T-Head ISA extension specification
(Xthead™)

Version 2.2.1, 2022-12-09



Table of Contents

1. Document information
1.1. Copyright and license information
1.2. Contributors
1.3. Changelog
2. Introduction
2.1. Overview
2.2. Dependencies to standard extensions
2.3. Enablement of extensions and instructions
2.4. Lifecycle
3. Cache Management Operations (XTheadCmo)
3.1. Instructions
3.1.1. th.dcache.call
3.1.2. th.dcache.ciall
3.1.3. th.dcache.iall
3.1.4. th.dcache.cpa
3.1.5. th.dcache.cipa
3.1.6. th.dcache.ipa
3.1.7. th.dcache.cva
3.1.8. th.dcache.civa
3.1.9. th.dcache.iva
3.1.10. th.dcache.csw
3.1.11. th.dcache.cisw
3.1.12. th.dcache.isw
3.1.13. th.dcache.cpall
3.1.14. th.dcache.cvall
3.1.15. th.icache.iall
3.1.16. th.icache.ialls
3.1.17. th.icache.ipa
3.1.18. th.icache.iva
3.1.19. th.]2cache.call
3.1.20. th.]2cache.ciall
3.1.21. th.J2cache.iall

4. Multi-core synchronization instructions (XTheadSync)

4.1. Instructions
4.1.1. th.sfence.vmas
4.1.2. th.sync
4.1.3. th.sync.s
4.1.4. th.sync.i

© 00 1 O U1 U1 B W W N NN R B R R

W W W DN DN DN DN DN DN DN DDNDDDNDDND DD =B 2R ===
W N R, O © © 0N O Ul WD R, O 0O W DN e, O



415 theSYNCIS « - o oo 34

5. Address calculation instructions (XTheadBa) . . .............. . . 35
5.1 INSIIUCTIONS .« . .o .o 35
541 theaddsl ..o 35

6. Basic bit-manipulation (XTheadBb). ... ... .. .. 36
6.1. INSIIUCHIONS . . . ... 36
700 0 I R o 36
6.1, 2. TN ST TIW o 38
6.1.3. TN et . . 39
6.1.4. Th.eXTU . . . .. 40
6.1.5. tholl0 . . . 41
6.1.6. tholl L. . 42
6.1, 7. TN eV 43
6.1, 8. TN T VW, . 44
6.1.9. thotStNbzZ. . . . 45

7. Single-bit instructions (XTheadBs). . . . ... ... 46
T4 INSIPUCTIONS .« . .o 46
80 0 R o 46

8. Conditional move (XTheadCondMOV) . .. ... ... 48
8.1. INSIIUCTIONS . . .. .o 48
8L thiamVeqzZ . . . .. 48
8.1.2. thumMVNEZ . . . . . 50

9. Indexed memory operations (XTheadMemlIdx) .. .......... ... ... i 51
9.1, INSIIUCTIONS . . . ..o 52
O d thbia. ... 52
9.1.2. thdbib. . . 54
9.1.3. thllbuia. . ... o 55
9.1.4. thlbuib . ... o 56
0.1 5. thIhia. . .. 57
9.1.6. th.lhib. . . ... 58
9.4.7.thalhuda . ... 59
9.1.8. thilhuib . ... ... 60
0.1.9. th lWia . ... 61
0.1.10. th Wb . .. 62
0. 1. 10 thlwuda . . .. o 63
9.1.12. thdwuib . . . 64

0.1 13 tholdia. . ... 65
0.1.14. th.ldib. . ... 66
90.1.15. thushia . ... o 67
0.1.16. th.Shib . ... 68

9.0 07 theshia . ... 69



0.1.18. th.shib . .. o 70

0.1.19. theSWA . . . . 71
0.1.20. th.sWib . . . o 72
9.1.21. thosdia .. ... o 73
90.1.22. th.sdib . ... o 74
0.1.23. tholrb . 75
0.1.24. th.lrbu . . .. 76
0.1.25. tholrh o 77
9.1.26. tholrhu . . .. 78
0.1, 2T TN W . 79
0.1.28. th IrWU. . . . 80
0.1.29. thlrd . ... 81
0.1.30. thoSTh . . .o 82
0.1.30. thoSTh . .o 83
0.1.32. TN ST . . 84
0.1.33. thoSTd . . .o 85
9.1.34. tholurb . ... 86
9.1.35. thlurbu . . ... 87
9.1.36. tholurh . ... 88
9.1.37. thlurhu . . ... 89
0.1.38. tho IUrW. . . 90
9.1.39. thoIUrWu . .. .o 91
9.1.40. tholurd . . ... 92
0.1.40. th.SUTD . . . 93
0.1.42. th.SUTN . . .. 94
0.1.43. tN.SUTW . ..o 95
0.1.44. th.SUTA . . . ... 96
10. Two-GPR memory operations (XTheadMemPair) . ....... ... ... . ... . ... .. ... .. ..... 97
10.1. INSEIUCHIONS . . . . o 97
1010 thddd ..o 97
1012, thIWd. . .. 99
10.1.3. thIwud . ..o 100
1014, thesdd . ... oo 101
1015 theSWA ... 102
11. Indexed memory operations for floating-point registers (XTheadFMemlIdx). ................ 103
11.1. INStrUCHIONS .« . .o 103
1112 thalrd. .. 103
1112 thallrw 105
1113 thalurd . ..o 106
1114 thalurW . . o 107

11,05, thafsrd .. o 108



11.1.6. th.fsrw 109

11.1.7. th.fsurd 110
11.1.8. th.fsurw 111

12. Multiply-accumulate instructions (XTheadMac) 112
12.1. Instructions 112
12.1.1. th.mula 112
12.1.2. th.mulah 114
12.1.3. th.mulaw 115
12.1.4. th.muls 116
12.1.5. th.mulsh 117
12.1.6. th.mulsw 118

13. Double-precision floating-point high-bit data transmission instructions 119
13.1. Instructions 119
13.1.1. th.fmv.x.hw 119
13.1.2. th.fmv.hw.x 121

14. Acceleration interruption instructions 122
14.1. Instructions 122
14.1.1. th.ipush 122
14.1.2. th.ipop 124

15. Vector four 8-bit multiply and add with 32-bit instructions 125
15.1. Instructions 125
15.1.1. th.vmaqa.vv 125
15.1.2. th.vmaqa.vx 127
15.1.3. th.vmaqau.vv 128
15.1.4. th.vmaqau.vx 129
15.1.5. th.vmaqasu.vv 130
15.1.6. th.vmagqasu.vx 131

15.1.7. th.vmaqaus.vx 132



Chapter 1. Document information

1.1. Copyright and license information

This specification is licensed under the Apache License, Version 2.0 (Apache-2.0). The full license
text is available at www.apache.org/licenses/LICENSE-2.0.

Copyright 2022 T-Head Semiconductor Co., Ltd.

