To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS



10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.




-
»
)
ﬁ\
»
<
)
>
-
=

W
N

LENESAS

The revision list can be viewed directly by
clicking the title page.

The revision list summarizes the locations of
revisions and additions. Details should always
be checked by referring to the relevant text.

SH-2E

Software Manual

Renesas 32-Bit RISC
Microcomputer

SuperH™ RISC engine Family/
SH7000 Series

Renesas Electronics Rev.2.00 2006.05


Unknown
The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions.  Details should always be checked by referring to the relevant text.


Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

Rev. 2.00 May 31, 2006 page ii of xii

RENESAS



Introduction

The SH-2E is a new generation of RISC microcomputers that integrate a RISC-type CPU and the
peripheral functions required for system configuration onto a single chip to achieve high-
performance operation. It can operate in a power-down state, which is an essential feature for
portable equipment.

This CPU has a RISC-type instruction set. Basic instructions can be executed in one clock cycle,
improving instruction execution speed. In addition, the CPU has a 32-bit internal architecture for
enhanced data-processing ability.

In addition, the SH-2E supports single-precision floating point calculations as well as entirely
PCAPI compatible emulation of double-precision floating point calculations. The SH-2E
instructions are a subset of the floating point calculations conforming to the IEEE754 standard.

This programming manual describes in detail the instructions for the SH-2E Series and is intended
as a reference on instruction operation and architecture. It also covers the pipeline operation,
which is a feature of the SH-2E Series.

For information on the hardware, please refer to the hardware manual for the product in question.

Rev. 2.00 May 31, 2006 page iii of xii

RENESAS



Rev. 2.00 May 31, 2006 page iv of xii

RENESAS



Main Revisions for This Edition

Item Page Revision (See Manual for Details)

All — * Notification of change in company name amended
(Before) Hitachi, Ltd. — (After) Renesas Technology Corp.

Rev. 2.00 May 31, 2006 page v of xii

RENESAS



Rev. 2.00 May 31, 2006 page vi of xii

RENESAS



Contents

SECLION 1 FALUTES.........vivieiiii s 1
L1 SH-2E FEATUIES ...euviiiiiieiieiccitet ettt sttt ettt et 1
Section 2 Register Configuration.............co.coooieirieririeieieieieeeeee e 3
2.1 General REZISTEIS ....ue ittt ettt sttt 3
2.2 CONLIOl REGISEIS. .. .eiiuieieietieitieie ettt ettt sttt ettt sa e b et e b enteenee e eae 4
2.3 SYStEM REZISIEIS ...eeuvieiiieiiieiiesiieitierie ettt et e et et et et eebeeebessaessaeseesseessesnsessnesseenseensenssenns 5
2.4 Floating-Point REZISIEIS......ceccueiiiriieriieiieii ettt et etestae e eseesesaessnessnesseenseensenns 6
2.5  Floating-Point SysStem REGISTEIS .......ccveriieiiriiieieniieiieieeie et esre e seee e ese e e 7
2.6 Initial Values of REGISTETS .....ccueiuiiiiiiiiiiieiieieee et 8
Section 3 Data FOrMALS ..........cooooieiiiieieeeee e 9
3.1  Data FOrmat in REGISTEIS. .....cccuirieriieiieiieie ettt ettt st sseeseense s ees 9
3.2 Data FOrmat in MEmMOTY .......cccueeieriieiieieeiesie ettt et esseeesessaessaesseeseensesnneses 9
3.3 Immediate Data FOIMat.........ccccueriiiiriniiinieieeeeree ettt 10
Section 4 Floating-Point Unit (FPU) .........cccoooiiiiiiiiiieee e 11
O B O )< o 1) ORI 11
4.2 Floating-Point Registers and Floating-Point System Registers.........ccccvevvevrircireienrennnns 12
4.2.1 Floating-Point RegiSter File........cccccveriiriiiiiiiieiieece et 12
4.2.2  Floating-Point Communication Register (FPUL) ..........cccccoevieciiniienieicieeeen. 12
4.2.3  Floating-Point Status/Control Register (FPSCR)........cccceiiiiiiiiiiiiieeeee, 12
4.3 Floating-Point FOrmMAt...........cociiiiiiiiiei et 15
4.3.1 Floating-Point FOrmat..........cccccooiiiiiiiiieieeeeee e 15
4.3.2  Non-NUumbers (INAN) ......cccceiierieiieiieieeieeeeseeseesre e saeseesseesseesseensesnsesssesenes 16
4.3.3  Denormalized NUmber ValUes.........c.cceceverieiiininienenineeieienieese e 16
4.3.4  Other Special ValUeS.......cccocieriieiieieeierieeeie ettt eeees 17
4.4  Floating-Point Exception Model ..........cooiiiiiiiiiiiieeee e 17
4.4.1 Enable State EXCEOPHIONS.....cciiitieiieiieiieitieiteete ettt 17
4.4.2  Disable State EXCEPLIONS. ...cc.eiruieiiieiieieiiesieeieee ettt 17
4.4.3 FPU Exception Event and Code............ccuvviirieiienieniieii e 18
4.4.4 Floating-Point Data Arrangement in MEmMOTY .......c..cccevvervieriieienienienieeieenenenes 18
4.4.5  Arithmetic Operations Involving Special Operands ...........cccceecvveververeereenenen. 18
4.5  Synchronization With CPU...........cooiiiiiii e 18
Section 5 INStruction FEAtUIES...........cccoviiiiiiiieieee e 19
5.1  RISC-Type INStrUCION SEL......cciirvieiieieriieriieiieie e eteeee e esreeaeeeeseeesseesseesseensesssessneneees 19
5.2 AddreSsing MOUES.......ccuieuirierieiiieniiesieeie et eteeetesteesteesteesseessesaesseesseesseesseenseessesssesssessees 22

Rev. 2.00 May 31, 2006 page vii of xii

RENESAS



5.3 INStrUCtion FOIMAL........cooiviiiiiiiiiiiiiee et eeenaeeeeenes 25

Section 6 INSIUCHION SEt........ooiiiiiiiiieeee s 29
6.1  Instruction Set by ClassifiCation .........c.ccerieriiiiiiireee e e 29
6.2 Instruction Set in Alphabetical Order...........cccoooiiiiiiiiiiieeeeee e 44
Section 7 Instruction DESCIIPLIONS...........cccviviveieiieieieieicee s 53
7.1 Sample Description (Name): Classification............cccvevureviieieeienienieeieeieseeseesieeee e 53
7.2 CPU INSIUCHION. c..eitiiiie ittt ettt ettt e e e b et et e e eneesaeeeee 57
7.2.1 ADD (ADD Binary): Arithmetic InStruction ............cceccevveienieniniiiereeeee 57
7.2.2 ADDC (ADD with Carry): Arithmetic InStruction ............coccevenerniiiinieneeens 58
7.2.3 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction................. 59
7.24 AND (AND Logical): Logic Operation InStruction.............cceeeeevvererereracrennennnns 60
7.2.5 BF (Branch if False): Branch InStruction.............ccoecveeieriesiencieniesieneenie e 62
7.2.6  BF/S (Branch if False with Delay Slot): Branch Instruction.............ccccoeceveenne 63
7.2.7 BRA (Branch): Branch INStruction ...........ccceccueevieeiiienieeiii e 65
7.2.8 BRAF (Branch Far): Branch INStruction...........cccceeecveerieeniienieeniiesieeeee e 67
7.2.9  BSR (Branch to Subroutine): Branch Instruction............ccecceceevieneneninenenennns 69
7.2.10 BSRF (Branch to Subroutine Far): Branch Instruction............cccocevvenenincnniennn. 71
7.2.11 BT (Branch if True): Branch InStruction..............ccoeeveeienienieeneeriesie e 73
7.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction .........c...ccccceceviennns 74
7.2.13 CLRMAC (Clear MAC Register): System Control Instruction...........c.ceeueeunen. 76
7.2.14 CLRT (Clear T Bit): System Control InStruction...........c.ccecoeeveerenneeniencenieeienns 77
7.2.15 CMP/cond (Compare Conditionally): Arithmetic Instruction............ccccocevenuenen. 78
7.2.16 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction..........ccccccevvevenenennene 82
7.2.17 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction........c..ccceceeveriennen. 83
7.2.18 DIV1 (Divide 1 Step): Arithmetic InStruction ...........cccceveeviiiiniinieneeeeeens 84
7.2.19 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction ........... 89
7.2.20 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction....... 91
7.2.21 DT (Decrement and Test): Arithmetic INStruCtion ..........coceveverenereeieienieniennns 93
7.2.22 EXTS (Extend as Signed): Arithmetic Instruction..........c..cecevveveeirrievienencnennns 94
7.2.23 EXTU (Extend as Unsigned): Arithmetic Instruction...........ccccocevcererieniencnennns 95
7.2.24 JMP (Jump): Branch InStruction ...........ccoooeerieiiiiiieiiiiesieeeeee e 96
7.2.25 JSR (Jump to Subroutine): Branch Instruction
(Class: Delayed Branch InStruction) .........c.eeceeveerienienienieeieeecceieeeee e 98
7.2.26 LDC (Load to Control Register): System Control Instruction
(Class: Interrupt Disabled INStruCtion)...........cceeeververieneeniieieeieeieseee e 100
7.2.27 LDS (Load to System Register): System Control Instruction...........cccccceevenuenene 102
7.2.28 MAC.L (Multiply and Accumulate Calculation Long):
Arithmetic INSTrUCHION .....o.ieiiiiieie et 104

Rev. 2.00 May 31, 2006 page viii of xii

RENESAS



7.2.29

7.2.30
7.2.31
7.2.32
7.2.33
7.2.34
7.2.35
7.2.36
7.2.37
7.2.38
7.2.39
7.2.40
7.2.41
7.2.42
7.2.43
7.2.44
7.2.45
7.2.46
7.2.47
7.2.48
7.2.49

7.2.50
7.2.51
7.2.52
7.2.53
7.2.54
7.2.55
7.2.56
7.2.57
7.2.58

7.2.59

7.2.60
7.2.61
7.2.62
7.2.63
7.2.64
7.2.65

MAC.W (Multiply and Accumulate Calculation Word):

ATIthmetic INSEIUCTION ...c..eeutiiiiiriiitericeitete ettt 107
MOV (Move Data): Data Transfer INnStruction .........ccccceeeeveereveenieenieeneeesveennenn 110
MOV (Move Immediate Data): Data Transfer Instruction..........c.cccceevveerveennen.. 115
MOV (Move Peripheral Data): Data Transfer Instruction ...........cc.cceeeeeviereneene 117
MOV (Move Structure Data): Data Transfer Instruction..........ccccecceevenevencnenne. 120
MOVA (Move Effective Address): Data Transfer Instruction...........ccccccceeuennenne. 123
MOVT (Move T Bit): Data Transfer Instruction ............cccccveeveeevercrenieneenneenene 124
MUL.L (Multiply Long): Arithmetic InStruction..........ccceveeeveenennenencencene 125
MULS.W (Multiply as Signed Word): Arithmetic Instruction ............cccceeeeeene 126
MULU.W (Multiply as Unsigned Word): Arithmetic Instruction ..........c............ 127
NEG (Negate): Arithmetic INStruction.........c.cccvevvevieecierienienieie e 128
NEGC (Negate with Carry): Arithmetic InStruction ...........cocceeveveriveeeenieneenne. 129
NOP (No Operation): System Control InStruction..............cceeceeecververieereeseennene. 130
NOT (NOT—Logical Complement): Logic Operation Instruction ..................... 131
OR (OR Logical) Logic Operation InStruction ...........cccceeeeeveeeieneeneenienieneenee. 132
ROTCL (Rotate with Carry Left): Shift Instruction............ccoceeveieeiencencnnnne 134
ROTCR (Rotate with Carry Right): Shift InStruction .........c..coceceveeeienieriencnenne. 135
ROTL (Rotate Left): Shift InStruction ...........ccceeevercierienieniieieecie e 136
ROTR (Rotate Right): Shift INStruction...........c.cccveceieienierienieiesee e 137
RTE (Return from Exception): System Control Instruction............ccccceveenueenneene. 138
RTS (Return from Subroutine): Branch Instruction

(Class: Delayed Branch INStruction) .........c.ceceeoeereeiienieniieieeieeeeiceeee e 140
SETT (Set T Bit): System Control InStruction............ccceeeveeeververreneesieeieneeneeans 142
SHAL (Shift Arithmetic Left): Shift InStruction.........c.ccecevevenencrieneneneneen 143
SHAR (Shift Arithmetic Right): Shift InStruction ...........cceeevevevvenienienieriens 144
SHLL (Shift Logical Left): Shift Instruction ............ccocceevirieiinienieeeeeees 145
SHLLn (Shift Logical Left n Bits): Shift Instruction............ccoccoveenieiinienenens 146
SHLR (Shift Logical Right): Shift Instruction...........ccccceeeeviinininiiniieees 148
SHLRn (Shift Logical Right n Bits): Shift Instruction............cccceceecevveeeecienennenn. 149
SLEEP (Sleep): System Control INStruction ...........ccceeeveevercvenveneenieeiesieneeeeens 151
STC (Store Control Register): System Control Instruction

(Interrupt Disabled INStruCtion)..........ceeveeiiirieriiieiereee e 152
STS (Store System Register): System Control Instruction

(Interrupt Disabled INStruction)...........cceieerieiieriiiiieiiesiee e 154
SUB (Subtract Binary): Arithmetic InStruction ..........c.ccocevceveveeeecienenenenenenn 156
SUBC (Subtract with Carry): Arithmetic Instruction...........cccceceeveverenenencnene 157
SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction........... 158
SWAP (Swap Register Halves): Data Transfer Instruction ..........cc.ccecceecevennen. 159
TAS (Test and Set): Logic Operation InsStruction ............cccceeveeveniencenceneenecne. 161
TRAPA (Trap Always): System Control InStruction ............cceeeeveeneeneesennenne. 162

Rev. 2.00 May 31, 2006 page ix of xii

RENESAS



7.2.66 TST (Test Logical): Logic Operation InStruction ...........cccceeverenencneecienecniennns 163

7.2.67 XOR (Exclusive OR Logical): Logic Operation Instruction...............cceecveeevennnns 165
7.2.68 XTRCT (Extract): Data Transfer Instruction ...........ccceeeceeevieevieenieesie e 167
7.3 Floating Point Instructions and FPU Related CPU Instructions...........ccccceeeeereerceneeeenne. 168
7.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction .................... 170
7.3.2 FADD (Floating Point Add): Floating Point Instruction..............cceeveevervenirenenns 172
7.3.3 FCMP (Floating Point Compare): Floating Point Instruction.............cccceevvennens 175
7.3.4 FDIV (Floating Point Divide): Floating Point Instruction............c.c.ceevveeverrennnns 179
7.3.5 FLDIO (Floating Point Load Immediate 0): Floating Point Instruction ............... 181
7.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction ............... 182
7.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction ...... 183
7.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction......... 184
7.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction.......... 185
7.3.10 FMOYV (Floating Point Move): Floating Point Instruction .............ccceeeeverurennns 188
7.3.11 FMUL (Floating Point Multiply): Floating Point Instruction ...........cccccceeeenens 192
7.3.12 FNEG (Floating Point Negate): Floating Point Instruction...........cc.ccecevceenrennns 194
7.3.13 FSTS (Floating Point Store From System Register): Floating Point
INSEIUCTION ..ttt ettt ettt ettt et sbe e 195
7.3.14 FSUB (Floating Point Subtract): Floating Point Instruction............c.ccecvevennnns 196
7.3.15 FTRC (Floating Point Truncate And Convert To Integer): Floating Point
INSEIUCHION -ttt ettt ettt ettt et 199
7.3.16 LDS (Load to System Register): FPU Related CPU Instruction.............cccecceuneev. 201
7.3.17 STS (Store from FPU System Register): FPU Related CPU Instruction.............. 204
Section 8 Pipeline OPeration............ccccoviueieiiieieiieieieieeese s 207
8.1  Basic Configuration of PIPelines.........cccoccuiriirieriienieeiiiiie sttt sie e 207
8.2 Slot and Pipeline FIOW ........cccoiiiiiiiiiiiie ettt 209
8.3 Number of Instruction Execution Cycles ..........cooieiiiiiiiieiiiiienieecececee e 211
8.4  Contention between Instruction Fetch (IF) and Memory Access (MA)......ccccceveereeeennee. 212
8.5  Effects of Memory Load Instructions on the Pipeline...........cccoeveviveciinienienienieieeieen, 215
8.0 FPU CONENLION. ....euiiiiiiiiiitesteeteei ettt ettt b sttt st b st ebe et 216
8.7  Programming GUIAC.........cceeeuieiieiieiieriierie et ettt ie et saesae st e saeeseesseesaessaenseeseensens 217
8.8 Operation of Instruction Pipelines...........cccoeeiiieiiiiiiiiiie it 218
8.8.1  Data Transfer INStruCtIONS. .......oiieiiiriieiieie e 228
8.8.2  Arithmetic INStIUCTIONS .....ccuiiiiiiiiiieiiee e 231
8.8.3  Logic Operation INStIrUCIONS .........ccccvervieriieieeienieseesieeteseeseeesaeesseeseessessnessnens 265
8.8.4  Shift INSLIUCTIONS ...cuveutitiiiiiiceitet ettt st 267
8.8.5  Branch INStIUCHONS ...c..co.eeieiiriiniiitiiieeitetee ettt 268
8.8.6  System Control INStUCTIONS .....cc.eertiiiiriiiierieieete et 271
8.8.7  EXCEPtion PrOCESSING .......cciiitiiitiiiiiieiie ettt 277

Rev. 2.00 May 31, 2006 page x of xii

RENESAS



8.8.8  Relationship between Floating-point Instructions and FPU-related CPU

INSEIUCTIONS. ..ottt ettt et sttt be e 279

Appendix A InStruction Code ...........coooiriiirieieieieeee s 293
A.1 Instruction Set by Addressing MoOde..........coovuiriiiiiiieiieeee e 293
AL LT NO OPEIANG.....ciuieiieiieiieie et ete st e st e e testeseessee st esteesseessesssessaesseesseensesnsennns 294

A.1.2 Direct Register AAAIeSSING ......c.ccoveiierierierieeieeieeeeseeeeieeieetesaesaesseesseeseenns 295

A.1.3 Indirect Register AddreSSing........cccvverveerieerieicienienieenieeieeieeveere e sseesseeneeeeeees 299

A.1.4 Post-Increment Indirect Register Addressing .........cccceeeeveereenienieieeenieeceenn 300

A.1.5 Pre-Decrement Indirect Register Addressing..........cccceevevveiiiinienieiceenieneeeen 301

A.1.6 Indirect Register Addressing with Displacement............ccccceveriinienienceneenenee. 301

A.1.7 Indirect Indexed Register Addressing.........ccovvervenieeriiecieeiieieeieseeeee e 302

A.1.8 Indirect GBR Addressing with Displacement.............ccccevverienernieecieneeneennnnn, 302

A.1.9 Indirect Indexed GBR Addressing..........ccoeeverierienienieniieieeieeie e see e 303
A.1.10 PC Relative Addressing with Displacement ............c.ccooceeviiiininienienieeeeee, 303
A.1.11 PCRelative AddIeSSINg ........ccceeiuieriieriieiieieeierie ettt 304

AL 12 TMMEAIALE ...ttt sttt ettt sb ettt e 305

A.2  Instruction Sets by Instruction FOrmat...........ccecveviiiienienienieie e 306
A2 1 OFOrMAt...c..oooiiiiiiiiiiiieicete ettt st 307

A22 NFOIMAL...c.ioiiiiiiiiiii ettt sttt 308

A2.3  MIFOIMAL. ..ottt 310

A2.4 M FOIMAL....iiiiiiiiiei ettt ettt e 312

A2.5 M FOrMAt.....oiiiiiiiiieie et 316

A2.6 NAA FOIMAL..c..iiiiiiiiiiiiiiiiiee ettt sttt 316

A2.7  NMA FOIMAL... oottt et 316

A28 A FOIMAL...eiiiiiiiiiiei et 317

A2.9  A12 FOMMAL....iuiiiieiieiieieeie ettt ettt ettt ee et et et e ebeeteeneeneeneenean 318
A2.10 NA8 FOIMAL....coiiiiiiiiieiieeieree ettt sttt ettt e e e aeeaean 318

A2 LT T FOIMAL. ..ottt ettt sa ettt et e e aean 318
A2.12 N FOIMAL..c..iiiiiiieiie ettt 319

A.3  Instruction Set by InStruction Code.........eevuiervieciieienierieriesie ettt eaeeeaeeeaens 320
A4 Operation Code MAP......cc.eeiiiieiiieieeie ettt et ae et e ta e seesbessbessaessaesseenseenseenseans 329
Appendix B Pipeline Operation and Contention ...............ccccooeveeirierioriceieisinininnns 332

Rev. 2.00 May 31, 2006 page xi of xii

RENESAS



Rev. 2.00 May 31, 2006 page xii of xii

RENESAS



Section 1 Features

1.1 SH-2E Features

Section 1 Features

The SH-2E CPU has RISC-type instruction sets. Basic instructions are executed in one clock
cycle, which dramatically improves instruction execution speed. The CPU also has an internal 32-
bit architecture for enhanced data processing ability. Table 1.1 lists the SH-2E CPU features.

