RISC-V IOMMU Architecture
Specification

Version v1.0.1, 2025-08-28: Ratified

Table of Contents

PreammIbLe ..o e 1
Copyright and license information ... 2
COMETIDUETOT'S ... 3
T PIEEACE ..o 4
2 TETOAUCTIONY. ..o 6
2.1 GLOSSATY .. 8
2.2, USAGE TNOAELS ... 10
2.2.1 Non-virtualized OS .. 10
222 H Y POIVISOT L. 11
2.2.30 GUESE O Lo 12

2.3. Placement and data flow ... 13
24 TOMMU FRATUIES ... 17

3. DATA SEIUCTUTES ... 18
3.1. Device-Directory-Table (DDT) ... oo 19
311 NON-1EAE DT @IMETY oo 20
3120 LA DT @IMEIY oo 21
3.1.3. Device-CONtEXt FIEIAS .- ..o 22
3.1.3.1. Translation CONErOL (TC) ..o i 22

3.1.3.2. 10 hypervisor guest address translation and protection (10hgatp) ..., 24

3.1.3.3. Translation attribULESs (1@)............oiioiiiiii i 25

3.1.3.4. FIrSt-Stage CONMEEXT (FSC) oo 25

3.1.3.5. MSI page table pointer (MSLPTP) ... 27

3.1.3.6. MSI address mask (msi_addr_mask) and pattern (msi_addr_pattern). ... 28

3.14. Device-context configuration checks. ... 28

3.2. Process-DireCtory-Table (PDT)o oo 30
3.2.1 NON-1EAT PDT @I oo 30
312,20 AT PDT @IIEIY ..o 30
3.2.3. Process-CONTEXt FLElAS ... 31
3.2.3.1. Translation AttriDULESs (£@): ..o oo 31

3.2.3.2. FIrst-Stage CONMEEXT (FSC).. oo 31

3.2.4. Process-context configuration checks. ..., 32

3.3. Process to translate an TOVA .. e 33
3.3.1. Process to locate the DeviCe-COMEEXE 35
3.3.2. Process to locate the ProCess-COMEEXE., 35
3.3.3. Process to translate addresses Of SIS ... 36

3.4. IOMMU updating of PTE accessed (A) and dirty (D) updates. 38
3.5. Faults from virtual address translation ProCeSs ... 39
3.6. PCle ATS translation request handling ... 39
3.7. PCle ATS Page Request handling ... 41
3.8. Caching in-memory data SEIUCEUIESo...oiiiiii i 43
3.9. Updating in-memory data StrUCTUIE @NEITES . ..o 43
3.10. Endianness of in-memory data STIUCTUIES ... 44

4. IN-MEeMOTY QUEUE INTEITACE ... 45

4.1. Command-Queue (CQ)

4.11. IOMMU Page-Table cache invalidation commands

4.1.2. IOMMU Command-queue Fence commands
4.1.3. IOMMU directory cache invalidation commands
4.14.IO0MMU PCle ATS commands

4.2. Fault/Event-Queue (FQ)

4.3. Page-Request-Queue (PQ)

5. Debug support
6. Memory-mapped register interface

6.1. Register layout

6.2. Reset behavior

6.3. IOMMU capabilities (capabilities)

6.4. Features-control register (fct)

6.5. Device-directory-table pointer (ddtp)

6.6. Command-queue base (cgb)

6.7. Command-queue head (cgh)

6.8. Command-queue tail (cqt)

6.9. Fault queue base (fgb)

6.10. Fault queue head (fgh)

6.11. Fault queue tail (fqt)

6.12. Page-request-queue base (pgb)

6.13. Page-request-queue head (pgh)

6.14. Page-request-queue tail (pgt)

6.15. Command-queue CSR (cqcsr)

6.16. Fault queue CSR (fqcsr)

6.17. Page-request-queue CSR (pqgcsr)

6.18. Interrupt pending status register (ipsr)

6.19. Performance-monitoring counter overflow status (iocountovf)
6.20. Performance-monitoring counter inhibits (iocountinh)

6.21. Performance-monitoring cycles counter (iohpmecycles)

6.22. Performance-monitoring event counters (iohpmctri-31)

6.23. Performance-monitoring event selectors (iohpmevt1-31)

6.24. Translation-request IOVA (tr_req_iova)

6.25. Translation-request control (tr_req_ct1)

6.26. Translation-response (tr_response)

6.27. IOMMU QoS ID (iommu_gosid)

6.28. Interrupt-cause-to-vector register (icvec)

6.29. MSI configuration table (msi_cfg_tbl)

7. Software guidelines

7.1. Reading and writing IOMMU registers

7.2. Guidelines for initialization

7.3. Guidelines for invalidations
7.3.1. Changing device directory table entry
7.3.2. Changing process directory table entry
7.3.3. Changing MSI page table entry

46
47
49
50

51
53
56
58
59
59
60
60
63
64
65
66
66
66
67
67
68
68
69
70
72
73
4
76
76
7
7
7
80
80
81
82
83
84
86
86
86
88
88
89
89

7.3.4. Changing second-stage page table eNtry ... 89

7.3.5. Changing first-stage page table eNtry ... 90
7.3.6. Accessed (A)/Dirty (D) bit updates and page promotions.............c.c.oooiiiiiiiiiiiiiieeio oo 91
7.3.7. Device Address Translation Cache invalidations ... 91
7.3.8. Caching iNValid @NEITESo 92
7.3.9. Guidelines for emulating an IOMMU ... 92
T4, RECONTIGUITIIG PIVIAS ... 92
7.5. Guidelines for handling interrupts from TOMMU ... 92
7.6. Guidelines for enabling and disabling ATS and/or PRI ... 93
8. Hardware QUidelines ... 95
8.1. Integrating an IOMMU as @ PCIE A@VICE ..o 95
8.2. Faults from PIMA and PIMP .. 95
8.3, ADOTTING TIrANSACTIOTIS ... 95
8.4. Reliability, Availability, and Serviceability (RAS) ... 95
9. TOMMU EXTOIISIOTIS ... 97
9.1. Quality-of-Service (QoS) Identifiers Extension, Version 1.0 ... 97
9.1 1L RESET BERAVIOT ... 97
9.1.2. Sizing QOS TAENMTIFIOIS ... 98
9.1.3. IOMMU ATC Capacity Allocation and MONItOTING ... 98
9.2. Non-leaf PTE Invalidation Extension, Version 1.0 ... 99
9.2.1. Non-leaf PTE Invalidation by TOTINVAL.VMA i 99
9.2.2. Non-leaf PTE Invalidation by TOTINVAL.GVMA ... 99
9.3. Address Range Invalidation Extension, Version 1.0 ... 101
9.4. PTE Reserved-for-Software Bits 60-59, Version 1.0 ... 102

BibLiOGraphy .. e 103

Preamble | Page 1

Preamble

This document is Ratified.

A No changes are allowed. Any desired or needed changes can be the subject of a follow-on new
extension. Ratified extensions are never revised.

RISC-V IOMMU Architecture Specification | © RISC-V International

http://riscv.org/spec-state

Copyright and license information | Page 2

Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-BY
4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2023 by RISC-V International.

RISC-V IOMMU Architecture Specification | © RISC-V International

https://creativecommons.org/licenses/by/4.0/

Contributors | Page 3

Contributors
This RISC-V specification has been contributed to directly or indirectly by (in alphabetical order):

Aaron Durbin, Allen Baum, Anup Patel, Daniel Gracia Pérez, David Kruckemyer, Greg Favor, Ahmad Fawal,
Guerney D Hunt, John Hauser, Josh Scheid, Matt Evans, Manuel Rodriguez, Nick Kossifidis, Paul Donahue,
Paul Walmsley, Perrine Peresse, Philipp Tomsich, Rieul Ducousso, Scott Nelson, Siqi Zhao, Sunil V.L,
Tomasz Jeznach, Vassilis Papaefstathiou, Vedvyas Shanbhogue

RISC-V IOMMU Architecture Specification | © RISC-V International

Chapter 1. Preface | Page 4

Chapter 1. Preface

Preface to Version 20250828

This document describes the RISC-V IOMMU architecture. This release, version 20250828, includes the
following versions of the RISC-V IOMMU Base Architecture specification and standard extensions:

Specification Version Status
RISC-V IOMMU Base Architecture Specification 1.0 Ratified
Quality-of-Service (QoS) Identifiers Extension 1.0 Ratified
Non-leaf PTE Invalidation Extension 1.0 Ratified
Address Range Invalidation Extension 1.0 Ratified
PTE Reserved-for-Software Bits 60-59 1.0 Ratified

The following backward-compatible changes—comprising a set of clarifications and corrections—have
been made since version 20250620:

® Corrected typographic errors and made editorial updates.

Clarified the types of faults that may be caused by G-stage due to implicit PDT accesses.

Updated the software guideline indicating that wired-signaled interrupts are supported when IGS is
either WSI or BOTH.

Clarified that ATS Translation responses with U=1 include the granted permissions.

Clarified that MSI PTEs do not include A/D bits, but these bits may be assumed to be 1.

Included definitions for TLB and Walk in the Glossary.

The following change has been made which, while not strictly backwards compatible, is not expected to
cause software portability issues in practice:

® While the MSI address mask and pattern fields are 52 bits wide, any bits beyond the maximum GPA
width supported by the IOMMU are reserved for future standard use.

These changes were made through PR#569, [1].
Preface to Version 20250620

This document describes the RISC-V IOMMU architecture. This release, version 20250620, includes the
following versions of the RISC-V IOMMU Base Architecture specification and standard extensions:

Specification Version Status
RISC-V IOMMU Base Architecture Specification 1.0 Ratified
Quality-of-Service (QoS) Identifiers Extension 1.0 Ratified
Non-leaf PTE Invalidation Extension 1.0 Ratified
Address Range Invalidation Extension 1.0 Ratified

The following backward-compatible changes—comprising a set of clarifications and corrections—have
been made since version 20240901

® Typographic errors have been corrected, and editorial updates have been made.
® (Clarified that the translation size is implementation-defined when both stages are bare.

® (Clarified that the size of a queue is one less than the number of its entries.

RISC-V IOMMU Architecture Specification | © RISC-V International

Chapter 1. Preface | Page 5

These changes were made through PR#441, [2].

Preface to Version 20240901

Chapters 2 through 8 of this document form the RISC-V IOMMU Base Architecture Specification. Chapter
9 includes the standard extensions to the base architecture. This release, version 20240901, contains the
following versions of the RISC-V IOMMU Base Architecture specification and standard extensions:

Specification Version Status
RISC-V IOMMU Base Architecture specification 1.0 Ratified
Quality-of-Service (QoS) Identifiers Extension 1.0 Ratified

The following backward-compatible changes, comprising a set of clarifications and corrections, have been
made since version 1.0.0:

® A set of typographic errors and editorial updates were made.

® Translations cached, if any, in Bare mode do not require invalidation.

® (Clarified that memory faults encountered by commands also set the cqmf flag.

® Values tested by algorithms in SW Guidelines are before modifications made by the algorithms.

® Included SW guidelines for modifying non-leaf PDT entries.

® Clarified the behavior for in-flight transactions observed at the time of ddtp write operations.

® (Clarified the behavior when IOTINVAL is invoked with an invalid address.

® Stated that faults leading to UR/CA ATS responses are reported in the Fault Queue.

® Added a detailed description of the capabilities.PAS field.

® SW guidelines for changing IOMMU modes and programming tr_req_ctl and HPM counters.

® PCle ATS Translation Resp. grants execute permission only if requested.

® (Clarified the handling of hardware implementations that internally split 8-byte transactions.

® Shadow stack encodings introduced by Zicfiss are reserved for IOMMU use.

® Listed the fault codes reported for faults detected by Page Request.

® Updated Fig 31 to remove the unused Destination ID field for ATS.PRGR

® Included a software guideline for IOMMU emulation.

These changes were made through PR#243 [3].
Preface to Version 1.0.0

® Ratified version of the RISC-V IOMMU Architecture Specification.

RISC-V IOMMU Architecture Specification | © RISC-V International

Chapter 2. Introduction | Page 6

Chapter 2. Introduction

The Input-Output Memory Management Unit (IOMMU), sometimes referred to as a System MMU
(SMMU), is a system-level Memory Management Unit (MMU) that connects direct-memory-access-capable
Input/Output (I/O) devices to system memory.

For each I/O device connected to the system through an IOMMU, software can configure at the IOMMU a
device context, which associates with the device a specific virtual address space and other per-device
parameters. By giving each device its own separate device context at an IOMMU, each device can be
individually configured for a separate operating system, which may be a guest OS or the main (host) OS.
On every memory access initiated by a device, the IOMMU identifies the originating device by some form
of unique device identifier, which the IOMMU then uses to locate the appropriate device context within
data structures supplied by software. For PCle [4], for example, the originating device may be identified by
the unique 16-bit triplet of PCI bus number (8-bit), device number (5-bit), and function number (3-bit)
(collectively known as routing identifier or RID) and optionally up to 8-bit segment number when the
IOMMU supports multiple Hierarchies. This specification refers to such unique device identifier as
device_id and supports up to 24-bit wide identifiers.

A Hierarchy is a PCI Express I/O interconnect topology, wherein the Configuration Space
addresses, referred to as the tuple of Bus/Device/Function Numbers, are unique. In some

0 contexts, a Hierarchy is also called a Segment, and in Flit Mode, the Segment number is
sometimes included in the ID of a Function.

Some devices may support shared virtual addressing which is the ability to share process address spaces
with devices. Sharing process address spaces with devices allows to rely on core kernel memory
management for DMA, removing some complexity from application and device drivers. After binding to a
device, applications can instruct it to perform DMA on statically or dynamically allocated buffers. To
support such addressing, software can configure one or more process contexts into the device context.
Every memory access initiated by such a device is accompanied by a unique process identifier, which the
IOMMU uses in conjunction with the unique device identifier to locate the appropriate process context
configured by software in the device context. For PCle, for example, the process context may be identified
by the unique 20-bit process address space identifier (PASID). This specification refers to such unique
process identifiers as process_id and supports up to 20-bit wide identifiers.

The IOMMU employs a two-stage address translation process to translate the IOVA to an SPA and to
enforce memory protections for the DMA. To perform address translation and memory protection the
IOMMU uses same page table formats as used by the CPU’'s MMU for the first-stage and second-stage
address translation. Using the same page table formats as the CPU’'s MMU removes some of the memory
management complexity for DMA. Use of an identical format also allows the same page tables to be used
simultaneously by both the CPU MMU and the IOMMU.

Although there is no option to disable two-stage address translation, either stage may be effectively
disabled by configuring the virtual memory scheme for that stage to be Bare i.e. perform no address
translation or memory protection.

The virtual memory scheme employed by the IOMMU may be configured individually per device in the
IOMMU. Devices perform DMA using an /O virtual address (IOVA). Depending on the virtual memory
scheme selected for a device, the IOVA used by the device may be a supervisor physical address (SPA),
guest physical address (GPA), or a virtual address (VA).

If the virtual memory scheme selected for both stages is Bare then the IOVA is a SPA. There is no address
translation or protection performed by the IOMMU.

If the virtual memory scheme selected for first-stage is Bare but the scheme for the second-stage is not
Bare then the IOVA is a GPA. The first-stage is effectively disabled. The second-stage translates the GPA to

RISC-V IOMMU Architecture Specification | © RISC-V International

Chapter 2. Introduction | Page 7

SPA and enforces the configured memory protections. Such a configuration would be typically employed
when the device control is passed through to a virtual machine but the Guest OS in the VM does not use
first-stage address translation to further constrain memory accesses from such devices. Comparing to a
RISC-V hart, this configuration is analogous to two-stage address translation being in effect on a RISC-V
hart with the G-stage active and the VS-stage set to Bare.

If the virtual memory scheme selected for first-stage is not Bare but the scheme for the second-stage is
Bare then IOVA is a VA. The second-stage is effectively disabled. The first-stage translates the VA to a SPA
and enforces the configured memory protections. This configuration would be typically employed when
the IOMMU is used by a native OS or when the control of the device is retained by the hypervisor itself.
Comparing to a RISC-V hart, this configuration is analogous to single-stage address translation being in
effect on a RISC-V hart.

If the virtual memory scheme selected for neither stage is Bare then the IOVA is a VA. Two-stage address
translation is in effect. The first-stage translates the VA to a GPA and the second-stage translates the GPA
to a SPA. Each stage enforces the configured memory protections. Such a configuration would be typically
be employed when the device control is passed-through to a virtual machine and the Guest OS in the VM
uses the first-stage address translation to further constrain the memory accessed by such devices and
associated privileges and memory protections. Comparing to a RISC-V hart, this configuration is analogous
to two-stage address translation being in effect on a RISC-V hart with both G-stage and VS-stage active (not
Bare).

DMA address translation in the IOMMU has certain performance implications for DMA accesses as the
access time may be lengthened by the time required to determine the SPA using the software provided data
structures. Similar overheads in the CPU MMU are mitigated typically through the use of a translation
look-aside buffer (TLB) to cache these address translations such that they may be re-used to reduce the
translation overhead on subsequent accesses. The IOMMU may employ similar address translation caches,
referred as [OMMU Address Translation Cache (IOATC). The IOMMU provides mechanisms for software
to synchronize the IOATC with the memory resident data structures used for address translation when
they are modified. Software may configure the device context with a software defined context identifier
called guest soft-context identifier (6SCID) to indicate that a collection of devices are assigned to the same
VM and thus access a common virtual address space. Software may configure the process context with a
software defined context identifier called process soft-context identifier (PSCID) to identify a collection of
processes that share a common virtual address space. The IOMMU may use the 6SCID and PSCID to tag
entries in the IOATC to avoid duplication and simplify invalidation operations.

Some devices may participate in the translation process and provide a device side ATC (DevATC) for its
own memory accesses. By providing a DevATC, the device shares the translation caching responsibility and
thereby reduce probability of "thrashing” in the IOATC. The DevATC may be sized by the device to suit its
unique performance requirements and may also be used by the device to optimize DMA latency by
prefetching translations. Such mechanisms require close cooperation of the device and the IOMMU using
a protocol. For PCle, for example, the Address Translation Services (ATS) protocol may be used by the
device to request translations to cache in the DevATC and to synchronize it with updates made by software
address translation data structures. The device participating in the address translation process also enables
the use of I/O page faults to avoid the core kernel memory manager from having to make all physical
memory that may be accessed by the device resident at all times. For PCle, for example, the device may
implement the Page Request Interface (PRI) to dynamically request the memory manager to make a page
resident if it discovers the page for which it requested a translation was not available. An IOMMU may
support specialized software interfaces and protocols with the device to enable services such as PCle ATS
and PCle PRI [4].

In systems built with an Incoming Message-Signaled Interrupt Controller (IMSIC), the IOMMU may be

programmed by the hypervisor to direct message-signaled interrupts (MSI) from devices controlled by the
guest OS to a guest interrupt file in an IMSIC. Because MSIs from devices are simply memory writes, they

RISC-V IOMMU Architecture Specification | © RISC-V International

2.1. Glossary | Page 8

would naturally be subject to the same address translation that an IOMMU applies to other memory writes.
However, the RISC-V Advanced Interrupt Architecture [5] requires that IOMMUs treat MSIs directed to
virtual machines specially, in part to simplify software, and in part to allow optional support for memory-
resident interrupt files. The device context is configured by software with parameters to identify memory
accesses to a virtual interrupt file and to be translated using a MSI address translation table configured by
software in the device context.

2.1. Glossary

Table 1. Terms and definitions
Term Definition
AIA RISC-V Advanced Interrupt Architecture [5].
ATS / PCle ATS Address Translation Services: A PCle protocol to support DevATC [4].

CXL Compute Express Link bus standard.

DC / Device A hardware representation of state that identifies a device and the VM to which the
Context device is assigned.

DDT Device-directory-table: A radix-tree structure traversed using the unique device

identifier to locate the Device Context structure.

DDI Device-directory-index: A sub-field of the unique device identifier used as a index
into a leaf or non-leaf DDT structure.

Device ID An identification number that is up to 24-bits to identify the source of a DMA or
interrupt request. For PCle devices this is the routing identifier (RID) [4].

DevATC An address translation cache at the device.

DMA Direct Memory Access.

GPA Guest Physical Address: An address in the virtualized physical memory space of a

virtual machine.

GSCID Guest soft-context identifier: An identification number used by software to uniquely
identify a collection of devices assigned to a virtual machine. An IOMMU may tag
IOATC entries with the GSCID. Device contexts programmed with the same GSCID
must also be programmed with identical second-stage page tables.

Guest Software in a virtual machine.

HPM Hardware Performance Monitor.

Hypervisor Software entity that controls virtualization.

ID Identifier.

IMSIC Incoming Message-signaled Interrupt Controller.

IOATC IOMMU Address Translation Cache: cache in IOMMU that caches data structures
used for address translations.

IOVA I/O Virtual Address: Virtual address for DMA by devices.

MSI Message Signaled Interrupts.

(0N Operating System.

PASID Process Address Space Identifier: It identifies the address space of a process. The
PASID value is provided in the PASID TLP prefix of the request.

PBMT Page-Based Memory Types.

PC Process Context.

PCle Peripheral Component Interconnect Express bus standard [4].

RISC-V IOMMU Architecture Specification | © RISC-V International

Term

PDI

PDT

PMA
PMP
PPN

PRI

Process ID

PSCID

PT
PTE

Reserved

RID / PCIe RID
RO

RW

RWI1C

RWIS

SOC
SPA

TLB

TLP
VA

2.1. Glossary | Page 9

Definition

Process-directory-index: a sub field of the unique process identifier used to index
into a leaf or non-leaf PDT structure.

Process-directory-table: A radix tree data structure traversed using the unique
Process identifier to locate the process context structure.

Physical Memory Attributes.
Physical Memory Protection.
Physical Page Number.

Page Request Interface - a PCle protocol [4] that enables devices to request OS
memory manager services to make pages resident.

An identification number that is up to 20-bits to identify a process context. For PCle
devices this is the PASID [4].

Process soft-context identifier: An identification number used by software to
identify a unique address space. The IOMMU may tag IOATC entries with PSCID.

Page Table.
Page Table Entry. A leaf or non-leaf entry in a page table.

A register or data structure field reserved for future use. Reserved fields in data
structures must be set to O by software. Software must ignore reserved fields in
registers and preserve the value held in these fields when writing values to other
fields in the same register.

PCle routing identifier [4].

Read-only - Register bits are read-only and cannot be altered by software. Where
explicitly defined, these bits are used to reflect changing hardware state, and as a
result bit values can be observed to change at run time.

If the optional feature that would Set the bits is not implemented, the bits must be
hardwired to Zero

Read-Write - Register bits are read-write and are permitted to be either Set or
Cleared by software to the desired state.

If the optional feature that is associated with the bits is not implemented, the bits
are permitted to be hardwired to Zero.

Write-1-to-clear status - Register bits indicate status when read. A Set bit indicates a
status event which is Cleared by writing a 1b. Writing a Ob to RW1C bits has no
effect.

If the optional feature that would Set the bit is not implemented, the bit must be
read-only and hardwired to Zero

Read-Write-1-to-set - register bits indicate status when read. The bit may be Set by
writing 1b. Writing a Ob to RW1S bits has no effect.

If the optional feature that introduces the bit is not implemented, the bit must be
read-only and hardwired to Zero

System on a chip, also referred as system-on-a-chip and system-on-chip.

Supervisor Physical Address: Physical address used to to access memory and
memory-mapped resources.

Translation Lookaside Buffer. A cache that stores virtual-to-physical address
translations to reduce translation latency. On a TLB hit, the translation is completed
without accessing the first-stage and/or second-stage page tables. On a TLB miss, a
page table walk is performed. Some implementations cache non-leaf levels of the
page tables, reducing the number of walks required.

Transaction Layer Packet.

Virtual Address.

RISC-V IOMMU Architecture Specification | © RISC-V International

2.2. Usage models | Page 10

Term Definition

VM Virtual Machine: An efficient, isolated duplicate of a real computer system. In this
specification it refers to the collection of resources and state that is accessible when
a RISC-V hart supporting the hypervisor extension executes with the virtualization
mode set to 1.

VMM Virtual Machine Monitor. Also referred to as hypervisor.
VS Virtual Supervisor: Supervisor privilege in virtualization mode.
Walk A single memory access by the IOMMU to load a table entry. Each entry load—leaf

or non-leaf—is one walk. The number of walks required to load the leaf entry
depends on the number of table levels and may be fewer if non-leaf levels are
already cached.

WARL Write Any values, Reads Legal values: Attribute of a register field that is only defined
for a subset of bit encodings, but allow any value to be written while guaranteeing to
return a legal value whenever read.

WPRI Writes Preserve values, Reads Ignore values: Attribute of a register field that is
reserved for future use.

2.2. Usage models

2.2.1. Non-virtualized OS
A non-virtualized OS may use the IOMMU for the following significant system-level functionalities:

1. Protect the operating system from bad memory accesses from errant devices
2. Support 32-bit devices in 64-bit environment (avoidance of bounce buffers)

3. Support mapping of contiguous virtual addresses to an underlying fragmented physical addresses
(avoidance of scatter/gather lists)

4. Support shared virtual addressing

In the absence of an IOMMU a device could access any memory, such as privileged memory, and cause
malicious or unintended corruptions. This may be due to hardware bugs, device driver bugs, or due to
malicious software/hardware.

The IOMMU offers a mechanism for the OS to defend against such unintended corruptions by limiting the
memory that can be accessed by devices. As depicted in Figure 1 the OS may configure the IOMMU with a
page table to translate the IOVA and thereby limit the addresses that may be accessed to those allowed by
the page table.

RISC-V IOMMU Architecture Specification | © RISC-V International

2.2. Usage models | Page 11

Memory allowed to Disallowed memory
be accessed by (e.g., privileged
Device D1 memory)

e

First-stage
Page Table

A A

Device D1

Figure 1. Device isolation in non-virtualized OS

Legacy 32-bit devices cannot access the memory above 4 GiB. The IOMMU, through its address remapping
capability, offers a simple mechanism for the device to directly access any address in the system (with
appropriate access permission). Without an IOMMU, the OS must resort to copying data through buffers
(also known as bounce buffers) allocated in memory below 4 GiB. In this scenario the IOMMU improves
the system performance.

The IOMMU can be useful to perform scatter/gather DMA as it permits to allocate large regions of memory
for I/O without the need for all of the memory to be contiguous. A contiguous virtual address range can
map to such fragmented physical addresses and the device programmed with the virtual address range.

The IOMMU can be used to support shared virtual addressing which is the ability to share a process
address space with devices. The virtual addresses used for DMA are then translated by the IOMMU to an
SPA.

When the IOMMU is used by a non-virtualized OS, the first-stage suffices to provide the required address
translation and protection function and the second-stage may be set to Bare.

2.2.2. Hypervisor

IOMMU makes it possible for a guest operating system, running in a virtual machine, to be given direct
control of an I/O device with only minimal hypervisor intervention.

A guest OS with direct control of a device will program the device with guest physical addresses, because
that is all the OS knows. When the device then performs memory accesses using those addresses, an
IOMMU is responsible for translating those guest physical addresses into supervisor physical addresses,
referencing address-translation data structures supplied by the hypervisor.

Figure 2 illustrates the concept. The device D1 is directly assigned to VM-1 and device D2 is directly
assigned to VM-2. The VMM configures a second-stage page table to be used for each device and restricts
the memory that can be accessed by D1 to VM-1 associated memory and from D2 to VM-2 associated
memory.

RISC-V IOMMU Architecture Specification | © RISC-V International

2.2. Usage models | Page 12

VM -1 VM - 2
A A
IOMMU
Device D1 Device D2
Second-stage PT Second-stage PT
A A
Device D1 Device D2

Figure 2. DMA translation to enable direct device assignment

To handle MSIs from a device controlled by a guest OS, the hypervisor configures an IOMMU to redirect
those MSIs to a guest interrupt file in an IMSIC (see Figure 3) or to a memory-resident interrupt file. The
IOMMU is responsible to use the MSI address-translation data structures supplied by the hypervisor to
perform the MSI redirection. Because every interrupt file, real or virtual, occupies a naturally aligned 4-KiB
page of address space, the required address translation is from a virtual (guest) page address to a physical
page address, the same as supported by regular RISC-V page-based address translation.

IMSIC

M-level Int. File

S-level Int. File

IOMMU 10 Bridge
MSI MSI Guest Int. File 1
Device [—— Write I MSI PT Write —p| »
(GPA) (SPA)

Guest Int. File 2

Guest Int. File N

Figure 3. MSI address translation to direct guest programmed MSI to IMSIC guest interrupt files

2.2.3. Guest OS

The hypervisor may provide a virtual IOMMU facility, through hardware emulation or by enlightening the
guest OS to use a software interface with the Hypervisor (also known as para-virtualization). The guest OS
may then use the facilities provided by the virtual IOMMU to avail the same benefits as those discussed for
a non-virtualized OS through the use of a first-stage page table that it controls. The hypervisor establishes a
second-stage page table that it controls to virtualize the address space for the virtual machine and to
contain memory accesses from the devices passed through to the VM to the memory associated with the
VM.