Copyright 2022 VRULL GmbH

1.2. Contributors

The list below includes all contributors to this document in alphabetical order:

Christoph Millner <christoph.muellner@vrull.eu>
* Cooper Qu <cooper.qu@linux.alibaba.com>

* Lifang Xia <lifang_xia@linux.alibaba.com>

Philipp Tomsich <philipp.tomsich@vrull.eu>

Yunhai Shang < yunhai@linux.alibaba.com>

e Zhiwei Liu <zhiwei_liu@linux.alibaba.com>

1.3. Changelog

e 2022-11-04: Fixes for xtheadint, xtheadfmv
» 2022-09-23: Adding xtheadint extension
* 2022-09-23: Adding xtheadfmv extension

* 2022-09-03: xtheadmemidx: Fix load width of lurwu, xtheadmac: Fix and simplify extension
behaviour

» 2022-08-25: Adjusting contributors list
* 2022-08-10: *adoc: Fix several formatting issues

* 2022-08-01: Remove XTheadEE and rework availability/permission documentation, adding
lifecycle-states, adding doc versioning and changelog

* 2022-07-29: Adding XTheadEE (mxstatus.theadisaee) and mxstatus.ucme (as part of XTheadCmo)

¢ 2022-07-27: Adding XTheadMemPair, XTheadMemldx, XTheadMac, XThadCondMov,
XTheadB[a,b,s]

» 2022-07-26: Adding XTheadCmo U mode permission, Adding XTHeadSync, XTheadFMemIdx
* 2022-07-20: Adding XTheadMemPair extension, adding HW requirements for XTheadCmo
* 2022-07-16: Adding complete XTheadCmo extension

e 2022-07-12: Initial draft with four CMO instructions


https://www.apache.org/licenses/LICENSE-2.0
mailto:christoph.muellner@vrull.eu
mailto:cooper.qu@linux.alibaba.com
mailto:lifang_xia@linux.alibaba.com
mailto:philipp.tomsich@vrull.eu
mailto:yunhai@linux.alibaba.com
mailto:zhiwei_liu@linux.alibaba.com

Chapter 2. Introduction

The T-Head extension collection was created to augment the RISC-V ISA by adding additional
functionality to enable faster and more energy-efficient solutions.

The RISC-V ISA and its standardized extensions provide a rich set of instructions suitable for a wide
range of applications, starting from specialized microcontrollers to HPC systems. The suitability for
such a range of systems comes from the fact that the RISC-V ISA is modularized with a base
instruction set and a range of extensions that target specific target applications and functionality.

The RISC-V ISA and its authors strongly advertise the ability to create vendor extensions. Dedicated
encoding spaces ensure, that there are not conflicts with standard extensions.

This document specifies the T-Head extension collection, a collection of vendor extensions that are
implemented in many T-Head processors.

2.1. Overview

The T-Head extension collection follows the principles of the RISC-V ISA. The collection consists of
the following ISA extensions:

* XTheadCmo provides instructions for cache management.

* XTheadSync provides instructions for multi-processor synchronization.

* XTheadBa provides instructions for address calculations.

* XTheadBb provides instructions for basic bit-manipulation.

» XTheadBs provides single-bit instructions.

* XTheadCondMov provides instructions for conditional moves.

* XTheadMemIdx provides GPR memory operations.

* XTheadMemPair provides two-GP-register memory operations.

* XTheadFMemIdx provides floating-point memory operations.

» XTheadMac provides multiply-accumulate instructions.

* XTheadVdot provides instructions for vector dot.

2.2. Dependencies to standard extensions

The T-Head extension collection is designed to be compatible with RISC-V’s base integer instruction
sets RV32I and RV64I.

Some instructions are only available if the system’s XLEN is 64 (i.e. integer registers and supported
user address space is 64 bits). To highlight the availability, each extension documents this for each
instruction.

Instruction that operate on floating-point registers can be used in combination with F (32-bit
floating-point register) or D (64-bit floating-point registers). Some instruction are only available if



the system implements the D extension. To highlight the availability, each floating-point extension
document this for each instruction.

2.3. Enablement of extensions and instructions

All extensions and instructions are expected to be enabled at all times. The instructions can be used
at any time when executing in the documented privilege levels, that permit the execution of the
instruction.

However, there might be SoC-specific mechanisms to ensure this behaviour. E.g. the T-Head C906
requires the CSR field mxstatus.theadisaee to be set to 1 to enable the ISA extensions. Another
example is the CSR field mxstatus.ucme of the T-Head C906, that is required to be set to 1 in order to
execute cache management instructions in U mode (if the instruction is documented that this is
permitted).

2.4. Lifecycle

The lifecycle of the extensions included in this document is defined on a per-extension base.
Possible states are:

* Draft: No guarantees (everything may change).

» Stable: No feature additions/removals/changes. Only clarifications.

A draft specification is expected to become stable in the future (with exepcted changes until then).
A stable extension remains in that state for ever.



Chapter 3. Cache Management Operations

(XTheadCmo)

o The XTheadCmo extension is stable.

The XTheadCmo ISA extension provides cache management operations.

The table below gives an overview of the instructions:

RV32 RV64 Mnemonic
Y Y th.dcache.call
th.dcache.ciall
th.dcache.iall
th.dcache.cpa rs1
th.dcache.cipa rs1
th.dcache.ipa rs1
th.dcache.cva rs1
th.dcache.civa rs1
th.dcache.iva rsi
th.dcache.csw rsi
th.dcache.cisw rs1

th.dcache.isw rs1

th.dcache.cpall rsi

< KR KKK K K K K K }K ¥
< KR KKK KKK KK KoK

th.dcache.cvall rs1

th.icache.iall
th.icache.ialls
th.icache.ipa rs1

th.icache.iva rs1

KoK KKK
I I N S

th.12cache.call

th.12cache.ciall

th.12cache.iall

Instruction

Clean all D-cache

Clean & invalidate all D-cache
Clean all D-cache

Clean D-cache at PA

Clean & invalidate D-cache at PA
Invalidate D-cache at PA

Clean D-cache at VA

Clean & invalidate D-cache at VA
Invalidate D-cache at VA

Clean D-cache by set/way

Clean & invalidate D-cache by set/way

Invalidate D-cache by set/way
Clean L1 D-cache at PA
Clean L1 D-cache at VA

Invalidate all I-cache

Invalidate all I-cache on all harts
Invalidate I-cache at PA
Invalidate I-cache at VA

Clean all L2 cache

Clean & invalidate all L2 cache

Invalidate all L2 cache

HW requirements
D-cache

D-cache

D-cache

D-cache

D-cache

D-cache

D-cache, MMU
D-cache, MMU
D-cache, MMU
D-cache

D-cache

D-cache

D-cache, 2nd level cache

D-cache, 2nd level cache,
MMU

I-cache

I-cache, multicore
I-cache

I-cache, MMU

D/I-cache, 2nd level
cache

D/I-cache, 2nd level
cache

D/I-cache, 2nd level
cache

The last column of the table above names the HW requirements of the instructions. E.g. to clean the
data cache using dcache.call, a D-cache is required. Instructions that are executed without the



required HW requirements available (e.g. 12cache.call on a system without a L2 cache) do not
chance any architecturally visible state, except for advancing the program counter and
incrementing any applicable performance counters (i.e. it behaves like executing a NOP instruction).