Table 1.1 SH-2E CPU Features

Item

Feature

Architecture

Original Renesas Technology architecture
32-bit internal data bus

General-register machine

Sixteen 32-bit general registers
Three 32-bit control registers

Four 32-bit system registers

Sixteen 32-bit froating-point registers

Two 32-bit froating point system registers

Instruction set

Instruction length: 16-bit fixed length for improved code efficiency

Load-store architecture (basic arithmetic and logic operations are
executed between registers)

Delayed branch system used for reduced pipeline disruption
Instruction set optimized for C language

Instruction execution time

One instruction/cycle for basic instructions

Address space

Architecture makes 4 Gbytes available

On-chip multiplier

Multiplication operations executed in 1 to 2 cycles (16 bits x 16 bits
- 32 bits) or 2 to 4 cycles (32 bits x 32 bits - 64 bits), and
multiplication/accumulation operations executed in 3/(2)* cycles
(16 bits x 16 bits + 64 bits — 64 bits) or 3/(2 to 4)* cycles (32 bits x
32 bits + 64 bits — 64 bits)

Pipeline

Five-stage pipeline

Processing states

Reset state

Exception processing state
Program execution state
Power-down state

Bus release state

Rev. 2.00 May 31, 2006 page 1 of 336
REJ09B0316-0200
RENESAS



Section 1 Features

Item Feature
Power-down states ¢ Sleep mode
e Standby mode

FPU

Single-precision floating point format
Subset of IEEE754 standard data types

Invalid calculation exception and divide-by-zero exception (in
compliance with IEEE754 standard)

Rounding to zero (in compliance with IEEE754 standard)
General purpose register file, 16 32-bit floating point registers

Execution pitch for basic instructions: 1 cycle/latency or 2 cycles
(FADD, FSUB, FMUL)

FMAC (floating point multiply accumulate)
Execution pitch: 1 cycle/latency or 2 cycles
Support for FDIV

Support for FLDIO and FLDI1 (load constant 0/1)

Note: * The normal minimum number of execution cycles. The number in parentheses in the
number in contention with preceding/following instructions.

Rev. 2.00 May 31, 2006 page 2 of 336

REJ09B0316-0200

RENESAS



Section 2 Register Configuration

Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four
32-bit system registers.

2.1 General Registers

There are 16 general registers (Rn) numbered RO-R15, which are 32 bits in length. General
registers are used for data processing and address calculation. RO is also used as an index register.
Several instructions use RO as a fixed source or destination register. R15 is used as the hardware
stack pointer (SP). Saving and recovering the status register (SR) and program counter (PC) in
exception processing is accomplished by referencing the stack using R15.

31 0
RO*?
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13

R14
R15, SP (hardware stack pointer) 2

Notes: 1. RO functions as an index register in the indirect indexed
register addressing mode and indirect indexed GBR
addressing mode. In some instructions, RO functions as
a fixed source register or destination register.

2. R15 functions as a hardware stack pointer (SP) during
exception processing.

Figure 2.1 General Registers (SH-1 and SH-2)

Rev. 2.00 May 31, 2006 page 3 of 336
REJ09B0316-0200
RENESAS



Section 2 Register Configuration

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR). The status register indicates processing states. The global base
register functions as a base address for the indirect GBR addressing mode to transfer data to the
registers of on-chip peripheral modules. The vector base register functions as the base address of
the exception processing vector area (including interrupts).

31 98 76543210
SR| ——ccc—__ MQI3 121110 -- ST | SR: Status register

N _ |_>T bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDVI/C,
SUBVI/C, DIVOU/S, DIV1, NEGC,
SHAR/L, SHLR/L, ROTRI/L, and
ROTCRI/L instructions also use bit T
to indicate carry/borrow or overflow/
underflow
— S bit: Used by the multiply/accumulate
instruction.

» Reserved bits: Always reads as 0, and should
always be written with 0.
——» Bits 13-10: Interrupt mask bits.

»M and Q bits: Used by the DIVOU/S and
DIV1 instructions.

Global base register (GBR):
31 0 Indicates the base address of the indirect
GBR GBR addressing mode. The indirect GBR
addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

31 0 Vector base register (VBR):
VBR Indicates the base address of the exception
processing vector area.

Figure 2.2 Control Registers

Rev. 2.00 May 31, 2006 page 4 of 336
REJ09B0316-0200
RENESAS




Section 2 Register Configuration

23 System Registers

System registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC). The multiply
and accumulate registers store the results of multiply and multiply and accumulate operations. The
procedure register stores the return address from the subroutine procedure. The program counter
indicates the address of the program executing and controls the flow of the processing.

3L 9 0 Multiply and accumulate
MACH ; register high (MACH)
MACL Multiply and accumulate
register low (MACL)
31 0
| PR Procedure register (PR)
31 0
| PC Program counter (PC)

Figure 2.3 Organization of the System Registers

Rev. 2.00 May 31, 2006 page 5 of 336
REJ09B0316-0200
RENESAS




Section 2 Register Configuration

24 Floating-Point Registers

There are sixteen 32-bit floating-point registers, designated FRO to FR15, which are used by
floating-point instructions. FRO functions as the index register for the FMAC instruction. These
registers are incorporated into the floating-point unit (FPU). For details, see section 4, Floating-
Point Unit (FPU).

31 0
FRO
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14

FRO functions as the index register
for the FMAC instruction.

FR15

Figure 2.4 Floating-Point Registers

Rev. 2.00 May 31, 2006 page 6 of 336
REJ09B0316-0200
RENESAS




Section 2 Register Configuration

2.5 Floating-Point System Registers

There are two 32-bit floating-point system registers: the floating-point communication register
(FPUL) and the floating-point status/control register (FPSCR). FPUL is used for communication
between the CPU and the floating-point unit (FPU). FPSCR indicates and stores status/control
information relating to FPU exceptions.

These registers are incorporated into the floating-point unit (FPU). For details, see section 4,
Floating-Point Unit (FPU).

31 0

| FPUL | FPUL:  Floating-point communication register
Used for communication between
the CPU and the FPU.

31 0

| FPSCR | FPSCR: Floating-point status/control register

Indicates and stores status/control
information relating to FPU exceptions.

Figure 2.5 Floating-Point System Registers

Rev. 2.00 May 31, 2006 page 7 of 336
REJ09B0316-0200
RENESAS




Section 2 Register Configuration

2.6 Initial Values of Registers

Table 2.1 lists the values of the registers after reset.

Table 2.1  Initial Values of Registers

Classification Register Initial Value
General registers RO-R14 Undefined
R15 (SP) Value of the stack pointer in the vector
address table
Control registers SR Bits 13—10 are 1111 (H'F), reserved bits are
0, and other bits are undefined
GBR Undefined
VBR H'00000000
System registers MACH, MACL, PR Undefined

PC

Value of the program counter in the vector
address table

Floating-point registers FRO-FR15 Undefined
Floating-point system registers FPUL Undefined
FPSCR H'00040001

Rev. 2.00 May 31, 2006 page 8 of 336

REJ09B0316-0200

RENESAS



Section 3 Data Formats

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits). When data in memory is loaded to a register
and the memory operand is only a byte (8 bits) or a word (16 bits), it is sign-extended into a
longword when stored into a register.

31 0
Longword

Figure 3.1 Data Format in Registers

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed. The hardware stack area, which is referred to by the hardware
stack pointer (SP, R15), uses only longword data starting from address 4n because this area stores
the program counter (PC) and status register (SR). See the hardware manual for more information
on address errors.

Addressm+1  Addressm + 3
Address m Address m + 2
Ta1 23 15 7 0
Byte | Byte Byte | Byte
Address 2n —» Word Word
Address 4n —» Longword

Figure 3.2 Data Format in Memory

Rev. 2.00 May 31, 2006 page 9 of 336
REJ09B0316-0200
RENESAS




Section 3 Data Formats

33 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and is handled in registers as longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and is
handled as longword data. Consequently, AND instructions with immediate data always clear the
upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code but rather is stored in a
memory table. The memory table is accessed by a immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in 5.1
Immediate Data in Section 5, Instruction Features.

Rev. 2.00 May 31, 2006 page 10 of 336
REJ09B0316-0200
RENESAS



Section 4 Floating-Point Unit (FPU)

Section 4 Floating-Point Unit (FPU)

4.1 Overview

The SH-2E has an on-chip floating-point unit (FPU), The FPU’s register configuration is shown in
figure 4.1.

Floating-point registers

31 0

FRO FRO functions as the index register
FR1 for the FMAC instruction.

FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

Floating-point system registers

31 0 Floating-point communication register

| FPUL | Specifies buffer as communication register between
CPU and FPU".

31 0 Floating-point status/control register

| FPSCR |

Indicates status/control information relating to FPU
exceptions”™.

Note: * For details, see section 4.2, Floating-Point Registers and Floating-Point System
Registers.

Figure 4.1 Overview of Register Configuration
(Floating-Point Registers and Floating-Point System Registers)

Rev. 2.00 May 31, 2006 page 11 of 336
REJ09B0316-0200
RENESAS




Section 4 Floating-Point Unit (FPU)

4.2 Floating-Point Registers and Floating-Point System Registers

4.2.1 Floating-Point Register File

The SH-2E has sixteen 32-bit single-precision floating-point registers. Register specifications are
always made as 4 bits. In assembly language, the floating-point registers are specified as FRO,
FR1, FR2, and so on. FRO functions as the index register for the FMAC instruction.

4.2.2 Floating-Point Communication Register (FPUL)

Information for transfer between the FPU and the CPU is transferred via the FPUL communication
register, which resembles MACL and MACH in the integer unit. The SH-2E is provided with this
communication register since the integer and floating-point formats are different. The 32-bit FPUL
is a system register, and is accessed by the CPU by means of LDS and STS instructions.

4.2.3 Floating-Point Status/Control Register (FPSCR)

The SH-2E has a floating-point status/control register (FPSCR) that functions as a system register
accessed by means of LDS and STS instructions (figure 4.2). FPSCR can be written to by a user
program. This register is part of the process context, and must be saved when the context is
switched. It may also be necessary to save this register when a procedure call is made.

FPSCR is a 32-bit register that controls the storage of detailed information relating to the rounding
mode, asymptotic underflow (denormalized numbers), and FPU exceptions. The module stop bit
that disables the FPU itself is provided in the module standby control register (MSTCR). For
details, refer to hardware manual. After a reset start, the FPU is enabled.

Table 4.1 shows the flags corresponding the five kinds of FPU exception. A sixth flag is also
provided as an FPU error flag that indicates an floating-point unit error state not covered by the
other five flags.

Rev. 2.00 May 31, 2006 page 12 of 336
REJ09B0316-0200
RENESAS



Section 4 Floating-Point Unit (FPU)

Table 4.1  Floating-Point Exception Flags

Flag Meaning Support in SH-2E
E FPU error —

Vv Invalid operation Yes

z Division by zero Yes

(0] Overflow (value not expressed) —

] Underflow (value not expressed) —

| Inexact (result not expressed) —

The bits in the cause field indicate the exception cause for the instruction executing at the time.
The cause bits are modified by a floating-point instruction. These bits are set to 1 or cleared to 0
according to whether or not an exception state occurred during execution of a single instruction.

The bits in the enable field specify the kinds of exception to be enabled, allowing the flow to be
changed to exception processing. If the cause bit corresponding to an enable bit is set by the
currently executing instruction, an exception occurs.

The bits in the flag field are used to keep a tally of all exceptions that occur during a series of
instructions. Once one of these bits is set by an instruction, it is not reset by a subsequent
instruction. The bits in this field can only be reset by the explicit execution of a store operation on
FPSCR.

Rev. 2.00 May 31, 2006 page 13 of 336
REJ09B0316-0200
RENESAS



Section 4 Floating-Point Unit (FPU)
31 1918171615 14 1312 1110 9 8 7 6 5 4 3 210
Cause field Enable field Flag field
Reserved
pi|ce|cv|cz|coleu| ol ev]ezleo]eu] e1|v]rz|Folru] Fijrm
DN: Denormalized bit
In the SH-2E this bit is always set to 1, and the source or destination operand
of a denormalized number is 0. This bit cannot be modified even by an LDS
instruction.
CV: Invalid operation cause bit
When 1: Indicates that an invalid operation exception occurred during execution
of the current instruction.
When 0: Indicates that an invalid operation exception has not occurred.
CZ: Division-by-zero cause bit
When 1: Indicates that a division-by-zero exception occurred during execution
of the current instruction.
When 0: Indicates that a division-by-zero exception has not occurred.
EV: Invalid operation exception enable
When 1: Enables invalid operation exception generation.
When 0: An invalid operation exception is not generated, and a qNAN is returned
as the result.
EZ: Division-by-zero exception enable
When 1: Enables exception generation due to division-by-zero during execution
of the current instruction.
When 0: A division-by-zero exception is not generated, and infinity with the sign
(+ or -) of the current expression is returned as the result.
FV: Invalid operation exception flag bit
When 1: Indicates that an invalid operation exception occurred during instruction
execution.
When 0: Indicates that an invalid operation exception has not occurred.
Fz: Division-by-zero exception flag bit
When 1: Indicates that a division-by-zero exception occurred during instruction
execution.
When 0: Indicates that a division-by-zero exception has not occurred.
RM: Rounding bits. In the SH-2E, the value of these bits is always 01, meaning that

rounding to zero (RZ mode) is being used. These bits cannot be modified even by
an LDS instruction.

In the SH-2E, the cause field EOUI bits (CE, CO, CU, and Cl), enable field OUI bits (EO,
EU, and El), and flag field OUI bits (FO, FU, and FI), and the reserved area, are preset
to 0, and cannot be modified even by using an LDS instruction.

Figure 4.2 Floating-Point Status/Control Register

Rev. 2.00 May 31, 2006 page 14 of 336
REJ09B0316-0200

RENESAS




Section 4 Floating-Point Unit (FPU)

4.3 Floating-Point Format

4.3.1 Floating-Point Format

The SH-2E supports single-precision floating-point operations, and fully complies with the
IEEE754 floating-point standard.

A floating-point number consists of the following three fields:

* Sign (s)
* Exponent (e)
e Fraction (f)

The exponent is expressed in biased form, as follows:
e =E + bias

The range of unbiased exponent E is E,j, — 1 to E;ox + 1. The two values E,j, — 1 and E . + 1 are
distinguished as follows. E,,;, — 1 indicates zero (both positive and negative sign) and a
denormalized number, and E,,; + 1 indicates positive or negative infinity or a non-number (NaN).
In a single-precision operation, the bias value is 127, E;;, is —126, and E,,, is 127.

31 30 23 22 0

Figure 4.3 Floating-Point Number Format
Floating-point number value v is determined as follows:

IfE =E,. * 1 and f! = 0, v is a non-number (NaN) irrespective of sign s
IfE=E + | and f=0, v = (-1)° (infinity) [positive or negative infinity]
If Epin <= E <= Epnax , v = (-1)*2F (1.f) [normalized number]

IfE =Ep,— | and f1 = 0, v = (-1)25™" (0.f) [denormalized number]
IfE=E.,— 1 and f= 0, v =(-1)°0 [positive or negative zero]

Rev. 2.00 May 31, 2006 page 15 of 336
REJ09B0316-0200
RENESAS




Section 4 Floating-Point Unit (FPU)

4.3.2 Non-Numbers (NaN)

With non-number (NaN) representation in a single-precision operation value, at least one of bits
22 to 0 is set. If bit 22 is set, this indicates a signaling NaN (sNaN). If bit 22 is reset, the value is a
quiet NaN (qNaN).

The bit pattern of a non-number (NaN) is shown in the figure below. Bit N in the figure is set for a
signaling NaN and reset for a quiet NaN. x indicates a don’t care bit (with the proviso that at least
one of bits 22 to 0 is set). In a non-number (NaN), the sign bit is a don’t care bit.

31 30 23 22 0
X 11111111 XXX XXX XXX XX

N = 1: sNaN

N =0: gNaN

Figure 4.4 NaN Bit Pattern
If a non-number (sNaN) is input in an operation that generates a floating-point value:

*  When the EV bit in the FPSCR register is reset, the operation result (output) is a quiet NaN
(qNaN).

*  When the EV bit in the FPSCR register is set, an invalid operation exception will be generated.
In this case, the contents of the operation destination register do not change.

If a quiet NaN is input in an operation that generates a floating-point value, and a signaling NaN
has not been input in that operation, the output will always be a quiet NaN irrespective of the
setting of the EV bit in the FPSCR register. An exception will not be generated in this case.

Refer to section 7, Instruction Descriptions for details of floating-point operations when a non-
number (NaN) is input.

4.3.3 Denormalized Number Values

For a denormalized number floating-point value, the biased exponent is expressed as 0, the
fraction as a non-zero value, and the hidden bit as 0. In the SH-2E’s floating-point unit, a
denormalized number (operand source or operation result) is always flushed to 0 in a floating-
point operation that generates a value (an operation other than copy).

Rev. 2.00 May 31, 2006 page 16 of 336
REJ09B0316-0200
RENESAS



Section 4 Floating-Point Unit (FPU)

4.3.4 Other Special Values

Floating-point value representations include the seven different kinds of special values shown in
table 4.2.

Table 4.2  Representation of Special Values in Single-Precision Floating-Point Operations
Specified by IEEE754 Standard

Value Representation

+0.0 0x00000000

-0.0 0x80000000

Denormalized number As described in 4.3.3, Denormalized Number Values
+INF 0x7F800000

—INF O0xFF800000

gNaN (quiet NaN) As described in 4.3.2, Non-Numbers (NaN)

sNaN (signaling NaN) As described in 4.3.2, Non-Numbers (NaN)

4.4 Floating-Point Exception Model

4.4.1 Enable State Exceptions

Invalid operation and division-by-zero exceptions are both placed in the enable state by setting the
enable bit. All exceptions generated by the FPU are mapped as the same exception event. The
meaning of a particular exception is determined by software by reading system register FPSCR
and analyzing the information held there.

4.4.2 Disable State Exceptions

If the EV enable bit is not set, a qNaN will be generated as the result of an invalid operation
(except for FCMP and FTRC). If the EZ enable bit is not set, division-by-zero will return infinity
with the sign (+ or —) of the current expression. Overflow will generate a finite number which is
the largest value that can be expressed by an absolute value in the format, with the correct sign.
Underflow will generate zero with the correct sign. If the operation result is inexact, the
destination register will store that inexact result.

Rev. 2.00 May 31, 2006 page 17 of 336
REJ09B0316-0200
RENESAS



Section 4 Floating-Point Unit (FPU)

4.4.3 FPU Exception Event and Code

All FPU exceptions have a vector table address offset in address H'00000034 as the same general
exception event; that is, an FPU exception.

4.4.4 Floating-Point Data Arrangement in Memory

Single-precision floating-point data is located in memory at a 4-byte boundary; that is, it is
arranged in the same form as an SH-2E long integer.

4.4.5 Arithmetic Operations Involving Special Operands

All arithmetic operations involving special operands (qNaN, sNaN, +INF, —INF, +0, —0) comply
with the specifications of the IEEE754 standard. Refer to section 7, Instruction Descriptions for
details.

4.5 Synchronization with CPU

Synchronization with CPU: Floating-point instructions and CPU instructions are executed in
turn, according to their order in the program, but in some cases operations may not be completed
in the program order due to a difference in execution cycles. When a floating-point instruction
accesses only FPU resources, there is no need for synchronization with the CPU, and a CPU
instruction following an FPU instruction can finish its operation before completion of the FPU
operation. Consequently, in an optimized program, it is possible to effectively conceal the
execution cycle of a floating-point instruction that requires a long execution cycle, such as a divide
instruction. On the other hand, a floating-point instruction that accesses CPU resources, such as a
compare instruction, must be synchronized to ensure that the program order is observed.