With two-stage address translations active, the IOVA is first translated to a GPA using the first-stage page
tables managed by the guest OS and the GPA translated to a SPA using the second-stage page tables
managed by the hypervisor.

Figure 4 illustrates the concept.

RISC-V IOMMU Architecture Specification | © RISC-V International

2.3. Placement and data flow | Page 13

VM -1 VM - 2 Hypervisor
memory memory memory
A A A
/IOMMU ™
Device D1 Device D2
Second-stage PT Second-stage PT
? A
Device D1 Device D3
First-stage PT First-stage PT

- 4 J

Device D1 Device D2 Device D3

Figure 4. Address translation in [IOMMU for Guest OS

The IOMMU is configured to perform address translation using a first-stage and second-stage page table
for device D1. The second-stage is typically used by the hypervisor to translate GPA to SPA and limit the
device D1 to memory associated with VM-1. The first-stage is typically configured by the Guest OS to
translate a VA to a GPA and contain device D1 access to a subset of VM-1 memory.

For device D2 only the second-stage is active and the first-stage is set to Bare.

The host OS or hypervisor may also retain a device, such as D3, for its own use. The first-stage suffices to
provide the required address translation and protection function for device D3 and the second-stage is set
to Bare.

2.3. Placement and data flow

Figure 5 shows an example of a typical system on a chip (SOC) with RISC-V hart(s). The SOC incorporates
memory controllers and several 10 devices. This SOC also incorporates two instances of the IOMMU. A
device may be directly connected to the 10 Bridge and the system interconnect or may be connected
through a Root Port when a IO protocol transaction to system interconnect transaction translation is
required. In case of PCle [4], for example, the Root Port is a PCle port that maps a portion of a hierarchy
through an associated virtual PCI-PCI bridge and maps the PCle IO protocol transactions to the system
interconnect transactions.

The first IOMMU instance, IOMMU O (associated with the 10 Bridge O), interfaces a Root Port to the
system fabric/interconnect. One or more endpoint devices are interfaced to the SoC through this Root Port.
In the case of PCle, the Root Port incorporates an ATS interface to the IOMMU that is used to support the
PCle ATS protocol by the IOMMU. The example shows an endpoint device with a device side ATC
(DevATC) that holds translations obtained by the device from IOMMU O using the PCle ATS protocol [4].

RISC-V IOMMU Architecture Specification | © RISC-V International

2.3. Placement and data flow | Page 14

When such IO-protocol-to-system-fabric-protocol translation using a Root Port is not required, the devices
may interface directly with the system fabric. The second IOMMU instance, IOMMU 1 (associated with the
10 Bridge 1), illustrates interfacing devices (I0 Devices A and B) to the system fabric without the use of a
Root Port.

The 10 Bridge is placed between the device(s) and the system interconnect to process DMA transactions. 10
Devices may perform DMA transactions using 10 Virtual Addresses (VA, GVA or GPA). The 10 Bridge
invokes the associated IOMMU to translate the IOVA to a Supervisor Physical Addresses (SPA).

The IOMMU is not invoked for outbound transactions.

Host
interface IOMMU 0 —emees EndPoint
ATS Device[pevaTC
feeeee- >
Data structure Device Translation Device translation
interface Completion Request
RISC-V cores Root Switch EndPoint
PA " IOVA Port @ Device
Inbound traffic 10 Bridge 0 Inbound
and traffic
IOMMU implicit
accesses
Outbound
traffic
N
System
interconn
System terconnect Outbo_und
Memory traffic
Host
PTEs Memory interface IOMMU 1
- Controller
Device directory
Process directory
Data structure Device Translation Device translation 10 Device
Queues interface Completion Request A
PA .
Inbound traffic 10 Bridge 1 Inbound
and traffic
10MMU implicit 10 Device
accesses B
Outbound ™
traffic

Figure 5. Example of IOMMUs integration in SoC.

The IOMMU is invoked by the IO Bridge for address translation and protection for inbound transactions.
The data associated with the inbound transactions is not processed by the IOMMU. The IOMMU behaves
like a look-aside IP to the 10 Bridge and has several interfaces (see Figure 6):

® Host interface: it is an interface to the IOMMU for the harts to access its memory-mapped registers and
perform global configuration and/or maintenance operations.

® Device Translation Request interface: it is an interface, which receives the translation requests from
the 10 Bridge. On this interface the IO Bridge provides information about the request such as:

a. The hardware identities associated with transaction - the device_id and if applicable the
process_id and its validity. The IOMMU uses the hardware identities to retrieve the context
information to perform the requested address translations.

b. The IOVA and the type of the transaction (Translated or Untranslated).
c. Whether the request is for a read, write, execute, or an atomic operation.

i. Execute requested must be explicitly associated with the request (e.g, using a PCle PASID).
When not explicitly requested, the default must be O.

d. The privilege mode associated with the request. When a privilege mode is not explicitly associated
with the request (e.g.,, using a PCle PASID), the default privilege mode must be User. For requests
without a process_id the privilege mode must be User.

RISC-V IOMMU Architecture Specification | © RISC-V International

2.3. Placement and data flow | Page 15

e. The number of bytes accessed by the request.

f The 10 Bridge may also provide some additional opaque information (e.g. tags) that are not
interpreted by the IOMMU but returned along with the response from the IOMMU to the IO
Bridge. As the IOMMU is allowed to complete translation requests out of order, such information
may be used by the 10 Bridge to correlate completions to previous requests.

® Data Structure interface: it is used by the IOMMU for implicit access to memory. It is a requester
interface to the IO Bridge and is used to fetch the required data structure from main memory. This
interface is used to access:

a. The device and process directories to get the context information and translation rules.
b. The first-stage and/or second-stage page table entries to translate the IOVA.

¢. The in-memory queues (command-queue, fault-queue, and page-request-queue) used to interface
with software.

® Device Translation Completion interface: it is an interface which provides the completion response
from the IOMMU for previously requested address translations. The completion interface may provide
information such as:

a. The status of the request, indicating if the request completed successfully or a fault occurred.
b. If the request was completed successfully; the Supervisor Physical Address (SPA).
c¢. Opaque information (e.g. tags), if applicable, associated with the request.

d. The page-based memory types (PBMT), if Svpbmt is supported, obtained from the IOMMU address
translation page tables. The IOMMU provides the page-based memory type as resolved between the
first-stage and second-stage page table entries.

® ATS interface: The ATS interface, if the optional PCle ATS capability is supported by the IOMMU, is
used to communicate with ATS capable endpoints through the PCIe Root Port. This interface is used:

a. To receive ATS translation requests from the endpoints and to return the completions to the
endpoints. The Root Port may provide an indication if the endpoint originating the request is a
CXL type 1 or type 2 device.

b. To send ATS "Invalidation Request’ messages to the endpoints and to receive the "Invalidation
Completion” messages from the endpoints.

c. To receive "Page Request' and "Stop Marker" messages from the endpoints and to send "Page
Request Group Response"” messages to the endpoints.

The interfaces related to recording an incoming MSI in a memory-resident interrupt file (MRIF) (See
RISC-V Advanced Interrupt Architecture [5]) are implementation-specific. The partitioning of
responsibility between the IOMMU and the 10 bridge for recording the incoming MSI in an MRIF and
generating the associated notice MSI are implementation-specific.

RISC-V IOMMU Architecture Specification | © RISC-V International

2.3. Placement and data flow | Page 16

0
RISC-V intl(:gztce (
cores > IOMMU -----s
ATS
- >
System Data structure Device Translation | A Device translation
Memory interface‘ Completion \ Request 1O Device
System
interconnect
PA I IOVA
PTEs Memory _ M 10 Bridge
Controller [Inbound traffic A Inbound
Device directory and traffic
. IOMMU implicit
Process directory
accesses
Outbound
traffic

Figure 6. IOMMU interfaces.

Similar to the RISC-V harts, physical memory attributes (PMA) and physical memory protection (PMP)
checks must be completed on all inbound IO transactions even when the IOMMU is in bypass (Bare mode).
The placement and integration of the PMA and PMP checkers is a platform choice. PMA and PMP checkers
reside outside the IOMMU. The example above is showing them in the IO Bridge.

Implicit accesses by the IOMMU itself through the Data Structure interface are checked by the PMA
checker. PMAs are tightly tied to a given physical platform’s organization, and many details are inherently
platform-specific.

The memory accesses performed by the IOMMU using the Data Structure interface need not be ordered in
general with the device-initiated memory accesses.

The IOMMU may generate implicit memory accesses on the Data Structure interface to access
data structures needed to perform the address translations. Such accesses must not be
o blocked by the original device-initiated memory access.

The IO bridge may perform ordering of memory accesses on the Data Structure interface to
satisfy the necessary hazard checks and other rules as defined by the IO bridge and the system
interconnect.

The IOMMU provides the resolved PBMT (PMA, 10, NC) along with the translated address on the device
translation completion interface to the 10 Bridge. The PMA checker in the IO Bridge may use the provided
PBMT to override the PMA(s) for the associated memory pages.

The PMP checker may use the hardware ID of the bus access initiator to determine physical memory
access privileges. As the IOMMU itself is a bus access initiator for its implicit accesses, the IOMMU
hardware ID may be used by the PMP checker to select the appropriate access control rules.

The IOMMU does not validate the authenticity of the hardware IDs provided by the IO bridge.

The IO bridge and/or the root ports must include suitable mechanisms to authenticate the
hardware IDs. In some SOCs this may be trivially achieved as a property of the devices being

o integrated into the SOC and their IDs being immutable. For PCle, for example, the PCle
defined Access Control Services (ACS) Source Validation capabilities may be used to
authenticate the hardware IDs. Other implementation-specific methods in the 10 bridge may
be provided to perform such authentication.

RISC-V IOMMU Architecture Specification | © RISC-V International

2.4. IOMMU features | Page 17

2.4. IOMMU features

Version 1.0 of the RISC-V IOMMU specification supports the following features:

Memory-based device context to locate parameters and address translation structures. The device
context is located using the hardware-provided unique device_id. The supported device_id width
may be up to 24 bits.

Memory-based process context to locate parameters and address translation structures using
hardware-provided unique process_id. The supported process_id may be up to 20 bits.

16-bit GSCIDs and 20-bit PSCIDs.
Two-stage address translation.

Page based virtual-memory system as specified by the RISC-V Privileged specification [6] to allow
software flexibility to either use a common page table for the CPU MMU as well as the IOMMU or to
use a separate page table for the IOMMU.

Up to 57-bit virtual-address width, 56-bit system-physical-address, and 59-bit guest-physical-address
width.

Hardware updating of PTE Accessed and Dirty bits.

Identifying memory accesses to a virtual interrupt file and MSI address translation using MSI page
tables specified by the RISC-V Advanced Interrupt Architecture [5].

Svnapot and Svpbmt extensions.

PCle ATS and PRI services [4]. Support for translating an IOVA to a GPA instead of a SPA in response to
a translation request.

A hardware performance monitor (HPM).
MSI and wire-signaled interrupts to request service from software.

A register interface for software to request an address translation to support debug.

Features supported by the IOMMU may be discovered using the capabilities register Section 6.3.

RISC-V IOMMU Architecture Specification | © RISC-V International

Chapter 3. Data Structures | Page 18

Chapter 3. Data Structures

A data structure called device-context (DC) is used by the IOMMU to associate a device with an address
space and to hold other per-device parameters used by the IOMMU to perform address translations. A
radix-tree data structure called device directory table (DDT) that is traversed using the device_id is used to
locate the DC.

The address space used by a device may require second-stage address translation and protection when the
control of the device is passed through to a Guest OS. A Guest OS may optionally provide a first-stage page
table for translating IOVA used by a device controlled by the Guest OS to a GPA. When the use of a first-
stage is not required, then it may be effectively disabled by selecting the first-stage address translation
scheme to be Bare. The second-stage is used to translate the GPA to a SPA.

When the control of the device is retained by the hypervisor or Host OS itself then only the first-stage
suffices to perform necessary address translations and protections; the second-stage scheme may be
effectively disabled for the device by programming the second-stage address translation scheme to be Bare.

When second-stage address translation is not Bare, the DC holds the PPN of the root second-stage page
table; a guest-soft-context-ID (6SCID), which facilitates invalidation of cached address translations on a
per-virtual-machine basis; and the second-stage address translation scheme.

Some devices support multiple process contexts where each context may be associated with a different
process and thus a different virtual address space. The context in such devices may be configured with a
process_id that identifies the address space. When making a memory access, such devices signal the
process_id along with the device_id to identify the accessed address space. An example of such a device
may be a GPU that supports multiple process contexts, where each context is associated with a different
user process, such that the GPU may access memory using the virtual address provided by the user process
itself. To support selecting an address space associated with the process_id, the DC holds the PPN of the
root Process Directory Table (PDT), a radix-tree data structure, indexed using fields of the process_id to
locate a data structure called the Process Context (PC).

When a PDT is active, the controls for first-stage address translation are held in the (PC).
When a PDT is not active, the controls for first-stage address translation are held in the DC itself.

The first-stage address translation controls include the PPN of the root first-stage page table; a process-
soft-context-ID (PSCID), which facilitates invalidation of cached address translations on a per-address-
space basis; and the first-stage address translation scheme.

To handle MSIs from a device controlled by a guest OS, an IOMMU must be able to redirect those MSIs to a
guest interrupt file in an IMSIC. Because MSIs from devices are simply memory writes, they would
naturally be subject to the same address translation that an IOMMU applies to other memory writes.
However, the IOMMU architecture may treat MSIs directed to virtual machines specially, in part to
simplify software, and in part to allow optional support for memory-resident interrupt files. To support
this capability, the architecture adds to the device contexts an MSI address mask and address pattern, used
together to identify pages in the guest physical address space that are the destinations of MSIs; and the real
physical address of an MSI page table for controlling the translation and/or conversion of MSIs from the
device. The IOMMU support for MSIs to virtual machines is specified by the Advanced Interrupt
Architecture specification.

The DC further holds controls for the type of transactions that a device is allowed to generate. One example
of such a control is whether the device is allowed to use the PCle defined Address Translation Service
(ATS) [4].

Two formats of the device-context structure are supported:

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1. Device-Directory-Table (DDT) | Page 19
® Base Format - is 32-bytes in size used when the special treatment of MSI as specified in Section 3.3.3 is
not supported by the IOMMU.
® Extended Format - is 64-bytes in size and extends the base format DC with additional fields to translate
MSIs as specified in Section 3.3.3.

If capabilities.MSI_FLAT is 1 then the Extended Format is used else the Base Format is used.

The DDT used to locate the DC may be configured to be a 1, 2, or 3 level radix-tree depending on the
maximum width of the device_id supported. The partitioning of the device_id to obtain the device
directory indexes (DDI) to traverse the DDT radix-tree are as follows:

23 16 15 7 6 0
DDI[2] DDI[1] DDI[0]

Figure 7. Base format device_id partitioning

23 15 14 6 5 0
DDI[2] DDI[1] DDI[0]

Figure 8. Extended format device_id partitioning

The PDT may be configured to be a 1, 2, or 3 level radix-tree depending on the maximum width of the
process_id supported by that device. The partitioning of the process_id to obtain the process directory
indices (PDI) to traverse the PDT radix-tree are as follows:

19 17 16 8 7 0
PDI[2] PDI[1] PDI[0]

Figure 9. process_id partitioning for PDT radix-tree traversal

The process_id partitioning is designed to require a maximum of 4 KiB, a page, of memory for
each process directory table. The root of the table when using a 20-bit wide process_id is not

o fully populated. The option of making the root table occupy 32 KiB was considered but not
adopted as these tables are allocated at run time and contiguous memory allocation larger
than a page may stress the Guest and hypervisor memory allocators.

All RISC-V IOMMU implementations are required to support DDT and PDT located in main
o memory. Supporting data structures in I/O memory is not required but is not prohibited by this
specification.

3.1. Device-Directory-Table (DDT)

The DDT is a 1, 2, or 3-level radix-tree indexed using the device directory index (DDI) bits of the device_id
to locate a DC.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1. Device-Directory-Table (DDT) | Page 20

The following diagrams illustrate the DDT radix-tree. The PPN of the root device-directory-table is held in
a memory-mapped register called the device-directory-table pointer (ddtp).

Each valid non-leaf (NL) entry is 8-bytes in size and holds the PPN of the next device-directory-table.

A valid leaf device-directory-table entry holds the device-context (DC).

| DDI[2] | DDI[1] | DDI[0] | | DDI[1] | DDI[0] DDI[0]

9-bit 9-bit 6-bit 9-bit 6-bit 6-bit

DC DC DC

NL | > NL | > >

\A
\

NL

\

\

ddtp = ddtp

\

> > ddtp

Figure 10. Three, two and single-level device directory with extended format DC

DDI[2] | DDI[1] | DDI[0] | | DDI[1] | DDI[0] | DDI[0]

8-bit 9-bit 7-bit 9-hit 7-bit 7-bit
DC DC DC
NL }— > NL }— > >
|one
ddtp —»- > > ddtp —» > ddtp ——»

Figure 11. Three, two and single-level device directory with base format DC

3.1.1. Non-leaf DDT entry

Avalid (V==1) non-leaf DDT entry provides the PPN of the next level DDT.

63| R |54 53| s |32
reserved PPN
—10 - T g
31| s |10 9 - 1 0
PPN reserved V'
s 9 1

Figure 12. Non-leaf device-directory-table entry

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1 Device-Directory-Table (DDT) | Page 21
3.1.2. Leaf DDT entry
The leaf DDT page is indexed by DDI[0] and holds the device-context (DC).
In base-format the DC is 32-bytes. In extended-format the DC is 64-bytes.

255 192

First-stage-context (fsc)

191

12¢

Translation-attributes (ta)

127 64

IO Hypervisor guest address translation and protection (iohgatp)

63 0

Translation-control (tc)

Figure 13. Base-format device-context

511 448

reserved

384

MSl-address-pattern (msi_addr_pattern)

32C

MSl-address-mask (msi_addr_mask)

25€

MSI-page-table pointer (msiptp)

192

First-stage-context (fsc)

128

Translation-attributes (ta)

IO Hypervisor guest address translation and protection (iohgatp)

Translation-control (tc)

Figure 14. Extended-format device-context

The DC is interpreted as four 64-bit doublewords in base-format and as eight 64-bit doublewords in
extended-format. The byte order of each of the doublewords in memory, little-endian or big-endian, is the
endianness as determined by fct1.BE (Section 6.4). The IOMMU may read the DC fields in any order.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1. Device-Directory-Table (DDT) | Page 22

3.1.3. Device-context fields

3.1.3.1. Translation control (tc)

63 48
S D D = S S S
47 32
S D S S S
31 24 23 16
S = D = R
15 12 11 10 9 8 7 6 5 4 3 2 1 0

| rese:rved SXL | SBE | DPE | SADE | GADE | PRPR | PDTV | DTF |T2GPA |EN_PRI|EN_ATS| V

Figure 15. Translation control (tc) field
DC is valid if the v bit is 1; If it is O, all other bits in DC are don’t-care and may be freely used by software.

If the IOMMU supports PCle ATS specification [4] (see capabilities register), the EN_ATS bit is used to
enable ATS transaction processing. If EN_ATS is set to 1, IOMMU supports the following inbound
transactions; otherwise they are treated as unsupported requests.

Translated read for execute transaction

Translated read transaction

Translated write/AMO transaction

PCle ATS Translation Request

PCle ATS Invalidation Completion Message

If the EN_ATS bit is 1 and the T26PA bit is set to 1 the IOMMU performs the two-stage address translation to
determine the permissions and the size of the translation to be provided in the completion of a PCle ATS
Translation Request from the device. However, the IOMMU returns a GPA, instead of a SPA, as the
translation of an IOVA in the response. In this mode of operation, the ATC in the device caches a GPA as a
translation for an IOVA and uses the GPA as the address in subsequent translated memory access
transactions. Usually, translated requests use a SPA and need no further translation to be performed by the
IOMMU. However when T26PA is 1, translated requests from a device use a GPA and are translated by the
IOMMU using the second-stage page table to a SPA. The T26PA control enables a hypervisor to contain
DMA from a device, even if the device misuses the ATS capability and attempts to access memory that is
not associated with the VM.

When T2GPA is enabled, the addresses provided to the device in response to a PCle ATS
Translation Request cannot be directly routed by the I/O fabric (e.g. PCI switches) that connect
the device to other peer devices and to host. Such addresses also cannot be routed within the

o device when peer-to-peer transactions within the device (e.g. between functions of a device) are
supported.

Use of T2GPA set to 1 may not be compatible with devices that implement caches tagged by the
translated address returned in response to a PCle ATS Translation Request.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1. Device-Directory-Table (DDT) | Page 23

Hypervisors that configure T2G6PA to 1 must ensure through protocol-specific means that
translated accesses are routed through the host such that the IOMMU may translate the GPA
and then route the transaction based on PA to memory or to a peer device. For PCle, for
example, the Access Control Service (ACS) must be configured to always redirect peer-to-peer

o (P2P) requests upstream to the host.

As an alternative to setting T26PA to 1, the hypervisor may establish a trust relationship with
the device if authentication protocols are supported by the device. For PCle, for example, the
PCle component measurement and authentication (CMA) capability provides a mechanism to
verify the device’s configuration and firmware/executable (Measurement) and hardware
identities (Authentication) to establish such a trust relationship.

If EN_PRI bit is O, then PCle "Page Request’ messages from the device are invalid requests. A "Page Request"
message received from a device is responded to with a "Page Request Group Response” message. Normally,
a software handler generates this response message. However, under some conditions the IOMMU itself
may generate a response. For IOMMU-generated "Page Request Group Response’ messages the PRG-
response-PASID-required (PRPR) bit when set to 1 indicates that the IOMMU response message should
include a PASID if the associated "Page Request"” had a PASID.

Functions that support PASID and have the "PRG Response PASID Required" capability bit set
to 1, expect that "Page Request Group Response” messages will contain a PASID if the

o associated "Page Request" message had a PASID. If the capability bit is O, the function does
not expect PASID on any "Page Request Group Response" message and the behavior of the
function if it receives the response with a PASID is undefined. The PRPR bit should be
configured with the value held in the "PRG Response PASID Required" capability bit.

Setting the disable-translation-fault (DTF) bit to 1 disables reporting of faults encountered in the address
translation process. Setting DTF to 1 does not disable error responses from being generated to the device in
response to faulting transactions. Setting DTF to 1 does not disable reporting of faults from the IOMMU that
are not related to the address translation process. The faults that are not reported when DTF is 1 are listed in
Table 13.

o A hypervisor may set DTF to 1 to disable fault reporting when it has identified conditions that
may lead to a flurry of errors such as due to an abnormal termination of a virtual machine.

The DC. fsc field holds the context for first-stage translation. If the PDTV bit is 1, the field holds the process-
directory table pointer (pdtp). If the PDTV bit is O, the DC. fsc field holds (iosatp).

The PDTV bit is expected to be set to 1 when DC is associated with a device that supports multiple process
contexts and thus generates a valid process_id with its memory accesses. For PCle, for example, if the
request has a PASID then the PASID is used as the process_id.

When PDTV is 1, the DPE bit may set to 1 to enable the use of O as the default value of process_id for
translating requests without a valid process_id. When PDTV is O, the DPE bit is reserved for future standard
extension.

The IOMMU supports the 1 setting of GADE and SADE bits if capabilities.AMO_HWAD is 1. When
capabilities.AMO_HWAD is O, these bits are reserved.

If GADE is 1, the IOMMU updates A and D bits in second-stage PTEs atomically. If GADE is O, the IOMMU
causes a guest-page-fault corresponding to the original access type if the A bit is O or if the memory access
is a store and the D bit is O.

If SADE is 1, the IOMMU updates A and D bits in first-stage PTEs atomically. If SADE is O, the IOMMU causes
a page-fault corresponding to the original access type if the A bit is O or if the memory access is a store and

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1. Device-Directory-Table (DDT) | Page 24
the D bit is O.

If SBE is O, implicit memory accesses to PDT entries and first-stage PTEs are little-endian else they are big-
endian. The supported values of SBE are the same as that of the fct1.BE field.

The SXL field controls the supported paged virtual-memory schemes as defined in Table 4 and Table 5. If
fctl.6XL is 1 then the SXL field must be 1; otherwise the legal values for the SXL field are the same as those
for the fctl.6XL field.

When SXL is 1, the following rules apply:

® [f the first-stage is not Bare, then a page fault corresponding to the original access type occurs if the
I0VA has bits beyond bit 31 set to 1.

® [f the second-stage is not Bare, then a guest page fault corresponding to the original access type occurs
if the incoming GPA has bits beyond bit 33 set to 1.

3.1.3.2. 10 hypervisor guest address translation and protection (iohgatp)

63 60 59 44 43 32
Mwove | oeseo | e
31 0

Figure 16. IO hypervisor guest address translation and protection (iohgatp) field

The iohgatp field holds the PPN of the root second-stage page table and a virtual machine identified by a
guest soft-context ID (6SCID), to facilitate address-translation fences on a per-virtual-machine basis. If
multiple devices are associated to a VM with a common second-stage page table, the hypervisor is expected
to program the same GSCID in each iohgatp. The MODE field is used to select the second-stage address
translation scheme.

The second-stage page table formats are as defined by the Privileged specification. The fctl.6XL field
controls the supported address-translation schemes for guest physical addresses as defined in Table 2 and
Table 3.

The iohgatp MODE field identifies the paged virtual-memory schemes and its encodings are as follows:

Table 2. Encodings of iohgatp.MODE field when fctl.6XL=0

Value Name Description
0 Bare No translation or protection.
1-7 — Reserved for standard use.

8 Sv39x4 Page-based 41-bit virtual addressing (2-bit extension of Sv39).
9 Sv48x4 Page-based 50-bit virtual addressing (2-bit extension of Sv48).
10 Sv57x4 Page-based 59-bit virtual addressing (2-bit extension of Sv57).

11-15 — Reserved for standard use.

Table 3. Encodings of 1ohgatp.MODE field when fctl.6XL=1

Value Name Description
0 Bare No translation or protection.
1-7 — Reserved for standard use.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1. Device-Directory-Table (DDT) | Page 25

Value Name Description
8 Sv32x4 Page-based 34-bit virtual addressing (2-bit extension of Sv32).

9-15 — Reserved for standard use.

Implementations are not required to support all defined mode settings for iohgatp. The IOMMU only
needs to support the modes also supported by the MMU in the harts integrated into the system or a subset
thereof.

The root page table as determined by iohgatp.PPN is 16 KiB and must be aligned to a 16-KiB boundary.

The GSCID field of iohgatp identifies an address space. If an identical GSCID is configured in
two DC when the second-stage page-table referenced by the two DC are not identical then it is

o unpredictable whether the [IOMMU uses the PTEs from the first page table or the second page
table. These are the only expected behaviors.

3.1.3.3. Translation attributes (ta)

63 52 51

40 39 32

RCID reserved
31 12 11 0
PSCID reserved

Figure 17. Translation attributes (ta) field

The PSCID field of ta provides the process soft-context ID that identifies the address-space of the process.
PSCID facilitates address-translation fences on a per-address-space basis. The PSCID field in ta is used as
the address-space ID if DC.tc.PDTV is O and the iosatp.MODE field is not Bare. When DC.tc.PDTV is 1, the
PSCID field in ta is ignored.

The RCID and MCID fields are added by the QoS ID extension. If capabilities.QO0SID is O, these bits are
reserved and must be set to 0. IOMMU-initiated requests for accessing the following data structures use
the value configured in the RCID and MCID fields of DC. ta.

Process directory table (PDT)

Second-stage page table

® First-stage page table

MSI page table
® Memory-resident interrupt file (MRIF)
The RCID and MCID configured in DC.ta are provided to the IO bridge on successful address translations.

The IO bridge should associate these QoS IDs with device-initiated requests.

3.1.3.4. First-Stage context (fsc)

If DC.tc.PDTV is O, the DC.fsc field holds the iosatp that provides the controls for first-stage address
translation and protection.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1. Device-Directory-Table (DDT) | Page 26

63 60 59 44 43 32
Mooe | | e | ew,
31 0

Figure 18. 10 Supervisor address translation and prot. (1osatp) field
The first-stage page table formats are as defined by the Privileged specification.
The DC. tc.SXL field controls the supported paged virtual-memory schemes.

The iosatp.MODE identifies the paged virtual-memory schemes and is encoded as defined in Table 4 and
Table 5. The iosatp.PPN field holds the PPN of the root page of a first-stage page table.

When second-stage address translation is not Bare, the iosatp.PPN is a guest PPN. The GPA of the root
page is then converted by guest physical address translation process, as controlled by the iohgatp, into a
supervisor physical address.

Table 4. Encodings of iosatp.MODE field when DC.tc.SXL=0

Value Name Description
0 Bare No translation or protection.
1-7 — Reserved for standard use.

8 Sv39 Page-based 39-bit virtual addressing.

9 Sv48 Page-based 48-bit virtual addressing.

10 Sv57 Page-based 57-bit virtual addressing.
11-13 — Reserved for standard use.

14-15 — Designated for custom use.

