
RISC-V Specification for CHERI
Extensions

Authors: Thomas Aird, Hesham Almatary, Andres Amaya Garcia, John Baldwin, Paul Buxton,
David Chisnall, Jessica Clarke, Brooks Davis, Nathaniel Wesley Filardo, Franz A. Fuchs,

Timothy Hutt, Alexandre Joannou, Martin Kaiser, Tariq Kurd, Ben Laurie, Marno van der
Maas, Maja Malenko, A. Theodore Markettos, David McKay, Jamie Melling, Stuart Menefy,
Simon W. Moore, Peter G. Neumann, Robert Norton, Alexander Richardson, Michael Roe,

Peter Rugg, Peter Sewell, Carl Shaw, Ricki Tura, Robert N. M. Watson, Toby Wenman,
Jonathan Woodruff, Jason Zhijingcheng Yu

Version v0.9.6.1, 20251215: Intermediate Release



Table of Contents

Preamble .................................................................................................................................................................................................. 1
Copyright and license information............................................................................................................................................. 2
Contributors .......................................................................................................................................................................................... 3
1. Introduction ...................................................................................................................................................................................... 5

1.1. CHERI Concepts and Terminology ................................................................................................................................... 5
1.2. CHERI Extensions to RISC-V .............................................................................................................................................. 5

1.2.1. Stable Extensions and Specifications ....................................................................................................................... 5
1.2.2. Experimental Extensions and Specifications ....................................................................................................... 7

Chapters for the unprivileged specification............................................................................................................................... 8
2. RV32Y and RV64Y Base Capability Instruction Sets, Version 1.0....................................................................... 9

2.1. CHERI Overview ................................................................................................................................................................. 9
2.2. CHERI protection model................................................................................................................................................. 9
2.3. Capability Registers and Format.................................................................................................................................. 9

2.3.1. Address ........................................................................................................................................................................ 10
2.3.2. Capability Tag............................................................................................................................................................ 11
2.3.3. Capability tags in registers.................................................................................................................................... 11
2.3.4. Capability tags in memory .................................................................................................................................... 11
2.3.5. Capability Bounds ................................................................................................................................................... 12
2.3.6. Deriving New Bounds ............................................................................................................................................ 12
2.3.7. Representability and Updating the Address.................................................................................................. 13
2.3.8. Memory space ........................................................................................................................................................... 14
2.3.9. Capability Type (CT) .............................................................................................................................................. 14
2.3.10. Architectural Permissions (AP) ....................................................................................................................... 16

2.3.10.1. Permission Transitions ............................................................................................................................... 17
2.3.11. Software-Defined Permissions (SDP) ............................................................................................................. 17
2.3.12. Special Capabilities ............................................................................................................................................... 18

2.3.12.1. Root Capabilities ............................................................................................................................................ 18
2.3.12.2. NULL Capability............................................................................................................................................ 18

2.4. CHERI encoding formats .............................................................................................................................................. 18
2.5. Integrity of Capabilities ................................................................................................................................................ 20
2.6. Extended State................................................................................................................................................................... 21

2.6.1. General Purpose Registers .................................................................................................................................... 21
2.6.2. The Program Counter Capability (pc) ............................................................................................................. 21
2.6.3. Added CSRs............................................................................................................................................................... 22

2.6.3.1. User Thread Identifier Capability (utidc).............................................................................................. 22
2.6.4. Extended CSRs......................................................................................................................................................... 23

2.7. Capability checks ............................................................................................................................................................. 24
2.8. Added Instructions ......................................................................................................................................................... 25

2.8.1. Instructions to Update The Capability Pointer............................................................................................ 25
2.8.1.1. ADDIY .................................................................................................................................................................. 26
2.8.1.2. ADDY................................................................................................................................................................... 26
2.8.1.3. YADDRW ........................................................................................................................................................... 28

2.8.2. Instructions to Manipulate Capabilities ........................................................................................................ 29



2.8.2.1. YPERMC ............................................................................................................................................................ 30
2.8.2.2. YMV..................................................................................................................................................................... 32
2.8.2.3. PACKY ................................................................................................................................................................ 33
2.8.2.4. YHIW .................................................................................................................................................................. 33
2.8.2.5. YBNDSWI.......................................................................................................................................................... 34
2.8.2.6. YBNDSW ........................................................................................................................................................... 34
2.8.2.7. YBNDSRW ........................................................................................................................................................ 35
2.8.2.8. YSUNSEAL........................................................................................................................................................ 37

2.8.3. Instructions to Decode Capability Bounds ................................................................................................... 39
2.8.3.1. YBASER .............................................................................................................................................................. 40
2.8.3.2. YLENR................................................................................................................................................................. 41

2.8.4. Instructions to Extract Capability Fields ....................................................................................................... 42
2.8.4.1. YTAGR ................................................................................................................................................................. 43
2.8.4.2. YPERMR............................................................................................................................................................. 44
2.8.4.3. YTYPER .............................................................................................................................................................. 45
2.8.4.4. SRLIY .................................................................................................................................................................. 46
2.8.4.5. YHIR .................................................................................................................................................................... 46

2.8.5. Miscellaneous Instructions to Handle Capability Data ........................................................................... 48
2.8.5.1. SYEQ.................................................................................................................................................................... 49
2.8.5.2. YLT...................................................................................................................................................................... 50
2.8.5.3. YAMASK ............................................................................................................................................................. 51

2.8.6. Instructions to Load and Store Capability Data ......................................................................................... 52
2.8.6.1. LY .......................................................................................................................................................................... 53
2.8.6.2. SY ......................................................................................................................................................................... 56

2.9. Changes to Existing RISC-V Base ISA Instructions ........................................................................................... 59
2.9.1. Changes to load/stores .......................................................................................................................................... 59
2.9.2. Changes to PC ......................................................................................................................................................... 60
2.9.3. AUIPC (RVY) ............................................................................................................................................................. 61
2.9.4. The AUIPC Shift ...................................................................................................................................................... 61
2.9.5. JAL (RVY) ................................................................................................................................................................... 63
2.9.6. JALR (RVY) ................................................................................................................................................................ 64
2.9.7. Changes to BEQ, BNE ........................................................................................................................................... 65

3. "Zysentry" Extension for Creation of Sentry Capabilities .................................................................................... 66
3.1. Interaction with JALR (RVY)........................................................................................................................................ 66
3.2. Added instructions ......................................................................................................................................................... 66

3.2.1. YSENTRY ................................................................................................................................................................... 66
4. "Zybld" Extension for Building Capabilities ............................................................................................................... 68

4.1. Added instructions .......................................................................................................................................................... 69
4.1.1. YBLD ............................................................................................................................................................................. 70

5. "Zytopr" Extension for Extracting the Top Bound.................................................................................................... 72
5.1. Added instructions........................................................................................................................................................... 73

5.1.1. YTOPR........................................................................................................................................................................... 74
6. "Zyhybrid" Extension for CHERI Execution Modes................................................................................................. 75

6.1. CHERI Execution Modes ............................................................................................................................................... 75
6.1.1. CHERI Execution Mode Encoding .................................................................................................................... 76



6.1.2. Changing CHERI Execution Mode ................................................................................................................... 76
6.1.3. Representation of the M-bit in the capability encoding ........................................................................... 77
6.1.4. Observing the CHERI Execution Mode ........................................................................................................... 77

6.2. Added instructions.......................................................................................................................................................... 78
6.2.1. YMODEW ................................................................................................................................................................... 79
6.2.2. YMODER ................................................................................................................................................................... 80
6.2.3. YMODESWI............................................................................................................................................................... 81
6.2.4. YMODESWY.............................................................................................................................................................. 81

6.3. Added State......................................................................................................................................................................... 81
6.3.1. Default Data Capability CSR (ddc) ................................................................................................................... 82

6.4. Changes to Zicsr Instructions..................................................................................................................................... 82
6.4.1. CSRRWI (RVY) ......................................................................................................................................................... 83
6.4.2. CSRRS (RVY) ............................................................................................................................................................ 83
6.4.3. CSRRSI (RVY)........................................................................................................................................................... 83
6.4.4. CSRRC (RVY) ............................................................................................................................................................ 83
6.4.5. CSRRCI (RVY) .......................................................................................................................................................... 83
6.4.6. CSRRW (RVY) .......................................................................................................................................................... 85

7. "Zabhlrsc" Extension for Byte and Halfword Load Reserved/Store Conditional, Version 0.9............. 86
7.1. Byte and Halfword Atomic Load Reserved/Store Conditional Instructions ............................................. 86

8. Vector "V" Extension (RVY)................................................................................................................................................. 87
9. "Zylevels1" Extension for CHERI 2-Level Information Flow Control.............................................................. 88

9.1. Added Architectural Permissions (AP) Bits ........................................................................................................... 88
9.2. The Capability Global (GL) Flag ................................................................................................................................ 88
9.3. Interaction with Root Capabilities ........................................................................................................................... 89
9.4. Interaction with YPERMC and YPERMR .............................................................................................................. 89

9.4.1. YPERMC and the Capability Global (GL) Flag ............................................................................................. 89
9.4.2. Additional YPERMC rules................................................................................................................................... 89

9.5. Interaction with LY ........................................................................................................................................................ 90
9.6. Interaction with SY ........................................................................................................................................................ 90
9.7. Interaction with YLT ..................................................................................................................................................... 90
9.8. Interaction with YBLD ................................................................................................................................................. 90
9.9. Interaction with YSUNSEAL ....................................................................................................................................... 91
9.10. Summary Of System Behavior ................................................................................................................................. 91

10. "Zyseal" Extension for CHERI Capability (Un)Sealing ........................................................................................ 92
10.1. Explicit Sealing and Unsealing Operations ......................................................................................................... 92
10.2. Usable CT-field Values Are Encoding Specified ............................................................................................... 92
10.3. Single Address Space Encodings............................................................................................................................. 92
10.4. Added Architectural Permissions (AP) Bits ........................................................................................................ 92
10.5. Interaction with YPERMC and YPERMR ............................................................................................................ 93
10.6. Added Instructions....................................................................................................................................................... 93

10.6.1. YSEAL ........................................................................................................................................................................ 94
10.6.2. YUNSEAL ................................................................................................................................................................ 95

11. "Zybndsrdw" Extension for Bounding to Representable Lengths.................................................................... 96
11.1. YBNDSRDW ...................................................................................................................................................................... 97

12. The RV64Y_Lymw14rc1ps Capability Base Extension for RV64Y, Version 1.0........................................ 98



12.1. Capability Encoding...................................................................................................................................................... 98
12.1.1. Capability Encoding Summary......................................................................................................................... 98
12.1.2. Architectural Permissions (AP) Encoding ................................................................................................... 99
12.1.3. Capability Mode (M) Encoding ..................................................................................................................... 100
12.1.4. Software-Defined Permissions (SDP) Encoding ..................................................................................... 100
12.1.5. Capability Type (CT) Encoding ..................................................................................................................... 100
12.1.6. Bounds (EF, T, TE, B, BE) Encoding ............................................................................................................ 100

12.1.6.1. Concept........................................................................................................................................................... 100
12.1.6.2. Decoding ......................................................................................................................................................... 101
12.1.6.3. Top bound MSB correction .................................................................................................................... 103
12.1.6.4. Malformed Capability Bounds .............................................................................................................. 103

12.2. Representable Range Check .................................................................................................................................... 104
12.2.1. Practical Information......................................................................................................................................... 104

12.3. Encoding of Special Capabilities ........................................................................................................................... 106
12.3.1. NULL Capability Encoding ............................................................................................................................. 106
12.3.2. Infinite Capability Encoding ......................................................................................................................... 106

13. The RV32Y_Lymw10rc1pc Capability Base Extension for RV32Y, Version 1.0..................................... 108
13.1. Capability Encoding.................................................................................................................................................... 108

13.1.1. Capability Encoding Summary ...................................................................................................................... 108
13.1.2. Architectural Permissions and Mode (AP,M) Encoding ...................................................................... 109
13.1.3. AP encoding and rules without Zylevels1 for RV32Y_Lymw10rc1pc.............................................. 110
13.1.4. AP encoding and rules with Zylevels1 for RV32Y_Lymw10rc1pc ...................................................... 111
13.1.5. Software-Defined Permissions (SDP) Encoding....................................................................................... 113
13.1.6. Capability Type (CT) Encoding....................................................................................................................... 113
13.1.7. Bounds (EF, T, TE, B, BE, L8) Encoding......................................................................................................... 113

13.2. Encoding of Special Capabilities ............................................................................................................................ 113
13.2.1. NULL Capability Encoding ............................................................................................................................... 113
13.2.2. Infinite Capability Encoding ........................................................................................................................... 114

13.3. Representable Range Check...................................................................................................................................... 114
14. RVY Specializations for Microcontroller Systems................................................................................................ 115

14.1. The Zycheriot Unprivileged ISA Extension......................................................................................................... 115
14.1.1. Required Extensions............................................................................................................................................. 115
14.1.2. Refining CHERI Capabilities ............................................................................................................................ 115

14.1.2.1. Software Defined Permissions ................................................................................................................. 115
14.1.2.2. Root Permission Sets .................................................................................................................................. 115
14.1.2.3. Permission Transition Constraints....................................................................................................... 116
14.1.2.4. Capability Types ........................................................................................................................................... 116

14.2. A RV32Y_Lymw9e14r0as11pc Common Base Architecture......................................................................... 117
14.3. The RV32Y_Lyenccheriot1 CHERI Capability Encoding Scheme............................................................. 117

14.3.1. Capability Encoding ............................................................................................................................................ 118
14.3.1.1. Capability Encoding Parameter Summary ......................................................................................... 119
14.3.1.2. Permissions Encoding................................................................................................................................ 119
14.3.1.3. Capability Type (CT) Encoding .............................................................................................................. 121
14.3.1.4. Bounds (E, B, T) Encoding......................................................................................................................... 121

14.3.1.4.1. Encoding bounds ................................................................................................................................. 122



14.3.2. Encoding of Special Capabilities ................................................................................................................... 123
14.3.2.1. NULL Capability Encoding...................................................................................................................... 123
14.3.2.2. Root Capability Encoding........................................................................................................................ 123

14.4. The RV32Y_Lyenccheriot2 CHERI Capability Encoding Scheme ........................................................... 124
14.4.1. Capability Encoding ............................................................................................................................................ 124

14.4.1.1. Capability Encoding Parameter Summary......................................................................................... 125
14.5. The RV32Y_Lyenccheriot3 CHERI Capability Encoding Scheme .......................................................... 126

14.5.1. Capability Encoding............................................................................................................................................ 126
14.5.1.1. Capability Encoding Parameter Summary ........................................................................................ 126

Appendix A: CHERI (RV64Y) Unprivileged Appendix.............................................................................................. 128
A.1. RVY ISA Extension Summary ................................................................................................................................... 128

A.1.1. RVY added instructions ....................................................................................................................................... 128
A.1.2. RVI (RVY modified behavior) ........................................................................................................................... 128
A.1.3. Zicsr (RVY modified behavior) ........................................................................................................................ 129
A.1.4. Zysentry .................................................................................................................................................................... 129
A.1.5. Zybld .......................................................................................................................................................................... 129
A.1.6. Zytopr ........................................................................................................................................................................ 129
A.1.7. Zybndsrdw ............................................................................................................................................................... 130
A.1.8. C (RVY added instructions) .............................................................................................................................. 130
A.1.9. RV32 / RV32Y RVC load/store mapping summary.................................................................................. 131
A.1.10. RV64 / RV64Y RVC load/store mapping summary............................................................................... 132

A.1.10.1. C.LY .................................................................................................................................................................. 133
A.1.10.2. C.LYSP ............................................................................................................................................................ 133
A.1.10.3. C.SY ................................................................................................................................................................. 135
A.1.10.4. C.SYSP ............................................................................................................................................................ 135

A.1.11. C (RVY modified behavior) ............................................................................................................................... 137
A.1.11.1. C.ADDI16SP (RVY)....................................................................................................................................... 138
A.1.11.2. C.ADDI4SPN  (RVY) ................................................................................................................................... 139
A.1.11.3. C.YMV.............................................................................................................................................................. 140
A.1.11.4. C.JR (RVY) ........................................................................................................................................................ 141
A.1.11.5. C.JAL (RV32Y) ............................................................................................................................................... 142
A.1.11.6. C.JALR (RVY) ................................................................................................................................................. 143

A.1.12. Zalrsc (RVY added instructions) .................................................................................................................... 144
A.1.12.1. LR.Y ................................................................................................................................................................... 145
A.1.12.2. SC.Y................................................................................................................................................................... 147

A.1.13. Zaamo (RVY added instructions) .................................................................................................................. 149
A.1.13.1. AMOSWAP.Y ................................................................................................................................................ 150

A.1.14. Zba (RVY added instructions) ......................................................................................................................... 152
A.1.14.1. SH1ADDY ........................................................................................................................................................ 153
A.1.14.2. SH2ADDY ...................................................................................................................................................... 153
A.1.14.3. SH3ADDY ...................................................................................................................................................... 153
A.1.14.4. SH4ADDY (RV64Y)..................................................................................................................................... 153
A.1.14.5. SH1ADDY.UW (RV64Y) ............................................................................................................................ 155
A.1.14.6. SH2ADDY.UW (RV64Y) ........................................................................................................................... 155
A.1.14.7. SH3ADDY.UW (RV64Y) ............................................................................................................................ 155



A.1.14.8. SH4ADDY.UW (RV64Y)............................................................................................................................ 155
A.1.15. Zicbom (RVY modified behavior).................................................................................................................. 157

A.1.15.1. CBO.CLEAN (RVY) ..................................................................................................................................... 158
A.1.15.2. CBO.FLUSH (RVY) ..................................................................................................................................... 159
A.1.15.3. CBO.INVAL (RVY) ..................................................................................................................................... 160

A.1.16. Zicboz (RVY modified behavior) .................................................................................................................... 161
A.1.16.1. CBO.ZERO (RVY) ........................................................................................................................................ 162

A.1.17. Zicbop (RVY modified behavior) ................................................................................................................... 163
A.1.17.1. PREFETCH.I  (RVY) .................................................................................................................................... 164
A.1.17.2. PREFETCH.R (RVY) ................................................................................................................................... 165
A.1.17.3. PREFETCH.W (RVY) ................................................................................................................................. 166

A.1.18. Zyhybrid.................................................................................................................................................................. 167
A.1.19. "Zcmp", "Zcmt" (RVY) .......................................................................................................................................... 167
A.1.20. "Zcmp" Standard Extension For Code-Size Reduction ........................................................................ 167

A.1.20.1. CM.PUSH (RV32Y) .................................................................................................................................... 168
A.1.20.2. CM.POP (RV32Y)....................................................................................................................................... 170
A.1.20.3. CM.POPRET (RV32Y) .............................................................................................................................. 172
A.1.20.4. CM.POPRETZ (RV32Y) ............................................................................................................................ 174
A.1.20.5. CM.MVSA01 (RV32Y) .............................................................................................................................. 176
A.1.20.6. CM.MVA01S (RV32Y)............................................................................................................................... 177

A.1.21. "Zcmt" Standard Extension For Code-Size Reduction ........................................................................... 178
A.1.21.1. Jump Vector Table CSR (jvt) .................................................................................................................... 178
A.1.21.2. CM.JALT (RV32Y) ....................................................................................................................................... 179
A.1.21.3. CM.JT (RV32Y) ............................................................................................................................................ 180

A.2. ISA changes since 0.9.5.............................................................................................................................................. 180
A.3. Placeholder references to the unprivileged spec .............................................................................................. 183

Chapters for the privileged specification ................................................................................................................................ 184
15. "Machine/Supervisor-Level ISA (RVY)" Extensions, Version 1.0 .................................................................. 185

15.1. Machine-Level CSRs added or extended by RVY ............................................................................................. 185
15.1.1. Machine Trap Vector Base Address Capability Register (mtvec)....................................................... 185
15.1.2. Machine Scratch Capability Register (mscratch).................................................................................... 186
15.1.3. Machine Exception Program Counter Capability (mepc).................................................................... 186
15.1.4. Machine Thread Identifier Capability (mtidc) ......................................................................................... 187

15.2. Machine-Level CSRs modified by RVY ............................................................................................................... 187
15.2.1. Machine Status Registers (mstatus and mstatush) ................................................................................. 187
15.2.2. Machine Cause Register (mcause)................................................................................................................ 188
15.2.3. Machine Trap Delegation Register (medeleg) ......................................................................................... 189
15.2.4. Machine Trap Value Register (mtval) ......................................................................................................... 189
15.2.5. "Smstateen/Ssstateen" Integration ............................................................................................................... 189

15.3. Supervisor-Level CSRs added or extended by RVY ........................................................................................ 189
15.3.1. Supervisor Trap Vector Base Address Capability Register (stvec) .................................................... 189
15.3.2. Supervisor Scratch Capability Register (sscratch) ................................................................................. 189
15.3.3. Supervisor Exception Program Counter Capability (sepc)................................................................. 190
15.3.4. Supervisor Thread Identifier Capability (stidc)...................................................................................... 190

15.4. Supervisor-Level CSRs modified by RVY........................................................................................................... 190



15.4.1. Supervisor Cause Register (scause) .............................................................................................................. 190
15.4.2. Supervisor Trap Value Register (stval) ....................................................................................................... 190
15.4.3. "Smstateen/Ssstateen" Integration ................................................................................................................ 191

15.5. CHERI Exception handling ...................................................................................................................................... 191
15.6. CHERI Exceptions and speculative execution ................................................................................................. 192
15.7. Physical Memory Attributes (PMA) ...................................................................................................................... 192
15.8. Virtual Memory ............................................................................................................................................................ 193
15.9. Modified Trap-Return Instructions Behavior .................................................................................................. 193

15.9.1. SRET (RVY) ............................................................................................................................................................ 194
15.9.2. MRET (RVY).......................................................................................................................................................... 194

16. "Zyhybrid for Privileged Architectures" Extension, Version 1.0.................................................................... 195
17. "Supervisor-Level ISA for Virtual Memory (RV64Y)" Extension, Version 1.0 for RV64Y.................... 197

17.1. Capability Read-Write (CRW) Bit ........................................................................................................................... 197
17.1.1. Limiting Capability Propagation..................................................................................................................... 197

17.2. CHERI page faults ........................................................................................................................................................ 197
17.2.1. Extending the Page Table Entry Format ..................................................................................................... 198

17.3. Invalid Address Handling......................................................................................................................................... 199
17.3.1. Updating CSRs ...................................................................................................................................................... 199
17.3.2. Branches and Jumps .......................................................................................................................................... 199
17.3.3. Memory Accesses............................................................................................................................................... 200

17.4. Integrating RVY with Debug................................................................................................................................... 200
17.4.1. Integrating RVY with Sdext ............................................................................................................................ 200

17.4.1.1. Debug Mode ................................................................................................................................................... 201
17.4.1.2. Core Debug Registers ................................................................................................................................. 201
17.4.1.3. Debug Program Counter Capability (dpc) ........................................................................................ 202
17.4.1.4. Debug Scratch Register 0 (dscratch0)................................................................................................ 202
17.4.1.5. Debug Scratch Register 1 (dscratch1) .................................................................................................. 202
17.4.1.6. Debug Root Capability Selector (drootcsel)...................................................................................... 203
17.4.1.7. Debug Root Capability Register (drootc) ........................................................................................... 203
17.4.1.8. Modified Trap-Return Instruction Behavior ................................................................................... 204

17.4.1.8.1. DRET (RVY) .......................................................................................................................................... 205
17.4.2. Integrating Zyhybrid with Sdext .................................................................................................................. 205

17.4.2.1. Debug Default Data Capability CSR (dddc) ..................................................................................... 206
17.4.3. "Sdtrig (RVY)", Integrating RVY with Sdtrig ............................................................................................. 206

18. Pointer Masking (Ssnpm, Smnpm, Smmpm, Sspm, Supm)  (RV64Y) ....................................................... 208
19. "Svucrg" Extension, Version 1.0 for RV64Y............................................................................................................ 209

19.1. Capability Revocation ............................................................................................................................................... 209
19.2. Extending the Page Table Entry Format ........................................................................................................... 209
19.3. Enabling Software or Hardware PTE updates .................................................................................................. 212
19.4. Extending the Supervisor (sstatus) and Virtual Supervisor (vsstatus) Status Registers ................... 212

20. Hypervisor "H" Extension (RVY).................................................................................................................................. 214
20.1. Hypervisor Status Register (hstatus) .................................................................................................................... 214
20.2. Hypervisor Environment Configuration Register (henvcfg) ..................................................................... 214
20.3. Hypervisor Exception Delegation Register (hedeleg) ................................................................................... 214
20.4. Virtual Supervisor Status Register (vsstatus) ................................................................................................... 214



20.5. Virtual Supervisor Trap Vector Base Address Capability Register (vstvec) ......................................... 215
20.6. Virtual Supervisor Scratch Register (vsscratch) ............................................................................................. 215
20.7. Virtual Supervisor Exception Program Counter Capability (vsepc)........................................................ 215
20.8. Virtual Supervisor Trap Value Register (vstval) ............................................................................................. 215
20.9. Virtual Supervisor Thread Identifier Capability (vstidc)............................................................................ 216
20.10. "Smstateen/Ssstateen" Integration .................................................................................................................... 216
20.11. Hypervisor Load and Store Instructions For Capability Data.................................................................. 216

20.11.1. HLV.Y ...................................................................................................................................................................... 217
20.11.2. HSV.Y..................................................................................................................................................................... 218

20.12. The Smycheriot Privileged ISA Extension ...................................................................................................... 218
20.12.1. Required Extensions........................................................................................................................................ 218
20.12.2. CSR Reset States ............................................................................................................................................... 218
20.12.3. Additional CSR Legalization Requirements.......................................................................................... 219
20.12.4. Capability Types ............................................................................................................................................... 219
20.12.5. Stack High Watermark CSRs...................................................................................................................... 220
20.12.6. Capability Load Filter and The Revocation Bitmap .......................................................................... 220

Appendix B: CHERI (RV64Y) Privileged Appendix.................................................................................................... 222
B.1. RVY Privileged Extensions Summary ................................................................................................................... 222

B.1.1. H Extension (RVY added instructions) ......................................................................................................... 222
B.1.2. Machine level ISA for RVY ................................................................................................................................ 222
B.1.3. Supervisor level ISA for RVY ............................................................................................................................ 222
B.1.4. Sdext for RVY.......................................................................................................................................................... 222

B.2. RVY YLEN CSR Summary......................................................................................................................................... 222
B.3. CHERI System Implications ..................................................................................................................................... 227

B.3.1. Small CHERI system example ......................................................................................................................... 228
B.3.2. Large CHERI system example ........................................................................................................................ 229
B.3.3. Large CHERI pure-capability system example ......................................................................................... 231

B.4. Placeholder references to privileged spec ............................................................................................................ 231
Bibliography................................................................................................................................................................................ 235



Preamble


This document is in the Stable state

Assume anything could still change, but limited change should be expected.

Preamble | Page 1

RISC-V Specification for CHERI Extensions | © RISC-V International

https://lf-riscv.atlassian.net/wiki/display/HOME/Specification+States


Copyright and license information
This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-BY
4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2024 by RISC-V International.

Copyright and license information | Page 2

RISC-V Specification for CHERI Extensions | © RISC-V International

https://creativecommons.org/licenses/by/4.0/


Contributors
This RISC-V specification has been contributed to directly or indirectly by:

⚫ Thomas Aird <thomas.aird@codasip.com>

⚫ Hesham Almatary <hesham.almatary@cl.cam.ac.uk>

⚫ Andres Amaya Garcia <andres.amaya@codasip.com>

⚫ John Baldwin <jhb61@cl.cam.ac.uk>

⚫ Paul Buxton <paul.buxton@codasip.com>

⚫ David Chisnall <david.chisnall@cl.cam.ac.uk>

⚫ Jessica Clarke <jessica.clarke@cl.cam.ac.uk>

⚫ Brooks Davis <brooks.davis@sri.com>

⚫ Lawrence Esswood <lesswood@google.com>

⚫ Nathaniel Wesley Filardo <nwf20@cam.ac.uk>

⚫ Franz A. Fuchs <franz.fuchs@cl.cam.ac.uk>

⚫ Timothy Hutt <timothy.hutt@codasip.com>

⚫ Alexandre Joannou <alexandre.joannou@cl.cam.ac.uk>

⚫ Martin Kaiser <martin.kaiser@codasip.com>

⚫ Tariq Kurd <tariq.kurd@codasip.com>

⚫ Ben Laurie <benl@google.com>

⚫ Marno van der Maas <mvdmaas@lowrisc.org>

⚫ Maja Malenko <maja.malenko@codasip.com>

⚫ A. Theodore Markettos <theo.markettos@cl.cam.ac.uk>

⚫ Alfredo Mazzinghi <alfredo.mazzinghi@cl.cam.ac.uk>

⚫ David McKay <david.mckay@codasip.com>

⚫ Jamie Melling <jamie.melling@codasip.com>

⚫ Stuart Menefy <stuart.menefy@codasip.com>

⚫ Simon W. Moore <simon.moore@cl.cam.ac.uk>

⚫ Prashanth Mundkur <prashanth@riscv.org>

⚫ Peter G. Neumann <neumann@csl.sri.com>

⚫ Robert Norton <robert.norton@cl.cam.ac.uk>

⚫ Alexander Richardson <alexrichardson@google.com>

⚫ Michael Roe <mr101@cam.ac.uk>

⚫ Peter Rugg <peter.rugg@cl.cam.ac.uk>

⚫ Peter Sewell <peter.sewell@cl.cam.ac.uk>

⚫ Carl Shaw <carl.shaw@codasip.com>

⚫ Ricki Tura <ricki.tura@codasip.com>

⚫ Robert N. M. Watson <robert.watson@cl.cam.ac.uk>

⚫ Toby Wenman <toby.wenman@codasip.com>

Contributors | Page 3

RISC-V Specification for CHERI Extensions | © RISC-V International

mailto:thomas.aird@codasip.com
mailto:hesham.almatary@cl.cam.ac.uk
mailto:andres.amaya@codasip.com
mailto:jhb61@cl.cam.ac.uk
mailto:paul.buxton@codasip.com
mailto:david.chisnall@cl.cam.ac.uk
mailto:jessica.clarke@cl.cam.ac.uk
mailto:brooks.davis@sri.com
mailto:lesswood@google.com
mailto:nwf20@cam.ac.uk
mailto:franz.fuchs@cl.cam.ac.uk
mailto:timothy.hutt@codasip.com
mailto:alexandre.joannou@cl.cam.ac.uk
mailto:martin.kaiser@codasip.com
mailto:tariq.kurd@codasip.com
mailto:benl@google.com
mailto:mvdmaas@lowrisc.org
mailto:maja.malenko@codasip.com
mailto:theo.markettos@cl.cam.ac.uk
mailto:alfredo.mazzinghi@cl.cam.ac.uk
mailto:david.mckay@codasip.com
mailto:jamie.melling@codasip.com
mailto:stuart.menefy@codasip.com
mailto:simon.moore@cl.cam.ac.uk
mailto:prashanth@riscv.org
mailto:neumann@csl.sri.com
mailto:robert.norton@cl.cam.ac.uk
mailto:alexrichardson@google.com
mailto:mr101@cam.ac.uk
mailto:peter.rugg@cl.cam.ac.uk
mailto:peter.sewell@cl.cam.ac.uk
mailto:carl.shaw@codasip.com
mailto:ricki.tura@codasip.com
mailto:robert.watson@cl.cam.ac.uk
mailto:toby.wenman@codasip.com


⚫ Jonathan Woodruff <jonathan.woodruff@cl.cam.ac.uk>

⚫ Jason Zhijingcheng Yu <yu.zhi@comp.nus.edu.sg>

Contributors | Page 4

RISC-V Specification for CHERI Extensions | © RISC-V International

mailto:jonathan.woodruff@cl.cam.ac.uk
mailto:yu.zhi@comp.nus.edu.sg


Chapter 1. Introduction


This chapter is only included in the standalone CHERI spec and not part of the integrated
document.

1.1. CHERI Concepts and Terminology

Current CPU architectures (including RISC-V) allow memory access solely by specifying and dereferencing
a memory address stored as an integer value in a register or in memory. Any accidental or malicious action
that modifies such an integer value can result in unrestricted access to the memory that it addresses.
Unfortunately, this weak memory protection model has resulted in the majority of software security
vulnerabilities present in software today.

CHERI enables software to efficiently implement fine-grained memory protection and scalable software
compartmentalization by providing strong, efficient hardware mechanisms to support software execution
and enable it to prevent and mitigate vulnerabilities.

Design goals include incremental adoptability from current ISAs and software stacks, low performance
overhead for memory protection, significant performance improvements for software
compartmentalization, formal grounding, and programmer-friendly underpinnings. It has been designed
to provide strong, non-probabilistic protection rather than depending on short random numbers or
truncated cryptographic hashes that can be leaked and reinjected, or that could be brute-forced.

1.2. CHERI Extensions to RISC-V

This specification is based on publicly available documentation including CHERI v9 (Watson et al., 2023)
and CHERI Concentrate (Woodruff et al., 2019).

Compatibility with RVA, RVB and RVM profiles will be listed in separate RVY-based profiles (RVYA, RVYB,
RVYM). These will list the compatible extensions.


Most existing extensions are compatible with RVY with no modifications. Incompatible
extensions will be listed in the profile documents.

 Zicfiss is currently incompatible. An RVY version has not yet been developed.

This section lists new extensions available to RVY, and also extensions where the behavior is modified for
RVY.

RVY is defined as the base ISA that all CHERI RISC-V implementations must support. Zyhybrid and Svucrg
are examples of optional extensions in addition to RVY.

In some cases adding an existing extension, such as H, causes additional instructions to be added.

In other cases adding an existing extension, such as C, causes additional instructions to be added and
existing instructions to have modified behavior.

1.2.1. Stable Extensions and Specifications

Table 1. Unprivileged stable RVY extensions

Extension or Specification Description

RVY Base ISA
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Extension or Specification Description

Zysentry Ambient capability sealing instruction

Zybld Extension for building capabilities

Zytopr Extension for extracting the top bound

Zybndsrdw Extension for setting bounds round down to
representable length

Zyhybrid Hybrid extension for RVI compatibility

C (RVY added instructions) New 16-bit encodings added to Zca

Zba (RVY added instructions) New 32-bit encodings added to Zba

Zalrsc (RVY added instructions) New 32-bit encodings added to Zalrsc

Zaamo (RVY added instructions) New 32-bit encodings added to Zaamo

Zycheriot CHERIoT unprivileged extension

Table 2. Unprivileged stable extensions where RVY modifies the behavior

Extension or Specification Description

RVI (RVY modified behavior) RVI instructions modified by RVY

C (RVY modified behavior) C instructions modified by RVY

V (RVY modified behavior) V instructions modified by RVY

Zicbom (RVY modified behavior) Zicbom instructions modified by RVY

Zicbop (RVY modified behavior) Zicbop instructions modified by RVY

Zicboz (RVY modified behavior) Zicboz instructions modified by RVY

Zicsr (RVY modified behavior) Zicsr instructions modified by RVY

Table 3. Unprivileged stable extension used by CHERI software

Extension or Specification Description

Zabhlrsc Byte and halfword LR/SC functionality

Table 4. Privileged stable extensions and specifications

Extension or Specification Description

Machine-Level ISA (RVY) Machine ISA

Supervisor-Level ISA (RVY) Supervisor ISA

Zyhybrid for Privileged Architectures Hybrid extension for RVI compatibility

Supervisor-Level ISA for Virtual Memory (RV64Y) Virtual Memory

Sdtrig (RVY) Debug triggers

Svucrg1 MMU-based acceleration of capability revocation
for heap temporal safety

Smycheriot CHERIoT privileged extension

1 Svucrglct is available for improved software revocation performance if Svucrg is implemented.

Table 5. Debug stable extensions and specifications

Extension or Specification Description

Sdext (RVY) External debug support
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1.2.2. Experimental Extensions and Specifications

The extensions in this section have not been fully prototyped and so are not considered ratification ready.

Table 6. Unprivileged experimental extensions and specifications

Extension Description

Zcmt (RV32Y) Table Jump for RV32Y

Zcmp (RV32Y) Push/pop and double move for RV32Y

Zyseal Capability-mediated capability (un)sealing
instructions

Table 7. Privileged experimental extensions and specifications

Extension Description

Hypervisor "H" (RVY) Hypervisor

Ssnpm, Smnpm, Smmpm, Sspm, Supm (RVY) Pointer Masking
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Chapter 2. RV32Y and RV64Y Base Capability Instruction
Sets, Version 1.0

 This chapter will appear in the unpriv spec after the RV32I chapter.

This chapter describes the RV32Y and RV64Y base capability instruction sets, that extend the RV32I and
RV64I instruction sets with CHERI. Other standard options to bases are also supported such as E (16-
registers), Zfinx and endianness.

2.1. CHERI Overview

CHERI enhances the base ISA by adding hardware memory access control. It has an additional memory
access mechanism that protects references to code and data (pointers), rather than the location of code and
data (integer addresses). This mechanism is implemented by providing a new primitive, called a capability,
that software components can use to implement strongly protected pointers within an address space.
Capabilities are unforgeable and delegatable tokens of authority that grant software the ability to perform a
specific set of operations. In CHERI, integer-based pointers are replaced by capabilities to provide memory
access control.

2.2. CHERI protection model

The CHERI model is motivated by the principle of least privilege, which argues that greater security can be
obtained by minimizing the privileges accessible to running software. A second guiding principle is the
principle of intentional use, which argues that, where many privileges are available to a piece of software, the
privilege to use should be explicitly named rather than implicitly selected. While CHERI does not prevent
the expression of vulnerable software designs, it provides strong vulnerability mitigation: attackers have a
more limited vocabulary for attacks, and should a vulnerability be successfully exploited, they gain fewer
rights, and have reduced access to further attack surfaces.

Protection properties for capabilities include the ISA ensuring that capabilities are always derived via valid
manipulations of other capabilities (provenance), that corrupted1 in-memory capabilities cannot be
dereferenced (integrity), and that rights associated with capabilities shall only ever be equal to or less
permissive (monotonicity). Tampering or modifying capabilities in an attempt to elevate their rights will
yield an invalid capability. Attempting to dereference via an invalid capability will result in a hardware
exception.

1 Not all possible corrupted states are detected, see Section 2.5, “Integrity of Capabilities”.

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and dereferenced using
CHERI-aware instructions that expect capability operands rather than integer addresses. On system
initialization, initial capabilities are made available to software by the execution environment via general
purpose registers. All other capabilities will be derived from these initial valid capabilities through valid
capability transformations.

Developers can use CHERI to build fine-grained spatial and temporal memory protection into their system
software and applications and significantly improve their security.

2.3. Capability Registers and Format

RVY extends all registers that have to be able to hold addresses to 2*XLEN bits (hereafter referred to as
YLEN), adding metadata to protect its integrity, limit how it is manipulated, and control its use. In addition
to widening to YLEN, each register also gains a one-bit capability tag which is defined below.
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RVY specifies the minimum required fields which the capability format must support, and their semantics.
However, the precise in-memory representation of the capability metadata is not defined in this chapter
since multiple legal (and generally software-compatible) encodings exist. On little-endian systems, the
memory representation of capabilities always holds the address in the first XLEN bytes of memory followed
by the metadata.


So far, no big-endian implementations of RVY exist, but it is likely that such systems would
switch the order of metadata and address in memory for consistency (even though having the
address first is better for software compatibility).

RVY is designed to be highly extensible, and therefore must allow multiple metadata encoding formats to
exist. Specific encoding formats may support different ISA extensions, and add new architectural
permissions. For more details on the currently available formats see Section 2.4.



Depending on the target domain different capability requirements exist, but for XLEN=32
there are insufficient bits available in the capability metadata to define one common format
for all use cases. For example, a small embedded controller with limited address space of a few
megabytes may need to make different tradeoffs than an auxiliary core within a larger SoC
with many gigabytes of address space, and a accelerator using the RVY ISA may need yet
another set of features. Therefore, multiple capability encodings with observable (but generally
uninteresting) behavior differences need to be defined. While the in-memory bit pattern of
capabilities across these systems as well as the precision of bounds may differ, software that
does not depend on the raw bits in memory is source (and often also binary) compatible with
these different capability encodings.

It is possible to generate code for RVY that is compatible with all valid in-memory encodings. However, to
allow compilers and/or software library authors to make assumptions about encoding-dependent
properties such as bounds precisions, these are encoded via an _Ly<params> suffix to the base ISA name
such as:

⚫ RV32Y_Lymw10rc1pc_IMAF_Zicsr, which refers to the encoding format defined in RV32Y_Lymw10rc1pc
for RV32Y, or

⚫ RV64Y_Lymw14rc1ps_IMAF_Zicsr, which refers to the encoding format defined in RV64Y_Lymw14rc1ps
for RV64Y

XLEN-1 0

V Metadata (bounds, permissions, etc.)

Address

XLEN

Figure 1. CHERI Capability structure

2.3.1. Address

The lower XLEN bits of a capability encode the address of where the capability points. This is also referred
to as the integer part of the capability. For registers that are extended but currently hold non-capability
data, all other fields are typically zero.


Future extensions may add 2*XLEN-bit operations to make use of the wide registers for
efficient handling of 2*XLEN-bit non-capability data.
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2.3.2. Capability Tag

The capability tag is an additional bit added to addressable memory and all YLEN-bit registers. It is stored
separately and may be referred to as out of band or hidden, and is hardware managed. It indicates whether a
YLEN-bit register or YLEN-aligned memory location contains a valid capability. If the capability tag is set,
the capability is valid and can be dereferenced (contingent on checks such as permissions or bounds).

All registers or memory locations able to hold a capability are YLEN bits wide with an additional hidden
capability tag bit. These are referred to as being YLEN-bit in this specification.

The capability tag cannot be directly set to one by software; it is not a conventionally accessible bit of state.
If the capability tag is set then it shows that the capability has been derived correctly according to the
principles listed above (provenance, integrity, monotonicity). If the rules are followed then the capability tag
will propagate through the instructions that modify, load or store the capability.

Therefore, for capability manipulation in registers:

⚫ Any instruction that wrote the capability to a register had at least one capability tag set in its input
operands.

⚫ This is the provenance check.

⚫ Any instruction that wrote the capability to a register requested a legal operation that does not increase
bounds or permissions, and set the capability tag on the output.

⚫ This is the monotonicity check.

⚫ Any instruction that wrote the capability to a register detected corrupted values.

⚫ This is the integrity check.

Capability load/store require the provenance check:

⚫ Any store that wrote the capability to memory was correctly authorized.

⚫ Any load that read the capability from memory was correctly authorized.

When an operation fails a check, either due to software error or malicious intent, then the operation raises
an exception or sets the resulting capability tag to zero.

Using an invalid capability to dereference memory or authorize any operation raises an exception. All
capabilities derived from invalid capabilities are themselves invalid, i.e., their capability tags are zero.


When the capability tag is zero, the register or memory location may be used to store non-
capability data.

2.3.3. Capability tags in registers

Every YLEN-bit register has a one-bit capability tag, indicating whether the capability in the register is
valid to be dereferenced. This capability tag is cleared whenever an invalid capability operation is
performed. Examples of such invalid operations include writing only the integer portion (the address field)
of the register or attempting to increase bounds or permissions.

2.3.4. Capability tags in memory

Capability tags are tracked through the memory subsystem: every aligned YLEN-bit wide region has a non-
addressable one-bit capability tag, which the hardware manages atomically with the data. The capability
tag is set to zero if any byte in the YLEN/8 aligned memory region is ever written using an operation other
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than a store of a capability operand which is permitted to set the capability tag to one (see C-permission),
and that the stored capability data has its capability tag set.


All system memory and caches that store capabilities must preserve this abstraction, handling
the capability tags atomically with the data.

2.3.5. Capability Bounds

Capabilities encode memory bounds, i.e., the lowest and highest byte in memory that it is permitted to
access when dereferenced for data memory access, or for instruction execution.

Checking is on a byte-by-byte basis, so that it is possible for a memory access to be fully in-bounds,
partially out-of-bounds or fully out-of-bounds.

It is not permitted to make any partially or fully out-of-bounds memory accesses.

Every capability has two memory address bounds: base representing the lowest accessible byte, and top
representing one byte above the highest accessible byte.

⚫ The base is XLEN bits and is inclusive.

⚫ The top is (XLEN+1)-bits and is exclusive.

⚫ The extra bit is required to allow the bounds to include the top byte of memory.

⚫ The length is (XLEN+1)-bits and is defined to be top - base.

Therefore a memory location A in the range base ≤ A < top is within bounds, and so valid to access.

 Inclusive top, with XLEN bits, was considered but rejected in favor of the exclusive top.



Checking every byte of every executed instruction and every byte of every data memory access
is fundamental to the memory safety which CHERI provides. In a typical load/store unit, the
expansion of the bounds from rs1 and bounds checking is in parallel with the address
calculation, the memory translation and/or the PMA/PMP checking.

A compressed format is used to encode the bounds with a scheme similar to floating-point using an
exponent and a mantissa. Therefore small exponents can allow byte granularity on the bounds, but larger
exponents give coarser granularity.

One bounds encoding format based upon (Woodruff et al., 2019) is defined in Section 12.1.6.

 Capability encoding formats are free to define their own bounds encoding scheme.

Software can query the capability bounds:

⚫ The base is returned by the YBASER instruction.

⚫ The length is returned by the YLENR instruction.

⚫ YLENR saturates the length to XLEN bits

⚫ The top is returned by the YTOPR instruction (if Zytopr is implemented).

⚫ Otherwise the top can be calculated using a saturating addition of the YBASER and YLENR results.

2.3.6. Deriving New Bounds

On system initialization, one or more Root capabilities are available; typically, these have bounds which
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cover all of memory and the maximum permissions set. All smaller capabilities are derived from these.

The ISA does not allow the bounds (and permissions) of a capability with its capability tag set to be
increased (monotonicity).

Bounds can be programmed using the YBNDSW, YBNDSWI and YBNDSRW instructions, which set the
current address to be the base bound and the length to be the operand (rs2 or imm) value. The granularity
constraints mean that not all requested combinations of top and base bounds can be encoded exactly.

⚫ YBNDSW sets the base to rs1.address, and the length to rs2. Set the capability tag to zero if the bounds
cannot be encoded exactly.

⚫ YBNDSWI sets the base to rs1.address, and the length to the immediate value. Set the capability tag to
zero if the bounds cannot be encoded exactly.

⚫ YBNDSRW sets the base to rs1.address, and the length to rs2. The bounds may be rounded up if they
cannot be encoded exactly.

⚫ If YBNDSRW rounds up the requested bounds, they must still be no larger than the initial bounds.

⚫ YAMASK can be used to calculate the nearest precisely encodable length and base values for a given
size.

The bounds are encoded relative to the address field, sharing some upper bits of the address. The number
of shared bits depends on the exponent, see Section 12.1.6.