3.1. Instructions

3.1.1. th.dcache.call

Synopsis

Clean all D-cache

Mnemonic
th.dcache.call
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00O 0O OO0O|OOOU O 1|00 O0OOTOO0 O0OOOUOTG OTG O|OOOT1O0 11
dcache.call CMO custom-0, 32 bit
Description

This instruction cleans all cache lines of the data cache on the local hart.
Dirty cache lines will be written back to the next-level storage.
Operation

if (priv_level == U)

{

<raise illegal instruction exception>

}

<write back all dirty data cache lines of the local hart>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache



3.1.2. th.dcache.ciall

Synopsis

Clean & invalidate all D-cache

Mnemonic
th.dcache.ciall
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 0 O OO O|O0OOO OT4 1 1/00 0 o0 0|0 O 0[O0 OOOTO|O0OOOT11O0 11
dcache.ciall CMO custom-0, 32 bit
Description

This instruction cleans and invalidates all cache lines of the data cache on the local hart. Dirty
cache lines will be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>

}

<write back all dirty data cache lines of the local hart>
<invalidate all data cache lines of the local hart>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache



3.1.3. th.dcache.iall

Synopsis

Invalidate all D-cache

Mnemonic
th.dcache.iall
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 0 O OO O|0OOOW 1o0|l0OO0OOOT O|0OOTO0O0O0OOTO|O0OOO0OT11TO0 11
dcache.iall CMO custom-0, 32 bit
Description

This instruction invalidates all cache lines of the data cache on the local hart. Dirty cache lines
will not be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>

}
<invalidate all data cache lines of the local hart>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache



3.1.4. th.dcache.cpa

Synopsis
Clean D-cache at PA

Mnemonic

th.dcache.cpa rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 0O0O O 1|0 1 0 01 rsl 0 0 0|]0O O OO OfO O O 1 0 1 1
dcache.cpa CMO custom-0, 32 bit
Description

This instruction cleans the cache lines that match the specified physical address in the D-cache.
If a cache line is dirty it will be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>

}
<write back all dirty data cache lines matching the PA>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache



3.1.5. th.dcache.cipa

Synopsis

Clean and invalidate D-cache at PA

Mnemonic

th.dcache.cipa rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 OO O 1|0 1 0 11 rsl 0 0 0|]0O O OO OfO O O 1 0 1 1
dcache.cipa CMO custom-0, 32 bit
Description

This instruction cleans and invalidates the cache lines that match the specified physical address
in the D-cache. If a cache line is dirty it will be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>

}

<write back all dirty data cache lines matching the PA>
<invalidate all data cache lines matching the PA>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache



3.1.6. th.dcache.ipa

Synopsis
Invalidate D-cache at PA

Mnemonic
th.dcache.ipa rs1
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 0 OO0 1/0 1 0 1 0 rsl 0 0 0/]OO O OO O|OOOT11O011
dcache.ipa CMO custom-0, 32 bit
Description

This instruction invalidates the cache lines that match the specified physical address in the D-
cache. Dirty cache lines will not be written back to the next-level storage.

Operation

if (priv_level == U)
<raise illegal instruction exception>

}
<invalidate all data cache lines matching the PA>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions
This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache

10



3.1.7. th.dcache.cva

Synopsis
Clean D-cache at VA

Mnemonic

th.dcache.cva rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 OO O 110 0 1 0 1 rsl 0O 0 0J]O O O OO|JO OO 1 0 1 1
dcache.cva CMO custom-0, 32 bit
Description

This instruction cleans the cache lines that match the specified virtual address in the D-cache. If
a cache line is dirty it will be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>
}
<write back all dirty data cache lines matching the VA>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache, MMU

11



3.1.8. th.dcache.civa

Synopsis

Clean and invalidate D-cache at VA

Mnemonic

th.dcache.civa rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 OO O 1|0 0 1 1 1 rsl 0 0 0|]0O O OO OfO O O 1 0 1 1
dcache.cipa CMO custom-0, 32 bit
Description

This instruction cleans and invalidates the cache lines that match the specified virtual address in
the D-cache. If a cache line is dirty it will be written back to the next-level storage.

Operation

<write back all dirty data cache lines matching the VA>
<invalidate all data cache lines matching the VA>

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache, MMU

12



3.1.9. th.dcache.iva

Synopsis
Invalidate D-cache at VA

Mnemonic

th.dcache.iva rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0O 00 OO O 1(0 0 1 1 0 rsl 0O 0 0J]O O O OO|JO OO 1 0 1 1
dcache.iva CMO custom-0, 32 bit
Description

This instruction invalidates the cache lines that match the specified virtual address in the D-
cache. Dirty cache lines will not be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>
}
<invalidate all data cache lines matching the VA>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache, MMU

13



3.1.10. th.dcache.csw

Synopsis

Clean D-cache by set/way

Mnemonic

th.dcache.csw rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 000 O0O0TU1|0 00 01 rsl 0 00/{00O0O0OOUOf(OOO0OT10 11

'dca'che.'csw' — CMO ' cu'stor'n-o,'32 Bit
The register content of rs1 defines the set/way and has the following bit assignment:

e rs1[64:31]...reserved (write 0)

* rs1[31:32-w]...number of the way to operate on

* rs1[w-1:1+s]...reserved (write 0)

* rs1[l+s-1:1]..number of the set to operate on

e rs1[l-1:4]...reserved (write 0)

* rs1[3:1]...cache level to operate on (0 for L1 cache, 1 for L2 cache, etc.)

* rs1[0]...reserved (write 0)
The bit positions to specify the set and the way to operate on depend on the actual cache
implementation. There are three cache properties that need to be considered:

* nways (number of ways)

* nsets (number of sets)

* linesize (size of a cache line in bytes)

Derived from these numbers the following constants are defined:

*w := log2(nways)
* s := log2(nsets)
* 1 := log2(linesize)

E.g. a 64 KiB, 2-way set-associative cache (w = 1) with a cacheline size of 64 bytes (1 = 6) has 512 sets
(s = 9) and needs to use the following bits to set the set and the way to operate on:

* [31]...number of the way (0 or 1)
e [14:6] number of the set (0..512)

Description

This instruction cleans the cache line that matches the specified set/way in the D-cache. If the
cache line is dirty it will be written back to the next-level storage.

14



Operation

if (priv_level == U)
{

<raise illegal instruction exception>

}

<write back data cache line matching the set/way if dirty>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache

15



3.1.11. th.dcache.cisw

Synopsis

Clean & invalidate D-cache by set/way

Mnemonic

th.dcache.cisw rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 000 O0O0TU1|0 00 1 1 rsl 0 00/{00O0O0OOUOf(OOO0OT10 11

dcache.cisw — CMO " custom-0, 32 bit
The register content of rs1 defines the set/way and has the following bit assignment:

e rs1[64:31]...reserved (write 0)

* rs1[31:32-w]...number of the way to operate on

* rs1[w-1:1+s]...reserved (write 0)

* rs1[l+s-1:1]..number of the set to operate on

e rs1[l-1:4]...reserved (write 0)

* rs1[3:1]...cache level to operate on (0 for L1 cache, 1 for L2 cache, etc.)

