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Chapter 1

Introduction

SiFive’'s S76-MC Core Complex is a high performance implementation of the RISC-V
RV64GC_Zba_zbb_Sscofpmf architecture. The SiFive S76-MC Core Complex is guaranteed to
be compatible with all applicable RISC-V standards, and this document should be read together
with the official RISC-V user-level, privileged, and external debug architecture specifications.

b RISC

A summary of features in the S76-MC Core Complex can be found in Table 1.

S76-MC Core Complex Feature Set
Feature Description
Number of Harts 4 Harts.
S7 Core 4 x S7 RISC-V cores.
PLIC Interrupts 127 Interrupt signals, which can be connected to
off-core-complex devices.
PLIC Priority Levels The PLIC supports 7 priority levels.
Level 2 Cache 512 KiB 16-way L2 Cache.
Hardware Breakpoints 4 hardware breakpoints.
Physical Memory Protection PMP with 8 regions and a minimum granularity of 64 bytes.
Unit

Table 1: S76-MC Core Complex Feature Set

The S76-MC Core Complex also has a number of on-core-complex configurability options,
allowing one to tune the design to a specific application. The configurable options are described
in Appendix A.

1.1 About this Document

This document describes the functionality of the S76-MC Core Complex 21G3.02.00. To learn
more about the production deliverables of the S76-MC Core Complex, consult the S76-MC Core
Complex User Guide.
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1.2 About this Release

This is a general release of the S76-MC Core Complex 21G3.02.00, with a supported life cycle
of two years from the release date. Contact support@sifive.com if you have any questions.

1.3 S76-MC Core Complex Overview

The S76-MC Core Complex includes 4 x S7 64-bit RISC-V cores, along with the necessary
functional units required to support the cores. These units include a Core-Local Interruptor
(CLINT) to support local interrupts, a Platform-Level Interrupt Controller (PLIC) to support plat-
form interrupts, physical memory protection, a Debug unit to support a JTAG-based debugger
host connection, and a local crossbar that integrates the various components together.

The S76-MC Core Complex memory system consists of a Data Cache, Data Local Store (DLS),
Instruction Cache, and Instruction Tightly-Integrated Memory (ITIM), with coherent L1 caches,
shared L2 Cache, and a directory based coherence manager. The S76-MC Core Complex also
includes a Front Port, which allows external masters to be coherent with the L1 memory system
and access to the TIMs, thereby removing the need to maintain coherence in software for any
external agents.

An overview of the SiFive S7 Series is shown in Figure 1. Refer to the docs/
core_complex_configuration. txt file for a comprehensive summary of the S76-MC Core
Complex configuration.
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Figure 1: S7 Series Block Diagram

The S76-MC Core Complex memory map is detailed in Section 4.2, and the interfaces are
described in full in the S76-MC Core Complex User Guide.

1.4 S7 RISC-V Cores

The S76-MC Core Complex includes four 64-bit S7 RISC-V cores, which each have a dual-
issue, in-order execution pipeline, with a peak execution rate of two instructions per clock cycle.
The SiFive S7 core is guaranteed to be compatible with all applicable RISC-V standards.

Each S7 core is configured to support the RV64I1 base ISA, as well as the Multiply (M), Atomic
(A), Single-Precision Floating Point (F), Double-Precision Floating Point (D), Compressed (C),
CSR Instructions (Zicsr), Instruction-Fetch Fence (Zifencei), Address Calculation (Zba), Basic
Bit Manipulation (Zbb), and Count Overflow and Mode-Based Filtering (Sscofpmf) RISC-V
extensions. This is captured by the RISC-V extension string: RV64GC_Zba_Zbb_Sscofpmf. The
base ISA and instruction extensions are described in Chapter 5.

The S7 also supports machine and user privilege modes, in conjunction with Physical Memory
Protection (PMP), thereby allowing System-on-Chip (SoC) implementations to make the right
area, power, and feature trade-offs.
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The S7 core is designed to be feature rich, providing a very flexible memory system that
includes L1 caches, Tightly-Integrated Memory (TIM), standards-based configurable bus inter-
faces, and memory maps that provide a lot of flexibility for SoC integration.

The microarchitecture also incorporates a branch prediction unit that is composed of a 4-entry
Branch Target Buffer (BTB), a 1.3 KiB-entry Branch History Table (BHT), a 3-entry Return
Address Stack (RAS), 2-entry Indirect Jump Target Predictor (IJTP), and a 16-entry Return
Instruction Predictor.

The S7 includes an IEEE 754-2008 compliant Floating-Point Unit.

The S7 cores are described in more detail in Chapter 3.

1.5 Memory System

The S76-MC Core Complex memory system has a Level 1 memory system optimized for high
performance. The instruction subsystem consists of a 32 KiB, 2-way instruction cache. The
S76-MC Core Complex also includes a 32 KiB Instruction Tightly Integrated Memory (ITIM). The
data subsystem is comprised of a high performance 32 KiB, 4-way L1 data cache. The memory
system is described in more detail in Chapter 3.

The S76-MC Core Complex also supports a shared, 512 KiB, 16-way L2 cache with 2 banks.
The L2 Cache Controller is described in Chapter 12.

1.6 Interrupts

The S76-MC Core Complex provides the standard RISC-V M-mode timer and software inter-
rupts via the Core-Local Interruptor (CLINT).

The S76-MC Core Complex also includes a RISC-V standard Platform-Level Interrupt Controller
(PLIC), which supports 127 global interrupts with 7 priority levels.

Interrupts are described in Chapter 7. The CLINT is described in Chapter 8. The PLIC is
described in Chapter 9.

1.7 Debug Support

The S76-MC Core Complex provides external debugger support over an industry-standard
JTAG port, including 4 hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 14, and the debug interface is described in the
S76-MC Core Complex User Guide.
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1.8 Compliance

21G3.02.00

The S76-MC Core Complex is compliant to the following versions of the various RISC-V specifi-

cations:
ISA Version | Status
RV64I| Base Integer Instruction Set 2.1 Ratified
Extensions Version | Status
M Standard Extension for Integer Multiplication and Division 2.0 Ratified
A Standard Extension for Atomic Instruction 2.1 Ratified
F Standard Extension for Single-Precision Floating-Point 2.2 Ratified
D Standard Extension for Double-Precision Floating-Point 2.2 Ratified
C Standard Extension for Compressed Instruction 2.0 Ratified
Zicsr Standard Extension for Control and Status Register (CSR) 2.0 Ratified
Instructions
Zifencei Standard Extension for Instruction-Fetch Fence 2.0 Ratified
Zba Standard Extension for Address Calculation 1.0 Ratified
Zbb Standard Extension for Basic Bit Manipulation 1.0 Ratified
Sscofpmf Standard Extension for Count Overflow and Mode-Based 0.1 Ratified
Filtering
Privilege Mode Version | Status
Machine-Level ISA 1.11 Ratified
User-Level ISA 1.11 Ratified
Devices Version | Status
The RISC-V Debug Specification 1.0 Frozen
RISC-V Platform-Level Interrupt Controller (PLIC) Specification — —

Table 2: RISC-V Specification Compliance
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List of Abbreviations and Terms
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List of Abbreviations and Terms

Term Definition

BHT Branch History Table

BTB Branch Target Buffer

CLIC Core-Local Interrupt Controller. Configures priorities and levels for core-local
interrupts.

CLINT Core-Local Interruptor. Generates per hart software and timer interrupts.

DTIM Data Tightly-Integrated Memory

Hart HARdware Thread

IJTP Indirect-Jump Target Predictor

ITIM Instruction Tightly-Integrated Memory

JTAG Joint Test Action Group

LIM Loosely-Integrated Memory. Used to describe memory space delivered in a SiFive
Core Complex that is not tightly integrated to a CPU core.

PLIC Platform-Level Interrupt Controller. The global interrupt controller in a RISC-V
system.

PMC Power Management Controller

PMP Physical Memory Protection

RAS Return-Address Stack

RO Used to describe a Read-Only register field

RS Read/Set field. A register field that cannot be cleared by software, only reset will
clear.

RW Used to describe a Read/Write register field

RW1C Used to describe a Read/Write-1-to-Clear register field

TileLink | A free and open interconnect standard originally developed at UC Berkeley

wWicC Used to describe a Write-1-to-Clear register field

WARL Write-Any, Read-Legal field. A register field that can be written with any value, but
returns only supported values when read.

WIRI Writes-Ignored, Reads-Ignore field. A read-only register field reserved for future
use. Writes to the field are ignored and reads should ignore the value returned.

WLRL Write-Legal, Read-Legal field. A register field that should only be written with legal
values and that only returns legal value if last written with a legal value.

wo Used to describe a Write-Only register field

WPRI Writes-Preserve, Reads-Ignore field. A register field that might contain unknown
information. Reads should ignore the value returned, but writes to the whole
register should preserve the original value.

Table 3: Abbreviations and Terms
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Chapter 3

S7 RISC-V Core

This chapter describes the 64-bit S7 RISC-V processor core, instruction fetch and execution
unit, L1 and L2 memory systems, Physical Memory Protection unit, Hardware Performance
Monitor, and external interfaces.

The S7 feature set is summarized in Table 4.

Feature Description

ISA RV64GC_Zba_Zbb_Sscofpmf

SiFive Custom Instruction Extension (SCIE) Not Present

Privilege Modes M, U

L1 Instruction Cache 32 KiB 2-way instruction cache
Instruction Tightly-Integrated Memory (ITIM) | 32 KiB ITIM

L1 Data Cache 32 KiB 4-way data cache

Data Local Store (DLS) 32 KiB DLS with 1 bank

L2 Cache 512 KiB 16-way L2 cache with 2 banks
Fast 1/10 Present

Physical Memory Protection 8 regions with a granularity of 64 bytes

Table 4: S7 Feature Set

3.1 Supported Privilege Modes

The S7 supports the RISC-V user mode, providing two levels of privilege: machine (M) and user
(U). U-mode provides a mechanism to isolate application processes from each other and from
trusted code running in M-mode.

See The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.11 for
more information on the privilege modes.

3.2 Instruction Memory System

This section describes the instruction memory system of the S7 core.
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S7 RISC-V Core

3.2.1 Execution Memory Space

The regions of executable memory consist of all directly addressable memory in the system.
The memory includes any volatile or non-volatile memory located off the Core Complex ports,
and includes the on-core-complex ITIM, L2 LIM, and L2 Zero Device.

Table 5 shows the executable regions of the S76-MC Core Complex.

Base Top Description
0x0180_0000 | 0x0180_7FFF | Hart 0 ITIM
0x0182_0000 | Ox0182_7FFF | Hart 1 ITIM
0x0184_0000 | 0x0184_7FFF | Hart 2 ITIM
0x0186_0000 | Ox0186_7FFF | Hart 3 ITIM
0x0800_0000 | Ox0807_FFFF | L2 LIM

OXOAQ0O_0000

OXOAO7_FFFF

L2 Zero Device

0Xx2000_0000

OX3FFF_FFFF

Peripheral Port (512 MiB)

0x4000_0000

OX5FFF_FFFF

System Port (512 MiB)

0X7000_0000

OX7000_7FFF

Hart O Data Local Store

0X7000_8000

OX7000_FFFF

Hart 1 Data Local Store

0X7001_0000

OX7001_7FFF

Hart 2 Data Local Store

0x7001_8000

OX7001_FFFF

Hart 3 Data Local Store

Ox8000_0000

OX9FFF_FFFF

Memory Port (512 MiB)

Table 5: Executable Memory Regions for the S76-MC Core Complex

All executable regions, except the ITIM, are treated as instruction cacheable. There is no
method to disable this behavior.

Trying to execute an instruction from a non-executable address results in an instruction access
trap.

3.2.2 L1 Instruction Cache

The L1 instruction cache is a 32 KiB 2-way set-associative cache. It has a line size of 64 bytes
and is read/write-allocate with a random replacement policy. A cache line fill triggers a burst
access outside of the Core Complex, starting with the first address of the cache line. There are
no write-backs to memory from the instruction cache and it is not kept coherent with rest of the
platform memory system. In multi-core systems, the instruction caches are not kept coherent
with each other.

Out of reset, all blocks of the instruction cache are invalidated. The access latency of the cache
is one clock cycle. There is no way to disable the instruction cache and cache allocations begin
immediately out of reset.
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3.2.3 Cache Maintenance

The instruction cache supports the FENCE. I instruction, which invalidates the entire instruction
cache, as described in Section 5.14. Writes to instruction memory from the core or another mas-
ter must be synchronized with the instruction fetch stream by executing FENCE . I.

3.2.4 Coherence with Higher Level Caches

The L1 instruction cache is partially inclusive with the L2 Cache, described in Chapter 12.

When a block of instruction memory is allocated to the L1 cache, it is also allocated to the L2
cache if the access was from the Memory Port. Instruction accesses to all other ports will not
allocate to the L2 cache, only the L1 cache.

When a block is evicted from L1, it might still reside in L2, which will reduce access time the
next time the block is fetched.

If a hart modifies instruction memory (i.e., self-modifying code), then a FENCE. I instruction is
required to synchronize the instruction and data streams. Even though FENCE. I targets the L1
instruction cache, no cache operation is required on the L2 cache to maintain instruction
coherency.

3.2.5 Instruction Tightly-Integrated Memory (ITIM)

The S7 includes a 32 KiB ITIM in addition to the L1 instruction cache. ITIM accesses have the
same performance as instruction cache hits, but can never suffer a miss. This makes the ITIM
useful for storing code that benefits from deterministic execution, such as interrupt handlers.

3.2.6 Instruction Fetch Unit

The S7 instruction fetch unit is responsible for keeping the pipeline fed with instructions from
memory. The instruction fetch unit delivers up to 8 bytes of instructions per clock cycle to sup-
port superscalar instruction execution. Fetches are always word-aligned and there is a one-
cycle penalty for branching to a 32-bit instruction that is not word-aligned.

The S7 implements the standard Compressed (C) extension to the RISC-V architecture, which
allows for 16-bit RISC-V instructions. As four 16-bit instructions can be fetched per cycle, the
instruction fetch unit can be idle when executing programs comprised mostly of compressed
16-bit instructions. This reduces memory accesses and power consumption.

All branches must be aligned to half-word addresses. Otherwise, the fetch generates an instruc-
tion address misaligned trap. Trying to fetch from a non-executable or unimplemented address
results in an instruction access trap.
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3.2.7 Branch Prediction

The S7 instruction fetch unit contains sophisticated predictive hardware to mitigate the perfor-
mance impact of control hazards within the instruction stream. The instruction fetch unit is
decoupled from the execution unit, so that correctly predicted control-flow events usually do not
result in execution stalls.

« A 4-entry branch target buffer (BTB), which predicts the target of taken branches and direct
jumps;

* A 1.3 KiB branch history table (BHT), which predicts the direction of conditional branches;
¢ A 2-entry indirect-jump target predictor (IJTP);

« A 3-entry return-address stack (RAS), which predicts the target of procedure returns.

The BHT is a correlating predictor that supports long branch histories. The BTB has one-cycle
latency, so that correctly predicted branches and direct jumps result in no penalty, provided the
target is 8-byte aligned.

Direct jumps that miss in the BTB result in a one-cycle fetch bubble. This event might not result
in any execution stalls if the fetch queue is sufficiently full.

The BHT, IJTP, and RAS take precedence over the BTB. If these structures' predictions dis-
agree with the BTB’s prediction, a one-cycle fetch bubble results. Similar to direct jumps that
miss in the BTB, the fetch bubble might not result in an execution stall.

Mispredicted branches usually incur a four-cycle penalty, but sometimes the branch resolves
later in the execution pipeline and incurs a six-cycle penalty instead. Mispredicted indirect jumps
incur a six-cycle penalty.

Branch prediction is enabled out of reset and cannot be disabled. However, instruction specula-
tion, fetching before a prediction is confirmed, must be enabled in the Feature Disable CSR,
described in Chapter 6.

As instruction speculation can occur at any point after it has been enabled, data cacheable
regions of memory (i.e., DDR) must be able to respond to instruction fetches immediately after
instruction speculation is enabled. If DDR initialization is not completed before instruction specu-
lation is enabled, the memory system must return a decode error (DECERR) for accesses made
to DDR. The fetch unit will ignore errors associated with speculative accesses and continue to
operate normally.

The Branch Prediction Mode CSR, also described in Chapter 6, provides a means to customize
the branch predictor behavior to trade average performance for more predictable execution
time.
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3.3 Execution Pipeline
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Figure 2: S7 Execution Pipeline

The S7 execution unit is a dual-issue, in-order pipeline. The pipeline comprises eight stages:
three stages of instruction fetch (FO-F2), instruction decode (ID), address generation (AG), two
stages of data memory access (M1 and M2), and register write-back (WB). The pipeline has a
peak execution rate of two instructions per clock cycle, and is fully bypassed so that most
instructions have a one-cycle result latency:

 Integer arithmetic and branch instructions can execute in either the AG or M2 pipeline
stage. If such an instruction’s operands are available when the instruction enters the AG
stage, then it executes in AG; otherwise, it executes in M2.

» Loads produce their result in the M2 stage. There is no load-use delay for most integer
instructions. However, effective addresses for memory accesses are always computed in
the AG stage. Hence, loads, stores, and indirect jumps require their address operands to
be ready when the instruction enters AG. If an address-generation operation depends upon
a load from memory, then the load-use delay is two cycles.

 Integer multiplication instructions consume their operands in the AG stage and produce
their results in the M2 stage. The integer multiplier is fully pipelined.

 Integer division instructions consume their operands in the AG stage. These instructions
have between a six-cycle and 68-cycle result latency, depending on the operand values.

* CSR accesses execute in the M2 stage. CSR read data can be bypassed to most integer
instructions with no delay. Most CSR writes flush the pipeline, which is a seven-cycle
penalty.
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Instruction Latency

LW Three-cycle latency, assuming cache hit!

LH, LHU, LB, LBU Three-cycle latency, assuming cache hit!

CSR Reads One-cycle latency?

MUL, MULH, MULHU, Three-cycle latency

MULHSU

DIV, DIVU, REM, REMU Between six-cycle to 68-cycle latency, depending on operand
values®

LEffective address not ready in AG stage. Load-to-use latency = load-to-use delay + 1
2 cycle latency = cycle delay + 1

3The latency of DIV, DIVU, REM, and REMU instructions can be determined by calculating:
Latency = 2 cycles + logp(dividend) - logz(divisor) + 1 cycle
if the input is negative + 1 cycle if the output is negative

Table 6: S7 Instruction Latency

The pipeline has some register dependencies, where it interlocks on read-after-write and write-
after-write hazards, so instructions may be scheduled to avoid stalls. Otherwise, the processor
can have multiple outstanding memory-mapped I/O accesses, even to the same address. The
pipeline implements a flexible dual-instruction-issue scheme. Provided there are no data haz-
ards between a pair of instructions, the two instructions may issue in the same cycle, provided
the following constraints are met:

* At most one instruction accesses data memory.

e At most one instruction is a branch or jump.

< At most one instruction is a floating-point arithmetic operation.

< At most one instruction is an integer multiplication or division operation.

< Neither instruction explicitly accesses a CSR.

See Appendix D for a complete list of floating-point unit instruction timings.

3.4 Data Memory System

The data memory system consists of on-core-complex data and the ports in the S76-MC Core
Complex memory map, shown in Section 4.2. The on-core-complex data memory consists of a
32 KiB L1 data cache and 512 KiB L2 cache. A design cannot have both data cache and DTIM.

Data accesses are classified as cacheable, for those targeting the Memory Port; or non-
cacheable, for those targeting any other port in the Core Complex. Non-cacheable data
accesses are collectively called memory-mapped I/O accesses, or MMIOs.
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The S7 pipeline allows for multiple outstanding memory accesses, but only allows one outstand-
ing cache line fill. The memory system includes the Fast I/O feature, described in Section 3.5,
which improves the throughput of MMIOs. The number of outstanding MMIOs are implementa-
tion dependent. Misaligned accesses are not allowed to any memory region and result in a trap
to allow for software emulation.

3.4.1 L1 Data Cache

The L1 data cache is a 32 KiB 4-way set-associative cache. It has a line size of 64 bytes and is
read/write-allocate with a PLRU replacement policy. The cache operates in write-back mode;
this means that if a cache line is dirty, it is written back to memory when evicted. Out of reset, all
lines of the cache are invalidated.

The Memory Port address range is the only cacheable region of memory. A cache line fill trig-
gers a burst access starting with the first address of the cache line. On a cache hit, the access
latency is two clock cycles for words and double-words, and three clock cycles for smaller quan-
tities. Stores are pipelined and commit on cycles where the data memory system is otherwise
idle. Pending stores are stored in a buffer, which drains whenever there is an idle cycle or
another store. Loads to addresses currently in the store pipeline result in a five-cycle penalty.

The data cache supports only one outstanding line fill. Once a cacheable access is made that
misses, another cannot be issued until the line fill completes. However, other MMIOs can be
issued before or after the line fill as long as there are no address or register hazards.

The data cache cannot be disabled and the properties of the Memory Port cannot be modified to
prevent cacheable accesses.

3.4.2 Cache Maintenance Operations

The data cache supports CFLUSH.D.L1 and CDISCARD.D.L1. The instruction CFLUSH.D.L1
cleans and invalidates the specified line or all cache lines. The instruction CDISCARD.D. L1 inval-
idates the specified line or all cache lines.

These custom instructions are further described in Chapter 6.

3.4.3 L1 Data Cache Coherency

All of the L1 data caches in the Core Complex are kept coherent with an integrated coherency
manager. This is an automatic feature and cannot be disabled. The CFLUSH.D.L1 and
CDISCARD.D.L1 instructions only affect the core that executed the instruction. They are not
broadcast to all cores in the Complex.

3.4.4 Coherence with Higher Level Caches

The L1 data cache is inclusive with the L2 Cache, described in Chapter 12.
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When a block of data is allocated to the L1 cache, it is also allocated to the L2 cache. When a
block is evicted from the L1, the corresponding line in L2 is then updated and marked dirty.

The custom instructions CFLUSH.D.L1 and CDISCARD.D.L1 only target the L1 data cache, and
do not impact the L2 cache. Flush capability of the L2 Cache Controller is described in Section
12.4.3.

3.4.5 Data Local Store (DLS)

The S7 includes an additional fast, local memory called the Data Local Store (DLS). The DLS is
32 KiB in size, has 1 bank, and is directly addressable, as shown in Section 4.2. Accesses to
the DLS have a fixed, five-cycle load-to-use latency, which makes it ideal for holding data that
requires deterministic access time.

Each hart has its own DLS region, but it is not private to each hart.

3.5 Fastl/O

The Fast I/O feature improves the performance of the memory-mapped I/0 (MMIO) subsystem.
This is achieved by predicting whether an access is I/O or not by examining the base address of
a read or write.

Fast I/O enables a sustained rate of one MMIO operation per clock cycle. By contrast, when this
feature is excluded, MMIO loads can only sustain half that rate. Fast I/0O also decouples the
MMIO load response from the cache-hit path. This way, MMIO requests and responses can
happen on the same cycle, doubling the peak load throughput.

Note
Fast I/O is NOT an I/O port.

3.6 Atomic Memory Operations

The S7 core supports the RISC-V standard Atomic (A) extension on the Memory Port, Periph-
eral Port, and internal memory regions.

Atomic instructions that target the Memory Port are implemented in the data cache and are not
observable on the external data bus. The load-reserved (LR) and store-conditional (SC) instruc-
tions are special atomic instructions that are only supported in data cacheable regions. They will
generate a precise access exception if targeted at uncacheable data regions.

Atomic memory operations are not supported on the System Port. Atomic operations that target
the System Port will generate a precise access exception.

See Section 5.4 for more information on the instructions added by this extension.
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3.7 Floating-Point Unit (FPU)

The S7 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for
32-bit single-precision and 64-bit double-precision arithmetic. The FPU includes a fully pipelined
fused-multiply-add unit and an iterative divide and square-root unit, magnitude comparators,
and float-to-integer conversion units, all with full hardware support for subnormals and all IEEE
default values.

Section 5.5 describes the 32-bit single-precision instructions. Section 5.6 describes the 64-bit
double-precision instructions.

The FPU comes up disabled on reset. First initialize fcsr and mstatus.FS prior to executing
any floating-point instructions. In the freedom-metal startup code, write mstatus.FS[1:0] to
Ox1.

3.8 Physical Memory Protection (PMP)

Machine mode is the highest privilege level and by default has read, write, and execute permis-
sions across the entire memory map of the device. However, privilege levels below machine
mode do not have read, write, or execute permissions to any region of the device memory map
unless it is specifically allowed by the PMP. For the lower privilege levels, the PMP may grant
permissions to specific regions of the device’s memory map, but it can also revoke permissions
when in machine mode.

When programmed accordingly, the PMP will check every access when the hart is operating in
user mode. For machine mode, PMP checks do not occur unless the lock bit (L) is set in the
pmpcfgY CSR for a particular region.

PMP checks also occur on loads and stores when the machine previous privilege level is user
(mstatus.MPP=0x0), and the Modify Privilege bit is set (nstatus.MPRvV=1).

The S7 PMP supports 8 regions with a minimum region size of 64 bytes.

This section describes how PMP concepts in the RISC-V architecture apply to the S7. For addi-
tional information on the PMP refer to The RISC-V Instruction Set Manual, Volume IlI: Privileged
Architecture, Version 1.11.

3.8.1 PMP Functional Description

The S7 PMP unit has 8 regions and a minimum granularity of 64 bytes. Access to each region is
controlled by an 8-bit pmpXcfg field and a corresponding pmpaddrX register. Overlapping regions
are permitted, where the lower numbered pmpXcfg and pmpaddrX registers take priority over
higher numbered regions. The S7 PMP unit implements the architecturally defined pmpcfgy
CSR pmpcfgo, supporting 8 regions. pmpcfg2 is implemented, but hardwired to zero. Access to
pmpcfgl or pmpcfg3 results in an illegal instruction exception.
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The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-
missions on U-mode accesses. However, locked regions (see Section 3.8.2) additionally
enforce their permissions on M-mode.

3.8.2 PMP Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-
uration and address registers are ignored. Locked PMP entries may only be unlocked with a
system reset. A region may be locked by setting the L bit in the pmpXxcfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are
enforced on machine mode accesses. When the L bit is clear, the R/W/X permissions apply only
to U-mode.

3.8.3 PMP Registers

Each PMP region is described by an 8-bit pmpXcfg field, used in association with a 64-bit
pmpaddrX register that holds the base address of the protected region. The range of each region
depends on the Addressing (A) mode described in the next section. The pmpXcfg fields reside
within 64-bit pmpcfgY CSRs.

Each 8-bit pmpXcfg field includes a read, write, and execute bit, plus a two bit address-matching
field A, and a Lock bit, L. Overlapping regions are permitted, where the lowest numbered PMP
entry wins for that region.

PMP Configuration Registers

For RV64 architectures, pmpcfgl and pmpcfg3 are not implemented. This reduces the footprint
since pmpcfg2 already contains configuration fields pmp8cfg through pmp1icfg for both RV32
and RV64.

63 5655 4847 489 3231 2423 1615 87 0
l pmp7cfg ‘ ) prppﬁch ) ‘ pmp5cfg ‘ pmp4cfg ‘ pmp3cfg ‘ pmp2cfg ‘ ) ‘pn‘ﬁp‘lc‘fg‘ ) ‘ ) ngOqu )

63 5655 4847 4@B9 3231 2423 1615 87 0

l pmp1l5cfg ‘ pmp14cfg ‘ pmp13cfg ‘ pmpl2cfg ‘ pmpllcfg ‘ pmp10cfg ‘ pmp9cfg ‘ pmp8cfg ‘

Figure 4: RV64 pmpcfg2 Register

The pmpcfgY and pmpaddrX registers are only accessible via CSR specific instructions such as
csrr for reads, and csrw for writes.

7 6 ' 5 4 ' 3 2 1 0
[ Lwary) | 0 (WARL) \ A (WARL) | xwary [ wwarL) | RwaRL)

Figure 5: RV64 pmpXcfg bitfield
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Bits

Description

R: Read Permissions
» 0x0 - No read permissions for this region

» 0x1 - Read permission granted for this region

1 W: Write Permissions
» 0x0 - No write permissions for this region
e 0x1 - Write permission granted for this region
2 X: Execute permissions
» 0x0 - No execute permissions for this region
» 0x1 - Execute permission granted for this region
[4:3] | A: Address matching mode

* 0x0 - PMP Entry disabled. No PMP protection applied for any privilege level.

* 0Ox1 - Top of range (TOR) region defined by two adjacent pmpaddr registers. The
upper limit of region X is defined by pmpaddrX, and the base of the region is
defined by pmpaddr (X-1). Address 'a’ matches the region if [pmpaddr (X-1) <a <
pmpaddrX]. If pmpecfg defines a TOR region, then the base address of that
region is 0x0, and pmpaddro defines the upper limit. Supports only a four byte
granularity.

« 0x2 - Naturally aligned four-byte region (NA4). Supports only a four-byte region
with four byte granularity.

» 0x3 - Naturally aligned power-of-two region (NAPOT), = 8 bytes. When this
setting is programmed, the low bits of the pmpaddrX register encode the size,
while the upper bits encode the base address right shifted by two. There is a zero
bit in between, we will refer to as the least significant zero bit (LSZB).

7 L: Lock Bit

* 0xO0 - PMP Entry Unlocked, no permission restrictions applied to machine mode.
PMP entry only applies to S and U modes.

» 0x1 - PMP Entry Locked, permissions enforced for all privilege levels including
machine mode. Writes to pmpXcfg and pmpcfgY are ignored and can only be
cleared with system reset.

Note: The combination of R=0 and W=1 is not currently implemented.

Table 7: pmpXcfg Bitfield Description

Out of reset, the PMP register fields A and L are set to 0. All other hart state is unspecified by
The RISC-V Instruction Set Manual, Volume Il: Privileged Architecture, Version 1.11.

Some examples follow using NAPOT address mode.
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Base Region LSZB

Address Sige* Position pmpaddrX Value
0x4000_0000 8B 0 (0x1000_0000 | 1'b0O)
0x4000_0000 32B 2 (0x1000_0000 | 3’b011)
0x4000_0000 4 KB 9 (0x1000_0000 | 10'b61_1111_1111)
0x4000_0000 64 KB 13 (6x1000_0000 | 14'bO1_1111_ 1111 1111)
0x4000_0000 1 MB 17 (0x1000_0000 | 18'bG1_1111 1111 1111_1111)
*Region size is 2(-528+3)

Table 8: pmpaddrXx Encoding Examples for A=NAPOT

PMP Address Registers

The PMP has 8 address registers. Each address register pmpaddrX correlates to the respective
pmpXcfg field. Each address register contains the base address of the protected region right
shifted by two, for a minimum 4-byte alignment.

The maximum encoded address bits per The RISC-V Instruction Set Manual, Volume II: Privi-
leged Architecture, Version 1.11 are [55:2].

[ owary [T address[55:2] (WARL) T

Figure 6: RV64 pmpaddrX Register

3.8.4 PMP and PMA

The PMP values are used in conjunction with the Physical Memory Attributes (PMAs) described
in Section 4.1. Since the PMAs are static and not configurable, the PMP can only revoke read,
write, or execute permissions to the PMA regions if those permissions already apply statically.

3.8.5 PMP Programming Overview

The PMP registers can only be programmed in machine mode. The pmpaddrX register should
be first programmed with the base address of the protected region, right shifted by two. Then,
the pmpcfgy register should be programmed with the properly configured 64-bit value containing
each properly aligned 8-bit pmpXcfg field. Fields that are not used can be simply written to 0O,
marking them unused.

PMP Programming Example

The following example shows a machine mode only configuration where PMP permissions are
applied to three regions of interest, and a fourth region covers the remaining memory map.
Recall that lower numbered pmpXcfg and pmpaddrX registers take priority over higher numbered
regions. This rule allows higher numbered PMP registers to have blanket coverage over the
entire memory map while allowing lower numbered regions to apply permissions to specific
regions of interest. The following example shows a 64 KB Flash region at base address 0x0, a
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32 KB RAM region at base address 0x2000_0000, and finally a 4 KB peripheral region at base
address base 0x3000_0000. The rest of the memory map is reserved space.

0x0000_0000

Read, Execute Region 0: TOR for 64KB region
Flash |::: - pmpOcfg = 86"1000_1101 (0x8D)

- pmpaddr0 = 0x0000_4000

Read, Write Region 1: NAPOT for 32KB region
RAM
- pmplcfg = 80'1001_1011 (0x9B)

0x2000_8000 - pmpaddrl = 0x0800_0FFF (LSZB = 12)

0X3000_0000 o — Read, Write Region 2: NAPOT for 4KB region
Peri r
0x3000_1000 eripherals - pmp2cfg = 8b'1001_1011 (0x9B)

- pmpaddr2 = 0x0C00_01FF (LSZB = 9)

No Access E Region 3: NAPOT for 4GB region
(Al other memory) - pmp3cfg = 8b'1001_1000 (0x98)

- pmpaddr3 = OX1FFF_FFFF (LSZB = 29)

0x0001_0000

0x2000_0000

OXFFFF_FFFF

bit 7 bit 0

pmpXcfg |L|U|U|A[1:0]|X|W|R|

2b'01 = TOR
2b'11 = NAPOT

Figure 7: PMP Example Block Diagram

PMP Access Scenarios

The L, R, W, and X bits only determine if an access succeeds if all bytes of that access are cov-
ered by that PMP entry. For example, if a PMP entry is configured to match the four-byte range
0xC-0xF, then an 8-byte access to the range 0x8—0xF will fail, assuming that PMP entry is the
highest-priority entry that matches those addresses.

While operating in machine mode when the lock bit is clear (L=0), if a PMP entry matches all
bytes of an access, the access succeeds. If the lock bit is set (L=1) while in machine mode, then
the access depends on the permissions set for that region. Similarly, while in Supervisor mode,
the access depends on permissions set for that region.

Failed read or write accesses generate a load or store access exception, and an instruction
access fault would occur on a failed instruction fetch. When an exception occurs while attempt-
ing to execute from a region without execute permissions, the fault occurs on the fetch and not
the branch, so the mepc CSR will reflect the value of the targeted protected region, and not the
address of the branch.
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It is possible for a single instruction to generate multiple accesses, which may not be mutually
atomic. If at least one access generated by an instruction fails, then an exception will occur. It
might be possible that other accesses from a single instruction will succeed, with visible side
effects. For example, references to virtual memory may be decomposed into multiple accesses.

On some implementations, misaligned loads, stores, and instruction fetches may also be
decomposed into multiple accesses, some of which may succeed before an access exception
occurs. In particular, a portion of a misaligned store that passes the PMP check may become
visible, even if another portion fails the PMP check. The same behavior may manifest for float-
ing-point stores wider than XLEN bits (e.g., the FSD instruction in RV32D), even when the store
address is naturally aligned.

3.8.6 PMP and Paging

The Physical Memory Protection mechanism is designed to compose with the page-based vir-
tual memory systems described in The RISC-V Instruction Set Manual, Volume II: Privileged
Architecture, Version 1.11. When paging is enabled, instructions that access virtual memory
may result in multiple physical-memory accesses, including implicit references to the page
tables. The PMP checks apply to all of these accesses. The effective privilege mode for implicit
page-table accesses is supervisor mode.

Implementations with virtual memory are permitted to perform address translations speculatively
and earlier than required by an explicit virtual-memory access. The PMP settings for the result-
ing physical address may be checked at any point between the address translation and the
explicit virtual-memory access. A mis-predicted branch to a non-executable address range does
not generate a trap. Hence, when the PMP settings are modified in a manner that affects either
the physical memory that holds the page tables or the physical memory to which the page
tables point, M-mode software must synchronize the PMP settings with the virtual memory sys-
tem. This is accomplished by executing an SFENCE . VMA instruction with rs1=x0 and rs2=x0,
after the PMP CSRs are written.

If page-based virtual memory is not implemented, or when it is disabled, memory accesses
check the PMP settings synchronously, so no fence is needed.

3.8.7 PMP Limitations

In a system containing multiple harts, each hart has its own PMP device. The PMP permissions
on a hart cannot be applied to accesses from other harts in a multi-hart system. In addition,
SiFive designs may contain a Front Port to allow external bus masters access to the full mem-
ory map of the system. The PMP cannot prevent access from external bus masters on the Front
Port.

3.8.8 Behavior for Regions without PMP Protection

If a non-reserved region of the memory map does not have PMP permissions applied, then by
default, supervisor or user mode accesses will fail, while machine mode access will be allowed.
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Access to reserved regions within a device’s memory map (an interrupt controller for example)
will return @x0 on reads, and writes will be ignored. Access to reserved regions outside of a
device’'s memory map without PMP protection will result in a bus error.

3.8.9 Cache Flush Behavior on PMP Protected Region

When a line is brought into cache and the PMP is set up with the lock (L) bit asserted to protect
a part of that line, a data cache flush instruction will generate a store access fault exception if
the flush includes any part of the line that is protected. The cache flush instruction does an
invalidate and write-back, so it is essentially trying to write back to the memory location that is
protected. If a cache flush occurs on a part of the line that was not protected, the flush will suc-
ceed and not generate an exception. If a data cache flush is required without a write-back, use
the cache discard instruction instead, as this will invalidate but not write back the line.

3.9 Hardware Performance Monitor

The S7 processor core supports a basic hardware performance monitoring (HPM) facility. The
performance monitoring facility is divided into two classes of counters: fixed-function and event-
programmable counters. These classes consist of a set of fixed counters and their counter-
enable registers, as well as a set of event-programmable counters and their event selector reg-
isters. The registers are available to control the behavior of the counters. Performance monitor-
ing can be useful for multiple purposes, from optimization to debug.

3.9.1 Performance Monitoring Counters Reset Behavior

The instret and cycle counters are initialized to zero on system reset. The hardware perfor-
mance monitor event counters are not initialized on system reset, and thus have an arbitrary
value. Users can write desired values to the counter control and status registers (CSRs) to start
counting at a given, known value.

3.9.2 Fixed-Function Performance Monitoring Counters

A fixed-function performance monitor counter is hardware wired to only count one specific event
type. That is, they cannot be reconfigured with respect to the event type(s) they count. The only
modification to the fixed-function performance monitoring counters that can be done is to enable
or disable counting, and write the counter value itself.

The S7 processor core contains two fixed-function performance monitoring counters.

Fixed-Function Cycle Counter (ncycle)

The fixed-function performance monitoring counter mcycle holds a count of the number of clock
cycles the hart has executed since some arbitrary time in the past. The mcycle counter is read-
write and 64 bits wide. Reads of mcycle return all 64 bits of the mcycle CSR.
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Fixed-Function Instructions-Retired Counter (minstret)

The fixed-function performance monitoring counter minstret holds a count of the number of
instructions the hart has retired since some arbitrary time in the past. The minstret counter is
read-write and 64 bits wide. Reads of minstret return all 64 bits of the minstret CSR.

3.9.3 Event-Programmable Performance Monitoring Counters

Complementing the fixed-function counters are a set of programmable event counters. The S7
HPM includes two additional event counters, mhpmcounter3 and mhpmcounter4. These pro-
grammable event counters are read-write and 64 bits wide. The hardware counters themselves
are implemented as 40-bit counters on the S7 core series. These hardware counters can be
written to in order to initialize the counter value.

3.9.4 Event Selector Registers

To control the event type to count, event selector CSRs mhpmevent3 and mhpmevent4 are used
to program the corresponding event counters. These event selector CSRs are 64-bit WARL reg-
isters.

The event selectors are partitioned into three fields; the lower 8 bits select an event class, a
middle set of bits that form a mask of events in that class, with the upper 8-bits used for counter
overflow and event filtering.

63 5655 87
bverﬂow + Filten Event Mask [55:8] ‘ Event Class ‘

Figure 8: Event Selector Fields

The counter increments if the event corresponding to any set mask bit occurs. For example, if
mhpmevent3 is set to 6x4200, then mhpmcounter3 will increment when either a load instruction
or a conditional branch instruction retires. An event selector of 0 means "count nothing".

