

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

3
 SH-2E
Software Manual

2

U
ser’s M

anual

Renesas 32-Bit RISC
Microcomputer
SuperHTM RISC engine Family/
SH7000 Series
Rev.2.00 2006.05

Unknown
The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

Rev. 2.00 May 31, 2006 page ii of xii

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

Rev. 2.00 May 31, 2006 page iii of xii

Introduction

The SH-2E is a new generation of RISC microcomputers that integrate a RISC-type CPU and the
peripheral functions required for system configuration onto a single chip to achieve high-
performance operation. It can operate in a power-down state, which is an essential feature for
portable equipment.

This CPU has a RISC-type instruction set. Basic instructions can be executed in one clock cycle,
improving instruction execution speed. In addition, the CPU has a 32-bit internal architecture for
enhanced data-processing ability.

In addition, the SH-2E supports single-precision floating point calculations as well as entirely
PCAPI compatible emulation of double-precision floating point calculations. The SH-2E
instructions are a subset of the floating point calculations conforming to the IEEE754 standard.

This programming manual describes in detail the instructions for the SH-2E Series and is intended
as a reference on instruction operation and architecture. It also covers the pipeline operation,
which is a feature of the SH-2E Series.

For information on the hardware, please refer to the hardware manual for the product in question.

Rev. 2.00 May 31, 2006 page iv of xii

Main Revisions for This Edition

Item Page Revision (See Manual for Details)

All � � Notification of change in company name amended

(Before) Hitachi, Ltd. → (After) Renesas Technology Corp.
Rev. 2.00 May 31, 2006 page v of xii

Rev. 2.00 May 31, 2006 page vi of xii

Rev. 2.00 May 31, 2006 page vii of xii

Contents

Section 1 Features.. 1
1.1 SH-2E Features ... 1

Section 2 Register Configuration.. 3
2.1 General Registers .. 3
2.2 Control Registers... 4
2.3 System Registers ... 5
2.4 Floating-Point Registers.. 6
2.5 Floating-Point System Registers ... 7
2.6 Initial Values of Registers... 8

Section 3 Data Formats.. 9
3.1 Data Format in Registers... 9
3.2 Data Format in Memory.. 9
3.3 Immediate Data Format... 10

Section 4 Floating-Point Unit (FPU) ... 11
4.1 Overview... 11
4.2 Floating-Point Registers and Floating-Point System Registers... 12

4.2.1 Floating-Point Register File ... 12
4.2.2 Floating-Point Communication Register (FPUL) .. 12
4.2.3 Floating-Point Status/Control Register (FPSCR)... 12

4.3 Floating-Point Format ... 15
4.3.1 Floating-Point Format .. 15
4.3.2 Non-Numbers (NaN) ... 16
4.3.3 Denormalized Number Values... 16
4.3.4 Other Special Values.. 17

4.4 Floating-Point Exception Model ... 17
4.4.1 Enable State Exceptions... 17
4.4.2 Disable State Exceptions.. 17
4.4.3 FPU Exception Event and Code... 18
4.4.4 Floating-Point Data Arrangement in Memory ... 18
4.4.5 Arithmetic Operations Involving Special Operands .. 18

4.5 Synchronization with CPU.. 18

Section 5 Instruction Features.. 19
5.1 RISC-Type Instruction Set.. 19
5.2 Addressing Modes... 22

Rev. 2.00 May 31, 2006 page viii of xii

5.3 Instruction Format... 25

Section 6 Instruction Set.. 29
6.1 Instruction Set by Classification ... 29
6.2 Instruction Set in Alphabetical Order.. 44

Section 7 Instruction Descriptions.. 53
7.1 Sample Description (Name): Classification .. 53
7.2 CPU Instruction... 57

7.2.1 ADD (ADD Binary): Arithmetic Instruction ... 57
7.2.2 ADDC (ADD with Carry): Arithmetic Instruction .. 58
7.2.3 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction................. 59
7.2.4 AND (AND Logical): Logic Operation Instruction ... 60
7.2.5 BF (Branch if False): Branch Instruction... 62
7.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction................................ 63
7.2.7 BRA (Branch): Branch Instruction .. 65
7.2.8 BRAF (Branch Far): Branch Instruction.. 67
7.2.9 BSR (Branch to Subroutine): Branch Instruction... 69
7.2.10 BSRF (Branch to Subroutine Far): Branch Instruction .. 71
7.2.11 BT (Branch if True): Branch Instruction.. 73
7.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction 74
7.2.13 CLRMAC (Clear MAC Register): System Control Instruction 76
7.2.14 CLRT (Clear T Bit): System Control Instruction... 77
7.2.15 CMP/cond (Compare Conditionally): Arithmetic Instruction.............................. 78
7.2.16 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction................................... 82
7.2.17 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction 83
7.2.18 DIV1 (Divide 1 Step): Arithmetic Instruction ... 84
7.2.19 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction 89
7.2.20 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction....... 91
7.2.21 DT (Decrement and Test): Arithmetic Instruction ... 93
7.2.22 EXTS (Extend as Signed): Arithmetic Instruction... 94
7.2.23 EXTU (Extend as Unsigned): Arithmetic Instruction.. 95
7.2.24 JMP (Jump): Branch Instruction .. 96
7.2.25 JSR (Jump to Subroutine): Branch Instruction

(Class: Delayed Branch Instruction) .. 98
7.2.26 LDC (Load to Control Register): System Control Instruction

(Class: Interrupt Disabled Instruction)... 100
7.2.27 LDS (Load to System Register): System Control Instruction 102
7.2.28 MAC.L (Multiply and Accumulate Calculation Long):

Arithmetic Instruction.. 104

Rev. 2.00 May 31, 2006 page ix of xii

7.2.29 MAC.W (Multiply and Accumulate Calculation Word):
Arithmetic Instruction.. 107

7.2.30 MOV (Move Data): Data Transfer Instruction .. 110
7.2.31 MOV (Move Immediate Data): Data Transfer Instruction................................... 115
7.2.32 MOV (Move Peripheral Data): Data Transfer Instruction 117
7.2.33 MOV (Move Structure Data): Data Transfer Instruction..................................... 120
7.2.34 MOVA (Move Effective Address): Data Transfer Instruction............................. 123
7.2.35 MOVT (Move T Bit): Data Transfer Instruction ... 124
7.2.36 MUL.L (Multiply Long): Arithmetic Instruction... 125
7.2.37 MULS.W (Multiply as Signed Word): Arithmetic Instruction 126
7.2.38 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction 127
7.2.39 NEG (Negate): Arithmetic Instruction... 128
7.2.40 NEGC (Negate with Carry): Arithmetic Instruction .. 129
7.2.41 NOP (No Operation): System Control Instruction... 130
7.2.42 NOT (NOT�Logical Complement): Logic Operation Instruction 131
7.2.43 OR (OR Logical) Logic Operation Instruction .. 132
7.2.44 ROTCL (Rotate with Carry Left): Shift Instruction... 134
7.2.45 ROTCR (Rotate with Carry Right): Shift Instruction .. 135
7.2.46 ROTL (Rotate Left): Shift Instruction ... 136
7.2.47 ROTR (Rotate Right): Shift Instruction... 137
7.2.48 RTE (Return from Exception): System Control Instruction................................. 138
7.2.49 RTS (Return from Subroutine): Branch Instruction

(Class: Delayed Branch Instruction) .. 140
7.2.50 SETT (Set T Bit): System Control Instruction... 142
7.2.51 SHAL (Shift Arithmetic Left): Shift Instruction.. 143
7.2.52 SHAR (Shift Arithmetic Right): Shift Instruction ... 144
7.2.53 SHLL (Shift Logical Left): Shift Instruction ... 145
7.2.54 SHLLn (Shift Logical Left n Bits): Shift Instruction ... 146
7.2.55 SHLR (Shift Logical Right): Shift Instruction... 148
7.2.56 SHLRn (Shift Logical Right n Bits): Shift Instruction... 149
7.2.57 SLEEP (Sleep): System Control Instruction .. 151
7.2.58 STC (Store Control Register): System Control Instruction

(Interrupt Disabled Instruction).. 152
7.2.59 STS (Store System Register): System Control Instruction

(Interrupt Disabled Instruction).. 154
7.2.60 SUB (Subtract Binary): Arithmetic Instruction ... 156
7.2.61 SUBC (Subtract with Carry): Arithmetic Instruction... 157
7.2.62 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction 158
7.2.63 SWAP (Swap Register Halves): Data Transfer Instruction 159
7.2.64 TAS (Test and Set): Logic Operation Instruction .. 161
7.2.65 TRAPA (Trap Always): System Control Instruction ... 162

Rev. 2.00 May 31, 2006 page x of xii

7.2.66 TST (Test Logical): Logic Operation Instruction .. 163
7.2.67 XOR (Exclusive OR Logical): Logic Operation Instruction................................ 165
7.2.68 XTRCT (Extract): Data Transfer Instruction ... 167

7.3 Floating Point Instructions and FPU Related CPU Instructions.. 168
7.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction 170
7.3.2 FADD (Floating Point Add): Floating Point Instruction...................................... 172
7.3.3 FCMP (Floating Point Compare): Floating Point Instruction 175
7.3.4 FDIV (Floating Point Divide): Floating Point Instruction 179
7.3.5 FLDI0 (Floating Point Load Immediate 0): Floating Point Instruction 181
7.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction 182
7.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction 183
7.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction......... 184
7.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction.......... 185
7.3.10 FMOV (Floating Point Move): Floating Point Instruction 188
7.3.11 FMUL (Floating Point Multiply): Floating Point Instruction 192
7.3.12 FNEG (Floating Point Negate): Floating Point Instruction.................................. 194
7.3.13 FSTS (Floating Point Store From System Register): Floating Point

Instruction .. 195
7.3.14 FSUB (Floating Point Subtract): Floating Point Instruction 196
7.3.15 FTRC (Floating Point Truncate And Convert To Integer): Floating Point

Instruction .. 199
7.3.16 LDS (Load to System Register): FPU Related CPU Instruction.......................... 201
7.3.17 STS (Store from FPU System Register): FPU Related CPU Instruction 204

Section 8 Pipeline Operation.. 207
8.1 Basic Configuration of Pipelines... 207
8.2 Slot and Pipeline Flow .. 209
8.3 Number of Instruction Execution Cycles .. 211
8.4 Contention between Instruction Fetch (IF) and Memory Access (MA)............................ 212
8.5 Effects of Memory Load Instructions on the Pipeline... 215
8.6 FPU Contention... 216
8.7 Programming Guide.. 217
8.8 Operation of Instruction Pipelines... 218

8.8.1 Data Transfer Instructions.. 228
8.8.2 Arithmetic Instructions .. 231
8.8.3 Logic Operation Instructions ... 265
8.8.4 Shift Instructions.. 267
8.8.5 Branch Instructions .. 268
8.8.6 System Control Instructions... 271
8.8.7 Exception Processing ... 277

Rev. 2.00 May 31, 2006 page xi of xii

8.8.8 Relationship between Floating-point Instructions and FPU-related CPU
Instructions... 279

Appendix A Instruction Code .. 293
A.1 Instruction Set by Addressing Mode... 293

A.1.1 No Operand.. 294
A.1.2 Direct Register Addressing .. 295
A.1.3 Indirect Register Addressing.. 299
A.1.4 Post-Increment Indirect Register Addressing .. 300
A.1.5 Pre-Decrement Indirect Register Addressing... 301
A.1.6 Indirect Register Addressing with Displacement... 301
A.1.7 Indirect Indexed Register Addressing.. 302
A.1.8 Indirect GBR Addressing with Displacement.. 302
A.1.9 Indirect Indexed GBR Addressing ... 303
A.1.10 PC Relative Addressing with Displacement .. 303
A.1.11 PC Relative Addressing ... 304
A.1.12 Immediate .. 305

A.2 Instruction Sets by Instruction Format .. 306
A.2.1 0 Format... 307
A.2.2 n Format... 308
A.2.3 m Format.. 310
A.2.4 nm Format.. 312
A.2.5 md Format.. 316
A.2.6 nd4 Format... 316
A.2.7 nmd Format.. 316
A.2.8 d Format... 317
A.2.9 d12 Format... 318
A.2.10 nd8 Format... 318
A.2.11 i Format.. 318
A.2.12 ni Format.. 319

A.3 Instruction Set by Instruction Code... 320
A.4 Operation Code Map... 329

Appendix B Pipeline Operation and Contention .. 332

Rev. 2.00 May 31, 2006 page xii of xii

Section 1 Features

Rev. 2.00 May 31, 2006 page 1 of 336
REJ09B0316-0200

Section 1 Features

1.1 SH-2E Features

The SH-2E CPU has RISC-type instruction sets. Basic instructions are executed in one clock
cycle, which dramatically improves instruction execution speed. The CPU also has an internal 32-
bit architecture for enhanced data processing ability. Table 1.1 lists the SH-2E CPU features.

Table 1.1 SH-2E CPU Features

Item Feature
Architecture • Original Renesas Technology architecture

• 32-bit internal data bus
General-register machine • Sixteen 32-bit general registers

• Three 32-bit control registers

• Four 32-bit system registers

• Sixteen 32-bit froating-point registers

• Two 32-bit froating point system registers
Instruction set • Instruction length: 16-bit fixed length for improved code efficiency

• Load-store architecture (basic arithmetic and logic operations are
executed between registers)

• Delayed branch system used for reduced pipeline disruption

• Instruction set optimized for C language
Instruction execution time • One instruction/cycle for basic instructions
Address space • Architecture makes 4 Gbytes available
On-chip multiplier • Multiplication operations executed in 1 to 2 cycles (16 bits × 16 bits

→ 32 bits) or 2 to 4 cycles (32 bits × 32 bits → 64 bits), and
multiplication/accumulation operations executed in 3/(2)* cycles
(16 bits × 16 bits + 64 bits → 64 bits) or 3/(2 to 4)* cycles (32 bits ×
32 bits + 64 bits → 64 bits)

Pipeline • Five-stage pipeline
Processing states • Reset state

• Exception processing state

• Program execution state

• Power-down state

• Bus release state

Section 1 Features

Rev. 2.00 May 31, 2006 page 2 of 336
REJ09B0316-0200

Item Feature
Power-down states • Sleep mode

• Standby mode
FPU • Single-precision floating point format

• Subset of IEEE754 standard data types

• Invalid calculation exception and divide-by-zero exception (in
compliance with IEEE754 standard)

• Rounding to zero (in compliance with IEEE754 standard)

• General purpose register file, 16 32-bit floating point registers

• Execution pitch for basic instructions: 1 cycle/latency or 2 cycles
(FADD, FSUB, FMUL)

• FMAC (floating point multiply accumulate)
Execution pitch: 1 cycle/latency or 2 cycles

• Support for FDIV

• Support for FLDI0 and FLDI1 (load constant 0/1)
Note: * The normal minimum number of execution cycles. The number in parentheses in the

number in contention with preceding/following instructions.

Section 2 Register Configuration

Rev. 2.00 May 31, 2006 page 3 of 336
REJ09B0316-0200

Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four
32-bit system registers.

2.1 General Registers

There are 16 general registers (Rn) numbered R0�R15, which are 32 bits in length. General
registers are used for data processing and address calculation. R0 is also used as an index register.
Several instructions use R0 as a fixed source or destination register. R15 is used as the hardware
stack pointer (SP). Saving and recovering the status register (SR) and program counter (PC) in
exception processing is accomplished by referencing the stack using R15.

 R0*1

R1

R2

R3

R4

R5
R6

R7
R8

R9

R10

R11

R12

R13

R14
R15, SP

31 0

R0 functions as an index register in the indirect indexed
register addressing mode and indirect indexed GBR
addressing mode. In some instructions, R0 functions as
a fixed source register or destination register.
R15 functions as a hardware stack pointer (SP) during
exception processing.

1.Notes:

(hardware stack pointer)*2

2.

Figure 2.1 General Registers (SH-1 and SH-2)

Section 2 Register Configuration

Rev. 2.00 May 31, 2006 page 4 of 336
REJ09B0316-0200

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR). The status register indicates processing states. The global base
register functions as a base address for the indirect GBR addressing mode to transfer data to the
registers of on-chip peripheral modules. The vector base register functions as the base address of
the exception processing vector area (including interrupts).

9 8 7 6 5 4 3 2 1 0

M Q I3 I2 I1 I0 S T

0

031

31

GBR

VBR

SR

31

S bit: Used by the multiply/accumulate
 instruction.

Reserved bits: Always reads as 0, and should
always be written with 0.
Bits I3–I0: Interrupt mask bits.

M and Q bits: Used by the DIV0U/S and
DIV1 instructions.

Global base register (GBR):
Indicates the base address of the indirect
GBR addressing mode. The indirect GBR
addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

Vector base register (VBR):
Indicates the base address of the exception
processing vector area.

SR: Status register

T bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIV0U/S, DIV1, NEGC,
SHAR/L, SHLR/L, ROTR/L, and
ROTCR/L instructions also use bit T
to indicate carry/borrow or overflow/
underflow

Figure 2.2 Control Registers

Section 2 Register Configuration

Rev. 2.00 May 31, 2006 page 5 of 336
REJ09B0316-0200

2.3 System Registers

System registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC). The multiply
and accumulate registers store the results of multiply and multiply and accumulate operations. The
procedure register stores the return address from the subroutine procedure. The program counter
indicates the address of the program executing and controls the flow of the processing.

MACL

PR

PC

MACH

31 09

0

0

31

31

Multiply and accumulate
register high (MACH)
Multiply and accumulate
register low (MACL)

Procedure register (PR)

Program counter (PC)

Figure 2.3 Organization of the System Registers

Section 2 Register Configuration

Rev. 2.00 May 31, 2006 page 6 of 336
REJ09B0316-0200

2.4 Floating-Point Registers

There are sixteen 32-bit floating-point registers, designated FR0 to FR15, which are used by
floating-point instructions. FR0 functions as the index register for the FMAC instruction. These
registers are incorporated into the floating-point unit (FPU). For details, see section 4, Floating-
Point Unit (FPU).

31 0

FR0

FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

 FR15

FR0 functions as the index register
for the FMAC instruction.

Figure 2.4 Floating-Point Registers

Section 2 Register Configuration

Rev. 2.00 May 31, 2006 page 7 of 336
REJ09B0316-0200

2.5 Floating-Point System Registers

There are two 32-bit floating-point system registers: the floating-point communication register
(FPUL) and the floating-point status/control register (FPSCR). FPUL is used for communication
between the CPU and the floating-point unit (FPU). FPSCR indicates and stores status/control
information relating to FPU exceptions.

These registers are incorporated into the floating-point unit (FPU). For details, see section 4,
Floating-Point Unit (FPU).

0

0

31

FPUL

31

FPSCR

FPUL: Floating-point communication register
 Used for communication between
 the CPU and the FPU.

FPSCR: Floating-point status/control register
 Indicates and stores status/control
 information relating to FPU exceptions.

Figure 2.5 Floating-Point System Registers

Section 2 Register Configuration

Rev. 2.00 May 31, 2006 page 8 of 336
REJ09B0316-0200

2.6 Initial Values of Registers

Table 2.1 lists the values of the registers after reset.

Table 2.1 Initial Values of Registers

Classification Register Initial Value

General registers R0�R14 Undefined

R15 (SP) Value of the stack pointer in the vector
address table

Control registers SR Bits I3�I0 are 1111 (H'F), reserved bits are
0, and other bits are undefined

GBR Undefined

VBR H'00000000

System registers MACH, MACL, PR Undefined

PC Value of the program counter in the vector
address table

Floating-point registers FR0�FR15 Undefined

Floating-point system registers FPUL Undefined

FPSCR H'00040001

Section 3 Data Formats

Rev. 2.00 May 31, 2006 page 9 of 336
REJ09B0316-0200

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits). When data in memory is loaded to a register
and the memory operand is only a byte (8 bits) or a word (16 bits), it is sign-extended into a
longword when stored into a register.

31 0
Longword

Figure 3.1 Data Format in Registers

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed. The hardware stack area, which is referred to by the hardware
stack pointer (SP, R15), uses only longword data starting from address 4n because this area stores
the program counter (PC) and status register (SR). See the hardware manual for more information
on address errors.

31 01523 7

Byte Byte Byte Byte

WordWordAddress 2n

Address 4n Longword

Address m Address m + 2

Address m + 1 Address m + 3

Figure 3.2 Data Format in Memory

Section 3 Data Formats

Rev. 2.00 May 31, 2006 page 10 of 336
REJ09B0316-0200

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and is handled in registers as longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and is
handled as longword data. Consequently, AND instructions with immediate data always clear the
upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code but rather is stored in a
memory table. The memory table is accessed by a immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in 5.1
Immediate Data in Section 5, Instruction Features.

Section 4 Floating-Point Unit (FPU)

Rev. 2.00 May 31, 2006 page 11 of 336
REJ09B0316-0200

Section 4 Floating-Point Unit (FPU)

4.1 Overview

The SH-2E has an on-chip floating-point unit (FPU), The FPU�s register configuration is shown in
figure 4.1.

31 0
FR0

Floating-point registers

FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9

FR10
FR11
FR12
FR13
FR14
FR15

Floating-point system registers

31 0 Floating-point communication register
Specifies buffer as communication register between
CPU and FPU*.

FPUL

31 0 Floating-point status/control register
Indicates status/control information relating to FPU
exceptions*.

FPSCR

Note: * For details, see section 4.2, Floating-Point Registers and Floating-Point System
 Registers.

FR0 functions as the index register
for the FMAC instruction.

Figure 4.1 Overview of Register Configuration
(Floating-Point Registers and Floating-Point System Registers)

Section 4 Floating-Point Unit (FPU)

Rev. 2.00 May 31, 2006 page 12 of 336
REJ09B0316-0200

4.2 Floating-Point Registers and Floating-Point System Registers

4.2.1 Floating-Point Register File

The SH-2E has sixteen 32-bit single-precision floating-point registers. Register specifications are
always made as 4 bits. In assembly language, the floating-point registers are specified as FR0,
FR1, FR2, and so on. FR0 functions as the index register for the FMAC instruction.

4.2.2 Floating-Point Communication Register (FPUL)

Information for transfer between the FPU and the CPU is transferred via the FPUL communication
register, which resembles MACL and MACH in the integer unit. The SH-2E is provided with this
communication register since the integer and floating-point formats are different. The 32-bit FPUL
is a system register, and is accessed by the CPU by means of LDS and STS instructions.

4.2.3 Floating-Point Status/Control Register (FPSCR)

The SH-2E has a floating-point status/control register (FPSCR) that functions as a system register
accessed by means of LDS and STS instructions (figure 4.2). FPSCR can be written to by a user
program. This register is part of the process context, and must be saved when the context is
switched. It may also be necessary to save this register when a procedure call is made.

FPSCR is a 32-bit register that controls the storage of detailed information relating to the rounding
mode, asymptotic underflow (denormalized numbers), and FPU exceptions. The module stop bit
that disables the FPU itself is provided in the module standby control register (MSTCR). For
details, refer to hardware manual. After a reset start, the FPU is enabled.

Table 4.1 shows the flags corresponding the five kinds of FPU exception. A sixth flag is also
provided as an FPU error flag that indicates an floating-point unit error state not covered by the
other five flags.

Section 4 Floating-Point Unit (FPU)

Rev. 2.00 May 31, 2006 page 13 of 336
REJ09B0316-0200

Table 4.1 Floating-Point Exception Flags

Flag Meaning Support in SH-2E

E FPU error �

V Invalid operation Yes

Z Division by zero Yes

O Overflow (value not expressed) �

U Underflow (value not expressed) �

I Inexact (result not expressed) �

The bits in the cause field indicate the exception cause for the instruction executing at the time.
The cause bits are modified by a floating-point instruction. These bits are set to 1 or cleared to 0
according to whether or not an exception state occurred during execution of a single instruction.

The bits in the enable field specify the kinds of exception to be enabled, allowing the flow to be
changed to exception processing. If the cause bit corresponding to an enable bit is set by the
currently executing instruction, an exception occurs.

The bits in the flag field are used to keep a tally of all exceptions that occur during a series of
instructions. Once one of these bits is set by an instruction, it is not reset by a subsequent
instruction. The bits in this field can only be reset by the explicit execution of a store operation on
FPSCR.

Section 4 Floating-Point Unit (FPU)

Rev. 2.00 May 31, 2006 page 14 of 336
REJ09B0316-0200

31 19

RMDN CE
Reserved

Flag fieldEnable fieldCause field

9 7 256101115161718 4 1 014 12 313 8

CZCV CU CICO EV EZ EO EU EI FV FZ FO FU FI

DN: Denormalized bit
 In the SH-2E this bit is always set to 1, and the source or destination operand
 of a denormalized number is 0. This bit cannot be modified even by an LDS

instruction.

CV: Invalid operation cause bit
 When 1: Indicates that an invalid operation exception occurred during execution
 of the current instruction.
 When 0: Indicates that an invalid operation exception has not occurred.

CZ: Division-by-zero cause bit
 When 1: Indicates that a division-by-zero exception occurred during execution
 of the current instruction.
 When 0: Indicates that a division-by-zero exception has not occurred.

EV: Invalid operation exception enable
 When 1: Enables invalid operation exception generation.
 When 0: An invalid operation exception is not generated, and a qNAN is returned
 as the result.

EZ: Division-by-zero exception enable
 When 1: Enables exception generation due to division-by-zero during execution
 of the current instruction.
 When 0: A division-by-zero exception is not generated, and infinity with the sign
 (+ or –) of the current expression is returned as the result.

FV: Invalid operation exception flag bit
 When 1: Indicates that an invalid operation exception occurred during instruction
 execution.
 When 0: Indicates that an invalid operation exception has not occurred.

FZ: Division-by-zero exception flag bit
 When 1: Indicates that a division-by-zero exception occurred during instruction
 execution.
 When 0: Indicates that a division-by-zero exception has not occurred.

RM: Rounding bits. In the SH-2E, the value of these bits is always 01, meaning that
rounding to zero (RZ mode) is being used. These bits cannot be modified even by
an LDS instruction.

In the SH-2E, the cause field EOUI bits (CE, CO, CU, and CI), enable field OUI bits (EO,
EU, and EI), and flag field OUI bits (FO, FU, and FI), and the reserved area, are preset
to 0, and cannot be modified even by using an LDS instruction.

Figure 4.2 Floating-Point Status/Control Register

Section 4 Floating-Point Unit (FPU)

Rev. 2.00 May 31, 2006 page 15 of 336
REJ09B0316-0200

4.3 Floating-Point Format

4.3.1 Floating-Point Format

The SH-2E supports single-precision floating-point operations, and fully complies with the
IEEE754 floating-point standard.

A floating-point number consists of the following three fields:

• Sign (s)
• Exponent (e)
• Fraction (f)

The exponent is expressed in biased form, as follows:

e = E + bias

The range of unbiased exponent E is Emin � 1 to Emax + 1. The two values Emin � 1 and Emax + 1 are
distinguished as follows. Emin � 1 indicates zero (both positive and negative sign) and a
denormalized number, and Emax + 1 indicates positive or negative infinity or a non-number (NaN).
In a single-precision operation, the bias value is 127, Emin is �126, and Emax is 127.

31

s e f

30 23 22 0

Figure 4.3 Floating-Point Number Format

Floating-point number value v is determined as follows:

If E = Emax + 1 and f! = 0, v is a non-number (NaN) irrespective of sign s
If E = Emax + 1 and f = 0, v = (-1)s (infinity) [positive or negative infinity]
If Emin <= E <= Emax , v = (-1)s2E (1.f) [normalized number]
If E = Emin � 1 and f! = 0, v = (-1)s2Emin (0.f) [denormalized number]
If E = Emin � 1 and f = 0, v = (-1)s0 [positive or negative zero]

Section 4 Floating-Point Unit (FPU)

Rev. 2.00 May 31, 2006 page 16 of 336
REJ09B0316-0200

4.3.2 Non-Numbers (NaN)

With non-number (NaN) representation in a single-precision operation value, at least one of bits
22 to 0 is set. If bit 22 is set, this indicates a signaling NaN (sNaN). If bit 22 is reset, the value is a
quiet NaN (qNaN).

The bit pattern of a non-number (NaN) is shown in the figure below. Bit N in the figure is set for a
signaling NaN and reset for a quiet NaN. x indicates a don�t care bit (with the proviso that at least
one of bits 22 to 0 is set). In a non-number (NaN), the sign bit is a don�t care bit.

31

x 11111111 Nxxxxxxxxxxxxxxxxxxxxxx

30 23 22 0

N = 1: sNaN

N = 0: qNaN

Figure 4.4 NaN Bit Pattern

If a non-number (sNaN) is input in an operation that generates a floating-point value:

• When the EV bit in the FPSCR register is reset, the operation result (output) is a quiet NaN
(qNaN).

• When the EV bit in the FPSCR register is set, an invalid operation exception will be generated.
In this case, the contents of the operation destination register do not change.

If a quiet NaN is input in an operation that generates a floating-point value, and a signaling NaN
has not been input in that operation, the output will always be a quiet NaN irrespective of the
setting of the EV bit in the FPSCR register. An exception will not be generated in this case.

Refer to section 7, Instruction Descriptions for details of floating-point operations when a non-
number (NaN) is input.

4.3.3 Denormalized Number Values

For a denormalized number floating-point value, the biased exponent is expressed as 0, the
fraction as a non-zero value, and the hidden bit as 0. In the SH-2E�s floating-point unit, a
denormalized number (operand source or operation result) is always flushed to 0 in a floating-
point operation that generates a value (an operation other than copy).

Section 4 Floating-Point Unit (FPU)

Rev. 2.00 May 31, 2006 page 17 of 336
REJ09B0316-0200

4.3.4 Other Special Values

Floating-point value representations include the seven different kinds of special values shown in
table 4.2.

Table 4.2 Representation of Special Values in Single-Precision Floating-Point Operations
Specified by IEEE754 Standard

Value Representation

+0.0 0x00000000

�0.0 0x80000000

Denormalized number As described in 4.3.3, Denormalized Number Values

+INF 0x7F800000

�INF 0xFF800000

qNaN (quiet NaN) As described in 4.3.2, Non-Numbers (NaN)

sNaN (signaling NaN) As described in 4.3.2, Non-Numbers (NaN)

4.4 Floating-Point Exception Model

4.4.1 Enable State Exceptions

Invalid operation and division-by-zero exceptions are both placed in the enable state by setting the
enable bit. All exceptions generated by the FPU are mapped as the same exception event. The
meaning of a particular exception is determined by software by reading system register FPSCR
and analyzing the information held there.

4.4.2 Disable State Exceptions

If the EV enable bit is not set, a qNaN will be generated as the result of an invalid operation
(except for FCMP and FTRC). If the EZ enable bit is not set, division-by-zero will return infinity
with the sign (+ or �) of the current expression. Overflow will generate a finite number which is
the largest value that can be expressed by an absolute value in the format, with the correct sign.
Underflow will generate zero with the correct sign. If the operation result is inexact, the
destination register will store that inexact result.

Section 4 Floating-Point Unit (FPU)

Rev. 2.00 May 31, 2006 page 18 of 336
REJ09B0316-0200

4.4.3 FPU Exception Event and Code

All FPU exceptions have a vector table address offset in address H'00000034 as the same general
exception event; that is, an FPU exception.

4.4.4 Floating-Point Data Arrangement in Memory

Single-precision floating-point data is located in memory at a 4-byte boundary; that is, it is
arranged in the same form as an SH-2E long integer.

4.4.5 Arithmetic Operations Involving Special Operands

All arithmetic operations involving special operands (qNaN, sNaN, +INF, �INF, +0, �0) comply
with the specifications of the IEEE754 standard. Refer to section 7, Instruction Descriptions for
details.

4.5 Synchronization with CPU

Synchronization with CPU: Floating-point instructions and CPU instructions are executed in
turn, according to their order in the program, but in some cases operations may not be completed
in the program order due to a difference in execution cycles. When a floating-point instruction
accesses only FPU resources, there is no need for synchronization with the CPU, and a CPU
instruction following an FPU instruction can finish its operation before completion of the FPU
operation. Consequently, in an optimized program, it is possible to effectively conceal the
execution cycle of a floating-point instruction that requires a long execution cycle, such as a divide
instruction. On the other hand, a floating-point instruction that accesses CPU resources, such as a
compare instruction, must be synchronized to ensure that the program order is observed.

Floating-Point Instructions That Require Synchronization: Load, store, and compare
instructions, and instructions that access the FPUL or FPSCR register, must be synchronized
because they access CPU resources. Load and store instructions access a general register. Post-
increment load and pre-decrement store instructions change the contents of a general register. A
compare instruction modifies the T bit. An FPUL or FPSCR access instruction references or
changes the contents of the FPUL or FPSCR register. These references and changes must all be
synchronized with the CPU.

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 19 of 336
REJ09B0316-0200

Section 5 Instruction Features

5.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

16-Bit Fixed Length: All instructions are 16 bits long, increasing program coding efficiency.

One Instruction/Cycle: Basic instructions can be executed in one cycle using the pipeline system.
Instructions are executed in 50 ns at 40 MHz.

Data Length: Longword is the standard data length for all operations. Memory can be accessed in
bytes, words, or longwords. Byte or word data accessed from memory is sign-extended and
calculated with longword data. Immediate data is sign-extended for arithmetic operations or zero-
extended for logic operations. It also is calculated with longword data.

Table 5.1 Sign Extension of Word Data

SH-2E CPU Description Example for Other CPU

MOV.W @(disp,PC),R1

ADD R1,R0

.DATA.W H'1234

Data is sign-extended to 32
bits, and R1 becomes
H'00001234. It is next
operated upon by an ADD
instruction.

ADD.W #H'1234,R0

Note: The address of the immediate data is accessed by @(disp, PC).

Load-Store Architecture: Basic operations are executed between registers. For operations that
involve memory access, data is loaded to the registers and executed (load-store architecture).
Instructions such as AND that manipulate bits, however, are executed directly in memory.

Delayed Branch Instructions: Unconditional branch instructions are delayed. Pipeline disruption
during branching is reduced by first executing the instruction that follows the branch instruction,
and then branching (table 5.2). With delayed branching, branching occurs after execution of the
slot instruction. However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction, the branch
will still be made using the value of the register prior to the change as the branch destination
address.

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 20 of 336
REJ09B0316-0200

Table 5.2 Delayed Branch Instructions

SH-2E CPU Description Example for Other CPU

BRA TRGET

ADD R1,R0

Executes an ADD before
branching to TRGET.

ADD.W R1,R0

BRA TRGET

Multiplication/Accumulation Operation: 16bit × 16bit → 32-bit multiplication operations are
executed in one to two cycles. 16bit × 16bit + 64bit → 64-bit multiplication/accumulation
operations are executed in two to three cycles. 32bit × 32bit → 64-bit multiplication and 32bit ×
32bit + 64bit → 64-bit multiplication/accumulation operations are executed in two to four cycles.

T Bit: The T bit in the status register changes according to the result of the comparison, and in
turn is the condition (true/false) that determines if the program will branch. The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table 5.3 T Bit

SH-2E CPU Description Example for Other CPU

CMP/GE R1,R0

BT TRGET0

BF TRGET1

T bit is set when R0 ≥ R1.
The program branches to
TRGET0 when R0 ≥ R1 and to
TRGET1 when R0 < R1.

CMP.W R1,R0

BGE TRGET0

BLT TRGET1

ADD #–1,R0

CMP/EQ #0,R0

BT TRGET

T bit is not changed by ADD.
T bit is set when R0 = 0.
The program branches if R0 = 0.

SUB.W #1,R0

BEQ TRGET

Immediate Data: Byte immediate data is located in instruction code. Word or longword
immediate data is not input via instruction codes but is stored in a memory table. The memory
table is accessed by an immediate data transfer instruction (MOV) using the PC relative
addressing mode with displacement.

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 21 of 336
REJ09B0316-0200

Table 5.4 Immediate Data Accessing

Classification SH-2E CPU Example for Other CPU

8-bit immediate MOV #H'12,R0 MOV.B #H'12,R0

16-bit immediate MOV.W @(disp,PC),R0

.DATA.W H'1234

MOV.W #H'1234,R0

32-bit immediate MOV.L @(disp,PC),R0

.DATA.L H'12345678

MOV.L #H'12345678,R0

Note: The address of the immediate data is accessed by @(disp, PC).

Absolute Address: When data is accessed by absolute address, the value already in the absolute
address is placed in the memory table. Loading the immediate data when the instruction is
executed transfers that value to the register and the data is accessed in the indirect register
addressing mode.

Table 5.5 Absolute Address

Classification SH-2E CPU Example for Other CPU

Absolute address MOV.L @(disp,PC),R1

MOV.B @R1,R0

.DATA.L H'12345678

MOV.B @H'12345678,R0

16-Bit/32-Bit Displacement: When data is accessed by 16-bit or 32-bit displacement, the pre-
existing displacement value is placed in the memory table. Loading the immediate data when the
instruction is executed transfers that value to the register and the data is accessed in the indirect
indexed register addressing mode.

Table 5.6 Displacement Accessing

Classification SH-2E CPU Example for Other CPU

16-bit displacement MOV.W @(disp,PC),R0

MOV.W @(R0,R1),R2

.DATA.W H'1234

MOV.W @(H'1234,R1),R2

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 22 of 336
REJ09B0316-0200

5.2 Addressing Modes

Addressing modes effective address calculation by the CPU core are described below.

Table 5.7 Addressing Modes and Effective Addresses

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Direct
register
addressing

Rn The effective address is register Rn.
(The operand is the contents of register Rn.)

�

Indirect
register
addressing

@Rn The effective address is the content of register Rn.

Rn Rn

Rn

Post-
increment
indirect
register
addressing

@Rn+ The effective address is the content of register Rn.
A constant is added to the content of Rn after the
instruction is executed. 1 is added for a byte
operation, 2 for a word operation, or 4 for a longword
operation.

Rn Rn

1/2/4

+Rn + 1/2/4

Rn

(After the
instruction is
executed)

Byte: Rn + 1
→ Rn

Word: Rn + 2
→ Rn

Longword: Rn
+ 4 → Rn

Pre-
decrement
indirect
register
addressing

@�Rn The effective address is the value obtained by
subtracting a constant from Rn. 1 is subtracted for a
byte operation, 2 for a word operation, or 4 for a
longword operation.

Rn

1/2/4

Rn – 1/2/4–Rn – 1/2/4

Byte: Rn � 1
→ Rn

Word: Rn � 2
→ Rn

Longword: Rn
� 4 → Rn
(Instruction
executed with
Rn after
calculation)

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 23 of 336
REJ09B0316-0200

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Indirect
register
addressing
with
displace-
ment

@(disp:4,
Rn)

The effective address is Rn plus a 4-bit displacement
(disp). The value of disp is zero-extended, and
remains the same for a byte operation, is doubled for
a word operation, or is quadrupled for a longword
operation.

Rn

1/2/4

Rn
+ disp × 1/2/4

+

×

disp
(zero-extended)

Byte: Rn +
disp

Word: Rn +
disp × 2

Longword: Rn
+ disp × 4

Indirect
indexed
register
addressing

@(R0, Rn) The effective address is the Rn value plus R0.

Rn

R0

Rn + R0+

Rn + R0

Indirect
GBR
addressing
with
displace-
ment

@(disp:8,
GBR)

The effective address is the GBR value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and remains the same for a byte
operation, is doubled for a word operation, or is
quadrupled for a longword operation.

GBR

1/2/4

GBR
+ disp × 1/2/4

+

×

disp
(zero-extended)

Byte: GBR +
disp

Word: GBR +
disp × 2

Longword:
GBR + disp ×
4

Indirect
indexed
GBR
addressing

@(R0, GBR) The effective address is the GBR value plus R0.

GBR

R0

GBR + R0+

GBR + R0

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 24 of 336
REJ09B0316-0200

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

PC relative
addressing
with
displace-
ment

@(disp:8,
PC)

The effective address is the PC value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and disp is doubled for a word operation,
or is quadrupled for a longword operation. For a
longword operation, the lowest two bits of the PC are
masked.

PC

H'FFFFFFFC
PC + disp × 2

or
PC&H'FFFFFFFC

+ disp × 4

+

2/4

x

&
(for longword)

disp
(zero-extended)

Word: PC +
disp × 2

Longword:
PC &
H'FFFFFFFC
+ disp × 4

PC relative
addressing

disp:8 The effective address is the PC value sign-extended
with an 8-bit displacement (disp), doubled, and
added to the PC.

PC

2

+

×

disp
(sign-extended)

PC + disp × 2

PC + disp × 2

disp:12 The effective address is the PC value sign-extended
with a 12-bit displacement (disp), doubled, and
added to the PC.

PC

2

+

×

disp
(sign-extended)

PC + disp × 2

PC + disp × 2

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 25 of 336
REJ09B0316-0200

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

PC relative
addressing
(cont)

Rn The effective address is the register PC plus Rn.

PC

R0

PC + R0+

PC + Rn

Immediate
addressing

#imm:8 The 8-bit immediate data (imm) for the TST, AND,
OR, and XOR instructions are zero-extended.

�

#imm:8 The 8-bit immediate data (imm) for the MOV, ADD,
and CMP/EQ instructions are sign-extended.

�

#imm:8 Immediate data (imm) for the TRAPA instruction is
zero-extended and is quadrupled.