* rs1[0]...reserved (write 0)
The bit positions to specify the set and the way to operate on depend on the actual cache
implementation. There are three cache properties that need to be considered:

* nways (number of ways)

* nsets (number of sets)

* linesize (size of a cache line in bytes)

Derived from these numbers the following constants are defined:

*w := log2(nways)
* s := log2(nsets)
* 1 := log2(linesize)

E.g. a 64 KiB, 2-way set-associative cache (w = 1) with a cacheline size of 64 bytes (1 = 6) has 512 sets
(s = 9) and needs to use the following bits to set the set and the way to operate on:

* [31]...number of the way (0 or 1)
e [14:6] number of the set (0..512)

Description

This instruction cleans and invalidates the cache line that matches the specified set/way in the D-
cache. If the cache line is dirty it will be written back to the next-level storage.

16



Operation

if (priv_level == U)
{

<raise illegal instruction exception>

}

<write back data cache line matching the set/way if dirty>
<invalidate data cache line matching the set/way>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache

17



3.1.12. th.dcache.isw

Synopsis

Invalidate D-cache by set/way

Mnemonic

th.dcache.isw rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 000 O0O0TU1|0 001 0 rsl 0 00/{00O0O0OOUOf(OOO0OT10 11

'dca'che.'iswl — CMO ' cu'stor'n-o,'32 Bit
The register content of rs1 defines the set/way and has the following bit assignment:

e rs1[64:31]...reserved (write 0)

* rs1[31:32-w]...number of the way to operate on

* rs1[w-1:1+s]...reserved (write 0)

* rs1[l+s-1:1]..number of the set to operate on

e rs1[l-1:4]...reserved (write 0)

* rs1[3:1]...cache level to operate on (0 for L1 cache, 1 for L2 cache, etc.)

* rs1[0]...reserved (write 0)
The bit positions to specify the set and the way to operate on depend on the actual cache
implementation. There are three cache properties that need to be considered:

* nways (number of ways)

* nsets (number of sets)

* linesize (size of a cache line in bytes)

Derived from these numbers the following constants are defined:

*w := log2(nways)
* s := log2(nsets)
* 1 := log2(linesize)

E.g. a 64 KiB, 2-way set-associative cache (w = 1) with a cacheline size of 64 bytes (1 = 6) has 512 sets
(s = 9) and needs to use the following bits to set the set and the way to operate on:

* [31]...number of the way (0 or 1)
e [14:6] number of the set (0..512)

Description

This instruction invalidates the cache line that matches the specified set/way in the D-cache.
Dirty cache lines will not be written back to the next-level storage.

18



Operation

if (priv_level == U)
{

<raise illegal instruction exception>

}

<invalidate data cache line matching the set/way>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache

19



3.1.13. th.dcache.cpall

Synopsis
Clean L1 D-cache at PA

Mnemonic
th.dcache.cpall rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 0OO O 1|0 1 0 00O rsl 0 0 0|]0O O OO OfO O O 1 0 1 1
dcache.cpall CMO custom-0, 32 bit
Description

This instruction cleans the cache lines that match the specified physical address in the L1 D-
cache. If a cache line is dirty it will be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>

}
<write back all dirty L1 data cache lines matching the PA>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D-cache, 2nd level cache

20



3.1.14. th.dcache.cval1l

Synopsis
Clean L1 D-cache at VA

Mnemonic
th.dcache.cvall rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 000 O0O0TU1|0 01 00 rsl 0 00/{00O0O0OOUOf(OOO0OT10 11

dcache.cvall

Description

CMO

CU.StOY.n-O,‘?)Z Bit

This instruction cleans the cache lines that match the specified virtual address in the L1 D-cache.
If a cache line is dirty it will be written back to the next-level storage.

Operation

<write back all dirty L1 data cache lines matching the VA>

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadCmo (Chapter 3)

HW requirements

D-cache, 2nd level cache, MMU

21



3.1.15. th.icache.iall

Synopsis

Invalidate all I-cache

Mnemonic
th.icache.iall
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 000 0O OUO O|2 000 o0l0OOOTU O O|OOT O|OOO OU OU O|OOOT1 1O011
iache.iall CMO custom-0, 32 bit
Description

This instruction invalidates all cache lines of the instruction cache on the local hart. Dirty cache
lines will not be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>
}
<invalidate all instruction cache lines of the local hart>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) I-cache

22



3.1.16. th.icache.ialls

Synopsis

Invalidate all I-cache on all harts

Mnemonic

th.icache.ialls

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0O oo 00O Of1 00 O 1/l00 O O OO O OO0 OOUOO|(0OO0OO0OTI1ITO0T11
iache.ialls CMO custom-0, 32 bit
Description

This instruction invalidates all cache lines of the instruction cache on all harts (using
broadcasting). Dirty cache lines will not be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>
}
<invalidate all instruction cache lines on all harts>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) I-cache

23



3.1.17. th.icache.ipa

Synopsis
Invalidate I-cache at PA

Mnemonic

th.icache.ipa rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 OO O 1|1 1 0 00 rsl 0 0 0|]0O O OO OfO O O 1 0 1 1
icache.ipa CMO custom-0, 32 bit
Description

This instruction invalidates the cache lines that match the specified physical address in the I-
cache. Dirty cache lines will not be written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>
}
<invalidate all instruction cache lines matching the PA>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) I-cache

24



3.1.18. th.icache.iva

Synopsis
Invalidate I-cache at VA

Mnemonic

th.icache.iva rs1

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0O 00 OO O 1|12 0 0 0 O rsl 0O 0 0J]O O O OO|JO OO 1 0 1 1
icache.iva CMO custom-0, 32 bit
Description

This instruction invalidates the cache lines that match the specified virtual address in the I-
cache. Dirty cache lines will not be written back to the next-level storage.

Operation

<invalidate all instruction cache lines matching the VA>

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) I-cache, MMU

25



3.1.19. th.12cache.call

Synopsis
Clean all L2 cache

Mnemonic
th.]2cache.call

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
o oo o0oo0O0OOf1 01 0 1/00 0 0 OlO0O O O[O0 O0OOOTO|0OO0O0OTI1ITO0T1I1
I2cache.call CMO custom-0, 32 bit
Description

This instruction cleans all cache lines of the L2 cache. Dirty cache lines will be written back to
the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>
}
<write back all dirty L2 cache lines>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D/I-cache, 2nd level cache

26



3.1.20. th.12cache.ciall

Synopsis

Clean & invalidate all L2 cache

Mnemonic
th.]2cache.ciall

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
000 O0O0OOO|1 011 1{00 00 0|0 O O00O0OTUOO|[OO0O0T1O0 11
I2cache.ciall CMO custom-0, 32 bit
Description

This instruction cleans and invalidates all cache lines of the L2 cache. Dirty cache lines will be
written back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>

}

<write back all dirty L2 cache lines>
<invalidate all L2 cache lines>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D/I-cache, 2nd level cache

27



3.1.21. th.12cache.iall

Synopsis
Invalidate all L2 cache

Mnemonic
th.]2cache.iall
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 0 O0OOU O|2 011 o0l0o0o0UO0OT O0O|0OOTUO0O|0OO0O0OOTO|0OO0OO0OT1TU0 11
12cache.iall CMO custom-0, 32 bit
Description

This instruction invalidates all cache lines of the L2 cache. Dirty cache lines will not be written
back to the next-level storage.