Counter Overflow and Event Filters

The upper 8-bits of the mhmpevent register are used for controlling a counter overflow interrupt,
as well as mode-based event filtering. The bit layout is shown below:
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Machine Hardware Performance Monitor Event Register
Bits | Name Attr Description
[7:0] | class WARL | Selects the Event Class to make available for counting
[55:8] | EventSel | WARL | Bit-mask of Event(s) to count
[57:56] | Reserved | —

58 VUINH WARL | Reserved

59 VSINH WARL | Reserved

60 UINH WARL | If set, counting of events in U-mode is inhibited

61 SINH WARL | Reserved

62 MINH RW If set, then counting of events in M-mode is inhibited

63 OF RW Overflow status and interrupt disable bit. Set by hardware

when counter overflows.

Table 9: mhpmeventX Register Bit Layout for Overflow and Filtering

Performance Counter Overflow Operation

Each of the five xINH bits inhibits counting of event when the core is in privilege mode x. All
zeroes in these fields results in counting of events in all modes.

The OF bit is set by hardware when the corresponding hpmcounterX overflows and remains set
until written by software. Since hpmcounter values are unsigned, overflow is defined as incre-
menting from all-ones to all-zeroes. Note that there is no loss of information after an overflow
since the counter wraps around and keeps counting while the sticky OF bit remains set.

If an hpmcounter overflows while the associated OF bit is zero, then a count overflow interrupt
request is generated. If an hpmcounter overflows while the associated OF bit is one, then no
interrupt is generated. Consequently, the OF bit also functions as a count overflow interrupt dis-
able for the associated hpmcounter.

Count overflow never results from writes to the mhpmcounterX or mhpmeventX registers. Over-
flow occurs only as a result of an event causing a counter to increment.

The counter overflow interrupt is a standard local interrupt that corresponds to bit 13 in the mip
and mie registers. The mip LCOFIP bit is the interrupt-pending bit for this interrupt and the mie
LCOFIE bit is the interrupt-enable bit for this interrupt. LCOFI represents Local Count Overflow
Interrupt. If S-mode is present, sip and sie include the corresponding bits for supervisor inter-
rupt control and status.

Generation of a count overflow interrupt request by an hpmcounter sets the LCOFIP bit in the
mip register and sets the associated OF bit. If S-mode is present, the mideleg register controls
the delegation of this interrupt to S-mode, which sets the LCOFIP bit in the sip register. The
LCOFIP bitis cleared by software after servicing the count overflow interrupt.

Multiple simultaneous interrupts destined for the same privilege mode are handled in the follow-
ing decreasing priority order: MEI, MSI, MTI, SEI, SSI, STI, LCOFI.
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Note that there are not separate overflow status and overflow interrupt enable bits. In practice,
enabling overflow interrupt generation by clearing the OF bit is done in conjunction with initializ-
ing the counter to a starting value. Once a counter has overflowed, it and the OF bit must be
reinitialized before another overflow interrupt can be generated.

Software can distinguish newly-overflowed counters which have yet to be serviced by an over-
flow interrupt handler from overflowed counters that have already been serviced (or that are
configured not to generate an interrupt on overflow by maintaining a bit mask reflecting which
counters are active and due to overflow eventually.

Disabling Counters in Debug Mode

When set, the dcsr.stopcount bit stops counters while in debug mode. This is especially
important for mcycle and minstret counters, since in debug mode, the core is executing ROM
instructions in a tight loop. The Freedom Studio Performance Monitor View automatically sets
the dcsr.stopcount bit.

3.9.5 Event Selector Encodings

Table 10 describes the event selector encodings available. Events are categorized into classes
based on the Event Class field encoded in mhpmeventX[7:0]. One or more events can be pro-
grammed by setting the respective Event Mask bit for a given event class. An event selector
encoding of 0 means "count nothing". Multiple events will cause the counter to increment any
time any of the selected events occur.
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Instruction Commit Events, mhpmeventX[7:0]=0x0

Bits | Description

8 Exception taken

9 Integer load instruction retired

10 | Integer store instruction retired

11 | Atomic memory operation retired

12 | System instruction retired

13 | Integer arithmetic instruction retired

14 Conditional branch retired

15 JAL instruction retired

16 JALR instruction retired

17 | Integer multiplication instruction retired

18 | Integer division instruction retired

19 | Floating-point load instruction retired

20 | Floating-point store instruction retired

21 | Floating-point addition retired

22 | Floating-point multiplication retired

23 | Floating-point fused multiply-add retired

24 | Floating-point division or square-root retired

25 | Other floating-point instruction retired

Microarchitectural Events, mhpmeventX[7:0]=0x1

Bits | Description

8 Address-generation interlock

9 Long-latency interlock

10 CSR read interlock

11 | Instruction cache/ITIM busy

12 | Data cache/DTIM busy

13 | Branch direction misprediction

14 | Branch/jump target misprediction

15 | Pipeline flush from CSR write

16 | Pipeline flush from other event

17 | Integer multiplication interlock

18 | Floating-point interlock

Memory System Events, mhpmeventX[7:0]=0x2

Bits | Description

8 Instruction cache miss

9 Data cache miss or memory-mapped I/O access

10 Data cache write-back

Table 10: mhpmevent Register

21G3.02.00

Event mask bits that are writable for any event class are writable for all classes. Setting an
event mask bit that does not correspond to an event defined in Table 10 has no effect for current
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implementations. However, future implementations may define new events in that encoding
space, so it is hot recommended to program unsupported values into the mhpmevent registers.

Combining Events

It is common usage to directly count each respective event. Additionally, it is possible to use
combinations of these events to count new, unique events. For example, to determine the aver-
age cycles per load from a data memory subsystem, program one counter to count "Data cache/
DTIM busy" and another counter to count "Integer load instruction retired". Then, simply divide
the "Data cache/DTIM busy" cycle count by the "Integer load instruction retired" instruction
count and the result is the average cycle time for loads in cycles per instruction.

It is important to be cognizant of the event types being combined; specifically, event types
counting occurrences and event types counting cycles.

3.9.6 Counter-Enable Registers

The 32-bit counter-enable register mcounteren controls the availability of the hardware perfor-
mance-monitoring counters to the next-lowest privileged mode.

The settings in these registers only control accessibility. The act of reading or writing these
enable registers does not affect the underlying counters, which continue to increment when not
accessible.

When any bit in the mcounteren register is clear, attempts to read the cycle, time, instruction
retire, or hpmcounterX register while executing in U-mode will cause an illegal instruction excep-
tion. When one of these bits is set, access to the corresponding register is permitted in the next
implemented privilege mode, U-mode.

mcounteren is @a WARL register. Any of the bits may contain a hardwired value of zero, indicat-
ing reads to the corresponding counter will cause an illegal instruction exception when execut-
ing in a less-privileged mode.

3.10 Ports

This section describes the Port interfaces to the S7 core.

3.10.1 Front Port

The Front Port can be used by external masters to read from and write into the memory system
utilizing any Memory Port in the Core Complex. The ITIM can also be accessed through the
Front Port. Transactions cannot be routed from the Front Port to any System or Peripheral
Ports.

If a Front Port access targets the Memory Port, a coherency manager is responsible for main-
taining coherency with the L1 and L2 caches. A read access can be returned directly from the
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caches without generating an external bus access. If a write from the Front Port targets a loca-
tion in the L1 data cache, it results in the line being evicted and invalidated. The write will then
allocate to the L2 cache.

Any Front Port access that targets the Memory Port and results in an L1 and L2 cache miss will
allocate to the L2 cache.

The S76-MC Core Complex User Guide describes the implementation details of the Front Port.

3.10.2 Memory Port
The Memory Port is used to interface with memory that offers the highest performance for the
S76-MC Core Complex, such as DDR. It supports cacheable accesses for data and instructions.

Consult Section 4.1 for further information about the Memory Port and its Physical Memory
Attributes.

See the S76-MC Core Complex User Guide for a description of the Memory Port implementa-
tion in the S76-MC Core Complex.

3.10.3 Peripheral Port

The Peripheral Port is used to interface with lower speed peripherals and also supports code
execution. When a device is attached to the Peripheral Port, it is expected that there are no
other masters connected to that device.

Consult Section 4.1 for further information about the Peripheral Port and its Physical Memory
Attributes.

See the S76-MC Core Complex User Guide for a description of the Peripheral Port implementa-
tion in the S76-MC Core Complex.

3.10.4 System Port

The System Port is used to interface with lower performance memory, like SRAM, memory-
mapped /0 (MMIO), and higher speed peripherals. The System Port also supports code execu-
tion.

Consult Section 4.1 for further information about the System Port and its Physical Memory
Attributes.

See the S76-MC Core Complex User Guide for a description of the System Port implementation
in the S76-MC Core Complex.
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Physical Memory Attributes and Memory
Map

This chapter describes the S76-MC Core Complex physical memory attributes and memory
map.

4.1 Physical Memory Attributes Overview

The memory map is divided into different regions covering on-core-complex memory, system
memory, peripherals, and empty holes. Physical memory attributes (PMAS) describe the proper-
ties of the accesses that can be made to each region in the memory map. These properties
encompass the type of access that may be performed: execute, read, or write. As well as other
optional attributes related to the access, such as supported access size, alignment, atomic
operations, and cacheability.

RISC-V utilizes a simpler approach than other processor architectures in defining the attributes
of memory accesses. Instead of defining access characteristics in page table descriptors or
memory protection logic, the properties are fixed for memory regions or may only be modified in
platform-specific control registers. As most systems don't require the ability to modify PMAS,
SiFive cores only support fixed PMAs, which are set at design time. This results in a simpler
design with lower gate count and power savings, and an easier programming interface.

External memory map regions are accessed through a specific port type and that port type is
used to define the PMAs. The port types are Memory, Peripheral, and System. Memory map
regions defined for internal memory and internal control regions also have a predefined PMA
based on the underlying contents of the region.

The assigned PMA properties and attributes for S76-MC Core Complex memory regions are
shown in Table 11 and Table 12 for external and internal regions, respectively.

The configured memory regions of the S76-MC Core Complex are listed with their attributes in
Table 13.
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Port Type Access Properties Attributes
Memory Port Read, Write, Execute | Atomics+LR/SC, Data Cacheable, Instruction
Cacheable, Instruction Speculation
Peripheral Port Read, Write, Execute | Atomics, Instruction Cacheable
System Port Read, Write, Execute | Instruction Cacheable

Table 11: Physical Memory Attributes for External Regions

Region Access Properties Attributes

CLINT Read, Write Atomics

Data Local Store Read, Write, Execute | Atomics, Instruction Cacheable
Debug None N/A

Error Device Read, Write, Execute | Atomics

ITIM Read, Write, Execute | Atomics, Instruction Speculation
L2 Cache Controller Read, Write Atomics

L2 LIM Read, Write, Execute | Atomics

L2 Prefetcher Read, Write Atomics

L2 Zero Device Read, Write, Execute | Atomics, Instruction Cacheable
PLIC Read, Write Atomics

Reserved None N/A

SLPC Read, Write Atomics

Table 12: Physical Memory Attributes for Internal Regions

All memory map regions support word, half-word, and byte size data accesses.

Atomic access support enables the RISC-V standard Atomic (A) Extension for atomic instruc-
tions. These atomic instructions are further documented in Section 3.6 for the S7 core. The
load-reserved (LR) and store-conditional (SC) instructions are only supported on the data
cacheable region, marked in Table 11 with "Atomics+LR/SC".

No region supports unaligned accesses. An unaligned access will generate the appropriate trap:
instruction address misaligned, load address misaligned, or store/AMO address misaligned.

The Physical Memory Protection unit is capable of controlling access properties based on
address ranges, not ports. It has no control over the attributes of an address range, however.

Note

The Debug and Error Device regions have special behavior. The Debug region is reserved
for use from a Debugger, and all accesses to it from the core in non-Debug mode will trap.
The Error Device will also trap all accesses, as described in Chapter 10.
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4.2 Memory Map
The memory map of the S76-MC Core Complex is shown in Table 13.
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Base Top PMA Description
OXO0000_0000 | OXx0000_OFFF Debug
Ox0000_1000 | OXxO000_2FFF Reserved
Ox0000_3000 | 6x0000_3FFF | RWX A | Error Device
OXx0000_4000 | 0x017F_FFFF Reserved
0x0180_0000 | Ox0180_7FFF | RWX A | Hart O ITIM
0x0180_8000 | Ox0181_FFFF Reserved
0x0182_0000 | Ox0182_7FFF | RWX A | Hart 1 ITIM
0x0182_8000 | Ox0183_FFFF Reserved
0x0184_0000 | Ox0184_7FFF | RWX A | Hart 2 ITIM
0x0184_8000 | Ox0185_FFFF Reserved
0x0186_0000 | Ox0186_7FFF | RWX A | Hart 3ITIM
0x0186_8000 | OXO1FF_FFFF Reserved
0x0200_0000 | 6x0200_FFFF | RW A | CLINT
0x0201_0000 | 6x0201_3FFF | RW A | L2 Cache Controller
0x0201_4000 | 0x0202_FFFF Reserved
0x0203_0000 | Ox0203_1FFF | RW A | Hart O L2 Prefetcher
0x0203_2000 | 0x0203_3FFF | RW A | Hart 1 L2 Prefetcher
0x0203_4000 | Ox0203_5FFF | RW A | Hart 2 L2 Prefetcher
0x0203_6000 | Ox0203_7FFF | RW A | Hart 3 L2 Prefetcher
0x0203_8000 | Ox0300_7FFF Reserved
0x0300_8000 | Ox0300_8FFF | RW A | SLPC
Ox0300_9000 | OXO7FF_FFFF Reserved
Ox0800_0000 | OXO807_FFFF | RWX A | L2 LIM
0x0808_0000 | OXO9FF_FFFF Reserved
OX0A00_0000 | OXOAO7_FFFF | RWXI A | L2 Zero Device
0x0A08_0000 | OXOBFF_FFFF Reserved
OxOCOO_0000 | OXOFFF_FFFF | RW A | PLIC
0x1000_0000 | OXx1FFF_FFFF Reserved
0x2000_0000 | Ox3FFF_FFFF | RWXI A | Peripheral Port (512 MiB)
0x4000_0000 | OX5FFF_FFFF | RWXI System Port (512 MiB)
0X6000_0000 | OX6FFF_FFFF Reserved
0X7000_0000 | 0x7000_7FFF | RWXI A | Hart O Data Local Store
OX7000_8000 | OXx7000_FFFF | RWXI A | Hart 1 Data Local Store
0x7001_0000 | 6x7001_7FFF | RWXI A | Hart 2 Data Local Store
0x7001_8000 | Ox7001_FFFF | RWXI A | Hart 3 Data Local Store
0X7002_0000 | OX7FFF_FFFF Reserved
0x8000_0000 | OX9FFF_FFFF | RWXIDA | Memory Port (512 MiB)

OXAOO0_0000

OXFFFF_FFFF

Reserved

Table 13: S76-MC Core Complex Memory Map. Physical Memory
Attributes: R—Read, W-Write, X—Execute, I-Instruction Cacheable,
D-Data Cacheable, A—Atomics
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Note

Every component that appears in Table 13 is accessible by any core in the Core Complex.
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Chapter 5

Programmer’s Model

The S76-MC Core Complex implements the 64-bit RISC-V architecture. The following chapter
provides a reference for programmers and an explanation of the extensions supported by
RV64GC_Zba_zbb_Sscofpmf.

This chapter contains a high-level discussion of the RISC-V instruction set architecture and
additional resources which will assist software developers working with RISC-V products. The
S76-MC Core Complex is an implementation of the RISC-V RV64GC_Zba_Zbb_Sscofpmf
architecture, and is guaranteed to be compatible with all applicable RISC-V standards.
RV64GC_Zba_Zbb_Sscofpmf can emulate almost any other RISC-V ISA extension.

5.1 Base Instruction Formats

RISC-V base instructions are fixed to 32 bits in length and must be aligned on a four-byte
boundary in memory. RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers
at the same position in all formats to simplify decoding, with the exception of the 5-bit immedi-
ates used in CSR instructions.

The various formats are described in Table 14 below.

Format | Description
R Format for register-register arithmetic/logical operations.
[ Format for register-immediate ALU operations and loads.
S Format for stores.
B Format for branches.
U Format for 20-bit upper immediate instructions.
J Format for jumps.
Table 14: Base Instruction Formats
31' . . . '25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' . . '0

funct7 rs2 rsl funct3 rd opcode

Figure 9: R-Type
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31 - 20 19 1514 12 11 000000 7 I 0
imm[11:0] rsl funct3 rd opcode
Figure 10: |-Type
1 25 24 20 19 1514 12 11 000000 7 I 0
imm[11:5] rs2 rsl funct3 imm[4:0] opcode
Figure 11: S-Type
31 30 25 24 20 19 15 14 12 11 8 1 0
~ T T T T T T T T T T T T T T — T T T T
— —
B imm[10:5] rs2 rsl funct3 imm[4:1] = opcode
E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E 1 1 1 1
Figure 12: B-Type
31 T T T T T T T 12 llv T T T 7 T T T 0
imm[31:12] rd opcode
Figure 13: U-Type
31 30 20 19 12 11 7 0
o T T T T T — T T T T T T T T T T T T T T
o~ —
B imm[10:1] B imm[19:12] rd opcode
E 1 1 1 1 1 1 1 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 14: J-Type

The opcode field partially specifies an instruction, combined with funct7 + funct3 which
describe what operation to perform. Each register field (rs1, rs2, rd) holds a 5-bit unsigned inte-
ger (0-31) corresponding to a register number (x0 - x31). Sign-extension is one of the most criti-
cal operations on immediates (particularly for XLEN>32), and in RISC-V the sign bit for all
immediates is always held in bit 31 of the instruction to allow sign-extension to proceed in paral-

lel with instruction decoding.

5.2 RV64l Base Integer Instruction Set

This section discusses the standard integer instructions supported by RISC-V. Integer computa-
tional instructions don’t cause arithmetic exceptions.
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5.2.1 R-Type (Register-Based) Integer Instructions

funct?7 funct3 opcode | Instruction
00000000 | rs2 | rs1 | 000 rd | 0110011 | ADD
01000000 | rs2 | rs1 | 000 rd | 0110011 | SUB
00000000 | rs2 | rs1 | 001 rd | 0110011 | SLL
00000000 | rs2 | rs1 | 010 rd | 0110011 | SLT
00000000 | rs2 | rs1 | 011 rd | 0110011 | SLTU
00000000 | rs2 | rs1 | 100 rd | 0110011 | XOR
00000000 | rs2 | rs1 | 101 rd | 0110011 | SRL
01000000 | rs2 | rs1 | 101 rd | 0110011 | SRA
00000000 | rs2 | rs1 | 110 rd | 0110011 | OR
00000000 | rs2 | rs1 | 111 rd | 0110011 | AND

Table 15: R-Type Integer Instructions

Instruction Description

ADD rd, rs1, rs2 Performs the addition of rs1 and rs2, result stored in rd.

SUB rd, rs1, rs2 Performs the subtraction of rs2 from rsi, result stored in rd.

SLL rd, rsi, rs2 Logical left shift (zeros are shifted into the lower bits) shift
amount is encoded in the lower 5 bits of rs2.

SLT rd, x0, rs2 Signed and compare sets rd to 1 if rs2 is not equal to zero,
otherwise sets rd to zero.

SLTU rd, x0, rs2 Unsigned compare sets rd to 1 if rs2 is not equal to zero,
otherwise sets rd to zero.

SRL rd, rs1, rs2 Logical right shift (zeros are shifted into the lower bits) shift
amount is encoded in the lower 5 bits of rs2.

SRA rd, rs1, rs2 Arithmetic right shift, shift amount is encoded in the lower 5 bits
of rs2.

OR rd, rsi, rs2 Bitwise logical OR.

AND rd, rsi, rs2 Bitwise logical AND.

XOR rd, rsi, rs2 Bitwise logical XOR.

Table 16: R-Type Integer Instruction Description

Below is an example of an ADD instruction.

add x18, x19, x10

2524 02019 0 1514 1211 7 6 0000000
’ ADD ‘ rs2=10 ‘ rsl=19 ‘ ADD ‘ rd=18 ‘ Reg-Reg OP
o o o o 0o 0001 01 011 001110 0UO0O1 0 011 0011 00 1 1

Figure 15: ADD Instruction Example
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5.2.2 I-Type Integer Instructions

For I-Type integer instruction, one field is different from R-format. rs2 and funct7 are replaced

by the 12-bit signed immediate, imm[11:0], which can hold values in range [-2048, +2047]. The
immediate is always sign-extended to 32-bits before being used in an arithmetic operation. Bits

[31:12] receive the same value as bit 11.

imm func3 opcode | Instruction
imm[11:0] rs1 | 000 rd | 0010011 | ADDI
imm[11:0] rs1 | 010 rd | 0010011 | SLTI
imm[11:0] rsl | 011 rd | 0010011 | SLTIU
imm[11:0] rs1l | 100 rd | 0010011 | XORI
imm[11:0] rsl | 110 rd | 0010011 | ORI
imm[11:0] rsl | 111 rd | 0010011 | ANDI
00000000 | shamnt | rs1 | 001 rd | 0010011 | SLLI
00000000 | shamnt | rs1 | 101 rd | 0010011 | SRLI
01000000 | shamnt | rs1 | 001 rd | 0010011 | SRAI

Table 17: |-Type Integer Instructions

One of the higher-order immediate bits is used to distinguish "shift right logical" (SRLI) from
"shift right arithmetic" (SRAI).
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Instruction | Description

ADDI Adds the sign-extended 12-bit immediate to register rsi. Arithmetic overflow is
ignored and the result is simply the low 64-bits of the result. ADDI rd, rs1, 0 is
used to implement the MV rd, rs1 assembler pseudoinstruction.

SLTI Set less than immediate. Places the value 1 in register rd if register rsi is less
than the sign extended immediate when both are treated as signed numbers,
else 0 is written to rd.

SLTIU Compares the values as unsigned numbers (i.e., the immediate is first
sign-extended to 64-bits then treated as an unsigned number). Note: SLTIU rd,
rsi, 1 sets rd to 1 if rs1 equals zero, otherwise sets rd to 0 (assembler
pseudo instruction SEQZ rd, rs).

XORI Bitwise XOR on register rs1 and the sign-extended 12-bit immediate and place
the result in rd.

ORI Bitwise OR on register rs1 and the sign-extended 12-bit immediate and place
the resultin rd.

ANDI Bitwise AND on register rsi1 and the sign-extended 12-bit immediate and place
the resultin rd.

SLLI Shift Left Logical. The operand to be shifted is in rsi1, and the shift amount is
encoded in the lower 5 bits of the I-immediate field.

SRLI Shift Right Logical. The operand to be shifted is in rs1, and the shift amount is
encoded in the lower 5 bits of the I-immediate field.

SRAI Shift Right Arithmetic. The operand to be shifted is in rsi, and the shift amount

is encoded in the lower 5 bits of the I-immediate field (the original sign bit is
copied into the vacated upper bits).

Table 18: |-Type Integer Instruction Description

Shift-by-immediate instructions only use lower 5 bits of the immediate value for shift amount
(can only shift by 0-31 bit positions).

Below is an example of an ADDI instruction.

addi x15, x1, -50

Figure 16: ADDI Instruction Example

5.2.3 I-Type Load Instructions

For I-Type load instructions, a 12-bit signed immediate is added to the base address in register
rs1 to form the memory address. In Table 19 below, funct3 field encodes size and signedness
of load data.
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imm func3 opcode Instruction
imm[11:0] | rs1 | 000 rd | 00000011 | LB
imm[11:0] | rs1 | 001 rd | 00000011 | LH
imm[11:0] | rs1 | 010 rd | 00000011 | LW
imm[11:0] | rs1 | 100 rd | 00000011 | LBU
imm[11:0] | rs1 | 101 rd | 00000011 | LHU
Table 19: [-Type Load Instructions
Instruction Description
LB rd, rsi, imm Load Byte, loads 8 bits (1 byte) and sign-extends to fill
destination 32-bit register.
LH rd, rs1, imm Load Half-Word. Loads 16 bits (2 bytes) and sign-extends to fill
destination 32-bit register.
LW rd, rsi, imm Load Word, 32 bits.
LBU rd, rs1, imm Load Unsigned Byte (8-bit).
LHU rd, rs1, imm Load Unsigned Half-Word, which zero-extends 16 bits to fill
destination 32-bit register.
Table 20: |-Type Load Instruction Description

Below is an example of a LW instruction.

lw x14, 8(x2)

_ 00000000 2019 1514 1211 = = 7 6 00
’ imm=+8 rsl=2 ‘ Lw rd=14 ‘ LOAD
0o o0 o0 0o o0 0O 01 00 00 0011 0010 011100 00 00 1 1

Figure 17: LW Instruction Example

5.2.4 S-Type Store Instructions

Store instructions need to read two registers: rsi for base memory address and rs2 for data to
be stored, as well as an immediate offset. The effective byte address is obtained by adding reg-
ister rs1 to the sign-extended 12-bit offset. Note that stores don’t write a value to the register
file, as there is no rd register used by the instruction. In RISC-V, the lower 5 bits of immediate
are moved to where the rd field was in other instructions, and the rs1/rs2 fields are kept in
same place. The registers are kept always in the same place because a critical path for all oper-
ations includes fetching values from the registers. By always placing the read sources in the
same place, the register file can read the registers without hesitation. If the data ends up being
unnecessary (e.g., I-Type), it can be ignored.

2524 2019 001514 12 11 7 6 0
’ imm[11:5] ‘ rs2 ‘ rsl funct3 ‘ imm[4:0]
offset[11:5] src base width offset[4:0]

Figure 18: Store Instructions
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imm func3 | imm opcode Instruction
imm[11:5] | rs2 | rs1 | 000 imm[4:0] | 01000011 | SB
imm[11:5] | rs2 | rs1 | 001 imm[4:0] | 01000011 | SH
imm[11:5] | rs2 | rs1 | 010 imm[4.0] | 01000011 | SW

Table 21: S-Type Store Instructions

Instruction Description

SB rs2, imm[11:0](rs1) | Store 8-bit value from the low bits of register rs2 to memory.
SH rs2, imm[11:0](rs1) | Store 16-bit value from the low bits of register rs2 to memory.
SW rs2, Store 32-bit value from the low bits of register rs2 to memory.
imm[11:0](rs1)

Table 22: S-Type Store Instruction Description

Below is an example SW instruction.

sw x14, 8(x2)

31 . 25 24 . 20 19 . 15 14 12 11 . 7 6 . 0
’ offset[11:5] ‘ rs2=14 ‘ rsl=2 ‘ sw ‘ offset[4:0] ‘ STORE
o o o o0 o0 o0 o0 01110 0 0O0OT1 0 010 01 0 0 O0OO0OT1UO0 0 0 1 1

Figure 19: SW Instruction Example

5.2.5 Unconditional Jumps

The jump and link (JAL) instruction uses the J-type format, where the J-immediate encodes a
signed offset in multiples of 2 bytes. The offset is sign-extended and added to the address of the
jump instruction to form the jump target address. Jumps can therefore target a +1 MiB range.
JAL stores the address of the instruction following the jump (pc+4) into register rd. The stan-
dard software calling convention uses x1 as the return address register and x5 as an alternate
link register.

31 30 21 20 19 12 11 7 6 0

’iZO‘ imm[10:1] ‘ill‘ imm[19:12] ‘ rd ‘ opcode ‘
offset[20:1] dest JAL

Figure 20: JAL Instruction

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target
address is obtained by adding the sign-extended 12-bit I-immediate to the register rs1, then set-
ting the least-significant bit of the result to zero. The address of the instruction following the
jump (pc+4) is written to register rd. Register X0 can be used as the destination if the result is
not required.

31' . . . . . . . . . '20 19' . . '15 14' '12 11' . . '7 6' . . . . '0

’ . L ir‘nm[‘ll:O‘] ) L ) ‘ ) ‘rsl‘ ) ‘ fynct‘3 ‘ ) ‘rd‘ ) ‘ L opcoqe L ‘

offset[11:0] base 0 dest JALR

Figure 21: JALR Instruction
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Both JAL and JALR instructions will generate an instruction-address-misaligned exception if the
target address is not aligned to a four-byte boundary.

Instruction Description
JAL rd, imm[20:1] Jump and link
JALR rd, rs1, imm[11:0] | Jump and link register

Table 23: J-Type Instruction Description

5.2.6 Conditional Branches

All branch instructions use the B-Type instruction format. The 12-bit immediate represents val-
ues -4096 to +4094 in 2-byte increments. The offset is sign-extended and added to the address
of the branch instruction to give the target address. The conditional branch range is +4 KiB.

313 = 2524 2019 1514 12 11 = 8 7 6 00
lilz‘ imm[10:5] ‘ rs2 rsl funct3 ‘ imm[4:1] ‘ill‘ opcode ‘
offset[12,10:5] src2 srcl BEQ/BNE  offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BLT[U] offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BGE[U] offset[11,4:1] BRANCH

Figure 22: Branch Instructions

imm func3 | imm opcode | Instruction
imm[12,10:5] | rs2 | rs1 | 000 imm[4:1,11] | 110011 | BEQ
imm[12,10:5] | rs2 | rs1 | 001 imm[4:1,11] | 110011 | BNE
imm[12,10:5] | rs2 | rs1 | 100 imm[4:1,11] | 110011 | BLT
imm[12,10:5] | rs2 | rs1 | 101 imm[4:1,11] | 110011 | BGE
imm[12,10:5] | rs2 | rs1 | 110 imm[4:1,11] | 110011 | BLTU
imm[12,10:5] | rs2 | rs1 | 111 imm[4:1,11] | 110011 | BGEU

Table 24: B-Type Instructions

Instruction Description
BEQ rsi, rs2, Take the branch if registers rsi1 and rs2 are equal.
imm[12:1]

BNE rs1, rs2, imm[12:1] | Take the branch if registers rs1 and rs2 are unequal.
BLT rs1, rs2, imm[12:1] | Take the branch if rs1 is less than rs2.

BGE rs1, rs2, Take the branch if rs1 is greater than or equal to rs2.
imm[12:1]

BLTU rs1, rs2, Take the branch if rs1 is less than rs2 (unsigned).
imm[12:1]

BGEU rs1, rs2, Take the branch if rs1 is greater than or equal to rs2
imm[12:1] (unsigned).

Table 25: B-Type Instruction Description
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ISA Base Instruction | Pseudoinstruction | Description
BEQ rs, x0, offset BEQZ rs, offset Take the branch if rs is equal to zero.

Table 26: RISC-V Base Instruction to Assembly Pseudoinstruction Example

Note

Software should be optimized such that the sequential code path is the most common path,
with less-frequently taken code paths placed out of line. Software should also assume that
backward branches will be predicted taken and forward branches as not taken, at least the
first time they are encountered. Dynamic predictors should quickly learn any predictable
branch behavior.

5.2.7 Upper-immediate Instructions

0000000000001 7 6_ 0

’ imm[31:12] ‘ rd ‘ opcode
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

Figure 23: Upper-Immediate Instructions

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI
places the U-immediate value in the top 20 bits of the destination register rd, filling in the lowest
12 bits with zeros. Together with an ADDI to set low 12 bits, can create any 32-bit value in a reg-
ister using two instructions (LUI/ADDI).

For example:
LUI x10, 0x87654 # x10 = 0x8765_4000
ADDI x10, x10, 0x321 # x10 = 0x8765_4321

AUIPC (add upper immediate to pc) is used to build pc-relative addresses and uses the U-type
format. AUIPC forms a 32-bit offset from the 20-bit U-immediate, filling in the lowest 12 bits with
zeros, and adds this offset to the address of the AUIPC instruction, then places the result in reg-
ister rd.

5.2.8 Memory Ordering Operations

31 2827 26 252423 22212019 = 1514 12 11 = 7 6 = 0
’ ) fm ) ‘ Pl ‘PO‘ PR‘PW‘ Sl ‘SO‘ SR‘SW‘ ) ‘rsl‘ ) ‘ fynct‘3 ‘ ) ) rd‘ ) L opcoqe )
FM predecessor successor 0 FENCE 0 MISC-MEM

Figure 24: FENCE Instructions

The FENCE instruction is used to order device /O and memory accesses as viewed by other
RISC-V harts and external devices or coprocessors. Any combination of device input (1), device
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output (O), memory reads (R), and memory writes (W) may be ordered with respect to any com-
bination of the same. These operations are discussed further in Section 5.14.

5.2.9 Environment Call and Breakpoints

SYSTEM instructions are used to access system functionality that might require privileged access
and are encoded using the I-type instruction format. These can be divided into two main
classes: those that atomically read-modify-write control and status registers (CSRs), and all
other potentially privileged instructions.

5.2.10 NOP Instruction
31 T T T T T T T T T T T 20 19 T T T T 15 14 T T 12 11 T T T T 7 6 T T T T T T 0
’ imm[11:0] rsl ‘ funct ‘ rd opcode
S e T —— T Ve

Figure 25: NOP Instructions

The NOP instruction does not change any architecturally visible state, except for advancing the
pc and incrementing any applicable performance counters. NOP is encoded as ADDI x0, x0, 0.

5.3 M Extension: Multiplication Operations

31 25 24 20 19 15 14 12 11 7 6 0
’ funct?7 ‘ rs2 ‘ rsl ‘ funct3 ‘ rd ‘ opcode

MULDIV multiplier multiplicand  MUL/MULHI[[S]U] dest OP

MULDIV multiplier multiplicand MULW dest OP-32

Figure 26: Multiplication Operations

Instruction Description

MUL rd, rsi, rs2 Multiplication of rs1 by rs2 and places the lower 64-bits in the
destination register.

MULH rd, rs1, rs2 Multiplication that return the upper 64-bits of the full 2x64-bit
product.

MULHU rd, rsi, rs2 Unsigned multiplication that return the upper 64-bits of the full
2x64-bit product.

MULHSU rd, rsi, rs2 Signed rs1 multiple unsigned rs2 that return the upper 64-bits of
the full 2x64-bit product.

MULW rd, rsi, rs2 RV64 instruction that multiplies the lower 32 bits of the source
registers, placing the sign-extension of the lower 32 bits of the
result into the destination register.

Table 27: Multiplication Operation Description

Combining MUL and MULH together creates one multiplication operation.
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5.3.1 Division Operations

21G3.02.00

31v T T T T v25 24v T T v20 19v T T v15 14v v12 11' T T T 7 6 T T T T T T 0
’ funct7 rs2 rsl ‘ funct3 rd opcode
MULDIV divisor dividend DIV[U]/REM[U] dest OP
MULDIV divisor dividend  DIV[UJW/REM[U]W dest OP-32

Figure 27: Division Operations

including on a divide by zero.

Instruction Description

DIV rd, rsi1, rs2 64-bits by 64-bits signed division of r1 by rs2 rounding towards
Zero.

DIVU rd, rs1, rs2 64-bits by 64-bits unsigned division of r1 by rs2 rounding
towards zero.

REM rd, rsi, rs2 Remainder of the corresponding division.

REMU rd, rsi, rs2 Unsigned remainder of the corresponding division.

DIVW rd, rsi, rs2 RV64 instruction. Signed divide the lower 32 bits of rs1 by the
lower 32 bits of rs2.

DIVUW rd, rs1, rs2 RV64 instruction. Unsigned divide the lower 32 bits of rsi by the
lower 32 bits of rs2.

REMW rd, rsi, rs2 Singed remainder.

REMUW rd, rs1i, rs2 Unsigned remainder sign-extend the 32-bit result to 64 bits,

MULDIV rd, rsi, rs Multiply Divide.

Table 28: Division Operation Description

Combining DIV and REM together creates one division operation.

5.4 A Extension: Atomic Operations

Atomic operations are defined as operations that automatically read-modify-write memory to
support synchronization between multiple RISC-V harts running in the same memory space.

5.4.1 Atomic Load-Reserve and Store-Conditional Instructions

31 27262524 2019 1514 1211 = 7 6 00000000
’ funct5 ‘aq‘ rl ‘ rs2 ‘ rsl ‘ funct3 ‘ rd ‘ opcode

LR.W/D ordering 0 addr width dest AMO

SC.w/D ordering src addr width dest AMO

Figure 28: Atomic Operations
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Instruction | Description
LR.W Load Reserve.

Loads a word from the address in rsi, places the sign-extended value in rd,
and registers a reservation set—a set of bytes that subsumes the bytes in the
addressed word.

SC.W Store Conditional

Conditionally writes a word in rs2 to the address in rs1: the SC.W succeeds
only if the reservation is still valid and the reservation set contains the bytes
being written. If the SC.W succeeds, the instruction writes the word in rs2 to
memory, and it writes zero to rd. If the SC.W fails, the instruction does not
write to memory, and it writes a nonzero value to rd. Executing an SC.W
instruction invalidates any reservation held by this hart.

LR.D RV64 - Loads doubleword.

SC.D RV64 - Stores doubleword.

Table 29: Atomic Load-Reserve and Store-Conditional Instruction Description

For RV64, the sign-extended value of LR.W and SC.W is placed in rd.

Note

Only cores with data caches support the LR/SC instructions used by the A-Extension.
Cores with DTIMs will NOT.

5.4.2 Atomic Memory Operations (AMOSs)

The atomic memory operation (AMO) instructions perform read-modify-write operations for mul-
tiprocessor synchronization. These AMO instructions atomically load a data value from the
address in rsi, place the value into register rd, apply a binary operator to the loaded value and
the original value in rs2, then store the result back to the address in rsi.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l funct5 ‘aq‘ rl ‘ rs2 ‘ rsl ‘ funct3 ‘ rd ‘ opcode
AMOSWAP.W/D ordering src addr width dest AMO
AMOADD.W/D ordering src addr width dest AMO
AMOAND.W/D ordering src addr width dest AMO
AMOOR.W/D ordering src addr width dest AMO
AMOXOR.W/D ordering src addr width dest AMO
AMOMAX[U].W/Dordering src addr width dest AMO
AMOMIN[U].W/D ordering src addr width dest AMO

Figure 29: Atomic Memory Operations
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Instruction Description

AMOSWAPW/D | Word / doubleword swap.
AMOADD.W/D Word / doubleword add.

AMOAND.W/D Word / doubleword and.

AMOOR.W/D Word / doubleword or.

AMOXOR.W/D Word / doubleword xor.

AMOMIN.W/D Word / doubleword minimum.
AMOMINU.W/D | Unsigned word / doubleword minimum.
AMOMAX.W/D Word / doubleword maximum.
AMOMAXU.W/D | Unsigned word / doubleword maximum.

Table 30: Atomic Memory Operation Description

For RV64, 32-bit AMOs always sign-extend the value placed in rd.

5.5 F Extension: Single-Precision Floating-Point
Instructions

The F Extension implements single-precision floating-point computational instructions compliant
with the IEEE 754-2008 arithmetic standard. The F Extension adds 32 floating-point registers,
fo—f31, each 32 bits wide, and a floating-point control and status register fcsr. Floating-point
load and store instructions transfer floating-point values between registers and memory, and
instructions to transfer values to and from the integer register file are also provided.

5.5.1 Floating-Point Control and Status Registers

Floating-Point Control and Status Register, fcsr, is a RISC-V control and status register (CSR).
The register selects the dynamic rounding mode for floating-point arithmetic operations and
holds the accrued exception flags.

31 8 7 5 4 3 2 1 0
| Reserved | rrm  [nv[pz[oF [UF[nx]

Rounding Mode (fflags)
Accrued Exceptions

Figure 30: Floating-Point Control and Status Register

Flag Mnemonic | Flag Meaning
NV Invalid Operation
Dz Divide by Zero
OF Overflow
UF Underflow
NX Inexact

Table 31: Accrued Exception Flags
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The fcsr register can be read and written with the FRCSR and FSCSR instructions. The FRRM
instruction reads the Rounding Mode field frm. FSRM swaps the value in frm with an integer
register. FRFLAGS and FSFLAGS are defined analogously for the Accrued Exception Flags
field fflags.