Floating-Point Instructions That Require Synchronization: Load, store, and compare
instructions, and instructions that access the FPUL or FPSCR register, must be synchronized
because they access CPU resources. Load and store instructions access a general register. Post-
increment load and pre-decrement store instructions change the contents of a general register. A
compare instruction modifies the T bit. An FPUL or FPSCR access instruction references or
changes the contents of the FPUL or FPSCR register. These references and changes must all be
synchronized with the CPU.

Rev. 2.00 May 31, 2006 page 18 of 336
REJ09B0316-0200
RENESAS



Section 5 Instruction Features

Section 5 Instruction Features

5.1 RISC-Type Instruction Set
All instructions are RISC type. Their features are detailed in this section.
16-Bit Fixed Length: All instructions are 16 bits long, increasing program coding efficiency.

One Instruction/Cycle: Basic instructions can be executed in one cycle using the pipeline system.
Instructions are executed in 50 ns at 40 MHz.

Data Length: Longword is the standard data length for all operations. Memory can be accessed in
bytes, words, or longwords. Byte or word data accessed from memory is sign-extended and
calculated with longword data. Immediate data is sign-extended for arithmetic operations or zero-
extended for logic operations. It also is calculated with longword data.

Table 5.1  Sign Extension of Word Data

SH-2E CPU Description Example for Other CPU
MV. W @di sp, PC), RL Data is sign-extended to 32 ADD. W #H 1234, RO
ADD R1, RO bits, and R1 becomes

H'00001234. It is next
"""""" operated upon by an ADD
. DATA. W H 1234 instruction.

Note: The address of the immediate data is accessed by @(disp, PC).

Load-Store Architecture: Basic operations are executed between registers. For operations that
involve memory access, data is loaded to the registers and executed (load-store architecture).
Instructions such as AND that manipulate bits, however, are executed directly in memory.

Delayed Branch Instructions: Unconditional branch instructions are delayed. Pipeline disruption
during branching is reduced by first executing the instruction that follows the branch instruction,
and then branching (table 5.2). With delayed branching, branching occurs after execution of the
slot instruction. However, instructions such as register changes etc. are executed in the order of
delayed branch instruction, then delay slot instruction. For example, even if the register in which
the branch destination address has been loaded is changed by the delay slot instruction, the branch
will still be made using the value of the register prior to the change as the branch destination
address.

Rev. 2.00 May 31, 2006 page 19 of 336
REJ09B0316-0200
RENESAS



Section 5 Instruction Features

Table 5.2  Delayed Branch Instructions

SH-2E CPU Description Example for Other CPU
BRA TRCGET Executes an ADD before ADD. W R1, RO
ADD Rl RO branching to TRGET. BRA TRGET

Multiplication/Accumulation Operation: 16bit x 16bit — 32-bit multiplication operations are
executed in one to two cycles. 16bit x 16bit + 64bit — 64-bit multiplication/accumulation
operations are executed in two to three cycles. 32bit X 32bit — 64-bit multiplication and 32bit X
32bit + 64bit —» 64-bit multiplication/accumulation operations are executed in two to four cycles.

T Bit: The T bit in the status register changes according to the result of the comparison, and in
turn is the condition (true/false) that determines if the program will branch. The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table 5.3 T Bit

SH-2E CPU Description Example for Other CPU

CMP/ GE R1, RO T bit is set when RO = R1. CWVP. W R1, RO

BT TRCGETO The program branches to BGE TRCGETO
TRGETO when RO = R1 and to

BF TRGET1 TRGET1 when RO < R1. BLT TRGET1

ADD #-1, RO T bit is not changed by ADD. SUB. W #1, RO

COWP/EQ #0, RO T bit is set when RO = 0. BEQ TRGET

The program branches if RO = 0.
BT TRGET

Immediate Data: Byte immediate data is located in instruction code. Word or longword
immediate data is not input via instruction codes but is stored in a memory table. The memory
table is accessed by an immediate data transfer instruction (MOV) using the PC relative
addressing mode with displacement.

Rev. 2.00 May 31, 2006 page 20 of 336
REJ09B0316-0200
RENESAS



Section 5 Instruction Features

Table 5.4 Immediate Data Accessing

Classification SH-2E CPU Example for Other CPU
8-bit immediate MoV #H 12, RO MOV. B #H 12, RO
16-bit immediate MOV. W @disp, PO, RO MOV. W #H 1234, RO

.DATA. W H 1234
32-bit immediate MOV. L @disp, PO, RO MOV.L #H 12345678, RO

.DATA. L H 12345678
Note: The address of the immediate data is accessed by @(disp, PC).

Absolute Address: When data is accessed by absolute address, the value already in the absolute
address is placed in the memory table. Loading the immediate data when the instruction is
executed transfers that value to the register and the data is accessed in the indirect register
addressing mode.

Table 5.5 Absolute Address

Classification SH-2E CPU Example for Other CPU
Absolute address MOV. L @disp, PO, R1 MOV.B @+ 12345678, RO
MOV. B @rl, RO

. DATA. L H 12345678

16-Bit/32-Bit Displacement: When data is accessed by 16-bit or 32-bit displacement, the pre-
existing displacement value is placed in the memory table. Loading the immediate data when the
instruction is executed transfers that value to the register and the data is accessed in the indirect
indexed register addressing mode.

Table 5.6  Displacement Accessing

Classification SH-2E CPU Example for Other CPU
16-bit displacement MOV. W @disp, PC), RO MOV.W @H 1234, R1), R2
MOV. W @RO, R1), R2

.DATA. W H 1234

Rev. 2.00 May 31, 2006 page 21 of 336
REJ09B0316-0200
RENESAS



Section 5 Instruction Features

5.2 Addressing Modes

Addressing modes effective address calculation by the CPU core are described below.

Table 5.7 Addressing Modes and Effective Addresses

Addressing Instruction

Mode Format Effective Addresses Calculation Formula
Direct Rn The effective address is register Rn. —
register (The operand is the contents of register Rn.)
addressing
Indirect @Rn The effective address is the content of register Rn. Rn
register
Post- @Rn+ The effective address is the content of register Rn. Rn
increment A constant is added to the content of Rn after the (After the
indirect instruction is executed. 1 is added for a byte instruction is
register operation, 2 for a word operation, or 4 for a longword executed)
addressing operation.
Byte: Rn + 1
- Rn
Word: Rn + 2
- Rn
Longword: Rn
+4 - Rn
Pre- @-Rn The effective address is the value obtained by Byte: Rn —1
decrement subtracting a constant from Rn. 1 is subtracted fora - Rn
indirect byte operation, 2 for a word operation, or 4 for a Word: Rn — 2
register longword operation. . Rn'
addressing
Longword: Rn
-4 - Rn

Rn —1/2/4

(Instruction
executed with
Rn after
calculation)

Rev. 2.00 May 31, 2006 page 22 of 336
REJ09B0316-0200
RENESAS



Section 5 Instruction Features

Addressing Instruction

Mode Format Effective Addresses Calculation Formula
Indirect @(disp:4, The effective address is Rn plus a 4-bit displacement Byte: Rn +
register Rn) (disp). The value of disp is zero-extended, and disp
addressing remains the same for a byte operation, is doubled for Word: Rn +
with a word operation, or is quadrupled for a longword disp x 2
displace- operation.
ment Longword: Rn
+ disp x 4
disp Rn
(zero-extended) + disp x 1/2/4
Indirect @(RO, Rn)  The effective address is the Rn value plus RO. Rn + RO
indexed
register
addressing
®
Indirect @(disp:8, The effective address is the GBR value plus an 8-bit Byte: GBR +
GBR GBR) displacement (disp). The value of disp is zero- disp
addressing extended, and remains the same for a byte Word: GBR +
with operation, is doubled for a word operation, or is disp x 2
displace- quadrupled for a longword operation.
ment Longword:
GBR + disp x
disp “GBR 4
(zero-extended) + disp x 1/2/4
Indirect @(RO, GBR) The effective address is the GBR value plus RO. GBR + RO
indexed
GBR
addressing

GBR + RO

Rev. 2.00 May 31, 2006 page 23 of 336
REJ09B0316-0200
RENESAS



Section 5 Instruction Features

Addressing Instruction
Mode Format Effective Addresses Calculation Formula
PC relative  @(disp:8, The effective address is the PC value plus an 8-bit Word: PC +
addressing PC) displacement (disp). The value of disp is zero- disp x 2
with extended, and disp is doubled for a word operation, Longword:
displace- or is quadrupled for a longword operation. For a PC & '
ment longword operation, the lowest two bits of the PC are H'FFEFFFEC
masked. + disp x 4
(for longword)
PC + disp x 2
or
_ PC&H'FFFFFFFC
disp + disp x 4
(zero-extended)
PC relative  disp:8 The effective address is the PC value sign-extended PC + disp x 2
addressing with an 8-bit displacement (disp), doubled, and
added to the PC.
disp PC + disp x 2
(sign-extended)
disp:12 The effective address is the PC value sign-extended PC + disp x 2

with a 12-bit displacement (disp), doubled, and
added to the PC.

disp
(sign-extended)

PC + disp x 2

Rev. 2.00 May 31, 2006 page 24 of 336
REJ09B0316-0200

RENESAS



Section 5 Instruction Features

Addressing Instruction
Mode Format Effective Addresses Calculation Formula

PC relative  Rn The effective address is the register PC plus Rn. PC + Rn
ooy __pc |
(cont) PC

(+) PC + RO

Immediate #imm:8 The 8-bit immediate data (imm) for the TST, AND, —
addressing OR, and XOR instructions are zero-extended.
#imm:8 The 8-bit immediate data (imm) for the MOV, ADD, —
and CMP/EQ instructions are sign-extended.
#imm:8 Immediate data (imm) for the TRAPA instruction is —

zero-extended and is quadrupled.

5.3 Instruction Format

The instruction format table, table 5.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

* xxxx: Instruction code

*  mmmm: Source register

* nnnn: Destination register
* iiii: Immediate data

* dddd: Displacement

Table 5.8 Instruction Formats

Source Destination
Instruction Formats Operand Operand Example
0 format — — NOP
15 0
| XXXX  XXXX  XXXX  XXXX |
n format — nnnn: Direct MVT  Rn
15 0 register
| XXXX | nnnn | XXXX  XXXX | Control register or nnnn: Direct STS MACH Rn

system register register

Rev. 2.00 May 31, 2006 page 25 of 336
REJ09B0316-0200
RENESAS



Section 5

Instruction Features

Instruction Formats

Source
Operand

Destination
Operand

Example

n format (cont)

Control register or
system register

nnnn: Indirect
pre-decrement
register

STC. L SR @Rn

m format
15

mmmm: Direct
register

Control register or
system register

LDC Rm SR

| XXXX |mmmm| XXXX  XXXX

mmmm: Indirect
post-increment
register

Control register or
system register

LDC. L @mt, SR

mmmm: Direct
register

JMP  @m

mmmm: PC
relative using
Rm*

BRAF Rm

nm format
15

mmmm: Direct
register

nnnn: Direct
register

ADD Rm Rn

| XXXX | nnnn |mmmm| XXXX

mmmm: Direct
register

nnnn: Indirect
register

MOV.L Rm @un

mmmm: Indirect
post-increment
register (multiply/
accumulate)
nnnn™: Indirect
post-increment
register (multiply/
accumulate)

MACH, MACL

MAC. W
@Rm+, @Rn+

mmmm: Indirect
post-increment
register

nnnn: Direct
register

MOV.L @Rmt+, Rn

mmmm: Direct

nnnn: Indirect

MV.L Rm @Rn

register pre-decrement
register
mmmm: Direct nnnn: Indirect MOV. L
register indexed register Rm @ RO, Rn)
md format mmmmdddd: RO (Direct MOV. B
15 indirect register register) @di sp, R, RO

0
XXXX  XXXX |mmmm| dddd |

with displacement

Rev. 2.00 May 31, 2006 page 26 of 336
REJ09B0316-0200

RENESAS



Section 5

Instruction Features

0
nnnn | dddd  dddd |

displacement

Source Destination
Instruction Formats Operand Operand Example
RO (Direct nnnndddd: MOV. B
register) Indirect register RO, @ di sp, Rn)
| XXXX  XXXX | nnnn | dddd | with displacement
mmmm: Direct nnnndddd: MOV. L
register Indirect register Rm @ di sp, Rn)
| XXXX | nnnn |mmmm| dddd | with displacement
mmmmdddd: nnnn: Direct MOV. L
Indirect register register @di sp, R, Rn
with displacement
dddddddd: RO (Direct MOV. L
Indirect GBR with  register) @di sp, GBBR), RO
dddd dddd displacement
RO(Direct dddddddd: MOV. L
register) Indirect GBR with RO, @ di sp, GBR)
displacement
dddddddd: PC RO (Direct MOVA
relative with register) @di sp, PO), RO
displacement
dddddddd: PC — BF | abel
relative
dddddddddddd: — BRA | abel
x| dddd  dddd  dddd | + PO
dddddddd: PC nnnn: Direct MOV. L
relative with register @di sp, PO, Rn

|xxxx | nnnn| Pl i

iiiiiiii: Immediate Indirect indexed AND. B
GBR #i mm @ RO, GBR)
| oo oo | i diii | i Immediate RO (Direct AND  #inm RO
register)
iiiiiiii: Immediate — TRAPA #i mm
iiiiiiii: Immediate nnnn: Direct ADD #i mm Rn
register

In multiply/accumulate instructions, nnnn is the

source register.

Rev. 2.00 May 31, 2006 page 27 of 336

RENESAS

REJ09B0316-0200



Section 5 Instruction Features

Rev. 2.00 May 31, 2006 page 28 of 336
REJ09B0316-0200
RENESAS



Section 6 Instruction Set

Section 6 Instruction Set

6.1 Instruction Set by Classification
Table 6.1 shows instruction by classification

Table 6.1 Classification of Instructions

Operation No. of
Classification Types Code Function Instructions
Data transfer 5 MOV Data transfer, immediate data transfer, 39
peripheral module data transfer, structure data
transfer

MOVA Effective address transfer
MOVT T bit transfer
SWAP Swap of upper and lower bytes

XTRCT Extraction of the middle of registers connected
Arithmetic 21 ADD Binary addition 33
operations ADDC Binary addition with carry

ADDV Binary addition with overflow check
CMP/cond Comparison

DIV1 Division
DIV0OS Initialization of signed division
DIVOU Initialization of unsigned division

DMULS Signed double-length multiplication
DMULU Unsigned double-length multiplication

DT Decrement and test

EXTS Sign extension

EXTU Zero extension

MAC Multiply-and-accumulate, double-length

multiply-and-accumulate operation

MUL Double-length multiply operation

MULS Signed multiplication

MULU Unsigned multiplication
NEG Negation

Rev. 2.00 May 31, 2006 page 29 of 336
REJ09B0316-0200
RENESAS



Section 6 Instruction Set

Operation No. of
Classification Types Code Function Instructions
Arithmetic 21 NEGC Negation with borrow 33
operations SuUB Binary subtraction
(cont)

SUBC Binary subtraction with borrow

SUBV Binary subtraction with underflow
Logic 6 AND Logical AND 14
operations NOT Bit inversion

OR Logical OR

TAS Memory test and bit set

TST Logical AND and T bit set

XOR Exclusive OR
Shift 10 ROTL One-bit left rotation 14

ROTR One-bit right rotation

ROTCL One-bit left rotation with T bit

ROTCR One-bit right rotation with T bit

SHAL One-bit arithmetic left shift

SHAR One-bit arithmetic right shift

SHLL One-bit logical left shift

SHLLn n-bit logical left shift

SHLR One-bit logical right shift

SHLRn n-bit logical right shift
Branch 9 BF Conditional branch, conditional branch with 11

delay (Branch when T = 0)
BT Conditional branch, conditional branch with
delay (Branch when T = 1)

BRA Unconditional branch

BRAF Unconditional branch

BSR Branch to subroutine procedure

BSRF Branch to subroutine procedure

JMP Unconditional branch

JSR Branch to subroutine procedure

RTS Return from subroutine procedure

Rev. 2.00 May 31, 2006 page 30 of 336

REJ09B0316-0200

RENESAS



Section 6

Instruction Set

Operation No. of
Classification Types Code Function Instructions
System 11 CLRT T bit clear 31
control CLRMAC  MAC register clear

LDC Load to control register

LDS Load to system register

NOP No operation

RTE Return from exception processing

SETT T bit set

SLEEP Transition to power-down mode

STC Store control register data

STS Store system register data

TRAPA Trap exception handling
Floating-point 15 FABS Floating-point absolute value 22
instructions FADD Floating-point addition

FCMP Floating-point comparison

FDIV Floating-point division

FLDIO Floating-point load immediate O

FLDIM Floating-point load immediate 1

FLDS Floating-point load into system register FPUL

FLOAT Integer-to-floating-point conversion

FMAC Floating-point multiply-and-accumulate

operation

FMOV Floating-point data transfer

FMUL Floating-point multiplication

FNEG Floating-point sign inversion

FSTS Floating-point store from system register FPUL

FSUB Floating-point subtraction

FTRC Floating-point conversion with rounding to

integer
FPU-related 2 LDS Load into floating-point system register 8
,CPU ) STS Store from floating-point system register
instructions
Total: 79 172

Rev. 2.00 May 31, 2006 page 31 of 336
REJ09B0316-0200

RENESAS



Section 6 Instruction Set

Table 6.2 shows the format used in tables 6.3 to 6.8, which list instruction codes, operation, and
execution states in order by classification.

Table 6.2 Instruction Code Format

Item Format Explanation
Instruction OP. Sz SRC, DEST OP: Operation code
Sz: Size (B: byte, W: word, or L: longword)
SRC:  Source
DEST: Destination
Rm: Source register
Rn: Destination register
imm: Immediate data
disp:  Displacement™
Instruction code MSB -~ LSB mmmm: Source register
nnnn:  Destination register
0000: RO
00%1: R1
1111: R15

iiii: Immediate data
dddd:  Displacement

Operation o, e Direction of transfer

(xx) Memory operand

M/Q/T Flag bits in the SR

& Logical AND of each bit

| Logical OR of each bit

A Exclusive OR of each bit

~ Logical NOT of each bit

<<n n-bit left shift

>>n n-bit right shift
Execution cycles  — Value when no wait states are inserted™*?
T bit — Value of T bit after instruction is executed.

An em-dash (—) in the column means no change.

Notes: 1. Depending on the operand size, displacement is scaled x1, x2, or x4. For details, see
section 7, Instruction Descriptions.

2. Instruction execution cycles: The execution cycles shown in the table are minimums.
The actual number of cycles may be increased when (1) contention occurs between
instruction fetches and data access, or (2) when the destination register of the load
instruction (memory - register) and the register used by the next instruction are the
same.