2.3.7. Representability and Updating the Address

Because the CHERI Concentrate (Woodruff et al., 2019) encoding scheme for memory bounds shares the
upper bits of the address with the bounds, not all out-of-bounds pointers can be represented.


The historic, uncompressed CHERI-MIPS 256-bit capability encoding had separate 64-bit
values for the base and top memory bounds, and another for metadata fields. This scheme
could represent all out-of-bounds pointers with a very high hardware cost.

The maximum range of address values that the pointer can take without changing the interpretation of
bounds is defined by the representable region. Since deriving a new capability with a different address
could change the meaning of the bounds, all such derived capabilities (e.g., deriving the next pc capability
from the existing pc via control-flow instructions or sequential execution) and instructions that return
valid derived capabilities, must check that the new address is within the representable region defined by
the source capability. If the interpretation of bounds has changed, then the capability tag of the derived
capability is set to zero, so that it is invalid for use.

Software can derive a capability with a new address using instructions such as YADDRW, ADDY and
ADDIY.


YADDRW writes back a derived capability with a new address field and, if the capability tag
was previously set, sets the capability tag of the derived capability to one if the resulting
capability still has the same bounds interpretation.


Existing software sometimes temporarily moves pointers outside of arrays, and then only
comes back into the valid range on dereference, so the encoding was designed to allow valid
capabilities to be out-of-bounds.


RVY implementations that use a different encoding scheme to RV32Y_Lymw10rc1pc
/RV64Y_Lymw14rc1ps (e.g., for accelerators or specific micro-controllers) may specify an
alternative to the representable region check, and may never allow the address to be out of
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bounds. Therefore, the rest of the specification uses the phrase represented exactly for this
check.

The bounds and representable region (or space) for RV32Y_Lymw10rc1pc/RV64Y_Lymw14rc1ps are
illustrated in Figure 2. E, MW and R in the figure are all introduced in Section 12.1.6.2 along with the
bounds decoding.

Figure 2. Memory address bounds encoded within a capability

2.3.8. Memory space

A hart supporting RVY has a single byte-addressable address space of 2XLEN bytes for all memory accesses.
Each memory region capable of holding a capability also stores a capability tag bit for each naturally
aligned YLEN bits (e.g., 16 bytes in RV64), so that capabilities with their capability tag set can only be stored
in naturally aligned addresses. Capability tags must be atomically bound to the data they protect.

The memory address space is circular, so the byte at address 2XLEN - 1 is adjacent to the byte at address zero.
A capability’s Representable Range described in Section 12.1 is also circular, so address 0 is within the
Representable Range of a capability where address 2XLEN - 1 is within the bounds. However, the decoded top
address of a capability is XLEN + 1 bits wide and does not wrap, so a capability with base 2XLEN - 1 and top
2XLEN + 1 is not a subset of the infinite capability and does not authorize access to the byte at address 0. Like
malformed bounds (see Section 12.1.6.4), it is impossible for a CHERI core to generate a valid capability
with top > 2XLEN. If such a capability exists then it must have been caused by a logic or memory fault. Unlike
malformed bounds, the top overflowing is not treated as a special case in the architecture: normal bounds
check rules should be followed.

2.3.9. Capability Type (CT)

This metadata value indicates the type of the capability. The sole type defined in the RVY base ISA is 0. The
type determines which operations the capability authorizes; extensions to RVY will define additional types
and give additional semantics for capabilities with such types.

Which capability types a given CHERI platform supports is a function of the extensions and capability

2.3. Capability Registers and Format | Page 14

RISC-V Specification for CHERI Extensions | © RISC-V International



encoding format in use. The capability encoding additionally specifies a mapping between some bits
within the capability format (usually described as "the CT field") and the space of capability types. The
mapping must be able to encode type 0 but has few other requirements. It need not, for example, be
interpreted as an (un)signed binary rendering of CT values.

Unsealed capabilities
When CT=0, the capability authorizes access to a region of memory as defined by the permissions and
bounds.

Sealed capabilities
Capabilities with CT≠0 are sealed against modification and cannot be dereferenced to access memory.
Instructions that operate on capabilities will produce a result with a cleared capability tag if the source
capability is sealed and the operation would alter its address, bounds, or permissions. Extensions that
augment capability metadata must describe their interaction(s) with sealed capabilities.

Given a capability with CT=0, deriving a capability with CT≠0 is termed "sealing" (or "sealing with type x"
when a particular output CT=x is meant). In the other direction, deriving a CT=0 capability from a CT≠0
capability is termed "unsealing" (or "unsealing from type x" when a particular input CT=x is meant). In
general, each of these actions may require authority to operate at the non-zero type; extensions will specify
how software expresses this authority for types not defined above.

Capability encodings may also make the set of CT-field values that may be used to seal a particular
capability depend on the the permissions granted by that capability. For example, it can be a useful space
optimization to differentiate the CT-field values for capabilities granting X-permission from those not
granting X-permission; the X-permission in the capability encoding effectively adds an additional bit to the
CT-field field. (RV32Y_Lymw10rc1pc/RV64Y_Lymw14rc1ps does not avail itself of this option, but, for
example, the RV32Y_Lyenccheriot1 capability encoding does.)

Ambient sealing type
Some capability types are said to be "ambiently available" (or just "ambient") if they do not require
specific authority to seal a capability (with that type). For example, if Zysentry is available on a given
platform, the type with which it seals capabilities is considered ambiently available. (With the
capabilities of RV32Y_Lymw10rc1pc/RV64Y_Lymw14rc1ps, that would be type 1.)

Sentry capability type
It is useful to have immutable function pointers within a CHERI software system. Sealed capabilities
are a natural foundation, providing immutability. JALR (RVY) may unseal capabilities of particular,
encoding-specified types before installing them to the program counter. Capabilities sealed with such a
type are dubbed "sentries" (a portmanteau of "sealed entries"). JALR (RVY) may also seal the return
pointers it generates with encoding-specified types.


Sentry capabilities can establish a form of control-flow integrity between mutually distrusting
code.



In addition to using sealed capabilities as sentries for secure entry points, sealed capabilities
can also be useful to software as secure software tokens. YSUNSEAL can be used to convert
such a token back to an unsealed capability. A future extension may add an unseal instruction
for performance.


The RVY ISA does not make any use of non-zero CT values. The capability encoding format only
needs to encode CT information if any extensions (such as Zysentry) are present which support
non-zero CT values.
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2.3.10. Architectural Permissions (AP)

This metadata field encodes architecturally defined permissions of the capability. Permissions grant access
subject to the capability tag being set, the capability being unsealed, and bounds checks passing. Any
operation is also contingent on requirements imposed by other RISC-V architectural features, such as
virtual memory, PMP and PMAs, even if the capability grants sufficient permissions. The permissions
currently defined in RVY are listed below.

Permissions can be cleared when deriving a new capability value (using YPERMC) but they can never be
added.


This is the minimum set of permissions which a capability format must support. The in-
memory format will depend on the capability encoding.

Table 8. AP-field summary

Permission Type Comment

R-permission Data memory
permission

Authorize data memory read access

W-permission Data memory
permission

Authorize data memory write access

X-permission Instruction memory
permission

Authorize instruction memory execute access

C-permission Data memory
permission

Authorize loading/storing of capability tags

LM-permission Data memory
permission

Used to restrict the permissions of loaded capabilities.

ASR-permission Privileged state
permission

Authorize privileged instructions and CSR accesses.

Read Permission (R)
Allow reading data from memory.

Write Permission (W)
Allow writing data to memory.

Execute Permission (X)
Allow instruction execution.

Capability Permission (C)
Allow reading capability tags from memory if R-permission is also granted.

Allow writing capability tags to memory if W-permission is also granted..

If C-permission is missing then the capability tags for capability loads and stores are read and written as
zero.

Load Mutable Permission (LM)
Allow preserving the W-permission of capabilities loaded from memory. If a capability grants R-
permission and C-permission, but no LM-permission, then a capability loaded via this authorizing
capability will have W-permission and LM-permission removed.

The permission stripping behavior only applies to loaded capabilities that have their capability tag set
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and are not sealed. This ensures that capability loads of non-capability data do not modify the loaded
value, and that sealed capabilities are not modified.


Clearing a capability’s LM-permission and W-permission allows sharing a read-only version
of a data structure (e.g., a tree or linked list) without making a copy.

Access System Registers Permission (ASR, primarily used to authorize CSR accesses)
Allow read and write access to all privileged CSRs, some unprivileged CSRs and some privileged
instructions. In RVY, the only affected CSR is the unprivileged utidc CSR, which requires ASR-
permission for writing, but not for reading. ASR permission is used for additional permission checks by
some instructions from other extensions such as Zicbom.

ASR-permission permission checks always use the permission in the pc.


This permission is important in privileged execution environments. Removing this permission
allows constraining privileged software to a sandbox that cannot be subverted by changing
privileged state.

 Extensions may add additional non-privileged CSRs that require ASR-permission.

2.3.10.1. Permission Transitions

Not all capability permissions are orthogonal (that is, some permissions inherently depend on others). As
such, using YPERMC to clear some permissions may have the effect of clearing others as well, such that a
permission bit being set in the result of YPERMR implies that all bits for permissions upon which it
depends will also be set.

For the base set of permissions just defined, the following rules apply. Extensions that define new
permission bits may also introduce new dependency constraints. Currently defined examples are:

1. Zyhybrid, see Section 6.1.3

2. Zylevels1, see Section 9.4.2

3. Zyseal, see Table 26

Capability encodings may impose additional constraints. to reduce the number of bits necessary to
represent permissions.

Table 9. YPERMC base rules

YPERMC Rule Permission Valid only if

base-1 C-permission R-permission or W-permission

base-2 LM-permission C-permission and R-permission

base-3 ASR-permission X-permission

When using RV64Y_Lymw14rc1ps and RV32Y_Lymw10rc1pc the complete set of rules with and without
Zyhybrid and Zylevels1 are shown in Table 41 and Table 43.

2.3.11. Software-Defined Permissions (SDP)

The metadata also contains an encoding-dependent number of software-defined permission (SDP) bits.
They can be inspected by the kernel or application programs to enforce restrictions on API calls (e.g.,
permit/deny system calls, memory allocation, etc.). They can be cleared by YPERMC but are not
interpreted by the CPU otherwise.
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While these bits are not used by the hardware as architectural permissions, modification follows the same
rules: SDP bits can only be cleared and never set on valid capabilities.


This property is required to ensure restricted programs cannot forge capabilities that would
pass the software-enforced checks.

 Software is completely free to define the usage of these bits.

2.3.12. Special Capabilities

2.3.12.1. Root Capabilities

Root (sometimes also primordial, initial) capabilities are those provided by the system at reset. In some
systems (and capability encodings), there is a single "Infinite" capability value, which grants all permissions
and has bounds covering the whole 2XLEN address space; in such systems, root capabilities are often Infinite.
More generally, the set of root capabilities often collectively grant all permissions to all addresses. By way
of example, an encoding may prohibit one capability from authorizing both write and execute; a system
using such an encoding would typically make available maximally permissive read-write and read-execute
capabilities as part of their root set.


How unprivileged software receives its root capabilities is largely an ABI question; the
privileged specification will detail requirements of capability registers' reset state (and so on
the root capabilities held therein).

Because particular sets of requirements recur throughout the specification, we define some useful short-
hand terminology.

Root Executable Capability
An unsealed capability that has bounds covering all addresses and grants at least all of X-permission, R-
permission, C-permission, LM-permission, and ASR-permission. Extensions introducing new
permissions may require these to be provided by root executable capabilities.

Root Data Capability
An unsealed capability that has bounds covering all addresses and grants at least all of R-permission,
W-permission, C-permission, and LM-permission. Extensions introducing new permissions may
require these to be provided by root data capabilities.

2.3.12.2. NULL Capability

A capability with all-zero metadata, a zero capability tag, and an address of zero is referred to as the NULL
capability. This capability grants no permissions and any dereference results in raising an exception.

2.4. CHERI encoding formats

CHERI implementations make trade-offs in their "encoding formats", such as the precision of bounds and
the expressible set of combinations of permissions, that impact certain behaviors of the ISA. The CHERI
base ISA name is extended with a compact description of these decisions, and the definition of all CHERI
base ISAs includes sufficient details of a capability encoding format precisely define the execution
behavior of all base ISA instructions.

As a result, the RV32Y and RV64Y names on their own do not describe the complete base ISAs, but define
all the semantics of a RVY machine, where certain behavioral parameters must be filled in by the capability
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encoding. For example, the YBNDSRW instruction yields a capability with new bounds that are rounded
differently depending on the number of bits allocated to the bounds in the capability format. Systems with
XLEN=64 can allocate more bits towards the mantissa of the bounds than XLEN=32 system and therefore
have a larger Representable Range.


These observable differences in behaviour are similar to floating point numbers where the
supported operations and their semantics are the same for all formats, but the exact result
depends on the representation (e.g., 16/32/64-bit IEEE-754 or other floating point formats).

The encoding format parameters are specified in the architecture string using a _Ly<params> syntax, which
can be used by software and/or the compiler to optimize for that specific in-memory format.



The base _L<encoding_parameters> encoding format scheme is designed to separate the
aspects of capability encoding that influence the behavior of RVY instructions from the rest.
The intent is to simplify the future development of more (possibly domain-specific) encoding
formats while also more directly conveying compatibility of architectural bases.

The following parameters are currently defined to distinguish existing formats:

Parameters for bounds precision and representability
These parameters affect the behavior of YBNDSW/YBNDSRW as well as the representability check that
affects the tag-clearing behavior of how far you can go out of bounds with YADDRW/ADDY.

⚫ Mantissa width (mw<N>): The mantissa width for the bounds encoding. For example, a format
with 14 bits of mantissa, would use mw14. The mantissa width influences the precision of bounds
(much like the mantissa width of floating point numbers defines arithmetic precision).

⚫ Maximum exponent (ea or e<N>): If all meaningful values of the exponent can be encoded directly
in the exponent field this uses ea. Otherwise e<N> describes the largest encodable exponent for a
valid capability except for the one used for the whole address space. For example, the
RV32Y_Lyenccheriot1 format uses e14 since it uses a four-bit exponent field that can encode only
the values 0 through 14 and 24 (which, with its 9-bit mantissas, is sufficient to provide an encoding
of bounds that cover the whole address space). The default value for this parameter is ea and may be
omitted in that case.

⚫ Representable region (rc1 or r0): The number of mantissa bits used to guarantee representability of
out-of-bounds capability values. So far two options have been used in commercial implementations:
rc1, where the encoding uses one additional bit and uses a centered out-of-bounds region, and r0
where zero bits are used for out-of-bounds capabilities and there is no guaranteed out-of-bounds
range.

Parameter for permissions
This parameter defines which permission modifications using YPERMC also clear additional (non-
encodable) permissions.

⚫ Permission encoding (ps or pc): Whether permissions are encoded using a simple representation of
one bit per architectural permission (ps) or a compressed encoding that leverages dependencies
between permissions and does not allow encoding all possible combinations (pc).

Parameter for in-memory format
⚫ In-memory encoding (enc<suffix>): This parameter defines layout of capability metadata fields in

memory. The default value for this parameter is enc1 and may be omitted in that case. Vendors may
define alternate formats where all other parameters are otherwise identical, so this parameter can
be used to differentiate such formats. Additionally, there is one other value, enc0, which means the
compiler and/or software must avoid making any assumptions about the in-memory
representation.
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
To allow arbitrary characters in the suffix of this parameter it must be the last component of
the _Ly<params> to avoid ambiguity with other parameters.


In general, only very specialized software such as offline crash-dump debuggers need to know
the exact memory representation, and all other software can and should use the inspection
instructions such as YBASER, etc.

Other parameters
These other parameters are not used by the formats currently set forward for ratification but are being
used in vendor extensions on top of RVY.

⚫ AUIPC (RVY) shift (as<N>): The shift amount used in the RVY variant of AUIPC (RVY). This is 12
(as in RVI) unless specified otherwise.

As with other extensions, a version number suffix may be added to the _Ly string to identify a new version
with the same parameters but different in-memory representation. Any newer version must be forwards
compatible with any existing software using the same parameters. Custom capability encoding formats
may be implemented for vendor-specific non-standard implementations (their name suffix should start
with _Lxy).


Any future capability encoding formats must provide all the capability guarantees listed in this
chapter and must undergo formal verification of these properties before being proposed for
ratification.


The behavior of all RVY instructions is fully defined by the parameters in the _Ly string.
Therefore, any implementation with matching parameters is binary compatible (assuming the
same extensions are implemented).

The currently known RVY base capability encoding formats are listed below:

⚫ For RV64Y, the capability encoding format based on University of Cambridge CHERI v9 (Watson et al.,
2023): RV64Y_Lymw14rc1ps

⚫ For RV32Y, the capability encoding format based on University of Cambridge CHERI v9 (Watson et al.,
2023): RV32Y_Lymw10rc1pc


It is expected that the actual RVY instantiation is chosen using a profile rather than a full
architecture string and therefore the unwieldy suffix should rarely be user-visible.

For RV64Y, the number of spare bits in the capability encoding ensure sufficient future extensibility and
therefore no vendor-defined formats exist. However, RV32Y has insufficient bits available to enable
features for all target domains, so in addition to the RV32Y_Lymw10rc1pc further RV32Y-extending
capability formats exist:

⚫ The CHERIoT encodings (with _Lymw9e14r0as11pc parameters) optimized for smaller devices:
RV32Y_Lyenccheriot1, RV32Y_Lyenccheriot2, and RV32Y_Lyenccheriot3.


RV32YE (16-register) implementations are recommended to use one of these CHERIoT
encodings.

2.5. Integrity of Capabilities

CHERI enforces the following rules for all valid capabilities:

1. The bounds are not malformed.
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2. No reserved bit in the capability encoding is set.

3. The permissions can be legally produced by YPERMC.

In all cases the capability could not have been legally created, and so either:

⚫ There has been a corruption of capability state due to memory or logic faults

⚫ There is an incompatible or faulty CHERI IP within the system


These checks are much less rigorous than parity or ECC protection, and are only used to detect
simple problems with the capability metadata.


Even though valid capabilities which fail the integrity check could not have been legally
generated by the local hart, defining the handling in the architecture allows the behavior to be
precisely specified for all 2(YLEN+1) input values.

Implementing these checks is optional unless otherwise noted in instruction descriptions, as integrity
failures are most likely due to IP compatibility issues.


Currently only YBLD must perform an integrity check on an invalid input capability in rs2
before setting the capability tag of the output. This is because this is the only currently defined
instruction that sets the capability tag of an invalid capability.

2.6. Extended State

As stated above, all state which can hold addresses are extended from XLEN to YLEN bits.

2.6.1. General Purpose Registers

The XLEN-wide integer registers (e.g., sp, a0) are all extended to YLEN bits and associated capability tags,
as shown in Figure 3.

2*XLEN (YLEN) XLEN 0

x0 x0

x1 x1

Same layout for x2-x30

x31 x31

pc pc

V Metadata Address

Figure 3. Extended registers in RVY

The zero register is extended with zero metadata and a zero capability tag: this is called the NULL
capability.

2.6.2. The Program Counter Capability (pc)

The pc is extended to be a capability. Extending the pc allows the range of branches, jumps and linear
execution for currently executing code to be restricted. The pc address field is the pc in the base RISC-V
ISA so that the hardware automatically updates it as instructions are executed.
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The hardware performs the following checks on pc for each instruction executed in addition to the checks
already required by the base RISC-V ISA. A failing check raises a CHERI exception.

⚫ The capability tag must be set

⚫ The capability must not be sealed

⚫ The capability must grant X-permission

⚫ All bytes of the instruction must be in bounds

⚫ All integrity checks must have passed.

On system initialization the pc bounds and permissions must be set such that the program can run
successfully (e.g., by setting it to a Root Executable capability to ensure all instructions are in bounds).


Future ISA extensions should respect these rules so that the checked bits do not need to be
stored in all copies of the pc in the implementation.

MXLEN-1 0

V pc (Metadata, WARL)

pc (Address, WARL)

MXLEN

Figure 4. Program Counter Capability

2.6.3. Added CSRs

RVY adds the YLEN-bit CSR shown in Table 10.

Table 10. Unprivileged capability CSRs added in RVY

YLEN CSR Permissions Description

utidc RW, ASR-permission required for writes, not reads User Thread ID Capability

2.6.3.1. User Thread Identifier Capability (utidc)

The utidc register is used to identify the current software thread in user mode. Any operation that modifies
utidc raises an exception unless the ASR-permission is set in the current pc.



While the RISC-V ABI includes a thread pointer (tp) register, it is not usable for the purpose of
reliably identifying the current software thread because the tp register is a general purpose
register and can be changed arbitrarily by untrusted code. Therefore, this specification offers
an additional CSR that facilitates a trusted source for identifying software threads.

MXLEN-1 0

V utidc (Metadata)

utidc (Address)

MXLEN

Figure 5. User thread identifier capability register



The following should probably move to a programmers guide        

Compartmentalization seeks to separate the privileges between different protection units, e.g.,
two or more libraries. Code can be separated by sentries, which allow for giving out code
capabilities to untrusted code where the untrusted code can only call the code capability, but
not modify it. The utidc register supports a model where untrusted code is separated by trusted
code and each call from one piece of untrusted code to another piece of untrusted code goes
through trusted code. Often, the trusted code is referred to as a trampoline. Sentries can be
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called from different software threads and thus there needs to be a way of identifying the
current software thread. While identifying the current software thread can be done by
privileged code, e.g., the kernel, the implied performance overhead of this is not bearable for
CHERI systems with many compartments.

The utidc register is designed to hold a capability, which can only be used for memory accesses
by trusted code. In a commonly used model on CHERI systems, the trusted code’s
responsibility is only to switch between compartments, but not to switch threads. This
responsibility is usually taken over by more privileged code, e.g., an operating system kernel
running on a different privilege level. The privileged code switches software threads and writes
the utidc register.

Every piece of code in the user space (and more privileged levels) can read the contents of the
utidc register. However, the memory authorized by the capability in utidc must not be
accessible to untrusted code, but only to trusted code. In order to protect this capability, it can
be sealed. The trusted code will be given means to unseal this capability (say, via YSUNSEAL).
For the untrusted code, the memory pointed to by utidc is inaccessible. The sealed capability
itself is no secret, but the memory to which it points is a secret and must not be accessed by
any untrusted code.

Trusted code can use utidc to implement secure compartment switches. Often, the capability
therein is used to implement a trusted stack. Whenever a compartment switch happens, the
trusted code can pass arguments between the caller and callee compartment avoid capability
leaks between the two compartments. The trusted code can store capabilities on the trusted
stack when calling out of a compartment and can install them when returning to the same
compartment.

2.6.4. Extended CSRs

All CSRs that can hold addresses are extended to YLEN bits.

RVY has three classes of CSRs

⚫ XLEN-bit CSRs, which do not contain addresses

⚫ e.g., fcsr from the "F" extension

⚫ XLEN-bit CSRs extended to YLEN bits, which are able to contain addresses (referred to as extended
CSRs)

⚫ e.g., jvt from the "Zcmt" extension

⚫ YLEN-bit CSRs, which are added by RVY and contain addresses

⚫ e.g., utidc

When accessing CSRs these rules are followed:

1. Accesses to XLEN-bit CSRs are as specified by Zicsr

2. Accesses to YLEN-bit CSRs and extended CSRs, using CSRRW will:

a. Read YLEN bits

b. Write YLEN bits, and will write the capability tag to zero if:

i. any integrity check fails

3. Accesses to YLEN-bit CSRs and extended CSRs, using instructions other than CSRRW will:
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a. Read YLEN bits

b. Write an XLEN-bit value to the address field, and use the semantics of the YADDRW instruction to
determine the final written value


Any YLEN-bit or extended CSR may have additional rules defined to determine the final
written value of the metadata and/or to write zero to the capability tag.

The assembler pseudoinstruction to read a capability CSR csrr rd, csr, is encoded as csrrs rd, csr,
x0.

Table 11. YLEN-bit CSR and Extended CSR access summary for RVY

Instruction Read Width Write Width

CSRRW rd==x0 YLEN

CSRRW rd!=x0 YLEN YLEN

CSRR[C|S] rs1==x0 YLEN

CSRR[C|S] rs1!=x0 YLEN XLEN

CSRRWI rd==x0 XLEN

CSRRWI rd!=x0 YLEN XLEN

CSRR[C|S]I uimm==x0 YLEN

CSRR[C|S]I uimm!=x0 YLEN XLEN

In Table 11, when there is no read or write width shown, the CSR access is not made and there are no side-
effects following standard Zicsr rules.

2.7. Capability checks

With RVY, every memory access performed by a CHERI core must be authorized by a capability.

Instruction fetches and data memory accesses may result in a fatal exception if the access is out of bounds,
or if the authorizing capability is missing the required permissions. I.e.,:

⚫ all load instructions requires R-permission

⚫ all store instructions require W-permission

⚫ all indirect jumps require X-permission on the target capability

Instruction fetch is also authorized by a capability: the program counter capability (pc) which extends the
PC.


This allows code fetch to be bounded, preventing a wide range of attacks that subvert control
flow with non-capability data.

The authorizing capability is either named explicitly (the base register of a load/store operation) or
implicitly (when executing a branch, pc is used for authorization).

E.g., lw t0, 16(sp) loads a word from memory, getting the address, bounds, and permissions from the sp
(capability stack pointer) register.

No other exception paths are added by RVY: in particular, capability manipulations do not raise an
exception, but may set capability tag of the resulting capability to zero if the operation is not permitted.
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2.8. Added Instructions

RVY adds new instructions to operate on capabilities.

2.8.1. Instructions to Update The Capability Pointer

Creating a new capability with a different address (i.e., updating the pointer) requires specific instructions
instead of integer ADD/ADDI. These instructions all include a check that the resulting address can be
represented exactly within the new capability.

Table 12. Instructions which update the address field summary in RVY

Mnemonic Description

ADDIY Capability pointer increment by immediate

ADDY Capability pointer increment

YADDRW Write capability address
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2.8.1.1. ADDIY

See ADDY.

2.8.1.2. ADDY

Synopsis
Capability pointer increment

Mnemonic
addy rd, rs1, rs2
addiy rd, rs1, imm

Suggested assembly syntax
add rd, rs1, rs2
addi rd, rs1, imm

 The suggested assembly syntax distinguishes from integer add/addi by operand type.

Encoding

067111214151920242531

opcoderdfunct3rs1rs2!=x0funct7

7
OP=0110011

5
dest

3
ADDY=000

5
src

5
increment

7
ADDY=0000110

06711121415192031

opcoderdfunct3rs1imm

7
OP-IMM-32=0011011

5
dest

3
ADDIY=010

5
src

12
imm

ARC note - the proposed ADDIY encoding has since been allocated by the P extension proposal and will                 
require a new final allocation.    


ADDY with rs2=x0 is decoded as YMV instead, the key difference being that capabilities
cannot have their capability tag cleared by YMV.

Description
Copy the capability in register rs1 to register rd.

For ADDY, increment rd.address by the value in rs2[XLEN-1:0] .
For ADDIY, increment rd.address by the immediate value imm.

Set rd.tag=0 if rs1 is sealed.

Set rd.tag=0 if the resulting capability cannot be represented exactly.

Set rd.tag=0 if rs1 fails any integrity checks.

Included in
RVY

Operation for ADDY

  let cs1_val = C(cs1);
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  let rs2_val = X(rs2);

  let newCap = incCapAddrChecked(cs1_val, rs2_val);

  C(cd) = newCap;
  RETIRE_SUCCESS

Operation for ADDIY

  let cs1_val = C(cs1);
  let immBits : xlenbits = sign_extend(imm);

  let newCap = incCapAddrChecked(cs1_val, immBits);

  C(cd) = newCap;
  RETIRE_SUCCESS
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2.8.1.3. YADDRW

Synopsis
Write capability address

Mnemonic
yaddrw rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

3
YADDRW=001

5
src

5
address

7
YADDRW=0000110

Description
Copy the capability rs1 to rd.

Set rd.address to rs2[XLEN-1:0].

Set rd.tag=0 if rs1 is sealed.

Set rd.tag=0 if the resulting capability cannot be represented exactly.

Set rd.tag=0 if rs1 fails any integrity checks.

Included in
RVY

Operation

C(cd) = setCapAddrChecked(C(cs1), X(rs2));
RETIRE_SUCCESS
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2.8.2. Instructions to Manipulate Capabilities

For security, capabilities can only be modified in restricted ways. Special instructions are provided to copy
capabilities or derive a new capability using manipulations such as shrinking the bounds (YBNDSW),
reducing the permissions (YPERMC) or authorizing a capability with another one which has a superset (or
identical) bounds and permissions (YBLD).

Table 13. Summary of RVY instructions that create a modified capability

Mnemonic Description

YPERMC Clear capability permissions

YMV Capability register copy

YHIW1 Write capability metadata and clear capability tag (pseudo)

YBNDSWI Write capability bounds by immediate

YBNDSW Write capability bounds

YBNDSRW Write capability bounds, rounding up if required

YSUNSEAL Unseal by superset reconstruction

1 YHIW is a pseudoinstruction for PACKY
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2.8.2.1. YPERMC

Synopsis
Clear capability permissions

Mnemonics
ypermc rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

3
YPERMC=010

5
src

5
mask

7
YPERMC=0000110

Description
YPERMC performs the following operations:

1. Convert the AP-field, SDP-field, and any other extension-defined permission-like fields of
capability rs1 into a bit field with the format shown in Figure 6.

2. The initial value in register rs2[XLEN-1:0] is treated as a bit mask that specifies bit positions to be
cleared in the bit field. Any bit that is high in rs2 will cause the corresponding bit to be cleared in
the bit field.


Future extensions may include hardwired permission bits, in which case they are not
cleared by set bits in rs2.

3. Encode the resulting architectural permissions as specified by the encoding in use. This may
involve iterating over the rules in Section 2.3.10.1, as well as any rules added by extensions or the
capability encoding, to a fixed point (that is, a set of permissions not further reduced by any rule);
encodings may, however, specify other encoding procedures.



Depending on the base ISA and supported extensions, some combinations of
permissions cannot be encoded or are not useful. In these cases, YPERMC will return a
minimal sets of permissions, which may be no permissions. Therefore, it is possible
that requesting to clear a permission also clears others, but YPERMC will never add
new permissions.

4. Copy rs1 to rd, and update the AP-field, SDP-field, and any others therein with the newly calculated
versions.

5. Set rd.tag=0 if rs1 is sealed and any bits in the AP-field or SDP-field were affected by YPERMC;
extensions must describe whether such changes to their bits also necessitate capability tag clearing.

6. Set rd.tag=0 if any integrity checks fail.

XLEN-1 24 23 19 18 17 16 15 SDPLEN+5 6 5 4 2 1 0

Reserved 0 Reserved 1 R X ASR Reserved 1 SDP C Reserved 1 LM W

XLEN-24 5 1 1 1 10-SDPLEN SDPLEN 1 3 1 1

Figure 6. Capability permissions bit field



If a future extension adds a new permission that overlaps with an existing permission (e.g.,
finer-grained ASR-permission), then clearing the original must also clear the new permission.
This ensures software forward-compatibility: for example, a kernel that does not know about
finer-grained ASR-permission subsets must still be able to prevent all access to privileged
instructions and CSRs by clearing ASR-permission.
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

Any future extension that defines new permissions that are a refinement of existing
permissions (e.g., finer-grained ASR-permission or those of Zylevels1) must be allocated to the
bits that are currently reported as 1 to ensure forward-compatibility. Completely new
permissions (e.g., sealing) should use the bits that are reported as zero in the current
specification.



Extensions like Zylevels1 introduce bits that are, conceptually, labels on a capability rather
than a permission granted by the capability. These bits are, nevertheless, still adjusted using
the YPERMC instruction. This avoids the need for a dedicated instruction and allows
simultaneous changes of these labels and permissions.

Included in
RVY

Operation

  let cs1_val = C(cs1);
  let rs2_val = X(rs2);

  let cond = capIsSealed(cs1_val) | not(capReservedValid(cs1_val));
  let inCap = clearTagIf(cs1_val, cond);

  let old_perms = packPerms(getArchPermsLegalized(inCap),
inCap.sd_perms).bits;

  let new_perms = old_perms & rs2_val;

  let (new_arch_perms, new_sd_perms) = unpackPerms(struct {bits =
new_perms});
  let newCap = { setArchPerms(inCap, new_arch_perms) with sd_perms =
new_sd_perms };

  C(cd) = newCap;
  RETIRE_SUCCESS
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2.8.2.2. YMV

Synopsis
Capability register copy

Mnemonic
ymv rd, rs1

Suggested assembly syntax
ymv rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1zerofunct7

7
OP=0110011

5
dest

3
ADDY=000

5
src

5
rs2=x0

7
ADDY=0000110

 YMV is encoded as ADDY with rs2=x0.

Description
The contents of capability register rs1 are written to capability register rd. YMV unconditionally does a
bit-wise copy from rs1 to rd .

This instruction can propagate valid capabilities which fail integrity checks.

Included in
RVY

Operation

C(cd) = C(cs1);
RETIRE_SUCCESS
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2.8.2.3. PACKY

Synopsis
Pack Y register

Mnemonic
packy rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

53
PACKY=011

557
PACKY=0000100

Description
The PACKY instruction packs the least-significant XLEN-bits of rs1 and rs2 into rd, and sets rd.tag=0.

Included in
RVY

2.8.2.4. YHIW

Synopsis
Capability set metadata

Mnemonic
yhiw rd, rs1, rs2

Encoding
YHIW is a pseudoinstruction for PACKY

Description
Copy rs1 to rd.

Replace the capability metadata of rs1 (i.e., bits [YLEN-1:XLEN]) with rs2 and set rd.tag to 0.

 The value of rs1.tag does not affect the result.

Included in
RVY

Operation

let capVal = C(cs1);
let intVal = X(rs2);
let newCap = bitsToCap(false, intVal @ capVal.address);
C(cd) = newCap;
RETIRE_SUCCESS

2.8. Added Instructions | Page 33

RISC-V Specification for CHERI Extensions | © RISC-V International



2.8.2.5. YBNDSWI

See YBNDSW.

2.8.2.6. YBNDSW

Synopsis
Write capability bounds

Mnemonics
ybndsw rd, rs1, rs2
ybndswi rd, rs1, imm

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

3
YBNDSW=000

5
src1

5
src2

7
YBNDSW=0000111

067111214151920293031

opcoderd=rs1funct3rs1=rduimmfunct2

7
OP-IMM-32=0011011

5
dest

3
YBNDSWI=011

5
src

10
uimm

3
00


99.5% of uses of unrestricted allocation of rs1 and rd for YBNDSWI have rs1=rd, and so the
cases where they do not match are reserved.

ARC note - This is a placeholder encoding pending final allocation. We want to ensure that RVY minimized                 
usage of opcode space, so a 10-bit immediate is sufficient and rs1!=rd does not need to be supported, and                  
therefore could use the same number of bits as a R-type instruction.           

Description
Copy the capability from register rs1 to register rd. Set the base address of its bounds to the value of
rs1.address and set the length of its bounds to rs2[XLEN-1:0] for YBNDSW, or imm for YBNDSWI.

Set rd.tag=0 if rs1.tag=0, rs1 is sealed or if rd 's bounds exceed rs1 's bounds.

Set rd.tag=0 if the requested bounds cannot be encoded exactly.

Set rd.tag=0 if rs1 fails any integrity checks.

YBNDSWI uses the following formula to determine the requested length:

⚫ ((imm[7:0] + 257) << imm[9:8]) - 256



This formula does not actually require two additions in decode as it expands to the following:

imm[9:8] Resulting immediate Immediate range

0 (imm[7:0]<<0) + 1 1, 2, …, 255, 256

1 (imm[7:0]<<1) + 258 258, 260, …, 766, 768

2 (imm[7:0]<<2) + 772 772, 776, …, 1788, 1792

3 (imm[7:0]<<3) + 1800 1800, 1808, …, 3832, 3840
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Included in
RVY

Operation for YBNDSW

let cs1_val = C(cs1);
let length = X(rs2);
let newBase = cs1_val.address;
let newTop : CapLenBits = zero_extend(newBase) + zero_extend(length);
// inCapBoundsNoWrap returns false if the input bounds are malformed.
let inBounds = inCapBoundsNoWrap(cs1_val, newBase, unsigned(length));
let (exact, newCap) : (bool, Capability) = setCapBounds(cs1_val, newBase,
newTop);
let cond = not(inBounds & exact) |
           boundsMalformed(newCap) |
           not(capReservedValid(newCap)) |
           capIsSealed(newCap);
C(cd) = clearTagIf(newCap, cond);
RETIRE_SUCCESS

Operation for YBNDSWI
TODO <<<

2.8.2.7. YBNDSRW

Synopsis
Write capability bounds, rounding up if required

Mnemonic
ybndsrw rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

3
YBNDSRW=001

5
src1

5
src2

7
YBNDSRW=0000111

Description
Copy the capability from register rs1 to register rd. Set the base address of its bounds to the value of
rs1.address and set the length of its bounds to rs2[XLEN-1:0].

The base is rounded down and the top is rounded up by the smallest amounts needed to form a
capability covering the requested base and top.

Set rd.tag=0 if rs1.tag=0, rs1 is sealed or if rd 's bounds exceed rs1 's bounds.

Set rd.tag=0 if the requested bounds cannot be encoded exactly.

Set rd.tag=0 if rs1 fails any integrity checks.
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Included in
RVY

Operation

let cs1_val = C(cs1);
let length = X(rs2);
let newBase = cs1_val.address;
let newTop : CapLenBits = zero_extend(newBase) + zero_extend(length);
// inCapBoundsNoWrap returns false if the input bounds are malformed.
let inBounds = inCapBoundsNoWrap(cs1_val, newBase, unsigned(length));
let (_, newCap) : (bool, Capability) = setCapBounds(cs1_val, newBase,
newTop);
let cond = not(inBounds) |
           boundsMalformed(newCap) |
           not(capReservedValid(newCap)) |
           capIsSealed(newCap);
C(cd) = clearTagIf(newCap, cond);
RETIRE_SUCCESS
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2.8.2.8. YSUNSEAL

Synopsis
Unseal by superset reconstruction

Mnemonic
ysunseal rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

3
YSUNSEAL=010

5
src1

5
src2

7
YSUNSEAL=0000111

Description
Copy rs2 to rd.

Set rd.ct=0. (That is, unseal rd.)

Set rd.tag=1 if:

1. rs1.tag=1, and

2. rs1 passes all integrity checks, and

3. rs1 is not sealed (that is, rs1 has zero CT-field), and

4. rs2.tag is set, and

5. rs2 passes all integrity checks, and

6. rs2 is sealed (that is, rs2 has non-zero CT-field), and

7. rs2 's permissions and bounds are equal to or a subset of rs1 's, and

8. any extension-specific constraints on YSUNSEAL hold.
Otherwise, set rd.tag=0


When rs1 is x0 YSUNSEAL will copy rs2 to rd and clear rd.tag and rd.ct. However future
extensions may add additional behavior to update currently reserved fields, and so software
should not assume rs1==0 to be a pseudo-instruction for capability tag and type clearing.



YSUNSEAL is intended to enable "superset unsealing" of opaque handles to software objects.
Specifically, a software component can:

1. allocate the memory for these objects from a region of address space,

2. render capabilities to these objects opaque by sealing (with, for example, the YSENTRY
instruction, if present),

3. distribute these handles to other software components, and

4. later use its (unsealed) capability to the backing region as the authority (in rs1) of a
YSUNSEAL instruction to recover an unsealed capability to the object backing a handle (in
rs2) received from other components.

The result of YSUNSEAL will be untagged if the received capability is not a handle to an object
in the recipient’s address space. This makes it easy for recipient software to ensure that
received capabilities actually are handles to the recipient’s objects.
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

While YSUNSEAL requires that the capability in its rs2 is sealed, it imposes no requirements
on which non-zero CT-field value has been used to seal rs2. If the capability encoding defines
multiple non-zero CT-field values and software wishes to distinguish between them, it must
use YTYPER on the sealed capability.

Included in
RVY

Operation
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2.8.3. Instructions to Decode Capability Bounds

The bounds describing the range of addresses the capability gives access to are stored in a compressed
format. These instructions query the bounds and related information.

Table 14. Instructions which decode capability bounds summary in RVY

Mnemonic Description

YBASER Read capability base address

YLENR Read capability length
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2.8.3.1. YBASER

Synopsis
Read capability base address

Mnemonic
ybaser rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
YBASER=000

5
src

5
YBASER=00101

7
YBASER=0001000

Description
Decode the base integer address from rs1 's bounds and write the result to rd.

If rs1 's bounds can’t be decoded, or rs1 fails any integrity checks, then return zero.

 The value of rs1.tag does not affect the result.

Included in
RVY

Operation

let capVal = C(cs1);
X(rd) = match getCapBoundsBits(capVal) {
  None() => zeros(),
  Some(base, _) => base
};
RETIRE_SUCCESS
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2.8.3.2. YLENR

Synopsis
Read capability length

Mnemonic
ylenr rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
YLENR=000

5
src

5
YLENR=00110

7
YLENR=0001000

Description
Calculate the length of rs1 's bounds and write the result in rd.

The length is defined as the difference between the decoded bounds' top and base addresses, i.e., top -
base.

Return the maximum length, 2MXLEN-1, if the length of rs1 is 2MXLEN.

If rs1 's bounds can’t be decoded, or rs1 fails any integrity checks, then return zero.

 The value of rs1.tag does not affect the result.

Included in
RVY

Operation

let capVal = C(cs1);
// getCapLength returns 0 if the bounds are malformed
let len = getCapLength(capVal);
X(rd) = to_bits(xlen, if len > cap_max_addr then cap_max_addr else len);
RETIRE_SUCCESS
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2.8.4. Instructions to Extract Capability Fields

These instructions either directly read bit fields from the metadata or capability tag, or only apply simple
transformations on the metadata.

Table 15. Instructions which extract capability fields summary in RVY

Mnemonic Description

YTAGR Read capability tag

YPERMR Read capability permissions

YTYPER Read capability type

YHIR1 Read capability metadata (pseudo)

1 YHIR is a pseudoinstruction for SRLIY
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2.8.4.1. YTAGR

Synopsis
Read capability tag

Mnemonic
ytagr rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
YTAGR=000

5
src

5
YTAGR=00000

7
YTAGR=0001000

Description
Zero extend the value of rs1.tag and write the result to rd.

Included in
RVY

Operation

let capVal = C(cs1);
X(rd) = zero_extend(bool_to_bits(capVal.tag));
RETIRE_SUCCESS
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2.8.4.2. YPERMR

Synopsis
Read capability permissions

Mnemonic
ypermr rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
YPERMR=000

5
src

5
YPERMR=00001

7
YPERMR=0001000

Description
Convert the unpacked AP-field, SDP-field, and any other extension-defined permission-like fields of
capability rs1 into a bit field, with the same format as used by YPERMC (see Figure 6), and write the
result to rd.

All bits in the [23:0] range that are reserved or assigned to extensions that are not implemented by the
current hart always report 1.

All architectural permission bits in rd are set to 0 if any integrity checks failed.

XLEN-1 24 23 19 18 17 16 15 SDPLEN+5 6 5 4 2 1 0

Reserved 0 Reserved 1 R X ASR Reserved 1 SDP C Reserved 1 LM W

XLEN-24 5 1 1 1 10-SDPLEN SDPLEN 1 3 1 1

Figure 7. Capability permissions bit field

 The value of rs1.tag does not affect the result.

Included in
RVY

Operation

let capVal = C(cs1);
X(rd) = packPerms(getArchPermsLegalized(capVal), capVal.sd_perms).bits;
RETIRE_SUCCESS
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2.8.4.3. YTYPER

Synopsis
Read capability type

Mnemonic
ytyper rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
YTYPER=000

5
src

5
YTYPER=00010

7
YTYPER=0001000

Description
Decode the architectural capability type (CT-field) from rs1 and write the result to rd.

 The value of rs1.tag does not affect the result.

Included in
RVY

Operation

let capVal = C(cs1);
X(rd) = zero_extend(bool_to_bits(capVal.sealed));
RETIRE_SUCCESS
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2.8.4.4. SRLIY

Synopsis
Logical right shift of Y register

Mnemonic
srliy rd, rs1, shamt

Encoding

067111214151920262731

opcoderdfunct3rs1funct7funct5

7
OP-IMM=0010011

5
dest

3
SRLIY=101

5
src

7
rv64: 1000000
rv32: 0100000

5
000000

Description
Logical right shift of Y register rs1 to rd, zero-filling the upper bits of the result.


Currently the only valid shift distance is XLEN places, a future extension may add an arbitrary
shift distance.


For RV32Y, srliy rd, rs1, 32 has an identical encoding and operation to the RV64
instruction srli rd, rs1, 32.

Included in
RVY

Operation
TODO

2.8.4.5. YHIR

Synopsis
Read capability metadata (pseudo)

Mnemonic
yhir rd, rs1

Encoding
yhir rd, rs1 is a pseudoinstruction for srliy rd, rs1, XLEN

Description
Copy the metadata (bits [YLEN-1:XLEN]) of capability rs1 into rd.

 The value of rs1.tag does not affect the result.

Included in
RVY

Operation

let capVal = C(cs1);
X(rd) = capToMetadataBits(capVal).bits;
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RETIRE_SUCCESS
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2.8.5. Miscellaneous Instructions to Handle Capability Data

Table 16. Miscellaneous capability instruction summary in RVY

Mnemonic Description

SYEQ Capability equality comparison including capability tag

YLT Capability less than comparison including capability tag

YAMASK Capability alignment mask
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2.8.5.1. SYEQ

Synopsis
Capability equality comparison including capability tag

Mnemonic
syeq rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

3
SYEQ=100

5
src1

5
src2

7
SYEQ=0000110

Description
Set rd to 1 if all bits (i.e., YLEN bits and the capability tag) of capabilities rs1 and rs2 are equal,
otherwise set rd to 0.

Included in
RVY

Operation

let cs1_val = C(cs1);
let cs2_val = C(cs2);
X(rd) = zero_extend(bool_to_bits(cs1_val == cs2_val));
RETIRE_SUCCESS
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2.8.5.2. YLT

Synopsis
Set Capability Subset

Mnemonic
ylt rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

3
YLT=110

5
src1

5
src2

7
YLT=0000110

Description
rd is set to 1 if:

1. the capability tag of capabilities rs1 and rs2 are equal, and

2. the bounds and permissions of rs2 are a subset of those of rs1, and

3. neither rs1 nor rs2 fail any integrity checks

4. any extension-specific constraints capability subset relationships hold.

Otherwise set rd to 0. Extensions may further impose constraints on when rd is set to 1.


The implementation of this instruction is similar to YBLD, although YLT does not include the
sealed bit in the check.