5.5.2 Rounding Modes

Floating-point operations use either a static rounding mode encoded in the instruction, or a
dynamic rounding mode held in frm. A value of 111 in the instruction’s rm field selects the
dynamic rounding mode held in frm. If frm is set to an invalid value (101-111), any subsequent
attempt to execute a floating-point operation with a dynamic rounding mode will raise an illegal
instruction exception. Some instructions, including widening conversions, have the rm field, but
are nevertheless unaffected by the rounding mode. Software should set their rm field to RNE
(000).

Mode | Mhemonic | Meaning
000 RNE Round to Nearest, ties to Even.
001 RTZ Round towards Zero.
010 RDN Round Down (towards - ).
011 RUP Round Up (towards + ).
100 RMM Round to Nearest, ties to Max Magnitude.
101 Invalid. Reserved for future use.
110 Invalid. Reserved for future use.
111 DYN In instruction’s rm field, selects dynamic rounding mode; In Rounding
Mode register, Invalid.

Table 32: Floating-Point Rounding Modes

5.5.3 Single-Precision Floating-Point Load and Store Instructions

31 T T T T T T T T T T T 20 19 T T T T 15 14 T T 12 11 T T T T 7 6 T T T T T T 0
l imm[11:0] ‘ rsl ‘ width ‘ rd ‘ opcode
offset[11:0] base w dest LOAD-FP

Figure 31: Single-Precision FP Load Instruction

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] ‘ rs2 ‘ rsl ‘ width ‘ imm[4:0] ‘ opcode
offset[11:5] src base W offset[4:0] STORE-FP

Figure 32: Single-Precision FP Store Instruction

Instruction Operation Description
FLW rd, rs1, imm flrd] = M[x[rs1] + Loads a single-precision
sext(offset)][31:0] floating-point value from memory
into floating-point register rd.
FSW imm, rsi, rs2 M[x[rsl1] + Stores a single-precision value
sext(offset)] = from floating-point register rs2 to
f[rs2][31:0] memory.

Table 33: Single-Precision FP Load and Store Instructions Description
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5.5.4 Single-Precision Floating-Point Computational Instructions

31 27 26 25 24 2019 1514 12 11 7 6 0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ m ‘ rd ‘ opcode
FADD/FSUB S src2 srcl RM dest OP-FP
FMUL/FDIV S src2 srcl RM dest OP-FP
FSQRT S 0 src RM dest OP-FP
FMIN-MAX S src2 srcl MIN/MAX dest OP-FP

Figure 33: Single-Precision FP Computational Instructions

31' N '27 26'25 24' N '20 19' N '15 14' '12 11' N '7 6 - 'O
.rs3. . | frpt | . .rszl . | . sl | m. | . .rd. . | L opcoq|e L
src3 S src2 srcl RM dest F[IN]JMADD/F[NIMSUB

Figure 34: Single-Precision FP Fused Computational Instructions

Instruction Operation Description

FADD.S rd, rs1,rs2 flrd] = f[rs1] + Single-precision floating-point
flrs2] addition.

FSUB.S rd, rsi,rs2 f[rd] = f[rs1] - Single-precision floating-point
flrs2] subtraction.

FMUL.S rd, rs1,rs2 f[rd] = f[rs1] x Single-precision floating-point
flrs2] multiplication.

FDIV.S rd, rs1,rs2 flrd] = f[rsi] =+ Single-precision floating-point
flrs2] division.

FSORT.S rd, rs1 flrd] = Vf[rsi] Single-precision floating-point

square root.

FMIN.S rd, rs1,rs2 f[rd] = min(f[rs1], Single-precision floating-point
flrs2]) minimum-number.

FMAX.S rd, rsi1,rs2 flrd] = max(f[rs1i], Single-precision floating-point
flrs2]) maximum-number.

FMADD.S rd, rs1,rs2,rs3 flrd] = (f[rs1] x Single-precision floating-point
f[rs2]) + f[rs3] multiply and add.

FMSUB.S rd, rs1,rs2,rs3 flrd] = (f[rs1] x Single-precision floating-point
flrs2]) - f[rs3] multiply and subtract.

FNMADD.S rd, rs1,rs2,rs3 | f[rd]= -(f[rs1] x Single-precision floating-point
f[rs2]) + f[rs3] multiply, negate, and add.

FNMSUB.S rd, rs1,rs2,rs3 | f[rd]= -(f[rs1] x Single-precision floating-point
flrs2]) - f[rs3] multiply, negate, and subtract.

Table 34: Single-Precision FP Computational Instructions Description

5.5.5 Single-Precision Floating-Point Conversion and Move Instructions

Single-Precision Floating-Point Conversion Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0

| funct5 | fmt | rs2 | rsl | rm | rd | opcode
FCVT.int.S S WIU]/L[U] src RM dest OP-FP
FCVT.S.int S WI[UJ/L[U] src RM dest OP-FP

Figure 35: Single-Precision FP to Integer and Integer to FP Conversion Instructions
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Instruction

Operation

Description

FCVTW.S rd, rs1

x[rd] =
sext(s32f32(f[rsi]))

Converts a single-precision
floating-point number to a signed
32-bit integer. Sign-extends the
32-bit result to the destination
register width.

FCVT.SWrd, rs1

flrd] =
f32s32(x[rs1])

Converts a signed 32-bit integer to
a single-precision floating-point
number.

FCVTWU.S rd, rs1

x[rd] =
sext(ud2f32(f[rsi]))

Converts a single-precision
floating-point number to an
unsigned 32-bit integer.
Sign-extends the 32-bit result to the
destination register width.

FCVT.S\WU rd, rs1

flrd] =
f32u32(x[rs1])

Converts an unsigned 32-bit
integer to a single-precision
floating-point number.

FCVT.L.Srd,rs1

x[rd] =
s64f32(f[rs1])

Converts a single-precision
floating-point number to a signed
64-bit integer.

FCVT.S.L rd, rs1

flrd] =
f32s64(Xx[rsi1])

Converts a signed 64-bit integer to
a single-precision floating-point
number.

FCVT.LU.S rd, rs1

x[rd] =
ubdsrz2(frsi])

Converts a single-precision
floating-point number to an
unsigned 64-bit integer.

FCVT.S.LU rd, rs1

flrd] =
F32uea(x[rsi])

Converts an unsigned 64-bit
integer to a single-precision
floating-point number.

Table 35: Single-Precision FP Conversion Instructions Description

If the rounded result is not representable in the destination format, it is clipped to the nearest
value and the invalid flag is set.

Single-Precision Floating-Point-to-Floating-Point Sign-Injection Instructions

The floating-point-to-floating-point sign-injection instructions produce a result that takes all bits
except the sign bit from rsi1. The sign-injection instructions provide floating-point MV, ABS and

NEG.

31 27 26

25 24 2019 15 14

12 11 7 6 .0

l ' fhncts ‘ frpt ‘ ) 'r52 ‘ rsl

rd ‘ T obcode

FSGN] 3

stz T srcl JINTIX

‘dest ' T OPFP

Figure 36: Single-Precision FP to FP Sign-Injection Instructions
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Instruction

Operation

Description

FSGNJ.Srd, rs1,rs2

flrd] = {f[rs2][31],
f[rs1][30:0]}

Produces a result that takes all bits
except the sign bit from rsi. The
result’s sign bit is rs2's sign bit.

FSGNJIN.S rd, rsi1,rs2

flrd] = {~f[rs2][31],
f[rs1][30:0]}

Produces a result that takes all bits
except the sign bit from rs1. The
result’s sign bit is the opposite of
rs2's sign bit.

FSGNJX.Srd, rs1,rs2

flrd] = {f[rs1][31] A
f[rs2][31],
f[rsi1][30:0]}

Produces a result that takes all bits
except the sign bit from rsi. The
sign bit is the XOR of the sign bits
of rsiand rs2.

Table 36: Single-Precision FP to FP Sign-Injection Instructions Description

ISA Base Instruction

Pseudoinstruction

Description

FSGNJ.Srx,ry,ry

FMV.S rx, ry

Moves ry to rx.

FSGNJIN.S rx, ry, ry

FNEG.S rx, ry

Moves the negation of ry to rx.

FSGNJX.S rx, ry, ry

FABS.S rx, ry

Moves the absolute value of ry to rx.

Table 37: RISC-V Base Instruction to Assembly Pseudoinstruction Example

Single-Precision Floating-Point Move Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ m rd ‘ opcode
FMV.X.W S 0 src 0 O dest OP-FP
FMV.W.X S 0 src 0o 0 dest OP-FP

Figure 37: Single-Precision FP Move Instructions

Instruction

Operation

Description

FMV.X.W rd, rs1

x[rd] =
sext(f[rs1][31:0])

Moves the single-precision value in
floating-point register rs1
represented in IEEE 754-2008
encoding to the lower 32 bits of
integer register rd. The higher 32
bits of the destination register are
filled with copies of the
floating-point number’s sign bit.

FMV.W.X rd, rs1

flrd] = x[rs1][31:0]

Moves the single-precision value
encoded in IEEE 754-2008
standard encoding from the lower
32 bits of integer register rs1 to the
floating-point register rd.

Table 38: Single-Precision FP Move Instructions Description
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5.5.6 Single-Precision Floating-Point Compare Instructions

31 27 26 25 24 2019 1514 12 11 7 6 0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ m ‘ rd ‘ opcode
FCMP S src2 srcl EQ/LT/LE dest OP-FP

Figure 38: Single-Precision FP Compare Instructions

Instruction Operation Description
FEQ.S rd, rsi,rs2 x[rd] = f[rs1] == Writes 1 to the integer register rd if
flrs2] rsiis equal to rs2, 0 otherwise.

Performs a quiet comparison; only
sets the invalid operation exception
flag if either input is a signaling
NaN.

FLT.S rd, rs1,rs2 x[rd] = f[rsi] Writes 1 to the integer register rd if
flrs2] rsi less then rs2, 0 otherwise.
Performs signaling comparisons;
sets the invalid operation exception
flag if either input is NaN.

FLE.S rd, rs1,rs2 x[rd] = f[rs1i] Writes 1 to the integer register rd if
flrs2] rsi less than or equal to rs2, 0
otherwise. Performs signaling
comparisons; sets the invalid
operation exception flag if either
input is NaN.

Table 39: Single-Precision FP Compare Instructions Description

N

IN

Single-Precision Floating-Point Classify Instruction

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l funct5 ‘ fmt ‘ rs2 ‘ rsl m rd ‘ opcode
FCLASS S 0 src 0O 0 1 dest OP-FP

Figure 39: Single-Precision FP Classify Instruction

Instruction Operation Description
FCLASS.S rd, rs1 x[rd] = Examines the value in floating-point
classifys(f[rsi]) register rs1 and writes to integer

register rd a 10-bit mask that
indicates the class of the
floating-point number.

Table 40: Single-Precision FP Classify Instruction Description
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-
o
(=2
=

Meaning

rsiis -oo

rsiis negative normal number
rsiis a negative subnormal number
rsiis -0

rsiis +0

rsiis a positive subnormal number
rsiis a positive normal number
rsiis +o

rsiis a signaling NaN

rsiis a quiet NaN

Table 41: Floating-Point Number Classes

OO [(N[O|U|R|W[IN|F|O

5.6 D Extension: Double-Precision Floating-Point
Instructions

The D extension widens the 32 floating-point registers, f0—f31, to 64 bits. The f registers can
now hold either 32-bit or 64-bit floating-point values. When multiple floating-point precisions are
supported, then valid values of narrower n-bit types, n < FLEN, are represented in the lower n
bits of an FLEN-bit. Any operation that writes a narrower result to an f register must write all 1s
to the uppermost FLEN-n bits to yield a legal NaN-boxed value. Floating-point n-bit transfer
operations move external values held in IEEE standard formats into and out of the f registers,
and comprise floating-point loads and stores and floating-point move instructions.

5.6.1 Double-Precision Floating-Point Load and Store Instructions

0000000000099 2019 0 15114 1211 7 6 0
l ) ) L ir‘nm[‘llzo‘] ) L ) ‘ . s ) ‘ \(vidth ‘ ) ) rd ) ) ‘ L opcoqe )
offset[11:0] base D dest LOAD-FP

Figure 40: Double-Precision FP Load Instruction

31 25 24 20 19 15 14 12 11 7 6 0
Cimmits) [0 2 [0 st | width | imm40] | opcode
offset[11:5] src base D offset[4:0] STORE-FP

Figure 41: Double-Precision FP Store Instruction

Instruction Operation Description
FLD rd, rs1, imm flrd] = M[x[rs1] + Loads a double-precision
sext(offset)][63:0] floating-point value from memory
into floating-point register rd.
FSD imm, rsi,rs2 M[x[rs1] + Stores a double-precision value
sext(offset)] = from the floating-point register rs2
f[rs2][63:0] to memory.

Table 42: Double-Precision FP Load and Store Instructions Description
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FLD and FSD are only guaranteed to execute atomically if the effective address is naturally
aligned and XLEN=64. These instructions do not modify the bits being transferred; in particular,
the payloads of non-canonical NaNs are preserved.

5.6.2 Double-Precision Floating-Point Computational Instructions

The double-precision floating-point computational instructions are defined analogously to their
single-precision counterparts, but operate on double-precision operands and produce double-
precision results.

31 27 26 25 24 /2019 1514 12 11 7 6 0
l ) fynct? ) ‘ fmt ‘ ) ‘rsz‘ ) . s ) m. ) ) rd ) ) ‘ L opcocje )
FADD/FSUB D src2 srcl RM dest OP-FP
FMUL/FDIV D src2 srcl RM dest OP-FP
FMIN-MAX D src2 srcl MIN/MAX dest OP-FP
FSQRT D 0 src RM dest OP-FP

Figure 42: Double-Precision FP Computational Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
‘rs3‘ ) ‘ fr’pt ‘ ) ‘rsz‘ ) ‘ ) ‘rsl‘ ) ‘ m. ‘ ) ) rd ) ) ‘ L opcoqe L
src3 D src2 srcl RM dest FINJMADD/F[N]JMSUB

Figure 43: Double-Precision FP Fused Computational Instructions

Instruction Operation Description

FADD.D rd, rs1,rs2 flrd] = f[rsi] + Double-precision floating-point
flrs2] addition.

FSUB.D rd, rs1,rs2 flrd] = f[rsi] - Double-precision floating-point
flrs2] subtraction.

FMUL.D rd, rs1,rs2 flrd] = f[rs1] x Double-precision floating-point
flrs2] multiplication.

FDIV.D rd, rsi,rs2 flrd] = f[rsi] =+ Double-precision floating-point
flrs2] division.

FSQRT.D rd, rsi flrd] = Vf[rsi] Double-precision floating-point

square root.

FMIN.D rd, rs1,rs2 f[rd] = min(f[rs1], Double-precision floating-point
flrs2]) minimum-number.

FMAX.D rd, rsi1,rs2 flrd] = max(f[rs1], Double-precision floating-point
flrs2]) maximum-number.

FMADD.D rd, rs1,rs2,rs3 flrd] = (f[rs1] x Double-precision floating-point
f[rs2]) + f[rs3] multiply and add.

FMSUB.D rd, rs1,rs2,rs3 flrd] = (f[rs1] x Double-precision floating-point
flrs2]) - f[rs3] multiply and subtract.

FNMADD.D rd, rs1,rs2,rs3 | f[rd] = -(f[rs1] x Double-precision floating-point
flrs2]) + f[rs3] multiply, negate, and add.

FNMSUB.D rd, rs1,rs2,rs3 | f[rd] = -(f[rs1] x Double-precision floating-point
flrs2]) - f[rs3] multiply, negate, and subtract.

Table 43: Double-Precision FP Computational Instructions Description
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5.6.3 Double-Precision Floating-Point Conversion and Move Instructions

Double-Precision Floating-Point Conversion Instructions

All floating-point to integer and integer to floating-point conversion instructions round according
to the rm field.

31 2722524 2019 = 1514 1211 = 7 6 0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ rm rd ‘ opcode ‘
FCVT.int.D D WI[UJ/L[U] src RM dest OP-FP
FCVT.D.int D WIUJ/L[U] src RM dest OP-FP

Figure 44: Double-Precision FP to Integer and Integer to FP Conversion Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l ) fgnct? ) ‘ fr’pt ) ‘rsz‘ ) ) ‘rsl‘ ) ‘ m. ) ‘rd‘ ) ‘ L opcoqe L ‘
FCVT.S.D S D src RM dest OP-FP
FCVT.D.S D S src RM dest OP-FP

Figure 45: Double-Precision to Single-Precision and Single-Precision to Double-Precision FP
Conversion Instructions
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Instruction

Operation

Description

FCVTW.D rd, rs1

x[rd] =
sext(s32fg4(f[rsi]))

Converts a double-precision
floating-point number to a signed
32-bit integer. Sign-extends the
32-bit result to the destination
register width.

FCVT.D.W rd, rs1

flrd] =
f64s32(x[rsi])

Converts a signed 32-bit integer to
a double-precision floating-point
number. Always produces an exact
result and is unaffected by rounding
mode.

FCVTWU.D rd, rs1

x[rd] =
sext(u32fe4(f[rsi]))

Converts a double precision
floating-point number to an
unsigned 32-bit integer.
Sign-extends the 32-bit result to the
destination register width.

FCVT.D.WU rd, rs1

flrd] =
f64y32(x[rsi])

Converts an unsigned 32-bit
integer to a double-precision
floating-point number. Always
produces an exact result and is
unaffected by rounding mode.

FCVT.L.D rd, rs1

x[rd] =
s64re4(f[rsi])

Converts a double-precision
floating-point number to a signed
64-bit integer.

FCVTD.L rd, rs1

flrd] =
f64s64(x[rsi])

Converts a signed 64-bit integer to
a double-precision floating-point
number.

FCVT.LU.D rd, rs1

x[rd] =
u64rea(f[rsi])

Converts a double-precision
floating-point number to an
unsigned 64-bit integer.

FCVT.D.LU rd, rs1

flrd] =
f64dyea(x[rsi])

Converts an unsigned 64-bit
integer to a double-precision
floating-point number.

FCVT.S.Drd, rs1

f[rd] =
f32f64(f[rs1])

Converts a double-precision
floating-point number to a
single-precision floating-point
number.

FCVT.D.Srd, rs1

f[rd] =
fodraz(F[rsi])

Converts a single-precision
floating-point number to a
double-precision floating-point
number.

Table 44: Double-Precision FP Conversion Instructions Description
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Double-Precision Floating-Point-to-Floating-Point Sign-Injection Instructions

31 27 26 25 24 . 20 19 . 15 14 12 11 . 7 6 . .0
[ ofunes | [ | o2 [ st [ em [ 0 (e | ] | opeode
FSGN) D src2 srcl JINJ/X dest OP-FP

Figure 46: Double-Precision FP to FP Sign-Injection Instructions

Instruction Operation Description
FSGNJ.D rd, rsi1,rs2 flrd] = {f[rs2][63], Produces a result that takes all bits
flrs1][62:0]} except the sign bit from rsi. The

result’s sign bit is rs2's sign bit.
FSGNJN.D rd, rsi1,rs2 f[rd] = {~f[rs2][63], | Produces a result that takes all bits

flrs1][62:0]} except the sign bit from rs1. The
result’s sign bit is the opposite of
rs2's sign bit.
FSGNJX.D rd, rs1,rs2 f[rd] = {f[rs1][63] A | Produces a result that takes all bits
f[rs2][63], except the sign bit from rsi. The
flrs1][62:0]} sign bit is the XOR of the sign bits

of rs1 and rs2.

Table 45: Double-Precision FP to FP Sign-Injection Instructions Description

ISA Base Instruction | Pseudoinstruction | Description

FSGNJ.D rx, ry, ry FMV.D rx, ry Moves ry to rx.

FSGNJN.D rx, ry,ry | FNEG.D rx, ry Moves the negation of ry to rx.
FSGNJX.D rx,ry,ry | FABS.D rx, ry Moves the absolute value of ry to rx.

Table 46: RISC-V Base Instruction to Assembly Pseudoinstruction Example

Double-Precision Floating-Point Move Instructions

The RV64 architecture provides instructions to move bit patterns between the floating-point and
integer registers.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ rm rd ‘ opcode ‘
FMV.X.D D 0 src 0 0 O dest OP-FP
FMV.D.X D 0 src 0o 0 O dest OP-FP

Figure 47: Double-Precision FP Move Instructions
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Instruction Operation Description

FMV.X.D rd, rs1 x[rd] = f[rs1][63:0] Moves the double-precision value
in floating-point register rs1 to a
representation in IEEE 754-2008
standard encoding in integer
register rd.

FMV.D.X rd, rs1 flrd] = x[rs1][63:0] Moves the double-precision value
encoded in IEEE 754-2008
standard encoding from the integer
register rs1 to the floating-point
register rd.

Table 47: Double-Precision FP Move Instructions Description

FMV.X.D and FMV.D.X do not modify the bits being transferred; in particular, the payloads of
non-canonical NaNs are preserved.

5.6.4 Double-Precision Floating-Point Compare Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l ) fgnct? ) ‘ fr’pt ‘ ) ‘rsz‘ ) ‘ ) ‘rsl‘ ) ‘ m. ‘ ) ) rd ) ) ‘ L opcoqe )
FCMP D src2 srcl EQ/LT/LE dest OP-FP

Figure 48: Double-Precision FP Compare Instructions

Instruction Operation Description
FEQ.D rd, rsi1,rs2 x[rd] = f[rs1] == Writes 1 to the integer register rd if
flrs2] rsiis equal to rs2, 0 otherwise.

Performs a quiet comparison; only
sets the invalid operation exception
flag if either input is a signaling

NaN.
FLT.D rd, rsi,rs2 x[rd] = f[rs1] < Writes 1 to the integer register rd if
flrs2] rsi less than rs2, 0 otherwise.

Performs signaling comparisons;
sets the invalid operation exception
flag if either input is NaN.

FLE.D rd, rsi,rs2 x[rd] = f[rs1] < Writes 1 to the integer register rd if
flrs2] rsi less than or equal to rs2, 0
otherwise. Performs signaling
comparisons; sets the invalid
operation exception flag if either
input is NaN.

Table 48: Double-Precision FP Compare Instructions Description
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5.6.5 Double-Precision Floating-Point Classify Instruction

31 27262524 2019 1514 1211 = = 7 6 00
l ) fynct? ) ‘ fmt ‘ ) ‘rsz‘ ) ‘ . s ) ‘ m. ) ) rd ) ) ‘ L opcocje )
FCLASS D 0 src 0O 0 1 dest OP-FP

Figure 49: Double-Precision FP Classify Instruction

Instruction Operation Description
FCLASS.D rd, rs1 x[rd] = Examines the value in floating-point
classifyq(f[rsi1]) register rs1 and writes to integer

register rd a 10-bit mask that
indicates the class of the
floating-point number.

Table 49: Double-Precision FP Classify Instruction Description

5.7 C Extension: Compressed Instructions

The C Extension reduces static and dynamic code size by adding short 16-bit instruction encod-
ings for common operations. The C extension can be added to any of the base ISAs (RV32,
RV64, RV128), and we use the generic term "RVC" to cover any of these. Typically, 50%—60%
of the RISC-V instructions in a program can be replaced with RVC instructions, resulting in a
25%-30% code-size reduction. The C extension is compatible with all other standard instruction
extensions. The C extension allows 16-bit instructions to be freely intermixed with 32-bit instruc-
tions, with the latter now able to start on any 16-bit boundary, i.e., IALIGN=16. With the addition
of the C extension, no instructions can raise instruction-address-misaligned exceptions. It is
important to note that the C extension is not designed to be a stand-alone ISA, and is meant to
be used alongside a base ISA. The compressed 16-bit instruction format is designed around the
assumption that x1 is the return address register and x2 is the stack pointer.

5.7.1 Compressed 16-bit Instruction Formats

15 . . . 12 11 . . . . 7 6 . . . . 2 1 . 0
l ) funct4 ) ‘ _rd/rs1 ) ‘ L rs2 ) op

Figure 50: CR Format - Register

15 . . 13 12 11 . . . . 7 6 . . . . 2 1 . 0
funct3 ‘ imm ‘ ) _rd/rs1 ) ‘ imm ) op

Figure 51: CI Format - Immediate

15 13 12 7 6 2 1 0
funct3 ‘ imm ‘ rs2 op

Figure 52: CSS Format - Stack-relative Store

15 13 12 5 4 2 1 0
) funct3 ) ‘ imm ‘ rd” ) op

Figure 53: CIW Format - Wide Immediate
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15 . . 13 12 . . 10 9 . . 7 6 . 5 4 . . 2 .
funct3 _imm ‘ ) rsl’ ) ‘ imm ‘ ) rd’ op
Figure 54: CL Format - Load
15 . . 13 12 . . 10 9 . . 7 6 . 5 4 . . 2 .
funct3 _imm ‘ ) rsl’ ) ‘ imm ‘ ) rs2’ op
Figure 55: CS Format - Store
15 10 9 7 6 5 4 2
fuqctG ) ) ‘ ‘rd ! rsl" ‘ fun‘th ‘ ) rs2’ op
Figure 56: CA Format - Arithmetic
15 13 12 10 9 7 6 2
funct3 _ offset ‘ _rsl” ‘ _offset”

op

Figure 57: CJ Format - Jump

5.7.2 Stack-Pointed-Based Loads and Stores

The compressed load instructions are expressed in Cl format.

15 13 12 11 7 6 2
l ‘funct3‘ ‘ imm ‘ ) ) rd ) ) ‘ ) ) imm ) op
C.LWSP offset[5] dest =0 offset[4:2|7:6] C2
C.LDSP offset[5] dest!=0 offset[4:3l8:6] C2
C.LQSP offset[5] dest!=0 offset[4]9:6] C2
C.FLWSP offset[5] dest offset[4:2]7:6] C2
C.FLDSP offset[5] dest offset[4:3]8:6] Cc2
Figure 58: Stack-Pointed-Based Loads
Instruction Description
C.LWSP Loads a 32-bit value from memory into register rd.
C.LDSP RV64C Instruction which loads a 64-bit value from memory into
register rd.
C.LQSP RV128C loads a 128-bit value from memory into register rd.
C.FLWSP RV32FC Instruction that loads a single-precision floating-point
value from memory into floating-point register rd.
C.FLDSP RV32DC/RV64DC Instruction that loads a double-precision
floating-point value from memory into floating-point register rd.

Table 50: Stack-Pointed-Based Load Instruction Description

The compressed store instructions are expressed in CSS format.

15 13 12 7 6 2
l funct3 l imm l rs2 op
C.SWSP offset[5:2|7:6] src C2
C.SDSP offset[5:3(8:6] src C2
C.SQSP offset[5:4]9:6] src C2
C.FSWSP offset[5:2(7:6] src Cc2
C.FSDSP offset[5:38:6] src Cc2

Figure 59: Stack-Pointed-Based Stores
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Instruction Description

C.LWSP Loads a 32-bit value from memory into register rd.

C.SWSP Stores a 32-bit value in register rs2 to memory.

C.SDSP RV64C/RV128C instruction that stores a 64-bit value in register
rs2 to memory.

C.SQSP RV128C instruction that stores a 128-bit value in register rs2 to
memory.

C.FSWSP RV32FC instruction that stores a single-precision floating-point
value in floating-point register rs2 to memory.

C.FSDSP RV32DC/RV64DC instruction that stores a double-precision
floating-point value in floating-point register rs2 to memory.

Table 51: Stack-Pointed-Based Store Instruction Description

5.7.3 Register-Based Loads and Stores

The compressed register-based load instructions are expressed in CL format.

21G3.02.00

15 13 12 10 9 7 6 5 4 2 1 0
l funct3 ‘ imm ‘ rsl’ ‘ imm ‘ rd’ ‘ op
C.Lw offset[5:3] base offset[2|6] dest Co
C.LD offset[5:3] base offset[7:6] dest Co
C.LQ offset[S%AgB] base offset[7:6] dest Co
C.FLW offset[5:3] base offset[2|6] dest Co
C.FLD offset[5:3] base offset[7:6] dest Cco
Figure 60: Register-Based Loads
Instruction Description
C.LW Loads a 32-bit value from memory into register rd.
C.LD RV64C/RV128C-only instruction that loads a 64-bit value from
memory into register rd.
C.LQ RV128C-only instruction that loads a 128-bit value from memory
into register rd.
C.FLW RV32FC-only instruction that loads a single-precision
floating-point value from memory into floating-point register rd.
C.FLD RV32DC/RV64DC-only instruction that loads a double-precision
floating-point value from memory into floating-point register rd.

Table 52: Register-Based Load Instruction Description

The compressed register-based store instructions are expressed in CS format.

15 13 12 . . 10 9 . . 7 6 . 5 4 . . 2 1 . 0

l funct3 ‘ imm rsl’ ‘ imm ‘ rs2’ ‘ op
C.SwW offset[5:3] base offset[2|6] src Co
C.SD offset[5:3] base offset[7:6] src Co
C.SQ offset[5|4|8] base offset[7:6] src Cco
C.FSwW offset[5:3] base offset[2|6] src Co
C.FSD offset[5:3] base offset[7:6] src Cco

Figure 61: Register-Based Stores
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Instruction Description

C.sw Stores a 32-bit value in register rs2 to memory.

C.sDh RV64C/RV128C instruction that stores a 64-bit value in register
rs2 to memory.

C.SQ RV128C instruction that stores a 128-bit value in register rs2 to
memory.

C.FSW RV32FC instruction that stores a single-precision floating-point
value in floating-point register rs2 to memory.

C.FSD RV32DC/RV64DC instruction that stores a double-precision
floating-point value in floating-point register rs2 to memory.

Table 53: Register-Based Store Instruction Description

5.7.4 Control Transfer Instructions

RVC provides unconditional jump instructions and conditional branch instructions.

The unconditional jump instructions are expressed in CJ format.

15 . . 13 12 . . . . . . . . . . 2 1 . 0

f t3
TN o
C.JAL offset[11|4|9:8|10|6|7|3:1 5] Cl

Figure 62: Unconditional Jump Instructions

imm

Instruction Description
C.J Unconditional control transfer.
C.JAL RV32C instruction that performs the same operation as C.J, but

additionally writes the address of the instruction following the
jump (pc+2) to the link register, x1.

Table 54: Unconditional Jump Instruction Description

The unconditional control transfer instructions are expressed in CR format.

15 . 12 11 . . 1 6 . . 2 1 0
l funct4 ‘ rsl ‘ rs2 ‘ op
C.JR src!=0 0 Cc2
C.IALR src!=0 0 Cc2

Figure 63: Unconditional Control Transfer Instructions

Instruction Description

C.JR Performs an unconditional control transfer to the address in
register rsi.

C.JALR Performs the same operation as C.JR, but additionally writes the
address of the instruction following the jump (pc+2) to the link
register, x1.

Table 55: Unconditional Control Transfer Instruction Description
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The conditional control transfer instructions are expressed in CB format.

15 13 12 10 9 7 6 . . 2 10
l funct3 ‘ _imm ‘ _rsl” ‘ ) _imm ) ‘ op
C.BEQZ offset[8|4:3] src offset[7:6]2:1|5] Cl
C.BNEZ offset[8[4:3] src offset[7:6]2:1|5] Cl

Figure 64: Conditional Control Transfer Instructions

Instruction Description

C.BEQZ Conditional control transfers. Takes the branch if the value in
register rs1' is zero.

C.BNEZ Conditional control transfers. Takes the branch if rs1' contains
a nonzero value.

Table 56: Conditional Control Transfer Instruction Description

5.7.5 Integer Computational Instructions

Integer Constant-Generation Instructions

15 13 12 11 7 6 2 1 0
l ) funct3 ) ‘imm[S]‘ ) ) rd ) ) ‘ ) ) imm ) ) op
C.LI imm([5] dest !=0 imm[4:0] Cl
Cl.LUI nzimm([17] dest !'= {0,2} imm[16:12] Cl

Figure 65: Integer Constant-Generation Instructions

Instruction Description
C.Ll Loads the sign-extended 6-bit immediate, imm, into register rd.
C.LUI Loads the non-zero 6-bit immediate field into bits 17-12 of the

destination register, clears the bottom 12 bits, and sign-extends
bit 17 into all higher bits of the destination

Table 57: Integer Constant-Generation Instruction Description

Integer Register-immediate Operations

15 . . 13 12 11 . . . . 7 6 . . . . 2 1 . 0
l funct3 ‘imm[S]‘ rd/rs1 ‘ imm[4:0] op
C.ADDI nzimm([5] dest!=0 nzimm([4:0] Cl
C.ADDIW imm[5] dest !=0 imm[4:0] Cl
C.ADDI16SP nzimm([9] 2 nzimm([4|6]8:7|5] Cl

Figure 66: Integer Register-Immediate Operations
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Instruction Description

C.ADDI Adds the non-zero sign-extended 6-bit immediate to the value in
register rd then writes the result to rd.

C.ADDIW RV64C/RV128C instruction that performs the same computation
but produces a 32-bit result, then sign-extends result to 64 bits.

C.ADDI16SP Adds the non-zero sign-extended 6-bit immediate to the value in

the stack pointer (sp=x2), where the immediate is scaled to
represent multiples of 16 in the range (-512,496). C.ADDI16SP
is used to adjust the stack pointer in procedure prologues and
epilogues.

Table 58: Integer Register-Immediate Operation Description

15 13 12 5 4 2 1 0
funct3 ‘ imm ‘ rd’ ‘ op
C.ADDI4SPN nzuimm([5:4[9:6]2|3] dest Cco

Figure 67: Integer Register-Immediate Operations (cont.)

Instruction Description
C.ADDI4SPN Adds a zero-extended non-zero immediate, scaled by 4, to the
stack pointer, x2, and writes the result to rd'.

Table 59: Integer Register-Immediate Operation Description (cont.)

15 13 12 11 . . 7 6 . . 2 1 0
funct3 #hamt[sh rd/rs1 ‘ shamt[4:0] ‘ op
C.SLLI shamt[5] dest!=0 shamt[4:0] Cc2

Figure 68: Integer Register-Immediate Operations (cont.)

Instruction Description
C.SLLI Performs a logical left shift of the value in register rd then writes
the result to rd. The shift amount is encoded in the shamt field.

Table 60: Integer Register-Immediate Operation Description (cont.)

15 . . 13 12 11 . 10 9 . . 7 6 . . . . 2 1 . 0
) funct3 ) %hamt[Sh fuqctz ‘ ‘rd '/rsl" ‘ ) shamt[4:9] ) ‘ op
C.SRLI shamt[5] C.SRLI dest shamt[4:0] Cl
C.SRAI shamt[5] C.SRAI dest shamt[4:0] Cl

Figure 69: Integer Register-Immediate Operations (cont.)

Instruction Description

C.SRLI Logical right shift of the value in register rd' then writes the
result to rd'. The shift amount is encoded in the shamt field.

C.SRAI Arithmetic right shift of the value in register rd' then writes the
result to rd'. The shift amount is encoded in the shamt field.

Table 61: Integer Register-Immediate Operation Description (cont.)
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15 . . 13 12 11 . 10 9 . . 7 6 . . . . 2 1 . 0
funct3 ‘imm[S]‘ funct2 ‘ rd’/rsl” ‘ ) imm[4:0] ) ‘ op
C.ANDI imm[5] C.ANDI dest imm[4:0] Cl

Figure 70: Integer Register-Immediate Operations (cont.)

Instruction Description
C.ANDI Computes the bitwise AND of the value in register rd’ and the
sign-extended 6-bit immediate, then writes the result to rd'".

Table 62: Integer Register-Immediate Operation Description (cont.)

Integer Register-Register Operations

15 T T T 12 11 T T T T 7 6 T T T T 2 1 T O
l ) funct3 ) ‘ ) _rd/rs1 ) ‘ ) L rs2 ) op
C.MV dest!=0 src!=0 C2
C.ADD dest!=0 src!=0 Cc2

Figure 71: Integer Register-Register Operations

Instruction Description

C.MV Copies the value in register rs2 into register rd.

C.ADD Adds the values in registers rd and rs2 and writes the result to
register rd.

Table 63: Integer Register-Register Operation Description

15 10 9 7 6 5 4 2 1 0
fuqct6 ) ) ‘ ‘rd'/rsl" ‘ fun‘th ‘ ) rs2’ ) ‘ op
C.AND dest C.AND src Cl
C.OR dest C.OR src Cl
C.XOR dest C.XOR src Cl
C.SUB dest C.SUB src Cl
C.ADDW dest C.ADDW src Cl
C.SuBwW C.SuBW

Figure 72: Integer Register-Register Operations (cont.)

Instruction Description

C.AND Computes the bitwise AND of the values in registers rd' and
rs2'.

C.OR Computes the bitwise OR of the values in registers rd’' and rs2'.

C.XOR Computes the bitwise XOR of the values in registers rd' and r2'.

C.suB Subtracts the value in register rs2' from the value in register rd'.

C.ADDW RV64C/RV128C-only instruction that adds the values in

registers rd' and rs2’, then sign-extends the lower 32 bits of the
sum before writing the result to register rd.

C.SuBwW RV64C/RV128C-only instruction that subtracts the value in
register rs2' from the value in register rd’, then sign-extends the
lower 32 bits of the difference before writing the result to register
rd.

Table 64: Integer Register-Register Operation Description (cont.)
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Defined lllegal Instruction

A 16-bit instruction with all bits zero is permanently reserved as an illegal instruction.

15 13 12 11 ' ' 7 6 ' ' 2 10
L o ol o e T e ] 0
0 0 0 0 0

Figure 73: Defined lllegal Instruction

5.8 Zba Extension: Address Calculation Instructions

The Zba instructions are used to accelerate the generation of addresses that index into arrays
of basic types (halfword, word, doubleword) using both unsigned word-sized and 64-sized
indices; that is, a shifted index is added to a base address.

5.8.1 Address Calculation Instructions

31 25 24 20 19 15 14 12 11 7 6 0
| funct7 | rs2 | rsl | funct3 | rd opcode
SH1ADD SH1ADD OoP
SH2ADD SH2ADD oP
SH3ADD SH3ADD OP

Figure 74: Address Calculation Instructions

2524 2019 1514 1211 = 7 6 0
funct7 | rs2 | rsl | funct3 rd | opcode
SH1ADD.UW SH1ADD.UW OP-32
SH2ADD.UW SH2ADD.UW OP-32
SH3ADD.UW SH3ADD.UW OP-32

Figure 75: Address Calculation Instructions (cont.)

Instruction Description

SH1ADD rd, rsi1,rs2 Shifts rs1 by 1 bit, then adds the result to rs2
SH2ADD rd, rsi1,rs2 Shifts rsi1 by 2 bits, then adds the result to rs2
SH3ADD rd, rsi,rs2 Shifts rsi1 by 3 bits, then adds the result to rs2

SH1ADD.UW rd, rs1, rs2 | Performs an 64-wide addition of rs2, and the unsigned value
formed by extracting the least-significant word of rs1 and
shifting it left by 1 bit

SH2ADD.UW rd, rs1, rs2 | Performs an 64-wide addition of rs2, and the unsigned value
formed by extracting the least-significant word of rs1 and
shifting it left by 2 bits

SH3ADD.UW rd, rs1, rs2 | Performs an 64-wide addition of rs2, and the unsigned value
formed by extracting the least-significant word of rs1 and
shifting it left by 3 bits

Table 65: Address Calculation Instructions Description
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5.8.2 Add/Shift with Prefix Zero-Extend Instructions

31 25 24 20 19 15 14 12 11 7 6 0
| funct7 | rs2 | rsl | funct3 | rd opcode
ADD.UW src addr ADD.UW dest OP-32

Figure 76: Add with Prefix Zero-Extend Instruction

3 262 2019 = 1514 1211 = 76 0
imm | shamt | rsl | funct3 | rd | opcode
SLLL.UW SLLL.UW OP-IMM-32

Figure 77: Shift with Prefix Zero-Extend Instruction

Instruction Description

ADD.UW rd, rsi, rs2 Performs a 64-wide addition between rs2 and the
zero-extended least-significant word of rsi1

SLLILUW rd, rsi, shamt Takes the least-significant word of rs1, zero-extends it, and
shifts it left by the immediate

Table 66: Add/Shift with Prefix Zero-Extend Instructions Description

5.9 Zbb Extension: Basic Bit Manipulation Instructions

The Zbb instructions are used for basic bit manipulation.