�

5.3 Instruction Format

The instruction format table, table 5.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

• xxxx: Instruction code
• mmmm: Source register
• nnnn: Destination register
• iiii: Immediate data
• dddd: Displacement

Table 5.8 Instruction Formats

Instruction Formats
Source
Operand

Destination
Operand Example

0 format

xxxx xxxx xxxxxxxx
15 0

� � NOP

� nnnn: Direct
register

MOVT Rnn format

xxxx xxxx xxxxnnnn
15 0

Control register or
system register

nnnn: Direct
register

STS MACH,Rn

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 26 of 336
REJ09B0316-0200

Instruction Formats
Source
Operand

Destination
Operand Example

n format (cont) Control register or
system register

nnnn: Indirect
pre-decrement
register

STC.L SR,@-Rn

mmmm: Direct
register

Control register or
system register

LDC Rm,SR

mmmm: Indirect
post-increment
register

Control register or
system register

LDC.L @Rm+,SR

m format

xxxxmmmmxxxx xxxx
15 0

mmmm: Direct
register

� JMP @Rm

mmmm: PC
relative using
Rm*

� BRAF Rm

mmmm: Direct
register

nnnn: Direct
register

ADD Rm,Rnnm format

nnnnxxxx xxxx
15 0

mmmm mmmm: Direct
register

nnnn: Indirect
register

MOV.L Rm,@Rn

mmmm: Indirect
post-increment
register (multiply/
accumulate)
nnnn*: Indirect
post-increment
register (multiply/
accumulate)

MACH, MACL MAC.W
@Rm+,@Rn+

mmmm: Indirect
post-increment
register

nnnn: Direct
register

MOV.L @Rm+,Rn

mmmm: Direct
register

nnnn: Indirect
pre-decrement
register

MOV.L Rm,@-Rn

mmmm: Direct
register

nnnn: Indirect
indexed register

MOV.L
Rm,@(R0,Rn)

md format

xxxx dddd
15 0

mmmmxxxx

mmmmdddd:
indirect register
with displacement

R0 (Direct
register)

MOV.B
@(disp,Rm),R0

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 27 of 336
REJ09B0316-0200

Instruction Formats
Source
Operand

Destination
Operand Example

nd4 format

ddddnnnnxxxx
15 0

xxxx

R0 (Direct
register)

nnnndddd:
Indirect register
with displacement

MOV.B
R0,@(disp,Rn)

mmmm: Direct
register

nnnndddd:
Indirect register
with displacement

MOV.L
Rm,@(disp,Rn)

nmd format

nnnnxxxx dddd
15 0

mmmm
mmmmdddd:
Indirect register
with displacement

nnnn: Direct
register

MOV.L
@(disp,Rm),Rn

dddddddd:
Indirect GBR with
displacement

R0 (Direct
register)

MOV.L
@(disp,GBR),R0

d format

ddddxxxx
15 0

xxxx dddd
R0(Direct
register)

dddddddd:
Indirect GBR with
displacement

MOV.L
R0,@(disp,GBR)

dddddddd: PC
relative with
displacement

R0 (Direct
register)

MOVA
@(disp,PC),R0

dddddddd: PC
relative

� BF label

d12 format

ddddxxxx
15 0

dddd dddd

dddddddddddd:
PC relative

� BRA label

(label = disp
+ PC)

nd8 format

ddddnnnnxxxx
15 0

dddd

dddddddd: PC
relative with
displacement

nnnn: Direct
register

MOV.L
@(disp,PC),Rn

iiiiiiii: Immediate Indirect indexed
GBR

AND.B
#imm,@(R0,GBR)

i format

i i i ixxxx
15 0

xxxx i i i i iiiiiiii: Immediate R0 (Direct
register)

AND #imm,R0

iiiiiiii: Immediate � TRAPA #imm

ni format

nnnn i i i ixxxx
15 0

i i i i

iiiiiiii: Immediate nnnn: Direct
register

ADD #imm,Rn

Note: * In multiply/accumulate instructions, nnnn is the source register.

Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 28 of 336
REJ09B0316-0200

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 29 of 336
REJ09B0316-0200

Section 6 Instruction Set

6.1 Instruction Set by Classification

Table 6.1 shows instruction by classification

Table 6.1 Classification of Instructions

Classification Types
Operation
Code Function

No. of
Instructions

Data transfer 5 MOV Data transfer, immediate data transfer,
peripheral module data transfer, structure data
transfer

39

MOVA Effective address transfer

MOVT T bit transfer

SWAP Swap of upper and lower bytes

XTRCT Extraction of the middle of registers connected

21 ADD Binary addition 33Arithmetic
operations ADDC Binary addition with carry

ADDV Binary addition with overflow check

CMP/cond Comparison

DIV1 Division

DIV0S Initialization of signed division

DIV0U Initialization of unsigned division

DMULS Signed double-length multiplication

DMULU Unsigned double-length multiplication

DT Decrement and test

EXTS Sign extension

EXTU Zero extension

MAC Multiply-and-accumulate, double-length
multiply-and-accumulate operation

MUL Double-length multiply operation

MULS Signed multiplication

MULU Unsigned multiplication

NEG Negation

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 30 of 336
REJ09B0316-0200

Classification Types
Operation
Code Function

No. of
Instructions

21 NEGC Negation with borrow 33

SUB Binary subtraction

SUBC Binary subtraction with borrow

Arithmetic
operations
(cont)

SUBV Binary subtraction with underflow

6 AND Logical AND 14Logic
operations NOT Bit inversion

OR Logical OR

TAS Memory test and bit set

TST Logical AND and T bit set

XOR Exclusive OR

Shift 10 ROTL One-bit left rotation 14

ROTR One-bit right rotation

ROTCL One-bit left rotation with T bit

ROTCR One-bit right rotation with T bit

SHAL One-bit arithmetic left shift

SHAR One-bit arithmetic right shift

SHLL One-bit logical left shift

SHLLn n-bit logical left shift

SHLR One-bit logical right shift

SHLRn n-bit logical right shift

Branch 9 BF Conditional branch, conditional branch with
delay (Branch when T = 0)

11

BT Conditional branch, conditional branch with
delay (Branch when T = 1)

BRA Unconditional branch

BRAF Unconditional branch

BSR Branch to subroutine procedure

BSRF Branch to subroutine procedure

JMP Unconditional branch

JSR Branch to subroutine procedure

RTS Return from subroutine procedure

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 31 of 336
REJ09B0316-0200

Classification Types
Operation
Code Function

No. of
Instructions

11 CLRT T bit clear 31System
control CLRMAC MAC register clear

LDC Load to control register

LDS Load to system register

NOP No operation

RTE Return from exception processing

SETT T bit set

SLEEP Transition to power-down mode

STC Store control register data

STS Store system register data

TRAPA Trap exception handling

15 FABS Floating-point absolute value 22Floating-point
instructions FADD Floating-point addition

FCMP Floating-point comparison

FDIV Floating-point division

FLDI0 Floating-point load immediate 0

FLDI1 Floating-point load immediate 1

FLDS Floating-point load into system register FPUL

FLOAT Integer-to-floating-point conversion

FMAC Floating-point multiply-and-accumulate
operation

FMOV Floating-point data transfer

FMUL Floating-point multiplication

FNEG Floating-point sign inversion

FSTS Floating-point store from system register FPUL

FSUB Floating-point subtraction

FTRC Floating-point conversion with rounding to
integer

2 LDS Load into floating-point system register 8FPU-related
CPU
instructions

STS Store from floating-point system register

Total: 79 172

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 32 of 336
REJ09B0316-0200

Table 6.2 shows the format used in tables 6.3 to 6.8, which list instruction codes, operation, and
execution states in order by classification.

Table 6.2 Instruction Code Format

Item Format Explanation
Instruction OP.Sz SRC,DEST OP: Operation code

Sz: Size (B: byte, W: word, or L: longword)
SRC: Source
DEST: Destination
Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*1

Instruction code MSB ↔ LSB mmmm: Source register
nnnn: Destination register

0000: R0
0001: R1

⋅⋅⋅
1111: R15

iiii: Immediate data
dddd: Displacement

Operation →, ← Direction of transfer
(xx) Memory operand
M/Q/T Flag bits in the SR
& Logical AND of each bit
| Logical OR of each bit
^ Exclusive OR of each bit
~ Logical NOT of each bit
<< n n-bit left shift
>> n n-bit right shift

Execution cycles � Value when no wait states are inserted*2

T bit � Value of T bit after instruction is executed.
An em-dash (�) in the column means no change.

Notes: 1. Depending on the operand size, displacement is scaled ×1, ×2, or ×4. For details, see
section 7, Instruction Descriptions.

2. Instruction execution cycles: The execution cycles shown in the table are minimums.
The actual number of cycles may be increased when (1) contention occurs between
instruction fetches and data access, or (2) when the destination register of the load
instruction (memory → register) and the register used by the next instruction are the
same.

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 33 of 336
REJ09B0316-0200

Table 6.3 Data Transfer Instructions

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

MOV #imm,Rn 1110nnnniiiiiiii imm → Sign extension →
Rn

1 �

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) → Sign
extension → Rn

1 �

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 �

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 �

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 �

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 �

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 �

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → Sign extension →
Rn

1 �

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → Sign extension →
Rn

1 �

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 �

MOV.B Rm,@–Rn 0010nnnnmmmm0100 Rn�1 → Rn, Rm → (Rn) 1 �

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn�2 → Rn, Rm → (Rn) 1 �

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn�4 → Rn, Rm → (Rn) 1 �

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → Sign extension →
Rn, Rm + 1 → Rm

1 �

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → Sign extension →
Rn, Rm + 2 → Rm

1 �

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4 →
Rm

1 �

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 �

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2 + Rn) 1 �

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 �

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → Sign
extension → R0

1 �

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) → Sign
extension → R0

1 �

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp × 4 + Rm) → Rn 1 �

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 34 of 336
REJ09B0316-0200

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 �

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 �

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → Sign
extension → Rn

1 �

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → Sign
extension → Rn

1 �

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 �

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 �

MOV.W R0,@(disp,GBR) 11000001dddddddd R0 → (disp × 2 + GBR) 1 �

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4 + GBR) 1 �

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) → Sign
extension → R0

1 �

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) → Sign
extension → R0

1 �

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) → R0 1 �

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 �

MOVT Rn 0000nnnn00101001 T → Rn 1 �

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap bottom two
bytes → Rn

1 �

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap two
consecutive words → Rn

1 �

XTRCT Rm,Rn 0010nnnnmmmm1101 Rm: Middle 32 bits of
Rn → Rn

1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 35 of 336
REJ09B0316-0200

Table 6.4 Arithmetic Operation Instructions

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

ADD Rm,Rn 0011nnnnmmmm1100 Rn + Rm → Rn 1 �

ADD #imm,Rn 0111nnnniiiiiiii Rn + imm → Rn 1 �

ADDC Rm,Rn 0011nnnnmmmm1110 Rn + Rm + T → Rn,
Carry → T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm → Rn,
Overflow → T

1 Overflow

CMP/EQ #imm,R0 10001000iiiiiiii If R0 = imm, 1 → T 1 Comparison
result

CMP/EQ Rm,Rn 0011nnnnmmmm0000 If Rn = Rm, 1 → T 1 Comparison
result

CMP/HS Rm,Rn 0011nnnnmmmm0010 If Rn ≥ Rm with
unsigned data, 1 → T

1 Comparison
result

CMP/GE Rm,Rn 0011nnnnmmmm0011 If Rn ≥ Rm with signed
data, 1 → T

1 Comparison
result

CMP/HI Rm,Rn 0011nnnnmmmm0110 If Rn > Rm with
unsigned data, 1 → T

1 Comparison
result

CMP/GT Rm,Rn 0011nnnnmmmm0111 If Rn > Rm with signed
data, 1 → T

1 Comparison
result

CMP/PL Rn 0100nnnn00010101 If Rn > 0, 1 → T 1 Comparison
result

CMP/PZ Rn 0100nnnn00010001 If Rn ≥ 0, 1 → T 1 Comparison
result

CMP/STR Rm,Rn 0010nnnnmmmm1100 If Rn and Rm have
an equivalent byte,
1 → T

1 Comparison
result

DIV1 Rm,Rn 0011nnnnmmmm0100 Single-step division
(Rn ÷ Rm)

1 Calculation
result

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q, MSB
of Rm → M, M ^ Q → T

1 Calculation
result

DIV0U 0000000000011001 0 → M/Q/T 1 0

DMULS.L Rm,Rn 0011nnnnmmmm1101 Signed operation of Rn
× Rm → MACH, MACL
32 × 32 → 64 bits

2 to 4* �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 36 of 336
REJ09B0316-0200

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

DMULU.L Rm,Rn 0011nnnnmmmm0101 Unsigned operation of
Rn × Rm → MACH,
MACL 32 × 32 → 64 bits

2 to 4* �

DT Rn 0100nnnn00010000 Rn � 1 → Rn, when Rn
is 0, 1 → T. When Rn is
nonzero, 0 → T

1 Comparison
result

EXTS.B Rm,Rn 0110nnnnmmmm1110 Byte in Rm is sign-
extended → Rn

1 �

EXTS.W Rm,Rn 0110nnnnmmmm1111 Word in Rm is sign-
extended → Rn

1 �

EXTU.B Rm,Rn 0110nnnnmmmm1100 Byte in Rm is zero-
extended → Rn

1 �

EXTU.W Rm,Rn 0110nnnnmmmm1101 Word in Rm is zero-
extended → Rn

1 �

MAC.L @Rm+,@Rn+ 0000nnnnmmmm1111 Signed operation of
(Rn) × (Rm) + MAC →
MAC 32 × 32 + 64 →
64 bits

3/(2 to
4)*

�

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed operation of
(Rn) × (Rm) + MAC →
MAC 16 × 16 + 64 →
64 bits

3/(2)* �

MUL.L Rm,Rn 0000nnnnmmmm0111 Rn × Rm → MACL,
32 × 32 → 32 bits

2 to 4* �

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed operation of
Rn × Rm → MAC 16 ×
16 → 32 bits

1 to 3* �

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned operation of
Rn × Rm → MAC 16 ×
16 → 32 bits

1 to 3* �

NEG Rm,Rn 0110nnnnmmmm1011 0 � Rm → Rn 1 �

NEGC Rm,Rn 0110nnnnmmmm1010 0 � Rm � T → Rn,
Borrow → T

1 Borrow

SUB Rm,Rn 0011nnnnmmmm1000 Rn � Rm → Rn 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 37 of 336
REJ09B0316-0200

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

SUBC Rm,Rn 0011nnnnmmmm1010 Rn � Rm � T → Rn,
Borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn � Rm → Rn,
Underflow → T

1 Overflow

Note: * The normal minimum number of execution cycles. (The number in parentheses is the
number of cycles when there is contention with following instructions.)

Table 6.5 Logic Operation Instructions

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 �

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 �

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm →
(R0 + GBR)

3 �

NOT Rm,Rn 0110nnnnmmmm0111 ~ Rm → Rn 1 �

OR Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 �

OR #imm,R0 11001011iiiiiiii R0 | imm → R0 1 �

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm →
(R0 + GBR)

3 �

TAS.B @Rn 0100nnnn00011011 If (Rn) is 0, 1 → T; 1 →
MSB of (Rn)

4 Test
result

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm; if the result is
0, 1 → T

1 Test
result

TST #imm,R0 11001000iiiiiiii R0 & imm; if the result is
0, 1 → T

1 Test
result

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm; if the
result is 0, 1 → T

3 Test
result

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 �

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 �

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm →
(R0 + GBR)

3 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 38 of 336
REJ09B0316-0200

Table 6.6 Shift Instructions

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn << 2 → Rn 1 �

SHLR2 Rn 0100nnnn00001001 Rn >> 2 → Rn 1 �

SHLL8 Rn 0100nnnn00011000 Rn << 8 → Rn 1 �

SHLR8 Rn 0100nnnn00011001 Rn >> 8 → Rn 1 �

SHLL16 Rn 0100nnnn00101000 Rn << 16 → Rn 1 �

SHLR16 Rn 0100nnnn00101001 Rn >> 16 → Rn 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 39 of 336
REJ09B0316-0200

Table 6.7 Branch Instructions

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

BF label 10001011dddddddd If T = 0, disp × 2 + PC → PC;
if T = 1, nop

3/1* �

BF/S label 10001111dddddddd Delayed branch, if T = 0, disp × 2 +
PC → PC; if T = 1, nop

3/1* �

BT label 10001001dddddddd If T = 1, disp × 2 + PC → PC;
if T = 0, nop

3/1* �

BT/S label 10001101dddddddd Delayed branch, if T = 1, disp × 2 +
PC → PC; if T = 0, nop

2/1* �

BRA label 1010dddddddddddd Delayed branch, disp × 2 + PC →
PC

2 �

BRAF Rm 0000mmmm00100011 Delayed branch, Rm + PC → PC 2 �

BSR label 1011dddddddddddd Delayed branch, PC → PR, disp × 2
+ PC → PC

2 �

BSRF Rm 0000mmmm00000011 Delayed branch, PC → PR,
Rm + PC → PC

2 �

JMP @Rm 0100mmmm00101011 Delayed branch, Rm → PC 2 �

JSR @Rm 0100mmmm00001011 Delayed branch, PC → PR,
Rm → PC

2 �

RTS 0000000000001011 Delayed branch, PR → PC 2 �
Note: * One state when the program does not branch.

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 40 of 336
REJ09B0316-0200

Table 6.8 System Control Instructions

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

CLRT 0000000000001000 0 → T 1 0

CLRMAC 0000000000101000 0 → MACH, MACL 1 �

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 �

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 �

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm + 4 → Rm 3 LSB

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4 → Rm 3 �

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4 → Rm 3 �

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 �

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 �

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 �

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH, Rm + 4 →
Rm

1 �

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm + 4 → Rm 1 �

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4 → Rm 1 �

NOP 0000000000001001 No operation 1 �

RTE 0000000000101011 Delayed branch, stack area
→ PC/SR

4 �

SETT 0000000000011000 1 → T 1 1

SLEEP 0000000000011011 Sleep 3* �

STC SR,Rn 0000nnnn00000010 SR → Rn 1 �

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 �

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 �

STC.L SR,@–Rn 0100nnnn00000011 Rn � 4 → Rn, SR → (Rn) 2 �

STC.L GBR,@–Rn 0100nnnn00010011 Rn � 4 → Rn, GBR → (Rn) 2 �

STC.L VBR,@–Rn 0100nnnn00100011 Rn � 4 → Rn, BR → (Rn) 2 �

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 �

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 �

STS PR,Rn 0000nnnn00101010 PR → Rn 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 41 of 336
REJ09B0316-0200

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

STS.L MACH,@–Rn 0100nnnn00000010 Rn � 4 → Rn, MACH → (Rn) 1 �

STS.L MACL,@–Rn 0100nnnn00010010 Rn � 4 → Rn, MACL → (Rn) 1 �

STS.L PR,@–Rn 0100nnnn00100010 Rn � 4 → Rn, PR → (Rn) 1 �

TRAPA #imm 11000011iiiiiiii PC/SR → stack area, imm × 4
+ VBR → PC

8 �

Note: * The number of execution cycles before the chip enters sleep mode: The execution
cycles shown in the table are minimums. The actual number of cycles may be
increased when (1) contention occurs between instruction fetches and data access, or
(2) when the destination register of the load instruction (memory → register) and the
register used by the next instruction are the same.

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 42 of 336
REJ09B0316-0200

Table 6.9 Floating-Point Instructions

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

FABS FRn 1111nnnn01011101 |FRn| → FRn 1 �

FADD FRm,FRn 1111nnnnmmmm0000 FRn + FRm → FRn 1 �

FCMP/EQ FRm,FRn 1111nnnnmmmm0100 (FRn = FRm)?
1:0 → T

1 Comparison
result

FCMP/GT FRm,FRn 1111nnnnmmmm0101 (FRn > FRm)?
1:0 → T

1 Comparison
result

FDIV FRm,FRn 1111nnnnmmmm0011 FRn/FRm → FRn 13 �

FLDI0 FRn 1111nnnn10001101 0x00000000 → FRn 1 �

FLDI1 FRn 1111nnnn10011101 0x3F800000 → FRn 1 �

FLDS FRm,FPUL 1111mmmm00011101 FRm → FPUL 1 �

FLOAT FPUL,FRn 1111nnnn00101101 (float) FPUL → FRn 1 �

FMAC FR0,FRm,FRn 1111nnnnmmmm1110 FR0 × FRm + FRn →
FRn

1 �

FMOV FRm, FRn 1111nnnnmmmm1100 FRm → FRn 1 �

FMOV.S @(R0,Rm),FRn 1111nnnnmmmm0110 (R0 + Rm) → FRn 1 �

FMOV.S @Rm+,FRn 1111nnnnmmmm1001 (Rm) → FRn,
Rm+ = 4

1 �

FMOV.S @Rm,FRn 1111nnnnmmmm1000 (Rm) → FRn 1 �

FMOV.S FRm,@(R0,Rn) 1111nnnnmmmm0111 FRm → (R0 + Rn) 1 �

FMOV.S FRm,@-Rn 1111nnnnmmmm1011 Rn� = 4, FRm → (Rn) 1 �

FMOV.S FRm,@Rn 1111nnnnmmmm1010 FRm → (Rn) 1 �

FMUL FRm,FRn 1111nnnnmmmm0010 FRn × FRm → FRn 1 �

FNEG FRn 1111nnnn01001101 �FRn → FRn 1 �

FSTS FPUL,FRn 1111nnnn00001101 FPUL → FRn 1 �

FSUB FRm,FRn 1111nnnnmmmm0001 FRn � FRm → FRn 1 �

FTRC FRm,FPUL 1111nnnn00111101 (long) FRm → FPUL 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 43 of 336
REJ09B0316-0200

Table 6.10 FPU-Related CPU Instructions

Instruction Instruction Code Operation

Execu-
tion
Cycles T Bit

LDS Rm,FPSCR 0100mmmm01101010 Rm → FPSCR 1 �

LDS Rm,FPUL 0100mmmm01011010 Rm → FPUL 1 �

LDS.L @Rm+, FPSCR 0100mmmm01100110 @Rm → FPSCR, Rm+ = 4 1 �

LDS.L @Rm+, FPUL 0100mmmm01010110 @Rm → FPUL, Rm+ = 4 1 �

STS FPSCR, Rn 0000nnnn01101010 FPSCR → Rn 1 �

STS FPUL,Rn 0000nnnn01011010 FPUL → Rn 1 �

STS.L FPSCR,@-Rn 0100nnnn01100010 Rn� = 4, FPCSR → @Rn 1 �

STS.L FPUL,@-Rn 0100nnnn01010010 Rn� = 4, FPUL → @Rn 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 44 of 336
REJ09B0316-0200

6.2 Instruction Set in Alphabetical Order

Table 6.11 alphabetically lists the instruction codes and number of execution cycles for each
instruction.

Table 6.11 Instruction Set Listed Alphabetically

Instruction Operation Code Cycles T Bit

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii 1 �

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 1 �

ADDC Rm,Rn Rn + Rm + T → Rn,
Carry → T

0011nnnnmmmm1110 1 Carry

ADDV Rm,Rn Rn + Rm → Rn,
Overflow → T

0011nnnnmmmm1111 1 Over-flow

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 �

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 �

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm
→ (R0 + GBR)

11001101iiiiiiii 3 �

BF label If T = 0, disp + PC
→ PC; if T = 1, nop

10001011dddddddd 3/1*1 �

BF/S label If T = 0, disp + PC
→ PC; if T = 1, nop

10001111dddddddd 2/1*1 �

BRA label Delayed branch,
disp + PC → PC

1010dddddddddddd 2 �

BRAF Rn Delayed branch,
Rn + PC → PC

0000nnnn00100011 2 �

BSR label Delayed branch,
PC → PR, disp +
PC → PC

1011dddddddddddd 2 �

BSRF Rn Delayed branch, PC
→ PR, Rn + PC →
PC

0000nnnn00000011 2 �

BT label If T = 1, disp + PC
→ PC; if T = 0, nop

10001001dddddddd 3/1*1 �

BT/S label If T = 1, disp + PC
→ PC; if T = 0, nop

10001101dddddddd 2/1*1 �

CLRMAC 0 → MACH, MACL 0000000000101000 1 �

CLRT 0 → T 0000000000001000 1 0

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 45 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

CMP/EQ #imm,R0 If R0 = imm, 1 → T 10001000iiiiiiii 1 Comparison
result

CMP/EQ Rm,Rn If Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Comparison
result

CMP/GE Rm,Rn If Rn ≥ Rm with
signed data, 1 → T

0011nnnnmmmm0011 1 Comparison
result

CMP/GT Rm,Rn If Rn > Rm with
signed data, 1 → T

0011nnnnmmmm0111 1 Comparison
result

CMP/HI Rm,Rn If Rn > Rm with
unsigned data,

0011nnnnmmmm0110 1 Comparison
result

CMP/HS Rm,Rn If Rn ≥ Rm with
unsigned data,
1 → T

0011nnnnmmmm0010 1 Comparison
result

CMP/PL Rn If Rn > 0, 1 → T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn If Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison
result

CMP/STR Rm,Rn If Rn and Rm have
an equivalent byte,
1 → T

0010nnnnmmmm1100 1 Comparison
result

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M,
M ^ Q → T

0010nnnnmmmm0111 1 Calculation
result

DIV0U 0 → M/Q/T 0000000000011001 1 0

DIV1 Rm,Rn Single-step division
(Rn/Rm)

0011nnnnmmmm0100 1 Calculation
result

DMULS.L Rm,Rn Signed operation of
Rn × Rm → MACH,
MACL

0011nnnnmmmm1101 2 to 4*2 �

DMULU.L Rm,Rn Unsigned operation
of Rn × Rm →
MACH, MACL

0011nnnnmmmm0101 2 to 4*2 �

DT Rn Rn � 1 → Rn, when
Rn is 0, 1 → T.
When Rn is
nonzero, 0 → T

0100nnnn00010000 1 Comparison
result

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 46 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

EXTS.B Rm,Rn A byte in Rm is
sign-extended →
Rn

0110nnnnmmmm1110 1 �

EXTS.W Rm,Rn A word in Rm is
sign-extended →
Rn

0110nnnnmmmm1111 1 �

EXTU.B Rm,Rn A byte in Rm is
zero-extended →
Rn

0110nnnnmmmm1100 1 �

EXTU.W Rm,Rn A word in Rm is
zero-extended →
Rn

0110nnnnmmmm1101 1 �

FABS FRn | FRn | → FRn 1111nnnn01011101 1 �

FADD FRm ,FRn FRn + FRm → FRn 1111nnnnmmmm0000 1 �

FCMP/EQ FRm ,FRn (FRn == FRm)?
1:0 → T

1111nnnnmmmm0100 1 Comparison
result

FCMP/GT FRm ,FRn (FRn > FRm) ?
1:0 → T

1111nnnnmmmm0101 1 Comparison
result

FDIV FRm ,FRn FRn/FRm → FRn 1111nnnnmmmm0011 13 �

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 1 �

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 1 �

FLDS FRm ,FPUL FRm → FPUL 1111mmmm00011101 1 �

FLOAT FPUL, FRn (float) FPUL → FRn 1111nnnn00101101 1 �

FMAC FR0,FRm,FRn FR0 × FRm + FRn
→ FRn

1111nnnnmmmm1110 1 �

FMOV FRm ,FRn FRm → FRn 1111nnnnmmmm1100 1 �

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 1 �

FMOV.S @Rm+,FRn (Rm) → FRn, Rm +
4 = Rm

1111nnnnmmmm1001 1 �

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 1 �

FMOV.S FRm,@(R0,Rn) (FRm) → (R0 + Rn) 1111nnnnmmmm0111 1 �

FMOV.S FRm,@-Rn Rn � 4 → Rn, FRm
→ (Rn)

1111nnnnmmmm1011 1 �

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 1 �

FMOV.S FRm,FRn FRn × FRm → FRn 1111nnnnmmmm0010 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 47 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

FMUL FRm,FRn FRn × FRm → FRn 1111nnnnmmmm0010 1 �

FNEG FRn �FRn → FRn 1111nnnn01001101 1 �

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 �

FSUB FRm,FRn FRn � FRm → FRn 1111nnnnmmmm0001 1 �

FTRC FRm,FPUL (long) FRm →
FPUL

1111mmmm00111101 1 �

JMP @Rm Delayed branch,
Rm → PC

0100nnnn00101011 2 �

JSR @Rm Delayed branch,
PC → PR,
Rm → PC

0100nnnn00001011 2 �

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1 �

LDC Rm,SR Rm → SR 0100mmmm00001110 1 LSB

LDC Rm,VBR Rm → VBR 0100mmmm00101110 1 �

LDC.L @Rm+,GBR (Rm) → GBR, Rm +
4 → Rm

0100mmmm00010111 3 �

LDC.L @Rm+,SR (Rm) → SR, Rm + 4
→ Rm

0100mmmm00000111 3 LSB

LDC.L @Rm+,VBR (Rm) → VBR, Rm +
4 → Rm

0100mmmm00100111 3 �

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 1 �

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 1 �

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 �

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 �

LDS Rm,PR Rm → PR 0100mmmm00101010 1 �

LDS.L @Rm+,FPSCR @Rm → FPSCR,
Rm + 4

0100mmmm01100110 1 �

LDS.L @Rm+,FPUL @Rm → FPUL,
Rm + 4

0100mmmm01010110 1 �

LDS.L @Rm+,MACH (Rm) → MACH,
Rm + 4 → Rm

0100mmmm00000110 1 �

LDS.L @Rm+,MACL (Rm) → MACL,
Rm + 4 → Rm

0100mmmm00010110 1 �

LDS.L @Rm+,PR (Rm) → PR,
Rm + 4 → Rm

0100mmmm00100110 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 48 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

MAC.L @Rm+,@Rn+ Signed operation of
(Rn) × (Rm) + MAC
→ MAC

0000nnnnmmmm1111 3/(2 to
4)*2

�

MAC.W @Rm+,@Rn+ Signed operation of
(Rn) × (Rm) + MAC
→ MAC

0100nnnnmmmm1111 3/ (2)*2 �

MOV #imm,Rn imm → Sign
extension → Rn

1110nnnniiiiiiii 1 �

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 �

MOV.B @(disp,GBR),R0 (disp + GBR) →
Sign extension →
R0

11000100dddddddd 1 �

MOV.B @(disp,Rm),R0 (disp + Rm) → Sign
extension → R0

10000100mmmmdddd 1 �

MOV.B @(R0,Rm),Rn (R0 + Rm) → Sign
extension → Rn

0000nnnnmmmm1100 1 �

MOV.B @Rm+,Rn (Rm) → Sign
extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 1 �

MOV.B @Rm,Rn (Rm) → Sign
extension → Rn

0110nnnnmmmm0000 1 �

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd 1 �

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 �

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 �

MOV.B Rm,@–Rn Rn � 1 → Rn, Rm
→ (Rn)

0010nnnnmmmm0100 1 �

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 �

MOV.L @(disp,GBR),R0 (disp × 4 + GBR)
→ R0

11000110dddddddd 1 �

MOV.L @(disp,PC),Rn (disp × 4 + PC) →
Rn

1101nnnndddddddd 1 �

MOV.L @(disp,Rm),Rn (disp × 4 + Rm) →
Rn

0101nnnnmmmmdddd 1 �

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 �

MOV.L @Rm+,Rn (Rm) → Rn,
Rm + 4 → Rm

0110nnnnmmmm0110 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 49 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 �

MOV.L R0,@(disp,GBR) R0 → (disp × 4 +
GBR)

11000010dddddddd 1 �

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 +
Rn)

0001nnnnmmmmdddd 1 �

MOV.L Rm,@(R0,Rn) Rm → (R0 × 4 +
Rn)

0000nnnnmmmm0110 1 �

MOV.L Rm,@–Rn Rn � 4 → Rn, Rm
→ (Rn)

0010nnnnmmmm0110 1 �

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 �

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) →
Sign extension →
R0

11000101dddddddd 1 �

MOV.W @(disp,PC),Rn (disp × 2 + PC) →
Sign extension
→ Rn

1001nnnndddddddd 1 �

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) →
Sign extension →
R0

10000101mmmmdddd 1 �

MOV.W @(R0,Rm),Rn (R0 + Rm) → Sign
extension → Rn

0000nnnnmmmm1101 1 �

MOV.W @Rm+,Rn (Rm) → Sign
extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 1 �

MOV.W @Rm,Rn (Rm) → Sign
extension → Rn

0110nnnnmmmm0001 1 �

MOV.W R0,@(disp,GBR) R0 → (disp × 2 +
GBR)

11000001dddddddd 1 �

MOV.W R0,@(disp,Rn) R0 → (disp × 2 +
Rn)

10000001nnnndddd 1 �

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 �

MOV.W Rm,@–Rn Rn � 2 → Rn, Rm
→ (Rn)

0010nnnnmmmm0101 1 �

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 �

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 50 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

MOVT Rn T → Rn 0000nnnn00101001 1 �

MUL.L Rm,Rn Rn × Rm → MAC 0000nnnnmmmm0111 2 to 4*2 �

MULS.W Rm,Rn Signed operation of
Rn × Rm → MACL

0010nnnnmmmm1111 1 to 3*2 �

MULU.W Rm,Rn Unsigned operation
of Rn × Rm →
MACL

0010nnnnmmmm1110 1 to 3*2 �

NEG Rm,Rn 0 � Rm → Rn 0110nnnnmmmm1011 1 �

NEGC Rm,Rn 0 � Rm � T → Rn,
Borrow → T

0110nnnnmmmm1010 1 Borrow

NOP No operation 0000000000001001 1 �

NOT Rm,Rn ~ Rm → Rn 0110nnnnmmmm0111 1 �

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 �

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 �

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm
→ (R0 + GBR)

11001111iiiiiiii 3 �

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

RTE Delayed branch,
SSR/SPC → SR/PC

0000000000101011 4 LSB

RTS Delayed branch,
PR → PC

0000000000001011 2 �

SETT 1 → T 0000000000011000 1 1

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 �

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 �

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 �

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 51 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 1 �

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 1 �

SLEEP Sleep 0000000000011011 3 �

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 �

STC SR,Rn SR → Rn 0000nnnn00000010 1 �

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 �

STC.L GBR,@–Rn Rn � 4 → Rn,
GBR → (Rn)

0100nnnn00010011 2 �

STC.L SR,@–Rn Rn � 4 → Rn, SR
→ (Rn)

0100nnnn00000011 2 �

STC.L VBR,@–Rn Rn � 4 → Rn,
VBR → (Rn)

0100nnnn00100011 2 �

STS FPSCR, Rn FPSCR → Rn 0000nnnn01101010 1 �

STS FPUL, Rn FPUL → Rn 0000nnnn01011010 1 �

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 �

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 �

STS PR,Rn PR → Rn 0000nnnn00101010 1 �

STS.L FPSCR,@-Rn Rn � 4 → Rn,
FPSCR → @Rn

0100nnnn01100010 1 �

STS.L FPUL,@-Rn Rn � 4 → Rn,
FPUL → @Rn

0100nnnn01010010 1 �

STS.L MACH,@–Rn Rn � 4 → Rn,
MACH → (Rn)

0100nnnn00000010 1 �

STS.L MACL,@–Rn Rn � 4 → Rn,
MACL → (Rn)

0100nnnn00010010 1 �

STS.L PR,@–Rn Rn � 4 → Rn, PR →
(Rn)

0100nnnn00100010 1 �

SUB Rm,Rn Rn � Rm → Rn 0011nnnnmmmm1000 1 �

SUBC Rm,Rn Rn � Rm � T → Rn,
Borrow → T

0011nnnnmmmm1010 1 Borrow

SUBV Rm,Rn Rn � Rm → Rn,
Underflow → T

0011nnnnmmmm1011 1 Underflow

SWAP.B Rm,Rn Rm → Swap the
two lowest-order
bytes → Rn

0110nnnnmmmm1000 1 �

Section 6 Instruction Set

Rev. 2.00 May 31, 2006 page 52 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

SWAP.W Rm,Rn Rm → Swap two
consecutive words
→ Rn

0110nnnnmmmm1001 1 �

TAS.B @Rn If (Rn) is 0, 1 → T;
1 → MSB of (Rn)

0100nnnn00011011 4 Test result

TST #imm,R0 R0 & imm; if the
result is 0, 1 → T

11001000iiiiiiii 1 Test result

TST Rm,Rn Rn & Rm; if the
result is 0, 1 → T

0010nnnnmmmm1000 1 Test result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm;
if the result is 0,
1 → T

11001100iiiiiiii 3 Test result

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 �

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 �

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm
→ (R0 + GBR)

11001110iiiiiiii 3 �

XTRCT Rm,Rn Rm: Middle 32 bits
of Rn → Rn

0010nnnnmmmm1101 1 �

Notes: 1. The normal minimum number of execution cycles.
2. One state when it does not branch.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 53 of 336
REJ09B0316-0200

Section 7 Instruction Descriptions

7.1 Sample Description (Name): Classification

This section describes instructions in alphabetical order using the format shown below in section
7.1.1. The actual descriptions begin at section 7.2.2.

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code Cycle T Bit
Assembler input format;
imm and disp are
numbers, expressions,
or symbols

A brief
description of
operation

Displayed in order
MSB ↔ LSB

Number of
cycles when
there is no
wait state

The value of
T bit after the
instruction is
executed

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language. The following resources should be used.

• Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr);

• Writes data of each length to address Addr. An address error will occur if word data is written
to an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long(unsigned long Addr, unsigned long Data);

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 54 of 336
REJ09B0316-0200

• Starts execution from the slot instruction located at an address (Addr � 4). For Delay_Slot (4),
execution starts from an instruction at address 0 rather than address 4. When execution moves
from this function to one of the following instructions and one of the listed instructions
precedes it, it will be considered an illegal slot instruction (the listed instructions become
illegal slot instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay_Slot(unsigned long Addr);

If the address (Addr_4) instruction is 32-bit, 2 is returned; 0 is returned if it is 16-bit.

• List registers:

unsigned long R[16];

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL,PR;

unsigned long PC;

• Definition of SR structures:

struct SR0 {

unsigned long dummy0:4;

unsigned long RC0:12;

unsigned long dummy1:4;

unsigned long DMY0:1;

unsigned long DMX0:1;

unsigned long M0:1;

unsigned long Q0:1;

unsigned long I0:4;

unsigned long RF10:1;

unsigned long RF00:1;

unsigned long S0:1;

unsigned long T0:1;

};

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 55 of 336
REJ09B0316-0200

• Definition of bits in SR:

#define M ((*(struct SR0 *)(&SR)).M0)

#define Q ((*(struct SR0 *)(&SR)).Q0)

#define S ((*(struct SR0 *)(&SR)).S0)

#define T ((*(struct SR0 *)(&SR)).T0)

#define RF1 ((*struct SRO *)(&SR)).RF10)

#define RF0 ((*struct SRO *)(&SR)).RF00)

• Error display function:

Error(char *er);

The PC should point to the location four bytes after the current instruction. Therefore, PC = 4;
means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User Manual.

.org Location counter set

.data.w Securing integer word data

.data.l Securing integer longword data

.sdata Securing string data

.align 2 2-byte boundary alignment

.align 4 2-byte boundary alignment

.arepeat 16 16-repeat expansion

.arepeat 32 32-repeat expansion

.aendr End of repeat expansion of specified number

Note that the SH series cross assembler version 1.0 does not support the conditional assembler
functions.

Notes: 1. In addressing modes that use the displacements listed below (disp), the assembler
statements in this manual show the value prior to scaling (×1, ×2, and ×4) according to
the operand size. This is done to clarify the LSI operation. Actual assembler statements
should follow the rules of the assembler in question.
@(disp:4, Rn); Indirect register addressing with displacement
@(disp:8, GBR); Indirect GBR addressing with displacement
@(disp:8, PC); Indirect PC addressing with displacement
disp:8, disp:12:; PC relative addressing

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 56 of 336
REJ09B0316-0200

2. 16-bit instruction code that is not assigned as instructions is handled as an ordinary
illegal instruction and produces illegal instruction exception processing.
Also, if the FPU is put into stop status by the module stop bit, floating-point
instructions and FPU-related CPU instructions are handled as illegal instructions.

3. An ordinary illegal instruction or branched instruction (i.e., an illegal slot instruction)
that follows a BRA, BT/S or another delayed branch instruction will cause illegal
instruction exception processing.

Example 1:
....

BRA LABEL

.data.w H'FFFF ← Illegal slot instruction

.... [H'FFFF is an ordinary illegal instruction from the start]

Example 2:
RTE

BT/S LABEL ← Illegal slot instruction

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 57 of 336
REJ09B0316-0200

7.2 CPU Instruction

7.2.1 ADD (ADD Binary): Arithmetic Instruction

Format Abstract Code Cycle T Bit

ADD Rm,Rn Rm + Rn → Rn 0011nnnnmmmm1100 1 �

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii 1 �

Description: Adds general register Rn data to Rm data, and stores the result in Rn. 8-bit
immediate data can be added instead of Rm data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n) /* ADD Rm,Rn */

{

R[n]+=R[m];

PC+=2;

}

ADDI(long i,long n) /* ADD #imm,Rn */

{

if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);

else R[n]+=(0xFFFFFF00 | (long)i);

PC+=2;

}

Examples:

ADD R0,R1 ;Before execution: R0 = H'7FFFFFFF, R1 = H'00000001

;After execution: R1 = H'80000000

ADD #H'01,R2 ;Before execution: R2 = H'00000000

;After execution: R2 = H'00000001

ADD #H'FE,R3 ;Before execution: R3 = H'00000001

;After execution: R3 = H'FFFFFFFF

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 58 of 336
REJ09B0316-0200

7.2.2 ADDC (ADD with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit

ADDC Rm,Rn Rn + Rm + T → Rn, carry → T 0011nnnnmmmm1110 1 Carry

Description: Adds Rm data and the T bit to general register Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long m,long n) /* ADDC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]+R[m];

tmp0=R[n];

R[n]=tmp1+T;

if (tmp0>tmp1) T=1;

else T=0;

if (tmp1>R[n]) T=1;

PC+=2;

}

Examples:

CLRT ;R0:R1 (64 bits) + R2:R3 (64 bits) = R0:R1 (64 bits)

ADDC R3,R1 ;Before execution: T = 0, R1 = H'00000001, R3 = H'FFFFFFFF

;After execution: T = 1, R1 = H'0000000

ADDC R2,R0 ;Before execution: T = 1, R0 = H'00000000, R2 = H'00000000

;After execution: T = 0, R0 = H'00000001

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 59 of 336
REJ09B0316-0200

7.2.3 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code Cycle T Bit
ADDV Rm,Rn Rn + Rm → Rn, overflow → T 0011nnnnmmmm1111 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
occurs, the T bit is set to 1.

Operation:

ADDV(long m,long n) /*ADDV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]+=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==0 || src==2) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

ADDV R0,R1 ;Before execution: R0 = H'00000001, R1 = H'7FFFFFFE, T = 0

;After execution: R1 = H'7FFFFFFF, T = 0

ADDV R0,R1 ;Before execution: R0 = H'00000002, R1 = H'7FFFFFFE, T = 0
;After execution: R1 = H'80000000, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 60 of 336
REJ09B0316-0200

7.2.4 AND (AND Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 �

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 �

AND.B #imm, @(R0,GBR) (R0 + GBR) & imm → (R0 + GBR) 11001101iiiiiiii 3 �

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, R0 is executed and the upper 24 bits of R0 are always cleared to 0.

Operation:

AND(long m,long n) /* AND Rm,Rn */

{

R[n]&=R[m]

PC+=2;

}

ANDI(long i) /* AND #imm,R0 */

{

R[0]&=(0x000000FF & (long)i);

PC+=2;

}

ANDM(long i) /* AND.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 61 of 336
REJ09B0316-0200

Examples:

AND R0,R1 ;Before execution: R0 = H'AAAAAAAA, R1 = H'55555555

;After execution: R1 = H'00000000

AND #H'0F,R0 ;Before execution: R0 = H'FFFFFFFF

;After execution: R0 = H'0000000F

AND.B #H'80,@(R0,GBR);Before execution: @(R0,GBR) = H'A5

;After execution: @(R0,GBR) = H'80

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 62 of 336
REJ09B0316-0200

7.2.5 BF (Branch if False): Branch Instruction

Format Abstract Code Cycle T Bit

BF label When T = 0, disp × 2 + PC → PC;
When T = 1, nop

10001011dddddddd 3/1 �

Description: Reads the T bit, and conditionally branches. If T = 0, it branches to the branch
destination address. If T = 1, BF executes the next instruction. The branch destination is an
address specified by PC + displacement. However, in this case it is used for address calculation.
The PC is the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is �256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BF with the BRA instruction or
the like.