Included in
RVY

Operation

  let cs1_val = C(cs1);
  let cs2_val = C(cs2);

  X(rd) = zero_extend(bool_bits(
    (cs1_val.tag == cs2_val.tag) &
    capIsSubset(cs2_val, cs1_val) /* capIsSubset returns false if either
input
                                     has malformed bounds, perms, or non-zero
                                     reserved bits */
  ));
  RETIRE_SUCCESS
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2.8.5.3. YAMASK

Synopsis
Capability alignment mask

Mnemonic
yamask rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
YAMASK=000

5
src

5
YAMASK=00111

7
YAMASK=0001000

Description
rd[XLEN-1:0] is set to a mask that can be used to round addresses down to a value that is sufficiently
aligned to set exact bounds for the nearest representable length of rs1[XLEN-1:0]. The upper bits of rd
are zero extended. See Section 12.1.6 for the algorithm used to compute the next representable length.

Included in
RVY

Operation

let len = X(rs1);
X(rd) = getRepresentableAlignmentMask(len);
RETIRE_SUCCESS
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2.8.6. Instructions to Load and Store Capability Data

New loads and stores are introduced to handle capability data, LY and SY. They atomically access YLEN
bits of data and the associated capability tag.

All capability memory accesses check for C-permission in the authorizing capability in rs1.

If C-permission is granted then:

⚫ LY reads YLEN bits of data from memory, and returns the associated capability tag.

⚫ SY writes YLEN bits of data to memory, and writes the associated capability tag.

If C-permission is not granted then:

⚫ LY reads YLEN bits from memory, but does not return the associated capability tag, instead zero is
returned.

⚫ SY writes YLEN bits to memory, and writes zero to the associated capability tag.

All capability data memory access instructions require YLEN-aligned addresses, and will take an access
fault exception if this requirement is not met. They cannot be emulated.


An access fault is raised instead of a misaligned exception since these instructions cannot be
emulated since there is one hidden capability tag per YLEN-aligned memory region.

All memory accesses, of any type, require permission from the authorizing capability in rs1.

⚫ All loads require R-permission, otherwise they raise an exception

⚫ All stores require W-permission, otherwise they raise an exception

Under some circumstances LY will modify the data loaded from memory before writing it back to the
destination register. See LY for details.

Table 17. Capability load/store instruction summary in RVY

Mnemonic Description

LY Load capability

SY Store capability
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2.8.6.1. LY

Synopsis
Load capability

Mnemonic
ly rd, offset(rs1)

Encoding

06711121415192031

opcoderdfunct3rs1≠0imm[11:0]

7
MISCMEM=0001111

5
dest

3
LY=100

5
base

12
offset[11:0]


Any instance of this instruction with rs1=x0 will raise an exception, as x0 is defined to always
hold a NULL capability. As such, the encodings with rs1=x0 are RESERVED for use by future
extensions.

Description
Calculate the effective address of the memory access by adding rs1.address to the sign-extended 12-bit
offset.

Authorize the memory access with the capability in rs1.

Load a naturally aligned YLEN-bit data value from memory.

If the PMA is CHERI Capability Tag then load the associated capability tag, otherwise set the capability
tag to zero.

The capability tag may also be cleared under platform specified conditions.

 Extensions may also specify conditions which clear the capability tag.

Use the YLEN-bit data and the capability tag to determine the value of rd as specified below.



Platforms may strip loaded capability tags for a number of reasons. For example:

⚫ The RVY privileged specification permits Physical Memory Attributes (PMAs) that
cannot store capability tags, as might be the case with MMIO. The capability tags
transported by SY instructions to these regions are cleared and so will not read back.

⚫ The MMU of the RVY privileged specification introduces page mappings that always
clear loaded capability tags even if the loaded location has a set capability tag.
Privileged software can use such mappings to limit capability propagation between
virtual address spaces while still allowing for data exchange.

⚫ CHERIoT platforms use so-called "capability load filters" to allow software (usually
shared heap allocators) to ensure that capabilities pointing to deallocated memory
cannot be loaded into the register file from memory.

⚫ A future extension is likely to specify the behavior of the "capability load filter" for
embedded CHERI systems.

This instruction can propagate valid capabilities which fail integrity checks.
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Determining the final value of rd
If the capability tag is zero, or the authorizing capability (rs1) does not grant C-permission then set
rd.tag=0. In this case the steps below do not apply.



If the capability tag is zero, all YLEN bits are transferred to the register without mutation,
such that, for example, a SY instruction writing the destination register back to memory
produces an exact copy. That is, the transferred value is not subjected to capability integrity
checks and may, if viewed as a capbility, not be derivable from the system’s capability roots.
Especially, if the capability encoding has reserved bits or reserved values within its fields,
these must be faithfully transported through registers. This property is essential for
efficient, "capability-oblivious" implementation of C’s memcpy().

If rd.tag=1, rd is not sealed and rs1 does not grant LM-permission, then an implicit YPERMC is
performed to clear W-permission and LM-permission from rd.


Extensions may define further circumstances under which implict YPERMC-s or other
mutation of loaded capabilities may take place.



While the implicit YPERMC introduces a dependency on the loaded data, implementations
can avoid this by deferring the actual masking of permissions until the loaded capability is
dereferenced or the metadata bits are inspected using YPERMR or YHIR. Additionally,
metadata modifications are on naturally aligned data, and so on the read path from a data
cache, the modification typically happens in parallel with data alignment multiplexers.

When sending load data to a trace interface, implementations trace the final value written to rd which
may not match the value in memory.

Exceptions
Load access fault exception when the effective address is not aligned to YLEN/8.

Exceptions occur when the authorizing capability fails one of the checks listed below:

Kind Reason

CHERI Load Access Fault Authorizing capability tag is set to 0.

CHERI Load Access Fault Authorizing capability is sealed.

CHERI Load Access Fault Authorizing capability does not grant the necessary
permissions.

CHERI Load Access Fault At least one byte accessed is outside the authorizing
capability bounds, or the bounds could not be decoded.

CHERI Load Access Fault Authorizing capability failed any integrity check.

Included in
RVY

Operation

  let offset : xlenbits = sign_extend(imm);
  let (auth_val, vaddr) = get_cheri_mode_cap_addr(rs1_cs1, offset);
  let aq : bool = false;
  let rl : bool = false;

  match check_and_handle_load_vaddr_for_triggers(vaddr, get_arch_pc()) {
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    Some (ret) => return ret,
    None () => ()
  };
  if not(capTaggedAndReservedValid(auth_val)) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_TagViolation);
    RETIRE_FAIL
  } else if capIsSealed(auth_val) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_SealViolation);
    RETIRE_FAIL
  } else if not(canR(auth_val)) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_PermissionViolation);
    RETIRE_FAIL
  } else if not(validAddrRange(vaddr, cap_size) |
capBoundsInfinite(auth_val)) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_InvalidAddressViolation);
    RETIRE_FAIL
  } else if not(inCapBounds(auth_val, vaddr, cap_size)) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_LengthViolation);
    RETIRE_FAIL
  } else if not(is_aligned_addr(vaddr, cap_size)) then {
    handle_mem_exception(vaddr, E_Load_Addr_Align());
    RETIRE_FAIL
  } else match translateAddr(vaddr, Read(Cap)) {
    TR_Failure(E_Extension(_)) => { internal_error(__FILE__, __LINE__,
"unexpected cheri exception for cap load") },
    TR_Failure(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
    TR_Address(addr, pbmt, ptw_info) => {
      let c = mem_read_cap(addr, pbmt, aq, aq & rl, false);
      match c {
        MemValue(v) => {
          let cr = clearTagIf(v, ptw_info.ptw_lc == PTW_LC_CLEAR |
not(canC(auth_val)));
          C(cd) = legalizeLM(cr, auth_val);
          RETIRE_SUCCESS
        },
        MemException(e) => {handle_mem_exception(vaddr, e); RETIRE_FAIL }
      }
    }
  }
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2.8.6.2. SY

Synopsis
Store capability

Mnemonic
sy rs2, offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1≠0rs2imm[11:5]

7
STORE=0100011

5
offset[4:0]

3
SC=100

5
base

5
src

7
offset[11:5]


Any instance of this instruction with rs1=x0 will raise an exception, as x0 is defined to always
hold a NULL capability. As such, the encodings with rs1=x0 are RESERVED for use by future
extensions.

Description
Calculate the effective address of the memory access by adding rs1.address to the sign-extended 12-bit
offset.

Authorize the memory access with the capability in rs1.

Store a naturally aligned YLEN-bit data value in rs2 to memory and the associated capability tag in rs2.

This instruction can propagate valid capabilities which fail integrity checks.

Stored Capability Tag Value
The stored capability tag is set to zero if:

1. rs2.tag=0, or

2. rs1 does not grant C-permission, or

3. The PMA is CHERI Capability Tag Strip


Extensions may define further circumstances under which stored capabilities may have
their capability tags cleared.

Exceptions
Store/AMO access fault exception when the effective address is not aligned to YLEN/8.

Store/AMO access fault if the stored capability tag is set to one and the PMA is CHERI Capability Tag
Fault.

Exceptions occur when the authorizing capability fails one of the checks listed below:

Kind Reason

CHERI Store/AMO Access Fault Authorizing capability tag is set to 0.

CHERI Store/AMO Access Fault Authorizing capability is sealed.

CHERI Store/AMO Access Fault Authorizing capability does not grant the necessary
permissions.
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Kind Reason

CHERI Store/AMO Access Fault At least one byte accessed is outside the authorizing
capability bounds, or the bounds could not be decoded.

CHERI Store/AMO Access Fault Authorizing capability failed any integrity check.

Included in
RVY

Operation

  let offset : xlenbits = sign_extend(imm);
  let (auth_val, vaddr) = get_cheri_mode_cap_addr(rs1_cs1, offset);
  let cs2_val = C(cs2);
  let aq : bool = false;
  let rl : bool = false;
  let cs2_val = clearTagIf(cs2_val, not(canC(auth_val)));

  match check_and_handle_store_vaddr_for_triggers(vaddr, get_arch_pc()) {
    Some (ret) => return ret,
    None () => ()
  };
  if not(capTaggedAndReservedValid(auth_val)) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_TagViolation);
    RETIRE_FAIL
  } else if capIsSealed(auth_val) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_SealViolation);
    RETIRE_FAIL
  } else if not(canW(auth_val)) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_PermissionViolation);
    RETIRE_FAIL
  } else if not(validAddrRange(vaddr, cap_size) |
capBoundsInfinite(auth_val)) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_InvalidAddressViolation);
    RETIRE_FAIL
  } else if not(inCapBounds(auth_val, vaddr, cap_size)) then {
    handle_cheri_exception(CapCheckType_Data, CapEx_LengthViolation);
    RETIRE_FAIL
  } else if not(is_aligned_addr(vaddr, cap_size)) then {
    handle_mem_exception(vaddr, E_SAMO_Addr_Align());
    RETIRE_FAIL
  } else match translateAddr(vaddr, Write(if cs2_val.tag then Cap else Data))
{
    TR_Failure(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
    TR_Address(addr, pbmt, _) => {
      let eares : MemoryOpResult(unit) = mem_write_ea_cap(addr, aq & rl, rl,
false);
      match (eares) {
        MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
        MemValue(_) => {
          let res : MemoryOpResult(bool) = mem_write_cap(addr, pbmt, cs2_val,
aq & rl, rl, false);
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          match (res) {
            MemValue(true)  => RETIRE_SUCCESS,
            MemValue(false) => internal_error(__FILE__, __LINE__, "store got
false from mem_write_value"),
            MemException(e) => { handle_mem_exception(vaddr, e); RETIRE_FAIL
}
          }
        }
      }
    }
  }
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2.9. Changes to Existing RISC-V Base ISA Instructions

RVY extend existing instructions that are used for handling addresses so that they manipulate a whole
capability.

⚫ Whenever an input operand is used as an address (e.g., the load/store base address), all capability bits
are fed into the instruction instead of just XLEN bits.

⚫ Any instruction that writes back an address (e.g., AUIPC (RVY) or CSRRW (RVY)) to the destination
register, writes a full capability register instead of just XLEN bits. For all other results the high bits of
the register and the capability tag are zeroed.

⚫ Whenever a capability with a new address is returned, the result is always created using the semantics
of the YADDRW instruction.

ADD and ADDI are not affected by the rule above. Even though they are used for handling addresses, they
also have other uses. New encodings are used for capability addition: ADDY and ADDIY. They must be used
for all address incrementing.



Integer add (ADD) and capability add (ADDY) have separate encodings. Using a single
encoding for both is undesirable:

1. Integer ADD is most commonly used for purposes other than address calculations.

2. For high performance implementations which can issue multiple ADDs, it means that the
integer ADD units don’t need the upper halves of the operands, and don’t need the
capability check logic on the result.

3. The compiler and/or programmer would have to execute another metadata clearing
instruction after each ADD to ensure that compartments don’t leak capabilities.

The rules above apply to the base ISA instructions listed in the following subsections, but also apply to
instructions added by other extensions. Any change to instruction semantics (or remapping of opcodes) for
RVY is called out in the chapter defining the extension.

2.9.1. Changes to load/stores

All load and store instructions behave as described in Load and Store Instructions with one fundamental
difference:

⚫ Any memory instruction that has rs1 as a base address register reads the full capability register
instead. The base address is unchanged, i.e., using the value from rs1. The metadata and capability tag
are used to authorize the access.

⚫ For a load instruction, the lower XLEN bits of the result written to the destination register are the same
as in the RV32I/RV64I specification.

All load and store instructions authorized by rs1 raise exceptions if any of these checks fail:

⚫ rs1 must not be x01

⚫ The capability tag (rs1.tag) must be set

⚫ rs1 must be unsealed

⚫ For loads, R-permission must be set in rs1

⚫ For stores, W-permission must be set in rs1

⚫ All integrity checks on rs1 must pass
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1 All load/store encodings are reserved if rs1=x0 (since dereferencing NULL always faults).

All load instructions, except for the RVY LY, always zero the capability tag and metadata of the result
register.

All store instructions, except for the RVY SY, always write zero to the capability tag or capability tags
associated with the memory locations that are written to.

Therefore, misaligned stores may clear up to two associated capability tag bits.

The changed interpretation of the base register also applies to all loads, stores and all other memory
operations defined in later chapters of this specification with a base operand of rs1 unless stated otherwise.

Under RVY all loads and stores are authorized by rs1.

These rules affect the following base ISA instructions listed in Table 19, and also apply to instructions
added by other extensions, e.g.,:

⚫ Floating-point loads and stores

⚫ Vector load and stores.

⚫ Atomic memory accesses, see "Zaamo" for RVY and "Zalrsc" for RVY.

Table 18. Changed RISC-V base ISA load/store instructions summary in RVY

Mnemonic Description

LD, LW[U], LH[U], LB[U] Integer loads (authorized by the capability in rs1)

SD, SW, SH, SB Integer stores (authorized by the capability in rs1)

2.9.2. Changes to PC

⚫ Whenever the address field of the pc is modified, it is always updated using the semantics of the
YADDRW instruction. This includes adding an offset to the pc from direct jumps and branches for
both the target address and the link register. In this case, e.g., new_pc = YADDRW(old_pc, offset)

⚫ JALR (RVY) copies rs1 into the pc, and increments the address field with the offset. In this case, e.g.,
new_pc = YADDRW(rs1, offset)

These rules affect the following base ISA instructions listed in Table 19, and also apply to instructions
added by other extensions, e.g.,:

Table 19. Changed RISC-V base ISA PC relative instructions summary in RVY

Mnemonic Description

AUIPC (RVY) Add upper immediate to pc

JAL (RVY) Immediate offset jump, and link and seal to capability register

JALR (RVY) Jump to capability register, and link and seal to capability register
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2.9.3. AUIPC (RVY)

Synopsis
Add upper immediate to pc

Mnemonic
auipc rd, imm

Encoding

067111231

opcoderdimm[31:12]

7
AUIPC=0010111

5
dest

20
U-immediate[31:12]

 This instruction is extended from the version in the base ISA.

Description
Form a 32-bit offset from the 20-bit immediate filling the lowest bits with zero; the number of places to
shift is determined by the capability encoding’s choice of the AUIPC shift value (12, unless otherwise
specified by the capability encoding format). Take the value of the AUIPC instruction’s pc, increment its
address by the 32-bit offset using the semantics of the YADDRW instruction and write the result to rd.

Set rd.tag=0 if the resulting capability cannot be represented exactly.

Included in
RVI (RVY modified behavior)

Operation

let off : xlenbits = sign_extend(imm @ 0x000);
let (representable, newCap) = setCapAddr(PCC, PC + off);
C(cd) = clearTagIf(newCap, not(representable));
RETIRE_SUCCESS

2.9.4. The AUIPC Shift

The RISC-V base integer ISA frequently splits signed 32-bit constants accross instructions as the addition
of a signed 12-bit constant and a 20-bit constant shifted left by 12 bits. For example, the I-type instruction
ADDI, with its 12-bit immediate, is to be combined with the U-type LUI instruction and its 20-bit immediate
when values beyond the reach of a signed 12-bit value are needed. To reach a given value in this way
involve "overshooting" the desired value: for example, to materialize 0xf01 (3841) into a register, one uses
LUI to materialize 0x1000 (4096) and ADDI to subtract 0xff (255). Similarly, the U-type AUIPC instruction,
with its 20-bit immediate, is designed to compose well with the signed 12-bit immediate operands of load
(I-type) and store (S-type) instructions.

When manipulating addresses within capabilities, there is a risk that such two-step sequences could take
the address out of bounds before attempting to bring it back within bounds. Many capability encodings,
including those of RV32Y_Lymw10rc1pc, have a representable range sufficient to ensure that any
capability whose length is larger than 2 KiB (that is, those for which a signed 12-bit displacement might be
insufficient) are able to represent at least 2 KiB on either side of their bounds. However, this is not an
essential property of capability encodings, and so this specification allows the capability encoding to
specify the shift used within address-manipulating instructions with shifted immediates. For AUIPC (RVY)
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specifically, we refer to this value as the AUIPC shift, and take it to be 12 unless the capability encoding
sets it to another value. (Taking the shift to be 11 instead of 12 decreases the reach of AUIPC from ±2 GiB to
±1 GiB, but ensures that all values within that range can be obtained with the same sign bit in the AUIPC
immediate and subsequent 12-bit immediate(s), thereby ensuring that in-bounds addresses can be reached
without risk of the intermediate computation exceeding capability bounds.)


Future extensions that add instructions with similar semantics should make use of this same
encoding-specified shift value or otherwise allow the capability encoding to set the shift
amount.


It is possible for the compiler to generate code that is compatible with any AUIPC shift by
emitting a AUIPC with a zero offset followed by a sequence of LUI and ADDY/ADDIY.
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2.9.5. JAL (RVY)

Synopsis
Immediate offset jump, and link and seal to capability register

Mnemonic
jal rd, offset

Encoding

06711121920213031

opcoderdimm[19:12][11]imm[10:1][20]
7

JAL=1101111
5

dest
8110

offset[20:1]
1

Description
Jump to the target pc.

Increment pc.address by the sign-extended offset to form the target pc. The pc of the next instruction is
sealed and written to rd.

Both address increments use the semantics of the YADDRW instruction to determine the result.



A future extension may raise an exception on the branch instruction itself if fetching a
minimum sized instruction at the target pc will raise a CHERI Instruction Access Fault.
Performing the pc bounds check at the branch source instead of on instruction fetch is helpful
for debugging and can simplify the implementation of CPUs with very short pipelines.

Included in
RVI (RVY modified behavior)

Operation
TODO
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2.9.6. JALR (RVY)

Synopsis
Jump to capability register, and link and seal to capability register

Mnemonic
jalr rd, rs1, offset

Encoding

06711121415192031

opcoderdfunct3rs1imm[11:0]

7
JALR=1100111

5
dest

3
0

5
base

12
offset[11:0]

 This instruction is extended from the version in the base ISA.

Description
Indirect jump to the target capability in rs1 with an address offset.



The description below contains three hooks for extending JALR (RVY) behavior, used by
extensions to give a large degree of extensibility. Unless an extension, such as Zysentry, is
implemented which explicitly reference any of the hooks, then take no action for any of
them.

Operationally, copy rs1 to the target pc and then…

1. Compute the target pc address in two steps, each using the semantics of the YADDRW instruction:

a. Increment the address of the target pc by the sign-extended 12-bit offset, and

b. set bit zero of the target pc address to zero.

2. HOOK 1: Optionally clear the capability tag of the target pc depending on the CT-field value and the
numerical values of rd and rs1

3. Unseal the target pc if it is a sentry capability, or clear the capability tag if it is any other sealed type.

4. If rd≠x0, compute the return capability and install it to rd:

a. add the width of this instruction to the current pc using the semantics of the YADDRW
instructions, and

b. HOOK 2: Optionally seal the return capability as a sentry capability with a CT-field defined by
the implemented extensions.

5. HOOK 3: Optionally make other architectural state updates.

6. Jump to the target pc.



When a sealed capability is passed as the input to JALR (RVY), its address must have
bit zero clear and the instruction must have a zero offset, or the target pc will have its
capability tag set to zero, since updates to its address are interpreted with YADDRW
semantics.



A future extension may raise an exception on the JALR (RVY) instruction itself if the
target pc will raise a CHERI Instruction Access Fault at the target. NOTE: A sentry
defines a secure function entry point, and as such the offset in the JALR instruction
must be zero. This is enforced by the use of YADDRW to add the offset which clears the
tag of all sealed capabilities if the offset is non-zero.

2.9. Changes to Existing RISC-V Base ISA Instructions | Page 64

RISC-V Specification for CHERI Extensions | © RISC-V International



Included in
RVI (RVY modified behavior)

Operation
TODO

2.9.7. Changes to BEQ, BNE

For beq and bne only, if rs1≥rs2 then the encoding is RESERVED.

 These encodings are redundant and may be used by future extensions.


Future behavior for these reserved branch encodings may include branching on capability tag
values only, or YLEN-bit compares.

If the target of a taken branch lies outside the bounds of pc, the next instruction fetch will raise an
exception.


A future extension may raise an exception on the branch instruction itself if fetching a
minimum sized instruction at the target pc will raise a CHERI Instruction Access Fault.
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Chapter 3. "Zysentry" Extension for Creation of Sentry
Capabilities
The Zysentry extension:

1. Defines one sentry capability type, the unrestricted sentry type with a CT-field of 1.

a. These unrestricted sentry capabilities can be used as immutable code pointers for both forward and
backward control flow edges. NOTE: A future extension may define more restrictive forward-only
and backward-only sentry capabilities that can only be used by calls and returns respectively.

2. Adds the YSENTRY instruction to allow sealing capabilities as sentries with CT-field of 1.

3.1. Interaction with JALR (RVY)

Zysentry adds sealing and unsealing behavior to JALR (RVY):

1. For HOOK 2: Seal the return capability as a sentry.

3.2. Added instructions

3.2.1. YSENTRY

Synopsis
Seal capability as a sentry

Mnemonic
ysentry rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
YSENTRY=000

5
src

5
YSENTRY=01000

7
YSENTRY=0001000

Description
Copy rs1 to rd.

Set the capability type (CT-field) of rd to the ambient value specified by the capability encoding given
the permissions granted by the capability in rs1.

Set rd.tag=0 if rs1 is sealed.

Included in
Zysentry

Operation

let cs1_val = C(cs1);
let inCap = clearTagIf(cs1_val, capIsSealed(cs1_val));
C(cd) = sealCap(inCap);

3.1. Interaction with JALR (RVY) | Page 66

RISC-V Specification for CHERI Extensions | © RISC-V International



RETIRE_SUCCESS
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Chapter 4. "Zybld" Extension for Building Capabilities
The Zybld extension adds the YBLD instruction to capabilities with a superset authority to validate (i.e. set
the capability tag) of a capability with lesser authority.

 This instruction can be used to speed up operations such as paging in memory after swap.


CHERIoT implementations do not use YBLD, so this instruction is part of an optional
extension instead of the RVY base ISA.
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4.1. Added instructions
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4.1.1. YBLD

Synopsis
Build capability

Mnemonic
ybld rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

3
YBLD=101

5
src1

5
src2

7
YBLD=0000110

Description
Copy rs2 to rd.

If rd.ct (that is, its CT-field) is neither 0 nor an ambient type, then set rd.ct to 0.

Set rd.tag=1 if:

1. rs1.tag=1, and

2. rs1 passes all integrity checks, and

3. rs1 is not sealed, and

4. rs2 's permissions and bounds are equal to or a subset of rs1 's, and

5. rs2 passes all integrity checks, and

6. any extension-specific constraints on YBLD hold.

Otherwise, set rd.tag=0


The integrity check on rs2 is required to prevent authorising a capability with a lack of
integrity. The integrity check on rs1 is optional.

 YBLD will construct a sealed capability only if its type is ambiently available.

 YBLD is typically used alongside YHIW to build capabilities from integer values.


When rs1 is x0 YBLD will copy rs2 to rd and clear rd.tag. However future extensions may
add additional behavior to update currently reserved fields, and so software should not assume
rs1==0 to be a pseudo-instruction for capability tag clearing.

Included in
Zybld

Operation

  let cs1_val = C(cs1);
  let cs2_val = C(cs2);

  let tag = cs1_val.tag &
            not(capIsSealed(cs1_val)) &
            capIsSubset(cs2_val, cs1_val); /* Subset checks for malformed
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bounds,
                                              perms, and reserved bits */

  C(cd) = { cs2_val with tag = tag };
  RETIRE_SUCCESS
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Chapter 5. "Zytopr" Extension for Extracting the Top Bound
The Zytopr extension adds the YTOPR instruction to return the top bound of a capability. This offers a
performance improvement over the software sequence of a saturating add of the results of YBASER and
YLENR, and is useful fo rmemory allacators.
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5.1. Added instructions
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5.1.1. YTOPR

Synopsis
Read capability top address

Mnemonic
ytopr rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
YTOPR=000

5
src

5
YTOPR=00100

7
YTOPR=0001000

Description
Decode the base integer address from rs1 's bounds and write the result to rd.

If rs1 's bounds can’t be decoded, or rs1 fails any integrity checks, then return zero.

 The value of rs1.tag does not affect the result.

Included in
Zytopr

Operation
TODO
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Chapter 6. "Zyhybrid" Extension for CHERI Execution
Modes


This chapter will appear in the unpriv spec somewhere after the Zicsr chapter (since it depends
on Zicsr).

Zyhybrid is an optional extension to RVY which adds the ability to dynamically change the base
architecture of the hart between CHERI (RVY) and standard RISC-V (RVI/RVE).

The ability to choose between these two behaviors is referred to as switching between CHERI Execution
Modes. The mode is controlled by a new bit (the M-bit) allocated in the pc.

Zyhybrid adds the instructions shown in Zyhybrid which add the ability to query and update the current
mode.

Zyhybrid also adds a new unprivileged CSR: the default data capability, ddc. ddc is used to authorize all
data memory accesses when executing RVI/RVE code.



Together with pc, ddc allows confining code runs to a compartment (also called a sandbox),
where all data memory and instruction memory accesses are bounded to fixed memory
regions. These compartments have full binary compatibility with all existing ratified RISC-V
base architectures and extensions, i.e. non-CHERI-aware programs which execute unmodified.
Provided that the privileged execution environment has set up ddc and pc appropriately, non-
CHERI-aware programs will execute unmodified (as long as they don’t attempt to access
memory out of the defined bounds).

RVY implementations which support Zyhybrid are typically referred to as CHERI Hybrid, whereas
implementations which do not support Zyhybrid are typically referred to as CHERI purecap.

6.1. CHERI Execution Modes

The two execution modes are:

(Non-CHERI) Address Mode
Executing with the RVI (or RVE) base ISA.


If RVC encodings are supported, load/store encodings will revert back to their non-CHERI
encodings, such as C.LYSP reverting to C.FLWSP for RV32F. This behavior is summarized
in Table 63, Table 64, Table 65 and Table 66.


Instructions which are modified on an RVY architecture (see Table 56) revert to their
standard behavior.

All RVY instructions, and associated CSRs, are available in addition to RVI/RVE and all supported non-
CHERI extensions.

The authorizing capability for memory access is ddc (as opposed to rs1). That is, all memory accesses,
including PREFETCH.W (RVY) and PREFETCH.R (RVY), are implicitly authorized by ddc and only the
memory address is sourced from rs1. Jumps and PREFETCH.I (RVY) are exceptions to this rule, as pc
authorizes them.

 ddc is also used to authorize RVY specific memory instructions such as LY and SY.

All CSR accesses to YLEN CSRs only access the lower XLEN bits, and, if writing, update the CSR using
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the semantics of the YADDRW instruction (see Section 6.4).

(CHERI) Capability Mode
Executing with the RVY base ISA.

The CHERI Execution Mode is key in providing backwards compatibility with the base RV32I/RV64I ISA.
RISC-V software is able to execute unchanged in implementations supporting Zyhybrid provided that the
privileged environment sets up ddc and pc appropriately.


The CHERI execution mode is always (CHERI) Capability Mode on implementations that
support RVY, but not Zyhybrid.



Software is referred to as purecap if it utilizes CHERI capabilities for all memory
accesses — including loads, stores and instruction fetches — rather than integer addresses.
Purecap software requires the CHERI RISC-V hart to support RVY. Software is referred to as
hybrid if it uses integer addresses or CHERI capabilities for memory accesses. Hybrid software
requires the CHERI RISC-V hart to support RVY and Zyhybrid.

6.1.1. CHERI Execution Mode Encoding

The CHERI Execution Mode is determined by a bit in the metadata of the pc called the M-bit. Zyhybrid adds
a new CHERI Execution Mode field (M) to the capability format. This field needs to be present only in
capabilities granting X-permission, as it is only ever architecturally interpreted on the capability resident
in pc. Capabilities not granting X-permission may or may not have a defined M field, and attempting to
update this field may be a no-op. Zyhybrid is compatible only with capability encodings that specify
transport of the M-bit (see RV32Y_Lymw10rc1pc and RV64Y_Lymw14rc1ps, for examples).

⚫ Mode (M)=0 indicates (CHERI) Capability Mode.

⚫ Mode (M)=1 indicates (Non-CHERI) Address Mode.


Since indirect jumps copy the full target capability into pc, it allows indirect jumps to change
between modes (see Section 6.1.2).

6.1.2. Changing CHERI Execution Mode

The M-bit of pc can be updated by the instructions listed in Table 20:

Table 20. Zyhybrid instructions that can perform mode changes

Mnemonic From mode Description

JALR (RVY) (CHERI) Capability Mode Jump to capability register, and link and seal to capability
register

YMODESWI (CHERI) Capability Mode Switch execution to (Non-CHERI) Address Mode

YMODESWY (Non-CHERI) Address Mode Switch execution to (CHERI) Capability Mode


When JALR (RVY) copies rs1 into pc it includes copying the M-bit and so setting the CHERI
Execution Mode of the target instruction.

The M-bit of a X-permission-granting capability can be read and written by the instructions listed in Table
21:

Table 21. Zyhybrid instructions to observe and update the mode in a capability
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Mnemonic Description

YMODEW Set capability execution mode

YMODER Read capability mode


In addition to the mode switching instructions, the current mode can also be updated by
setting the M-bit of a target capability using YMODEW followed by a JALR (RVY).

6.1.3. Representation of the M-bit in the capability encoding

For capabilities that do not grant X-permission, M-bit must always be interpreted and reported as 0
representing (CHERI) Capability Mode.


While this is not phrased as an additional rule for YPERMC to follow, beyond those of Section
2.3.10.1, capability encodings may nevertheless take advantage of this implication in their
representation of architectural CHERI capabilities.

6.1.4. Observing the CHERI Execution Mode

The effective CHERI execution mode cannot be determined just by reading the M-bit from pc since it also
depends on the execution environment. The following code sequence demonstrates how a program can
observe the current, effective CHERI execution mode. It will write, to x1, the value 1 for (CHERI) Capability
Mode (wherein pc has a set capability tag) or 0 for (Non-CHERI) Address Mode (wherein pc is just an address
and has a clear capability tag):

auipc x1, 0
ytagr x1, x1


Implementations that support Zyhybrid will typically boot into (Non-CHERI) Address Mode so
that non-CHERI-aware software can run unmodified. CHERI-aware software can observe and
switch the mode as required.
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6.2. Added instructions
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6.2.1. YMODEW

Synopsis
Set capability execution mode

Mnemonic
ymodew rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

7
YMODEW=111

5
src1

5
src2

7
YMODEW=0000110

Description
Copy rs1 to rd.

Set rd.tag=0 if rs1 is sealed, or if rs1 fails any integrity check.

If rs1 grants X-permission and rs1 passes all integrity checks, then update the M-bit of rd to:

1. (CHERI) Capability Mode if the least significant bit of rs2 is 0, or,

2. (Non-CHERI) Address Mode if the least significant bit of rs2 is 1.

Otherwise do not update the M-bit.

 The value of rs1.tag does not affect the result.

Included in
Zyhybrid

Operation

  let cap = C(cs1);
  let mode = execution_mode_encdec(X(rs2)[0 .. 0]);

  let cap = clearTagIf(cap, capIsSealed(cap));
  let hasMode = not(permsMalformed(cap)) & canX(cap);
  let newCap = if hasMode then setCapMode(cap, mode) else cap;

  C(cd) = newCap;
  RETIRE_SUCCESS
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6.2.2. YMODER

Synopsis
Read capability mode

Mnemonic
ymoder rd, rs1

Encoding

067111214151920242531

opcoderdfunct3rs1funct5funct7

7
OP=0110011

5
dest

3
YMODER=000

5
src

5
YMODER=00011

7
YMODER=0001000

Description
Decode the CHERI execution mode from the capability in rs1 and write the result to rd.

Set rd to 0 if rs1 does not grant X-permission

Set rd to 0 if any integrity checks failed.

Otherwise set rd according to rs1 's CHERI execution mode (M-bit):

1. Set rd to 0 for (CHERI) Capability Mode, or,

2. Set rd to 1 for (Non-CHERI) Address Mode.

 The value of rs1.tag does not affect the result.

Included in
Zyhybrid

Operation

let capVal = C(cs1);
X(rd) = zero_extend(execution_mode_encdec(getCapMode(capVal)));
RETIRE_SUCCESS
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6.2.3. YMODESWI

See YMODESWY.

6.2.4. YMODESWY

Synopsis
Switch execution mode to (CHERI) Capability Mode (YMODESWY), or (Non-CHERI) Address Mode
(YMODESWI), 32-bit encodings

Mnemonic
ymodeswy
ymodeswi

Encoding

067111214151920242531

opcodefunct5funct3funct5funct5funct7

7
OP=0110011

5
00000

3
001

5
00000

5
00000

7
YMODESWY=0001001
YMODESWI=0001010

Description
Set the current CHERI execution mode in pc.

⚫ YMODESWY: If the current mode in pc is (Non-CHERI) Address Mode (1), then the M-bit in pc is set
to (CHERI) Capability Mode (0). Otherwise no effect.

⚫ YMODESWI: If the current mode in pc is (CHERI) Capability Mode (0), then the M-bit in pc is set to
(Non-CHERI) Address Mode (1). Otherwise no effect.

Included in
Zyhybrid

Operation

let mode : ExecutionMode = match effective_cheri_mode() {
  IntPtrMode => CapPtrMode,
  CapPtrMode => IntPtrMode,
};
if debug_mode_active then dinfc = setCapMode(infinite_cap, mode);
set_next_pcc(setCapMode(PCC, mode));
RETIRE_SUCCESS

6.3. Added State

Zyhybrid adds the YLEN-wide CSR shown in Table 22.

Table 22. Unprivileged YLEN-wide CSRs added in Zyhybrid

YLEN CSR Permissions Description

ddc URW User Default Data Capability
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6.3.1. Default Data Capability CSR (ddc)

ddc is a read-write, user mode accessible capability CSR. It does not require ASR-permission in pc for
writes or reads. Similarly to pc authorizing all control flow and instruction fetches, this capability register
is implicitly checked to authorize all data memory accesses when the current CHERI mode is (Non-CHERI)
Address Mode. On startup ddc bounds and permissions must be set such that the program can run
successfully (e.g., by setting it to have sufficiently broad bounds and permissions, possibly a Root Data
capability).

MXLEN-1 0

V ddc (Metadata)

ddc (Address)

MXLEN

Figure 8. Unprivileged default data capability register

6.4. Changes to Zicsr Instructions

When in (Non-CHERI) Address Mode, there is a special rule for updating extended CSRs (e.g., jvt (RVY)).
These are CSRs that are XLEN-wide for RVI/RVE but YLEN-wide for RVY.

⚫ Writing an extended CSR writes the address field (XLEN bits) only, and the full CSR is updated using
the semantics of the YADDRW instruction.

⚫ Reading an extended CSR reads the address field (XLEN bits) only.

Accesses to extended CSRs in (Non-CHERI) Address Mode must access only XLEN bits for compatibility,
and so use the semantics of the YADDRW instruction to determine the final written value.

YLEN-wide CSRs are accessed identically in either CHERI Execution Mode.

Table 23. YLEN-bit CSR and Extended CSR access summary for Zyhybrid

YLEN-bit CSR1 Extended CSR2

Instruction Read Width Write Width Read Width Write Width

CSRRW rd==x0 YLEN XLEN

CSRRW rd!=x0 YLEN YLEN XLEN XLEN

CSRR[C|S] rs1==x0 YLEN XLEN

CSRR[C|S] rs1!=x0 YLEN XLEN XLEN XLEN

CSRRWI rd==x0 XLEN XLEN

CSRRWI rd!=x0 YLEN XLEN XLEN XLEN

CSRR[C|S]I
uimm==x0

YLEN XLEN

CSRR[C|S]I uimm!=x0 YLEN XLEN XLEN XLEN

1 e.g., utidc

2 e.g., jvt (RVY)
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6.4.1. CSRRWI (RVY)

See CSRRCI (RVY).

6.4.2. CSRRS (RVY)

See CSRRCI (RVY).

6.4.3. CSRRSI (RVY)

See CSRRCI (RVY).

6.4.4. CSRRC (RVY)

See CSRRCI (RVY).

6.4.5. CSRRCI (RVY)

Synopsis
CSR access (CSRRWI, CSRRS, CSRRSI, CSRRC, CSRRCI) 32-bit encodings for RVY

Mnemonics
csrrs rd, csr, rs1
csrrc rd, csr, rs1
csrrwi rd, csr, imm
csrrsi rd, csr, imm
csrrci rd, csr, imm

Encoding

06711121415192031

opcoderdfunct3rs1/uimmcsr

7
SYSTEM=1110011

5
dest

3
CSRRS=010
CSRRC=011

CSRRWI=101
CSRRSI=110
CSRRCI=111

5
source
source

uimm[4:0]
uimm[4:0]
uimm[4:0]

12
source/dest CSR

Description
These CSR instructions have extended functionality for accessing YLEN bit CSRs, and XLEN bit CSRs
extended to YLEN bits (Extended CSRs).

Access to XLEN bit CSRs is as defined in Zicsr.

Zicsr rules are followed when determining whether to read or write the CSR.

Suppressed read or write actions have no side-effects on the CSR.

All writes are XLEN bits only, as determined by Zicsr, and use the semantics of the YADDRW
instruction to determine the final write data.

Read data from extended CSRs is YLEN bits in (CHERI) Capability Mode or, if Zyhybrid is supported,
XLEN bits in (Non-CHERI) Address Mode.
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Read data from YLEN bit CSRs is always YLEN bits.

In all cases, when writing YLEN bits of rs1, if any integrity check fails then set the capability tag to zero
before writing to the CSR.

Permissions
Accessing CSRs may require ASR-permission.

Prerequisites
RVY, Zicsr

Included in
RVI (RVY modified behavior)

Operation

TBD
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6.4.6. CSRRW (RVY)

Synopsis
CSR access (CSRRW) 32-bit encodings for (RVY)

Mnemonic
csrrw rd, csr, rs1

Encoding

06711121415192031

opcoderdfunct3rs1csr

7
SYSTEM=1110011

5
dest

3
CSRRW=001

5
source

12
source/dest CSR

Description
CSRRW has extended functionality for accessing YLEN-bit CSRs, and XLEN-bit CSRs extended to YLEN
bits (Extended CSRs).

Access to XLEN bit CSRs is as defined in Zicsr.

CSRRW accesses to YLEN bit CSRs read YLEN bits into rd and write YLEN bits of rs1 into the CSR.

CSRRW accesses to extended CSRs read YLEN bits into rd and write YLEN bits of rs1 into the CSR, or if
Zyhybrid is supported, XLEN bit accesses are made in (Non-CHERI) Address Mode. The final write data
is determined using semantics of the YADDRW instruction.

In all cases, when writing YLEN bits of rs1, if any integrity check fails then set the capability tag to zero
before writing to the CSR.

Permissions
Accessing CSRs may require ASR-permission.

Prerequisites
RVY, Zicsr

Included in
RVI (RVY modified behavior)

Operation

TBD
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Chapter 7. "Zabhlrsc" Extension for Byte and Halfword Load
Reserved/Store Conditional, Version 0.9
The Zalrsc extension offers LR/SC (load reserved/store conditional) instructions for words and
doublewords. Zabhlrsc extends this by adding byte and halfword versions.



The absence of LR/SC operations for subword data types is problematic for CHERI software
(RVY base architectures). Non-CHERI RISC-V software can use LR/SC on larger data types
than are strictly required for the memory access to register the reservation set. RVY check
memory bounds and so it not possible to round a subword access up to a word or larger to gain
the reservation set.

7.1. Byte and Halfword Atomic Load Reserved/Store Conditional Instructions

The Zabhlrsc extension provides the LR.[B|H] and SC.[B|H] instructions.

0671112141519202425262731

opcoderdfunct3rs1rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
.B=000
.H=001

5
base

5
LR.*=00000

1
rl

1
aq

5
op

LR.*=00010

0671112141519202425262731

opcoderdfunct3rs1rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width

.B=000

.H=001

5
base

5
src

1
rl

1
aq

5
op

SY=00011

LR.[B|H] behave analogously to LR.[W|D].

SC.[B|H] behave analogously to SC.[W|D].

All Zabhlrsc instructions sign extend the result and write it to rd. :leveloffset: +1
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Chapter 8. Vector "V" Extension (RVY)
The Vector extension is orthogonal to RVY because the vector registers do not support capability tags.



A future extension may allow capability tags to be stored in vector registers. Until that time,
vector load and store instructions must not be used to implement generic memory copying in
software, such as the memcpy() standard C library function, because the vector registers do
not hold capabilities, so the capability tags of any copied capabilities will be set to 0 in the
destination memory.

Under RVY, vector loads and stores follow the standard rules for active elements:

⚫ Only active elements are subject to CHERI exception checks.

⚫ If there are no active elements then no CHERI exceptions will be raised.

⚫ CHERI exceptions are only raised on fault-only-first loads if element 0 is both active and fails any
exception checks.

Additionally, the standard RVY rule that all loads and stores where the base register is x0 are reserved
applies to all vector memory access instructions.



The approach of using indexed loads with the base register set to the value zero and XLEN-
wide offsets does not work well with CHERI as the authorizing capability must cover all of
memory. If the authorizing capability is specified as x0 then the instruction encoding is
reserved.
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Chapter 9. "Zylevels1" Extension for CHERI 2-Level
Information Flow Control
Zylevels1 introduces a simple Information Flow Control (IFC) mechanism to CHERI.

In this simple IFC system, capabilities are said to be either global or local. While the distinction between
global and local is not one of authority (that is, the distinction is not one of permission), global capabilities
may attenuate into local capabilities. The distinction refines the behavior of capability store and load
instructions:

⚫ Capability-write-permissive capabilities are refined to authorize stores of any capability or global
capabilities only. The former may attenuate into the latter. Attempting to store a local capability
through an insufficiently permissive authority clears the capability tag of the value written to memory,
if any.

⚫ Capability-load-permissive capabilities are refined to authorize loads of any capabilities or local
capabilities only. Again, the former may attenuate to the latter. Attempting to load a global capability
through an insufficiently permissive authority instead attenuates the load result as described below.

9.1. Added Architectural Permissions (AP) Bits

Permission Type Comment

SL-permission Data memory
permission

Used to filter the validity of stored capabilities.

LG-permission Data memory
permission

Used to filter the permissions of loaded capabilities.

Store Local Permission (SL)
This field allows limiting the propagation of local capabilities.

A capability without GL(obal) Flag set stored using an authorizing capability lacking SL-permission will
be stored with a zero capability tag.

SL-permission is a refinement of C-permission and W-permission. That is, if either of the latter are clear,
then SL-permission has no effect.

Load Global Permission (LG)
This field allows limiting the propagation of global capabilities.

When a capability is loaded through an authorizing capability that lacks LG-permission, the resulting
capability value has its GL(obal) Flag bit cleared. Additionally, if the loaded capability value is unsealed,
its LG-permission is also cleared in the result.

This permission is similar to the base LM-permission and its effects on loaded capabilities' W-
permission and LM-permission (but note the difference in interaction with seals).

LG-permission is a refinement of C-permission and R-permission. That is, if either of the latter are clear,
then LG-permission has no effect.

9.2. The Capability Global (GL) Flag

The Capability Global (GL) flag is a permission-like single-bit field which allows enforcing invariants on
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capability propagation in combination with the LG-permission and SL-permission bits described above.



For example, the software TCB may enforce that software has access to capabilities with SL-
permission only to (subsets of) its runtime stack, and may ensure that all stack pointers lack
GL(obal) Flag. In such a system, capabilities without GL(obal) Flag, including all those derived
from the stack, are confined to registers and stack memory. Global capabilities, say, into heap
memory, may be attenuated to being local before being passed across a call; the callee will be
unable to capture this pointer outside its stack. This specification defines only the
architectural mechanics of this feature, for further information on how this can be used by
software please refer to (Watson et al., 2023).

The Capability Global flag holds one of two values:

⚫ 1: the capability is global.

⚫ 0: the capability is local.

As with permissions, the Capability Global flag can be cleared when creating a new capability value from an
existing one, but it can never be set (without deriving it from a global superset capability).

9.3. Interaction with Root Capabilities

The Root capabilities used in the system are extended thus:

⚫ The definitions of Root Executable and Root Data capabilities are both augmented to require that
GL(obal) Flag be set to global.

⚫ A Root Executable capability is required to grant LG-permission.

⚫ A Root Data capability is required to grant both LG-permission, and SL-permission.

9.4. Interaction with YPERMC and YPERMR
XLEN-1 4 3 2 1 0

As is GL SL LG As is

XLEN-5 1 1 1 2

Figure 9. Extended capability permissions bit field (see Figure 6)

The GL(obal) Flag, SL-permission, and LG-permission fields are mapped into the capability permissions
bitfield (Figure 6), used by YPERMC and YPERMR, as shown in Figure 9.

9.4.1. YPERMC and the Capability Global (GL) Flag

YPERMC can produce a new capability value with its GL(obal) Flag cleared, even if the source capability is
sealed. This is unlike architectural and software permissions. This applies to both "implicit YPERMCs" in
loads from memory and explicit YPERMC instructions.