Operation

if (priv_level == U)
{

<raise illegal instruction exception>
}
<invalidate all L2 cache lines>

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension HW requirements

XTheadCmo (Chapter 3) D/I-cache, 2nd level cache

28



Chapter 4. Multi-core synchronization
instructions (XTheadSync)

o The XTheadSync extension is stable.

The XTheadSync ISA extension provides multi-core synchronization instructions.

The table below gives an overview of the instructions:

RV32 RV64 Mnemonic

Y Y th.sfence.vmas rsi, rs2
Y Y th.sync

Y Y th.ssyncs

Y Y th.ssyncd

Y Y  th.sync.is

4.1. Instructions

4.1.1. th.sfence.vmas

Synopsis

Instruction

Invalidate TLB on all harts

Synchronization barrier

Synchronization barrier

Synchronization pipeline flush

Synchronization barrier and pipeline flush

Invalidate TLB (page table cache) on all harts via broadcasting.

Mnemonic

th.sfence.vmas rsi, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 00O 1 O rs2 rsl 0 0 0|]0O O O OO|O OO 1 0 11
ASID VA CMO custom-0, 32 bit

Description

This instruction invalidates the TLB (page table cache) on all harts via broadcasting. The register
rs1 holds the virtual address (VA) and rs2 holds the address space identifier (ASID) of the TLB

entry that will be invalidated on all harts via broadcasting.

An operand that is zero is interpreted as match-all. E.g. if rs2 is zero, then all TLB entries that match
the VA in rs1 are invalidated on all harts via broadcasting. Consequently, if both operands, rs1 and

rs2, are zero, then all TLB entries are invalidated on all harts via broadcasting.

Operation

if (priv_level == U)

29



{

<raise illegal instruction exception>

}

if rs1_ !=10
{

va := rsl_

}

else

{

va .

}

_MATCH_ALL_VA_

if rs2 '=10
{

asid := rs2_
}

else

{
asid :

}

_MATCH_ALL_ASID_

msg := encode_invalidate_t1b(va, asid)
broadcast_to_all_harts(msg)

Permission

This instruction can be executed in all privilege levels higher than U mode. Attempts to execute
this instruction in U mode raise an illegal instruction exception.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadSync ([xtheasync])

30



4.1.2. th.sync

Synopsis
Ensures that all preceding instructions retire earlier than this instruction and all subsequent
instructions retire later than this instruction.

Mnemonic
th.sync
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 O0O0OUO|1 100UO0|0O0GO0TO0TUO0O|OOTO0O0O0OUOUO|[OO0O0T1O0 11
SYNC CMO custom-0, 32 bit
Description

This instruction ensures that all preceding instructions retire earlier than this instruction and all
subsequent instructions retire later than this instruction. It is stricter than standard RISC-V fence
instruction. Fence only influences the order of load/store instructions while th.sync influences
all the instructions, including all explicit memory accesses and cache operations.

Operation

out_of_order_barrier()

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadSync ([xtheasync])

31



4.1.3. th.sync.s

Synopsis
Ensures that all preceding instructions retire earlier than this instruction and all subsequent
instructions retire later than this instruction.

Mnemonic
th.sync.s
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
000 O0O0OUO|1 100 11{00O0O0O0|0O0TO00O0OUOUO|[OO0O0T10 11
SYNC.S CMO custom-0, 32 bit
Description

This instruction has the same function with th.sync.

Operation

out_of order_barrier()

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadSync ([xtheasync])

32



4.1.4. th.sync.i

Synopsis

Ensures that all preceding instructions retire earlier than this instruction and all subsequent
instructions retire later than this instruction and clears the pipeline when this instruction

retires.
Mnemonic
th.sync.i
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
000 00O0OTO|1 1 010/0O0O0TO0OTG 0|0 O0O00OO OO OGO O|0O0O0T1O0T11

SYNC.

Description

CMO

cu‘stor‘n-O,‘32 5it

Besides the synopsis of th.sync, this instruction flushes the pipeline of current hart which means
all subsequent instructions should be re-fectched after this instruction retires. This instruction is
the only mechanism to ensure that all explicit memory accesses or cache operations visible to a

hart will also be visible to its instruction fetches.

Operation

out_of order_barrier()
pipeline_flush()

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadSync ([xtheasync])

33



4.1.5. th.sync.is

Synopsis
Ensures that all preceding instructions retire earlier than this instruction and all subsequent
instructions retire later than this instruction and clears the pipeline when this instruction.

Mnemonic
th.sync.is
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00O0O0OOUO|1 101 1{00O0O0O0|0O0TO00O0OUOUO0O|[OO0O0T1O0 11
SYNC.IS CMO custom-0, 32 bit
Description

This instruction has the same function with th.sync.i.

Operation

out_of order_barrier()
pipeline_flush()

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadSync ([xtheasync])

34



Chapter 5. Address calculation instructions

(XTheadBa)

o The XTheadBa extension is stable.

The XTheadBa ISA extension provides bitmanipulation instructions for address calculation.

The table below gives an overview of the instructions:

RV32 RV64 Mnemonic Instruction
Y Y th.addsl rd, rs1, rs2, imm2 Add shifted operand

5.1. Instructions

5.1.1. th.addsl

Synopsis
Add a shifted operand to a second operand.

Mnemonic
th.addsl rd, rs1, rs2, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0O 0 0 0O O]imm2 rs2 rsl 0 0 1 rd 0O 0 01 0 1 1
Arithmetic custom-0, 32 bit
Description

This operation adds the shifted operand (rs2 << imm?2) with rs1.

Operation
reg[rd] := reg[rs1] + (reg[rs2] << imm2)
Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBa (Chapter 5)

35



Chapter 6. Basic bit-manipulation
(XTheadBb)

o The XTheadBb extension is stable.

The XTheadBb ISA extension provides conditional basic bit-manipulation instructions.

The table below gives an overview of the instructions:

RV32 RV64 Mnemonic

Y Y th.srrird, rs1, immé6

N Y th.srriw rd, rs1, immb5

Y Y th.ext rd, rs1, imml, imm2
Y Y th.exturd, rs1, imml1, imm2
Y Y th.ff0 rd, rs1

Y Y th.ff1 rd, rs1

Y Y th.rev rd, rsi

N Y th.revw rd, rsi

Y Y th.tstnbz rd, rs1

6.1. Instructions

6.1.1. th.srri

Synopsis

Perform a cyclic right shift.

Mnemonic

th.srrird, rsi1, immé6

Instruction

Cyclic right shift

Cyclic right shift on word operand

Extract and sign-extend bits

Extract and zero-extend bits

Find first '0'-bit
Find first '1'-bit

Reverse byte order

Reverse byte order of word operand

Test for NUL bytes

Encoding
31 26 25 20 19 15 14 12 11 7 6 0
0O 001 0O imm6 rsl 0 0 1 rd 0O 001 0 1 1
Arithmetic custom-0, 32 bit

Description

This operation rotates the contents of rs1 by immé6 bits and stores the result in rd.