Rev. 2.00 May 31, 2006 page 32 of 336
REJ09B0316-0200
RENESAS



Section 6

Instruction Set

Table 6.3 Data Transfer Instructions
Execu-
tion

Instruction Instruction Code Operation Cycles T Bit

MoV #i mm Rn 1110nnnniiiiiiii imm - Sign extension - 1 —
Rn

MOV. W @di sp, PC), Rn  1001nnnndddddddd (disp x 2 + PC) - Sign 1 —
extension — Rn

MOV.L @disp, PC,Rn 1101nnnndddddddd (disp x4+ PC) - Rn 1 —

MoV Rm Rn 0110nnnnnmmmD011 Rm - Rn 1 —

MOV. B Rm @Rn 0010nnnnmmmOD000 Rm - (Rn) 1 —

MOV. W Rm @rn 0010nnnnmmm0001 Rm - (Rn) 1 —

MOV.L Rm @Rn 0010nnnnmmm0010 Rm - (Rn) 1 —

MOV.B @Rm Rn 0110nnnnmmm®OD000  (Rm) - Sign extension - 1 —
Rn

MOV. W @Rm Rn 0110nnnnmmm®0001  (Rm) - Sign extension - 1 —
Rn

MOV.L @Rm Rn 0110nnnnmmm®D010 (Rm) - Rn 1 —

MOV. B Rm @-Rn 0010nnnnmmm0D100 Rn-1 - Rn, Rm - (Rn) 1 —

MOV. W Rm @-Rn 0010nnnnmmm0101 Rn-2 - Rn, Rm - (Rn) 1 —

MOV.L Rm @-Rn 0010nnnnmmm0110 Rn-4 - Rn, Rm - (Rn) 1 —

MOV. B @Rmt, Rn 0110nnnnmmm®D100 (Rm) - Sign extension - 1 —
Rn,Rm+1 -~ Rm

MOV. W @R+, Rn 0110nnnnmmm®0101  (Rm) - Sign extension - 1 —
Rn,Rm+2 - Rm

MOV.L @Rm+, Rn 0110nnnnmmm0110 (Rm) - Rn,Rm+4 - 1 —
Rm

MOV.B RO, @disp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —

MOV. W RO, @di sp, Rn) 10000001nnnndddd RO - (disp x2 + Rn) 1 —

MOV.L Rm @disp, Rn) 000lnnnnnmmmdddd Rm - (disp x4 + Rn) 1 —

MOV.B @disp, R, R0 10000100mmmdddd (disp + Rm) - Sign 1 —
extension — RO

MOV. W @disp, R, RO 10000101nmmmdddd (disp x2 + Rm) - Sign 1 —
extension - RO

MOV.L @disp, RM,Rn 010lnnnnnmmdddd (disp x4 + Rm) - Rn 1 —

MOV. B Rm @ RO, Rn) 0000nnnnmMmMMD100 Rm - (RO + Rn) 1 —

Rev. 2.00 May 31, 2006 page 33 of 336

RENESAS

REJ09B0316-0200



Section 6 Instruction Set

Execu-
tion

Instruction Instruction Code Operation Cycles T Bit

MOV. W Rm @ RO, Rn) 0000nnnnmmMD101 Rm - (RO + Rn) 1 —

MOV.L Rm @ RO, Rn) 0000nnnnmmmMOD110 Rm - (RO + Rn) 1 —

MOV.B @RO, R, Rn 0000nnnnmmMML100 (RO + Rm) - Sign 1 —
extension — Rn

MOV. W @ RO, Rm, Rn 0000nnnnmmMMM101 (RO + Rm) - Sign 1 —
extension — Rn

MOV.L @RO, RM, Rn 0000nnnnmmMM1110 (RO +Rm) - Rn 1 —

MOV. B RO, @di sp, GBR) 11000000dddddddd RO - (disp + GBR) 1 —

MOV. W RO, @di sp, GBR) 11000001dddddddd RO - (disp x2 + GBR) 1 —

MOV. L RO, @disp, GBR) 11000010dddddddd RO - (disp x4 + GBR) 1 —

MOV.B @disp, GBR), RO 11000100dddddddd  (disp + GBR) - Sign 1 —
extension - RO

MOV. W @di sp, GBR), RO 11000101dddddddd  (disp x 2 + GBR) - Sign 1 —
extension — RO

MOV.L @disp, GBR), RO 11000110dddddddd  (disp x4 + GBR) - RO 1 —

MOVA  @disp, PO, R0 11000111dddddddd disp x4 + PC - RO 1 —

MOVT Rn 0000nnNnNn00101001 T - Rn 1 —

SWAP. B Rm Rn 0110nnnnmmmi1000 Rm - Swap bottom two 1 —
bytes - Rn

SWAP. WRm Rn 0110nnnnmmm1001 Rm - Swap two 1 —
consecutive words —» Rn

XTRCT Rm Rn 0010nnnnmmmml101  Rm: Middle 32 bits of 1 —

Rn = Rn

Rev. 2.00 May 31, 2006 page 34 of 336

REJ09B0316-0200

RENESAS



Section 6

Instruction Set

Table 6.4  Arithmetic Operation Instructions
Execu-
tion
Instruction Instruction Code Operation Cycles T Bit
ADD Rm Rn 0011nnnnnmmmmi1100 Rn+Rm - Rn 1 —
ADD #i nm Rn Ollinnnniiiiiiii Rn +imm - Rn 1 —
ADDC Rm Rn 0011nnnnmml110 Rn+Rm+T - Rn, 1 Carry
Carry - T
ADDV Rm Rn 0011nnnnmml11l Rn+Rm - Rn, 1 Overflow
Overflow - T
CVWP/ EQ #imm RO 10001000iiiiiiii IfRO=imm,1 - T 1 Comparison
result
CWP/ EQ Rm Rn 0011nnnnmmmm0000 IfRn=Rm,1 - T 1 Comparison
result
CMP/HS Rm Rn 0011nnnnmmm®D010 If Rn = Rm with 1 Comparison
unsigned data, 1 - T result
CWP/ GE Rm Rn 0011lnnnnmmm®0011 If Rn = Rm with signed 1 Comparison
data,1 - T result
CVMP/H RmRn 0011nnnnmmm®D110 If Rn > Rm with 1 Comparison
unsigned data, 1 - T result
CWP/ GT Rm Rn 0011lnnnnmmm®0111  If Rn > Rm with signed 1 Comparison
data,1 - T result
CMP/PL Rn 0100nnnn00010101 IfRn>0,1 - T 1 Comparison
result
CWP/ PZ Rn 0100nnnn00010001 IfRNn=0,1 - T 1 Comparison
result
CWP/ STR Rm Rn 0010nnnnmmm1100 If Rn and Rm have 1 Comparison
an equivalent byte, result
1T
Dl V1 Rm Rn 0011nnnnmmmD100 Single-step division 1 Calculation
(Rn + Rm) result
DIVOS RmRn 0010nnnnmm®D111 MSB of Rn - Q, MSB 1 Calculation
of Rm - MM*"Q - T result
Dl VOU 0000000000011001 O - M/Q/T 1 0
DMULS. L Rm Rn 0011nnnnmmmml101  Signed operation of Rn  2to4* —

xRm - MACH, MACL
32 x32 - 64 bits

Rev. 2.00 May 31, 2006 page 35 of 336
REJ09B0316-0200

RENESAS



Section 6

Instruction Set

Instruction

Instruction Code

Operation

Execu-
tion
Cycles

T Bit

DMULU. L Rm Rn

0011nnnnnmm0101

Unsigned operation of
Rn x Rm - MACH,

MACL 32 x 32 - 64 bits

2 to 4*

DT Rn

0100nnnn00010000

Rn -1 - Rn, when Rn
is0,1 - T.When Rnis
nonzero,0 - T

Comparison
result

EXTS.B Rm Rn

0110nnnnmmml110

Byte in Rm is sign-
extended - Rn

EXTS. W Rm Rn

0110nnnnnmmmll1l

Word in Rm is sign-
extended - Rn

EXTU. B Rm Rn

0110nnnnmml100

Byte in Rm is zero-
extended - Rn

EXTU W Rm Rn

0110nnnnmmml101

Word in Rm is zero-
extended - Rn

MAC.L @m+, @n+

0000nnNnnnmMMML111

Signed operation of
(Rn) x (Rm) + MAC -
MAC 32 x32 +64 -
64 bits

MAC. W @ mt+, @n+

0100nnnnnmmmll111

Signed operation of
(Rn) x (Rm) + MAC -
MAC 16 x 16 + 64 —
64 bits

Rm Rn

0000nnNnnnMMO0111

Rn xRm - MACL,
32 x32 - 32 bits

2 to 4*

MJLS. W Rm Rn

0010nnnnmmmml1l1l

Signed operation of
Rn xRm - MAC 16 x
16 - 32 bits

1to0 3*

MJLU. W Rm Rn

0010nnnnmmml110

Unsigned operation of
Rn x Rm - MAC 16 x
16 — 32 bits

1to0 3*

NEG Rm Rn

0110nnnnnmmml011

0-Rm - Rn

NEGC Rm Rn

0110nnnnmmml010

0-Rm-T - Rn,
Borrow - T

Borrow

SUB Rm Rn

0011nnnnnmmml000

Rn—-Rm - Rn

Rev. 2.00 May 31, 2006 page 36 of 336

REJ09B0316-0200

RENESAS



Section 6

Instruction Set

Execu-
tion
Instruction Instruction Code Operation Cycles T Bit
SUBC Rm Rn 0011nnnnmm1010 Rn-Rm-T - Rn, 1 Borrow
Borrow - T
SUBV Rm Rn 0011nnnnmml011 Rn-Rm - Rn, 1 Overflow
Underflow — T
Note: * The normal minimum number of execution cycles. (The number in parentheses is the

number of cycles when there is contention with following instructions.)

Table 6.5  Logic Operation Instructions
Execu-
tion
Instruction Instruction Code Operation Cycles T Bit
AND Rm Rn 0010nnnnmm1 001 Rn & Rm - Rn 1 —
AND  #inm RO 1100100%iiiiiiii RO & imm - RO 1 —
AND. B #i mm @RO, GBR) 1100110Liiiiiiii (RO + GBR) & imm - 3 —
(RO + GBR)
NOT Rm Rn 0110nnnnmmD111 ~Rm - Rn 1 —
OR Rm Rn 0010nnnnnmmmm1011 Rn|Rm - Rn 1 —
R #i mm RO 1100102%iiiiiiii RO | imm - RO 1 —
OR B #imm@R0, GBBR) 1100111%iiiiiiii (RO + GBR) | imm - 3 —
(RO + GBR)
TAS. B @rn 0100nnnn00011011 If(Rn)is 0,1 - T;1 - 4 Test
MSB of (Rn) result
TST Rm Rn 0010nnnnmm000 Rn & Rm; if the result is 1 Test
0,1-T result
TST #i nm RO 11001000iiiiiiii RO & imm; if the resultis 1 Test
0,1-T result
TST.B #imm @RO, GBR) 11001100iiiiiiii (RO + GBR) & imm; ifthe 3 Test
resultis0,1 - T result
XOR Rm Rn 0010nnnnmm010 Rn” Rm - Rn 1 —
XOR  #imm RO 11001010iiiiiiii RO A imm - RO —
XOR B #imm @R0, GBBR) 11001110iiiiiiii (RO + GBR) A imm - 3 —
(RO + GBR)

Rev. 2.00 May 31, 2006 page 37 of 336

RENESAS

REJ09B0316-0200



Section 6

Instruction Set

Table 6.6  Shift Instructions

Execu-

tion
Instruction Instruction Code Operation Cycles T Bit
ROTL Rn 0100nnnNn00000100 T « Rn -« MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB -~ Rn - T 1 LSB
ROTCL Rn 0100nnnn00100100 T<«Rn T 1 MSB
ROTCR Rn 0100nnnn00100101 ToRnoT 1 LSB
SHAL Rn 0100nnnn00100000 T~Rn-0 1 MSB
SHAR Rn 0100nnnn00100001 MSB - Rn - T 1 LSB
SHLL Rn 0100nnnn00000000 T~Rn-0 1 MSB
SHLR Rn 0100nnnNn00000001 0-Rn->T 1 LSB
SHLL2 Rn 0100nnnNn00001000 Rn<<2 - Rn 1 —
SHLR2 Rn 0100nnnn00001001 Rn>>2 - Rn 1 —
SHLL8 Rn 0100nnnNn00011000 Rn<<8 - Rn 1 —
SHLR8 Rn 0100nnnn00011001 Rn>>8 - Rn 1 —
SHLL16 Rn 0100nnnNn00101000 Rn << 16 - Rn 1 —
SHLR16 Rn 0100nnnn00101001 Rn>>16 - Rn 1 —

Rev. 2.00 May 31, 2006 page 38 of 336
REJ09B0316-0200

RENESAS



Section 6 Instruction Set

Table 6.7 Branch Instructions
Execu-
tion

Instruction Instruction Code Operation Cycles T Bit

BF | abel 10001011dddddddd IfT=0,disp x2 + PC - PC; 3/1% —
if T=1, nop

BF/ S | abel 10001111dddddddd  Delayed branch, if T=0, disp x2 +  3/1* —
PC - PC;if T=1, nop

BT | abel 10001001dddddddd IfT=1,dispx2 + PC - PC; 3/1% —
if T=0, nop

BT/ S | abel 10001101dddddddd Delayed branch, if T = 1, disp x2 + 2/1* —
PC - PC;if T=0, nop

BRA | abel 1010dddddddddddd  Delayed branch, disp x2 + PC - 2 —
PC

BRAF Rm 0000mMmMMD0100011 Delayed branch, Rm + PC - PC —

BSR | abel 1011dddddddddddd Delayed branch, PC - PR, dispx2 2 —
+PC - PC

BSRF Rm 0000mMmMMDO0000011 Delayed branch, PC - PR, 2 —
Rm +PC - PC

JWP  @m 0100mmMmD0101011 Delayed branch, Rm - PC —

JSR @Rm 0100nmMmMmMD0001011 Delayed branch, PC - PR, —
Rm - PC

RTS 0000000000001011 Delayed branch, PR - PC 2 —

Note: * One state when the program does not branch.

Rev. 2.00 May 31, 2006 page 39 of 336

RENESAS

REJ09B0316-0200



Section 6 Instruction Set

Table 6.8  System Control Instructions
Execu-
tion

Instruction Instruction Code Operation Cycles T Bit
CLRT 0000000000001000 0 - T 1 0
CLRVAC 0000000000101000 0 - MACH, MACL 1 —
LDC Rm SR 0100mMmmMmDO0001110 Rm - SR 1 LSB
LDC Rm GBR 0100mmMmD0011110 Rm - GBR 1 —
LDC Rm VBR 0100nmMmMD0101110 Rm - VBR 1 —
LDC. L @R+, SR 0100nmMmMmMD0000111 (Rm) - SR,Rm+4 - Rm 3 LSB
LDC. L @m+, GBR 0100nmmMmMD0010111 (Rm) - GBR,Rm+4 - Rm 3 —
LDC. L @, VBR 0100mMmmMmD0100111 (Rm) - VBR,Rm+4 - Rm 3 —
LDS Rm MACH 0100nMmMmMD0001010 Rm - MACH 1 —
LDS Rm MACL 0100nmMmmMmMD0011010 Rm - MACL 1 —
LDS Rm PR 0100mmMmD0101010 Rm - PR 1 —
LDS.L @+, MACH 0100nmmmD0000110 (Rm) - MACH,Rm +4 - 1 —

Rm
LDS.L @m+, MVACL 0100mmm00010110 (Rm) - MACL,Rm+4 - Rm 1 —
LDS.L @+, PR 0100nmMmmMmMD0100110 (Rm) - PR,Rm+4 - Rm 1 —
NOP 0000000000001001  No operation 1 —
RTE 0000000000101011 Delayed branch, stack area 4 —

- PC/SR
SETT 0000000000011000 1 - T 1 1
SLEEP 0000000000011011  Sleep 3* —
STC SR, Rn 0000nnnNn00000010 SR - Rn 1 —
STC GBR, Rn 0000nnnn00010010 GBR - Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR - Rn 1 —
STC.L SR, @Rn 0100nnnn00000011 Rn-4 - Rn, SR - (Rn) 2 —
STC.L GBR @Rn 0100nnnn00010011 Rn-4 - Rn, GBR - (Rn) 2 —
STC.L VBR, @Rn 0100nnnn00100011 Rn-4 - Rn,BR - (Rn) 2 —
STS MACH, Rn 0000nnnn00001010 MACH - Rn 1 —
STS MACL, Rn 0000nnNnNn00011010 MACL - Rn 1 —
STS PR, Rn 0000nnnn00101010 PR - Rn 1 —

Rev. 2.00 May 31, 2006 page 40 of 336

REJ09B0316-0200

RENESAS



Section 6 Instruction Set

Execu-

tion
Instruction Instruction Code Operation Cycles T Bit
STS. L MACH, @-Rn 0100nnnn00000010 Rn-4 - Rn, MACH - (Rn) 1 —
STS.L MACL, @Rn  0100nnnn00010010 Rn-4 - Rn, MACL - (Rn) 1 —
STS.L PR @Rn 0100nnnn00100010 Rn-4 - Rn, PR - (Rn) 1 —
TRAPA #i mm 1100001%iiiiiiii PC/SR - stack area, i mm x4 8 —

+VBR - PC

Note: * The number of execution cycles before the chip enters sleep mode: The execution

cycles shown in the table are minimums. The actual number of cycles may be
increased when (1) contention occurs between instruction fetches and data access, or
(2) when the destination register of the load instruction (memory - register) and the
register used by the next instruction are the same.

Rev. 2.00 May 31, 2006 page 41 of 336
REJ09B0316-0200

RENESAS



Section 6

Instruction Set

Table 6.9  Floating-Point Instructions
Execu-
tion

Instruction Instruction Code Operation Cycles T Bit
FABS FRn 1111nnnn01011101 |FRn| - FRn 1 —
FADD FRm FRn 1111nnnnnmm0000 FRn + FRm - FRn 1 —
FCWP/ EQ FRm FRn 11121nnnnmmmm0100 (FRn = FRm)? 1 Comparison

10T result
FCWP/ GT' FRm FRn 1112innnnnmmmm0101 (FRn > FRm)? 1 Comparison

10-T result
FDI V FRm FRn 1112nnnnmmm0011 FRn/FRm - FRn 13 —
FLDI O FRn 1111nnnn10001101 0x00000000 - FRn 1 —
FLDI 1 FRn 1111nnnn10011101 O0Ox3F800000 - FRn 1 —
FLDS FRm FPUL 1111p,mmD0011101 FRm - FPUL 1 —
FLOAT FPUL, FRn 1111nnnn00101101 (float) FPUL - FRn 1 —
FMAC FRO, FRm FRn  111innnnnmmi110 FRO xFRm+ FRn - 1 —

FRn
FMOV FRm FRn 1111nnnnmmml100 FRm - FRn 1 —
FMOV. S @RO, Rm), FRn 1111nnnnmmm®0110 (RO + Rm) - FRn 1 —
FMOV. S @Rm+, FRn 11121nnnnmmmml001 (Rm) - FRn, —

Rm+ =4
FMOV.S @Rm FRn 1112nnnnnmmml000 (Rm) - FRn 1 —
FMOV. S FRm @RO, Rn) 111lnnnnmmm®0111 FRm - (RO + Rn) 1 —
FMOV.S FRm @Rn 1111nnnnmmml011 Rn-=4,FRm - (Rn) 1 —
FMOV. S FRm @Rn 1112nnnnmmml010 FRm - (Rn) 1 —
FMUL FRm FRn 1111nnnnnmmm0010 FRn x FRm - FRn 1 —
FNEG FRn 1111nnnn01001101 -FRn - FRn 1 —
FSTS FPUL, FRn 1111nnnn00001101 FPUL - FRn 1 —
FSuUB FRm FRn 1111nnnnnmm0001 FRn-FRm - FRn 1 —
FTRC FRm FPUL 1111nnnn00111101 (long) FRm - FPUL 1 —

Rev. 2.00 May 31, 2006 page 42 of 336
REJ09B0316-0200

RENESAS



Section 6 Instruction Set

Table 6.10 FPU-Related CPU Instructions

Execu-

tion
Instruction Instruction Code Operation Cycles T Bit
LDS Rm FPSCR 0100mmmD1101010 Rm - FPSCR 1 —
LDS Rm FPUL 0100mmMm01011010 Rm - FPUL 1 —
LDS.L  @m+, FPSCR 0100mmmD1100110 @Rm - FPSCR,Rm+=4 1 —
LDS.L @m+, FPUL 0100mmMm01010110 @Rm - FPUL, Rm+=4 1 —
STS FPSCR, Rn 0000nnnn01101010 FPSCR - Rn 1 —
STS FPUL, Rn 0000nnnn01011010 FPUL - Rn 1 —
STS.L  FPSCR @ Rn 0100nnnn01100010 Rn-=4,FPCSR - @Rn 1 —
STS.L FPUL, @ Rn 0100nnnn01010010 Rn-=4,FPUL - @Rn 1 —

Rev. 2.00 May 31, 2006 page 43 of 336
REJ09B0316-0200
RENESAS



Section 6 Instruction Set

6.2

Instruction Set in Alphabetical Order

Table 6.11 alphabetically lists the instruction codes and number of execution cycles for each

instruction.

