=0
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Table 60 summarizes the behavior of a hart supporting both Zcheripurecap and Zcherihybrid in
connection with the CRE and the CHERI execution mode while in a privilege other than debug mode.

Table 60. Hart’s behavior depending on the effective CRE and CHERI execution mode

CRE pcc.m Authorizing
capability1

New CHERI
CSRs2

Extended
CHERI
CSRs3

CHERI
instructions4

Compressed
instructions
remapped5

Note

0 X6 ddc or pcc ✘ XLEN ✘ No Fully RISC-V
compatible7

1 1 ddc or pcc CLEN XLEN ✔ No Integer
Pointer Mode

1 0 Instruction’s
capability
operand

CLEN CLEN ✔ Yes Capability
Pointer Mode

1 Authorizing capability for memory access instructions.

2 Whether accesses to new CHERI CSRs are permitted or raise illegal instruction exceptions. If
permitted, then the bit width of the CSR read/write with CSRRW is indicated.

3 The bit width of accesses to extended CHERI CSRs using CSRRW.

4 Whether CHERI instructions are permitted or raise illegal instruction exceptions.

5 See Table 57 for a list of remapped instructions.

6 pcc.m is irrelevant when CRE=0.

7 The hart is fully compatible with standard RISC-V when CRE=0 provided that pcc, mtvecc, mepcc,
stvecc, sepcc, vstvecc, vsepcc and ddc hold the Infinite capability.
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