5.9.1 Count Leading/Trailing Zeroes Instructions

2524 2019 = 1514 1211 = 7 6 0
| imm[11:5] | imm[4:0] | rsl | funct3 | rd | opcode

CLz CLz CLz OP-IMM

CTZ CTZ CTZ OP-IMM

Figure 78: Count Leading/Trailing Zeroes Instructions

2524 2019 1514 1211 = 76 0
imm([11:5] | imm[4:0] | rsl |funct3| rd | opcode
CLZW CLZW CcLZwW OP-IMM-32
CTzwW CTzw CTzwW OP-IMM-32

Figure 79: Count Leading/Trailing Zeroes Instructions (cont.)
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Instruction Description

CLZ rd, rs Counts the number of 0 bits before the first 1 bit, starting at the
most-significant bit and progressing to bit 0. If the input is 0, the
output is 64. If the most-significant bit of the input is 1, the output
is 0.

CTZrd,rs Counts the number of 0 bits before the first 1 bit, starting at the
least-significant bit and progressing to the most-significant bit. If
the input is 0, the output is 64. If the least-significant bit of the
input is 1, the output is 0.

CLZW rd, rs Counts the number of 0 bits before the first 1 bit, starting at bit
31 and progressing to bit 0. If the least-significant word is 0, the
output is 32. If the most-significant bit of the word is 1, the output
is 0.

CTZW rd, rs Counts the number of O bits before the first 1 bit, starting at the
least-significant bit and progressing to the most-significant word.
If the least-significant word is 0O, the output is 32. If the
least-significant bit of the input is 1, the output is 0.

Table 67: Count Leading/Trailing Zeroes Instructions Description

5.9.2 Count Population Instructions

_ 2524 0 2019 = 1514 1211 = 7 6 0
| imm[11:5] | imm[4:0] | rsl | funct3 | rd | opcode
CPOP CPOP CPOP OP-IMM

Figure 80: Count Population Instruction

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] | imm[4:0] | rsl | funct3 | rd | opcode
CPOPW CPOPW CPOPW OP-IMM-32

Figure 81: Count Population Instruction (cont.)

Instruction Description

CPOP rd, rs Counts the number of 1 bits in the source register

CPOPW rd, rs Counts the number of 1 bits in the least-significant word of the
source register

Table 68: Count Population Instructions Description

5.9.3 Logic-With-Negate Instructions

T 2524 2019 = 1514 1211 = 7 6 0
| funct7 | rs2 | rsl | funct3 | rd opcode

ANDN ANDN OP

ORN ORN OP

XNOR XNOR OP

Figure 82: Logic-With-Negate Instructions
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Instruction Description

ANDN rd, rsi, rs2 Performs bitwise logical AND between rsi and the bitwise
inversion of rs2

ORN rd, rs1,rs2 Performs bitwise logical OR between rs1 and the bitwise
inversion of rs2

XNOR rd, rsi,rs2 Performs bitwise exclusive-NOR on rsi1 and rs2

Table 69: Logic-With-Negate Instructions Description

5.9.4 Comparison Instructions

These instructions are arithmetic R-type instructions that return the smaller or larger value of
two operands.

31 25 24 20 19 15 14 12 11 7 6 0

| funct7 | rs2 | rsl | funct3 | rd | opcode |
MINMAX/CLMUL MAX OP
MINMAX/CLMUL MAXU OP
MINMAX/CLMUL MIN OoP
MINMAX/CLMUL MINU OP

Figure 83: Comparison Instructions

Instruction Description

MIN rd, rsi,rs2 Returns the smaller of two signed integers
MINU rd, rs1,rs2 Returns the smaller of two unsigned integers
MAX rd, rsi, rs2 Returns the larger of two signed integers
MAXU rd, rs1, rs2 Returns the larger of two unsigned integers

Table 70: Comparison Instructions Description

5.9.5 Sign-Extend and Zero-Extend Instructions

These instructions perform the sign-extension or zero-extension of the least-significant 8 or 16
bits of the source register.

2524 2019 = 1514 1211 = 7 6 0

| imm[11:5] | imm[5:0] | rsl | funct3 | rd | opcode |
SEXT.B SEXT.B/SEXT.H OP-IMM
SEXT.H SEXT.B/SEXT.H OP-IMM

Figure 84: Sign-Extend Instructions

31' . '25 24' . '20 19' . '15 14' '12 11' . '7 6' . 'O
imm[11:5] | imm[4:0] | rs | funct3 | rd opcode
ZEXT.H OP-32

Figure 85: Zero-Extend Instruction
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Instruction Description

SEXT.B rd, rs Sign-extends the least-significant byte in the source to 64 by
copying the most-significant bit in the byte (i.e., bit 7) to all of the
more-significant bits

SEXT.H rd, rs Sign-extends the least-significant halfword in rsto 64 by copying
the most-significant bit in the halfword (i.e., bit 15) to all of the
more-significant bits

ZEXTHrd,rs Zero-extends the least-significant halfword of the source to 64
by inserting 0’s into all of the bits more significant than 15

Table 71: Sign- and Zero-Extend Instructions

5.9.6 Bitwise Rotation Instructions

Bitwise rotation instructions are similar to the shift-logical operations from the base ISA specifi-
cation. However, where the shift-logical instructions shift in zeros, the rotate instructions shift in
the bits that were shifted out of the other side of the values.

31 25 24 20 19 15 14 12 11 7 6 0
| funct7 | rs2 | rsl | funct3 | rd | opcode |
ROR ROR OP
ROL ROL OoP

Figure 86: Bitwise Rotation Instructions

31' . '25 24' . '20 19' . '15 14' '12 11' . '7 6' . 'O
i.mn') L | . shanjt . | . .rsll . | fL.Jnct.B | . .rd. . | L opcoqe .
RORI RORI OP-IMM
Figure 87: Bitwise Rotation Instructions (cont.)

31 25 24 20 19 15 14 12 11 7 6 0
funct7 | rs2 | rsl | funct3 | rd | opcode
RORW RORW OP-32
ROLW ROLW OP-32

Figure 88: Bitwise Rotation Instructions (cont.)

31 25 24 20 19 15 14 12 11 7 6 0
imm | shamt | rsl | funct3 | rd | opcode
RORIW RORIW OP-IMM-32

Figure 89: Bitwise Rotation Instructions (cont.)

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 87



SiFive S76-MC Core Complex Manual 21G3.02.00
Programmer’s Model

Instruction Description

ROR rd, rsi1,rs2 Performs a rotate right shift of rs1 by the amount in the
least-significant 6 bits of rs2

ROL rd, rs1,rs2 Performs a rotate left shift of rs1 by the amount in the
least-significant 6 bits of rs2

RORI rd, rs1, shamt Performs a rotate right shift of rs1 by the amount in the least
significant 6 bits of shamt

RORW rd, rs1,rs2 Performs a rotate right shift of the least-significant word of rsi

byt the amount in the least-significant 5 bits of rs2. The resulting
word value is sign-extended by copying bit 31 to all of the
more-significant bits.

ROLW rd, rs1,rs2 Performs a rotate left shift on the least-significant word of rsi1 by
the amount in the least-significant 5 bits of rs2. The resulting
word value is sign-extended by copying bit 31 to all of the
more-significant bits.

RORIW rd, rsi, imm Performs a rotate right shift on the least-significant word of rs1
by the amount in the least-significant 6 bits of shamt. The
resulting word value is sign-extended by copying bit 31 to all of
the more significant bits.

Table 72: Bitwise Rotation Instructions Description

5.9.7 OR Combine Instruction

Instruction Description

ORC.Brd,rs Combines the bits within every byte through a reciprocal bitwise
logical OR. This sets the bits of each byte in the result rd to all
zeros if no bit within the respective byte of rs is set, otherwise it
sets the bits to all ones if any bit within the respective byte of rs
is set.

Table 73: OR Combine Instruction Description

5.9.8 Byte-Reverse Instruction

Instruction Description
REV8 rd, rs Reverses the order of the bytes in a register

Table 74: Byte-Reverse Instruction Description

5.10 Zicsr Extension: Control and Status Register
Instructions

RISC-V defines a separate address space of 4096 Control and Status registers associated with
each hart. The defined instructions access counter, timers and floating-point status registers.
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0000000000090 2019 2 15114 12111 7 6 0

csr rsl ‘ funct3 ‘ rd opcode
source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest uimm[4:0] CSRRWI dest SYSTEM
source/dest uimm[4:0] CSRRSI dest SYSTEM
source/dest uimm([4:0] CSRRCI dest SYSTEM

Figure 90: Zicsr Instructions

Instruction Description

CSRRW rd, rsicsr Instruction atomically swaps values in the CSRs and integer
registers.

CSRRS rd, rsicsr Instruction reads the value of the CSR, zero-extends the value

to 64-bits, and writes it to integer register rd. The initial value in
integer register rs1 is treated as a bit mask that specifies bit
positions to be set in the CSR.

CSRRC rd, rsicsr Instruction reads the value of the CSR, zero-extends the value
to 64-bits, and writes it to integer register rd. The initial value in
integer register rsi is treated as a bit mask that specifies bit
positions to be cleared in the CSR.

CSRRWI rd, rsi csr Update the CSR using an 64-bit value obtained by
zero-extending a 5-bit unsigned immediate (uimm{[4:0]) field
encoded in the rsl field instead of a value from an integer
register.

CSRRSI rd, rsicsr Update the CSR using an 64-bit value obtained by
zero-extending a 5-bit unsigned immediate (uimm[4:0]) field
encoded in the rsl field instead of a value from an integer
register.

CSRRCI rd, rs1csr If the uimm([4:0] field is zero, then these instructions will not write
to the CSR.

Table 75: Control and Status Register Instruction Description

The CSRRWI, CSRRSI, and CSRRCI instructions are similar in kind to CSRRW, CSRRS, and
CSRRC respectively, except in that they update the CSR using an 64-bit value obtained by
zero-extending a 5-bit unsigned immediate (uimm[4:0]) field encoded in the rsl field instead of a
value from an integer register. For CSRRSI and CSRRCI, these instructions will not write to the
CSR if the uimm([4:0] field is zero, and they shall not cause any of the size effects that might oth-
erwise occur on a CSR write. For CSRRWI, if rd = x0, then the instruction shall not read the
CSR and shall not cause any of the side effects that might occur on a CSR read. Both CSRRSI
and CSRRCI will always read the CSR and cause any read side effects regardless of the rd and
rsi fields.

Table 76 shows if a CSR reads or writes given a particular CSR.
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Register Operand
Instruction | rd rsi read CSR? | write CSR?

CSRRW X0 - no yes
CSRRW X0 - yes yes
CSRRS/C - X0 yes no

CSRRS/C - IXx0 | yes yes

Immediate Operand
Instruction | rd | uimm | read CSR? | write CSR?

CSRRWI X0 - no yes
CSRRWI X0 - yes yes
CSRRS/CI - 0 yes no

CSRRS/CI - 10 yes yes

Table 76: CSR Reads and Writes

5.10.1 Control and Status Registers

The control and status registers (CSRs) are only accessible using variations of the CSRR
(Read) and CSRRW (Write) instructions. Only the CPU executing the csr instruction can read or
write these registers, and they are not visible by software outside of the core they reside on. The
standard RISC-V ISA sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs.
Attempts to access a hon-existent CSR raise an illegal instruction exception. Attempts to access
a CSR without appropriate privilege level or to write a read-only register also raise illegal
instruction. A read/write register might also contain some bits that are read-only, in which case,
writes to the read-only bits are ignored. Each core functionality has its own control and status
registers which are described in the corresponding section.

5.10.2 Defined CSRs

The following tables describe the currently defined CSRs, categorized by privilege level. The
usage of the CSRs below is implementation specific. CSRs are only accessible when operating
within a specific access mode (user mode, debug mode, supervisor mode, or machine mode).
Therefore, attempts to access a non-existent CSR raise an illegal instruction exception, and
attempts to access a CSR without appropriate privilege level or to write a read-only register also
raise illegal instruction exceptions.
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Number | Privilege | Name

| Description

User Trap Setup

0x000 RW ustatus User status register.
0x004 RW uie User interrupt-enable register.
0x005 RwW utvec User trap handler base address.
User Trap Handling
0x040 RW uscratch Scratch register for use trap handlers.
0x041 RW uepc User exception program counter.
0x042 RW ucause User trap cause.
0x043 RW ubadaddr User bad address.
0x044 RW uip User interrupt pending.
User Floating-Point CSRs
0x001 RW fflags Floating-Point Accrued Exceptions.
0x002 RwW frm Floating-Point Dynamic Rounding Mode.
0x003 RW fcsr Floating-Point Control and Status Register (frm +
fflags).
User Counter/Timers
0xCO0 RO cycle Cycle counter for RDCYCLE instruction.
oxCo1 RO time Timer for RDTIME instruction.
0xCO2 RO instret Instructions-retired counter for RDINSTRET
instruction.

0xCO3 RO hpmcounter3 | Performance-monitoring counter.
0xCo4 RO hpmcounter4 | Performance-monitoring counter.
OXC1F RO hpmcounter31 | Performance-monitoring counter.

Table 77: User Mode CSRs
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Number | Privilege | Name

| Description

Machine Information Registers

OxF11 RO mvendorid Vendor ID.
OxF12 RO marchid Architecture ID.
OxF13 RO mimpid Implementation ID.
OxF14 RO mhartid Hardware thread ID.
Machine Trap Setup

0x300 RwW mstatus Machine status register.
0x301 RwW misa ISA and extensions.
0x302 RW medeleg Machine exception delegation register.
0x303 RW mideleg Machine interrupt delegation register.
0x304 RW mie Machine interrupt-enable register.
0x305 RW mtvec Machine trap-handler base address.
0x306 RW mcounteren Machine counter enable.

Machine Trap Handling
0x340 RW mscratch Scratch register for machine trap handlers.
0x341 RW mepc Machine exception program counter.
0x342 RW mcause Machine trap cause.
0x343 RwW mtval Machine bad address or instruction.
0x344 RW mip Machine interrupt pending.

Machine Memory Protection
0x3A0 RW pmpcfgo Physical memory protection configuration.
0x3A1 RW pmpcfgl Physical memory protection configuration, RV32
only.
OX3A2 RW pmpcfg2 Physical memory protection configuration.
0x3A3 RW pmpcfg3 Physical memory protection configuration, RV32
only.

0x3B0 RW pmpaddroe Physical memory protection address register.
0x3B1 RW pmpaddri Physical memory protection address register.
Ox3BF RwW pmpaddri5s Physical memory protection address register.

Machine Counter/Timers
0xB0OO RW mcycle Machine cycle counter.
0xB0O2 RW minstret Machine instruction-retired counter.

Machine Counter Setup
0x320 RW mcountinhibit | Machine counter-inhibit register.
0x323 RW mhpmevent3 Machine performance-monitoring event selector.
0x324 RW mhpmevent4 Machine performance-monitoring event selector.
0x33F RW mhpmevent31 Machine performance-monitoring event selector.

Debugl/Trace Register (shared with Debug Mode)

OX7AO RW | tselect | Debug/Trace trigger register select.

Table 78: Machine Mode CSRs
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Number | Privilege | Name Description
Ox7A1 RW tdatail First Debug/Trace trigger data register.
OX7A2 RW tdata2 Second Debug/Trace trigger data register.
OX7A3 RwW tdata3 Third Debug/Trace trigger data register.
Table 78: Machine Mode CSRs
Number | Privilege | Name Description
0x7B0O RW dcsr Debug control and status register.
0x7B1 RW dpc Debug PC.
0Xx7B2 RwW dscratch | Debug scratch register.

21G3.02.00

Table 79: Debug Mode Registers

5.10.3 CSR Access Ordering

On a given hart, explicit and implicit CSR access are performed in program order with respect to
those instructions whose execution behavior is affected by the state of the accessed CSR. In
particular, a CSR access is performed after the execution of any prior instructions in program
order whose behavior modifies or is modified by the CSR state and before the execution of any
subsequent instructions in program order whose behavior modifies or is modified by the CSR
state.

Furthermore, a CSR read access instruction returns the accessed CSR state before the execu-
tion of the instruction, while a CSR write access instruction updates the accessed CSR state
after the execution of the instruction. Where the above program order does not hold, CSR
accesses are weakly ordered, and the local hart or other harts may observe the CSR accesses
in an order different from program order. In addition, CSR accesses are not ordered with respect
to explicit memory accesses, unless a CSR access modifies the execution behavior of the
instruction that performs the explicit memory access or unless a CSR access and an explicit
memory access are ordered by either the syntactic dependencies defined by the memory model
or the ordering requirements defined by the Memory-Ordering PMAs. To enforce ordering in all
other cases, software should execute a FENCE instruction between the relevant accesses. For
the purposes of the FENCE instruction, CSR read accesses are classified as device input (I), and
CSR write accesses are classified as device output (O). For more about the FENCE instruc-
tions, see Section 5.14. For CSR accesses that cause side effects, the above ordering con-
straints apply to the order of the initiation of those side effects but does not necessarily apply to
the order of the completion of those side effects.

5.10.4 SiFive RISC-V Implementation Version Registers

mvendorid

The value in mvendorid is 0x489, corresponding to SiFive’s JEDEC number.
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marchid

The value in marchid indicates the overall microarchitecture of the core and at SiFive we use
this to distinguish between core generators. The RISC-V standard convention separates
marchid into open-source and proprietary namespaces using the most-significant bit (MSB) of
the marchid register; where if the MSB is clear, the marchid is for an open-source core, and if
the MSB is set, then marchid is a proprietary microarchitecture. The open-source namespace is
managed by the RISC-V Foundation and the proprietary namespace is managed by SiFive.

SiFive’s E3 and S5 cores are based on the open-source 3/5-Series microarchitecture, which
has a Foundation-allocated marchid of 1. Our other generators are numbered according to the
core series.

Value Core Generator
0x8000_0007 | 6/7/P200/X200-Series Processor

Table 80: Core Generator Encoding of marchid

mimpid
The value in mimpid holds an encoded value that uniquely identifies the version of the generator

used to build this implementation. If your release version is not included in Table 81, contact
your SiFive account manager for more information.

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 94



SiFive S76-MC Core Complex Manual 21G3.02.00
Programmer’s Model

Value Generator Release Version
0x0000_0000 | Pre-19.02
0x2019_0228 | 19.02
0x2019_0531 | 19.05
0x2019_0919 | 19.08p0p0 / 19.08.00
0x2019_1105 | 19.08p1p0/19.08.01.00
0x2019_1204 | 19.08p2p0 / 19.08.02.00
0x2020_0423 | 19.08p3p0 / 19.08.03.00
0x0120_0626 | 19.08p4p0 / 19.08.04.00
0x0220_0515 | koala.00.00-preview and koala.01.00-preview
0x0220_0603 | koala.02.00-preview
0x0220_0630 | 20G1.03.00 / koala.03.00-general
0x0220_0710 | 20G1.04.00 / koala.04.00-general
0x0220_0826 | 20G1.05.00 / koala.05.00-general
0x0320_0908 | kiwi.00.00-preview
0x0220_1013 | 20G1.06.00 / koala.06.00-general
0x0220_1120 | 20G1.07.00 / koala.07.00-general
0x0421_0205 | llama.00.00-preview
0x0421_0324 | 21G1.01.00/ llama.01.00-general
0x0421_0427 | 21G1.02.00 / llama.02.00-general
0x0521_0528 | mongoose.00.00-preview
0x0521_0714 | 21G2.01.00 / mongoose.01.00-general
0x0521_1008 | 21G2.02.00 / mongoose.02.00-general
0x0621_1027 | narwhal.00.00-preview
0x0621_1203 | narwhal.01.00-preview
0x0621_1222 | 21G3.02.00 / narwhal.02.00-general

Table 81: Generator Release Encoding of mimpid

Reading Implementation Version Registers

To read the mvendorid, marchid, and mimpid registers, simply replace mimpid with mvendorid
or marchid as needed.

In C:

uintptr_t mimpid;
__asm__ volatile("csrr %0, mimpid" : "=r"(mimpid));

In Assembly:

csrr a5, mimpid
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5.10.5 Custom CSRs

SiFive implements some custom CSRs that are specific to the implementation. For these CSRs,
including the Feature Disable CSR, consider Chapter 6.

5.11 Base Counters and Timers

RISC-V ISAs provide a set of up to 32x64-bit performance counters and timers that are accessi-
ble via unprivileged 64-bit read-only CSR registers 0xC00-0xC1F. The first three of these
(CYCLE, TIME, and INSTRET) have dedicated functions; while the remaining counters, if imple-
mented, provide programmable event counting.

The S76-MC Core Complex implements mcycle, mtime, and minstret counters, which have
dedicated functions: cycle count, real-time clock, and instructions-retired, respectively. The timer
functionality is based on the mtime register. Additionally, the S76-MC Core Complex implements
event counters in the form of mhpmcounter, which is used to monitor user requested events.

31 20 19 15 14 12 11 7 6 0
l csr rsl ‘ funct3 ‘ rd ‘ opcode ‘
RDCYCLE[H] 0 CSRRS dest SYSTEM
RDTIME[H] 0 CSRRS dest SYSTEM
RDINSTRETI[H] 0 CSRRS dest SYSTEM

Figure 91: Timer and Counter Pseudoinstructions

Instruction Description

RDCYCLE rd Reads the64-bits of the cycle CSR which holds a count of the
number of clock cycles executed by the processor core on which
the hart is running from an arbitrary start time in the past.
RDTIME rd Generates an illegal instruction exception. The mtime register is
memory mapped to the CLINT register space and can be read
using a regular load instruction.

RDINSTRET rd Reads the64-bits of the instret CSR, which counts the number of
instructions retired by this hart from some arbitrary start point in
the past.

Table 82: Timer and Counter Pseudoinstruction Description

RDCYCLE, RDTIME, and RDINSTRET pseudoinstructions read the full 64 bits of the cycle,
time, and instret counters. The RDCYCLE pseudoinstruction reads the low 64-bits of the
cycle CSR (mcycle), which holds a count of the number of clock cycles executed by the proces-
sor core on which the hart is running from an arbitrary start time in the past. The RDTIME
pseudoinstruction reads the low 64-bits of the time CSR (mtime), which counts wall-clock real
time that has passed from an arbitrary start time in the past. The RDINSTRET pseudoinstruction
reads the low 64-bits of the instret CSR (minstret), which counts the number of instructions
retired by this hart from some arbitrary start point in the past The rate at which the cycle counter
advances is rtc_clock. To determine the current rate (cycles per second) of instruction execu-
tion, call the metal_timer_get_timebase_frequency API. The
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metal_timer_get_timebase_frequency and additional APIs are described in Section 5.11.2
below.

Number | Privilege | Name Description

0xCO0 RO cycle Cycle counter for RDCYCLE instruction

0xCo1 RO time Timer for RDTIME instruction

0XxCO2 RO instret | Instruction-retired counter for RDINSTRET instruction

Table 83: Timer and Counter CSRs

5.11.1 Timer Register

mtime is a 64-bit read-write register that contains the number of cycles counted from the
rtc_toggle signal described in the S76-MC Core Complex User Guide. On reset, mtime is
cleared to zero.

5.11.2 Timer API

The APIs below are used for reading and manipulating the machine timer. Other APlIs are
described in more detail within the Freedom Metal documentation. https://sifive.github.io/free-
dom-metal-docs/

Functions
int metal_timer_get_cyclecount(int hartid, unsigned long long *cyclecount)
Read the machine cycle count.

Return
0 upon success

Parameters
* hartid: The hart ID to read the cycle count of

» cyclecount: The variable to hold the value

int metal_timer_get_timebase_frequency(int hartid, unsigned long long *timebase)
Get the machine timebase frequency.

Return
0 upon success

Parameters
e hartid: The hart ID to read the cycle count of

e timebase: The variable to hold the value

intmetal_timer_set_tick(int hartid, int second)
Set the machine timer tick interval in seconds.
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Return
0 upon success

Parameters
* hartid: The hart ID to read the cycle count of

* second: The number of seconds to set the tick interval to

5.12 Privileged Instructions

The RISC-V architecture implements privileged instructions that can only be executed when the
S76-MC Core Complex is operating in a privileged mode. The SYSTEM major opcode is used
to encode all of the privileged instructions.

5.12.1 Machine-Mode Privileged Instructions

Environment Call and Breakpoint

These ECALL and EBREAK instructions cause a precise requested trap to the supporting exe-
cution environment. The ECALL instruction is used to make a service request to the execution
environment. The EBREAK instruction is used to return control to a debugging environment.

31 20 19 15 14 12 11 7 6 0
func‘t12. L | ) .rsll ) | fL.mct‘3 | ) .rd. ) | L opcoqe )
ECALL 0 PRIV 0 SYSTEM
EBREAK 0 PRIV 0 SYSTEM

Figure 92: ECALL and EBREAK Instructions

Trap-Return Instructions

To return after handling a trap, there are separate trap return instructions per privilege level:
MRET and SRET. MRET is always provided, while SRET is provided if the respective privilege
mode is supported. An XRET instruction can be executed in privilege mode x or higher, where
executing a lower-privilege XRET instruction will pop the relevant lower-privilege interrupt enable
and privilege mode stack.

In addition to manipulating the privilege stack, XRET instructions sets the pc to the value stored
in the corresponding xepc register.

Wait for Interrupt

The Wait for Interrupt (WFI) instruction provides a hint to the S76-MC Core Complex that the
current hart can be stalled until an interrupt might need servicing. Execution of the WFI instruc-
tion can also be used to inform the hardware platform that suitable interrupts should preferen-
tially be routed to this hart.
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31 2019 1514 1211 7 6 0
| .. . . functi2z | . rsl | funct3 | .o | ., oOpcode |
WFI 0 PRIV 0 SYSTEM
Figure 93: Wait for Interrupt Instruction

If an enabled interrupt is present or later becomes present while the hart is stalled, the interrupt
exception will be taken on the following instruction, i.e., execution resumes in the trap handler
and mepc = pc + 4. The WFI instruction can also be executed when interrupts are disabled. The
operation of WFI must be unaffected by the global interrupt bits in mstatus (MIE/SIE) (i.e., the
hart must resume if a locally enabled interrupt becomes pending), but should honor the individ-
ual interrupt enables (e.g., MTIE). WFI is also required to resume execution for locally enabled
interrupts pending at any privilege level, regardless of the global interrupt enable at each privi-
lege level. If the event that causes the hart to resume execution does not cause an interrupt to
be taken, execution will resume at pc + 4, and software must determine what action to take,
including looping back to repeat the WFI if there was no actionable event.

The suggested way to call WFI is inside an infinite loop as described below.

while (1) {
__asm__ volatile ("wfi");

}

In SiFive’s implementation of WFI, the WFI instruction is issued and the core goes into an inter-
nal clock gating state.

5.13 ABI - Register File Usage and Calling Conventions
RV64GC_Zba_Zbb_Sscofpmf has 32 x registers that are each 64 bits wide.
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Register | ABI Name | Description Saver
X0 zero Hard-wired zero -

x1 ra Return address Caller
X2 sp Stack pointer Callee
X3 gp Global pointer -

X4 tp Thread pointer -

x5 to Temporary / alternate link register Caller
X6-7 t1-2 Temporaries Caller
X8 s0/fp Saved-register / frame-pointer Callee
X9 sl Saved register Callee
x10-11 an-1 Function arguments / return values | Caller
x12-17 a2-7 Function arguments Caller
X18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

Floating-Point Registers

fo-7 fto-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f1e0-11 fao0-1 FP arguments / return values Caller
f12-17 fa2-7 FP arguments Caller
f18-27 fa2-11 FP saved registers Callee
f28-31 ftg-11 FP temporaries Caller

Table 84: RISC-V Registers

The programmer counter PC hold the address of the current instruction.

x1 / ra - holds the return address for a call.
x2 / sp - stack pointer, points to the current routine stack.
x8 / fp / s0 - frame pointer, points to the bottom of the top stack frame.

x3 / gp - global pointer, points into the middle of the global data section.

The common definition is: .data + 0x800. RISC-V immediate values are 12-bit signed val-
ues, which is +/- 2048 in decimal or +/- ©x800 in hex. So that global pointer relative
accesses can reach their full extent, the global pointer point + 8x800 into the data section.
The linker can then relax LUI+LW, LUI+SW into gp-relative LW or SW, i.e., shorter instruc-
tion sequences and access most global data using LW at gp +/- offset

LW t0 , 0x800(gp)
LW t1 , Ox7FF(gp)

x4 / tp - thread pointer, point to thread-local storage (TLS-mostly used in Linux and
RTOS).

If you create a variable in TLS, every thread has its own copy of the variable, i.e., changes
to the variable are local to the thread. This is a static area of memory that gets copied for
each thread in a program. It is also used to create libraries that have thread-safe functions,
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because of the fact that each call to a function has its copy of the same global data, so it's
safe.

5.13.1 RISC-V Assembly

RISC-V instructions have opcodes and operands.

E.g. add x1, x2, x3  #x1=x2 +x3

AR

Operation Destination  First operand Second operand Assembly comment
code (opcode) register register register character

Figure 94: RISC-V Assembly Example

Assembly C Description

add x1,x2,x3 a=b+c a=x1, b=x2, c=x3

sub x3, x4, x5 d=e - f d=x3, e=x4, f=x5

add x0,x0, x0 NOP Writes to x0 are always ignored

add x3,x4,x0 f=9q f=x3, g=x4

addi x3,x4,-10 f=g9 - 10 f=x3, g=x4

1w x10,12(x13) # 12 = 3x4 | int A[100]; Reg x10 gets A[3]

add x11,x12,x10 g =h + A[3]; g=x11, h=x12

1w x10,12(x13) # 12 = 3x4 | int A[100]; Reg x10 gets A[3]

add x10,x12,x10 A[10] = h + A[3]; | h=x12

sw x10,40(x13) # 40 = 10x4 Reg x10 gets h + A[3]
bne x13,x14, done if (i == j) f=x10, g=x11, h=x12, i=x13, j=x14
add x10,x11,x12 f =9+ h;

done:
bne x10,x14,else if (i == j) f=x10, g=x11, h=x12, i=x13, j=x14
add x10,x11,x12 f =9+ h;
j done else

else: sub x10,x11,x12 f=9 - h;

done:

Table 85: RISC-V Assembly and C Examples

5.13.2 Assembler to Machine Code

The following flowchart describes how the assembler converts the RISC-V assembly code to
machine code.
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Assembler source files

foo.S bar.S (text)

Y Y

Assembler converts
Assembler Assembler human readable
assembly code to
instruction bit patterns

Y \/

Machine code object

foo.o bar.o .
files

Pre-built object file

Linker lib.o . i
libraries

Machine code

a.out .
executable file

Figure 95: RISC-V Assembly to Machine Code
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One RISC-V Instruction = 32 hits

Figure 96: One RISC-V Instruction

5.13.3 Calling a Function (Calling Convention)

Put parameters in place where function can access them.
Transfer control to function.

Acquire local resources needed for function.

Perform function task.

o kr 0 Db PR

Place result values where calling code can access and restore any registers might have
used.

6. Return control to original caller.

Caller-saved The function invoked can do whatever it likes with the registers. Callee-saved If a
function wants to use registers it needs to store and restore them.

Take, for example, the following function:

int leaf(int g, int h, int i, int j) {
int f;
f = (g+h) - (i+]);
return f;
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In this function above, arguments are passed in a0, a1, a2 and a3. The return value is returned
in ao.

addi sp, sp, -8 # adjust stack for 2 items

sw sl, 4(sp) # save 1 for use afterwards

sw s0, 0(sp) # save sO for use afterwards

add s0,a0,al # s0 =g+ h

add sl1,a2,a3 # sl =1+

sub a0,s0,s1 # return value (g + h) - (i + j)
lw s0, 0(sp) # restore register sO for caller
lw s1, 4(sp) # restore register sl for caller
addi sl1, 4(sp) # adjust stack to delete 2 items
jr ra # jump back to calling routine

In the assembly above, notice that the stack pointer was decremented by 8 to make room to
save the registers. Also, s1 and s0 are saved and will be stored at the end.

Nested Functions

In the case of nested function calls, values held in a®-7 and ra will be clobbered.

Take, for example, the following function:

int sumSquare(int x, int y) {
return mult(x,x) + y;

}

In the function above, a function called sumSquare is calling mult. To execute the function,
there’s a value in ra that sumSquare wants to jump back to, but this value will be overwritten by
the call to mult.

To avoid this, the sumSquare return address must be saved before the call to mult. To save the
return address of sumSquare, the function can utilize stack memory. The user can use stack
memory to preserve automatic (local) variables that don't fit within the registers.
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\/

sp

\/

sp
Saved return
address (if needed)

Saved argument
registers (if any)

Saved saved
registers (if any)

Local variables (if
any)
sp

Before call During call After call

Figure 97: Stack Memory during Function Calls

Consider the assembly for sumSquare below:

sumSquare:

addi sp,sp, -8 # reserve space on stack
sw ra, 4(sp) # save return address
sw al, 0(sp) # save y

mv al,a0 # mult(x,x)

jal mult # call mult

lw al, 0(sp) # restore y

add a0,a0,al # mult()+y

lw ra, 4(sp) # get return address
addi sp,sp,8 # restore stack
mult:...

5.14 Memory Ordering - FENCE Instructions

In the RISC-V ISA, each thread, referred to as a hart, observes its own memory operations as if
they executed sequentially in program order. RISC-V also has a relaxed memory model, which
requires explicit FENCE instructions to guarantee the ordering of memory operations.

The FENCE instructions include FENCE and FENCE.I. The FENCE instruction simply ensures that
the memory access instructions before the FENCE instruction get committed before the FENCE
instruction is committed. It does not guarantee that those memory access instructions have
actually completed. For example, a load instruction before a FENCE instruction can commit with-
out waiting for its value to come back from the memory system. FENCE. I functions the same as
FENCE, as well as flushes the instruction cache.

For example, without FENCE instructions:

Hart 1 executes:
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Load X
Store Y
Store Z

Because of relaxed memory model, Hart 2 could see stores/loads arranged in any order:

Store Z
Load X
Store Y

With FENCE instructions:

Hart 1 executes:

Load X
Store Y
FENCE

Store Z

Hart 2 sees:

Store Y
Load X
Store Z

With FENCE instructions, Hart 2 is forced to see the Load X and the Store Y prior to the Store Z,
but could arbitrarily see Store Y before Load X or Load X before Store Y. Functionally, FENCE
instructions order the completion of older memory accesses prior to newer accesses. However,
unnecessary FENCE instructions slow processes and can hide bugs, so it is essential to identify
where and when FENCE should be used.

5.15 Boot Flow

This process is managed as part of the Freedom Metal source code. The freedom-metal boot
code supports single core boot or multi-core boot, and contains all the necessary initialization
code to enable every core in the system.

ENTRY POINT: File: freedom-metal/src/entry.S, label: _enter.

Write mtvec register with early_trap_vector as default exception handler.
Initialize global pointer gp register using the generated symbol __global_pointers.
Clear feature disable CSR 0x7c1.

Read mhartid into register ad and call _start, which exists in crt0.s.

We now transition to File: freedom-metal/gloss/crt0.S, label: _start.

N o o0~ w PR

Initialize stack pointer, sp, with _sp generated symbol. Harts with mhartid of one or larger
are offset by (_sp + __stack_size x mhartid). The __stack_size field is generated in the
linker file.
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9.
10.
11.
12.
13.

14,

15.
16.

17.

18.

Check if mhartid == __metal_boot_hart and run the init code if they are equal. All other
harts skip init and go to the Post-Init Flow, step #15.

Boot Hart Init Flow begins here.

Init data section to destination in defined RAM space.
Copy ITIM section, if ITIM code exists, to destination.
Zero out bss section.

Call atexit library function that registers the 1ibc and freedom-metal destructors to run
after main returns.

Call the __1ibc_init_array library function, which runs all functions marked with
__attribute__ ((constructor)).

a. For example, PLL, UART, hardware prefetcher, L2, L2 prefetcher, and/or L3, if they
exist in the design. This method provides full early initialization prior to entering the
main application. Prefetchers are initialized to a known value at startup, but not tuned
for any specific workload. Refer to the prefetcher software example that demonstrates
this tuning.

Post-Init Flow Begins Here.

Call the C routine __metal_synchronize_harts, where hart O will release all harts once
their individual msip bits are set. The msip bit is typically used to assert a software interrupt
on individual harts, however interrupts are not yet enabled, so msip in this case is used as
a gatekeeping mechanism.

Check misa register to see if floating-point hardware is part of the design, and set up
mstatus accordingly.

Single or multi-hart design redirection step.
a. If designis a single hart only, or a multi-hart design without a C-implemented function
secondary_main, ONLY the boot hart will continue to main().

b. For multi-hart designs, all other CPUs will enter sleep via WFI instruction via the weak
secondary_main label in crt0.s, while boot hart runs the application program.

c. In a multi-hart design which includes a C-defined secondary_main function, all harts
will enter secondary_main as the primary C function.

5.16 Linker File

The linker file generates important symbols that are used in the boot code. The linker file
options are found in the freedom-e-sdk/bsp path.

There are usually three different linker file options:

¢ metal.default.lds — Use flash and RAM sections
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 metal.ramrodata.lds — Place read only data in RAM for better performance

* metal.scratchpad.lds — Places all code + data sections into available RAM location
Each linker option can be selected by specifying LINK_TARGET on the command line.

For example:

make PROGRAM=hello TARGET=design-rtl CONFIGURATION=release LINK TARGET=scratchpad
software

The metal.default.1lds linker file is selected by default when LINK_TARGET is not specified. If
there is a scenario where a custom linker is required, one of the supplied linker files can be
copied and renamed and used for the build. For example, if a new linker file named
metal.newmap.lds was generated, this can be used at build time by specifying
LINK_TARGET=newmap on the command line.

5.16.1 Linker File Symbols

The linker file generates symbols that are used by the startup code, so that software can use
these symbols to assign the stack pointer, initialize or copy certain RAM sections, and provide
the boot hart information. These symbols are made visible to software using the PROVIDE key-
word.

For example:

__stack size = DEFINED(_ stack size) ?  stack size : 0x400;
PROVIDE( stack size = stack size);

Generated Linker Symbols

A description list of the generated linker symbols is shown below.

__metal_boot_hart
This is an integer number to describe which hart runs the main init flow. The mhartid CSR
contains the integer value for each hart. For example, hart 0 has mhartid==0, hart 1 has
mhartid==1, and so on. An assembly example is shown below, where a0 already contains
the mhartid value.

/* If we're not hart 0, skip the initialization work */

la t0, _ metal boot hart

bne a0, t0, skip init

An example on how to use this symbol in C code is shown below.

extern int  metal boot hart;
int boot hart = (int)& metal boot hart;

Additional linker file generated symbols, along with descriptions are shown below.
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__metal chicken_bit
Status bit to tell startup code to zero out the Feature Disable CSR. Details of this register
are internal use only.

__global_pointer$
Static value used to write the gp register at startup.

_sp
Address of the end of stack for hart 0, used to initialize the beginning of the stack since the
stack grows lower in memory. On a multi-hart system, the start address of the stack for
each hart is calculated using (_sp + __stack_size x mhartid)

metal_segment_bhss_target_start
metal_ segment_bss_target_end
Used to zero out global data mapped to .bss section.

