RISC-V Atomic Load-Acquire and
Store-Release Extension (Zalasr)

Version 1.0, 2025-10-30: Ratified



Table of Contents

Preamble
Copyright and license information
Contributors
1. Introduction
2. Instructions
2.1. Load Acquire
2.2. Store Release
Bibliography

g OO G b WN =



Preamble | Page 1

Preamble

This document is in the Ratified state

A No changes are allowed. Any necessary or desired modifications must be addressed through a
follow-on extension. Ratified extensions are never revised.

RISC-V Atomic Load-Acquire and Store-Release Extension (Zalasr) | © RISC-V International


http://riscv.org/spec-state

Copyright and license information | Page 2

Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-BY
4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2022-2025 by RISC-V International.

RISC-V Atomic Load-Acquire and Store-Release Extension (Zalasr) | © RISC-V International


https://creativecommons.org/licenses/by/4.0/

Contributors | Page 3

Contributors
This RISC-V specification has been contributed to directly or indirectly by:

® Brendan Sweeney <turtwig@utexas.edu>
® Hans Boehm <hboehm@google.com>
® Andrew Waterman <andrew@sifive.com>

® Andrea Parri <parri.andrea@gmail.com>

RISC-V Atomic Load-Acquire and Store-Release Extension (Zalasr) | © RISC-V International


mailto:turtwig@utexas.edu
mailto:hboehm@google.com
mailto:andrew@sifive.com
mailto:parri.andrea@gmail.com

Chapter 1. Introduction | Page 4

Chapter 1. Introduction

The Zalasr (Load-Acquire and Store-Release) extension provides load-acquire and store-release
instructions in RISC-V. These can be important for high performance designs by enabling finer-grained
synchronisation than is possible with fences alone, by providing a unidirectional fence. Load-acquire and
store-release are widely used in language-level memory models: both the Java and C++ memory models
make use of acquire-release semantics, and C++'s atomic provides primitives that are meant to map
directly to load-acquire and store-release instructions.

The Zalasr extension builds on the atomic support provided by the Zaamo (Atomic Memory Operations),
Zalrsc (Load-Reserved and Store-Conditional), and Zabha (Byte and Halfword Atomic Memory Operations)
extensions by providing additional atomic operations (although it can be implemented independently of
them). All of the AMO operations in Zaamo (and Zabha) are read-modify-write operations that both load
and store. The Zalrsc extension provides operations that are only loads or stores. However, since it is
designed to perform an atomic operation on a single memory word or doubleword, the loads and stores are
designed to be paired. The load-reserved implies that a future store-conditional will follow while store-
conditional requires that there was a previous load-reserved without other intervening loads or stores.
Therefore, the Zalrsc extension does not provide a general atomic and ordered load or store.

Zalasr fills this gap by offering truly standalone atomic and ordered loads and stores. The Zalasr
instructions are atomic loads and stores that support ordering annotations. With the combination of
Zaamo, Zabha, and Zalasr all C++ atomic operations can be supported with single instructions.

RISC-V Atomic Load-Acquire and Store-Release Extension (Zalasr) | © RISC-V International



Chapter 2. Instructions | Page 5

Chapter 2. Instructions

The Zalasr instructions always sign-extend the value placed in rd and ignore the upper bits of the value of
rs2. The instructions in the Zalasr extension require that the address held in rsI be naturally aligned to the
size in bytes (2""") of the operand. If the address is not naturally aligned, an address-misaligned exception
or an access-fault exception will be generated. The access-fault exception can be generated for a memory
access that would otherwise be able to complete except for the misalignment, if the misaligned access
should not be emulated.

The misaligned atomicity granule PMA, defined in Volume II of this manual, optionally relaxes this
alignment requirement. If all accessed bytes lie within the same misaligned atomicity granule, the
instruction will not raise an exception for reasons of address alignment, and the instruction will give rise to
only one memory operation for the purposes of RVWMO—i.e., it will execute atomically.

RISC-V Atomic Load-Acquire and Store-Release Extension (Zalasr) | © RISC-V International



2.1. Load Acquire | Page 6

2.1. Load Acquire

Synopsis
The load-acquire instruction atomically loads a 2*"-byte value from the address in rsI and places the
sign-extended value into the register rd, subject to the ordering annotations specified in the instruction.

Mnemonic

Ib{aq,aqrl} rd, (rs1)
lh{aq,aqrl} rd, (rsl)
lw{aq,aqrl} rd, (rsl)

ld{aqg,aqrl} rd, (rsI)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 aq| rl rs2 rs1 funct3 rd opcode
5 1 1 5 5 3 5 7
Load Acquire ordeing 0 addr width dest AMO
00110 1
Description

This instruction loads 2" bytes of memory from rsl atomically and writes the result into rd. If the size
(29"*%) is less than XLEN, it is sign-extended to fill the destination register. This load must have the
ordering annotation aq and may have ordering annotation rl encoded in the instruction. The instruction
always has an "acquire-RCsc" annotation, and if the bit rl is set the instruction has a "release-RCsc"
annotation.

The versions without the aq bit set are RESERVED. LD {AQ, AQRL} is RV64-only.

The aq bit is mandatory because the two encodings that would be produced are not seen as
useful at this time. The version with neither the aq nor the rl bit set would correspond to a load
o with no ordering annotations that was guaranteed to be performed atomically. This can be
achieved with ordinary load instructions by suitably aligning pointers. The version with only
the rl bit would correspond to load-release. Load-release has theoretical applications in
seqlocks, but is not supported in language-level memory models and so is not included.

RISC-V Atomic Load-Acquire and Store-Release Extension (Zalasr) | © RISC-V International



2.2. Store Release | Page 7

2.2. Store Release

Synopsis
The store-release instruction atomically stores the 2"“"-byte value from the low bits of register rs2 to
the address in rs], subject to the ordering annotations specified in the instruction.

Mnemonic

sb{rlaqrl} rs2, (rsl)
sh{rlaqrl} rs2, (rs)
sw{rlaqrl} rs2, (rsl)

sd{rlaqrl} rs2, (rsl)

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 aq| rl rs2 rs1 funct3 rd opcode
5 1 1 5 5 3 5 7
Store Release ordeing src addr width 0 AMO
00111
Description

This instruction stores 2"“" bytes of memory from rsl atomically. This store must have ordering
annotation rl and may have ordering annotation aq encoded in the instruction. The instruction always
has an "release-RCsc" annotation, and if the bit aq is set the instruction has a "acquire-RCsc" annotation.

The versions without the rl bit set are RESERVED. SD{RL, AQRL} is RV64-only.

The rl bit is mandatory because the two encodings that would be produced are not seen as
useful at this time. The version with neither the aq nor the rl bit set would correspond to a store
with no ordering annotations that was guaranteed to be performed atomically. This can be
o achieved with ordinary store instructions by suitably aligned pointers. The version with only
the aq bit would correspond to store-acquire. Store-acquire has theoretical applications in
seqlocks, but is not supported in language-level memory models and so is not included.

RISC-V Atomic Load-Acquire and Store-Release Extension (Zalasr) | © RISC-V International



Bibliography | Page 8

Bibliography

RISC-V Atomic Load-Acquire and Store-Release Extension (Zalasr) | © RISC-V International



	RISC-V Atomic Load-Acquire and Store-Release Extension (Zalasr)
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	Chapter 2. Instructions
	2.1. Load Acquire
	2.2. Store Release

	
	Bibliography