Table 5. Encodings of 1osatp.MODE field when DC.tc.SXL=1

Value Name Description
0 Bare No translation or protection.
1-7 — Reserved for standard use.

8 Sv32 Page-based 32-bit virtual addressing.

9-15 — Reserved for standard use.

When DC.tc.PDTV is 1, the DC. fsc field holds the process-directory table pointer (pdtp). When the device
supports multiple process contexts, selected by the process_id, the PDT is used to determine the first-stage
page table and associated PSCID for virtual address translation and protection.

The pdtp field holds the PPN of the root PDT and the MODE field that determines the number of levels of the
PDT.

63 60 59 44 43 32
MODE

reserved

PPN

Figure 19. Process-directory table pointer (pdtp) field

When second-stage address translation is not Bare, the pdtp.PPN field holds a guest PPN. The GPA of the
root PDT is then converted by guest physical address translation process, as controlled by the iohgatp, into

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1. Device-Directory-Table (DDT) | Page 27

a supervisor physical address. Translating addresses of PDT using a second-stage page table, allows the
PDT to be held in memory allocated by the guest OS and allows the guest OS to directly edit the PDT to
associate a virtual-address space identified by a first-stage page table with a process_id.

Table 6. Encodings of pdtp.MODE field
Value Name Description
O Bare No first-stage address translation or protection.

1 PD8 8-bit process ID enabled. The directory has 1levels with 256 entries.The bits 19:8 of process_id must
be O.

2 PD17 17-bit process ID enabled. The directory has 2 levels. The root PDT page has 512 entries and leaf level
has 256 entries. The bits 19:17 of process_id must be O.

3 PD20 20-bit process ID enabled. The directory has 3 levels. The root PDT has 8 entries and the next non-leaf
level has 512 entries. The leaf level has 256 entries.

4-13 — Reserved for standard use.

14-15 — Designated for custom use.

3.1.3.5. MSI page table pointer (msiptp)

63 60 59 44 43 32
Move | e [e
31 0

Figure 20. MSI page table pointer (msiptp) field

The msiptp.PPN field holds the PPN of the root MSI page table used to direct an MSI to a guest interrupt
file in an IMSIC. The MSI page table formats are defined by the Advanced Interrupt Architecture
specification.

The msiptp.MODE field is used to select the MSI address translation scheme.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.1. Device-Directory-Table (DDT) | Page 28

Table 7. Encodings of msiptp . MODE field
Value Name Description

0 0ff Recognition of accesses to a virtual interrupt file using MSI address mask and pattern is not
performed.

1 Flat Flat MSI page table
2-13 — Reserved for standard use.

14-15 — Designated for custom use.

3.1.3.6. MSI address mask (msi_addr_mask) and pattern (msi_addr_pattern)

63 52 51 32
e | e
31 0
e

Figure 21. MSI address mask (msi_addr_mask) field

63 52 51 32
e | e

31 0
I I I I I I I I I I I I I I :pati::ern: I I I I I I I I I I I I I I

Figure 22. MSI address pattern (msi_addr_pattern) field

The MSI address mask (msi_addr_mask) and pattern (msi_addr_pattern) fields are used to identify the 4-
KiB pages of virtual interrupt files in the guest physical address space of the relevant VM. An incoming
memory access made by a device is recognized as an access to a virtual interrupt file if the destination
guest physical page matches the supplied address pattern in all bit positions that are zeros in the supplied
address mask. In detail, a memory access to guest physical address A is recognized as an access to a virtual
interrupt file’s memory-mapped page if:

(A >> 12) & ~msi_addr_mask = (msi_addr_pattern & ~msi_addr_mask)

where >> 12 represents shifting right by 12 bits, an ampersand (&) represents bitwise logical AND, and
~msi_addr_mask is the bitwise logical complement of the address mask.

While the MSI address mask and pattern fields are 52 bits wide, if MGPAW<64, then bits
51: MGPA W —12 are reserved for future standard use and must be set to zero by software. MGPAW is
determined as follows:

If capabilities.Sv57x4 is 1, then MGPAW = 59
® Else if capabilities.Sv48x4 is 1, then MGPAW = 50

® Else if capabilities.Sv39x4 is 1, then MGPAW =41
® Elseif capabilities.Sv32x4 is1, then MGPAW = 34
® Otherwise, MGPAW = capabilities.PAS

3.1.4. Device-context configuration checks

A DC with DC.tc.V=1 is considered as misconfigured if any of the following conditions are true. If
misconfigured then, stop and report "DDT entry misconfigured" (cause = 259).

RISC-V IOMMU Architecture Specification | © RISC-V International

® N s W N

10.

11

12.
13.
14.

15.

16.
17.

18.
19.
20.

2L

22.

3.1. Device-Directory-Table (DDT) | Page 29

If any bits or encodings that are reserved for future standard use are set.
capabilities.ATS is O and DC.tc.EN_ATS, or DC.tc.EN_PRI, or DC.tc.PRPRis 1
DC.tc.EN_ATSisOand DC.tc.T2GPAis1
DC.tc.EN_ATSis O and DC.tc.EN_PRI is1
DC.tc.EN_PRI is O and DC.tc.PRPRis 1
capabilities.T26PAis O and DC.tc.T2GPAis1
DC.tc.T26PA is1and DC.iohgatp.MODE is Bare
DC.tc.PDTVisland DC.fsc.pdtp.MODE is not a supported mode
a. capabilities.PD20is O and DC.fsc.pdtp.MODE is PD20
b. capabilities.PD17 is O and DC.fsc.pdtp.MODE is PD17
c. capabilities.PD8is O and DC.fsc.pdtp.MODE is PD8

DC.tc.PDTV is O and DC.fsc.iosatp.MODE encoding is not a valid encoding as determined by Table 4
and Table 5.

DC.tc.PDTVis O and DC.tc.SXL is O DC.fsc.iosatp.MODE is not one of the supported modes
a. capabilities.Sv39is O and DC.fsc.iosatp.MODE is Sv39
b. capabilities.Sv48is O and DC.fsc.iosatp.MODE is Sv48
c. capabilities.Sv57is O and DC.fsc.iosatp.MODE is Sv57
DC.tc.PDTVis O and DC.tc.SXLis 1DC.fsc.iosatp.MODE is not one of the supported modes
a. capabilities.Sv32is O and DC.fsc.iosatp.MODE is Sv32
DC.tc.PDTVis O and DC.tc.DPEis 1
DC.iohgatp.MODE encoding is not a valid encoding as determined by Table 2 and Table 3.
fctl.6XL is O and DC.iohgatp.MODE is not a supported mode
a. capabilities.Sv39x4is O and DC.iohgatp.MODE is Sv39x4
b. capabilities.Sv48x4 is O and DC.iohgatp.MODE is Sv48x4
c. capabilities.Sv57x4 is O and DC.iohgatp.MODE is Sv57x4
fctl.6XL is 1and DC.iohgatp.MODE is not a supported mode
a. capabilities.Sv32x4is O and DC.iohgatp.MODE is Sv32x4
capabilities.MSI_FLAT is1and DC.msiptp.MODE is not 0Fff and not Flat

DC.iohgatp.MODE is not Bare and the root page table determined by DC.iohgatp.PPN is not aligned to a
16-KiB boundary.

capabilities.AMO_HWAD is O and DC.tc.SADE or DC.tc.GADE is 1
capabilities.END is O and fctl1.BE != DC.tc.SBE

DC.tc.SXL value is not a legal value. If fct1.6XL is 1, then DC.tc.SXL must be 1. If fctl.6XL is O and is
writable, then DC.tc.SXL may be O or 1. If fctl.6XL is O and is not writable then DC.tc.SXL must be O.

DC.tc.SBE value is not a legal value. If fct1.BE is writable then DC.tc.SBE may be O or 1. If fct1.BE is
not writable then DC.tc.SBE must be the same as fctl.BE.

capabilities.Q0SID is 1 and DC.ta.RCID or DC.ta.MCID values are wider than that supported by the
IOMMU.

o Some DC fields hold supervisor physical addresses or guest physical addresses. Some

RISC-V IOMMU Architecture Specification | © RISC-V International

3.2. Process-Directory-Table (PDT) | Page 30

3.2. Process-Directory-Table (PDT)

implementations may verify the validity of the addresses - e.g. the supervisor physical address
is not wider than that supported as determined by capabilities.PAS, etc. at the time of
locating the DC. Such implementations may cause a "DDT entry misconfigured" (cause = 259)
fault.

Other implementations only detect such addresses to be invalid when the data structure
referenced by these fields needs to be accessed. Such implementations may detect access-
violation faults in the process of making the access.

The PDT is a 1, 2, or 3-level radix-tree indexed using the process directory index (PDI) bits of the
process_id.

The following diagrams illustrate the PDT radix-tree. The root process-directory page number is located

using the process-directory-table pointer (pdtp) field of the device-context. Each non-leaf (NL) entry
provides the PPN of the next level process-directory-table. The leaf process-directory-table entry holds the
process-context (PC).

| roy PDI[1] | PDI[1] PoI0] | PDI[0]
3-bit 9-bit 9-hit 8-bit
PC PC PC
NL NL > >
o
pdtp > = - pdtp -
Figure 23. Three, two and single-level process directory
3.2.1. Non-leaf PDT entry
Avalid (V==1) non-leaf PDT entry holds the PPN of the next-level PDT.
63 54 53 32
reserved
10
31 10 9 0
PPN reserved \
44 9 1

3.2.2. Leaf PDT entry

The leaf PDT page is indexed by PDI[8] and holds the 16-byte process-context (PC).

RISC-V IOMMU Architecture Specification | © RISC-V International

Figure 24. Non-leaf process-directory-table entry

3.2. Process-Directory-Table (PDT) | Page 31

Figure 25. Process-context

The PC is interpreted as two 64-bit doublewords. The byte order of each of the doublewords in memory,
little-endian or big-endian, is the endianness as determined by DC.tc.SBE. The IOMMU may read the PC
fields in any order.

3.2.3. Process-context fields

3.2.3.1. Translation attributes (ta)

63 48
reserved
32
47 32
reserved
32
31 16
PSCID
20
15 12 11 3 2 1 0
PSCID reserved SUM ENS
20 ' ' ' ' 9 ' ' ' 1 1 1

Figure 26. Translation attributes (ta) field
PC is valid if the v bitis 1; If it is O, all other bits in PC are don’t care and may be freely used by software.

When Enable-Supervisory-access (ENS) is 1, transactions requesting supervisor privilege are allowed with
this process_id else the transaction is treated as an unsupported request.

When ENS is 1, the SUM (permit Supervisor User Memory access) bit modifies the privilege with which
supervisor privilege transactions access virtual memory. When SUM is O, supervisor privilege transactions
to pages mapped with U bit in PTE set to 1 are disallowed.

When ENS is 1, supervisor privilege transactions that read with execute intent to pages mapped with U bit in
PTE set to 1 are disallowed, regardless of the value of SUM.

The software assigned process soft-context ID (PSCID) is used as the address space ID for the process
identified by the first-stage page table when first-stage address translation is not Bare.

3.2.3.2. First-Stage context (fsc)

63 60 59 44 43 32
Move | e [e
31 0

Figure 27. Process First-Stage context

The PC. fsc field provides the controls for first-stage address translation and protection.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.2. Process-Directory-Table (PDT) | Page 32

The PC.fsc.MODE is used to determine the first-stage paged virtual-memory scheme and its encodings are
as defined in Table 4 and Table 5. The DC.tc.SXL field controls the supported paged virtual-memory
schemes. When PC.fsc.MODE is not Bare, the PC.fsc.PPN field holds the PPN of the root page of a first-
stage page table.

When second-stage address translation is not Bare, the PC.fsc.PPN field holds a guest PPN of the root of a
first-stage page table. Addresses of the first-stage page table entries are then converted by guest physical
address translation process, as controlled by the DC.iohgatp, into a supervisor physical address. A guest OS
may thus directly edit the first-stage page table to limit access by the device to a subset of its memory and
specify permissions for the device accesses.

The PC.ta.PSCID identifies an address space. If an identical PSCID is configured in two PC
when the page-table referenced by the two PC are not identical then it is unpredictable whether

o the IOMMU uses the PTEs from the first page table or the second page table. These are the
only expected behaviors.

3.2.4. Process-context configuration checks

A PC with PC.ta.V=1 is considered as misconfigured if any of the following conditions are true. If
misconfigured then stop and report "PDT entry misconfigured" (cause = 267).
1. If any bits or encoding that are reserved for future standard use are set
2. PC.fsc.MODE encoding is not valid as determined by Table 4 and Table 5.
3. DC.tc.SXLis O and PC. fsc.MODE is not one of the supported modes
a. capabilities.Sv39is O and PC.fsc.MODE is Sv39
b. capabilities.Sv48is O and PC.fsc.MODE is Sv48
c. capabilities.Sv57is O and PC.fsc.MODE is Sv57
4. DC.tc.SXLis1and PC.fsc.MODE is not one of the supported modes
a. capabilities.Sv32is O and PC.fsc.MODE is Sv32

RISC-V IOMMU Architecture Specification | © RISC-V International

3.3. Process to translate an IOVA | Page 33

Some PC fields hold supervisor physical addresses or guest physical addresses. Some
implementations may verify the validity of the addresses - e.g. the supervisor physical address
is not wider than that supported as determined by capabilities.PAS, etc. at the time of

e locating the PC. Such implementations may cause a "PDT entry misconfigured" (cause = 267)
fault.

Other implementations only detect such addresses to be invalid when the data structure
referenced by these fields needs to be accessed. Such implementations may detect access-
violation faults in the process of making the access.

3.3. Process to translate an IOVA

The process to translate an IOVA uses the hardware 1Ds (device_id and process_id) to locate the Device-
Context and the Process-Context. The Device-context and Process-context provide the root PPN of the page
tables, PSCID, GSCID, and other control parameters that affect the address translation and protection
process. When address translation caches (Section 3.8) are implemented, the translation process may use
the 6SCID and PSCID to associate the cached translations with their address spaces.

The process to translate an I0VA is as follows:

1 If ddtp.iommu_mode == Off then stop and report "All inbound transactions disallowed" (cause = 256).

2. If ddtp.iommu_mode == Bare and any of the following conditions hold then stop and report
"Transaction type disallowed" (cause = 260); else go to step 20 with translated address same as the I0VA.

a. Transaction type is a Translated request (read, write/AMO, read-for-execute) or is a PCle ATS
Translation request.

3. If capabilities.MSI_FLAT is O then the IOMMU uses base-format device context. Let DDI[0] be
device_id[6:0],DDI[1] be device_id[15:7], and DDI[2] be device_id[23:16].

4. If capabilities.MSI_FLAT is 1 then the IOMMU uses extended-format device context. Let DDI[8] be
device_id[5:0],DDI[1] be device_id[14:6], and DDI[2] be device_id[23:15].

5. If the device_id is wider than that supported by the IOMMU mode, as determined by the following
checks then stop and report "Transaction type disallowed" (cause = 260).

a. ddtp.iommu_mode is 2LVL and DDI[2] is not O
b. ddtp.iommu_mode is 1LVL and either DDI[2] is not O or DDI[1] is not O
6. Use device_id to then locate the device-context (DC) as specified in Section 3.3.1.

7. If any of the following conditions hold then stop and report "Transaction type disallowed" (cause =
260).

a. Transaction type is a Translated request (read, write/AMO, read-for-execute) or is a PCle ATS
Translation request and DC.tc.EN_ATS is O.

b. Transaction has a valid process_id and DC.tc.PDTV is O.

c. Transaction has a valid process_id and DC.tc.PDTV is 1 and the process_id is wider than that
supported by pdtp.MODE.

d. Transaction type is not supported by the IOMMU.

8. If request is a Translated request and DC.tc.T26PA is O then the translation process is complete. Go to
step 20.

9. If request is a Translated request and DC.tc.T26PA is 1 then the IOVA is a GPA. Go to step 17 with
following page table information:

RISC-V IOMMU Architecture Specification | © RISC-V International

3.3.

10.

11

12.

13.

14.
15.

16.

17.

18.

19.

20.

Process to translate an IOVA | Page 34

a. Let A be the I0VA (the I0VA is a GPA).
b. Let iosatp.MODE be Bare
i. The PSCID value is not used when first-stage is Bare.
c. Let iohgatp be the value in the DC. iohgatp field
IfDC.tc.PDTV is set to O then go to step 17 with the following page table information:
a. Let iosatp.MODE be the value in the DC.fsc.MODE field
b. Let iosatp.PPN be the value in the DC.fsc.PPN field
c. Let PSCID be the value in the DC.ta.PSCID field
d. Let iohgatp be the value in the DC. iohgatp field

If DPE is 1 and there is no process_id associated with the transaction then let process_id be the default
value of O.

If DPE is O and there is no process_id associated with the transaction then then go to step 17 with the
following page table information:

a. Let iosatp.MODE be Bare
i. The PSCID value is not used when first-stage is Bare.
b. Let iohgatp be the value in the DC. iohgatp field
If DC.fsc.pdtp.MODE = Bare then go to step 17 with the following page table information:
a. Let iosatp.MODE be Bare
i. The PSCID value is not used when first-stage is Bare.
b. Let iohgatp be value in DC.iohgatp field
Locate the process-context (PC) as specified in Section 3.3.2.

if any of the following conditions hold then stop and report "Transaction type disallowed" (cause =
260).

a. The transaction requests supervisor privilege but PC.ta.ENS is not set.
Go to step 17 with the following page table information:

a. Let iosatp.MODE be the value in the PC.fsc.MODE field

b. Let iosatp.PPN be the value in the PC.fsc.PPN field

c. Let PSCID be the value in the PC.ta.PSCID field

d. Let iohgatp be the value in the DC.iohgatp field

Use the process specified in Section "Two-Stage Address Translation” of the RISC-V Privileged
specification [6] to determine the GPA accessed by the transaction. If a fault is detected by the first
stage address translation process then stop and report the fault. If the translation process is completed
successfully then let A be the translated GPA.

If MSI address translations using MSI page tables is enabled (i.e., DC.msiptp.MODE != 0ff) then the
MSI address translation process specified in Section 3.3.3 is invoked. If the GPA A is not determined to
be the address of a virtual interrupt file then the process continues at step 19. If a fault is detected by
the MSI address translation process then stop and report the fault else the process continues at step 20.

Use the second-stage address translation process specified in Section "Two-Stage Address Translation"
of the RISC-V Privileged specification [6] to translate the GPA A to determine the SPA accessed by the
transaction. If a fault is detected by the address translation process then stop and report the fault.

Translation process is complete

RISC-V IOMMU Architecture Specification | © RISC-V International

3.3. Process to translate an IOVA | Page 35

When checking the U bit in a second-stage PTE, the transaction is treated as not requesting supervisor
privilege. The pte.xwr=018 encoding, as specified by the Zicfiss [7] extension for the Shadow Stack page
type in single-stage and VS-stage page tables, remains a reserved encoding for IO transactions.

When the translation process reports a fault, and the request is an Untranslated request or a Translated
request, the IOMMU requests the IO bridge to abort the transaction. Guidelines for handling faulting
transactions in the 10 bridge are provided in Section 8.3. The fault may be reported using the fault/event
reporting mechanism and fault record formats specified in Section 4.2.

If the fault was detected by a PCle ATS Translation Request then the IOMMU may provide a PCle protocol
defined response instead of reporting fault to software or causing an abort. The handling of faulting PCle
ATS Translation Requests is specified in Section 3.6.

3.3.1. Process to locate the Device-context
The process to locate the Device-context for transaction using its device_id is as follows:

1 Letabeddtp.PPN x 2% andleti = LEVELS - 1. When ddtp.iommu_mode is 3LVL, LEVELS is three. When
ddtp.iommu_mode is 2LVL, LEVELS is two. When ddtp.iommu_mode is 1LVL, LEVELS is one.

2. Ifi == 0 gotostep8.

3. Let ddte be the value of the eight bytes at addressa + DDI[i] x 8. If accessing ddte violates a PMA or
PMP check, then stop and report "DDT entry load access fault" (cause = 257).

4. If ddte access detects a data corruption (ak.a. poisoned data), then stop and report "DDT data
corruption” (cause = 268).

5. If ddte.V == 0, stop and report "'DDT entry not valid" (cause = 258).

6. If any bits or encoding that are reserved for future standard use are set within ddte, stop and report
"DDT entry misconfigured" (cause = 259).

7. Leti = i - 1andleta = ddte.PPN x 2. Go to step 2.

8. Let DC be the value of DC_SIZE bytes at address a + DDI[0] * DC_SIZE. If capabilities.MSI_FLAT is 1
then DC_SIZE is 64-bytes else it is 32-bytes. If accessing DC violates a PMA or PMP check, then stop and
report "DDT entry load access fault" (cause = 257). If DC access detects a data corruption (a.k.a. poisoned
data), then stop and report "DDT data corruption” (cause = 268).

9. If DC.tc.V == 8, stop and report "DDT entry not valid" (cause = 258).

10. If the DC is misconfigured as determined by rules outlined in Section 3.1.4 then stop and report "DDT
entry misconfigured" (cause = 259).

11. The device-context has been successfully located.

3.3.2. Process to locate the Process-context

The device-context provides the PDT root page PPN (pdtp.ppn). When DC.iohgatp.mode is not Bare,
pdtp.PPN as well as pdte.PPN are Guest Physical Addresses (GPA) which must be translated into Supervisor
Physical Addresses (SPA) using the second-stage page table pointed to by DC.iohgatp. The memory
accesses to the PDT are treated as implicit read memory accesses by the second-stage. However, any guest-
page fault exception raised by the second stage is always reported using the original access type
(instruction, load, or store/AMO). An access fault in the second stage is reported as "PDT entry load access
fault' (cause = 265). If the second-stage accesses detect data corruption (i.e., poisoned data), it is reported
as "PDT data corruption” (cause = 269).

The process to locate the Process-context for a transaction using its process_id is as follows:

RISC-V IOMMU Architecture Specification | © RISC-V International

3.3. Process to translate an IOVA | Page 36

1. Let a be pdtp.PPN x 2% and let i = LEVELS - 1. When pdtp.MODE is PD20, LEVELS is three. When
pdtp.MODE is PD17, LEVELS is two. When pdtp.MODE is PD8, LEVELS is one.

2. If DC.iohgatp.mode != Bare, then ais a GPA. Invoke the process to translate a to a SPA as an implicit
memory access. If faults occur during second-stage address translation of a then stop and report the
fault detected by the second-stage address translation process. The translated a is used in subsequent
steps.

3. Ifi == @ gotostep 9.

4. Let pdte be the value of the eight bytes at addressa + PDI[i] x 8. If accessing pdte violates a PMA or
PMP check, then stop and report "PDT entry load access fault" (cause = 265).

5. If pdte access detects a data corruption (a.k.a. poisoned data), then stop and report "PDT data
corruption"” (cause = 269).

6. If pdte.V == 0, stop and report "PDT entry not valid" (cause = 266).

7. If any bits or encoding that are reserved for future standard use are set within pdte, stop and report
"PDT entry misconfigured" (cause = 267).

8 Leti =i - 1andleta = pdte.PPN x 2% Go to step 2.

9. Let PC be the value of the 16-bytes at address a + PDI[8] x 16. If accessing PC violates a PMA or PMP
check, then stop and report "PDT entry load access fault" (cause = 265). If PC access detects a data
corruption (a.k.a. poisoned data), then stop and report "PDT data corruption" (cause = 269).

10. If PC.ta.V == 0, stop and report "PDT entry not valid" (cause = 266).

11. If the PC is misconfigured as determined by rules outlined in Section 3.2.4 then stop and report "PDT
entry misconfigured" (cause = 267).

12. The Process-context has been successfully located.

3.3.3. Process to translate addresses of MSis

When an I/O device is configured directly by a guest operating system, MSIs from the device are expected
to be targeted to virtual IMSICs within the guest OS’s virtual machine, using guest physical addresses that
are inappropriate and unsafe for the real machine. An IOMMU must recognize certain incoming writes
from such devices as MSIs and convert them as needed for the real machine.

MSIs originating from a single device that require conversion are expected to have been configured at the
device by a single guest OS running within one RISC-V virtual machine. Assuming the VM itself conforms
to the RISC-V Advanced Interrupt Architecture [5], MSIs are sent to virtual harts within the VM by writing
to the memory-mapped registers of the interrupt files of virtual IMSICs. Each of these virtual interrupt
files occupies a separate 4-KiB page in the VM’s guest physical address space, the same as real interrupt
files do in a real machine’s physical address space. A write to a guest physical address can thus be
recognized as an MSI to a virtual hart if the write is to a page occupied by an interrupt file of a virtual
IMSIC within the VM.

When MSI address translation is supported (capabilities.MSI_FLAT, Section 6.3), the process to identify
an incoming I0VA as the address of a virtual interrupt file and translating the address using the MSI page
table is as follows:

1. Let A be the GPA

2. Let DC be the device-context located using the device_id of the device using the process outlined in
Section 3.3.1.

3. Determine if the address A is an access to a virtual interrupt file as specified in Section 3.1.3.6.

4. If the address is not determined to be that of a virtual interrupt file then stop this process and instead

RISC-V IOMMU Architecture Specification | © RISC-V International

14.

15.

16.

3.3. Process to translate an IOVA | Page 37

use the regular translation data structures to do the address translation.

. Extract an interrupt file number I from A as I = extract(A >> 12, DC.msi_addr_mask). The bit

extract function extract(x, y) discards all bits from x whose matching bits in the same positions in
the mask y are zeros, and packs the remaining bits from x contiguously at the least-significant end of
the result, keeping the same bit order as x and filling any other bits at the most-significant end of the
result with zeros. For example, if the bits of x and y are:

® x —abcdefagh

®y=-10100110

® then the value of extract(x, y) hasbits®@ 8 8 0 a c f g.

. Letmbe (DC.msiptp.PPN x 22).

. Let msipte be the value of sixteen bytes at address (m | (I x 16)). If accessing msipte violates a PMA

or PMP check, then stop and report "MSI PTE load access fault" (cause = 261).

. If msipte access detects a data corruption (a.k.a. poisoned data), then stop and report "MSI PT data

corruption” (cause = 270).

. Ifmsipte.V == 0, then stop and report "MSI PTE not valid" (cause = 262).
10.
11.
12.
13.

If msipte.C == 1, then further processing to interpret the PTE is implementation defined.
Ifmsipte.C == 0 then the process is outlined in subsequent steps.
Ifmsipte.M == @ormsipte.M == 2, then stop and report "MSI PTE misconfigured" (cause = 263).

If msipte.M == 3 the PTE is in basic translate mode and the translation process is as follows:

a. If any bits or encoding that are reserved for future standard use are set within msipte, stop and
report "MSI PTE misconfigured" (cause = 263).

b. Compute the translated address as msipte.PPN << 12 | A[11:0].
If msipte.M == 1the PTE is in MRIF mode and the translation process is as follows:
a. If capabilities.MSI_MRIF == 0, stop and report "MSI PTE misconfigured" (cause = 263).

b. If any bits or encoding that are reserved for future standard use are set within msipte, stop and
report "MSI PTE misconfigured" (cause = 263).

c. The address of the destination MRIF is msipte.MRIF_Address[55:9] * 512.
d. The destination address of the notice MSI is msipte.NPPN << 12.

e. Let NID be (msipte.N10 << 10) | msipte.N[9:0]. The data value for notice MSI is the 11-bit NID
value zero-extended to 32-bits.

The access permissions associated with the translation determined through this process are equivalent
to that of a regular RISC-V second-stage PTE with R=W=U=1 and X=0. Similar to a second-stage PTE,
when checking the U bit, the transaction is treated as not requesting supervisor privilege.

a. If the transaction is an Untranslated or Translated read-for-execute then stop and report
"Instruction access fault" (cause = 1).

MSI address translation process is complete.

Unlike regular RISC-V leaf PTEs, MSI PTEs do not have an accessed (A) or dirty (D) bit. An
IOMMU may treat an MSI PTE as if the A and D bits are always set to 1.

o In MRIF mode, the Advanced Interrupt Architecture Specification defines the operation to
store the incoming MSIs into the destination MRIF and to generate the notice MSI. These
operations may be performed by the IOMMU itself or the IOMMU may provide the destination

MRIF address, the notice MSI address, and the notice MSI data value to the I/0O bridge in

RISC-V IOMMU Architecture Specification | © RISC-V International

3.4.I0MMU updating of PTE accessed (A) and dirty (D) updates | Page 38

response to the translation request and the operations may be performed by the I/0 bridge.

3.4. IOMMU updating of PTE accessed (A) and dirty (D) updates

When capabilities.AMO_HWAD is 1, the IOMMU supports updating the A and D bits in PTEs atomically.
When updating of A and D bits in second-stage PTEs is enabled (DC.tc.6ADE=1) and/or updating of A and
D bits in first-stage PTEs is enabled (DC.tc.SADE=1) the following rules apply:

1 The A and/or D bit updates by the IOMMU must follow the rules specified by the Privileged
specification for validity, permission checking, and atomicity.