* Only __metal_boot_hart runs this code.

metal_segment_data_source_start
metal_segment_data_target_start
metal_segment_data_target_end

Used to copy data from image to its destination in RAM.

e Only __metal_boot_hart runs this code.

metal_segment_itim_source_start
metal segment_itim_ target_start
metal_segment_itim_target_end
Code or data can be placed in itim sections using the
__attribute_ ((section(".itim"))).

« When this attribute is applied to code or data, the
metal_segment_itim_source_start, metal_segment_itim_target_start, and
metal_segment_itim_target_end symbols get updated accordingly, and these sym-
bols allow the startup code to copy code and data into the ITIM area.

o Only __metal_boot_hart runs this code.

Note

At the time of this writing, the boot flow does not support C++ projects
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5.17 RISC-V Compiler Flags

5.17.1 arch, abi, and mtune

RISC-V targets are described using three arguments:

1. -march=ISA: selects the architecture to target.
2. -mabi=ABI: selects the ABI to target.

3. -mtune=CODENAME: selects the microarchitecture to target.

-march

This argument controls which instructions and registers are available for the compiler, as
defined by the RISC-V user-level ISA specification.

The RISC-V ISA with 32, 32-bit integer registers and the instructions for multiplication would be
denoted as RV32IM. Users can control the set of instructions that GCC uses when generating
assembly code by passing the lower-case ISA string to the -march GCC argument; for example,
-march=rv32im. On RISC-V systems that don’t support particular operations, emulation rou-
tines may be used to provide the missing functionality.

Example:
double dmul(double a, double b) {
return a * b;

}

will compile directly to a FP multiplication instruction when compiled with the D extension:

$ riscv64-unknown-elf-gcc test.c -march=rv64imafdc -mabi=1p64d -o- -S -03
dmul:
fmul.d fa0@,fa0,fal
ret

but will compile to an emulation routine without the D extension:

$ riscv64-unknown-elf-gcc test.c -march=rv64i -mabi=1p64 -o- -S -03

dmul:
add sp,sp,-16
sd ra,8(sp)
call __muldf3
1d ra,8(sp)
add sp,sp, 16
jr ra

Similar emulation routines exist for the C intrinsics that are trivially implemented by the M and F
extensions.
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-mabi

-mabi selects the ABI to target. This controls the calling convention (which arguments are
passed in which registers) and the layout of data in memory. The -mabi argument to GCC spec-
ifies both the integer and floating-point ABIs to which the generated code complies. Much like
how the -march argument specifies which hardware generated code can run on, the -mabi
argument specifies which software-generated code can link against. We use the standard nam-
ing scheme for integer ABIs (i1p32 or 1p64), with an argumental single letter appended to
select the floating-point registers used by the ABI (i1p32 vs. i1p32f vs. i1p32d). In order for
objects to be linked together, they must follow the same ABI.

RISC-V defines two integer ABIs and three floating-point ABIs.
e ilp32:int, long, and pointers are all 32-bits long. long long is a 64-bit type, char is 8-bit,
and short is 16-bit.

e 1p64: long and pointers are 64-bits long, while int is a 32-bit type. The other types remain
the same as ilp32.

The floating-point ABIs are a RISC-V specific addition:

un

« " (the empty string): No floating-point arguments are passed in registers.

» f: 32-bit and smaller floating-point arguments are passed in registers. This ABI requires the
F extension, as without F there are no floating-point registers.

e d: 64-bit and smaller floating-point arguments are passed in registers. This ABI requires the
D extension.

arch/abi Combinations

* march=rv32imafdc -mabi=ilp32d: Hardware floating-point instructions can be generated
and floating-point arguments are passed in registers. This is like the -mfloat-abi=hard
argument for the Arm® architecture GCC.

e march=rv32imac -mabi=ilp32: No floating-point instructions can be generated and no
floating-point arguments are passed in registers. This is like the -mfloat-abi=soft argu-
ment for the Arm architecture GCC.

e march=rv32imafdc -mabi=ilp32: Hardware floating-point instructions can be generated,
but no floating-point arguments will be passed in registers. This is like the
-mfloat-abi=softfp argument for the Arm architecture GCC, and is usually used when
interfacing with soft-float binaries on a hard-float system.

e march=rv32imac -mabi=ilp32d: lllegal, as the ABI requires floating-point arguments are
passed in registers but the ISA defines no floating-point registers to pass them in.

Example:
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double dmul(double a, double b) {
return b * aj;

}

If neither the ABI nor ISA contains the concept of floating-point hardware then the C compiler
cannot emit any floating-point-specific instructions. In this case, emulation routines are used to
perform the computation and the arguments are passed in integer registers:

$ riscv64-unknown-elf-gcc test.c -march=rv32imac -mabi=ilp32 -o0- -S -03

dmul:
mv a4,a2
mv a5,a3
add sp,sp,-16
mv a2,al
mv a3,al
mv a0,ad
mv al,a5
sw ra,12(sp)
call __muldf3
lw ra,12(sp)
add sp,sp, 16
jr ra

The second case is the exact opposite of this one: everything is supported in hardware. In this
case we can emit a single fmul.d instruction to perform the computation.

$ riscv64-unknown-elf-gcc test.c -march=rv32imafdc -mabi=ilp32d -o- -S -03
dmul:
fmul.d fa0,fal,fad
ret

The third combination is for users who may want to generate code that can be linked with code
designed for systems that don’t subsume a particular extension while still taking advantage of
the extra instructions present in a particular extension. This is a common problem when dealing
with legacy libraries that need to be integrated into newer systems. For this purpose, the com-
piler arguments and multilib paths designed to cleanly integrate with this workflow. The gener-
ated code is essentially a mix between the two above outputs: the arguments are passed in the
registers specified by the i1p32 ABI (as opposed to the i1p32d ABI, which could pass these
arguments in registers) but then once inside the function the compiler is free to use the full
power of the RV32IMAFDC ISA to actually compute the result. While this is less efficient than
the code the compiler could generate if it was allowed to take full advantage of the D-extension
registers, it's a lot more efficient than computing the floating-point multiplication without the D-
extension instructions
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$ riscv64-unknown-elf-gcc test.c -march=rv32imafdc -mabi=ilp32 -o- -S -03

dmul:
add sp,sp,-16
sw a0,8(sp)
sw al,12(sp)
fld fa5,8(sp)
sw a2,8(sp)
sw a3,12(sp)
fld fa4,8(sp)
fmul.d fa5,fa5,fa4
fsd fa5,8(sp)
w a0,8(sp)
lw al,12(sp)
add sp,sp, 16
jr ra

5.18 Compilation Process

GCC driver script is actually running the preprocessor, then the compiler, then the assembler
and finally the linker. If the user runs GCC with the - -save-temps argument, several intermedi-
ate files will be generated.

$ riscv64-unknown-linux-gnu-gcc relocation.c -o relocation -03 --save-temps

e relocation.i: The preprocessed source, which expands any preprocessor directives
(things like #include or #ifdef).

* relocation.s: The output of the actual compiler, which is an assembly file (a text file in
the RISC-V assembly format).

e relocation.o: The output of the assembler, which is an un-linked obiject file (an ELF file,
but not an executable ELF).

¢ relocation: The output of the linker, which is a linked executable (an executable ELF file).

5.19 Large Code Model Workarounds

RISC-V software currently requires that linked symbols reside within a 32-bit range. There are
two types of code models defined for RISC-V, medlow and medany. The medany code model
generates auipc/ld pairs to refer to global symbols, which allows the code to be linked at any
address, while medlow generates lui/ld pairs to refer to global symbols, which restricts the code
to be linked around address zero. They both generate 32-bit signed offsets for referring to sym-
bols, so they both restrict the generated code to being linked within a 2 GiB window. When
building software, the code model parameter is passed into the RISC-V toolsuite and it defines a
method to generate the necessary instruction combinations to access global symbols within the
software program. This is done using -mcmodel=medany/medlow. For 32-bit architectures, we
use the medlow code model, while medany is used for 64-bit architectures. This is controlled
within the ‘setting.mk’ file in the freedom-e-sdk/bsp folder.

The real problem occurs when:
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1. Total program size exceeds 2 GiB, which is rare

2. When global symbols within a single compiled image are required to reside in a region out-
side of the 32-bit space

Example for symbols within 32-bit address space:

MEMORY

{

ram (wxa'!ri) : ORIGIN = 0x80000000, LENGTH = 0x4000

flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 0x1fc00000
}

Example for symbols outside 32-bit address space:

MEMORY

{

ram (wxa'!ri) : ORIGIN = 0x100000000, LENGTH = 0x4000 /* Updated ORIGIN from
0x80000000 */

flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 0x1fc00000

}

If a software example uses the above memory map, and uses either medlow or medany code
models, it will not link successfully. Generated errors will generally contain the following phrase:

relocation truncated to fit:

A workaround for the linker error “relocation truncated to fit:” is to use
LINK_TARGET=scratchpad since both the code and data sections get placed into the ram sec-
tion, as defined by the linker script. Note that this doesn’t always solve the problem, since some
designs do not have enough memory allocated to the ram section to fit the compiled software
example. To solve these cases, SiFive provides support for the compact code model.

5.19.1 RISC-V Code Model Summary

Medlow Medany Compact
Code Small Small Small
Data Small Small Small
Distance | < 4GB < 2GB (PC to GOT) | No limitation
Address | 4GB (absolute) | No limitation No limitation

Table 86: RISC-V Code Model Table

As shown in the above table, the compact code model option has no limits on the base address,
or the distance between, the code and data sections.

5.19.2 Enabling the Compact Code Model

To enable the large code model, follow the steps below:
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1. Enable compact code model in settings.mk file to use RISCV_CMODEL = compact instead of
RISCV_CMODEL = medany.

2. Update assembly files to use new instructions if __riscv_cmodel_compact is defined by
the toolsuite.

Update linker alignment.
Use the latest GCC+LLVM toolsuite from SiFive, starting with 2021.06.x.

Makefile Update

To enable the toolsuite to generate the proper code sequences for the compact code model, first
update settings.mk file, which can be found in the board support package (BSP) path, similar to
freedom-e-sdk/bsp/design-rtl.

Change: RISCV_CMODEL = medany => RISCV_CMODEL = compact

The RISCV_CMODEL definition gets passed into the toolsuite using the -mcmodel switch.

Note

For 32-bit designs, which do not require the use of the compact code model, you will find
RISCV_CMODEL = medlow in settings.mk.

This -mcmodel=compact option will enable the symbol __riscv_cmodel_compact to be visible
within the code, and can be used to determine the correct code sequences to use within assem-
bly files.

Assembly File Updates
Assembly files may need to be hand-edited to support the compact code model if they reference
a global symbol. The following freedom-metal source files now support the compact code model
option:

1. freedom-metal/src/entry.S

2. freedom-metal/src/scrub.S

3. freedom-metal/gloss/crt0.S

Linker Alignment

The global pointer alignment is required to be: PROVIDE( _ global_pointer$ = ALIGN . +
0x800 ), 16;

See metal.default.lds, or the *.Ids you plan to use.
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5.20 Pipeline Hazards

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions
may be scheduled to avoid stalls.

5.20.1 Read-After-Write Hazards

Read-after-Write (RAW) hazards occur when an instruction tries to read a register before a pre-
ceding instruction tries to write to it. This hazard describes a situation where an instruction
refers to a result that has not been calculated or retrieved. This situation is possible because
even though an instruction was executed after a prior instruction, the prior instruction may only
have processed partly through the core pipeline.

Example:

e Instruction 1: x1 + x3is saved in x2

* Instruction 2: x2 + x3is saved in x4

The first instruction is calculating a value (x1 + x3) to be saved in x2. The second instruction is
going to use the value of x2 to compute a result to be saved in x4. However, in the core
pipeline, when operations are fetched for the second operation, the results from the first opera-
tion have not yet been saved.

5.20.2 Write-After-Write Hazards

Write-after-write (WAW) hazards occur when an instruction tries to write an operand before it is
written by a preceding instruction.

Example:

¢ Instruction 1: x4 + x7 is saved in x2

* Instruction 2: x1 + x3is saved in x2
Write-back of instruction 2 must be delayed until instruction 1 finishes executing.

In general, MMIO accesses stall when there is a hazard on the result caused by either RAW or
WAW. So, instructions may be scheduled to avoid stalls.

5.21 Reading CSRs

There are several methods for reading the CSRs that are implemented in the S76-MC Core
Complex. A full list of the defined RISC-V CSRs are described in Section 5.10.2.

1. Inline assembly using csrr instruction and the register name. For example, reading the
misa CSR:

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 116



SiFive S76-MC Core Complex Manual 21G3.02.00
Programmer’s Model

int misa;
__asm__ volatile("csrr %0, misa" : "=r" (misa));

2. Using the Freedom Metal APl METAL_CPU_GET_CSR. Again, reading the misa CSR:

int misa value;
METAL CPU GET CSR(misa,misa value);

In the second method, the first argument is the register name and the second is the vari-
able to store the result in.

Both inline assembly and Freedom Metal APl methods can receive the CSR number instead of
its name. For example:

int mscratch;
METAL CPU GET CSR(0x340, mscratch value); // reading mscratch csr

Note

Accessing CSRs has to be according to the privilege level you are in. Attempting to access
a CSR in a privilege level higher than the current level of operation will result in an
exception.

To access a privileged CSR, the user must switch to the appropriate privilege level. This can be
done using the following Freedom Metal API:

metal privilege drop to mode(METAL PRIVILEGE USER,
my regfile,
user_mode _entry point);

The Freedom Metal API routines and more examples located in freedom-e-sdk/software direc-
tory.
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Chapter 6

Custom Instructions and CSRs

This chapter describes some of the custom instructions and CSRs configured in the S76-MC
Core Complex.

6.1 SiFive Custom Instructions

These custom instructions use the SYSTEM instruction encoding space, which is the same as the
custom CSR encoding space, but with funct3=0.

6.1.1 CFLUSH.D.L1

Implemented as state machine in L1 data cache, for cores with data caches.

Only available in M-mode. Execution from modes other than M-mode raises an illegal-
instruction exception.

Opcode 0xFCO00073, with optional rs1 field in bits [19:15].
When rs1 = x0, CFLUSH.D.L1 writes back and invalidates all lines in the L1 data cache.

When rs1 # x0, CFLUSH.D.L1 writes back and invalidates the L1 data cache line contain-
ing the virtual address in integer register rsi.

If the effective privilege mode does not have write permissions to the address in rs1, then
a store access or store page-fault exception is raised.

If the address in rs1 is in an uncacheable region with write permissions, the instruction has
no effect but raises no exceptions.

If the address in rs1 is in an uncacheable region, cache line misaligned accesses may
raise an access exception.

Note that if the PMP scheme write-protects only part of a cache line, then using a value for
rsi in the write-protected region will cause an exception, whereas using a value for rs1 in
the write-permitted region will write back the entire cache line.

6.1.2 CDISCARD.D.L1

Implemented as state machine in L1 data cache, for cores with data caches.
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Only available in M-mode. Execution from modes other than M-mode raises an illegal-
instruction exception.

Opcode 0xFC200073, with optional rs1 field in bits [19:15].

When rs1 = x0, CDISCARD.D. L1 invalidates, but does not write back, all lines in the L1
data cache. Dirty data within the cache is lost.

When rs1 # x0, CDISCARD.D. L1 invalidates, but does not write back, the L1 data cache
line containing the virtual address in integer register rsi. Dirty data within the cache line is
lost.

If the effective privilege mode does not have write permissions to the address in rs1i, then
a store access or store page-fault exception is raised.

If the address in rs1 is in an uncacheable region with write permissions, the instruction has
no effect but raises no exceptions.

If the address in rs1 is in an uncacheable region, cache line misaligned accesses may
raise an access exception.

Note that if the PMP scheme write-protects only part of a cache line, then using a value for
rsi in the write-protected region will cause an exception, whereas using a value for rs1 in
the write-permitted region will invalidate and discard the entire cache line.

6.1.3 CEASE

Privileged instruction only available in M-mode.
Opcode 0x30500073.
After retiring CEASE, hart will not retire another instruction until reset.

Instigates power-down sequence, which will eventually raise the cease_from_tile_N sig-
nal to the outside of the Core Complex, indicating that it is safe to power down.

CEASE has no effect on System Bus Access.

Debug haltreq will not work after a CEASE instruction has retired.

6.1.4 PAUSE

Opcode 0x0100000F, which is a FENCE instruction with predecessor set W and null succes-
sor set. Therefore, PAUSE is a HINT instruction that executes as a no-op on all RISC-V
implementations.

This instruction may be used for more efficient idling in spin-wait loops.

This instruction causes a stall of up to 32 cycles or until a cache eviction occurs, whichever
comes first.
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6.2 SiFive Custom CSRs

These custom CSRs use the custom CSR encoding space. Refer to Appendix C for an exhaus-
tive list of the custom CSRs available on the S76-MC Core Complex.

6.2.1 Branch Prediction Mode CSR

This SiFive custom extension adds an M-mode CSR to control the current branch prediction
mode, mbpm at CSR 0x7C0.

The S76-MC Core Complex’s branch prediction system includes a Return Address Stack (RAS),
a Branch Target Buffer (BTB), and a Branch History Table (BHT). While branch predictors are
essential to achieve high performance in pipelined processors, they can also cause undesirable
timing variability for hard real-time systems. The mbpm register provides a means to customize
the branch predictor behavior to trade average performance for a more predictable execution
time.

Branch Prediction Mode CSR
CSR 0Xx7CO
Bits Field Name Attr. Rst. Description
0 static RwW 0x0 Branch-Direction Prediction
[7:1] Reserved RO 0x0

Table 87: Branch Prediction Mode CSR

The static bit determines the value returned by the BHT component of the branch prediction
system. A zero value indicates dynamic direction prediction, and a non-zero value indicates sta-
tic-taken direction prediction. The BTB is cleared on any write to static, and the RAS is unaf-
fected by writes to static.

6.2.2 SiFive Feature Disable CSR

The SiFive custom M-mode Feature Disable CSR is provided to enable or disable certain
microarchitectural features. In the S76-MC Core Complex, CSR 0x7C1 has been allocated for
this purpose. These features are described in Table 88.

Warning

The features that can be controlled by this CSR are subject to change or removal in future
releases. It is not advised to depend on this CSR for development.

A feature is fully enabled when the associated bit is zero. If a particular core does not support
the disabling of a feature, the corresponding bit is hardwired to zero.
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On reset, all implemented bits are set to 1, disabling all features. The bootloader is responsible
for turning on all required features and can simply write zero to turn on the maximal set of fea-
tures. SiFive’'s Freedom Metal bootloader handles turning on these features; when using a cus-
tom bootloader, clearing the Feature Disable CSR must be implemented.

Note that arbitrary toggling of the Feature Disable CSR bits is neither recommended nor sup-
ported; they are only intended to be set from 1 to 0. A particular Feature Disable CSR bit is only
to be used in a very limited number of situations, as detailed in the Example Usage entry in
Table 89.

SiFive Feature Disable CSR
CSR 0x7C1
Bits Field Name Attr. Rst. Description
0 disableDCacheClockGate RW 0x1 Disable data cache clock gating
1 disableICacheClockGate RW 0x1 Disable instruction cache clock gating
2 disableCoreClockGate RW 0x1 Disable core clock gating
3 disableSpeculativeICacheRefill RW 0x1 Disable speculative instruction cache
refill
[6:4] Reserved RO 0x0
7 disableTileClockGate RW 0x1 Disable tile clock gating
8 Reserved RO 0x0
9 suppressCorruptOnGrantData RW 0x1 Suppress corrupt signal on GrantData
messages
[15:10] Reserved RO 0x0
16 branchpredicationdisable RW 0x1 Disable short forward branch
optimization
17 prefetchdisable RW 0x1 Disable instruction cache next-line
prefetcher
[31:18] Reserved RO 0x0

Table 88: SiFive Feature Disable CSR
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Feature Disable CSR Usage

Bit | Description | Usage
3 | Disable speculative instruction cache refill

Example Usage
A particular integration might require that execution from the System Port range be
disallowed. Startup code would first configure PMP to prevent execution from the
System Port range, followed by clearing bit 3 of the Feature Disable CSR. This
would enable speculative instruction cache refill accesses, without allowing those
to access the System Port range because PMP would prohibit such accesses.

9 | Suppress corrupt signal on GrantData messages

Example Usage 1
When running in debug mode on configurations having both ECC and a BEU,
setting bit 9 of the Feature Disable CSR will suppress debug mode errors.

Example Usage 2
Startup code could scrub errors present in RAMs at power-on, followed by clearing
bit 9 of the Feature Disable CSR to allow normal operation.

Table 89: SiFive Feature Disable CSR Usage

6.2.3 Power Dial CSR

The Power Dial CSR, at 0x7C8, provides a method of scaling down dynamic power in a core in
order to limit maximum power without frequency changes. This CSR is further described in Sec-
tion 13.2.1.

6.3 Other Custom Instructions and CSRs

Other custom instructions and CSRs may be implemented, but their functionality is not docu-
mented further here, and they should not be used in this version of the S76-MC Core Complex.
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Chapter 7

Interrupts and Exceptions

This chapter describes how interrupt and exception concepts in the RISC-V architecture apply
to the S76-MC Core Complex.

7.1 Interrupt Concepts

Interrupts are asynchronous events that cause program execution to change to a specific loca-
tion in the software application to handle the interrupting event. When processing of the interrupt
is complete, program execution resumes back to the original program execution location. For
example, a timer that triggers every 10 milliseconds will cause the CPU to branch to the inter-
rupt handler, acknowledge the interrupt, and set the next 10 millisecond interval.

The S76-MC Core Complex supports machine mode interrupts.

The Core Complex also has support for the following types of RISC-V interrupts: local and
global. Local interrupts are signaled directly to an individual hart with a dedicated interrupt
exception code and fixed priority. This allows for reduced interrupt latency as no arbitration is
required to determine which hart will service a given request and no additional memory
accesses are required to determine the cause of the interrupt. Software and timer interrupts are
local interrupts generated by the Core-Local Interruptor (CLINT). The S76-MC Core Complex
contains no other local interrupt sources.

Global interrupts are routed through a Platform-Level Interrupt Controller (PLIC), which can
direct interrupts to any hart in the system via the external interrupt. Decoupling global interrupts
from the harts allow the design of the PLIC to be tailored to the platform, permitting a broad
range of attributes like the number of interrupts and the prioritization and routing schemes.

Chapter 8 describes the CLINT. Chapter 9 describes the global interrupt architecture and the
PLIC design.

7.2 Exception Concepts

Exceptions are different from interrupts in that they typically occur synchronously to the instruc-
tion execution flow, and most often are the result of an unexpected event that results in the pro-
gram to enter an exception handler. For example, if a hart is operating in supervisor mode and

attempts to access a machine mode only Control and Status Register (CSR), it will immediately

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 123



SiFive S76-MC Core Complex Manual 21G3.02.00
Interrupts and Exceptions

enter the exception handler and determine the next course of action. The exception code in the
mstatus register will hold a value of 0x2, showing that an illegal instruction exception occurred.
Based on the requirements of the system, the supervisor mode application may report an error
and/or terminate the program entirely.

There are no specific enable bits to allow exceptions to occur since they are always enabled by
default. However, early in the boot flow, software should set up mtvec.BASE to a defined value,
which contains the base address of the default exception handler. All exceptions will trap to
mtvec.BASE. Software must read the mcause CSR to determine the source of the exception,
and take appropriate action.

Synchronous exceptions that occur from within an interrupt handler will immediately cause pro-
gram execution to abort the interrupt handler and enter the exception handler. Exceptions within
an interrupt handler are usually the result of a software bug and should generally be avoided
since mepc and mcause CSRs will be overwritten from the values captured in the original inter-
rupt context.

The RISC-V defined synchronous exceptions have a priority order which may need to be con-
sidered when multiple exceptions occur simultaneously from a single instruction. Table 90
describes the synchronous exception priority order.

Priority Exception Code Description
Highest 3 | Instruction address breakpoint
12 | Instruction page fault
1 | Instruction access fault
2 | lllegal instruction
0 | Instruction address misaligned
8,9, 11 | Environment call
3 | Environment break
3 | Load/Store/AMO address breakpoint
6 | Store/AMO address misaligned
4 | Load address misaligned
15 | Store/AMO page fault
13 | Load page fault
7 | Store/AMO access fault
5 | Load access fault

Lowest

Table 90: Exception Priority

Refer to Table 98 for the full list of exception codes.

Data address breakpoints (watchpoints), Instruction address breakpoints, and environment
break exceptions (EBREAK) all have the same exception code (3), but different priority, as shown
in the table above.
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Instruction address misaligned exceptions (0) have lower priority than other instruction address
exceptions because they are the result of control-flow instructions with misaligned targets,
rather than from instruction fetch.

Some of the helpful CSRs for debugging exceptions and interrupts are described below:

CSR Description
exception | SiFive Scope signal. Indicates the moment that an exception occurs in the
write-back (commit) stage.

mcause Contains the cause value of the exception/interrupt. See Section 7.7.5 for more
description.

mepc Contains the pc where the exception occurs.

mtval If the cause is a load/store fault, this register has the value of the problematic

address. If it is an invalid instruction, it provides the instruction that the core
tried to execute.

mstatus Contains the interrupt enables, privilege modes, and general status of
execution. See Section 7.7.1 for more description.
mtvec Contains the vector that the core will jump to when an exception occurs. If this

is not a valid executable value, you may get a double exception when jumping
to the exception handler, so it is important to look at all these registers when the
exception FIRST occurs. See Section 7.7.2 for more description.

Table 91: Summary of Exception and Interrupt CSRs

7.3 Trap Concepts

The term trap describes the transfer of control in a software application, where trap handling
typically executes in a more privileged environment. For example, a particular hart contains
three privilege modes: machine, supervisor, and user. Each privilege mode has its own software
execution environment including a dedicated stack area. Additionally, each privilege mode con-
tains separate control and status registers (CSRs) for trap handling. While operating in user
mode, a context switch is required to handle an event in supervisor mode. The software sets up
the system for a context switch and then an ECALL instruction is executed, which synchro-
nously switches control to the environment-call-from-user-mode exception handler.

The default mode out of reset is machine mode. Software begins execution at the highest privi-
lege level, which allows all CSRs and system resources to be initialized before any privilege
level changes. The steps below describe the required steps necessary to change privilege
mode from machine to user mode, on a particular design that also includes supervisor mode.

1. Interrupts should first be disabled globally by writing mstatus.MIE to O, which is the default
reset value.

2. Write mtvec CSR with the base address of the machine mode exception handler. This is a
required step in any boot flow.

3. Write mstatus.MPP to O to set the previous mode to user, which allows us to return to that
mode.
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4. Setup the Physical Memory Protection (PMP) regions to grant the required regions to user
and supervisor mode, and optionally, revoke permissions from machine mode.

5. Write stvec CSR with the base address of the supervisor mode exception handler.

6. Write medeleg register to delegate exceptions to supervisor mode. Consider ECALL and
page fault exceptions.

7. Write mstatus.FS to enable floating-point (if supported).
8. Store machine mode user registers to stack or to an application-specific frame pointer.
9. Write mepc with the entry point of user mode software

10. Execute mret instruction to enter user mode.

Note

There is only one set of user registers (x1-x31) that are used across all privilege levels, so
application software is responsible for saving and restoring state when entering and exiting
different levels.

7.4 Interrupt Block Diagram

The S76-MC Core Complex interrupt architecture is depicted in Figure 98.
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Figure 98: S76-MC Core Complex Interrupt Architecture Block Diagram

7.5 Local Interrupts

Software interrupts (Interrupt ID #3) are triggered by writing the memory-mapped interrupt pend-
ing register msip for a particular hart. Other harts are able to write msip to trigger a software
interrupt on any other hart in the S76-MC Core Complex. This allows for efficient interprocessor
communication. The msip register is described in Table 96.

Timer interrupts (Interrupt ID #7) are triggered when the memory-mapped register mtime is
greater than or equal to the global timebase register mtimecmp, and both registers are part of
the CLINT memory map. mtimecmp can be written by other harts to set up timer interrupts. The
mtime and mtimecmp registers are generally only available in machine mode, unless the PMP
grants user mode access to the memory-mapped region in which they reside.

Global interrupts are usually first routed to the PLIC, then into the hart using external interrupts
(Interrupt ID #11).
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7.6 Interrupt Operation

If the global interrupt-enable mstatus.MIE is clear, then no interrupts will be taken. If
mstatus.MIE is set, then pending-enabled interrupts at a higher interrupt level will preempt cur-
rent execution and run the interrupt handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode is modified to reflect
the new privilege mode. The global interrupt-enable bit of the handler’s privilege mode is
cleared.

7.6.1 Interrupt Entry and Exit
When an interrupt occurs:
» The value of mstatus.MIE is copied into mcause.MPIE, and then mstatus.MIE is cleared,
effectively disabling interrupts.
« The privilege mode prior to the interrupt is encoded in mstatus.MPP.
* The current pc is copied into the mepc register, and then pc is set to the value specified by
mtvec as defined by the mtvec.MODE described in Table 94.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.
When an mret instruction is executed, the following occurs:

« The privilege mode is set to the value encoded in mstatus.MPP.

» The global interrupt enable, mstatus.MIE, is set to the value of mcause.MPIE.

* The pc is set to the value of mepc.
At this point, control is handed over to software.

At the software level, interrupt attributes can be applied to interrupt processing functions, as
described in Section 8.4.

The Control and Status Registers (CSRs) involved in handling RISC-V interrupts are described
in Section 7.7.

7.7 Interrupt Control and Status Registers

The S76-MC Core Complex specific implementation of interrupt CSRs is described below. For a
complete description of RISC-V interrupt behavior and how to access CSRs, please consult The
RISC-V Instruction Set Manual, Volume Il: Privileged Architecture, Version 1.11.
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7.7.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including
whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in
the S76-MC Core Complex is provided in Table 92. Note that this is not a complete description
of mstatus as it contains fields unrelated to interrupts. For the full description of mstatus,
please consult The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version
1.11.

Machine Status Register (mstatus)
CSR 0x300
Bits Field Name Attr. Description
[2:0] Reserved WPRI
3 MIE RwW Machine Interrupt Enable
[6:4] Reserved WPRI
7 MPIE RW Machine Previous Interrupt Enable
[10:8] Reserved WPRI
[12:11] MPP[1:0] RW Machine Previous Privilege Mode

Table 92: Machine Status Register (partial)

Interrupts are enabled by setting the MIE bit in mstatus. Prior to writing mstatus.MIE=1, itis
recommended to first enable interrupts in mie.

7.7.2 Machine Trap Vector (mtvec)

The mtvec register has two main functions: defining the base address of the trap vector, and
setting the mode by which the S76-MC Core Complex will process interrupts. For Direct and
Vectored modes, the interrupt processing mode is defined in the MODE field of the mtvec register.
The mtvec register is described in Table 93, and the mtvec .MODE field is described in Table 94.

Machine Trap Vector Register (mtvec)

CSR 0x305
Bits Field Name Attr. Description
[1:0] MODE WARL MODE Sets the interrupt processing mode.

The encoding for the S76-MC Core Complex
supported modes is described in Table 94.
[63:2] BASE[63:2] WARL Interrupt Vector Base Address.

Operating in Direct Mode requires 4-byte
alignment.

Operating in Vectored Mode requires
256-byte alignment.

Table 93: Machine Trap Vector Register
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MODE Field Encoding mtvec . MODE

Value Mode Description
0x0 Direct All asynchronous interrupts and synchronous
exceptions set pc to BASE.
Ox1 Vectored Exceptions set pc to BASE, interrupts set pc to BASE
+ 4 x mcause.EXCCODE.
>0x2 Reserved

Table 94: Encoding of mtvec.MODE

Mode Direct

When operating in direct mode, all interrupts and exceptions trap to the mtvec.BASE address.
Inside the trap handler, software must read the mcause register to determine what triggered the
trap. The mcause register is described in Table 97.

When operating in Direct Mode, BASE must be 4-byte aligned.

Mode Vectored

While operating in vectored mode, interrupts set the pc to mtvec.BASE + 4 x exception code
(mcause .EXCCODE). For example, if a machine timer interrupt is taken, the pc is set to
mtvec.BASE + 0x1C. Typically, the trap vector table is populated with jump instructions to trans-
fer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 256-byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code 11. Thus, when
interrupt vectoring is enabled, the pc is set to address mtvec.BASE + 0x2C for any global inter-
rupt.

7.7.3 Machine Interrupt Enable (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-
ter is described in Table 95.
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Machine Interrupt Enable Register (mie)
CSR 0x304
Bits Field Name Attr. Description
[2:0] Reserved WPRI
3 MSIE RW Machine Software Interrupt Enable
[6:4] Reserved WPRI
7 MTIE RW Machine Timer Interrupt Enable
[10:8] Reserved WPRI
11 MEIE RW Machine External Interrupt Enable
[63:12] Reserved WPRI

Table 95: Machine Interrupt Enable Register

7.7.4 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.
The mip register is described in Table 96.

Machine Interrupt Pending Register (mip)
CSR 0x344
Bits Field Name Attr. Description
[2:0] Reserved WIRI
3 MSIP RO Machine Software Interrupt Pending
[6:4] Reserved WIRI
7 MTIP RO Machine Timer Interrupt Pending
[10:8] Reserved WIRI
11 MEIP RO Machine External Interrupt Pending
[63:12] Reserved WIRI

Table 96: Machine Interrupt Pending Register

7.7.5 Machine Cause (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that
caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of
mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same
encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to
be set to 6x8000_0000_0000_0007. mcause is also used to indicate the cause of synchronous
exceptions, in which case the most-significant bit of mcause is set to 0.

See Table 97 for more details about the mcause register. Refer to Table 98 for a list of synchro-
nous exception codes.
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Machine Cause Register (mcause)

CSR 0x342

Bits Field Name Attr. Description

[9:0] EXCCODE WLRL A code identifying the last exception.

[62:10] Reserved WLRL
63 Interrupt WARL 1, if the trap was caused by an interrupt; 0
otherwise.
Table 97: Machine Cause Register
Interrupt Exception Code Description
1 0-2 | Reserved
1 3 | Machine software interrupt
1 4-6 | Reserved
1 7 | Machine timer interrupt
1 8-10 | Reserved
1 11 | Machine external interrupt
1 12-13 | Reserved
1 14 | Debug interrupt
1 >15 | Reserved
0 0 | Instruction address misaligned
0 1 | Instruction access fault
0 2 | lllegal instruction
0 3 | Breakpoint
0 4 | Load address misaligned
0 5 | Load access fault
0 6 | Store/AMO address misaligned
0 7 | Store/AMO access fault
0 8 | Environment call from U-mode
0 9-10 | Reserved
0 11 | Environment call from M-mode
0 12-13 | Reserved
0 14 | Debug exception
0 215 | Reserved
Table 98: mcause Exception Codes

Note that there are scenarios where a misaligned load or store will generate an access excep-
tion instead of an address-misaligned exception. The access exception is raised when the mis-
aligned access should not be emulated in a trap handler, e.g., emulating an access in an 1/0
region, as such emulation could cause undesirable side-effects.

7.7.6 Minimum Interrupt Configuration

The minimum configuration needed to configure an interrupt is shown below.
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« Write mtvec to configure the interrupt mode and the base address for the interrupt vector
table.

« Enable interrupts in memory-mapped PLIC register space. The CLINT does not contain
interrupt enable bits.

« Write mie CSR to enable the software, timer, and external interrupt enables for each privi-
lege mode.

» Write mstatus to enable interrupts globally for each supported privilege mode.

7.8 Interrupt Priorities

Individual priorities of global interrupts are determined by the PLIC, as discussed in Chapter 9.
S76-MC Core Complex interrupts are prioritized as follows, in decreasing order of priority:

¢ Machine external interrupts
« Machine software interrupts

¢ Machine timer interrupts

7.9 Interrupt Latency

Interrupt latency for the S76-MC Core Complex is four external_source_for_core_N_clock
cycles, as counted by the number of cycles it takes from signaling of the interrupt to the hart to
the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of three clock cycles, where
the PLIC is clocked by clock. This means that the total latency, in cycles, for a global interrupt
is: 4 + 3 x (external_source_for_core_N_clock Hz + clock Hz). This is a best-case cycle
count and assumes the handler is cached or located in ITIM. It does not take into account addi-
tional latency from a peripheral source.

7.10 Non-Maskable Interrupt

The rnmi (resumable non-maskable interrupt) interrupt signal is a level-sensitive input to the
hart. Non-maskable interrupts have higher priority than any other interrupt or exception on the
hart and cannot be disabled by software. Specifically, they are not disabled by clearing the
mstatus.mie register.

7.10.1 Handler Addresses

The NMI has an associated exception trap handler address. This address is set by external
input signals, described in the S76-MC Core Complex User Guide.
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7.10.2 RNMI CSRs

These M-mode CSRs enable a resumable non-maskable interrupt (RNMI).

Number | Name Description
0x350 | mnscratch | Resumable Non-maskable scratch register
0x351 | mnepc Resumable Non-maskable EPC value
0x352 | mncause Resumable Non-maskable cause value
0x353 | mnstatus | Resumable Non-maskable status

Table 99: RNMI CSRs

e The mnscratch CSR holds a 64-bit read-write register, which enables the NMI trap handler
to save and restore the context that was interrupted.

e The mnepc CSR is a 64-bit read-write register, which, on entry to the NMI trap handler,
holds the PC of the instruction that took the interrupt. The lowest bit of mnepc is hardwired
to zero.

* The mncause CSR holds the reason for the NMI, with bit 63 set to 1, and the NMI cause
encoded in the least-significant bits, or zero if NMI causes are not supported. The lower
bits of mncause, defined as the exception_code, are as follows:

mncause | NMI Cause Function
1 Reserved Reserved
2 RNMI input pin | External rnmi_N input
3 Reserved Reserved

Table 100: mncause.exception_code Fields

* The mnstatus CSR holds a two-bit field mnpp encoded in the same manner as
mstatus.mpp, which, on entry to the trap handler, holds the privilege mode of the inter-
rupted context.

* mnstatus also hold the one-bit field mnie indicating whether NMls are currently enabled.

This bit can only be cleared by hardware, but can be set by software to indicate a further
NMI can be taken.

Bits | Field Name | Description
3 mnie RMNI interrupt enable
7 mnpv Hardwired to zero
12:11 | mnpp RMNI previous priority level

Table 101: mnstatus CSR Fields
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7.10.3 MNRET Instruction

This M-mode only instruction uses the values in mnepc and mnstatus to return to the program
counter and privileged mode of the interrupted context. This instruction also sets the internal
rnmie state bits.

Encoding is same as MRET except with bit 30 set (i.e., funct7=0111000). For example:

.word 0x70200073 // opcode for MNRET (return from RNMI)

7.10.4 RNMI Operation

When an RNMI interrupt is detected, the interrupted PC is written to the mnepc CSR, the type of
RNMI to the mncause CSR, and the privilege mode of the interrupted context to the mnstatus
CSR. An internal microarchitectural state bit, rnmie, is cleared to indicate that the processor is
in an RNMI handler and cannot take a new RNMI interrupt. When clear, the internal rnmie bit
also disables all other interrupts.

Note

These interrupts are called non-maskable because software cannot mask the interrupts.
However, for correct operation, other instances of the same interrupt must be held off until
the handler is completed, hence the internal state bit.

The RNMI handler can resume original execution using the MNRET instruction (described in
Section 7.10.3), which restores the PC from mnepc, the privilege mode from mnstatus, and also
sets the internal rnmie state bit, which re-enables other interrupts.

If the hart encounters an exception while the rnmie bit is clear, the exception state is written to
mepc and mcause, mstatus.mpp is set to M-mode, and the hart jumps to the RNMI exception
handler address.

