VTx-family custom instructions

Custom ISA extensions for Ventana Micro Systems RISC-V cores

Version 1.0.0, 2022-01-07: Public release

Table of Contents

Front Matter.t it i i ittt it et it ettt ittt et ittt e e
ALEIDULIONS . . o e ettt e e e
ContribULOrso
Revision history.o e

1. Vendor-prefix for mnemonicst e

2. CUSEOM EXEENSIONS oottt ettt ettt ettt e
2.1. XVentanaCondOps ("Conditional Ops") EXtENSIONottt

2.1.0. Applicability . ..o e
2.1.2. INSTUCHION SEQUEIICESottt ettt ettt et et e e et e e ettt ee e iee e ae e eae s

3. Supported extensions (DY COTE)ottt et e e e
B O 8 T) < e

4. Instructions (in alphabetical order) o e
41 vEmaske ..o

4 VEINASK O . . o o

Front matter

Front matter

Copyright © 2021-2022 by Ventana Micro Systems.
All rights reserved.

Attributions

This document is based on the Asciidoctor documentation template designed at VRULL GmbH.
Typeset with Asciidoctor. Diagrams generated by Wavedrom.

The fonts used in this document are licensed under the Open Font License:

M PLUS 1p,designed by the M+ Outline Fonts Project;
« Fira Sans, designed for Mozilla FirefoxOS by Carrois in Berlin, Germany;
« Unna, designed by Omnibus-Type in Buenos Aires, Argentina;

SourceCodePro, designed by Paul D. Hunt for use in user interfaces.

Contributors

Written by Greg Favor (Ventana Micro Systems) and Philipp Tomsich (VRULL GmbH).
Production by VRULL GmbH.

Revision history

Version Description

1.0.0 January 2022
Initial revision.

© 2021-2022 Ventana Micro Systems. All rights reserved. | 1

Chapter 1. Vendor-prefix for mnemonics

Chapter 1. Vendor-prefix for mnemonics

To avoid conflicts between mnemonics defined by different implementors of custom RISC-V extensions, each
vendor-defined mnemonic is—in consequence—prefixed by a vendor-specific prefix: i.e., each vendor-defined

mnemonic is structured as "<vendor prefix> . <mnemonic base name>".

The vendor-prefix to all mnemonics defined by Ventana Micro Systems is "vt" (e.g., the “maskc” instruction

becomes “vt.maskc”).

2| © 2021-2022 Ventana Micro Systems. All rights reserved.

Chapter 2. Custom extensions

Chapter 2. Custom extensions

This document describes the custom ISA extensions defined by Ventana Micro Systems.

2.1. XVentanaCondOps ("Conditional Ops") Extension

One of the shortcoming of RISC-V, compared to competing instruction set architectures, is the absence of
conditional operations to support branchless code-generation: this includes conditional arithmetic, conditional
select and conditional move operations. The design principles or RISC-V (e.g. the absence of an instruction-
format that supports 3 source registers and an output register) make it unlikely that direct equivalents of the
competing instructions will be introduced.

Yet, low-cost conditional instructions are a desirable feature as they allow the replacement of branches in a broad
range of suitable situations (whether the branch turns out to be unpredictable or predictable) so as to reduce the
capacity and aliasing pressures on BTBs and branch predictors, and to allow for longer basic blocks (for both the
hardware and the compiler to work with).

The "Conditional Ops" extension provides a simple solution that provides most of the benefit and all of the
flexibility one would desire to support conditional arithmetic and conditional-select/move operations, while
remaining true to the RISC-V design philosophy. The instructions follow the format for R-type instructions with 3
operands (i.e., 2 source operands and 1 destinantion operand). Using these instructions, branchless sequences
can be implemented (typically in two-instruction sequenes) without the need for instruction fusion, special
provisions during the decoding of architectural instrucitons, or other microarchitectural provisions.

The following instructions comprise the XVentanaCondOps extension:

RV32 | RV64 [Mnemonic Instruction
n/a V' |vt.maskc rd, rs1, rs2 Mask register value on condition
n/a V' |vt.masken rd, rsi, rs2 Mask register value on negated condition

RV32-column is marked "n/a". The instructions in the XVentanaCondOps extension are

y All current cores by Ventana Micro implement RV64 and are designed as 64-bit only, the
E’ defined to operate on XLEN and would thus be directly applicable to RV32.

2.1.1. Applicability

Based on these two instructions, synthetic instructions (i.e., short instruction sequences) for the following
conditional arithmetic operations are supported:

« conditional add, if zero

« conditional add, if non-zero

« conditional subtract, if zero

« conditional subtract, if non-zero

« conditional bitwise-and, if zero

« conditional bitwise-and, if non-zero
« conditional bitwise-or, if zero

« conditional bitwise-or, if non-zero
« conditional bitwise-xor, if zero

- conditional bitwise-xor, if non-zero

Additionally, the following conditional select intructions are supported:

« conditional-select, if zero
« conditional-select, if non-zero

© 2021-2022 Ventana Micro Systems. All rights reserved. | 3

Chapter 2. Custom extensions

Note that a conditional move is a degenerate version of the conditional select and can be built from these

sequences.