Note: When branching, three cycles; when not branching, one cycle.

Operation:

BF(long d)/* BF disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) PC=PC+(disp<<1);

else PC+=2;

}

Example:

CLRT ;T is always cleared to 0

BT TRGET_T ;Does not branch, because T = 0

BF TRGET_F ;Branches to TRGET_F, because T = 0

NOP ;

NOP ;← The PC location is used to calculate the branch destination address
.......... of the BF instruction

TRGET_F: ;← Branch destination of the BF instruction

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 63 of 336
REJ09B0316-0200

7.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction

Format Abstract Code Cycle T Bit

BF/S label When T = 0, disp × 2 + PC → PC;
When T = 1, nop

10001111dddddddd 2/1 �

Description: Reads the T bit and conditionally branches. If T = 0, it branches after executing the
next instruction. If T = 1, BF/S executes the next instruction. The branch destination is an address
specified by PC + displacement. However, in this case it is used for address calculation. The PC is
the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is �256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF with the BRA instruction or the
like.

Note: Since this is a delay branch instruction, the instruction immediately following is executed
before the branch. No interrupts and address errors are accepted between this instruction
and the next instruction. When the instruction immediately following is a branch
instruction, it is recognized as an illegal slot instruction. When branching, this is a two-
cycle instruction; when not branching, one cycle.

Operation:

BFS(long d) /* BFS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) {

PC=PC+(disp<<1);

Delay_Slot(temp+2);

}

else PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 64 of 336
REJ09B0316-0200

Example:

CLRT ;T is always 0

BT/S TRGET_T ;Does not branch, because T = 0

NOP ;

BF/S TRGET_F ;Branches to TRGET_F, because T = 0

ADD R0,R1 ;Executed before branch.

NOP ;← The PC location is used to calculate the branch destination address
.......... of the BF/S instruction

TRGET_F: ;← Branch destination of the BF/S instruction

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 65 of 336
REJ09B0316-0200

7.2.7 BRA (Branch): Branch Instruction

Format Abstract Code Cycle T Bit
BRA label disp × 2 + PC → PC 1010dddddddddddd 2 �

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement However, in this
case it is used for address calculation. The PC is the address 4 bytes after this instruction. The 12-
bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is �4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, this instruction must be changed to the JMP instruction. Here, a MOV instruction
must be used to transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BRA(long d) /* BRA disp */

{

unsigned long temp;

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & (long) d);

else disp=(0xFFFFF000 | (long) d);

temp=PC;

PC=PC+(disp<<1);

Delay_Slot(temp+2);

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 66 of 336
REJ09B0316-0200

Example:

BRA TRGET ;Branches to TRGET

ADD R0,R1 ;Executes ADD before branching

NOP ;← The PC location is used to calculate the branch destination address
.......... of the BRA instruction

TRGET: ;← Branch destination of the BRA instruction

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 67 of 336
REJ09B0316-0200

7.2.8 BRAF (Branch Far): Branch Instruction

Format Abstract Code Cycle T Bit

BRAF Rm Rm + PC → PC 0000mmmm00100011 2 �

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rm. However, in this case it is used for address calculation. The PC is the address
4 bytes after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BRAF(long m) /* BRAF Rm */

{

unsigned long temp;

temp=PC;

PC+=R[m];

Delay_Slot(temp+2);

}

Example:

MOV.L #(TARGET-BSRF_PC),R0 ;Sets displacement.

BRA TRGET ;Branches to TARGET

ADD R0,R1 ;Executes ADD before branching

 BRAF_PC: ;← The PC location is used to calculate the branch
destination address of the BRAF instruction

NOP

....................

 TARGET: ;← Branch destination of the BRAF instruction

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 68 of 336
REJ09B0316-0200

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 69 of 336
REJ09B0316-0200

7.2.9 BSR (Branch to Subroutine): Branch Instruction

Format Abstract Code Cycle T Bit

BSR label PC → PR, disp × 2+ PC → PC 1011dddddddddddd 2 �

Description: Branches to the subroutine procedure at a specified address. The PC value is stored
in the PR, and the program branches to an address specified by PC + displacement However, in
this case it is used for address calculation. The PC is the address 4 bytes after this instruction. The
12-bit displacement is sign-extended and doubled. Consequently, the relative interval from the
branch destination is �4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, the JSR instruction must be used instead. With JSR, the destination address must be
transferred to a register by using the MOV instruction. This BSR instruction and the RTS
instruction are used together for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BSR(long d) /* BSR disp */

{

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & (long) d);

else disp=(0xFFFFF000 | (long) d);

PR=PC+Is_32bit_Inst(PR+2);

PC=PC+(disp<<1);

Delay_Slot(PR+2);

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 70 of 336
REJ09B0316-0200

Example:

BSR TRGET ;Branches to TRGET

MOV R3,R4 ;Executes the MOV instruction before branching

ADD R0,R1 ;← The PC location is used to calculate the branch destination address of
the BSR instruction (return address for when the subroutine procedure is
completed (PR data))

.......

.......

TRGET: ;← Procedure entrance

MOV R2,R3 ;

RTS ;Returns to the above ADD instruction

MOV #1,R0 ;Executes MOV before branching

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 71 of 336
REJ09B0316-0200

7.2.10 BSRF (Branch to Subroutine Far): Branch Instruction

Format Abstract Code Cycle T Bit
BSRF Rm PC → PR, Rm + PC → PC 0000mmmm00000011 2 �

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rm. However, in this case it is used
for address calculation. The PC is the address 4 bytes after this instruction. Used as a subroutine
procedure call in combination with RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BSRF(long m) /* BSRF Rm */

{

PR=PC+Is_32bit_Inst(PR+2);

PC+=R[m];

Delay_Slot(PR+2);

}

Example:

MOV.L #(TARGET-BSRF_PC),R0 ;Sets displacement.
BRSF R0 ;Branches to TARGET
MOV R3,R4 ;Executes the MOV instruction before branching

BSRF_PC: ;← The PC location is used to calculate the
branch destination with BSRF.

ADD R0,R1

.....

.....

TARGET: ;← Procedure entrance
MOV R2,R3 ;

RTS ;Returns to the above ADD instruction

MOV #1,R0 ;Executes MOV before branching

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 72 of 336
REJ09B0316-0200

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 73 of 336
REJ09B0316-0200

7.2.11 BT (Branch if True): Branch Instruction

Format Abstract Code Cycle T Bit

BT label When T = 1, disp × 2 + PC → PC;
When T = 0, nop

10001001dddddddd 3/1 �

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T = 0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. However, in this case it is used for address calculation. The PC is the address 4
bytes after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently,
the relative interval from the branch destination is �256 to +254 bytes. If the displacement is too
short to reach the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:

BT(long d)/* BT disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) PC=PC+(disp<<1);

else PC+=2;

}

Example:

SETT ;T is always 1

BF TRGET_F ;Does not branch, because T = 1

BT TRGET_T ;Branches to TRGET_T, because T = 1

NOP ;

NOP ;← The PC location is used to calculate the branch destination
.......... address of the BT instruction

TRGET_T: ;← Branch destination of the BT instruction

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 74 of 336
REJ09B0316-0200

7.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction

Format Abstract Code Cycle T Bit

BT/S label When T = 1, disp × 2 + PC → PC;
When T = 0, nop

10001101dddddddd 2/1 �

Description: Reads the T bit and conditionally branches. If T = 1, BT/S branches after the
following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. However, in this case it is used for
address calculation. The PC is the address 4 bytes after this instruction. The 8-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is �256
to +254 bytes. If the displacement is too short to reach the branch destination, use BT/S with the
BRA instruction or the like.

Note: Since this is a delay branch instruction, the instruction immediately following is executed
before the branch. No interrupts and address errors are accepted between this instruction
and the next instruction. When the immediately following instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two
cycles; when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) {

PC=PC+(disp<<1);

Delay_Slot(temp+2);

}

else PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 75 of 336
REJ09B0316-0200

Example:

SETT ;T is always 1

BF/S TARGET_F ;Does not branch, because T = 1

NOP ;

BT/S TARGET_T ;Branches to TARGET, because T = 1

ADD R0,R1 ;Executes before branching.

NOP ;← The PC location is used to calculate the branch destination
.......... address of the BT/S instruction

TARGET_T: ;← Branch destination of the BT/S instruction

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 76 of 336
REJ09B0316-0200

7.2.13 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code Cycle T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 1 �

Description: Clear the MACH and MACL Register.

Operation:

CLRMAC() /* CLRMAC */

{

MACH=0;

MACL=0;

PC+=2;

}

Example:

CLRMAC ;Clears and initializes the MAC register

MAC.W @R0+,@R1+ ;Multiply and accumulate operation

MAC.W @R0+,@R1+ ;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 77 of 336
REJ09B0316-0200

7.2.14 CLRT (Clear T Bit): System Control Instruction

Format Abstract Code Cycle T Bit

CLRT 0 → T 0000000000001000 1 0

Description: Clears the T bit.

Operation:

CLRT() /* CLRT */

{

T=0;

PC+=2;

}

Example:

CLRT ;Before execution: T = 1

;After execution: T = 0

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 78 of 336
REJ09B0316-0200

7.2.15 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code Cycle T Bit

CMP/EQ Rm,Rn When Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Comparison result

CMP/GE Rm,Rn When signed and Rn ≥ Rm,
1 → T

0011nnnnmmmm0011 1 Comparison result

CMP/GT Rm,Rn When signed and Rn > Rm,
1 → T

0011nnnnmmmm0111 1 Comparison result

CMP/HI Rm,Rn When unsigned and Rn > Rm,
1 → T

0011nnnnmmmm0110 1 Comparison result

CMP/HS Rm,Rn When unsigned and Rn ≥ Rm,
1 → T

0011nnnnmmmm0010 1 Comparison result

CMP/PL Rn When Rn > 0, 1 → T 0100nnnn00010101 1 Comparison result

CMP/PZ Rn When Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison result

CMP/STR Rm,Rn When a byte in Rn equals a
byte in Rm, 1 → T

0010nnnnmmmm1100 1 Comparison result

CMP/EQ #imm,R0 When R0 = imm, 1 → T 10001000iiiiiiii 1 Comparison result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with R0 by using condition EQ. Here, R0 data does not change. Table 7.2 shows the
mnemonics for the conditions.

Table 7.2 CMP Mnemonics

Mnemonics Condition

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn ≥ Rm with signed data, T = 1

CMP/GT Rm,Rn If Rn > Rm with signed data, T = 1

CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1

CMP/HS Rm,Rn If Rn ≥ Rm with unsigned data, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn ≥ 0, T = 1

CMP/STR Rm,Rn If a byte in Rn equals a byte in Rm, T = 1

CMP/EQ #imm,R0 If R0 = imm, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 79 of 336
REJ09B0316-0200

Operation:

CMPEQ(long m,long n) /* CMP_EQ Rm,Rn */

{

if (R[n]==R[m]) T=1;

else T=0;

PC+=2;

}

CMPGE(long m,long n) /* CMP_GE Rm,Rn */

{

if ((long)R[n]>=(long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPGT(long m,long n) /* CMP_GT Rm,Rn */

{

if ((long)R[n]>(long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPHI(long m,long n) /* CMP_HI Rm,Rn */

{

if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPHS(long m,long n) /* CMP_HS Rm,Rn */

{

if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 80 of 336
REJ09B0316-0200

CMPPL(long n) /* CMP_PL Rn */

{

if ((long)R[n]>0) T=1;

else T=0;

PC+=2;

}

CMPPZ(long n) /* CMP_PZ Rn */

{

if ((long)R[n]>=0) T=1;

else T=0;

PC+=2;

}

CMPSTR(long m,long n) /* CMP_STR Rm,Rn */

{

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n]^R[m];

HH=(temp>>12)&0x000000FF;

HL=(temp>>8)&0x000000FF;

LH=(temp>>4)&0x000000FF;

LL=temp&0x000000FF;

HH=HH&&HL&&LH&&LL;

if (HH==0) T=1;

else T=0;

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 81 of 336
REJ09B0316-0200

CMPIM(long i) /* CMP_EQ #imm,R0 */

{

long imm;

if ((i&0x80)==0) imm=(0x000000FF & (long i));

else imm=(0xFFFFFF00 | (long i));

if (R[0]==imm) T=1;

else T=0;

PC+=2;

}

Example:

CMP/GE R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ;Does not branch because T = 0
CMP/HS R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ;Branches because T = 1
CMP/STR R2,R3 ;R2 = �ABCD�, R3 = �XYCZ�
BT TRGET_T ;Branches because T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 82 of 336
REJ09B0316-0200

7.2.16 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DIV0S Rm,Rn MSB of Rn → Q, MSB of Rm → M,
M^Q → T

0010nnnnmmmm0111 1 Calculation result

Description: DIV0S is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0S(long m,long n) /* DIV0S Rm,Rn */

{

if ((R[n]&0x80000000)==0) Q=0;

else Q=1;

if ((R[m]&0x80000000)==0) M=0;

else M=1;

T=!(M==Q);

PC+=2;

}

Example: See DIV1.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 83 of 336
REJ09B0316-0200

7.2.17 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DIV0U 0 → M/Q/T 0000000000011001 1 0

Description: DIV0U is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0U() /* DIV0U */

{

M=Q=T=0;

PC+=2;

}

Example: See DIV1.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 84 of 336
REJ09B0316-0200

7.2.18 DIV1 (Divide 1 Step): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DIV1 Rm,Rn 1 step division (Rn ÷ Rm) 0011nnnnmmmm0100 1 Calculation result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIV1 instruction, then find the remainder as follows:

(dividend) � (divisor) × (quotient) = (remainder)

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIV0S or DIV0U. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 85 of 336
REJ09B0316-0200

Operation:

DIV1(long m,long n) /* DIV1 Rm,Rn */

{

unsigned long tmp0;

unsigned char old_q,tmp1;

old_q=Q;

Q=(unsigned char)((0x80000000 & R[n])!=0);

R[n]<<=1;

R[n]|=(unsigned long)T;

switch(old_q){

case 0:switch(M){

case 0:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 86 of 336
REJ09B0316-0200

case 1:switch(M){

case 0:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

}

T=(Q==M);

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 87 of 336
REJ09B0316-0200

Example 1:

;R1 (32 bits) / R0 (16 bits) = R1 (16 bits):Unsigned

SHLL16 R0 ;Upper 16 bits = divisor, lower 16 bits = 0

TST R0,R0 ;Zero division check

BT ZERO_DIV ;

CMP/HS R0,R1 ;Overflow check

BT OVER_DIV ;

DIV0U ;Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ;Repeat 16 times

.aendr ;

ROTCL R1 ;

EXTU.W R1,R1 ;R1 = Quotient

Example 2:

;R1:R2 (64 bits)/R0 (32 bits) = R2 (32 bits):Unsigned

TST R0,R0 ;Zero division check

BT ZERO_DIV ;

CMP/HS ;R0,R1 ;Overflow check

BT OVER_DIV ;

DIV0U ;Flag initialization

.arepeat 32 ;

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ;R2 = Quotient

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 88 of 336
REJ09B0316-0200

Example 3:

;R1 (16 bits)/R0 (16 bits) = R1 (16 bits):Signed

SHLL16 R0 ;Upper 16 bits = divisor, lower 16 bits = 0

EXTS.W R1,R1 ;Sign-extends the dividend to 32 bits

XOR R2,R2 ;R2 = 0

MOV R1,R3 ;

ROTCL R3 ;

SUBC R2,R1 ;Decrements if the dividend is negative

DIV0S R0,R1 ;Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ;Repeat 16 times

.aendr

EXTS.W R1,R1 ;

ROTCL R1 ;R1 = quotient (one�s complement)

ADDC R2,R1 ;Increments and takes the two�s complement if the MSB of the quotient
is 1

EXTS.W R1,R1 ;R1 = quotient (two�s complement)

Example 4:

;R2 (32 bits) / R0 (32 bits) = R2 (32 bits):Signed

MOV R2,R3 ;

ROTCL R3 ;

SUBC R1,R1 ;Sign-extends the dividend to 64 bits (R1:R2)

XOR R3,R3 ;R3 = 0

SUBC R3,R2 ;Decrements and takes the one�s complement if the dividend is negative

DIV0S R0,R1 ;Flag initialization

.arepeat 32 ;

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ;R2 = Quotient (one�s complement)

ADDC R3,R2 ;Increments and takes the two�s complement if the MSB of the quotient
is 1. R2 = Quotient (two�s complement)

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 89 of 336
REJ09B0316-0200

7.2.19 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DMULS.L Rm, Rn With sign, Rn × Rm → MACH, MACL 0011nnnnmmmm1101 2 to 4 �

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is a signed arithmetic
operation.

Operation:

DMULS(long m,long n)/* DMULS.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)R[n];

tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[n]^R[m])<0) fnLmL=-1;

else fnLmL=0;

temp1=(unsigned long)tempn;

temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 90 of 336
REJ09B0316-0200

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fnLmL<0) {

Res2=~Res2;

if (Res0==0)

Res2++;

else

Res0=(~Res0)+1;

}

MACH=Res2;

MACL=Res0;

PC+=2;

}

Example:

DMULS.L R0,R1 ;Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

;After execution: MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 ;Operation result (top)

STS MACL,R0 ;Operation result (bottom)

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 91 of 336
REJ09B0316-0200

7.2.20 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DMULU.L Rm, Rn Without sign, Rn × Rm → MACH,
MACL

0011nnnnmmmm0101 2 to 4 �

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is an unsigned arithmetic
operation.

Operation:

DMULU(long m,long n)/* DMULU.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

RnL=R[n]&0x0000FFFF;

RnH=(R[n]>>16)&0x0000FFFF;

RmL=R[m]&0x0000FFFF;

RmH=(R[m]>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 92 of 336
REJ09B0316-0200

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

MACH=Res2;

MACL=Res0;

PC+=2;

}

Example:

DMULU.L R0,R1 ;Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

;After execution: MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 ;Operation result (top)

STS MACL,R0 ;Operation result (bottom)

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 93 of 336
REJ09B0316-0200

7.2.21 DT (Decrement and Test): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DT Rn Rn � 1 → Rn; When Rn is 0, 1 → T,
when Rn is nonzero, 0 → T

0100nnnn00010000 1 Comparison
result

Description: The contents of general register Rn are decremented by 1 and the result compared to
0 (zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operation:

DT(long n)/* DT Rn */

{

R[n]--;

if (R[n]==0) T=1;

else T=0;

PC+=2;

}

Example:

MOV #4,R5 ;Sets the number of loops.

LOOP:

ADD R0,R1 ;

DT RS ;Decrements the R5 value and checks whether it has become 0.

BF LOOP ;Branches to LOOP is T=0. (In this example, loops 4 times.)

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 94 of 336
REJ09B0316-0200

7.2.22 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit

EXTS.B Rm, Rn Sign-extend Rm from byte → Rn 0110nnnnmmmm1110 1 �

EXTS.W Rm, Rn Sign-extend Rm from word → Rn 0110nnnnmmmm1111 1 �

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is copied into bits 8 to 31 of Rn. If word length is specified, the bit
15 value of Rm is copied into bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

EXTSW(long m,long n) /* EXTS.W Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

Examples:

EXTS.B R0,R1 ;Before execution: R0 = H'00000080

;After execution: R1 = H'FFFFFF80

EXTS.W R0,R1 ;Before execution: R0 = H'00008000

;After execution: R1 = H'FFFF8000

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 95 of 336
REJ09B0316-0200

7.2.23 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

EXTU.B Rm, Rn Zero-extend Rm from byte → Rn 0110nnnnmmmm1100 1 �

EXTU.W Rm, Rn Zero-extend Rm from word → Rn 0110nnnnmmmm1101 1 �

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, 0s are written in bits 8 to 31 of Rn. If word length is specified, 0s are written in bits 16
to 31 of Rn.

Operation:

EXTUB(long m,long n)/* EXTU.B Rm,Rn */

{

R[n]=R[m];

R[n]&=0x000000FF;

PC+=2;

}

EXTUW(long m,long n)/* EXTU.W Rm,Rn */

{

R[n]=R[m];

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

EXTU.B R0,R1 ;Before execution: R0 = H'FFFFFF80

;After execution: R1 = H'00000080

EXTU.W R0,R1 ;Before execution: R0 = H'FFFF8000

;After execution: R1 = H'00008000

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 96 of 336
REJ09B0316-0200

7.2.24 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

JMP @Rm Rm → PC 0100mmmm00101011 2 �

Description: Branches unconditionally to the address specified by register indirect addressing.
The branch destination is an address specified by the 32-bit data in general register Rm.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

JMP(long m) /* JMP @Rm */

{

unsigned long temp;

temp=PC;

PC=R[m]+4;

Delay_Slot(temp+2);

}

Example:

MOV.L JMP_TABLE,R0 ;Address of R0 = TRGET

JMP @R0 ;Branches to TRGET

MOV R0,R1 ;Executes MOV before branching

.align 4

JMP_TABLE: .data.l TRGET ;Jump table

.................

TRGET: ADD #1,R1 ;← Branch destination

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 97 of 336
REJ09B0316-0200

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 98 of 336
REJ09B0316-0200

7.2.25 JSR (Jump to Subroutine): Branch Instruction (Class: Delayed Branch
Instruction)

Format Abstract Code Cycle T Bit

JSR @Rm PC → PR, Rm → PC 0100mmmm00001011 2 �

Description: Branches to the subroutine procedure at the address specified by register indirect
addressing. The PC value is stored in the PR. The jump destination is an address specified by the
32-bit data in general register Rm. The stored/saved PC is the address four bytes after this
instruction. The JSR instruction and RTS instruction are used together for subroutine procedure
calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

JSR(long m) /* JSR @Rm */

{

PR=PC;

PC=R[m]+4;

Delay_Slot(PR+2);

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 99 of 336
REJ09B0316-0200

Example:

MOV.L JSR_TABLE,R0 ;Address of R0 = TRGET

JSR @R0 ;Branches to TRGET

XOR R1,R1 ;Executes XOR before branching

ADD R0,R1 ;← Return address for when the subroutine procedure
is completed (PR data)

...........

.align 4

JSR_TABLE: .data.l TRGET ;Jump table

TRGET: NOP ;← Procedure entrance

MOV R2,R3 ;

RTS ;Returns to the above ADD instruction

MOV #70,R1 ;Executes MOV before RTS

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 100 of 336
REJ09B0316-0200

7.2.26 LDC (Load to Control Register): System Control Instruction (Class: Interrupt
Disabled Instruction)

Format Abstract Code Cycle T Bit

LDC Rm,SR Rm → SR 0100mmmm00001110 1 LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1 �

LDC Rm,VBR Rm → VBR 0100mmmm00101110 1 �

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 3 LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 3 �

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 3 �

Description: Store the source operand into control register SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LDCSR(long m) /* LDC Rm,SR */

{

SR=R[m]&0x0FFF0FFF;

PC+=2;

}

LDCGBR(long m) /* LDC Rm,GBR */

{

GBR=R[m];

PC+=2;

}

LDCVBR(long m) /* LDC Rm,VBR */

{

VBR=R[m];

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 101 of 336
REJ09B0316-0200

LDCMSR(long m) /* LDC.L @Rm+,SR */

{

SR=Read_Long(R[m])&0x0FFF0FFF;

R[m]+=4;

PC+=2;

}

LDCMGBR(long m) /* LDC.L @Rm+,GBR */

{

GBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMVBR(long m) /* LDC.L @Rm+,VBR */

{

VBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

Examples:

LDC R0,SR ;Before execution: R0 = H'FFFFFFFF, SR = H'00000000

;After execution: SR = H'0FFF0FFF

LDC.L @R15+,GBR ;Before execution: R15 = H'10000000

;After execution: R15 = H'10000004, GBR = @H'10000000

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 102 of 336
REJ09B0316-0200

7.2.27 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code Cycle T Bit
LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 �

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 �

LDS Rm,PR Rm → PR 0100mmmm00101010 1 �

LDS.L @Rm+, MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 1 �

LDS.L @Rm+, MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 1 �

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 1 �

Description: Store the source operand into the system register MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LDSMACH(long m) /* LDS Rm,MACH */

{

MACH=R[m];

PC+=2;

}

LDSMACL(long m) /* LDS Rm,MACL */

{

MACL=R[m];

PC+=2;

}

LDSPR(long m) /* LDS Rm,PR */

{

PR=R[m];

PC+=2;

}

LDSMMACH(long m) /* LDS.L @Rm+,MACH */

{

MACH=Read_Long(R[m]);

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 103 of 336
REJ09B0316-0200

R[m]+=4;

PC+=2;

}

LDSMMACL(long m) /* LDS.L @Rm+,MACL */

{

MACL=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMPR(long m) /* LDS.L @Rm+,PR */

{

PR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

Examples:

LDS R0,PR ;Before execution: R0 = H'12345678, PR = H'00000000

;After execution: PR = H'12345678

LDS.L @R15+,MACL ;Before execution: R15 = H'10000000

;After execution: R15 = H'10000004, MACL = @H'10000000

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 104 of 336
REJ09B0316-0200

7.2.28 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MAC.L @Rm+, @Rn+ Signed operation,
(Rn) × (Rm) + MAC → MAC

0000nnnnmmmm1111 3/(2 to 4) �

Description: Does signed multiplication of 32-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and
the final result is stored in the MAC register. Every time an operand is read, they increment Rm
and Rn by four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation of 48 bits
starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL register
are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) and
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,templ,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);

R[n]+=4;

tempm=(long)Read_Long(R[m]);

R[m]+=4;

if ((long)(tempn^tempm)<0) fnLmL=-1;

else fnLmL=0;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

temp1=(unsigned long)tempn;

temp2=(unsigned long)tempm;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 105 of 336
REJ09B0316-0200

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLm<0){

Res2=~Res2;

if (Res0==0) Res2++;

else Res0=(~Res0)+1;

}

if(S==1){

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=(MACH&0x0000FFFF);

if(((long)Res2<0)&&(Res2<0xFFFF8000)){

Res2=0x00008000;

Res0=0x00000000;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 106 of 336
REJ09B0316-0200

if(((long)Res2>0)&&(Res2>0x00007FFF)){

Res2=0x00007FFF;

Res0=0xFFFFFFFF;

};

MACH={Res2;

MACL=Res0;

}

else {

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=MACH

MACH=Res2;

MACL=Res0;

}

PC+=2;

}

Example:

MOVA TBLM,R0 ;Table address

MOV R0,R1 ;

MOVA TBLN,R0 ;Table address

CLRMAC ;MAC register initialization

MAC.L @R0+,@R1+ ;

MAC.L @R0+,@R1+ ;

STS MACL,R0 ;Store result into R0

...............

.align 2 ;

TBLM .data.l H'1234ABCD ;

.data.l H'5678EF01 ;

TBLN .data.l H'0123ABCD ;

.data.l H'4567DEF0 ;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 107 of 336
REJ09B0316-0200

7.2.29 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MAC.W @Rm+, @Rn+ With sign,
(Rn) × (Rm) + MAC → MAC

0100nnnnmmmm1111 3/(2) �

MAC @Rm+, @Rn+

Description: Does signed multiplication of 16-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and
the final result is stored in the MAC register. Rm and Rn data are incremented by 2 after the
operation.

When the S bit is cleared to 0, the operation is 16 × 16 + 64 → 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 × 16 + 32 → 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) and
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register. The result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Operation:

MACW(long m,long n) /* MAC.W @Rm+,@Rn+*/

{

long tempm,tempn,dest,src,ans;

unsigned long templ;

tempn=(long)Read_Word(R[n]);

R[n]+=2;

tempm=(long)Read_Word(R[m]);

R[m]+=2;

templ=MACL;

tempm=((long)(short)tempn*(long)(short)tempm);

if ((long)MACL>=0) dest=0;

else dest=1;

if ((long)tempm>=0 {

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 108 of 336
REJ09B0316-0200

src=0;

tempn=0;

}

else {

src=1;

tempn=0xFFFFFFFF;

}

src+=dest;

MACL+=tempm;

if ((long)MACL>=0) ans=0;

else ans=1;

ans+=dest;

if (S==1) {

if (ans==1) {

if (src==0) MACL=0x7FFFFFFF;

if (src==2) MACL=0x80000000;

}

}

else {

MACH+=tempn;

if (templ>MACL) MACH+=1;

}

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 109 of 336
REJ09B0316-0200

Example:

MOVA TBLM,R0 ;Table address

MOV R0,R1 ;

MOVA TBLN,R0 ;Table address

CLRMAC ;MAC register initialization

MAC.W @R0+,@R1+ ;

MAC.W @R0+,@R1+ ;

STS MACL,R0 ;Store result into R0

...............

.align 2 ;

TBLM .data.w H'1234 ;

.data.w H'5678 ;

TBLN .data.w H'0123 ;

.data.w H'4567 ;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 110 of 336
REJ09B0316-0200

7.2.30 MOV (Move Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 �

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 �

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 �

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 �

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 1 �

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 1 �

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 �

MOV.B Rm,@�Rn Rn � 1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 �

MOV.W Rm,@�Rn Rn � 2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 �

MOV.L Rm,@�Rn Rn � 4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 �

MOV.B @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 1 �

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 1 �

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 1 �

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 �

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 �

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 �

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1100 1 �

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1101 1 �

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 �

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. Loaded data from memory is
stored in a register after it is sign-extended to a longword.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 111 of 336
REJ09B0316-0200

Operation:

MOV(long m,long n) /* MOV Rm,Rn */

{

R[n]=R[m];

PC+=2;

}

MOVBS(long m,long n) /* MOV.B Rm,@Rn */

{

Write_Byte(R[n],R[m]);

PC+=2;

}

MOVWS(long m,long n) /* MOV.W Rm,@Rn */

{

Write_Word(R[n],R[m]);

PC+=2;

}

MOVLS(long m,long n) /* MOV.L Rm,@Rn */

{

Write_Long(R[n],R[m]);

PC+=2;

}

MOVBL(long m,long n) /* MOV.B @Rm,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

MOVWL(long m,long n) /* MOV.W @Rm,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 112 of 336
REJ09B0316-0200

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLL(long m,long n) /* MOV.L @Rm,Rn */

{

R[n]=Read_Long(R[m]);

PC+=2;

}

MOVBM(long m,long n) /* MOV.B Rm,@–Rn */

{

Write_Byte(R[n]–1,R[m]);

R[n]–=1;

PC+=2;

}

MOVWM(long m,long n) /* MOV.W Rm,@–Rn */

{

Write_Word(R[n]–2,R[m]);

R[n]–=2;

PC+=2;

}

MOVLM(long m,long n) /* MOV.L Rm,@–Rn */

{

Write_Long(R[n]–4,R[m]);

R[n]–=4;

PC+=2;

}

MOVBP(long m,long n)/* MOV.B @Rm+,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

if (n!=m) R[m]+=1;

PC+=2;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 113 of 336
REJ09B0316-0200

}

MOVWP(long m,long n) /* MOV.W @Rm+,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

if (n!=m) R[m]+=2;

PC+=2;

}

MOVLP(long m,long n) /* MOV.L @Rm+,Rn */

{

R[n]=Read_Long(R[m]);

if (n!=m) R[m]+=4;

PC+=2;

}

MOVBS0(long m,long n) /* MOV.B Rm,@(R0,Rn) */

{

Write_Byte(R[n]+R[0],R[m]);

PC+=2;

}

MOVWS0(long m,long n) /* MOV.W Rm,@(R0,Rn) */

{

Write_Word(R[n]+R[0],R[m]);

PC+=2;

}

MOVLS0(long m,long n) /* MOV.L Rm,@(R0,Rn) */

{

Write_Long(R[n]+R[0],R[m]);

PC+=2;

}

MOVBL0(long m,long n) /* MOV.B @(R0,Rm),Rn */

{

R[n]=(long)Read_Byte(R[m]+R[0]);

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 114 of 336
REJ09B0316-0200

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

MOVWL0(long m,long n) /* MOV.W @(R0,Rm),Rn */

{

R[n]=(long)Read_Word(R[m]+R[0]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLL0(long m,long n) /* MOV.L @(R0,Rm),Rn */

{

R[n]=Read_Long(R[m]+R[0]);

PC+=2;

}

Example:

MOV R0,R1 ;Before execution: R0 = H'FFFFFFFF, R1 = H'00000000

;After execution: R1 = H'FFFFFFFF

MOV.W R0,@R1 ;Before execution: R0 = H'FFFF7F80

;After execution: @R1 = H'7F80

MOV.B @R0,R1 ;Before execution: @R0 = H'80, R1 = H'00000000
;After execution: R1 = H'FFFFFF80

MOV.W R0,@–R1 ;Before execution: R0 = H'AAAAAAAA, R1 = H'FFFF7F80

;After execution: R1 = H'FFFF7F7E, @R1 = H'AAAA

MOV.L @R0+,R1 ;Before execution: R0 = H'12345670

;After execution: R0 = H'12345674, R1 = @H'12345670

MOV.B R1,@(R0,R2) ;Before execution: R2 = H'00000004, R0 = H'10000000
;After execution: R1 = @H'10000004

MOV.W @(R0,R2),R1 ;Before execution: R2 = H'00000004, R0 = H'10000000

;After execution: R1 = @H'10000004

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 115 of 336
REJ09B0316-0200

7.2.31 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV #imm,Rn imm → sign extension → Rn 1110nnnniiiiiiii 1 �

MOV.W @(disp, PC),Rn (disp × 2 + PC) → sign extension → Rn 1001nnnndddddddd 1 �

MOV.L @(disp, PC),Rn (disp × 4 + PC) → Rn 1101nnnndddddddd 1 �

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table can be up to PC + 510 bytes. The PC points to
the starting address of the second instruction after this MOV instruction. If the data is a longword,
the 8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from
the table can be up to PC + 1020 bytes. The PC points to the starting address of the second
instruction after this MOV instruction, but the lowest two bits of the PC are corrected to B'00.

Note: The optimum table assignment is at the rear end of the module or one instruction after the
unconditional branch instruction. If the optimum assignment is impossible for the reason
of no unconditional branch instruction in the 510 byte/1020 byte or some other reason,
means to jump past the table by the BRA instruction are required. By assigning this
instruction immediately after the delayed branch instruction, the PC becomes the "first
address + 2".

Operation:

MOVI(long i,long n) /* MOV #imm,Rn */

{

if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);

else R[n]=(0xFFFFFF00 | (long)i);

PC+=2;

}

MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */

{

long disp;

disp=(0x000000FF & (long)d);

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 116 of 336
REJ09B0316-0200

R[n]=(long)Read_Word(PC+(disp<<1));

if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLI(long d,long n) /* MOV.L @(disp,PC),Rn */

{

long disp;

disp=(0x000000FF & (long)d);

R[n]=Read_Long((PC&0xFFFFFFFC)+(disp<<2));

PC+=2;

}

Example:

Address
1000 MOV #H'80,R1 ;R1 = H'FFFFFF80

1002 MOV.W IMM,R2 ;R2 = H'FFFF9ABC, IMM means @(H'08,PC)

1004 ADD #–1,R0 ;

1006 TST R0,R0 ;← PC location used for address calculation for the
MOV.W instruction

1008 MOVT R13 ;

100A BRA NEXT ;Delayed branch instruction

100C MOV.L @(4,PC),R3 ;R3 = H'12345678

100E IMM .data.w H'9ABC ;

1010 .data.w H'1234 ;

1012 NEXT JMP @R3 ;Branch destination of the BRA instruction

1014 CMP/EQ #0,R0 ;← PC location used for address calculation for the
;MOV.L instruction

.align 4 ;

1018 .data.l H'12345678 ;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 117 of 336
REJ09B0316-0200

7.2.32 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV.B @(disp,GBR),R0 (disp + GBR) → sign extension → R0 11000100dddddddd 1 �

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) → sign extension → R0 11000101dddddddd 1 �

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd 1 �

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd 1 �

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd 1 �

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd 1 �

Description: Transfers the source operand to the destination. This instruction is optimum for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but only
the R0 register can be used.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the only change made is to zero-extend the 8-bit displacement. Consequently, an address within
+255 bytes can be specified. When the peripheral module data is a word, the 8-bit displacement is
zero-extended and doubled. Consequently, an address within +510 bytes can be specified. When
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
quadrupled. Consequently, an address within +1020 bytes can be specified. If the displacement is
too short to reach the memory operand, the above @(R0,Rn) mode must be used after the GBR
data is transferred to a general register. When the source operand is in memory, the loaded data is
stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0. R0 cannot be accessed by the next
instruction until the load instruction is finished. The instruction order shown in figure 7.1
will give better results.

MOV.B

AND

ADD

@(12, GBR), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(12, GBR), R0

#20, R1

#80, R0

Figure 7.1 Using R0 after MOV

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 118 of 336
REJ09B0316-0200

Operation:

MOVBLG(long d) /* MOV.B @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Byte(GBR+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}

MOVWLG(long d) /* MOV.W @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Word(GBR+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLLG(long d) /* MOV.L @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=Read_Long(GBR+(disp<<2));

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 119 of 336
REJ09B0316-0200

MOVBSG(long d) /* MOV.B R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Byte(GBR+disp,R[0]);

PC+=2;

}

MOVWSG(long d) /* MOV.W R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Word(GBR+(disp<<1),R[0]);

PC+=2;

}

MOVLSG(long d) /* MOV.L R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Long(GBR+(disp<<2),R[0]);

PC+=2;

}

Examples:

MOV.L @(2,GBR),R0 ;Before execution: @(GBR + 8) = H'12345670

;After execution: R0 = H'12345670

MOV.B R0,@(1,GBR) ;Before execution: R0 = H'FFFF7F80

;After execution: @(GBR + 1) = H'FFFF7F80

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 120 of 336
REJ09B0316-0200

7.2.33 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 �

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd 1 �

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd 1 �

MOV.B @(disp,Rm),R0 (disp + Rm) → sign extension → R0 10000100mmmmdddd 1 �

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → sign extension → R0 10000101mmmmdddd 1 �

MOV.L @(disp,Rm),Rn disp × 4 + Rm) → Rn 0101nnnnmmmmdddd 1 �

Description: Transfers the source operand to the destination. This instruction is optimum for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the R0 register can be used. When the data is a byte, the only change
made is to zero-extend the 4-bit displacement. Consequently, an address within +15 bytes can be
specified. When the data is a word, the 4-bit displacement is zero-extended and doubled.
Consequently, an address within +30 bytes can be specified. When the data is a longword, the
4-bit displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes
can be specified. If the displacement is too short to reach the memory operand, the aforementioned
@(R0,Rn) mode must be used. When the source operand is in memory, the loaded data is stored in
the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always R0. R0 cannot be
accessed by the next instruction until the load instruction is finished. The instruction order
in figure 7.2 will give better results.

MOV.B

AND

ADD

@(2, R1), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(2, R1), R0

#20, R1

#80, R0

Figure 7.2 Using R0 after MOV

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 121 of 336
REJ09B0316-0200

Operation:

MOVBS4(long d,long n) /* MOV.B R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Byte(R[n]+disp,R[0]);

PC+=2;

}

MOVWS4(long d,long n) /* MOV.W R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Word(R[n]+(disp<<1),R[0]);

PC+=2;

}

MOVLS4(long m,long d,long n) /* MOV.L Rm,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Long(R[n]+(disp<<2),R[m]);

PC+=2;

}

MOVBL4(long m,long d) /* MOV.B @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Byte(R[m]+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 122 of 336
REJ09B0316-0200

PC+=2;

}

MOVWL4(long m,long d) /* MOV.W @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Word(R[m]+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLL4(long m,long d,long n)

/* MOV.L @(disp,Rm),Rn */

{

long disp;

disp=(0x0000000F & (long)d);

R[n]=Read_Long(R[m]+(disp<<2));

PC+=2;

}

Examples:

MOV.L @(2,R0),R1 ;Before execution: @(R0 + 8) = H'12345670

;After execution: R1 = H'12345670

MOV.L R0,@(H'F,R1) ;Before execution: R0 = H'FFFF7F80

;After execution: @(R1 + 60) = H'FFFF7F80

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 123 of 336
REJ09B0316-0200

7.2.34 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 �

Description: Stores the effective address of the source operand into general register R0. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC is the address four bytes after this instruction, but the lowest
two bits of the PC are corrected to B'00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(long d) /* MOVA @(disp,PC),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(PC&0xFFFFFFFC)+(disp<<2);

PC+=2;

}

Example:

Address .org H'1006

1006 MOVA STR,R0 ;Address of STR → R0

1008 MOV.B @R0,R1 ;R1 = �X� ← PC location after correcting the lowest two
bits

100A ADD R4,R5 ;← Original PC location for address calculation for the
MOVA instruction

.align 4

100C STR: .sdata “XYZP12”

...............

2002 BRA TRGET ;Delayed branch instruction

2004 MOVA @(0,PC),R0 ;Address of TRGET + 2 → R0

2006 NOP ;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 124 of 336
REJ09B0316-0200

7.2.35 MOVT (Move T Bit): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOVT Rn T → Rn 0000nnnn00101001 1 �

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T = 0, 0 is stored in Rn.