Note

Traps in the RNMI handler can only be resumed if they occur while the handler was
servicing an interrupt that occurred outside of machine mode.
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Chapter 8

Core-Local Interruptor (CLINT)

This chapter describes the operation of the Core-Local Interruptor (CLINT). The S76-MC Core
Complex CLINT complies with The RISC-V Instruction Set Manual, Volume II: Privileged Archi-
tecture, Version 1.11.

5 HART 0

CLINT

Software Interrupt, ID: 3
Timer Interrupt, ID: 7

External Interrupt, ID: 11

Figure 99: CLINT Block Diagram

The CLINT has a small footprint and provides software, timer, and external interrupts directly to
the hart. The CLINT block also holds memory-mapped control and status registers associated
with software and timer interrupts.

8.1 CLINT Priorities and Preemption

The CLINT has a fixed priority scheme, described in Section 7.8, and nested interrupts (pre-
emption) within a given privilege level is not supported. Higher privilege levels may preempt
lower privilege levels, however. The CLINT offers two modes of operation, Direct mode and
Vectored mode.
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In Direct mode, all interrupts and exceptions trap to mtvec.BASE. In Vectored mode, exceptions
trap to mtvec.BASE, but interrupts will jump directly to their vector table index. See Section 7.7.2
for more information about mtvec . BASE.

8.2 CLINT Vector Table

CLINT
Machine Mode

mtvec + 0x3C Interrupt Vector
mtvec + 0x38 Ta.bl e
mtvec + 0x34
mtvec + 0x30
mtvec + 0x2C
mtvec + 0x28
mtvec + 0x24 External Interrupt, ID: 11
mtvec + 0x20
mivec + Ox1C Timer Interrupt, ID: 7
mivec + 018 Software Interrupt, ID: 3
mtvec + 0x14
mtvec + 0x10 Reserved
mtvec + Ox0C
mtvec + 0x08
mtvec + 0x04 Vector Table Base Address

mtvec + (4 * Interrupt ID)
mtvec + 0x00

Figure 100: CLINT Interrupts and Vector Table
The CLINT vector table is populated with jump instructions, since hardware jumps to the index
in the vector table first, then subsequently jumps to the handler. All exception types trap to the
first entry in the table, which is mtvec . BASE.

An example CLINT vector table is shown below.
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.weak default_exception_handler
.balign 4, @
.global default_exception_handler

.weak software_handler
.balign 4, @
.global software_handler

.weak timer_handler
.balign 4, @
.global timer_handler

.weak external_handler
.balign 4, @
.global external_handler

.option norvc

.weak _ mtvec_clint_wvector_table
#if _ riscv_xlen == 32

.balign 128, @

#else

.balign 256, @

#endif

.global _ mtvec_clint_wvector_table
_ mitvec_clint_vector_table:

IRQ @:

j default_excepticon_handler
IRQ 1:

j default_wvector_handler
IRQ 2:

j default_wvector_handler
IRQ 3:

j software_handler
IRQ 4:

j default_wvector_handler
IRQ 5:

j default_wvector_handler
IRQ 6&:

j default_wvector_handler
IRQ 7:

j timer_handler
IRQ 8:

j default_wvector_handler
IRQ 9:

j default_vector_handler
IRQ 1@:

j default_vector_handler
IRQ 11:

j external_handler
IRQ 12:

j default_wvector_handler
IRQ 13:

j default_vector_handler
IRQ 14:

j default_vector_handler
IRQ 15:

j default_wvector_handler

Figure 101: CLINT Vector Table Example

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 138



SiFive S76-MC Core Complex Manual 21G3.02.00
Core-Local Interruptor (CLINT)

8.3 CLINT Interrupt Sources

The S76-MC Core Complex supports the standard RISC-V software, timer, and external inter-
rupts.

CLINT Interrupt IDs are provided in Table 102.

S76-MC Core Complex Interrupt IDs

ID Interrupt Notes
0-2 Reserved

3 msip Machine Software Interrupt
4—-6 Reserved

7 mtip Machine Timer Interrupt
8-10 Reserved

11 meip Machine External Interrupt

Table 102: S76-MC Core Complex Interrupt IDs

8.4 CLINT Interrupt Attribute

To help with efficiency of save and restore context, interrupt attributes can be applied to func-
tions used for interrupt handling.

void __attribute__((interrupt))
software_handler (void) {
// handler code

}
11 11
12 void software_handler (void) { =] 12 woid __attribute__ ((interrupt))
13 addi sp,sp,-16 13 software_handler (veid) {
14 14 addi sp,sp,-32
15 int my_isr_handler_flag = 1; 15 su a5,28(sp)
16 1i a5,1 16
17 sw a5,12(sp) 17 int my_isr_handler_flag = 1;
18 18 1i a5,1
19 } 19 sw a5,12(sp)
28 nop 28
21 addi sp,sp,16 3] 21 }
22 ret 22 nop
23 23 1w a5,28(sp)
24 24 addi sp,sp,32
25 25 mret
IR TR

Figure 102: CLINT Interrupt Attribute Example

This attribute will save and restore registers that are used within the handler, and insert an mret
instruction at the end of the handler.

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 139



SiFive S76-MC Core Complex Manual 21G3.02.00
Core-Local Interruptor (CLINT)

8.5 CLINT Memory Map

Table 103 shows the memory map for CLINT on the S76-MC Core Complex. Note that there are
no enable bits for specific interrupts within the CLINT memory map, as the enables for these
interrupts reside in the mie CSR for each interrupt, and the mstatus.mie CSR bit, which
enables all machine interrupts globally. See Section 7.7.3 for a description of the interrupt
enable bits in the mie CSR, and Section 7.7.4 for a description of the interrupt pending bits in
the mip CSR.

Address Width | Attr. Description Notes
0x0200_0000 | 4B RW | msip for hart O MSIP Registers (1-bit wide)
0x0200_0004 | 4B RW | msip for hart 1
0x0200_0008 | 4B RW | msip for hart 2
0x0200_000C | 4B RW | msip for hart 3
0x0200_0010 Reserved

OXx0200_3FFF

0x0200_4000 | 8B RW | mtimecmp for hart 0 | MTIMECMP Registers
0x0200_4008 | 8B RW | mtimecmp for hart 1

0x0200_4010 | 8B RW | mtimecmp for hart 2

0x0200_4018 | 8B RW | mtimecmp for hart 3

0x0200_4020 Reserved

0x0200_BFF7
0x0200_BFF8 | 8B RW | mtime Timer Register
0x0200_C000 Reserved

Table 103: CLINT Memory Map

8.6 Register Descriptions

This section describes the functionality of the memory-mapped registers in the CLINT.

8.6.1 MSIP Register

Machine mode software interrupts are generated by writing to the memory-mapped control reg-
ister msip. Each msip register is a 32-bit wide WARL register, where the upper 31 bits are tied
to 0. The least-significant bit is reflected in the MSIP bit of the mip CSR. Other bits in the msip
register are hardwired to zero. On reset, each msip register is cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as
harts may write each other’s msip bits to effect interprocessor interrupts.
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8.6.2 Timer Registers

mtime is a 64-bit read-write register that contains the number of cycles counted from the
rtc_toggle signal, which is described in the S76-MC Core Complex User Guide. A timer inter-
rupt is pending whenever mtime is greater than or equal to the value in the mtimecmp register.
The timer interrupt is reflected in the mtip bit of the mip register, described in Chapter 7.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.

Note that mtime is volatile and may be masked in IP-XACT.
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Chapter 9

Platform-Level Interrupt Controller
(PLIC)

This chapter describes the operation of the Platform-Level Interrupt Controller (PLIC) on the
S76-MC Core Complex. The PLIC complies with The RISC-V Instruction Set Manual, Volume II:
Privileged Architecture, Version 1.11 and can support a maximum of 127 external interrupt
sources with 7 priority levels.

The S76-MC Core Complex PLIC resides in the clock timing domain, allowing for relaxed tim-
ing requirements. The latency of global interrupts, as perceived by a hart, increases with the
ratio of the external_source_for_core_N_clock frequency and the clock frequency.
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CLINT

HART 0

D - PLIC
Global Interrupts
Local Interrupts, ID: 16...X

Software Interrupt, ID: 3
Timer Interrupt, ID: 7

External Interrupt, ID: 11

HART N

Figure 103: PLIC Multi-Core Block Diagram

9.1 Memory Map

The memory map for the S76-MC Core Complex PLIC control registers is shown in Table 104.
The PLIC memory map only supports aligned 32-bit memory accesses.
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disable feature

Address Width | Attr. Description Notes
OX0COO_0000 Reserved
0x0C00_0004 | 4B RW | Source 1 priority _
See Section 9.3 for more
— information
0x0COO_O1FC | 4B RW | Source 127 priority
OX0CO0_0200 Reserved
0x0C00_1000 | 4B RO | Start of pending array _
See Section 9.4 for more
- information
0x0CO0_100C | 4B RO | Last word of pending array
0Xx0C00_1010 Reserved
0x0CO0_2000 | 4B RW | Start Hart 0 M-Mode interrupt
enables .
See Section 9.5 for more
- information
0x0C00_200C | 4B RW | End Hart 0 M-Mode interrupt
enables
0X0C00_2010 Reserved
0x0CO0_2080 | 4B RW | Start Hart 1 M-Mode interrupt
enables .
See Section 9.5 for more
- information
0x0C00_208C | 4B RW | End Hart 1 M-Mode interrupt
enables
0X0CO0_2090 Reserved
0x0C00_2100 | 4B RW | Start Hart 2 M-Mode interrupt
enables ,
See Section 9.5 for more
- information
0x0C00_210C | 4B RW | End Hart 2 M-Mode interrupt
enables
0Xx0C00_2110 Reserved
0x0C00_2180 | 4B RW | Start Hart 3 M-Mode interrupt
enables .
See Section 9.5 for more
- information
0x0C00_218C | 4B RW | End Hart 3 M-Mode interrupt
enables
Ox0CO0_2190 Reserved
OXOC1F_F000 | 1B RW | PLIC global clock gating See Section 9.6 for more

information

OXOC1lF_F0O01

Reserved

Table 104: PLIC Memory Map
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Address Width | Attr. Description Notes

0x0C20_0000 | 4B RW | Hart 0 M-Mode priority See Section 9.7 for more
threshold information

0x0C20_0004 | 4B RW | Hart 0 M-Mode claim/ See Section 9.8 for more
complete information

0x0C20_0008 Reserved

0x0C20_1000 | 4B RW | Hart 1 M-Mode priority See Section 9.7 for more
threshold information

0x0C20_1004 | 4B RW | Hart 1 M-Mode claim/ See Section 9.8 for more
complete information

0x0C20_1008 Reserved

0x0C20_2000 | 4B RW | Hart 2 M-Mode priority See Section 9.7 for more
threshold information

0x0C20_2004 | 4B RW | Hart 2 M-Mode claim/ See Section 9.8 for more
complete information

0x0C20_2008 Reserved

0x0C20_3000 | 4B RW | Hart 3 M-Mode priority See Section 9.7 for more
threshold information

0x0C20_3004 | 4B RW | Hart 3 M-Mode claim/ See Section 9.8 for more
complete information

0x0C20_3008 Reserved

0x1000_0000 End of PLIC Memory Map

9.2

Table 104: PLIC Memory Map

Interrupt Sources

The S76-MC Core Complex has a total of 127 external global interrupt sources, in addition to
the local interrupts described in Table 102.

Note

In the RISC-V Platform-Level Interrupt Controller Specification, interrupt source 0 (ID 0) is
unused, so the first usable PLIC Interrupt ID has a value of 1.

Table 105 describes the mapping of external global interrupts to its corresponding top-level
global_interrupts signal bit. This signal is positive-level triggered and not configurable. See
the S76-MC Core Complex User Guide for further description of global_interrupts.
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global_interrupts Signal | PLIC Interrupt ID | PLIC Pending / Enable Register
global_interrupts[0] 1 pendingi[1] / enable1[1]*
global_interrupts[1] 2 pendingl[2] / enablel[2]
global interrupts[2] 3 pending1[3] / enablel[3]
global_interrupts[126] | 127 | pending4[31] / enable4[31]
*pending1[0] and enable1[0] are unused

Table 105: Mapping of global_interrupts Signal Bits to PLIC Interrupt ID

9.3 Interrupt Priorities

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped
priority register. The S76-MC Core Complex supports 7 levels of priority. A priority value of O
is reserved to mean "never interrupt” and effectively disables the interrupt. Priority 1 is the low-
est active priority, and priority 7 is the highest. Ties between global interrupts of the same prior-
ity are broken by the Interrupt ID; interrupts with the lowest ID have the highest effective priority.
See Table 106 for the detailed register description.

PLIC Interrupt Priority Register
Base Address 0x0CO0_0000 + 4 x Interrupt ID
Bits Field Name Attr. Rst. Description
[2:0] Priority RW X Global interrupt priority
[31:3] Reserved RO 0x0

Table 106: PLIC Interrupt Priority Register

9.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the

pending array, organized as 4 words of 32 bits. The pending bit for interrupt ID N is stored in bit
(N mod 32) of word (N / 32). As such, the S76-MC Core Complex has four interrupt pending reg-
isters. Bit 0 of word 0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-
ing a claim as described in Section 9.8.
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PLIC Interrupt Pending Register 1
Base Address 0Xx0CO00_1000
Bits Field Name Attr. Rst. Description
0 Interrupt O RO X Non-existent global interrupt O is
Pending hardwired to zero
1 Interrupt 1 RO X Pending bit for global interrupt 1
Pending
2 Interrupt 2 RO X Pending bit for global interrupt 2
Pending
31 Interrupt 31 RO X Pending bit for global interrupt 31
Pending

Table 107: PLIC Interrupt Pending Register 1

PLIC Interrupt Pending Register 4
Base Address 0Xx0C00_100C
Bits Field Name Attr. Rst. Description
0 Interrupt 96 RO X Pending bit for global interrupt 96
Pending
31 Interrupt 127 RO X Pending bit for global interrupt 127
Pending
Table 108: PLIC Interrupt Pending Register 4
9.5 Interrupt Enables

Each global interrupt can be enabled by setting the corresponding bit in the enable registers.
The enable registers are accessed as a contiguous array of 4 x 32-bit words, packed the same
way as the pending bits. Bit 0 of enable word 0 represents the non-existent interrupt ID 0 and is
hardwired to O.

64-bit and 32-bit word accesses are supported by the enables array in SiFive RV64 systems.
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PLIC Interrupt Enable Register 1 for Hart 0 M-Mode

Base Address

Ox0CO0O_20060

Bits Field Name Attr. Rst. Description
0 Interrupt O Enable RO 0x0 Non-existent global interrupt O is
hardwired to zero
1 Interrupt 1 Enable RwW X Enable bit for global interrupt 1
2 Interrupt 2 Enable RW X Enable bit for global interrupt 2
31 Interrupt 31 RwW X Enable bit for global interrupt 31
Enable

Table 109: PLIC Interrupt Enable Register 1 for Hart 0 M-Mode

PLIC Interrupt Enable Register 4 for Hart 0 M-Mode

Base Address

Ox0CO0_206C

Enable

Bits Field Name Attr. Rst. Description
0 Interrupt 96 RW X Enable bit for global interrupt 96
Enable
31 Interrupt 127 RW X Enable bit for global interrupt 127

9.6 PLIC Clock Gate Disable

Table 110: PLIC Interrupt Enable Register 4 for Hart 0 M-Mode

The PLIC implements a clock gating feature to gate the module clock node when not active.

PLIC clock gating is disabled out of reset and should be enabled in startup code, unless other-
wise specified by SiFive erratum. Once enabled, clock is only available when there is activity on

the PLIC control bus or on any interrupt line when the corresponding interrupt is not inflight.
Clock gating is further described in the S76-MC Core Complex User Guide.

PLIC Clock Gate Disable Register
Base Address OXOC1F_FO00
Bits Field Name Attr. Rst. | Description
0 disablePlicClockGateFeature | RW 0x1 | Used to enable/disable PLIC
clock gating feature. Clear to
enable.
[7:1] Reserved RO 0x0

Table 111: PLIC Clock Gate Disable Register

Copyright © 2019-2022 by SiFive, Inc. All rights reserved.




SiFive S76-MC Core Complex Manual 21G3.02.00
Platform-Level Interrupt Controller (PLIC)

9.7 Priority Thresholds

The S76-MC Core Complex supports setting of an interrupt priority threshold via the threshold
register. The threshold is a WARL field, where the S76-MC Core Complex supports a maxi-
mum threshold of 7.

The S76-MC Core Complex masks all PLIC interrupts of a priority less than or equal to
threshold. For example, a threshold value of zero permits all interrupts with non-zero priority,
whereas a value of 7 masks all interrupts. If the threshold register contains a value of 5, all
PLIC interrupt configured with priorities from 1 through 5 will not be allowed to propagate to the
CPU.

PLIC Interrupt Priority Threshold Register for Hart 0 M-Mode
Base Address 0Xx0C20_0000
Bits Field Name Attr. Rst. Description
[2:0] Threshold WARL X Sets the priority threshold
[31:3] Reserved RO 0x0

Table 112: PLIC Interrupt Priority Threshold Register for Hart 0 M-Mode

9.8 Interrupt Claim Process

A S76-MC Core Complex hart can perform an interrupt claim by reading the claim_complete
register (Table 113), which returns the ID of the highest-priority pending interrupt or zero if there
is no pending interrupt. A successful claim also atomically clears the corresponding pending bit
on the interrupt source.

A S76-MC Core Complex hart can perform a claim at any time, even if the MEIP bit in its mip
(Table 96) register is not set.

The claim operation is not affected by the setting of the priority threshold register.

9.9 Interrupt Completion

A S76-MC Core Complex hart signals it has completed executing an interrupt handler by writing
the interrupt ID it received from the claim to the claim_complete register (Table 113). The PLIC
does not check whether the completion ID is the same as the last claim ID for that target. If the
completion ID does not match an interrupt source that is currently enabled for the target, the
completion is silently ignored.
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PLIC Claim/Complete Register for Hart 0 M-Mode

Base Address 0x0C20_0004
Bits Field Name Attr. Rst. Description
[31:0] Interrupt Claim/ RW X A read of zero indicates that no
Complete for Hart interrupts are pending. A non-zero read
0 M-Mode contains the ID of the highest pending

interrupt. A write to this register signals
completion of the interrupt ID written.
Consecutive reads will not return the
same result. Note that this field is
volatile and may be masked in
IP-XACT.

Table 113: PLIC Claim/Complete Register for Hart 0 M-Mode

The PLIC cannot forward a new interrupt to a hart that has claimed an interrupt, but has not yet
finished the complete step of the interrupt handler. Thus, the PLIC does not support preemption
of global interrupts to an individual hart.

Interrupt IDs for global interrupts routed through the PLIC are independent of the interrupt IDs
for local interrupts. The PLIC handler may check for additional pending global interrupts once
the initial claim/complete process has finished, prior to exiting the handler. This method could
save additional PLIC save/restore context for global interrupts.

9.10 Example PLIC Interrupt Handler

Since the PLIC interfaces with the CPU through external interrupt #11, the external handler
must contain an additional claim/complete step that is used to handshake with the PLIC logic.

void external_handler() {
//get the highest priority pending PLIC interrupt
uint32_t int_num = plic.claim_complete;

//branch to handler
plic_handler[int_num]();

//complete interrupt by writing interrupt number back to PLIC
plic.claim_complete = int_num;

// Add additional checks for PLIC pending here, if desired
}

If a CPU reads claim_complete and it returns 0, the interrupt does not require processing, and
thus write-back of the claim/complete is not necessary.

The plic_handler[]() routine shown above demonstrates one method to implement a soft-
ware table where the offset of the function that resides within the table is determined by the
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PLIC interrupt ID. The PLIC interrupt ID is unique to the PLIC, in that it is completely indepen-
dent of the interrupt IDs of local interrupts.
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TileLink Error Device

The Error Device is a TileLink slave that responds to all requests with a TileLink denied error
and all reads with a corrupt error. It has no registers. The entire memory range discards writes
and returns zeros on read. Both operation acknowledgements carry an error indication.

The Error Device serves a dual role. Internally, it is used as a landing pad for illegal off-chip
requests. However, it is also useful for testing software handling of bus errors.
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Level 2 Prefetcher

The SiFive L2 Prefetcher is a per-hart device that allows the L2 to perform accesses to memory
based on the patterns of data accesses made by the harts in the Core Complex. For instance, if
a hart is reading every 100th byte of a large array and accesses are missing the L1 data cache,
the prefetcher will detect this. It will then allocate the appropriate memory addresses to the L2
Cache so subsequent accesses to the array will hit in the L2 Cache. This reduces overall
access time to the array and improves performance of the application.

The S76-MC Core Complex contains four L2 Prefetcher instances. Their addresses are shown
in Table 114.

Instance Base Address
Hart O L2 Prefetcher 0x0203_0000
Hart 1 L2 Prefetcher 0x0203_206000
Hart 2 L2 Prefetcher 0x0203_4000
Hart 3 L2 Prefetcher 0x0203_6000

Table 114: L2 Prefetcher Instances

11.1 Operation

The L2 Prefetcher can monitor eight different data streams per hart, where a stream consists of
a base address and a stride between memory addresses. Prefetches are automatically issued
to the memory system when possible and a prefetch queue of eight entries holds the accesses
before they are issued. The range of a prefetch (or maximum stride length) in terms of cache
lines is set by the additionalCtrl.window register. For instance, if this is set to 0x4, then
streams with a stride of 256 bytes or greater will be ignored (assuming each cache line is 64
bytes).

The initial number of prefetches (or prefetch distance) made per stream is set by
basicCtrl.initialbist. The prefetching distance will adapt based on the success of the
prefetching and the overall range of prefetching. If a hart continues to make direct accesses
which match the stride of the stream (both in magnitude and sign), then additional prefetches
will be made, and the prefetch distance can increase. It's possible that the direct accesses
made by a hart will be too fast for the prefetcher, and the hart will have to wait for the L2 to pop-
ulate. When this occurs, the L2 Prefetcher will increase the prefetch distance (i.e., emit more
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prefetches) to minimize the chance of this occurring. The threshold to increase the prefetching
distance is set by additionalCtrl.hitMSHRThrd.

The maximum number of prefetches emitted for a stream is limited by
basicCtrl.maxAllowedDist. The prefetch distance will increase gradually, but at times this
may not be fast enough. The speed of the ramp-up from the initial distance to the maximum is
managed automatically by the prefetcher. The basicCtrl.1linToExpThrd setting can be used to
fine-tune this adaptive ramp-up. The smaller the value of this field, the faster the prefetcher will
reach the maximum prefetch distance.

Prefetches are issued only if there are idle L2 Miss Status Holding Registers (MSHRS). The
additionalCtrl.gFullnessThrd value is used to control when the prefetcher will stop issuing
hints to the memory system. This 4-bit field allows the total number of MSHRs in the L2 Cache
to be represented in fractions of 1/16th. For instance, a threshold value of 6xC means that if
75% of the MSHRs are allocated, prefetches will be stalled until the number of MSHRs in use
drops below 75% available. This setting allows the prefetcher to be tuned such that the direct
accesses made by the Core Complex (from harts and Front Port masters) aren't stalled by the
prefetcher.

The prefetcher monitors both reads and writes to memory and the strides can either be incre-
menting or decrementing addresses. Prefetching is disabled at reset; scalar support can be
enabled with the basicCtrl.scalarLoadSupportEn and
additionalCtrl.scalarStoreSupportEn bits, and vector support can be enabled with the
additionalCtrl.vectorLoadSupportEn and additionalCtrl.vectorStoreSupportEn bits.

11.2 Retiring Streams

It's unlikely that a prefetch stream will continue indefinitely for the life of an application, so the L2
Prefetcher accommodates a method to retire old streams. This allows new streams to be
tracked.

A stream can be retired by successfully hitting in the L2 Cache without the need for prefetching.
If enough consecutive accesses hit in the L2 Cache, which were not prefetched, then there is no
need for the prefetcher to continue monitoring the stream. The additionalCtrl.hitCacheThrd
field sets this threshold for retiring the stream.

11.3 Page Boundaries

The L2 Prefetcher can be programmed to cross 4 KiB page boundaries of memory. This is use-
ful in an application environment in which there is no OS page protection, or where OS page
protection can be ignored. When basicCtrl.crossPageEn is set, prefetching can cross 4 KiB
boundaries. Prefetching will resume if the hart continues to make accesses that match the stride
in the new 4 KiB page of memory.
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The memory map for the L2 Prefetcher control registers is shown in Table 115.

Offset | Name Description
0x0 | basicCtrl L2 Prefetcher basic control register
0x4 | additionalctrl | L2 Prefetcher additional control register

Table 115: L2 Prefetcher Memory Map

11.5 Control Registers

The L2 Prefetcher control registers basicCtrl and additionalCtrl are described in the below

tables.
Basic Control Register (basicCtrl)
Register Address L2 Prefetcher Base Address
Bits Field Name Attr. Rst. Description
0 scalarlLoadSupportEn RwW 0x0 Enable hardware prefetcher support
for scalar loads
1 Reserved RW 0x0
[7:2] initialDist RW 0x3 Initial prefetch distance
[13:8] maxAllowedDist RW OXA Maximum allowed prefetch distance
[19:14] 1inToExpThrd RwW 0x5 Linear-to-exponential prefetch
distance threshold
[27:20] Reserved RW 0x0
28 crossPageEn RW 0x0 Enable prefetches to cross-pages.
When crossPageEn == 1, the
prefetches will cross 4K boundary, if
needed.
[30:29] forgiveThrd RW 0x0 Threshold for forgiving loads with
mismatching strides when L2
Prefetcher is in trained state. Setto 0
to disable this feature (default).
31 Reserved RO 0x0

Table 116: Basic Control Register
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Additional Control Register (additionalCtrl)

Register Address L2 Prefetcher Base Address + 0x4
Bits Field Name Attr. Rst. Description
[3:0] gFullnessThrd RW OXE Threshold fraction/16 of MSHRs to
stop sending hits
[8:4] hitCacheThrd RW 0x5 Threshold number of cache tag hits
for evicting prefetch entry
[12:9] hitMSHRThrd RW 0x2 Threshold number of demand hits

on hint MSHRs for increasing
prefetch distance

[18:13] window RW 0Xx6 Size of the comparison window for
address matching
19 scalarStoreSupportEn RW 0x0 Enable hardware prefetcher support
for scalar stores
20 vectorLoadSupportEn RW 0x0 Enable hardware prefetcher support
for vector loads
21 vectorStoreSupportEn RW 0x0 Enable hardware prefetcher support

for vector stores

[31:22] Reserved

Table 117: Additional Control Register

11.6 L2 Prefetcher Initialization

The L2 Prefetcher needs to be initialized in the boot software prior to use. Once initialized, the
L2 Prefetcher can be tuned on a per-configuration basis as needed. Refer to the L2 prefetcher
software example that demonstrates this tuning.
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Chapter 12

Level 2 Cache Controller

This chapter describes the functionality of the Level 2 Cache Controller used in the S76-MC
Core Complex.

12.1 Level 2 Cache Controller Overview

The SiFive Level 2 Cache Controller is used to provide access to fast copies of memory for
masters in a Core Complex. The Level 2 Cache Controller also acts as a directory-based
coherency manager.

The SiFive Level 2 Cache Controller offers extensive flexibility, as it allows for several features
in addition to the Level 2 Cache functionality. These include memory-mapped access to L2
Cache RAM for disabled cache ways, scratchpad functionality, way masking and locking, ECC
support with error tracking statistics, error injection, and interrupt signaling capabilities.

These features are described in Section 12.2.

12.2 Functional Description

The S76-MC Core Complex L2 Cache is a 512 KiB 16-way set-associative cache. It has a line
size of 64 bytes and is read/write-allocate with a random replacement policy. The cache oper-
ates in write-back mode only. The L2 Cache is composed of 2 banks. This subdivision into
banks helps facilitate increased available bandwidth between CPU masters and the L2 Cache,
as each bank has its own dedicated 128-bit TL-C inner port. As such, multiple requests to differ-
ent banks may proceed in parallel.

The outer port of the L2 Cache Controller is a 128-bit TL-C port shared among all banks and
typically connected to a DDR controller. The outer Memory Port of the L2 Cache Controller is
shared among all banks and typically connected to cacheable memory. The overall organization
of the L2 Cache Controller is depicted in Figure 104.
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TileLink Bus
TL-C TL-C
Bank 0 . Bank N
SiFive L2 Cache Controller \
Memory Bank
Port SetN |

—{Set 1 |
—Set 0

- Way 0: 64B Cache Block

- Way 1: 64B Cache Block

L Way N: 64B Cache Block

Figure 104: Organization of the SiFive L2 Cache Controller

12.2.1 Way Enable and the L2 Loosely-Integrated Memory (L2 LIM)

The SiFive Level 2 Cache Controller allows for its SRAMs to act either as direct-addressed
memory in the Core Complex address space or as a cache that is controlled by the L2 Cache
Controller, which can contain a copy of any cacheable address.

When cache ways are disabled, they are addressable in the L2 Loosely-Integrated Memory (L2
LIM) address space as described in the S76-MC Core Complex memory map in Section 4.2.
The L2 LIM is an uncacheable port into unused L2 SRAM and provides deterministic access
time. It is neither cached by the L1 data cache nor memory backed, as it is just a dedicated soft-
ware-addressable, low latency, uncached memory. Fetching instructions or data from the L2 LIM
provides deterministic behavior equivalent to an L2 Cache hit, with no possibility of a cache
miss. Accesses to the L2 LIM are always given priority over cache way accesses, which target
the same L2 Cache bank.
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Out of reset, all ways, except for way 0, are disabled. Cache ways can be enabled by writing to
the WayEnable register described in Section 12.4.2. Once a cache way is enabled, it cannot be
disabled unless the S76-MC Core Complex is reset. The highest numbered L2 cache way is
mapped to the lowest L2 LIM address space, and way 1 occupies the highest L2 LIM address
range. As L2 cache ways are enabled, the size of the L2 LIM address space shrinks. The map-
ping of L2 cache ways to L2 LIM address space is shown in Figure 105, where N is the number
of L2 cache ways, each of size 32 KiB (0x0000_8000).

L2 Cache Size

Reserved (Way 0)
(N-1) * Way Size
Way 1
(N-2) * Way Size
2 * Way Size
Way N-2
Way Size
Way N-1
0x0

Offset from LIM base

Figure 105: Mapping of L2 Cache Ways to L2 LIM Addresses

12.2.2 Way Masking and Locking

The SiFive L2 Cache Controller can control the amount of cache memory a CPU master is able
to allocate into by using the wayMaskN register described in Section 12.4.4. Note that WwayMaskN
registers only affect allocations, and reads can still occur to ways that are masked. As such, it
becomes possible to lock down specific cache ways by masking them in all wayMaskN registers.
In this scenario, all masters can still read data in the locked cache ways but cannot evict data.

The following example shows how to lock the L2 cache ways:

1. For the following example, assume the data to be locked is not present in any of the L2
ways.

2. Select an L2 way where the data is to be locked to.
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3. From Table 127, select the Master ID(s) to be used to load the data that is to be locked into
the L2.

4. Clear bit M of the wayMaskN register for the other masters, besides the master(s)
selected in the step above, to enable allocation by the selected master(s) into locked way
M. The wayMask®_M - WayMaskN_M registers are described in Table 123.

a. Use Table 123 to locate the WwayMaskN register(s).

5. Enable the WayMask registers for the selected master(s).

a. Set bit M of the wayMaskN register to 1, and clear other bits in that register, to allow
master N to be able to allocate data only into way M of the L2.

6. Load the data to be locked into the L2 way M. Note that becaue the L2 is an inclusive
cache, any load access by the master N will allocated the cache line for that access into
the L2 cache.

7. Set the wayMaskN_M bit for this way to zero. At this point, no other master can evict data
from this way.

8. If unlocking the data from way M is desired at some point in the future, set bit M in some or
all of the wayMaskN registers.

12.2.3 L2 Zero Device

The SiFive L2 Cache Controller has a dedicated scratchpad address region that allows for allo-
cation into the cache using an address range that is not memory backed. This address region is
denoted as the L2 Zero Device in the Section 4.2 memory map. Writes to the scratchpad region
allocate into cache ways that are enabled and not masked.

A Zero Device ignores write data and always returns zero on reads. The S76-MC Core Complex
provides a Zero Device behind the L2 Cache, similar to the Memory Port. When combined with
locked L2 cache ways, which prevent eviction, locations within a Zero Device’s address range
appear to retain their value. This provides a mechanism to create L1 cacheable memory that is
essentially backed by L2 SRAM until the way is released (and the value resets to zero). The L2
Zero Device is cacheable like the Memory Port. However, if dirty data is evicted and a write-
back to the L2 Zero Device occurs, the Zero Device will discard the write data. Therefore, care
must be taken with the scratchpad, as there is no memory backing this address space. Cache
evictions from addresses in the scratchpad result in data loss.

The main advantage of the L2 Zero Device over the L2 LIM is that it is a cacheable region allow-
ing for data stored to the scratchpad to also be cached in a master’s L1 data cache, which
results in faster access.

To understand the difference between the L2 LIM and the L2 Zero Device, consider Figure 106.
Notice that the L2 LIM accesses the same blocks of memory as the main path into the L2
Cache, whereas the L2 Zero Device sits behind L2 Cache much like the Memory Port:
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SiFive Core(s)
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L2 Cache ™~ L2 Control Port

MBus

L2 Zero Memory
Device Port

Figure 106: Difference between L2 LIM and L2 Zero Device
The recommended procedure for using the L2 Zero Device is as follows:

1. Use the wayEnable register to enable the desired cache ways

2. Designate a single master that will allocate into the scratchpad. For this procedure, we des-
ignate this master as Master S. All other masters (CPU and non-CPU) are denoted as
Masters N.

3. Masters N: Write to the wayMaskN register to mask the ways that are to be used for the
scratchpad. This prevents Masters N from evicting cache lines in the designated scratch-
pad ways.

4. Master S: Write to the WayMaskN register to mask all ways except the ways that are to be
used for the scratchpad. At this point, Master S should only be able to allocate into the
cache ways meant to be used as a scratchpad.

Master S: Write scratchpad data into the L2 Zero Device address range
Master S: Repeat steps 4 and 5 for each way to be used as scratchpad

7. Master S: Use the WwayMaskN register to mask the scratchpad ways for Master S so that it is
no longer able to evict cache lines from the designated scratchpad ways

8. At this point, the scratchpad ways should contain the scratchpad data, with all masters able
to read, write, and execute from this address space, and no masters able to evict the
scratchpad contents
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12.2.4 L2 Features Access Summary

Table 118 describes the L2 features as a function of Way Enable and Way Mask.

Access Base
Way Enable | Way Mask Address L2 Feature

0 X 0x0800_0000 | LIM

1 0 0x8000_0000 | Way Masking and Locking — Fast Read
access

1 0 0x0A00_0000 | Zero Device — Fast Read access from
scratchpad

1 1 0x8000_0000 | Way Masking and Locking — Write data
mode

1 1 0x0A00_0000 | Zero Device — Write data to scratchpad

Table 118: L2 Features Access Summary

12.2.5 L2 Performance Monitor

Similar to the hardware performance monitor (HPM) for the core, the L2 Cache also has an L2
performance monitoring (L2PM) facility. It consists of a set of event-programmable counters and
their event selector registers. The registers are available to control the behavior of the counters.
The performance event selector and other control registers are configured in machine mode,
and the event-programmable counters can be read in user mode.

L2PM Event Selector Registers (pmEventSelectX)

The L2PM event selector CSRs (pmEventSelect0-5) follow the definition of mhpmeventX as
defined in the RISC-V ISA. They are 64-bit bit WARL registers. To control the event type to
count, these CSRs are used to program the corresponding event counters.

Offset | Bits | Access Description

0x2000 | 64 RwW pmEventSelect0
0x2008 | 64 RW pmEventSelect1
0x2010 | 64 RW pmEventSelect2
0x2018 | 64 RW pmEventSelect3
0x2020 | 64 RW pmEventSelect4
0x2028 | 64 RW pmEventSelect5

Table 119: L2 Performance Monitor Event Selectors

The event selectors are partitioned into two fields: the lower 8 bits select an event class, and the
upper bits form a mask of events in that class.

..  EventMask[s5:0] o | Eventclass |

Figure 107: Event Selector Fields
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The counter increments if the event corresponding to any set mask bit occurs.

L2PM Counter Client Filter CSR (pmClientFilterX)

The L2PM counter client filter register (pmClientFiltero) is a 64-bit WARL register that con-
trols which client’s performance events are excluded from incrementing the performance moni-
tor counters. However, some events might not be attributed to a particular client in a specific
implementation (for example, the L2 release event in SiFive's L2 Cache design).

Offset | Bits | Access Description
0x2800 | 64 RW pmClientFiltero

Table 120: L2 Performance Monitor Counter Client Filter

L2 Performance Monitor Counters (pmEventCounterX)

The L2 Performance Monitor counters (pmEventCounter0-5), follow the definition of
mhpmcounterX as defined in the RISC-V ISA. They are 64-bit WARL registers.

Offset | Bits | Access Description

0x3000 | 64 RW pmEventCountero
0x3008 | 64 RW pmEventCounterl
0x3010 | 64 RW pmEventCounter?2
0x3018 | 64 RW pmEventCounter3
0x3020 | 64 RW pmEventCounter4
0x3028 | 64 RW pmEventCounter5

Table 121: L2 Performance Monitor Counters

Note

If a counter is not implemented, such as when there is no L2PM, both the counter and its
corresponding event selector are hard-wired to 0, meaning that the counter always returns
0.

Event Selector Encodings

Table 122 describes the event selector encodings available. Events are categorized into two
classes based on the Event Class field encoded in pmEventSelectX[7:0]. One or more events
can be programmed by setting the respective Event Mask bit for a given event class. An event
selector encoding of 0 means "count nothing". Multiple events will cause the counter to incre-
ment any time any of the selected events occur.

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 163



SiFive S76-MC Core Complex Manual
Level 2 Cache Controller

21G3.02.00

L2 Performance Monitor Event Register
Transaction Events, pmEventSelectX[7:0]=0x1
. i Can use
Bits Description clientFilter?
0 PutFullData request from inner cache Yes
1 PutPartialData request from inner cache Yes
2 AtomicData request from inner cache Yes
3 Get request from inner cache Yes
4 PrefetchRead request from inner cache Yes
5 PrefetchWrite request from inner cache Yes
6 | AcquireBlock.NtoB request from inner cache Yes
7 | AcquireBlock.NtoT request from inner cache Yes
8 | AcquireBlock.BtoT request from inner cache Yes
9 AcquirePerm.NtoT request from inner cache Yes
10 | AcquirePerm.BtoT request from inner cache Yes
11 | Release.TtoB request from inner cache Yes
12 | Release.TtoN request from inner cache Yes
13 | Release.BtoN request from inner cache Yes
14 | ReleaseData.TtoB request from inner cache Yes
15 | ReleaseData.TtoN request from inner cache Yes
16 | ReleaseData.BtoN request from inner cache Yes
17 | ProbeBlock. toT request from outer cache No
18 | ProbeBlock. toB request from outer cache No
19 | ProbeBlock. toN request from outer cache No
L2 Query Result Events, pmEventSelectX[7:0]=0x2
. . Can use
Bits Description clientFilter?