2. The PTE update must be globally visible before a memory access using the translated address provided
by the IOMMU becomes globally visible. Specifically, when a translated address is provided to a device
in an ATS Translation completion, the PTE update must be globally visible before a memory access
from the device using the translated address becomes globally visible.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.5. Faults from virtual address translation process | Page 39

The A and D bits are never cleared by the IOMMU. If the supervisor software does not rely on
accessed and/or dirty bits, e.g. if it does not swap memory pages to secondary storage or if the

o pages are being used to map I/O space, it should set them to 1 in the PTE to improve
performance.

3.5. Faults from virtual address translation process

Faults detected during the two-stage address translation specified in the RISC-V Privileged specification [6]
cause the IOVA translation process to stop and report the detected fault.

3.6. PCle ATS translation request handling

ATS [4] translation requests that encounter a configuration error results in a Completer Abort (CA)
response to the requester. The following cause codes belong to this category:

® Instruction access fault (cause = 1)

® Read access fault (cause = 5)

® Write/AMO access fault (cause = 7)

® MSI PTE load access fault (cause = 261)

® MSI PTE misconfigured (cause = 263)

® PDT entry load access fault (cause = 265)

® PDT entry misconfigured (cause = 267)
If there is a permanent error or if ATS transactions are disabled then an Unsupported Request (UR)
response is generated. The following cause codes belong to this category:

® All inbound transactions disallowed (cause = 256)

® DDT entry load access fault (cause = 257)

® DDT entry not valid (cause = 258)

® DDT entry misconfigured (cause = 259)

® Transaction type disallowed (cause = 260)
When translation could not be completed due to the following causes a Success Response with R and W
bits set to O is generated. No faults are logged in the fault queue on these errors. The translated address
returned with such completions is UNSPECIFIED.

® Instruction page fault (cause = 12)

® Read page fault (cause = 13)

® Write/AMO page fault (cause = 15)

® Instruction guest page fault (cause = 20)

® Read guest-page fault (cause = 21)

® Write/AMO guest-page fault (cause = 23)

® PDT entry not valid (cause = 266)

® MSI PTE not valid (cause = 262)

If the translation request has a PASID with "Privilege Mode Requested” field set to O, or the request does

RISC-V IOMMU Architecture Specification | © RISC-V International

3.6. PCle ATS translation request handling | Page 40

not have a PASID then the request does not target privileged memory. If the U-bit that indicates if the
memory is accessible to user mode is O then a Success response with R and W bits set to O is generated.

If the translation request has a PASID with "Privilege Mode Requested” field set to 1, then the request
targets privileged memory. If the U-bit that indicates if the page is accessible to user mode is 1 and the SUM
bit in the ta field of the process-context is O then a Success response with R and W bits set to O is
generated.

If the translation could be successfully completed but the requested permissions are not present in either
stage (Execute requested but no execute permission; no-write not requested and no write permission; no
read permission) then a Success response is returned with the denied permission (R, W or X) set to O and
the other permission bits set to the value determined from the page tables. The X permission is granted
only if the R permission is also granted and the execute permission was requested. Execute-only
translations are not compatible with PCle ATS as PCle requires read permission to be granted if the
execute permission is granted.

When a Success response is generated for an ATS translation request, no fault records are reported to
software through the fault/event reporting mechanism, even when the response indicates no access was
granted or some permissions were denied. Conversely, when a UR or CA response is generated for an ATS
translation request, the corresponding fault is reported to software through the fault/event reporting
mechanism.

If the translation request is successfully completed and the address is determined to be an MSI address
using the rules defined by the Section 3.1.3.6, but the MSI PTE is configured in MRIF mode, a Success
response is generated with the U bit (Untranslated access only) set to 1. The U bit being set to 1 in the
response instructs the device that it must use only Untranslated requests to access the implied 4 KiB
memory range. The R, W, and Exe bits in the response indicate the granted permissions.

When a MSI PTE is configured in MRIF mode, a MSI write with data value D requires the
IOMMU to set the interrupt-pending bit for interrupt identity D in the MRIF. A translation

o request from a device to a GPA that is mapped through a MRIF mode MSI PTE is not eligible to
receive a translated address. This is accomplished by setting "Untranslated Access Only" (U)
field of the returned response to 1.

The translation range size returned in a Success response to an ATS translation request, when
o either stages of address translation are Bare, is implementation-defined. However, it is
recommended that the translation range size be large, such as 2 MiB or 1 GiB.

When a Success response is generated for an ATS translation request, the setting of the Priv, N, CXL.io,
Global, and AMA fields is as follows:

® Priv field of the ATS translation completion is always set to O if the request does not have a PASID.
When a PASID is present then the Priv field is set to the value in "Privilege Mode Requested" field as the
permissions provided correspond to those the privilege mode indicate in the request.

® N field of the ATS translation completion is always set to O. The device may use other means to
determine if the No-snoop flag should be set in the translated requests.

® Global field is set to the value determined from the first-stage page tables if translation could be
successfully completed and the request had a PASID present. In all other cases, including MSI address
translations, this field is set to O.

® [f requesting device is not a CXL device then CXL.io is set to O.
® [f requesting device is a CXL type 1 or type 2 device
® [f the address is determined to be a MSI then the CXL.io bit is set to 1.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.7. PCle ATS Page Request handling | Page 41

® Else if T26PA is 1in the device context then the CXL.io bit is set to 1.

® Else if the memory type, as determined by the Svpbmt extension, is NC or IO then the CXL.io bit is
set to 1. If the memory type is PMA then the determination of the setting of this bit is UNSPECIFIED.
If the Svpbmt extension is not supported then the setting of this bit is UNSPECIFIED.

® [n all other cases the setting of this bit is UNSPECIFIED.

® The AMA field is by default set to O0Ob. The IOMMU may support an implementation-specific
method to provide other encodings.

The IO bridge may override the CXL.io bit in the ATS translation completion based on the PMA
of the translated address. Other implementations may provide an implementation-defined
method for determining PMA for the translated address to set the CXL.io bit.

o Use of T2GPA set to I may not be compatible with CXL type 1 or type 2 devices as they use the
CXL.cache protocol to implement caches tagged by the translated address returned in
response to a PCle ATS Translation Request. The IOMMU may not be invoked for translating
addresses in CXL.cache transactions.

3.7. PCle ATS Page Request handling

To process a "Page Request' or "Stop Marker" message [4], the IOMMU first locates the device-context to
determine if ATS and PRI are enabled for the requester. If ATS and PRI are enabled, i.e. EN_ATS and EN_PRI
are both set to 1, the IOMMU queues the message into an in-memory queue called the page-request-queue
(PQ) (See Section 4.3). Following suitable processing of the "Page Request', a software handler may generate
a "Page Request Group Response’ message to the device.

When PRI is enabled for a device, the IOMMU may still be unable to report "Page Request” or "Stop Marker"
messages through the PQ due to error conditions such as the queue being disabled, queue being full, or the
IOMMU encountering access faults when attempting to access queue memory. These error conditions are
specified in Section 4.3.

If the ddtp.iommu_mode is Bare or is 0ff, then the IOMMU cannot locate a device-context for the requester.

If EN_PRI is set to O, or EN_ATS is set to O, or if the IOMMU is unable to locate the DC to determine the
EN_PRI configuration, or the request could not be queued into PQ then the IOMMU behavior depends on
the type of "Page Request".

® [f the "Page Request" does not require a response, i.e. the "Last Request in PRG" field of the message is
set to O, then such messages are silently discarded. "Stop Marker" messages do not require a response
and are always silently discarded on such errors.

® [f the "Page Request’ needs a response, then the IOMMU itself may generate a "Page Request Group
Response" message to the device.

When the IOMMU generates the response, the status field of the response depends on the cause of the
error. If a fault condition prevents locating a valid device context then the PRPR value assumed is O.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.7. PCle ATS Page Request handling | Page 42
The status is set to Response Failure if the following faults are encountered:

® ddtp.iommu_mode is OFf (cause = 256)

DDT entry load access fault (cause = 257)

DDT entry misconfigured (cause = 259)

® DDT entry not valid (cause = 258)
® Page-request queue is not enabled (pgcsr.pgen == 0 or pgcsr.pgon == 0)
® Page-request queue encountered a memory access fault (pgcsr.pgmf == 1)

The status is set to Invalid Request if the following faults are encountered:

® ddtp.iommu_mode is Bare (cause = 260)
® EN_PRI is set to O (cause = 260)

The status is set to Success if no other faults were encountered but the "Page Request" could not be queued
due to the page-request queue being full (pgt == pgh - 1) or had a overflow (pgcsr.pgof == 1).

When SR-IOV VF is used as a unit of allocation, a hypervisor may disable page requests from
one of the virtual functions by setting EN_PRI to O. However the page-request interface is

o shared by the PF and all VFs. The IOMMU protocol specific logic classifies this condition
(cause = 260) as a non-catastrophic failure, an Invalid Request, in its response to avoid the
shared PRI in the device being disabled for all PFs/VFs.

o A "Stop Marker"is encoded as a "Page Request"with a PASID but with the L, W, and R fields set
to 1, 0, and O respectively.

For IOMMU-generated "Page Request Group Response” messages that have status Invalid Request or
Success, the PRG-response-PASID-required (PRPR) bit when set to 1 indicates that the IOMMU response
message should include a PASID if the associated "Page Request" had a PASID.

For IOMMU-generated "Page Request Group Response" with response code set to Response Failure, if the
"Page Request" had a PASID then response is generated with a PASID.

No faults are logged in the fault queue for PCle ATS "Page Request" messages for the following conditions:

® Page-request queue is not enabled (pgcsr.pgen == 0 or pgcesr.pgon == 0)
® Page-request queue encountered a memory access fault (pgcsr.pgmf == 1)

® "Page Request" could not be queued due to the page-request queue being full (pgt == pgh - 1) or had a
overflow (pgcsr.pgof == 1).

RISC-V IOMMU Architecture Specification | © RISC-V International

3.8. Caching in-memory data structures | Page 43

3.8. Caching in-memory data structures

To speed up Direct Memory Access (DMA) translations, the IOMMU may make use of translation caches to
hold entries from device-directory-table, process-directory-table, first-stage and second-stage translation
tables, and MSI page tables. These caches are collectively referred to as the IOMMU Address Translation
Caches (IOATC).

This specification does not allow the caching of first/second-stage PTEs whose V (valid) bit is clear, non-
leaf DDT entries whose V (valid) bit is clear, Device-context whose V (valid) bit is clear, non-leaf PDT entries
whose V (valid) bit is clear, Process-context whose V (valid) bit is clear, or MSI PTEs whose V bit is clear.

These IOATC do not observe modifications to the in-memory data structures using explicit loads and
stores by RISC-V harts or by device DMA. Software must use the IOMMU commands to invalidate the
cached data structure entries using IOMMU commands to synchronize the IOMMU operations to observe
updates to in-memory data structures. A simpler implementation may not implement IOATC for some or
any of the in-memory data structures. The IOMMU commands may use one or more IDs to tag the cached
entries to identify a specific entry or a group of entries.

Table 8. Identifiers used to tag [OATC entries

Data Structure cached IDs used to tag entries ~ Invalidation command
Device Directory Table device_id IODIR.INVAL_DDT
Process Directory Table device_id, process_id I[ODIRINVAL_PDT
First-stage page table (when second-stage is not Bare) GSCID, PSCID, and IOVA [OTINVALVMA
First-stage page table (when second-stage is Bare) PSCID, and IOVA IOTINVALVMA
Second-stage page table GSCID, GPA IOTINVAL.GVMA
MSI page table GSCID, GPA IOTINVAL.GVMA

3.9. Updating in-memory data structure entries

The RISC-V memory model requires memory access from a hart to be single-copy atomic. When RV32 is
implemented the size of a single-copy atomic memory access is up to 32-bits. When RV64 is implemented
the size of a single-copy atomic memory access is up to 64-bits. The size of a single-copy atomic memory
access implemented by the IOMMU is UNSPECIFIED but is required to be at least 32-bits if all of the harts in
the system implement RV32 and is required to be at least 64-bits if any of the harts in the system
implement RV64.

The IOMMU data structure entries have a v bit that when set to 1 indicates that the entry is valid.

Software is allowed to make updates to a data structure entry that has the Vv bit set to 1. However, some rules
as outlined below must be followed.

® [t is generally unsafe for software to update fields of a valid data structure entry using a set of stores of
width less than the minimal single-copy atomic memory access supported by an IOMMU as it is legal
for an IOMMU to read the entry at any time, including when only some of the partial stores have taken
effect.

® For an update to an IOMMU data structure entry to be atomic, software must use a single store of width
equal to the minimal single-copy atomic memory access supported by an IOMMU.

® If the update to a field will make the field inconsistent with another field of the entry then software
must first set the V field to O and use the commands outlined in Section 3.8 to invalidate any previous
copies of that entry that may be in IOMMU caches before updating other fields of that entry.

RISC-V IOMMU Architecture Specification | © RISC-V International

3.10. Endianness of in-memory data structures | Page 44

® The IOMMU is not required to immediately observe the software update to an entry. Software must use
the commands outlined in Section 3.8 to invalidate any previous copies of that entry that may be in
IOMMU caches to synchronize the updates to the entry with the operation of the IOMMU.

If a data structure entry is changed, the IOMMU may use the old value of the entry or the new
value of the entry and the choice is unpredictable until software uses the commands outlined

o in Section 3.8 to invalidate any previous copies of that entry that may be in IOMMU caches to
synchronize updates to the entry with the operation of the IOMMU. These are the only
behaviors expected.

3.10. Endianness of in-memory data structures

The RISC-V memory model specifies byte-invariance for the entire address space. When mixed-endian
mode of operation is supported, the IO bridge and the IOMMU must implement byte-invariant addressing
such that a byte access to a given address accesses the same memory location in both little-endian and big-
endian mode of operation.

The endianness of implicit memory access to in-memory data structures is determined by fctl.BE or by
DC.tc.SBE as follows:

Table 9. Endianness of memory access to data structures
Data Structure Controlled by
Device directory table fctl.BE
Second-stage page table fctl.BE
MSI page table fctl.BE
Process directory Table DC.tc.SBE

First-stage page table DC.tc.SBE

The PSCID field of first-stage context, along with the GSCID (when two-stage address
translation is active), identifies an address space. Configuring an identical 6SCID and PSCID

o in two DC but with different SBE is not expected and if done may lead to the IOMMU
interpreting a first-stage PTE as big-endian or little-endian. These are the only behaviors
expected.

Software must use an appropriate software sequence to swap bytes as necessary to create a
mutually agreed to data representation when sharing data with an IO agent that does not

o share its endianness. Software must use an LR/SC sequence to perform atomic operations in
non-native endian format when the data shared with such 10 agents must be accessed
atomically.

RISC-V IOMMU Architecture Specification | © RISC-V International

Chapter 4. In-memory queue interface | Page 45

Chapter 4. In-memory queue interface

Software and IOMMU interact using 3 in-memory queue data structures.

® A command-queue (CQ) used by software to queue commands to the IOMMU.
® A fault/event queue (FQ) used by IOMMU to bring faults and events to software’s attention.

® A page-request queue (PQ) used by IOMMU to report “Page Request” messages received from PCle
devices. This queue is supported if the IOMMU supports PCle [4] defined Page Request Interface.

—Pp| . . Command Queue . .

cqQB

CQH

cqQT
—Pp .. . Fault Queue

FQB

FQH

FQT
——p .. . Page Request Queue

PQB

PQH

PQT

Figure 28. IOMMU in-memory queues

Each queue is a circular buffer with a head controlled by the consumer of data from the queue and a tail
controlled by the producer of data into the queue. IOMMU is the producer of records into PQ and FQ and
controls the tail register. IOMMU is the consumer of commands produced by software into the CQ and
controls the head register. The tail register holds the index into the queue where the next entry will be
written by the producer. The head register holds the index into the queue where the consumer will read the
next entry to process.

A queue is empty if the head is equal to the tail. A queue is full if the tail is the head minus one. The head
and tail wrap around when they reach the end of the circular buffer.

The producer of data must ensure that the data written to a queue and the tail update are ordered such that
the consumer that observes an update to the tail register must also observe all data produced into the
queue between the offsets determined by the head and the tail.

RISC-V IOMMU Architecture Specification | © RISC-V International

4.1. Command-Queue (CQ) | Page 46

All RISC-V IOMMU implementations are required to support in-memory queues located in
main memory. Supporting in-memory queues in I/O memory is not required but is not

o prohibited by this specification.

The implication of the queue being considered full when tail is head minus one is that the
effective size of the queue is one less than the number of entries in the queue.

4.1. Command-Queue (CQ)

Command queue is used by software to queue commands to be processed by the IOMMU. Each command
is 16 bytes.

The PPN of the base of this in-memory queue and the size of the queue is configured into a memory-
mapped register called command-queue base (cqb).

The tail of the command-queue resides in a software-controlled read/write memory-mapped register
called command-queue tail (cqt). The cqt is an index into the next command queue entry that software
will write. Subsequent to writing the command(s), software advances the cqt by the count of the number of
commands written.

The head of the command-queue resides in a read-only memory-mapped IOMMU controlled register
called command-queue head (cgh). The cgh is an index into the command queue that IOMMU should
process next. Subsequent to reading each command the IOMMU may advance the cgh by 1. If cgh == cqt,
the command-queue is empty. If cqt == (cgh - 1) the command-queue is full.

When an error bit or the fence_w_ip bit in cqcsr is 1, the command-queue interrupt pending (cip) bit is set
in the ipsr if interrupts from command-queue are enabled (i.e. cqcsr.cie is 1).

IOMMU commands are grouped into a major command group determined by the opcode and within each
group the func3 field specifies the function invoked by that command. The opcode defines the format of
the operand fields. One or more of those fields may be used by the specific function invoked. The opcode
encodings 64 to 127 are designated for custom use.

operands func3| opcode

Figure 29. Format of an IOMMU command

The commands are interpreted as two 64-bit doublewords. The byte order of each of the doublewords in
memory, little-endian or big-endian, is the endianness as determined by fct1.BE (Section 6.4).

The following command opcodes are defined:

Table 10. IOMMU command opcodes

opcode Encoding Description

IOTINVAL 1 IOMMU page-table cache invalidation commands.
IOFENCE 2 IOMMU command-queue fence commands.
IODIR 3 IOMMU directory cache invalidation commands.
ATS 4 IOMMU PCle [4] ATS commands.

Reserved 5-63 Reserved for future standard use.

RISC-V IOMMU Architecture Specification | © RISC-V International

4.1. Command-Queue (CQ) | Page 47

opcode Encoding Description

Custom 64-127 Designated for custom use.

All undefined functions of command opcodes O through 63 are reserved for future standard use.

A command is determined to be illegal if it uses a reserved encoding or if a reserved bit is set to 1. A
command is unsupported if it is defined but not implemented as determined by the IOMMU capabilities
register. If an illegal or unsupported command is fetched and decoded by the command-queue then the
command-queue sets the cqcsr.cmd_ill bit and stops processing commands from the command-queue.
To re-enable command processing software should clear the emd_ill bit by writing 1 to it.

4.1.1. IOMMU Page-Table cache invalidation commands

v azeizs %
vd [0 "7 pppmlezazl]
T 7 S - N - S -
" pomess 7 Ts T e]
63 0 so . a4 43 35 34 33 3
| v 7 Uesen T sl I evpsay
2109 76 0
| PS:;ID |rsvd| [\ | Ifun-:_’: | .) qpcndle . . |
VMAOX0 TOTINVAL(0X1)
GVMA-OX1

IOMMU operations cause implicit reads to PDT, first-stage and second-stage page tables. To reduce latency
of such reads, the IOMMU may cache entries from the first-stage and/or second-stage page tables in the
IOMMU-address-translation-cache (IOATC). These caches might not observe modifications performed by
software to these data structures in memory.

The TOMMU translation-table cache invalidation commands, IOTINVAL.VMA and IOTINVAL.GVMA
synchronize updates to in-memory first-stage and second-stage page table data structures respectively with
the operation of the IOMMU and invalidate the matching IOATC entries.

The GV operand indicates if the Guest-Soft-Context ID (6SCID) operand is valid. The PSCV operand indicates
if the Process Soft-Context ID (PSCID) operand is valid. Setting PSCV to 1 is allowed only for IOTINVAL.VMA.
The AV operand indicates if the address (ADDR) operand is valid. When GV is O, the translations associated
with the host (i.e. those where the second-stage is Bare) are operated on. When 6V is O, the 6SCID operand is
ignored. When AV is O, the ADDR operand is ignored. When PSCV operand is O, the PSCID operand is ignored.
When the AV operand is set to 1, if the ADDR operand specifies an invalid address, the command may or may
not perform any invalidations.

The definition of the NL bit is provided by the non-leaf PTE invalidation extension Section 9.2. The
definition of the S bit is provided by the address range invalidation extension Section 9.3.

When an invalid address is specified, an implementation may either complete the command
with no effect or may complete the command using an alternate, yet UNSPECIFIED, legal value

e for the address. Note that entries may generally be invalidated from the address translation
cache at any time.

RISC-V IOMMU Architecture Specification | © RISC-V International

4.1. Command-Queue (CQ) | Page 48

IOTINVAL.VMA ensures that previous stores made to the first-stage page tables by the harts are observed by
the IOMMU before all subsequent implicit reads from IOMMU to the corresponding first-stage page tables.

Table I1. IOTINVAL.VMA operands and operations

GV AV PSC Operation
Vv

O O O |Invalidates all address-translation cache entries, including those that contain global mappings, for all
host address spaces.

O O 1 [Invalidates all address-translation cache entries for the host address space identified by PSCID operand,
except for entries containing global mappings.

O 1 O Invalidates all address-translation cache entries that contain first-stage leaf page table entries,
including those that contain global mappings, corresponding to the IOVA in ADDR operand, for all host
address spaces.

O 1 1 Invalidates all address-translation cache entries that contain first-stage leaf page table entries
corresponding to the IOVA in ADDR operand and that match the host address space identified by PSCID
operand, except for entries containing global mappings.

1 0 O Invalidates all address-translation cache entries, including those that contain global mappings, for all
VM address spaces associated with 6SCID operand.

1 0 1 Invalidates all address-translation cache entries for the VM address space identified by PSCID and
GSCID operands, except for entries containing global mappings.

1 1 O Invalidates all address-translation cache entries that contain first-stage leaf page table entries,
including those that contain global mappings, corresponding to the IOVA in ADDR operand, for all VM
address spaces associated with the 6SCID operand.

1 1 1 [Invalidatesall address-translation cache entries that contain first-stage leaf page table entries
corresponding to the IOVA in ADDR operand, for the VM address space identified by PSCID and 6SCID
operands, except for entries containing global mappings.

IOTINVAL.GVMA ensures that previous stores made to the second-stage page tables are observed before all
subsequent implicit reads from IOMMU to the corresponding second-stage page tables. Setting PSCV to 1
with TOTINVAL.GVMA is illegal.

Table 12. TOTINVAL . GVMA operands and operations
GV AV Operation
O ignored Invalidates information cached from any level of the second-stage page table, for all VM address spaces.

1 O Invalidates information cached from any level of the second-stage page tables, but only for VM address
spaces identified by the GSCID operand.

1 1 Invalidates information cached from leaf second-stage page table entries corresponding to the guest-
physical-address in ADDR operand, but only for VM address spaces identified by the GSCID operand.

Conceptually, an implementation might contain two address-translation caches: one that
maps guest virtual addresses to guest physical addresses, and another that maps guest

o physical addresses to supervisor physical addresses. IOTINVAL.GVMA need not invalidate the
former cache, but it must invalidate entries from the latter cache that match the
IOTINVAL.GVMA address and GSCID operands.

RISC-V IOMMU Architecture Specification | © RISC-V International

4.1. Command-Queue (CQ) | Page 49

More commonly, implementations contain address-translation caches that map guest virtual
addresses directly to supervisor physical addresses, removing a level of indirection. For such
implementations, any entry whose guest virtual address maps to a guest physical address that
matches the IOTINVAL.GVMA address and GSCID arguments must be invalidated. Selectively
invalidating entries in this fashion requires tagging them with the guest physical address,
which is costly, and so a common technique is to invalidate all entries that match the 6SCID
argument, regardless of the address argument.

Simpler implementations may ignore the operand of IOTINVAL.VMA and/or IOTINVAL.GVMA
and perform a global invalidation of all address-translation entries.

Some implementations may cache an identity-mapped translation for the stage of address
translation operating in Bare mode. Since these identity mappings are invariably correct, an
explicit invalidation is unnecessary.

o A consequence of this specification is that an implementation may use any translation for an
address that was valid at any time since the most recent IOTINVAL that subsumes that
address. In particular, if a leaf PTE is modified but a subsuming IOTINVAL is not executed,
either the old translation or the new translation will be used, but the choice is unpredictable.
The behavior is otherwise well-defined.

In a conventional TLB design, it is possible for multiple entries to match a single address if, for
example, a page is upgraded to a larger page without first clearing the original non-leaf PTE’s
valid bit and executing an TOTINVAL.VMA or IOTINVAL.GVMA as applicable with AV=0. In this
case, a similar remark applies: it is unpredictable whether the old non-leaf PTE or the new leaf
PTE is used, but the behavior is otherwise well defined.

Another consequence of this specification is that it is generally unsafe to update a PTE using a

set of stores of a width less than the width of the PTE, as it is legal for the implementation to
read the PTE at any time, including when only some of the partial stores have taken effect.

4.1.2. IOMMU Command-queue Fence commands

\wazeizs %
wd [0 0 ppoRes2)]
o e
- """ aoomes2]
63
- o]
41312 M 10 9 76 0
| rslvd | PW| PR |w5|| AV | Ifuncjl | .) qpcndle . . |
TOFENCE(0x2]

The IOMMU fetches commands from the CQ in order but the IOMMU may execute the fetched commands
out of order. The IOMMU advancing cgh is not a guarantee that the commands fetched by the IOMMU
have been executed or committed.

A IOFENCE.C command completion, as determined by cgh advancing past the index of the IOFENCE.C
command in the CQ, guarantees that all previous commands fetched from the CQ have been completed
and committed.

If the IOFENCE.C times out waiting on completion of previous commands that are specified to have a
timeout, then the cmd_to bit in cqcsr Section 6.15 is set to signal this condition. The cgh holds the index of
the IOFENCE.C that timed out and all previous commands that are not specified to have a timeout have
been completed and committed.

RISC-V IOMMU Architecture Specification | © RISC-V International

4.1. Command-Queue (CQ) | Page 50

0 In this version of the specification, only the ATS.INVAL command is specified to have a
timeout.

The commands may be used to order memory accesses from I/O devices connected to the IOMMU as
viewed by the IOMMU, other RISC-V harts, and external devices or co-processors.

The PR bit, when set to 1, can be used to request that the IOMMU ensure that all previous read requests
from devices that have already been processed by the IOMMU be committed to a global ordering point
such that they can be observed by all RISC-V harts and IOMMUs in the system.

The PW bit, when set to 1, can be used to request that the IOMMU ensure that all previous write requests
from devices that have already been processed by the IOMMU be committed to a global ordering point
such that they can be observed by all RISC-V harts and IOMMUs in the system.

The wire-signaled-interrupts (WSI) bit when set to 1 causes a wired-interrupt from the command queue to
be generated (by setting cqcsr.fence_w_ip - Section 6.15) on completion of IOFENCE. C. This bit is reserved
if the IOMMU does not support wired-interrupts or wired-interrupts have not been enabled (i.e., fctl.WSI

== o).

Software should ensure that all previous read and writes processed by the IOMMU have been
committed to a global ordering point before reclaiming memory that was previously made
accessible to a device. A safe sequence for such memory reclamation is to first update the page
tables to disallow access to the memory from the device and then use the IOTINVAL.VMA or
IOTINVAL.GVMA appropriately to synchronize the IOMMU with the update to the page table.
As part of the synchronization if the memory reclaimed was previously made read accessible to
the device then request ordering of all previous reads; else if the memory reclaimed was
previously made write accessible to the device then request ordering of all previous reads and
writes. Ordering previous reads may be required if the reclaimed memory will be used to hold
data that must not be made visible to the device.

o The IOFENCE.C with PR and/or PW set to 1 only ensures that requests that have been already
processed by the IOMMU are committed to the global ordering point. Software must perform
an interconnect-specific fence action if there is a need to ensure that all in-flight requests from
a device that have not yet been processed by the IOMMU are observed. For PCle, for example, a
completion from device in response to a read from the device memory has the property of
ensuring that previous posted writes are observed by the IOMMU as completions may not pass
previous posted writes.

The ordering guarantees are made for accesses to main-memory. For accesses to I/O memory,
the ordering guarantees are implementation and I1/O protocol defined. Simpler
implementations may unconditionally order all previous memory accesses globally.

The AV command operand indicates if ADDR[63:2] and DATA operands are valid. If AV=1, the IOMMU writes
DATA to memory at a 4-byte aligned address ADDR[63:2] * 4 as a 4-byte store when the command
completes. When AV is O, the ADDR[63:2] and DATA operands are ignored. If the attempt to perform this
write encounters a memory fault, the emd_mf bit in cqcsr Section 6.15 is set to signal this condition, and the
cgh holds the index of the IOFENCE. C that encountered such a memory fault and did not complete.