Operation:

MOVT(long n) /* MOVT Rn */

{

R[n]=(0x00000001 & SR);

PC+=2;

}

Example:

XOR R2,R2 ;R2 = 0

CMP/PZ R2 ;T = 1

MOVT R0 ;R0 = 1

CLRT ;T = 0

MOVT R1 ;R1 = 0

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 125 of 336
REJ09B0316-0200

7.2.36 MUL.L (Multiply Long): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 to 4 �

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the bottom 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MUL.L(long m,long n)/* MUL.L Rm,Rn */

{

MACL=R[n]*R[m];

PC+=2;

}

Example:

MULL R0,R1 ;Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

;After execution: MACL = H'FFFF5556

STS MACL,R0 ;Operation result

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 126 of 336
REJ09B0316-0200

7.2.37 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MULS.W Rm,Rn
MULS Rm,Rn

Signed operation, Rn × Rm → MACL 0010nnnnmmmm1111 1 to 3 �

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MULS(long m,long n) /* MULS Rm,Rn */

{

MACL=((long)(short)R[n]*(long)(short)R[m]);

PC+=2;

}

Example:

MULS R0,R1 ;Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

;After execution: MACL = H'FFFF5556

STS MACL,R0 ;Operation result

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 127 of 336
REJ09B0316-0200

7.2.38 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MULU.W Rm,Rn
MULU Rm,Rn

Unsigned, Rn × Rm → MACL 0010nnnnmmmm1110 1 to 3 �

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(long m,long n) /* MULU Rm,Rn */

{

MACL=((unsigned long)(unsigned short)R[n]

*(unsigned long)(unsigned short)R[m]);

PC+=2;

}

Example:

MULU R0,R1 ;Before execution: R0 = H'00000002, R1 = H'FFFFAAAA

;After execution: MACL = H'00015554

STS MACL,R0 ;Operation result

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 128 of 336
REJ09B0316-0200

7.2.39 NEG (Negate): Arithmetic Instruction

Format Abstract Code Cycle T Bit

NEG Rm,Rn 0 � Rm → Rn 0110nnnnmmmm1011 1 �

Description: Takes the two�s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n) /* NEG Rm,Rn */

{

R[n]=0-R[m];

PC+=2;

}

Example:

NEG R0,R1 ;Before execution: R0 = H'00000001

;After execution: R1 = H'FFFFFFFF

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 129 of 336
REJ09B0316-0200

7.2.40 NEGC (Negate with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit

NEGC Rm,Rn 0 � Rm � T → Rn, Borrow → T 0110nnnnmmmm1010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC(long m,long n) /* NEGC Rm,Rn */

{

unsigned long temp;

temp=0-R[m];

R[n]=temp-T;

if (0<temp) T=1;

else T=0;

if (temp<R[n]) T=1;

PC+=2;

}

Examples:

CLRT ;Sign inversion of R1 and R0 (64 bits)

NEGC R1,R1 ;Before execution: R1 = H'00000001, T = 0

;After execution: R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 ;Before execution: R0 = H'00000000, T = 1

;After execution: R0 = H'FFFFFFFF, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 130 of 336
REJ09B0316-0200

7.2.41 NOP (No Operation): System Control Instruction

Format Abstract Code Cycle T Bit

NOP No operation 0000000000001001 1 �

Description: Increments the PC to execute the next instruction.

Operation:

NOP() /* NOP */

{

PC+=2;

}

Example:

NOP ;Executes in one cycle

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 131 of 336
REJ09B0316-0200

7.2.42 NOT (NOT�Logical Complement): Logic Operation Instruction

Format Abstract Code Cycle T Bit

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 �

Description: Takes the one�s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) /* NOT Rm,Rn */

{

R[n]=~R[m];

PC+=2;

}

Example:

NOT R0,R1 ;Before execution: R0 = H'AAAAAAAA

;After execution: R1 = H'55555555

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 132 of 336
REJ09B0316-0200

7.2.43 OR (OR Logical) Logic Operation Instruction

Format Abstract Code Cycle T Bit

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 �

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 �

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0 + GBR) 11001111iiiiiiii 3 �

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */

{

R[n]|=R[m];

PC+=2;

}

ORI(long i) /* OR #imm,R0 */

{

R[0]|=(0x000000FF & (long)i);

PC+=2;

}

ORM(long i) /* OR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp|=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 133 of 336
REJ09B0316-0200

Examples:

OR R0,R1 ;Before execution: R0 = H'AAAA5555, R1 = H'55550000

;After execution: R1 = H'FFFF5555

OR #H'F0,R0 ;Before execution: R0 = H'00000008

;After execution: R0 = H'000000F8

OR.B #H'50,@(R0,GBR) ;Before execution: @(R0,GBR) = H'A5

;After execution: @(R0,GBR) = H'F5

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 134 of 336
REJ09B0316-0200

7.2.44 ROTCL (Rotate with Carry Left): Shift Instruction

Format Abstract Code Cycle T Bit

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
7.3).

LSBMSB

T
ROTCL

Figure 7.3 Rotate with Carry Left

Operation:

ROTCL(long n) /* ROTCL Rn */

{

long temp;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Example:

ROTCL R0 ;Before execution: R0 = H'80000000, T = 0

;After execution: R0 = H'00000000, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 135 of 336
REJ09B0316-0200

7.2.45 ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code Cycle T Bit

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 7.4).

LSBMSB

T
ROTCR

Figure 7.4 Rotate with Carry Right

Operation:

ROTCR(long n) /* ROTCR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) temp=0;

else temp=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Examples:

ROTCR R0 ;Before execution: R0 = H'00000001, T = 1

;After execution: R0 = H'80000000, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 136 of 336
REJ09B0316-0200

7.2.46 ROTL (Rotate Left): Shift Instruction

Format Abstract Code Cycle T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 7.5). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

TROTL

Figure 7.5 Rotate Left

Operation:

ROTL(long n) /* ROTL Rn */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

PC+=2;

}

Examples:

ROTL R0 ;Before execution: R0 = H'80000000, T = 0

;After execution: R0 = H'00000001, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 137 of 336
REJ09B0316-0200

7.2.47 ROTR (Rotate Right): Shift Instruction

Format Abstract Code Cycle T Bit

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 7.6). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

T
ROTR

Figure 7.6 Rotate Right

Operation:

ROTR(long n) /* ROTR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

ROTR R0 ;Before execution: R0 = H'00000001, T = 0

;After execution: R0 = H'80000000, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 138 of 336
REJ09B0316-0200

7.2.48 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

RTE Delayed branch, Stack area → PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value. The T bit is used
as the LSB bit in the SR register restored from the stack area.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTE() /* RTE */

{

unsigned long temp;

temp=PC;

PC=Read_Long(R[15])+4;

R[15]+=4;

SR=Read_Long(R[15])&0x0FFF0FFF;

R[15]+=4;

Delay_Slot(temp+2);

}

Example:

RTE ;Returns to the original routine

ADD #8,R14 ;Executes ADD before branching

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 139 of 336
REJ09B0316-0200

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 140 of 336
REJ09B0316-0200

7.2.49 RTS (Return from Subroutine): Branch Instruction (Class: Delayed Branch
Instruction)

Format Abstract Code Cycle T Bit

RTS Delayed branch, PR → PC 0000000000001011 2 �

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR, BSRF, or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTS() /* RTS */

{

unsigned long temp;

temp=PC;

PC=PR+4;

Delay_Slot(temp+2);

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 141 of 336
REJ09B0316-0200

Example:

MOV.L TABLE,R3 ;R3 = Address of TRGET

JSR @R3 ;Branches to TRGET

NOP ;Executes NOP before branching

ADD R0,R1 ;← Return address for when the subroutine procedure is
completed (PR data)

TABLE: .data.l TRGET ;Jump table

TRGET: MOV R1,R0 ;← Procedure entrance

RTS ;PR data → PC

MOV #12,R0 ;

Executes MOV before branching

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 142 of 336
REJ09B0316-0200

7.2.50 SETT (Set T Bit): System Control Instruction

Format Abstract Code Cycle T Bit

SETT 1 → T 0000000000011000 1 1

Description: Sets the T bit to 1.

Operation:

SETT() /* SETT */

{

T=1;

PC+=2;

}

Example:

SETT ;Before execution: T = 0

;After execution: T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 143 of 336
REJ09B0316-0200

7.2.51 SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code Cycle T Bit

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 7.7).

LSBMSB

T 0SHAL

Figure 7.7 Shift Arithmetic Left

Operation:

SHAL(long n) /* SHAL Rn(Same as SHLL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Example:

SHAL R0 ;Before execution: R0 = H'80000001, T = 0

;After execution: R0 = H'00000002, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 144 of 336
REJ09B0316-0200

7.2.52 SHAR (Shift Arithmetic Right): Shift Instruction

Format Abstract Code Cycle T Bit

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
7.8).

LSBMSB

T
SHAR

Figure 7.8 Shift Arithmetic Right

Operation:

SHAR(long n) /* SHAR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) T=0;

else T=1;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]>>=1;

if (temp==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Example:

SHAR R0 ;Before execution: R0 = H'80000001, T = 0

;After execution: R0 = H'C0000000, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 145 of 336
REJ09B0316-0200

7.2.53 SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code Cycle T Bit

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 7.9).

LSBMSB

T 0SHLL

Figure 7.9 Shift Logical Left

Operation:

SHLL(long n) /* SHLL Rn(Same as SHAL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Examples:

SHLL R0 ;Before execution: R0 = H'80000001, T = 0

;After execution: R0 = H'00000002, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 146 of 336
REJ09B0316-0200

7.2.54 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code Cycle T Bit

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 �

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 �

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 �

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 7.10).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLL2

SHLL8

SHLL16

Figure 7.10 Shift Logical Left n Bits

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 147 of 336
REJ09B0316-0200

Operation:

SHLL2(long n) /* SHLL2 Rn */

{

R[n]<<=2;

PC+=2;

}

SHLL8(long n) /* SHLL8 Rn */

{

R[n]<<=8;

PC+=2;

}

SHLL16(long n) /* SHLL16 Rn */

{

R[n]<<=16;

PC+=2;

}

Examples:

SHLL2 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'48D159E0

SHLL8 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'34567800

SHLL16 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'56780000

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 148 of 336
REJ09B0316-0200

7.2.55 SHLR (Shift Logical Right): Shift Instruction

Format Abstract Code Cycle T Bit

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 7.11).

LSBMSB

T0SHLR

Figure 7.11 Shift Logical Right

Operation:

SHLR(long n) /* SHLR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

SHLR R0 ;Before execution: R0 = H'80000001, T = 0

;After execution: R0 = H'40000000, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 149 of 336
REJ09B0316-0200

7.2.56 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code Cycle T Bit

SHLR2 Rn Rn>>2 → Rn 0100nnnn00001001 1 �

SHLR8 Rn Rn>>8 → Rn 0100nnnn00011001 1 �

SHLR16 Rn Rn>>16 → Rn 0100nnnn00101001 1 �

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 7.12).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLR2

SHLR8

SHLR16

Figure 7.12 Shift Logical Right n Bits

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 150 of 336
REJ09B0316-0200

Operation:

SHLR2(long n) /* SHLR2 Rn */

{

R[n]>>=2;

R[n]&=0x3FFFFFFF;

PC+=2;

}

SHLR8(long n) /* SHLR8 Rn */

{

R[n]>>=8;

R[n]&=0x00FFFFFF;

PC+=2;

}

SHLR16(long n) /* SHLR16 Rn */

{

R[n]>>=16;

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

SHLR2 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'048D159E

SHLR8 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'00123456

SHLR16 R0 ;Before execution: R0 = H'12345678

;After execution: R0 = H'00001234

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 151 of 336
REJ09B0316-0200

7.2.57 SLEEP (Sleep): System Control Instruction

Format Abstract Code Cycle T Bit

SLEEP Sleep 0000000000011011 3 �

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU internal status is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.

Operation:

SLEEP() /* SLEEP */

{

PC-=2;

wait_for_exception;

}

Example:

SLEEP ;Enters power-down mode

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 152 of 336
REJ09B0316-0200

7.2.58 STC (Store Control Register): System Control Instruction (Interrupt Disabled
Instruction)

Format Abstract Code Cycle T Bit

STC SR,Rn SR → Rn 0000nnnn00000010 1 �

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 �

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 �

STC.L SR,@�Rn Rn � 4 → Rn, SR → (Rn) 0100nnnn00000011 2 �

STC.L GBR,@�Rn Rn � 4 → Rn, GBR → (Rn) 0100nnnn00010011 2 �

STC.L VBR,@�Rn Rn � 4 → Rn, VBR → (Rn) 0100nnnn00100011 2 �

Description: Stores control register SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STCSR(long n) /* STC SR,Rn */

{

R[n]=SR;

PC+=2;

}

STCGBR(long n) /* STC GBR,Rn */

{

R[n]=GBR;

PC+=2;

}

STCVBR(long n) /* STC VBR,Rn */

{

R[n]=VBR;

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 153 of 336
REJ09B0316-0200

STCMSR(long n) /* STC.L SR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],SR);

PC+=2;

}

STCMGBR(long n) /* STC.L GBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],GBR);

PC+=2;

}

STCMVBR(long n) /* STC.L VBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],VBR);

PC+=2;

}

Examples:

STC SR,R0 ;Before execution: R0 = H'FFFFFFFF, SR = H'00000000

;After execution: R0 = H'00000000

STC.L GBR,@-R15 ;Before execution: R15 = H'10000004

;After execution: R15 = H'10000000, @R15 = GBR

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 154 of 336
REJ09B0316-0200

7.2.59 STS (Store System Register): System Control Instruction (Interrupt Disabled
Instruction)

Format Abstract Code Cycle T Bit

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 �

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 �

STS PR,Rn PR → Rn 0000nnnn00101010 1 �

STS.L MACH,@�Rn Rn � 4 → Rn, MACH → (Rn) 0100nnnn00000010 1 �

STS.L MACL,@�Rn Rn � 4 → Rn, MACL → (Rn) 0100nnnn00010010 1 �

STS.L PR,@�Rn Rn � 4 → Rn, PR → (Rn) 0100nnnn00100010 1 �

Description: Stores data from system register MACH, MACL, or PR into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STSMACH(long n) /* STS MACH,Rn */

{

R[n]=MACH;

PC+=2;

}

STSMACL(long n) /* STS MACL,Rn */

{

R[n]=MACL;

PC+=2;

}

STSPR(long n) /* STS PR,Rn */

{

R[n]=PR;

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 155 of 336
REJ09B0316-0200

STSMMACH(long n) /* STS.L MACH,@–Rn */

{

R[n]–=4;

Write_Long(R[n],MACH);

PC+=2;

}

STSMMACL(long n) /* STS.L MACL,@–Rn */

{

R[n]–=4;

Write_Long(R[n],MACL);

PC+=2;

}

STSMPR(long n) /* STS.L PR,@–Rn */

{

R[n]–=4;

Write_Long(R[n],PR);

PC+=2;

}

Example:

STS MACH,R0 ;Before execution: R0 = H'FFFFFFFF, MACH = H'00000000

;After execution: R0 = H'00000000

STS.L PR,@–R15 ;Before execution: R15 = H'10000004

;After execution: R15 = H'10000000, @R15 = PR

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 156 of 336
REJ09B0316-0200

7.2.60 SUB (Subtract Binary): Arithmetic Instruction

Format Abstract Code Cycle T Bit

SUB Rm,Rn Rn � Rm → Rn 0011nnnnmmmm1000 1 �

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m,long n) /* SUB Rm,Rn */

{

R[n]-=R[m];

PC+=2;

}

Example:

SUB R0,R1 ;Before execution: R0 = H'00000001, R1 = H'80000000

;After execution: R1 = H'7FFFFFFF

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 157 of 336
REJ09B0316-0200

7.2.61 SUBC (Subtract with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit

SUBC Rm,Rn Rn � Rm� T → Rn, Borrow → T 0011nnnnmmmm1010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn data, and stores the
result in Rn. The T bit changes according to the result. This instruction is used for subtraction of
data that has more than 32 bits.

Operation:

SUBC(long m,long n) /* SUBC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]-R[m];

tmp0=R[n];

R[n]=tmp1-T;

if (tmp0<tmp1) T=1;

else T=0;

if (tmp1<R[n]) T=1;

PC+=2;

}

Examples:

CLRT ;R0:R1(64 bits) � R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 ;Before execution: T = 0, R1 = H'00000000, R3 = H'00000001

;After execution: T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 ;Before execution: T = 1, R0 = H'00000000, R2 = H'00000000

;After execution: T = 1, R0 = H'FFFFFFFF

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 158 of 336
REJ09B0316-0200

7.2.62 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction

Format Abstract Code Cycle T Bit
SUBV Rm,Rn Rn � Rm → Rn, underflow → T 0011nnnnmmmm1011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long m,long n) /* SUBV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]-=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==1) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

SUBV R0,R1 ;Before execution: R0 = H'00000002, R1 = H'80000001

;After execution: R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 ;Before execution: R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

;After execution: R3 = H'80000000, T = 1

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 159 of 336
REJ09B0316-0200

7.2.63 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code Cycle T Bit

SWAP.B Rm,Rn Rm → Swap upper and lower
halves of lower 2 bytes → Rn

0110nnnnmmmm1000 1 �

SWAP.W Rm,Rn Rm → Swap upper and lower
word → Rn

0110nnnnmmmm1001 1 �

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(long m,long n)/* SWAP.B Rm,Rn */

{

unsigned long temp0,temp1;

temp0=R[m]&0xffff0000;

temp1=(R[m]&0x000000ff)<<8;

R[n]=(R[m]>>8)&0x000000ff;

R[n]=R[n]|temp1|temp0;

PC+=2;

}

SWAPW(long m,long n)/* SWAP.W Rm,Rn */

{

unsigned long temp;

temp=(R[m]>>16)&0x0000FFFF;

R[n]=R[m]<<16;

R[n]|=temp;

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 160 of 336
REJ09B0316-0200

Examples:

SWAP.B R0,R1 ;Before execution: R0 = H'12345678

;After execution: R1 = H'12347856

SWAP.W R0,R1 ;Before execution: R0 = H'12345678

;After execution: R1 = H'56781234

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 161 of 336
REJ09B0316-0200

7.2.64 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code Cycle T Bit

TAS.B @Rn When (Rn) is 0, 1 → T, 1 → MSB
of (Rn)

0100nnnn00011011 4 Test results

Description: Reads byte data from the address specified by general register Rn, and sets the T bit
to 1 if the data is 0, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

TAS(long n) /* TAS.B @Rn */

{

long temp;

temp=(long)Read_Byte(R[n]); /* Bus Lock enable */

if (temp==0) T=1;

else T=0;

temp|=0x00000080;

Write_Byte(R[n],temp); /* Bus Lock disable */

PC+=2;

}

Example:

_LOOP TAS.B @R7 ;R7 = 1000

BF _LOOP ;Loops until data in address 1000 is 0

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 162 of 336
REJ09B0316-0200

7.2.65 TRAPA (Trap Always): System Control Instruction

Format Abstract Code Cycle T Bit

TRAPA #imm PC/SR → Stack area, (imm × 4 + VBR)
→ PC

11000011iiiiiiii 8 �

Description: Starts the trap exception processing. The PC and SR values are stored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC is the start
address of the next instruction. TRAPA and RTE are both used together for system calls.

Operation:

TRAPA(long i) /* TRAPA #imm */

{

long imm;

imm=(0x000000FF & i);

R[15]-=4;

Write_Long(R[15],SR);

R[15]-=4;

Write_Long(R[15],PC–2);

PC=Read_Long(VBR+(imm<<2))+4;

}

Example:

Address

VBR+H'80 .data.l 10000000 ;

TRAPA #H'20 ;Branches to an address specified by data in address VBR + H'80

TST #0,R0 ;← Return address from the trap routine (stacked PC value)

100000000 XOR R0,R0 ;← Trap routine entrance

100000002 RTE ;Returns to the TST instruction

100000004 NOP ;Executes NOP before RTE

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 163 of 336
REJ09B0316-0200

7.2.66 TST (Test Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit

TST Rm,Rn Rn & Rm, when result is 0, 1 → T 0010nnnnmmmm1000 1 Test
results

TST #imm,R0 R0 & imm, when result is 0, 1 → T 11001000iiiiiiii 1 Test
results

TST.B #imm,
@(R0,GBR)

(R0 + GBR) & imm, when result is
0, 1 → T

11001100iiiiiiii 3 Test
results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register R0 can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The R0 and memory data do not change.

Operation:

TST(long m,long n) /* TST Rm,Rn */

{

if ((R[n]&R[m])==0) T=1;

else T=0;

PC+=2;

}

TSTI(long i) /* TEST #imm,R0 */

{

long temp;

temp=R[0]&(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 164 of 336
REJ09B0316-0200

TSTM(long i) /* TST.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}

Examples:

TST R0,R0 ;Before execution: R0 = H'00000000

;After execution: T = 1

TST #H'80,R0 ;Before execution: R0 = H'FFFFFF7F

;After execution: T = 1

TST.B #H'A5,@(R0,GBR) ;Before execution: @(R0,GBR) = H'A5

;After execution: T = 0

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 165 of 336
REJ09B0316-0200

7.2.67 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 �

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 �

XOR.B #imm,
@(R0,GBR)

(R0 + GBR) ^ imm → (R0 + GBR) 11001110iiiiiiii 3 �

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n) /* XOR Rm,Rn */

{

R[n]^=R[m];

PC+=2;

}

XORI(long i) /* XOR #imm,R0 */

{

R[0]^=(0x000000FF & (long)i);

PC+=2;

}

XORM(long i) /* XOR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp^=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 166 of 336
REJ09B0316-0200

Examples:

XOR R0,R1 ;Before execution: R0 = H'AAAAAAAA, R1 = H'55555555

;After execution: R1 = H'FFFFFFFF

XOR #H'F0,R0 ;Before execution: R0 = H'FFFFFFFF

;After execution: R0 = H'FFFFFF0F

XOR.B #H'A5,@(R0,GBR) ;Before execution: @(R0,GBR) = H'A5

;After execution: @(R0,GBR) = H'00

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 167 of 336
REJ09B0316-0200

7.2.68 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code Cycle T Bit

XTRCT Rm,Rn Rm: Center 32 bits of Rn → Rn 0010nnnnmmmm1101 1 �

Description: Extracts the middle 32 bits from the 64 bits of coupled general registers Rm and Rn,
and stores the 32 bits in Rn (figure 7.13).

Rm Rn

Rn

MSB MSBLSB LSB

Figure 7.13 Extract

Operation:

XTRCT(long m,long n)/* XTRCT Rm,Rn */

{

unsigned long temp;

temp=(R[m]<<16)&0xFFFF0000;

R[n]=(R[n]>>16)&0x0000FFFF;

R[n]|=temp;

PC+=2;

}

Example:

XTRCT R0,R1 ;Before execution: R0 = H'01234567, R1 = H'89ABCDEF

;After execution: R1 = H'456789AB

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 168 of 336
REJ09B0316-0200

7.3 Floating Point Instructions and FPU Related CPU Instructions

The functions used in the descriptions of the operation of FPU calculations are as follows.

long FPSCR;

int T;

int load_long(long *adress, *data)

{

 /* This function is defined in CPU part */

}

int store_long(long *adress, *data)

{

 /* This function is defined in CPU part */

}

int sign_of(long *src)

{

 return(*src >> 31);

}

int data_type_of(long *src)

{

float abs;

 abs = *src & 0x7fffffff;

 if(abs < 0x00800000) {

 if(sign_of (src) == 0) return(PZERO);

 else return(NZERO);

}

 else if((0x00800000 <= abs) && (abs < 0x7f800000))

 return(NORM);

 else if(0x7f800000 == abs) {

 if(sign_of (src) == 0) return(PINF);

 else return(NINF);

 }

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 169 of 336
REJ09B0316-0200

 else if(0x00400000 & abs) return(sNaN);

 else return(qNaN);

 }

}

clear_cause_VZ(){ FPSCR &= (~CAUSE_V & ~CAUSE_Z); }

set_V(){ FPSCR  = (CAUSE_V  FLAG_V); }

set_Z(){ FPSCR  = (CAUSE_Z  FLAG_Z); }

invalid(float *dest)

{

 set_V();

 if((FPSCR & ENABLE_V) == 0) qnan(dest);

 }

}

dz(float *dest, int sign)

{

 set_Z();

 if((FPSCR & ENABLE_Z) == 0) inf (dest,sign);

}

zero(float *dest, int sign)

{

 if(sign == 0) *dest = 0x00000000;

 else *dest = 0x80000000;

}

int(float *dest, int sign)

{

 if(sign == 0) *dest = 0x7f800000;

 else *dest = 0xff800000;

}

qnan(float *dest)

{

 *dest = 0x7fbfffff;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 170 of 336
REJ09B0316-0200

7.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction

Format Abstract Code Cycle T Bit

FABS FRn |FRn| → FRn 1111nnnn01011101 1 �

Description: Obtains arithmetic absolute value (as a floating point number) of the contents of
floating point register FRn. The calculation result is stored in FRn.

Operation:

FABS(float *Frn) /* FABS FRn */

{

 clear_cause_VZ();

 case(data_type_of(FRn)) {

 NORM: if(sign_of(FRn) == 0) *FRn = *FRn;

 else *FRn = -*FRn;

 break;

 PZERO :

 NZERO : zero(FRn,0); break;

 PINF :

 NINF : inf(FRn,0); break;

 qnan : qnan(FRn); break;

 sNaN : invalid(FRn); break;

 }

 pc += 2;

}

FABS Special Cases

FRn NORM +0 �0 +INF �INF qNaN sNaN

FABS(FRn) ABS +0 +0 +INF +INF qNaN Invalid
Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 171 of 336
REJ09B0316-0200

Examples:

 FABS FR2 ; Floating point absolute value

; Before execution FR2=H'C0800000/*�4 in base 10*/

; After execution FR2=H'40800000/*4 in base 10*/

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 172 of 336
REJ09B0316-0200

7.3.2 FADD (Floating Point Add): Floating Point Instruction

Format Abstract Code Cycles T Bit

FADD FRm,FRn FRn + FRm → FRn 1111nnnnmmmm0000 1 �

Description: Arithmetically adds (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result is stored in FRn.

Operation:

FADD (float *FRm,FRn) /* FADD FRm,FRn */

{

 clear_cause_VZ();

 if((data_type_of(FRm) = = sNaN) ||

 (data_type_of(FRn) = = sNaN)) invalid(FRn);

 else if((data_type_of(FRm) = = qNaN) ||

 (data_type_of(FRn) = = qNaN)) qnan(FRn);

 else case(data_type_of(FRm)) {

 NORM:

 case(data_type_of(FRn)) {

 PINF : inf(FRn,0); break;

 NINF : inf(FRn,1); break;

 default : *FRn = *FRn + *FRm; break;

 } break;

 PZERO:

 case(data_type_of(FRn)) {

 NORM : *FRn = *FRn + *FRm; break;

 PZERO :

 NZERO : zero(FRn,0); break;

 PINF : inf(FRn,0); break;

 NINF : inf(FRn,1); break;

 } break;

 NZERO:

 case(data_type_of(FRn)){

 NORM : *FRn = *FRn + *FRm; break;

 PZERO : zero(FRn,0); break;

 NZERO : zero(FRn,1); break;

 PINF : inf(FRn,0); break;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 173 of 336
REJ09B0316-0200

 NINF : inf(FRn,1); break;

 } break;

 PINF:

 case(data_type_of(FRn)) {

 NINF : invalid(FRn); break;

 default : inf(FRn,0); break;

 } break;

 NINF:

 case(data_type_of(FRn)){

 PINF : invalid(FRn); break;

 default : inf(FRn,1); break;

 } break;

 }

 pc += 2;

}

FADD Special Cases

FRm FRn

NORM +0 �0 +INF �INF qNaN sNaN

NORM ADD �INF

+0 +0

�0 �0

+INF +INF Invalid

�INF �INF Invalid �INF

qNaN qNaN

sNaN Invalid
Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 174 of 336
REJ09B0316-0200

Examples:

FADD FR2,FR3 ; Floating point add
 ; Before execution: FR2=H'40400000/*3 in base 10*/
 ; FR3=H'3F800000/*1 in base 10*/
 ; After execution: FR2=H'40400000

 ; FR3=H'40800000/*4 in base 10*/
FADD FR5,FR4 ;

 ; Before execution: FR5=H'40400000/*3 in base 10*/
 ; FR4=H'C0000000/*�2 in base 10*/
 ; After execution: FR5=H'40400000

 ; FR4=H'3F800000/*1 in base 10*/

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 175 of 336
REJ09B0316-0200

7.3.3 FCMP (Floating Point Compare): Floating Point Instruction

Format Abstract Code Cycle T Bit

FCMP/
EQ FRm,FRn

(FRn == FRm)? 1:0 → T 1111nnnnmmmm0100 1 Comparison
result

FCMP/GT FRm,FRn (FRn > FRm)? 1:0 → T 1111nnnnmmmm0101 1 Comparison
result

Description: Arithmetically compares (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result (true/false) is written to the T bit.

Operation:

FCMP_EQ(float *FRm,FRn) /* FCMP/EQ FRm,FRn */

{

 clear_cause_VZ();

 if (fcmp_chk(FRm,FRn) = = INVALID) {fcmp_invalid(0); }

 else if(fcmp_chk(FRm,FRn) = = EQ) T = 1;

 else T = 0;

 pc += 2;

}

FCMP_GT(float *FRm,FRn) /* FCMP/GT FRm,FRn */

{

 clear_cause_VZ();

 if (fcmp_chk(FRm,FRn)==INVALID)||{fcmp_chk(FRm,FRn)==UO)){

 fcmp_invalid(0):}

 else if(fcmp_chk(FRm,FRn) = = GT) T = 1;

 else T = 0;

 pc += 2;

}

fcmp_chk(float *FRm,*FRn)

{

 if((data_type_of(FRm) == sNaN) ||

 (data_type_of(FRn) == sNaN)) return(INVALID);

 else if((data_type_of(FRm) == qNaN) || ||

 (data_type_of(FRn) == qNaN)) return(UO);

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 176 of 336
REJ09B0316-0200

 else case(data_type_of(FRm)) {

 NORM :case(data_type_of(FRn)) {

 PINF :return(GT); break;

 NINF :return(NOTGT); break;

 default : break;

 } break;

 PZERO :

 NZERO : case(data_type_of(FRn)) {

 PZERO :

 NZERO :return(EQ); break;

 PINF :return(GT); break;

 NINF :return(NOTGT); break;

 default : break;

 } break;

 PINF : case(data_type_of(FRn)) {

 PINF :return(EQ) break;

 default :return(NOTGT); break;

 } break;

 NINF : case(data_type_of(FRn)) {

 NINF :return(EQ); break;

 default :return(GT); break;

 } break;

 }

 if(*FRn = = *FRm) return(EQ);

 else if(*FRn > *FRm) return(GT);

 else return(NOTGT);

}

fcmp_invalid(int cmp_flag)

{

 set_V();

 if((FPSCR & ENABLE_V) = = 0) T = cmp_flag;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 177 of 336
REJ09B0316-0200

FCMP Special Cases

FRm FRn

NORM +0 �0 +INF �INF qNaN sNaN

NORM CMP GT !GT

+0 EQ

�0

+INF !GT EQ

�INF GT EQ

qNaN UO

sNaN Invalid
Notes: 1. UO if result is FCMP/EQ, invalid if result is FCMP/GT.

2. Non-normalized values are treated as zero.

Exceptions: Invalid operation

Note: Four comparison operations that are independent of each other are defined in the IEEE
standard, but the SH-2E supports FCMP/EQ and FCMP/GT only. However, all
comparison conditions can be supported by using these two FCMP instructions in
combination with the BT and BF instructions.

 (FRm = = FRn) fcmp/eq FRm, FRn ; bt

 (FRm ! = FRn) fcmp/eq FRm, FRn ; bf

 (FRm < FRn) fcmp/gt FRm, FRn ; bt

 (FRm <= FRn) fcmp/gt FRn, FRm ; bt

 (FRm > FRn) fcmp/gt FRn, FRm ; bt

 (FRm >= FRn) fcmp/gt FRm, FRn ; bf

Unorder FRm, FRn fcmp/eq FRm, FRm ; bf

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 178 of 336
REJ09B0316-0200

Examples:

 FCMP/EQ:

 FLDI1 FR6 ;FR6=H'3F800000/*1 in base 10*/

 FLDI1 FR7 ;FR7=H'3F800000

 CLRT ;T Bit =0

 FCMP/EQ FR6,FR7 ; Floating point compare, equal

 BF TRGET_F ; Don't branch (T=1)

 NOP

 BT/S TRGET_T ; Branch

 FADD FR6,FR7 ; Delay slot, FR7=H'40000000/*2 in base 10*/

 NOP

TRGET_F FCMP/EQ FR6,FR7

 BT/S TRGET_T ; Don't branch (T=0)

 FLDI1 FR7 ; Delay slot

TRGET_T FCMP/EQ FR6,FR7 ; T bit = 0

 BF TRGET_F ; Branch first time only

 NOP ;FR6=FR7=H'3F800000/*1 in base 10*/

 .END

 FCMP/GT:

 FLDI1 FR2 ;FR2=H'3F800000/*1 in base 10*/

 FLDI1 FR7

 FADD FR2,FR7 ;FR7=H'40000000/*2 in base 10*/

 CLRT ; T bit = 0

 FCMP/GT FR2,FR7 ; Floating point compare, greater than

 BT/S TRGET_T ; Branch (T=1)

 FLDI1 FR7

TRGET_T FCMP/GT FR2,FR7 ; T bit = 0

 BT TRGET_T ; Don't branch (T=0)

 .END

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 179 of 336
REJ09B0316-0200

7.3.4 FDIV (Floating Point Divide): Floating Point Instruction

Format Abstract Code Cycles T Bit

FDIV FRm, FRn FRn/FRm → FRn 1111nnnnmmmm0011 13 �

Description: Arithmetically divides (as floating point numbers) the contents of floating point
register FRn by the contents of floating point register FRm. The calculation result is stored in FRn.

Operation:

FDIV(float *FRm,*FRn) /* FDIV FRm,FRn */

{

 clear_cause_VZ();

 if((data_type_of(FRm) = = sNaN) | |

 (data_type_of(FRn) = = sNaN)) invalid(FRn);

 else if((data_type_of(FRm) = = qNaN) | |

 (data_type_of(FRn) = = qNaN)) qnan(FRn);

 else case((data_type_of(FRm) {

 NORM :

 case(data_type_of(FRn)) {

 PINF :

 NINF : inf(FRn,sign_of(FRm)^sign_of(FRn)); break;

 default : *FRn =*FRn / *FRm; break;

 } break;

 PZERO :

 NZERO :

 case(data_type_of(FRn)) {

 PZERO :

 NZERO : invalid(FRn); break;

 PINF :

 NINF : inf(FN,Sign_of(FRm)^sign_of(FRn)); break;

 default : dz(FRn,sign_of(FRm)^sign_of(FRn)); break;

 } break;

 PINF :

 NINF :

 case(data_type_of(FRn)) {

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 180 of 336
REJ09B0316-0200

 PINF :

 NINF : invalid(FRn); break;

 default :zero (FRn,sign_of(FRm)^sign_of(FRn)); break

break;

 }

 pc += 2;

}

FDIV Special Cases

FRm FRn

NORM +0 �0 +INF �INF qNaN sNaN

NORM DIV 0

+0 DZ Invalid INF

�0

+INF 0 +0 �0 Invalid

�INF �0 +0

qNaN qNaN

sNaN Invalid
Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation, divide by zero

Examples:

FDIV FR6, FR5 ; Floating point divide

; Before execution: ;FR5=H'40800000/*4 in base 10*/

; ;FR6=H'40400000/*3 in base 10*/

; After execution: ;FR5=H'3FAAAAAA/*1.33... in base 10*/

; ;FR6=H'40400000

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 181 of 336
REJ09B0316-0200

7.3.5 FLDI0 (Floating Point Load Immediate 0): Floating Point Instruction

Format Abstract Code Cycles T Bit

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 1 �

Description: Loads the floating point number 0 (0x00000000) in floating point register FRn.

Operation:

FLDI0(float *FRn) /* FLDI0 FRn */

{

 *FRn = 0x00000000;

 pc += 2;

}

Exceptions: None

Examples:

FLDI0 FR1 ; Load immediate 0

; Before execution: FR1=x (don't care)

; After execution: FR1=00000000

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 182 of 336
REJ09B0316-0200

7.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction

Format Abstract Code Cycles T Bit

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 1 �

Description: Loads the floating point number 1 (0x3F800000) in floating point register Frn.

Operation:

FLDI1(float *FRn) /* FLDI1 FRn */

{

 *FRn = 0x3F800000;

 pc += 2;

}

Exceptions: None

Examples:

FLDI1 FR2 ; Load immediate 1

; Before execution: FR2=x (don't care)

; After execution: FR2=H'3F800000/*1 in base 10*/

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 183 of 336
REJ09B0316-0200

7.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction

Format Abstract Code Cycles T Bit

FLDS FRm,FPUL FRm → FPUL 1111nnnn00011101 1 �

Description: Loads the contents of floating point register FRm to system register FPUL.

Operation:

FLDS(float *FRm,*FPUL) /* FLDS FRm,FPUL */

{

 *FPUL = *FRm;

 pc += 2;

}

Exceptions: None

Examples:

;Before execution of FLDS and FSTS:

FLDI1 FR6 ;FR6=H'3F800000/*1 in base 10*/

FLDI0 FR2 ;FR2=0

;After execution of FLDS and FSTS:

FLDS FR6, FPUL ;FPUL=H'3F800000

FSTS FPUL, FR2 ;FR2= H'3F800000

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 184 of 336
REJ09B0316-0200

7.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction

Format Abstract Code Cycles T Bit

FLOAT FPUL,FRn (float) FPUL → FRn 1111nnnn00101101 1 �

Description: Interprets the contents of FPUL as an integer value and converts it into a floating
point number. The result is stored in floating point register FRn.

Operation:

FLOAT(int,*FPUL,float *FRn) /* FLOAT FRn */

{

 clear_cause_VZ();

 *FRn = (float)*FPUL;

 pc += 2;

}

Exceptions: None

Examples:

;Floating Point Convert from Integer

;Before execution of FLOAT instruction:

MOV.L #H'00000003,R1 ; R1=H'00000003

FLDI0 FR2 ; FR2=0

;After execution of FLOAT instruction:

LDS R1, FPUL ; FPUL=H'00000003

FLOAT FPUL, FR2 ; FR2=H'40400000/*3 in base 10*/

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 185 of 336
REJ09B0316-0200

7.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction

Format Abstract Code Cycles T Bit

FMAC FR0, FRm,FRn FR0 × FRm + FRn → FRn 1111nnnnmmmm1110 1 �

Description: Arithmetically multiplies (as floating point numbers) the contents of floating point
registers FR0 and FRm. To this calculation result is added the contents of floating point register
FRn, and the result is stored in FRn.

Operation:

FMAC(float *FR0,*FRm,*FRn) /* FMAC FR0,FRm,FRn */

{

long tmp_FPSCR;

float *tmp_FMUL = *FRm;

 FMUL(F0,tmp_FMUL);

 pc -=2; /* correct pc */

 tmp_FPSCR = FPSCR; /* save cause field for FR0*FRm */

 FADD(tmp_FMUL,FRn);

 FPSCR |= tmp_FPSCR; /* reflect cause field for F0*FRm */

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 186 of 336
REJ09B0316-0200

FMAC Special Cases

FRn FR0 FRm

+NORM �NORM +0 �0 +INF �INF qNaN sNaN

NORM NORM MAC INF

0 Invalid

+INF +INF �INF Invalid +INF �INF

�INF �INF +INF �INF +INF

+0 NORM MAC INF

0 +0 Invalid

+INF +INF �INF Invalid +INF �INF

�INF �INF +INF �INF +INF

�0 +NORM MAC +0 �0 +INF �INF

�NORM �0 +0 �INF +INF

+0 +0 �0 +0 �0 Invalid

�0 �0 +0 �0 +0

+INF +INF �INF Invalid +INF �INF

�INF �INF +INF �INF +INF

+INF +NORM +INF Invalid

�NORM +INF

0 Invalid

+INF Invalid +INF

�INF Invalid +INF +INF

�INF +NORM �INF �INF

�NORM

0

+INF Invalid Invalid �INF

�INF �INF �INF Invalid

qNaN 0 Invalid

INF Invalid

!sNaN

!NaN qNaN qNaN

All types sNaN

sNaN All types Invalid
Note: Non-normalized values are treated as zero.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 187 of 336
REJ09B0316-0200

Exceptions: Invalid operation

Examples:

FMAC FR0, FR3, FR5 ;Floating point multiply accumulate

FR0*FR3+FR5->FR5

;Before execution: FR0=H'40000000/*2 in base 10*/

; FR3=H'40800000/*4 in base 10*/

; FR5=H'3F800000/*1 in base 10*/

;After execution: FR0=H'40000000/*2 in base 10*/

; FR3=H'40800000/*4 in base 10*/

; FR5=H'41100000/*9 in base 10*/

FMAC FR0, FR0, FR5 ;FR0*FR0+FR5->FR5

;Before execution: FR0=H'40000000/*2 in base 10*/

; FR5=H'3F800000/*1 in base 10*/

;After execution: FR0=H'40000000/*2 in base 10*/

; FR5=H'40A00000/*5 in base 10*/

FMAC FR0, FR5, FR0 ;FR0*FR5+FR0->FR5

;Before execution: FR0=H'40000000/*2 in base 10*/

; FR5=H'40A00000/*5 in base 10*/

;After execution: FR0=H'41400000/*12 in base 10*/

; FR5=H'40A00000/*5 in base 10*/

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 188 of 336
REJ09B0316-0200

7.3.10 FMOV (Floating Point Move): Floating Point Instruction

Format Abstract Code Cycles T Bit

1. FMOV FRm,Frn

2. FMOV.S @Rm,FRn

3. FMOV.S FRm,@Rn

4. FMOV.S @Rm+,FRn

5. FMOV.S FRm,@�Rn

6. FMOV.S @(R0,Rm),FRn

7. FMOV.S FRm,@(R0,Rn)

FRm → FRn

(Rm) → FRn

FRm → (Rn)

(Rm) → FRn, Rm+ = 4

Rn� = 4, FRm → (Rn)

(R0 + Rm) → FRn

FRm → (R0 + Rn)

1111nnnnmmmm1100

1111nnnnmmmm1000

1111nnnnmmmm1010

1111nnnnmmmm1001

1111nnnnmmmm1011

1111nnnnmmmm0110

1111nnnnmmmm0111

1

1

1

1

1

1

1

�

�

�

�

�

�

�

Description:

1. Moves the contents of floating point register FRm to floating point register FRn.
2. Loads the contents of the memory addresses specified by general-use register Rm to floating

point register FRn.
3. Stores the contents of floating point register FRm in the memory address position specified by

general-use register Rm.
4. Loads the contents of the memory addresses specified by general-use register Rm to floating

point register FRn. After the load completes successfully, increments the value of Rm by 4.
5. Stores the contents of floating point register FRm in the memory address position specified by

general-use register Rn-4. After the store completes successfully, the decremented value (Rn-
4) becomes the value of Rm.

6. Loads the contents of the memory addresses specified by general-use registers Rm and R0 to
floating point register FRn.

7. Stores the contents of floating point register FRm in the memory address position specified by
general-use registers Rn and R0.