0 PutFullData request from inner cache hits a valid line in L2 Yes
1 PutPartialData request from inner cache hits a valid line in Yes

L2
2 | AtomicData request from inner cache hits a valid line in L2 Yes
3 Get request from inner cache hits a valid line in L2 Yes
4 Prefetch request from inner cache hits a valid line in L2 Yes
5 | AcquireBlock request from inner cache hits a valid line in Yes

L2
6 AcquirePerm request from inner cache hits a valid line in L2 Yes
7 Release request from inner cache hits a valid line in L2 Yes
8 ReleaseData request from inner cache hits a valid line in L2 Yes
9 Probe request from outer cache hits a valid line in L2 No
10 | PutFullbData request from inner cache hits a shared line in Yes

L2

Table 122: L2PM pmEventSelect Register
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11 | putPartialData request from inner cache hits a shared line yes
in L2
12 | AtomicData request from inner cache hits a shared line in Yes
L2
13 | Get request from inner cache hits a shared line in L2 Yes
14 | prefetch request from inner cache hits a shared line in L2 Yes
15 | AcquireBlock request from inner cache hits a shared line in Yes
L2
16 | AcquirePerm request from inner cache hits a shared line in Yes
L2
17 | Probe request from outer cache hits a shared line in L2 No
18 | Probe request from outer cache hits a dirty line in L2 No
L2 Request Events, pmEventSelectX[7:0]=0x3
. i Can use
Bits Description clientFilter?
0 | AcquireBlock.NtoB request to outer cache, miss No
1 AcquireBlock.NtoT request to outer cache, miss No
2 AcquireBlock.BtoT request to outer cache, miss No
3 | AcquirePerm.NtoT request to outer cache, miss No
4 | AcquirePerm.BtoT request to outer cache, miss No
5 Release.TtoB request to outer cache, eviction No
6 Release.TtoN request to outer cache, eviction No
7 Release.BtoN request to outer cache, eviction No
8 ReleaseData.TtoB request to outer cache, not applicable No
9 ReleaseData.TtoN request to outer cache, dirty eviction No
10 | ReleaseData.BtoN request to outer cache, not applicable No
11 | ProbeBlock. toT request to inner cache, code miss hits No
other harts
12 | probeBlock. toB request to inner cache, load miss hits other No
harts
13 | ProbeBlock. toN request to inner cache, store miss hits No
other harts
Other Events, pmEventSelectX[7:0]=0x4
. — Can use
Bits Description clientFilter?
0 Hint request from inner cache hits an inflight miss request Yes

Note: "Inner cache" refers to the inner side of the L2 cache, i.e., transactions from the core
and Front Port. "Outer cache" refers to the other side of the L2 Cache, i.e., read/write
transactions from the L2 and probe requests from outside.

Table 122: L2PM pmEventSelect Register

Setting up the pmCclientFilterX Register

Table 127 shows the mapping of L2 Cache masters and their client ID.
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Note that the default value of pmClientFilterX is ©, meaning all clients’ events are counted. To
disable event counting for a particular client, set its corresponding bit in pmClientFilterX.

Programming the pmEventSelect registers

The following example shows the use of 6 performance counters:

// directory lookup events: L1 miss

*pmEventSelect® = 0x01 // Event Set 1

|
((ex01 << 6 ) | // innerAcquireBlockNtoB
(ox01 << 7 ) | // innerAcquireBlockNtoT
(ox01 << 8 ) | // innerAcquireBlockBtoT
(oxe1 << 9 ) | // innerAcquirePermNtoT
(Ox01 << 10) // innerAcquirePermB2T
) << 8;
// directory lookup results: L1 miss hit L2
*pmEventSelectl = 0x02 | 7/ Event Set 2
( (O6x01 << 5) | /7 innerAcquireBlock_Hit
(Ox01 << 6) // innerAcquirePerm_Hit
) << 8;
// directory lookup events: prefetch
*pmEventSelect2 = 0x01 | /7 Event Set 1
((exe1 << 4 ) | // innerPrefetchRead
(6x01 << 5) // innerPrefetchwWrite
) << 8;
// prefetch hits L2
*pmEventSelect3 = 0x02 | 7/ Event Set 2
( (x01 << 4) // innerPrefetch_Hit
) << 8;

// L1 request misses L2
*pmEventSelect4 = 0x03
( (6x01 << 0)

// Event Set3
// outerAcquireBlockNtoB

(Ox01 << 1) // outerAcquireBlockNtoT

(Ox01 << 2) // outerAcquireBlockBtoT

(Ox01 << 3) // outerAcquirePermNtoT

(Ox01 << 4) // outerAcquirePermBtoT
) << 8;

12.2.6 Coherence

The SiFive L2 Cache is partially inclusive of the L1 instruction cache and is inclusive of the L1
data cache. When a block of data is allocated to the L1 cache, it is also allocated to the L2
Cache. When a block is evicted from the L1, the corresponding block in the L2 is then updated
and marked dirty.

To understand how coherence is managed differently in the L2 Cache with respect to the L1
instruction and data caches, consider the following rules:

1. Only an instruction cache allocation from the Memory Port will land in the L2 Cache

2. An eviction from the L2 Cache does not cause an eviction from the instruction cache
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3. An eviction from the instruction cache does not cause L2 Cache eviction either
4. A discard from the data cache does not invalidate the L2 Cache

5. Following a flush in the L2 Cache, the L2 Cache will back probe lines in L1 data cache

12.3 Memory Map

The L2 Cache Controller memory map is shown in Table 123.
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Offset Name Description

0x0000 | Config Information about the Cache Configuration

0x0008 | WayEnable The index of the largest way which has been enabled. May
only be increased.

0x0040 | ECCInjectError | Injectan ECC Error

0x0100 | DirECCFixLow The low 32-bits of the most recent address to fail ECC

0x0104 | DirECCFixHigh The high 32-bits of the most recent address to fail ECC

0x0108 | DirECCFixCount Reports the number of times an ECC error occurred

0x0120 | DirECCFailLow The low 32-bits of the most recent address to fail ECC

0x0124 | DirECCFailHigh | The high 32-bits of the most recent address to fail ECC

0x0128 | DirECCFailCount | Reports the number of times an ECC error occurred

0x0140 | DatECCFixLow The low 32-bits of the most recent address to fail ECC

0x0144 | DatECCFixHigh The high 32-bits of the most recent address to fail ECC

0x0148 | DatECCFixCount | Reports the number of times an ECC error occurred

0x0160 | DatECCFaillow The low 32-bits of the most recent address to fail ECC

0x0164 | DatECCFailHigh | The high 32-bits of the most recent address to fail ECC

0x0168 | DatECCFailCount | Reports the number of times an ECC error occurred

0x0200 | Flush64 Flush the physical address equal to the 64-bit written data
from the cache

0x0240 | Flush32 Flush the physical address equal to the 32-bit written data <<
4 from the cache

0x0800 | WayMask® Master O way enable mask register

0x0808 | WayMask1l Master 1 way enable mask register

0x0810 | WayMask?2 Master 2 way enable mask register

0x0818 | WayMask3 Master 3 way enable mask register

0x0820 | WayMask4 Master 4 way enable mask register

0x0828 | WayMask5 Master 5 way enable mask register

0x0830 | WayMask6 Master 6 way enable mask register

0x0838 | WayMask7 Master 7 way enable mask register

0x0840 | WayMasks8 Master 8 way enable mask register

0x0848 | WayMask9 Master 9 way enable mask register

0x0850 | WayMask10 Master 10 way enable mask register

0x0858 | WayMask11 Master 11 way enable mask register

0x0860 | WayMask12 Master 12 way enable mask register

0x0868 | WayMask13 Master 13 way enable mask register

0x0870 | WayMask14 Master 14 way enable mask register

0x0878 | WayMask15 Master 15 way enable mask register

0x0880 | WayMask16 Master 16 way enable mask register

0x0888 | WayMask17 Master 17 way enable mask register

0x0890 | WayMask18 Master 18 way enable mask register

0x0898 | WayMask19 Master 19 way enable mask register

0x08A0 | WayMask20 Master 20 way enable mask register

Table 123: L2 Cache Controller Memory Map
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Offset Name Description
0x1000 | FeatureDisable | Composable cache

0x2000 | pmEventSelect® | Performance monitor event select 0
0x2008 | pmEventSelectl | Performance monitor event select 1
0x2010 | pmEventSelect2 Performance monitor event select 2
0x2018 | pmEventSelect3 Performance monitor event select 3
0x2020 | pmEventSelect4 | Performance monitor event select 4
0x2028 | pmEventSelect5 | Performance monitor event select 5
0x2800 | pmClientFilter® | Performance counter client disable mask O
0x3000 | pmEventCounter® | Performance monitor event counter 0
0x3008 | pmEventCounter1 | Performance monitor event counter 1
0x3010 | pmEventCounter2 | Performance monitor event counter 2
0x3018 | pmEventCounter3 | Performance monitor event counter 3
0x3020 | pmEventCounter4 | Performance monitor event counter 4
0x3028 | pmEventCounter5 | Performance monitor event counter 5

Table 123: L2 Cache Controller Memory Map

Note that the S76-MC Core Complex does not have ECC enabled on the L2 Cache Controller.
The ECC registers are still present but have no effect on hardware nor are they affected by
hardware; however, these registers can be manipulated by software.

12.4 Register Descriptions

This section describes the functionality of the memory-mapped registers in the Level 2 Cache

Controller.

12.4.1 L2 Cache Configuration Register (Config)

The config Register can be used to programmatically determine information regarding the
cache size and organization.

L2 Cache Configuration Register (Config)

Register Offset 0x0
Bits Field Name Attr. Rst. Description
[7:0] Banks RO 0x2 Number of banks in the cache
[15:8] ways RO 0x10 Number of ways per bank
[23:16] 1gSets RO 0x8 Base-2 logarithm of the sets per bank
[31:24] 1gBlockBytes RO 0x6 Base-2 logarithm of the bytes per cache
block

Table 124: 12 Cache Configuration Register
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12.4.2 Way Enable Register (WayEnable)

The wayEnable register determines which ways of the Level 2 Cache Controller are enabled as
cache. Cache ways that are not enabled are mapped into the S76-MC Core Complex’s L2 LIM
(Loosely-Integrated Memory) as described in the memory map in Section 4.2.

This register is initialized to 0 on reset and may only be increased. This means that, out of reset,
only a single L2 cache way is enabled, as one cache way must always remain enabled. Once a
cache way is enabled, the only way to map it back into the L2 LIM address space is by a reset.

Way Enable Register (WayEnable)

Register Offset 0x8
Bits Field Name Attr. Rst. Description
[7:0] WayEnable WARL 0x0 The index of the largest way which has
been enabled. May only be increased.

Table 125: Way Enable Register

12.4.3 Cache Flush Registers (Flush*)

The S76-MC Core Complex L2 Cache Controller provides two registers that can be used for
flushing specific cache blocks.

Flush64 is a 64-bit write-only register that flushes the cache block containing the address writ-
ten. Flush32 is a 32-bit write-only register that flushes a cache block containing the written
address left shifted by 4 bytes. In both registers, all bits must be written in a single access for
the flush to take effect.

The flush operation performs a write-back and invalidate, meaning the contents are written to
memory and L2 and L1 cache lines are then invalidated.

12.4.4 Way Mask Registers (WayMask*)

The wayMaskN register allows a master connected to the L2 Cache Controller to specify which
L2 Cache ways can be evicted by Master N. Masters can still access memory cached in
masked ways. The mapping between masters and their L2 master IDs is shown in Table 127.

At least one cache way must be enabled. It is recommended to set/clear bits in this register
using atomic operations.
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Way Mask 0 Register (WayMasko)

Register Offset 0x800
Bits Field Name Attr. Rst. Description
0 WayMaskO_0 RW 0x1 Enable way 0 for Master 0
1 WayMask0_1 RW 0x1 Enable way 1 for Master O
2 WayMasko_2 RwW 0x1 Enable way 2 for Master 0
3 WayMaskO_3 RW 0x1 Enable way 3 for Master 0
4 WayMask0_4 RW 0x1 Enable way 4 for Master 0
5 WayMask0_5 RW 0x1 Enable way 5 for Master 0
6 WayMask0_6 RwW 0x1 Enable way 6 for Master 0
7 WayMasko_7 RW 0x1 Enable way 7 for Master O
8 WayMask0_8 RW 0x1 Enable way 8 for Master 0
9 WayMasko_9 RwW 0x1 Enable way 9 for Master 0
10 WayMask0_10 RW 0x1 Enable way 10 for Master O
11 WayMasko_11 RW 0x1 Enable way 11 for Master O
12 WayMaskO_12 RW 0x1 Enable way 12 for Master 0
13 WayMask0_13 RW 0x1 Enable way 13 for Master O
14 WayMask0_14 RW 0x1 Enable way 14 for Master 0
15 WayMask0_15 RW 0x1 Enable way 15 for Master 0

Table 126: Way Mask 0 Register
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Master ID Description
0 Debug
1 Hart O Fetch Unit
2 Hart 0 D-Cache
3 Hart O L2 Prefetcher
4 Hart 1 Fetch Unit
5 Hart 1 D-Cache
6 Hart 1 L2 Prefetcher
7 Hart 2 Fetch Unit
8 Hart 2 D-Cache
9 Hart 2 L2 Prefetcher
10 Hart 3 Fetch Unit
11 Hart 3 D-Cache
12 Hart 3 L2 Prefetcher
13 AXI14 Front Port ID#0 [W]
14 AXI4 Front Port ID#1 [W]
15 AXI14 Front Port ID#2 [W]
16 AXl14 Front Port ID#3 [W]
17 AXl14 Front Port ID#0 [R]
18 AXl14 Front Port ID#1 [R]
19 AXl14 Front Port ID#2 [R]
20 AXI4 Front Port ID#3 [R]

Table 127: Master IDs in the L2 Cache Controller

12.5 Procedure to Flush the L2 Cache

This section describes how to flush the L2 Cache using the Zero Device scratchpad. As the
scratchpad resides in the L2 Cache, allocations made to the scratchpad can result in an eviction
of a cache line that was allocated from the Memory Port. By controlling the WwayMaskN register
and targeted scratchpad address, it is possible to perform different flush operations.

As the scratchpad region is cacheable, it is necessary to perform a flush of the scratchpad
region used to perform the L2 flush. Otherwise, if the targeted scratchpad line already exists in
the L2 Cache, either through a direct access or speculation, it will prevent the desired L2 cache
line from being evicted from the Memory Port when it is accessed. The steps outlined below
include this necessary flush of the scratchpad region.

For flushing ranges of data, it is recommended to use the flush-by-address function in the L2
Controller space, described in Section 12.4.3.

12.5.1 Flushing a Single Index+Way
1. Write WwayMaskN to allow evictions from only the desired way

2. Issue a FENCE instruction
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Determine address A in the L2 scratchpad region that corresponds to the desired index to
be flushed. For example, consider a 2 MiB 16-way cache with the Zero Device located at
0X0A00_000. To target index 8, the valid addresss would be {0x0A00_0200, 0x0A02_0200,
0Xx0A04_0200, ..., OXOA1E_0200}.

Write address A to the L2 Controller Flush64 register
Issue a load from address A (or a store to address A)

(Optional) To force observation of the flush, write address A to the L2 Flush64 register and
issue a FENCE instruction

Restore the WayMaskN register to the original value

Issue a FENCE instruction

12.5.2 Flushing the Entire L2 Cache

1.
2.
3.

Write wayMaskN to allow evictions from only way O
Issue a FENCE instruction

Flush the first way-size of L2 scratchpad memory using a series of Flush64 operations. For
example, consider a 2 MiB 16-way cache with the Zero Device located at 0x0AG0_000.
2048 lines (128 KiB) in the region from 0xA000_0000-0xA001_FFCO must be targeted with
a Flush64 operation.

Issue a FENCE instruction

5. Access the first way-size of L2 scratchpad memory using a series of load or store opera-

10.

tions that correspond to each index of the L2 Cache. Considering the same cache example
(2 MiB, 16-way), all 2048 lines in the region from 0x0A00_0000-0xA001_FFCO must be
accessed. Only one access per 64 B cache line is required. Each scratchpad access will
cause an eviction if the corresponding cache index is dirty.

Issue a FENCE instruction

Repeat steps 1-6 for the next way to be flushed until all ways have been flushed. The
region flushed in step 3 needs to advance by the cache way size, as does the region
accessed in step 5. Considering the same example, address range
0xA002_0000-0xA003_FFCO will be targeted for way 1 operations.

(Optional) To force observation of the complete flush, repeat steps 3 and 4
Restore the wayMaskN register to the original value

Issue a FENCE instruction Memory accesses from harts not performing the flush can inter-
fere with the flush operation. It is recommended to put other harts into WFI or a holding
loop until the L2 flush is completed.
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Power Management

The following chapter describes power modes and establishes flows for powering up, powering
down, and resetting the hardware of the S76-MC Core Complex.

13.1 Power Modes

Power modes include normal run mode with the Power Dial option and wait-for-interrupt clock
gating mode using the WFI instruction. Additionally, there is a full power down mode supported
via the CEASE instruction. These modes are covered in detail below.

13.2 Run Mode

The hart is fully operational in run mode, and SiFive designs include the option to include
coarse-grained architectural clock gating. When this feature is enabled in the hart, configured
instruction cache, data cache, integer pipeline, Debug Logic, and Floating-Point Unit (FPU)
modules each contain their own clock gate. The clock gating feature will enable automatic clock
gating of functional units when they are inactive and allow the hart to gate its own clock(s)
based on activity.

13.2.1 Power Control

Core Clock

To further reduce power while in run mode, users may choose to reduce
external_source_for_core_N_clock, which is required to be changed synchronously to the
rest of the clocks in the system. It is important to note that the clock relationships with the rest of
the system must still be maintained if external_source_for_core_N_clock is reduced.
external_source_for_core_N_clock and all other clock signals are described in the S76-MC
Core Complex User Guide.

Power Dial

To limit maximum power without frequency changes, Power Dial provides a method of scaling
down dynamic power in a core. Power is reduced by restricting cycles allowed to advance
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instructions into the execution pipeline. This feature can typically be used for throttling high CPU
usage applications.

Power Dial CSR

CSR 0x7C8
Bits Field Name Attr. Rst. Description
[3:0] dutycycle RW 0x0 (1 - value/16) portion of the peak

instruction throughput (i.e., value=0 is
no reduction)

[7:4] Reserved RO 0x0
Table 128: Power Dial CSR

The Power Dial Register may only be programmed in M-mode. When written with a non-zero
value, the register restricts peak instruction throughput to the indicated rate. A value of 0 has no
effect on instruction throughput. The rate is calculated per 256-cycle period, so a Power Dial
value of 1 restricts instruction throughput at a common point in the pipeline to 240 cycles of
each 256-cycle period. Reducing the peak rate reduces the worst-case power while minimizing
the impact on performance.

13.3 WHFI Clock Gate Mode

WEFI clock gating mode can be entered by executing the WFI instruction. The assembly-level
instruction is simply wfi and executing the C method using the GCC compiler can be accom-
plished with asm("WFI").

13.3.1 WFI Wake Up

Wake up from a WFI occurs when the hart receives any interrupt. Depending on the software
configuration, the hart will either immediately enter the interrupt handler, or resume execution on
the instruction immediately after the WFI.

If interrupts are enabled and mstatus.MIE=1, then the hart will wake when an interrupt is
enabled and becomes pending, and immediately enter the interrupt handler. Upon exit from the
interrupt handler, program execution will resume at the instruction following the wFI.

If interrupts are enabled but mstatus.MIE=0, then the hart will wake when an interrupt is
enabled and becomes pending but will not enter the interrupt handler. It will simply resume at
the instruction immediately after the WFI in this case.

To prevent an interrupt source from waking a hart, the enable bit for that interrupt must be writ-
ten to O prior to executing the WFI instruction. If any interrupts are pending upon executing a WFI
instruction, then the WF1I is effectively treated as a NOP instruction.

Refer to Chapter 7 for more detail on interrupt configuration.
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13.4 CEASE Instruction for Power Down

To fully power down, follow the steps described in Section 13.11, where the last step is to exe-
cute a CEASE instruction. Once the CEASE instruction is executed, the core will not retire another
instruction until reset. The CEASE opcode is 0x30500073 and can be implemented in either
assembly or C. To create an assembly-level function using GCC, consider the following exam-

ple.

.global cease

.type _cease, @function
_cease:

.word 0x30500073

ret

The next example demonstrates how to implement the CEASE instruction within a function in C.

static inline void cease()

{
}

asm__ volatile  (".word 0x30500073" : : : "memory"); // CEASE

13.5 Subsystem LowPower Controller (SLPC)

The Subsystem LowPower Controller (SLPC) is a unit inside the uncore that contains power
management-related logic.

It includes the CorePowerState register that indicates the individual WFI and CEASE status for up
to 16 Tiles in the core-complex.

It is used by core-complex power gating, but can be present when core-complex power gating is
not enabled or supported.

Below are the memory map and bitfield definitions for the SLPC:

Location Description
base + 0x000 | CorePower State Register
base + 0x008 | Reserved

Table 129: CorePower State Memory Map

CorePower State Register
Bits Field Description
[15:0] wfi_<x> | WFI indication from Tile-X, where x is the Tile Index. WFI status for
up to 16 Tiles can be captured here.
[31:16] | cease_<x> | CEASE indication from Tile-X, where x is the Tile Index. CEASE status
for up to 16 Tiles can be captured here.

Table 130: CorePower State Register
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13.6 Composable Cache Clock Gating

The Composable Cache implements two levels of architectural clock gating to gate clock nodes
when not active, reducing its clock tree and dynamic power.

1. The first level is a trunk clock gate on the entire Composable Cache Wrapper; that is, the
clock to the entire module and all its flops is gated. This feature is disabled (i.e., the clock is
always enabled) out of reset.

DisableClockGate register bit @ (DisableWFICCTrunkClockGate) enables the feature dur-
ing start-up code. The clock gate only becomes active when all the cores in the Core IP
subsystem are in WFI mode and the Composable Cache is idle. This saves internal clock
tree and Flop’s dynamic power in WFI mode. When any of the core is out of WFI mode, the
clock is always enabled.

If the feature is enabled, in WFI mode, the clock is only available under the following condi-
tions:
o Activity on the ingress memory bus initiated by any bus master
o Activity on the LIM bus
o Activity on the Composable Cache TileLink control bus
The clock remains available until all the above inflight transactions are finished at the
Composable Cache Wrapper boundary.
2. The second level a regional clock gate that gates the clock of some the Composable
Cache’s major units. This feature is disabled (i.e., the clock is always enabled) out of reset.

DisableClockGate register bit 1 (DisableCCRegionalClockGate) enables the feature dur-
ing start-up code.

Below are the memory map and bitfield definitions for the DisableClockGate register:

Location Description
base + 0x1000 | DisableClockGate Register

Table 131: DisableClockGate Memory Map
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DisableClockGate Register
Bits Field Attr | Reset | Description
State
2 DisableCCRegionalClockGateSlow | RW ox1 When set, disables regional
clock gating "slow" feature.
When clear, if regional clock
gating is also enabled, the
aggressive clock gating feature
is enabled. This clock gater
imposes a 1-cycle exit penalty
from the gated state (on the
first TL channel-A request), but
saves more power than the
no-penalty regional clock gate
option.
1 DisableCCRegionalClockGate RW Ox1 When set, disables all regional
clock gating. When clear,
non-aggressive clock gating is
enabled. This clock gater has
no penalty for exit, but less
power savings than regional
"slow" clock gating.
0 DisableWFICCTrunkClockGate RW ox1 When set, disables trunk clock
gating feature. When clear,
dynamic gating of the Ccache
clock trunk is enabled. This
clock gater incurs a 2-cycle
penalty when exiting the WFI
clock gated state and saves the
most power. All cores in a
core-complex must be in WFI
before this state is entered.

Table 132: DisableClockGate Register

Note

To enable the regional clock gating "slow" feature, both bits 1 and 2 need to be cleared.

13.7 Hardware Reset

The following list summarizes the hardware reset values required by The RISC-V Instruction Set
Manual, Volume II: Privileged Architecture, Version 1.11 and applies to all SiFive designs.

1. Privilege mode is set to machine mode.
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2. mstatus.MIE and mstatus.MPRV are required to be 0.

3. The misa register holds the full set of supported extensions for that implementation, and
misa.MXL defaults to the widest supported ISA available, referred to as MXLEN.

4. The pc is set to the implementation specific reset vector.

5. The mcause register is set to 0x0 at reset.

6. The PMP configuration fields for address matching mode (A) and Lock (L) are set to O,
which defaults to no protection for any privilege level.

The internal state of the rest of the system should be completed by software early in the boot
flow.

13.8 Early Boot Flow

For the early stages of boot, some of the first things software must consider are listed below:
¢ The global pointer (gp or x3) user register should be initialized to the __global_pointer$
linker generated symbol and not changed at any point in the application program.

e The stack pointer (sp or x2) user register should be also set up as a standard part of the
boot flow.

» All other user registers (x1, x4 - x31) can be written to 0 upon initial power-on.

« The mtvec register holds the default exception handler base address, so it is important to
set up this register early in the boot flow, so it points to a properly aligned, valid exception
handler location.

» Zero out the bss section and copy data sections into RAM areas as needed.

13.9 Interrupt State During Early Boot

Since mstatus.MIE defaults to O, all interrupts are disabled globally out of reset. Prior to
enabling interrupts globally through mstatus.MIE, consider the following:

< Ensure no timer interrupts are pending by checking the mip.MTIP bit. The mtime register is
0 out of reset and starts running immediately. However, the mtimecmp register does not
have a reset value.

If no timer interrupt is required, leave mie.MTIE equal to O prior to enabling global interrupt
with mstatus.MIE.

If the application requires a timer interrupt, write mtimecmp to a value in the future for the
next timer interrupt before enabling mstatus.MIE.

« Write the remaining bits in the mie CSR to the desired value to enable interrupts based on
the requirements of the system. This register is not defined to have a reset value.
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Each msip register in the Core-Local Interruptor (CLINT) or Core-Local Interrupt Controller
(CLIC) address space is reset to 0, so no specific initialization is required for local software
interrupts.

Since msip is memory-mapped, any hart in the system may trigger a software interrupt on
another hart, so this should be considered during the boot flow on a multi-hart system.

If a Platform-Level Interrupt Controller (PLIC) exists, check the PLIC pending status. The
PLIC memory mapped pending bits are read-only, so the pending status should be cleared
at the source if they reset to a non-zero status. Then, enable the PLIC interrupts as
required by the system prior to enabling interrupts in the system via mstatus.MIE.

If an L2 Cache or Bus-Error Unit (BEU) is present, these interrupt IDs begin at 128, so the
enable bits may lie in a different region of the memory map than other PLIC enable bits in
the design.

13.10 Other Boot Time Considerations

Write 0 to enable the appropriate bits in the Feature Disable CSR as described in Section
6.2.2.

Ensure the remaining bits in the mstatus CSR are written to the desired application spe-
cific configuration at boot time.

If a design includes user and supervisor privilege levels, initialize medeleg and mideleg
registers to 0 until supervisor-level trap handling is set up correctly using stvec.

The mcause, mepc, and mtval registers hold important information in the event of a syn-
chronous exception. If the synchronous exception handler forces reset in the application,
the contents of these registers can be checked to understand root cause.

The PMP address and configuration CSRs are required to be initialized if user or supervi-
sor privilege levels are part of the design. By default, user and supervisor modes have no
permissions to the memory map unless explicitly granted by the PMP.

The mcycle CSR is a 64-bit counter on both RV32 and RV64 systems, and it counts the
number of cycles executed by the hart. It has an arbitrary value after reset and can be writ-
ten as needed by the application.

Instructions retired can be counted by the minstret register, and this also has an arbitrary
value after reset. This can be written to any given value.

The mhpmeventX CSR selects which hardware events to count, where the count is reflected
in mhpmcounterX. At any point, the mhpmcounterX registers can be directly written to reset
their value when the mhpmeventX register has the proper event selected.

There is no requirement for boot time initialization to any of the registers within the Debug
Module, unless there is an application specific reason to do so.

All other CSRs during boot time initialization should be considered based on system and
application requirements.
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13.11 Power-Down Flow

Designate one core as "primary" and all others as "secondary". For SiFive Core IP, coordination
with an "External Agent" is required.

1. External Agent: Wait for communication from the primary core to initiate the following
steps:

e o T p

Stop sending inbound traffic (both transactions and interrupts) into the Core Complex.
Wait until all outstanding requests to the Core Complex are completed, then
Wait until cease_from_tile_N is high for the primary core and all secondary cores.

Once cease_from_tile_N is high for the primary core and all secondary cores, apply
reset to the entire Core Complex.

2. Primary core:

a.

g.
h.

The following sequence should be executed in machine mode and NOT out of a
remote ITIM/DTIM.

Communicate with external agent to initiate cease power-down sequence.
Poll external agent until steps 1.a and 1.b are completed.
Disable all interrupts except those related to bus errors/memory corruption, and IPls
(if using enabled IPI to coordinate power-down sequence among cores).
i. Copy contents of any TIMs/LIMs into external memory.
ii. Ifthereis an L2 cache, flush it.
iii. If there is no L2 cache, but there is a data cache, flush it.
Inform all secondary cores to proceed.
Wait until cease_from_tile_N is high for all secondary cores. Examples of how this
can be accomplished:
i. Have an off-core-complex memory-mapped register that tracks the state of the
cease_from_tile_N signals. Primary core polls this register.

ii. Wire the cease_from_tile_N signals back into interrupt wires. Corresponding
interrupts can be disabled along with all others in the first step. Primary core polls
the interrupt-pending bits for those interrupts.

Disable all interrupts.
Execute CEASE instruction.

3. Secondary cores:

a.

The following sequence should be executed in machine mode and NOT out of a
remote ITIM/DTIM.

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 181



SiFive S76-MC Core Complex Manual 21G3.02.00
Power Management

b. Execute in an idle loop for notification sent in step 2.e (could be via polling on an
MMIO-accessible mailbox, polling on an IPI (disabled), or waiting on an IPI (enabled)).

c. Disable all interrupts except those related to bus errors/memory corruption, and IPIs
(if using enabled IPI to coordinate power-down sequence among cores).

d. Copy contents of any TIMs/LIMs into external memory.

e. Ifthere is no L2 cache but there is a data cache, flush it using full-cache variant of
CFLUSH.D.L1 if available, or per-line variant if not.

f. Disable all interrupts.

g. Execute CEASE instruction.
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Chapter 14

Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC-V
Debug Specification, Version 1.0. Currently, only interactive debug and hardware breakpoints
are supported.

14.1 Debug Module

The Debug Module (DM) handles nearly all of the functions related to debugging. It is a slave to
both the Debug Module Interface (DMI) coming from the probe, and a TileLink bus coming from
the cores. From the perspective of the core, the DM appears as a 4KiB block in the memory
map. The DM memory map as seen from the perspective of the core is shown in Table 134, and
the register map from the perspective of the DMI is shown in Table 133.

Most of the DM is clocked by debug_clock. The dmcontrol register is accessible when
debug_clock is not running, mainly to be able to write to haltreq while the core is in reset due
to ndreset. Doing so generates a debug interrupt and will interrupt the selected core immedi-
ately once it is out of reset or during a WFI instruction.
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DMI Address Name Description
0x04-0x0F | data®-dataill Read/Write DATA registers. 32-bit SiFive cores

have 1 data register, 64-bit cores have 2. Note that
these registers are volatile and may be masked in
IP-XACT.

0x10 | dmcontrol Debug Module Control. See Table 145 for more
information.

0x11 | dmstatus Debug Module Status. See Table 144 for more
information.

0x12 | hartinfo Hart Information. See Table 146 for more
information.

0x13 | haltsumi Read-only. Halt Summary 1. Only present on
systems with >32 harts. Not used by SiFive.

0x14 | hawindowsel Read/Write. Select which window of up to 32 harts
is visible in hawindow. Not used by SiFive since all
SiFive systems have less than 32 harts.

0x15 | hawindow Read/Write. Window of 32 harts to be selected, in
addition to the one selected by hartsel. Bit 0
corresponds to hart 0. A 1 will select the
corresponding hart.

0x16 | abstractcs Abstract Control and Status. See Table 147 for
more information.

0x17 | command Initiate abstract command. See Table 148 for more
information.

0x18 | abstractauto Selects whether access to particular DATA or
PROGBUF locations will re-execute the last
command. Used for block transfers or other
repeating commands. See Table 149 for more
information.

0x20-0x2F | progbufe-progbufis | Read/Write PROGBUF registers.

0x32 | dmcs2 Fields to set up and read back Halt Group or
Resume Group configuration. Present by default on
systems with more than 1 hart or with any external
triggers. See Table 150 for more information.

0x38 | sbcs System Bus Access Control and Status

0x39 | sbaddresso System Bus Address 31:0

0x3A | sbaddress1 System Bus Address 63:32.

0x3C | sbdata® System Bus Data 31.0

0x3D | sbdatal System Bus Data 63:32

0x40 | haltsum@ Read-only. Halt Summary 0. Bit n reads 1 if hart n is
halted. Note that this register is volatile and may be
masked in IP-XACT.

Table 133: Debug Module Memory Map Seen from the Debug Module Interface
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From the point of view of the core, the DM appears as a 4KiB block of memory. It is mapped into
low memory so that memory references can use addresses relative to the $zero register.
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TL Address Name Attr. | Description

0x100 HALTED WO | Written with hartid by ROM code when hart gets a
debug interrupt or reenters ROM due to EBREAK. Sets
halted[hartid]. If an abstract command was running,
writing this also clears busy.
0x104 GOING WO | Written by ROM code when it begins executing a
command started by FLAGS[hartid].go. Clears
FLAGS[hartid].go.
0x108 | RESUMING | WO | Written with hartid by hart when it is about to resume.
Sets resumeack[hartid] and clears halted[hartid]
and FLAGS[hartid].resume.
0x10C | EXCEPTION | WO | Written by hart when it encounters an exception in
debug mode. Sets cmderr to "exception”.
0x300 | WHERETO RO | JAL to ABSTRACT. This opcode is constructed by DM
hardware and is needed because ABSTRACT is not a
fixed address (depends on number of PROGBUF words
selected in the configuration). Note that ABSTRACT is
volatile and may be masked in IP-XACT.
contiguous | ABSTRACT | RO | 2 words constructed by DM hardware based on abstract
command written from DTM.

» 0-If transfer set, construct instruction to load/
store specific register to/from DATA[0] (32 bits) or
DATA[1:0] (64 bits), else NOP.

» 4 -If postexec set, then NOP to fall thru and
execute PROGBUF, else EBREAK to return to
ROM park loop.

Note that this register is volatile and may be masked in
IP-XACT.

contiguous | PROGBUF RW | Configurable number (typically 16, max 16) of R/W
words to be filled in by debugger and executed by hart.
Note that this register is volatile and may be masked in
IP-XACT.

0x380-0x3BF DATA RW | Configurable number (1 for 32-bit or 2 for 64-bit, max
12) of R/W words intended for use for data transfer
between debugger and hart. Since it is contiguous with
PROGBUF, the debugger may use DATA as an
extension of PROGBUF. Note that these registers are
volatile and may be masked in IP-XACT.

0x400-0X7FF FLAGS RO | One byte flag per hart.

» Bit 0 (go): Set by writing an abstract command,
cleared by ROM write to GOING. ROM will jump to
WHERETO.

Table 134: Debug Module Memory Map from the Perspective of the Core
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TL Address Name Attr. | Description

e Bit1 (resume): Set by writing 1 to
resumereq[hartid]. Cleared by ROM write of
hartid to RESUMING. ROM restores s0 then
executes dret.

Note that these registers are volatile and may be
masked in IP-XACT.

0x800-0XFFF ROM RO | Debug interrupt or EBREAK enters at 0x800, saves s0,
writes hartid to HALTED, then busy-waits for
FLAGS[hartid] > 0.

If FLAGS[hartid].go, write O to GOING, then jump to
WHERETO.

Else write hartid to RESUMING, then execute dret to
return to user program.

ROM Source Code: https://github.com/chipsalliance/
rocket-chip/blob/master/scripts/debug_rom/
debug_rom.S

Table 134: Debug Module Memory Map from the Perspective of the Core

14.2 Debug and Trigger Registers

This section describes the per hart debug and trigger registers, which are mapped into the CSR
space as follows:

CSR Name Allowed Access Mode Description
0x7B0O dcsr Debug Debug Control and Status Register
0x7B1 dpc Debug Debug PC. Stores execution address

just before debug exception and to
return to at dret.

0x7B2 dscratche | Debug Debug Scratch Register 0

OX7A0 tselect Debug, Machine Trigger Select. Most configs
implement 2, 4, or 8 triggers. Triggers
are all type 6 (address/data).

0x7A1 tdatal Debug, Machine Trigger Data 1, mcontrol6

OX7A2 tdata2 Debug, Machine Trigger Data 2, the address for
comparison

OX7A3 tdata3 Debug, Machine Trigger Data 3

Table 135: Debug and Trigger Registers

14.2.1 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is
described in The RISC-V Debug Specification, Version 1.0.
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Debug Control and Status Register (dcsr)
CSR 0Xx7B0O
Bits Field Name Attr. Description
[1:0] prv RW Privilege level of processor prior to debug
exception and to return to at dret.
2 step RW Set to 0x1 to single-step.
3 nmip RO Non-maskable interrupt pending. Not used
by SiFive.
4 mprven WARL Not used by SiFive.
5 Reserved
[8:6] cause RO Indicates cause of most recent debug
exception.
9 stoptime WARL | Ox1 will stop timers in debug mode. Not used
by SiFive (timers continue).
10 stopcount WARL | Ox1 will stop counters in debug mode. Not
used by SiFive (counters continue).
11 stepie WARL Enable interrupts when stepping. Not used
by SiFive (interrupts disabled).
12 ebreaku RW EBREAK instructions in U-mode enter debug
mode (vs. breakpoint exception).
13 ebreaks RW EBREAK instructions in S-mode enter debug
mode.
14 Reserved
15 ebreakm RW EBREAK instructions in M-mode enter debug
mode.
[27:16] Reserved
[31:28] xdebugver RO Version

Table 136: Debug Control and Status Register

14.2.2 Debug PC (dpc)

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-
tion resumes at this PC.

14.2.3 Debug Scratch (dscratch)

This register is generally reserved for use by Debug ROM in order to save registers needed by
the code in Debug ROM. The debugger may use it as described in The RISC-V Debug Specifi-
cation, Version 1.0.
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14.2.4 Trigger Select Register (tselect)

To support a large and variable number of triggers for tracing and breakpoints, they are
accessed through one level of indirection where the tselect register selects which bank of
three tdatai-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:

Trigger Select Register (tselect)
CSR OX7A0
Bits Field Name Attr. Description
[63:0] index WARL | Selection index of triggers

Table 137: Trigger Select Register

The index field is a WARL field that does not hold indices of unimplemented triggers. Even if
index can hold a trigger index, it does not guarantee the trigger exists. The type field of tdatail
must be inspected to determine whether the trigger exists.

14.2.5 Trigger Data Registers (tdatal-3)

The tdatal-3 registers are 64-bit read/write registers selected from a larger underlying bank of
triggers by the tselect register.

Trigger Data Register 1 (tdata1l)

CSR OXx7A1
Bits Field Name | Attr. | Description
[58:0] Trigger-Specific Data
59 dmode WARL Selects between debug mode (dmode=1) and

machine mode (dmode=0) views of the
registers, where only debug mode code can
access the debug mode view of the triggers
[63:60] type WARL | The type of trigger selected by tselect

» 0x0 - No such trigger
* 0x1-0x5 - Reserved
* Ox6 - Address/Data Match Trigger

» >0x7 - Reserved
Table 138: Trigger Data Register 1
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Trigger Data Registers 2 and 3 (tdata2/3)
CSR OX7A2 - OXT7A3
Bits Field Name | Attr. | Description
[63:0] Trigger-Specific Data

Table 139: Trigger Data Registers 2 and 3

Any attempt to read/write the tdatai-3 registers in machine mode when TSELECT.dmode=1
raises an illegal-instruction exception.