Software may configure the ADDR[63:2] command operand to specify the address of the
seteipnum_le/seteipnum_be register in an IMSIC to cause an external interrupt notification

o on IOFENCE.C completion. Alternatively, software may program ADDR[63:2] to a memory
location and use IOFENCE.C to set a flag in memory indicating command completion.

4.1.3. IOMMU directory cache invalidation commands

RISC-V IOMMU Architecture Specification | © RISC-V International

4.1. Command-Queue (CQ) | Page 51

127 96

I

| _ rsvd) |
63 . 40 39 . . i . . 34 33 32

- "o L wsd . ov]sv
31 i i i i i i i i i i i i i i i i i i i 12 11 i 10 9 i i 7 6 i i i i i i 0

| PIID | rslvd | Ifuncjl | .) qpcndle . . |

INVAL_DDT-0x0 I0DIR(0x3)

INVAL_PDT-0x1

IOMMU operations cause implicit reads to DDT and/or PDT. To reduce latency of such reads, the IOMMU
may cache entries from the DDT and/or PDT in IOMMU directory caches. These caches might not observe
modifications performed by software to these data structures in memory.

The IOMMU DDT cache invalidation command, IODIR.INVAL_DDT, synchronizes updates to DDT with the
operation of the IOMMU and flushes the matching cached entries.

The IOMMU PDT cache invalidation command, IODIR.INVAL_PDT, synchronizes updates to PDT with the
operation of the IOMMU and flushes the matching cached entries.

The DV operand indicates if the device ID (DID) operand is valid. The DV operand must be 1 for
IODIR.INVAL_PDT else the command is illegal. When DV operand is 1, the value of the DID operand must not
be wider than that supported by the ddtp.iommu_mode.

IODIR.INVAL_DDT guarantees that any previous stores made by a RISC-V hart to the DDT are observed
before all subsequent implicit reads from IOMMU to DDT. If DV is O, then the command invalidates all
DDT and PDT entries cached for all devices; the DID operand is ignored. If DV is 1, then the command
invalidates cached leaf-level DDT entry for the device identified by DID operand and all associated PDT
entries. The PID operand is reserved for the IODIR.INVAL_DDT command.

IODIR.INVAL_PDT guarantees that any previous stores made by a RISC-V hart to the PDT are observed
before all subsequent implicit reads from IOMMU to PDT. The command invalidates cached leaf PDT
entry for the specified PID and DID. The PID operand of IODIR.INVAL_PDT must not be wider than the width
supported by the IOMMU (see Section 6.3).

Some fields in the Device-context or Process-context may be guest-physical addresses. An

implementation when caching the device-context or process-context may cache these fields

after translating them to a supervisor physical address. Other implementations may cache

them as guest-physical addresses and translate them to supervisor physical addresses using a
o second-stage page table just prior to accessing memory referenced by these addresses.

If second-stage page tables used for these translations are modified, software must issue the
appropriate I0DIR command as some implementations may choose to cache the translated
supervisor physical address pointer in the IOMMU directory caches.

The IOTINVAL command has no effect on the IOMMU directory caches.

4.1.4. IOMMU PCle ATS commands

This command is supported if capabilities.ATS is set to 1.

RISC-V IOMMU Architecture Specification | © RISC-V International

4.1. Command-Queue (CQ) | Page 52

127 %
.. emo0]
o e
- " emto
s s s . 439 3 33 3
| obses - Twe T s osy ey
2109 76 0

PID rsvd func3 opcode
- e e [o fnes | opeode
VAL 310 NS

The ATS.INVAL command instructs the IOMMU to send an “Invalidation Request” message to the PCle
device function identified by RID. An “Invalidation Request” message is used to clear a specific subset of the
address range from the address translation cache in a device function. The ATS.INVAL command completes
when an “Invalidation Completion” response message is received from the device or a protocol-defined
timeout occurs while waiting for a response. The IOMMU may advance the cgh and fetch more commands
from CQ while a response is awaited. If a timeout occurs, it is reported when a subsequent IOFENCE.C
command is executed.

Software that needs to know if the invalidation operation completed on the device may use the
IOMMU command-queue fence command (IOFENCE.C) to wait for the responses to all prior
“Invalidation Request” messages. The IOFENCE.C is guaranteed to not complete before all
previously fetched commands were executed and completed. A previously fetched ATS
command to invalidate device ATC does not complete until either the request times out or a

o valid response is received from the device.

If one or more ATS invalidation commands preceding the IOFENCE.C have timed out, then
software may make the CQ operational again and resubmit the invalidation commands that
may have timed out. If the ATS.INVAL commands queued before the IOFENCE.C were directed
at multiple devices then software may resubmit these commands as ATS.INVAL and
IOFENCE. C pairs to identify the device that caused the timeout.

The ATS.PRGR command instructs the IOMMU to send a “Page Request Group Response” message to the
PCle device function identified by the RID. The “Page Request Group Response” message is used by system
hardware and/or software to communicate with the device functions page-request interface to signal
completion of a “Page Request”, or the catastrophic failure of the interface.

If the PV operand is set to 1, the message is generated with a PASID with the PASID field set to the PID
operand. if PV operand is set to O, then the PID operand is ignored and the message is generated without a
PASID.

The PAYLOAD operand of the command is used to form the message body and its fields are as specified by
the PCle specification [4]. The PAYLOAD field is formatted as follows:

63 32
| Untranslated Address[63:32] |
3 12 11 10 1 o0
| Untranslated Address[31:12) | s | 0 | 5 |

Figure 30. PAYLOAD of an ATS.INVAL command

e . a8 a7 a4 43 a4 40 3
| o " | pesponseCode | 0 | PageRequestGroupindex |
“

Figure 31. PAYLOAD of an ATS.PRGR command

RISC-V IOMMU Architecture Specification | © RISC-V International

4.2. Fault/Event-Queue (FQ) | Page 53

If the DSV operand is 1, then a valid destination segment number is specified by the DSEG operand. If the DSV
operand is O, then the DSEG operand is ignored.

A Hierarchy is a PCI Express I/O interconnect topology, wherein the Configuration Space
addresses, referred to as the tuple of Bus/Device/Function Numbers, are unique. In some

0 contexts, a Hierarchy is also called a Segment, and in Flit Mode, the Segment number is
sometimes included in the ID of a Function.

4.2. Fault/Event-Queue (Fq)

Fault/Event queue is an in-memory queue data structure used to report events and faults raised when
processing transactions. Each fault record is 32 bytes.

The PPN of the base of this in-memory queue and the size of the queue is configured into a memory-
mapped register called fault-queue base (fqb).

The tail of the fault-queue resides in an IOMMU controlled read-only memory-mapped register called fqt.
The fqt is an index into the next fault record that IOMMU will write in the fault-queue. Subsequent to
writing the record, the IOMMU advances the fqt by 1. The head of the fault-queue resides in a read/write
memory-mapped software controlled register called fgh. The fgh is an index into the fault record that SW
should process next. Subsequent to processing fault record(s) software advances the fgh by the count of the
number of fault records processed. If fgh == fqt, the fault-queue is empty. If fqt == (fgh - 1) the fault-
queue is full.

The fault records are interpreted as four 64-bit doublewords. The byte order of each of the doublewords in
memory, little-endian or big-endian, is the endianness as determined by fctl.BE (Section 6.4).

255 224
.. e]
%2
| iot\.lralz) |
101 160
. et]
159 128
.t]
ww e
|)))))))))))))) Ireselr\l'edl)))))))))))))) |
95 64
.. eresstomuse]
ey s 33 3
- "o - e e]
3 12 1 0
I N T

Figure 32. Fault-queue record
The CAUSE is a code indicating the cause of the fault/event.

Table 13. Fault record CAUSE field encodings

CAUSE Description Reported if DTF is 1?
1 Instruction access fault No
4 Read address misaligned No
5 Read access fault No
6 Write/AMO address misaligned No
7 Write/AMO access fault No

RISC-V IOMMU Architecture Specification | © RISC-V International

4.2. Fault/Event-Queue (FQ) | Page 54

CAUSE Description Reported if DTF is 1?
12 Instruction page fault No
13 Read page fault No
15 Write/AMO page fault No
20 Instruction guest page fault No
21 Read guest-page fault No
23 Write/AMO guest-page fault No

256 All inbound transactions disallowed Yes
257 DDT entry load access fault Yes
258 DDT entry not valid Yes
259 DDT entry misconfigured Yes
260 Transaction type disallowed No
261 MSI PTE load access fault No
262 MSI PTE not valid No
263 MSI PTE misconfigured No
264 MRIF access fault No
265 PDT entry load access fault No
266 PDT entry not valid No
267 PDT entry misconfigured No
268 DDT data corruption Yes
269 PDT data corruption No
270 MSI PT data corruption No
271 MSI MRIF data corruption No
272 Internal data path error Yes
273 IOMMU MSI write access fault Yes
274 First/second-stage PT data corruption No

The CAUSE encodings 275 through 2047 are reserved for future standard use and the encodings 2048
through 4095 are designated for custom use. Encodings between O and 275 that are not specified in Table
13 are reserved for future standard use.

If a fault condition prevents locating a valid device context then the DTF value assumed for reporting such
faults is O.

The TTYP field reports inbound transaction type.

Table 14. Fault record TTYP field encodings
TTYP Description
O None. Fault not caused by an inbound transaction.
1 Untranslated read for execute transaction
Untranslated read transaction

Untranslated write/AMO transaction

W N

Reserved

RISC-V IOMMU Architecture Specification | © RISC-V International

4.2. Fault/Event-Queue (FQ) | Page 55

TTYP Description

Translated read for execute transaction
Translated read transaction

Translated write/AMO transaction

PCle ATS Translation Request

© o N O O

PCle Message Request
10 - 31 Reserved

31- 63 Designated for custom use

If the TTYP is a transaction with an IOVA, the IOVA is reported in iotval. If the TTYP is a PCle message
request, the message code of the PCle message is reported in iotval. If TTYP is O, the values reported in
iotval and iotval2 fields are as defined by the CAUSE.

The T0VA is partitioned into a virtual page number (VPN) and page offset. Whereas the VPN is
translated into a physical page number (PPN) by the address translation process, the page
0 offset is not required for this process. The IO bridge in some implementations may not provide
the page offset part of the TOVA to the IOMMU and the IOMMU may report the page offset in
iotval as O. Likewise, an IOMMU may report the page offset of a GPA in iotval2 as O.

RISC-V IOMMU Architecture Specification | © RISC-V International

4.3. Page-Request-Queue (PQ) | Page 56

DID holds the device_id of the transaction. If PV is O, then PID and PRIV are O. If PV is 1, the PID holds a
process_id of the transaction and if the privilege of the transaction was Supervisor then the PRIV bit is 1
else it’s 0. The DID, PV, PID, and PRIV fields are O if TTYP is O.

If the CAUSE is a guest-page fault then bits 63:2 of the zero-extended guest-physical-address are reported in
iotval2[63:2]. If bit O of iotval2 is 1, then the guest-page-fault was caused by an implicit memory access
for first-stage address translation. If bit O of iotval2 is 1, and the implicit access was a write then bit 1 of
iotval2issettolelseitissetto O.

The bit 1 of iotval2 is set for the case where the implementation supports hardware updating
of A/D bits and the implicit memory access was attempted to automatically update A and/or D
in first-stage page tables. All other implicit memory accesses for first-stage address
translation will be reads. If the hardware updating of A/D bits is not implemented, the write

e case will never arise.

When the second-stage is not Bare, the memory accesses for reading PDT entries to locate the
Process-context are implicit memory accesses for first-stage address translation. If a guest-
page fault was caused by implicit memory access to read PDT entries, then bit O of iotval2 is
reported as 1 and bit 1 as O.

The IOMMU may be unable to report faults through the fault-queue due to error conditions such as the
fault-queue being full or the IOMMU encountering access faults when attempting to access the queue
memory. A memory-mapped fault control and status register (fgcsr) holds information about such faults.
If the fault-queue full condition is detected, the IOMMU sets the fault-queue overflow (fqof) bit in fqcsr. If
the IOMMU encounters a fault in accessing the fault-queue memory, the IOMMU sets the fault-queue
memory access fault (fgmf) bit in fgcsr. While either error bit is set in fqcsr, the IOMMU discards the
record that led to the fault and all further fault records. When an error bit in fqesr is 1 or when a new fault
record is produced in the fault-queue, the fault interrupt pending (fip) bit is set in ipsr if interrupts from
the fault-queue are enabled i.e. fgcsr.fieis 1.

The IOMMU may identify multiple requests as having detected an identical fault. In such cases the
IOMMU may report each of those faults individually, or report the fault for a subset, including one, of
requests.

4.3. Page-Request-Queue (rq)

Page-request queue is an in-memory queue data structure used to report PCle ATS “Page Request” and
"Stop Marker" messages [4] to software. The base PPN of this in-memory queue and the size of the queue is
configured into a memory-mapped register called page-request queue base (pgb). Each Page-Request
record is 16 bytes.

The tail of the queue resides in an IOMMU controlled read-only memory-mapped register called pgt. The
pgt holds an index into the queue where the next page-request message will be written by the IOMMU.
Subsequent to writing the message, the IOMMU advances the pqt by 1.

The head of the queue resides in a software controlled read/write memory-mapped register called pgh. The
pgh holds an index into the queue where the next page-request message will be received by software.
Subsequent to processing the message(s) software advances the pgh by the count of the number of
messages processed.

If pgh == pgt, the page-request queue is empty.

If pgt == (pgh - 1) the page-request queue is full.

RISC-V IOMMU Architecture Specification | © RISC-V International

4.3. Page-Request-Queue (PQ) | Page 57

The IOMMU may be unable to report "Page Request” messages through the queue due to error conditions
such as the queue being disabled, queue being full, or the IOMMU encountering access faults when
attempting to access queue memory. A memory-mapped page-request queue control and status register
(pacsr) is used to hold information about such faults. On a page queue full condition the page-request-
queue overflow (pgof) bit is set in pgesr. If the IOMMU encountered a fault in accessing the queue
memory, the page-request-queue memory access fault (pgmf) bit is set in pgecsr. While either error bit is set
in pgcsr, the IOMMU discards all subsequent "Page Request” messages, including the message that caused
the error bits to be set. "Page request’ messages that do not require a response, i.e. those with the "Last
Request in PRG" field is O, are silently discarded. "Page request” messages that require a response, i.e. those
with "Last Request in PRG" field set to 1 and are not "Stop Marker" messages, may be auto-completed by an
IOMMU generated “Page Request Group Response” message as specified in Section 3.7.

When an error bit in pgesr is 1 or when a new message is produced in the queue, the page-request-queue
interrupt pending (pip) bit is set in the ipsr if interrupts from page-request-queue are enabled i.e.
pgcsr.pieis 1.

2 -
- " mwoo]
95 64
.. e]
a0 3 35 3433 3
- " reserved [exedpRiv] pv |
e S Y
|))))))))) PI.D))))))))) |))))) rESEIWEd))))) |

Figure 33. Page-request-queue record

The DID field holds the requester ID from the message. The PID field is valid if PV is 1 and reports the PASID
from message. PRIV is set to O if the message did not have a PASID, otherwise it holds the “Privilege Mode
Requested” bit from the TLP. The EXEC bit is set to O if the message did not have a PASID, otherwise it
reports the “Execute Requested” bit from the TLP. All other fields are set to O. The payload of the “Page
Request” message (bytes 0x08 through OxOF of the message) is held in the PAYLOAD field. If R and W are
both O and L is 1, the message is "Stop Marker".

The page-request-queue records are interpreted as two 64-bit doublewords. The byte order of each of the
doublewords in memory, little-endian or big-endian, is the endianness as determined by fctl.BE (Section
6.4).

The PAYLOAD holds the message body and its fields are as specified by the PCle specification [4]. The
PAYLOAD field is formatted as follows:

63 32
| Page Address[63:32] |
31 12 11 3 2 1 0
| Page Address[31:12] | Page Request Group Index | L | W| R |

Figure 34. PAYLOAD of a "Page request” message

RISC-V IOMMU Architecture Specification | © RISC-V International

Chapter 5. Debug support | Page 58

Chapter 5. Debug support

To support software debug, the IOMMU may provide an optional register interface that may be used by
software to request IOMMU to perform an address translation. The IOMMU supports this capability when
capabilities.DBG is 1. The interface consists of two set of registers; translation-request registers that are
used by software to program an IOVA and other inputs needed by the process to translate an IOVA (Section
3.3) as an Untranslated Request. The result of the translation, if the process completes successfully, is
reported through the translation-response registers. If the process stops due to faults then the faults are
reported normally in the fault-queue and the translation-response registers updated with a failure
indicator. If the IOVA is determined to be that of a virtual interrupt file (Section 3.1.3.6) and the
corresponding MSI PTE is in MRIF mode, then the process stops and reports a "Transaction type
disallowed" (cause = 260) fault.

When the process to translate an IOVA is invoked for this purpose, the IOMMU may or may not cache
first-stage PTEs, second-stage PTEs, DDT entries, PDT entries, or MSI PTEs accessed for the translation
process in the IOATC. The IOMMU is allowed to use any PTEs or directory structure entries that may
already be cached in the IOATC. The IOMMU may update the Accessed (A) and/or Dirty (D) bits in the
PTEs used for the translation process if supported by the IOMMU. When the IOMMU implements a HPM,
the HPM counters may be updated normally by the IOMMU. For the purpose of counting in the HPM,
these requests are treated as Untranslated Requests.

The translation-request interface consists of the following 64-bit WARL registers:

® tr_req_iova (Section 6.24)

® tr_reg_ctl (Section 6.25)
The translation-response interface consists of a single 64-bit RO register tr_response (Section 6.26)

To request a translation, the tr_req_iova register is written first with the desired IOVA and the tr_req_ctl
register is written next. The 'Go/Busy bit is set in tr_req_ctl to indicate a valid request in the registers.
The 6o/Busy bit is a read-write-sticky (RWS) bit that once set cannot be cleared by writing the register. The
Go/Busy bit will be cleared to O by the IOMMU when the process completes (successfully or due to
encountering a fault). When the 6o/Busy bit goes from 1 to O, a response is valid in the tr_response
register.

When the 6o/Busy bit is 1, the IOMMU behavior is UNSPECIFIED if:

® The tr_req_iova or tr_req_ctl are modified.

® [OMMU configurations, such as ddtp.iommu_mode, are modified.
The time to complete a translation request through this debug interface is UNSPECIFIED but is required to
be finite. If the IOMMU is serving translation requests from the IO bridge when a request is made through

this register interface then the time to complete the request may be longer than when the IOMMU is
otherwise idle.

o The debug interface is optional but recommended to be implemented to aid software debug
and to implement architectural compliance tests.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.1. Register layout | Page 59

Chapter 6. Memory-mapped register interface

The IOMMU provides a memory-mapped programming interface. The memory-mapped registers of each
IOMMU are located within a naturally aligned 4-KiB region (a page) of physical address space.

The IOMMU behavior for register accesses where the address is not aligned to the size of the access, or if
the access spans multiple registers, or if the size of the access is not 4 bytes or 8 bytes, is UNSPECIFIED. A 4
byte access to an IOMMU register must be single-copy atomic. Whether an 8 byte access to an IOMMU
register is single-copy atomic is UNSPECIFIED, and such an access may appear, internally to the IOMMU, as
if two separate 4 byte accesses — first to the high half and second to the low half — were performed.

The 8-byte IOMMU registers are defined in such a way that software can perform two
individual 4-byte accesses, or hardware can perform two independent 4-byte transactions

o resulting from an 8-byte access, to the high and low halves of the register, in that order, as
long as the register semantics, with regard to side-effects, are respected between the two
software accesses, or two hardware transactions, respectively.

The IOMMU registers have little-endian byte order, even for systems where all harts are big-endian-only.

Big-endian-configured harts that make use of an IOMMU are expected to implement the REV8
o byte-reversal instruction defined by the Zbb extension. If REV8 is not implemented, then
endianness conversion may be implemented using a sequence of instructions.

If a register is optional, as determined by the corresponding capabilities register bit being O, then a read

from the memory-mapped register offset of the register returns O and writes to that offset are ignored.

6.1. Register layout

Table 15. IOMMU Memory-mapped register layout

Offset Name Size Description Is Optional?

O capabilities 8 Capabilities of the IOMMU No

8 fctl 4 Features control No

12 custom 4 Designated For custom use

16 ddtp 8 Device directory table pointer No

24 cqgb 8 Command-queue base No

32 cgh 4 Command-queue head No

36 cqt 4 Command-queue tail No
40 fqgb 8 Fault-queue base No

48 fqgh 4 Fault-queue head No

52 fqt 4 Fault-queue tail No

56 pgb 8 Page-request-queue base if capabilities.ATS==0
64 pgh 4 Page-request-queue head if capabilities.ATS==0
68 pgt 4 Page-request-queue tail if capabilities.ATS==0
72 cqcsr 4 Command-queue CSR No

76 fqcsr 4 Fault-queue CSR No
80 pgcsr 4 Page-request-queue CSR if capabilities.ATS==0

RISC-V IOMMU Architecture Specification | © RISC-V International

6.2. Reset behavior | Page 60

Offset Name
84 ipsr

88 iocountovf
92 iocountinh

96 iohpmcycles

104 iohpmctril-31
352 iohpmevtl-31
600 tr_reqg_iova
608 tr_req_ctl
616 tr_response
624 iommu_qgosid
628 Reserved

688 custom

760 icvec

768 msi_cfg_tbl
1024 Reserved

6.2. Reset behavior

Size

248
248

60
72
8
256
3072

Description
Interrupt pending status register
HPM counter overflows
HPM counter inhibits
HPM cycles counter
HPM event counters
HPM event selector
Translation-request IOVA
Translation-request control
Translation-request response
IOMMU QoS ID
Reserved for future use (WPRI)
Designated for custom use (WARL)
Interrupt cause to vector register
MSI Configuration Table

Reserved for standard use

The reset value is O for the following registers fields.

® cqcsr - cgen, cqie, cqon, and busy

® pqcsr - pgen, pqie, pgon, and busy

® tr_req_ctl.Go/Busy

® ddtp.busy

fqgcsr - fgen, fqie, fqon, and busy

The reset value is O for the following registers.

® ipsr

Reset value for ddtp.iommu_mode field must be either 0ff or Bare.

After a reset the caches (Section 3.8) must have no valid entries.

e

The reset value is UNSPECIFIED for all other registers and/or fields.

6.3. IOMMU capabilities (capabilities)

The capabilities register is a read-only register reporting features supported by the IOMMU. Each field if
not clear indicates the presence of that feature in the IOMMU. At reset, the register shall contain the

[IOMMU supported features.

RISC-V IOMMU Architecture Specification | © RISC-V International

Is Optional?

No

if capabilities.
if capabilities.
if capabilities.
if capabilities.
if capabilities.
if capabilities.
if capabilities.
if capabilities.

if capabilities.

No

if capabilities.

The reset value for the iommu_mode is recommended to be 0ff.

HPM==0
HPM==0
HPM==0
HPM==0
HPM==0
DBG==0
DBG==0
DBG==0
Q0SID==0
IGS==WSI

6.3. IOMMU capabilities (capabilities) | Page 61

63 . 56
custom ‘
55 . 48
reserved ‘
47 . . 44 43 42 41 40
reserved ‘ S ‘ NL ‘ QOsID ‘ PD20 ‘
39 38 37 32
PD17 ‘ PD8 ‘ PAS ‘
31 30 29 . 28 27 26 25 24
DBG ‘ HPM ‘ IGS ‘ END ‘ T2GPA ‘ ATS ‘ AMO_HWAD ‘
23 22 21 20 19 18 17 16
MSI_MRIF ‘ MSI_FLAT ‘ AMO_MRIF reserved ‘ Sv57x4 ‘ Sv48x4 ‘ Sv39x4 ‘ Sv32x4 ‘
15 14 13 . 12 11 10 9 8
Svpbmt ‘ Svrsw60t59b ‘ reserved ‘ Sv57 ‘ Sv48 ‘ Sv39 ‘ Sv32 ‘
7 . 0
version ‘
Figure 35. IOMMU capabilities register fields
Bits Field Attribut Description
e
7.0 version RO The version field holds the version of the specification implemented by the IOMMU.
The low nibble is used to hold the minor version of the specification and the upper
nibble is used to hold the major version of the specification. For example, an
implementation that supports version 1.0 of the specification reports 0Ox10.
8 Sv32 RO Page-based 32-bit virtual addressing is supported.
9 Sv39 RO Page-based 39-bit virtual addressing is supported.
10 sv48 RO Page-based 48-bit virtual addressing is supported.
When Sv48 is set, Sv39 must be set.
11 8sv57 RO Page-based 57-bit virtual addressing is supported
When Sv57 is set, Sv48 must be set.
13:12 reserved RO Reserved for standard use.
14 Svrswé0t RO PTE Reserved-for-Software Bits 60-59.
5%b
15 Svpbmt RO Page-based memory types.
16 Sv32x4 RO Page-based 34-bit virtual addressing for second-stage address translation is supported.
17 Sv39x4 RO Page-based 41-bit virtual addressing for second-stage address translation is supported.
18 Sv48x4 RO Page-based 50-bit virtual addressing for second-stage address translation is supported.
19 Sv57x4 RO Page-based 59-bit virtual addressing for second-stage address translation is supported.
20 reserved RO Reserved for standard use.
21 AMO_MRIF RO Atomic updates to MRIF is supported.
22 MSI_FLAT RO MSI address translation using Pass-through mode MSI PTE is supported.
23 MSI_MRIF RO MSI address translation using MRIF mode MSI PTE is supported.
24 AMO_HWAD RO Atomic updates to PTE accessed (A) and dirty (D) bit is supported.
25 ATS RO PCle Address Translation Services (ATS) and page-request interface (PRI) [4] is
supported.
26 T2GPA RO Returning guest-physical-address in ATS translation completions is supported.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.3. IOMMU capabilities (capabilities) | Page 62

Bits Field Attribut Description
e
27 END RO When O, IOMMU supports one endianness (either little or big). When 1, IOMMU
supports both endianness. The endianness is defined in the fct1 register.
29:2 1IGS RO IOMMU interrupt generation support.
8
Value Name Description
0 MSI IOMMU supports only message- signaled-interrupt
generation.
1 WSI IOMMU supports only wire- signaled-interrupt
generation.
2 BOTH IOMMU supports both MSI and WSI generation.

The interrupt generation method must be defined
in the fctl register.

3 0 Reserved for standard use

30 HPM RO IOMMU implements a hardware performance monitor.

31 DBG RO IOMMU supports the translation-request interface
37:32 PAS RO Physical Address Size supported by the IOMMU.

38 PD8 RO Onelevel PDT with 8-bit process_id supported.

39 PD17 RO Two level PDT with 17-bit process_id supported.

40 PD208 RO Three level PDT with 20-bit process_id supported.

41 QOSID RO Associating QoS IDs with requests is supported.

42 NL RO Non-leaf PTE invalidation extension is supported.

43 'S RO Address range invalidation extension is supported.
55:44 reserved RO Reserved for standard use.
63:5 custom RO Designated for custom use.

6

When HPM is 1, the iohpmcycles and the iohpmctrl registers must be present and be at least 32-bits wide.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.4. Features-control register (fctl) | Page 63

At least one method, MSI or WSI, of generating interrupts from the IOMMU must be supported.

IOMMU implementations must support the Svnapot standard extension for NAPOT Translation

Contiguity.

The physical address space addressable by the IOMMU ranges from O to pcapabilities.PAS _q

Hypervisor may provide an SW emulated IOMMU to allow the guest to manage the first-stage
page tables for fine grained control on memory accessed by guest controlled devices.

A hypervisor that provides such an emulated IOMMU to the guest may retain control of the
second-stage address translation and clear the SvNx4 fields of the emulated capabilities
register.

A hypervisor that provides such an emulated IOMMU to the guest may retain control of the
MSI page tables used to direct MSIs to guest interrupt files in an IMSIC or to a memory-
resident-interrupt-file and clear the MSI_FLAT and MSI_MRIF fields of the emulated
capabilities register.

The AMO_HWAD/AMO_MRIF bits do not indicate support for device-initiated atomic memory
operations. Support for device-initiated atomic memory operations must be discovered
through other means.

The IOMMU is designed to provide a highly modular and extensible set of capabilities allowing
implementations to include only the exact set of capabilities required for an application. In
addition, implementations may add their own custom extensions to the [OMMU.

The IOMMU must support all the virtual memory extensions that are supported by any of the
harts in the system.

RISC-V platform specifications may mandate a set of IOMMU capabilities that must be
provided by an implementation to be compliant to those specifications.

6.4. Features-control register (fct1)

This register must be readable in any implementation. An implementation may allow one or more fields in
the register to be writable to support enabling or disabling the feature controlled by that field.

If software enables or disables a feature when the IOMMU is not OFF (i.e. when ddtp.iommu_mode != Off)
then the IOMMU behavior is UNSPECIFIED.