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 189 of 336
REJ09B0316-0200

Operation:

FMOV(float *FRm,*FRn) /* FMOV.S FRm,FRn */

{

 *FRn = *FRm;

 pc += 2;

}

FMOV_LOAD(long *Rm,float *FRn) /* FMOV @Rm,FRn */

{ if(load_long(Rm,FRn) !=Address_Error)

 load_long(Rm,FRn);

 pc += 2;

}

FMOV_STORE(float *FRm,long *Rn) /* FMOV.S FRm,@Rn */

{ if(store_long(FRm,tmp_address) !=Address_Error)

 store_long(FRm,Rn);

 pc += 2;

}

FMOV_RESTORE(long *Rm,float *FRn) /* FMOV.S @Rm+,FRn */

{ if(load_long(Rm,FRn) !=Address_Error)

 *Rm += 4;

 pc += 2;

}

FMOV_SAVE(float *FRm,long *Rn) /*FMOV.S FRm,@-Rn */

{

long *tmp_address =*Rn -4;

 if(store_long(FRm,tmp_address) !=Address_Error)

 Rn = tmp_address;

 pc += 2;

}

FMOV_LOAD_index(long *Rm, long *R0, float *FRn)/* FMOV.S @(R0,Rm),FRn*/

{

 if (load_long(&(*Rm+*R0),FRn), ! = Address_Error);

 pc += 2;

}

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 190 of 336
REJ09B0316-0200

FMOV_STORE_index(float *FRm,long *R0, long *Rn)/* FMOV.S FRm,@(R0,Rn)*/

{

 if (store_long(FRm,&((*Rn+*R0)), ! = Address_Error);

 pc += 2;

}

Exceptions: Address error

Examples:

FMOV.S @R1, FR2 ;Load

;Before execution: @R1=H'00ABCDEF

; FR2=0

;After execution: @R1=H'00ABCDEF

; FR2=H'00ABCDEF

FMOV.S FR2, @R3 ;Store

;Before execution: @R3=0

; FR2=H'40800000

;After execution: @R3=H'40800000

; FR2=H'40800000

FMOV.S @R3+,FR3 ;Restore

;Before execution: R3=H'0C700028

; @R3=H'40800000

; FR3=0

;After execution: R3=H'0C70002C

;

; FR3=H'40800000

FMOV.S FR4, @-R3 ;Save

;Before execution: R3=H'0C700044

; @R3=0

; FR4=H'01234567

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 191 of 336
REJ09B0316-0200

;After execution: R3=H'0C700040

; @R3=H'01234567

; FR4=H'01234567

FMOV.S @(R0, R3), FR4 ;Load with index

;Before execution: R0=H'00000004

; R3=H'0C700040

; @H'0C700044=H'00ABCDEF

; FR=4

;After execution: R0=H'00000004

; R3=H'0C700040

;

; FR4=H'00ABCDEF

FMOV.S FR5, @(R0,R3) ;Store with index

;Before execution: R0=H'00000028

; R3=H'0C700040

; @H'0C700068=0

; FR5=H'76543210

;After execution: R0=H'00000028

; R3=H'0C700040

; @H'0C700068=H'76543210

;

FMOV.S FR5, FR6 ;Register file contents

;Before execution: FR5=H'76543210

; FR6=x(don't care)

;After execution: FR5=H'76543210

; FR6=H'76543210

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 192 of 336
REJ09B0316-0200

7.3.11 FMUL (Floating Point Multiply): Floating Point Instruction

Format Abstract Code Cycles T Bit

FMUL FRm,FRn FRn × FRm → FRn 1111nnnnmmmm0010 1 �

Description: Arithmetically multiplies (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result is stored in FRn.

Operation:

FMUL(float *FRm,*FRn) /* FMUL FRm,FRn */

{

 clear_cause_VZ();

 if((data_type_of(FRm) = = sNaN) ||

 (data_type_of(FRn) = = sNaN)) invalid(FRn);

 else if((data_type_of(FRm) = = qNaN) ||

 (data_type_of(FRn) = = qNaN)) qnan(FRn);

else case(data_type_of(FRm) {

 NORM :

 case(data_type_of(FRn)) {

 PINF :

 NINF : inf(FRn,sign_of(FRm)^sign_of(FRn)); break;

 default: *FRn=(*FRn)*(*FRm); break;

 } break;

 PZERO :

 NZERO :

 case(data_type_of(FRn)) {

 PINF :

 NINF : invalid(FRn); break;

 default: zero(FRn,sign_of(FRm)^sign_of(FRn)); break;

 } break;

 PINF :

 NINF :

 case(data_type_of(FRn)) {

 PZERO :

 NZERO : invalid(FRn); break;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 193 of 336
REJ09B0316-0200

 default:inf (FRn,sign_of(FRm)^sign_of(FRn)); break

 } break;

 }

 pc += 2;

}

FMUL Special Cases

FRm FRn

NORM +0 �0 +INF �INF qNaN sNaN

NORM MUL 0 INF

+0 0 +0 �0 Invalid

�0 �0 +0

+INF INF Invalid +INF �INF

�INF �INF +INF

qNaN qNaN

sNaN Invalid
Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Examples:

FMUL FR2, FR3 ;Floating point multiply

;Before execution: FR2=H'40000000/*2 in base 10*/

; FR3=H'40800000/*4 in base 10*/

;After execution: FR2=H'40000000

; FR3=H'41000000/*8 in base 10*/

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 194 of 336
REJ09B0316-0200

7.3.12 FNEG (Floating Point Negate): Floating Point Instruction

Format Abstract Code Cycles T Bit

FNEG FRn �FRn → FRn 1111nnnn01001101 1 �

Description: Arithmetically negates (as a floating point number) the contents of floating point
register FRn. The calculation result is stored in FRn.

Operation:

FNEG(float *Frn) /* FNEG FRn */

{

 clear_cause_VZ();

 case(data_type_of(FRn)) {

 qNaN : qnan(FRn); break;

 sNaN : invalid(FRn); break;

 default : *FRn = -(*Frn); break;

 }

 pc += 2;

}

FNEG Special Cases

FRn NORM +0 �0 +INF �INF qNaN sNaN

FNEG(FRn) NEG �0 +0 �INF +INF qNaN Invalid
Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Examples:

FNEG FR2 ;Floating point negate

;Before execution: FR2=H'40800000/*4 in base 10*/

;After execution: FR2=H'C0800000/*�4 in base 10*/

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 195 of 336
REJ09B0316-0200

7.3.13 FSTS (Floating Point Store From System Register): Floating Point Instruction

Format Abstract Code Cycles T Bit

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 �

Description: Copies the contents of system register FPUL to floating point register FRn.

Operation:

FSTS(float *FRn,*FPUL) /* FSTS FPUL,FRn */

{

 *FRn = *FPUL;

 pc += 2;

}

Exceptions: None

Examples:

MOV.L #H'00000002, R2 ;Before execution of FSTS instruction: ;R2=H'00000002

FLDI0 FR5 ;FR5=0

LDS R2,FPUL ;After execution of FSTS instruction: ;R2=H'00000002

FSTS FPUL, R5 ;FR5= H'00000002

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 196 of 336
REJ09B0316-0200

7.3.14 FSUB (Floating Point Subtract): Floating Point Instruction

Format Abstract Code Cycles T Bit

FSUB FRm, FRn FRn � FRm → FRn 1111nnnnmmmm0001 1 �

Description: Arithmetically subtracts (as floating point numbers) the contents of floating point
register FRm from contents of floating point register FRn. The calculation result is stored in FRn.

Operation:

FSUB(float *FRm,FRn) /* FSUB FRm,FRn */

{

 clear_cause_VZ();

 if((data_type_of(FRm) = = sNaN) | |

 (data_type_of(FRn) = = sNaN)) invalid(FRn);

 else if((data_type_of(FRm) = = qNaN) | |

 (data_type_of(FRn) = = qNaN)) qnan(FRn);

 else case(data_type_of(FRm)) {

 NORM :

 case(data_tyoe_of(FRn)) {

 PINF : inf(FRn,0); break;

 NINF : inf(FRn,1); break;

 default : *FRn = *FRn - *FRm; break;

 } break;

 PZERO :

 case(data_type_of(FRn)) {

 NORM : *FRn = *FRn- *FRm; break;

 PZERO : zero(FRn,0); break;

 NZERO : zero(FRn,1); break;

 PINF : inf(FRn,0); break;

 NINF : inf(FRn,1); break;

 } break;

 NZERO :

 case(data_type_of(FRn)) {

 NORM : *FRn = *FRn - *FRm; break;

 PZERO :

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 197 of 336
REJ09B0316-0200

 NZERO : zero(FRn,0); break;

 PINF : inf(FRn,0); break;

 NINF : inf(FRn,1); break;

 } break;

 PINF :

 case(data_type_of(FRn)) {

 NINF : invalid(FRn); break;

 default : inf(FRn,1); break;

 } break;

 NINF :

 case(data_type_of(FRn)) {

 PINF : invalid(FRn); break;

 default : inf(FRn,0); break;

 } break;

 }

 pc += 2;

}

FSUB Special Cases

FRm FRn

NORM +0 �0 +INF �INF qNaN sNaN

NORM SUB +INF �INF

+0 �0

�0 +0

+INF �INF Invalid

�INF +INF Invalid

qNaN qNaN

sNaN Invalid
Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 198 of 336
REJ09B0316-0200

Examples:

FSUB FR0, FR3 ;Floating point subtract

;Before execution: ;FR0=H'3F800000/*1 in base 10*/

; ;FR3=H'40E00000/*7 in base 10*/

;After execution: ;FR0=H'3F800000/*1 in base 10*/

; ;FR3=H'40C00000/*6 in base 10*/

FSUB FR3, FR2 ;

;Before execution: ;FR2=H'40800000/*4 in base 10*/

; ;FR3=H'40C00000/*6 in base 10*/

;After execution: ;FR2=H'C0000000/*�2 in base 10*/

; ;FR3=H'40C00000/*6 in base 10*/

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 199 of 336
REJ09B0316-0200

7.3.15 FTRC (Floating Point Truncate And Convert To Integer): Floating Point
Instruction

Format Abstract Code Cycles T Bit

FTRC FRm, FPUL (long) FRm → FPUL 1111nnnn00111101 1 �

Description: Interprets the contents of floating point register FRm as a floating point number and
converts it to an integer by truncating everything after the decimal point. The calculation result is
stored in FRn.

Operation:

#define N_INT_RANGE 0xCF000000 /* 01.000000 * 2^16 */

#define P_INT_RANGE 0x47FFFFFF /* 1.fffffe * 2^30 */

FTRC(float *FRm,int *FPUL) /* FTRC FRm,FPUL */

{

 clear_cause_VZ();

 case(ftrc_type_of(FRm)) {

 NORM : *FPUL = (long)(*FRm);break;

 PINF : ftrc_invalid(0); break;

 NINF : ftrc_invalid(1); break;

 }

 pc += 2;

}

int ftrc_type_of(long *src)

{

long abs;

 abs = *src & 0x7FFFFFF;

 if(sign_of(src) = = 0) {

 if(abs > 0x7F800000) return(NINF); /* NaN*/

 else if(abs > P_INT_RANGE) return(PINF); /* out of range,+INF */

 else return(NORM); /* +0,+NORM */

 }

 else {

 if(*src > N_INT_RANGE) return(NINF);/* out of range ,+INF,NaN*/

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 200 of 336
REJ09B0316-0200

 else return(NORM); /* -0,-NORM*/

 }

}

ftrc_invalid(long *dest,int sign)

{

 set_V();

 if((FPSCR & ENABLE_V) = = 0) {

 if(sign = = 0) *dest = 0x7FFFFFFF;

 else *dest = 0x80000000;

 }

}

FTRC Special Cases

FRn NORM +0 �0 positive
out of
range

negative
out of
rarge

+INF -INF qNaN sNaN

FTRC
(FRn)

TRC 0 0 7FFFFFF
F

8000000
0

Invalid
+MAX
Invalid

�MAX
Invalid

�MAX
Invalid

�MAX
Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Examples:

MOV.L #H'402ED9EB, R2

LDS R2, FPUL

FSTS FPUL, FR6 ;FR6=H'402ED9EB/*2.7320 in base 10*/

FTRC FR6, FPUL

STS FPUL, R2 ;R2=H'00000002/*2 in base 10*/

;Before execution of FTRC and STS:

; R2=H'402ED9EB

; FR6=H'402ED9EB

;After execution of FTRC and STS:

; R2=H'00000002

; FR6=H'402ED9EB

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 201 of 336
REJ09B0316-0200

7.3.16 LDS (Load to System Register): FPU Related CPU Instruction

Format Abstract Code Cycles T Bit

1. LDS Rm, FPUL

2. LDS.L @Rm+,FPUL

3. LDS Rm,FPSCR

4. LDS.L @Rm+,FPSCR

Rm → FPUL

(Rm) → FPUL, Rm+ = 4

Rm → FPSCR

(Rm) → FPSCR, Rm+ = 4

0100nnnn01011010

0100nnnn01010110

0100nnnn01101010

0100nnnn01100110

1

1

1

1

�

�

�

�

Description:

1. Moves the contents of general-use register Rm to system register FPUL.
2. Loads the contents of the memory addresses specified by general-use register Rm to system

register FPUL. After the load completes successfully, increments the value of Rm by 4.
3. Moves the contents of general-use register Rm to system register FPSCR. Previously defined

bits in FPSCR are not changed.
4. Loads the contents of the memory addresses specified by general-use register Rm to system

register FPSCR. After the load completes successfully, increments the value of Rm by 4.
Previously defined bits in FPSCR are not changed.

Operation:

#define FPSCR_MASK 0x00018C60

LDS(long *Rm,*FPUL) /* LDS Rm,FPUL */

{

 *FPUL = *Rm;

 pc += 2;

}

LDS_RESTORE(long *Rm, *FPUL) /* LDS.L @Rm+,FPUL */

{

 if(load_long(Rm,FPUL) != Address_Error) *Rm += 4 ;

 pc += 2;

}

LDS(long *Rm,*FPSCR) /* LDS Rm,FPSCR */

{

 *FPSCR = *Rm & FPSCR_MASK;

 pc += 2;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 202 of 336
REJ09B0316-0200

}

LDS_RESTORE(long *Rm, *FPSCR) /* LDS.L @Rm+,FPSCR */

{

 long *tmp_FPSCR;

 if(load_long(Rm, tmp_FPSCR) != Address_Error){

 *FPSCR =*tmp_FPSCR & FPSCR_MASK;

 *Rm += 4 ;

 }

 pc += 2;

}

Exceptions: Address error

Examples:

• LDS
Example 1

MOV.L #H'12345678, R2 ;Before execution of LDS and FSTS instructions:

; R2=H'12345678

FLDI0 FR3 ; FR3=0

LDS R2, FPUL ;After execution of LDS and FSTS instructions:

; R2=H'12345678

FSTS FPUL, FR3 ; FR3= H'12345678

Example 2

MOV.L #H'00040801, R4 ;After execution of LDS instruction:

LDS R4, FPSCR ;FPSCR=00040801

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 203 of 336
REJ09B0316-0200

• LDS.L
Example 1

LDI0 FR0 ;Before execution of LDS.L and FSTS instructions:

MOV.L #H'87654321, R4 ; FR0=0

MOV.L #H'0C700128, R8 ; R8=0C700128

MOV.L R4,@R8 ;After execution of LDS.L and FSTS instructions:

LDS.L @R8+, FPUL ; FR0=87654321

FSTS FPUL, FR0 ; R8=0C70012C

Example 2

MOV.L #H'00040C01, R4 ;Before execution of LDS.L instruction:
MOV.L #H'0C700134, R8 ; R8=0C700134

MOV.L R4,@R8 ;After execution of LDS.L instruction:
; R8=0C700138

LDS.L @R8+, FPSCR ; FPSCR=00040C01

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 204 of 336
REJ09B0316-0200

7.3.17 STS (Store from FPU System Register): FPU Related CPU Instruction

Format Abstract Code Cycles T Bit

1. STS FPUL,Rn

2. STS.L FPUL,@�Rn

3. STS FPSCR,Rn

4. STS.L FPSCR,@�Rn

FPUL → Rn

Rn� = 4, FPUL → @(Rn)

FPSCR → Rn

Rn� = 4, FPSCR → @(Rn)

0000nnnn01011010

0100nnnn01010010

0000nnnn01101010

0100nnnn01100010

1

1

1

1

�

�

�

�

Description:

1. Moves the contents of system register FPUL to general-use register Rn.
2. Stores contents of system register FPUL at the memory address position specified by general-

use register Rn-4. After the store completes successfully, the decremented value becomes the
value of Rn.

3. Moves the contents of system register FPSCR to general-use register Rn.
4. Stores contents of system register FPSCR at the memory address position specified by general-

use register Rn-4. After the store completes successfully, the decremented value becomes the
value of Rn.

Operation:

STS(long *FPUL,*Rn) /* STS.L FPUL,Rn */

{

 *Rn = *FPUL;

 pc += 2;

}

STS_SAVE(long *FPUL,*Rn) /* STS.L FPUL,@-Rn */

{

long *tmp_address = *Rn - 4;

 if(store_long(FPUL,tmp_address) != Address_Error)

 Rn = tmp_address;

 pc += 2;

}

STS(long *FPSCR,*Rn) /* STS FPSCR,Rn */

{

 *Rn = *FPSCR;

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 205 of 336
REJ09B0316-0200

 pc += 2;

}

STS STore from FPU System register

STS_RESTORE long *FPSCR,*Rn) /* STS.L FPSCR,@-Rn */

{

long *tmp_address = *Rn - 4;

 if(store_long(FPSCR tmp_address) != Address_Error)

 Rn = tmp_address

 pc += 2;

}

Exceptions: Address error

Examples:

• STS
Example 1

MOV.L #H'12ABCDEF, R12

LDS.L @R12, FPUL

STS FPUL, R13

;After execution of STS instruction:

; R13 = 12ABCDEF

Example 2

STS FPSCR, R2

;After execution of STS instruction:

; Contents of FPSCR at that point stored in R2 register

Section 7 Instruction Descriptions

Rev. 2.00 May 31, 2006 page 206 of 336
REJ09B0316-0200

• STS.L
Example 1

MOV.L #H'0C700148, R7

STS FPUL, @-R7

;Before execution of STS.L instruction:

; R7 = H'0C700148

;After execution of STS.L instruction:

; R7 = H'0C700144, contents of FPUL saved at

address H'0C700144

; location H'0C700144

Example 2

MOV.L #H'0C700154, R8

STS.L FPSCR, @-R8

;After execution of STS.L instruction:

; Contents of FPSCR saved at address H'0C700150

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 207 of 336
REJ09B0316-0200

Section 8 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

8.1 Basic Configuration of Pipelines

The Five-Stage Pipeline: Pipelines are composed of the following five stages:

• IF (Instruction fetch)
Fetches instruction from the memory where the program is stored.

• ID (Instruction decode)
Decodes the instruction fetched.

• EX (Instruction execution)
Does data operations and address calculations according to the results of decoding.

• MA (Memory access)
Accesses data in memory. Generated by instructions that involve memory access, with some
exceptions.

• WB (Write back)
Returns the results of the memory access (data) to a register. Generated by instructions that
involve memory loads, with some exceptions.

These stages flow with the execution of the instructions and thereby constitute a pipeline. At a
given instant, five instructions are being executed simultaneously. The basic pipeline flow is as
shown in figure 8.1. The period in which a single stage is operating is called a slot and is indicated
by two-way arrows (←→).

All instructions have at least the 3 stages IF, ID and EX, but not all have stages MA and WB. The
way the pipeline flows also varies with the type of instruction, with some having two MA stages,
some accessing the FPU (mm), and so on. Finally, conflicts can occur, for example between IF
and MA. When such a conflict occurs, the pipeline flow changes.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 208 of 336
REJ09B0316-0200

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

WB

MA

EX

WB

MA WB

IF ID EX MA WB

Time

: Slot

Instruction
stream

Figure 8.1 Basic Structure of Pipeline Flow

FPU Pipeline: The durations of the stages in the FPU pipeline are the same as those of the stages
in the CPU pipeline. In both pipelines, the first stage is instruction fetch (IF). The FPU pipeline
also has the following four additional stages:

• DF (Decode FPU)
Decodes the fetched instruction.

• E1 (FPU execution stage 1)
Initializes the floating-point operation.

• E2 (FPU execution stage 2)
Completes the floating-point operation.

• SF (Store FPU)
Stores the result in the FPU register.

All instructions pass through both the CPU and the FPU pipelines. Depending on the instruction,
operations are performed either by the CPU pipeline alone or by both pipelines.

In the case of floating-point instructions and FPU-related CPU instructions, the FPU pipeline and
CPU pipeline operate simultaneously in parallel.

In the case of instructions involving the CPU only, the FPU pipeline does not operate; only the
CPU pipeline operates.

Refer to 8.8 Instruction Pipeline Operation for details.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 209 of 336
REJ09B0316-0200

8.2 Slot and Pipeline Flow

The time period in which a single stage operates called a slot. Slots must follow the rules
described below.

Instruction Execution: Each stage (IF, ID, EX, MA, WB) of an instruction must be executed in
one slot. Two or more stages cannot be executed within one slot (figure 8.2), with exception of
WB and MA. Since WB is executed immediately after MA, however, some instructions may
execute MA and WB within the same slot.

Instruction 1

X

Instruction 2

IF ID

IF

EX

ID EX MA W/D

MA WA

: Slot

Note: ID and EX of instruction 1 are executed in the same slot.

Figure 8.2 Impossible Pipeline Flow 1

Slot Sharing: A maximum of one stage from another instruction may be set per slot, and that
stage must be different from the stage of the first instruction. Identical stages from two different
instructions may never be executed within the same slot (figure 8.3).

Instruction 1

X

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

WB

MA

EX

WB

MA WB

: Slot

Note: Same stage of another instruction is being executed in same slot.

Figure 8.3 Impossible Pipeline Flow 2

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 210 of 336
REJ09B0316-0200

Slot Length: The number of states (system clock cycles) S for the execution of one slot is
calculated with the following conditions:

• S = (the cycles of the stage with the highest number of cycles of all instruction stages
contained in the slot). This means that the instruction with the longest stage stalls others with
shorter stages.

• The number of execution cycles for each stage:
 IF The number of memory access cycles for instruction fetch
 ID Always one cycle
 EX Always one cycle
 MA The number of memory access cycles for data access
 WB Always one cycle

As an example, figure 8.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is
being stalled.

Instruction 1

Instruction 2

(2)

IF

(2)

ID

IF

—

IF

(1)

EX

ID

MA

EX —

: Slot

(3)

MA

—

(1)

WB

MA

(1)

WB

MAIF

Number of
cycles

Figure 8.4 Slots Requiring Multiple Cycles

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 211 of 336
REJ09B0316-0200

8.3 Number of Instruction Execution Cycles

The number of instruction execution cycles is counted as the interval between execution of EX
stages. The number of cycles between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 8.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one cycle, the execution time of instruction
2 is one cycle.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4,
using a MOV Rm, Rn that follows instruction 3. (In figure 8.5, the execution time of instruction 3
would thus be one cycle.) In this example, the MA of instruction 1 and the IF of instruction 4 are
in contention. For operation during the contention between the MA and IF, see section 8.4,
Contention between Instruction Fetch (IF) and Memory Access (MA).

The total execution time for instructions 1 through 3 in Figure 8 is seven cycles (5 + 1 + 1).

Instruction 1

Instruction 2

Instruction 3

(Instruction 4

(2)

IF

(2)

ID

IF

—

IF

(2)

EX

ID

IF

—

—

IF

—

— —

: Slot

IF MA MA MA W/D

— — EX

— ID

IF

(1)

EX

ID

(1)

MA

EX

(4)

: MOV Rm, Rn)

Figure 8.5 Method for Counting Instruction Execution Cycles

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 212 of 336
REJ09B0316-0200

8.4 Contention between Instruction Fetch (IF) and Memory Access (MA)

Basic Operation when IF and MA Are in Contention: The IF and MA stages both access
memory, so they cannot operate simultaneously. When the IF and MA stages both try to access
memory within the same slot, the slot splits as shown in figure 8.6. When there is a WB, it is
executed immediately after the MA ends.

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF

IF

EX

ID

IF

EX

ID

W/D

MA

EX

ID

W/D

EX

: Slot

Instruction 1 ID MA

IF

ID EXIF

B C D E FA G

MA of instruction 1 and IF of
instruction 4 contend at D

MA of instruction 2 and IF of
instruction 5 contend at E

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF

IF

EX

ID

IF

EX

—

WB

MA

ID

ID

WB

EX

: Slot

Instruction 1 ID MA

IF

ID EXIF

B C D E FA G

Split at D

Split at E

When MA and IF are in contention, the following occurs:

—

EX

—

—

Figure 8.6 Operation when IF and MA Are in Contention

The slots in which MA and IF contend are split into two cycles. MA is given priority to execute in
the first half (when there is a WB, it immediately follows the MA), and the EX, ID, and IF are
executed simultaneously in the latter half. For example, in figure 8.6 the MA of instruction 1 is
executed in slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are
executed simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX
of instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of cycles for a slot in which MA and IF are in contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 213 of 336
REJ09B0316-0200

Relationship between Locations of Instructions in Memory and IF Stages: The SH-2E
accesses instructions in memory in the 32-bit mode. Since all of the SH-2E instructions have a
fixed length of 16 bits, it is basically possible to access two instructions per IF stage. Whether the
IF fetches one instruction or two depends on where in memory the instruction(s) are located
(word/longword boundary).

If an instruction is located at a longword boundary, it is possible to fetch two instructions using a
single IF operation. This means that the IF for the next instruction does not generate a separate bus
cycle in order to fetch the instruction. In addition, the IF for the instruction after that fetches two
instructions, and therefore the IF for the instruction which follows again generates no bus cycle.

In other words, IF stages for instructions located in memory at longword boundaries (instructions
for which the bottom two address bits are 00: A1 = 0, A0 = 0) actually fetch two instructions.
Therefore no bus cycle is generated by the IF for the following instruction. These instruction
fetches that do not generate bus cycles are indicated in lower case as "if" rather than IF. An "if" is
always one cycle.

On the other hand, if due to branching or the like an instruction at a word boundary (instructions
for which the bottom two address bits are 10: A1 = 1, A0 = 0) is fetched, only one instruction can
be fetched in the IF bus cycle. Consequently, the IF for the next instruction generates a bus cycle.
Then two instructions are fetched from the subsequent IF onward. Figure 8.7 illustrates the
operations described above.

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

IF

if

EX

ID

IF

EX

ID EX

ID EX

: Slot
: Bus cycle generated
: No bus cycle
 generated

Instruction 1
Instruction 1 Instruction 2

······

······

······

······

······

······

ID

if

ID EXif

ID EXIF

IF

IF

EX

ID

if

EX

ID EX

ID EX

ID

IF

ID EXif

32 bits

IF
if

: Slot
: Bus cycle generated
: No bus cycle
 generated

IF
ifInstruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

(a) Fetches Beginning with an Instruction (Instruction 1)
 Located at a Long Word Boundary

(b) Fetches Beginning with an Instruction (Instruction 2)
 Located at a Word Boundary

On-chip ROM/RAM
or on-chip cache

Instruction 3 Instruction 4

Instruction 5 Instruction 6

Instruction 2

Instruction 3 Instruction 4

Instruction 5 Instruction 6

Figure 8.7 Relationship between Locations of Instructions in Memory and IF Stages

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 214 of 336
REJ09B0316-0200

Relationship between Position of Instructions Located in On-Chip Memory and Contention
between IF and MA: When an instruction is located in on-chip memory, there are instruction
fetch stages (�if�, written in lower case) that do not generate bus cycles. When an if is in
contention with an MA, the slot will not split, as it does when an IF and an MA are in contention,
because ifs and MAs can be executed simultaneously. Such slots execute in the number of cycles
the MA requires for memory access. This is illustrated in Figure 8.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. In other words, if an instruction with a four (five) stage
pipeline consisting of IF, ID, EX, MA, (MB) is located at a memory longword boundary (the
instruction's bottom two address bits are 00: A1 = 0, A0 = 0), the MA stage uses the same slot as
the if following it, so no stall occurs.

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

IF

if

EX

ID

IF

EX

MA

MA WB

WB

ID —

—

—

EX

: Split
: No split

Instruction 1
Instruction 1 Instruction 2

······

······

······ ID

if

ID

if

EX

ID EX

EXIF

ID

32 bits

IF
if

Note: In slot A there is contention between MA and if, so there is no split. In slot B there is contention
between MA and IF, resulting in a split.

Instruction 3 Instruction 4

Instruction 5 Instruction 6

Figure 8.8 Relationship between Position of Instructions Located in On-chip Memory and
Contention between IF and MA

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 215 of 336
REJ09B0316-0200

8.5 Effects of Memory Load Instructions on the Pipeline

Instructions that involve loading from memory return data to the destination register during the
WB stage, which comes at the end of the pipeline. The WB stage of such a load instruction (load
instruction 1) will thus not have ended before after the EX stage of the instruction that
immediately follows it (instruction 2) begins.

When instruction 2 uses the same destination register as load instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. When the destination register of load instruction 1 is the same as the destination, not the
source, of instruction 2 it will still split.

When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched by
instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

• When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1

• When instruction 2 is MAC @Rm+,@Rn+ and the destinations of Rm and load instruction 1
were the same

The number of cycles in the slot generated by the split is the number of MA cycles plus the
number of IF (or if) cycles, as shown in figure 8.9. This means the execution speed will be
lowered if the instruction that will use the results of the load instruction is placed immediately
after the load instruction. The instruction that uses the result of the load instruction will not slow
down the program if placed one or more instructions after the load instruction.

Instruction 2 (ADD R1,R2)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

—

—

WB

EX

ID

IF ID

: Slot

Load instruction 1 (MOV.W@R0,R1) EX MA

EX ·····

·····

Figure 8.9 Effects of Memory Load Instructions on the Pipeline (1)

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 216 of 336
REJ09B0316-0200

8.6 FPU Contention

In addition to the LDS and STS instructions, which move data between the CPU and FPU, loading
and storing floating point numbers also uses the MA stage of the pipeline. Consequently, such
instructions create contention with the IF stage.

If the register (FR0 to FR15, FPUL) to which the result of a floating point arithmetic calculation
instruction, the FMOV instruction, or a floating point number load instruction is stored is read
(used as the source register) by the next instruction, the execution of this instruction (the next
instruction) is delayed by one slot cycle (Figure 8.10).

Next floating point instruction
(FMOV FR2, FR3)

IF

IF

E1

DF —

SF

E1 E2 SF

Slot
Floating point arithmetic

calculation instruction
(FADD FR1, FR2)

ID E2

Figure 8.10 FPU Contention 1

If the LDS or LDS.L instruction is used to change the value of FPSCR, the execution of the next
instruction is delayed by two slot cycle (Figure 8.11).

Instruction 2
(FADD FR4, FR5)

IF

IF

E1

DF — —

SF

E1 E2 SF

Slot
Instruction 1

(LDS R2, FPSCR) ID E2

Figure 8.11 FPU Contention 2

If the STS or STS.L instruction is used to read the value of FPSCR the execution is delayed by
two slot cycle (Figure 8.12).

Instruction 2
(STS FPSCR, R3)

IF

IF

E1

DF — —

SF

E1 E2 SF

Slot
Instruction 1

(FADD FR6, FR9) ID E2

Figure 8.12 FPU Contention 3

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 217 of 336
REJ09B0316-0200

The FDIV instruction require 13 cycles in the E1 stage. During this period, no other floating point
instruction or FPU-related CPU instruction may enter the E1 stage. If another floating point
instruction or FPU-related CPU instruction are encountered before the FDIV instruction has
finished using the E1 stage, the fixed slot duration for the execution of that instruction is delayed,
and the instruction enters the E1 stage only after the FDIV instruction has finished using the SF
stage (Figure 8.13).

Floating point instruction
(FMOV FR8, FR10)

IF

IF

E1E1 . . .

DF

SF

E1 E2 SF

Slot
Instruction 1

(FDIV FR6, FR7) ID E2

Figure 8.13 FPU Contention 4

8.7 Programming Guide

When writing programs, follow the guidelines below in order to increase instruction execution
speed.

• Instructions with memory accesses (MA) should be located in memory at longword boundaries
(position where the instruction's bottom two address bits are 00: A1 = 0, A0 = 0). This will
prevent contention between MA and instruction fetch (IF).

• The instruction immediately following a memory load instruction should not use the same
register as the destination register of the load instruction.

• Instructions that use the FPU should be arranged so that they are not sequential. Also,
instructions that access registers MACH and MACL in order to fetch the results of operations
performed by the FPU should no be situated immediately following instructions that use the
FPU.

• The instruction immediately preceding a floating-point arithmetic operation instruction should
not use the destination register of the floating-point operation instruction.

• As far as possible, avoid placing a floating-point instruction or FPU-related CPU instruction
within the 14 instructions following the FDIV instruction.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 218 of 336
REJ09B0316-0200

8.8 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
cycles can be calculated.

In the following figures, �Instruction A� refers to the instruction being discussed. When �IF� is
written in the instruction fetch stage, it may refer to either �IF� or �if�. When there is contention
between IF and MA, the slot will split, but the manner of the split is not discussed in the tables,
with a few exceptions. When a slot has split, see section 8.4, Contention between Instruction Fetch
(IF) and Memory Access (MA). Base your response on the rules for pipeline operation given
there.

Table 8.1 shows the number of instruction stages and number of execution cycles as follows:

• Type: Given by function
• Category: Categorized by differences in instruction operation
• Stages: The number of stages in the instruction
• Cycles: The number of execution cycles when there is no contention
• Contention: Indicates the contention that occurs
• Instructions: Gives a mnemonic for the instruction concerned

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 219 of 336
REJ09B0316-0200

Table 8.1 Number of Instruction Stages and Execution Cycles

Type Category Stages Cycles Contention Instruction

Data
transfer
instructions

Register-
register
transfer
instructions

3 1 � MOV #imm,Rn

MOV Rm,Rn

MOVA @(disp,PC),R0

MOVT Rn

SWAP.B Rm,Rn

SWAP.W Rm,Rn

XTRCT Rm,Rn

Memory
load
instructions

5 1 � Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

� MA contends with
IF

MOV.W @(disp,PC),Rn

MOV.L @(disp,PC),Rn

MOV.B Rm,@Rn

MOV.W Rm,@Rn

MOV.L Rm,@Rn

MOV.B @Rm+,Rn

MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B @(disp,Rm),R0

MOV.W @(disp,Rm),R0

MOV.L @(disp,Rm),Rn

MOV.B @(R0,Rm),Rn

MOV.W @(R0,Rm),Rn

MOV.L @(R0,Rm),Rn

MOV.B @(disp,GBR),R0

MOV.W @(disp,GBR),R0

MOV.L @(disp,GBR),R0

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 220 of 336
REJ09B0316-0200

Type Category Stages Cycles Contention Instruction

Data
transfer
instructions
(cont)

Memory
store
instructions

4 1 MA contends with IF MOV.B @Rm,Rn

MOV.W @Rm,Rn

MOV.L @Rm,Rn

MOV.B Rm,@–Rn

MOV.W Rm,@–Rn

MOV.L Rm,@–Rn

MOV.B R0,@(disp,Rn)

MOV.W R0,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

MOV.B Rm,@(R0,Rn)

MOV.W Rm,@(R0,Rn)

MOV.L Rm,@(R0,Rn)

MOV.B R0,@(disp,GBR)

MOV.W R0,@(disp,GBR)

MOV.L R0,@(disp,GBR)

Arithmetic
instructions

Arithmetic
instructions
between
registers
(except
multi-
plication
instructions)

3 1 � ADD Rm,Rn

ADD #imm,Rn

ADDC Rm,Rn

ADDV Rm,Rn

CMP/EQ #imm,R0

CMP/EQ Rm,Rn

CMP/HS Rm,Rn

CMP/GE Rm,Rn

CMP/HI Rm,Rn

CMP/GT Rm,Rn

CMP/PZ Rn

CMP/PL Rn

CMP/STR Rm,Rn

DIV1 Rm,Rn

DIV0S Rm,Rn

DIV0U

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 221 of 336
REJ09B0316-0200

Type Category Stages Cycles Contention Instruction

Arithmetic
instructions
(cont)

DT Rn

EXTS.B Rm,Rn

EXTS.W Rm,Rn

EXTU.B Rm,Rn

EXTU.W Rm,Rn

NEG Rm,Rn

NEGC Rm,Rn

SUB Rm,Rn

SUBC Rm,Rn

SUBV Rm,Rn

Multiply/add
instructions

7 3/(2)*1 � If an instruction
that uses the FPU
follows this
instruction, FPU
contention occurs.

� MA contends with
IF

MAC.W @Rm+,@Rn+

Double-
length
multiply/
accumulate
instruction

9 3/(2 to
4)*1

� If an instruction
that uses the FPU
follows this
instruction, FPU
contention occurs.

� MA contends with
IF

MAC.L @Rm+,@Rn+

Multiplica-
tion
instructions

6 1 to 3*1 � If an instruction
that uses the FPU
follows this
instruction, FPU
contention occurs.

� MA contends with
IF

MULS.W Rm,Rn

MULU.W Rm,Rn

Double-
length
multiply/
accumulate
instruction

9 2 to 4*1 � If an instruction
that uses the FPU
follows this
instruction, FPU
contention occurs.

� MA contends with
IF

DMULS.L Rm,Rn

DMULU.L Rm,Rn

MUL.L Rm,Rn

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 222 of 336
REJ09B0316-0200

Type Category Stages Cycles Contention Instruction

Logic
operation
instructions

Register-
register
logic
operation
instructions

3 1 � AND Rm,Rn

AND #imm,R0

NOT Rm,Rn

OR Rm,Rn

OR #imm,R0

TST Rm,Rn

TST #imm,R0

XOR Rm,Rn

XOR #imm,R0

Memory
logic
operations
instructions

6 3 MA contends with IF AND.B #imm,@(R0,GBR)

OR.B #imm,@(R0,GBR)

TST.B #imm,@(R0,GBR)

XOR.B #imm,@(R0,GBR)

TAS
instruction

6 4 MA contends with IF TAS.B @Rn

Shift
instructions

Shift
instructions

3 1 � ROTL Rn

ROTR Rn

ROTCL Rn

ROTCR Rn

SHAL Rn

SHAR Rn

SHLL Rn

SHLR Rn

SHLL2 Rn

SHLR2 Rn

SHLL8 Rn

SHLR8 Rn

SHLL16 Rn

SHLR16 Rn

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 223 of 336
REJ09B0316-0200

Type Category Stages Cycles Contention Instruction

Branch
instructions

Conditional
branch
instructions

3 3/1*2 � BF label

BT label

Delayed
conditional
branch
instructions

3 2/1*2 � BF/S label

BT/S label

Uncondition
al branch
instructions

3 2 � BRA label

BRAF Rm

BSR label

BSRF Rm

JMP @Rm

JSR @Rm

RTS

System
control
instructions

System
control ALU
instructions

3 1 � CLRT

LDC Rm,SR

LDC Rm,GBR

LDC Rm,VBR

LDS Rm,PR

NOP

SETT

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STS PR,Rn

LDS.L
instructions
(PR)

5 1 � Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

� MA contends with
IF

LDS.L @Rm+,PR

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 224 of 336
REJ09B0316-0200

Type Category Stages Cycles Contention Instruction

System
control
instructions
(cont)

STS.L
instruction
(PR)

4 1 MA contends with IF STS.L PR,@–Rn

LDC.L
instructions

5 3 � Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

� MA contends with
IF

LDC.L @Rm+,SR

LDC.L @Rm+,GBR

LDC.L @Rm+,VBR

STC.L
instructions

4 2 MA contends with IF STC.L SR,@–Rn

STC.L GBR,@–Rn

STC.L VBR,@–Rn

Register →
MAC
transfer
instruction

4 1 � Contention occurs
with multiplier

� MA contends with
IF

CLRMAC

LDS Rm,MACH

LDS Rm,MACL

Memory →
MAC
transfer
instructions

4 1 � Contention occurs
with multiplier

� MA contends with
IF

LDS.L @Rm+,MACH

LDS.L @Rm+,MACL

MAC →
register
transfer
instruction

5 1 � Contention occurs
with multiplier

� Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

� MA contends with
IF

STS MACH,Rn

STS MACL,Rn

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 225 of 336
REJ09B0316-0200

Type Category Stages Cycles Contention Instruction

System
control
instructions
(cont)

MAC →
memory
transfer
instruction

4 1 � Contention occurs
with multiplier

� MA contends with
IF

STS.L MACH,@–Rn

STS.L MACL,@–Rn

RTE
instruction

5 4 � RTE

TRAP
instruction

9 8 � TRAPA #imm

SLEEP
instruction

3 3 � SLEEP

FPU-related
CPU
instruction

FPUL load
instruction

5 (FPU
pipeline)

4 (CPU
pipeline)

1 � Contention occurs
if next instruction
reads FPUL

� MA in CPU
pipeline contends
with IF

LDS Rm,FPUL
LDS.L @Rm+,FPUL

FPSCR load
instruction

5 (FPU
pipeline)

4 (CPU
pipeline)

1 � Contention occurs
as shown in
Figure 8.11

LDS Rm,FPSCR
LDS.L @Rm+,FPSCR

FPUL store
instruction
(STS)

4 (FPU
pipeline)

5 (CPU
pipeline)

1 � Contention occurs
if next instruction
uses Rn

� MA in CPU
pipeline contends
with IF

STS FPUL,Rn

FPUL store
instruction
(STS.L)

4 (FPU
pipeline)

4 (CPU
pipeline)

1 � MA in CPU
pipeline contends
with IF

STS.L FPUL,@-Rn

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 226 of 336
REJ09B0316-0200

Type Category Stages Cycles Contention Instruction

FPU-related
CPU
instruction
(cont)

FPSCR
store
instruction
(STS)

4 (FPU
pipeline)

5 (CPU
pipeline)

1 � Contention occurs
as shown in
Figure 8.12

� Contention occurs
if next instruction
uses Rn

� MA in CPU
pipeline contends
with IF

STS FPSCR,Rn

FPSCR
store
instruction
(STS.L)

4 (FPU
pipeline)

4 (CPU
pipeline)

1 � Contention occurs
as shown in
Figure 8.12

� MA in CPU
pipeline contends
with IF

STS.L FPSCR,@-Rn

Floating-
point
instruction

Floating-
point
register
transfer
instruction

5 (FPU
pipeline)

3 (CPU
pipeline)

1 � Contention occurs
if next instruction
reads destination
register

FLDS FRm,FPUL
FMOV FRm,FRn
FSTS FPUL,FRn

Floating-
point
register
immediate
instruction

5 (FPU
pipeline)

3 (CPU
pipeline)

1 � Contention occurs
if next instruction
reads destination
register

FLDI0 FRn
FLDI1 FRn

Floating-
point
register load
instruction

5 (FPU
pipeline)

4 (CPU
pipeline)

1 � Contention occurs
if next instruction
reads destination
register

� MA in CPU
pipeline contends
with IF

FMOV.S @Rm,FRn
FMOV.S @Rm+,FRn
FMOV.S @(R0,Rm),FRn

Floating-
point
register
store
instruction

4 (FPU
pipeline)

4 (CPU
pipeline)

1 � MA in CPU
pipeline contends
with IF

FMOV.S FRm,@Rn
FMOV.S FRm,@-Rn
FMOV.S FRm,@(R0,Rn)

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 227 of 336
REJ09B0316-0200

Type Category Stages Cycles Contention Instruction

Floating-
point
instruction
(cont)

Floating-
point
register
operation
instruction
(other than
FDIV)

5 (FPU
pipeline)

3 (CPU
pipeline)

1 � Contention occurs
if next instruction
reads destination
register

FABS FRn
FADD FRm,FRn
FLOAT FPUL,FRn
FMAC FR0,FRm,FRn
FMUL FRm,FRn
FNEG FRn
FSUB FRm,FRn
FTRC FRm,FPUL

Floating-
point
register
operation
instruction
(FDIV)

17 (FPU
pipeline)

3 (CPU
pipeline)

13 � Contention occurs
as shown in
Figure 8.13

FDIV FRm,FRn

Floating-
point
register
compare
instruction

3 (FPU
pipeline)

3 (CPU
pipeline)

1 FCMP/EQ FRm,FRn
FCMP/GT FRm,FRn

Notes: 1. The normal minimum number of execution cycles. The number in parentheses is the
number of cycles when there is contention with following instructions.