14.3 Breakpoints

The S76-MC Core Complex supports four hardware breakpoint registers per hart, which can be
flexibly shared between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-
mation for the selected breakpoint:

CSR Name | Breakpoint Alias | Description

tselect tselect Breakpoint selection index
tdatail mcontrol6 Breakpoint match control
tdata2 maddress Breakpoint match address
tdata3 N/A Reserved

Table 140: Trigger CSRs When Used as Breakpoints

14.3.1 Breakpoint Match Control Register (mcontrol6)

Each breakpoint control register is a read/write register laid out in Table 141. This register is
accessible as tdatal when type is 0x2.
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Breakpoint Match Control Register (ncontrol6)

CSR 0x7A1
Bits Field Name Attr. Rst. Description
0 R WARL 0x0 Address match on load
1 W WARL 0x0 Address match on store
2 X WARL 0x0 Address match on instruction fetch
3 u WARL X Address match on user mode
4 S WARL X Address match on supervisor mode
5 Reserved WPRI X
6 M WARL X Address match on machine mode
[10:7] match WARL X Breakpoint Address Match type

e 0x0 - Single address

* Ox1 - Power-of-2 range, limited to
64 bytes in SiFive implementations

¢ 0Ox2 - = address
¢ 0x3 - < address

» Others not supported by SiFive

11 chain WARL 0x0 Chain adjacent conditions. When set,
this trigger and the next must match at
the same time to fire. Typically used for
a range breakpoint using 2 triggers, one
with match=0x2 and one with
match=0x3. This is not a sequential

trigger.
[15:12] action WARL 0x0 Breakpoint action to take
[19:16] size WARL 0x0 Size of the breakpoint. Fixed at O,

meaning accesses of any size that
cover any part of the trigger address
range will fire.

20 timing WARL 0x0 Timing of the breakpoint. Fixed at 0,
meaning breaks happen just before the
event.

21 select WARL 0x0 Perform match on address or data.

Fixed at 0, meaning all triggers
compare addresses only (no data

value).
[58:22] Reserved
59 dmode RW 0x0 Debug-only access mode
[63:60] type RO 0Xx6 Address/Data match type, always 0x6

Table 141: Breakpoint Match Control Register
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The type field is a 4-bit read-only field holding the value 0x2 to indicate this is a breakpoint con-
taining address match logic.

The action field is a 4-bit read-write WARL field that specifies the available actions when the
address match is successful. The value 0 generates a breakpoint exception. The value 1 enters
debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields, and if set, indicate an address match should only be
successful for loads, stores, and instruction fetches, respectively. All combinations of imple-
mented bits must be supported.

The M/S/u bits are individual WARL fields, and if set, indicate that an address match should only
be successful in the machine, supervisor and user modes, respectively. All combinations of
implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for
breakpoint address matching. Three different match settings are currently supported: exact,
NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches
and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.
Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered
breakpoint register giving the byte address at the bottom of the range and the higher-numbered
breakpoint register giving the address 1 byte above the breakpoint range and using the chain
bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to
encode the size of the range as follows:

maddress Match Type and Size
a..aaaaaa Exactly 1 byte
a..aaaaao0 2-byte NAPOT range
a..aaaadl 4-byte NAPOT range
a..aaadll 8-byte NAPOT range
a..aafl111 16-byte NAPOT range
a..a01111 32-byte NAPOT range
a61.1111 23L_byte NAPOT range

Table 142: NAPOT Size Encoding

maskmax6 determines the largest supported NAPOT range. The value of maskmaxé is the loga-
rithm base 2 of the number of bytes in the largest supported NAPOT range. A value of 0 indi-
cates that only exact address matches are supported (1-byte range). A value of 31 corresponds

to the maximum NAPOT range, which is 23t bytes in size. The largest range is encoded in
maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding the only
address bit considered in the address comparison.
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The value of maskmax6 is not directly observable, but can be determined via the following
sequence:

1. Setmatch to 1 to select NAPOT mode

2. Read match. If the returned value is not 1, then NAPOT matching is not supported.
3. Write all ones to tdata2
4

Read tdata2. The value of maskmax6 is one more than the index of the most-significant
zero bit. For example, if the read value is @xFFFF_FFF7, bit 3 is zero, so maskmax6 is 4.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with
the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater
than or equal). The second breakpoint can be set to match on address using action of 3 (less
than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing
unless they both match.

Note

When a chain includes both instruction trigger and data address trigger, the breakpoint
does not fire. To work around this limitation, set a data trigger on any access to the data
item. Then, in the GDB breakpoint command script, check whether the PC is the one you
want and restart if not.

14.3.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is a 64-bit read/write register used to hold significant
address bits for address matching and also the unary-encoded address masking information for
NAPOT ranges.

14.3.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-
ware will generate a breakpoint trap when either half of the emulated access falls within the
address range. Implementations that support misaligned accesses in hardware must trap if any
byte of an access falls within the matching range.

Debug mode breakpoint traps jump to the debug trap vector without altering machine mode reg-
isters.

Machine mode breakpoint traps jump to the exception vector with "Breakpoint" set in the mcause
register and with badaddr holding the instruction or data address that caused the trap.
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14.3.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,
the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,
either because a user explicitly requested one or because the user is debugging code in ROM.

14.4 Debug Memory Map

This section describes the Debug Module’'s memory map when accessed via the regular system
interconnect. The Debug Module is only accessible to debug code running in debug mode on a
hart (or via a Debug Transport Module). The following addresses are offsets from the base
address of the Debug Module. Note that the PMP must allow M-mode access to the Debug
Module address range for debugging to be possible.

14.4.1 Debug RAM and Program Buffer (0x300-0x3FF)

The S76-MC Core Complex has 16 32-bit words of program buffer for the debugger to direct a
hart to execute arbitrary RISC-V code. Its location in memory can be determined by executing
aiupc instructions and storing the result into the program buffer.

The S76-MC Core Complex has two 32-bit words of debug data RAM. Its location can be deter-
mined by reading the DM. hartinfo register, as described in The RISC-V Debug Specification,
Version 1.0. This RAM space is used to pass data for the Access Register abstract command,
as described in The RISC-V Debug Specification, Version 1.0. The S76-MC Core Complex sup-
ports only general-purpose register access when harts are halted. All other commands must be
implemented by executing from the debug program buffer.

In the S76-MC Core Complex, both the program buffer and debug data RAM are general-pur-
pose RAM and are mapped contiguously in the Core Complex memory space. Therefore, addi-
tional data can be passed in the program buffer, and additional instructions can be stored in the
debug data RAM.

Debuggers must not execute program buffer programs that access any Debug Module memory
except defined program buffer and debug data addresses.

14.4.2 Debug ROM (6x800-0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary
between implementations.

14.4.3 Debug Flags (0x100-0x110, 0x400—-0x7FF)

The flag registers in the Debug Module are used for the Debug Module to communicate with
each hart. These flags are set and read used by the debug ROM and should not be accessed
by any program buffer code. The specific behavior of the flags is not further documented here.
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14.4.4 Safe Address

In the S76-MC Core Complex, the Debug Module contains the Debug Module address range in
the memory map. Memory accesses to these addresses raise access exceptions, unless the
hart is in debug mode. This property allows a "safe" location for unprogrammed parts, as the
default mtvec location is 0x0.

14.5 Debug Module Interface

The SiFive Debug Module (DM) conforms to The RISC-V Debug Specification, Version 1.0. A
debug probe or agent connects to the Debug Module through the Debug Module Interface
(DMI). The following sections describe notable spec options used in the implementation and
should be read in conjunction with The RISC-V Debug Specification, Version 1.0.

DMI is a simple read/write bus whose master is the DTM (if it exists, otherwise DMI passes
through to customer logic) and whose slave is the Debug Module. The master sends a request
to the slave and the slave responds with a response. A request is considered sent if
reg_ready=1 indicating the master is sending a request and req_valid=1 indicating the slave
is accepting the request on this cycle. Similarly, the response is sent when both resp_valid=1
indicating the slave is sending a response and resp_ready=1 indicating the master is accepting
it.

Note

It is the responsibility of the debugger to simulate virtual address accesses by accessing
the page tables directly, then sending the translated physical address to hardware when
doing the access.

Note

The Debug Module registers are not directly accessible from the core.
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Group Signal Source | Description
clock system | All signals timed to this clock. With JTAG DTM, this
clock is the JTAG TCK.
System
reset system | Synchronous reset. Generated by power-on reset
circuit.

reg_ready | slave Slave ready to receive request.

req_valid | master | Master’s request valid.

req_addr master | Configurable width address bus. 0x7 for SiFive.

req_data master | 32-bit write data bus.

Request —
BUS req_op master ¢ 0Ox0 = None

e 0x1 =Read
e 0x2 = Write
* 0x3 = Reserved

resp_ready | master | Master is ready to receive response.

resp_valid | slave Slave response is valid.

resp_data | slave 32-bit read data bus.

Response | resp_op slave ¢ 0x0 = Success
Bus

¢ 0Ox1 = Failure
¢ 0Ox2 = Not used
* 0x3 = Reserved

Table 143: Debug Module Interface Signals

14.5.1 Debug Module Status Register (dmstatus)

dmstatus holds the DM version number and other implementation information. Most importantly,
it contains status bits that indicate the current state of the selected hart(s).
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Debug Module Status Register (dmstatus)

DMI Address 0x11
Bits Field Name Attr. Rst. Description
[3:0] version RO 0x3 Implementation version number
4 Reserved RO 0x0
5 hasresethaltreq RO 0x1 1if resethaltreq exists
[7:6] Reserved RO 0x0
8 anyhalted RO 0x0 Any currently selected hart is halted.

Note that this field is volatile and may
be masked in IP-XACT.

9 allhalted RO 0x0 All currently selected harts are halted.
Note that this field is volatile and may
be masked in IP-XACT.

10 anyrunning RO 0x1 Any currently selected hart is running.
Note that this field is volatile and may
be masked in IP-XACT.

11 allrunning RO 0x1 All currently selected harts are running.
Note that this field is volatile and may
be masked in IP-XACT.

12 anyunavail RO 0x0 Any currently selected hart is not
available (i.e., is powered down). DM
supports it, but not currently used by
SiFive cores Note that this field is
volatile and may be masked in
IP-XACT.

13 allunavail RO 0x0 All currently selected harts are not
available (i.e., is powered down). DM
supports it, but not currently used by
SiFive cores. Note that this field is
volatile and may be masked in
IP-XACT.

14 anynonexistent RO 0x0 Any currently selected hart does not
exist in the system. Note that this field
is volatile and may be masked in
IP-XACT.

15 allnonexistent RO 0x0 All currently selected harts do not exist
in the system. Note that this field is
volatile and may be masked in
IP-XACT.

16 anyresumeack RO 0x1 Any currently selected hart has
resumed execution. Note that this field
is volatile and may be masked in
IP-XACT.

17 allresumeack RO 0x1 All currently selected harts have
resumed execution. Note that this field

Table 144: Debug Module Status Register

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 197



SiFive S76-MC Core Complex Manual

Debug

21G3.02.00

is volatile and may be masked in
IP-XACT.

18

anyhavereset

RO

0x0

Any currently selected hart has been
reset, but reset has not been
acknowledged. Note that this field is
volatile and may be masked in
IP-XACT.

19

allhavereset

RO

0x0

All currently selected harts have been
reset, but reset has not been
acknowledged. Note that this field is
volatile and may be masked in
IP-XACT.

[21:20]

Reserved

RO

0x0

22

impebreak

RO

Ox0

1 if PROGBUF is followed by implicit
EBREAK. Generally, 1 for E2 cores, 0
otherwise.

[31:23]

Reserved

RO

0x0

Table 144: Debug Module Status Register

14.5.2 Debug Module Control Register (dmcontrol)

A debugger performs most hart controls through the dmcontrol register.
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Debug Module Control Register (dmcontrol)

DMI Address 0x10
Bits Field Name Attr. Rst. Description
0 dmactive RwW 0x0 0 disables the DM and sets DMI

registers to their reset state, 1 puts the
DM in operational mode. Drives
dmactive output that could be used by
a system power controller to maintain
power to the DM while it is being used.
When 1, dmcontrol should be read
back until dmactive=1, which indicates
that the Debug Module is fully
operational. When 0, the DM TileLink
clock is gated off to save power.

1 ndmreset RwW 0x0 Write 1 to reset system (assert ndreset
output). Write O to operate normally.
2 clrresethaltreq WO 0x0 Write 1 to clear the reset-halt-request
bit
3 setresethaltreq wO 0x0 When written to 1, the core will halt
upon the next deassertion of its reset
[15:4] Reserved RO 0x0
[25:16] hartsel RW 0x0 Selects the hart to operate on
26 hasel RW 0x0 Selects hart(s) in the hart-array mask
register (hawindow)
27 Reserved RO 0x0
28 ackhavereset WO 0x0 Write 1 to acknowledge that a reset
occurred on the selected hart
29 Reserved RO 0x0
30 resumereq WO 0x0 Write 1 to request selected hart to

resume, cleared to 0 automatically
when hart resumes

31 haltreq RW 0x0 Write 1 to request selected hart to halt.
Generates debug interrupt to the core.
Write 0 once halted has been set by
the DM.

Table 145: Debug Module Control Register

14.5.3 Hart Info Register (hartinfo)

hartinfo contains information about the currently selected hart.
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Hart Info Register (hartinfo)
DMI Address 0x12
Bits Field Name Attr. Rst. Description
[11:0] dataaddr RO 0x380 | Address of DATA registers in hart
memory map. 0x380 for SiFive.
[15:12] datasize RO 0x2 Number of DATA registers. 0x1 for
32-bit, 0x2 for 64-bit SiFive cores.
16 dataaccess RO 0x1 DATA registers are shadowed in the
hart memory map. 1 for SiFive.
[19:17] Reserved RO 0x0
[23:20] nscratch RO 0x1 Number of dscratch registers available
for debugger. 1 for SiFive.
[31:24] Reserved RO 0x0

Table 146: Hart Info Register

14.5.4 Hart Array Window Register (hawindow)

This register contains a bitmap where bit O corresponds to hart 0, bit 1 to hart 1, etc. Any bits set
in this register select the corresponding hart in addition to the hart selected by
dmcontrol.hartsel.
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14.5.5 Abstract Control and Status Register (abstractcs)

Abstract Control and Status Register (abstractcs)

DMI Address

0x16

Bits

Field Name

Attr.

Rst.

Description

[3:0]

datacount

RO

0x2

Number of DATA registers. 0x1 for
32-bit, 0x2 for 64-bit SiFive cores.

[7:4]

Reserved

RO

0x0

[10:8]

cmderr

RwW1C

0x0

Non-zero value indicates an abstract
command error. Remains set until
cleared by writing all ones. If set, no
abstract commands are accepted.

¢ 0xO0 - No error

e 0x1 - Busy. Abstract command or
register was accessed while
command was running.

e 0x2 - Not supported. Abstract
command type not supported by
hardware was attempted.

* 0x3 - Exception. An exception
occurred during execution of an
abstract command.

* 0Ox4 - Halt/resume. Abstract
command attempted while hart
was running or unavailable.

e 0x5 - Bus. Bus error occurred
during abstract command. Not
used by SiFive.

¢ 0Ox7 - Other. Abstract command
failed for another reason. Not used
by SiFive.

Note that this field is volatile and may
be masked in IP-XACT.

11

Reserved

RO

0OXx0

12

busy

RO

0x0

Reads as 1 while Abstract command is
running, O if not. Note that this field is
volatile and may be masked in
IP-XACT.

[23:13]

Reserved

RO

0x0

[28:24]

progbufsize

RO

0x10

Number of 32-bit words in PROGBUF.
S76-MC Core Complex has 16 words.

[31:29]

Reserved

RO

0OXx0

Table 147:
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14.5.6 Abstract Command Register (command)

Abstract Command Register (command)
DMI Address 0x17
Bits Field Name Attr. Description
[15:0] regno RW Select which register to read/write. SiFive
only supports GPRs: 6x1000-0x101F.
16 write RW 1=write register, O=read register. Only done if
transfer=1.
17 transfer RW 1=do the register read/write, 0=don't.
18 postexec RW 1l=execute PROGBUF after the command,
O=don't.
19 aarpostincrement RW Not supported by SiFive.
[22:20] aarsize RW 0x2, 0x3, 0x4 select 32, 64, 128 bits,
respectively.
23 Reserved RO
[31:24] cmdtype RW 0O=Access Register is the only type supported
by SiFive.

Table 148: Abstract Command Register

Note that this register is volatile and may be masked in IP-XACT.

14.5.7 Abstract Command Autoexec Register (abstractauto)

Abstract Command Autoexec Register (abstractauto)
DMI Address 0x18
Bits Field Name Attr. Rst. Description
[11:0] autoexecdata RW 0x0 Bitmap of DATA registers [11:0]. 1
indicates DATA access initiates
command.
[15:12] Reserved RO 0x0
[31:16] | autoexecprogbuf RwW 0x0 Bitmap of PROGBUF words [15:0]. 1
indicates PROGBUF access initiates
command.

Table 149: Abstract Command Autoexec Register

14.5.8 Debug Module Control and Status 2 Register (dmcs2)

Table 150 describes the Debug Module Control and Status 2 Register dmcs2. If halt/resume
groups are not implemented, then group will always read back as 0. The Debug Module exter-
nal triggers may be allocated as needed between halt and resume groups.
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Debug Module Control and Status 2 Register (dmcs2)
DMI Address 0x32

Bits Field Name Attr. Rst. Description

0 hgselect RW 0x0 O=operate on harts, 1=operate on
external triggers.

1 hgwrite WO X When written with 1, the selected harts
or external trigger is assigned to group
group.

[6:2] group RW 0x0 Specify the halt group or resume group
number that the selected harts or
external triggers will be assigned to.
Note that this field is volatile and may
be masked in IP-XACT.

[10:7] Reserved RO 0x0

11 grouptype RwW 0x0 O=operate on Halt Group configuration,
1=operate on Resume Group
configuration.

[31:12] Reserved RO 0x0
Table 150: Debug Module Control and Status 2 Register
14.5.9 Abstract Commands

Abstract commands provide a debugger with a path to read and write processor state and are
used for extracting and modifying processor state such as registers and memory. Register s0 is
saved by the ROM and is available for use by the abstract command code. An abstract com-
mand is started by the debugger writing to command. In command, the debugger selects whether
to load/store a register, execute PROGBUF, or both. Only GPR register transfers are supported
currently. Many aspects of Abstract Commands are optional in The RISC-V Debug Specifica-
tion, Version 1.0 and are implemented as described below.
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cmdtype Feature Support
Access Register GPR reqisters Access Register command, register number
0Xx1000 - Ox101F
CSR registers Not supported. CSRs are accessed using the
Program Buffer.
FPU registers Not supported. FPU registers are accessed
using the Program Bulffer.
Autoexec Both autoexecprogbuf and autoexecdata
are supported.
Post-increment Not supported.
Core Register Not supported.
Access
Quick Access Not supported.
Access Memory Not supported. Memory access is
accomplished using the Program Buffer.

Table 151: Debug Abstract Commands

The use of abstract commands is outlined in the following example, describing how to read a
word of target memory:

1.
2.
3.

10.

The debugger writes opcodes to PROGBUF to accomplish the desired function.
The debugger writes the desired memory address to DATA[O].

The debugger requests an abstract command specifying to load s from DATA[@], then
execute PROGBUF. Writing to command while hart n is selected has the side effect of setting
FLAGS[n].go. Writing to command also sets busy which is readable from the debugger, and
indicates that an abstract command is in progress.

The ROM busy-wait loop being executed by hart n sees FLAGS[n] . go set.
ROM code writes 0 to GOING which has the effect of clearing FLAGS[n] . go.

ROM code jumps to WHERETO, then ABSTRACT which contains the opcode 1w s, 0(DATA) to
load s0 from DATA[@]. Opcodes in ABSTRACT are constructed by DM hardware from com-
mand. If command.transfer=0, no register transfer is done and instead ABSTRACT[0] reads
as NOP.

If a register read/write is all that is needed, the debugger would set command.postexec to 0.
ABSTRACT[1] would then read as EBREAK.

If command.postexec=1, ABSTRACT[1] reads as NOP and execution falls through to
PROGBUF which will have been previously written by the debugger with the opcodes 1w s0,
0(s0), then sw s0, DATA(zero), then EBREAK.

EBREAK reenters ROM at address 0x800. ROM writes hartid to HALTED which has the side
effect of clearing busy, telling the debugger that the abstract command is finished.

The debugger reads the result from DATA[0Q].
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The autoexec feature of Abstract Commands is supported by SiFive hardware (and is used by
OpenOCD for memory block read and write). Once an abstract command has been completed,
the debugger can read or write a particular DATA or PROGBUF location to run the command again.
For example, fast download can be accomplished by setting up PROGBUF for memory write,
then repeatedly writing words to DATA[0]. Each write re-executes the register transfer and
PROGBUF to store the word into memory. For a 32-bit block write, the abstract command would
be set up like this:

ABSTRACT | regno=s1, write=1, transfer=1, postexec=1. DM constructs the instructions
lw s1,0(DATA) // load sl from debugger
NOP // fall thru to PROGBUF
PROGBUF
sw sl, 0(s0) // store sl to memory
addi s0, s0, 4 // increment memory pointer
ebreak // done

Table 152: Abstract Command Example for 32-bit Block Write

14.5.10 Multi-core Synchronization

The DM is configured with one Halt Group that may be programmed to synchronize execution
between harts, or between hart(s) and external logic, such as a cross-trigger matrix. The Halt
Group is configured using the dmcs2 register.

Hart Array

The Hart Array is an internal bitmap that selects a subset of the harts in a system. Debug opera-
tions such as resume and halt are automatically applied to all the selected harts simultaneously.
To configure the Hart Array:

1. Set the hasel bit in the Debug Module dmcontrol register.

2. Set bits in the hawindow register corresponding to the harts to be selected. Bit 0 = hart O,
Bit 1 = hart 1, etc.

The Hart Array covers debug operations initiated by the debugger but does not cover the case
when harts halt due to other causes, such as breakpoints. This is handled with a Halt Group.

14.5.11 System Bus Access

System Bus Access (SBA) provides an alternative method to access memory. SBA operation
conforms to The RISC-V Debug Specification, Version 1.0 and its description is not duplicated
here. It implements a bus master that connects with the bus crossbar to allow access to the
device’s physical address space without involving a hart to perform accesses. SBA is controlled
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from the DMI using registers in the range 0x37 - 8x3F. By default, the maximum bus width sup-
ported by SBA is 64. Comparing Program Buffer memory access and SBA:

Program Buffer Memory Access SBA Memory Access
Physical Address Physical Address

Subject to Physical Memory Protection (PMP) | Not subject to PMP

Cache coherent Cache coherent

Hart must be halted Hart may be halted or running

Table 153: System Bus vs. Program Buffer Comparison

14.6 Debug Module Operational Sequences

The sections below describe the flow for entering into and exiting from debug mode. The user
can halt and resume more than one hart at a time using the hart array mask.

14.6.1 Entering Debug Mode
To use debug mode, the DM must be enabled by writing 6x0000_0001 to dmcontrol.

The debugger can request a halt by writing ©x8000_0001 to dmcontrol to set haltreq. This
generates a debug interrupt to the core.

The core enters debug mode and jumps to the debug interrupt handler located at 6x806 and
serviced from the DM.

ROM code at 0x800 writes hartid into the HALTED register which has the effect of setting the
halted bit for this hart. Halted bits are readable from the debugger and generally will be continu-
ally polled to check for breakpoints when a hart is running.

ROM code then busy-waits checking its hart-specific FLAGS register.

14.6.2 Exiting Debug Mode

The debugger writes 1 to resumereq in the dmcontrol register to restart execution. This clears
resumeack and sets bit 1 of the FLAGS register for the selected hart.

The ROM busy-wait loop being executed by hart n sees FLAGS[n] . resume set.

ROM code writes hartid to RESUMING, which has the effect of clearing FLAGS[n].resume,
setting resumeack, and clearing halted for the hart.

ROM code then executes dret which returns to user code at the address currently in dpc.

The debugger sees resumeack and knows the resume was successful.
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Appendix A

SiFive Core Complex Configuration
Options

This section provides a reference of the key configuration options of the SiFive S7 Series cores
and the larger Core Complex. The file docs/core_complex_configuration.txt lists the fea-
tures and options configured in the S76-MC Core Complex.

A.1 S7 Series

The S7 Series comes with the following set of configuration options. Note that the configuration
may be limited to a fixed set of discrete options.

Modes and ISA:

Configurable number of Cores (1 to 8). In the case where more than one core is selected,
all cores are configured the same.

Optional support for RISC-V user mode

Optional M, F, D, B, and Zfh extensions

o If M extension, configurable performance (1-cycle or 4-cycle)

e Optional SiFive Custom Instruction Extension (SCIE)
On-Chip Memory:
« Optional Instruction Cache with configurable size (4 KiB to 64 KiB) and associativity (2-, 4-,

or 8-way)

« Optional Instruction-Tightly Integrated Memory (ITIM) with configurable size (4 KiB to 256
KiB) and base address

« Data Tightly-Integrated Memory (DTIM) or Data Cache:

o If DTIM, then configurable size (4 KiB to 256 KiB) and base address

o |f Data Cache, then configurable size (4 KiB to 256 KiB) and associativity (2-, 4-, 8-, or
16-way)
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Optional Data Local Store (DLS) with the following options:

o Configurable size (4 KiB to 8 MiB)

o Configurable base address

o Configurable pipeline depth (0, 1, or 3 additional stages)
o Configurable number of banks (1 to 64)

Optional L2 Cache with the following options:
o Configurable size (128 KiB to 4 MiB), associativity (2-, 4-, 8-, 16-, or 32-way), and
banks (1, 2, or 4)

o Configurable number of L2 Hardware Prefetcher streams (4, 8, or 16) and queue size
(4, 8,12, or 16)

o Configurable L1 to L2 bus width (64-, 128-, or 256-bit)
Optional Fast I/0

Optional Address Remapper with the following options:

o Configurable number of entries (4, 8, 16, 32, or 64)
o "From" region with configurable size (power of 2 up to 64) and base address
o "To" region with configurable size (power of 2 up to 64) and base address

o Configurable remap entry size (4 B to "From" region size)

Configurable number of MMIO registers (4 to 24)
Error Handling:

» Optional Bus-Error Unit (BEU)
¢ Optional ECC support

Ports:

e Optional Memory Port, System Port, Peripheral Port, Front Port, Core Local Port, and Core
Local Front Port

o Each port has a configurable base address, width (32-, 64-, or 128-bit), size (64 KiB to
2 GiB), and protocol (AHB, AHB-Lite, APB, AXI4)

o If AXI4 protocol, configurable AXI ID width (4, 8, or 16). Front, Memory, and System
Ports only.

» Optional Front Port Passthrough
Security:

¢ Optional Physical Memory Protection (PMP), configurable up to 16 regions
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Optional Disable Debug Input

Optional Password-protected Debug

Optional Public key based secure Debug

Optional Hardware Cryptographic Accelerator (HCA) with the following options:

o

o

Configurable base address

Optional AES-128/192/256

Optional AES-MAC

Optional SHA-224/256/384/512

Optional True Random Number Generator (TRNG)

Optional Public Key Accelerator (PKA) with the following parameters:

= Configurable PKA operation maximum width (256 or 384 bits)

SiFive Insight Debug and Trace:

Optional Debug Module with the following options:

o

o

o

o

Configurable base address
Configurable debug interface (JTAG, cJTAG, or APB)

Configurable number of Hardware Breakpoints (0 to 16) and External Triggers (0 to
16)

Optional System Bus Access

Configurable number of performance counters (0 to 8)

Optional Raw Instruction Trace Port

Optional Nexus Trace Encoder with the following options:

o

o

o

Optional Event Trace
Configurable Trace Encoder Format (BTM or HTM)
Trace Sink (SRAM, ATB Bridge, SWT, System Memory, and/or PIB)

= |f SRAM Sink, configurable Trace Buffer size (256 B to 64 KiB)
= If PIB Sink, configurable width (1-, 2-, 3-, 5-, or 9-bit) and optional PIB clock input

Optional Timestamp capabilities with configurable width (40, 48, or 56 bits) and source
(Bus Clock, Core Clock, or External)

External Trigger Inputs (0 to 8) and Outputs (0 to 8)
Optional Instrumentation Trace Component (ITC)

Optional PC Sampling
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Interrupts:
» Optional Platform-Level Interrupt Controller (PLIC) with the following parameters:

o Priority Levels (1 to 7)
o Number of interrupts (1 to 511)
¢ A configurable number of Core-Local Interruptor (CLINT) interrupts (0 to 16)

Design For Test:

» Configurable SRAM user-defined inputs (0 to 1024)
» Configurable SRAM user-defined outputs (0 to 1024)
Optional SRAM Macro Extraction

Optional Clock Gate Extraction

Optional Grouping and Wrapping of extracted macros
Note that the SRAM user-defined feature is mutually exclusive to the macro extraction features.
Clocks and Reset:

» Optional Clock Gating

» Configurable Reset Scheme (Synchronous, Asynchronous, Full Asynchronous)
Branch Prediction:

» Configurable Branch Prediction (Area- or Performance-Optimized)
RTL Options:

» Optional custom RTL module name prefix
WorldGuard:

¢ Optional WorldGuard support with the following options:

o Configurable number of worlds (2 to 32) and base address

o Optional, configurable WorldGuard PMPs, filters, markers, and ROM for various com-
ponent
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SiFive RISC-V Implementation Registers

This section provides a reference to the SiFive RISC-V implementation version registers
marchid and mimpid.

B.1 Machine Architecture ID Register (marchid)

Value Core Generator
Ox8000_0007 | 6/7/P200/X200-Series Processor

Table 154: Core Generator Encoding of marchid

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 211



SiFive S76-MC Core Complex Manual 21G3.02.00

SiFive RISC-V Implementation Registers

B.2 Machine Implementation ID Register (mimpid)

Value Generator Release Version
0x0000_0000 | Pre-19.02
0x2019_0228 | 19.02
0x2019_0531 | 19.05

0x2019_0919

19.08p0p0 / 19.08.00

0x2019_1105

19.08p1p0 /19.08.01.00

0x2019_1204

19.08p2p0 / 19.08.02.00

0x2020_0423

19.08p3p0 / 19.08.03.00

0x0120_0626

19.08p4p0 / 19.08.04.00

0x0220_0515

koala.00.00-preview and koala.01.00-preview

0Xx0220_0603

koala.02.00-preview

0x0220_0630

20G1.03.00 / koala.03.00-general

0x0220_0710

20G1.04.00 / koala.04.00-general

0Xx0220_0826

20G1.05.00 / koala.05.00-general

0x0320_0908

kiwi.00.00-preview

0x0220_1013

20G1.06.00 / koala.06.00-general

0x0220_1120

20G1.07.00 / koala.07.00-general

0x0421_0205

llama.00.00-preview

0x0421_0324

21G1.01.00/ llama.01.00-general

0x0421_0427

21G1.02.00 / llama.02.00-general

0x0521_0528

mongoose.00.00-preview

0x0521_0714

21G2.01.00 / mongoose.01.00-general

0x0521_1008

21G2.02.00 / mongoose.02.00-general

0x0621_1027

narwhal.00.00-preview

0x0621_1203

narwhal.01.00-preview

0x0621_1222

21G3.02.00 / narwhal.02.00-general

Table 155: Generator Release Encoding of mimpid
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This section provides a reference for the custom RISC-V CSRs configured in the S76-MC Core

Complex.
CSR Name Notes
0x7Cc0 | Branch Prediction Mode CSR | See Section 6.2.1 for more information
0x7C1 | SiFive Feature Disable CSR See Section 6.2.2 for more information
ox7c8 | Power Dial CSR See Section 13.2.1 for more information

Table 156: SiFive Custom CSRs
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Floating-Point Unit Instruction Timing

This section provides a reference for the instruction timings of the single- and double-precision
floating-point unit in the S76-MC Core Complex.

D.1 S7 Floating-Point Instruction Timing

Single-precision floating-point unit instruction latency and repeat rates are described in Table
157.

Copyright © 2019-2022 by SiFive, Inc. All rights reserved. 214



SiFive S76-MC Core Complex Manual
Floating-Point Unit Instruction Timing

21G3.02.00

. Repeat
Assembly Operation Latency Rgte
Sign Inject
fabs.s rd, rsi flrd] = |f[rs1]]| 2 1
fsgnj.s rd, rsi, rs2 flrd] = {f[rs2][31], f[rs1][30:0]} 2 1
fsgnjn.s rd, rsi, rs2 flrd] = {~f[rs2][31], f[rs1][30:0]} 2 1
fsgnjx.s rd, rsi, rs2 flrd] = {f[rs1][31] A f[rs2][31], 2 1
flrs1][30:0]}
Arithmetic
fadd.s rd, rsi, rs2 flrd] = f[rs1] + f[rs2] 5 1
fsub.srd, rsi, rs2 flrd] = f[rs1] - f[rs2] 5 1
fdiv.s rd, rsi, rs2 flrd] = f[rsi] = f[rs2] 9-36 8-33
fmul.s rd, rsi, rs2 flrd] = f[rs1] x f[rs2] 5 1
fsqrt.s rd, rsi flrd] = vf[rsi] 9-28 8-33
fmadd.s rd, rsi, rs2, rs3 f[rd] = (f[rs1] x f[rs2]) + f[rs3] 5 1
fmsub.s rd, rsi, rs2, rs3 flrd] = (f[rs1] x f[rs2]) - f[rs3] 5 1
Negate Arithmetic
fneg.s rd, rsi flrd] = —f[rs1] 2 1
fnmadd.s rd, rsi, rs2, rs3 | f[rd] = —=(f[rs1] x f[rs2]) - f[rs3] 5 1
fnmsub.s rd, rsi, rs2, rs3 | f[rd] = —(f[rs1] x f[rs2]) + f[rs3] 5 1
Compare
feq.s rd, rsi, rs2 x[rd] = f[rs1] == f[rs2] 4 1
fle.s rd, rsi, rs2 x[rd] = f[rs1] < f[rs2] 4 1
flt.s rd, rsi, rs2 x[rd] = f[rs1] < f[rs2] 4 1
fmax.s rd, rsi, rs2 flrd] = max(f[rs1], f[rs2]) 2 1
fmin.s rd, rsi, rs2 flrd] = min(f[rs1], f[rs2]) 2 1
Categorize
fclass.s rd, rsi | x[rd] = classifys(f[rsi]) 4 | 1
Convert Data Type
fcvt.w.s rd, rsi x[rd] = sext(s32f32(f[rsi]) 4 1
fevt.l.s rd, rsi x[rd] = s64f32(f[rsi]) N/A N/A
fcvt.s.w rd, rsi flrd] = f32s32(x[rs1]) 2 1
fcvt.s.l rd, rsi flrd] = f32s4(x[rsi]) N/A N/A
fcvt.wu.s rd, rsi x[rd] = sext(u32fz2(f[rsi]) 4 1
fcvt.lu.s rd, rsi x[rd] = ub4fzza(f[rsi]) N/A N/A
fcvt.s.wu rd, rsi flrd] = f32y32(x[rs1]) 2 1
fcvt.s.lu rd, rsi flrd] = f32us4(x[rsi]) N/A N/A
Move
fmv.s rd, rsi flrd] = f[rs1] 2 1
fmv.w.x rd, rsi flrd] = x[rs1][31:0] 1 1
fmv.x.w rd, rsi x[rd] = sext(f[rs1][31:0]) 1 1
Load/Store
flw rd, offset(rsi) f[rd] = M[x[rs1] + sext(offset)][31:0] 1 1
fsw rs2, offset(rsi) M[x[rs1] + sext(offset)] = f[rs2][31:0] 1 1

Table 157: S7 Single-Precision FPU Instruction Latency and Repeat Rates

Double-precision floating-point unit latency and repeat rates are described in Table 158.
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Floating-Point Unit Instruction Timing

. Repeat
Assembly Operation Latency Rgte
Sign Inject
fabs.d rd, rsi flrd] = |f[rs1]]| 2 1
fsgnj.d rd, rsi, rs2 f[rd] = {f[rs2][63], f[rs1][62:0]} 2 1
fsgnjn.d rd, rsi, rs2 flrd] = {~f[rs2][63], f[rs1][62:0]} 2 1
fsgnjx.d rd, rsi, rs2 flrd] = {f[rs1][63] N f[rs2][63], 2 1
flrsi][62:0]}
Arithmetic
fadd.d rd, rsi, rs2 flrd] = f[rs1] + f[rs2] 7 1
fsub.d rd, rsi, rs2 flrd] = f[rs1] - f[rs2] 7 1
fdiv.d rd, rsi, rs2 flrd] = f[rsi] = f[rs2] 9-58 8-58
fmul.d rd, rsi, rs2 flrd] = f[rs1] x f[rs2] 7 1
fsqrt.d rd, rsi flrd] = vf[rsi] 9-57 8-58
fmadd.d rd, rsi, rs2, rs3 f[rd] = (f[rs1] x f[rs2]) + f[rs3] 7 1
fmsub.d rd, rsi, rs2, rs3 flrd] = (f[rs1] x f[rs2]) - f[rs3] 7 1
Negate Arithmetic
fneg.d rd, rsi flrd] = —f[rs1] 2 1
fnmadd.d rd, rsi, rs2, rs3 | f[rd] = —=(f[rs1] x f[rs2]) - f[rs3] 7 1
fnmsub.d rd, rsi, rs2, rs3 | f[rd] = —(f[rs1] x f[rs2]) + f[rs3] 7 1
Compare
feq.d rd, rsi, rs2 x[rd] = f[rs1] == f[rs2] 4 1
fle.d rd, rsi, rs2 x[rd] = f[rs1] < f[rs2] 4 1
flt.d rd, rsi, rs2 x[rd] = f[rs1] < f[rs2] 4 1
fmax.d rd, rsi, rs2 flrd] = max(f[rs1], f[rs2]) 2 1
fmin.d rd, rsi, rs2 flrd] = min(f[rs1], f[rs2]) 2 1
Categorize
fclass.d rd, rsi | x[rd] = classifyq(f[rsi]) | 4 | 1
Convert Data Type
fcvt.w.d rd, rsi x[rd] = sext(s32fea(f[rsi]) 4 1
fevt.l.d rd, rsi x[rd] = s64feq(f[rsi]) N/A N/A
fevt.d.w rd, rsi flrd] = f64s32(x[rs1]) 2 1
fevt.d.l rd, rsi flrd] = f64se4(x[rsi]) N/A N/A
fevt.wu.d rd, rsi x[rd] = sext(u32fea(f[rsi]) 4 1
fevt.lu.d rd, rsi x[rd] = ub4fes(f[rsi]) N/A N/A
fevt.d.wu rd, rsi flrd] = f64y32(x[rs1]) 2 1
fcvt.d.lu rd, rsi flrd] = f64yusa(x[rsi]) N/A N/A
fevt.s.d rd, rsi flrd] = f32fe4(f[rsi]) 2 1
fcvt.d.s rd, rsi flrd] = f64f32(f[rsi]) 2 1
Move
fmv.d rd, rsi flrd] = f[rs1] 2 1
fmv.d.x rd, rsi flrd] = x[rs1][63:0] N/A N/A
fmv.x.d rd, rsi x[rd] = f[rs1][63:0] N/A N/A
Load/Store
fld rd, offset(rsi) f[rd] = M[x[rs1] + sext(offset)][63:0] 1 1
fsd rs2, offset(rsi) M[x[rs1] + sext(offset)] = f[rs2][63:0] 1 1

Table 158: S7 Double-Precision FPU Instruction Latency and Repeat Rates

*Instruction and data are in the ITIM and DTIM, respectively.
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Appendix E

Revision History

This section describes the changes in this document between release versions.

Version Date Document Changes
21G3.02.00 December 22, 2021 * [nitial release

Table 159: S76-MC Core Complex Manual Revision History
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Appendix F

Knowledge Base Articles

The SiFive support team provides access to an index of Knowledge Base articles in order to fur-
ther assist users developing with and integrating their RISC-V IP. These articles focus on topics
ranging from architectural design and software development to board bring-up and implementa-
tion.

To view more than 100 articles in the SiFive Knowledge Base, access the link below:

https://sifive.atlassian.net/servicedesk/customer/portal/47/article/465732086
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