If software enables or disables a feature when the IOMMU in-memory queues are enabled (i.e.

cqcsr.cqon/cqgen == 1, fqcsr.fqon/cqen == 1, or pqcsr.pgon/pgen == 1) then the IOMMU behavior is
UNSPECIFIED.
31 . 16135 3 2 10
custom reserved ‘GXL‘WSI‘ BE‘

Bits

BE

Figure 36. Feature-control register fields

Field Attribute Description

WARL When O, IOMMU accesses to memory resident data structures,
as specified in Table 9, and accesses to in-memory queues are
performed as little-endian accesses and when 1 as big-endian
accesses.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.5. Device-directory-table pointer (ddtp) | Page 64

Bits

1

15:3
3116

Field
WSI

GXL

reserved

custom

Attribute

WARL

WARL

WPRI
WPRI

Description

When 1, IOMMU interrupts are signaled as wire-signaled-
interrupts else they are signaled as message-signaled-interrupts.

Controls the address-translation schemes that may be used for
guest physical addresses as defined in Table 2 and Table 3.

Reserved for standard use.

Designated for custom use.

6.5. Device-directory-table pointer (ddtp)

63 . 54 53 . 48
‘ reserved PPN ‘
47 . 32
‘ PPN ‘
31 . 16
‘ PPN ‘
15 . 10 9 . . 5 4 3 . . . 0
‘ PPN reserved ‘ busy ‘ jommu_mode ‘
Figure 37. Device-directory-table pointer register fields
Bits Field Attribute Description
3:0 iommu_mode WARL The IOMMU may be configured to be in the following modes:
Value Name Description

0 off No inbound memory transactions are
allowed by the IOMMU.

1 Bare No translation or protection. All
inbound memory accesses are passed
through.

2 1LVL One-level device-directory-table

3 2LVL Two-level device-directory-table

4 3LVL Three-level device-directory-table

5-13 reserved Reserved for standard use.
14-15 custom Designated for custom use.
4 busy RO A write to ddtp.iommu_mode may require the IOMMU to

perform many operations that may not occur synchronously to
the write. When a write is observed by the ddtp.iommu_mode,
the busy bit is set to 1. When the busy bit is 1, behavior of
additional writes to the ddtp is UNSPECIFIED. Some
implementations may ignore the second write and others may
perform the actions determined by the second write. Software

must verify that the busy bit is O before writing to the ddtp.

If the busy bit reads O then the IOMMU has completed the
operations associated with the previous write to
ddtp.iommu_mode.

An IOMMU that can complete these operations synchronously
may hard-wire this bit to O.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.6. Command-queue base (cqb) | Page 65

Bits Field Attribute Description

95 reserved WPRI Reserved for standard use
53:10 PPN WARL Holds the PPN of the root page of the device-directory-table.
63:54 reserved WPRI Reserved for standard use

The device-context is 64-bytes in size if capabilities.MSI_FLAT is 1else it is 32-bytes.

When the iommu_mode is Bare or 0ff, the PPN field is don’t-care. When in Bare mode only Untranslated
requests are allowed. Translated requests, Translation request, and PCle message transactions are
unsupported.

All IOMMUs must support 0ff and Bare mode. An IOMMU is allowed to support a subset of directory-table
levels and device-context widths. At a minimum one of the modes must be supported.

When the iommu_mode field value is changed to 0ff the IOMMU guarantees that in-flight transactions,
observed at the time of the write to this field, from devices connected to the IOMMU will either be
processed with the configurations applicable to the old value of the iommu_mode field or be aborted (Section
8.3). It also ensures that all transactions and previous requests from devices that have already been
processed by the IOMMU are committed to a global ordering point such that they can be observed by all
RISC-V harts, devices, and IOMMUs in the platform. Software must not change the PPN field value when
transitioning the iommu_mode to Off.

The IOMMU behavior of writing iommu_mode to 1LVL, 2LVL, or 3LVL, when the previous value of the
iommu_mode is not Off or Bare is UNSPECIFIED. To change DDT levels, the IOMMU must first be transitioned
to Bare or 0ff state. The behavior resulting from changing the iommu_mode to Bare when the previous value
of the iommu_mode was not 0ff is UNSPECIFIED.

When an IOMMU is transitioned to Bare or 0ff state, the IOMMU may retain information cached from in-
memory data structures such as page tables, DDT, PDT, etc. Software must use suitable invalidation
commands to invalidate cached entries.

6 In RV32, only the low order 32-bits of the register (22-bit PPN and 4-bit iommu_mode) need to
be written.

6.6. Command-queue base (cqb)

This 64-bit register (RW) holds the PPN of the root page of the command-queue and number of entries in
the queue. Each command is 16 bytes.

The IOMMU behavior on writing cgb when cqcsr.busy or cqon bits are 1 is UNSPECIFIED. The software
recommended sequence to change cqb is to first disable the command-queue by clearing cqen and wait for
both cqesr.busy and cgon to be O before changing the cgb. The status of bits 31:cqb.L062SZ in cqt
following a write to cgb is O and the bits cgb.L0625Z-1:0 in cqt assume a valid but otherwise UNSPECIFIED
value.

63 54 53 32
‘ reserved PPN ‘

31 10 9 5 4 0
‘ PPN ‘ reserved LOG25Z-1 ‘

Figure 38. Command-queue base register fields

RISC-V IOMMU Architecture Specification | © RISC-V International

6.7. Command-queue head (cgh) | Page 66

Bits Field Attribute Description

4:0 L0G2SZ-1 WARL The L062SZ-1 field holds the number of entries in command-queue as a log
to base 2 minus 1. A value of O indicates a queue of 2 entries. Each IOMMU
command is 16-bytes. If the command-queue has 256 or fewer entries then
the base address of the queue is always aligned to 4-KiB. If the command-
queue has more than 256 entries then the command-queue base address
must be naturally aligned to 2% x 16.

9:5 reserved WPRI Reserved for standard use

53:10 PPN WARL Holds the PPN of the root page of the in-memory command-queue used by
software to queue commands to the IOMMU. If the base address as
determined by PPN is not aligned as required, all entries in the queue appear
to an IOMMU as UNSPECIFIED and any address an [OMMU may compute
and use for accessing an entry in the queue is also UNSPECIFIED.

63:54 reserved WPRI Reserved for standard use
e In RV32, only the low order 32-bits of the register (22-bit PPN and 5-bit L062SZ-1) need to be
written.

6.7. Command-queue head (cqh)

This 32-bit register (RO) holds the index into the command-queue where the IOMMU will fetch the next
command.

31 0
index

Figure 39. Command-queue head register fields

Bits Field Attribute Description

31.0 index RO Holds the index into the command-queue from where the next command
will be fetched by the IOMMU.

6.8. Command-queue tail (cqt)

This 32-bit register (RW) holds the index into the command-queue where the software queues the next
command for the IOMMU.

31 0
‘ index

Figure 40. Command-queue tail register fields

Bits Field Attribute Description

31:0 index WARL Holds the index into the command-queue where software queues the next
command for IOMMU. Only L062SZ-1:0 bits are writable.

6.9. Fault queue base (fqb)

This 64-bit register (RW) holds the PPN of the root page of the fault-queue and number of entries in the
queue. Each fault record is 32 bytes.

The IOMMU behavior on writing fgb when fqcsr.busy or fqon bits are 1 is UNSPECIFIED. The software

RISC-V IOMMU Architecture Specification | © RISC-V International

6.10. Fault queue head (fgh) | Page 67

recommended sequence to change fgb is to first disable the fault-queue by clearing fgen and wait for both
fagcsr.busy and fgon to be O before changing the fgb. The status of bits 31:fgb.L062SZ in fgh following a
write to fgb is O and the bits fgb.L062SZ-1:0 in fgh assume a valid but otherwise UNSPECIFIED value.

63 54 53 32
‘ reserved ‘ PPN ‘

31 10 9 5 4 0
‘ PPN ‘ reserved LOG25Z-1 ‘

Figure 41. Fault queue base register fields

Bits Field Attribute Description

4:0 L0G2SZ-1 WARL The L062SZ-1 field holds the number of entries in the fault-queue as a log-
to-base-2 minus 1. A value of O indicates a queue of 2 entries. Each fault
record is 32-bytes. If the fault-queue has 128 or fewer entries then the base
address of the queue is always aligned to 4-KiB. If the fault-queue has more
than 128 entries then the fault-queue base address must be naturally aligned
to 21%%% x 32.

9:5 reserved WPRI Reserved for standard use

53:10 PPN WARL Holds the PPN of the root page of the in-memory fault-queue used by [OMMU
to queue fault record. If the base address as determined by PPN is not aligned
as required, all entries in the queue appear to an IOMMU as UNSPECIFIED
and any address an IOMMU may compute and use for accessing an entry in
the queue is also UNSPECIFIED.

63:54 reserved WPRI Reserved for standard use
e In RV32, only the low order 32-bits of the register (22-bit PPN and 5-bit L062SZ-1) need to be
written.

6.10. Fault queue head (fqn)

This 32-bit register (RW) holds the index into the fault-queue where the software will fetch the next fault
record.

31 0
index

Figure 42. Fault queue head register fields

Bits Field Attribute Description

31:0 index WARL Holds the index into the fault-queue from which software reads the next
fault record. Only L0G2SZ-1:0 bits are writable.

6.11. Fault queue tail (fqt)

This 32-bit register (RO) holds the index into the fault-queue where the IOMMU queues the next fault
record.

31 0
‘ index

Figure 43. Fault queue tail register fields

RISC-V IOMMU Architecture Specification | © RISC-V International

6.12. Page-request-queue base (pgb) | Page 68

Bits Field Attribute Description

31:0 index RO Holds the index into the fault-queue where IOMMU writes the next fault
record.

6.12. Page-request-queue base (pgb)

This 64-bit register (WARL) holds the PPN of the root page of the page-request-queue and number of
entries in the queue. Each "Page Request” message is 16 bytes.

The IOMMU behavior on writing pgb when pgcsr.busy or pgon bits are 1 is UNSPECIFIED. The software
recommended sequence to change pgb is to first disable the page-request-queue by clearing pgen and wait
for both pgcsr.busy and pgon to be O before changing the pgb. The status of bits 31:pgb.L062SZ in pgh
following a write to pgb is O and the bits pgb.L0625Z-1:0 in pgh assume a valid but otherwise UNSPECIFIED
value.

63| |54 53| |32
‘ L . Ireselrvedl . L . L . . L . . .PF.,N . L . L . L ‘
31 10 9 5 4 0
I D S S SR A "D B =0

Figure 44. Page-Request-queue base register fields

Bits Field Attribute Description

4:0 L0G2SZ-1 WARL The L062SZ-1 field holds the number of entries in the page-request-queue as
a log-to-base-2 minus 1. A value of O indicates a queue of 2 entries. Each page-
request is 16-bytes. If the page-request-queue has 256 or fewer entries then
the base address of the queue is always aligned to 4-KiB. If the page-request-
queue has more than 256 entries then the page-request-queue base address
must be naturally aligned to 2% x 16.

9:5 reserved WPRI Reserved for standard use

53:10 PPN WARL Holds the PPN of the root page of the in-memory page-request-queue used by
IOMMU to queue "Page Request" messages. If the base address as determined
by PPN is not aligned as required, all entries in the queue appear to an
[IOMMU as UNSPECIFIED and any address an [OMMU may compute and use
for accessing an entry in the queue is also UNSPECIFIED.

63:54 reserved WPRI Reserved for standard use
o In RV32, only the low order 32-bits of the register (22-bit PPN and 5-bit L062SZ-1) need to be
written.

6.13. Page-request-queue head (pgn)

This 32-bit register (RW) holds the index into the page-request-queue where software will fetch the next
page-request.

31 0
index

Figure 45. Page-request-queue head register fields

Bits Field Attribute Description

31.0 index WARL Holds the index into the page-request-queue from which software reads the
next "Page Request" message. Only L0G2SZ-1:0 bits are writable.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.14. Page-request-queue tail (pqt) | Page 69

6.14. Page-request-queue tail (pqt)

This 32-bit register (RO) holds the index into the page-request-queue where the IOMMU writes the next
page-request.

31 0
index

Figure 46. Page-request-queue tail register fields

Bits Field Attribute Description

31:.0 index RO Holds the index into the page-request-queue where IOMMU writes the next
"Page Request”’ message.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.15. Command-queue CSR (cqcsr) | Page 70

6.15. Command-gqueue CSR (cqcsr)

This 32-bit register (RW) is used to control the operations and report the status of the command-queue.

31

28 27 24

custom

‘ reserved ‘

23

18 17 16

reserved ‘ busy ‘ cqon ‘

15

12 11 10 9 8

reserved

‘ fence_w_ip ‘ cmd_ill ‘ cmd_to ‘ cgmf ‘

2 1 0

reserved ‘ cie ‘ cgen ‘

Bits Field

0 cgen

1 cie

72 reserved

8 cgmf

9 cmd_to

10 cmd_ill

11 fence_w_i
p

15:12 reserved

16 cqon

Figure 47. Command-queue CSR register fields

Attribute
RW

RW

WPRI
RWI1C

RW1C

RW1C

RWIC

WPRI
RO

Description

The command-queue-enable bit enables the command- queue when set to 1.

Changing cqen from O to 1 sets the cgh register and the cqcsr bits cmd_ill

,cmd_to, cqmf, fence_w_ip to O. The command-queue may take some time

to be active following setting the cgen to 1. During this delay the busy bit is 1.
When the command queue is active, the cqon bit reads 1.

When cgen is changed from 1to O, the command queue may stay active (with
busy asserted) until the commands already fetched from the command-
queue are being processed and/or there are outstanding implicit loads from
the command-queue. When the command-queue turns off the cqon bit reads
0.

When the cqon bit reads O, the IOMMU guarantees that no implicit memory
accesses to the command queue are in-flight and the command-queue will
not generate new implicit loads to the queue memory.

Command-queue-interrupt-enable bit enables generation of interrupts from
command-queue when set to 1.

Reserved for standard use

If command-queue access to fetch a command or a memory access made by a
command leads to a memory fault, then the command-queue-memory-fault
bit is set to 1, and the command-queue stalls until this bit is cleared. To re-
enable command processing, software should clear this bit by writing 1.

If the execution of a command leads to a timeout (e.g. a command to
invalidate device ATC may timeout waiting for a completion), then the
command-queue sets the cmd_to bit and stops processing from the
command-queue. To re-enable command processing, software should clear
this bit by writing 1.

If an illegal or unsupported command is fetched and decoded by the
command-queue then the command-queue sets the cmd_i11 bit and stops
processing from the command-queue. To re-enable command processing
software should clear this bit by writing 1.

An IOMMU that supports wire-signaled-interrupts sets the fence_w_ip bit to
indicate completion of an IOFENCE.C command. To re-enable interrupts on
IOFENCE. C completion, software should clear this bit by writing 1. This bit is
reserved if the IOMMU does not support wire-signaled-interrupts or wire-
signaled-interrupts are not enabled (i.e., fct1.WSI == 0).

Reserved for standard use

The command-queue is active if cqon is L.

RISC-V IOMMU Architecture Specification | © RISC-V International

Bits Field Attribute
17 busy RO

27:18 reserved WPRI

31:28 custom WPRI

6.15. Command-queue CSR (cqcsr) | Page 71

Description

A write to cqesr may require the IOMMU to perform many operations that
may not occur synchronously to the write. When a write is observed by the
cqgcsr, the busy bitissetto 1.

When the busy bit is 1, behavior of additional writes to the cqcsr is
UNSPECIFIED. Some implementations may ignore the second write and
others may perform the actions determined by the second write.

Software must verify that the busy bit is O before writing to the cqcsr.

An IOMMU that can complete these operations synchronously may hard-wire
this bit to 0.

Reserved for standard use.

Designated for custom use.

When emd_ill or cgmf is 1 in cqcsr, the cgh references the command in the CQ that caused the error.
Previous commands may have completed, timed out, or their execution aborted by the IOMMU.

If software makes the CQ operational again after a cmd_ill or camf error, then software
o should resubmit the commands submitted since the last IOFENCE.C that successfully

completed.

The cmd_to bit is set when a IOFENCE.C command detects that one or more previous commands that are
specified to have timeouts have timed out but all other commands previous to the IOFENCE.C have
completed. When cmd_to is 1, cgh references the IOFENCE . C command that detected the timeout.

Command-queue being empty does not imply that all commands fetched from the command-
queue have been completed. When the command-queue is requested to be disabled, an

o implementation may either complete the already fetched commands or abort execution of
those commands. Software must use an IOFENCE.C command to wait for all previous
commands to be committed, if so desired, before turning off the command-queue.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.16. Fault queue CSR (fqcsr) | Page 72

6.16. Fault queue CSR (fqcsr)

This 32-bit register (RW) is used to control the operations and report the status of the fault-queue.

31

28 27 24

custom

‘ reserved

23

18 17 16

reserved ‘ busy ‘ fgon

15

10 9 8

rese:rved ‘ fqof ‘ famf

reserved ‘ fie ‘ fgen

Bits Field

0 fgen

1 fie

72 reserved

8 famf

9 fgof

15:10 reserved
16 fqon

17 busy

Attribute
RW

RW

WPRI
RWI1C

RW1C

WPRI
RO
RO

Figure 48. Fault queue CSR register fields

Description

The fault-queue enable bit enables the fault-queue when set to 1.

Changing fgen from O to 1 sets the fqt register and the fqcsr bits fgof and
famf to 0. The fault-queue may take some time to be active following setting
the fgen to 1. During this delay the busy bit is 1. When the fault queue is
active, the fqon bit reads 1.

When fgen is changed from 1to O, the fault-queue may stay active (with
busy asserted) until in-flight fault-recording is completed. When the fault-
queue is off the fgon bit reads O.

When fqon reads O, the IOMMU guarantees that there are no in-flight
implicit writes to the fault-queue in progress and that no new fault records
will be written to the fault-queue.

Fault queue interrupt enable bit enables generation of interrupts from fault-
queue when set to 1.

Reserved for standard use

The fgmf bit is set to 1 if the IOMMU encounters an access fault when storing
a fault record to the fault queue. The fault-record that was attempted to be
written is discarded and no more fault records are generated until software
clears the fgmf bit by writing 1 to the bit.

The fault-queue-overflow bit is set to 1 if the [OMMU needs to queue a fault
record but the fault-queue is full (ie, fqt == fgh - 1).

The fault-record is discarded and no more fault records are generated until
software clears fqof by writing 1 to the bit.

Reserved for standard use
The fault-queue is active if fqon reads 1.

Write to fqcsr may require the IOMMU to perform many operations that
may not occur synchronously to the write. When a write is observed by the
fqesr, the busy bit is set to 1. When the busy bit is 1, behavior of additional
writes to the fgcsr are UNSPECIFIED. Some implementations may ignore the
second write and others may perform the actions determined by the second
write.

Software should ensure that the busy bit is O before writing to the fgcsr.

An IOMMU that can complete controls synchronously may hard-wire this bit
to O.

RISC-V IOMMU Architecture Specification | © RISC-V International

Bits

27:18
31:28

Field
reserved

custom

Attribute
WPRI
WPRI

6.17. Page-request-queue CSR (pgcsr) | Page 73

Description
Reserved for standard use.

Designated for custom use.

6.17. Page-request-queue CSR (pqesr)

This 32-bit register (RW) is used to control the operations and report the status of the page-request-queue.

31

Custom use

28 27 24
reserved ‘

23

18 17 16

reserved ‘ busy ‘ pgon ‘

15

10 9 8

rese:rved ‘ pgof ‘ pgmf ‘

rese:rved ‘ pie ‘ pgen ‘

Bits
0

72
8

Field

pgen

pie

reserved

pamf

Figure 49. Page-request-queue CSR register fields

Attribute
RW

RW

WPRI
RWIC

Description

The page-request-enable bit enables the page-request-queue when set to 1.

Changing pgen from O to 1, sets the pgt register and the pgcsr bits pgmf and
pgof to O. The page-request-queue may take some time to be active following
setting the pgen to 1. During this delay the busy bit is 1. When the page-
request-queue is active, the pgon bit reads 1.

When pgen is changed from 1 to O, the page-request-queue may stay active
(with busy asserted) until in-flight page-request writes are completed. When
the page-request-queue turns off, the pgon bit reads O.

When pgon reads O, the IOMMU guarantees that there are no older in-flight
implicit writes to the queue memory and no further implicit writes will be
generated to the queue memory.

The IOMMU may respond to “Page Request” messages received when page-
request-queue is off or in the process of being turned off, as specified in
Section 3.7.

The page-request-queue-interrupt-enable bit when set to 1, enables generation
of interrupts from page-request-queue.

Reserved for standard use
The pgmf bit is set to 1 if the IOMMU encounters an access fault when storing

a "Page Request" message to the page-request-queue.

The "Page Request” message that caused the pgmf or pgof error and all
subsequent "Page Request’ messages are discarded until software clears the
pgof and/or pgmf bits by writing 1 to it.

The IOMMU may respond to “Page Request” messages that caused the pgqof

or pgmf bit to be set and all subsequent “Page Request” messages received
while these bits are 1 as specified in Section 3.7.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.18. Interrupt pending status register (1psr) | Page 74

Bits Field Attribute Description

9 pgof RWIC The page-request-queue-overflow bit is set to 1 if the page-request queue
overflows i.e. IOMMU needs to queue a "Page Request" message but the page-
request queue is full (i.e, pgt == pgh - 1).

The "Page Request" message that caused the pgmf or pgof error and all
subsequent "Page Request" messages are discarded until software clears the
pgof and/or pagmf bits by writing 1 to it.

The IOMMU may respond to “Page Request” messages that caused the pgqof
or pgmf bit to be set and all subsequent “Page Request” messages received
while these bits are 1 as specified in Section 3.7.

15:10 reserved WPRI Reserved for standard use
16 pgon RO The page-request is active when pgon reads 1.
17 busy RO A write to pgesr may require the IOMMU to perform many operations that

may not occur synchronously to the write. When a write is observed by the
pqcsr, the busy bitis set to 1.

When the busy bit is 1, behavior of additional writes to the pgcsr are
UNSPECIFIED. Some implementations may ignore the second write and
others may perform the actions determined by the second write. Software
should ensure that the busy bit is O before writing to the pgcsr.

An IOMMU that can complete controls synchronously may hard-wire this bit

to O
27:18 reserved WPRI Reserved for standard use
31:28 custom WPRI Designated for custom use.

6.18. Interrupt pending status register (ipsr)

This 32-bit register (RW1C) reports the pending interrupts which require software service. Each interrupt-
pending bit in the register corresponds to a interrupt source in the IOMMU. The interrupt-pending bit in
the register once set to 1 stays 1 till software clears that interrupt-pending bit by writing 1 to clear it.

When fct1.WSI is 1, the interrupt-pending bit drives the wire selected by the corresponding icvec field to
signal an interrupt.

When fctl.WSI is O, the IOMMU signals interrupts using messages. MSI have edge semantics and an
interrupt message is generated when an interrupt-pending bit transitions from O to 1. The address and data
for the message are obtained from the msi_cfg_tbl entry selected by the icvec field corresponding to the
interrupt-pending bit.

31 16

‘ reselrved ‘
15 8 7 . . . 4 3 2 1 0

‘ . . . cusFom reselrved . ‘ pip ‘ pmip ‘ fip ‘ cip ‘

Figure 50. Interrupt pending status register fields

Table 16. Interrupt pending status register fields

RISC-V IOMMU Architecture Specification | © RISC-V International

Bits

74
15:8
31:16

Field

cip

fip

pmip

pip

reserved
custom

reserved

Attribute

RWIC

RWIC

RWIC

RWIC

WPRI
WPRI
WPRI

6.18. Interrupt pending status register (1psr) | Page 75

Description

The command-queue-interrupt-pending bit is set to 1 if cqcsr.cie is 1 and
any of the following are true:

® cqcsr.fence_w_ipis1.

® cqcsr.cmd_illis 1

® cqcsr.cmd_tois 1

® cqcsr.cqmfisl
The fault-queue-interrupt-pending bit is set to 1 if fgcsr.fie is 1 and any of
the following are true:

® fqcsr.fgofisl

® fqcsr.fgmfisl

® A new record is produced in the FQ.

The performance-monitoring-interrupt-pending is set to 1 when OF bit in
iohpmcycles or in any of the iohpmctrl-31 registers transitions from O to
1

The page-request-queue-interrupt-pending is set to 1 if pgcsr.pie is 1 and
any of the following are true:
® pqcsr.pgofisl
® pqcsr.pgmfisl.
® A new message is produced in the PQ.
Reserved for standard use.
Designated for custom use.

Reserved for standard use

If a bit in ipsr is 1 then a write of 1 to the bit transitions the bit from 1-0. If the conditions to set that bit
are still present (See Table 16) or if they occur after the bit is cleared then that bit transitions again from

0-1.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.19. Performance-monitoring counter overflow status (1ocountovf) | Page 76

6.19. Performance-monitoring counter overflow status (iocountovf)

The performance-monitoring counter overflow status is a 32-bit read-only register that contains shadow
copies of the OF bits in the iohpmevt1-31 registers - where iocountovf bit X corresponds to iochpmevtX and
bit O corresponds to the OF bit of iohpmcycles.

This register enables overflow interrupt handler software to quickly and easily determine which counter(s)
have overflowed.

31 1 0
HPM ‘CY‘

Figure 51. Performance-monitoring counter overflow status register fields

Bits Field Attribute Description
0 cy RO Shadow of iohpmcycles.OF
31:1 HPM RO Shadow of iohpmevt[1-31].0F

6.20. Performance-monitoring counter inhibits (iocountinh)

The performance-monitoring counter inhibits is a 32-bit WARL register that contains bits to inhibit the
corresponding counters from counting. Bit X when set inhibits counting in iohpmctrX and bit O inhibits
counting in iohpmcycles.

31 1 0
HPM ‘CY‘

Figure 52. Performance-monitoring counter inhibits register fields

Bits Field Attribute Description
0 cy RW When set, iohpmcycles counter is inhibited from counting.
311 HPM WARL When bit X is set, then counting of events in iohpmctrX is inhibited.

When the iohpmcycles counter is not needed, it is desirable to conditionally inhibit it to
reduce energy consumption. Providing a single register to inhibit all counters allows a) one or
more counters to be atomically programmed with events to count b) one or more counters to be
sampled atomically.

o To initialize an event counter or the cycles counter to a desired value, it should be first
inhibited if it is enabled to count. This measure ensures that it does not count during the
update process. The inhibition should be removed after the register has been programmed with
the desired value.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.21. Performance-monitoring cycles counter (Lohpmcyc'les) | Page 77
6.21. Performance-monitoring cycles counter (iohpmcycles)

This 64-bit register is a free running clock cycle counter. There is no associated iohpmevt®.

s 62 0 32
‘ OF ‘ e coUnter ‘
‘ e Icoulnterl e ‘

Figure 53. Performance-monitoring cycles counter register fields

Bits Field Attribute Description
62:0 counter WARL Cycles counter value.
63 OF RW Overflow

The OF bit is set when the iohpmcycles counter overflows, and remains set until cleared by software. Since
iohpmcycles value is an unsigned value, overflow is defined as unsigned overflow. Note that there is no loss
of information after an overflow since the counter wraps around and keeps counting while the sticky OF bit
remains set.

If the iohpmcycles counter overflows when the OF bit is zero, then a HPM Counter Overflow interrupt is
generated by setting ipsr.pmip bit to 1. If the OF bit is already one, then no interrupt request is generated.
Consequently the OF bit also functions as a count overflow interrupt disable for the ichpmcycles.

6.22. Performance-monitoring event counters (iohpmctri-31)

These registers are 64-bit WARL counter registers.

Figure 54. Performance-monitoring event counters register fields

Bits Field Attribute Description

63:0 counter WARL Event counter value.

6.23. Performance-monitoring event selectors (iohpmevti1-31)

These performance-monitoring event registers are 64-bit RW registers. When a transaction processed by
the IOMMU causes an event that is programmed to count in a counter then the counter is incremented. In
addition to matching events, the event selector may be programmed with additional filters based on
device_id, process_id, GSCID, and PSCID such that the counter is incremented conditionally based on the
transaction matching these additional filters. When such device_id based filtering is used, the match may
be configured to be a precise match or a partial match. A partial match allows transactions with a range of
IDs to be counted by the counter.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.23. Performance-monitoring event selectors (1ohpmevt1-31) | Page 78

63 62 61 60 59 . . . 56
‘ OF IDT DV_GSCV ‘ PV_PScV ‘ DID_GSCID
55 . 48
‘ DID_GSCID
47 . 40
‘ DID_GSCID
39 . 36 35 . . . 32
‘ DID_GSCID PID_PSCID
31 . 24
‘ PID_PSCID
23 . 16
‘ PID_PSCID
15 14 8
‘ DMASK eventiD
7 . 0
‘ eventiD
Figure 55. Performance-monitoring event selector register fields
Bits Field Attribute Description
14:0 eventID WARL Indicates the event to count. A value of O indicates no events are
counted.
Encodings 1 to 16383 are reserved for standard events defined in
the Table 19.
Encodings 16384 to 32767 are for designated for custom use.
When eventID is changed, including to O, the counter retains
its value.

15 DMASK RW When set to 1, partial matching of the DID_GSCID is performed
for the transaction. The lower bits of the DID_GSCID all the way
to the first low order O bit (including the O bit position itself) are
masked.