9.4.2. Additional YPERMC rules

As mentioned, the SL-permission and LG-permission permissions are dependent on (refinements of) base
permissions. YPERMC (including "implicit YPERMC" operations) and/or the capability encoding therefore
clear these permissions when their dependencies clear. Specifically, we add the following rules to those of
Section 2.3.10.1:
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YPERMC Rule Permission Valid only if

Zylevels1-1 LG-permission C-permission and R-permission

Zylevels1-2 SL-permission C-permission and W-permission

9.5. Interaction with LY

As outlined above, Zylevels1 introduces two new constraints on capabilities loaded from memory, as part of
a LY instruction (ly rd, offset(rs1)). Analogous requirements apply for other instructions that inherit
semantics from LY. These may be phrased as "implicit YPERMC-s" performed on the loaded capability
thus:

⚫ If rd.tag=1, rd is not sealed, and rs1 does not grant LG-permission, then an implicit YPERMC is
performed, clearing both GL(obal) Flag and LG-permission of rd.

⚫ If rd.tag=1, rd is sealed, and rs1 does not grant LG-permission, then an implicit YPERMC is
performed, clearing GL(obal) Flag of rd.


Missing LG-permission also affects the GL(obal) Flag of sealed capabilities, since notionally
the latter is not a permission but rather a data flow label attached to the loaded value.


Because SL-permission is relevant only to capabilities granting W-permission, the attenuation
performed by a load whose authority (rs1) does not grant LM-permission will necessarily also
clear SL-permission.

9.6. Interaction with SY

As outlined above, Zylevels1 introduces a new constraint on capabilities stored to memory, as part of a SY
instruction (sy rs2, offset(rs1)). Analogous requirements apply for other instructions that inherit
semantics from SY. The written capability tag may be set only if either

⚫ rs2 's GL(obal) Flag is set or

⚫ rs1 's SL-permission is set.


While LG-permission attenuates by reducing GL(obal) Flag and LG-permission, SL-permission
attenuates by clearing capability tags.

9.7. Interaction with YLT

Implementations of Zylevels1 must ensure that a YLT instruction ylt rd, rs1, rs2 indicates that rs1 is a
subset of rs2 (that is, sets rd to 1) only if either

⚫ rs2 's GL(obal) Flag is clear or

⚫ rs1 's GL(obal) Flag is set.

The existing permission subset logic applies to the new SL-permission and LG-permission.

9.8. Interaction with YBLD

A YBLD instruction ybld rd, rs1, rs2 may yield rd.tag=1 only if either

⚫ rs2 's GL(obal) Flag is clear or
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⚫ rs1 's GL(obal) Flag is set.

The existing permission subset logic applies to the new SL-permission and LG-permission.

9.9. Interaction with YSUNSEAL

A YSUNSEAL instruction ysunseal rd, rs1, rs2 must ensure that rd grants GL(obal) Flag only if rs1 also
grants GL(obal) Flag. (That is, rd grants GL(obal) Flag if and only if both the unsealing authority in rs1 and
the unsealed form of the capability in rs2 grant GL(obal) Flag.)

The existing permission subset logic applies to the new SL-permission and LG-permission.

9.10. Summary Of System Behavior

Table 24. SL-permission effects for stored capabilities

Auth cap field Data cap
field

W C SL GL Notes

1 1

1 X Store data capability unmodified

0
0 Store data capability unmodified

1 Store data capability with capability tag cleared

 SL-permission is relevant only to capabilities granting both W-permission and C-permission.

Table 25. GL(obal) Flag effects for loading capabilities

Auth cap field Data cap field

R C LG Tag Sealed Action

1 1
0 1

Yes Load data capability with its GL(obal) Flag cleared

No Load data capability with both its GL(obal) Flag and LG-
permission cleared

All other cases Load data capability with both its GL(obal) Flag and LG-
permission unmodified

 LG-permission is relevant only to capabilities granting both R-permission and C-permission.
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Chapter 10. "Zyseal" Extension for CHERI Capability
(Un)Sealing

 This chapter is not part of the v1.0 ratification package.         

10.1. Explicit Sealing and Unsealing Operations

The RVY base architecture defines sealed capabilities. The YBLD, JALR (RVY), and YSUNSEAL instruction
and the Zysentry extension allow platforms to build and consume sealed capabilities in particular ways.
This extension introduces a more general, intentional (that is, capability-mediated) mechanism for the
introduction and elimination of sealed capability forms, in keeping with CHERI’s principle of intentional
use.

This extension first introduces a fundamentally new kind of capabilities, "type capabilities", whose address
space and borne authority range not over memory but rather CT-field-s. As subsequently detailed, these
capabilities, and their new permissions, will serve as authorizing capabilities to new instructions which
perform transformations of other capabilities' CT-field fields:

⚫ Constructing a sealed capability with type T from an unsealed capability requires the authority to seal
at type T, and

⚫ Constructing an unsealed capability from a sealed capability with type T requires the authority to
unseal at type T.

This extension does not define "type conversion" transformations directly between sealed capability types.

10.2. Usable CT-field Values Are Encoding Specified

The capabilities used to mediate (un)sealing are, like memory capabilities, associated with an XLEN-bit
address space. However, capability encodings have fewer than XLEN bits devoted to storing CT-field
values. As such, encodings will specify what CT-field values can be used to seal capabilities (recall that
encodings must support representing unsealed capabilities). The remainder of the address space described
by type capabilities is available for software use.

10.3. Single Address Space Encodings

Capability encodings are permitted to conflate memory and type address spaces, such that one capability
may authorize both memory access to a location and (un)sealing with a type of equal numeric value.
Indeed, the encoding of RV32Y_Lymw10rc1pc/RV64Y_Lymw14rc1ps is one such encoding. Ideally, such
encodings should permit separate manipulation of (un)sealing permission and memory access
permissions, so that software can segregate the address spaces even when the encoding does not do so
intrinsically.

10.4. Added Architectural Permissions (AP) Bits

Table 26. Zyseal YPERMC rules.

Permission Type Comment

SE-permission CT-field permission Grants sealing authority

US-permission CT-field permission Grants unsealing authority
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Seal Permission (SE)
Permit the bearer to YSEAL capabilities at the in-bound types of this capability.

Unseal Permission (US)
Permit the bearer to YUNSEAL capabilities at the in-bound types of this capability.

10.5. Interaction with YPERMC and YPERMR
XLEN-1 26 25 24 23 0

Reserved 0 US SE As is

XLEN-26 1 1 24

Figure 10. Extended capability permissions bit field (see Figure 6)

The SE-permission and US-permission fields are mapped into the capability permissions bitfield (Figure
6), used by YPERMC and YPERMR, as shown in Figure 10.

10.6. Added Instructions

YSEAL
A yseal rd, rs1, rs2 instruction will use the provided sealing authority of rs1 to copy the unsealed
capability in rs2 into rd and seal it with type rs1.address, assuming rs1 has a set capability tag, is in
bounds, and grants SE-permission.

YUNSEAL
A yunseal rd, rs1, rs2 instruction will use the provided unsealing authority of rs1 to copy the sealed
capability in rs2 into rd and unseal it, so long as rs2.ct = rs1.address.
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10.6.1. YSEAL

Synopsis
Seal a capability using a sealing capability

Mnemonic
yseal rd, rs1, rs2

Encoding
TODO

Description
Construct, into rd, a sealed copy of the unsealed capability in rs2, using the type and authority from
rs1.

Copy rs2 into rd, and then…

1. Clear the capability tag of the capability in rd if any of the following hold:

⚫ rs2 is sealed (has a non-zero CT-field value)

⚫ rs1 has a clear capability tag

⚫ rs1 does not grant SE-permission

⚫ The address of rs1 is out of bounds

⚫ The address of rs1 is not a CT-field value that the capability encoding can encode on the
capability in rs2

2. Set the CT-field of rd to the address of rs1.


YSEAL uses the (in-bounds) addresss of the authority in rs1 as the type in the resulting
capability. If the authority has a nontrivial range, software can use YADDRW to select which
type should be used.



If a capability encoding also entails the presence of sentry capability types, it will be possible
for software (bearing suitably permissive capabilities) to seal and unseal the sentry types that
that encoding defines. This is deliberate. Software should ensure that the capabilities requisite
for such operations are attenuated, confined to sufficiently trusted components, and/or
destroyed.



Some capability encodings correlate non-zero CT-field values with other aspects of
capabilities, notably permissions. That is, some encodings may be able to represent a valid
capability with a given non-zero CT-field only if other properties of that capability hold, such
as it granting, or not granting, a particular permission. As such, YSEAL may clear the
capability tag of the result in rd depending on these other aspects of its rs2 input, even if some
capabilities can be sealed with the type called for by the address of rs1.

Included in
Zyseal

Operation
TODO
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10.6.2. YUNSEAL

Synopsis
Unseal a capability using an unsealing capability

Mnemonic
yunseal rd, rs1, rs2

Encoding
TODO

Description
Construct, into rd, an unsealed copy of the capability in rs2, using the type and authority from rs1.

Copy rs2 into rd, and then…

1. Clear the capability tag of the capability in rd if any of the following hold:

⚫ rs1 has a clear capability tag

⚫ rs1 does not grant US-permission

⚫ The address of rs1 is out of bounds

⚫ The address of rs1 is not equal to the CT-field of the capability in rs2.

2. Propagate permissions from rs1 onto rd:

⚫ If the Zylevels1 extension is implemented, and the capability in rs1 does not grant GL(obal)
Flag, use the semantics of the YPERMC instruction to clear the GL(obal) Flag of the capbility in
rd.

(That is, the resulting capability in rd will grant GL(obal) Flag if and only if the capabilities in
rs1 and rs2 both grant GL(obal) Flag.)

⚫ Other extensions may impose similar constraints.

3. Set the CT-field of the capability in rd to zero.



YUNSEAL requires exact equality of the authority’s type, rs1.address, and the to-be-unsealed
capability’s type, rs2.ct. If it is desirable to unseal one of several capability types, using an
authority with nontrivial range, software can use YTYPER and YADDRW to make these values
match. Future extensions may specify a fused "copy type" operation, as was present in the
CHERI v9 ISA.

Included in
Zyseal

Operation
TODO
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Chapter 11. "Zybndsrdw" Extension for Bounding to
Representable Lengths

 This chapter is not part of the v1.0 ratification package.         

This extension adds a single instruction, YBNDSRDW, which writes capability bounds while rounding
down to ensure precise representability of the result. In contrast to YBNDSRW, it does not alter the
requested lower bound (capability base).



This instruction is useful when exposing (byte) buffers across trust domains. Given a buffer, an
address therein, and a length after that address of elements to be revealed to a different trust
domain, software in the originating trust domain wishes to compute the largest span, starting
at the cursor and up to the length of elements to be shared, that can be precisely represented
with a capability. Rounding the base down and/or the length up (as with YBNDSRW) risks
exposing buffered data in the buffer not suitable for exposure to the different trust domain in
question. While the originating domain could instead make a series of exposures, each
sufficiently small to be guaranteed to be representable, it is a significant improvement to allow
capability representation itself to determine the largest safe exposure size.
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11.1. YBNDSRDW

Synopsis
Write capability bounds, rounding down if required

Mnemonic
ybndsrdw rd, rs1, rs2

Encoding

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
OP=0110011

5
dest

3
YBNDSRDW=011

5
src1

5
src2

7
YBNDSRDW=0000111

Description
Copy the capability from register rs1 to register rd. Set the base address of its bounds to the value of
rs1.address.

Round down the requested length, in rs2[XLEN-1:0], by the smallest amount necessary to guarantee
that it is precisely representable given this base address.

Set rd.tag=0 if rs1.tag=0, rs1 is sealed or if rd 's bounds exceed rs1 's bounds.

Set rd.tag=0 if rs1 fails any integrity checks.



If the result in rd has its capability tag set to one, then its base is rs1.address, as with
YBNDSW. The result in rd will be zero-length if and only if rs2[XLEN-1:0] is zero. In practice,
capability encodings offer byte-granularity of bounds for capabilities of lengths up to some
threshold between a few hundred and a few thousand bytes, depending on the encoding; for
requested lengths below this threshold, no rounding is required, and otherwise this threshold
serves to guarantee a minimum length return from YBNDSRDW.



YBNDSRDW finds the largest length l that is both less than or equal to the requested
rs2[XLEN-1:0] and precisely representable given a particular base address, b. A length l is
precisely representable given base b if a YBNDSW instruction…

⚫ whose rs2 register holds l and

⚫ whose rs1 register holds a capability…

 — whose address is b and

 — whose bounds cover the entire address space

produces a result in rd whose capability tag is set to one. This value may be efficiently found,
for most capability encoding schemes, by counting trailing zeros in the desired base address
and computing the length that is a maximal mantissa shifted left by that count (that is, using
the number of trailing zeros in the base address as the value’s exponent).

Included in
Zybndsrdw

Operation
TODO
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Chapter 12. The RV64Y_Lymw14rc1ps Capability Base
Extension for RV64Y, Version 1.0
This chapter describes the in-memory format and properties of the capability encoding intended for
RV64Y.


The format is closely modeled upon features from CHERI v9 (Watson et al., 2023), and the
bounds encoding scheme is based upon CHERI Concentrate (Woodruff et al., 2019).

12.1. Capability Encoding

63 57 56 53 52 51 44 43 42 28 27 26 25 17 16 14 13 3 2 0

Reserved SDP M AP GL Reserved CT EF T[11:3] TE B[13:3] BE

Address

64

Figure 11. Capability encoding for RV64Y_Lymw14rc1ps

 Reserved bits must be 0 in valid capabilities and are available for future extensions to RVY.

The encoding diagram above of the capability format includes some fields which depend upon the
presence of extensions:

Zyhybrid
When Zyhybrid is supported, capabilities include an M-bit (bit 52). If not supported the M-bit is
reserved and reads as zero.

Zylevels1
If Zylevels1 is available, bits 6 and 7 of the AP field are allocated, otherwise they must always be set to
one for any valid capability. Additionally, the GL flag is only available if Zylevels1 is implemented,
otherwise it is reserved and must be zero.

This capability encoding has the following properties that affect the observable behavior of RVY
instructions such as YBNDSW and YPERMC:

⚫ Mantissa width (mw14): The mantissa width for the bounds encoding uses 14 bits

⚫ Maximum exponent (e52): The maximum value for the exponent in a valid capability is 52.

⚫ Representable region (rc1): The encoding uses one additional bit to ensure a centered region of at least
1/4 of the capability size remains representable when creating out-of-bounds derived capabilities.

⚫ Permission encoding (ps): The permissions are encoded using a simple representation of one bit per
architectural permission.

12.1.1. Capability Encoding Summary

Table 27. RV64Y_Lymw14rc1ps parameter summary

Parameter Value Comment

MW 14 Mantissa width

EW 6 Exponent width
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Parameter Value Comment

CAP_MAX_E 52 Maximum exponent value

enableL8 0 Whether the encoding format
includes the L8 bit

AP_MBit 0 Whether the M-bit is encoded in the
AP-field

AP_MAX ones Value of the AP field giving maximum
permissions

Table 28. RV64Y_Lymw14rc1ps extension summary

Extension Comment

Zyhybrid Compatible

Zylevels1 Compatible

Zysentry Compatible

Zyseal Will be compatible once new permissions are encoded

All RV64Y versions of other standard extensions Compatible

Table 29. RV64Y_Lymw14rc1ps Feature summary

Feature Comment

Representable region At least 1/4 of the capability size

Permission encodings All combinations can be represented, some combinations
are reserved

12.1.2. Architectural Permissions (AP) Encoding

The permissions field is 8 bits wide and is encoded using one bit per architectural permission as shown in
Table 30. A permission is granted if its corresponding bit, and those of any dependent permissions, are set;
otherwise, the capability does not grant that permission. Certain combinations of permissions are
impractical. For example, C-permission is superfluous when the capability does not grant either R-
permission or W-permission. Therefore, it is only legal to encode a subset of all combinations, but this
capability encoding does not make use of this redundancy as there are sufficient reserved bits.



In the future, if there are no further remaining reserved bits, but extensions need to allocate
further capability metadata bits, it will be possible to use the redundancy to create a future
version of this encoding that is fully compatible for all software but with observable differences
in the in-memory representation of capabilities.

Table 30. Encoding of architectural permissions for RV64Y_Lymw14rc1ps

Bit Encoded permission

0 C-permission

1 W-permission

2 R-permission

3 X-permission

4 ASR-permission

5 LM-permission

6 LG-permission if Zylevels1 is implemented; reserved 1 otherwise.
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Bit Encoded permission

7 SL-permission if Zylevels1 is implemented; reserved 1 otherwise.

 Future extensions may define new permissions and, if so, must augment the above table.

12.1.3. Capability Mode (M) Encoding

The M-bit is only assigned meaning when the implementation supports Zyhybrid and X-permission is set.
In valid capabilities, the bit assigned to the M-bit must be zero if X-permission isn’t set.

12.1.4. Software-Defined Permissions (SDP) Encoding

The SDP-field is 4 bits wide. The value of the SDP-field bits of the YPERMR result maps 1:1 to the SDP-field
in the capability.

12.1.5. Capability Type (CT) Encoding

The capabilities of this chapter define a 1-bit field for CT-field values; this field directly encodes the values
0 and 1. The value 1 is…

⚫ considered ambiently available for YBLD,

⚫ used as the type for capabilities sealed by YSENTRY instructions, regardless of the input capability’s
permission, if Zysentry is present in the platform.

Additionally, JALR (RVY) both

⚫ unseals input capabilities of type 1 and

⚫ seals its return capabilities with type 1.

JALR (RVY) places no constraints on the triple of input CT-field value, rd selector, and rs1 selector. That is,
JALR (RVY) will, as directed, attempt to jump to any unsealed or sealed capability in any register regardless
of which register comes to hold the sealed return pointer.


The permission encodings of RV64Y_Lymw14rc1ps do not provide mappings for the Zyseal
extension’s SE-permission or US-permission. Thus, without further revision, the encodings of
this chapter are incompatible with the Zyseal extension.

12.1.6. Bounds (EF, T, TE, B, BE) Encoding

12.1.6.1. Concept

This bounds encoding scheme is based upon (Woodruff et al., 2019).

The bounds encode the base and top addresses that constrain memory accesses. The capability can be used
to access any memory location A in the range base ≤ A < top. The bounds are encoded in a compressed
format, so it is not possible to encode any arbitrary combination of base and top addresses. An invalid
capability with capability tag cleared is produced when attempting to construct a capability that is not
representable because its bounds cannot be correctly encoded. The bounds are decoded as described in
Section 12.1.

The bounds field has the following components:
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⚫ T: Value substituted into the capability’s address to decode the top address

⚫ B: Value substituted into the capability’s address to decode the base address

⚫ E: Exponent that determines the position at which B and T are substituted into the capability’s address

⚫ EF: Exponent format flag indicating the encoding for T, B and E

⚫ The exponent is stored in T and B if EF=0, so it is 'internal'

⚫ The exponent is zero if EF=1

The bit width of T and B are defined in terms of the mantissa width (MW) which is set depending on
capability encoding as shown in Table 27.

The exponent E indicates the position of T and B within the capability’s address as described in Section
12.1. The bit width of the exponent (EW) is set depending on the encoding. The maximum value of the
exponent is calculated as follows:

CAP_MAX_E = XLEN - MW + 2

The values of EW and CAP_MAX_E are shown in Table 27.


The address and bounds must be representable in valid capabilities i.e., when the capability
tag is set (see Section 12.1.6.4).

12.1.6.2. Decoding

The metadata is encoded in a compressed format termed CHERI Concentrate (Woodruff et al., 2019). It
uses a floating point representation to encode the bounds relative to the capability address. The base and
top addresses from the bounds are decoded as shown below.


The pseudocode below does not have a formal notation. It is a place-holder until the sail
implementation has been integrated in the specification. In this notation, / means "integer
division", [] are the bit-select operators, and arithmetic is signed.

EW        = (XLEN == 32) ? 5 : 6
CAP_MAX_E = XLEN - MW + 2

If EF = 1:
    E               = 0
    T[EW / 2 - 1:0] = TE
    B[EW / 2 - 1:0] = BE
    LCout           = (T[MW - 3:0] < B[MW - 3:0]) ? 1 : 0
    LMSB            = (XLEN == 32) ? L~8~ : 0
else:
    E               = CAP_MAX_E - ( (XLEN == 32) ? { L~8~, TE, BE } : { TE, BE
} )
    T[EW / 2 - 1:0] = 0
    B[EW / 2 - 1:0] = 0
    LCout           = (T[MW - 3:EW / 2] < B[MW - 3:EW / 2]) ? 1 : 0
    LMSB            = 1
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Reconstituting the top two bits of T:

T[MW - 1:MW - 2] = B[MW - 1:MW - 2] + LCout + LMSB

The bounds are decoded as shown in Figure 12 and Figure 13.

MXLEN E+MW E 0

{1'b0, a[MXLEN - 1:E + MW]} + ct T[MW - 1:0] 0

MXLEN+1

Figure 12. Decoding of the XLEN+1 wide top (t) bound

MXLEN-1 E+MW E 0

a[MXLEN - 1:E + MW] + cb B[MW - 1:0] 0

MXLEN

Figure 13. Decoding of the XLEN wide base (b) bound

Figure 12 and Figure 13 include ranges which may not be present when the bounds are decoded:

⚫ If E = 0 the lower section does not exist.

⚫ If E+MW=XLEN then the top section is only the least significant bit of ct for the top bound, and top
section doesn’t exist for the bottom bound.

⚫ If E+MW>XLEN then neither top section exists, and so the bounds are calculated with no dependency
on the address field a.

The corrections ct and cb are calculated as shown below using the definitions in Table 31 and Table 32.

A[MW-1:0] = a[E + MW - 1:E]
R[MW-1:0] = B - 2MW-2

 The comparisons in Table 31 and Table 32 are unsigned.

Table 31. Calculation of top address correction

A < R T < R ct

false false 0

false true +1

true false -1

true true 0

Table 32. Calculation of base address correction

A < R B < R cb

false false 0

false true +1

12.1. Capability Encoding | Page 102

RISC-V Specification for CHERI Extensions | © RISC-V International



A < R B < R cb

true false -1

true true 0

The base, b, and top, t, addresses are derived from the address by substituting a[E + MW - 1:E] with B and T
respectively and clearing the lower E bits. The most significant bits of a may be adjusted up or down by 1
using corrections cb and ct to allow encoding memory regions that span alignment boundaries.

The EF bit selects between two cases:

1. EF = 1: The exponent is 0. When enableL8=1, L8 encodes the MSB of the length, which can be used to
derive T[MW-1:MW-2], forming a full MW-wide T field.

2. EF = 0: The exponent is internal with E stored in the lower bits of T and B, with L8 used for the MSB of
E when enableL8=1. E is chosen so that the most significant non-zero bit of the length of the region
aligns with T[MW - 2] such that this bit is implied by E.

The most significant two bits of T can be derived from B using the equality T = B + L, where L[MW - 2] is
known from the values of EF and E (as well as L8 when enableL8=1). A carry out is implied if T[MW - 3:0]
< B[MW - 3:0] since it is guaranteed that the top is larger than the base.

The compressed bounds encoding allows the address to roam over a large representable region while
maintaining the original bounds. This is enabled by defining a lower boundary R from the out-of-bounds
values that allows us to disambiguate the location of the bounds with respect to an out-of-bounds address.
R is calculated relative to the base by subtracting 2MW-2 from B. If B, T or a[E + MW - 1:E] is less than R, it is
inferred that they lie in the 2E+MW aligned region above R labeled spaceU in Figure 2 and the corrections ct

and cb are computed accordingly. The overall effect is that the address can roam 2E+MW/4 bytes below the
base address and at least 2E+MW/4 bytes above the top address while still allowing the bounds to be correctly
decoded.

12.1.6.3. Top bound MSB correction

A capability has infinite bounds if its bounds cover the entire address space such that the base address b=0
and the top address t≥2XLEN, i.e., t is an XLEN + 1 bit value. However, b is an XLEN-bit value and the size
mismatch introduces additional complications when decoding, so the following condition is required to
correct t for capabilities whose Representable Range wraps the edge of the address space:

if ( (E < (CAP_MAX_E - 1)) && (t[XLEN: XLEN - 1] - b[XLEN - 1] > 1) )
    t[XLEN] = !t[XLEN]

 The comparison is unsigned.

That is, invert the most significant bit of t if the decoded length of the capability is larger than E.


A capability has infinite bounds if E=CAP_MAX_E and it is not malformed (see Section
12.1.6.4); this check is equivalent to b=0 and t≥2XLEN.

12.1.6.4. Malformed Capability Bounds

A capability is malformed if its bounds cannot be correctly decoded. The following check indicates whether
a capability is malformed. If enableL8 is true, the L8 bit is available in the capability encoding format for
extra precision when EF=1.
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malformedMSB =  (E == CAP_MAX_E     && B         != 0)
             || (E == CAP_MAX_E - 1 && B[MW - 1] != 0)
malformedLSB =  (E  < 0) || (E == 0 && enableL8)
malformed    =  !EF && (malformedMSB || malformedLSB)

Capabilities with malformed bounds:

1. Return both base and top bounds as zero, which affects instructions like YBASER.

2. Cause certain manipulation instructions like ADDIY to always set the capability tag of the result to
zero.

12.2. Representable Range Check

The concept of the representability check was introduced in Section 2.3.7.

The definition of the check is:

⚫ A source capability with address a, metadata m that decodes to give the bounds b and t.

⚫ A derived capability with arbitrary address a' with the same metadata m that decodes to give the bounds
b' and t'.

The address a' is within the source capability’s representable range if b == b' && t == t'.

If the address a' is outside the representable range, then the derived capability has the capability tag set to
zero.

12.2.1. Practical Information

An artifact of the bounds encoding is that if the new address causes t != t', then it is also the case that b
!= b'.

The inverse is also true, if b != b' then t != t'.

Therefore, for representable range checking, it is acceptable to either check t == t' or b == b'.

The top and bottom capability bounds are formed of two or three sections:

⚫ Upper bits from the address

⚫ This is only if the other sections do not fill the available bits (E + MW < XLEN)

⚫ Middle bits from T and B decoded from the metadata

⚫ Lower bits are set to zero

⚫ This is only if there is an internal exponent (EF=0)

Table 33. Composition of the decoded top address bound

Configuration Upper Section (if E + MW < XLEN) Middle Section Lower Section

EF=0 address[XLEN-1:E + MW] + ct T[MW - 1:0] {E{1’b0}}

EF=1, i.e., E=0 address[XLEN-1:MW] + ct T[MW - 1:0]
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The representable range defines the range of addresses which do not corrupt the bounds encoding. The
encoding was first introduced in Section 12.1, and is repeated in a different form in Table 33 to aid this
description.

For the address to be valid for the current bounds encoding, the value in the Upper Section of Table 33 must
not change as this will change the meaning of the bounds. This is because T, B and E will be unchanged for
the source and destination capabilities. Therefore, the Middle and Lower sections of the bounds calculation
are also unchanged for source and destination capabilities.

When E > CAP_MAX_E - 2, the calculation of the top bound is entirely derived from T and E which will be
identical for both the source and destination capabilities, thus guaranteeing that t == t'. Likewise, with
such values of E, the base bound is entirely derived from B and E and therefore b == b'.

The calculation of the MSB of the top bound may be inverted as specified in Section 12.1.6.3. Assuming (E
< (CAP_MAX_E - 1)), the truth-table for this inversion is as follows:

Table 34. Top bound MSB inversion truth table

input_t[XLEN:XLEN-1] b[XLEN-1] output_t[XLEN:XLEN-1]

00 0 00

01 0 01

10 0 00

11 0 01

00 1 10

01 1 01

10 1 10

11 1 01

Inspection of Table 34 shows that output_t[XLEN] does not depend on input_t[XLEN] as:

⚫ output_t[XLEN] = {input_t[XLEN-1], b[XLEN-1]} == 2’b01.

This leads to the conclusions:

⚫ If t[XLEN-1] == t'[XLEN-1] and b[XLEN-1] == b'[XLEN-1], then it is guaranteed t[XLEN] ==
t'[XLEN].

⚫ If t[XLEN-1] != t'[XLEN-1] or b[XLEN-1] != b'[XLEN-1], then the representable check will fail
regardless of checking t[XLEN] == t'[XLEN].

Therefore, for the purpose of representable range checking, it is not required to check that
t[XLEN]==t'[XLEN].

Given that t[XLEN] is not part of the representable range check:

⚫ when E == CAP_MAX_E - 2, t[XLEN-1:E] == T[MW-1:0] and b[XLEN-1:E] == B[MW-1:0].

Therefore, T and B are both derived from the capabilities metadata and are therefore constant. Which
means that in this case too, the representable range check always passes.

As a result:

⚫ If E > CAP_MAX_E - 3, then the representability check always passes, even though the bounds are only
infinite if E = CAP_MAX_E
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This gives a range of s=2E+MW, as shown in Figure 2.

The gap between the object bounds and the bound of the representable range is always guaranteed to be at
least 1/4 of s. This is represented by R = B - 2MW-2 in Section 12.1. This gives useful guarantees, such that if
an executed instruction is in pc bounds, then it is also guaranteed that the next linear instruction is
representable.

12.3. Encoding of Special Capabilities

12.3.1. NULL Capability Encoding

The NULL capability is represented with 0 in all fields. This implies that it has no permissions and its
exponent E is CAP_MAX_E (52), so its bounds cover the entire address space such that the expanded base
is 0 and top is 2XLEN.

Table 35. Field values of the NULL capability

Field Value Comment

Capability Tag zero Capability is not valid

SDP zeros Grants no permissions

AP zeros Grants no permissions

M1 zero No meaning since non-executable
(Zyhybrid only)

CT zero Unsealed

EF zero Internal exponent format

L8
2 zero Top address reconstruction bit

T zeros Top address bits

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address zeros Capability address

Reserved zeros All reserved fields

1 Only present if AP_MBit=1 and Zyhybrid is implemented.

2 Only present if enableL8=1.

Permissions added by extensions (such as those of Zylevels1) are presumed absent in NULL capabilities.

12.3.2. Infinite Capability Encoding

This encoding is for an Infinite capability value, which grants all permissions while its bounds also cover
the whole address space. It includes X-permission and so includes the M-bit if Zyhybrid is supported. This
infinite capability is both a Root Executable and a Root Data capability.

Table 36. Field values of the Infinite capability

Field Value Comment

Capability Tag one Capability is valid
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Field Value Comment

SDP ones Grants all permissions

AP AP_MAX Grants all permissions

M1 one CHERI execution mode

CT zero Unsealed

EF zero Internal exponent format

L8
2 zero Top address reconstruction bit

T zeros Top address bits

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address any3 Capability address

Reserved zeros All reserved fields

1 Only present if AP_MBit=1 and Zyhybrid is implemented.

2 Only present if enableL8 is set.

3If an infinite capability is used as a constant in either hardware or software, then the address field will
typically be set to zero. If the address field is non-zero then it is still referred to as an infinite capability,
and it still has the authority to authorize all memory accesses.

Permissions added by extensions (such as those of Zylevels1) are presumed present in Infinite capabilities.
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Chapter 13. The RV32Y_Lymw10rc1pc Capability Base
Extension for RV32Y, Version 1.0
This chapter describes an in-memory format and properties of a capability encoding intended for RV32Y.
This format is heavily based upon the RV64Y format RV64Y_Lymw14rc1ps with the following changes:

⚫ The parameters used to set the width, or presence, of fields in the encoding are defined in Table 37.

⚫ The architectural permissions (AP) field is compressed to save encoding space, and so rules are defined
for removing permissions.

13.1. Capability Encoding

The encoding format of the RV32Y_Lymw10rc1pc capability is shown in Figure 11.

31 30 29 25 24 23 21 20 19 18 17 12 11 10 9 2 1 0

SDP AP, M GL Reserved CT EF L₈ T[7:2] TE B[9:2] BE

Address

32

Figure 14. Capability encoding for RV32Y_Lymw10rc1pc

 Reserved bits must be 0 in valid capabilities and are available for future extensions to RVY.

Certain bits of the capability encoding are only used if certain extensions are implemented and are
reserved otherwise:

Zyhybrid
When Zyhybrid is supported, capabilities include an M-bit (which is encoded as part of the M-bit
encoding in the AP field). If not supported the M-bit is reserved and reads as zero.

Zylevels1
If Zylevels1 is available, additional values of the AP,M field are allocated, otherwise they are reserved for
any valid capability. Additionally, the GL flag is only available if Zylevels1 is implemented, otherwise it
is reserved and must be zero.

This capability encoding has the following properties that affect the observable behavior of RVY
instructions such as YBNDSW and YPERMC:

⚫ Mantissa width (mw10): The mantissa width for the bounds encoding uses 10 bits

⚫ Maximum exponent (e24): The maximum value for the exponent in a valid capability is 24.

⚫ Representable region (rc1): The encoding uses one additional bit to ensure a centered region of at least
1/4 of the capability size remains representable when creating out-of-bounds derived capabilities.

⚫ Permission encoding (pc): The permissions are encoded using a compressed format that cannot
represent every combination of permissions.

13.1.1. Capability Encoding Summary

Table 37. RV32Y_Lymw10rc1pc parameter summary
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Parameter Value Comment

MW 10 Mantissa width

EW 5 Exponent width

CAP_MAX_E 24 Maximum exponent value

enableL8 1 Whether the encoding format
includes the L8 bit

AP_MBit 1 Whether the M-bit is encoded in the
AP-field

AP_MAX 0x8/0x91 Value of the AP field giving maximum
permissions

1If Zyhybrid is supported, then the infinite capability must represent (Non-CHERI) Address Mode for
compatibility with standard RISC-V code. See Table 42.

Table 38. RV32Y_Lymw10rc1pc extension summary

Extension Comment

Zyhybrid Compatible

Zylevels1 Compatible

Zysentry Compatible

Zyseal Will be compatible once new permissions are encoded

All RV32Y versions of other standard extensions Compatible

Table 39. RV32Y_Lymw10rc1pc Feature summary

Feature Comment

Representable region At least 1/4 of the capability size

Permission encodings Not all combinations can be represented

13.1.2. Architectural Permissions and Mode (AP,M) Encoding

The permissions field is 5 bits wide and is encoded using a compressed representation as shown below.
Certain combinations of permissions are impractical. For example, C-permission is superfluous when the
capability does not grant either R-permission or W-permission. Therefore, it is only legal to encode a
subset of all combinations, and this redundancy is used to reduce the size of the permissions field
compared to RV64Y_Lymw14rc1ps.

The permissions encoding is split into four quadrants. The quadrant is taken from bits [4:3] of the
permissions encoding. The meaning for bits [2:0] are shown in Table 42 for each quadrant.

Quadrants 2 and 3 are arranged to implicitly grant future permissions which may be added with the
existing allocated encodings. Quadrant 0 does the opposite — the encodings are allocated not to implicitly
add future permissions, and so granting future permissions will require new encodings. Quadrant 1
encodes permissions for executable capabilities.

The M-bit is encoded as bit zero of the M-bit encoding in the AP field for the executable quadrant and only
assigned meaning when the implementation supports Zyhybrid (and X-permission is set).
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13.1.3. AP encoding and rules without Zylevels1 for RV32Y_Lymw10rc1pc

Table 40. Encoding of architectural permissions for RV32Y_Lymw10rc1pc without Zylevels1

Quadrant 0: Non-capability data read/write

bit[2] - write, bit[1] - reserved (0), bit[0] - read

Reserved bits for future extensions are 0 so new permissions are not implicitly granted

Field[2:0] R W C LM X ASR Mode1 Notes

0 N/A No permissions

1 ✔ N/A Data RO

2-3 reserved

4 ✔ N/A Data WO

5 ✔ ✔ N/A Data RW

6-7 reserved

Quadrant 1: Executable capabilities

bit[0] - M-bit (0-(CHERI) Capability Mode, 1-(Non-CHERI) Address Mode)

Field[2:0] R W C LM X ASR Mode1 Notes

0-1 ✔ ✔ ✔ ✔ ✔ ✔ Mode1 Execute + Data & Cap RW + ASR

2-3 ✔ ✔ ✔ ✔ Mode1 Execute + Data & Cap RO

4-5 ✔ ✔ ✔ ✔ ✔ Mode1 Execute + Data & Cap RW

6-7 ✔ ✔ ✔ Mode1 Execute + Data RW

Quadrant 2: Restricted capability data read/write

R and C implicitly granted, LM dependent on W permission.

Reserved bits for future extensions must be 1 so they are implicitly granted

bit[2] is reserved to mean write for future encodings

Field[2:0] R W C LM X ASR Mode1 Notes

0-2 reserved

3 ✔ ✔ N/A Data & Cap RO (no LM)

4-7 reserved

Quadrant 3: Capability data read/write

bit[2] - write, R and C implicitly granted.

Reserved bits for future extensions must be 1 so they are implicitly granted

Field[2:0] R W C LM X ASR Mode1 Notes

0-2 reserved

3 ✔ ✔ ✔ N/A Data & Cap RO

4-6 reserved

7 ✔ ✔ ✔ ✔ N/A Data & Cap RW

1 Mode (M-bit) can only be set on a valid capability when Zyhybrid is supported. Despite being encoded here it is
not an architectural permission.


When RV32Y_Lymw10rc1pc there are many reserved permission encodings (see Table 42). It is
not possible for a valid capability to have one of these values since YPERMC will never create
it. It is possible for invalid capabilities to have reserved values. YPERMR will interpret reserved
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values as if they were 0b00000 (no permissions). Future extensions may assign meanings to
the reserved bit patterns, in which case YPERMR is allowed to report a non-zero value.


Mode is encoded with permissions for RV32Y_Lymw10rc1pc, but is not a permission. It is
orthogonal to permissions as it can vary arbitrarily using YMODEW.

This encoding’s compressed permission format specifies a particular procedure for encoding architectural
permissions, which is used instead of YPERMC's default fixed-pointing procedure. If Zylevels1 is absent, the
following rules are run once in order:

Table 41. RV32Y_Lymw10rc1pc YPERMC rules if Zylevels1 is absent.

YPERMC Rule Permission Valid only if

RV32-base-1 C-permission R-permission (supersedes base-1)

RV32-base-2 X-permission R-permission

RV32-base-3 W-permission not(C-permission) or LM-permission

RV32-base-4 X-permission W-permission or C-permission

RV32-base-5 LM-permission C-permission (supersedes base-2)

RV32-base-6 X-permission (C-permission and LM-permission) or not (C-permission
or LM-permission)

RV32-base-7 ASR-permission W-permission and C-permission and X-permission
(supersedes base-3)

RV32-base-8 M-bit X-permission and Zyhybrid is implemented

13.1.4. AP encoding and rules with Zylevels1 for RV32Y_Lymw10rc1pc

Table 42. Encoding of architectural permissions for RV32Y_Lymw10rc1pc with Zylevels1

Quadrant 0: Non-capability data read/write

bit[2] - write, bit[1] - reserved (0), bit[0] - read

Reserved bits for future extensions are 0 so new permissions are not implicitly granted

Field[2:0] R W C LM LG SL X ASR Mode1 Notes

0 N/A No permissions

1 ✔ N/A Data RO

2-3 reserved

4 ✔ N/A Data WO

5 ✔ ✔ N/A Data RW

6-7 reserved

Quadrant 1: Executable capabilities

bit[0] - M-bit (0-(CHERI) Capability Mode, 1-(Non-CHERI) Address Mode)

Field[2:0] R W C LM LG SL X ASR Mode1 Notes

0-1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Mode1 Execute + Data & Cap RW +
ASR

2-3 ✔ ✔ ✔ ✔ ✔ Mode1 Execute + Data & Cap RO

4-5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ Mode1 Execute + Data & Cap RW

6-7 ✔ ✔ ✔ Mode1 Execute + Data RW

Quadrant 2: Restricted capability data read/write
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Quadrant 0: Non-capability data read/write

bit[2] = write, bit[1] reserved, bit[0] = !SL. R and C implicitly granted, LM dependent on W permission.

Field[2:0] R W C LM LG SL X ASR Mode1 Notes

0-2 reserved

3 ✔ ✔ N/A Data & Cap R0 (without LM-
permission)

4-5 reserved

6 ✔ ✔ ✔ ✔ ✔ N/A Data & Cap RW (with SL-
permission, no LG-
permission)

7 ✔ ✔ ✔ ✔ N/A Data & Cap RW (no SL-
permission, no LG-
permission)

Quadrant 3: Capability data read/write

bit[2] = write, bit[1] reserved, bit[0] = !SL. R and C implicitly granted.

Reserved bits for future extensions must be 1 so they are implicitly granted

Field[2:0] R W C LM LG SL X ASR Mode1 Notes

0-2 reserved

3 ✔ ✔ ✔ ✔ N/A Data & Cap R0

4-6 reserved

6 ✔ ✔ ✔ ✔ ✔ ✔ N/A Data & Cap RW (with SL-
permission)

7 ✔ ✔ ✔ ✔ ✔ N/A Data & Cap RW (no SL-
permission)

1 Mode (M-bit) can only be set on a valid capability when Zyhybrid is supported, otherwise such encodings are
reserved. Despite being encoded here it is not an architectural permission.

The following rules are run once in order:

Table 43. RV32Y_Lymw10rc1pc YPERMC rules if Zylevels1 is present.

YPERMC Rule Permission Valid only if

RV32-l1-1 C-permission R-permission (supersedes base-1)

RV32-l1-2 X-permission R-permission

RV32-l1-3 W-permission not(C-permission) or LM-permission

RV32-l1-4 X-permission W-permission or C-permission

RV32-l1-5 LM-permission C-permission (supersedes base-2)

RV32-l1-6 LM-permission W-permission or LG-permission

RV32-l1-7 LG-permission LM-permission (supersedes Zylevels1-1)

RV32-l1-8 SL-permission LM-permission and W-permission (supersedes Zylevels1-
2)
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YPERMC Rule Permission Valid only if

RV32-l1-9 X-permission (C-permission and LM-permission and LG-permission
and SL-permission) or
(C-permission and LM-permission and LG-permission
and not W-permission) or
not (C-permission or LM-permission or LG-permission or
SL-permission)

RV32-l1-10 ASR-permission W-permission and C-permission and X-permission
(supersedes base-3)

RV32-l1-11 M-bit X-permission and Zyhybrid is implemented

For RV32, the encodings which have the M-bit set to 1 for (Non-CHERI) Address Mode are only valid if
Zyhybrid is implemented. Otherwise those encodings represent invalid permissions.

13.1.5. Software-Defined Permissions (SDP) Encoding

The SDP-field is 2 bits wide. The value of the SDP-field bits of the YPERMR result maps 1:1 to the SDP-field
in the capability.

13.1.6. Capability Type (CT) Encoding

Capabilities in this encoding have a 1-bit field for CT-field values which behaves in the same way as the
RV64Y_Lymw14rc1ps Section 12.1.5.

13.1.7. Bounds (EF, T, TE, B, BE, L8) Encoding

The bounds are encoded in the same way as in RV64Y_Lymw14rc1ps, with the appropriate values for
mantissa width and maximum exponent substituted. Compared to RV64Y_Lymw14rc1ps, this encoding
uses an additional L8 bit as described in Section 12.1.6.

13.2. Encoding of Special Capabilities

13.2.1. NULL Capability Encoding

The NULL capability is represented with 0 in all fields. This implies that it has no permissions and its
exponent E is CAP_MAX_E (24), so its bounds cover the entire address space such that the expanded base
is 0 and top is 2XLEN.

Table 44. Field values of the NULL capability

Field Value Comment

Capability Tag zero Capability is not valid

SDP zeros Grants no permissions

AP zeros Grants no permissions

CT zero Unsealed

EF zero Internal exponent format

L8 zero Top address reconstruction bit

T zeros Top address bits
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Field Value Comment

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address zeros Capability address

Reserved zeros All reserved fields

13.2.2. Infinite Capability Encoding

This encoding is for an Infinite capability value, which grants all permissions while its bounds also cover
the whole address space. It includes X-permission and so includes the M-bit if Zyhybrid is supported. This
infinite capability is both a Root Executable and a Root Data capability.

Table 45. Field values of the Infinite capability

Field Value Comment

Capability Tag one Capability is valid

SDP ones Grants all permissions

AP 0x8/0x91 Grants all permissions

CT zero Unsealed

EF zero Internal exponent format

L8 zero Top address reconstruction bit

T zeros Top address bits

TE zeros Exponent bits

B zeros Base address bits

BE zeros Exponent bits

Address any2 Capability address

Reserved zeros All reserved fields

1If Zyhybrid is supported, then the infinite capability must represent (Non-CHERI) Address Mode for
compatibility with standard RISC-V code. Therefore, the M-bit is set to 1 in the M-bit encoding in the AP
field, giving the value 0x9.

2If an infinite capability is used as a constant in either hardware or software, then the address field will
typically be set to zero. If the address field is non-zero then it is still referred to as an infinite capability,
and it still has the authority to authorize all memory accesses.

Permissions added by extensions (such as those of Zylevels1) are presumed present in Infinite capabilities.

13.3. Representable Range Check

The representable range check behaves in exactly the same way as in RV64Y_Lymw14rc1ps, just with the
10-bit mantissa width of this encoding.
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Chapter 14. RVY Specializations for Microcontroller Systems

 This chapter is not part of the v1.0 ratification package.         

14.1. The Zycheriot Unprivileged ISA Extension

This section defines a series of small changes to the RVY and RVYE unprivileged base architectures that
serve to specialize it for microcontroller environments. These changes are based on, but are not exactly
isomorphic to, the prior CHERIoT RV32E-based ISA.


Some of these changes are intended to work in concert with their privileged counterparts
found in the Smycheriot extension.

14.1.1. Required Extensions

Zycheriot assumes the presence of both the Zylevels1 and Zyseal extensions. The present specification
presumes the absence of both the Zyhybrid and Zysentry extensions.


While Zycheriot is nominally compatible with Zyhybrid, and particular instantiations may opt
to permit disabling CHERI, we have not yet found a compelling reason to formally specify this
composition.


While Zycheriot is nominally compatible with Zysentry, the operating system written for
CHERIoT has a security model that presumes the absence of ambient sealing, and so this
specification does not define any ambiently available sentry types.

14.1.2. Refining CHERI Capabilities

14.1.2.1. Software Defined Permissions

Zycheriot defines SDPLEN, the number of software-defined permissions, to be 1. We denote this one user
permission as U0.

14.1.2.2. Root Permission Sets

Zycheriot defines three Root capability values, each of which has a set capability tag, is unsealed, has
bounds that span its associated address space, and has GL(obal) Flag set. That is, they differ only in their
granted permissions, thus:

⚫ Its Root Executable capability value grants exactly all of X, R, C, LM, ASR, and LG.

⚫ Its Root Data capability value grants exactly all of R, W, C, LM, LG, and SL.

⚫ It defines a root sealing capability grants exactly all of SE, US, and U0.

This set of root capabilities satisfies the following properties, by construction. Any further extension which
adds or modifies capability permissions must ensure that its revised or additional root capabilities do so as
well. Since all capabilities in the system must trace their provenance back to a root capability, these
properties will necessarily remain true through any series of YPERMC transitions.

w-nand-x
At most one of X or W may be set.
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mem-nand-ct
The SE, US, and U0 collectively conflict with either of the R or W permissions.