Operation

if (xlen == 32)
imm6 &= Ox1f

36




reg[rd] := (reg[rs1] >> imm6) | (reg[rs1] << (xlen - imm6))
Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBb (Chapter 6)

37



6.1.2. th.srriw

Synopsis

Perform a cyclic right shift on word operand.

Mnemonic

th.srriw rd, rs1, imm5

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 001 0 10 imm5 rsl 0 0 1 rd 0O 0 01 0 1 1
Arithmetic custom-0, 32 bit
Description

This operation rotates the contents of the 32-bit value in rs1 by immb5 bits and stores the result in
rd.

Operation

data := zext.w(reg[rs1])
reg[rd] := (data >> imm5) | (data << (32 - imm5))

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBb (Chapter 6)

38



6.1.3. th.ext

Synopsis

Extract and sign-extend bits.

Mnemonic

th.extrd, rs1, imml1, imm2

Encoding
31 26 25 20 19 15 14 12 11 7 6 0
imm1 imm2 rsl 0 1 O rd 0O 0 01 0 1 1
Arithmetic custom-0, 32 bit
Description

This operation extract the bits imm1..imm2 from register rs1, sign-extends the value, and stores

the result in rd.

Operation
reglrd] := sign_extend(reg[rs1][imm1:imm2])
Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBb (Chapter 6)

39



6.1.4. th.extu

Synopsis

Extract and zero-extend bits.

Mnemonic

th.exturd, rs1, imml1, imm2

Encoding
31 26 25 20 19 15 14 12 11 7 6 0
imm1 imm2 rsl 0 1 1 rd 0O 0 01 0 1 1
Arithmetic custom-0, 32 bit
Description

This operation extract the bits imm1..imm2 from register rs1, zero-extends the value, and stores
the result in rd.

Operation

reglrd] := zero_extend(reg[rs1][imm1:imm2])

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBb (Chapter 6)

40



6.1.5. th.ff0

Synopsis
Find first '0'-bit

Mnemonic
th.ff0 rd, rs1
Encoding

31 27 26 25 24 20 19

15 14 12 11

7 6 0

1 0 0 0 0Of1 00O O O O O

rsi

0 0 1

rd

0 0 01 0 1 1

Description

CU.StOY.n-O,‘?)Z Bit

Finds the first bit with the value of '0' from the highest bit of rs1 and writes the index back into
register rd. If the highest bit of rs1 is '0', the result '0' is returned. If all the bits in rs1 are '1, the

result '64' is returned.

Operation

for i=xlen..0:
if reg[rs1][i] == @:
break;
reglrd] = (xlen - 1) - i

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBb (Chapter 6)

41



6.1.6. th.ff1

Synopsis
Find first '1'-bit

Mnemonic
th.ff1 rd, rs1

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
100 0 0[1 1(0 0 0 0 O rsi 0 0 1 rd 0 00 1 0 11
custom-0, 32 bit
Description

Finds the first bit with the value of '1' from the highest bit of rs1 and writes the index back into
register rd. If the highest bit of rs1 is '1', the result '0' is returned. If all the bits in rs1 are '1, the
result '64' is returned.

Operation

for i=xlen..0:
if reg[rs1][i] == 1:
break;
reglrd] = (xlen - 1) - i

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBb (Chapter 6)

42



6.1.7. th.rev

Synopsis

Reverse the byte order.

Mnemonic

th.rev rd, rsi

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
100 0 0[0 1[0 0 0 0 O rsi 0 0 1 rd 0 00 1 0 11
Arithmetic custom-0, 32 bit
Description

This operation reverses the byte order of the value in rs1 and stores the result in rd.

Operation

for i=0..(xlen/8-1):
j :=xlen/8 - 1 -1
tmp[i] := reg[rs1][j]
reg[rd] := tmp

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBb (Chapter 6)

43



6.1.8. th.revw

Synopsis

Reverse the byte order of a word operand.

Mnemonic

th.revw rd, rs1

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
100 1 0[0 0[O0 0 0 0 O rsi 0 0 1 rd 0 00 1 0 11
Arithmetic custom-0, 32 bit
Description

This operation reverses the byte order of the 32-bit value in rs1 and stores the result in rd.

Operation

for i=0..3:

j =3 -1

tmp[i] := reg[rs11[j]
reg[rd] := tmp

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBb (Chapter 6)

44




6.1.9. th.tstnbz

Synopsis
Test for NUL bytes.

Mnemonic
th.tstnbz rd, rs1

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
100 0 0[0 0[O0 0 0 0 O rsi 0 0 1 rd 0 00 1 0 11
custom-0, 32 bit
Description

Tests each byte in register rs1 for equality with 0. If a byte is 0, then the corresponding byte in
register rd will be set to 0xff. Otherwise, the corresponding byte in register rd will be set to 0.

Operation
for i=0..(xlen/8-1):
if reg[rs1][i] == 0:
reg[rd][i] := Oxff

else
reg[rd][i] := 0

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadBb (Chapter 6)

45



Chapter 7. Single-bit instructions

(XTheadBs)

o The XTheadBs extension is stable.

The XTheadBs ISA extension provides instructions to access a single bit in a register.

The table below gives an overview of the instructions:

RV32 RV64 Mnemonic

Y Y th.tst rd, rs1, immé6

7.1. Instructions

7.1.1. th.tst

Synopsis

Tests if a single bit is set.

Mnemonic
th.tst rd, rsi1, immé6

Instruction

Test bit

Encoding
31 26 25 20 19 15 14 12 11 7 6 0
1 0 0 0 1 O imm6 rsl 0 0 1 rd 0O 001 0 1 1
Arithmetic custom-0, 32 bit
Description

This instruction tests if a single bit is set. If so, rd will be set to 1. Otherwise, rd will be set to 0.

Operation

if (reg[rs1] & (1 << imm6))
rd := 1

else
rd := 0
Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

46




Extension

XTheadBs (Chapter 7)

47



Chapter 8. Conditional move
(XTheadCondMov)

o The XTheadCondMov extension is stable.

The XTheadCondMov ISA extension provides conditional move instructions.

The table below gives an overview of the instructions:

RV32 RV64 Mnemonic Instruction
Y Y th.mveqz rd, rs1, rs2 Move if equal zero
Y Y th.mvnez rd, rsi, rs2 Move if not equal zero

8.1. Instructions

8.1.1. th.mveqz

Synopsis

Move if equal zero.

Mnemonic

th.mveqz rd, rs1, rs2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
01 00 0|0 O rs2 rsl 0 0 1 rd 0 00 1 0 11
Arithmetic custom-0, 32 bit
Description

This instruction moves the content of register rs1 into rd if the content of rs2 is 0x0. Otherwise,
the value of rd does not change.

Operation

if (reg[rs2] == 0x0)
reg[rd] := reg[rs1]

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

48



Extension

XTheadCondMov (Chapter 8)

49



8.1.2. th.mvnez

Synopsis

Move if not equal zero.

Mnemonic

th.mvnez rd, rsi, rs2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
01 0 0 0|0 1 rs2 rsl 0 0 1 rd 0O 0 01 0 1 1
Arithmetic custom-0, 32 bit
Description

This instruction moves the content of register rs1 into rd if the content of rs2 is not 0x0.
Otherwise, the value of rd does not change.