2.1.2. Instruction sequences

rd = (rc !'= 0) ? rsl : rs2

vt.maskcn
or rd, rd,

rd = (rc == 0) ? rsl : rs2 vt.maskc rtmp, rs2, rc
or rd, rd, rtmp
Conditional select, if non-zero vt.maskc rd, rsl, rc

rtmp, rs2, rc

rtmp

Operation Instruction sequence Length
Conditional add, if zero vt.masken rd, rs2, rc
rd = (rc == 0) ? (rsl + rs2) : rsl add rd, rsil, rd
Conditional add, if non-zero vt.maskc rd, rs2, rc
rd = (rc != 0) ? (rsl + rs2) : rsl add rd, rsl, rd
Conditional subtract, if zero vt.masken rd, rs2, rc
rd = (rc == 0) ? (rsl - rs2) : rsl sub rd, rsl, rd
Conditional subtract, if non-zero vt.maskc rd, rs2, rc
rd = (rc != 0) ? (rsl - rs2) : rsl sub rd, rsl, rd
.. . . 2 insns
Conditional bitwise-or, if zero vt.masken rd, rs2, rc
rd = (rc == 0) ? (rsl | rs2) : rsl or rd, rsl, rd
Conditional bitwise-or, if non-zero vt.maskc rd, rs2, rc
rd = (rc !'=0) ? (rsl | rs2) : rsl or rd, rsl, rd
Conditional bitwise-xor, if zero vt.masken rd, rs2, rc
rd = (rc == 0) ? (rsl " rs2) : rsl xor rd, rsi, rd
Conditional bitwise-xor, if non-zero vt.maskc rd, rs2, rc
rd = (rc !'= 0) ? (rsl » rs2) : rsl xor rd, rsl, rd
Conditional bitwise-and, if zero not rd, rs2
rd = (rc == 0) ? (rsl & rs2) : rsl vt.maskcn rd, rd, rc
andn rd, rsl, rd
Conditional bitwise-and, if non-zero not rd, rs2
rd = (rc !=0) ? (rsl & rs2) : rsl vt.maskc rd, rd, rc
andn rd, rsl, rd 3 insns
Conditional select, if zero vt.masken rd, rsl, rc (requires 1 temporary)

/4

if (crc & 1)
crc M= 0xa001;

4| © 2021-2022 Ventana Micro Systems. All rights reserved.

conditional-xor operations for a CRC-16).

Note that a common benchmark benefiting from the conditional-xor sequence is EEMBC
Coremark, where the CRC computation requires one conditional-xor per bit (i.e. a total of 16

Listing 1. Conditional bitwise-xor use-case from EEMBC Coremark’s core_util.c

Chapter 3. Supported extensions (by core)

Chapter 3. Supported extensions (by core)

This chapter lists the custom extensions supported by each core/core-family.

3.1. VT1 core

The VT1 core implements the following custom extensions:

+ XVentanaCondOps: conditional operations

© 2021-2022 Ventana Micro Systems. All rights reserved. | 5

Chapter 4. Instructions (in alphabetical order)

Chapter 4. Instructions (in alphabetical order)

This chapter lists all custom instructions defined by Ventana Micro Systems in alphabetical order.

6| © 2021-2022 Ventana Micro Systems. All rights reserved.

Chapter 4. Instructions (in alphabetical order)

4.1. vt.maskc
Synopsis

Masks a value (rs1) on condition of a truth value (rs2)

Mnemonic

vt.maske rd, rsi, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0 00 0 0 OO rs2 rs1 1 1 0 rd 1t 11 1 0 1 1
MASKC condition value MASKC CUSTOM-3
Description

If the value of register rs2 is non-zero, place the value of register rs1 into the register rd.
Otherwise, put the value O (zero) into rd.

Operation

let value = X(rsl);
let condition = X(rs2);

X(rd) = if (condition != 0) then value

else 0;
Implemented in
Extension Minimum version Supported cores
XVentanaCondOps 1.0 VT1

© 2021-2022 Ventana Micro Systems. All rights reserved. | 7

Chapter 4. Instructions (in alphabetical order)

4.2. vt.maskcn

Synopsis

Masks a value (rs1) on the negated condition of a truth value (rs2)

Mnemonic

vt.maske rd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 0 00OO OO rs2 rsi 1 1 1 rd 111 1 0 1 1
MASKCN condition value MASKCN CUSTOM-3

Description

If the value of register rs2 is zero, place the value of register rsi into the register rd.

Otherwise, put the value O (zero) into rd.
Operation

let value = X(rsl);
let condition = X(rs2);

X(rd) = if (condition == 0) then value
else 0;

Implemented in

Extension

Minimum version

Supported cores

XVentanaCondOps

1.0

VT1

8| © 2021-2022 Ventana Micro Systems. All rights reserved.

	VTx-family custom instructions: Custom ISA extensions for Ventana Micro Systems RISC-V cores
	Table of Contents
	Front matter
	Attributions
	Contributors
	Revision history

	Chapter 1. Vendor-prefix for mnemonics
	Chapter 2. Custom extensions
	2.1. XVentanaCondOps ("Conditional Ops") Extension
	2.1.1. Applicability
	2.1.2. Instruction sequences

	Chapter 3. Supported extensions (by core)
	3.1. VT1 core

	Chapter 4. Instructions (in alphabetical order)
	4.1. vt.maskc
	4.2. vt.maskcn