That is, a capability may grant permissions from at most one of these two sets; this serves to partition
capabilities that refer to memory addresses from those that refer to CT-field values (those granting SE
and/or US) or uninterpreted integers (those granting U0). Capabilities granting no permissions from
the union of these sets are not distinguished.

14.1.2.3. Permission Transition Constraints

Zycheriot requires a RVY base that is using a compressed permission scheme (that is, one has its _Ly p
parameter set to pc).

In addition to the constraints on permission transitions defined across the base RVY ISA and the Zylevels1
extension, Zycheriot adds two additional constraints, shown in Table 46.

Table 46. Zycheriot Permission Transition Rules

YPERMC Rule Permission Valid only if

Zycheriot-1 X-permission C-permission and R-permission

Zycheriot-2 SL-permission R-permission



These constraints enable more compression of capability permissions by disallowing the least
useful permission combinations. In particular, ABIs usually require code to be readable to
enable PC relative access to constant data, and write-only store-local capabilities are not
required given that store-local is generally used only for thread stacks.

14.1.2.4. Capability Types

Zycheriot introduces several kinds of sentry capabilities, imposing a degree of control flow integrity, by
giving architectural semantics to several CT-field values. The presence of, and handling constraints for,
these sentry types are important to unprivileged software. In particular, Zycheriot uses five CT-field values
(1 through 5, inclusive) to modify the behavior of JALR (RVY):

⚫ All of these values are defined to be sentry capability values. Thus, sealed capabilities with any of these
CT-field values may be passed as inputs to JALR (RVY) and will be unsealed prior to installation into pc.

⚫ Two values, 4 and 5, are used by JALR (RVY) and JAL (RVY) to seal the return capability when rd is ra.
The choice between the two depends on privileged machine state. If rd is not ra, then the return
capability is not sealed.

⚫ JALR (RVY) is given conditional behavior based on the register selectors used, as detailed in Table 47.
Prohibited combinations of register selectors and CT-field value will cause the target pc to have a clear
capability tag and so raise a CHERI Instruction Access Fault.

In light of the last rule, we call capabilities granting X-permission and…

⚫ with a CT-field value of 1, 2, or 3 "forward" sentries.

⚫ with a CT-field value of 4 or 5 "backward" sentries.

The Smycheriot extension to privileged architecture draws further distinction between the various forward
and backward types.

Table 47. JALR (RVY) Conditional Behavior
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rs1 rd Permitted rs1 CT-field-s Comments

any ra 0, 1, 2, 3 Function call

ra null 4, 5 Function return

other operands 0, 1 Non-standard control flow (e.g., tail calls)



All of the sentry capability CT-field values defined herein need be encodable only if the
capability grants X-permission, as required by JALR (RVY) of the capability to be installed into
pc. Zycheriot imposes no architectural requirement for, or semantics upon, capabilities that do
not grant X-permission and have one of these CT-field values.



The use of different sentry capability CT-field values for "forward" control flow arcs (in which
JALR (RVY) writes a capability) and "backward" arcs (in which it does not) means that
functions cannot return "backwards" to a (forward) function pointer and, dually, that a
function pointer cannot be subsituted for a return pointer.

14.2. A RV32Y_Lymw9e14r0as11pc Common Base Architecture

It is intended that Zycheriot and Smycheriot be instantiated (in tandem) atop a RV32Y base architecture
that is at least as expressive as _Lymw9e14r0as11pc and in combination with one of the capability
encoding schemes discussed below (or a future, possibly vendor-specific, capability encoding). Software
written for this common subset architecture will be source compatible across encoding formats and with
more expressive variants of RV32Y.

The parameters set by this common architecture are:

⚫ mw9 and e14: A mantissa width of 9 and expressibility of capability exponents from 0 (inclusive) to 14
(inclusive). Together, these ensure that capabilities can precisely capture capabilities whose lengths are
between 1 and 29 - 1 times a power of 2 between 1 (inclusive) and 214 (inclusive) or is 224.


The latter of these is sufficient to represent the entire 32-bit address space at a granularity
(that is, bounds alignment) of 16MiB.

⚫ r0: Software must not presume that taking a capability out of bounds, other than the "one past the end"
position required by C, will leave it tagged.

⚫ as11: The shift used by AUIPC (RVY) (and similar instructions) is 11.

⚫ pc: The set of capabiality permissions that can be expressed is subject to compression. For these bases,
the only compression used is a consequence of the roots and permission transition rules found in the
base architecture and present extensions (such as Zycheriot).

TODO: Can we refactor RV32Y’s compression scheme out to something like the Zycheriot ISA perspective,
too?


As a reminder, these parameters constrain the behavior of RVY instructions such as YBNDSW
and YPERMC.

14.3. The RV32Y_Lyenccheriot1 CHERI Capability Encoding Scheme

This section describes an in-memory format and properties of a capability encoding intended for RV32Y. It
is specifically designed to be a suitable substrate for RV32Y_Zycheriot systems.

This is the encoding used for the existing CHERIoT ISA. Compared to RV32Y_Lymw10rc1pc it:
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1. supports more precise bounds for a given capability length using slightly simpler hardware

2. adds features for building rich compartmentalization, such as extra permissions and sealing types.

The first of these is achieved by:

⚫ Using two extra bits for the bounds encoding

⚫ Giving the exponent its own field instead of embedded it in the T and B fields

⚫ Saving space by reducing the exponent in size by one and dropping support for exponents in the range
15 to 23. This limits the precision for the bounds of large capabilities (>= 8MiB).

⚫ dropping guaranteed out-of-bounds representability (except "one past the end")

These tradeoffs are aimed at microcontroller implementations where precise bounds on small capabilities
are important to save memory on padding, large capabiliites are unlikely and microarchitectural
complexity should be minimised.

14.3.1. Capability Encoding

The components of a capability, except the capability tag, are encoded as shown in Figure 15.

31 30 29 25 24 22 21 18 17 9 8 0

R G P O E T B

Address

32

Figure 15. Capability encoding for RV32Y_Lyenccheriot1

Field Description

R Reserved bit

G Global bit, as in GL.

P Permissions, see CHERIoT permission encoding.

CT Sealed object Type, see CHERIoT Capability Type (CT) Encoding.

E Exponent field for bounds encoding, see CHERIoT Capability Bounds Encoding.

T Top field for bounds encoding, see CHERIoT Capability Bounds Encoding.

B Base field for bounds encoding, see CHERIoT Capability Bounds Encoding.

Address The address field as per Figure 1.



The reserved bit (the R field) is defined to be 0 in the encoding of the root capabilities given
below, and is not mutable by any instruction defined in RVY, and so will necessarily be 0 in all
valid capabilities derived therefrom. It is therefore available for use by suitable extensions or
derivative encodings.

The encoding impacts the following CHERI extensions:

Zyhybrid
This encoding does not support Zyhybrid: there is no mode bit so only purecap mode is supported.
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Zylevels1
This encoding supports Zylevels1. Its GL flag is encoded in the G bit, and its GL and SL permissions are
encoded in the P field.

Zyseal
This encoding supports Zyseal. The SE and US permissions are encoded in the P field.

14.3.1.1. Capability Encoding Parameter Summary

This encoding is suitable for use with RV32Y base architectures whose parametric requirements are no
stronger than those given in Table 48. While not strictly required, it is recommended to use this encoding
with RV32Y base architectures whose AUIPC shift (as) RVY parameter is 11 or smaller. Known extension
(in)compatibilities are listed in Table 49.

Table 48. RV32Y_Lyenccheriot1 RVY Parameter Values

Parameter Value Comment

mw 9 Mantissa width

e 14 Exponent limit before jumping to
maximum exponent

rc 0 Representable region between base
and top only

p pc Compressed permission encoding

enc Cheriot1 Encoding variant

Table 49. RV32Y_Lyenccheriot1 extension summary

Extension Comment

Zyhybrid Not supported (M-bit not defined)

Zysentry Not compatible without other extensions (no ambient CT-
field values defined herein)

Zylevels1 Compatible (recommended)

Zyseal Compatible (recommended)

Zycheriot Compatible (recommended)

Smycheriot Compatible (recommended)

Zybld Compatible (will build exclusively unsealed capabilities
without other extensions)

All RVY versions of other standard extensions Compatible if the extension is compatible with RV32E

Table 50. RV32Y_Lyenccheriot1 Feature summary

Feature Comment

Representable region Between base and top only (inclusive)

Permission encodings Not all combinations can be represented

14.3.1.2. Permissions Encoding

Similarly to RV32Y_Lymw10rc1pc, capability permissions are encoded in a compressed form. The
encoding herein exactly reflects the Root Permission Sets and Permission Transition Constraints of
Zycheriot.
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The permission encoding space is split into quadrants using P[3:2]. Each quadrant may include some fixed
permissions (indicated with ✔) and some dependent permissions encoded using P[2:0].

⚫ Quadrant 0 is used to encode permissions that authorise sealing (see Zyseal) and also the single
software-defined permission, U0. It can also encode 'no permissions'.

⚫ Quadrant 1 encodes executable capabilities along with the dependent permission ASR and optional
permissions LM and LG.

⚫ Quadrant 2 is subdivided into octants:

⚫ Octant 4 encodes combinations of R and W without C with the redundant not-R and not-W used to
encode write-only with C.

⚫ Octant 5 encodes read-only capabilities with C and the dependent permissions LM and LG.

⚫ Quadrant 3 encodes permissions with R, W, C and the dependent permissions SL, LM and LG. The
meaning for bits [2:0] are shown in CHERIoT permission encoding.

P[4:0] Decoded Permissions

P[4:3] P[2] P[1] P[0] R W C SL LM LG X ASR U0 SE US Notes

00 U0 SE US P[2] P[1] P[0] Sealing

01 ASR LM LG ✔ ✔ P[1] P[0] ✔ P[2] Executable

10 0 0 0 ✔ ✔ Cap WO

10 0 R W P[1] P[0] Data RW (R and/or
W)

10 1 LM LG ✔ ✔ P[1] P[0] Cap RO

11 SL LM LG ✔ ✔ ✔ P[2] P[1] P[0] Cap RW

For example, if P[4:3] = 01 and P[2:0] = 101 then the decoded permissions are R, C, X, LG, and ASR. Note
that there is no encoding for an "Infinite" capability with all permissions. In particular there is no overlap
between the software and sealing permissions (U0, SE, US) and any other permissions (recall mem-nand-ct
from Root Permission Sets) and X is mutually exclusive with W (recall w-nand-x).

To encode a set of permissions resulting from YPERMC, the first of the following rules to apply is used:

1. If the permissions include X, R and C, then encode ASR, LM and LG using the executable format (P[4:3]
= 01).

2. If the permissions include R, W and C then encode SL, LM and LG using the Cap RW format (P[4:3] =
11).

3. If the permissions include R and C then encode LM and LG using the Cap RO format (P[4:2] = 101).

4. If the permissions include W and C then encode using the Cap WO format (P[4:0] = 10000).

5. If the permissions include R or W then encode using the Data RW format (P[4:0] = 100RW).

6. Encode U0, SE and US using the sealing format (P[4:3] = 00).

This procedure will automatically apply the rules defined in Permission Transition Constraints to legalize
permission sets. If any of the requested permissions cannot be represented using the chosen format, then
the they are dropped. For example, if the requested permissions are R, LG and X, then rule 5 applies and
the resulting permissions will be just R.

The three Root capabilities defined by Zycheriot have permissions encodings as shown in CHERIoT root
capabilities table.
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Root name P[4:0] Permissions

Sealing 00111 U0, SE, US

Root Executable 01111 X, R, C, LM, LG, ASR

Root Data 11111 W, R, C, LM, LG, SL

14.3.1.3. Capability Type (CT) Encoding

Capabilities in this encoding have a 3-bit field for CT-field values. This is used to encode 15 different
sealing types by distinguishing between executable and non-executable sealed capabilities as follows:

X CT Value Decoded Type

1 000 0 (Unsealed)

1 1 .. 7 1 .. 7

0 000 0 (Unsealed)

0 1 .. 7 9 .. 15 (CT + 8)


Attempts to seal a capability with a type not compatible with its X-permission value will yield a
result with a clear capability tag.


Recall that CT-field values 1 (inclusive) through 5 (inclusive) are given semantics if the
Zycheriot extension is present.

14.3.1.4. Bounds (E, B, T) Encoding

The bounds are encoded in similar, but slightly simplified way to RV64Y_Lymw14rc1ps, with field B and T
being substituted into the address at the offset given by the exponent to form the base and top. Rather than
using an EF field to indicate whether the exponent is zero or contained in the low bits of B and T the
exponent is stored in its own 4-bit field, E. Since this is not large enough to store the maximum exponent of
24 required to cover the full 32-bit address space, an E value of 15 decodes as 24 with exponents 15 to 23
being invalid. The decoded exponent, e, is given by:

e = (E == 15) ? 24 : E

This means that capabilities up to nearly 8 MiB are represented with alignment requirements increasing in
powers of two for increasing exponents up to 14, and all larger capabilities must have bounds aligned to 16
MiB. RV32Y_Lyenccheriot2 describes an encoding variant that removes this limitation.

For a given exponent the base and top are then computed as:

32 e+9 e 0

{1'b0, a[31:e + 9]} + ct T 0

33

Figure 16. Decoding of the XLEN+1 wide top (t) bound
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32 e+9 e 0

a[31:e + 9] + cb B 0

32

Figure 17. Decoding of the XLEN wide base (b) bound

where the corrections, ct and cb, are given by:

A_hi = (A[e + 8 : e]) < B ? 1 : 0
T_hi = (T < B) ? 1 : 0
c_b = -A_hi
c_t = A_hi - T_hi

These corrections work by assuming that the base is in the lower of two 2e+9 aligned regions, and that the
top and address are always greater than or equal to the base but may be in the higher region provided they
are within 2e+9 of base. These assumptions lead to the representable region being given by:

base <= address < base + (1 << (e + 9))

This must be checked by all operations that change the capability address. If this check fails the resulting
capability will have its capability tag cleared. Note that this means that it is not possible to represent a
capability with an address less than the base. Depending on the size of the capability some addresses above
top may be representable, but in the worst case the highest representable address is equal to top (one byte
beyond the end of the dereferenceable region).

14.3.1.4.1. Encoding bounds

When YBNDSW is used to set the bounds of a capability the E, B and T fields are computed from the
desired base and length as follows:

// compute candidate exponent
e = 23 - count_leading_zeros(length[31 : 9])
if e > 14 then {
  e = 24
}

// extend base and top to XLEN+1 bits
base33 = 1b0 @ base
top33 = base33 + (1b0 @ length)

// extract 10-bit from base and top
b = base33[e + 9 : e]
t = top33[e + 9 : e]

// round up top if low bits are truncated
if top33[e - 1 : 0] != 0 {
  t = t + 1
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}

// in case this caused length overflow use the next exponent
if t - b >= 1 << (e + 9) {
  e += 1
  if e > 14 then {
    e = 24
  }
  b = base33[e + 9 : e]
  t = top33[e + 9 : e]
  if top33[e - 1 : 0] != 0 {
    t = t + 1
  }
}

// encode E
E = (e == 24) ? 15 : e
// truncate B and T to 9 bits
B = b[8 : 0]
T = t[8 : 0]

14.3.2. Encoding of Special Capabilities

14.3.2.1. NULL Capability Encoding

The NULL capability is represented with 0 in all fields. This implies that it is unsealed, has no permissions
and its exponent, base and top are 0.

Table 51. Field values of the NULL capability

Field Value Comment

Capability Tag zero Capability is not valid

R zero Reserved bit

G zero Not global

P zeros Grants no permissions

CT zeros Unsealed

E zeros Exponent

T zeros Top address bits

B zeros Base address bits

Address zeros Capability address

14.3.2.2. Root Capability Encoding

The encoding for the Root Executable and Root Data capabilities defined by RVY and the sealing root
defined by Zycheriot have bounds that cover the entire associated address space. Root capabilities
necessarily have set capability tags and are necessarily unsealed, Zylevels1 requires root capabilities to be
Global, and we define our root capabilities as having a clear reserved bit (that is, an R field of 0). The
encoded fields of root capabilities are shown in Table 52, except the P field, which depends on which root
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capability is being represented.

Table 52. Bounds field values of root capabilities

Field Value Comment

Capability Tag one Capability is valid

R zero Reserved bit

G 1 Global

P XXXXX Varies as per CHERIoT root capabilities table

CT zeros Unsealed

E 0xf Maximum exponent

T 0x100 top = 2XLEN

B 0x000 base 0

Address zeros Capability address

14.4. The RV32Y_Lyenccheriot2 CHERI Capability Encoding Scheme

This chapter describes a variation on the RV32Y_Lyenccheriot1 encoding to support all exponents using
the same number of bits. This change is backwards compatible for software but enables support for more
precise bounds on capabilities larger than 8MiB. Due to increased microarchitectural complexity and the
limited need for precise alignment on such large capabilities on small systems, implementations may
choose to support either encoding.

The changes are limited to the bounds encoding; all other aspects of the capability encoding are identical to
RV32Y_Lyenccheriot1.

14.4.1. Capability Encoding

The components of a capability, except the capability tag, are encoded as shown in Figure 18.

31 30 29 25 24 22 21 17 16 9 8 0

R G P O E T B

Address

32

Figure 18. Capability encoding for RV32Y_Lyenccheriot2

The only difference from RV32Y_Lyenccheriot1 is that the exponent field, E, is grown to 5 bits and the T
field is shrunk to 8 bits. This allows all exponents from 0 to 24 to be represented directly, with some spare
exponents available for other uses. To enable the reduced T field to be decoded to a 9-bit value it is
assumed that the top bit of the length, L = T - B, is one, similar to normalised floating point numbers. To
encode small capabilities with exponent zero and lengths less than 256 bytes the special E value, 31, is used
to mean L[8] is zero. T[8] can then be reconstructed as follows:

T[8] = B[8] XOR (E == 31 ? 0 : 1) XOR (T[7:0] < B[7:0])

The unused exponent values (25 .. 30) are reserved for future use. Other aspects of bounds decoding
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remain identical to CHERIoT Capability Bounds Encoding.

Encoding the bounds for a requested base and length is similar to before but without the special cases for
exponents greater than 15.

// compute candidate exponent
e = 23 - count_leading_zeros(length[31:9])

// extend base and top to XLEN+1 bits
base33 = 1b0 @ base
top33 = base33 + (1b0 @ length)

// extract 10-bit from base and top
b = base33[e + 9 : e]
t = top33[e + 9 : e]

// round up top if low bits are truncated
if top33[e - 1 : 0] != 0 {
  t = t + 1
}

// in case this caused length overflow use the next exponent
if t - b >= 1 << (e + 9) {
  e += 1
  b = base33[e + 9 : e]
  t = top33[e + 9 : e]
  if top33[e - 1 : 0] != 0 {
     t = t + 1
  }
}

// truncate B and T to 9 bits
B = b[8 : 0]
T = t[8 : 0]
// encode E
E = (e == 0 && (T - B)[8] == 0) ? 31 : e

14.4.1.1. Capability Encoding Parameter Summary

This encoding is suitable for use with RV32Y base architectures whose parametric requirements are no
stronger than those given in Table 53.

Table 53. RV32Y_Lyenccheriot2 parameter summary

Parameter Value Comment

mw 9 Mantissa width

e a All exponents are supported

rc 0 Representable region between base
and top only

p pc Compressed permission encoding
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Parameter Value Comment

enc Cheriot2 Encoding variant

14.5. The RV32Y_Lyenccheriot3 CHERI Capability Encoding Scheme

This chapter describes a further variation on the RV32Y_Lyenccheriot2 encoding. It is equivalent in terms
of representable bounds, supported features and the number of bits used, but has different
microarchitectural properties. The only observable difference for software is the encoded metadata bits of
capabilities in stored in memory, which is only relevant to specialised system software such as debuggers.
As such, the decision of which to use should be based on microarchitectural requirements. It is included
here in order to provide flexibility to implementations.

14.5.1. Capability Encoding

The components of a capability, except the capability tag, are encoded as shown in Figure 19.

31 30 29 25 24 22 21 17 16 9 8 0

R G P O E L B

Address

32

Figure 19. Capability encoding for RV32Y_Lyenccheriot3

The only difference from RV32Y_Lyenccheriot2 is that the top field, T, is replaced by a length, L. The 8-bit
L is expanded to 9 bits by adding a leading implicit one bit, except in the case of the special exponent 31
where L[8] is zero. Bounds decoding can then proceed as follows:

// Decode L8 and exponent
e = (E == 31) ? 0 : E
L8 = (e == 31) ? 0 : 1

// Decode base (same as <<rv32y_cheriot_encoding1_name>>)
c_b = (A[e + 8 : e]) < B ? -1 : 0
base = ((A[31 : e + 9] + c_b) @ B) << e

// Compute top from base and length
top = base + ((L8 @ L) << e)

All other aspects of the capability encoding are identical to RV32Y_Lyenccheriot2.

14.5.1.1. Capability Encoding Parameter Summary

This encoding is suitable for use with RV32Y base architectures whose parametric requirements are no
stronger than those given in Table 53. These are identical to those of RV32Y_Lyenccheriot2 except for the
encoding variant parameter.

Table 54. RV32Y_Lyenccheriot3 parameter summary
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Parameter Value Comment

mw 9 Mantissa width

e a All exponents are supported

rc 0 Representable region between base
and top only

p pc Compressed permission encoding

enc Cheriot3 Encoding variant
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Appendix A: CHERI (RV64Y) Unprivileged Appendix

A.1. RVY ISA Extension Summary

An RVY core imports all instructions from RVI and adds new instructions for CHERI functionality.
Additionally, some RVI instruction (as well as instructions defined in other extensions) have modified
behavior. The following sections detail the list of added/modified instructions per extension.

A.1.1. RVY added instructions

Table 55. RVY added instructions

Mnemonic RV32Y RV64Y Function

LY ✔ ✔ Load capability

SY ✔ ✔ Store capability

ADDY ✔ ✔ Capability pointer increment

ADDIY ✔ ✔ Capability pointer increment by immediate

YADDRW ✔ ✔ Write capability address

YTAGR ✔ ✔ Read capability tag

YPERMR ✔ ✔ Read capability permissions

YMV ✔ ✔ Capability register copy

YPERMC ✔ ✔ Clear capability permissions

SRLIY ✔ ✔ Logical right shift of Y register

YHIR ✔ ✔ Read capability metadata (pseudo)

PACKY ✔ ✔ Pack Y register

YHIW ✔ ✔ Write capability metadata and clear capability tag (pseudo)

SYEQ ✔ ✔ Capability equality comparison including capability tag

YLT ✔ ✔ Capability less than comparison including capability tag

YSUNSEAL ✔ ✔ Unseal by superset reconstruction

YBNDSW ✔ ✔ Write capability bounds

YBNDSWI ✔ ✔ Write capability bounds by immediate

YBNDSRW ✔ ✔ Write capability bounds, rounding up if required

YAMASK ✔ ✔ Capability alignment mask

YBASER ✔ ✔ Read capability base address

YLENR ✔ ✔ Read capability length

YTYPER ✔ ✔ Read capability type

A.1.2. RVI (RVY modified behavior)

The following RVI instructions have modified behavior due to adding CHERI functionality. In general, this
is restricted to changing whether input/output operands read/write XLEN or YLEN bits.

Table 56. RVI (RVY modified behavior) instructions
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Mnemonic RV32Y RV64Y Function

AUIPC (RVY) ✔ ✔ Add upper immediate to pc

JAL (RVY) ✔ ✔ Immediate offset jump, and link and seal to capability register

JALR (RVY) ✔ ✔ Jump to capability register, and link and seal to capability
register

A.1.3. Zicsr (RVY modified behavior)

The following RVI instructions have modified behavior due to adding CHERI functionality. In general, this
is restricted to changing whether input/output operands read/write XLEN or YLEN bits.

Table 57. Zicsr (RVY modified behavior) instructions

Mnemonic RV32Y RV64Y Function

CSRRW (RVY) ✔ ✔ CSR write

CSRRS (RVY) ✔ ✔ CSR set

CSRRC (RVY) ✔ ✔ CSR clear

CSRRWI (RVY) ✔ ✔ CSR write (immediate form)

CSRRSI (RVY) ✔ ✔ CSR set (immediate form)

CSRRCI (RVY) ✔ ✔ CSR clear (immediate form)

A.1.4. Zysentry

Zysentry adds the YSENTRY instruction.

Table 58. Zysentry instruction extension

Mnemonic RV32Y RV64Y Function

YSENTRY ✔ ✔ Seal capability as a sentry

A.1.5. Zybld

Zybld adds the YBLD instruction.

Table 59. Zybld instruction extension

Mnemonic RV32Y RV64Y Function

YBLD ✔ ✔ Build capability

A.1.6. Zytopr

Zytopr adds the YTOPR instruction.

Table 60. Zytopr instruction extension

Mnemonic RV32Y RV64Y Function

YTOPR ✔ ✔ Read capability top address
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A.1.7. Zybndsrdw

Zybndsrdw adds the YBNDSRDW instruction.

Table 61. Zybndsrdw instruction extension

Mnemonic RV32Y RV64Y Function

YBNDSRDW ✔ ✔ Write capability bounds, rounding down if required

A.1.8. C (RVY added instructions)

An RVY core which supports C also supports C (RVY added instructions).

C (RVY added instructions) is incompatible with Zcf (RV32) and Zcd (RV64).

Table 62. C (RVY added instructions) instruction extension

Mnemonic RV32Y RV64Y Function

C.LYSP ✔ ✔ Load capability stack pointer relative, 16-bit encoding

C.SYSP ✔ ✔ Store capability stack pointer relative, 16-bit encoding

C.LY ✔ ✔ Load capability, 16-bit encoding

C.SY ✔ ✔ Store capability, 16-bit encoding
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A.1.9. RV32 / RV32Y RVC load/store mapping summary

Table 63. 16-bit load/store instruction mapping in RV32I

Encoding Supported Extensions

[15:13] [1:0] Zca Zcf Zcd Zcmp/ Zcmt Zclsd

111 00 N/A C.FSW N/A N/A C.SD

011 00 N/A C.FLW N/A N/A C.LD

111 10 N/A C.FSWSP N/A N/A C.SDSP

011 10 N/A C.FLWSP N/A N/A C.LDSP

101 00 N/A N/A C.FSD reserved N/A

001 00 N/A N/A C.FLD reserved N/A

101 10 N/A N/A C.FSDSP Zcmp/ Zcmt N/A

001 10 N/A N/A C.FLDSP reserved N/A

Table 64. 16-bit load/store instruction mapping in RV32Y

Encoding Supported Extensions

[15:13] [1:0] Zca Zcd Zcmp/ Zcmt

111 00 C.SY

111 10 C.SYSP

011 10 C.LYSP

011 00 C.LY

101 00 N/A C.FSD reserved

001 00 N/A C.FLD reserved

101 10 N/A C.FSDSP Zcmp (RV32Y)/ Zcmt
(RV32Y)

001 10 N/A C.FLDSP reserved

 Zcf and Zclsd are incompatible with RV32Y.
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A.1.10. RV64 / RV64Y RVC load/store mapping summary

Table 65. 16-bit load/store instruction mapping in RV64I

Encoding Supported Extensions

[15:13] [1:0] Zca Zcd Zcmp/ Zcmt

111 00 C.SD N/A N/A

011 00 C.LD N/A N/A

111 10 C.SDSP N/A N/A

011 10 C.LDSP N/A N/A

101 00 N/A C.FSD reserved

001 00 N/A C.FLD reserved

101 10 N/A C.FSDSP Zcmp/ Zcmt

001 10 N/A C.FLDSP reserved

Table 66. 16-bit load/store instruction mapping in RV64Y

Encoding Supported Extensions

[15:13] [1:0] Zca

111 00 C.SD

011 00 C.LD

111 10 C.SDSP

011 10 C.LDSP

101 00 C.SY

001 00 C.LY

101 10 C.SYSP

001 10 C.LYSP

 Zcd, Zcmp and Zcmt are incompatible with RV64Y.
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A.1.10.1. C.LY

see C.LYSP.

A.1.10.2. C.LYSP

Synopsis
Capability loads (C.LY, C.LYSP), 16-bit encodings

 These instructions have different encodings for RV64 and RV32.

Mnemonics
c.ly rd', offset(rs1')
c.lysp rd', offset(sp)

Expansions
ly rd', offset(rs1')
ly rd', offset(sp)

Encoding

0126711121315

opimmrd≠0immfunct3

2
C2=10

5
offset[4:3|8:6]
offset[4|9:6]

5
dest

1
[5]

3
RV32Y: C.LYSP=011
RV64Y: C.LYSP=001

0124567910121315

oprd'immrs1'immfunct3

2
C0=00

3
dest

2
offset[7:6]

3
base

3
offset[5:3]

offset[5:4|8]

3
RV32Y: C.LY=011
RV64Y: C.LY=001

(CHERI) Capability Mode Description
Load capability instruction, authorized by the capability in rs1. Take a load address misaligned
exception if not naturally aligned.

Exceptions
Exceptions occur when the authorizing capability fails one of the checks listed below:

Kind Reason

CHERI Load Access Fault Authorizing capability tag is set to 0.

CHERI Load Access Fault Authorizing capability is sealed.

CHERI Load Access Fault Authorizing capability does not grant the necessary
permissions. Only R-permission is required.

CHERI Load Access Fault At least one byte accessed is outside the authorizing
capability bounds, or the bounds could not be decoded.

CHERI Load Access Fault Authorizing capability failed any integrity check.

Prerequisites
C or Zca, RVY
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Included in
C (RVY added instructions)

Operation (after expansion to 32-bit encodings)
See LY
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A.1.10.3. C.SY

see C.SYSP.

A.1.10.4. C.SYSP

Synopsis
Capability stores (C.SY, C.SYSP), 16-bit encodings

 These instructions have different encodings for RV64 and RV32.

Mnemonics
c.sy rs2', offset(rs1')
c.sysp rs2', offset(sp)

Expansions
sy rs2', offset(rs1')
sy rs2', offset(sp)

Encoding

01267121315

oprs2immfunct3

2
C2=10

5
src

6
offset[5:3|8:6]
offset[5:4|9:6]

3
RV32Y: C.SYSP=111
RV64Y: C.SYSP=101

0124567910121315

oprs2'immrs1'immfunct3

2
C0=00

3
src

2
offset[7:6]
offset[7:6]

3
base

3
offset[5:3]

offset[5:4|8]

3
RV32Y: C.SY=111
RV64Y: C.SY=101

(CHERI) Capability Mode Description
Store the YLEN-bit value in rs2' to memory. The capability in sp authorizes the operation. The
effective address of the memory access is obtained by adding the address of sp to the zero-extended
offset.

Capability Tag of the written capability value
The capability written to memory has the capability tag set to 0 if the capability tag of rs2' is 0 or if the
authorizing capability (sp) does not grant C-permission.


Extensions may define further circumstances under which stored capabilities may have
their capability tags cleared.

This instruction can propagate valid capabilities which fail integrity checks.

Exceptions
Store/AMO access fault exception when the effective address is not aligned to YLEN/8.

Store/AMO access fault if the stored capability tag is set to one and the PMA is CHERI Capability Tag
Fault.

Exceptions occur when the authorizing capability fails one of the checks listed below:
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Kind Reason

CHERI Store/AMO Access Fault Authorizing capability tag is set to 0.

CHERI Store/AMO Access Fault Authorizing capability is sealed.

CHERI Store/AMO Access Fault Authorizing capability does not grant the necessary
permissions.

CHERI Store/AMO Access Fault At least one byte accessed is outside the authorizing
capability bounds, or the bounds could not be decoded.

CHERI Store/AMO Access Fault Authorizing capability failed any integrity check.

Prerequisites
C or Zca, RVY

Included in
C (RVY added instructions)

Operation (after expansion to 32-bit encodings)
See SY
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A.1.11. C (RVY modified behavior)

An RVY core which supports C also supports C (RVY modified behavior) which modifies the behavior of
some instructions.

 c.ymv is renamed from c.mv to avoid ambiguity in disassembly.

Table 67. C (RVY modified behavior) instruction extension

Mnemonic RV32Y RV64Y Function

C.ADDI16SP (RVY) ✔ ✔ Stack pointer increment in blocks of 16, 16-bit encoding

C.ADDI4SPN (RVY) ✔ ✔ Stack pointer increment in blocks of 4, 16-bit encoding

C.YMV ✔ ✔ Capability register copy, 16-bit encoding

C.JAL (RV32Y) ✔ Immediate offset jump, and link and seal to capability register,
16-bit encoding

C.JALR (RVY) ✔ ✔ Jump to capability register, and link and seal to capability
register, 16-bit encoding

C.JR (RVY) ✔ ✔ Jump to capability register, 16-bit encoding
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A.1.11.1. C.ADDI16SP (RVY)

Synopsis
Stack pointer increment in blocks of 16, 16-bit encoding

Mnemonic
c.addi16sp nzimm

Expansion
addiy sp, sp, nzimm

Encoding

0126711121315

opimm[4|6|8:7|5]rd/rs1=2imm[9]funct3

2
C1=01

5
nzimm[4|6|8:7|5]

5
2

1
nzimm[9]

3
C.ADDI16SP=011

Description
Add the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where the
immediate is scaled to represent multiples of 16 in the range (-512,496).

Set sp.tag=0 if sp is sealed.

Set rd.tag=0 if the resulting capability cannot be represented exactly.

Set rd.tag=0 if sp fails any integrity checks.

Prerequisites
C or Zca, RVY

Included in
C (RVY modified behavior)

Operation

execute(CADDI(sp, sp, sign_extend(nzimm)))
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A.1.11.2. C.ADDI4SPN  (RVY)

Synopsis
Stack pointer increment in blocks of 4, 16-bit encoding

Mnemonic
c.addi4spn rd', nzuimm

Expansion
addiy rd', sp, nzuimm

Encoding

01245121315

oprd'immfunct3

2
C0=00
C0=00

3
dest
dest

8
nzuimm[5:4|9:6|2|3]
nzuimm[5:4|9:6|2|3]

3
C.ADDI4SPN=000
C.ADDI4SPN=000

Description
Copy sp to rd'. Add a zero-extended non-zero immediate, scaled by 4, to rd'.address.

Set rd'.tag=0 if sp is sealed.

Set rd'.tag=0 if the resulting capability cannot be represented exactly.

Set rd'.tag=0 if sp 's bounds are malformed, or if any of the reserved fields are set.

Prerequisites
C or Zca, Zyhybrid

Included in
C (RVY modified behavior)

Operation

let cd = creg2reg_idx(cdc) in
execute(CADDI(cd, sp, zero_extend(nzuimm)))
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A.1.11.3. C.YMV

Synopsis
Capability register copy, 16-bit encoding

Mnemonic
c.ymv rd, rs2

Expansion
ymv rd, rs2

Suggested assembly syntax
ymv rd, rs2


c.mv is remapped to copy YLEN-bit registers for RVY. The mnemonic is changed to avoid
ambiguity about whether the copy is XLEN or YLEN-bits.

Encoding

01267111215

oprs2rdfunct4

2
C2=10

5
src≠0

5
dest≠0

4
C.YMV=1000

Description
Capability register rd is replaced with the contents of rs2.

This instruction can propagate valid capabilities which fail integrity checks.

Prerequisites
C or Zca, RVY

Included in
C (RVY modified behavior)

Operation (after expansion to 32-bit encoding)
See YMV
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A.1.11.4. C.JR (RVY)

Synopsis
Jump to capability register, 16-bit encoding

Mnemonic
c.jr rs1

Expansion
jalr x0, 0(rs1)

Encoding

01267111215

opfunct5rs1funct4

2
C2=10

5
C.JR=00000

5
src≠0

4
C.JR=1000

(CHERI) Capability Mode Description
See JALR (RVY) for execution of the expanded instruction as shown above. Note that the offset is zero
in the expansion.

Prerequisites
C or Zca, RVY

Included in
C (RVY modified behavior)

Operation (after expansion to 32-bit encodings)
See JALR (RVY)
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A.1.11.5. C.JAL (RV32Y)

Synopsis
Immediate offset jump, and link and seal to capability register, 16-bit encoding

Mnemonic (RV32Y)
c.jal x1, offset

Expansion (RV32Y)
jal x1, offset

Encoding (RV32Y)

012121315

opimmfunct3

2
C1=01

11
offset[11|4|9:8|10|6|7|3:1|5]

3
int: C.JAL=001

Description
Link the next linear pc to rd and seal. Jump to pc.address+offset.

Prerequisites
C or Zca, RVY

Included in
C (RVY modified behavior)

Operation (after expansion to 32-bit encodings)
See JAL (RVY)
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A.1.11.6. C.JALR (RVY)

Synopsis
Jump to capability register, and link and seal to capability register, 16-bit encoding

Mnemonic
c.jalr x1, rs1

Expansion
jalr x1, 0(rs1)

Encoding

01267111215

opfunct5rs1funct4

2
C2=10

5
C.JALR=00000

5
src≠0

4
C.JALR=1001

Description
See JALR (RVY) for execution of the expanded instruction as shown above. Note that the offset is zero
in the expansion.

Exceptions
See JALR (RVY)

Prerequisites
C or Zca, RVY

Included in
C (RVY modified behavior)

Operation (after expansion to 32-bit encodings)
See JALR (RVY)
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A.1.12. Zalrsc (RVY added instructions)

Specifying RVY and Zalrsc adds atomic capability load and store instructions.

Table 68. Zalrsc (RVY added instructions) instruction extension

Mnemonic RV32Y RV64Y Function

LR.Y ✔ ✔ Load Reserved capability

SC.Y ✔ ✔ Store Conditional capability
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A.1.12.1. LR.Y

Synopsis
Load Reserved capability

Mnemonic
lr.y rd, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1≠0funct5rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
.Y=100

5
base

5
LR.*=00000

1
rl

1
aq

5
op

LR.*=00010


Any instance of this instruction with rs1=x0 will raise an exception, as x0 is defined to always
hold a NULL capability. As such, the encodings with rs1=x0 are RESERVED for use by future
extensions.

Description
Calculate the effective address of the memory access by adding rs1.address to the sign-extended 12-bit
offset.

Authorize the memory access with the capability in rs1.

Load a naturally aligned YLEN-bit data value from memory.

If the PMA is CHERI Capability Tag then load the associated capability tag, otherwise set the capability
tag to zero.

Set the reservation as for LR.W/D.

Use the YLEN-bit data and the capability tag to determine the value of rd as specified by the LY
instruction.

This instruction can propagate valid capabilities which fail integrity checks.

Exceptions
All misaligned load reservations cause a load address misaligned exception to allow software emulation
(if the Zam extension is supported), otherwise they take a load access fault exception.

Exceptions occur when the authorizing capability fails one of the checks listed below:

Kind Reason

CHERI Load Access Fault Authorizing capability tag is set to 0.

CHERI Load Access Fault Authorizing capability is sealed.

CHERI Load Access Fault Authorizing capability does not grant the necessary
permissions. Only R-permission is required.

CHERI Load Access Fault At least one byte accessed is outside the authorizing
capability bounds, or the bounds could not be decoded.

CHERI Load Access Fault Authorizing capability failed any integrity check.
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Prerequisites
RVY, and A or Zalrsc

Included in
Zalrsc (RVY added instructions)

Operation

TBD
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A.1.12.2. SC.Y

Synopsis
Store Conditional capability


Any instance of this instruction with rs1=x0 will raise an exception, as x0 is defined to always
hold a NULL capability. As such, the encodings with rs1=x0 are RESERVED for use by future
extensions.

Mnemonic
sc.y rd, rs2, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1≠0rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width
.Y=100

5
base

5
src

1
rl

1
aq

5
op

SC=00011

Description
Calculate the effective address of the memory access by adding rs1.address to the sign-extended 12-bit
offset.

Authorize the memory access with the capability in rs1.

Conditionally store, following the same rules as SC.W, a naturally aligned YLEN-bit data value in rs2 to
memory and the associated capability tag in rs2.

Set rd to 1 for success or 0 for failure.

The written capability capability tag may be cleared following the same modification rules as SY.

This instruction can propagate valid capabilities which fail integrity checks.

Exceptions
Store/AMO access fault exception when the effective address is not aligned to YLEN/8.

Store/AMO access fault if the stored capability tag is set to one and the PMA is CHERI Capability Tag
Fault.

Exceptions occur when the authorizing capability fails one of the checks listed below:

Kind Reason

CHERI Store/AMO Access Fault Authorizing capability tag is set to 0.

CHERI Store/AMO Access Fault Authorizing capability is sealed.

CHERI Store/AMO Access Fault Authorizing capability does not grant the necessary
permissions.

CHERI Store/AMO Access Fault At least one byte accessed is outside the authorizing
capability bounds, or the bounds could not be decoded.

CHERI Store/AMO Access Fault Authorizing capability failed any integrity check.

Prerequisites
RVY, and A or Zalrsc
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Included in
Zalrsc (RVY added instructions)

Operation

TBD
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A.1.13. Zaamo (RVY added instructions)

Specifying RVY and Zaamo gives Zaamo (RVY added instructions) functionality, which adds atomic
capability swap.

Table 69. Zaamo (RVY added instructions) instruction extension

Mnemonic RV32Y RV64Y Function

AMOSWAP.Y ✔ ✔ Atomic swap of capabilities
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A.1.13.1. AMOSWAP.Y

Synopsis
Atomic swap of capabilities

Mnemonic
amoswap.y rd, rs2, 0(rs1)

Encoding

0671112141519202425262731

opcoderdfunct3rs1≠0rs2rlaqfunct5

7
AMO=0101111

5
rdest[4:0]

3
width
.Y=100

5
base

5
src

1
rl

1
aq

5
op

SWAP=00001


Any instance of this instruction with rs1=x0 will raise an exception, as x0 is defined to always
hold a NULL capability. As such, the encodings with rs1=x0 are RESERVED for use by future
extensions.

Description
Atomic swap of capability type, authorized by the capability in rs1.

The operation is equivalent to an atomically executed sequence of:

ly rd, 0(rs1)

sy rs2, 0(rs1)

With the proviso that rd is only updated if no exceptions are raised.

Permissions
Requires R-permission and W-permission in the authorizing capability.

Requires all bytes of the access to be in capability bounds.

Exceptions
If the address is not naturally aligned raise a Store/AMO address misaligned exception or a Store/AMO
access fault exception. See "Zaamo" for details on which one is raised.

Exceptions occur when the authorizing capability fails one of the checks listed below:

Kind Reason

CHERI Store/AMO Access
Fault

Authorizing capability tag is set to 0.

CHERI Store/AMO Access
Fault

Authorizing capability is sealed.

CHERI Store/AMO Access
Fault

Authorizing capability does not grant the necessary permissions. W-permission and
R-permission are both required.

CHERI Store/AMO Access
Fault

At least one byte accessed is outside the authorizing capability bounds, or the bounds
could not be decoded.

Prerequisites
RVY, and A or Zaamo
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Included in
Zaamo (RVY added instructions)

Operation
TODO
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A.1.14. Zba (RVY added instructions)

Specifying RVY and Zba gives Zba (RVY added instructions) functionality, which adds more instructions.

Table 70. Zba (RVY added instructions) instruction extension

Mnemonic RV32Y RV64Y Function

SH1ADDY ✔ ✔ shift and add, representability check

SH2ADDY ✔ ✔ shift and add, representability check

SH3ADDY ✔ ✔ shift and add, representability check

SH4ADDY (RV64Y) ✔ shift and add, representability check

SH1ADDY.UW (RV64Y) ✔ shift and add unsigned word, representability check

SH2ADDY.UW (RV64Y) ✔ shift and add unsigned word, representability check

SH3ADDY.UW (RV64Y) ✔ shift and add unsigned word, representability check

SH4ADDY.UW (RV64Y) ✔ shift and add unsigned word, representability check

 There is no RVY equivalent for add.uw as only having the integer version is sufficient.
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A.1.14.1. SH1ADDY

See SH4ADDY (RV64Y).

A.1.14.2. SH2ADDY

See SH4ADDY (RV64Y).

A.1.14.3. SH3ADDY

See SH4ADDY (RV64Y).

A.1.14.4. SH4ADDY (RV64Y)

Synopsis
Shift by n and add for address generation (SH1ADDY, SH2ADDY, SH3ADDY, SH4ADDY)

Mnemonics (RVY)
sh1addy rd, rs1, rs2
sh2addy rd, rs1, rs2
sh3addy rd, rs1, rs2

Mnemonics (RV64Y)
sh4addy rd, rs1, rs2

Encoding

067111214151920242531

1100110rdfunc3rs1rs20000100

OPSH1ADDY=011
SH2ADDY=101
SH3ADDY=000

rv64: SH4ADDY=111

Description
Copy the capability in rs2 to rd.

Increment rd.address by rs1 shifted left by n bit positions.

Set rd.tag=0 if rs2 is sealed.

Set rd.tag=0 if the resulting capability cannot be represented exactly.

Set rd.tag=0 if rs2 fails any integrity checks.

Included in
Zba (RVY added instructions)

Operation

let rs1_val = X(rs1);
let cs2_val = C(cs2);
let shamt : range(0,3) = match op {
  RISCV_SH1ADD => 1,
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  RISCV_SH2ADD => 2,
  RISCV_SH3ADD => 3,
};
let result = incCapAddrChecked(cs2_val, rs1_val << shamt);
C(cd) = result;
RETIRE_SUCCESS
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A.1.14.5. SH1ADDY.UW (RV64Y)

See SH4ADDY.UW (RV64Y).

A.1.14.6. SH2ADDY.UW (RV64Y)

See SH4ADDY.UW (RV64Y).

A.1.14.7. SH3ADDY.UW (RV64Y)

See SH4ADDY.UW (RV64Y).

A.1.14.8. SH4ADDY.UW (RV64Y)

Synopsis
Shift by n and add unsigned words for address generation (SH1ADDY.UW, SH2ADDY.UW,
SH3ADDY.UW, SH4ADDY.UW)

Mnemonics (RV64Y)
sh1addy.uw rd, rs1, rs2
sh2addy.uw rd, rs1, rs2
sh3addy.uw rd, rs1, rs2
sh4addy.uw rd, rs1, rs2

Encoding

067111214151920242531

1101110rdfunc3rs1rs20000100

OP-32rv64: SH1ADDY.UW=011
rv64: SH2ADDY.UW=101
rv64: SH3ADDY.UW=000
rv64: SH4ADDY.UW=111

Description
Copy the capability in rs2 to rd.

Increment rd.address by the unsigned word rs1 shifted left by n bit positions.

Set rd.tag=0 if rs2 is sealed.

Set rd.tag=0 if the resulting capability cannot be represented exactly.

Set rd.tag=0 if rs2 fails any integrity checks.

Included in
Zba (RVY added instructions)

Operation

let rs1_val = X(rs1);
let cs2_val = C(cs2);
let shamt : range(0,3) = match op {
  RISCV_ADDUW    => 0,
  RISCV_SH1ADDUW => 1,
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  RISCV_SH2ADDUW => 2,
  RISCV_SH3ADDUW => 3,
};
let result = incCapAddrChecked(cs2_val, zero_extend(rs1_val[31..0]) <<
shamt);
C(cd) = result;
RETIRE_SUCCESS
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A.1.15. Zicbom (RVY modified behavior)

Specifying RVY and Zicbom gives Zicbom (RVY modified behavior) functionality, which extends the
checking.