Operation

if (reg[rs2] != 0x0)
reg[rd] := reg[rs1]

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction does not trigger any exceptions.

Included in

Extension

XTheadCondMov (Chapter 8)

50



Chapter 9. Indexed memory operations
(XTheadMemlIdx)

The XTheadMemIdx extension is stable.

The XTheadMemIdx ISA extension provides indexed memory operations. for GP registers.

The table below gives an overview of the instructions:

RV32
Y

< KK K Z2 2 <K K K K K K Z2 2 2 2 K K K K *K K <K <" ¥

Y

< KR KKK KKK KKK K KK K KK K K K K K} ¥

RV64 Mnemonic

th.lbia rd, (rs1), immb5, imm2
th.lbib rd, (rs1), imm5, imm2
th.lbuia rd, (rs1), immb5, imm2
th.lbuib rd, (rs1), imm5, imm2
th.lhia rd, (rs1), imm5, imm2
th.lhib rd, (rs1), immb5, imm2
th.lhuia rd, (rs1), imm5, imm2
th.lhuib rd, (rs1), immb5, imm2
th.lwia rd, (rs1), immb5, imm2
th.lwib rd, (rs1), imm5, imm2
th.lwuia rd, (rs1), immb5, imm2
th.lwuib rd, (rs1), imm5, imm2
th.ldia rd, (rs1), immb5, imm2
th.ldib rd, (rs1), imm5, imm2
th.sbia rd, (rs1), imm5, imm2
th.sbib rd, (rs1), imm5, imm2
th.shia rd, (rs1), immb5, imm2
th.shib rd, (rs1), imm5, imm2
th.swia rd, (rs1), imm5, imm2
th.swib rd, (rs1), immb5, imm2
th.sdia rd, (rs1), imm5, imm2
th.sdib rd, (rs1), imm5, imm2
th.lrb rd, rsi, rs2, imm2
th.rbu rd, rsi, rs2, imm2
th.rh rd, rsi, rs2, imm2
th.lrhu rd, rsi1, rs2, imm2

Instruction

Load indexed byte

Load indexed byte

Load indexed unsigned byte
Load indexed unsigned byte
Load indexed half-word
Load indexed half-word
Load indexed unsigned half-word
Load indexed unsigned half-word
Load indexed word

Load indexed word

Load indexed unsigned word
Load indexed unsigned word
Load indexed double-word
Load indexed double-word
Store indexed byte

Store indexed byte

Store indexed half-word
Store indexed half-word
Store indexed word

Store indexed word

Store indexed double-word
Store indexed double-word
Load indexed byte

Load indexed unsigned byte
Load indexed half-word

Load indexed unsigned half-word

31



RV32 RV64 Mnemonic Instruction

Y Y th.lrw rd, rs1, rs2, imm2 Load indexed word

N Y th.lrwu rd, rs1, rs2, imm2 Load indexed unsigned word

N Y th.lrd rd, rsi, rs2, imm2 Load indexed double-word

Y Y th.srb rd, rs1, rs2, imm2 Store indexed byte

Y Y th.srh rd, rsi, rs2, imm2 Store indexed half-word

Y Y th.srw rd, rs1, rs2, imm2 Store indexed word

N Y th.srd rd, rs1, rs2, imm2 Store indexed double-word

Y Y th.lurb rd, rsi, rs2, imm2 Load unsigned indexed byte

Y Y thlurburd, rsi,rs2, imm2 Load unsigned indexed unsigned byte
Y Y th.lurh rd, rsi1, rs2, imm2 Load unsigned indexed half-word

Y Y th.Jurhu rd, rsi1, rs2, imm2 Load unsigned indexed unsigned half-word
Y Y th.lurw rd, rsi1, rs2, imm2 Load unsigned indexed word

N Y th.lurwu rd, rsi, rs2, imm2 Load unsigned indexed unsigned word
N Y th.lurd rd, rsi, rs2, imm2 Load unsigned indexed double-word

Y Y th.surb rd, rs1, rs2, imm2 Store unsigned indexed byte

Y Y th.surh rd, rsi1, rs2, imm2 Store unsigned indexed half-word

Y Y th.surw rd, rsi1, rs2, imm2 Store unsigned indexed word

N Y th.surd rd, rs1, rs2, imm2 Store unsigned indexed double-word

9.1. Instructions

9.1.1. th.lbia

Synopsis

Load indexed byte, increment address after loading.

Mnemonic
th.lbia rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 0 0 1 1]|imm2 imm5 rsl 1 0 O rd 0 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction loads a sign extended 8-bit value into the GP register rd from the address rs1.
After the load, this instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and
writes the result back to rsi.

32



The values of rd and rsI must not be the same.

Operation

rd := sign_extend(mem[rs1])
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission

This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LB instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

33



9.1.2. th.lbib

Synopsis

Load indexed byte, increment address before loading.

Mnemonic
th.lbib rd, (rs1), immb5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 0 0 0 1]imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rs1. After the increment of rsi, this instruction loads a sign extended 8-bit value
into the GP register rd from the (incremented) address rs1.

The values of rd and rsI must not be the same.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
rd := sign_extend(mem[rs1])

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LB instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

54



9.1.3. th.lbuia

Synopsis

Load indexed unsigned byte, increment address after loading.

Mnemonic

th.lbuia rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
1 0 0 1 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction loads a zero extended 8-bit value into the GP register rd from the address rs1.
After the load, this instruction increments the value in rs1 by (sign_extend(immb5) << imm2) and
writes the result back to rs1.

The values of rd and rsI must not be the same.

Operation

rs := zero_extend(mem[rs1])
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LBU instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

55



9.1.4. th.lbuib

Synopsis

Load indexed unsigned byte, increment address before loading.

Mnemonic
th.lbuib rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
1 0 0 0O 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rsi. After the increment of rsi, this instruction loads a zero extended 8-bit value
into the GP register rd from the (incremented) address rs1.

The values of rd and rsI must not be the same.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
rd := zero_extend(mem[rs1])

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LBU instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

36



9.1.5. th.lhia

Synopsis

Load indexed half-word, increment address after loading.

Mnemonic
th.lhia rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 0 1 1 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction loads a sign extended 16-bit value into the GP register rd from the address rs1.
After the load, this instruction increments the value in rs1 by (sign_extend(immb5) << imm2) and
writes the result back to rs1.

The values of rd and rsI must not be the same.

Operation

rd := sign_extend(mem[rs1+1:rs1])
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LH instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

57



9.1.6. th.lhib

Synopsis

Load indexed half-word, increment address before loading.

Mnemonic
th.lhib rd, (rs1), immb5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 01 0 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rsi1. After the increment of rsi, this instruction loads a sign extended 16-bit value
into the GP register rd from the (incremented) address rs1.

The values of rd and rsI must not be the same.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
rd := sign_extend(mem[rs1+1:rs1])

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LH instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

38



9.1.7. th.lhuia

Synopsis

Load indexed unsigned half-word, increment address after loading.