Table 6.11 Instruction Set Listed Alphabetically

Instruction Operation Code Cycles T Bit

ADD #i nm Rn Rn +imm - Rn Ollinnnniiiiiiii 1 —

ADD Rm Rn Rn+Rm - Rn 0011nnnnmml100 1 —

ADDC Rm Rn Rn+Rm+T - Rn, 00l1lnnnnmmmil110 1 Carry
Carry - T

ADDV Rm Rn Rn +Rm - Rn, 0011nnnnmmm111l 1 Over-flow
Overflow - T

AND #i mm RO RO & imm - RO 1100100%iiiiiiii 1 —

AND Rm Rn Rn & Rm - Rn 0010nnnnnmMmmM1001 1 —

AND. B  #imm @RO, GBBR) (RO + GBR) & imm  11001102%iiiiiiii 3 —
- (RO + GBR)

BF | abel If T=0,disp+PC 10001011dddddddd 3/1* —
- PC; if T=1, nop

BF/ S | abel If T=0,disp+PC 10001111dddddddd 2/1*' —
- PC; if T=1, nop

BRA | abel Delayed branch, 1010dddddddddddd 2 —
disp + PC - PC

BRAF Rn Delayed branch, 0000nnnn00100011 2 —
Rn+PC - PC

BSR | abel Delayed branch, 1011dddddddddddd 2 —
PC - PR, disp +
PC - PC

BSRF Rn Delayed branch, PC  0000nnnn00000011 2 —
- PR,Rn+PC -
PC

BT | abel If T=1,disp+PC 10001001dddddddd  3/1* —
- PC; if T=0, nop

BT/ S | abel If T=1,disp+PC 10001101dddddddd 2/1* —
- PC; if T=0, nop

CLRVAC 0 - MACH, MACL 0000000000101000 1 —

CLRT 0-T 0000000000001000 1 0

Rev. 2.00 May 31, 2006 page 44 of 336

REJ09B0316-0200

RENESAS



Section 6 Instruction Set

Instruction Operation Code Cycles T Bit
CWP/ EQ #i nm RO IfRO=imm,1 - T 10001000iiiiiiii 1 Comparison
result
CWP/ EQ Rm Rn IfRn=Rm,1 - T 0011nnnnmMmmm0000 1 Comparison
result
CWP/ GE RmRn If Rn = Rm with 0011nnnnmm©D011 1 Comparison
signeddata,1 - T result
CWP/ GT  Rm Rn If Rn > Rm with 001llnnnnmmmO0111 1 Comparison
signed data,1 - T result
CVW/ H RmRn If Rn > Rm with 0011nnnnmm®©0110 1 Comparison
unsigned data, result
CVWP/HS Rm Rn If Rn = Rm with 0011nnnnmmm0010 1 Comparison
unsigned data, result
1T
CWP/PL Rn fRn>0,1-T 0100nnnn00010101 1 Comparison
result
CW/ PZ Rn IfRn=0,1-T 0100nnnn00010001 1 Comparison
result
CWP/ STR Rm Rn If Rnand Rmhave  0010nnnnnmmi100 1 Comparison
an equivalent byte, result
1T
DI VOS Rm Rn MSB of Rn - Q, 0010nnnnmm©O111 1 Calculation
MSB of Rm - M, result
MAQ - T
Dl VOU 0 - M/QIT 0000000000011001 1 0
Dl V1 Rm Rn Single-step division  0011nnnnmmm0100 1 Calculation
(Rn/Rm) result
DMULS. L Rm Rn Signed operation of  0011nnnnnMMmml101 2 to 4™ —
Rn x Rm - MACH,
MACL
DMULU. L Rm Rn Unsigned operation  0011nnnnmmm0101 2to 4%
of Rn x Rm -
MACH, MACL
DT Rn Rn—-1 - Rn,when 0100nnnn00010000 1 Comparison
Rnis0,1 - T. result
When Rn is

nonzero,0 - T

Rev. 2.00 May 31, 2006 page 45 of 336

RENESAS

REJ09B0316-0200



Section 6

Instruction Set

Instruction Operation Code Cycles T Bit
EXTS.B Rm Rn A byte in Rm is 0110nnnnmmmil110 A1 —
sign-extended -
Rn
EXTS. W Rm Rn A word in Rm is 0110nnnnmmll1ll 1 —
sign-extended —
Rn
EXTU. B RmRn A byte in Rm is 0110nnnnmml100 1 —
zero-extended —
Rn
EXTU W Rm Rn A word in Rm is 0110nnnnmm101 1 —
zero-extended -
Rn
FABS FRn | FRn| - FRn 1111nnnn01011101 1 —
FADD FRm , FRn FRn+ FRm - FRn 1111nnnnmm©0000 1 —
FCWP/ EQ FRm , FRn (FRn == FRm)? 1111nnnnnmm0100 1 Comparison
10-T result
FCWP/ GT FRm , FRn (FRn>FRm) ? 1111nnnnnmm0101 1 Comparison
10T result
FDI Vv FRm , FRn FRn/FRm - FRn 1111nnnnnmmm0011 1 —
FLDI O FRn H'00000000 - FRn 1111nnnnl10001101 1 —
FLDI 1 FRn H'3F800000 — FRn 1111nnnnl10011101 1 —
FLDS FRm , FPUL FRm - FPUL 1111rmmm©00011101 1 —
FLOAT FPUL, FRn (float) FPUL -~ FRn 1111nnnn00101101 1 —
FMAC FRO, FRm FRn FRO x FRm + FRn 1111nnnnnmmmil110 1 —
- FRn
Fvov FRm , FRn FRm - FRn 1111nnnnmmmmil100 —
FMOV. S @RO, Rm, FRn (RO +Rm) - FRn 1111nnnnnmm0110 1 —
FMOV. S @Rm+, FRn (Rm) - FRn,Rm+ 1111nnnnmmmil001 1 —
4 =Rm
FMOV. S @m FRn (Rm) - FRn 1111nnnnnmml000 1 —
FMOV. S FRm @ RO, Rn) (FRm) - (RO+Rn) 111lnnnnmmm?0111 1 —
FMOV.S FRm @ Rn Rn-4 - Rn, FRm 111lnnnnmml011 1 —
- (Rn)
FMOV.S FRm @rn FRm - (Rn) 1111nnnnnmmmil010 1 —
FMOV.S FRm FRn FRn xFRm - FRn 111lnnnnmmm0010 1 —

Rev. 2.00 May 31, 2006 page 46 of 336
REJ09B0316-0200

RENESAS



Section 6

Instruction Set

Instruction Operation Code Cycles T Bit

FMUL FRmM FRn FRn xFRm - FRn 111lnnnnmmm0010 1 —

FNEG FRn —FRn - FRn 1111nnnn01001101 1 —

FSTS FPUL, FRn FPUL - FRn 1111nnnn00001101 1 —

FSuB FRm FRn FRn—FRm - FRn 111lnnnnmm©0001 1 —

FTRC FRm FPUL (long) FRm - 1111rmmm©00111101 1 —
FPUL

JVP @Rm Delayed branch, 0100nnnn00101011 2 —
Rm - PC

JSR @Rm Delayed branch, 0100nnnn00001011 2 —
PC - PR,
Rm - PC

LDC Rm GBR Rm - GBR 0100mMmMD0011110 1 —

LDC Rm SR Rm - SR 0100mMmMD0001110 1 LSB

LDC Rm VBR Rm - VBR 0100mMmMmMD0101110 1 —

LDC. L @m+, GBR (Rm) - GBR,Rm+ 0100mm®00010111 3 —
4 . Rm

LDC. L @+, SR (Rm) - SR,Rm+4 0100mmm00000111 3 LSB
- Rm

LDC. L @mt+, VBR (Rm) - VBR,Rm+ 0100nmm®00100111 3 —
4 - Rm

LDS Rm FPSCR Rm - FPSCR 0100mMmMmMD1101010 1 —

LDS Rm FPUL Rm - FPUL 0100mMmMD1011010 1 —

LDS Rm MACH Rm - MACH 0100mMMD0001010 1 —

LDS Rm MACL Rm - MACL 0100mMmMD0011010 1 —

LDS Rm PR Rm - PR 0100mMMD0101010 1 —

LDS. L @ mt+, FPSCR @Rm - FPSCR, 0100mmMmMD1100110 1 —
Rm + 4

LDS. L @m+, FPUL @Rm - FPUL, 0100mMmMmMD1010110 1 —
Rm + 4

LDS. L @m+-, MACH (Rm) - MACH, 0100mMmMD0000110 1 —
Rm+4 - Rm

LDS. L @m+, MACL (Rm) - MACL, 0100mMmMD0010110 1 —
Rm+4 - Rm

LDS. L @m+, PR (Rm) - PR, 0100mMmMD0100110 1 —
Rm+4 - Rm

Rev. 2.00 May 31, 2006 page 47 of 336

RENESAS

REJ09B0316-0200



Section 6

Instruction Set

Instruction Operation Code Cycles T Bit

MAC. L @Rm+, @Rn+ Signed operation of 0000nnnnmmMM1111 3/2to —
(Rn) x (Rm) + MAC 4)*2
- MAC

MAC. W  @m+, @n+ Signed operation of  0100nnnnnmMmMM111 3/ (2)** —
(Rn) x (Rm) + MAC
- MAC

MOV #i nm Rn imm - Sign 1110nnnniiiiiiii 1 —
extension - Rn

MoV Rm Rn Rm - Rn 0110nnnnmmm0011 1 —

MOV. B  @disp, GBR), RO (disp + GBR) - 11000100dddddddd 1 —
Sign extension -
RO

MWV.B @disp, R, R0 (disp+ Rm) - Sign 10000100nmmdddd 1 —
extension - RO

MOV.B @RO,Rm, Rn (RO +Rm) - Sign  0000nnnnmmm1100 1 —
extension - Rn

MOV.B @+, Rn (Rm) - Sign 0110nnnnmmm0100 1 —
extension - Rn,
Rm+1 - Rm

MOV.B @M Rn (Rm) - Sign 0110nnnnmmmmD000 1 —
extension - Rn

MOV.B RO, @di sp, BBR) RO - (disp + GBR) 11000000dddddddd 1 —

MOV.B RO, @di sp, Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MOV.B Rm @ RO, Rn) Rm - (RO + Rn) 0000nnNNMMMMOD100 1 —

MOV. B Rm @-Rn Rn—-1 - Rn, Rm 0010nnnnmMmmMm0100 1 —
- (Rn)

MOV.B Rm @Rn Rm - (Rn) 0010nnnnmmmD000 1 —

MOV.L  @disp, GBR), RO (disp x4 + GBR) 11000110dddddddd 1 —
- RO

MOV. L @disp,PC),Rn (dispx4+PC) - 1101nnnndddddddd 1 —
Rn

MOV. L @disp,R),Rn (disp x4 +Rm) - 0101nnnnnmmmmdddd 1 —
Rn

MOV. L @RO, RM, Rn (RO + Rm) - Rn 0000nnnnmMML110 1 —

MOV. L @Rm+, Rn (Rm) - Rn, 0110nnnnmm®0110 1 —
Rm+4 - Rm

Rev. 2.00 May 31, 2006 page 48 of 336
REJ09B0316-0200

RENESAS



Section 6

Instruction Set

Instruction Operation Code Cycles T Bit

MOV.L  @m Rn (Rm) - Rn 0110nnnnmmm0010 1 —

MOV. L RO, @di sp, GBR) RO - (disp x4 + 11000010dddddddd 1 —
GBR)

MOV. L Rm @di sp, Rn) Rm - (disp x4 + 0001nnnnmmmdddd 1 —
Rn)

MOV. L Rm @ RO, Rn) Rm - (RO x4 + 0000nnnnmMmMMO110 1 —
Rn)

MOV. L Rm @-Rn Rn—-4 - Rn, Rm 0010nnnnmmm0110 1 —
- (Rn)

MOV. L Rm @Rn Rm - (Rn) 0010nnnnmmmD010 1 —

MOV. W @disp, GBR), RO (dispx2+ GBR) -~ 11000101dddddddd 1 —
Sign extension -
RO

MV. W @disp, PO,Rn (dispx2+PC) - 1001nnnndddddddd 1 —
Sign extension
- Rn

MOV.W @disp, RmM,R0 (dispx2+Rm) - 10000101nmmmdddd 1 —
Sign extension -
RO

MOV.W @RO,Rm, Rn (RO +Rm) - Sign  0000nnnnmmm1101 1 —
extension —» Rn

MOV. W  @mt, Rn (Rm) - Sign 0110nnnnmmm0101 1 —
extension - Rn,
Rm+2 - Rm

MOV.W  @m Rn (Rm) - Sign 0110nnnnmmm©D001 1 —
extension - Rn

MOV.W RO, @di sp, GBBR) RO - (dispx2+ 11000001dddddddd 1 —
GBR)

MOV. W RO, @di sp, Rn) RO - (dispx2+ 10000001nnnndddd 1 —
Rn)

MOV. W Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnnmMMMOD101 1 —

MOV. W  Rm @Rn Rn—-2 - Rn, Rm 0010nnnnmMmmm0101 1 —
- (Rn)

MOV.W Rm @Rn Rm - (Rn) 0010nnnnmmmD001 1 —

MOVA @disp,PC), R0 dispx4+PC - RO 11000111dddddddd 1 —

Rev. 2.00 May 31, 2006 page 49 of 336

RENESAS

REJ09B0316-0200



Section 6

Instruction Set

Instruction Operation Code Cycles T Bit
MOVT Rn T-Rn 0000nnNnNn00101001 1 —
MJL. L Rm Rn Rn xRm - MAC 0000nnNNMMMMO111 2 to 4% —
MULS. W Rm Rn Signed operation of  0010nnnnnMMmMM111 1 to 3™ —
Rn xRm - MACL
MJLU. W Rm Rn Unsigned operation  0010nnnnmmmi110 1 to 32—
of Rn xRm -
MACL
NEG Rm Rn 0-Rm - Rn 0110nnnnmmml011 1 —
NEGC Rm Rn 0-Rm-T - Rn, 0110nnnnnmm1010 1 Borrow
Borrow — T
NOP No operation 0000000000001001 1 —
NOT Rm Rn ~Rm - Rn 0110nnnnmmmoO111 1 —
(03] #i mm RO RO | imm - RO 1100201%iiiiiiii 1 —
OR Rm Rn Rn|Rm - Rn 0010nnnnmmm1011 1 —
OR B #i mrm @ RO, GBR) (RO + GBR) | imm 1100222%iiiiiiii 3 —
- (RO + GBR)
ROTCL Rn T<«Rn T 0100nnnn00100100 1 MSB
ROTCR Rn T-Rn-T 0100nnnn00100101 1 LSB
ROTL Rn T « Rn -« MSB 0100nnnn00000100 1 MSB
ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB
RTE Delayed branch, 0000000000101011 4 LSB
SSR/SPC - SR/PC
RTS Delayed branch, 0000000000001011 2 —
PR - PC
SETT 1T 0000000000011000 1 1
SHAL Rn T-Rn<0 0100nnnn00100000 1 MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB
SHLL Rn T-Rn<0 0100nnnn00000000 1 MSB
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 1 —
SHLLS8 Rn Rn<<8 - Rn 0100nnnn00011000 1 —
SHLL16 Rn Rn << 16 - Rn 0100nnnn00101000 1 —
SHLR Rn 0-Rn->T 0100nnnn00000001 1 LSB
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 1 —

Rev. 2.00 May 31, 2006 page 50 of 336
REJ09B0316-0200

RENESAS



Section 6 Instruction Set

Instruction Operation Code Cycles T Bit

SHLR8 Rn Rn>>8 -~ Rn 0100nnnn00011001 1 —

SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —

SLEEP Sleep 0000000000011011 3 —

STC GBR, Rn GBR - Rn 0000nnNnNn00010010 1 —

STC SR, Rn SR - Rn 0000nnNnNn00000010 1 —

STC VBR, Rn VBR - Rn 0000nnnNn00100010 1 —

STC. L GBR, @Rn Rn-4 - Rn, 0100nnnn00010011 2 —
GBR - (Rn)

STC. L SR, @-Rn Rn-4 - Rn, SR 0100nnnn00000011 2 —
- (Rn)

STC. L VBR, @-Rn Rn-4 - Rn, 0100nnnn00100011 2 —
VBR - (Rn)

STS FPSCR, Rn FPSCR - Rn 0000nnNnn01101010 1 —

STS FPUL, Rn FPUL - Rn 0000nnnNn01011010 1 —

STS MACH, Rn MACH - Rn 0000nnnn00001010 1 —

STS MACL, Rn MACL - Rn 0000nnnNn00011010 1 —

STS PR, Rn PR - Rn 0000nnNnn00101010 1 —

STS. L FPSCR, @ Rn Rn-4 - Rn, 0100nnnn01100010 1 —
FPSCR - @Rn

STS. L FPUL, @ Rn Rn—-4 - Rn, 0100nnnn01010010 1 —
FPUL - @Rn

STS. L MACH, @-Rn Rn-4 - Rn, 0100nnnn00000010 1 —
MACH - (Rn)

STS. L MACL, @-Rn Rn-4 - Rn, 0100nnnn00010010 1 —
MACL - (Rn)

STS. L PR, @-Rn Rn-4 - Rn,PR -~ 0100nnnn00100010 1 —
(Rn)

SUB Rm Rn Rn-Rm - Rn 0011nnnnmmml000 1 —

SUBC Rm Rn Rn—Rm-T - Rn, 001lnnnnmmmil010 1 Borrow
Borrow - T

SUBV Rm Rn Rn-Rm - Rn, 0011nnnnmmmml011 1 Underflow
Underflow - T

SWAP. B Rm Rn Rm - Swap the 0110nnnnmmml000 1 —

two lowest-order
bytes — Rn

Rev. 2.00 May 31, 2006 page 51 of 336

RENESAS

REJ09B0316-0200



Section 6

Instruction Set

Instruction Operation Code Cycles T Bit

SWAP. W Rm Rn Rm - Swap two 0110nnnnmmmi001 1 —
consecutive words
- Rn

TAS. B @rn If(Rn)is 0,1 - T; 0100nnnn00011011 4 Test result
1 - MSB of (Rn)

TST #i nm RO RO & imm; if the 11001000iiiiiiii 1 Test result
resultis0,1 - T

TST Rm Rn Rn & Rm; if the 0010nnNnnnmMmmM1000 1 Test result
resultis0,1 - T

TST.B  #imm @RO, GBR) (RO + GBR) & imm; 11001100iiiiiiii 3 Test result
if the resultis 0,
1-T

XOR #i mMm RO RO Aimm - RO 11001010iiiiiiii 1 —

XOR Rm Rn Rn*Rm - Rn 0010nnnnnmMmmM1010 1 —

XOR. B #imm @RO, GBBR) (RO + GBR)”imm 11001110iiiiiiii 3 —
- (RO + GBR)

XTRCT Rm Rn Rm: Middle 32 bits 0010nnnnmml101 1 —
of Rn - Rn

Notes: 1. The normal minimum number of execution cycles.
2. One state when it does not branch.

Rev. 2.00 May 31, 2006 page 52 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

Section 7 Instruction Descriptions

7.1 Sample Description (Name): Classification

This section describes instructions in alphabetical order using the format shown below in section
7.1.1. The actual descriptions begin at section 7.2.2.

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code Cycle T Bit
Assembler input format; A brief Displayed in order Number of The value of
imm and disp are descriptionof MSB - LSB cycles when T bit after the
numbers, expressions, operation there is no instruction is
or symbols wait state executed

Description: Description of operation
Notes: Notes on using the instruction
Operation: Operation written in C language. The following resources should be used.

* Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsi gned char Read_Byt e(unsi gned | ong Addr);
unsi gned short Read_Word(unsi gned | ong Addr);
unsi gned | ong Read_Long(unsi gned | ong Addr);

*  Writes data of each length to address Addr. An address error will occur if word data is written
to an address other than 2n or if longword data is written to an address other than 4n:

unsi gned char Wite_Byte(unsigned | ong Addr, unsigned |ong Data);
unsi gned short Wite_Word(unsigned | ong Addr, unsigned |ong Data);
unsi gned | ong Wite_Long(unsigned | ong Addr, unsigned |ong Data);

Rev. 2.00 May 31, 2006 page 53 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

» Starts execution from the slot instruction located at an address (Addr — 4). For Delay_Slot (4),
execution starts from an instruction at address 0 rather than address 4. When execution moves
from this function to one of the following instructions and one of the listed instructions
precedes it, it will be considered an illegal slot instruction (the listed instructions become
illegal slot instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF
Del ay_Sl ot (unsi gned | ong Addr);
If the address (Addr_4) instruction is 32-bit, 2 is returned; 0 is returned if it is 16-bit.
» List registers:

unsi gned |l ong R 16];

unsi gned | ong SR, GBR, VBR;
unsi gned | ong MACH, MACL, PR;
unsi gned | ong PC;

¢ Definition of SR structures:

struct SRO {

unsi gned | ong dunmyO: 4;
unsi gned | ong RCO: 12;
unsi gned | ong dunmyl: 4;
unsi gned | ong DWO: 1;
unsi gned | ong DMX0: 1;
unsi gned | ong MD: 1;

unsi gned | ong Q0: 1;

unsi gned | ongl 0: 4;

unsi gned | ong RF10: 1;
unsi gned | ong RFOO: 1;
unsi gned | ong SO: 1;

unsi gned | ong TO: 1;

Rev. 2.00 May 31, 2006 page 54 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

¢ Definition of bits in SR:

#define M ((*(struct SRO *)(&SR)). M)
#define Q ((*(struct SRO *)(&SR)). Q)
#define S ((*(struct SRO *)(&SR)). S0)
#define T ((*(struct SRO *)(&SR)). TO)
#define RF1 ((*struct SRO *)(&SR)). RF10)
#define RFO ((*struct SRO *)(&SR)). RF00)

» Error display function:

Error( char *er );

The PC should point to the location four bytes after the current instruction. Therefore, PC = 4;
means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User Manual.