Table 71. Zicbom (RVY modified behavior) instruction extension

Mnemonic RV32Y RV64Y Function

CBO.INVAL (RVY) ✔ ✔ Cache block invalidate (implemented as clean)

CBO.CLEAN (RVY) ✔ ✔ Cache block clean

CBO.FLUSH (RVY) ✔ ✔ Cache block flush
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A.1.15.1. CBO.CLEAN (RVY)

Synopsis
Perform a clean operation on a cache block

Mnemonic
cbo.clean 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3rs1≠0funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
CBO.CLEAN=00.001

Description
A CBO.CLEAN instruction performs a clean operation on the cache block whose effective address is the
base address specified in rs1. The authorizing capability for this operation is rs1.

Exceptions

Kind Reason

CHERI Store/AMO Access Fault Authorizing capability tag is set to 0.

CHERI Store/AMO Access Fault Authorizing capability is sealed.

CHERI Store/AMO Access Fault Authorizing capability does not grant the necessary
permissions. W-permission and R-permission are both
required.

CHERI Store/AMO Access Fault None of the bytes accessed are within the bounds, or the
bounds could not be decoded.

CHERI Store/AMO Access Fault Authorizing capability failed any integrity check.

Prerequisites
Zicbom, RVY

Included in
Zicbom (RVY modified behavior)

Operation

TBD
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A.1.15.2. CBO.FLUSH (RVY)

Synopsis
Perform a flush operation on a cache block

Mnemonic
cbo.flush 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3rs1≠0funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
cap: CBO.FLUSH=00.0010

Description
A CBO.FLUSH instruction performs a flush operation on the cache block whose effective address is the
base address specified in rs1. The authorizing capability for this operation is rs1.

Exceptions

Kind Reason

CHERI Store/AMO Access Fault Authorizing capability tag is set to 0.

CHERI Store/AMO Access Fault Authorizing capability is sealed.

CHERI Store/AMO Access Fault Authorizing capability does not grant the necessary
permissions. W-permission and R-permission are both
required.

CHERI Store/AMO Access Fault None of the bytes accessed are within the bounds, or the
bounds could not be decoded.

CHERI Store/AMO Access Fault Authorizing capability failed any integrity check.

Prerequisites
Zicbom, RVY

Included in
Zicbom (RVY modified behavior)

Operation

TBD
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A.1.15.3. CBO.INVAL (RVY)

Synopsis
Perform an invalidate operation on a cache block

Mnemonic
cbo.inval 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3rs1funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
CBO.INVAL=00.0000

Description
A CBO.INVAL instruction performs an invalidate operation on the cache block whose effective address
is the base address specified in rs1. The authorizing capability for this instruction is rs1.

Exceptions

Kind Reason

Illegal instruction pc does not grant ASR-permission.

CHERI Store/AMO Access Fault Authorizing capability tag is set to 0.

CHERI Store/AMO Access Fault Authorizing capability is sealed.

CHERI Store/AMO Access Fault Authorizing capability does not grant the necessary
permissions. W-permission, R-permission are both
required.

CHERI Store/AMO Access Fault At least one byte accessed is outside the authorizing
capability bounds, or the bounds could not be decoded.

CHERI Store/AMO Access Fault Authorizing capability failed any integrity check.



CSR state controls whether CBO.INVAL performs cache block flushes instead of invalidations
for less privileged modes.

Invalidating a cache block can re-expose capabilities previously stored to it after the most
recent flush, not just secret values. As such, CBO.INVAL has stricter checks on its use than
CBO.FLUSH, and should only be made available to, and used by, sufficiently-trusted software.

Untrusted software should use CBO.FLUSH instead as a minimum, and a sensible
implementation choice for CHERI systems is to always execute CBO.INVAL as CBO.FLUSH.

Prerequisites
Zicbom, RVY

Included in
Zicbom (RVY modified behavior)

Operation

TBD
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A.1.16. Zicboz (RVY modified behavior)

Specifying RVY and Zicboz gives Zicboz (RVY modified behavior) functionality, which extends the
checking.

Table 72. Zicboz (RVY modified behavior) instruction extension

Mnemonic RV32Y RV64Y Function

CBO.ZERO (RVY) ✔ ✔ Cache block zero
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A.1.16.1. CBO.ZERO (RVY)

Synopsis
Store zeros to the full set of bytes corresponding to a cache block

Mnemonic
cbo.zero 0(rs1)

Encoding

06711121415192031

opcodefunct5funct3rs1≠0funct12

7
MISC-MEM=0001111

5
CBO=00000

3
CBO=010

5
base

12
CBO.ZERO=00.0100

Description
A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache block
whose effective address is the base address specified in rs1. An implementation may or may not update
the entire set of bytes atomically although each individual write must atomically clear the capability tag
bit of the corresponding aligned YLEN-bit location. The authorizing capability for this instruction is
rs1.

Exceptions
Store/AMO access fault exception when the effective address is not aligned to YLEN/8.

Store/AMO access fault if the stored capability tag is set to one and the PMA is CHERI Capability Tag
Fault.

Exceptions occur when the authorizing capability fails one of the checks listed below:

Kind Reason

CHERI Store/AMO Access Fault Authorizing capability tag is set to 0.

CHERI Store/AMO Access Fault Authorizing capability is sealed.

CHERI Store/AMO Access Fault Authorizing capability does not grant the necessary
permissions.

CHERI Store/AMO Access Fault At least one byte accessed is outside the authorizing
capability bounds, or the bounds could not be decoded.

CHERI Store/AMO Access Fault Authorizing capability failed any integrity check.

Prerequisites
Zicboz, RVY

Included in
Zicboz (RVY modified behavior)

Operation

TBD
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A.1.17. Zicbop (RVY modified behavior)

Specifying RVY and Zicbop gives Zicbop (RVY modified behavior) functionality, which extends the
checking.

Table 73. Zicbop (RVY modified behavior) instruction extension

Mnemonic RV32Y RV64Y Function

PREFETCH.R (RVY) ✔ ✔ Prefetch instruction cache line, always valid

PREFETCH.W (RVY) ✔ ✔ Prefetch read-only data cache line

PREFETCH.I (RVY) ✔ ✔ Prefetch writable data cache line
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A.1.17.1. PREFETCH.I  (RVY)

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by an instruction fetch in the
near future

Mnemonic
prefetch.i offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1≠0funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
PREFETCH.I=00000

7
offset[11:5]

Description
A PREFETCH.I instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0], where
imm[4:0] equals 0b00000, is likely to be accessed by an instruction fetch in the near future. The
encoding is only valid if imm[4:0]=0. The authorizing capability for this operation is rs1. This
instruction does not throw any exceptions. However, following the rules from Chapter 2, this
instruction does not perform a prefetch if it is not authorized by rs1.

PREFETCH.I does not perform a memory access if one or more of the following conditions of the
authorizing capability are met:

⚫ The capability tag is not set

⚫ The sealed bit is set

⚫ No bytes of the cache line requested is in bounds

⚫ X-permission is not set

⚫ Any integrity check fails

Prerequisites
Zicbop, RVY

Included in
Zicbop (RVY modified behavior)

Operation

TODO
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A.1.17.2. PREFETCH.R (RVY)

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data read in the near future

Mnemonic
prefetch.r offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1≠0funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
PREFETCH.R=00001

7
offset[11:5]

Description
A PREFETCH.R instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0], where
imm[4:0] equals 0b00000, is likely to be accessed by a data read (i.e., load) in the near future. The
encoding is only valid if imm[4:0]=0. The authorizing capability for this operation is rs1. This
instruction does not throw any exceptions. However, following the rules from Chapter 2, this
instruction does not perform a prefetch if it is not authorized by rs1.

PREFETCH.R does not perform a memory access if one or more of the following conditions of the
authorizing capability are met:

⚫ The capability tag is not set

⚫ The sealed bit is set

⚫ No bytes of the cache line requested is in bounds

⚫ R-permission is not set

⚫ Any integrity check fails

Prerequisites
Zicbop, RVY

Included in
Zicbop (RVY modified behavior)

Operation

TODO
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A.1.17.3. PREFETCH.W (RVY)

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data write in the near future

Mnemonic
prefetch.w offset(rs1)

Encoding

067111214151920242531

opcodeimm[4:0]funct3rs1≠0funct5imm[11:5]

7
OP-IMM=0010011

5
zero

3
ORI=110

5
base

5
PREFETCH.W=00011

7
offset[11:5]

Description
A PREFETCH.W instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rs1 and the sign-extended offset encoded in imm[11:0], where
imm[4:0] equals 0b00000, is likely to be accessed by a data write (i.e., store) in the near future. The
encoding is only valid if imm[4:0]=0. The authorizing capability for this operation is rs1. This
instruction does not throw any exceptions. However, following the rules from Chapter 2, this
instruction does not perform a prefetch if it is not authorized by rs1.

PREFETCH.W does not perform a memory access if one or more of the following conditions of the
authorizing capability are met:

⚫ The capability tag is not set

⚫ The sealed bit is set

⚫ No bytes of the cache line requested is in bounds

⚫ W-permission is not set

⚫ Any integrity check fails

Prerequisites
Zicbop, RVY

Included in
Zicbop (RVY modified behavior)

Operation

TODO
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A.1.18. Zyhybrid

An RVY core which supports Zyhybrid adds the instructions in Table 74.

Table 74. Zyhybrid instruction extension

Mnemonic RV32Y RV64Y Function

YMODEW ✔ ✔ Set capability execution mode

YMODER ✔ ✔ Read capability mode

YMODESWY ✔ ✔ Switch execution to (CHERI) Capability Mode

YMODESWI ✔ ✔ Switch execution to (Non-CHERI) Address Mode

A.1.19. "Zcmp", "Zcmt" (RVY)

 This chapter is not part of the v1.0 ratification package.         

A.1.20. "Zcmp" Standard Extension For Code-Size Reduction

The push (CM.PUSH (RV32Y)) and pop (CM.POP (RV32Y), CM.POPRET (RV32Y), CM.POPRETZ (RV32Y))
instructions are redefined in (CHERI) Capability Mode to save/restore capability data.

The double move instructions (CM.MVSA01 (RV32Y), CM.MVA01S (RV32Y)) are redefined in (CHERI)
Capability Mode to move capability data between registers. The saved register mapping is as shown in Table
75.

Table 75. saved register mapping for Zcmp

saved register specifier xreg integer ABI RV32Y ABI

0 x8 s0 s0

1 x9 s1 s1

2 x18 s2 s2

3 x19 s3 s3

4 x20 s4 s4

5 x21 s5 s5

6 x22 s6 s6

7 x23 s7 s7

A.1. RVY ISA Extension Summary | Page 167

RISC-V Specification for CHERI Extensions | © RISC-V International



A.1.20.1. CM.PUSH (RV32Y)

Synopsis
Create stack frame (CM.PUSH): store the return address register and 0 to 12 saved registers to the stack
frame, optionally allocate additional stack space. 16-bit encoding.

Mnemonic
cm.push {creg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist00011101

C2FUNCT3

Assembly Syntax:

cm.push {reg_list},  -stack_adj
cm.push {xreg_list}, -stack_adj

The variables used in the assembly syntax are defined below.

RV32Y:

switch (rlist){
  case  4: {reg_list="ra";         xreg_list="x1";}
  case  5: {reg_list="ra, s0";     xreg_list="x1, x8";}
  case  6: {reg_list="ra, s0-s1";  xreg_list="x1, x8-x9";}
  case  7: {reg_list="ra, s0-s2";  xreg_list="x1, x8-x9, x18";}
  case  8: {reg_list="ra, s0-s3";  xreg_list="x1, x8-x9, x18-x19";}
  case  9: {reg_list="ra, s0-s4";  xreg_list="x1, x8-x9, x18-x20";}
  case 10: {reg_list="ra, s0-s5";  xreg_list="x1, x8-x9, x18-x21";}
  case 11: {reg_list="ra, s0-s6";  xreg_list="x1, x8-x9, x18-x22";}
  case 12: {reg_list="ra, s0-s7";  xreg_list="x1, x8-x9, x18-x23";}
  case 13: {reg_list="ra, s0-s8";  xreg_list="x1, x8-x9, x18-x24";}
  case 14: {reg_list="ra, s0-s9";  xreg_list="x1, x8-x9, x18-x25";}
  //note - to include s10, s11 must also be included
  case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
  default: reserved();
}
stack_adj      = stack_adj_base + spimm * 16;

RV32Y:

switch (rlist) {
  case  4.. 5: stack_adj_base =  16;
  case  6.. 7: stack_adj_base =  32;
  case  8.. 9: stack_adj_base =  48;
  case 10..11: stack_adj_base =  64;
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  case 12..13: stack_adj_base =  80;
  case     14: stack_adj_base =  96;
  case     15: stack_adj_base = 112;
}

Valid values:
switch (rlist) {
  case  4.. 5: stack_adj = [ 16| 32| 48| 64];
  case  6.. 7: stack_adj = [ 32| 48| 64| 80];
  case  8.. 9: stack_adj = [ 48| 64| 80| 96];
  case 10..11: stack_adj = [ 64| 80| 96|112];
  case 12..13: stack_adj = [ 80| 96|112|128];
  case     14: stack_adj = [ 96|112|128|144];
  case     15: stack_adj = [112|128|144|160];
}

 rlist values 0 to 3 are reserved for a future EABI variant

Description
Create stack frame, store capability registers as specified in creg_list using SY semantics.

Optionally allocate additional multiples of 16-byte stack space in sp.

All accesses are authorized against sp.

Prerequisites
C or Zca, RVY, Zcmp

Operation

TBD
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A.1.20.2. CM.POP (RV32Y)

Synopsis
Destroy stack frame (CM.POP): load the return address register and 0 to 12 saved registers from the
stack frame, deallocate the stack frame. 16-bit encodings.

Mnemonic
cm.pop {creg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist01011101

C2FUNCT3

Assembly Syntax:

cm.pop {reg_list},  stack_adj
cm.pop {xreg_list}, stack_adj

The variables used in the assembly syntax are defined below.

RV32Y:

switch (rlist){
  case  4: {reg_list="ra";         xreg_list="x1";}
  case  5: {reg_list="ra, s0";     xreg_list="x1, x8";}
  case  6: {reg_list="ra, s0-s1";  xreg_list="x1, x8-x9";}
  case  7: {reg_list="ra, s0-s2";  xreg_list="x1, x8-x9, x18";}
  case  8: {reg_list="ra, s0-s3";  xreg_list="x1, x8-x9, x18-x19";}
  case  9: {reg_list="ra, s0-s4";  xreg_list="x1, x8-x9, x18-x20";}
  case 10: {reg_list="ra, s0-s5";  xreg_list="x1, x8-x9, x18-x21";}
  case 11: {reg_list="ra, s0-s6";  xreg_list="x1, x8-x9, x18-x22";}
  case 12: {reg_list="ra, s0-s7";  xreg_list="x1, x8-x9, x18-x23";}
  case 13: {reg_list="ra, s0-s8";  xreg_list="x1, x8-x9, x18-x24";}
  case 14: {reg_list="ra, s0-s9";  xreg_list="x1, x8-x9, x18-x25";}
  //note - to include s10, s11 must also be included
  case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
  default: reserved();
}
stack_adj      = stack_adj_base + spimm * 16;

RV32Y:

switch (rlist) {
  case  4.. 5: stack_adj_base =  16;
  case  6.. 7: stack_adj_base =  32;
  case  8.. 9: stack_adj_base =  48;
  case 10..11: stack_adj_base =  64;
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  case 12..13: stack_adj_base =  80;
  case     14: stack_adj_base =  96;
  case     15: stack_adj_base = 112;
}

Valid values:
switch (rlist) {
  case  4.. 5: stack_adj = [ 16| 32| 48| 64];
  case  6.. 7: stack_adj = [ 32| 48| 64| 80];
  case  8.. 9: stack_adj = [ 48| 64| 80| 96];
  case 10..11: stack_adj = [ 64| 80| 96|112];
  case 12..13: stack_adj = [ 80| 96|112|128];
  case     14: stack_adj = [ 96|112|128|144];
  case     15: stack_adj = [112|128|144|160];
}

 rlist values 0 to 3 are reserved for a future EABI variant

Description
Load capability registers as specified in creg_list using LY semantics.

Deallocate stack frame.

All accesses are authorized by sp.

Prerequisites
C or Zca, RVY, Zcmp

Operation

TBD
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A.1.20.3. CM.POPRET (RV32Y)

Synopsis
Destroy stack frame (CM.POPRET): load the return address register and 0 to 12 saved registers from the
stack frame, deallocate the stack frame. Return through the return address register. 16-bit encodings.

Mnemonic
cm.popret {creg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist01111101

C2FUNCT3

Assembly Syntax:

cm.popret {reg_list},  stack_adj
cm.popret {xreg_list}, stack_adj

The variables used in the assembly syntax are defined below.

RV32Y:

switch (rlist){
  case  4: {reg_list="ra";         xreg_list="x1";}
  case  5: {reg_list="ra, s0";     xreg_list="x1, x8";}
  case  6: {reg_list="ra, s0-s1";  xreg_list="x1, x8-x9";}
  case  7: {reg_list="ra, s0-s2";  xreg_list="x1, x8-x9, x18";}
  case  8: {reg_list="ra, s0-s3";  xreg_list="x1, x8-x9, x18-x19";}
  case  9: {reg_list="ra, s0-s4";  xreg_list="x1, x8-x9, x18-x20";}
  case 10: {reg_list="ra, s0-s5";  xreg_list="x1, x8-x9, x18-x21";}
  case 11: {reg_list="ra, s0-s6";  xreg_list="x1, x8-x9, x18-x22";}
  case 12: {reg_list="ra, s0-s7";  xreg_list="x1, x8-x9, x18-x23";}
  case 13: {reg_list="ra, s0-s8";  xreg_list="x1, x8-x9, x18-x24";}
  case 14: {reg_list="ra, s0-s9";  xreg_list="x1, x8-x9, x18-x25";}
  //note - to include s10, s11 must also be included
  case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
  default: reserved();
}
stack_adj      = stack_adj_base + spimm * 16;

RV32Y:

switch (rlist) {
  case  4.. 5: stack_adj_base =  16;
  case  6.. 7: stack_adj_base =  32;
  case  8.. 9: stack_adj_base =  48;
  case 10..11: stack_adj_base =  64;
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  case 12..13: stack_adj_base =  80;
  case     14: stack_adj_base =  96;
  case     15: stack_adj_base = 112;
}

Valid values:
switch (rlist) {
  case  4.. 5: stack_adj = [ 16| 32| 48| 64];
  case  6.. 7: stack_adj = [ 32| 48| 64| 80];
  case  8.. 9: stack_adj = [ 48| 64| 80| 96];
  case 10..11: stack_adj = [ 64| 80| 96|112];
  case 12..13: stack_adj = [ 80| 96|112|128];
  case     14: stack_adj = [ 96|112|128|144];
  case     15: stack_adj = [112|128|144|160];
}

 rlist values 0 to 3 are reserved for a future EABI variant

Description
Load capability registers as specified in creg_list using LY semantics.

Deallocate stack frame.

Return by calling JALR (RVY) to ra.

All data accesses are authorized by sp.

The return destination is authorized by ra.

Prerequisites
C or Zca, RVY, Zcmp

Operation

TBD
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A.1.20.4. CM.POPRETZ (RV32Y)

Synopsis
Destroy stack frame (CM.POPRETZ): load the return address register and register 0 to 12 saved registers
from the stack frame, deallocate the stack frame. Move zero into argument register zero. Return through
the return address register. 16-bit encoding.

Mnemonic
cm.popretz {creg_list}, -stack_adj

Encoding

0123478121315

01spimm[5:4]rlist00111101

C2FUNCT3

Assembly Syntax:

cm.popretz {reg_list},  stack_adj
cm.popretz {xreg_list}, stack_adj

The variables used in the assembly syntax are defined below.

RV32Y:

switch (rlist){
  case  4: {reg_list="ra";         xreg_list="x1";}
  case  5: {reg_list="ra, s0";     xreg_list="x1, x8";}
  case  6: {reg_list="ra, s0-s1";  xreg_list="x1, x8-x9";}
  case  7: {reg_list="ra, s0-s2";  xreg_list="x1, x8-x9, x18";}
  case  8: {reg_list="ra, s0-s3";  xreg_list="x1, x8-x9, x18-x19";}
  case  9: {reg_list="ra, s0-s4";  xreg_list="x1, x8-x9, x18-x20";}
  case 10: {reg_list="ra, s0-s5";  xreg_list="x1, x8-x9, x18-x21";}
  case 11: {reg_list="ra, s0-s6";  xreg_list="x1, x8-x9, x18-x22";}
  case 12: {reg_list="ra, s0-s7";  xreg_list="x1, x8-x9, x18-x23";}
  case 13: {reg_list="ra, s0-s8";  xreg_list="x1, x8-x9, x18-x24";}
  case 14: {reg_list="ra, s0-s9";  xreg_list="x1, x8-x9, x18-x25";}
  //note - to include s10, s11 must also be included
  case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
  default: reserved();
}
stack_adj      = stack_adj_base + spimm * 16;

RV32Y:

switch (rlist) {
  case  4.. 5: stack_adj_base =  16;
  case  6.. 7: stack_adj_base =  32;
  case  8.. 9: stack_adj_base =  48;
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  case 10..11: stack_adj_base =  64;
  case 12..13: stack_adj_base =  80;
  case     14: stack_adj_base =  96;
  case     15: stack_adj_base = 112;
}

Valid values:
switch (rlist) {
  case  4.. 5: stack_adj = [ 16| 32| 48| 64];
  case  6.. 7: stack_adj = [ 32| 48| 64| 80];
  case  8.. 9: stack_adj = [ 48| 64| 80| 96];
  case 10..11: stack_adj = [ 64| 80| 96|112];
  case 12..13: stack_adj = [ 80| 96|112|128];
  case     14: stack_adj = [ 96|112|128|144];
  case     15: stack_adj = [112|128|144|160];
}

 rlist values 0 to 3 are reserved for a future EABI variant

Description
Load capability registers as specified in creg_list using LY semantics.

Deallocate stack frame.

Move zero into a0.

Return by calling JALR (RVY) to ra.

All data accesses are authorized by sp.

The return destination is authorized by ra.

Prerequisites
C or Zca, RVY, Zcmp

Operation

TBD
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A.1.20.5. CM.MVSA01 (RV32Y)

Synopsis
CM.MVSA01: Move argument registers 0 and 1 into two saved registers. 16-bit encoding.

Mnemonic
cm.mvsa01 c1s', c2s'

Encoding

0124567910121315

01r2s'10r1s'110101

C2FUNCT3


The encoding uses sreg number specifiers instead of xreg number specifiers to save encoding
space. The saved register encoding is shown in Table 75.

Description
Atomically move two saved capability registers s0-s7 into a0 and a1.

Prerequisites
C or Zca, RVY, Zcmp

Operation

TBD
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A.1.20.6. CM.MVA01S (RV32Y)

Synopsis
Move two saved registers into argument registers 0 and 1. 16-bit encoding.

Mnemonic
cm.mva01s c1s', c2s'

Encoding

0124567910121315

01r2s'11r1s'110101

C2FUNCT3


The encoding uses sreg number specifiers instead of xreg number specifiers to save encoding
space. The saved register encoding is shown in Table 75.

Description
Atomically move two capability registers a0 and a1 into s0-s7.

Prerequisites
C or Zca, RVY, Zcmp

Operation

TBD
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A.1.21. "Zcmt" Standard Extension For Code-Size Reduction

The table jump instructions (CM.JT (RV32Y), CM.JALT (RV32Y)) are not redefined in (CHERI) Capability
Mode to have capabilities in the jump table. This is to prevent the code-size growth caused by doubling the
size of the jump table.

In the future, new jump table modes or new encodings can be added to have capabilities in the jump table.

The jump vector table CSR jvt (RVY) is a full capability so that it can only be configured to point to
accessible memory. All accesses to the jump table are checked against jvt (RVY) in (CHERI) Capability Mode,
and against pc bounds in (Non-CHERI) Address Mode. This allows the jump table to be accessed when the pc
bounds are set narrowly to the local function only in (CHERI) Capability Mode.


In (CHERI) Capability Mode the instruction fetch bounds check is authorized by two different
capabilities - jvt (RVY) for the table access and pc for the CM.JALT (RV32Y)/CM.JT (RV32Y)
instruction, and target instruction.


In (CHERI) Capability Mode the implementation doesn’t need to expand and bounds check
against jvt (RVY) on every access, it is sufficient to decode the valid accessible range of entries
after every write to jvt (RVY), and then check that the accessed entry is in that range.

A.1.21.1. Jump Vector Table CSR (jvt)

The Zcmt jvt CSR is extended to be a full capability.

MXLEN-1 0

V jvt (Metadata)

jvt (Address)

MXLEN

Figure 20. Jump Vector Table Capability register

All instruction fetches from the jump vector table are checked against jvt (RVY) in (CHERI) Capability Mode.
In (Non-CHERI) Address Mode the address field gives the base address of the table, and the access is checked
against pc bounds.

See CM.JALT (RV32Y), CM.JT (RV32Y).

If the access to the jump table succeeds, then the instructions execute as follows:

⚫ CM.JT (RV32Y) executes as J or AUIPC+JR

⚫ CM.JALT (RV32Y) executes as JAL or AUIPC+JALR

As a result the capability metadata is retained in pc during execution.
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A.1.21.2. CM.JALT (RV32Y)

Synopsis
Jump via table with link (CM.JALT), 16-bit encodings

Mnemonic (RV32)
cm.jalt index

Encoding

012910121315

01index000101

C2FUNCT3


For this encoding to decode as CM.JALT (RV32Y), index≥32, otherwise it decodes as CM.JT
(RV32Y).

Description (RV32Y)
Redirect instruction fetch via the jump table defined by the indexing via jvt.address+ index*XLEN/8,
checking every byte of the jump table access against jvt (RVY) bounds (not against pc) and requiring X-
permission. Link to cra.

The target pc is calculated by replacing the current pc address with the value read from the jump table,
and is updated using the semantics of the YADDRW instruction.

If the jvt (RVY) check fails, then clear the capability tag of the target pc.

If Zcherihybrid is implemented and the CHERI execution mode is (Non-CHERI) Address Mode then the table
access is checked against pc bounds.

Permissions (RV32Y)
Requires jvt (RVY) to have its capability tag set, not be sealed, have X-permission and for the full XLEN-
wide table access to be in jvt (RVY) bounds.

Prerequisites for (RV32Y)
C or Zca, RVY, Zcmt

Operation

TBD
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A.1.21.3. CM.JT (RV32Y)

Synopsis
Jump via table with link (CM.JT), 16-bit encodings

Mnemonic (RV32)
cm.jt index

Encoding

012910121315

01index000101

C2FUNCT3


For this encoding to decode as CM.JT (RV32Y), index<32, otherwise it decodes as CM.JALT
(RV32Y).

Description (RV32Y)
Redirect instruction fetch via the jump table defined by the indexing via jvt.address+ index*XLEN/8,
checking every byte of the jump table access against jvt (RVY) bounds (not against pc) and requiring X-
permission.

The target pc is calculated by replacing the current pc address with the value read from the jump table,
and is updated using the semantics of the YADDRW instruction.

If the jvt (RVY) check fails, then clear the capability tag of the target pc.

If Zcherihybrid is implemented and the CHERI execution mode is (Non-CHERI) Address Mode then the table
access is checked against pc bounds.

Permissions (RV32Y)
Requires jvt (RVY) to have its capability tag set, not be sealed, have X-permission and for the full XLEN-
wide table access to be in jvt (RVY) bounds.

Prerequisites for (RV32Y)
C or Zca, RVY, Zcmt

Operation

TBD

A.2. ISA changes since 0.9.5

Many mnemonics have been renamed since v0.9.5 of the specification as shown in Table 76.

Table 76. ISA renames since 0.9.5

Mnemonic Old mnemonic Extension

LY LC RVY

SY SC RVY

C.LYSP C.LCSP C (RVY added instructions)
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Mnemonic Old mnemonic Extension

C.SYSP C.SCSP C (RVY added instructions)

C.LY C.LC C (RVY added instructions)

C.SY C.SC C (RVY added instructions)

AUIPC (RVY) AUIPCC RVI (RVY modified behavior)

ADDY CADD RVY

ADDIY CADDI RVY

YADDRW SCADDR RVY

YTAGR GCTAG RVY

YPERMR GCPERM RVY

YMV CMV RVY

YHIR GCHI RVY

YHIW SCHI RVY

SYEQ SCEQ RVY

YSENTRY SENTRY Zysentry

YLT SCSS RVY

YBLD CBLD Zybld

YBNDSW SCBNDS RVY

YBNDSWI SCBNDSI RVY

YBNDSRW SCBNDSR RVY

YBNDSRDW SCBNDSRD Zybndsrdw

YAMASK CRAM RVY

YBASER GCBASE RVY

YLENR GCLEN RVY

YTYPER GCTYPE RVY

YTOPR GCTOP Zytopr

YMODEW SCMODE Zyhybrid

YMODER GCMODE Zyhybrid

YMODESWY MODESW.CAP Zyhybrid

YMODESWI MODESW.INT Zyhybrid

C.ADDI16SP (RVY) C.CADDI16SP C (RVY modified behavior)

C.ADDI4SPN (RVY) C.CADDI4SPN C (RVY modified behavior)

C.YMV C.CMV C (RVY modified behavior)

C.JAL (RV32Y) C.CJAL C (RVY modified behavior)

JAL (RVY) CJAL RVI (RVY modified behavior)

JALR (RVY) CJALR RVI (RVY modified behavior)

C.JALR (RVY) C.CJALR C (RVY modified behavior)

C.JR (RVY) C.CJR C (RVY modified behavior)

LR.Y LR.C Zalrsc (RVY added instructions)

SC.Y SC.C Zalrsc (RVY added instructions)
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Mnemonic Old mnemonic Extension

AMOSWAP.Y AMOSWAP.C Zaamo (RVY added instructions)

HLV.Y HLV.C H Extension (RVY added instructions)

HSV.Y HSV.C H Extension (RVY added instructions)

Some instructions have been added as shown in Table 77.

Table 77. Instructions added since 0.9.5

Mnemonic Old mnemonic Extension

YPERMC N/A RVY

SRLIY N/A RVY

PACKY N/A RVY

YSUNSEAL N/A RVY

SH1ADDY N/A Zba (RVY added instructions)

SH2ADDY N/A Zba (RVY added instructions)

SH3ADDY N/A Zba (RVY added instructions)

SH4ADDY (RV64Y) N/A Zba (RVY added instructions)

SH1ADDY.UW (RV64Y) N/A Zba (RVY added instructions)

SH2ADDY.UW (RV64Y) N/A Zba (RVY added instructions)

SH3ADDY.UW (RV64Y) N/A Zba (RVY added instructions)

SH4ADDY.UW (RV64Y) N/A Zba (RVY added instructions)

YSEAL N/A Zyseal

YUNSEAL N/A Zyseal

 YSEAL and YUNSEAL are not included in the v1.0 ratification package.



1. PACKY and SRLIY are actual instructions. YHIW and YHIR are pseudoinstructions.

2. ACPERM was replaced by YPERMC. The difference is that the mask is used to clear, not
retain, permission bits.

a. Clearing bits makes it much simpler to form the necessary constant compared to
retaining bits, and so gives better code-size.

3. 0.9.5 had SH[123]ADD, and the .UW forms, replaced by capability versions.

a. This is no longer the case, so now the capability versions have new encodings.

4. There is no longer an SH4ADD instruction (i.e. the integer version).

5. The YSENTRY instruction is now in a separate extension Zysentry.



The following changes are for forwards compatibility with Zycheriot:

1. Capability encodings and extensions are now the naming authorities for capability types
(only 0/unsealed exists in the base architecture).

2. Capability encoding formats are now in separate base parameterizations.

3. JALR (RVY) has been given explicit hooks for sentry handling (especially for future
forward/backward arc distinction).
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A.3. Placeholder references to the unprivileged spec

 This chapter only exists for the standalone document to allow references to resolve.

RV32I
See Chapter RV32I Base Integer Instruction Set in (RISC-V, 2023).

RV32E and RV64E
See Chapter RV32E and RV64E Base Integer Instruction Sets in

General purpose registers
See Chapter RV32I Base Integer Instruction Set in (RISC-V, 2023).

Load and Store Instructions
See Chapter RV32I Base Integer Instruction Set in (RISC-V, 2023).

Integer Register-Immediate Instructions
See Chapter RV32I Base Integer Instruction Set in (RISC-V, 2023).

Control Transfer Instructions
See Chapter RV32I Base Integer Instruction Set in (RISC-V, 2023).

Atomics
See Chapter "A" Extension for Atomic Instructions in (RISC-V, 2023).

Zba
See Chapter "B" Extension for Bit Manipulation in (RISC-V, 2023).

Zicbom
See Chapter "CMO" Extensions for Base Cache Management Operation ISA in (RISC-V, 2023).

Zcmt
See Chapter "Zc*" Extension for Code Size Reduction in (RISC-V, 2023).

Zcmp
See Chapter "Zc*" Extension for Code Size Reduction in (RISC-V, 2023).

jvt
See Chapter "Zc*" Extension for Code Size Reduction in (RISC-V, 2023).

Zaamo
See Chapter "A" Extension for Atomic Instructions in (RISC-V, 2023).

"Zalrsc" for RVY
See Chapter "A" Extension for Atomic Instructions in (RISC-V, 2023).

"Zaamo" for RVY
See Chapter "A" Extension for Atomic Instructions in (RISC-V, 2023).
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Chapter 15. "Machine/Supervisor-Level ISA (RVY)"
Extensions, Version 1.0

 This chapter will appear in the priv spec. Exact location TBD.

This chapter describes integration of RVY with the RISC-V privileged architecture.

15.1. Machine-Level CSRs added or extended by RVY

RVY extends some M-mode CSRs to hold capabilities or otherwise add new functions. ASR-permission in
the pc is always required for access to privileged CSRs.

15.1.1. Machine Trap Vector Base Address Capability Register (mtvec)

The mtvec register is extended to hold a code capability. Its reset value is nominally a Root Executable
capability.


mtvec (RVY) exists in all CHERI implementations, and so may be used as a source of a Root
Executable capability after reset.

MXLEN-1 2 1 0

V Metadata (WARL)

BASE [MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 21. Machine-mode trap-vector base-capability register

The fields in the metadata are WARL as many fields can be implemented as constants.


Examples of WARL behavior include always setting X-permission to 1 and setting the reserved
fields to zero, otherwise the capability is unusable. Another example is to partially or fully
restrict the bounds to constant values.


Care must be taken however that suitable root capabilities are available to software after reset
if this CSR does not represent one.

When traps are taken into machine mode, the pc is updated following the standard mtvec behavior. The
capability tag and metadata from mtvec (RVY) are also written to the pc.

Following the standard mtvec behavior, the value of mtvec.address can be viewed with a range of different
addresses:

1. The MODE field is included in mtvec.address[1:0] but it does not form part of the trap vector
address.

2. When MODE=Vectored, the trap vector address is incremented by four times the interrupt number.

3. CSR reads include MODE in mtvec.address[1:0].

HICAUSE is defined to be the largest interrupt cause value that the implementation can write to xcause
when an interrupt is taken.

Therefore the minimum observable address is mtvec.address & ~3 and the maximum is (mtvec.address
& ~3) + 4 x HICAUSE.

All possible observable values must be in the Representable Range. Software must ensure this is true when
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writing to mtvec (RVY), and the hardware sets the capability tag to zero if any values are out of the
Representable Range.



Modifying the address of any capability outside of the Representable Range without clearing
the capability tag causes a security hole as the interpretation of the bounds changes. Therefore
requiring that all possible observable addresses are representable but not necessary in bounds
is the minimum security requirement.

mtvec (RVY) is always updated using the semantics of the YADDRW instruction and so writing a sealed
capability will cause the capability tag to be set to zero.


The capability in mtvec (RVY) is not unsealed when it is written to pc, unlike other executing
from other CSRs such as mepc (RVY).

mtvec (RVY) follows the rule from mtvec about not needing to be able to hold all possible invalid addresses
(see Invalid address conversion).

15.1.2. Machine Scratch Capability Register (mscratch)

The mscratch register is extended to hold a capability.

The reset value of the capability tag of this CSR is zero, the reset values of the metadata and address fields
are UNSPECIFIED.

It is not WARL, all capability fields must be implemented.

MXLEN-1 0

V mscratch (Metadata)

mscratch (Address)

MXLEN

Figure 22. Machine-mode scratch capability register

15.1.3. Machine Exception Program Counter Capability (mepc)

The mepc is extended to hold a capability. Its reset value is nominally a Root Executable capability.

MXLEN-1 0

V mepc (Metadata, WARL)

mepc (Address, WARL)

MXLEN

Figure 23. Machine exception program counter capability register

mepc.address is the mepc CSR, and so the follows the standard rules meaning that:

1. mepc.address[0]=0, and

2. mepc.address[1]=0 when IALIGN is fixed to 32

3. mepc.address[1] reads as zero when IALIGN is programmable and is set to 32

As listed above for mtvec (RVY), this means that mepc.address can represent multiple different values.
Therefore software must ensure that all possible values are in the Representable Range on writing,
otherwise the hardware sets the written capability tag to zero.

Sealed capabilities may be written to mepc (RVY). The capability tag is set to zero on writing if:

1. mepc.address[0]=1, or
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2. mepc.address[1]=1 when IALIGN=32

In the following case the value of the capability tag observable in the CSR depends on the value of IALIGN:

1. mepc (RVY) is sealed, the capability tag is set, and

2. mepc.address[1]=1 and IALIGN=16 when writing the CSR

The capability tag is zero then IALIGN=32 when reading the CSR, or executing MRET (RVY), and the
capability tag is one when IALIGN=16.

When a trap is taken into M-mode, the pc is written to mepc.address following the standard behavior. The
capability tag and metadata of the pc are also written to mepc (RVY).

On execution of an MRET (RVY) instruction, the capability value from mepc (RVY) is unsealed and written
to pc.

mepc (RVY) follows the rule from mepc about not needing to be able to hold all possible invalid addresses
(see Invalid address conversion).

15.1.4. Machine Thread Identifier Capability (mtidc)

The mtidc register is used to identify the current software thread in machine mode, using the method
defined in the section for the unprivileged utidc CSR. On reset the capability tag of mtidc will be set to zero
and the remainder of the data is UNSPECIFIED.

MXLEN-1 0

V mtidc (Metadata)

mtidc (Address)

MXLEN

Figure 24. Machine thread identifier capability register

15.2. Machine-Level CSRs modified by RVY

15.2.1. Machine Status Registers (mstatus and mstatush)

The mstatus and mstatush registers operate as described in mstatus (RVY) with two restrictions:

⚫ The MXL, SXL and UXL fields that control the value of XLEN for S-mode and U-mode must be read-
only and equal to MXL in RVY implementations. Only 1 and 2 are supported values.

⚫ The MBE, SBE, and UBE fields that control the memory system endianness for M-mode, S-mode, and
U-mode must be read-only in RVY implementations. SBE and UBE must be read only and equal to
MBE, if S-mode or U-mode, respectively, is implemented, or read-only zero otherwise.

Changing XLEN or endianness would change the interpretation of all in-memory capabilities, so allowing
these fields to change at runtime is prohibited.


These restrictions may be relaxed by a future extension. Such an extension is likely to enforce
the constraint that any privilege level with XLEN less than MXLEN has CHERI disabled.

MXR has no effect on the CHERI permission checking.


CHERI does not need to make use execute only memory for security reasons, and so MXR has
no relevance. Additionally the 32-bit encoding format does not allow X-permission to be
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encoded without R-permission.

15.2.2. Machine Cause Register (mcause)

RVY adds new exception codes for CHERI exceptions that mcause must be able to represent. The new
exception codes and priorities are listed in Machine cause (mcause) register values after trap and Table 78
respectively.

Table 78. Synchronous exception priority in decreasing priority order. Entries added in RVY are in bold

Priority Exc.Code Description

Highest 3 Instruction address breakpoint

32

Prior to instruction address translation:
CHERI Instruction Access Fault due to pc checks (capability tag, execute permission,
bounds1)

12, 1
During instruction address translation:
First encountered page fault or access fault

1
With physical address for instruction:
Instruction access fault

2
32
0

8,9,11
3
3

Illegal instruction
CHERI Instruction Access Fault due to pc ASR-permission clear
Instruction address misaligned
Environment call
Environment break
Load/store/AMO address breakpoint

33,34

Prior to address translation for an explicit memory access:
CHERI Load Access Fault, CHERI Store/AMO Access Fault due to capability checks
(capability tag, sealed, permissions, bounds)

4,6

Load/store/AMO capability address misaligned
Optionally:
Load/store/AMO address misaligned

35, 36, 13,
15, 5, 7

During address translation for an explicit memory access:
First encountered CHERI Load Page Fault2, CHERI Store/AMO Page Fault, page fault or
access fault

5,7
With physical address for an explicit memory access:
Load/store/AMO access fault

4,6
If not higher priority:
Load/store/AMO address misaligned

Lowest 35
If not higher priority:
CHERI Load Page Fault3

1 pc bounds are checked against all bytes of fetched instructions. If the instructions could not be decoded to
determine the length, then the pc bounds check is made against the minimum sized instruction supported
by the implementation which can be executed, when prioritizing against Instruction Access Faults.

2 The higher priority CHERI Load Page Fault covers capability loads or atomics where the loaded capability
tag is not checked (Svucrg is implemented) .

3 The lower priority CHERI Load Page Fault covers capability loads or atomics where the loaded capability
tag is checked (Svucrglct is implemented).

 The full details of the CHERI exceptions are in Table 79.
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15.2.3. Machine Trap Delegation Register (medeleg)

Bits 32,33,34,35,36 of medeleg refer to valid CHERI exceptions and so can be used to delegate CHERI
exceptions to supervisor mode.

15.2.4. Machine Trap Value Register (mtval)

For all CHERI faults, mtval is written with the MXLEN-bit effective address which caused the fault.

MXLEN-1 0

mtval
MXLEN

Figure 25. Machine trap value register

15.2.5. "Smstateen/Ssstateen" Integration

The TID bit in mstateen0 controls access to the stidc CSR.

0123415

CFCSRJVTTIDWPRI

1631

WPRI

3247

WPRI

48555657585960616263

WPRIP1P13CONTEXTIMSICAIACSRINDWPRIENVCFGSE0

Figure 26. Machine State Enable 0 Register (mstateen0)

15.3. Supervisor-Level CSRs added or extended by RVY

RVY extends some of the existing RISC-V CSRs to be able to hold capabilities or with other new functions.
ASR-permission in the pc is required for access to all privileged CSRs.

15.3.1. Supervisor Trap Vector Base Address Capability Register (stvec)

The stvec register is extended to hold a capability.

When the S-mode execution environment starts, the value is nominally the Root Executable capability.

MXLEN-1 2 1 0

V Metadata (WARL)

BASE [MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 27. Supervisor trap-vector base-capability register

The handling of stvec (RVY) is otherwise identical to mtvec (RVY), but in supervisor mode.

15.3.2. Supervisor Scratch Capability Register (sscratch)

The sscratch register is extended to hold a capability.

At the start of the S-mode execution environment, the value of the capability tag of this CSR is zero and the
values of the metadata and address fields are UNSPECIFIED.
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It is not WARL, all capability fields must be implemented.

MXLEN-1 0

V sscratch (Metadata)

sscratch (Address)

MXLEN

Figure 28. Supervisor scratch capability register

15.3.3. Supervisor Exception Program Counter Capability (sepc)

The sepc register is extended to hold a capability.

When the S-mode execution environment starts, the value is nominally the Root Executable capability.

As shown in Table 95, sepc (RVY) is a code capability, so it does not need to be able to hold all possible
invalid addresses (see Invalid address conversion). Additionally, the capability in sepc (RVY) is unsealed
when it is written to pc on execution of an SRET (RVY) instruction. The handling of sepc (RVY) is otherwise
identical to mepc (RVY), but in supervisor mode.

MXLEN-1 0

V sepc (Metadata, WARL)

sepc (Address, WARL)

MXLEN

Figure 29. Supervisor exception program counter capability register

15.3.4. Supervisor Thread Identifier Capability (stidc)

The stidc register is used to identify the current software thread in supervisor mode, using the method
defined in the section for the unprivileged utidc CSR.

At the start of the S-mode execution environment, the value of the capability tag of this CSR is zero and the
values of the metadata and address fields are UNSPECIFIED.

MXLEN-1 0

V stidc (Metadata)

stidc (Address)

MXLEN

Figure 30. Supervisor thread identifier capability register

15.4. Supervisor-Level CSRs modified by RVY

15.4.1. Supervisor Cause Register (scause)

RVY adds new exception codes for CHERI exceptions that scause must be able to represent. The new
exception code is listed in .Supervisor cause (scause) register values after trap. The behavior and usage of
scause otherwise remains as described in scause.

See mcause (RVY) for the new exceptions priorities when RVY is implemented.

15.4.2. Supervisor Trap Value Register (stval)

stval is updated following the same rules as Section 15.2.4 for CHERI exceptions and CHERI page faults
which are delegated to HS-mode or S-mode.
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15.4.3. "Smstateen/Ssstateen" Integration

The TID (thread ID) bit in sstateen0 controls access to the utidc CSR. See utidc for a description of the
usage.

0123415

CFCSRJVTTIDWPRI

1631

WPRI

Figure 31. Supervisor State Enable 0 Register (sstateen0)

15.5. CHERI Exception handling

CHERI faults are typically higher priority than standard RISC-V faults. E.g., CHERI faults on the pc are
higher priority than any other fault effecting the program counter such as instruction access fault.


auth_cap is rs1, unless in (Non-CHERI) Address Mode when it is ddc (if Zyhybrid is
implemented).

Table 79. Valid CHERI exception combination description

Instructions Xcause Description Check

All instructions have these exception checks first

All 32 CHERI Instruction Access Fault pc capability tag is zero

All 32 CHERI Instruction Access Fault pc is sealed

All 32 CHERI Instruction Access Fault pc does not have X-permission

All 32 CHERI Instruction Access Fault Any byte of current instruction out of pc
bounds1

All 32 CHERI Instruction Access Fault pc failed any integrity check.

CSR/Xret additional exception check

CSR*, MRET (RVY),
SRET (RVY),
CBO.INVAL (RVY)

Illegal
instructio
n

CHERI Instruction Access Fault pc does not have ASR-permission when
required for CSR access or execution of MRET
(RVY), SRET (RVY) or CBO.INVAL (RVY)

Load additional exception checks

All loads 33 CHERI Load Access Fault auth_cap capability tag is zero

All loads 33 CHERI Load Access Fault auth_cap is sealed

All loads 33 CHERI Load Access Fault auth_cap does not have R-permission

All loads 33 CHERI Load Access Fault Any byte of load access out of auth_cap
bounds1

All loads 33 CHERI Load Access Fault auth_cap failed any integrity check.