35:16 PID_PSCID RW process_idif IDT is O, PSCID if IDTis 1
59:36 DID_GSCID RW device_id if IDTis O, GSCID if IDT is L.

60 PV_PSCV RW If set, only transactions with matching process_id or PSCID
(based on the Filter ID Type) are counted.

61 DV_GSCV RW If set, only transactions with matching device_id or 6SCID
(based on the Filter ID Type) are counted.

62 IDT RW Filter ID Type: This field indicates the type of ID to filter on.
When O, the DID_GSCID field holds a device_id and the
PID_PSCID field holds a process_id. When 1, the DID_GSCID
field holds a GSCID and PID_PSCID field holds a PSCID.

63 OF RW Overflow status or Interrupt disable

The table below summarizes the filtering option for events that support filtering by IDs.

DV_GSCV

PV_PSCV
0
1

Table 17. filtering options
Operation
Counter increments. No ID based filtering.

If the transaction has a valid process_id, counter increments if
process_id matches PID_PSCID.

Counter increments if device_id matches DID_GSCID.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.23. Performance-monitoring event selectors (1ohpmevt1-31) | Page 79

IDT DV_GSCV PV_PSCV Operation

0 1 1 If the transaction has a valid process_id, counter increments if
device_id matches DID_GSCID and process_id matches PID_PSCID.

1 0 1 If the transaction has a valid PSCID, counter increments if the PSCID of
that process matches PID_PSCID.

1 1 0 Counter increments if GSCID is valid and matches DID_GSCID.

1 1 1 Counter increments if GSCID is valid and matches DID_GSCID and if

PSCID is valid and matches PID_PSCID.

When filtering by device_id or 6SCID is selected and the event supports ID based filtering, the DMASK
field can be used to configure a partial match. When DMASK is set to 1, partial matching of the DID_GSCID
is performed for the transaction. The lower bits of the DID_6SCID all the way to the first low order O bit
(including the O bit position itself) are masked.

The following example illustrates the use of DMASK and filtering by device_id.

Table 18. DMASK with IDT set to device_id based filtering
DMASK DID_GSCID Comment

0 YYYYYYYY YYYYYYYY YYYYYYYY One specific seg:bus:dev:func

1 YYYYYYYY YYYYYYYY Yyyyy0ll segbus:dev - any func
1 YYYYYYYY Yyyyyyyy 01111111 seg:bus - any dev:func
1 yyyyyyyy 01111111 11111111 seg - any bus:dev:func

The following table lists the standard events that can be counted:

Table 19. Standard Events list

eventID Event counted IDT settings supported

0 Do not count

1 Untranslated requests 0

2 Translated requests 0

3 ATS Translation requests 0

4 TLB miss 0/1

5 Device Directory Walks 0

6 Process Directory Walks 0

7 First-stage Page Table Walks 0/1

8 Second-stage Page Table Walks 0/1

9-16383 reserved for future standard -

When the programmed IDT setting is not supported for an event then the associated counter does not
increment.

The OF bit is set when the corresponding iohpmctr1-31 counter overflows, and remains set until cleared by
software. Since iohpmctrl-31 values are unsigned values, overflow is defined as unsigned overflow. Note
that there is no loss of information after an overflow since the counter wraps around and keeps counting
while the sticky OF bit remains set.

If a iohpmetrl-31 counter overflows when the associated OF bit is zero, then a HPM Counter Overflow

RISC-V IOMMU Architecture Specification | © RISC-V International

6.24. Translation-request IOVA (tr_req_iova)| Page 80

interrupt is generated by setting ipsr.pmip bit to 1. If the OF bit is already one, then no interrupt request is
generated. Consequently the OF bit also functions as a count overflow interrupt disable for the associated
iohpmctrl-31.

There are not separate overflow status and overflow interrupt enable bits. In practice, enabling
overflow interrupt generation (by clearing the OF bit) is done in conjunction with initializing

o the counter to a starting value. Once a counter has overflowed, it and the OF bit must be
reinitialized before another overflow interrupt can be generated.

In RV32, memory-mapped writes to iohpmevt1-31 modify only one 32-bit part of the register.
The following sequence may be used to update the register without counting events spuriously
due to the intermediate value of the register:

® Write the low order 32-bits to set eventID to O.
o ® Write the high order 32-bits with the new desired values.

® Write the low order 32-bits the new desired values, including that of the eventID field.

Alternatively, the counter may first be inhibited such that no events count during the update
and the inhibit removed after the register has been programmed with the desired value.

If capabilities.HPM is I then a minimum of one programmable event counter besides the
cycles counter is required to comply with this specification. One counter may be used in a time
multiplexed manner to sample events but such analysis may take longer to complete. The
IOMMU, unlike the CPU MMU, services multiple streams of IO and the HPM may be used by a

o performance analyst to analyze one or more of those streams concurrently. Typically, a
performance analyst may require four programmable counters to count events for an 10
stream. To support concurrent analysis of at least two streams of IO it is recommended to
support seven programmable counters.

6.24. Translation-request IOVA (tr_req_iova)

The tr_req_iova is a 64-bit register used to implement a translation-request interface for debug. This
register is present when capabilities.DBG ==

31 12 11 0
L. e e

Figure 56. Translation-request IOVA register fields

Bits Field Attribute Description
11:0 reserved WPRI Reserved for standard use
63:12 vpn WARL The IOVA virtual page number

6.25. Translation-request control (tr_req_ct1)

The tr_req_ctl is a 64-bit WARL register used to implement a translation-request interface for debug.
This register is present when capabilities.DBG ==

RISC-V IOMMU Architecture Specification | © RISC-V International

6.26. Translation-response (tr_response) | Page 81

63 48
‘ DID ‘
47 . 40 39 . 36 35 33 32
‘ DID custom ‘ reserved ‘ PV ‘
31 16
‘ PID ‘
15 12 11 4 3 2 1 0
‘ PID reserved ‘ NW ‘ Exe ‘ Priv ‘GofBusy‘
Figure 57. Translation-request control register fields
Bits Field Attribute Description
0 Go/Busy RWI1S This bitis set to indicate a valid request has been setup in the
tr_req_iova/tr_req_ctl registers for the IOMMU to translate.
The IOMMU indicates completion of the requested translation by clearing
this bit to 0. On completion, the results of the translation are in the
tr_response register.
1 Priv WARL Ifsetto 1, Privileged Mode access is requested else no Privileged Mode access
is not requested.
2 Exe WARL Ifsetto 1, execute permission is requested else execute permission is not
requested.
3 NW WARL Ifsettol, read permission is requested. If set to O, both read and write
permissions are requested.
11:4 reserved WPRI Reserved for standard use
3112 PID WARL IfPVis 1, this field provides the process_id input for this translation
request. If PV is O then this field is not used.
32 PV WARL Ifsetto 1, the PID field of the register is valid and provides the process_id
for this translation request. If set to O then the PID field is not used and a
process_id is not valid for this translation request.
35:33 reserved WPRI Reserved for standard use.
39:36 custom WPRI Designated for custom use.
6340 DID WARL This field provides the device_id for this translation request.

In RV32, the high half of the register should be written first, followed by the low half, which
includes the 6o/Busy bit, to initiate a translation.

6.26. Translation-response (tr_response)

The tr_response is a 64-bit RO register used to hold the results of a translation requested using the
translation-request interface. This register is present when capabilities.DB6 ==

63 60 59 54 53 48

‘ cusfﬂom rese:rved PF:=N ‘
47 32

| v
31 16

| v
15 10 9 8 7 6 1 0

‘ PF:=N ‘ S ‘ PB:M‘I' ‘ rese:rved ‘ fault ‘

Figure 58. Translation-response register fields

RISC-V IOMMU Architecture Specification | © RISC-V International

6.27. IOMMU QoS ID (iommu_gosid) | Page 82

Bits

0

6:1
8:7

53:10

59:54
63:60

Field

fault

reserved

PBMT

PPN

reserved

custom

Attribute

RO

RO
RO

RO

RO

RO
RO

Description

If the process to translate the IOVA detects a fault then the fault field is set
to 1. The detected fault may be reported through the fault-queue.

Reserved for standard use

Memory type determined for the translation using the PBMT fields in the
first-stage and/or the second-stage page tables used for the translation. This
value of this field is UNSPECIFIED if the fault field is 1.

Translation range size field, when set to 1 indicates that the translation applies
to a range that is larger than 4 KiB and the size of the translation range is
encoded in the PPN field. The value of this field is UNSPECIFIED if the fault
field is 1.

If the fault bit is O, then this field provides the PPN determined as a result
of translating the vpn in tr_req_iova.
If the fault bitis 1, then the value of this field is UNSPECIFIED.

If the S bit is O, then the size of the translation is 4 KiB - a page.

If the S bit is 1, then the translation resulted in a superpage, and the size of the
superpage is encoded in the PPN itself. If scanning from bit position O to bit
position 43, the first bit with a value of O at position X, then the superpage size
is 2" % 4 KiB.

If X is not O, then all bits at position O through X-1 are each encoded with a
value of 1.
Table 20. Example of encoding of super page size in PPN
PPN S Size
YYYY-YYYY YYYY YYyy 6 4KiB

YYYYe.YYYY Yyyy 0111 1 64 KiB
YYYY..yyyo 1111 1111 1 2 MiB

yyyy...yyol 1111 1111 1 4 MiB

Reserved for standard use.

Designated for custom use.

An IOMMU implementation is not required to report a superpage translation or support
reporting all possible superpage sizes. An implementation is allowed to report a 4 KiB
translation corresponding to the requested vpn or report a translation size that is smaller than
the superpage size configured in the page tables.

6.27. IOMMU QoS ID (iommu_gosid)

The iommu_gosid register fields are defined as follows:

31 28 27 16 15 12 11

WPRI MCID WPRI ‘

RCID

Figure 59. iommu_gosid register fields

RISC-V IOMMU Architecture Specification | © RISC-V International

6.28. Interrupt-cause-to-vector register (1cvec) | Page 83

Bits Field Attribute Description

11:0 RCID WARL RCID for IOMMU-initiated requests.
15:12 reserved WPRI Reserved for standard use.

2716 MCID WARL ~ MCID for IOMMU-initiated requests.
31:28 reserved WPRI Reserved for standard use.

IOMMU-initiated requests for accessing the following data structures use the value programmed in the
RCID and MCID fields of the iommu_gosid register.

Device directory table (DDT)

Fault queue (FQ)

Command queue (CQ)

Page-request queue (PQ)
® [OMMU-initiated MSI (Message-signaled interrupts)

When ddtp.iommu_mode == Bare, all device-originated requests are associated with the QoS IDs
configured in the iommu_gosid register.

6.28. Interrupt-cause-to-vector register (icvec)

Interrupt-cause-to-vector register maps a cause to a vector. All causes can be mapped to the same vector or
a cause can be given a unique vector.

The vector is used:

1. By an IOMMU that generates interrupts as MSIs, to index into MSI configuration table (msi_cfg_tb1l)
to determine the MSI to generate. An IOMMU is capable of generating interrupts as a MSI if
capabilities.I6S==MSI or if capabilities.I6S==BOTH. When capabilities.I6S==BOTH the IOMMU
may be configured to generate interrupts as MSI by setting fct1.WSI to O.

2. By an IOMMU that generates WSI, to determine the wire to signal the interrupt. An IOMMU is capable
of generating wire-signaled- interrupts if capabilities.IGS==WSI or if capabilities.IGS==BOTH.
When capabilities.I65==B0TH the IOMMU may be configured to generate wire-signaled- interrupts
by setting fct1.WSI to 1.

If an implementation only supports a single vector then all bits of this register may be hardwired to O
(WARL). Likewise if only two vectors are supported then only bit O for each cause could be writable.

63 48
S D S
47 32
‘ cusFom ‘
31 16
- reewes]
15 12 11 8 7 4 3 0
L ey v N

Figure 60. Interrupt-cause-to-vector register fields

Bits Field Attribute Description

3.0 civ WARL The command-queue-interrupt-vector (civ) is the vector number assigned to
the command-queue-interrupt.

RISC-V IOMMU Architecture Specification | © RISC-V International

6.29. MSI configuration table (nsi_cfg_tbl)| Page 84

Bits Field Attribute Description

74 fiv WARL The fault-queue-interrupt-vector (fiv) is the vector number assigned to the
fault-queue-interrupt.

11:8 pmiv WARL The performance-monitoring-interrupt-vector (pmiv) is the vector number
assigned to the performance-monitoring-interrupt.

15:12 piv WARL The page-request-queue-interrupt-vector (piv) is the vector number assigned
to the page-request-queue-interrupt.

3116 reserved WPRI Reserved for standard use.

63:32 custom WPRI Designated for custom use.

6.29. MSI configuration table (msi_cfg_tb1l)

An IOMMU that supports generating IOMMU-originated interrupts (i.e., capabilities.IGS == MSI or
capabilities.I6S == BOTH) as MSIs implements a MSI configuration table that is indexed by the vector
from icvec to determine a MSI table entry. Each MSI table entry for interrupt vector x has three registers
msi_addr_x, msi_data_x, and msi_vec_ctl_x. These registers are hardwired to O if capabilities.IGS ==
WST.

If an access fault is detected on a MSI write using msi_addr_x, then the IOMMU reports a "I[OMMU MSI
write access fault" (cause 273) fault, with TTYP set to O and iotval set to the value of msi_addr_x.

Table 21. MSI configuration table structure
bit 63 bit O Byte Offset
Entry O: Message address +000h
Entry O: Vector Control Entry O: Message Data +008h
Entry 1: Message address +010h
Entry 1: Vector Control Entry 1: Message Data +018h
+020h

63 56 55 32
[e | o moR
31| . i . |2 1.0

Figure 61. Message address register fields

Bits Field Attribute Description
1.0 0] RO Fixed to O
55:2 ADDR WARL Holds the 4-byte aligned MSTI address.
63:56 reserved WPRI Reserved for standard use.
. dalta .

Figure 62. Message data register fields

Bits Field Attribute Description
31.0 data WARL Holds the MSI data

RISC-V IOMMU Architecture Specification | © RISC-V International

6.29. MSI configuration table (nsi_cfg_tb1l)| Page 85

reserved ‘ M ‘
Figure 63. Vector control register fields
Bits Field Attribute Description
0 M RW When the mask bit M is 1, the corresponding interrupt vector is masked and

the IOMMU is prohibited from sending the associated message. Pending

messages for that vector are later generated if the corresponding mask bit is
cleared to O.

311 reserved WPRI Reserved for standard use.

RISC-V IOMMU Architecture Specification | © RISC-V International

7.1. Reading and writing IOMMU registers | Page 86

Chapter 7. Software guidelines

This section provides guidelines to software developers on the correct and expected sequence of using the
IOMMU interfaces. The behavior of the IOMMU if these guidelines are not followed is implementation
defined.

7.1. Reading and writing IOMMU registers

Read or write access to IOMMU registers must follow the following rules:

® Address of the access must be aligned to the size of the access.

® The access must not span multiple registers.

® Registers that are 64-bit wide may be accessed using either a 32-bit or a 64-bit access.

® Registers that are 32-bit wide must only be accessed using a 32-bit access.

7.2. Guidelines for initialization

The guidelines for initializing the IOMMU are as follows:

1

2
3.
4

10.
1L

12.

Read the capabilities register to discover the capabilities of the IOMMU.

. Stop and report failure if capabilities.version is not supported.

Read the feature control register (fctl).

. Stop and report failure if big-endian memory access is needed and the capabilities.END field is O (i.e.

only one endianness) and fct1.BE is O (i.e. little endian).

If big-endian memory access is needed and the capabilities.END field is 1 (i.e. both endiannesses
supported), set fctl.BE to 1 (i.e. big endian) if the field is not already 1.

Stop and report failure if wire-signaled-interrupts are needed for IOMMU initiated interrupts and
capabilities.IGS is neither WSI nor BOTH.

If wire-signaled-interrupts are needed for IOMMU initiated interrupts and capabilities.IGS is BOTH,
set fct1.WSI to 1if the field is not already 1.

Stop and report failure if other required capabilities (e.g. virtual-addressing modes, MSI translation,
etc.) are not supported.

. The icvec register is used to program an interrupt vector for each interrupt cause. Determine the

number of vectors supported by the IOMMU by writing OxF to each field and reading back the number
of writable bits. If the number of writable bits is N then the number of supported vectors is 2". For each
cause C associate a vector V with the cause. V is a number between O and (2" - 1).

If the IOMMU is configured to use wired interrupts, then each vector V corresponds to an interrupt
wire connected to a platform level interrupt controller (e.g. APLIC). Determine the interrupt controller
configuration register to be programmed for each such wire using configuration information provided
by configuration mechanisms such as device tree and program the interrupt controller.

If the IOMMU is configured to use MSI, then each vector V is an index into the msi_cfg_tbl. For each
vector V, allocate a MSI address A and an interrupt identity D. Configure the msi_addr_V register with
value A, msi_data_V register with value D. Configure the interrupt mask M in msi_vec_ctl_V register
appropriately.

To program the command queue, first determine the number of entries N needed in the command
queue. The number of entries in the command queue must be a power of two. Allocate a N x 16-bytes

RISC-V IOMMU Architecture Specification | © RISC-V International

7.2. Guidelines for initialization | Page 87

sized memory buffer that is naturally aligned to the greater of 4-KiB or N x 16-bytes. Let k=10g,(N) and B
be the physical page number (PPN) of the allocated memory buffer. Program the command queue
registers as follows:

® temp_cgb_var.PPN = B

® temp_cqgb_var.L0625Z-1 = (k - 1)

® cqgb temp_cgb_var

® cqt = 0

® cqcsr.cgen = 1

® Poll on cqesr.cqon until it reads 1

13. To program the fault queue, first determine the number of entries N needed in the fault queue. The
number of entries in the fault queue is always a power of two. Allocate a N x 32-bytes sized memory
buffer that is naturally aligned to the greater of 4-KiB or N x 32-bytes. Let k=10g,(N) and B be the PPN of
the allocated memory buffer. Program the fault queue registers as follows:

® temp_fqb_var.PPN = B

® temp_fgb_var.L062SZ-1 = (k - 1)
® fgb = temp_fgb_var

® fgh = 0

® fqcsr.fgen = 1

® Poll on fqcsr. fgon until it reads 1

14. To program the page-request queue, first determine the number of entries N needed in the page-request
queue. The number of entries in the page-request queue is always a power of two. Allocate a N x 16-
bytes sized buffer that is naturally aligned to the greater of 4-KiB or N x 16-bytes. Let k=10g,(N) and B be
the PPN of the allocated memory buffer. Program the page-request queue registers as follows:

® temp_pgb_var.PPN = B

® temp_pgb_var.L0625Z-1 = (k - 1)
® pgb = temp_pgb_var

® pgh = ©

® pgcsr.pgen = 1

® Poll on pgcsr.pgon until it reads 1

15. To program the DDT pointer, first determine the supported device_id width Dw and the format of the
device-context data structure. If capabilities.MSI is O, then the IOMMU uses base-format device-
contexts else extended-format device-contexts are used. Allocate a page (4 KiB) of memory to use as the
root table of the DDT. Initialize the allocated memory to all O. Let B be the PPN of the allocated
memory. Determine the mode M of the DDT based on Dw and the IOMMU device-contexts format as
follows:

® Determine the values supported by ddtp.iommu_mode by writing legal values and reading it to see if
the value was retained. Stop and report a failure if the supported modes do not support the required
Dw.

® [f extended-format device-contexts are used then
a. If Dw is less than or equal to 6-bits and 1LVL is supported then M = 1LVL
b. If Dw is less than or equal to 15-bits and 2LVL is supported then M = 2LVL
c. If Dwis less than or equal to 24-bits and 3LVL is supported then M = 3LVL

RISC-V IOMMU Architecture Specification | © RISC-V International

7.3. Guidelines for invalidations | Page 88

® If base-format device-contexts are used then

a. If Dw is less than or equal to 7-bits and 1LVL is supported then M = 1LVL

b. If Dw is less than or equal to 16-bits and 2LVL is supported then M = 2LVL

c. If Dw is less than or equal to 24-bits and 3LVL is supported then M = 3LVL

® Program the ddtp register as follows:
a. temp_ddtp_var.iommu_mode = M
b. temp_ddtp_var.PPN = B
Cc. ddtp = temp_ddtp_var

The IOMMU is initialized and may be now be configured with device-contexts for devices in scope of the
[OMMU.

7.3. Guidelines for invalidations

This section provides guidelines to software on the invalidation commands to send to the IOMMU through
the €Q when modifying the IOMMU in-memory data structures. Software must perform the invalidation
after the update is globally visible. The ordering on stores provided by FENCE instructions and the
acquire/ release bits on atomic instructions also orders the data structure updates associated with those
stores as observed by IOMMU.

A IOFENCE.C command may be used by software to ensure that all previous commands fetched from the €Q
have been completed and committed. The PR and/or PW bits may be set to 1 in the IOFENCE.C command to
request that all previous read and/or write requests, that have already been processed by the IOMMU, be
committed to a global ordering point as part of the IOFENCE.C command.

In subsequent sections, when an algorithm step tests values in the in-memory data structures to determine
the type of invalidation operation to perform, the data values tested are the old values i.e. values before a
change is made.

7.3.1. Changing device directory table entry

If software changes a leaf-level DDT entry (i.e, a device context (DC), of device with device_id = D) then the
following invalidations must be performed:
® TODIR.INVAL_DDT with DV=1 and DID=D
® [fDC.iohgatp.MODE != Bare
® IOTINVAL.VMA with GV=1, AV=PSCV=0, and GSCID=DC.iohgatp.GSCID
® IOTINVAL.GVMA with GV=1, AV=0, and GSCID=DC.iohgatp.GSCID
® clse
® [fDC.tc.PDTV==1
B IOTINVAL.VMA with GV=AV=PSCV=0
® clseif DC.fsc.MODE != Bare

W IOTINVAL.VMA with 6V=AV=0 and PSCV=1, and PSCID=DC.ta.PSCID
If software changes a non-leaf-level DDT entry the following invalidations must be performed:

® TODIR.INVAL_DDT with DV=0

RISC-V IOMMU Architecture Specification | © RISC-V International

7.3. Guidelines for invalidations | Page 89

Between a change to the DDT entry and when an invalidation command to invalidate the cached entry is
processed by the IOMMU, the IOMMU may use the old value or the new value of the entry.

7.3.2. Changing process directory table entry

If software changes a leaf-level PDT entry (i.e, a process context (PC), for device_id=D and process_id=P)
then the following invalidations must be performed:

® I0DIR.INVAL_PDT with DV=1, DID=D and PID=P
® [fDC.iohgatp.MODE != Bare

® TOTINVAL.VMA with GV=1, AV=0, PSCV=1, 6SCID=DC.iohgatp.GSCID, and PSCID=PC.PSCID
® clse

® TOTINVAL.VMA with GV=0, AV=0, PSCV=1, and PSCID=PC.PSCID
If software changes a non-leaf-level PDT entry the following invalidations must be performed:
® IODIR.INVAL_DDT with DV=1and DID=D
Between a change to the PDT entry and when an invalidation command to invalidate the cached entry is
processed by the IOMMU, the IOMMU may use the old value or the new value of the entry.
7.3.3. Changing MSI page table entry

If software changes a MSI page-table entry identified by interrupt file number I that corresponds to an
untranslated MSI address A then the following invalidations must be performed:

® IOTINVAL.GVMA with GV=AV=1, ADDR[63:12]1=A[63:12] and 6SCID=DC.iohgatp.GSCID
To invalidate all cache entries from a MSI page table the following invalidations must be performed:
® TOTINVAL.GVMA with GV=1, AvV=0, and 6SCID=DC.iohgatp.GSCID

Between a change to the MSI PTE and when an invalidation command to invalidate the cached PTE is
processed by the IOMMU, the IOMMU may use the old PTE value or the new PTE value. An IOFENCE.C
command with PW=1 may be used to to ensure that all previous writes, including MSI writes, that have been
previously processed by the IOMMU are committed to a global ordering point such that they can be
observed by all RISC-V harts and IOMMUs in the system.

7.3.4. Changing second-stage page table entry

If software changes a leaf second-stage page-table entry of a VM where the change affects translation for a
guest-PPN 6 then the following invalidations must be performed:

® TOTINVAL.GVMA with GV=AV=1, GSCID=DC.iohgatp.GSCID, and ADDR[63:12]=6

If software changes a non-leaf second-stage page-table entry of a VM then the following invalidations must
be performed:

® TOTINVAL.GVMA with GV=1, AV=0, GSCID=DC.iohgatp.GSCID

The DC has fields that hold a guest-PPN. An implementation may translate such fields to a supervisor-PPN
as part of caching the DC. If the second-stage page table update affects translation of guest-PPN held in the

RISC-V IOMMU Architecture Specification | © RISC-V International

7.3. Guidelines for invalidations | Page 90

DC then software must invalidate all such cached DC using IODIR.INVAL_DDT with DV=1 and DID set to the
corresponding device_id. Alternatively, an IODIR.INVAL_DDT with DV=0 may be used to invalidate all
cached DC.

Between a change to the second-stage PTE and when an invalidation command to invalidate the cached
PTE is processed by the IOMMU, the IOMMU may use the old PTE value or the new PTE value.

7.3.5. Changing first-stage page table entry

A DC may be configured with a first-stage page table (when DC.tc.PDTV=0) or a directory of first-stage page
tables selected using process_id from a process-directory-table (when DC.tc.PDTV=1).

When a change is made to a first-stage page table, and the second-stage is Bare, then software must
perform invalidations using IOTINVAL.VMA with 6V=0 and AV and PSCV operands appropriate for the
modification as specified in Table 11.

When a change is made to a first-stage page table, and the second-stage is not Bare, then software must
perform invalidations using IOTINVAL.VMA with 6V=1, 6SCID=DC.iohgatp.6SCID and AV and PSCV operands
appropriate for the modification as specified in Table 11.

Between a change to the first-stage PTE and when an invalidation command to invalidate the cached PTE
is processed by the IOMMU, the IOMMU may use the old PTE value or the new PTE value.

RISC-V IOMMU Architecture Specification | © RISC-V International

7.3. Guidelines for invalidations | Page 91

7.3.6. Accessed (A)/Dirty (D) bit updates and page promotions

When IOMMU supports hardware-managed A and D bit updates, if software clears the A and/or D bit in
the first-stage and/or second-stage PTEs then software must invalidate corresponding PTE entries that
may be cached by the IOMMU. If such invalidations are not performed, then the IOMMU may not set these
bits when processing subsequent transactions that use such entries.

When software upgrades a page in a first-stage PT and/or a second-stage PT to a superpage without first
clearing the original non-leaf PTE’s valid bit and invalidating cached translations in the IOMMU then it is
possible for the IOMMU to cache multiple entries that match a single address. The IOMMU may use either
the old non-leaf PTE or the new non-leaf PTE but the behavior is otherwise well defined.

When promoting and/or demoting page sizes, software must ensure that the original and new PTEs have
identical permission and memory type attributes and the physical address that is determined as a result of
translation using either the original or the new PTE is otherwise identical for any given input. The only
PTE update supported by the IOMMU without first clearing the V bit in the original PTE and executing a
appropriate IOTINVAL command is to do a page size promotion or demotion. The behavior of the IOMMU if
other attributes are changed in this fashion is implementation defined.

7.3.7. Device Address Translation Cache invalidations

When first-stage and/or second-stage page tables are modified, invalidations may be needed to the
DevATC in the devices that may have cached translations from the modified page tables. Invalidation of
such page tables requires generating ATS invalidations using ATS.INVAL command. Software must specify
the PAYLOAD following the rules defined in PCle ATS specifications [4].

If software generates ATS invalidate requests at a rate that exceeds the average DevATC service rate then
flow control mechanisms may be triggered by the device to throttle the rate. A side effect of this is
congestion spreading to other channels and links which could lead to performance degradation. An ATS
capable device publishes the maximum number of invalidations it can buffer before causing back-pressure
through the Queue Depth field of the ATS capability structure. When the device is virtualized using PCle
SR-I0V, this queue depth is shared among all the VFs of the device. Software must limit the number of
outstanding ATS invalidations queued to the device advertised limit.

The RID field is used to specify the routing ID of the ATS invalidation request message destination. A
PASID specific invalidation may be performed by setting PvV=1 and specifying the PASID in PID. When the
[IOMMU supports multiple segments then the RID must be qualified by the destination segment number by
setting DSV=1 with the segment number provided in DSEG.

When ATS protocol is enabled for a device, the IOMMU may still cache translations in its IOATC in
addition to providing translations to the DevATC. Software must not skip IOMMU translation cache
invalidations even when ATS is enabled in the device context of the device. Since a translation request
from the DevATC may be satisfied by the IOMMU from the IOATC, to ensure correct operation software
must first invalidate the IOATC before sending invalidations to the DevATC.