.org
.data. w
.data.l

. sdat a
.align 2
.align 4
.arepeat 16
.arepeat 32
.aendr

Location counter set

Securing integer word data
Securing integer longword data
Securing string data

2-byte boundary alignment
2-byte boundary alignment
16-repeat expansion

32-repeat expansion

End of repeat expansion of specified number

Note that the SH series cross assembler version 1.0 does not support the conditional assembler

functions.

Notes: 1. In addressing modes that use the displacements listed below (disp), the assembler
statements in this manual show the value prior to scaling (x1, X2, and x4) according to
the operand size. This is done to clarify the LSI operation. Actual assembler statements
should follow the rules of the assembler in question.

@(disp:4, Rn); Indirect register addressing with displacement
@(disp:8, GBR); Indirect GBR addressing with displacement
@(disp:8, PC); Indirect PC addressing with displacement
disp:8, disp:12:; PC relative addressing

Rev. 2.00 May 31, 2006 page 55 of 336
REJ09B0316-0200
RENESAS



Section 7

Instruction Descriptions

2.

16-bit instruction code that is not assigned as instructions is handled as an ordinary
illegal instruction and produces illegal instruction exception processing.

Also, if the FPU is put into stop status by the module stop bit, floating-point
instructions and FPU-related CPU instructions are handled as illegal instructions.

. An ordinary illegal instruction or branched instruction (i.e., an illegal slot instruction)

that follows a BRA, BT/S or another delayed branch instruction will cause illegal
instruction exception processing.

Example 1:

BRA LABEL
.data.w H FFFF < Illegal slot instruction
[H'FFFF is an ordinary illegal instruction from the start]

Example 2:
RTE
BT/ S LABEL « Illegal slot instruction

Rev. 2.00 May 31, 2006 page 56 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2 CPU Instruction

7.2.1 ADD (ADD Binary): Arithmetic Instruction

Format Abstract Code Cycle T Bit
ADD Rm,Rn Rm+ Rn - Rn 0011nnnnnmml100 1 —
ADD #imm,Rn Rn +imm - Rn Ollinnnniiiiiiii 1 —

Description: Adds general register Rn data to Rm data, and stores the result in Rn. 8-bit
immediate data can be added instead of Rm data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long mlong n) /* ADD RmRn */

{
R n] +=R(n ;
PC+=2;

}

ADDI (long i,long n) /* ADD #i nm Rn */

{
i f ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);
el se R[ n] +=(OxFFFFFFOO | (long)i);
PC+=2;

}

Examples:
ADD RO, R1 ; Before execution: RO = H'7FFFFFFF, R1 = H'00000001

. After execution: R1 =H'80000000

ADD #H 01, R2 ; Before execution: R2 = H'00000000
. After execution: R2 =H'00000001

ADD #H FE, R3 ; Before execution: R3 = H'00000001
; After execution: R3 = HFFFFFFFF

Rev. 2.00 May 31, 2006 page 57 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.2 ADDC (ADD with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit

ADDC Rm,Rn Rn+Rm+T - Rn,carry - T 0011nnnnmmmmil110 1 Carry

Description: Adds Rm data and the T bit to general register Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long mlong n) /* ADDC Rm Rn */

{
unsi gned | ong tnpoO, t npl;
tmpl=Rn] +R(ni ;
t mpO=R{ n] ;
RIn] =t np1+T;
if (tmpO>tnpl) T=1,;
el se T=0;
if (tmpl>R[n]) T=1,;
PC+=2;
}
Examples:
CLRT ; RO:R1 (64 bits) + R2:R3 (64 bits) = RO:R1 (64 bits)
ADDC R3, Rl ; Before execution: T =0, R1 =H'00000001, R3 = HFFFFFFFF
; After execution: T =1, R1=H'0000000
ADDC R2, R0 ; Before execution: T =1, RO =H'00000000, R2 = H'00000000

; After execution: T =0, R0O=H'00000001

Rev. 2.00 May 31, 2006 page 58 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.3 ADDYV (ADD with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code Cycle T Bit
ADDV Rm,Rn Rn+Rm - Rn, overflow - T 0011lnnnnnmmilll 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
occurs, the T bit is set to 1.

Operation:

ADDV(|l ong mlong n) /*ADDV Rm Rn */
{

| ong dest, src, ans;

if ((long)R n]>=0) dest=0;

el se dest=1;

if ((long) RmM>=0) src=0;

el se src=1;

src+=dest ;

REn] +=R(ni

if ((long)R n]>=0) ans=0;

el se ans=1;

ans+=dest ;

if (src==0 || src==2) {
if (ans==1) T=1;

el se T=0;
}
el se T=0;
PC+=2;
}
Examples:
ADDV RO, R1L ; Before execution: RO = H'00000001, R1 = H7FFFFFFE, T =0
; After execution: R1=H'7FFFFFFF, T=0
ADDV RO, R1L ; Before execution: RO = H'00000002, R1 = H7FFFFFFE, T =0

; After execution:  R1=H'80000000, T =1

Rev. 2.00 May 31, 2006 page 59 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.4 AND (AND Logical): Logic Operation Instruction

Format Abstract Code Cycle TBit
AND Rm,Rn Rn & Rm - Rn 0010nnnnmmmm1001 1 —
AND  #imm,R0O RO & imm - RO 1100100%iiiiiiii 1 —
AND.B #imm, @(R0,GBR) (RO + GBR)&imm - (RO+ GBR)  1100110%iiiiiiii 3 —

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate

data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.

Operation:

AND(long mlong n) /* AND RmRn */

{
R n] &R nj
PC+=2;

}

ANDI (long i) /* AND #i nrm RO */

{
R[ 0] &=( 0x000000FF & (long)i);
PC+=2;

}

ANDM Il ong i) /* AND.B #i nm @RO, GBR) */

{
| ong tenp;
temp=(1 ong) Read_Byt e( GBBR+R[ 0] ) ;
t enp&=( 0x000000FF & (long)i);
Wite_Byte(GBR+R 0], tenp);
PC+=2;

}

Rev. 2.00 May 31, 2006 page 60 of 336

REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

Examples:
AND RO, R1 ; Before execution:
; After execution:
AND #H OF, RO ; Before execution:

; After execution:

AND. B #H 80, @ RO, GBR) ; Before execution:

; After execution:

RO =H'AAAAAAAA, R1 =H'55555555
R1=H'00000000

RO = H'FFFFFFFF
RO =H'0000000F

@(RO,GBR) = H'A5
@(RO,GBR) = H'30

Rev. 2.00 May 31, 2006 page 61 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.5 BF (Branch if False): Branch Instruction

Format Abstract Code Cycle T Bit

BF label When T=0,dispx2+PC - PC; 10001011dddddddd 3/1 —
When T = 1, nop

Description: Reads the T bit, and conditionally branches. If T = 0, it branches to the branch
destination address. If T = 1, BF executes the next instruction. The branch destination is an
address specified by PC + displacement. However, in this case it is used for address calculation.
The PC is the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is —256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BF with the BRA instruction or
the like.

Note: When branching, three cycles; when not branching, one cycle.
Operation:

BF(long d)/* BF disp */

{
| ong disp;
i f ((d&0x80)==0) di sp=(0x000000FF & (I ong)d);
el se di sp=(O0xFFFFFFOO0 | (long)d);
if (T==0) PC=PC+(disp<<l);
el se PC+=2;
}
Example:
CLRT ; T is always cleared to 0
BT TRCGET_T ; Does not branch, because T =0
BF TRCGET_F ; Branches to TRGET _F, because T =0
NOP
NOP ; « The PC location is used to calculate the branch destination address
.......... of the BF instruction
TRCGET_F: ; « Branch destination of the BF instruction

Rev. 2.00 May 31, 2006 page 62 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction

Format Abstract Code Cycle T Bit

BF/S label When T=0,dispx2+PC - PC; 1000111l1dddddddd 2/1 —
When T = 1, nop

Description: Reads the T bit and conditionally branches. If T = 0, it branches after executing the
next instruction. If T = 1, BF/S executes the next instruction. The branch destination is an address
specified by PC + displacement. However, in this case it is used for address calculation. The PC is
the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is —256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF with the BRA instruction or the
like.

Note: Since this is a delay branch instruction, the instruction immediately following is executed
before the branch. No interrupts and address errors are accepted between this instruction
and the next instruction. When the instruction immediately following is a branch
instruction, it is recognized as an illegal slot instruction. When branching, this is a two-
cycle instruction; when not branching, one cycle.

Operation:

BFS(long d) /* BFS disp */

{
| ong disp;
unsi gned | ong tenp;
t emp=PC;
i f ((d&0x80)==0) di sp=(0x000000FF & (1 ong)d);
el se di sp=(O0xFFFFFFOO0 | (long)d);
if (T==0) {
PC=PC+( di sp<<1);
Del ay_Sl ot (t enp+2) ;
}
el se PC+=2;
}

Rev. 2.00 May 31, 2006 page 63 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Example:
CLRT ; Tis always 0
BT/ S TRGET_T ; Does not branch, because T =0
NOP ;
BF/ S TRGET_F ; Branches to TRGET _F, because T =0
ADD RO, R1 ; Executed before branch.
NOP . « The PC location is used to calculate the branch destination address
.......... of the BF/S instruction

TRCGET_F: ; « Branch destination of the BF/S instruction

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Rev. 2.00 May 31, 2006 page 64 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.7 BRA (Branch): Branch Instruction

Format Abstract Code Cycle T Bit
BRA label dispx2+PC - PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement However, in this
case it is used for address calculation. The PC is the address 4 bytes after this instruction. The 12-
bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is —4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, this instruction must be changed to the JMP instruction. Here, a MOV instruction
must be used to transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BRA(long d) /* BRA disp */
{

unsi gned | ong tenp;

| ong disp;

i f ((d&0x800)==0) di sp=(0x00000FFF & (long) d);
el se di sp=(O0xFFFFFO00 | (long) d);

t enp=PC;

PC=PC+( di sp<<1);

Del ay_Sl ot (t enp+2) ;

Rev. 2.00 May 31, 2006 page 65 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Example:
BRA TRGET ; Branches to TRGET
ADD RO, R1 ; Executes ADD before branching
NOP ; « The PC location is used to calculate the branch destination address
.......... of the BRA instruction
TRCGET: ; « Branch destination of the BRA instruction

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Rev. 2.00 May 31, 2006 page 66 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.8 BRAF (Branch Far): Branch Instruction

Format Abstract Code Cycle T Bit
BRAF Rm Rm+PC - PC 0000mMmmMMD0100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rm. However, in this case it is used for address calculation. The PC is the address
4 bytes after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BRAF(l ong m) /* BRAF Rm*/

{
unsi gned | ong tenp;
t enp=PC;
PC+=R[ m ;
Del ay_Sl ot (t enp+2) ;
}
Example:

MOV. L #( TARGET- BSRF_PC), RO ; Sets displacement.

BRA TRGET ; Branches to TARGET
ADD RO, R1 ; Executes ADD before branching
BRAF_PC: ; « The PC location is used to calculate the branch
destination address of the BRAF instruction
NOP
TARGET: ;. « Branch destination of the BRAF instruction

Rev. 2.00 May 31, 2006 page 67 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Rev. 2.00 May 31, 2006 page 68 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.9 BSR (Branch to Subroutine): Branch Instruction

Format Abstract Code Cycle T Bit
BSR label PC - PR, disp x 2+ PC - PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address. The PC value is stored
in the PR, and the program branches to an address specified by PC + displacement However, in
this case it is used for address calculation. The PC is the address 4 bytes after this instruction. The
12-bit displacement is sign-extended and doubled. Consequently, the relative interval from the
branch destination is —4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, the JSR instruction must be used instead. With JSR, the destination address must be
transferred to a register by using the MOV instruction. This BSR instruction and the RTS
instruction are used together for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BSR(long d) /* BSR disp */

{
| ong disp;
i f ((d&0x800)==0) di sp=(0x00000FFF & (long) d);
el se di sp=(0xFFFFFO00 | (long) d);
PR=PC+| s_32bi t _I nst ( PR+2) ;
PC=PC+( di sp<<1);
Del ay_Sl ot (PR+2) ;
}

Rev. 2.00 May 31, 2006 page 69 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Example:

BSR

ADD

TRGET:

MoV

TRCGET
R3, R4
RO, R1

R2, R3

#1, RO

; Branches to TRGET
; Executes the MOV instruction before branching

; « The PC location is used to calculate the branch destination address of
the BSR instruction (return address for when the subroutine procedure is
completed (PR data))

; « Procedure entrance
: Returns to the above ADD instruction

; Executes MOV before branching

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Rev. 2.00 May 31, 2006 page 70 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.10  BSRF (Branch to Subroutine Far): Branch Instruction

Format Abstract Code Cycle T Bit

BSRF Rm PC - PR,Rm+PC - PC 0000nMMD0000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rm. However, in this case it is used
for address calculation. The PC is the address 4 bytes after this instruction. Used as a subroutine
procedure call in combination with RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BSRF(long m) /* BSRF Rm */

{
PR=PC+l s_32bi t _I nst (PR+2);
PC+=R{n{ ;
Del ay_Sl ot (PR+2) ;
}
Example:
MOV. L #( TARGET- BSRF_PC), RO ; Sets displacement.
BRSF RO ; Branches to TARGET
MoV R3, R4 ; Executes the MOV instruction before branching
BSRF_PC. ; « The PC location is used to calculate the
branch destination with BSRF.
ADD RO, R1
TARCET: ; « Procedure entrance
MV R2,R3 ;
RTS ; Returns to the above ADD instruction
MOV #1,RO ; Executes MOV before branching

Rev. 2.00 May 31, 2006 page 71 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Rev. 2.00 May 31, 2006 page 72 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.11 BT (Branch if True): Branch Instruction

Format Abstract Code Cycle TBit

BT label When T=1,dispx2+PC - PC; 10001001dddddddd 3/ —
When T = 0, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T =0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. However, in this case it is used for address calculation. The PC is the address 4
bytes after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently,
the relative interval from the branch destination is —256 to +254 bytes. If the displacement is too
short to reach the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.
Operation:

BT(long d)/* BT disp */

{
| ong disp;
i f ((d&0x80)==0) di sp=(0x000000FF & (1 ong)d);
el se di sp=(O0xFFFFFFOO0 | (long)d);
if (T==1) PC=PC+(disp<<l);
el se PC+=2;
}
Example:
SETT ; Tis always 1
BF TRCGET_F ; Does not branch, because T = 1
BT TRGET_T ; Branches to TRGET T, because T =1
NOP ;
NOP ; « The PC location is used to calculate the branch destination
.......... address of the BT instruction
TRCGET_T: ; « Branch destination of the BT instruction

Rev. 2.00 May 31, 2006 page 73 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.12  BT/S (Branch if True with Delay Slot): Branch Instruction

Format Abstract Code Cycle TBit

BT/S label When T=1,dispx2+PC - PC; 10001101dddddddd 2/1 —
When T = 0, nop

Description: Reads the T bit and conditionally branches. If T = 1, BT/S branches after the
following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. However, in this case it is used for
address calculation. The PC is the address 4 bytes after this instruction. The 8-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is —256
to +254 bytes. If the displacement is too short to reach the branch destination, use BT/S with the
BRA instruction or the like.

Note: Since this is a delay branch instruction, the instruction immediately following is executed
before the branch. No interrupts and address errors are accepted between this instruction
and the next instruction. When the immediately following instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two
cycles; when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */

{
| ong disp;
unsigned |ong tenp;
t emp=PC;
i f ((d&0x80)==0) di sp=(0x000000FF & (Il ong)d);
el se di sp=(O0xFFFFFFOO0 | (long)d);
if (T==1) {
PC=PC+( di sp<<1);
Del ay_Sl ot (t enp+2) ;
}
el se PC+=2;
}

Rev. 2.00 May 31, 2006 page 74 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Example:
SETT ; Tis always 1
BF/ S TARGET_F ; Does not branch, because T = 1
NOP ;
BT/S TARGET_T  ; Branches to TARGET, because T =1
ADD RO, R1 ; Executes before branching.
NOP ;. « The PC location is used to calculate the branch destination
.......... address of the BT/S instruction

TARGET_T: ; « Branch destination of the BT/S instruction
Note: When a delayed branch instruction is used, the branching operation takes place after the

slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Rev. 2.00 May 31, 2006 page 75 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.13 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code Cycle

T Bit

CLRMAC 0 - MACH, MACL 0000000000101000 1

Description: Clear the MACH and MACL Register.
Operation:

CLRVAC() /* CLRVAC */
{

MACH=0;

MACL=0;

PC+=2;
}

Example:

CLRVAC ; Clears and initializes the MAC register
MAC. W @RO+, @R1+ ; Multiply and accumulate operation
MAC. W @RO+, @R1+

Rev. 2.00 May 31, 2006 page 76 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.14  CLRT (Clear T Bit): System Control Instruction

Format Abstract

Code

Cycle T Bit

CLRT 0-T

0000000000001000

1 0

Description: Clears the T bit.

Operation:

CLRT() /* CLRT */
{

T=0;
PC+=2;
}
Example:

CLRT ; Before execution: T=1

; After execution:

Rev. 2.00 May 31, 2006 page 77 of 336

RENESAS

REJ09B0316-0200



Section 7

Instruction Descriptions

7.2.15 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code Cycle T Bit

CMP/EQ Rm,Rn WhenRn=Rm,1 - T 0011nnnnmmm©D000 1 Comparison result

CMP/GE Rm,Rn When signed and Rn = Rm, 0011nnnnmmmD011 1 Comparison result
1T

CMP/GT Rm,Rn When signed and Rn > Rm, 0011nnnnmmm0111 1 Comparison result
1T

CMP/HI Rm,Rn When unsigned and Rn > Rm, 0011lnnnnnmm©0110 1 Comparison result
1T

CMP/HS Rm,Rn When unsigned and Rn = Rm, 0011nnnnnmm©0010 1 Comparison result
1-T

CMP/PL  Rn WhenRn>0,1 - T 0100nnnn00010101 1 Comparison result

CMP/PZ Rn WhenRn 20,1 - T 0100nnnn00010001 1 Comparison result

CMP/STR Rm,Rn When a byte in Rn equals a 0010nnnnmmmi1100 1 Comparison result
byteinRm,1 - T

CMP/EQ #mm,RO WhenRO=imm,1 - T 10001000iiiiiiii 1 Comparison result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 7.2 shows the
mnemonics for the conditions.