Capability loads 52 Load access fault Misaligned capability load

Store/atomic/cache-block-operation additional exception checks

All stores, all atomics,
all CBOs

34 CHERI Store/AMO Access Fault auth_cap capability tag is zero

All stores, all atomics,
all CBOs

34 CHERI Store/AMO Access Fault auth_cap is sealed

All stores, CBO.ZERO 34 CHERI Store/AMO Access Fault auth_cap does not have W-permission
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Instructions Xcause Description Check

All atomics,
CBO.CLEAN,
CBO.FLUSH,
CBO.INVAL

34 CHERI Store/AMO Access Fault auth_cap does not have both R-permission
and W-permission

All stores, all atomics 34 CHERI Store/AMO Access Fault any byte of access out of auth_cap bounds1

CBO.ZERO,
CBO.INVAL

34 CHERI Store/AMO Access Fault any byte of cache block out of auth_cap
bounds1

CBO.CLEAN,
CBO.FLUSH

34 CHERI Store/AMO Access Fault all bytes of cache block out of auth_cap
bounds1

All stores, all atomics,
all CBOs

34 CHERI Store/AMO Access Fault auth_cap failed any integrity check.

Capability stores 72 Store access fault Misaligned capability store

1 The bounds checks include the cases where the bounds could not be decoded.

2 Misaligned capability accesses raise access faults instead of misaligned faults since they cannot be
emulated in software.



CBO.ZERO (RVY) is performed as a cache block wide store. All CMOs operate on the cache
block which contains the address. Prefetch instructions check that the authorizing capability
is has its capability tag set, is not sealed, has the required permission (R-permission, W-
permission, X-permission) corresponding to the instruction, and has bounds which include at
least one byte of the cache block; if any check fails, the prefetch is not performed but no
exception is generated.

15.6. CHERI Exceptions and speculative execution

should be non-normative - and needs more details - move to appendix?           

CHERI adds architectural guarantees that can prove to be microarchitecturally useful. Speculative-
execution attacks can — among other factors — rely on instructions that fail CHERI permission checks not
to take effect. When implementing any of the extensions proposed here, microarchitects need to carefully
consider the interaction of late-exception raising and side-channel attacks.

15.7. Physical Memory Attributes (PMA)

Typically, only parts of the entire memory space need to support CHERI capability tags. Therefore, it is
desirable that harts supporting RVY extend PMAs with Physical Memory Attributes indicating whether a
memory region allows storing CHERI capability tags. If they are not supported, then what the behavior is
when attempting to access them.

There are three levels of support:

Table 80. CHERI PMAs

PMA Load Behavior Store Behavior Comment

CHERI Capability Tag Load capability tag Store capability tag Tagged memory supporting
capability tags

CHERI Capability Tag Strip Load zero capability tag Ignore stored capability tag No support for capability
tags, ignore them
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PMA Load Behavior Store Behavior Comment

CHERI Capability Tag Fault Load zero capability tag Store/AMO Access Fault on
capability tag1

No support for capability
tags, trap on storing one

1 The access fault is triggered on all capability stores or atomics such as SY or AMOSWAP.Y when C-
permission and W-permission are granted and the capability tag is set to one.

Memory regions that do not have the CHERI Capability Tag PMA do not require storage for capability tags.

15.8. Virtual Memory

CHERI checks are made on the effective address according to the current translation scheme. I.e., on the
virtual address if translation is enabled or the physical address if translation is disabled.

Implicit memory accesses made by the page table walker are not subject to CHERI checks.

 A future extension may add CHERI checks to the page table walker.

15.9. Modified Trap-Return Instructions Behavior

When the RVY base ISA is implemented, the trap-return instructions (MRET and SRET) read the full YLEN
bits of the mepc (RVY)/sepc (RVY) register and unseal it prior to exception return if it is a sentry capability.
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15.9.1. SRET (RVY)

See MRET (RVY).

15.9.2. MRET (RVY)

Synopsis
Trap Return (MRET, SRET)

Mnemonics
mret
sret

Encoding

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM=111011

5
0

3
PRIV=0

5
0

12
MRET=001100000010
SRET=000100000010

Description
Return from machine mode (MRET (RVY)) or supervisor mode (SRET (RVY)) trap handler. MRET
unseals mepc (RVY) and writes the result into pc. SRET unseals sepc (RVY) and writes the result into pc.

Exceptions
An illegal instruction fault is raised when pc does not grant ASR-permission because MRET (RVY) and
SRET (RVY) require access to privileged CSRs.

Prerequisites (MRET)
Machine-Level ISA, RVY

Prerequisites (SRET)
Supervisor-Level ISA, RVY

Operation

TBD
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Chapter 16. "Zyhybrid for Privileged Architectures"
Extension, Version 1.0
When using a system with Zyhybrid, it may be desirable to disable CHERI register and instruction access to
some (or all) privilege levels such that they operate as a RV32I/RV64I system without any observable
presence of CHERI features. Zyhybrid includes functions to disable explicit access to CHERI registers and
instructions (hereafter referred to as disabling CHERI).

 When CHERI is disabled for a specific privilege level, pc and ddc bounds are still enforced.

The Zyhybrid extension makes the Y bit of misa, menvcfg, and senvcfg writable to allow CHERI to be
disabled.

The effective CHERI-enable for the current privilege is:

⚫ Machine: misa.Y

⚫ Supervisor: misa.Y & menvcfg.Y

⚫ User: misa.Y & menvcfg.Y & senvcfg.Y


On reset CHERI is always disabled for backwards compatibility (misa.Y resets to zero, ddc and
pc bounds are nominally root capabilities (see Root).

The following occurs when executing code in a privilege mode that has CHERI disabled:

⚫ Instructions from RVY and Zyhybrid cause illegal instruction exceptions.

⚫ Executing CSR instructions accessing any natively YLEN CSR causes an illegal instruction exception.

⚫ Executing CSR instructions accessing any CSR extended to YLEN only allows XLEN access (this is
identical to (Non-CHERI) Address Mode access).

Disabling CHERI has no effect on implicit accesses or security checks. The last capability written to pc and
ddc before disabling CHERI will be used to authorize instruction execution and data memory accesses.



Disabling CHERI prevents low-privileged (Non-CHERI) Address Mode software from
interfering with the correct operation of higher-privileged (Non-CHERI) Address Mode
software that does not perform ddc switches on trap entry and return.

Disabling CHERI allows harts supporting CHERI to be fully compatible with standard RISC-V,
so CHERI instructions, such as YAMASK, that do not change any CHERI state, raise
exceptions. This is the default behavior on reset.

Table 81 summarizes the behavior of a hart in connection with the effective CHERI enable and the CHERI
Execution Mode while in a privilege other than debug mode.

Table 81. Hart’s behavior depending on the effective CHERI enable and CHERI Execution Mode

Y1=0 Y=1, M-bit=1 Y=1, M-bit=0

Authorizing capability for data memory
accesses

ddc ddc capability in rs1

natively YLEN CSR Access Width ✘ YLEN YLEN

Extended YLEN CSR Access Width XLEN XLEN YLEN

CHERI Instructions Allowed ✘ ✔3 ✔

Chapter 16. "Zyhybrid for Privileged Architectures" Extension, Version 1.0 | Page 195

RISC-V Specification for CHERI Extensions | © RISC-V International



Y1=0 Y=1, M-bit=1 Y=1, M-bit=0

Summary Fully RISC-V
compatible2

(Non-CHERI) Address
Mode

(CHERI) Capability
Mode

1 Y represents the effective CHERI enable for the current privilege mode.

2 The hart is fully compatible with standard RISC-V when Y=0 provided that pc, Xtvec, Xepc and ddc have
not been changed from the default reset state (i.e., hold Root Executable and Root Data capabilities).

3 The compressed instructions operating on capability data are unavailable as their encoding will revert to
non-CHERI standard behavior.
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Chapter 17. "Supervisor-Level ISA for Virtual Memory
(RV64Y)" Extension, Version 1.0 for RV64Y
Virtual memory support for RV64Y requires at least one additional bit to be allocated in the page table
entries, to control access to capabilities in virtual memory pages.

17.1. Capability Read-Write (CRW) Bit

Supervisor-Level ISA for Virtual Memory (RV64Y) defines the Capability Read-Write (CRW) bit in Page
Table Entries (PTEs) for Sv39, Sv48, and Sv57 virtual memory systems on RV64Y harts. The CRW bit
controls whether capabilities with their capability tag set can be written to and loaded from a virtual page.

 Sv32 does not have any spare PTE bits, and so this bit does not exist for RV32.

 Any RV64Y hart that supports Sv39 must also implement the PTE.CRW bit.

17.1.1. Limiting Capability Propagation

Page table enforcement can allow the operating system to limit the flow of capabilities between processes.
It is highly desirable that a process should only possess capabilities that have been issued for that address
space by the operating system. Unix processes may share memory for efficient communication, but
capability pointers must not be shared across these channels into a foreign address space. An operating
system might defend against this by only issuing a capability to the shared region that does not grant the
load/store capability permission. However, there are circumstances where portions of general-purpose,
mmapped* memory become shared, and the operating system must prevent future capability
communication through those pages. This is not possible without restructuring software, as the capability
for the original allocation, which spans both shared memory and private memory, would need to be deleted
and replaced with a list of distinct capabilities with appropriate permissions for each range. Such a change
would not be transparent to the program. Such sharing through virtual memory is on the page granularity,
so preventing capability writes with a PTE permission is a natural solution.

* allocated using mmap

17.2. CHERI page faults

CHERI adds the concept of CHERI page faults. They are split into:

⚫ CHERI Load Page Fault (cause value 35), and

⚫ CHERI Store/AMO Page Fault (cause value 36)

They are prioritized against other fault types as shown in Table 78.

The PTE.CRW bit allows CHERI Store/AMO Page Faults to be raised.

CHERI harts that implement Sv39 must also implement a revocation scheme to prevent use-after-free
attacks.

The current revocation scheme (Svucrg) also allows CHERI Load Page Faults to be raised.

 A future extension may define an improved scheme.
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17.2.1. Extending the Page Table Entry Format

The page table entry format remains unchanged for Sv32. However, a new bit, Capability Read-Write
(CRW), is added to leaf PTEs in Sv39, Sv48 and Sv57 as shown in Figure 32, Figure 33 and Figure 34
respectively. For non-leaf PTEs this bit remains reserved and must be cleared by software for forward
compatibility, or else a page-fault exception is raised. Additionally, if the hypervisor extension is enabled
this bit remains reserved for leaf and non-leaf PTEs used in guest address translation.

63 62 61 60 59 58 57 54 53 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

N PBMT ReservedCRWReserved PPN[2] PPN[1] PPN[0] RSW D A G U X W R V

1 2 2 1 4 26 9 9 2 1 1 1 1 1 1 1 1

Figure 32. Sv39 page table entry

63 62 61 60 59 58 57 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT ReservedCRW Reserved PPN RSW D A G U X W R V

1 2 2 1 4 44 2 1 1 1 1 1 1 1 1

53 37 36 28 27 19 18 10

PPN[3] PPN[2] PPN[1] PPN[0]

17 9 9 9

Figure 33. Sv48 page table entry

63 62 61 60 59 58 57 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT ReservedCRW Reserved PPN RSW D A G U X W R V

1 2 2 1 4 44 2 1 1 1 1 1 1 1 1

53 46 45 37 36 28 27 19 18 10

PPN[4] PPN[3] PPN[2] PPN[1] PPN[0]

8 9 9 9 9

Figure 34. Sv57 page table entry

The CRW bit indicates whether reading or writing capabilities with the capability tag set to the virtual page
is permitted. When the CRW bit is set, capabilities are written as usual.

If the CRW bit is clear then:

⚫ When a capability load or AMO instruction is executed, the capability tag bit of the loaded capability is
cleared before it is written to the destination register.

⚫ A CHERI Store/AMO Page Fault exception is raised when a capability store or AMO instruction is
executed and the capability tag bit of the to-be-stored capability is set.

Table 82. Summary of memory access behavior depending on CRW in the PTEs

PTE.CR
W

Instruction Behavior

0 Capability load Set loaded capability tag to zero

0 Capability
store/AMO

Raise a CHERI Store/AMO Page Fault if the capability tag of the to-be-stored
capability is set

1 Any Normal operation.


The capability tag bit of the stored capability is checked after it is potentially cleared due to
missing permissions. Therefore, the behavior in this section isn’t relevant if:
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⚫ The authorizing capability doesn’t have C-permission.

⚫ Any extension-specific mediation has already cleared the capability tag of the to-be-stored
capability.

17.3. Invalid Address Handling

When address translation is in effect for RV64Y, the upper bits of virtual memory addresses must match
for the address to be valid.

The CSRs shown in Table 95, as well as the pc, need not hold all possible invalid addresses.
Implementations may convert an invalid address into some other invalid address that the register is
capable of holding.

However, the bounds encoding of capabilities depends on the address value if the bounds are not infinite.

Therefore implementations must not convert invalid addresses to other arbitrary invalid addresses in an
unrestricted manner if the bounds are not infinite.

If the bounds could not be decoded due to the address being invalid, then a CHERI Instruction Access Fault,
CHERI Load Access Fault or CHERI Store/AMO Access Fault exception is raised as appropriate.


In all cases, if the authorizing capability has bounds that cover all addresses, then the
behavior is identical to the normal RISC-V behavior without CHERI.


Not requiring the implementation to decode the bounds for invalid addresses reduces the size
of bounds comparators from 64-bits to the supported virtual address width.

17.3.1. Updating CSRs

A CSR may be updated to hold a capability with an invalid address, due to:

⚫ executing instructions, such as CSRRW (RVY)

⚫ hardware updates to CSRs such as storing the pc into mepc (RVY)/sepc (RVY) etc. when taking an
exception.

To ensure that the bounds of a valid capability cannot be corrupted:

⚫ If the new address is invalid and the capability bounds do not cover all addresses, then set the
capability tag to zero before writing to the CSR.


When the capability’s address is invalid and happens to match an invalid address which the
CSR can hold, then it is implementation-defined whether to set the capability tag to zero.

17.3.2. Branches and Jumps

If the effective target address of the jump or branch is invalid, and the authorizing capability’s bounds do
not cover all addresses, then set the capability tag of the target pc to zero. This will cause a CHERI
Instruction Access Fault exception when executing the target instruction.



RISC-V harts that do not support RVY normally raise an instruction access fault or page fault
after jumping or branching to an invalid address. Therefore, RVY aims to preserve that
behavior to ensure that harts supporting RVY and Zyhybrid are fully compatible with RISC-V
harts provided that pc and ddc are set to Root Executable and Root Data capabilities,
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respectively.

17.3.3. Memory Accesses

If the effective address of the memory access is invalid, and the authorizing capability’s bounds do not
cover all addresses, then raise a CHERI Load Access Fault or CHERI Store/AMO Access Fault exception
because the bounds cannot be reliably decoded.

17.4. Integrating RVY with Debug

17.4.1. Integrating RVY with Sdext

 This chapter will appear in the priv spec. Exact location TBD.

This section describes changes to integrate the Sdext ISA and RVY. It must be implemented to make
external debug compatible with RVY. Modifications to Sdext are kept to a minimum.

The following features, which are optional in Sdext, must be implemented for use with RVY:

⚫ The hartinfo register must be implemented.

⚫ All harts which support RVY must provide hartinfo.nscratch of at least 1 and implement the
dscratch0 (RVY) register.

⚫ All harts which support RVY must provide hartinfo.datasize of at least 1 and hartinfo.dataaccess
of 0.

⚫ The program buffer must be implemented, with abstractcs.progbufsize of at least 4 if
dmstatus.impebreak is 1, or at least 5 if dmstatus.impebreak is 0.



These requirements allow a debugger to read and write capabilities in integer registers without
disturbing other registers. These requirements may be relaxed if some other means of
accessing capabilities in integer registers, such as an extension of the Access Register abstract
command, is added. The following sequences demonstrate how a debugger can read and write
a capability in x1 if MXLEN is 64, hartinfo.dataaccess is 0, hartinfo.dataaddr is 0xBF0,
hartinfo.datasize is 1, dmstatus.impebreak is 0, and abstractcs.progbufsize is 5:

# Read the high MXLEN bits into data0-data1
csrrw  x2, dscratch0, x2
yhir   x2, x1
csrw   0xBF0, x2
csrrw  x2, dscratch0, x2
ebreak

# Read the capability tag into data0
csrrw  x2, dscratch0, x2
ytagr  x2, x1
csrw   0xBF0, x2
csrrw  x2, dscratch0, x2
ebreak

# Write the high MXLEN bits from data0-data1
csrrw  x2, dscratch0, x2
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csrr   x2, 0xBF0
yhiw   x1, x1, x2
csrrw  x2, dscratch0, x2
ebreak

# Write the capability tag (if nonzero)
csrrw   x2, dscratch0, x2
csrr    x2, drootc
ybld    x1, x2, x1
csrrw   x2, dscratch0, x2
ebreak

The low MXLEN bits of a capability are read and written using normal Access Register abstract
commands. If dscratch0 (RVY) were known to be preserved between abstract commands, it
would be possible to remove the requirements on hartinfo.datasize,
hartinfo.dataaccess, and abstractcs.progbufsize, however, there is no way to discover
the former property.

17.4.1.1. Debug Mode

When executing code due to an abstract command, the hart stays in debug mode and the rules outlined in
Section 4.1 of the RISC-V Debug Specification apply.

17.4.1.2. Core Debug Registers

RVY renames and extends debug CSRs that are designated to hold addresses to be able to hold capabilities.
The renamed debug CSRs are listed in Table 97.

The pc must grant ASR-permission to access debug CSRs. This permission is automatically provided when
the hart enters debug mode as described in the dpc (RVY) section. The pc metadata can only be changed if
the implementation supports executing control transfer instructions from the program buffer — this is an
optional feature according to the RISC-V Debug Specification.

This specification extends the following registers from the RISC-V Debug Specification.

Debug Program Counter (dpc)
dpc is a DXLEN-bit register used as the PC saved when entering debug mode.

DXLEN-1 0

dpc
DXLEN

Figure 35. Debug program counter

Debug Scratch Register 1 (dscratch1)
dscratch1 is an optional DXLEN-bit scratch register that can be used by implementations which need it.

DXLEN-1 0

dscratch0
DXLEN

Figure 36. Debug scratch 0 register

Debug Scratch Register 1 (dscratch1)
dscratch1 is an optional DXLEN-bit scratch register that can be used by implementations which need it.
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DXLEN-1 0

dscratch1
DXLEN

Figure 37. Debug scratch 1 register

17.4.1.3. Debug Program Counter Capability (dpc)

The dpc register is extended to hold a capability.

The reset value of the capability tag of this CSR is zero, the reset values of the metadata and address fields
are UNSPECIFIED.

MXLEN-1 0

V dpc (Metadata)

dpc (Address)

MXLEN

Figure 38. Debug program counter capability

Upon entry to debug mode, the RISC-V Debug Specification, does not specify how to update the PC, and says
PC-relative instructions may be illegal. This concept is extended to include any instruction which reads or
updates pc, which refers to all jumps, conditional branches and AUIPC (RVY). The exceptions are
YMODESWY and YMODESWI, which are supported if Zyhybrid is implemented, see drootc for details.

As a result, the value of pc is UNSPECIFIED in debug mode according to this specification. The pc
metadata has no architectural effect in debug mode. Therefore ASR-permission is implicitly granted for
access to all CSRs for instruction execution.

On debug mode entry, dpc (RVY) is updated with the capability in pc whose address field is set to the
address of the next instruction to be executed upon debug mode exit as described in the RISC-V Debug
Specification.

When leaving debug mode, an unsealed capability value is copied from the value in dpc (RVY) and written
into pc. A debugger may write dpc (RVY) to change where the hart resumes and its mode, permissions,
sealing or bounds.

The legalization of dpc (RVY) follows the same rules described for mepc (RVY).

17.4.1.4. Debug Scratch Register 0 (dscratch0)

The dscratch1 register is extended to hold a capability.

The reset value of the capability tag of this CSR is zero, the reset values of the metadata and address fields
are UNSPECIFIED.

MXLEN-1 0

V dscratch0 (Metadata)

dscratch0 (Address)

MXLEN

Figure 39. Debug scratch 0 capability register

17.4.1.5. Debug Scratch Register 1 (dscratch1)

The dscratch1 register is extended to hold a capability.

The reset value of the capability tag of this CSR is zero, the reset values of the metadata and address fields
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are UNSPECIFIED.

MXLEN-1 0

V dscratch1 (Metadata)

dscratch1 (Address)

MXLEN

Figure 40. Debug scratch 1 capability register

17.4.1.6. Debug Root Capability Selector (drootcsel)

drootcsel is a debug mode accessible integer CSR. The address and access details are shown in Table 96.

It selects which Root capability is exposed through drootc. The reset value is 0, which must cause drootcsel
to expose a Root Executable capability.

Other capability values may be defined for exposure through drootc by the capability encoding, and may be
selected by having the debugger write to this register. Writes are WARL, so the debugger may confirm that
its selection has been applied.

DXLEN-1 0

drootcsel

DXLEN

Figure 41. Debug root capability register

17.4.1.7. Debug Root Capability Register (drootc)

drootc is a debug mode accessible capability CSR. The address and access details are shown in Table 96. It
exposes the capability selected by drootcsel.

If Zyhybrid is implemented, the Root Executable exposed when drootcsel is 0 is further specified as follows:

⚫ The M-bit is reset to (Non-CHERI) Address Mode (1).

⚫ The debugger can set the M-bit to (CHERI) Capability Mode (0) by executing YMODESWY from the
program buffer.

⚫ Executing YMODESWY causes execution of subsequent instructions from the program buffer,
starting from the next instruction, to be executed in (CHERI) Capability Mode. It also sets the CHERI
execution mode to (CHERI) Capability Mode on future entry into debug mode.

⚫ Therefore to enable use of a CHERI debugger, a single YMODESWY only needs to be executed once
from the program buffer after resetting the core.

⚫ The debugger can also execute YMODESWI to change the mode back to (Non-CHERI) Address Mode,
which also affects the execution of the next instruction in the program buffer, updates the M-bit of
this capability and controls which CHERI execution mode to enter on the next entry into debug
mode.

The M-bit of this capability is only updated by executing YMODESWY or YMODESWI from the program
buffer.

DXLEN-1 0

V drootc (Metadata)

drootc (Address)

DXLEN

Figure 42. Debug root capability register
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17.4.1.8. Modified Trap-Return Instruction Behavior

The DRET instruction reads the full YLEN bits of the mepc (RVY)/sepc (RVY) register and unseals it prior to
exception return if it is a sentry capability.
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17.4.1.8.1. DRET (RVY)

Synopsis
Debug Return (DRET)

Mnemonic
dret

Encoding

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM=111011

5
0

3
PRIV=0

5
0

12
DRET=011110110010

Description
DRET (RVY) returns from debug mode. It unseals dpc (RVY) and writes the result into pc.



The DRET (RVY) instruction is the recommended way to exit debug mode. However, it is a
pseudoinstruction to return that technically does not execute from the program buffer or
memory. It currently does not require the pc to grant ASR-permission so it never raises an
exception.

Prerequisites
Sdext, RVY

Operation

TBD

17.4.2. Integrating Zyhybrid with Sdext

A new debug default data capability (dddc) CSR is added at the CSR number shown in Table 22.

Zyhybrid allows YMODESWY and YMODESWI to execute in debug mode.

When entering debug mode, whether the core enters (Non-CHERI) Address Mode or (CHERI) Capability
Mode is controlled by the M-bit in the drootc capability selected by drootcsel value 0.

The current mode can be read by setting drootcsel to 0 and then reading drootc.

The following sequence executed from the program buffer will write 0 for (CHERI) Capability Mode and 1
for (Non-CHERI) Address Mode to x1:

csrr   x1, drootc
ymoder x1, x1


There is no CHERI enable/disable bit for debug mode, so CHERI register and instruction
access is always permitted in debug mode.
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17.4.2.1. Debug Default Data Capability CSR (dddc)

dddc is a debug mode accessible capability CSR. The address is shown in Table 22.

The reset value of the capability tag of this CSR is zero, the reset values of the metadata and address fields
are UNSPECIFIED.

This CSR is only implemented if Zyhybrid is implemented.

MXLEN-1 0

V dddc (Metadata)

dddc (Address)

MXLEN

Figure 43. Debug default data capability

Upon entry to debug mode, ddc is saved in dddc. ddc is set to a Root Data capability such that ddc's address
remains unchanged.

When debug mode is exited by executing DRET (RVY), the hart’s ddc is updated to the capability stored in
dddc. A debugger may write dddc to change the hart’s context.

As shown in Table 95, dddc is a data pointer, so it does not need to be able to hold all possible invalid
addresses (see Invalid address conversion).

17.4.3. "Sdtrig (RVY)", Integrating RVY with Sdtrig

 This chapter will appear in the priv spec. Exact location TBD.

The Sdtrig extension is orthogonal to RVY. However, the priority of synchronous exceptions and where
triggers fit is adjusted as shown in Table 83.

Debug triggers are higher priority than CHERI exceptions to allow debug.

Table 83. Synchronous exception priority (including triggers) in decreasing priority order. Entries added in RVY are in
bold

Priority Exc. Code Description Trigger

Highest 3
3
3
3

etrigger
icount
itrigger
mcontrol/mcontrol6 after
(on previous instruction)

3
Instruction address breakpoint mcontrol/mcontrol6

execute address before

32

Prior to instruction address translation:
CHERI Instruction Access Fault due to pc checks (tag,
execute permission, and bounds)

12, 1
During instruction address translation:
First encountered page fault or access fault

1
With physical address for instruction:
Instruction access fault

3
mcontrol/mcontrol6
execute data before
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Priority Exc. Code Description Trigger

2
0

8,9,11
3

Illegal instruction
Instruction address misaligned
Environment call
Environment break

3
Load/store/AMO address breakpoint mcontrol/mcontrol6

load/store address before

3
mcontrol/mcontrol6 store
data before

33,34

Prior to address translation for an explicit memory
access:
Load/store/AMO capability address misaligned
CHERI Load Access Fault, CHERI Store/AMO Access
Fault due to capability checks (tag, sealed, permissions
and bounds)

4,6
Optionally:
Load/store/AMO address misaligned

13, 15, 5, 7

During address translation for an explicit memory access:
First encountered CHERI Load Page Fault, CHERI
Store/AMO Page Fault, page fault or access fault

5,7
With physical address for an explicit memory access:
Load/store/AMO access fault

4,6
If not higher priority:
Load/store/AMO address misaligned

13
If not higher priority:
CHERI Load Page Fault 3

Lowest
3

mcontrol/mcontrol6 load
data before


See the notes beneath Synchronous exception priority in decreasing priority order for details
about CHERI load page fault priority.
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Chapter 18. Pointer Masking (Ssnpm, Smnpm, Smmpm,
Sspm, Supm)  (RV64Y)

 This chapter is not part of the v1.0 ratification package.         

Whenever pointer masking is enabled, all bounds decoding, representable range checks and bounds checks
are affected.


The suggestion in this section is based on the pointer masking approach from Morello but with
changes to sign extension and to address the dynamic nature of bit masking.

When bounds are encoded or decoded, a masked but not sign-extended address is used. Changing how
many bits are masked can therefore change the interpretation of the bounds of a capability, both for the
purpose of implicit accesses via bounds checks and any instructions that report the bounds of a capability.
Apart from treating the PMLEN high address bits as zero, there are no other changes to bounds decoding,
which is still based on XLEN, not the new effectively addressable space. That is, the maximum length of a
capability does not change, and it is not invalid to have a capability that covers a longer range than could
actually be addressed with pointer masking enabled (such as one that covers the entire XLEN address
space). For the representable range check, both the original and new addresses are masked. Bounds setting
instructions also mask the address in the same way.



Because dynamically changing the number of masked bits changes the interpretation of a
capability, software must take the same care when sharing capabilities between address
spaces with differing pointer masking as it generally must when sharing capabilities between
address spaces with different page mappings.

Any address that is checked against a capability is also first subject to the same masking as bounds decode
(masking without extension). After any CHERI operations, the final access address is still subject to as
much sign extension as the pointer masking extensions mandate.

In summary, for data accesses only:

⚫ When setting bounds (YBNDSW/YBNDSWI/YBNDSRW), bits [XLEN-1:XLEN-PMLEN] of the address
are set to zero and therefore the resulting capability will have a base with the PMLEN high address bits
set to zero.

⚫ When decoding bounds, the address used for decoding has bits [XLEN-1:XLEN-PMLEN] set to zero.

⚫ When checking the representable range for ADDIY/ADDY/YADDRW, the old address and new
addresses both have bits [XLEN-1:XLEN-PMLEN] set to zero before the check.

Also note that:

⚫ pc bounds decoding isn’t affected by pointer masking.

⚫ Any representable range check triggered by a write to a CSR (e.g. mtvec (RVY)) is not affected by pointer
masking.
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Chapter 19. "Svucrg" Extension, Version 1.0 for RV64Y

 This chapter will appear in the priv spec. Exact location TBD.


Sv32 (for RV32) does not have any spare PTE bits, and so no features from this chapter can be
implemented.

The Svucrg extension is enabled when the sstatus.CRGE bit is set. When enabled, the extension adds the
ability to perform capability revocation of user mode pages (see Section 19.1) by adding the PTE.CRG,
PTE.CD and sstatus.UCRG bits as described below. When the extension is disabled the PTE.CD, PTE.CRG
and sstatus.UCRG bits remain reserved.


A future extension may define an alternative function for these reserved states; the PTE.CRW
bit is interpreted as defined by Chapter 17.

 Svucrg depends on Supervisor-Level ISA and RV64Y also being supported.


Svucrg is strongly recommended but not mandatory as a future version of this specification
may specify an improved method.


A future version of this specification may include kernel revocation which may require an
sstatus.SCRG bit.

The minimum level of PTE support is to set CRW and CD to 1 in all PTEs intended for storing capabilities
(i.e., private anonymous mappings) and leave sstatus.UCRG and CRG in all PTEs set to 0, which will allow
capabilities with their capability tags set to be loaded and stored successfully.



When Svucrg is enabled (sstatus.CRGE is set), the semantics of PTE.CRW bit are redefined
relative to the definition in Chapter 17. The ability to load and store capabilities in the page
depends on all of the PTE.CRW, PTE.CD, PTE.CRG bits, which effectively become a single 3-bit
field controlling the behavior. Therefore, when PTE.CRW is clear, it is not required that future
extensions to Svucrg, such as for kernel revocation, cannot store capabilities to a page.


Hardware-initiated memory accesses from the page-table walker are not checked by a
capability.

19.1. Capability Revocation

Revocation is the process of clearing the capability tag of capabilities that point to freed memory, to
prevent them from being dereferenced and thereby enforcing temporal memory safety. (Filardo et al., 2024)
details algorithms for preventing use-after-free in virtual memory, and non-virtual memory based systems.

Svucrg adds capability revocation for user pages only. It uses the sstatus.UCRG and PTE.CRG bits to control
the revocation epoch, which is used to provide a load barrier to detect when loading from a page which
needs sweeping. This is indicated by the generation in the PTE mismatching the global one in
sstatus.UCRG. Stored capability tags to clean pages are tracked using PTE.CD to record which virtual
memory pages contain dirty capabilities, and so will need to be swept.

19.2. Extending the Page Table Entry Format

Two new bits, Capability Read Generation (CRG) and Capability Dirty (CD), are added to leaf PTEs in Sv39,
Sv48 and Sv57 as shown in Figure 44, Figure 45 and Figure 46 respectively. For non-leaf PTEs these bits
remain reserved and must be cleared by software for forward compatibility, or else a page-fault exception is
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raised. Additionally, if the hypervisor extension is enabled these bits remain reserved for leaf and non-leaf
PTEs used in guest address translation.

63 62 61 60 59 58 57 56 55 54 53 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0

N PBMT ReservedCRWCRG CD Reserved PPN[2] PPN[1] PPN[0] RSW D A G U X W R V

1 2 2 1 1 1 2 26 9 9 2 1 1 1 1 1 1 1 1

Figure 44. Sv39 page table entry

63 62 61 60 59 58 57 56 55 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT Reserved CRWCRG CD Reserved PPN RSW D A G U X W R V

1 2 2 1 1 1 2 44 2 1 1 1 1 1 1 1 1

53 37 36 28 27 19 18 10

PPN[3] PPN[2] PPN[1] PPN[0]

17 9 9 9

Figure 45. Sv48 page table entry

63 62 61 60 59 58 57 56 55 54 53 10 9 8 7 6 5 4 3 2 1 0

N PBMT Reserved CRWCRG CD Reserved PPN RSW D A G U X W R V

1 2 2 1 1 1 2 44 2 1 1 1 1 1 1 1 1

53 46 45 37 36 28 27 19 18 10

PPN[4] PPN[3] PPN[2] PPN[1] PPN[0]

8 9 9 9 9

Figure 46. Sv57 page table entry

 The behavior in this section isn’t relevant if:

1. The authorizing capability doesn’t have C-permission, for loads, stores and AMO.

2. Any extension-specific mediation has already cleared the stored tag, for stores and AMOs.

The CRW bit (defined by Supervisor-Level ISA for Virtual Memory (RV64Y)) indicates whether reading or
writing capabilities with the capability tag set to the virtual page is permitted. When the CRW bit is set,
capabilities are written as usual, and capability reads are controlled by the CRG bit.


The capability tag bit of the stored capability is checked after it is potentially cleared due to
lack of C-permission.

If all the CRW, CD and CRG bits are clear, the "no capability state", then the existing rules from Chapter 17
are followed:

⚫ When a capability load or AMO instruction is executed, the capability tag bit of the loaded capability is
cleared before it is written to the destination register.

⚫ When a capability store or AMO instruction is executed and the capability tag bit of the capability
being written is set, the implementation raises a CHERI Store/AMO Page Fault.

When the CRW bit is set, the "capability state", then the behavior of capability loads is controlled by CRG
and the behavior of capability stores is controlled by CD.

When CRW is set, the CRG bit indicates the current generation of the virtual memory page with regards to
the ongoing capability revocation cycle. The implementation raises CHERI Load Page Fault when a
capability load or AMO instruction is executed and:
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⚫ the authorizing capability grants C-permission,

⚫ the virtual page’s CRG bit does not equal sstatus.UCRG, and

⚫ the virtual page’s PTE.U is set.

When the Svucrglct extension is implemented, the CHERI Load Page Fault is raised when a capability load
or AMO instruction satisfies the conditions above and the capability read from memory has its capability
tag set.

Svucrglct implies Svucrg.

When CRW is set, the CD bit indicates that a capability was stored to the virtual page since the last time the
CD bit was cleared. When a capability store or AMO instruction is executed, the capability tag bit of the
capability being written is set and the CD bit is clear, two schemes are permitted (also see Section 19.3):

⚫ The same behavior as when CRW is clear, allowing software interpretation of this state.

⚫ The implementation sets the CD bit. The PTE update behaves in the same way as the D bit update
described by the Svadu extension.

When CRW, CD, and CRG are all clear, the implementation is required to clear loaded tags and raise
CHERI Store/AMO Page Fault when the stored capability tag is set.


Other CD and CRG combinations when CRW=0 are reserved for future extensions. The
reserved PTE states behave as the CRW=0, CD=0, CRG=0, unless a future extension defines
an alternative function.

Table 84. Summary of Load CRW and CRG behavior in the PTEs

PTE.CRW PTE.CD PTE.CRG PTE.U Load/AMO

0 0 0 X Clear loaded tag

0 0 1 X Reserved

0 1 X X Reserved

1 X ≠
sstatus.UCRG

1 CHERI Load Page Fault, or CHERI Load Page Fault if tag is set for
Svucrglct1

1 X =
sstatus.UCRG

1 Normal operation

1 X X 0 Normal operation2

1 The choice here is whether to take data dependent exceptions on load data for loads or atomic operations.
The default is to take the trap without checking the value of the loaded capability tag. Taking a trap when
the capability tag is not set will introduce additional traps during revocation sweeps. If Svucrglct is
implemented then the trap is only taken if the loaded capability tag is set, to reduce software overhead
from revocation sweeps. Checking the loaded tag affects the exception priority, see Synchronous exception
priority in decreasing priority order.


Svucrglct is an optimization for software, and as such implementations are allowed to
conservatively fault under certain conditions even if the capability tag is not set.


Implementations which already take synchronous traps on loaded data, such as ECC faults,
should implement Svucrglct instead of Svucrg.

Svucrglct implies Svucrg.

2 A future version of this specification may check an SCRG bit in sstatus for kernel revocation.
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Table 85. Summary of Store CRW and CD behavior in the PTEs

PTE.CRW PTE.CD PTE.CRG Store/AMO

0 0 0 CHERI Store/AMO Page Fault if stored tag is set

0 0 1 Reserved

0 1 X Reserved

1 0 X CHERI Store/AMO Page Fault if stored tag is set, or hardware CD update

1 1 X Normal operation

19.3. Enabling Software or Hardware PTE updates

The decision about whether to take exceptions on capability stores with the capability tag set to a page with
PTE.CRW=1 and PTE.CD=0 is determined by whether the Svade and Svadu extensions are enabled. These
cause PTE Accessed and Dirty updates to be done in software, via the exception handler, or by a hardware
mechanism respectively.

⚫ If only Svade is implemented, or enabled through henvcfg.ADUE or menvcfg.ADUE, then take a CHERI
Store/AMO Page Fault.

⚫ If only Svadu is implemented, or enabled through henvcfg.ADUE or menvcfg.ADUE, then do the
hardware update of setting PTE.CD=1 as described in Section 19.2.

19.4. Extending the Supervisor (sstatus) and Virtual Supervisor (vsstatus)
Status Registers

The sstatus and vsstatus CSRs are extended to include the new Capability Read Generation (CRG) and
Capability Read Generation Enable (CRGE) bits as shown.

When V=1 vsstatus.UCRG and CRGE are in effect.

mstatus.UCRG and CRGE also exist. Reading or writing it is equivalent to reading or writing sstatus.UCRG
and CRGE respectively.


The CRGE bit is added to the mstatus, vsstatus and sstatus registers in order to allow the S-
mode software to explicitly opt in to the revocation extensions.



The CRGE bit is necessary because the Svucrg defines a different semantic for PTE.CRW=1
PTE.CD=0 PTE.CRG=0 with respect to Chapter 17. In particular, an oblivious software
implementation that only sets the PTE.CRW bit would observe one of the following: * The
PTE.CD bit is set by the hardware when a capability is stored and Svadu is enabled. * A CHERI
Store/AMO Page Fault trap when Svade is enabled. Both these conditions are unexpected
according to Chapter 17. The CRGE bit also has the benefit of maintaining matching polarity of
the PTE.CD bit with respect to the data Dirty bit (PTE.D), and permits alternative uses by
future extensions of the PTE.CD and PTE.CRG reserved bits (e.g. by an alternative revocation
extension that re-defines the semantics of CD and CRG).
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0123456789101112131415

WPRISIEWPRIMIEWPRISPIEUBEMPIESPPVS[1:0]MPP[1:0]FS[1:0]XS[1:0]

1617181920212223242531

XS[1:0]MPRVSUMMXRTVMTWTSRSPELPSDTWPRI

32333435363738394041424347

UXL[1:0]SXL[1:0]SBEMBEGVAMPVWPRIMPELPMDTWPRI

485960616263

WPRICRGEUCRGWPRISD

Figure 47. Machine-mode status (mstatus) register for RV64Y

012456789101112131415

WPRISIEWPRISPIEUBEWPRISPPVS[1:0]WPRIFS[1:0]XS[1:0]

16171819202223242531

XS[1:0]WPRISUMMXRWPRISPELPSDTWPRI

32333447

UXL[1:0]WPRI

485960616263

WPRICRGEUCRGWPRISD

Figure 48. Supervisor-mode status (sstatus) register when SXLEN=64

012456789101112131415

WPRISIEWPRISPIEUBEWPRISPPVS[1:0]WPRIFS[1:0]XS[1:0]

161718192031

XS[1:0]WPRIMXRSUMWPRI

32333447

UXL[1:0]WPRI

485960616263

WPRICRGEUCRGWPRISD

Figure 49. Virtual Supervisor-mode status (vsstatus) register when VSXLEN=64

19.4. Extending the Supervisor (sstatus) and Virtual Supervisor (vsstatus) Status Registers | Page 213

RISC-V Specification for CHERI Extensions | © RISC-V International



Chapter 20. Hypervisor "H" Extension (RVY)

 This chapter is not part of the v1.0 ratification package.         

The RISC-V hypervisor (H) extension virtualizes the supervisor-level architecture to support the efficient
hosting of guest operating systems atop a type-1 or type-2 hypervisor (RISC-V, 2023).

The hypervisor extension is generally orthogonal to CHERI; the main requirements, when integrating with
RVY and Zyhybrid, are that address CSRs added for hypervisors are extended to YLEN size. The remainder
of this chapter describes these changes in detail.

20.1. Hypervisor Status Register (hstatus)

The hstatus register operates as described above except for the VSXL field that controls the value of XLEN
for VS-mode (known as VSXLEN).

The encoding of the VSXL field is the same as the MXL field of misa. Only 1 and 2 are supported values for
VSXL. When the implementation supports RVY (but not Zyhybrid), then hstatus's VSXL must be read-only
as described in mstatus for mstatus.SXL. When the implementation supports both RVY and Zyhybrid, then
VSXL behaves as described in mstatus (RVY) for mstatus.SXL.

The VSBE field controls the endianness of explicit memory accesses from VS-mode and implicit memory
accesses to VS-level memory management data structures. VSBE=0 indicates little endian and VSBE=1 is
big endian. VSBE must be read-only and equal to MBE when the implementation only supports RVY.

20.2. Hypervisor Environment Configuration Register (henvcfg)

The henvcfg(RVY) register operates as described in the RISC-V Privileged Specification. A new enable bit is
added to henvcfg(RVY) when the implementation supports Zyhybrid as shown in Figure 50.

63 62 61 29 28 27 8 7 6 5 4 3 1 0

STCE PBMTE WPRI Y WPRI CBZE CBCFE CBIE WPRI FIOM

1 1 33 1 20 1 1 2 3 1

Figure 50. Hypervisor environment configuration register (henvcfg)

The Y bit controls whether explicit access to CHERI registers is permitted when V=1. When
henvcfg(RVY).Y=1 and menvcfg.Y=1 and misa.Y=1, CHERI can be enabled by VS-mode and VU-mode.
When henvcfg(RVY).Y=0, CHERI is disabled in VS-mode and VU-mode as described in Chapter 16.

The Y bit is reset to 0 for compatibility, so that non-CHERI aware code can run unmodified.

20.3. Hypervisor Exception Delegation Register (hedeleg)

Bits 32,33,34,35,36 of hedeleg refer to valid CHERI exceptions and so can be used to delegate CHERI
exceptions to supervisor mode.

20.4. Virtual Supervisor Status Register (vsstatus)

The vsstatus register operates as described above except for the UXL field that controls the value of XLEN
for VU-mode.

The encoding of the UXL field is the same as the MXL field of misa. Only 1 and 2 are supported values for
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UXL. When the implementation supports RVY (but not Zyhybrid), then vsstatus.UXL must be read-only as
described in mstatus for mstatus.UXL. When the implementation supports both RVY and Zyhybrid, then
UXL behaves as described in mstatus (RVY) for mstatus.UXL.

20.5. Virtual Supervisor Trap Vector Base Address Capability Register
(vstvec)

The vstvec register is extended to hold a capability.

MXLEN-1 2 1 0

V Metadata (WARL)

BASE[MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 51. Virtual supervisor trap vector base address capability register

The handling of vstvec (RVY) is otherwise identical to mtvec (RVY), but in virtual supervisor mode.

20.6. Virtual Supervisor Scratch Register (vsscratch)

The vsscratch register is extended to hold a capability.

It is not WARL, all capability fields must be implemented.

MXLEN-1 0

V vsscratch (Metadata)

vsscratch (Address)

MXLEN

Figure 52. Virtual supervisor scratch capability register

20.7. Virtual Supervisor Exception Program Counter Capability (vsepc)

The vsepc register is extended to hold a capability.

As shown in Table 95, vsepc (RVY) is a code capability, so it does not need to be able to hold all possible
invalid addresses (see Invalid address conversion). Additionally, the capability in vsepc (RVY) is unsealed
when it is written to pc on execution of an SRET (RVY) instruction when V=1. The handling of vsepc (RVY)
is otherwise identical to mepc (RVY), but in VS-mode.

MXLEN-1 0

V vsepc (Metadata)

vsepc (Address)

MXLEN

Figure 53. Virtual supervisor exception program counter capability

20.8. Virtual Supervisor Trap Value Register (vstval)

The vstval register is a VSXLEN-bit read-write register.

vstval is updated following the same rules as mtval for CHERI exceptions and CHERI page faults which are
delegated to VS-mode.
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VSXLEN-1 0

vstval
VSXLEN

Figure 54. Virtual supervisor trap value register

20.9. Virtual Supervisor Thread Identifier Capability (vstidc)

The vstidc register is used to identify the current software thread in virtual supervisor mode. As with other
Virtual Supervisor registers when V=1, vstidc substitutes for stidc, so that instructions that normally read or
modify stidc actually access vstidc instead. When V=0, vstidc does not directly affect the behavior of the
machine.

MXLEN-1 0

V vstidc (Metadata)

vstidc (Address)

MXLEN

Figure 55. Virtual supervisor thread identifier capability register

20.10. "Smstateen/Ssstateen" Integration

The new TID bit controls access to the vstidc CSR.

0123415

CFCSRJVTTIDWPRI

1631

WPRI

3247

WPRI

485657585960616263

WPRICONTEXTIMSICAIACSRINDWPRIENVCFGSE0

Figure 56. Hypervisor State Enable 0 Register (hstateen0)

20.11. Hypervisor Load and Store Instructions For Capability Data

Hypervisor virtual-machine load (HLV.Y) and store (HSV.Y) instructions read or write YLEN bits from
memory as though V=1. These instructions change behavior depending on the CHERI execution mode
although the instruction’s encoding remains unchanged.

When in (CHERI) Capability Mode, the hypervisor load and store capability instructions behave as described
in Section 2.9. In (Non-CHERI) Address Mode, the instructions use the low XLEN bits of the base register as
the effective address for the memory access and the capability authorizing the memory access is ddc.
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20.11.1. HLV.Y

Synopsis
Hypervisor virtual-machine load capability

Mnemonic
hlv.y rd, rs1

Encoding

067111214151920242531

1100111rd001rs1≠0typefunct7

7535
src1

5
HLV.Y=00000

7
HLV.Y=0111000


Any instance of this instruction with rs1=x0 will raise an exception, as x0 is defined to always
hold a NULL capability. As such, the encodings with rs1=x0 are RESERVED for use by future
extensions.