2. One state when there is no branch.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 228 of 336
REJ09B0316-0200

8.8.1 Data Transfer Instructions

Register-Register Transfer Instructions

Instruction Types:

• MOV #imm, Rn
• MOV Rm, Rn
• MOVA @(disp, PC), R0
• MOVT Rn
• SWAP.B Rm, Rn
• SWAP.W Rm, Rn
• XTRCT Rm, Rn

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID

......

......

......

Figure 8.14 Register-Register Transfer Instruction Pipeline

Operation:

The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX stage via the
ALU.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 229 of 336
REJ09B0316-0200

Memory Load Instructions

Instruction Types:

• MOV.W @(disp, PC), Rn
• MOV.L @(disp, PC), Rn
• MOV.B @Rm, Rn
• MOV.W @Rm, Rn
• MOV.L @Rm, Rn
• MOV.B @Rm+, Rn
• MOV.W @Rm+, Rn
• MOV.L @Rm+, Rn
• MOV.B @(disp, Rm), R0

• MOV.W @(disp, Rm), R0
• MOV.L @(disp, Rm), Rn
• MOV.B @(R0, Rm), Rn
• MOV.W @(R0, Rm), Rn
• MOV.L @(R0, Rm), Rn
• MOV.B @(disp, GBR), R0
• MOV.W @(disp, GBR), R0
• MOV.L @(disp, GBR), R0

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MA
.....

.....

WB

......

Figure 8.15 Memory Load Instruction Pipeline

Operation:

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.15). If an instruction that uses the
same destination register as this instruction is placed immediately after it, contention will occur.
(See section 8.5 Effects of Memory Load Instructions on the Pipeline)

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 230 of 336
REJ09B0316-0200

Memory Store Instructions

Instruction Types:

• MOV.B Rm, @Rn
• MOV.W Rm, @Rn
• MOV.L Rm, @Rn
• MOV.B Rm, @�Rn
• MOV.W Rm, @�Rn
• MOV.L Rm, @�Rn
• MOV.B R0, @(disp, Rn)
• MOV.W R0, @(disp, Rn)

• MOV.L Rm, @(disp, Rn)
• MOV.B Rm, @(R0, Rn)
• MOV.W Rm, @(R0, Rn)
• MOV.L Rm, @(R0, Rn)
• MOV.B R0, @(disp, GBR)
• MOV.W R0, @(disp, GBR)
• MOV.L R0, @(disp, GBR)

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MA
.....

.....

......

Figure 8.16 Memory Store Instructions Pipeline

Operation:

The pipeline has four stages: IF, ID, EX, and MA (figure 8.16). Data is not returned to the register
so there is no WB stage.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 231 of 336
REJ09B0316-0200

8.8.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the
following instruction types:

• ADD Rm, Rn
• ADD #imm, Rn
• ADDC Rm, Rn
• ADDV Rm, Rn
• CMP/EQ #imm, R0
• CMP/EQ Rm, Rn
• CMP/HS Rm, Rn
• CMP/GE Rm, Rn
• CMP/HI Rm, Rn
• CMP/GT Rm, Rn
• CMP/PZ Rn
• CMP/PL Rn
• CMP/STR Rm, Rn

• DIV1 Rm, Rn
• DIV0S Rm, Rn
• DIV0U
• DT Rn
• EXTS.B Rm, Rn
• EXTS.W Rm, Rn
• EXTU.B Rm, Rn
• EXTU.W Rm, Rn
• NEG Rm, Rn
• NEGC Rm, Rn
• SUB Rm, Rn
• SUBC Rm, Rn
• SUBV Rm, Rn

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MA
.....

.....

......

Figure 8.17 Pipeline for Arithmetic Instructions between Registers Except Multiplication
Instructions

The pipeline has three stages: IF, ID, and EX (figure 8.17). The data operation is completed in the
EX stage via the ALU.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 232 of 336
REJ09B0316-0200

Multiply/Accumulate Instruction: Includes the following instruction type:

• MAC.W @Rm+, @Rn+

Next instruction

Third instruction in series

IF

IF

EX

— ID

IF ID

Instruction A ID

EX

EX

MA

MA

: Slot

WB

WB

MA mmMA mm

......

Figure 8.18 Multiply/Accumulate Instruction Pipeline

The pipeline has seven stages: IF, ID, EX, MA, MA, mm, and mm. The second MA reads the
memory and accesses the multiplier. mm indicates that the multiplier is operating. mm operates for
two cycles after the final MA ends, regardless of slot. The ID of the instruction after the MAC.W
instruction is stalled for 1 slot. The two MAs of the MAC.W instruction, when they contend with
IF, split the slots as described in Section 8.4, Contention between Instruction Fetch (IF) and
Memory Access (MA).

When an instruction that does not use the multiplier comes after the MAC.W instruction, the
MAC.W instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA,
MA. In such cases, the ID of the next instruction simply stalls one slot and thereafter operates like
a normal pipeline. When an instruction that uses the multiplier comes after the MAC.W
instruction, however, contention occurs with the multiplier, so operation is different from normal.

The following cases are possible:

(a) MAC.W instruction follows immediately after MAC.W instruction
(b) MAC.L instruction follows immediately after MAC.W instruction
(c) MULS.W instruction follows immediately after MAC.W instruction
(d) DMULS.L instruction follows immediately after MAC.W instruction
(e) STS (register) instruction follows immediately after MAC.W instruction
(f) STS.L (memory) instruction follows immediately after MAC.W instruction
(g) LDS (register) instruction follows immediately after MAC.W instruction
(h) LDS.L (memory) instruction follows immediately after MAC.W instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 233 of 336
REJ09B0316-0200

(a) MAC.W instruction follows immediately after MAC.W instruction

The second MA of MAC.W instruction does not contend with the mm generated by the preceding
multiply instruction.

MAC.W

MAC.W

Next instruction in series

··········

MA

EX

—

mm

MA

ID

mm

MA

EX

mm

MA

mm

······

IF ID

IF

EX

—

MA

ID

IF

: Slot

Figure 8.19 MAC.W Instruction Follows Immediately after MAC.W Instruction (1)

If the MAC.W instruction occurs twice in succession, contention between MA and IF could cause
a delay in instruction execution. Refer to the diagram below. This diagram takes into account the
possibility of contention between MA and IF.

MAC.W

MAC.W

MAC.W

MAC.W

··········

if ID

IF

EX

—

MA

ID

if

MA

EX

—

mm

MA

—

mm

—

ID

IF

MA

EX

—

mm

MA

ID

mm

MA

EX

mm

MA

mm

MA mm ······

: Slot

Figure 8.20 MAC.W Instruction Follows Immediately after MAC.W Instruction (2)

If contention occurs between the second MA of the MAC.W instruction and IF, the slot splits
normally. Refer to the diagram below. This diagram takes into account the possibility of
contention between MA and IF.

MAC.W

MAC.W

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

—

mm

MA

ID

if

mm

MA

—

—

mm

EX

ID

IF

mm

MA

EX

······

······

: Slot

Figure 8.21 MAC.W Instruction Follows Immediately after MAC.W Instruction (3)

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 234 of 336
REJ09B0316-0200

(b) MAC.L instruction follows immediately after MAC.W instruction

The second MA of the MAC.W instruction does not contend with the mm generated by the
preceding multiply instruction.

MAC.W

MAC.L

Next instruction in series

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

—

mm

MA

ID

mm

MA

EX

mm

MA

mm

······

mm mm

: Slot

Figure 8.22 MAC.L Instruction Follows Immediately after MAC.W Instruction

(c) MULS.W instruction follows immediately after MAC.W instruction

The MULS.W instruction has an MA stage for accessing the multiplier. If contention with the MA
of MULS.W occurs during the MAC.W instruction's multiplier operation (mm), that MA is
delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot. If
there is one or more instruction that does not use the multiplier located between MAC.W and
MULS.W, no contention occurs between MAC.W and MULS.W and there is no delay. Note that
the slot splits if there is contention between the MA of MULS.W and IF.

MAC.W

MULS.W

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

mm

M

EX

mm

A

—

mm

MA

mm

······

: Slot

: Slot

MAC.W

Branch destination

MULS.W

Other instruction

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

EX

ID

mm

MA

EX

mm

MA

mm

······

Figure 8.23 MULS.W Instruction Follows Immediately after MAC.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 235 of 336
REJ09B0316-0200

(d) DMULS.L instruction follows immediately after MAC.W instruction

The MULS.W instruction has an MA stage for accessing the multiplier, but there is no contention
with the MA of MULS.W during the MAC.W instruction's multiplier operation (mm). Note that
the slot splits if there is contention between the MA of MULS.W and IF.

MAC.W

DMULS.L

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

—

mm

MA

ID

mm

MA

EX

mm

MA

mm

······

mm mm

: Slot

Figure 8.24 DMULS.L Instruction Follows Immediately after MAC.W Instruction

(e) STS (register) instruction follows immediately after MAC.W instruction

If the STS instruction is used to store the contents of the MAC register to a general-use register,
the STS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of STS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of STS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

MAC.W

STS

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

A

—

—

WB

EX

ID

IF

MA

EX

ID EX ······

: Slot

MAC.W

STS

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

MA

EX

ID

if

WB

EX

ID EX ······

: Slot

Figure 8.25 STS (Register) Instruction Follows Immediately after MAC.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 236 of 336
REJ09B0316-0200

(f) STS.L (memory) instruction follows immediately after MAC.W instruction

If the STS instruction is used to store the contents of the MAC register in memory, the STS
instruction will include an MA stage for accessing the multiplier and writing to memory, as
described below. These diagrams take into account the possibility of contention between MA and
IF.

MAC.W

STS.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

MA

EX

ID

if

mm

M

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

: Slot

: Slot

MAC.W

STS.L

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

MA

EX

ID

if

EX

ID EX ······

Figure 8.26 STS.L (Memory) Instruction Follows Immediately after MAC.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 237 of 336
REJ09B0316-0200

(g) LDS (register) instruction follows immediately after MAC.W instruction

If the LDS instruction is used to load the contents of the MAC register from a general-use register,
the LDS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of LDS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of LDS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

MAC.W

LDS

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

: Slot

: Slot

MAC.W

LDS

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

MA

EX

ID

if

EX

ID EX ······

Figure 8.27 LDS (Register) Instruction Follows Immediately after MAC.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 238 of 336
REJ09B0316-0200

(h) LDS.L (memory) instruction follows immediately after MAC.W instruction

If the LDS instruction is used to load the contents of the MAC register from memory, the LDS
instruction will include an MA stage for accessing memory and accessing the multiplier, as
described below. If contention with the MA of LDS occurs during the multiplier operation (mm),
that MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single
slot. Also, the MA of LDS contends with IF. This situation is shown in the diagrams below. These
diagrams take into account the possibility of contention between MA and IF.

MAC.W

LDS.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

A

—

—

EX

ID

IF

EX

ID EX ······

: Slot

: Slot

MAC.W

LDS.L

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

MA

EX

ID

if

EX

ID EX ······

Figure 8.28 LDS.L (Memory) Instruction Follows Immediately after MAC.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 239 of 336
REJ09B0316-0200

Double-Length Multiply/Accumulate Instruction: Includes the following instruction type:

• MAC.L @Rm+, @Rn+

Next instruction

Third instruction

IF

IF

EX

— ID

IF ID

Instruction A ID

EX

EX

MA

MA

: Slot

WB

WB

MA mmMA mmmmmm

......

Figure 8.29 Double-Length Multiply/Accumulate Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 8.29). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for four cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.L instruction is stalled for one slot. The two MAs of the MAC.L
instruction, when they contend with IF, split the slots as described in section 8.4, Contention
between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA, MA. In
such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline operates
normally. When an instruction that uses the multiplier comes after the MAC.L instruction,
contention occurs with the multiplier, so operation is different from normal.

The following cases are possible:

(a) MAC.L instruction follows immediately after MAC.L instruction
(b) MAC.W instruction follows immediately after MAC.L instruction
(c) DMULS.L instruction follows immediately after MAC.L instruction
(d) MULS.W instruction follows immediately after MAC.L instruction
(e) STS (register) instruction follows immediately after MAC.L instruction
(f) STS.L (memory) instruction follows immediately after MAC.L instruction
(g) LDS (register) instruction follows immediately after MAC.L instruction
(h) LDS.L (memory) instruction follows immediately after MAC.L instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 240 of 336
REJ09B0316-0200

(a) MAC.L instruction follows immediately after MAC.L instruction

If the second MA of the MAC.L instruction contends with the mm generated by the preceding
multiply instruction, that MA is delayed until the mm finishes (M -- A in the diagram below),
thereby forming a single slot.

If there are two or more instructions that do not use the multiplier located between the one MAC.L
instruction and a second MAC.L instruction, no contention occurs the two MAC.L instructions
and there is no delay.

MAC.L

MAC.L

Next instruction in series

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

—

mm

MA

ID

mm

M

EX

mm

—

mm

A

—

mm

MA

mm

······

mm mm

MAC.L

Other instruction

Other instruction

MAC.L

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

MA

EX

ID

mm

WB

MA

EX

mm

WB

MA

mm

MA mm mm mm mm

: Slot

: Slot

Figure 8.30 MAC.L Instruction Follows Immediately after MAC.L Instruction (1)

Even if the succession of MAC.L instructions causes delays in execution due to contention
between MA and IF, multiplier contention may be reduced in some cases. Refer to the diagram
below. This diagram takes into account the possibility of contention between MA and IF.

MAC.L

MAC.L

MAC.L

MAC.L

··········

if ID

IF

EX

—

MA

ID

if

MA

EX

—

mm

MA

—

mm

—

ID

IF

mm

M

EX

—

mm

A

—

—

mm

MA

ID

mm

M

EX

mm

—

mm

A

—

mm

MA

mm

mm

mm

: Slot

Figure 8.31 MAC.L Instruction Follows Immediately after MAC.L Instruction (2)

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 241 of 336
REJ09B0316-0200

If the second MA of the MAC.L instruction is delayed until the mm finishes, and that MA
contends with IF, the slot splits normally. Refer to the diagram below. This diagram takes into
account the possibility of contention between MA and IF.

MAC.L

MAC.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

—

mm

MA

ID

if

mm

M

—

—

mm

—

—

mm

A

—

—

mm

EX

ID

IF

mm mm mm

: Slot

Figure 8.32 MAC.L Instruction Follows Immediately after MAC.L Instruction (3)

(b) MAC.W instruction follows immediately after MAC.L instruction

If the second MA of the MAC.L contends with the mm generated by the preceding multiply
instruction, that MA is delayed until the mm finishes (M -- A in the diagram below), thereby
forming a single slot.

If there are two or more instructions that do not use the multiplier located between the MAC.L
instruction and the MAC.W instruction, no multiplier contention occurs between the MAC.L
instruction and the MAC.W instruction, and there is no delay.

MAC.L

MAC.W

Next instruction in series

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

—

mm

MA

ID

mm

M

EX

mm

—

mm

A

—

mm

MA

mm

······

: Slot

: Slot

MAC.L

Other instruction

Other instruction

MAC.W

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

MA

EX

ID

mm

WB

MA

EX

mm

WB

MA

mm

MA mm mm

Figure 8.33 MAC.W Instruction Follows Immediately after MAC.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 242 of 336
REJ09B0316-0200

(c) DMULS.L instruction follows immediately after MAC.L instruction

The DMULS.L instruction has an MA stage for accessing the multiplier. If contention with the
second MA of DMULS.L occurs during the MAC.L instruction's multiplier operation (mm), that
MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot.
If there are two or more instructions that do not use the multiplier located between the MAC.L
instruction and the DMULS.L instruction, no contention occurs between MAC.L and DMULS.L,
and there is no delay. Note that the slot splits if there is contention between the MA of DMULS.L
and IF.

MAC.L

DMULS.L

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

—

mm

MA

ID

mm

M

—

mm

—

mm

A

EX

mm

MA

mm

······

mm mm

: Slot

: Slot

: Slot

MAC.L

Branch destination

DMULS.L

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

EX

—

mm

MA

ID

mm

M

—

mm

A

EX

mm

MA

mm

······

mm mm

MAC.L

Other instruction

Other instruction

DMULS.L

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

MA

EX

ID

IF

mm

WB

MA

EX

—

mm

WB

MA

ID

mm

MA

EX

mm

MA

mm

······

mm mm

Figure 8.34 DMULS.L Instruction Follows Immediately after MAC.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 243 of 336
REJ09B0316-0200

(d) MULS.W instruction follows immediately after MAC.L instruction

The MULS.W instruction has an MA stage for accessing the multiplier. If contention with the MA
of MULS.W occurs during the MAC.L instruction's multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. If there are
three or more instructions that do not use the multiplier located between MAC.L and MULS.W, no
contention occurs between MAC.L and MULS.W and there is no delay. Note that the slot splits if
there is contention between the MA of MULS.W and IF.

MAC.L

MULS.W

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

mm

M

EX

mm

—

mm

—

mm

A

—

mm

MA

mm

······

MAC.L

Branch destination

MULS.W

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

EX

ID

mm

M

EX

mm

—

mm

A

—

mm

MA

mm

······

MAC.L

Other instruction

Other instruction

MULS.W

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

MA

EX

ID

IF

mm

WB

MA

EX

ID

mm

WB

M

EX

mm

A

—

mm

MA

mm

······

MAC.L

Other instruction

Other instruction

Other instruction

MULS.W

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

MA

EX

ID

IF

mm

WB

MA

EX

ID

IF

mm

WB

MA

EX

ID

mm

WB

MA

EX

mm

MA

mm

······

: Slot

: Slot

: Slot

: Slot

Figure 8.35 MULS.W Instruction Follows Immediately after MAC.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 244 of 336
REJ09B0316-0200

(e) STS (register) instruction follows immediately after MAC.L instruction

If the STS instruction is used to store the contents of the MAC register to a general-use register,
the STS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of STS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of STS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

MAC.L

STS

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

—

—

mm

—

—

mm

A

—

—

WB

EX

ID

IF

MA

EX

ID EX ······

MAC.L

STS

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

M

EX

ID

if

mm

—

—

mm

A

—

—

WB

EX

ID EX ······

: Slot

: Slot

Figure 8.36 STS (Register) Instruction Follows Immediately after MAC.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 245 of 336
REJ09B0316-0200

(f) STS.L (memory) instruction follows immediately after MAC.L instruction

If the STS instruction is used to store the contents of the MAC register in memory, the STS
instruction will include an MA stage for accessing the multiplier and writing to memory, as
described below. Also, the MA of STS contends with IF. This situation is shown in the diagrams
below. These diagrams take into account the possibility of contention between MA and IF.

MAC.L

STS.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

—

—

mm

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

MAC.L

STS.L

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

M

EX

ID

if

mm

—

—

mm

A

EX

ID EX ······

mm

A

—

—

: Slot

: Slot

Figure 8.37 STS.L (Memory) Instruction Follows Immediately after MAC.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 246 of 336
REJ09B0316-0200

(g) LDS (register) instruction follows immediately after MAC.L instruction

If the LDS instruction is used to load the contents of the MAC register from a general-use register,
the LDS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of LDS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of LDS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

MAC.L

LDS

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

—

—

mm

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

MAC.L

LDS

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

M

EX

ID

if

mm

—

—

mm

A

—

—

EX

ID EX ······

: Slot

: Slot

Figure 8.38 LDS (Register) Instruction Follows Immediately after MAC.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 247 of 336
REJ09B0316-0200

(h) LDS.L (memory) instruction follows immediately after MAC.L instruction

If the LDS instruction is used to load the contents of the MAC register from memory, the LDS
instruction will include an MA stage for accessing memory and accessing the multiplier, as
described below. If contention with the MA of LDS occurs during the multiplier operation (mm),
that MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single
slot. Also, the MA of LDS contends with IF. This situation is shown in the diagrams below. These
diagrams take into account the possibility of contention between MA and IF.

MAC.L

LDS.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

—

—

mm

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

MAC.L

LDS.L

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

M

EX

ID

if

mm

—

—

mm

A

—

—

EX

ID EX ······

: Slot

: Slot

Figure 8.39 LDS.L (Memory) Instruction Follows Immediately after MAC.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 248 of 336
REJ09B0316-0200

Multiplication Instructions: Include the following instruction types:

• MULS.W Rm, Rn
• MULU.W Rm, Rn

Next instruction

Third instruction

IF

IF

EX

ID

IF ID

Instruction A ID

EX

EX

MA

MA

: Slot

WB

WB

MA mm mm

......

Figure 8.40 Multiplication Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, mm, and mm. The MA accesses the multiplier. mm
indicates that the multiplier is operating. mm operates for three cycles after the MA ends,
regardless of slot. The MA of the MULS.W instruction, when it contends with IF, splits the slot as
described in Section 8.4, Contention between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be a four-stage pipeline instruction of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is different from normal.

The following cases are possible:

(a) MAC.W instruction follows immediately after MULS.W instruction
(b) MAC.L instruction follows immediately after MULS.W instruction
(c) MULS.W instruction follows immediately after MULS.W instruction
(d) DMULS.L instruction follows immediately after MULS.W instruction
(e) STS (register) instruction follows immediately after MULS.W instruction
(f) STS.L (memory) instruction follows immediately after MULS.W instruction
(g) LDS (register) instruction follows immediately after MULS.W instruction
(h) LDS.L (memory) instruction follows immediately after MULS.W instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 249 of 336
REJ09B0316-0200

(a) MAC.W instruction follows immediately after MULS.W instruction

The second MA of the MAC.W instruction does not contend with the mm generated by the
preceding multiply instruction.

: Slot

MULS.W

MAC.W

Next instruction in series

··········

IF ID

IF

EX

ID

IF

MA

EX

—

mm

MA

ID

mm

MA

EX

mm

MA

mm

······

Figure 8.41 MAC.W Instruction Follows Immediately after MULS.W Instruction

(b) MAC.L instruction follows immediately after MULS.W instruction

The second MA of the MAC.W instruction does not contend with the mm generated by the
preceding multiply instruction.

: Slot

MULS.W

MAC.L

Next instruction in series

··········

IF ID

IF

EX

ID

IF

MA

EX

—

mm

MA

ID

mm

MA

EX

mm

MA

mm

······

mm mm

Figure 8.42 MAC.L Instruction Follows Immediately after MULS.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 250 of 336
REJ09B0316-0200

(c) MULS.W instruction follows immediately after MULS.W instruction

The MULS.W instruction has an MA stage for accessing the multiplier. If contention with the MA
of the other MULS.W occurs during the MULS.W instruction's multiplier operation (mm), that
MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot.
If there is one or more instruction that does not use the multiplier located between MULS.W and
MULS.W, no contention occurs between MULS.W and MULS.W and there is no delay. Note that
the slot splits if there is contention between the MA of MULS.W and IF.

: Slot

MULS.W

MULS.W

Other instruction

··········

IF ID

IF

EX

ID

IF

MA

EX

ID

mm

M

EX

mm

A

—

mm

MA

mm

······

: Slot

MULS.W

Other instruction

MULS.W

Other instruction

··········

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

mm

EX

ID

mm

MA

EX

mm

MA

mm

······

Figure 8.43 MULS.W Instruction Follows Immediately after MULS.W Instruction (1)

If the MA of the MULS.W instruction is delayed until the mm finishes, and that MA contends
with IF, the slot splits normally. Refer to the diagram below. This diagram takes into account the
possibility of contention between MA and IF.

: Slot

MULS.W

MULS.W

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

A

—

—

mm

EX

ID

IF

mm

MA

EX

ID

······

······

······

Figure 8.44 MULS.W Instruction Follows Immediately after MULS.W Instruction (2)

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 251 of 336
REJ09B0316-0200

(d) DMULS.L instruction follows immediately after MULS.W instruction

The second MA of the DMULS.L accesses the multiplier, but there is no contention with the mm
generated by the MULS.W instruction.

: Slot

MULS.W

DMULS.L

Other instruction

··········

IF ID

IF

EX

ID

IF

MA

EX

—

mm

MA

ID

mm

MA

EX

mm

MA

mm

······

mm mm

Figure 8.45 DMULS.L Instruction Follows Immediately after MULS.W Instruction

(e) STS (register) instruction follows immediately after MULS.W instruction

If the STS instruction is used to store the contents of the MAC register to a general-use register,
the STS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of STS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of STS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

: Slot

MULS.W

STS

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

A

—

—

WB

EX

ID

IF

MA

EX

ID EX ······

: Slot

MULS.W

STS

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

ID

if

MA

—

—

mm

EX

ID

IF

mm

MA

EX

ID

if

WB

EX

ID EX ······

Figure 8.46 STS (Register) Instruction Follows Immediately after MULS.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 252 of 336
REJ09B0316-0200

(f) STS.L (memory) instruction follows immediately after MULS.W instruction

If the STS instruction is used to store the contents of the MAC register in memory, the STS
instruction will include an MA stage for accessing the multiplier and writing to memory, as
described below. Also, the MA of STS contends with IF. This situation is shown in the diagrams
below. These diagrams take into account the possibility of contention between MA and IF.

: Slot

: Slot

MULS.W

STS.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

MULS.W

STS.L

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

ID

if

MA

—

—

mm

EX

ID

IF

mm

MA

EX

ID

if

EX

ID EX ······

Figure 8.47 STS.L (Memory) Instruction Follows Immediately after MULS.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 253 of 336
REJ09B0316-0200

(g) LDS (register) instruction follows immediately after MULS.W instruction

If the LDS instruction is used to load the contents of the MAC register from a general-use register,
the LDS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of LDS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of LDS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

: Slot

MULS.W

LDS

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

: Slot

MULS.W

LDS

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

ID

if

MA

—

—

mm

EX

ID

IF

mm

MA

EX

ID

if

EX

ID EX ······

Figure 8.48 LDS (Register) Instruction Follows Immediately after MULS.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 254 of 336
REJ09B0316-0200

(h) LDS.L (memory) instruction follows immediately after MULS.W instruction

If the LDS instruction is used to load the contents of the MAC register from memory, the LDS
instruction will include an MA stage for accessing memory and accessing the multiplier, as
described below. If contention with the MA of LDS occurs during the multiplier operation (mm),
that MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single
slot. Also, the MA of LDS contends with IF. This situation is shown in the diagrams below. These
diagrams take into account the possibility of contention between MA and IF.

: Slot

MULS.W

LDS.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

: Slot

MULS.W

LDS.L

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

ID

if

MA

—

—

mm

EX

ID

IF

mm

MA

EX

ID

if

EX

ID EX ······

Figure 8.49 LDS.L (Memory) Instruction Follows Immediately after MULS.W Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 255 of 336
REJ09B0316-0200

Double-Length Multiplication Instructions: Include the following instruction types:

• DMULS.L Rm, Rn
• DMULU.L Rm, Rn
• MUL.L Rm, Rn

Next instruction

Third instruction

IF

IF

EX

— ID

IF ID

Instruction A ID

EX

EX

MA

MA

: Slot

WB

WB

MA mmMA mmmmmm

......

Figure 8.50 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 8.50). The
second MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm
operates for four cycles after the MA ends, regardless of slot. The ID of the instruction following
the DMULS.L instruction is stalled for 1 slot (see the description of the Multiply/Accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 8.4, Contention between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier come after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is different from normal.

The following cases are possible:

(a) MAC.L instruction follows immediately after DMULS.L instruction
(b) MAC.W instruction follows immediately after DMULS.L instruction
(c) DMULS.L instruction follows immediately after DMULS.L instruction
(d) MULS.W instruction follows immediately after DMULS.L instruction
(e) STS (register) instruction follows immediately after DMULS.L instruction
(f) STS.L (memory) instruction follows immediately after DMULS.L instruction
(g) LDS (register) instruction follows immediately after DMULS.L instruction
(h) LDS.L (memory) instruction follows immediately after DMULS.L instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 256 of 336
REJ09B0316-0200

(a) MAC.L instruction follows immediately after DMULS.L instruction

If the second MA of the MAC.L instruction contends with the mm generated by the preceding
multiply instruction, the bus cycle of that MA is extended until the mm finishes (M -- A in the
diagram below), thereby forming a single slot.

If there are two or more instructions that do not use the multiplier located between the DMULS.L
instruction and the MAC.L instruction, no contention occurs between DMULS.L and MAC.L, and
there is no delay.

: Slot

: Slot

DMULS.L

MAC.L

Next instruction in series

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

—

mm

MA

ID

mm

M

EX

mm

—

mm

A

—

mm

MA

mm

······

mm mm

DMULS.L

Other instruction

Other instruction

MAC.L

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

MA

EX

ID

mm

WB

MA

EX

mm

WB

MA

mm

MA mm mm mm mm

Figure 8.51 MAC.L Instruction Follows Immediately after DMULS.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 257 of 336
REJ09B0316-0200

(b) MAC.W instruction follows immediately after DMULS.L instruction

If the second MA of the MAC.W instruction contends with the mm generated by the preceding
multiply instruction, the bus cycle of that MA is extended until the mm finishes (M -- A in the
diagram below), thereby forming a single slot.

If there are two or more instructions that do not use the multiplier located between the DMULS.L
instruction and the MAC.W instruction, no contention occurs between DMULS.L and MAC.W,
and there is no delay.

: Slot

: Slot

DMULS.L

MAC.W

Next instruction in series

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

—

mm

MA

ID

mm

M

EX

mm

—

mm

A

—

mm

MA

mm

······

DMULS.L

Other instruction

Other instruction

MAC.W

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

MA

EX

ID

mm

WB

MA

EX

mm

WB

MA

mm

MA mm mm

Figure 8.52 MAC.W Instruction Follows Immediately after DMULS.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 258 of 336
REJ09B0316-0200

(c) DMULS.L instruction follows immediately after DMULS.L instruction

The DMULS.L instruction has an MA stage for accessing the multiplier. If contention with the
MA of DMULS.L occurs during the other DMULS.L instruction's multiplier operation (mm), that
MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot.
If there are two or more instructions that do not use the multiplier located between DMULS.L and
DMULS.L, no contention occurs between DMULS.L and DMULS.L and there is no delay. Note
that the slot splits if there is contention between the MA of DMULS.L and IF.

DMULS.L

DMULS.L

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

—

mm

MA

ID

mm

M

EX

mm

—

mm

A

—

mm

MA

mm

······

mm mm

: Slot

: Slot

DMULS.L

Other instruction

DMULS.L

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

EX

—

mm

MA

ID

mm

M

EX

mm

A

—

mm

MA

mm

······

mm mm

: Slot

DMULS.L

Other instruction

Other instruction

DMULS.L

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

MA

EX

ID

IF

mm

WB

MA

EX

—

mm

WB

MA

ID

mm

MA

EX

mm

MA

mm

······

mm mm

Figure 8.53 DMULS.L Instruction Follows Immediately after DMULS.L Instruction (1)

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 259 of 336
REJ09B0316-0200

If the MA of the DMULS.L instruction is delayed until the mm finishes, and that MA contends
with IF, the slot splits normally. Refer to the diagram below. This diagram takes into account the
possibility of contention between MA and IF.

DMULS.L

DMULS.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

EX

—

MA

—

—

ID

IF

mm

MA

ID

if

mm

M

—

—

mm

—

—

mm

A

—

—

mm

EX

ID

IF

mm

EX

ID

mm

······

······

mm

: Slot

Figure 8.54 DMULS.L Instruction Follows Immediately after DMULS.L Instruction (2)

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 260 of 336
REJ09B0316-0200

(d) MULS.W instruction follows immediately after DMULS.L instruction

The MULS.W instruction has an MA stage for accessing the multiplier. If contention with the MA
of MULS.W occurs during the DMULS.L instruction's multiplier operation (mm), that MA is
delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot. If
there are three or more instructions that do not use the multiplier located between DMULS.L and
MULS.W, no contention occurs between DMULS.L and MULS.W and there is no delay. Note
that the slot splits if there is contention between the MA of MULS.W and IF.

DMULS.L

MULS.W

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

mm

M

EX

mm

—

mm

—

mm

A mm

MA

mm

······

: Slot

: Slot

DMULS.L

Other instruction

Other instruction

Other instruction

MULS.W

Other instruction

··········

IF ID

IF

EX

—

MA

ID

IF

MA

EX

ID

IF

mm

MA

EX

ID

IF

mm

WB

MA

EX

ID

IF

mm

WB

MA

EX

ID

mm

WB

MA

EX

MA

MA

mm

······

mm

Figure 8.55 MULS.W Instruction Follows Immediately after DMULS.L Instruction (1)

If the MA of the DMULS.L instruction is delayed until the mm finishes, and that MA contends
with IF, the slot splits normally. Refer to the diagram below. This diagram takes into account the
possibility of contention between MA and IF.

DMULS.L

MULS.W

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

—

—

mm

—

—

mm

A

—

—

mm

EX

ID

IF

mm

MA

EX

ID

······

······

······

: Slot

Figure 8.56 MULS.W Instruction Follows Immediately after DMULS.L Instruction (2)

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 261 of 336
REJ09B0316-0200

(e) STS (register) instruction follows immediately after DMULS.L instruction

If the STS instruction is used to store the contents of the MAC register to a general-use register,
the STS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of STS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of STS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

DMULS.L

STS

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

—

—

mm

—

—

mm

A

—

—

WB

EX

ID

IF

MA

EX

ID EX ······

: Slot

: Slot

DMULS.L

STS

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

M

EX

ID

if

mm

—

—

mm

A

—

—

WB

EX

ID EX ······

Figure 8.57 STS (Register) Instruction Follows Immediately after DMULS.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 262 of 336
REJ09B0316-0200

(f) STS.L (memory) instruction follows immediately after DMULS.L instruction

If the STS instruction is used to store the contents of the MAC register in memory, the STS
instruction will include an MA stage for accessing the multiplier and writing to memory, as
described below. Also, the MA of STS contends with IF. This situation is shown in the diagrams
below. These diagrams take into account the possibility of contention between MA and IF.

DMULS.L

STS.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

—

—

mm

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

: Slot

: Slot

DMULS.L

STS.L

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

M

EX

ID

if

mm

—

—

mm

A

—

—

EX

ID EX ······

Figure 8.58 STS.L (Memory) Instruction Follows Immediately after DMULS.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 263 of 336
REJ09B0316-0200

(g) LDS (register) instruction follows immediately after DMULS.L instruction

If the LDS instruction is used to load the contents of the MAC register from a general-use register,
the LDS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of LDS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of LDS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

DMULS.L

LDS

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

ID

IF

MA

EX

ID

if

mm

M

—

—

mm

—

—

mm

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

: Slot

: Slot

DMULS.L

LDS

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

M

EX

ID

if

mm

—

—

mm

A

—

—

EX

ID EX ······

Figure 8.59 LDS (Register) Instruction Follows Immediately after DMULS.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 264 of 336
REJ09B0316-0200

(h) LDS.L (memory) instruction follows immediately after DMULS.L instruction

If the LDS instruction is used to load the contents of the MAC register from memory, the LDS
instruction will include an MA stage for accessing memory and accessing the multiplier, as
described below. If contention with the MA of LDS occurs during the multiplier operation (mm),
that MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single
slot. Also, the MA of LDS contends with IF. This situation is shown in the diagrams below. These
diagrams take into account the possibility of contention between MA and IF.

DMULS.L

LDS.L

Other instruction

Other instruction

Other instruction

··········

IF ID

if

EX

—

MA

—

—

I

MA

EX

ID

if

mm

M

—

—

mm mm

—

—

mm

A

—

—

EX

ID

IF

MA

EX

ID EX ······

: Slot

: Slot

DMULS.L

LDS.L

Other instruction

Other instruction

Other instruction

··········

if ID

IF

EX

—

MA

ID

if

MA

—

—

mm

EX

ID

IF

mm

M

EX

ID

if

mm

—

—

mm

A

—

—

EX

ID EX ······

Figure 8.60 LDS.L (Memory) Instruction Follows Immediately after DMULS.L Instruction

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 265 of 336
REJ09B0316-0200

8.8.3 Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

• AND Rm, Rn
• AND #imm, R0
• NOT Rm, Rn
• OR Rm, Rn
• OR #imm, R0

• TST Rm, Rn
• TST #imm, R0
• XOR Rm, Rn
• XOR #imm, R0

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID

......

......

......

Figure 8.61 Register-Register Logic Operation Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 8.61). The data operation is completed in the
EX stage via the ALU.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 266 of 336
REJ09B0316-0200

Memory Logic Operations Instructions: Include the following instruction types:

• AND.B #imm, @(R0, GBR)
• OR.B #imm, @(R0, GBR)
• TST.B #imm, @(R0, GBR)
• XOR.B #imm, @(R0, GBR)

Next instruction

Third instruction in series

IF

IF

EX

—

IF

—

ID EX

Instruction A ID

EX
.....

EXMA MA
.....

: Slot

ID

.....

Figure 8.62 Memory Logic Operation Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.62). The ID of the next
instruction stalls for 2 slots. The MAs of these instructions contend with IF.

TAS Instruction: Includes the following instruction type:

• TAS.B @Rn

Next instruction

Third instruction in series

IF

IF

EX

—

IF

— —

ID EX

Instruction A ID

EX
.....

EXMA MA
.....

: Slot

ID

.....

Figure 8.63 TAS Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.63). The ID of the next
instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 267 of 336
REJ09B0316-0200

8.8.4 Shift Instructions

General Shift Instructions: Include the following instruction types:

• ROTL Rn
• ROTR Rn
• ROTCL Rn
• ROTCR Rn
• SHAL Rn
• SHAR Rn
• SHLL Rn

• SHLR Rn
• SHLL2 Rn
• SHLR2 Rn
• SHLL8 Rn
• SHLR8 Rn
• SHLL16 Rn
• SHLR16 Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID EX

Instruction A ID

ID
.....

EX

: Slot

.....

Figure 8.64 General Shift Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 8.64). The data operation is completed in the
EX stage via the ALU.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 268 of 336
REJ09B0316-0200

8.8.5 Branch Instructions

Conditional Branch Instructions: Include the following instruction types:

• BF label
• BT label

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.
Conditionally branched instructions are not delay branched.

1. When condition is satisfied
The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch destination
instruction begins its fetch from the slot following the slot which has the EX stage of
instruction A (figure 8.65).

Next instruction

Third instruction in series

IF

IF

EX

IF —

Instruction A ID

—

: Slot

Branch destination — IF ID EX

..... IF ID EX

(Fetched but discarded)

(Fetched but discarded)

.....

Figure 8.65 Branch Instruction when Condition Is Satisfied

2. When condition is not satisfied
If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.66).

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

ID

: Slot

..... IF ID EX

.....

EX

EX

.....

Figure 8.66 Branch Instruction when Condition Is Not Satisfied

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 269 of 336
REJ09B0316-0200

Note: The SH-2E always fetches data as longwords. Consequently, a fetch performed by the
instruction following the status "1. When condition is satisfied" will overlap two
instructions if the address is at the 4n address boundary.

Delayed Conditional Branch Instructions: Include the following instruction types:

• BF/S label
• BT/S label

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.

1. When condition is satisfied
The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 8.67).

Next instruction

Third instruction in series

IF

IF

EX

IF —

—

Instruction A ID

: Slot

Branch destination IF ID EX

..... IF ID EX

(Fetched but discarded)

ID EX MA WB

Figure 8.67 Branch Instruction when Condition Is Satisfied

2. When condition is not satisfied
If it is determined that a condition is not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.68).

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

ID

: Slot

..... IF ID EX

.....

EX

EX

.....

Figure 8.68 Branch Instruction when Condition Is Not Satisfied

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 270 of 336
REJ09B0316-0200

Note: The SH-2E always fetches data as longwords. Consequently, a fetch performed by the
instruction following the status "1. When condition is satisfied" will overlap two
instructions if the address is at the 4n address boundary.

Unconditional Branch Instructions: Include the following instruction types:

• BRA label
• BRAF Rm
• BSR label
• BSRF Rm
• JMP @Rm
• JSR @Rm
• RTS

Delay slot

Branch destination

IF

IF

EX

IF ID

Instruction A ID

—

: Slot

..... IF ID EX

ID

EX
EX MA WB

.....

Figure 8.69 Unconditional Branch Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 8.69). Unconditionally branched instructions
are delay branched. The branch destination address is calculated in the EX stage. The instruction
following the unconditional branch instruction (instruction A), that is, the delay slot instruction is
not fetched and discarded as conditional branch instructions are, but is instead executed. Note that
the ID slot of the delay slot instruction does stall for one cycle. The branch destination instruction
starts its fetch from the slot after the slot that has the EX stage of instruction A.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 271 of 336
REJ09B0316-0200

8.8.6 System Control Instructions

System Control ALU Instructions: Include the following instruction types:

• CLRT
• LDC Rm,SR
• LDC Rm,GBR
• LDC Rm,VBR
• LDS Rm,PR
• NOP

• SETT
• STC SR,Rn
• STC GBR,Rn
• STC VBR,Rn
• STS PR,Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

ID

: Slot

EX

EX

.....

.....

Figure 8.70 System Control ALU Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 8.70). The data operation is completed in the
EX stage via the ALU.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 272 of 336
REJ09B0316-0200

LDC.L Instructions: Include the following instruction types:

• LDC.L @Rm+, SR
• LDC.L @Rm+, GBR
• LDC.L @Rm+, VBR

Next instruction

Third instruction in series

IF

IF

EX MA WB

IF ID

——

Instruction A ID

ID

: Slot

EX

EX

.....

.....

Figure 8.71 LDC.L Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and EX (figure 8.71). The ID of the following
instruction is stalled two slots.

STC.L Instructions: Include the following instruction types:

• STC.L SR, @�Rn
• STC.L GBR, @�Rn
• STC.L VBR, @�Rn

Next instruction

Third instruction in series

IF

IF

EX MA

IF ID

—

Instruction A ID

ID

: Slot

EX

EX

.....

.....

Figure 8.72 STC.L Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.72). The ID of the next instruction is
stalled one slot.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 273 of 336
REJ09B0316-0200

LDS.L Instruction (PR): Includes the following instruction type:

• LDS.L @Rm+, PR

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX
WB

.....

Figure 8.73 LDS.L Instructions (PR) Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.73). It is the same as an ordinary
load instruction.