Table 7.2 CMP Mnemonics

Mnemonics Condition

CW/ EQ RmRn If Rn =Rm T=1

CWP/CE RmRn If RN 2 Rmwith signed data, T =1
CMWP/ GT Rm Rn If Rn > Rmwith signed data, T =1
CVP/ HI Rm Rn If Rn > Rmwith unsigned data, T =1
CMP/ HS Rm Rn If R > Rmwith unsigned data, T =1
CVP/ PL Rn If Rn >0, T=1

CWP/ PZ Rn If Rn 20, T=1

CWP/ STR Rm Rn If a byte in Rh equals a byte in Rm =1
CWP/EQ #imm RO If RO=imm T=1

Rev. 2.00 May 31, 2006 page 78 of 336

REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

Operation:

CMPEQ(| ong m | ong n) /* CVP_EQ Rm Rn */

{
if (REn]==R[n) T=1;
el se T=0;
PC+=2;
}
CMPCGE(| ong m | ong n) /* CMP_GE Rm Rn */
{
if ((long)Rin]>=(long)Rinj) T=1;
el se T=0;
PC+=2;
}
CMPGT (1 ong m | ong n) /[* CVMP_GT Rm Rn */
{
if ((long)RIn]>(long)Rinj) T=1;
el se T=0;
PC+=2;
}
CWPHI (1 ong m | ong n) /[* CVWP_H RmRn */
{
if ((unsigned long)Rin]>(unsigned long) i M) T=1;
el se T=0;
PC+=2;
}
CVMPHS(1 ong m | ong n) /* CVMP_HS Rm Rn */
{
if ((unsigned | ong)R n]>=(unsigned long) RIn) T=1,
el se T=0;
PC+=2;
}

Rev. 2.00 May 31, 2006 page 79 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

CMPPL(I ong n) /* CWP_PL Rn */
{

if ((long)Rn]>0) T=1;

el se T=0;

PC+=2;
}
CWPPZ(1ong n) /* CMP_PZ Rn */
{

if ((long)R n]>=0) T=1,;

el se T=0;

PC+=2;
}

CMPSTR(l ong mlong n) /* CMP_STR Rm Rn */
{

unsi gned | ong tenp;

Il ong HH, HL, LH, LL;

temp=R n] "R n ;

HH=(t enp>>12) &0x000000FF;
HL=(t enp>>8) &0x000000FF;
LH=(t enp>>4) &0x000000FF;
LL=t enp&Ox000000FF;
HH=HH&&HL &&L HR&L L ;

if (HH==0) T=1;

el se T=0;

PC+=2;

Rev. 2.00 May 31, 2006 page 80 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

CWPI M long i) /* CVP_EQ #imm RO */
{
| ong i nm

if ((i&0x80)==0) i mr(0x000000FF & (long i));
el se i mm=( OXFFFFFFOO | (long i));
if (RIO]==imm T=1,

el se T=0;
PC+=2;
}

Example:
CW/ GE RO,RL ; RO =H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; Does not branch because T =0
CW/HS RO,RL ; RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; Branches because T =1
CW/ STR R2,R3 ; R2=“ABCD”, R3 = “XYCZ”
BT TRGET_T ; Branches because T =1

Rev. 2.00 May 31, 2006 page 81 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.16 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DIVOS Rm,Rn MSB of Rn - Q, MSB of Rm - M, 0010nnnnmmm0111 1 Calculation result
MAMQ - T

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DI VOS(l ong m 1 ong n) /* DIVOS Rm Rn */

{
i f ((R[n]&x80000000)==0) Q=0;
el se Q=1;
i f ((R[ M &x80000000) ==0) M=O0;
el se Me1;
T=! (Me=Q) ;
PC+=2;

}

Example: See DIV1.

Rev. 2.00 May 31, 2006 page 82 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.17 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DIVOU 0 - M/Q/T 0000000000011001 1 0

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOU() /* DIVOU */

{
M=Q=T=0;
PC+=2,

Example: See DIV1.

Rev. 2.00 May 31, 2006 page 83 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.18 DIV1 (Divide 1 Step): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DIV1 Rm,Rn 1 step division (Rn + Rm)  0011nnnnnmmmm0100 1 Calculation result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIV1 instruction, then find the remainder as follows:

(dividend) — (divisor) X (quotient) = (remainder)

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

Rev. 2.00 May 31, 2006 page 84 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Operation:

DI V1(long mlong n) /* DIV1I RmRn */
{

unsi gned | ong t npO;

unsi gned char ol d_g, t np1;

ol d_g=@Q
Q=(unsi gned char) ((0x80000000 & R[n])!=0);
Rl n] <<=1;
R[n] | =(unsi gned | ong) T;
switch(ol d_q){
case 0:switch(M/{
case 0:tnmpO0=R[ n];
R n]-=R(ni;
tmp1=(R[ n] >t np0) ;
switch(Q{
case 0: Q=t np1;
br eak;
case 1: Q=(unsigned char) (tnpl==0);
br eak;
}
br eak;
case 1:tnmp0=R[ n];
R n] +=R(n ;
tmp1=(R[ n] <t p0) ;
switch(Q{
case 0: Q=(unsigned char) (tnpl==0);
br eak;
case 1: Q=t np1l;

br eak;
}
br eak;
}
br eak;

Rev. 2.00 May 31, 2006 page 85 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

case l:switch(M{
case 0:tnmp0=R[ n];
R n] +=R(n ;
tmpl=(R[ n] <t mp0) ;
switch(Q{
case 0: Q=t np1;
br eak;
case 1: Q=(unsigned char) (tnpl==0);
br eak;
}
br eak;
case 1:tnmp0=R[ n];
R n]-=Rni;
tmp1=(R[ n] >t np0) ;
switch(Q{
case 0: Q=(unsigned char) (tnpl==0);
br eak;
case 1: Q=t np1l;
br eak;

}

br eak;
}
br eak;
}
T=(&F=M;
PC+=2;

Rev. 2.00 May 31, 2006 page 86 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Example 1:
; R1 (32 bits) / RO (16 bits) = R1 (16 bits):Unsigned
SHLL16 RO ; Upper 16 bits = divisor, lower 16 bits = 0
TST RO, RO ; Zero division check
BT ZERO DV ;
CVP/ HS RO, R1 ; Overflow check
BT OVER DIV
Dl VOU ; Flag initialization
.arepeat 16 ;
Dl V1 RO, R1 ; Repeat 16 times
. aendr ;
ROTCL R1 ;
EXTU. W Rl, Rl ; R1 = Quotient
Example 2:

; R1:R2 (64 bits)/R0O (32 bits) = R2 (32 bits):Unsigned

TST RO, RO ; Zero division check
BT ZERO DIV ;

CVP/ HS ; RO, R1 ; Overflow check
BT OVER DIV ;

Dl VOU ; Flag initialization

. ar epeat 32 ;

ROTCL R2 ; Repeat 32 times

Dl V1 RO, R1 ;

. aendr ;

ROTCL R2 ; R2 = Quotient

Rev. 2.00 May 31, 2006 page 87 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Example 3:

SHLL16
EXTS. W
XOR
MOV
ROTCL
SUBC

DI VOS

. ar epeat
Dl v1

. aendr
EXTS. W
ROTCL
ADDC

EXTS. W

Example 4:

MOV
ROTCL
SUBC
XOR
SUBC
DI VOS
. ar epeat
ROTCL
Dl vi

. aendr
ROTCL
ADDC

RO
R1, R1
R2, R2
R1, R3
R3
R2, R1
RO, R1
16
RO, R1

R2, R3

R1, R1
R3, R3
R3, R2
RO, R1
32

R2

RO, R1

; R1 (16 bits)/RO (16 bits) = R1 (16 bits):Signed
; Upper 16 bits = divisor, lower 16 bits = 0

; Sign-extends the dividend to 32 bits

;R2=0

; Decrements if the dividend is negative

; Flag initialization

; Repeat 16 times

; R1 = quotient (one’s complement)
; Increments and takes the two’s complement if the MSB of the quotient
is 1

; R1 = quotient (two’s complement)

: R2 (32 bits) / RO (32 bits) = R2 (32 bits):Signed

; Sign-extends the dividend to 64 bits (R1:R2)

yR3=0

; Decrements and takes the one’s complement if the dividend is negative
; Flag initialization

; Repeat 32 times

; R2 = Quotient (one’s complement)

; Increments and takes the two’s complement if the MSB of the quotient
is 1. R2 = Quotient (two’s complement)

Rev. 2.00 May 31, 2006 page 88 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.19 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DMULS.L Rm, Rn With sign, Rn xRm - MACH, MACL 001innnnnmmill0l1 2to4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is a signed arithmetic
operation.

Operation:

DMJULS(l ong mlong n)/* DMIULS.L Rm Rn */

{
unsigned |ong RnL, RnH, Rnl, RnH, ResO, Res1, Res2;
unsigned |ong tenpO,tenpl,tenp2,tenp3;
| ong tenpm tenpn, f nLnL;

tenmpn=(long) R n];

tenpme(l ong) RInj ;

if (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpm=0-tenpm

if ((long)(RInN]*R[n)<0) fnLnlL=-1;
el se fnLnmL=0;

tenmpl=(unsi gned | ong)tenpn;
t enp2=(unsi gned | ong)t enpm

RnL=t enp1&0x0000FFFF;
RnH=(t enp1>>16) &0x0000FFFF;
RmL=t enp2&0x0000FFFF;

RH=(t enp2>>16) &0X0000FFFF;

t enpO=RnL*RnL;
t enpl=RntH* RnL;
t enp2=RnL* RnH,;
t enp3=RmH* RnH;

Rev. 2.00 May 31, 2006 page 89 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Res2=0
Resl=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

tenmpl=( Res1<<16) &0xFFFF000O0;
ResO=t enpO+t enp1l;
i f (ResO<tenpO) Res2++;

Res2=Res2+( ( Res1>>16) &0x0000FFFF) +t enp3;

if (fnLnmi<0) {
Res2=~Res2;
i f (Res0==0)
Res2++;
el se
Res0=(~Res0) +1;

}
MACH=Res2;
MACL=ResO;
PC+=2,
}
Example:
DMULS. L RO, R1 ; Before execution: RO = H'FFFFFFFE, R1 = H'00005555
; After execution: ~ MACH = HFFFFFFFF, MACL = H'FFFF5556
STS MACH, RO  ; Operation result (top)
STS MACL, RO  ; Operation result (bottom)

Rev. 2.00 May 31, 2006 page 90 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.20 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DMULU.L Rm,Rn  Without sign, Rn xRm - MACH, 0011nnnnmmD101 2to4 —
MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is an unsigned arithmetic
operation.

Operation:

DMULU(l ong mlong n)/* DMJULU. L Rm Rn */

{
unsigned |ong RnL, RnH, Rnl, RnH, ResO, Res1, Res2;
unsigned |ong tenpO,tenpl,tenp2,tenp3;

RnL=R[ n] &0x0000FFFF;
RnH=( R n] >>16) &x0000FFFF;

R1L=R] n] &0x0000FFFF;
RH=( R[ nj >>16) &0x0000FFFF;

t enpO=RnL* RnL,;
t enpl=RmH* RnL;
t enp2=RnL* RnH,
t enp3=RntH* RnH,;

Res2=0
Res1=t enpl+t enp2,;
if (Resl<tenpl) Res2+=0x00010000;

t enpl=( Res1<<16) &0xFFFF0000;
ResO=t enpO+t enp1l;
i f (ResO<tenp0) Res2++;

Rev. 2.00 May 31, 2006 page 91 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Res2=Res2+( ( Res1>>16) &0x0000FFFF) +t enp3;

MACH=Res2;
MACL=ResO;
PC+=2;

}

Example:

DMULU. L RO, R1 ; Before execution: RO = HFFFFFFFE, R1 = H'00005555

; After execution: MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH, RO ; Operation result (top)
STS MACL, RO ; Operation result (bottom)

Rev. 2.00 May 31, 2006 page 92 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.21 DT (Decrement and Test): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DT Rn Rn-1 - Rn; WhenRnis0,1 -~ T, 0100nnnn00010000 1 Comparison
when Rn is nonzero, 0 - T result

Description: The contents of general register Rn are decremented by 1 and the result compared to
0 (zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operation:

DT(long n)/* DT Rn */

{
Rn]--;
if (Rn]==0) T=1;
el se T=0;
PC+=2;
}
Example:
MoV #4, RS ; Sets the number of loops.
LOOP:
ADD RO, R1 ;
DT RS ; Decrements the RS value and checks whether it has become 0.
BF LOCP ; Branches to LOOP is T=0. (In this example, loops 4 times.)

Rev. 2.00 May 31, 2006 page 93 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.22  EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit

EXTS.B Rm,Rn  Sign-extend Rm from byte - Rn 0110nnnnmmm1110 1 —

EXTS.W Rm, Rn Sign-extend Rm from word - Rn 0110nnnnmmmmi111 1 —

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is copied into bits 8 to 31 of Rn. If word length is specified, the bit
15 value of Rm is copied into bits 16 to 31 of Rn.

Operation:

EXTSB(l ong m | ong n) /* EXTS.B Rm Rn */

{
R n]=R(n;
i f ((R[n &x00000080)==0) R[ n] &0x000000FF;
el se R[ n] | =0xFFFFFFOO;
PC+=2;
}
EXTSW I ong m | ong n) [* EXTS. WRm Rn */
{
REn] =R ;
i f ((R[n] &x00008000)==0) R[ n] &0x0000FFFF;
el se R[ n]| =0xFFFF0000;
PC+=2;
}
Examples:
EXTS. B RO, R1 ; Before execution: RO = H'00000080
; After execution: R1 = H'FFFFFF80
EXTS. WRO, R1 ; Before execution: RO = H'00008000

. After execution: R1 =H'FFFF8000

Rev. 2.00 May 31, 2006 page 94 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.23 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit
EXTU.B Rm, Rn Zero-extend Rm from byte - Rn 0110nnnnmmm1100 1 —
EXTUW Rm, Rn Zero-extend Rm from word - Rn 0110nnnnmmmmil101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, Os are written in bits 8 to 31 of Rn. If word length is specified, Os are written in bits 16
to 31 of Rn.

Operation:

EXTUB(l ong mlong n)/* EXTU. B RmRn */

{
RIn] =R ni;
R[ n] &0x000000FF;
PC+=2,

}

EXTUWN Il ong mlong n)/* EXTU WRmRn */

{
RIn] =R ni;
R[ n] & 0x0000FFFF;
PC+=2;

}

Examples:

EXTU. B RO, R1 ; Before execution: RO = H'FFFFFF80
; After execution:  R1=H'00000080
EXTU. WRO, R1 ; Before execution: RO = H'FFFF8000
; After execution:  R1=H'00008000

Rev. 2.00 May 31, 2006 page 95 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.24  JMP (Jump): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle TBit

JMP @Rm Rm - PC 0100mmMm®00101011 2 —

Description: Branches unconditionally to the address specified by register indirect addressing.
The branch destination is an address specified by the 32-bit data in general register Rm.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

JMP(long m) /* JMP @m */

{
unsi gned | ong tenp;
t enp=PC;
PC=R[ n +4;
Del ay_Sl ot (t enp+2) ;
}
Example:
MOV. L JMP_TABLE, RO ; Address of RO =TRGET
JMP @ro ; Branches to TRGET
MoV RO, R1 ; Executes MOV before branching
.align 4
JWP_TABLE: .data.l TRCGET ; Jump table
TRCGET: ADD #1, R1 ; « Branch destination

Rev. 2.00 May 31, 2006 page 96 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Note:

When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Rev. 2.00 May 31, 2006 page 97 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.25 JSR (Jump to Subroutine): Branch Instruction (Class: Delayed Branch

Instruction)

Format Abstract Code Cycle T Bit

JSR  @Rm PC - PR,Rm - PC 0100mMmMMD0001011 2 —

Description: Branches to the subroutine procedure at the address specified by register indirect
addressing. The PC value is stored in the PR. The jump destination is an address specified by the
32-bit data in general register Rm. The stored/saved PC is the address four bytes after this
instruction. The JSR instruction and RTS instruction are used together for subroutine procedure
calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

JSR(long M) /* JSR @m */

{

PR=PC;

PC=R[ n +4;

Del ay_Sl ot (PR+2) ;
}

Rev. 2.00 May 31, 2006 page 98 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Example:

MOV. L JSR TABLE, RO

JSR @0
XOR R1, Rl
ADD RO, R1
al i gn 4
JSR TABLE: .data.l TRCGET
TRCGET: NOP
MoV R2, R3
RTS
MoV #70, R1

Note:

; Address of RO = TRGET
; Branches to TRGET
; Executes XOR before branching

; « Return address for when the subroutine procedure
is completed (PR data)

; Jump table

; « Procedure entrance

; Returns to the above ADD instruction
; Executes MOV before RTS

When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the

branch destination address.

Rev. 2.00 May 31, 2006 page 99 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.26 LDC (Load to Control Register): System Control Instruction (Class: Interrupt
Disabled Instruction)

Format Abstract Code Cycle T Bit
LDC Rm,SR Rm - SR 0100nMmmMmMD0001110 1 LSB
LDC Rm,GBR Rm - GBR 0100mMmmMM00011110 1 —
LDC Rm,VBR Rm - VBR 0100nMmmMmD0101110 1 —
LDC.L @Rm+,SR (Rm) - SR,Rm+4 - Rm 0100mMmmmD0000111 3 LSB
LDC.L @Rm+,GBR (Rm) - GBR,Rm+4 -~ Rm 0100mm00010111 3 —
LDC.L @Rm+VBR (Rm) - VBR,Rm+4 -~ Rm 0100mmm00100111 3 —

Description: Store the source operand into control register SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LDCSR(1 ong ) /* LDC Rm SR */

{
SR=R[ n| &0xOFFFOFFF;
PC+=2;
}
LDCGBR(| ong m /* LDC Rm GBR */
{
GBR=R[ ni ;
PC+=2;
}
LDCVBR(l ong ) /* LDC Rm VBR */
{
VBR=R[ n ;
PC+=2;
}

Rev. 2.00 May 31, 2006 page 100 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

LDCVBR(long m)  /* LDC.L @m#, SR */

{
SR=Read_Long( R Ml ) &0x0FFFOFFF;

Rl ni +=4;
PC+=2;
}

LDCMEBR(l ong n) /* LDC.L @m+, GBR */

{
GBR=Read_Long(R M) ;
R +=4;
PC+=2;
}
LDCWBR(long m) /* LDC. L @m+, VBR */
{
VBR=Read_Long(R[ M) ;
REm +=4;
PC+=2;
}
Examples:
LDC RO, SR ; Before execution: RO = H'FFFFFFFF, SR = H'00000000

; After execution: SR = H'OFFFOFFF

LDC. L @R15+, GBR : Before execution: R15 =H'10000000
; After execution: R15=H'10000004, GBR = @H'10000000

Rev. 2.00 May 31, 2006 page 101 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.27 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code Cycle T Bit
LDS Rm,MACH Rm - MACH 0100mMmmD0001010 1 —
LDS Rm,MACL Rm - MACL 0100mmmD0011010 1 —
LDS Rm,PR Rm - PR 0100mmmD0101010 1 —
LDS.L @Rm+, MACH (Rm) -~ MACH,Rm+4 -~ Rm 0100mmm00000110 1 —
LDS.L @Rm+, MACL (Rm) - MACL,Rm+4 -~ Rm 0100mmm00010110 1 —
LDS.L @Rm+,PR (Rm) - PR, Rm+4 - Rm 0100mMmmMmMD0100110 1 —

Description: Store the source operand into the system register MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:
LDSMACH(I ong m) /* LDS Rm MACH */
{
MACH=R[ n ;
PC+=2;
}
LDSMACL(1 ong m /* LDS Rm MACL */
{
MACL=R[ ] ;
PC+=2;
}
LDSPR(| ong m /* LDS Rm PR */
{
PR=R[ M ;
PC+=2;
}
LDSMVACH(| ong m) /* LDS.L @m+, MACH */
{

MACH=Read_Long(R[ i) ;

Rev. 2.00 May 31, 2006 page 102 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

R +=4;
PC+=2;
}
LDSMMVACL( | ong m /* LDS.L @m+, MACL */
{
MACL=Read_Long(R[ M );
R +=4;
PC+=2;
}
LDSMPR(| ong m) [* LDS.L @mt, PR */
{
PR=Read_Long(R[ n ) ;
R +=4;
PC+=2;
}
Examples:
LDS RO, PR ; Before execution: RO = H'12345678, PR = H'00000000
; After execution: PR =H'12345678
LDS. L @Rr15+, MACL ; Before execution: R15 =H'10000000

; After execution:

R15=H'10000004, MACL = @H'10000000

Rev. 2.00 May 31, 2006 page 103 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.28 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MAC.L @Rm+, @Rn+  Signed operation, 000Onnnnmmm1111 3/(2to4) —
(Rn) x (Rm) + MAC - MAC

Description: Does signed multiplication of 32-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and
the final result is stored in the MAC register. Every time an operand is read, they increment Rm
and Rn by four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation of 48 bits
starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL register
are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) and
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long mlong n) /* MAC. L @m+, @n+*/

{
unsi gned | ong RnL, RnH, RrL, RnH, ResO0, Res1, Res2;
unsi gned | ong tenpO, tenpl,tenp2,tenps;
| ong tenpm tenpn, f nLni;

tenmpn=(1 ong) Read_Long(R[ n]);
Rl n] +=4;
tenpm=(| ong) Read_Long(R[ n});
Rl mM +=4;

if ((long)(tenpn™tenpn)<0) fnLmi=-1,;
el se fnLmL=0;

if (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpm=0-tenpm

tenmpl=(unsi gned | ong)tenpn;
t enp2=(unsi gned | ong)tenpm

Rev. 2.00 May 31, 2006 page 104 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

RnL=t enp1&0x0000FFFF;
RnH=( t enp1>>16) &0x0000FFFF;
RnL=t enp2&0x0000FFFF;

RH=(t enp2>>16) &0x0000FFFF;

t enpO=RnL* RnL,;
t enpl=RmH* RnL;
t emp2=RmL* RnH,
t enp3=Rnt* RnH,;

Res2=0

Resl=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

templ=( Res1<<16) &0xFFFF000O0;
ResO=t enpO+t enp1l;
i f (ResO<tenmpO) Res2++;

Res2=Res2+( ( Res1>>16) &0x0000FFFF) +t enp3;

i f(fnLnx0){
Res2=~Res2;
i f (Res0==0) Res2++;
el se ResO=(~Res0) +1;
}
i f(S==1){
Res0=MACL+ResO;
if (MACL>Res0) Res2++;
Res2+=( MACH&Ox0000FFFF) ;

i £ (( (I ong) Res2<0) && Res2<0xFFFF8000) ) {
Res2=0x00008000;
Res0=0x00000000;

Rev. 2.00 May 31, 2006 page 105 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

i f(((1ong)Res2>0) &&( Res2>0x00007FFF)){
Res2=0x00007FFF;
Res0=0x FFFFFFFF;

b
MACH={ Res2;
MACL=ResO;
}
el se {
ResO0=MACL+ResO0;
i f (MACL>Res0) Res2++;
Res2+=MACH
MACH=Res2;
MACL=ResO;
}
PC+=2;
}
Example:
MOVA TBLM RO ; Table address
MoV RO, R1 ;
MOVA TBLN, RO ; Table address
CLRVAC ; MAC register initialization
MAC. L @RO0+, @1+ :
MAC. L @0+, @1+ ;
STS MACL, RO ; Store result into RO
.align 2 ;
TBLM . data.l H 1234ABCD ;
.data.l H 5678EF01 ;
TBLN .data.l H 0123ABCD ;
.data.l H 4567DEFO ;

Rev. 2.00 May 31, 2006 page 106 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.29 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MACW @Rm+, @Rn+  With sign, 0100nnnnmmm1111  3/(2) —
(Rn) x (Rm) + MAC - MAC

MAC  @Rm+, @Rn+

Description: Does signed multiplication of 16-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and
the final result is stored in the MAC register. Rm and Rn data are incremented by 2 after the
operation.