Description
Execute LY as though V=1, following the same pattern as HLV.W but with capability data.

Prerequisites
RVY, H

Operation
TBD
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20.11.2. HSV.Y

Synopsis
Hypervisor virtual-machine store capability

Mnemonic
hsv.y rs2, rs1

Encoding

067111214151920242531

110011100000001rs1≠0rs2funct7

7535
src1

5
src2

7
HSV.Y=0111001


Any instance of this instruction with rs1=x0 will raise an exception, as x0 is defined to always
hold a NULL capability. As such, the encodings with rs1=x0 are RESERVED for use by future
extensions.

Description
Execute SY as though V=1; following the same pattern as HSV.W but with capability data.

Prerequisites for (CHERI) Capability Mode
RVY, H

Operation
TBD

20.12. The Smycheriot Privileged ISA Extension

This section defines a series of small changes to the Machine-Level ISA (RVY) privileged architecture that
serve to specialize it for microcontroller environments. These changes are based on, but are not exactly
isomorphic to, the prior CHERIoT RV32E-based ISA.

20.12.1. Required Extensions

Smycheriot requires its unprivileged counterpart, Zycheriot, and builds on Machine-Level ISA (RVY).

The present specification presumes the absence of both

⚫ any execution mode other than M-mode (such as VS, HS, VU, S, or U), and

⚫ the Zyhybrid privileged extensions.


While Smycheriot is nominally compatible with Zyhybrid for Privileged Architectures, and
particular instantiations may opt to permit disabling CHERI, we have not yet found a
compelling reason to formally specify this composition.

20.12.2. CSR Reset States

The RVY base privileged ISA tends to define M-mode CSRs' reset values either as Root Executable
capabilities or as otherwise unspecified values with clear capability tags. To make available Zycheriot’s
multiple root capability values, we redefine two CSRs' reset values:
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mtidc
The mtidc register’s reset value is changed to be Zycheriot’s Root Data capability value (with set
capability tag), rather than the unspecified value with zero capability tag of RVY.

mscratch
The mscratch register’s reset value is changed to be Zycheriot’s sealing capability value (with set
capability tag), rather than the unspecified value with zero capability tag of RVY.

20.12.3. Additional CSR Legalization Requirements

All of pc, mtvec, and mepc will clear their capability tag if the capability they would come to hold after an
update would be sealed or would not grant X-permission.



The Machine-Level ISA (RVY) requires that mtvec and mepc nominally reset to Root
Executable capabilities, and pc must be unsealed and grant X-permission for successful
execution. Neither architecture nor software expects to be able to place capabilities thereby
prohibited in these CSRs.

20.12.4. Capability Types

Zycheriot introduces several sentry CT-field values and discusses some aspects of their interaction with
JALR and JAL instructions. Smycheriot further equips these CT-field values with privileged architectural
side-effects when used with JALR. In particular, Smycheriot uses these CT-field values to enforce structured
interrupt control, by atomically capturing and changing the value of xstatus.xIE in JALR. The purpose of
this is to enable calls to short per-core atomic sequences without granting the right to modify xstatus.xIE
arbitrarily. Functions that are called with a new interrupt stance can return to the caller’s stance. Non-
standard control flow transfers such as tail calls and calls to compiler outlined functions using a non-
standard link register are still possible but cannot change the interrupt status. Beyond the JALR behaviors
specified by Zycheriot, Smycheriot further requires that…

⚫ Upon successfully retiring, a JALR instruction whose rs1 holds such a capability updates the hart’s
xstatus.xIE bit as per Table 86.

⚫ A successfully retiring JALR or JAL whose rd is ra will seal its written-back return capability based on
the hart’s xstatus.xIE bit as of the prior instruction’s retirement. If that bit is 0, the return capability is
sealed with 4; otherwise, 5 is used.

Combining these semantics with those of Zycheriot lets us give convenient mnemonics for the particular
CT-field values that these extensions use, as shown in Table 87.

Table 86. Additional JALR Architectural Semantics

CT-field IRQs at Retirement (xstatus.xIE)

1 Unchanged (as is)

2, 4 Deferred (0)

3, 5 Enabled (1)

Table 87. Sentry type mnemonics

CT-field Name

1 Forward interrupt-inheriting

2 Forward interrupt-deferring
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CT-field Name

3 Forward interrupt-enabling

4 Backward interrupt-deferring

5 Backward interrupt-enabling



The degree of control flow integrity provided by the rules of Zycheriot ensures that a leaf
function entered via a forward interrupt-disabling sentry cannot be induced, by a malicious
caller, to return to its own entry vector (indeed, to return via any forward sentry). This ensures
that granting untrusted code such a sentry is not tantamount to handing it the ability to wedge
the machine.

20.12.5. Stack High Watermark CSRs

Smycheriot introduces two new XLEN CSRs for each privilege level: xshwm and xshwmb. Both are freely read
but require ASR-permission for explicit writes from software. Writes are WARL, with legal values being
addresses with capability alignment (that is, multiples of YLEN bits in octet bytes). Store instructions
targeting addresses between the values held in xshwm and xshwmb cause xshwm to be updated to the lowest
targeted address (rounded down to capability alignment).



The intended software use of these CSRs is, as the section title suggests, to track the "high
watermark" of a thread’s C stack (that is, the lowest address written to, because "stacks grow
down"). The thread context switching code should context switch these registers, having
initialized xshwmb to the lower bound of the thread’s stack capability and xshwm to its upper
bound. Privileged stack zeroing code can be used to lower xshwm, so that all bytes between the
addresses held in xshwm and xshwmb are known to be zero.

20.12.6. Capability Load Filter and The Revocation Bitmap


This section is non-normative, as it introduces no new behavior not already permitted by the
RVY unprivileged architecture. It is meant to be informative detail about how CHERIoT
platforms avail themselves of a particular architectural affordances therein.

As part of providing heap temporal safety, CHERIoT platforms may, as permitted by RVY, clear tags being
transported from memory into CPU registers by a ly instruction. CHERIoT platforms mediate capability
loads with a capability load filter. Software dynamic memory allocators can use this load filter to ensure that
additional copies of capabilities to deallocated objects cannot be constructed (into register files and, so, into
memory, too). This facilitates particularly straightforward global revocation of pointers to freed heap
objects.

In implementations to date, this capability load filter is instantiated by pairing each memory block(s) in
which software’s dynamic allocation heap(s) are to reside with a per-memory-block revocation bitmap, a bit-
vector wherein each bit corresponds to a capability-sized memory granule. (That is, with each capability-
sized and -aligned region of the primal memory.) Such memory block(s) are said to be revokable. These
revocation bitmaps are also exposed (as memory) to software. When ly transfers a valid capability (one
with a set capability tag) from memory (revokable or not) into a hart’s register file, it checks whether the
base (lower bound) of that capability is within a revokable memory block and, if so, fetches the
corresponding bit in the associated revocation bitmap. If that bit is set, then the capability tag stored in the
hart’s register file as part of this transfer is cleared.

It is up to each particular CHERIoT platform to define…

⚫ the number, location(s), and size(s) of revokable memory blocks,
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⚫ the location(s) of their associated revocation bitmaps, and

⚫ the mapping function between primal memory address and revocation bitmap address and bit index.
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Appendix B: CHERI (RV64Y) Privileged Appendix

B.1. RVY Privileged Extensions Summary

B.1.1. H Extension (RVY added instructions)

Specifying RVY and "H" gives H Extension (RVY added instructions) functionality, which adds virtualized
capability load and store instructions.

While HLVX.* only requires execute permission in the PTE, the authorizing CHERI capability must grant
R-permission.

Table 88. H Extension (RVY added instructions) instruction extension

Mnemonic RV32Y RV64Y Function

HLV.Y ✔ ✔ Hypervisor virtual machine load capability

HSV.Y ✔ ✔ Hypervisor virtual machine store capability

B.1.2. Machine level ISA for RVY

Table 89. Machine level ISA, modified instructions for RVY

Mnemonic RV32Y RV64Y Function

MRET (RVY) ✔ ✔ Return from machine mode handler, sets pc from mtvec (RVY) ,
needs ASR-permission

B.1.3. Supervisor level ISA for RVY

Table 90. Supervisor level ISA, modified instructions for RVY

Mnemonic RV32Y RV64Y Function

SRET (RVY) ✔ ✔ Return from supervisor mode handler, sets pc from stvec (RVY),
needs ASR-permission

B.1.4. Sdext for RVY

Table 91. Sdext extension, modified instructions for RVY

Mnemonic RV32Y RV64Y Function

DRET (RVY) ✔ ✔ Return from debug mode, sets ddc from dddc and pc from dpc
(RVY)

B.2. RVY YLEN CSR Summary

this section includes debug CSRs    

Table 92. CSRs extended to YLEN

YLEN CSR Prerequisites

dpc (RVY) Sdext
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YLEN CSR Prerequisites

dscratch0 (RVY) Sdext

dscratch1 (RVY) Sdext

mtvec (RVY) M-mode

mscratch (RVY) M-mode

mepc (RVY) M-mode

stvec (RVY) S-mode

sscratch (RVY) S-mode

sepc (RVY) S-mode

vstvec (RVY) H

vsscratch (RVY) H

vsepc (RVY) H

jvt (RVY) Zcmt

Table 93. Action taken on writing to extended CSRs

YLEN CSR Action on XLEN write Action on YLEN write

dpc (RVY) Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change.

Apply Invalid address conversion and update
the CSR with the result if the address
changed, direct write if address didn’t change

dscratch0 (RVY) Update the CSR using YADDRW. direct write

dscratch1 (RVY) Update the CSR using YADDRW. direct write

mtvec (RVY) Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

mscratch (RVY) Update the CSR using YADDRW. direct write

mepc (RVY) Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change.

Apply Invalid address conversion and update
the CSR with the result if the address
changed, direct write if address didn’t change

stvec (RVY) Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

sscratch (RVY) Update the CSR using YADDRW. direct write

sepc (RVY) Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change.

Apply Invalid address conversion and update
the CSR with the result if the address
changed, direct write if address didn’t change

vstvec (RVY) Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.

Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change, including the MODE
field in the address for simplicity. Vector
range check * if vectored mode is
programmed.
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YLEN CSR Action on XLEN write Action on YLEN write

vsscratch (RVY) Update the CSR using YADDRW. direct write

vsepc (RVY) Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change.

Apply Invalid address conversion and update
the CSR with the result if the address
changed, direct write if address didn’t change

jvt (RVY) Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change.

Apply Invalid address conversion and update
the CSR with the result if the address
changed, direct write if address didn’t change

* The vector range check is to ensure that vectored entry to the handler is within bounds of the capability
written to xtvec. The check on writing must include the lowest (0 offset) and highest possible offset (e.g.,
64 * MXLEN bits where HICAUSE=16).

XLEN bits of extended YLEN-wide CSRs are written when executing CSRRWI (RVY), CSRRC (RVY), CSRRS
(RVY), CSRRCI (RVY) or CSRRSI (RVY) regardless of the CHERI execution mode. When using CSRRW
(RVY), YLEN bits are written when the CHERI execution mode is (CHERI) Capability Mode and XLEN bits
are written when the mode is (Non-CHERI) Address Mode; therefore, writing XLEN bits with CSRRW (RVY)
is only possible when Zyhybrid is implemented.

Table 94. Action taken on writing to YLEN-wide CSRs

YLEN CSR Action on XLEN write Action on YLEN write

dddc Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change.

Apply Invalid address conversion and update
the CSR with the result if the address
changed, direct write if address didn’t change

ddc Apply Invalid address conversion. Always
update the CSR with YADDRW even if the
address didn’t change.

Apply Invalid address conversion and update
the CSR with the result if the address
changed, direct write if address didn’t change

drootcsel Ignore Ignore

drootc Ignore Ignore

utidc Update the CSR using YADDRW. direct write

stidc Update the CSR using YADDRW. direct write

vstidc Update the CSR using YADDRW. direct write

mtidc Update the CSR using YADDRW. direct write

XLEN bits of YLEN-wide CSRs added in Zyhybrid are written when executing CSRRWI (RVY), CSRRC
(RVY), CSRRS (RVY), CSRRCI (RVY) or CSRRSI (RVY) regardless of the CHERI execution mode. YLEN bits
are always written when using CSRRW (RVY) regardless of the CHERI execution mode.


Implementations which allow misa.C to be writable need to legalize xepc on reading if the
misa.C value has changed since the value was written as this can cause the read value of bit [1]
to change state.

Table 95. YLEN-wide CSRs storing code pointers or data pointers

YLEN CSR Code Pointer Data Pointer Unseal On Execution

dpc (RVY) ✔ ✔

mtvec (RVY) ✔

mepc (RVY) ✔ ✔

stvec (RVY) ✔

sepc (RVY) ✔ ✔
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YLEN CSR Code Pointer Data Pointer Unseal On Execution

vstvec (RVY) ✔

vsepc (RVY) ✔ ✔

jvt (RVY) ✔

dddc ✔

ddc ✔

Some CSRs store code pointers or data pointers as shown in Table 95. These are WARL CSRs that do not
need to store full 64-bit addresses on RV64, and so need not be capable of holding all possible invalid
addresses. Prior to writing an invalid address to these CSRs, the address must be converted to another
invalid address that the CSR is capable of holding. CSRs that store fewer address bits are also subject to the
invalid address check in Invalid address conversion on writing.

The tables below show all YLEN-wide CSRs.

Table 96. All YLEN-wide CSRs.

YLEN CSR Prerequ
isites

Address Permissions Reset Value Description

dpc (RVY) Sdext 0x7b1 DRW tag=0, otherwise
specified by the
platform

Debug Program Counter Capability

dscratch0 (RVY) Sdext 0x7b2 DRW tag=0, otherwise
specified by the
platform

Debug Scratch Capability 0

dscratch1 (RVY) Sdext 0x7b3 DRW tag=0, otherwise
specified by the
platform

Debug Scratch Capability 1

mtvec (RVY) M-mode 0x305 MRW, ASR-
permission

Nominally Root
Executable

Machine Trap-Vector Base-Address
Capability

mscratch (RVY) M-mode 0x340 MRW, ASR-
permission

tag=0, otherwise
specified by the
platform

Machine Scratch Capability

mepc (RVY) M-mode 0x341 MRW, ASR-
permission

Nominally Root
Executable

Machine Exception Program Counter
Capability

stvec (RVY) S-mode 0x105 SRW, ASR-
permission

Nominally Root
Executable

Supervisor Trap-Vector Base-Address
Capability

sscratch (RVY) S-mode 0x140 SRW, ASR-
permission

tag=0, otherwise
specified by the
platform

Supervisor Scratch Capability

sepc (RVY) S-mode 0x141 SRW, ASR-
permission

Nominally Root
Executable

Supervisor Exception Program
Counter Capability

vstvec (RVY) H 0x205 HRW, ASR-
permission

Nominally Root
Executable

Virtual Supervisor Trap-Vector Base-
Address Capability

vsscratch (RVY) H 0x240 HRW, ASR-
permission

tag=0, otherwise
specified by the
platform

Virtual Supervisor Scratch Capability

vsepc (RVY) H 0x241 HRW, ASR-
permission

Nominally Root
Executable

Virtual Supervisor Exception Program
Counter Capability
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YLEN CSR Prerequ
isites

Address Permissions Reset Value Description

jvt (RVY) Zcmt 0x017 URW tag=0, otherwise
specified by the
platform

Jump Vector Table Capability

dddc Zyhybri
d, Sdext

0x7bc DRW tag=0, otherwise
specified by the
platform

Debug Default Data Capability
(saved/restored on debug mode
entry/exit)

ddc Zyhybri
d

0x416 URW nominally Root
Data

User Default Data Capability

drootcsel Sdext 0x7ba DRW 0 Multiplexing selector for drootc

drootc Sdext 0x7bd DRW nominally Root
Executable

Source of authority in debug mode,
writes are ignored

utidc RVY 0x480 Read: U, Write: U,
ASR-permission

tag=0, otherwise
specified by the
platform

User thread ID

stidc RVY 0x580 Read: S, Write: S,
ASR-permission

tag=0, otherwise
specified by the
platform

Supervisor thread ID

vstidc RVY 0xA80 Read: VS, Write:
VS, ASR-
permission

tag=0, otherwise
specified by the
platform

Virtual supervisor thread ID

mtidc RVY 0x780 Read: M, Write: M,
ASR-permission

tag=0, otherwise
specified by the
platform

Machine thread ID

Where reset values are specified in Table 96, they are typically a maximum possible value. For example, a
Root Executable as specified for mtvec (RVY) is the maximum, the platform may reset this CSR to a smaller
memory range, or to have fewer permissions.

Machine-Level ISA (RVY) and Supervisor-Level ISA (RVY) extend the CSRs listed in Table 97, Table 98,
Table 99, Table 100 and Table 101 from the base RISC-V ISA and its extensions.


If Zyhybrid is supported then the CHERI Execution Mode determines whether YLEN or XLEN
bits are returned (see CSRRW (RVY)).

Table 97. Extended debug-mode CSRs in RVY

RVY CSR Address Prerequisites Permissions Description

dpc (RVY) 0x7b1 Sdext DRW Debug Program Counter Capability

dscratch0 (RVY) 0x7b2 Sdext DRW Debug Scratch Capability 0

dscratch1 (RVY) 0x7b3 Sdext DRW Debug Scratch Capability 1

Table 98. Extended machine-mode CSRs in RVY

RVY CSR Address Prerequisites Permissions Description

mtvec (RVY) 0x305 M-mode MRW, ASR-permission Machine Trap-Vector Base-Address Capability

mscratch (RVY) 0x340 M-mode MRW, ASR-permission Machine Scratch Capability

mepc (RVY) 0x341 M-mode MRW, ASR-permission Machine Exception Program Counter Capability


mconfigptr is not extended, despite representing an address, as it is solely for use by low-level
system software and is not interpreted by hardware. Such software can be expected to hold
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suitable Root capabilities from which it can derive a capability to the address in this register.

Table 99. Extended supervisor-mode CSRs in RVY

RVY CSR Address Prerequisites Permissions Description

stvec (RVY) 0x105 S-mode SRW, ASR-permission Supervisor Trap-Vector Base-Address Capability

sscratch (RVY) 0x140 S-mode SRW, ASR-permission Supervisor Scratch Capability

sepc (RVY) 0x141 S-mode SRW, ASR-permission Supervisor Exception Program Counter Capability

Table 100. Extended virtual supervisor-mode CSRs in RVY

RVY CSR Address Prerequisite
s

Permissions Description

vstvec (RVY) 0x205 H HRW, ASR-
permission

Virtual Supervisor Trap-Vector Base-Address
Capability

vsscratch
(RVY)

0x240 H HRW, ASR-
permission

Virtual Supervisor Scratch Capability

vsepc (RVY) 0x241 H HRW, ASR-
permission

Virtual Supervisor Exception Program Counter
Capability

Table 101. Extended user-mode CSRs in RVY

RVY CSR Address Prerequisites Permissions Description

jvt (RVY) 0x017 Zcmt URW Jump Vector Table Capability

B.3. CHERI System Implications

 Unclear if this chapter will appear in the priv spec. May just be in the standalone spec.

CHERI processors need memory systems which support the capability tags in memory.

There are, or will soon be, a wide range of CHERI systems in existence from tiny IoT devices up to server
chips.

There are two types of bus connections used in SoCs which contain CHERI CPUs:

1. Tag-aware busses, where the bus protocol is extended to carry the capability tag along with the data.
This is typically done using user-defined bits in the protocol.

a. These busses will read capability tags from memory (if capability tags are present in the target
memory) and return them to the requestor.

b. These busses will write the capability tag to memory as an extension of the data write.

2. Non-capability tag-aware busses, i.e., current non-CHERI-aware busses.

a. Reads of tagged memory will not read the capability tag.

b. Writes to tagged memory will set the capability tag to zero of any YLEN-aligned YLEN-wide
memory location where any byte matches the memory write.

The fundamental rule for any CHERI system is that the capability tag and data are always accessed
atomically. For every naturally aligned YLEN-wide memory location, it must never be possible to:

1. Update any data bytes without also writing the capability tag

a. This implies setting the capability tag to zero if a non-CHERI aware bus master overwrites a
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capability in memory

2. Read a capability tag value with mismatched (stale or newer) data

3. Set the capability tag without also writing the data.

 Clearing capability tags in memory does not necessarily require updating the associated data.

B.3.1. Small CHERI system example

Figure 57. Example small CHERI system with local capability tag storage

This example shows a minimum-sized system where only the local memory is extended to support
capability tags. The capability tag-aware region is highlighted. All capability tags are created by the CHERI
CPU, and only stored locally. The memory is shared with the system, probably via a secure DMA, which is
not capability tag-aware.

Therefore the connection between CPU and memory is tag-aware, and the connection to the system is not
capability tag-aware.

All writes from the system port to the memory must clear any memory capability tags to follow the rules
from above.
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B.3.2. Large CHERI system example

Figure 58. Example large CHERI system with capability tag cache

In the case of a large CHERI SoC with caches, all the cached memory visible to the CHERI CPUs must
support capability tags. All memory is backed up by DRAM, and standard DRAM does not offer the extra
bit required for CHERI capability tag storage and so a typical system will have a capability tag cache IP.

A region of DRAM is typically reserved for CHERI capability tag storage.

The capability tag cache sits on the boundary of the capability tag-aware and non-tag-aware memory
domains, and it provides the bridge between the two. It stores capability tags locally in its cache, and if
there is a miss, it will create an extra bus request to access the region of DRAM reserved for capability tag
storage. Therefore in the case of a miss a single access is split into two - one to access the data and one to
access the capability tag.

The key property of the capability tag cache is to preserve the atomic access of data and capability tags in
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the memory system so that all CPUs have a consistent view of capability tags and data.

The region of DRAM reserved for capability tag storage must be accessible only by the capability tag cache,
therefore no bus initiators should be able to write to the DRAM without the transactions passing through
the capability tag cache.

Therefore the GPUs and peripherals cannot write to the capability tag storage in the DRAM or the
capability tag supporting memory data storage region. These constraints will be part of the design of the
network-on-chip. It is possible for the GPU and peripherals to read the capability tag supporting memory
data storage region of the DRAM, if required.



It would be possible to allow a DMA to access the capability tagged memory region of the
DRAM directly to allow swap to/from DRAM and external devices such as flash. This will
require the highest level of security in the SoC, as the CHERI protection model relies on the
integrity of the capability tags, and so the root-of-trust will need to authenticate and encrypt
the transfer, with anti-rollback protection.

For further information on the capability tag cache see (Efficient Tagged Memory, 2017).
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B.3.3. Large CHERI pure-capability system example

Figure 59. Example large CHERI system with only tag-aware bus masters

In this example every DRAM access passes through the capability tag cache, and so all bus masters are
capability tag-aware and can access the capability tags associated with memory if permitted by the
network-on-chip.

The system topology is simpler than in Figure 58.

There is likely to be a performance difference between the two systems. The main motivation for Figure 58
is to avoid the GPU DRAM traffic needing to look-up every capability tag in the capability tag cache,
potentially adding overhead to every transaction.

B.4. Placeholder references to privileged spec

 This chapter only exists for the standalone document to allow references to resolve.

Control and Status Registers (CSRs) overview
See Chapter Control and Status Registers (CSRs) in (RISC-V, 2023).
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Machine Status Registers (mstatus and mstatush)
Base ISA Control in mstatus Register
Endianness Control in mstatus and mstatush Registers

See mtatus in Chapter Machine-Level ISA, Version 1.13 in (RISC-V, 2023).

Machine Scratch Register (mscratch)
See mscratch in Chapter Machine-Level ISA, Version 1.13 in (RISC-V, 2023).

MXLEN-1 0

mscratch
MXLEN

Figure 60. Machine-mode scratch register

Machine Cause (mcause) Register
Synchronous exception priority in decreasing priority order
Machine cause (mcause) register values after trap

See mcause in Chapter Machine-Level ISA, Version 1.13 in (RISC-V, 2023).

MXLEN-1 MXLEN-2 0
Interrupt Exception Code (WLRL)

1 MXLEN-1

Figure 61. Machine Cause (mcause) register.

Machine Trap-Vector Base-Address (mtvec) Register
See mtvec in Chapter Machine-Level ISA, Version 1.13 in (RISC-V, 2023).

MXLEN-1 2 1 0

BASE [MXLEN-1:2] (WARL) MODE (WARL)
MXLEN-2 2

Figure 62. Machine-mode trap-vector base-address register

Machine Exception Program Counter (mepc)
See mepc in Chapter Machine-Level ISA, Version 1.13 in (RISC-V, 2023).

MXLEN-1 0

mepc (WARL)
MXLEN

Figure 63. Machine exception program counter register

Machine Trap Delegation Register (medeleg)
See medeleg in Chapter Machine-Level ISA, Version 1.13 in (RISC-V, 2023).

Machine Trap Value Register (mtval)
See mtval in Chapter Machine-Level ISA, Version 1.13 in (RISC-V, 2023).

MXLEN-1 0

mtval
MXLEN

Figure 64. Machine trap value register

Machine ISA (misa) Register
See misa in Chapter Machine-Level ISA, Version 1.13 in (RISC-V, 2023). RVY sets the Y bit to be 1, and also
I or E are set to show how many X registers are present.
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If Zyhybrid is implemented, then Y is writable.

Machine Environment Configuration (menvcfg) Register
See menvcfg in Chapter Machine-Level ISA, Version 1.13 in (RISC-V, 2023). Zyhybrid adds a new Y bit.

63 62 61 29 28 27 8 7 6 5 4 3 1 0

STCE PBMTE WPRI Y WPRI CBZE CBCFE CBIE WPRI FIOM

1 1 33 1 20 1 1 2 3 1

Figure 65. Machine environment configuration register (menvcfg)

Trap-Return Instructions
See Trap-Return Instructions in Chapter Supervisor-Level ISA, Version 1.13 in (RISC-V, 2023).

Supervisor Trap Vector Base Address (stvec) Register
See stvec in Chapter Supervisor-Level ISA, Version 1.13 in (RISC-V, 2023).

SXLEN-1 2 1 0

BASE (Address)[SXLEN-1:2] (WARL) MODE (WARL)
SXLEN-2 2

Figure 66. Supervisor trap vector base address (stvec) register.

Supervisor Scratch (sscratch) Register
See sscratch in Chapter Supervisor-Level ISA, Version 1.13 in (RISC-V, 2023).

SXLEN-1 0

sscratch
SXLEN

Figure 67. Supervisor-mode scratch register

Supervisor Exception Program Counter (sepc) Register
See sepc in Chapter Supervisor-Level ISA, Version 1.13 in (RISC-V, 2023).

SXLEN-1 0

sepc
SXLEN

Figure 68. Supervisor exception program counter register

Supervisor Trap Value (stval) Register
See stval in Chapter Supervisor-Level ISA, Version 1.13 in (RISC-V, 2023).

SXLEN-1 0

stval
SXLEN

Figure 69. Supervisor trap value register

Supervisor Cause (scause) Register
.Supervisor cause (scause) register values after trap

See scause in Chapter Supervisor-Level ISA, Version 1.13 in (RISC-V, 2023).

SXLEN-1 SXLEN-2 0
Interrupt Exception Code (WLRL)

1 SXLEN-1

Figure 70. Supervisor Cause (scause) register.
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Supervisor Environment Configuration (senvcfg) Register
See senvcfg in Chapter Supervisor-Level ISA, Version 1.13 in (RISC-V, 2023). Zyhybrid adds a new Y bit.

SXLEN-1 29 28 27 8 7 6 5 4 3 1 0

WPRI Y WPRI CBZE CBCFE CBIE WPRI FIOM

SXLEN-29 1 20 1 1 2 3 1

Figure 71. Supervisor environment configuration register (senvcfg)

Supervisor Status (sstatus) Register
See sstatus in Chapter Supervisor-Level ISA, Version 1.13 in (RISC-V, 2023).

B.4. Placeholder references to privileged spec | Page 234

RISC-V Specification for CHERI Extensions | © RISC-V International



Bibliography
Efficient Tagged Memory. (2017). www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-
tags.pdf

Filardo, N. W., Gutstein, B. F., Woodruff, J., Clarke, J., Rugg, P., Davis, B., Johnston, M., Norton, R., Chisnall,
D., Moore, S. W., Neumann, P. G., & Watson, R. N. M. (2024). Cornucopia Reloaded: Load Barriers for CHERI
Heap Temporal Safety. doi.org/10.1145/3620665.3640416

RISC-V. (2023). RISC-V Unprivileged Specification. github.com/riscv/riscv-isa-manual/releases/download/
riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf

RISC-V. (2023). RISC-V Privileged Specification. github.com/riscv/riscv-isa-manual/releases/download/
riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf

Watson, R. N. M., Neumann, P. G., Woodruff, J., Roe, M., Almatary, H., Anderson, J., Baldwin, J., Barnes, G.,
Chisnall, D., Clarke, J., Davis, B., Eisen, L., Filardo, N. W., Fuchs, F. A., Grisenthwaite, R., Joannou, A., Laurie,
B., Markettos, A. T., Moore, S. W., … Xia, H. (2023). Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 9) (UCAM-CL-TR-987; Issue UCAM-CL-TR-987). University of
Cambridge, Computer Laboratory. doi.org/10.48456/tr-987

Woodruff, J., Joannou, A., Xia, H., Fox, A., Norton, R. M., Chisnall, D., Davis, B., Gudka, K., Filardo, N. W.,
Markettos, A. T., & others. (2019). Cheri Concentrate: Practical compressed capabilities. IEEE Transactions
on Computers, 68(10), 1455–1469. doi.org/10.1109/TC.2019.2914037

Bibliography | Page 235

RISC-V Specification for CHERI Extensions | © RISC-V International

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf
https://doi.org/10.1145/3620665.3640416
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/riscv-isa-release-056b6ff-2023-10-02/priv-isa-asciidoc.pdf
https://doi.org/10.48456/tr-987
https://doi.org/10.1109/TC.2019.2914037

	RISC-V Specification for CHERI Extensions
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	1.1. CHERI Concepts and Terminology
	1.2. CHERI Extensions to RISC-V
	1.2.1. Stable Extensions and Specifications
	1.2.2. Experimental Extensions and Specifications


	Chapters for the unprivileged specification
	Chapter 2. RV32Y and RV64Y Base Capability Instruction Sets, Version 1.0
	2.1. CHERI Overview
	2.2. CHERI protection model
	2.3. Capability Registers and Format
	2.3.1. Address
	2.3.2. Capability Tag
	2.3.3. Capability tags in registers
	2.3.4. Capability tags in memory
	2.3.5. Capability Bounds
	2.3.6. Deriving New Bounds
	2.3.7. Representability and Updating the Address
	2.3.8. Memory space
	2.3.9. Capability Type (CT)
	2.3.10. Architectural Permissions (AP)
	2.3.10.1. Permission Transitions

	2.3.11. Software-Defined Permissions (SDP)
	2.3.12. Special Capabilities
	2.3.12.1. Root Capabilities
	2.3.12.2. NULL Capability


	2.4. CHERI encoding formats
	2.5. Integrity of Capabilities
	2.6. Extended State
	2.6.1. General Purpose Registers
	2.6.2. The Program Counter Capability (pc)
	2.6.3. Added CSRs
	2.6.3.1. User Thread Identifier Capability (utidc)

	2.6.4. Extended CSRs

	2.7. Capability checks
	2.8. Added Instructions
	2.8.1. Instructions to Update The Capability Pointer
	2.8.1.1. ADDIY
	2.8.1.2. ADDY
	2.8.1.3. YADDRW

	2.8.2. Instructions to Manipulate Capabilities
	2.8.2.1. YPERMC
	2.8.2.2. YMV
	2.8.2.3. PACKY
	2.8.2.4. YHIW
	2.8.2.5. YBNDSWI
	2.8.2.6. YBNDSW
	2.8.2.7. YBNDSRW
	2.8.2.8. YSUNSEAL

	2.8.3. Instructions to Decode Capability Bounds
	2.8.3.1. YBASER
	2.8.3.2. YLENR

	2.8.4. Instructions to Extract Capability Fields
	2.8.4.1. YTAGR
	2.8.4.2. YPERMR
	2.8.4.3. YTYPER
	2.8.4.4. SRLIY
	2.8.4.5. YHIR

	2.8.5. Miscellaneous Instructions to Handle Capability Data
	2.8.5.1. SYEQ
	2.8.5.2. YLT
	2.8.5.3. YAMASK

	2.8.6. Instructions to Load and Store Capability Data
	2.8.6.1. LY
	2.8.6.2. SY


	2.9. Changes to Existing RISC-V Base ISA Instructions
	2.9.1. Changes to load/stores
	2.9.2. Changes to PC
	2.9.3. AUIPC (RVY)
	2.9.4. The AUIPC Shift
	2.9.5. JAL (RVY)
	2.9.6. JALR (RVY)
	2.9.7. Changes to BEQ, BNE


	Chapter 3. "Zysentry" Extension for Creation of Sentry Capabilities
	3.1. Interaction with JALR (RVY)
	3.2. Added instructions
	3.2.1. YSENTRY


	Chapter 4. "Zybld" Extension for Building Capabilities
	4.1. Added instructions
	4.1.1. YBLD


	Chapter 5. "Zytopr" Extension for Extracting the Top Bound
	5.1. Added instructions
	5.1.1. YTOPR


	Chapter 6. "Zyhybrid" Extension for CHERI Execution Modes
	6.1. CHERI Execution Modes
	6.1.1. CHERI Execution Mode Encoding
	6.1.2. Changing CHERI Execution Mode
	6.1.3. Representation of the M-bit in the capability encoding
	6.1.4. Observing the CHERI Execution Mode

	6.2. Added instructions
	6.2.1. YMODEW
	6.2.2. YMODER
	6.2.3. YMODESWI
	6.2.4. YMODESWY

	6.3. Added State
	6.3.1. Default Data Capability CSR (ddc)

	6.4. Changes to Zicsr Instructions
	6.4.1. CSRRWI (RVY)
	6.4.2. CSRRS (RVY)
	6.4.3. CSRRSI (RVY)
	6.4.4. CSRRC (RVY)
	6.4.5. CSRRCI (RVY)
	6.4.6. CSRRW (RVY)


	Chapter 7. "Zabhlrsc" Extension for Byte and Halfword Load Reserved/Store Conditional, Version 0.9
	7.1. Byte and Halfword Atomic Load Reserved/Store Conditional Instructions

	Chapter 8. Vector "V" Extension (RVY)
	Chapter 9. "Zylevels1" Extension for CHERI 2-Level Information Flow Control
	9.1. Added Architectural Permissions (AP) Bits
	9.2. The Capability Global (GL) Flag
	9.3. Interaction with Root Capabilities
	9.4. Interaction with YPERMC and YPERMR
	9.4.1. YPERMC and the Capability Global (GL) Flag
	9.4.2. Additional YPERMC rules

	9.5. Interaction with LY
	9.6. Interaction with SY
	9.7. Interaction with YLT
	9.8. Interaction with YBLD
	9.9. Interaction with YSUNSEAL
	9.10. Summary Of System Behavior

	Chapter 10. "Zyseal" Extension for CHERI Capability (Un)Sealing
	10.1. Explicit Sealing and Unsealing Operations
	10.2. Usable CT-field Values Are Encoding Specified
	10.3. Single Address Space Encodings
	10.4. Added Architectural Permissions (AP) Bits
	10.5. Interaction with YPERMC and YPERMR
	10.6. Added Instructions
	10.6.1. YSEAL
	10.6.2. YUNSEAL


	Chapter 11. "Zybndsrdw" Extension for Bounding to Representable Lengths
	11.1. YBNDSRDW

	Chapter 12. The RV64Y_Lymw14rc1ps Capability Base Extension for RV64Y, Version 1.0
	12.1. Capability Encoding
	12.1.1. Capability Encoding Summary
	12.1.2. Architectural Permissions (AP) Encoding
	12.1.3. Capability Mode (M) Encoding
	12.1.4. Software-Defined Permissions (SDP) Encoding
	12.1.5. Capability Type (CT) Encoding
	12.1.6. Bounds (EF, T, TE, B, BE) Encoding
	12.1.6.1. Concept
	12.1.6.2. Decoding
	12.1.6.3. Top bound MSB correction
	12.1.6.4. Malformed Capability Bounds


	12.2. Representable Range Check
	12.2.1. Practical Information

	12.3. Encoding of Special Capabilities
	12.3.1. NULL Capability Encoding
	12.3.2. Infinite Capability Encoding


	Chapter 13. The RV32Y_Lymw10rc1pc Capability Base Extension for RV32Y, Version 1.0
	13.1. Capability Encoding
	13.1.1. Capability Encoding Summary
	13.1.2. Architectural Permissions and Mode (AP,M) Encoding
	13.1.3. AP encoding and rules without Zylevels1 for RV32Y_Lymw10rc1pc
	13.1.4. AP encoding and rules with Zylevels1 for RV32Y_Lymw10rc1pc
	13.1.5. Software-Defined Permissions (SDP) Encoding
	13.1.6. Capability Type (CT) Encoding
	13.1.7. Bounds (EF, T, TE, B, BE, L8) Encoding

	13.2. Encoding of Special Capabilities
	13.2.1. NULL Capability Encoding
	13.2.2. Infinite Capability Encoding

	13.3. Representable Range Check

	Chapter 14. RVY Specializations for Microcontroller Systems
	14.1. The Zycheriot Unprivileged ISA Extension
	14.1.1. Required Extensions
	14.1.2. Refining CHERI Capabilities
	14.1.2.1. Software Defined Permissions
	14.1.2.2. Root Permission Sets
	14.1.2.3. Permission Transition Constraints
	14.1.2.4. Capability Types


	14.2. A RV32Y_Lymw9e14r0as11pc Common Base Architecture
	14.3. The RV32Y_Lyenccheriot1 CHERI Capability Encoding Scheme
	14.3.1. Capability Encoding
	14.3.1.1. Capability Encoding Parameter Summary
	14.3.1.2. Permissions Encoding
	14.3.1.3. Capability Type (CT) Encoding
	14.3.1.4. Bounds (E, B, T) Encoding
	14.3.1.4.1. Encoding bounds


	14.3.2. Encoding of Special Capabilities
	14.3.2.1. NULL Capability Encoding
	14.3.2.2. Root Capability Encoding


	14.4. The RV32Y_Lyenccheriot2 CHERI Capability Encoding Scheme
	14.4.1. Capability Encoding
	14.4.1.1. Capability Encoding Parameter Summary


	14.5. The RV32Y_Lyenccheriot3 CHERI Capability Encoding Scheme
	14.5.1. Capability Encoding
	14.5.1.1. Capability Encoding Parameter Summary



	Appendix A: CHERI (RV64Y) Unprivileged Appendix
	A.1. RVY ISA Extension Summary
	A.1.1. RVY added instructions
	A.1.2. RVI (RVY modified behavior)
	A.1.3. Zicsr (RVY modified behavior)
	A.1.4. Zysentry
	A.1.5. Zybld
	A.1.6. Zytopr
	A.1.7. Zybndsrdw
	A.1.8. C (RVY added instructions)
	A.1.9. RV32 / RV32Y RVC load/store mapping summary
	A.1.10. RV64 / RV64Y RVC load/store mapping summary
	A.1.10.1. C.LY
	A.1.10.2. C.LYSP
	A.1.10.3. C.SY
	A.1.10.4. C.SYSP

	A.1.11. C (RVY modified behavior)
	A.1.11.1. C.ADDI16SP (RVY)
	A.1.11.2. C.ADDI4SPN (RVY)
	A.1.11.3. C.YMV
	A.1.11.4. C.JR (RVY)
	A.1.11.5. C.JAL (RV32Y)
	A.1.11.6. C.JALR (RVY)

	A.1.12. Zalrsc (RVY added instructions)
	A.1.12.1. LR.Y
	A.1.12.2. SC.Y

	A.1.13. Zaamo (RVY added instructions)
	A.1.13.1. AMOSWAP.Y

	A.1.14. Zba (RVY added instructions)
	A.1.14.1. SH1ADDY
	A.1.14.2. SH2ADDY
	A.1.14.3. SH3ADDY
	A.1.14.4. SH4ADDY (RV64Y)
	A.1.14.5. SH1ADDY.UW (RV64Y)
	A.1.14.6. SH2ADDY.UW (RV64Y)
	A.1.14.7. SH3ADDY.UW (RV64Y)
	A.1.14.8. SH4ADDY.UW (RV64Y)

	A.1.15. Zicbom (RVY modified behavior)
	A.1.15.1. CBO.CLEAN (RVY)
	A.1.15.2. CBO.FLUSH (RVY)
	A.1.15.3. CBO.INVAL (RVY)

	A.1.16. Zicboz (RVY modified behavior)
	A.1.16.1. CBO.ZERO (RVY)

	A.1.17. Zicbop (RVY modified behavior)
	A.1.17.1. PREFETCH.I (RVY)
	A.1.17.2. PREFETCH.R (RVY)
	A.1.17.3. PREFETCH.W (RVY)

	A.1.18. Zyhybrid
	A.1.19. "Zcmp", "Zcmt" (RVY)
	A.1.20. "Zcmp" Standard Extension For Code-Size Reduction
	A.1.20.1. CM.PUSH (RV32Y)
	A.1.20.2. CM.POP (RV32Y)
	A.1.20.3. CM.POPRET (RV32Y)
	A.1.20.4. CM.POPRETZ (RV32Y)
	A.1.20.5. CM.MVSA01 (RV32Y)
	A.1.20.6. CM.MVA01S (RV32Y)

	A.1.21. "Zcmt" Standard Extension For Code-Size Reduction
	A.1.21.1. Jump Vector Table CSR (jvt)
	A.1.21.2. CM.JALT (RV32Y)
	A.1.21.3. CM.JT (RV32Y)


	A.2. ISA changes since 0.9.5
	A.3. Placeholder references to the unprivileged spec


	Chapters for the privileged specification
	Chapter 15. "Machine/Supervisor-Level ISA (RVY)" Extensions, Version 1.0
	15.1. Machine-Level CSRs added or extended by RVY
	15.1.1. Machine Trap Vector Base Address Capability Register (mtvec)
	15.1.2. Machine Scratch Capability Register (mscratch)
	15.1.3. Machine Exception Program Counter Capability (mepc)
	15.1.4. Machine Thread Identifier Capability (mtidc)

	15.2. Machine-Level CSRs modified by RVY
	15.2.1. Machine Status Registers (mstatus and mstatush)
	15.2.2. Machine Cause Register (mcause)
	15.2.3. Machine Trap Delegation Register (medeleg)
	15.2.4. Machine Trap Value Register (mtval)
	15.2.5. "Smstateen/Ssstateen" Integration

	15.3. Supervisor-Level CSRs added or extended by RVY
	15.3.1. Supervisor Trap Vector Base Address Capability Register (stvec)
	15.3.2. Supervisor Scratch Capability Register (sscratch)
	15.3.3. Supervisor Exception Program Counter Capability (sepc)
	15.3.4. Supervisor Thread Identifier Capability (stidc)

	15.4. Supervisor-Level CSRs modified by RVY
	15.4.1. Supervisor Cause Register (scause)
	15.4.2. Supervisor Trap Value Register (stval)
	15.4.3. "Smstateen/Ssstateen" Integration

	15.5. CHERI Exception handling
	15.6. CHERI Exceptions and speculative execution
	15.7. Physical Memory Attributes (PMA)
	15.8. Virtual Memory
	15.9. Modified Trap-Return Instructions Behavior
	15.9.1. SRET (RVY)
	15.9.2. MRET (RVY)


	Chapter 16. "Zyhybrid for Privileged Architectures" Extension, Version 1.0
	Chapter 17. "Supervisor-Level ISA for Virtual Memory (RV64Y)" Extension, Version 1.0 for RV64Y
	17.1. Capability Read-Write (CRW) Bit
	17.1.1. Limiting Capability Propagation

	17.2. CHERI page faults
	17.2.1. Extending the Page Table Entry Format

	17.3. Invalid Address Handling
	17.3.1. Updating CSRs
	17.3.2. Branches and Jumps
	17.3.3. Memory Accesses

	17.4. Integrating RVY with Debug
	17.4.1. Integrating RVY with Sdext
	17.4.1.1. Debug Mode
	17.4.1.2. Core Debug Registers
	17.4.1.3. Debug Program Counter Capability (dpc)
	17.4.1.4. Debug Scratch Register 0 (dscratch0)
	17.4.1.5. Debug Scratch Register 1 (dscratch1)
	17.4.1.6. Debug Root Capability Selector (drootcsel)
	17.4.1.7. Debug Root Capability Register (drootc)
	17.4.1.8. Modified Trap-Return Instruction Behavior
	17.4.1.8.1. DRET (RVY)


	17.4.2. Integrating Zyhybrid with Sdext
	17.4.2.1. Debug Default Data Capability CSR (dddc)

	17.4.3. "Sdtrig (RVY)", Integrating RVY with Sdtrig


	Chapter 18. Pointer Masking (Ssnpm, Smnpm, Smmpm, Sspm, Supm) (RV64Y)
	Chapter 19. "Svucrg" Extension, Version 1.0 for RV64Y
	19.1. Capability Revocation
	19.2. Extending the Page Table Entry Format
	19.3. Enabling Software or Hardware PTE updates
	19.4. Extending the Supervisor (sstatus) and Virtual Supervisor (vsstatus) Status Registers

	Chapter 20. Hypervisor "H" Extension (RVY)
	20.1. Hypervisor Status Register (hstatus)
	20.2. Hypervisor Environment Configuration Register (henvcfg)
	20.3. Hypervisor Exception Delegation Register (hedeleg)
	20.4. Virtual Supervisor Status Register (vsstatus)
	20.5. Virtual Supervisor Trap Vector Base Address Capability Register (vstvec)
	20.6. Virtual Supervisor Scratch Register (vsscratch)
	20.7. Virtual Supervisor Exception Program Counter Capability (vsepc)
	20.8. Virtual Supervisor Trap Value Register (vstval)
	20.9. Virtual Supervisor Thread Identifier Capability (vstidc)
	20.10. "Smstateen/Ssstateen" Integration
	20.11. Hypervisor Load and Store Instructions For Capability Data
	20.11.1. HLV.Y
	20.11.2. HSV.Y

	20.12. The Smycheriot Privileged ISA Extension
	20.12.1. Required Extensions
	20.12.2. CSR Reset States
	20.12.3. Additional CSR Legalization Requirements
	20.12.4. Capability Types
	20.12.5. Stack High Watermark CSRs
	20.12.6. Capability Load Filter and The Revocation Bitmap


	Appendix B: CHERI (RV64Y) Privileged Appendix
	B.1. RVY Privileged Extensions Summary
	B.1.1. H Extension (RVY added instructions)
	B.1.2. Machine level ISA for RVY
	B.1.3. Supervisor level ISA for RVY
	B.1.4. Sdext for RVY

	B.2. RVY YLEN CSR Summary
	B.3. CHERI System Implications
	B.3.1. Small CHERI system example
	B.3.2. Large CHERI system example
	B.3.3. Large CHERI pure-capability system example

	B.4. Placeholder references to privileged spec

	
	Bibliography