STS.L Instruction (PR): Includes the following instruction type:

• STS.L PR, @�Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX

.....

Figure 8.74 STS.L Instruction (PR) Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.74). It is the same as an ordinary load
instruction.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 274 of 336
REJ09B0316-0200

Register →→→→ MAC Transfer Instructions: Include the following instruction types:

• CLRMAC
• LDS Rm, MACH
• LDS Rm, MACL

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX

.....

Figure 8.75 Register →→→→ MAC Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.75). MA is a stage for accessing the
multiplier. MA contends with IF. This makes it the same as ordinary store instructions. Since the
multiplier does contend with the MA, however, the items noted for the multiplication,
Multiply/Accumulate, double-length multiplication, and double-length multiply/accumulate
instructions apply.

Memory →→→→ MAC Transfer Instructions: Include the following instruction types:

• LDS.L @Rm+, MACH
• LDS.L @Rm+, MACL

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX

.....

Figure 8.76 Memory →→→→ MAC Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.76). MA contends with IF. MA is a
stage for memory access and multiplier access. This makes it the same as ordinary load
instructions. Since the multiplier does contend with the MA, however, the items noted for the
multiplication, Multiply/Accumulate, double-length multiplication, and double-length
multiply/accumulate instructions apply.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 275 of 336
REJ09B0316-0200

MAC →→→→ Register Transfer Instructions: Include the following instruction types:

• STS MACH, Rn
• STS MACL, Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX
WB

.....

Figure 8.77 MAC →→→→ Register Transfer Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.77). MA is a stage for accessing
the multiplier. MA contends with IF. This makes it the same as ordinary load instructions. Since
the multiplier does contend with the MA, however, the items noted for the multiplication,
Multiply/Accumulate, double-length multiplication, and double-length multiply/accumulate
instructions apply.

MAC →→→→ Memory Transfer Instructions: Include the following instruction types:

• STS.L MACH, @�Rn
• STS.L MACL, @�Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

: Slot

EX
ID

MA

EX

.....

Figure 8.78 MAC →→→→ Memory Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.78). MA is a stage for accessing the
memory and multiplier. MA contends with IF. This makes it the same as ordinary store
instructions. Since the multiplier does contend with the MA, however, the items noted for the
multiplication, Multiply/Accumulate, double-length multiplication, and double-length
multiply/accumulate instructions apply.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 276 of 336
REJ09B0316-0200

RTE Instruction: RTE

Delay slot

Branch destination

IF

IF

EX

IF ID

RTE ID

: Slot

EX
—

MA

— —

MA

ID EX

.....

Figure 8.79 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 8.79). The MAs do not contend
with IF. RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled 3 slots.
The IF of the branch destination instruction starts from the slot following the MA of the RTE.

TRAP Instruction: TRAPA #imm

Next instruction

Third instruction in series

IF

IF

EX

IF

Instruction A ID EX MA

EX

EX

IF IDBranch destination

MA MA EX EX

IF ID

: Slot

......

Figure 8.80 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.80). The MAs
do not contend with IF. TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

SLEEP Instruction: SLEEP

Next instruction

IF

IF

EXSLEEP ID

: Slot

.....

Figure 8.81 SLEEP Instruction Pipeline

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 277 of 336
REJ09B0316-0200

The pipeline has three stages: IF, ID and EX (figure 8.81). It is issued until the IF of the next
instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or standby mode.

8.8.7 Exception Processing

Interrupt Exception Processing: The interrupt is received during the ID stage of the instruction
and everything after the ID stage is replaced by the interrupt exception processing sequence. The
pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.82). Interrupt
exception processing is not a delayed branch. In interrupt exception processing, an overrun fetch
(IF) occurs. In branch destination instructions, the IF starts from the slot that has the final EX in
the interrupt exception processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, IRQ, and on-chip
peripheral module interrupts.

EX

Next instruction

Branch destination

IF EXInterrupt ID EX MA MA EX MA EX EX

IF ID

IF ID

: Slot

IF

......

......

......

Figure 8.82 Interrupt Exception Processing Pipeline

Address Error Exception Processing: The address error is received during the ID stage of the
instruction and everything after the ID stage is replaced by the address error exception processing
sequence. The pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure
8.83). Address error exception processing is not a delayed branch. In address error exception
processing, an overrun fetch (IF) occurs. In branch destination instructions, the IF starts from the
slot that has the final EX in the address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. See the Hardware
Manual for information on the causes of address errors.

EX

Next instruction

Branch destination

IF EXInterrupt ID EX MA MA EX MA EX EX

IF ID

IF ID

: Slot

IF

......

......

......

Figure 8.83 Address Error Exception Processing Pipeline

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 278 of 336
REJ09B0316-0200

Illegal Instruction Exception Processing: The illegal instruction is received during the ID stage
of the instruction and everything after the ID stage is replaced by the illegal instruction exception
processing sequence. The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX
(figure 8.84). Illegal instruction exception processing is not a delayed branch. In illegal instruction
exception processing, overrun fetches (IF) occur. Whether there is an IF only in the next
instruction or in the one after that as well depends on the instruction that was to be executed. In
branch destination instructions, the IF starts from the slot that has the final EX in the illegal
instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by
instructions with illegal slots. When undefined code placed somewhere other than the slot directly
after the delayed branch instruction (called the delay slot) is decoded, ordinary illegal instruction
exception processing occurs. When undefined code placed in the delay slot is decoded or when an
instruction placed in the delay slot to rewrite the program counter is decoded, an illegal slot
instruction occurs.

Branch destination EX

Next instruction

Third destination

IF EXInterrupt ID EX MA MA MA EX EX

IF

IF)

ID

IF ID

: Slot

IF

......

......

......

Figure 8.84 Illegal Instruction Exception Processing Pipeline

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 279 of 336
REJ09B0316-0200

8.8.8 Relationship between Floating-point Instructions and FPU-related CPU
Instructions

FPUL Load Instructions: Include the following instruction types:

• LDS Rm,FPUL
• LDS.L @Rm+,FPUL

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

MA

E2

EX

E1

ID

DF

SF

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Figure 8.85 FPUL Load Instruction Pipeline

The CPU pipeline has four stages, IF, ID, EX, and MA (figure 8.85) ; and the FPU pipeline has
five stages, IF, DF, E1, E2, and SF. The CPU MA stage contends with IF. Contention will also
result if an instruction that reads FPUL follows immediately after this instruction.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 280 of 336
REJ09B0316-0200

FPSCR Load Instructions: Include the following instruction types:

• LDS Rm,FPSCR
• LDS.L @Rm+,FPSCR

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

MA

E2

—

—

—

—

SF

—

—

—

—

EX

E1

ID

DF

······

······

EX

E1

······

······

Figure 8.86 FPSCR Load Instruction Pipeline

The CPU pipeline has four stages, IF, ID, EX, and MA (figure 8.86) ; and the FPU pipeline has
five stages, IF, DF, E1, E2, and SF. Contention occurs as shown in Figure 8.11, and execution of
the next instruction is delayed by two slots.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 281 of 336
REJ09B0316-0200

FPUL Store Instruction (STS): Include the following instruction type:

• STS FPUL,Rn

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

MA

E2

EX

E1

ID

DF

WB

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Figure 8.87 FPUL Store Instruction (STS) Pipeline

The CPU pipeline has five stages, IF, ID, EX, MA, and MB (figure 8.87) ; and the FPU pipeline
has four stages, IF, DF, E1, and E2. The CPU MA stage contends with IF. Contention will also
result if an instruction that uses the destination of this instruction follows immediately after it.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 282 of 336
REJ09B0316-0200

FPUL Store Instruction (STS.L): Include the following instruction type:

• STS.L FPUL,@-Rn

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

MA

E2

EX

E1

ID

DF

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Figure 8.88 FPUL Store Instruction (STS.L) Pipeline

The CPU pipeline has four stages, IF, ID, EX, and MA (figure 8.88) ; and the FPU pipeline has
four stages, IF, DF, E1, and E2. The CPU MA stage contends with IF.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 283 of 336
REJ09B0316-0200

FPSCR Store Instruction (STS): Include the following instruction type:

• STS FPSCR,Rn

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

—

—

—

—

—

—

—

—

EX

E1

ID

DF

IF

IF

MA

E2

EX

E1

ID

DF

WB

······

······

EX

E1

······

······

Figure 8.89 FPSCR Store Instruction (STS) Pipeline

The CPU pipeline has five stages, IF, ID, EX, MA, and MB (figure 8.89) ; and the FPU pipeline
has four stages, IF, DF, E1, and E2. Contention occurs as shown in Figure 8.12, and execution of
the next instruction is delayed by two slots. The CPU MA stage contends with IF. Contention will
also result if an instruction that uses the destination of this instruction follows immediately after it.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 284 of 336
REJ09B0316-0200

FPSCR Store Instruction (STS.L): Include the following instruction type:

• STS.L FPSCR,@-Rn

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

—

—

—

—

—

—

—

—

EX

E1

ID

DF

IF

IF

MA

E2

EX

E1

ID

DF

······

······

EX

E1

······

······

Figure 8.90 FPSCR Store Instruction (STS.L) Pipeline

The CPU pipeline has four stages, IF, ID, EX, and MA (figure 8.90) ; and the FPU pipeline has
four stages, IF, DF, E1, and E2. Contention occurs as shown in Figure 8.12, and execution of the
next instruction is delayed by two slots. The CPU MA stage contends with IF.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 285 of 336
REJ09B0316-0200

Floating-point Register Transfer Instructions: Include the following instruction types:

• FLDS FRm,FPUL
• FMOV FRm,FRn
• FSTS FPUL,FRn

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

E2

EX

E1

ID

DF

SF

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Figure 8.91 Floating-point Register Transfer Instruction Pipeline

The CPU pipeline has three stages, IF, ID, and EX (figure 8.91) ; and the FPU pipeline has five
stages, IF, DF, E1, E2, and SF. Contention occurs if an instruction that reads from the destination
of this instruction follows immediately after it.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 286 of 336
REJ09B0316-0200

Floating-point Register Immediate Instructions: Include the following instruction types:

• FLDI0 FRn
• FMDI1 FRn

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

E2

EX

E1

ID

DF

SF

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Figure 8.92 Floating-point Register Immediate Instructions

The CPU pipeline has three stages, IF, ID, and EX (figure 8.92) ; and the FPU pipeline has five
stages, IF, DF, E1, E2, and SF. Contention occurs if an instruction that reads from the destination
of this instruction follows immediately after it.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 287 of 336
REJ09B0316-0200

Floating-point Register Load Instructions: Include the following instruction types:

• FMOV.S @Rm,FRn
• FMOV.S @Rm+,FRn
• FMOV.S @(R0,Rm),FRn

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

MA

E2

EX

E1

ID

DF

SF

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Figure 8.93 Floating-point Register Load Instruction Pipeline

The CPU pipeline has four stages, IF, ID, EX and MA (figure 8.93) ; and the FPU pipeline has
five stages, IF, DF, E1, E2, and SF. The CPU MA stage contends with IF. Contention will also
result if an instruction that reads from the destination of this instruction follows immediately after
it.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 288 of 336
REJ09B0316-0200

Floating-point Register Store Instructions: Include the following instruction types:

• FMOV.S FRm,@Rn
• FMOV.S FRm,@-Rn
• FMOV.S FRm,@(R0,Rn)

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

MA

E2

EX

E1

ID

DF

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Figure 8.94 Floating-point Register Store Instruction Pipeline

The CPU pipeline has four stages, IF, ID, EX and MA (figure 8.94) ; and the FPU pipeline has
four stages, IF, DF, E1, and E2. The CPU MA stage contends with IF.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 289 of 336
REJ09B0316-0200

Floating-point Operation Instructions (Excluding FDIV): Include the following instruction
types:

• FABS FRn
• FADD FRm,FRn
• FLOAT FPUL,FRn
• FMAC FR0,FRm,FRn
• FMUL FRm,FRn
• FNEG FRn
• FSUB FRm,FRn
• FTRC FRm,FPUL

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

E2

EX

E1

ID

DF

SF

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Figure 8.95 Floating-point Operation Instructions (Excluding FDIV) Pipeline

The CPU pipeline has three stages, IF, ID, and EX (figure 8.95) ; and the FPU pipeline has five
stages, IF, DF, E1, E2, and SF. Contention occurs if an instruction that reads from the destination
of this instruction follows immediately after it.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 290 of 336
REJ09B0316-0200

Floating-point Operation Instruction (FDIV): Include the following instruction type:

• FDIV FRm,FRn

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

E1

—

—

—

—

······

······

······

······

······

······

E1

—

—

—

—

E2

—

—

—

—

SF

—

—

—

—

EX

E1

ID

DF

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline

 (CPU instruction only)

Case 1: If next instruction is a floating-point instruction or an FPU-related CPU instruction

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

EX

E1

ID

IF

IF

E1

EX

ID

DF

······

······

······

······

E1

—

—

E2

—

—

SF

—

—

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: CPU pipeline

: FPU pipeline

Case 2: If next instruction is a CPU instruction and the following instruction is a floating-point instruction
or an FPU-related CPU instruction

Figure 8.96 Floating-point Operation Instruction (FDIV) Pipeline

The CPU pipeline has three stages, IF, ID, and EX (figure 8.96) ; and the FPU pipeline has 17
stages, IF, DF, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1, E1, E2, and SF. In other
words, 13 E1 stages are repeated in succession.

Contention occurs as shown in Figure 8.13. If the FDIV pipeline overlaps with the pipeline of a
floating-point instruction or an FPU-related CPU instruction, all stages from E1 onward are stalled
until execution of FDIV completes, and the following instructions are also stalled. Consequently,
performance can be improved by not placing any floating-point instructions or FPU-related CPU
instructions within the 14 instructions immediately following the FDIV instruction, since CPU
instructions can execute normally.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 291 of 336
REJ09B0316-0200

Floating-point Compare Instructions: Include the following instruction types:

• FCMP/EQ FRm,FRn
• FCMP/GT FRm,FRn

Instruction

Next instruction

Third instruction in series

··········

IF

IF

ID

DF

IF

IF

EX

E1

ID

DF

IF

IF

EX

E1

ID

DF

······

······

EX

E1

······

······

: Slot

: CPU pipeline

: FPU pipeline

: CPU pipeline

: FPU pipeline (CPU instruction only)

: CPU pipeline

: FPU pipeline (CPU instruction only)

Figure 8.97 Floating-point Compare Instruction Pipeline

The CPU pipeline has three stages, IF, ID, and EX (figure 8.97) ; and the FPU pipeline has three
stages, IF, DF, and E1.

Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 292 of 336
REJ09B0316-0200

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 293 of 336
REJ09B0316-0200

Appendix A Instruction Code

A.1 Instruction Set by Addressing Mode

Table A.1 Instruction Set by Addressing Mode

Addressing Mode Category Sample Instruction Types

No operand � NOP 8

Destination operand only MOVT Rn 22Direct register
addressing Source and destination

operand
ADD Rm,Rn 42

Load and store with control
register or system register

LDC Rm,SR
STS MACH,Rn

18

Source operand only JMP @Rm 2Indirect register
addressing Destination operand only TAS.B @Rn 1

Data transfer direct from
register

MOV.L Rm,@Rn 8

Multiply/accumulate operation MAC.W @Rm+,@Rn+ 2Post-increment indirect
register addressing Data transfer direct from

register
MOV.L @Rm+,Rn 4

Load to control register or
system register

LDC.L @Rm+,SR 8

Data transfer direct from
register

MOV.L Rm,@–Rn 4Pre-decrement indirect
register addressing

Store from control register or
system register

STC.L SR,@–Rn 8

Indirect register
addressing with
displacement

Data transfer direct to register MOV.L Rm,@(disp,Rn) 6

Indirect indexed register
addressing

Data transfer direct to register MOV.L Rm,@(R0,Rn) 8

Indirect GBR addressing
with displacement

Data transfer direct to register MOV.L R0,@(disp,GBR) 6

Indirect indexed GBR
addressing

Immediate data transfer AND.B #imm,@(R0,GBR) 4

PC relative addressing
with displacement

Data transfer direct to register MOV.L @(disp,PC),Rn 3

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 294 of 336
REJ09B0316-0200

Addressing Mode Category Sample Instruction Types

PC relative addressing
with Rn

Branch instruction BRAF Rn 2

PC relative addressing Branch instruction BRA label 6

Immediate addressing Load to register FLDI0 FRn 2

Arithmetic logical operations
direct with register

ADD #imm,Rn 7

Specify exception processing
vector

TRAPA #imm 1

Total: 172
Note: Figures not in parentheses () indicate the number of instructions for the SH-3E and figures

in parentheses () indicate the number of instructions for the SH-3.

A.1.1 No Operand

Table A.2 No Operand

Instruction Operation Code Cycles T Bit

CLRT 0 → T 0000000000001000 1 0

CLRMAC 0 → MACH, MACL 0000000000101000 1 �

DIV0U 0 → M/Q/T 0000000000011001 1 0

NOP No operation 0000000000001001 1 �

RTE Delayed branching,
Stack area → PC/SR

0000000000101011 4 �

RTS Delayed branching, PR → PC 0000000000001011 2 �

SETT 1 → T 0000000000011000 1 1

SLEEP Sleep 0000000000011011 3 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 295 of 336
REJ09B0316-0200

A.1.2 Direct Register Addressing

Table A.3 Destination Operand Only

Instruction Operation Code Cycles T Bit

CMP/PL Rn Rn > 0, 1 → T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison
result

DT Rn Rn � 1 → Rn, when Rn is 0,
1 → T. When Rn is nonzero,
0 → T

0100nnnn00010000 1 Comparison
result

FABS FRn abs (FRn → FRn 1111nnnn01011101 1 �

FLOAT FPUL,
FRn

(float) FPUL → FRn 1111nnnn00101101 1 �

FNEG FRn �1.0 × FRn → FRn 1111nnnn01001101 1 �

FTRC FRm,
FPUL

(int) FRm → FPUL 1111mmmm00111101 1 �

MOVT Rn T → Rn 0000nnnn00101001 1 �

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 �

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 1 �

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 �

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 1 �

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 �

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 296 of 336
REJ09B0316-0200

Table A.4 Source and Destination Operand

Instruction Operation Code Cycles T Bit

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 1 �

ADDC Rm,Rn Rn + Rm + T → Rn,
carry → T

0011nnnnmmmm1110 1 Carry

ADDV Rm,Rn Rn + Rm → Rn,
overflow → T

0011nnnnmmmm1111 1 Overflow

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 �

CMP/EQ Rm,Rn When Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Comparison
result

CMP/HS Rm,Rn When unsigned and Rn ≥
Rm, 1 → T

0011nnnnmmmm0010 1 Comparison
result

CMP/GE Rm,Rn When signed and Rn ≥
Rm, 1 → T

0011nnnnmmmm0011 1 Comparison
result

CMP/HI Rm,Rn When unsigned and Rn >
Rm, 1 → T

0011nnnnmmmm0110 1 Comparison
result

CMP/GT Rm,Rn When signed and Rn >
Rm, 1 → T

0011nnnnmmmm0111 1 Comparison
result

CMP/STR Rm,Rn When a byte in Rn equals
a bytes in Rm, 1 → T

0010nnnnmmmm1100 1 Comparison
result

DIV1 Rm,Rn 1 step division (Rn ÷ Rm) 0011nnnnmmmm0100 1 Calculation
result

DIV0S Rm,Rn MSB of Rn → Q, MSB of
Rm → M, M ^ Q → T

0010nnnnmmmm0111 1 Calculation
result

DMULS.L Rm,Rn Signed operation of Rn ×
Rm → MACH, MACL

0011nnnnmmmm1101 2 to 4* �

DMULU.L Rm,Rn Unsigned operation of Rn
× Rm → MACH, MACL

0011nnnnmmmm0101 2 to 4* �

EXTS.B Rm,Rn Sign � extend Rm from
byte → Rn

0110nnnnmmmm1110 1 �

EXTS.W Rm,Rn Sign � extend Rm from
word → Rn

0110nnnnmmmm1111 1 �

EXTU.B Rm,Rn Zero � extend Rm from
byte → Rn

0110nnnnmmmm1100 1 �

EXTU.W Rm,Rn Zero � extend Rm from
word → Rn

0110nnnnmmmm1101 1 �

FADD FRm,FRn FRm + FRn → FRn 1111nnnnmmmm0000 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 297 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

FCMP/EQ FRm,FRn (FRn == FRm)?
1:0 → T

1111nnnnmmmm0100 1 Comparison
result

FCMP/GT FRm,FRn (FRn > FRm)?
1:0 → T

1111nnnnmmmm0101 1 Comparison
result

FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 13 �

FMAC FR0,FRm
FRn

(FR0 × FRm) + FRn →
FRn

1111nnnnmmmm1110 1 �

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 1 �

FMUL FRm,FRn FRn × FRm → FRn 1111nnnnmmmm0010 1 �

FSUB FRm,FRn FRn � FRm → FRn 1111nnnnmmmm0001 1 �

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 �

MUL.L Rm,Rn Rn × Rm → MAC 0000nnnnmmmm0111 2 to 4* �

MULS.W Rm,Rn With sign, Rn × Rm →
MAC

0010nnnnmmmm1111 1 to 3* �

MULU.W Rm,Rn Unsigned, Rn × Rm →
MAC

0010nnnnmmmm1110 1 to 3* �

NEG Rm,Rn 0 � Rm → Rn 0110nnnnmmmm1011 1 �

NEGC Rm,Rn 0 � Rm � T → Rn,
Borrow → T

0110nnnnmmmm1010 1 Borrow

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 �

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 �

SUB Rm,Rn Rn � Rm → Rn 0011nnnnmmmm1000 1 �

SUBC Rm,Rn Rn � Rm � T → Rn,
Borrow → T

0011nnnnmmmm1010 1 Borrow

SUBV Rm,Rn Rn � Rm → Rn,
Underflow → T

0011nnnnmmmm1011 1 Underflow

SWAP.B Rm,Rn Rm → Swap upper and
lower halves of lower 2
bytes → Rn

0110nnnnmmmm1000 1 �

SWAP.W Rm,Rn Rm → Swap upper and
lower word → Rn

0110nnnnmmmm1001 1 �

TST Rm,Rn Rn & Rm, when result is
0, 1 → T

0010nnnnmmmm1000 1 Test results

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 �

XTRCT Rm,Rn Rm: Center 32 bits of Rn
→ Rn

0010nnnnmmmm1101 1 �

Note: * The normal minimum number of execution states.

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 298 of 336
REJ09B0316-0200

Table A.5 Load and Store with Control Register or System Register

Instruction Operation Code Cycles T Bit

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 1 �

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 �

LDC Rm,SR Rm → SR 0100mmmm00001110 1 LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1 �

LDC Rm,VBR Rm → VBR 0100mmmm00101110 1 �

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 1 �

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 1 �

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 �

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 �

LDS Rm,PR Rm → PR 0100mmmm00101010 1 �

STC SR,Rn SR → Rn 0000nnnn00000010 1 �

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 �

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 �

STS FPSCR,Rn FPSCR → Rn 1111nnnn01101010 1 �

STS FPUL,Rn FPUL → Rn 1111nnnn01011010 1 �

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 �

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 �

STS PR,Rn PR → Rn 0000nnnn00101010 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 299 of 336
REJ09B0316-0200

A.1.3 Indirect Register Addressing

Table A.6 Source Operand Only

Instruction Operation Code Cycles T Bit

JMP @Rm Delayed branching,
Rm → PC

0100nnnn00101011 2 �

JSR @Rm Delayed branching,
PC → PR, Rm → PC

0100nnnn00001011 2 �

Table A.7 Destination Operand Only

Instruction Operation Code Cycles T Bit

TAS.B @Rn When (Rn) is 0, 1 → T,
1 → MSB of (Rn)

0100nnnn00011011 4 Test
results

Table A.8 Data Transfer Direct to Register

Instruction Operation Code Cycles T Bit

FMOV.S FRm,@Rn FRm → (FRn) 1111nnnnmmmm1010 1 �

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 1 �

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 �

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 �

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 �

MOV.B @Rm,Rn (Rm) → sign extension →
Rn

0110nnnnmmmm0000 1 �

MOV.W @Rm,Rn (Rm) → sign extension →
Rn

0110nnnnmmmm0001 1 �

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 300 of 336
REJ09B0316-0200

A.1.4 Post-Increment Indirect Register Addressing

Table A.9 Multiply/Accumulate Operation

Instruction Operation Code Cycles T Bit

MAC.L @Rm+,@Rn+ Signed operation of
(Rn) × (Rm) + MAC → MAC

0000nnnnmmmm1111 3/(2 to 4)* �

MAC.W @Rm+,@Rn+ Signed operation of
(Rn) × (Rm) + MAC → MAC

0100nnnnmmmm1111 3/(2)* �

Note: * Normal minimum number of execution states (the number in parenthesis is the number
of states when there is contention with preceding/following instructions).

Table A.10 Data Transfer Direct from Register

Instruction Operation Code Cycles T Bit

FMOV.S @Rm+,FRn (Rm) → FRn, Rm + 4 → Rm 1111nnnnmmmm1001 1 �

MOV.B @Rm+,Rn (Rm) → sign extension →
Rn, Rm + 1 → Rm

0110nnnnmmmm0100 1 �

MOV.W @Rm+,Rn (Rm) → sign extension →
Rn, Rm + 2 → Rm

0110nnnnmmmm0101 1 �

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 1 �

Table A.11 Load to Control Register or System Register

Instruction Operation Code Cycles T Bit

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 3 LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 3 �

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 3 �

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm + 4 →
Rm

0100mmmm01100110 1 �

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm + 4 →
Rm

0100mmmm01010110 1 �

LDS.L @Rm+,MACH (Rm) → MACH, @Rm + 4 →
Rm

0100mmmm00000110 1 �

LDS.L @Rm+,MACL (Rm) → MACL, @Rm + 4 →
Rm

0100mmmm00010110 1 �

LDS.L @Rm+,PR (Rm) → PR, @Rm + 4 →
Rm

0100mmmm00100110 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 301 of 336
REJ09B0316-0200

A.1.5 Pre-Decrement Indirect Register Addressing

Table A.12 Data Transfer Direct from Register

Instruction Operation Code Cycles T Bit

FMOV.S FRm,@–Rn Rn � 4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 1 �

MOV.B Rm,@–Rn Rn � 1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 �

MOV.W Rm,@–Rn Rn � 2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 �

MOV.L Rm,@–Rn Rn � 4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 �

Table A.13 Store from Control Register or System Register

Instruction Operation Code Cycles T Bit

STC.L SR,@-Rn Rn � 4 → Rn, SR → (Rn) 0100nnnn00000011 2 �

STC.L GBR,@-Rn Rn � 4 → Rn, GBR → (Rn) 0100nnnn00010011 2 �

STC.L VBR,@-Rn Rn � 4 → Rn, VBR → (Rn) 0100nnnn00100011 2 �

STS.L FPSCR,@–Rn Rn � 4 → Rn, FPSCR → (Rn) 0100nnnn01100010 1 �

STS.L FPUL,@–Rn Rn � 4 → Rn, FPUL → (Rn) 0100nnnn01010010 1 �

STS.L MACH,@–Rn Rn � 4 → Rn, MACH → (Rn) 0100nnnn00000010 1 �

STS.L MACL,@–Rn Rn � 4 → Rn, MACL → (Rn) 0100nnnn00010010 1 �

STS.L PR,@–Rn Rn � 4 → Rn, PR → (Rn) 0100nnnn00100010 1 �

A.1.6 Indirect Register Addressing with Displacement

Table A.14 Indirect Register Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 �

MOV.W R0,@(disp,Rn) R0 → (disp + Rn) 10000001nnnndddd 1 �

MOV.L Rm,@(disp,Rn) Rm → (disp + Rn) 0001nnnnmmmmdddd 1 �

MOV.B @(disp,Rm),R0 (disp + Rm) → sign
extension → R0

10000100mmmmdddd 1 �

MOV.W @(disp,Rm),R0 (disp + Rm) → sign
extension → R0

10000101mmmmdddd 1 �

MOV.L @(disp,Rm),Rn (disp + Rm) → Rn 0101nnnnmmmmdddd 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 302 of 336
REJ09B0316-0200

A.1.7 Indirect Indexed Register Addressing

Table A.15 Indirect Indexed Register Addressing

Instruction Operation Code Cycles T Bit

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 �

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 �

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 �

FMOV.S FRm,@(R0,Rn) FRm → (R0 + Rn) 1111nnnnmmmm0111 1 �

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1100 1 �

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1101 1 �

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 �

FMOV.S @(R0,FRm),FRm (R0 + Rn) → FRn 1111nnnnmmmm0110 1 �

A.1.8 Indirect GBR Addressing with Displacement

Table A.16 Indirect GBR Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd 1 �

MOV.W R0,@(disp,GBR) R0 → (disp + GBR) 11000001dddddddd 1 �

MOV.L R0,@(disp,GBR) R0 → (disp + GBR) 11000010dddddddd 1 �

MOV.B @(disp,GBR),R0 (disp + GBR) → sign
extension → R0

11000100dddddddd 1 �

MOV.W @(disp,GBR),R0 (disp + GBR) → sign
extension → R0

11000101dddddddd 1 �

MOV.L @(disp,GBR),R0 (disp + GBR) → R0 11000110dddddddd 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 303 of 336
REJ09B0316-0200

A.1.9 Indirect Indexed GBR Addressing

Table A.17 Indirect Indexed GBR Addressing

Instruction Operation Code Cycles T Bit

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

11001101iiiiiiii 3 �

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0
+ GBR)

11001111iiiiiiii 3 �

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm,
when result is 0, 1 → T

11001100iiiiiiii 3 Test
results

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm →
(R0 + GBR)

11001110iiiiiiii 3 �

A.1.10 PC Relative Addressing with Displacement

Table A.18 PC Relative Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV.W @(disp,PC),Rn (disp + PC) → sign
extension → Rn

1001nnnndddddddd 1 �

MOV.L @(disp,PC),Rn (disp + PC) → Rn 1101nnnndddddddd 1 �

MOVA @(disp,PC),R0 disp + PC → R0 11000111dddddddd 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 304 of 336
REJ09B0316-0200

A.1.11 PC Relative Addressing

Table A.19 PC Relative Addressing with Rn

Instruction Operation Code Cycles T Bit

BRAF Rm Delayed branch,
Rm + PC → PC

0000nnnn00100011 2 �

BSRF Rm Delayed branch, PC →
PR, Rm + PC → PC

0000nnnn00000011 2 �

Table A.20 PC Relative Addressing

Instruction Operation Code Cycles T Bit

BF label When T = 0, disp + PC → PC;
when T = 1, nop

10001011dddddddd 3/1* �

BF/S label If T = 0, disp + PC → PC;
if T = 1, nop

10001111dddddddd 2/1* �

BT label When T = 1, disp + PC → PC;
when T = 1, nop

10001001dddddddd 3/1* �

BT/S label If T = 1, disp + PC → PC;
if T = 0, nop

10001101dddddddd 2/1* �

BRA label Delayed branching, disp + PC → PC 1010dddddddddddd 2 �

BSR label Delayed branching, PC → PR,
disp + PC → PC

1011dddddddddddd 2 �

Note: * One state when it does not branch.

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 305 of 336
REJ09B0316-0200

A.1.12 Immediate

Table A.21 Load to Register

Instruction Operation Code Cycles T Bit

FLDI0 FRn 0x00000000 → FRn 1111nnnn10001101 1 �

FLDI1 FRn 0x3F800000 → FRn 1111nnnn10011101 1 �

Table A.22 Arithmetic Logical Operations Direct with Register

Instruction Operation Code Cycles T Bit

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii 1 �

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 �

CMP/EQ #imm,R0 When R0 = imm, 1 → T 10001000iiiiiiii 1 Comparison
result

MOV #imm,Rn imm → sign extension →
Rn

1110nnnniiiiiiii 1 �

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 �

TST #imm,R0 R0 & imm, when result is
0, 1 → T

11001000iiiiiiii 1 Test results

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 �

Table A.23 Specify Exception Processing Vector

Instruction Operation Code Cycles T Bit

TRAPA #imm Stack area → PC/SR
(imm × 4 + VBR) → PC

11000011iiiiiiii 8 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 306 of 336
REJ09B0316-0200

A.2 Instruction Sets by Instruction Format

Tables A.24 to A.54 list instruction codes and execution cycles by instruction formats.

Table A.24 Instruction Sets by Format

Format Category Sample Instruction Types

0 � NOP 8

n Direct register addressing MOVT Rn 18

Direct register addressing (store with control
or system registers)

STS MACH,Rn 8

Indirect register addressing TAS.B @Rn 1

Pre-decrement indirect register addressing STC.L SR,@–Rn 8

Floating-point instruction FABS FRn 6

m Direct register addressing (load with control
or system registers)

LDC Rm,SR 8

PC relative addressing with Rm BRAF Rm 2

Indirect register addressing JMP @Rm 2

Post-increment indirect register addressing LDC.L @Rm+,SR 8

Floating-point instruction FLDS FRm,FPUL 2

nm Direct register addressing ADD Rm,Rn 34

Indirect register addressing MOV.L Rm,@Rn 6

Post-increment indirect register addressing
(multiply/accumulate operation)

MAC.W @Rm+,@Rn+ 2

Post-increment indirect register addressing MOV.L @Rm+,Rn 3

Pre-decrement indirect register addressing MOV.L Rm,@–Rn 3

Indirect indexed register addressing MOV.L Rm,@(R0,Rn) 6

Floating-point instruction FADD FRm,FRn 14

md Indirect register addressing with
displacement

MOV.B @(disp,Rm),R0 2

nd4 Indirect register addressing with
displacement

MOV.B R0,@(disp,Rn) 2

nmd Indirect register addressing with
displacement

MOV.L Rm,@(disp,Rn) 2

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 307 of 336
REJ09B0316-0200

Format Category Sample Instruction Types

d Indirect GBR addressing with displacement MOV.L R0,@(disp,GBR) 6

Indirect PC addressing with displacement MOVA @(disp,PC),R0 1

PC relative addressing BF disp 4

d12 PC relative addressing BRA disp 2

nd8 PC relative addressing with displacement MOV.L @(disp,PC),Rn 2

i Indirect indexed GBR addressing AND.B #imm,@(R0,GBR) 4

Immediate addressing (arithmetic and logical
operations direct with register)

AND #imm,R0 5

Immediate addressing (specify exception
processing vector)

TRAPA #imm 1

ni Immediate addressing (direct register
arithmetic operations and data transfers)

ADD #imm,Rn 2

Total: 172

A.2.1 0 Format

Table A.25 0 Format

Instruction Operation Code Cycles T Bit

CLRT 0 → T 0000000000001000 1 0

CLRMAC 0 → MACH, MACL 0000000000101000 1 �

DIV0U 0 → M/Q/T 0000000000011001 1 0

NOP No operation 0000000000001001 1 �

RTE Delayed branch,
Stack area → PC/SR

0000000000101011 4 LSB

RTS Delayed branching, PR → PC 0000000000001011 2 �

SETT 1 → T 0000000000011000 1 1

SLEEP Sleep 0000000000011011 3* �
Note: * The number of excection cycles before the chip enters sleep mode.

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 308 of 336
REJ09B0316-0200

A.2.2 n Format

Table A.26 Direct Register

Instruction Operation Code Cycles T Bit

CMP/PL Rn Rn > 0, 1 → T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison
result

DT Rn Rn � 1 → Rn, when Rn is 0, 1 →
T. When Rn is nonzero, 0 → T

0100nnnn00010000 1 Comparison
result

MOVT Rn T → Rn 0000nnnn00101001 1 �

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 �

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 1 �

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 �

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 1 �

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 �

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 309 of 336
REJ09B0316-0200

Table A.27 Direct Register (Store with Control and System Registers)

Instruction Operation Code Cycles T Bit

STC SR,Rn SR → Rn 0000nnnn00000010 1 �

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 �

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 �

STS FPSCR,Rn FPSCR→ Rn 0000nnnn01101010 1 �

STS FPUL,Rn FPUL→ Rn 0000nnnn01011010 1 �

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 �

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 �

STS PR,Rn PR → Rn 0000nnnn00101010 1 �

Table A.28 Indirect Register

Instruction Operation Code Cycles T Bit

TAS.B @Rn When (Rn) is 0, 1 → T,
1 → MSB of (Rn)

0100nnnn00011011 4 Test
results

Table A.29 Indirect Pre-Decrement Register

Instruction Operation Code Cycles T Bit

STC.L SR,@-Rn Rn � 4 → Rn, SR → (Rn) 0100nnnn00000011 1 �

STC.L GBR,@-Rn Rn � 4 → Rn, GBR → (Rn) 0100nnnn00010011 1 �

STC.L VBR,@-Rn Rn � 4 → Rn, VBR → (Rn) 0100nnnn00100011 1 �

STS.L FRSCR,@-Rn Rn � 4 → Rn, FPSCR → Rn 0100nnnn01100010 1 �

STS.L FPUL,@-Rn Rn � 4 → Rn, FPUL → Rn 0100nnnn01010010 1 �

STS.L MACH,@–Rn Rn � 4 → Rn, MACH → (Rn) 0100nnnn00000010 1 �

STS.L MACL,@–Rn Rn � 4 → Rn, MACL → (Rn) 0100nnnn00010010 1 �

STS.L PR,@–Rn Rn � 4 → Rn, PR → (Rn) 0100nnnn00100010 1 �
Note: SH-3E instructions.

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 310 of 336
REJ09B0316-0200

Table A.30 Floating-Point Instruction

Instruction Operation Code Cycles T Bit

FABS FRn  FRn → FRn 1111nnnn01011101 1 �

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 1 �

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 1 �

FLOAT FPUL,FRn (float)FPUL → FRn 1111nnnn00101101 1 �

FNEG FRn �FRn → FRn 1111nnnn01001101 1 �

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 �

A.2.3 m Format

Table A.31 Direct Register (Load from Control and System Registers)

Instruction Operation Code Cycles T Bit

LDC Rm,SR Rm → SR 0100mmmm00001110 1 LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1 �

LDC Rm,VBR Rm → VBR 0100mmmm00101110 1 �

LDS Rm,FPSCR Rm → FPSCR 0100nnnn01101010 1 �

LDS Rm,FPUL Rm → FPUL 0100nnnn01011010 1 �

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 �

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 �

LDS Rm,PR Rm → PR 0100mmmm00101010 1 �

Table A.32 Indirect Register

Instruction Operation Code Cycles T Bit

JMP @Rm Delayed branch, Rm → PC 0100mmmm00101011 2 �

JSR @Rm Delayed branch, PC → PR,
Rm → PC

0100mmmm00001011 2 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 311 of 336
REJ09B0316-0200

Table A.33 Indirect Post-Increment Register

Instruction Operation Code Cycles T Bit

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 3 LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 3 �

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 3 �

LDS.L @Rm+,FPSCR @Rm → FPSCR, Rm + 4 → Rm 0100nnnn01100110 1 �

LDS.L @Rm+,FPUL @Rm → FPUL, Rm + 4 → Rm 0100nnnn01010110 1 �

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 1 �

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 1 �

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 1 �

Table A.34 PC Relative Addressing with Rn

Instruction Operation Code Cycles T Bit

BRAF Rn Delayed branch, Rn + PC → PC 0000nnnn00100011 2 �

BSRF Rn Delayed branch, PC → PR,
Rn + PC → PC

0000nnnn00000011 2 �

Table A.35 Floating-Point Instructions

Instruction Operation Code Cycles T Bit

FLDS FRm,FPUL FRm → FPUL 1111nnnn00011101 1 �

FTRC FRm,FPUL (long)FRm → FPUL 1111nnnn00111101 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 312 of 336
REJ09B0316-0200

A.2.4 nm Format

Table A.36 Direct Register

Instruction Operation Code Cycles T Bit

ADD Rm,Rn Rm + Rn → Rn 0011nnnnmmmm1100 1 �

ADDC Rm,Rn Rn + Rm + T → Rn,
carry → T

0011nnnnmmmm1110 1 Carry

ADDV Rm,Rn Rn + Rm → Rn,
overflow → T

0011nnnnmmmm1111 1 Overflow

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 �

CMP/EQ Rm,Rn When Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Comparison
result

CMP/HS Rm,Rn When unsigned and Rn ≥
Rm, 1 → T

0011nnnnmmmm0010 1 Comparison
result

CMP/GE Rm,Rn When signed and Rn ≥ Rm,
1 → T

0011nnnnmmmm0011 1 Comparison
result

CMP/HI Rm,Rn When unsigned and Rn >
Rm, 1 → T

0011nnnnmmmm0110 1 Comparison
result

CMP/GT Rm,Rn When signed and Rn > Rm,
1 → T

0011nnnnmmmm0111 1 Comparison
result

CMP/STR Rm,Rn When a byte in Rn equals a
byte in Rm, 1 → T

0010nnnnmmmm1100 1 Comparison
result

DIV1 Rm,Rn 1 step division (Rn ÷ Rm) 0011nnnnmmmm0100 1 Calculation
result

DIV0S Rm,Rn MSB of Rn → Q, MSB of
Rm → M, M ^ Q → T

0010nnnnmmmm0111 1 Calculation
result

DMULS.L Rm,Rn Signed operation of Rn ×
Rm → MACH, MACL

0011nnnnmmmm1101 2 to 4* �

DMULU.L Rm,Rn Unsigned operation of Rn ×
Rm → MACH, MACL

0011nnnnmmmm0101 2 to 4* �

EXTS.B Rm,Rn Sign-extend Rm from byte
→ Rn

0110nnnnmmmm1110 1 �

EXTS.W Rm,Rn Sign-extend Rm from word
→ Rn

0110nnnnmmmm1111 1 �

EXTU.B Rm,Rn Zero-extend Rm from byte
→ Rn

0110nnnnmmmm1100 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 313 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

EXTU.W Rm,Rn Zero-extend Rm from word
→ Rn

0110nnnnmmmm1101 1 �

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 �

MUL.L Rm,Rn Rn × Rm → MAC 0000nnnnmmmm0111 2 to 4* �

MULS.W Rm,Rn With sign, Rn × Rm → MAC 0010nnnnmmmm1111 1 to 3* �

MULU.W Rm,Rn Unsigned, Rn × Rm →
MAC

0010nnnnmmmm1110 1 to 3* �

NEG Rm,Rn 0 � Rm → Rn 0110nnnnmmmm1011 1 �

NEGC Rm,Rn 0 � Rm � T → Rn, Borrow
→ T

0110nnnnmmmm1010 1 Borrow

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 �

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 �

SUB Rm,Rn Rn � Rm → Rn 0011nnnnmmmm1000 1 �

SUBC Rm,Rn Rn � Rm � T → Rn, Borrow
→ T

0011nnnnmmmm1010 1 Borrow

SUBV Rm,Rn Rn � Rm → Rn, Underflow
→ T

0011nnnnmmmm1011 1 Under-flow

SWAP.B Rm,Rn Rm → Swap upper and
lower halves of lower 2
bytes → Rn

0110nnnnmmmm1000 1 �

SWAP.W Rm,Rn Rm → Swap upper and
lower word → Rn

0110nnnnmmmm1001 1 �

TST Rm,Rn Rn & Rm, when result is 0,
1 → T

0010nnnnmmmm1000 1 Test results

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 �

XTRCT Rm,Rn Rm: Center 32 bits of Rn →
Rn

0010nnnnmmmm1101 1 �

Note: The normal minimum number of execution states.