RISC-V IOMMU Architecture Specification | © RISC-V International

74. Reconfiguring PMAs | Page 92

7.3.8. Caching invalid entries

This specification does not allow the caching of first/second-stage PTEs whose V (valid) bit is clear, non-
leaf DDT entries whose V (valid) bit is clear, Device-context whose V (valid) bit is clear, non-leaf PDT entries
whose V (valid) bit is clear, Process-context whose V (valid) bit is clear, or MSI PTEs whose V bit is clear.
Software need not perform invalidations when changing the V bit in these entries from O to 1.

7.3.9. Guidelines for emulating an IOMMU

Certain uses may involve emulating a RISC-V IOMMU. In such cases, the emulator may require the
IOMMU driver to notify the emulator for efficient operation when updates are made to in-memory data
structure entries, including when making such entries valid. Queueing an appropriate invalidation
command when making such updates is a common way to provide notifications to the emulator. While
usually an invalidation is not required when marking an invalid entry as valid, the emulator may indicate
the need to invoke such invalidation commands for emulation efficiency purposes through a suitable flag
in the device tree or ACPI table describing such emulated IOMMU instances.

7.4. Reconfiguring PMAs

Where platforms support dynamic reconfiguration of PMAs, a machine-mode driver is usually provided
that can correctly configure the platform. In some platforms that might involve platform-specific
operations and if the IOMMU must participate in these operations then platform-specific operations in the
IOMMU are used by the machine-mode driver to perform such reconfiguration.

7.5. Guidelines for handling interrupts from IOMMU

IOMMU may generate an interrupt from the CQ, the FQ, the PQ, or the HPM. Each interrupt source may be
configured with a unique vector or a vector may be shared among one or more interrupt sources. The
interrupt may be delivered as a MSI or a wire-signaled-interrupt. The interrupt handler may perform the
following actions:

1. Read the ipsr register to determine the source of the pending interrupts

2. If the ipsr.cip bit is set then an interrupt is pending from the CQ.

a. Read the cqcsr register.

b. Determine if an error caused the interrupt and if so, the cause of the error by examining the state of
the cmd_to, cmd_il1, and cgmf bits. If any of these bits are set then the CQ encountered an error and
command processing is temporarily disabled.

c. If errors have occurred, correct the cause of the error and clear the bits corresponding to the
corrected errors in cqesr by writing 1 to the bits.

i. Clearing all error indication bits in cqcsr re-enables command processing.

d. An IOMMU that supports wired-interrupts may be requested to generate an interrupt from the
command queue on completion of a IOFENCE.C command. This cause is indicated by the
fence_w_ip bit. Note that command processing does not stop when fence_w_ip is set to 1. Software
handler may re-enable interrupts from €Q on IOFENCE.C completions by clearing this bit by writing
1to it.

e. Clear ipsr.cip by writing 1 to the bit.
3. If the ipsr.fip bit is set then an interrupt is pending from the FQ.

a. Read the fqcsr register.

RISC-V IOMMU Architecture Specification | © RISC-V International

7.6. Guidelines for enabling and disabling ATS and/or PRI | Page 93

b. Determine if an error caused the interrupt and if so, the cause of the error by examining the state of
the fgmf and fqof bits. If either of these bits are set then the FQ encountered an error and
fault/event reporting is temporarily disabled.

c. If errors have occurred, correct the cause of the error and clear the bits corresponding to the
corrected errors in fgcsr by writing 1 to the bits.

i. Clearing all error indication bits in fqcsr re-enables fault/event reporting.
d. Clear ipsr.fip by writing 1 to the bit.
e. Read the fgt and fgh registers.

f. If value of fqt is not equal to value of fgh then the FQ is not empty and contains fault/event reports
that need processing.

g Process pending fault/event reports that need processing and remove them from the FQ by
advancing the fgh by the number of records processed.

4. If the ipsr.pip bit is set then an interrupt is pending from the PQ.
a. Read the pgcsr register.

b. Determine if an error caused the interrupt and if so, the cause of the error by examining the state of
the pagmf and pqgof bits. If either of these bits are set then the PQ encountered an error and "Page
Request" reporting is temporarily disabled.

c. If errors have occurred, correct the cause of the error and clear the bits corresponding to the
corrected errors in pgcsr by writing 1 to the bits.

i. Clearing all error indication bits in pgcsr re-enables "Page Request’ reporting.
d. Clear ipsr.pip by writing 1 to the bit.
e. Read the pgt and pgh registers.

f. If value of pgt is not equal to the value of pgh then the PQ is not empty and contains "Page Request"
messages that need processing.

g Process pending "Page Request” messages that need processing and remove them from the PQ by
advancing the pgh by the number of records processed.

i. When a PQ overflow condition occurs, software may observe incomplete page-request groups
due to the "Page Request" messages being dropped. The IOMMU might have automatically
responded (see Section 3.7) to a dropped "Page Request" in such groups if the "Last Request in
PRG" flag was set to 1 in the message. Software should ignore and not service the such
incomplete groups.

ii. The automatic response to the "Page Request" with "Last request in PRG" set to 1 on a PQ
overflow is expected to cause the device to retry the ATS translation request. However, since the
IOMMU generated response was without actually resolving the condition that caused the "Page
Request" to be originally sent by the device, this will likely lead to the device sending the "Page
Request’ messages again. These retried messages may now be stored in the PQ if the overflow
condition has been corrected by creating space in the PQ.

5. If ipsr.pmip bit is set then an interrupt is pending from the HPM.
a. Clear ipsr.pmip by writing 1 to the bit.

b. Process the performance monitoring counter overflows.

7.6. Guidelines for enabling and disabling ATS and/or PRI

To enable ATS and/or PRI:

RISC-V IOMMU Architecture Specification | © RISC-V International

7.6. Guidelines for enabling and disabling ATS and/or PRI | Page 94

4.
5.

Place the device in an idle state such that no transactions are generated by the device.

If the device-context for the device is already valid then first mark the device-context as invalid and
queue commands to the IOMMU to invalidate all cached first/second-stage page table entries, DDT
entries, MSI PT entries (if required), and PDT entries (if required).

Program the device-context with EN_ATS set to 1 and if required the T2GPA field set to 1. Set EN_PRI to 1 if
required. If EN_PRI is set to 1 then set PRPR to 1 if required.

Mark the device-context as valid.

Enable device to use ATS and if required enable the PRI.

To disable ATS and/or PRI:

1
2.

Place the device in an idle state such that no transactions are generated by the device.
Disable ATS and/or PRI at the device

Set EN_ATS and/or EN_PRI to O in the device-context. If EN_ATS is set to O then set EN_PRI and T2GPA to
O. IfEN_PRI is set to O then set PRPR to O.

Queue commands to the IOMMU to invalidate all cached first/second-stage page table entries, DDT
entries, MSI PT entries (if required), and PDT entries (if required).

Queue commands to the IOMMU to invalidate DevATC by generating Invalidation Request messages.

Enable DMA operations in the device.

RISC-V IOMMU Architecture Specification | © RISC-V International

8.1. Integrating an IOMMU as a PCle device | Page 95

Chapter 8. Hardware guidelines

This section provides guidelines to the system/hardware integrator of the IOMMU in the platform.

8.1. Integrating an IOMMU as a PCle device

The IOMMU may be constructed as a PCle device itself and be discoverable as a dedicated PCle function
with PCle defined Base Class 08h, Sub-Class O6h, and Programming Interface OOh [8].

Such IOMMU must map the IOMMU registers defined in this specification as PCle BAR mapped registers.

The IOMMU may support MSI or MSI-X or both. When MSI-X is supported, the MSI-X capability block
must point to the msi_cfg_tbl in BAR mapped registers such that system software can configure MSI
address and data pairs for each message supported by the IOMMU. The MSI-X PBA may be located in the
same BAR or another BAR of the IOMMU. The IOMMU is recommended to support MSI-X capability.

8.2. Faults fromm PMA and PMP

The IO bridge may invoke a PMA and/or a PMP checker on memory accesses from IO devices or those
generated by the IOMMU implicitly to access the in-memory data structures. When a memory access
violates a PMA check or violates a PMP check, the IO bridge may abort the memory access as specified in
Section 8.3.

8.3. Aborting transactions

If the aborted transaction is an IOMMU-initiated implicit memory access then the 10 bridge signals such
access faults to the IOMMU itself. The details of such signaling is implementation defined.

If the aborted transaction is a write then the IO bridge may discard the write; the details of how the write is
discarded are implementation defined. If the IO protocol requires a response for write transactions (e.g.,
AXI) then a response as defined by the 10 protocol may be generated by the IO bridge (e.g, SLVERR on
BRESP - Write Response channel). For PCle, for example, write transactions are posted and no response is
returned when a write transaction is discarded.

If the faulting transaction is a read then the device expects a completion. The 10 bridge may provide a
completion to the device. The data, if returned, in such completion is implementation defined; usually it is
a fixed value such as all O or all 1. A status code may be returned to the device in the completion to indicate
this condition. For AXI, for example, the completion status is provided by SLVERR on RRESP (Read Data
channel). For PCle, for example, the completion status field may be set to "Unsupported Request' (UR) or
"Completer Abort" (CA).

8.4. Reliability, Availability, and Serviceability (RAS)

The IOMMU may support a RAS architecture that specifies the methods for enabling error detection,
logging the detected errors (including their severity, nature, and location), and configuring means to report
the error to an error handler.

RISC-V IOMMU Architecture Specification | © RISC-V International

8.4. Reliability, Availability, and Serviceability (RAS) | Page 96

Some errors, such as those in the IOATC, may be correctable by reloading the cached in-memory data
structures when the error is detected. Such errors are not expected to affect the functioning of the IOMMU.

Some errors may corrupt critical internal state of the IOMMU and such errors may lead the IOMMU to a
failed state. Examples of such state may include registers such as the ddtp, cgb, etc. On entering such a
failed state, the IOMMU may request the IO bridge to abort all incoming transactions.

Some errors, such as corruptions that occur within the internal data paths of the IOMMU, may not be
correctable but the effects of such errors may be contained to the transaction being processed by the
[OMMU.

As part of processing a transaction, the IOMMU may need to read data from in-memory data structures
such as the DDT, PDT, or first/second-stage page tables. The provider (a memory controller or a cache) of
the data may detect that the data requested has an uncorrectable error and signal that the data is corrupted
and defer the error to the IOMMU. Such technique to defer the handling of the corrupted data to the
consumer of the data is also commonly known as data poisoning. The effects of such errors may be
contained to the transaction that caused the corrupted data to be accessed.

In the cases where the error affects the transaction being processed but otherwise allows the IOMMU to
continue providing service, the IOMMU may abort (see Section 8.3) the transaction and report the the fault
by queuing a fault record in the FQ. For PCle, for example, a "Completer Abort (CA)" response is appropriate
to abort the transaction. The following cause codes are used to report such faulting transactions:

® DDT data corruption (cause = 268)

® PDT data corruption (cause = 269)

® MSI PT data corruption (cause = 270)

® MSI MRIF data corruption (cause = 271)

® Internal data-path error (cause = 272)

® First/second-stage PT data corruption (cause = 274)
If the 1O bridge is not capable of signaling such deferred errors uniquely from other errors that prevent the

IOMMU from accessing in-memory data structures then the IOMMU may report such errors as access
faults instead of using the differentiated data corruption cause codes.

RISC-V IOMMU Architecture Specification | © RISC-V International

9.1. Quality-of-Service (QoS) Identifiers Extension, Version 1.0 | Page 97

Chapter 9. IOMMU Extensions

This chapter specifies the following standard extensions to the IOMMU Base Architecture:

Specification Version Status
Quality-of-Service (QoS) Identifiers Extension 1.0 Ratified
Non-leaf PTE Invalidation Extension 1.0 Ratified
Address Range Invalidation Extension 1.0 Ratified
PTE Reserved-for-Software Bits 60-59 1.0 Ratified

9.1. Quality-of-Service (QoS) Identifiers Extension, Version 1.0

Quality of Service (QoS) is defined as the minimal end-to-end performance guaranteed in advance by a
service level agreement (SLA) to a workload. Performance metrics might include measures such as
instructions per cycle (IPC), latency of service, etc.

When multiple workloads execute concurrently on modern processors — equipped with large core counts,
multiple cache hierarchies, and multiple memory controllers — the performance of any given workload
becomes less deterministic, or even non-deterministic, due to shared resource contention [9].

To manage performance variability, system software needs resource allocation and monitoring capabilities.
These capabilities allow for the reservation of resources like cache and bandwidth, thus meeting individual
performance targets while minimizing interference [10]. For resource management, hardware should
provide monitoring features that allow system software to profile workload resource consumption and
allocate resources accordingly.

To facilitate this, the QoS Identifiers ISA extension (Ssqosid) [11] introduces the srmcfg register, which
configures a hart with two identifiers: a Resource Control ID (RCID) and a Monitoring Counter ID (MCID).
These identifiers accompany each request issued by the hart to shared resource controllers.

These identifiers are crucial for the RISC-V Capacity and Bandwidth Controller QoS Register Interface [12],
which provides methods for setting resource usage limits and monitoring resource consumption. The RCID
controls resource allocations, while the MCID is used for tracking resource usage.

The IOMMU QoS ID extension provides a method to associate QoS IDs with requests to access resources by
the IOMMU, as well as with devices governed by it. This complements the Ssqosid extension that provides
a method to associate QoS IDs with requests originated by the RISC-V harts. Assocating QoS IDs with
device and IOMMU originated requests is required for effective monitoring and allocation of shared
resources.

The IOMMU capabilities register (Section 6.3) is extended with a Q0SID field which enumerates support
for associating QoS IDs with requests made through the IOMMU. When capabilities.QO0SID is 1, the
memory-mapped register layout is extended to add a register named iommu_gosid (Section 6.27). This
register is used to configure the Quality of Service (QoS) IDs associated with IOMMU-originated requests.
The ta field of the device context (Section 3.1.3.3) is extended with two fields, RCID and MCID, to configure
the QoS IDs to associate with requests originated by the devices.

9.1.1. Reset Behavior

If the reset value for ddtp.iommu_mode field is Bare, then the iommu_gosid.RCID field must have a reset
value of O.

RISC-V IOMMU Architecture Specification | © RISC-V International

9.1. Quality-of-Service (QoS) Identifiers Extension, Version 1.0 | Page 98

At reset, it is required that the RCID field of iommu_qosid is set to O if the [IOMMU is in Bare
mode, as typically the resource controllers in the SoC default to a reset behavior of associating

o all capacity or bandwidth to the RCID value of O. When the reset value of the
ddtp.iommu_mode is not Bare, the iommu_qosid register should be initialized by software
before changing the mode to allow DMA.

9.1.2. Sizing QoS ldentifiers
The size (or width) of RCID and MCID, as fields in registers or in data structures, supported by the [OMMU
must be at least as large as that supported by any RISC-V application processor hart in the system.

9.1.3. IOMMU ATC Capacity Allocation and Monitoring

Some IOMMUs might support capacity allocation and usage monitoring in the IOMMU address
translation cache (IOATC) by implementing the capacity controller register interface.

Additionally, some IOMMUs might support multiple IOATCs, each potentially having different capacities.
In scenarios where multiple IOATCs are implemented, such as an IOATC for each supported page size, the

IOMMU can implement a capacity controller register interface for each IOATC to facilitate individual
capacity allocation.

RISC-V IOMMU Architecture Specification | © RISC-V International

9.2. Non-leaf PTE Invalidation Extension, Version 1.0 | Page 99

9.2. Non-leaf PTE Invalidation Extension, Version 1.0

The RISC-V IOMMU Version 1.0 specification provides commands to invalidate leaf page table entries
from address translation caches when performing an address-specific invalidation operation. The non-leaf
PTE invalidation extension provides commands to optionally also invalidate non-leaf PTE entries from the
address translation caches when performing an address-specific invalidation operation.

The non-leaf PTE invalidation extension is implemented if the capabilities.NL (bit 42) is 1. When the
capabilities.NL bit is 1, a non-leaf (NL) field is defined at bit 34 in the IOTINVAL.VMA and IOTINVAL.GVMA
commands by this extension. When the capabilities.NL bitis O, bit 34 remains reserved.

The non-leaf PTE invalidation extension enables optimizations in shared virtual addressing
o use cases by providing the ability to invalidate non-leaf PTEs corresponding to the IOVA being
invalidated from the IOMMU address translation caches.

If the address range invalidation extension is also implemented, the NL operand applies to the address
range determined by the ADDR and S operands.

9.2.1. Non-leaf PTE Invalidation by I0OTINVAL.VMA
® When the AV operand is O, the NL operand is ignored and the IOTINVAL.VMA command operations are as
specified in RISC-V IOMMU Version 1.0 specification.

® When the AV operand is 1 and the NL operand is O, the IOTINVAL.VMA command operations are as
specified in RISC-V IOMMU Version 1.0 specification.

® When both the AV and NL operands are 1, the IOTINVAL.VMA command performs the following
operations:

® When 6V=0 and PSCV=0: Invalidates information cached from all levels of first-stage page table
entries corresponding to the IOVA in the ADDR operand for all host address spaces, including entries
containing global mappings.

® When 6V=0 and PSCV=1: Invalidates information cached from all levels of first-stage page table
entries corresponding to the IOVA in the ADDR operand and the host address space identified by the
PSCID operand, except for entries containing global mappings.

® When 6V=1 and PSCV=0: Invalidates information cached from all levels of first-stage page table
entries corresponding to the IOVA in the ADDR operand for all VM address spaces associated with
the 6SCID operand, including entries that contain global mappings.

® When 6V=1 and PSCV=1: Invalidates information cached from all levels of first-stage page table
entries corresponding to the IOVA in the ADDR operand and the VM address space identified by the
PSCID and 6SCID operands, except for entries containing global mappings.

9.2.2. Non-leaf PTE Invalidation by I0TINVAL.GVMA
® When the 6V operand is O, both the AV and NL operands are ignored and the IOTINVAL.GVMA command
operations are as specified in RISC-V IOMMU Version 1.0 specification.

® When the 6V operand is 1 and the AV operand is O, the NL operand is ignored and the IOTINVAL.GVMA
command operations are as specified in RISC-V IOMMU Version 1.0 specification.

® When the 6V and AV operands are 1 and the NL operand is O, the IOTINVAL.GVMA command operations
are as specified in RISC-V IOMMU Version 1.0 specification.

® When GV, AV, and NL are all 1, the IOTINVAL.GVMA command performs the following operations:

® [nvalidates information cached from all levels of second-stage page table entries corresponding to

RISC-V IOMMU Architecture Specification | © RISC-V International

9.2. Non-leaf PTE Invalidation Extension, Version 1.0 | Page 100

the guest-physical address in the ADDR operand and the VM address spaces identified by the 6SCID
operand.

RISC-V IOMMU Architecture Specification | © RISC-V International

9.3. Address Range Invalidation Extension, Version 1.0 | Page 101

9.3. Address Range Invalidation Extension, Version 1.0

The address range invalidation extension enables specifying a range of addresses in an IOMMU ATC
invalidation command, reducing the number of commands queued to the IOMMU. This facility is
especially useful when superpages are employed in page tables.

The address range invalidation extension is implemented if capabilities.S (bit 43) is 1. When
capabilities.S is 1, a range-size (S) operand is defined at bit 73 in the IOTINVAL.VMA and IOTINVAL.GVMA
commands by this extension. When the capabilities.S$ bitis O, bit 73 remains reserved.

When the 6V operand is O, both the AV and S operands are ignored by the IOTINVAL.GVMA command. When
the AV operand is O, the S operand is ignored in both the IOTINVAL.VMA and IOTINVAL.GVMA commands.
When the S operand is ignored or set to O, the operations of the IOTINVAL.VMA and IOTINVAL.GVMA
commands are as specified in the RISC-V IOMMU Version 1.0 specification.

When the S operand is not ignored and is 1, the ADDR operand represents a NAPOT range encoded in the
operand itself. Starting from bit position O of the ADDR operand, if the first O bit is at position X, the range
size is 2%* * 4 KiB. When X is O, the size of the range is 8 KiB.

If the S operand is not ignored and is 1 and all bits of the ADDR operand are 1, the behavior is UNSPECIFIED.

If the S operand is not ignored and is 1 and the most significant bit of the ADDR operand is O while all other
bits are 1, the specified address range covers the entire address space.

The NAPOT range encoding used by this extension follows the convention used by PCle ATS
Invalidation Requests to denote address ranges. This convention is also used to encode the
0 translation range size in tr_response (Section 6.26) register.

Simpler implementations may invalidate all address-translation cache entries when the S bit
is setto 1.

RISC-V IOMMU Architecture Specification | © RISC-V International

9.4. PTE Reserved-for-Software Bits 60-59, Version 1.0 | Page 102

9.4. PTE Reserved-for-Software Bits 60-59, Version 1.0

The Svrsw60t59b extension is implemented if capabilities.Svrsw60t59b (bit 14) is set to 1.

RISC-V IOMMU Architecture Specification | © RISC-V International

Bibliography | Page 103

Bibliography

[1] “Clarification updates to IOMMU v06252025.” [Online]. Available: github.com/riscv-non-isa/riscv-
iommu/pull/569/commiits.

[2] “Clarification updates to IOMMU v1.0.1.” [Online|. Available: github.com/riscv-non-isa/riscv-iommu/
pull/441/commits.

[3] “Clarification updates to IOMMU v1.0.0.” [Online]. Available: github.com/riscv-non-isa/riscv-iommu/
pull/243/commits.

[4] “PCI Express® Base Specification Revision 6.0.” [Online]. Available: pcisig.com/pci-express-6.0-
specification.

[5] “RISC-V Advanced Interrupt Architecture.” [Online]. Available: github.com/riscv/riscv-aia.

[6] “RISC-V Instruction Set Manual, Volume II: Privileged Architecture.” [Online]. Available: github.com/
riscv/riscv-isa-manual.

[7] “RISC-V Shadow Stacks and Landing Pads.” [Online]. Available: github.com/riscv/riscv-cfi.

[8] “PCI Code and ID Assignment Specification Revision 1.1.” [Online]. Available: pcisig.com/sites/default/
files/files/PCI_Code-ID _r_1_11__v24_Jan_2019.pdf.

[9] K. Du Bois, S. Eyerman, and L. Eeckhout, “Per-Thread Cycle Accounting in Multicore Processors,” ACM
Trans. Archit. Code Optim., vol. 9, no. 4, Jan. 2013, doi: 10.1145/2400682.2400688.

[10] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Heracles: Improving Resource
Efficiency at Scale,” in Proceedings of the 42nd Annual International Symposium on Computer Architecture,
New York, NY, USA, 2015, pp. 450-462, doi: 10.1145/2749469.2749475.

[11] “RISC-V Quality-of-Service (QoS) Identifiers.” [Online|. Available: github.com/riscv/riscv-ssqosid.

[12] “RISC-V Capacity and Bandwidth QoS Register Interface.” [Online]. Available: github.com/riscv-non-
isa/riscv-cbqri.

RISC-V IOMMU Architecture Specification | © RISC-V International

https://github.com/riscv-non-isa/riscv-iommu/pull/569/commits
https://github.com/riscv-non-isa/riscv-iommu/pull/569/commits
https://github.com/riscv-non-isa/riscv-iommu/pull/441/commits
https://github.com/riscv-non-isa/riscv-iommu/pull/441/commits
https://github.com/riscv-non-isa/riscv-iommu/pull/243/commits
https://github.com/riscv-non-isa/riscv-iommu/pull/243/commits
https://pcisig.com/pci-express-6.0-specification
https://pcisig.com/pci-express-6.0-specification
https://github.com/riscv/riscv-aia
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-cfi
https://pcisig.com/sites/default/files/files/PCI_Code-ID_r_1_11__v24_Jan_2019.pdf
https://pcisig.com/sites/default/files/files/PCI_Code-ID_r_1_11__v24_Jan_2019.pdf
https://github.com/riscv/riscv-ssqosid
https://github.com/riscv-non-isa/riscv-cbqri
https://github.com/riscv-non-isa/riscv-cbqri

	RISC-V IOMMU Architecture Specification
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Preface
	Chapter 2. Introduction
	2.1. Glossary
	2.2. Usage models
	2.2.1. Non-virtualized OS
	2.2.2. Hypervisor
	2.2.3. Guest OS

	2.3. Placement and data flow
	2.4. IOMMU features

	Chapter 3. Data Structures
	3.1. Device-Directory-Table (DDT)
	3.1.1. Non-leaf DDT entry
	3.1.2. Leaf DDT entry
	3.1.3. Device-context fields
	3.1.3.1. Translation control (tc)
	3.1.3.2. IO hypervisor guest address translation and protection (iohgatp)
	3.1.3.3. Translation attributes (ta)
	3.1.3.4. First-Stage context (fsc)
	3.1.3.5. MSI page table pointer (msiptp)
	3.1.3.6. MSI address mask (msi_addr_mask) and pattern (msi_addr_pattern)

	3.1.4. Device-context configuration checks

	3.2. Process-Directory-Table (PDT)
	3.2.1. Non-leaf PDT entry
	3.2.2. Leaf PDT entry
	3.2.3. Process-context fields
	3.2.3.1. Translation attributes (ta)
	3.2.3.2. First-Stage context (fsc)

	3.2.4. Process-context configuration checks

	3.3. Process to translate an IOVA
	3.3.1. Process to locate the Device-context
	3.3.2. Process to locate the Process-context
	3.3.3. Process to translate addresses of MSIs

	3.4. IOMMU updating of PTE accessed (A) and dirty (D) updates
	3.5. Faults from virtual address translation process
	3.6. PCIe ATS translation request handling
	3.7. PCIe ATS Page Request handling
	3.8. Caching in-memory data structures
	3.9. Updating in-memory data structure entries
	3.10. Endianness of in-memory data structures

	Chapter 4. In-memory queue interface
	4.1. Command-Queue (CQ)
	4.1.1. IOMMU Page-Table cache invalidation commands
	4.1.2. IOMMU Command-queue Fence commands
	4.1.3. IOMMU directory cache invalidation commands
	4.1.4. IOMMU PCIe ATS commands

	4.2. Fault/Event-Queue (FQ)
	4.3. Page-Request-Queue (PQ)

	Chapter 5. Debug support
	Chapter 6. Memory-mapped register interface
	6.1. Register layout
	6.2. Reset behavior
	6.3. IOMMU capabilities (capabilities)
	6.4. Features-control register (fctl)
	6.5. Device-directory-table pointer (ddtp)
	6.6. Command-queue base (cqb)
	6.7. Command-queue head (cqh)
	6.8. Command-queue tail (cqt)
	6.9. Fault queue base (fqb)
	6.10. Fault queue head (fqh)
	6.11. Fault queue tail (fqt)
	6.12. Page-request-queue base (pqb)
	6.13. Page-request-queue head (pqh)
	6.14. Page-request-queue tail (pqt)
	6.15. Command-queue CSR (cqcsr)
	6.16. Fault queue CSR (fqcsr)
	6.17. Page-request-queue CSR (pqcsr)
	6.18. Interrupt pending status register (ipsr)
	6.19. Performance-monitoring counter overflow status (iocountovf)
	6.20. Performance-monitoring counter inhibits (iocountinh)
	6.21. Performance-monitoring cycles counter (iohpmcycles)
	6.22. Performance-monitoring event counters (iohpmctr1-31)
	6.23. Performance-monitoring event selectors (iohpmevt1-31)
	6.24. Translation-request IOVA (tr_req_iova)
	6.25. Translation-request control (tr_req_ctl)
	6.26. Translation-response (tr_response)
	6.27. IOMMU QoS ID (iommu_qosid)
	6.28. Interrupt-cause-to-vector register (icvec)
	6.29. MSI configuration table (msi_cfg_tbl)

	Chapter 7. Software guidelines
	7.1. Reading and writing IOMMU registers
	7.2. Guidelines for initialization
	7.3. Guidelines for invalidations
	7.3.1. Changing device directory table entry
	7.3.2. Changing process directory table entry
	7.3.3. Changing MSI page table entry
	7.3.4. Changing second-stage page table entry
	7.3.5. Changing first-stage page table entry
	7.3.6. Accessed (A)/Dirty (D) bit updates and page promotions
	7.3.7. Device Address Translation Cache invalidations
	7.3.8. Caching invalid entries
	7.3.9. Guidelines for emulating an IOMMU

	7.4. Reconfiguring PMAs
	7.5. Guidelines for handling interrupts from IOMMU
	7.6. Guidelines for enabling and disabling ATS and/or PRI

	Chapter 8. Hardware guidelines
	8.1. Integrating an IOMMU as a PCIe device
	8.2. Faults from PMA and PMP
	8.3. Aborting transactions
	8.4. Reliability, Availability, and Serviceability (RAS)

	Chapter 9. IOMMU Extensions
	9.1. Quality-of-Service (QoS) Identifiers Extension, Version 1.0
	9.1.1. Reset Behavior
	9.1.2. Sizing QoS Identifiers
	9.1.3. IOMMU ATC Capacity Allocation and Monitoring

	9.2. Non-leaf PTE Invalidation Extension, Version 1.0
	9.2.1. Non-leaf PTE Invalidation by IOTINVAL.VMA
	9.2.2. Non-leaf PTE Invalidation by IOTINVAL.GVMA

	9.3. Address Range Invalidation Extension, Version 1.0
	9.4. PTE Reserved-for-Software Bits 60-59, Version 1.0

	Bibliography