Mnemonic

th.lhuia rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
1 0 1 1 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction loads a zero extended 16-bit value into the GP register rd from the address rs1.
After the load, this instruction increments the value in rs1 by (sign_extend(immb5) << imm2) and
writes the result back to rs1.

The values of rd and rsI must not be the same.

Operation

rd := zero_extend(mem[rs1+1:rs1])
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LHU instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

39



9.1.8. th.lhuib

Synopsis

Load indexed unsigned half-word, increment address before loading.

Mnemonic
th.lhuib rd, (rs1), immb5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
1 0 1 0 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rsi. After the increment of rsi, this instruction loads a zero extended 16-bit value
into the GP register rd from the (incremented) address rs1.

The values of rd and rsI must not be the same.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
rd := zero_extend(mem[rs1+1:rs1])

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LHU instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

60



9.1.9. th.lwia

Synopsis

Load indexed word, increment address after loading.

Mnemonic

th.lwia rd, (rs1), immb5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 1 0 1 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction loads a sign extended 32-bit value into the GP register rd from the address rs1.
After the load, this instruction increments the value in rs1 by (sign_extend(immb5) << imm2) and
writes the result back to rs1.

The values of rd and rsI must not be the same.

Operation

rd := sign_extend(mem[rs143:rs1])
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LW instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

61



9.1.10. th.lwib

Synopsis

Load indexed word, increment address before loading.

Mnemonic
th.lwib rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 1 0 0 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rs1. After the increment of rsi, this instruction loads a sign extended 32-bit value
into the GP register rd from the (incremented) address rs1.

The values of rd and rsI must not be the same.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
rd := sign_extend(mem[rs1+3:rs1])

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LW instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

62



9.1.11. th.lwuia

Synopsis

Load indexed unsigned word, increment address after loading.

Mnemonic

th.lwuia rd, (rs1), immb5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
1 1 0 1 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction loads a zero extended 32-bit value into the GP register rd from the address rs1.
After the load, this instruction increments the value in rs1 by (sign_extend(immb5) << imm2) and
writes the result back to rs1.

The values of rd and rsI must not be the same.

Operation

rd := zero_extend(mem[rs1+3:rs1])
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LWU instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

63



9.1.12. th.lwuib

Synopsis

Load indexed unsigned word, increment address before loading.

Mnemonic

th.lwuib rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
1 1 0 0 1]|imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rsi. After the increment of rsi, this instruction loads a zero extended 32-bit value
into the GP register rd from the (incremented) address rs1.

The values of rd and rsI must not be the same.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
rd := zero_extend(mem[rs1+3:rs1])

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LWU instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

64



9.1.13. th.ldia

Synopsis

Load indexed double-word, increment address after loading.

Mnemonic
th.ldia rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 1 1 1 1]imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction loads a sign extended 64-bit value into the GP register rd from the address rs1.
After the load, this instruction increments the value in rs1 by (sign_extend(immb5) << imm2) and
writes the result back to rs1.

The values of rd and rsI must not be the same.

Operation

rd := sign_extend(mem[rs147:rs1])
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LD instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

65



9.1.14. th.1dib

Synopsis

Load indexed double-word, increment address before loading.

Mnemonic
th.lwib rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 1 1 0 1]imm2 imm5 rsl 1 0 O rd 0O 0 01 0 1 1
Mem-Load custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rs1. After the increment of rsi, this instruction loads a sign extended 64-bit value
into the GP register rd from the (incremented) address rs1.

The values of rd and rsI must not be the same.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
rd := sign_extend(mem[rs1+7:rs1])

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding LD instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

66



9.1.15. th.sbhia

Synopsis

Store indexed byte, increment address after loading.

Mnemonic
th.sbia rd, (rs1), immb5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 0 0 1 1]|imm2 imm5 rsl 1 0 1 rd 0O 0 01 0 1 1
Mem-Store custom-0, 32 bit
Description

This instruction stores an 8-bit value from the GP register rd to the address rs1. After the store,
this instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rs1.

Operation

mem[rs1] := rd
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding SB instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

67



9.1.16. th.sbib

Synopsis

Store indexed byte, increment address before loading.

Mnemonic
th.sbib rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 0 0 0 1]imm2 imm5 rsl 1 0 1 rd 0O 0 01 0 1 1
Mem-Store custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rs1. After the increment of rsi1, this instruction stores an 8-bit value from the GP
register rd to the (incremented) address rs1.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
mem[rs1] := rd

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding SB instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

68



9.1.17. th.shia

Synopsis

Store indexed half-word, increment address after loading.

Mnemonic
th.shia rd, (rs1), immb5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 0 1 1 1]|imm2 imm5 rsl 1 0 1 rd 0O 0 01 0 1 1
Mem-Store custom-0, 32 bit
Description

This instruction stores an 16-bit value from the GP register rd to the address rs1. After the store,
this instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rs1.

Operation

mem[rs1+1:rs1] := rd
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding SH instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

69



9.1.18. th.shib

Synopsis

Store indexed half-word, increment address before loading.

Mnemonic
th.shib rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 01 0 1]|imm2 imm5 rsl 1 0 1 rd 0O 0 01 0 1 1
Mem-Store custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rsi. After the increment of rsi, this instruction stores an 16-bit value from the GP
register rd to the (incremented) address rs1.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
mem[rs1+1:rs1] := rd

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding SH instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

70



9.1.19. th.swia

Synopsis

Store indexed word, increment address after loading.

Mnemonic

th.swia rd, (rs1), imm5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 1 0 1 1]|imm2 imm5 rsl 1 0 1 rd 0O 0 01 0 1 1
Mem-Store custom-0, 32 bit
Description

This instruction stores an 32-bit value from the GP register rd to the address rs1. After the store,
this instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rs1.

Operation

mem[rs1+3:rs1] := rd
rs1 := rs1 + (sign_extend(imm5) << imm2)

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding SW instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

71



9.1.20. th.swib

Synopsis

Store indexed word, increment address before loading.

Mnemonic
th.swib rd, (rs1), immb5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 1 0 0 1]|imm2 imm5 rsl 1 0 1 rd 0O 0 01 0 1 1
Mem-Store custom-0, 32 bit
Description

This instruction increments the value in rs1 by (sign_extend(imm5) << imm2) and writes the
result back to rsi. After the increment of rsi, this instruction stores an 32-bit value from the GP
register rd to the (incremented) address rs1.

Operation

rs1 := rs1 + (sign_extend(imm5) << imm2)
mem[rs1+3:rs1] := rd

Permission
This instruction can be executed in all privilege levels.

Exceptions

This instruction triggers the same exceptions that a corresponding SW instruction would trigger.

Included in

Extension

XTheadMemlIdx (Chapter 9)

72



9.1.21. th.sdia

Synopsis

Store indexed double-word, increment address after loading.

Mnemonic
th.sdia rd, (rs1), immb5, imm2

Encoding
31 27 26 25 24 20 19 15 14 12 11 7 6 0
0 1 1 1 1]imm2 imm5 rsl 1 0 1 rd 0O 0 01 0 1 1
Mem-Store custom-0, 32