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 314 of 336
REJ09B0316-0200

Table A.37 Indirect Register

Instruction Operation Code Cycles T Bit

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 �

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 �

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 �

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 1 �

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 1 �

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 �

Table A.38 Indirect Post-Increment Register (Multiply/Accumulate Operation)

Instruction Operation Code Cycles T Bit

MAC.L @Rm+,@Rn+ Signed operation of
(Rn) × (Rm) + MAC → MAC

0000nnnnmmmm1111 3/(2 to 4)* �

MAC.W @Rm+,@Rn+ Signed operation of
(Rn) × (Rm) + MAC → MAC

0100nnnnmmmm1111 3/(2)* �

Note: * Normal minimum number of execution states (the number in parentheses is the number
of states when there is contention with preceding/following instructions).

Table A.39 Indirect Post-Increment Register

Instruction Operation Code Cycles T Bit

MOV.B @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 1 �

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 1 �

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 1 �

Table A.40 Indirect Pre-Decrement Register

Instruction Operation Code Cycles T Bit

MOV.B Rm,@–Rn Rn � 1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 �

MOV.W Rm,@–Rn Rn � 2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 �

MOV.L Rm,@–Rn Rn � 4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 315 of 336
REJ09B0316-0200

Table A.41 Indirect Indexed Register

Instruction Operation Code Cycles T Bit

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 �

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 �

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 �

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1100 1 �

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1101 1 �

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 �

Table A.42 Floating Point Instructions

Instruction Operation Code Cycles T Bit

FADD FRm,FRn FRn + FRm → FRn 1111nnnnmmmm0000 1 �

FCMP/EQ FRm,FRn (FRn = FRm)? 1:0 → T 1111nnnnmmmm0100 1 Comparison
result

FCMP/GT FRm,FRn (FRn > FRm)? 1:0 → T 1111nnnnmmmm0101 1 Comparison
result

FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 13 �

FMAC FR0,FRm,FRn FR0 × FRm + FRn → FRn 1111nnnnmmmm1110 1 �

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 1 �

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 1 �

FMOV.S @Rm+,FRn (Rm) → FRn, Rm + 4 → Rm 1111nnnnmmmm1001 1 �

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 1 �

FMOV.S FRm,@(R0,Rn) FRm → (R0 + Rn) 1111nnnnmmmm0111 1 �

FMOV.S FRm,@-Rn Rn-4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 1 �

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 1 �

FMUL FRm,FRn FRn × FRm → FRn 1111nnnnmmmm0010 1 �

FSUB FRm,FRn FRn � FRm → FRn 1111nnnnmmmm0001 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 316 of 336
REJ09B0316-0200

A.2.5 md Format

Table A.43 md Format

Instruction Operation Code Cycles T Bit

MOV.B @(disp,Rm),R0 (disp + Rm) → sign
extension → R0

10000100mmmmdddd 1 �

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → sign
extension → R0

10000101mmmmdddd 1 �

A.2.6 nd4 Format

Table A.44 nd4 Format

Instruction Operation Code Cycles T Bit

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 �

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd 1 �

A.2.7 nmd Format

Table A.45 nmd Format

Instruction Operation Code Cycles T Bit

MOV.L Rm,@(disp,Rn) Rm → (disp + Rn) 0001nnnnmmmmdddd 1 �

MOV.L @(disp,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 317 of 336
REJ09B0316-0200

A.2.8 d Format

Table A.46 Indirect GBR with Displacement

Instruction Operation Code Cycles T Bit

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd 1 �

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd 1 �

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd 1 �

MOV.B @(disp,GBR),R0 (disp + GBR) → sign
extension → R0

11000100dddddddd 1 �

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) → sign
extension → R0

11000101dddddddd 1 �

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd 1 �

Table A.47 PC Relative with Displacement

Instruction Operation Code Cycles T Bit

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 �

Table A.48 PC Relative

Instruction Operation Code Cycles T Bit

BF label When T = 0, disp × 2 + PC → PC;
when T = 1, nop

10001011dddddddd 3/1* �

BF/S label If T = 0, disp × 2 + PC → PC;
if T = 1, nop

10001111dddddddd 2/1* �

BT label When T = 1, disp × 2 + PC → PC;
when T = 0, nop

10001001dddddddd 3/1* �

BT/S label If T = 1, disp × 2 + PC → PC;
if T = 0, nop

10001101dddddddd 2/1*

Note: * One state when it does not branch.

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 318 of 336
REJ09B0316-0200

A.2.9 d12 Format

Table A.49 d12 Format

Instruction Operation Code Cycles T Bit

BRA label Delayed branching,
disp × 2 + PC → PC

1010dddddddddddd 2 �

BSR label Delayed branching,
PC → PR, disp × 2 + PC
→ PC

1011dddddddddddd 2 �

A.2.10 nd8 Format

Table A.50 nd8 Format

Instruction Operation Code Cycles T Bit

MOV.W @(disp,PC),Rn (disp × 2 + PC) → sign
extension → Rn

1001nnnndddddddd 1 �

MOV.L @(disp,PC),Rn (disp × 4 + PC) → Rn 1101nnnndddddddd 1 �

A.2.11 i Format

Table A.51 Indirect Indexed GBR

Instruction Operation Code Cycles T Bit

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

11001101iiiiiiii 3 �

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0
+ GBR)

11001111iiiiiiii 3 �

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm,
when result is 0, 1 → T

11001100iiiiiiii 3 Test
results

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm →
(R0 + GBR)

11001110iiiiiiii 3 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 319 of 336
REJ09B0316-0200

Table A.52 Immediate (Arithmetic Logical Operation with Direct Register)

Instruction Operation Code Cycles T Bit

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 �

CMP/EQ #imm,R0 When R0 = imm, 1 → T 10001000iiiiiiii 1 Comparison
results

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 �

TST #imm,R0 R0 & imm, when result is 0,
1 → T

11001000iiiiiiii 1 Test results

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 �

Table A.53 Immediate (Specify Exception Processing Vector)

Instruction Operation Code Cycles T Bit

TRAPA #imm Stack area → PC/SR
(imm × 4 + VBR) → PC

11000011iiiiiiii 8 �

A.2.12 ni Format

Table A.54 ni Format

Instruction Operation Code Cycles T Bit

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii 1 �

MOV #imm,Rn imm → sign extension → Rn 1110nnnniiiiiiii 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 320 of 336
REJ09B0316-0200

A.3 Instruction Set by Instruction Code

Table A.55 lists instruction codes and execution cycles by instruction code.

Table A.55 Instruction Set by Instruction Code

Instruction Operation Code Cycles T Bit

CLRT 0 → T 0000000000001000 1 0

NOP No operation 0000000000001001 1 �

RTS Delayed branching,
PR → PC

0000000000001011 2 �

SETT 1 → T 0000000000011000 1 1

DIV0U 0 → M/Q/T 0000000000011001 1 0

SLEEP Sleep 0000000000011011 3 �

CLRMAC 0 → MACH, MACL 0000000000101000 1 �

RTE Delayed branch,
SSR/SPC → SR/PC

0000000000101011 4 �

STC SR,Rn SR → Rn 0000nnnn00000010 1 �

BSRF Rn Delayed branch, PC →
PR, Rn + PC → PC

0000nnnn00000011 2 �

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 �

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 �

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 �

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 �

BRAF Rm Delayed branch,
Rn + PC → PC

0000nnnn00100011 2 �

MOVT Rn T → Rn 0000nnnn00101001 1 �

STS PR,Rn PR → Rn 0000nnnn00101010 1 �

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 1 �

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 1 �

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 �

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 �

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 �

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 to 4* �

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1100 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 321 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1101 1 �

MOV.L @(R0,Rm),
Rn

(R0 + Rm) → Rn 0000nnnnmmmm1110 1 �

MAC.L @Rm+,@Rn+ Signed operation of
(Rn) × (Rm) + MAC →
MAC

0000nnnnmmmm1111 3/(2 to
4)*

�

MOV.L Rm,
@(disp,Rn)

Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd 1 �

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 �

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 �

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 �

MOV.B Rm,@-Rn Rn � 1 → Rn, Rm →
(Rn)

0010nnnnmmmm0100 1 �

MOV.W Rm,@–Rn Rn � 2 → Rn, Rm →
(Rn)

0010nnnnmmmm0101 1 �

MOV.L Rm,@–Rn Rn � 4 → Rn, Rm →
(Rn)

0010nnnnmmmm0110 1 �

DIV0S Rm,Rn MSB of Rn → Q, MSB
of Rm → M, M ^ Q → T

0010nnnnmmmm0111 1 Calcu-
lation
result

TST Rm,Rn Rn & Rm, when result is
0, 1 → T

0010nnnnmmmm1000 1 Test
results

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 �

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 �

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 �

CMP/STR Rm,Rn When a byte in Rn
equals a byte in Rm, 1
→ T

0010nnnnmmmm1100 1 Com-
parison
result

XTRCT Rm,Rn Rm: Center 32 bits of
Rn → Rn

0010nnnnmmmm1101 1 �

MULU.W Rm,Rn Unsigned, Rn × Rm →
MAC

0010nnnnmmmm1110 1 to 3* �

MULS.W Rm,Rn Signed, Rn × Rm →
MAC

0010nnnnmmmm1111 1 to 3* �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 322 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

CMP/EQ Rm,Rn When Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Com-
parison
result

CMP/HS Rm,Rn When unsigned
and Rn ≥ Rm, 1 → T

0011nnnnmmmm0010 1 Com-
parison
result

CMP/GE Rm,Rn When signed and Rn ≥
Rm, 1 → T

0011nnnnmmmm0011 1 Com-
parison
result

DIV1 Rm,Rn 1 step division (Rn ÷
Rm)

0011nnnnmmmm0100 1 Calcu-
lation
result

DMULU.L Rm,Rn Unsigned operation of
Rn × Rm → MACH,
MACL

0011nnnnmmmm0101 2 to 4* �

CMP/HI Rm,Rn When unsigned and
Rn > Rm, 1 → T

0011nnnnmmmm0110 1 Com-
parison
result

CMP/GT Rm,Rn When signed and
Rn > Rm, 1 → T

0011nnnnmmmm0111 1 Com-
parison
result

SUB Rm,Rn Rn � Rm → Rn 0011nnnnmmmm1000 1 �

SUBC Rm,Rn Rn � Rm � T → Rn,
Borrow → T

0011nnnnmmmm1010 1 Borrow

SUBV Rm,Rn Rn � Rm → Rn,
underflow → T

0011nnnnmmmm1011 1 Under-
flow

ADD Rm,Rn Rm + Rn → Rn 0011nnnnmmmm1100 1 �

DMULS.L Rm,Rn Signed operation of Rn
× Rm → MACH, MACL

0011nnnnmmmm1101 2 to 4* �

ADDC Rm,Rn Rn + Rm + T → Rn,
carry → T

0011nnnnmmmm1110 1 Carry

ADDV Rm,Rn Rn + Rm → Rn,
overflow → T

0011nnnnmmmm1111 1 Over-
flow

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

STS.L MACH,@–Rn Rn � 4 → Rn,
MACH → (Rn)

0100nnnn00000010 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 323 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

STC.L SR,@-Rn Rn � 4 → Rn,
SR → (Rn)

0100nnnn00000011 2 �

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

LDS.L @Rm+,MACH (Rm) → MACH,
Rm + 4 → Rm

0100mmmm00000110 1 �

LDC.L @Rm+,SR (Rm) → SR,
Rm + 4 → Rm

0100mmmm00000111 3 LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 �

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 1 �

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 �

JSR @Rm Delayed branching,
PC → Rn, Rn → PC

0100nnnn00001011 2 �

LDC Rm,SR Rm → SR 0100mmmm00001110 1 LSB

DT Rn Rn - 1 → Rn, when Rn
is 0, 1 → T. When Rn is
nonzero, 0 → T

0100nnnn00010000 1 Com-
parison
result

CMP/PZ Rn Rn ≥ 0, 1 → T 0100nnnn00010001 1 Com-
parison
result

STS.L MACL,@–Rn Rn � 4 → Rn,
MACL → (Rn)

0100nnnn00010010 1 �

STC.L GBR,@-Rn Rn � 4 → Rn,
GBR → (Rn)

0100nnnn00010011 2 �

CMP/PL Rn Rn > 0, 1 → T 0100nnnn00010101 1 Com-
parison
result

LDS.L @Rm+,MACL (Rm) → MACL,
Rm + 4 → Rm

0100mmmm00010110 1 �

LDC.L @Rm+,GBR (Rm) → GBR,
Rm + 4 → Rm

0100mmmm00010111 3 �

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 �

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 1 �

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 �

TAS.B @Rn When (Rn) is 0, 1 → T,
1 → MSB of (Rn)

0100nnnn00011011 4 Test
results

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 324 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1 �

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

STS.L PR,@–Rn Rn � 4 → Rn, PR →
(Rn)

0100nnnn00100010 1 �

STC.L VBR,@-Rn Rn � 4 → Rn,
VBR → (Rn)

0100nnnn00100011 2 �

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

LDS.L @Rm+,PR (Rm) → PR,
Rm + 4 → Rm

0100mmmm00100110 1 �

LDC.L @Rm+,VBR (Rm) → VBR,
Rm + 4 → Rm

0100mmmm00100111 3 �

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 �

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 1 �

LDS Rm,PR Rm → PR 0100mmmm00101010 1 �

JMP @Rm Delayed branching,
Rm → PC

0100nnnn00101011 2 �

LDC Rm,VBR Rm → VBR 0100mmmm00101110 1 �

STS.L FPUL,@-Rn Rn-4 → Rn, FPUL →
(Rn)

0100nnnn01010010 1 �

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm+4 →
Rm

0100nmmm01010110 1 �

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 1 �

STS.L FPSCR,@-Rn Rn-4 → Rn, FPSCR →
(Rn)

0100nnnn01100010 1 �

LDS.L @Rm,FPSCR (Rm) → FPSCR, Rm+4
→ Rm

0100mmmm01100110 1 �

LDS Rm,FPSCR Rm → FPSCR 0100nmmm01101010 1 �

MAC.W @Rm+,@Rn+ With sign, (Rn) × (Rm) +
MAC → MAC

0100nnnnmmmm1111 3/(2)* �

MOV.L @(disp,Rm),Rn (disp + Rm) → Rn 0101nnnnmmmmdddd 1 �

MOV.B @Rm,Rn (Rm) → sign extension
→ Rn

0110nnnnmmmm0000 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 325 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

MOV.W @Rm,Rn (Rm) → sign extension
→ Rn

0110nnnnmmmm0001 1 �

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 �

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 �

MOV.B @Rm+,Rn (Rm) → sign extension
→ Rn, Rm + 1 → Rm

0110nnnnmmmm0100 1 �

MOV.W @Rm+,Rn (Rm) → sign extension
→ Rn, Rm + 2 → Rm

0110nnnnmmmm0101 1 �

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 →
Rm

0110nnnnmmmm0110 1 �

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 �

SWAP.B Rm,Rn Rm → Swap upper and
lower halves of lower 2
bytes → Rn

0110nnnnmmmm1000 1 �

SWAP.W Rm,Rn Rm → Swap upper and
lower word → Rn

0110nnnnmmmm1001 1 �

NEGC Rm,Rn 0 � Rm � T → Rn,
Borrow → T

0110nnnnmmmm1010 1 Borrow

NEG Rm,Rn 0 � Rm → Rn 0110nnnnmmmm1011 1 �

EXTU.B Rm,Rn Zero-extend Rm from
byte → Rn

0110nnnnmmmm1100 1 �

EXTU.W Rm,Rn Zero-extend Rm from
word → Rn

0110nnnnmmmm1101 1 �

EXTS.B Rm,Rn Sign-extend Rm from
byte → Rn

0110nnnnmmmm1110 1 �

EXTS.W Rm,Rn Sign-extend Rm from
word → Rn

0110nnnnmmmm1111 1 �

ADD #imm,Rn Rn + #imm → Rn 0111nnnniiiiiiii 1 �

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 �

MOV.W R0,@(disp,Rn) R0 → (disp + Rn) 10000001nnnndddd 1 �

MOV.B @(disp,Rm),R0 (disp + Rm) → sign
extension → R0

10000100mmmmdddd 1 �

MOV.W @(disp,Rm),R0 (disp + Rm) → sign
extension → R0

10000101mmmmdddd 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 326 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

CMP/EQ #imm,R0 When R0 = imm, 1 → T 10001000iiiiiiii 1 Com-
parison
result

BT label When T = 1,
disp + PC → PC; when
T = 1, nop.

10001001dddddddd 3/1*2 �

BF label When T = 0,
disp + PC → PC; when
T = 1, nop

10001011dddddddd 3/1*2 �

BT/S label If T = 1, disp + PC →
PC; if T = 0, nop

10001101dddddddd 2/1*2 �

BF/S label If T = 0, disp + PC →
PC; if T = 1, nop

10001111dddddddd 2/1*2 �

MOV.W @(disp,PC),Rn (disp + PC) → sign
extension → Rn

1001nnnndddddddd 1 �

BRA label Delayed branching, disp
+ PC → PC

1010dddddddddddd 2 �

BSR label Delayed branching, PC
→ PR, disp + PC → PC

1011dddddddddddd 2 �

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd 1 �

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd 1 �

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd 1 �

TRAPA #imm Stack area → PC/SR
(imm × 4 + VBR) → PC

11000011iiiiiiii 8 �

MOV.B @(disp,GBR),R0 (disp + GBR) → sign
extension → R0

11000100dddddddd 1 �

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) → sign
extension → R0

11000101dddddddd 1 �

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd 1 �

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 �

TST #imm,R0 R0 & imm, when result
is 0, 1 → T

11001000iiiiiiii 1 Test
results

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 �

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 �

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 327 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm,
when result is 0, 1 → T

11001100iiiiiiii 3 Test
results

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

11001101iiiiiiii 3 �

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm →
(R0 + GBR)

11001110iiiiiiii 3 �

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm →
(R0 + GBR)

11001111iiiiiiii 3 �

MOV.L @(disp,PC),Rn (disp × 4 + PC) → Rn 1101nnnndddddddd 1 �

MOV #imm,Rn #imm → sign extension
→ Rn

1110nnnniiiiiiii 1 �

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 �

FLDS FRm,FPUL FRm → FPUL 1111nnnn00011101 1 �

FLOAT FPUL,FRn (float) FPUL → FRn 1111nnnn00101101 1 �

FTRC FRm,FPUL (long) FRm → FPUL 1111nnnn00111101 1 �

FNEG FRn �FRn → FRn 1111nnnn01001101 1 �

FABS FRn FRn → FRn 1111nnnn01011101 1 �

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 1 �

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 1 �

FADD FRm,FRn FRn + FRm → FRn 1111nnnnmmmm0000 1 �

FSUB FRm,FRn FRn � FRm → FRn 1111nnnnmmmm0001 1 �

FMUL FRm,FRn FRn × FRm → FRn 1111nnnnmmmm0010 1 �

FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 13 �

FCMP/EQ FRm,FRn (FRn = FRm)?1:0 → T 1111nnnnmmmm0100 1 Com-
parison
result

FCMP/GT FRm,FRn (FRn > FRm)?1:0 → T 1111nnnnmmmm0101 1 Com-
parison
result

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 1 �

FMOV.S FRm,@(R0,Rn) (FRm) → (R0 + Rn) 1111nnnnmmmm0111 1 �

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 1 �

FMOV.S @Rm+,FRn (Rm) → FRn, Rm + 4 →
Rm

1111nnnnmmmm1001 1 �

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 328 of 336
REJ09B0316-0200

Instruction Operation Code Cycles T Bit

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 1 �

FMOV.S FRm,@-Rn Rn � 4 → Rn, FRm →
(Rn)

1111nnnnmmmm1011 1 �

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 1 �

FMAC FR0,FRm,FRn FR0 × FRm + FRn→
FRn

1111nnnnmmmm1110 1 �

Notes: 1. Normal minimum number of execution states (the number in parenthesis is the number
of states when there is contention with preceding/following instructions).

2. One state when it does not branch.

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 329 of 336
REJ09B0316-0200

A.4 Operation Code Map

Table A.56 shows operation code map.

Table A.56 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011�1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0000 Rn Fx 0000

0000 Rn Fx 0001

0000 Rn Fx 0010 STC SR,Rn STC GBR,Rn STC VBR,Rn

0000 Rn Fx 0011 BSRF Rm BRAF Rm

0000 Rn Rm 01MD MOV.B

 Rm,@(R0,Rn)

MOV.W

 Rm,@(R0,Rn)

MOV.L

 Rm,@(R0,Rn)

MUL.L Rm,Rn

0000 0000 Fx 1000 CLRT SETT CLRMAC

0000 0000 Fx 1001 NOP DIV0U

0000 0000 Fx 1010

0000 0000 Fx 1011 RTS SLEEP RTE

0000 Rn Fx 1000

0000 Rn Fx 1001 MOVT Rn

0000 Rn Fx 1010 STS MACH,Rn STS MACL,Rn STS PR,Rn STS FPUL,Rn/

STS FPSCR,Rn

0000 Rn Fx 1011

0000 Rn RM 11MD MOV.B

 @(R0,Rm),Rn

MOV.W

 @(R0,Rm),Rn

MOV.L

 @(R0,Rm),Rn

MAC.L

 @Rm+,@Rn+

0001 Rn Rm disp MOV.L Rm,@(disp:4,Rn)

0010 Rn Rm 00MD MOV.B Rm,@Rn MOV.W Rm,@Rn MOV.L Rm,@Rn

0010 Rn Rm 01MD MOV.B Rm,@-Rn MOV.W Rm,@-Rn MOV.L Rm,@-Rn DIV0S Rm,Rn

0010 Rn Rm 10MD TST Rm,Rn AND Rm,Rn XOR Rm,Rn OR Rm,Rn

0010 Rn Rm 11MD CMP/STR Rm,Rn XTRCT Rm,Rn MULU.W Rm,Rn MULS.W Rm,Rn

0011 Rn Rm 00MD CMP/EQ Rm,Rn CMP/HS Rm,Rn CMP/GE Rm,Rn

0011 Rn Rm 01MD DIV1 Rm,Rn DMULU.L Rm,Rn CMP/HI Rm,Rn CMP/GT Rm,Rn

0011 Rn Rm 10MD SUB Rm,Rn SUBC Rm,Rn SUBV Rm,Rn

0011 Rn Rm 11MD ADD Rm,Rn DMULS.L Rm,Rn ADDC Rm,Rn ADDV Rm,Rn

0100 Rn Fx 0000 SHLL Rn DT Rn SHAL Rn

0100 Rn Fx 0001 SHLR Rn CMP/PZ Rn SHAR Rn

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 330 of 336
REJ09B0316-0200

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011�1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0100 Rn Fx 0010 STS.L MACH,@–Rn STS.L MACL,@–Rn STS.L PR,@–Rn STC.L

 FPSCR,@-Rn

STC.L

 FPUL,@-Rn

0100 Rn 00MD 0011 STC.L SR,@–Rn STC.L GBR,@–Rn STC.L VBR,@–Rn

0100 Rn Fx 0100 ROTL Rn ROTCL Rn

0100 Rn Fx 0101 ROTR Rn CMP/PL Rn ROTCR Rn

0100 Rm Fx 0110 LDS.L @Rm+,MACH LDS.L @Rm+,MACL LDS.L @Rm+,PR LDS.L

 @Rm+,FPSCR

LDS.L

 @Rm+,FPUL

0100 Rm Fx 0111 LDC.L @Rm+,SR LDC.L @Rm+,GBR LDC.L @Rm+,VBR

0100 Rn Fx 1000 SHLL2 Rn SHLL8 Rn SHLL16 Rn

0100 Rn Fx 1001 SHLR2 Rn SHLR8 Rn SHLR16 Rn

0100 Rm Fx 1010 LDS Rm,MACH LDS Rm,MACL LDS Rm,PR LDS Rm,FPSCR

LDS Rm,FPUL

0100 Rm/
Rn

Fx 1011 JSR @Rm TAS.B @Rm JMP @Rm

0100 Rm Fx 1100

0100 Rm Fx 1101

0100 Rm Fx 1110 LDC Rm,SR LDC Rm,GBR LDC Rm,VBR LDC Rm,SSR

0100 Rn Rm 1111 MAC.W @Rm+,@Rn+

0101 Rn Rm disp MOV.L @(disp:4,Rm),Rn

0110 Rn Rm 00MD MOV.B @Rm,Rn MOV.W @Rm,Rn MOV.L @Rm,Rn MOV Rm,Rn

0110 Rn Rm 01MD MOV.B @Rm+,Rn MOV.W @Rm+,Rn MOV.L @Rm+,Rn NOT Rm,Rn

0110 Rn Rm 10MD SWAP.B @Rm,Rn SWAP.W @Rm,Rn NEGC Rm,Rn NEG Rm,Rn

0110 Rn Rm 11MD EXTU.B Rm,Rn EXTU.W Rm,Rn EXTS.B Rm,Rn EXTS.W Rm,Rn

0111 Rn imm ADD #imm:8,Rn

1000 00MD Rn disp MOV.B

 R0,@(disp:4,Rn)

MOV.W

 R0,@(disp:4,Rn)

1000 01MD Rm disp MOV.B

 @(disp:4,Rm),R0

MOV.W

 @(disp:4,Rm),R0

1000 10MD imm/disp CMP/EQ #imm:8,R0 BT disp:8 BF disp:8

1000 10MD imm/disp BT/S disp:8 BF/S disp:8

Appendix A Instruction Code

Rev. 2.00 May 31, 2006 page 331 of 336
REJ09B0316-0200

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011�1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

1001 Rn disp MOV.W @(disp:8,PC),Rn

1010 disp BRA disp:12

1011 disp BSR disp:12

1100 00MD imm/disp MOV.B

 R0,@(disp:8,GBR)

MOV.W

 R0,@(disp:8,GBR)

MOV.L

 R0,@(disp:8,GBR)

TRAPA #imm:8

1100 01MD disp MOV.B

 @(disp:8,GBR),R0

MOV.W

 @(disp:8,GBR),R0

MOV.L

 @(disp:8,GBR),R0

MOVA

 @(disp:8,PC),R0

1100 10MD imm TST #imm:8,R0 AND #imm:8,R0 XOR #imm:8,R0 OR #imm:8,R0

1100 11MD imm TST.B

 #imm:8,@(R0,GBR)

AND.B

 #imm:8,@(R0,GBR)

XOR.B

 #imm:8,@(R0,GBR)

OR.B

 #imm:8,@(R0,GBR)

1101 Rn disp MOV.L @(disp:8,PC),R0

1110 Rn imm MOV #imm:8,Rn

1111 � Floating-point instruction

Appendix B Pipeline Operation and Contention

Rev. 2.00 May 31, 2006 page 332 of 336
REJ09B0316-0200

Appendix B Pipeline Operation and Contention

The SH-2E is designed so that basic instructions are executed in one cycle. Two or more cycles
are required for instructions when, for example, the branch destination address is changed by a
branch instruction or when the number of cycles is increased by contention between MA and IF.
Table B.1 gives the number of execution cycles and stages for different types of contention and
their instructions. Instructions without contention and instructions that require 2 or more cycles
even without contention are also shown.

Instructions contend in the following ways:

CPU instructions
• Operations and transfers between registers are executed in one cycle with no contention.
• No contention occurs, but the instruction still requires 2 or more cycles.
• Contention occurs, increasing the number of execution cycles. Contention combinations are:

 MA contends with IF
 MA contends with IF and sometimes with memory loads as well
 MA contends with IF and sometimes with the multiplier as well
 MA contends with IF and sometimes with memory loads and sometimes with the multiplier

Floating-point instructions or FPU-related CPU instructions
• No contention occurs with the FCMP instruction.
• MA contends with IF in the case of store instructions involving FR0 to FR15 and FRUL.
• For floating-point operation instructions other than FDIV, floating-point register transfer

instructions, and floating-point register immediate instructions, contention occurs if an
instruction that reads from the destination of the instruction follows immediately after it.

• MA contends with IF in the case of load instructions involving FR0 to FR15 and FRUL. Also,
contention occurs if an instruction that reads from the destination of the instruction follows
immediately after it.

• Contention occurs if an instruction that uses Rn follows the STS FPUL,Rn or STS FPSCR,Rn
instruction.

• In the case of FPSCR load instructions, contention occurs as shown in Figure 8.11.
• In the case of FPSCR store instructions, contention occurs as shown in Figure 8.12, and MA

contends with IF.
• In the case of the FDIV instruction, contention occurs as shown in Figure 8.13.

Appendix B Pipeline Operation and Contention

Rev. 2.00 May 31, 2006 page 333 of 336
REJ09B0316-0200

Table B.1 Instructions and Their Contention Patterns

Contention Cycles Stages Instructions

None 1 3 � Transfers between registers

� Operations between registers (except
when a multiplier is involved)

� Logical operations between registers

� Shift instructions

� System control ALU instructions

2 3 Unconditional branches

3/1 3 Conditional branches

3 3 SLEEP instruction

4 5 RTE instruction

8 9 TRAP instruction

MA contends with IF 1 4 � Memory store instructions

� STS.L instruction (PR)

2 4 STC.L instruction

3 6 Memory logic operations

4 6 TAS instruction

MA contends with IF and
sometimes with memory loads
as well.

1

3

5

5

� Memory load instructions

� LDS.L instruction (PR)
LDC.L instruction

MA contends with IF and
sometimes with the multiplier
as well.

1 4 � Register to MAC transfer instructions

� Memory to MAC transfer instructions

� MAC to memory transfer instructions

1 to 3* 6 Multiplication instructions

3/(2)* 7 Multiply/accumulate instructions

3/(2 to 4)* 9 Double length multiply/accumulate
instructions (SH-2 CPU only)

2 to 4* 9 Double length multiplication instructions
(SH-2 CPU only)

MA contends with IF and
sometimes with memory loads
and sometimes with the
multiplier.

1 5 MAC to register transfer instructions

Note: * The normal minimum number of execution states. (The number in parentheses is the
number in contention with the preceding/following instructions.)

Appendix B Pipeline Operation and Contention

Rev. 2.00 May 31, 2006 page 334 of 336
REJ09B0316-0200

Table B.2 Types of Contention and Instruction Behavior (Floating-point Instructions or
FPU-related CPU Instructions)

Contention Cycles Stages Instructions

None 1 3 (FPU pipeline)
3 (CPU pipeline)

FCMP/EQ FRm,FRn
FCMP/GT FRm,FRn

� MA in CPU pipeline
contends with IF

1 4 (FPU pipeline)
4 (CPU pipeline)

STS.L FPUL,@-Rn
FMOV.S FRm,@Rn
FMOV.S FRm,@-Rn
FMOV.S FRm,@(R0,Rn)

� Contention occurs if next
instruction reads destination
register

1 5 (FPU pipeline)
3 (CPU pipeline)

FLDS FRm,FPUL
FMOV FRm,FRn
FSTS FPUL,FRn
FLDI0 FRn
FLDI1 FRn
FABS FRn
FADD FRm,FRn
FLOAT FPUL,FRn
FMAC FR0,FRm,FRn
FMUL FRm,FRn
FNEG FRn
FSUB FRm,FRn
FTRC FRm,FPUL

� Contention occurs if next
instruction reads destination
register

� MA in CPU pipeline
contends with IF

1 5 (FPU pipeline)
4 (CPU pipeline)

LDS Rm,FPUL
LDS.L @Rm+,FPUL
FMOV.S @Rm,FRn
FMOV.S @Rm+,FRn
FMOV.S @(R0,Rm),FRn

� Contention occurs if next
instruction uses Rn

� MA in CPU pipeline
contends with IF

1 4 (FPU pipeline)
5 (CPU pipeline)

STS FPUL,Rn

� Contention occurs as shown
in Figure 8.11

1 5 (FPU pipeline)
4 (CPU pipeline)

LDS Rm,FPSCR
LDS.L @Rm+,FPSCR

� Contention occurs as shown
in Figure 8.12

� Contention occurs if next
instruction uses Rn

� MA in CPU pipeline
contends with IF

1 4 (FPU pipeline)
5 (CPU pipeline)

STS FPSCR,Rn

Appendix B Pipeline Operation and Contention

Rev. 2.00 May 31, 2006 page 335 of 336
REJ09B0316-0200

Contention Cycles Stages Instructions

� Contention occurs as shown
in Figure 8.12

� MA in CPU pipeline
contends with IF

1 4 (FPU pipeline)
4 (CPU pipeline)

STS.L FPSCR,@-Rn

� Contention occurs as shown
in Figure 8.13

13 17 (FPU pipeline)
3 (CPU pipeline)

FDIV FRm,FRn

Appendix B Pipeline Operation and Contention

Rev. 2.00 May 31, 2006 page 336 of 336
REJ09B0316-0200

Renesas 32-Bit RISC Microcomputer
Software Manual
SH-2E
Publication Date: 1st Edition, March 1999

Rev.2.00, May 31, 2006
Published by: Sales Strategic Planning Div.

Renesas Technology Corp.
Edited by: Customer Support Department

Global Strategic Communication Div.
Renesas Solutions Corp.

©2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510

RENESAS SALES OFFICES

Colophon 6.0

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

SH-2E

REJ09B0316-0200

Software Manual

	Cover
	Cautions
	Introduction
	Main Revisions for This Edition
	Contents
	Section 1 Features
	1.1 SH-2E Features

	Section 2 Register Configuration
	2.1 General Registers
	2.2 Control Registers
	2.3 System Registers
	2.4 Floating-Point Registers
	2.5 Floating-Point System Registers
	2.6 Initial Values of Registers

	Section 3 Data Formats
	3.1 Data Format in Registers
	3.2 Data Format in Memory
	3.3 Immediate Data Format

	Section 4 Floating-Point Unit (FPU)
	4.1 Overview
	4.2 Floating-Point Registers and Floating-Point System Registers
	4.2.1 Floating-Point Register File
	4.2.2 Floating-Point Communication Register (FPUL)
	4.2.3 Floating-Point Status/Control Register (FPSCR)

	4.3 Floating-Point Format
	4.3.1 Floating-Point Format
	4.3.2 Non-Numbers (NaN)
	4.3.3 Denormalized Number Values
	4.3.4 Other Special Values

	4.4 Floating-Point Exception Model
	4.4.1 Enable State Exceptions
	4.4.2 Disable State Exceptions
	4.4.3 FPU Exception Event and Code
	4.4.4 Floating-Point Data Arrangement in Memory
	4.4.5 Arithmetic Operations Involving Special Operands

	4.5 Synchronization with CPU

	Section 5 Instruction Features
	5.1 RISC-Type Instruction Set
	5.2 Addressing Modes
	5.3 Instruction Format

	Section 6 Instruction Set
	6.1 Instruction Set by Classification
	6.2 Instruction Set in Alphabetical Order

	Section 7 Instruction Descriptions
	7.1 Sample Description (Name): Classification
	7.2 CPU Instruction
	7.2.1 ADD (ADD Binary): Arithmetic Instruction
	7.2.2 ADDC (ADD with Carry): Arithmetic Instruction
	7.2.3 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction
	7.2.4 AND (AND Logical): Logic Operation Instruction
	7.2.5 BF (Branch if False): Branch Instruction
	7.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction
	7.2.7 BRA (Branch): Branch Instruction
	7.2.8 BRAF (Branch Far): Branch Instruction
	7.2.9 BSR (Branch to Subroutine): Branch Instruction
	7.2.10 BSRF (Branch to Subroutine Far): Branch Instruction
	7.2.11 BT (Branch if True): Branch Instruction
	7.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction
	7.2.13 CLRMAC (Clear MAC Register): System Control Instruction
	7.2.14 CLRT (Clear T Bit): System Control Instruction
	7.2.15 CMP/cond (Compare Conditionally): Arithmetic Instruction
	7.2.16 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction
	7.2.17 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction
	7.2.18 DIV1 (Divide 1 Step): Arithmetic Instruction
	7.2.19 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction
	7.2.20 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction
	7.2.21 DT (Decrement and Test): Arithmetic Instruction
	7.2.22 EXTS (Extend as Signed): Arithmetic Instruction
	7.2.23 EXTU (Extend as Unsigned): Arithmetic Instruction
	7.2.24 JMP (Jump): Branch Instruction
	7.2.25 JSR (Jump to Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	7.2.26 LDC (Load to Control Register): System Control Instruction (Class: Interrupt Disabled Instruction)
	7.2.27 LDS (Load to System Register): System Control Instruction
	7.2.28 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction
	7.2.29 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction
	7.2.30 MOV (Move Data): Data Transfer Instruction
	7.2.31 MOV (Move Immediate Data): Data Transfer Instruction
	7.2.32 MOV (Move Peripheral Data): Data Transfer Instruction
	7.2.33 MOV (Move Structure Data): Data Transfer Instruction
	7.2.34 MOVA (Move Effective Address): Data Transfer Instruction
	7.2.35 MOVT (Move T Bit): Data Transfer Instruction
	7.2.36 MUL.L (Multiply Long): Arithmetic Instruction
	7.2.37 MULS.W (Multiply as Signed Word): Arithmetic Instruction
	7.2.38 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
	7.2.39 NEG (Negate): Arithmetic Instruction
	7.2.40 NEGC (Negate with Carry): Arithmetic Instruction
	7.2.41 NOP (No Operation): System Control Instruction
	7.2.42 NOT (NOT-Logical Complement): Logic Operation Instruction
	7.2.43 OR (OR Logical) Logic Operation Instruction
	7.2.44 ROTCL (Rotate with Carry Left): Shift Instruction
	7.2.45 ROTCR (Rotate with Carry Right): Shift Instruction
	7.2.46 ROTL (Rotate Left): Shift Instruction
	7.2.47 ROTR (Rotate Right): Shift Instruction
	7.2.48 RTE (Return from Exception): System Control Instruction
	7.2.49 RTS (Return from Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	7.2.50 SETT (Set T Bit): System Control Instruction
	7.2.51 SHAL (Shift Arithmetic Left): Shift Instruction
	7.2.52 SHAR (Shift Arithmetic Right): Shift Instruction
	7.2.53 SHLL (Shift Logical Left): Shift Instruction
	7.2.54 SHLLn (Shift Logical Left n Bits): Shift Instruction
	7.2.55 SHLR (Shift Logical Right): Shift Instruction
	7.2.56 SHLRn (Shift Logical Right n Bits): Shift Instruction
	7.2.57 SLEEP (Sleep): System Control Instruction
	7.2.58 STC (Store Control Register): System Control Instruction (Interrupt Disabled Instruction)
	7.2.59 STS (Store System Register): System Control Instruction (Interrupt Disabled Instruction)
	7.2.60 SUB (Subtract Binary): Arithmetic Instruction
	7.2.61 SUBC (Subtract with Carry): Arithmetic Instruction
	7.2.62 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction
	7.2.63 SWAP (Swap Register Halves): Data Transfer Instruction
	7.2.64 TAS (Test and Set): Logic Operation Instruction
	7.2.65 TRAPA (Trap Always): System Control Instruction
	7.2.66 TST (Test Logical): Logic Operation Instruction
	7.2.67 XOR (Exclusive OR Logical): Logic Operation Instruction
	7.2.68 XTRCT (Extract): Data Transfer Instruction

	7.3 Floating Point Instructions and FPU Related CPU Instructions
	7.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction
	7.3.2 FADD (Floating Point Add): Floating Point Instruction
	7.3.3 FCMP (Floating Point Compare): Floating Point Instruction
	7.3.4 FDIV (Floating Point Divide): Floating Point Instruction
	7.3.5 FLDI0 (Floating Point Load Immediate 0): Floating Point Instruction
	7.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction
	7.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction
	7.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction
	7.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction
	7.3.10 FMOV (Floating Point Move): Floating Point Instruction
	7.3.11 FMUL (Floating Point Multiply): Floating Point Instruction
	7.3.12 FNEG (Floating Point Negate): Floating Point Instruction
	7.3.13 FSTS (Floating Point Store From System Register): Floating Point Instruction
	7.3.14 FSUB (Floating Point Subtract): Floating Point Instruction
	7.3.15 FTRC (Floating Point Truncate And Convert To Integer): Floating Point Instruction
	7.3.16 LDS (Load to System Register): FPU Related CPU Instruction
	7.3.17 STS (Store from FPU System Register): FPU Related CPU Instruction

	Section 8 Pipeline Operation
	8.1 Basic Configuration of Pipelines
	8.2 Slot and Pipeline Flow
	8.3 Number of Instruction Execution Cycles
	8.4 Contention between Instruction Fetch (IF) and Memory Access (MA)
	8.5 Effects of Memory Load Instructions on the Pipeline
	8.6 FPU Contention
	8.7 Programming Guide
	8.8 Operation of Instruction Pipelines
	8.8.1 Data Transfer Instructions
	8.8.2 Arithmetic Instructions
	8.8.3 Logic Operation Instructions
	8.8.4 Shift Instructions
	8.8.5 Branch Instructions
	8.8.6 System Control Instructions
	8.8.7 Exception Processing
	8.8.8 Relationship between Floating-point Instructions and FPU-related CPU Instructions

	Appendix A Instruction Code
	A.1 Instruction Set by Addressing Mode
	A.1.1 No Operand
	A.1.2 Direct Register Addressing
	A.1.3 Indirect Register Addressing
	A.1.4 Post-Increment Indirect Register Addressing
	A.1.5 Pre-Decrement Indirect Register Addressing
	A.1.6 Indirect Register Addressing with Displacement
	A.1.7 Indirect Indexed Register Addressing
	A.1.8 Indirect GBR Addressing with Displacement
	A.1.9 Indirect Indexed GBR Addressing
	A.1.10 PC Relative Addressing with Displacement
	A.1.11 PC Relative Addressing
	A.1.12 Immediate

	A.2 Instruction Sets by Instruction Format
	A.2.1 0 Format
	A.2.2 n Format
	A.2.3 m Format
	A.2.4 nm Format
	A.2.5 md Format
	A.2.6 nd4 Format
	A.2.7 nmd Format
	A.2.8 d Format
	A.2.9 d12 Format
	A.2.10 nd8 Format
	A.2.11 i Format
	A.2.12 ni Format

	A.3 Instruction Set by Instruction Code
	A.4 Operation Code Map

	Appendix B Pipeline Operation and Contention
	Colophon
	Address List
	Back Cover