When the S bit is cleared to 0, the operation is 16 X 16 + 64 — 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 X 16 + 32 - 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) and
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register. The result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Operation:

MACW I ong mlong n) /* MAC W @m+, @n+*/
{

| ong tenpm t enpn, dest, src, ans;

unsi gned | ong tenpl;

tenpn=(1 ong) Read_Word(R[ n]);

Rl n] +=2;

tenmpn=(l ong) Read_Word(R[ mM ) ;

Rl nj +=2;

tenpl =MACL;

tenpm=( (1 ong) (short)tenmpn*(long)(short)tenpmn;

if ((long) VACL>=0) dest =0;

el se dest =1,

if ((long)tempm>=0 {

Rev. 2.00 May 31, 2006 page 107 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

src=0;
t enpn=0;
}
el se {
src=1;
t enpn=0xFFFFFFFF;
}
src+=dest ;
MACL+=t enpm

if ((long) MACL>=0) ans=0;
el se ans=1
ans+=dest ;
if (S==1) {
if (ans==1) ({
if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}

el se {

MACH+=t enpn;

if (tenpl >MACL) MACH+=1;
}
PC+=2;

Rev. 2.00 May 31, 2006 page 108 of 336
REJ09B0316-0200
RENESAS



Section 7

Instruction Descriptions

Example:

TBLM

TBLN

.data.w
.data.w

TBLM RO
RO, R1
TBLN, RO

; Table address

1

; Table address

; MAC register initialization

1

; Store result into RO

Rev. 2.00 May 31, 2006 page 109 of 336

RENESAS

REJ09B0316-0200



Section 7

Instruction Descriptions

7.2.30 MOV (Move Data): Data Transfer Instruction

Format Abstract Code Cycle TBit
MOV Rm,Rn Rm - Rn 0110nnnnnmmD011 1 —
MOV.B Rm,@Rn Rm - (Rn) 0010nnNnmMmMmMDO000 1 —
MOV.W Rm,@Rn Rm - (Rn) 0010nnnnnmmMmD001 1 —
MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmMmmMmD010 1 —
MOV.B @Rm,Rn (Rm) - sign extension — Rn 0110nnnnnmm©D000 1 —
MOV.W @Rm,Rn (Rm) - sign extension —» Rn 0110nnnnmmmD001 1 —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnnmmD010 1 —
MOV.B Rm,@-Rn Rn—-1 - Rn,Rm - (Rn) 0010nnnnmmmD100 1 —
MOV.W Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 0010nnnnnmmMmMD101 1 —
MOV.L Rm,@-Rn Rn-4 - Rn, Rm - (Rn) 0010nnnnnmmO110 1 —
MOV.B  @Rm+,Rn (Rm) - sign extension - Rn, 0110nnnnnmm®O100 1 —

Rm+1 - Rm
MOV.W @Rm+,Rn (Rm) - sign extension - Rn, 0110nnnnmmmm®D101 1 —
Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmMmmm®D110 1 —
MOV.B Rm,@(RO,Rn) Rm - (RO +Rn) 0000NnnNNNMMMO100 1 —
MOV.W Rm,@(RO,Rn) Rm - (RO +Rn) 0000NNNNNMMMO101 1 —
MOV.L Rm,@(RO,Rn) Rm - (RO +Rn) 0000nnNNMMMO110 1 —
MOV.B @(RO,Rm),Rn (RO +Rm) - sign extension -~ Rn  0000nnnnmMmmMML100 1 —
MOV.W @(RO,Rm),Rn (RO +Rm) - sign extension - Rn  0000nnnnnmmmmi101 1 —
MOV.L @(RO,Rm),Rn (RO+Rm) - Rn 0000nnNNNNMMMML110 1 —

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. Loaded data from memory is

stored in a register after it is sign-extended to a longword.

Rev. 2.00 May 31, 2006 page 110 of 336

REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

Operation:
MV(Iong mlong n) /* MOV RmRn */
{
R n] =R ;
PC+=2;
}
MOVBS(| ong m | ong n) /* MOV.B Rm @n */
{
Wite Byte(Rln],Rim);
PC+=2;
}
MOWAS(1 ong m | ong n) [* MOV. WRm @n */
{
Wite Wrd(Rn],Rn);
PC+=2;
}
MOVLS(| ong m | ong n) /* MOW.L Rm @n */
{
Wite Long(RIn],Rn);
PC+=2;
}
MOVBL(| ong m | ong n) /* MWV.B @mRn */
{
R n] =(! ong) Read_Byte(R[ n);
if ((R n]&0x80)==0) R n] &x000000FF;
el se R[ n] | =0xFFFFFFOO;
PC+=2;
}
MOWAL(l ong m | ong n) [* MOV.W@Rm Rn */
{

Rl n] =(1 ong) Read_Word(R[ nj);
if ((R[n] &0x8000) ==0) R[ n] &x0000FFFF;

Rev. 2.00 May 31, 2006 page 111 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

el se R[ n] | =0xFFFF0000;
PC+=2;
}

MOVLL(l ong m 1 ong n) /[* MOV.L @m Rn */
{

R[ n] =Read_Long(R[ N ) ;

PC+=2;
}

MOVBM | ong m | ong n) /* MOV.B Rm @Rn */
{

Wite_Byte(Rn]-1,Rin);

R n] -=1;

PC+=2;
}

MOWWM | ong m | ong n) [* MOV. WRm @Rn */
{

Wite_Word(Rn]-2,RIn);

R n] -=2;

PC+=2;
}
MOVLM | ong m | ong n) /* MOW.L Rm @Rn */
{

Wite_Long(RIn]-4, R n);

Rl n] —=4;

PC+=2;
}

MOVBP(l ong mlong n)/* MOV.B @m+, Rn */
{
R[ n] =(1 ong) Read_Byte(R[ n);
i f ((R[n]&0x80)==0) R[ n] &0x000000FF;
el se R[ n] | =0xFFFFFFOO;
if (nl=m R mM+=1;
PC+=2,

Rev. 2.00 May 31, 2006 page 112 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

}
MOWWP(1 ong m | ong n) [* MOV. W @m+, Rn */
{
R[ n] =(1 ong) Read_Word(R[ n ) ;
i f ((R[n] &x8000)==0) R[ n] &x0000FFFF;
el se R[ n] | =0xFFFF0000;
if (nl=m R mM+=2;
PC+=2,
}
MOVLP(l1 ong m 1 ong n) /[* MOV.L @m+, Rn */
{
R[ n] =Read_Long(R[ N ) ;
if (ni=n R +=4;
PC+=2,
}
MOVBSO(| ong m | ong n) /* MOV.B Rm @RO, Rn) */
{
Wite Byte(RIn]+R[0], R ni);
PC+=2;
}
MOVWAS0( | ong m | ong n) /* MOV. WRm @RO, Rn) */
{
Wite Wrd(R n]+R[ 0], R n);
PC+=2;
}
MOVLSO(long mlong n) /* MOV.L Rm @RO, Rn) */
{
Wite_ Long(R[n]+R[0], R m);
PC+=2;
}
MOVBLO(long mlong n) /* MW.B @RO,Rm,Rn */
{

RIn] =(I ong) Read_Byte(R[ nl +R[0] ) ;

Rev. 2.00 May 31, 2006 page 113 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

i f ((R[n]&x80)==0) R[ n] &x000000FF;
el se R[ n] | =0xFFFFFFOO;

PC+=2,
}
MOWALO(l ong mlong n) /* MOWV.W@RO, R, Rn */
{
R n] =(1 ong) Read_Word(R[ m +R[ 0] ) ;
i f ((R n] &x8000)==0) R[ n] &0x0000FFFF;
el se R[ n]| =0xFFFF0000;
PC+=2,
}
MOWVLLO(long mlong n) /* MOW.L @RO,RmM,Rn */
{
Rl n] =Read_Long(R[ n{ +R[ 0] ) ;
PC+=2;
}
Example:
MOV RO, R1 ; Before execution: RO = H'FFFFFFFF, R1 = H'00000000
. After execution:  R1 = HFFFFFFFF
MOV. WRO, @r1 ; Before execution: RO = H'FFFF7F80
; After execution:  @R1 =H'7F80
MOV. B @RO, R1 ; Before execution: @RO = H'80, R1 = H'00000000
; After execution:  R1 = H'FFFFFF80
MOV. WRO, @-R1 ; Before execution: RO = H'AAAAAAAA, R1 =H'FFFF7F80
; After execution:  R1=H'FFFF7F7E, @R1 = HAAAA
MOV. L @RO+, R1 : Before execution: RO = H'12345670
; After execution: RO =H'12345674, R1 = @H'12345670
MOV. B R1, @ RO, R2) ; Before execution: R2 =H'00000004, RO = H'10000000

; After execution:  R1=@H'10000004

MOV. W@ RO, R2) , R1 ; Before execution: R2 = H'00000004, RO = H'10000000
; After execution:  R1 =@H'10000004

Rev. 2.00 May 31, 2006 page 114 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.31 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit
MOV #imm,Rn imm - sign extension - Rn 1110nnnniiiiiiii 1 —
MOV.W @(disp, PC),Rn  (disp x 2 + PC) - sign extension -~ Rn  1001nnnndddddddd 1 —
MOV.L @(disp, PC),Rn (disp x4 +PC) -~ Rn 1101nnnndddddddd 1 —

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table can be up to PC + 510 bytes. The PC points to
the starting address of the second instruction after this MOV instruction. If the data is a longword,
the 8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from
the table can be up to PC + 1020 bytes. The PC points to the starting address of the second
instruction after this MOV instruction, but the lowest two bits of the PC are corrected to B'00.

Note: The optimum table assignment is at the rear end of the module or one instruction after the
unconditional branch instruction. If the optimum assignment is impossible for the reason
of no unconditional branch instruction in the 510 byte/1020 byte or some other reason,
means to jump past the table by the BRA instruction are required. By assigning this
instruction immediately after the delayed branch instruction, the PC becomes the "first

address + 2".
Operation:
MOVI (1 ong i,1ong n) [* MOV #imm Rn */
{
if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);
el se R n] =(OxFFFFFFOO | (long)i);
PC+=2;
}
MOVW (1 ong d, | ong n) [* MOV. W @disp, PC), Rn */
{
| ong disp;

di sp=(0x000000FF & (I ong)d);

Rev. 2.00 May 31, 2006 page 115 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

R[ n] =(1 ong) Read_Wor d( PC+( di sp<<1));
i f ((R[n]&x8000)==0) R[] n] &0x0000FFFF;
el se R[ n] | =0xFFFF0000;

PC+=2;
}
MOVLI (1 ong d, | ong n) /[* MOV.L @disp, PC), Rn */
{
| ong disp;
di sp=(0x000000FF & (long)d);
R[ n] =Read_Long( ( PC&OxFFFFFFFC) +( di sp<<2));
PC+=2,
}
Example:
Address
1000 MoV #H 80, R1 ; R1 =H'FFFFFF80
1002 MOV. W I MM R2 ; R2 =H'FFFF9ABC, IMM means @(H'08,PC)
1004 ADD #-1, RO ;
1006 TST RO, RO ; « PC location used for address calculation for the
MOV.W instruction
1008 MOVT R13 ;
100A BRA NEXT ; Delayed branch instruction
100C MOV. L @4,PC,R3 ;R3=H'12345678
100E M .data.w H 9ABC ;
1010 .data.w H 1234 ;
1012 NEXT JMP @3 ; Branch destination of the BRA instruction
1014 CWP/ EQ #0, RO ; « PC location used for address calculation for the
; MOV.L instruction
.align 4 ;
1018 .data.l H 12345678

Rev. 2.00 May 31, 2006 page 116 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.32 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit
MOV.B @(disp,GBR),R0 (disp + GBR) - sign extension — RO 11000100dddddddd 1 —

MOV.W  @(disp,GBR),R0 (disp x 2 + GBR) - sign extension -~ RO 1100010l1dddddddd 1 —

MOV.L @(disp,GBR),R0 (disp x 4 + GBR) - R0 11000110dddddddd 1 —
MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd 1 —
MOV.W RO,@(disp,GBR) RO - (disp x 2 + GBR) 11000001dddddddd 1 —
MOV.L RO,@(disp,GBR) RO - (disp x 4 + GBR) 11000010dddddddd 1 —

Description: Transfers the source operand to the destination. This instruction is optimum for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but only
the RO register can be used.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the only change made is to zero-extend the 8-bit displacement. Consequently, an address within
+255 bytes can be specified. When the peripheral module data is a word, the 8-bit displacement is
zero-extended and doubled. Consequently, an address within +510 bytes can be specified. When
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
quadrupled. Consequently, an address within +1020 bytes can be specified. If the displacement is
too short to reach the memory operand, the above @(R0,Rn) mode must be used after the GBR
data is transferred to a general register. When the source operand is in memory, the loaded data is
stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0. RO cannot be accessed by the next
instruction until the load instruction is finished. The instruction order shown in figure 7.1
will give better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 7.1 Using R0 after MOV

Rev. 2.00 May 31, 2006 page 117 of 336
REJ09B0316-0200
RENESAS




Section 7 Instruction Descriptions

Operation:

MOVBLG | ong d) /* MOV.B @disp, GBBR), RO */

{
| ong disp;

di sp=(0x000000FF & (long)d);
R[ 0] =(1 ong) Read_Byt e( GBR+di sp) ;
i f ((R[0] &x80)==0) R[ 0] &0x000000FF;
el se R[ 0] | =0xFFFFFFOO;
PC+=2;
}

MOWALGE | ong d) /[* MOV. W @disp, GBR), RO */

{
| ong disp;

di sp=(0x000000FF & (long)d);
R[ 0] =(1 ong) Read_Wor d( GBBR+( di sp<<1));
i f ((R[0] &x8000) ==0) R[ 0] &=0x0000FFFF;
el se R 0] | =0OxFFFF0000;
PC+=2;
}

MOVLLG long d) /* MOV.L @disp, GBBR), RO */
{
| ong di sp;

di sp=(0x000000FF & (long)d);
R[ 0] =Read_Long( GBR+( di sp<<2));
PC+=2;

Rev. 2.00 May 31, 2006 page 118 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

MOVBSE | ong d) /* MOV.B RO, @disp, GBR) */

{
| ong disp;
di sp=(0x000000FF & (long)d);
Wite_Byte(GBR+di sp, R 0]);
PC+=2;

}

MOWBG(l ong d) /* MOV. WRO, @di sp, GBR) */

{
| ong disp;

di sp=(0x000000FF & (long)d);
Wite Word(GBR+(di sp<<l),R0]);

PC+=2;
}
MOVLSEH | ong d) /* MOV.L RO, @disp, GBBR) */
{
| ong di sp;
di sp=(0x000000FF & (Il ong)d);
Wite_Long(@BR+(di sp<<2),R0]);
PC+=2;
}
Examples:
MWV.L @2,GBR), R0 ; Before execution: @(GBR + 8) = H'12345670
; After execution: RO =H'12345670
MWV. B RO, @1, GBR) ; Before execution: R0 = HFFFF7F80

; After execution:  @(GBR + 1) = HFFFF7F80

Rev. 2.00 May 31, 2006 page 119 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.33 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit
MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd 1 —
MOV.W RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd 1 —
MOV.L Rm,@(disp,Rn) Rm - (disp x 4 + Rn) 0001nnnnmmmmdddd 1 —
MOV.B @(disp,Rm),R0  (disp + Rm) - sign extension — RO 10000100mmmdddd 1 —
MOV.W @(disp,Rm),R0  (disp x 2 + Rm) - sign extension -~ RO 10000101mmmdddd 1 —
MOV.L @(disp,Rm),Rn disp x4 +Rm) -~ Rn 0101lnnnnmmmmdddd 1 —

Description: Transfers the source operand to the destination. This instruction is optimum for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the RO register can be used. When the data is a byte, the only change
made is to zero-extend the 4-bit displacement. Consequently, an address within +15 bytes can be
specified. When the data is a word, the 4-bit displacement is zero-extended and doubled.
Consequently, an address within +30 bytes can be specified. When the data is a longword, the
4-bit displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes
can be specified. If the displacement is too short to reach the memory operand, the aforementioned
@(R0O,Rn) mode must be used. When the source operand is in memory, the loaded data is stored in
the register after it is sign-extended to a longword.

Note:

When byte or word data is loaded, the destination register is always R0. RO cannot be
accessed by the next instruction until the load instruction is finished. The instruction order
in figure 7.2 will give better results.

MOV.B @(2, R1), RO MOV.B @(2, R1), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 7.2 Using R0 after MOV

Rev. 2.00 May 31, 2006 page 120 of 336
REJ09B0316-0200

RENESAS




Section 7 Instruction Descriptions

Operation:

MOVBS4(long d,long n) /* MOV.B RO, @disp, Rn) */

{
| ong disp;
di sp=(0x0000000F & (long)d);
Wite_Byte(R[ n]+disp, RRO0]);
PC+=2;
}
MOWS4( 1 ong d,long n) /* MOV.WRO, @di sp, Rn) */
{
| ong disp;

di sp=(0x0000000F & (long)d);
Wite Word(R[ n] +(disp<<1l),R0]);
PC+=2;

}

MOVLS4(long mlong d, | ong n) /* MOV.L Rm @disp, Rn) */

{
| ong di sp;

di sp=(0x0000000F & (long)d);
Wite_Long(R[ n] +(disp<<2),RimM);
PC+=2;

}

MOVBL4(long mlong d) /* MOW.B @disp, Ry,R0 */

{
| ong disp;

di sp=(0x0000000F & (long)d);

R[ 0] =Read_Byt e( R m] +di sp) ;

i f ((R[0]&0x80)==0) R[ 0] &=0x000000FF;
el se R[ 0] | =OxFFFFFFOO;

Rev. 2.00 May 31, 2006 page 121 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

PC+=2,
}

MOWL4(long mlong d) /* MOV.W@disp, R, R0 */

{
| ong disp;

di sp=(0x0000000F & (long)d);
R[ 0] =Read_Wor d( R[ m +(di sp<<1));
i f ((R[0]&x8000)==0) R[ 0] &0x0000FFFF;
el se R[ 0] | =0OxFFFF0000;
PC+=2;
}

MOVLL4(l ong mlong d, | ong n)
/* MWV.L @disp, Rm,Rn */

{
| ong disp;
di sp=(0x0000000F & (long)d);
R[ n] =Read_Long( R[ n] +(di sp<<2));
PC+=2;
}
Examples:

MWV.L @2,R0),Rl ; Before execution: @(RO + 8) = H'12345670
; After execution: R1=H'12345670

MOV.L RO, @H F, Rl) ; Before execution: RO=H'FFFF7F80
; After execution:  @(R1 + 60) = H'FFFF7F80

Rev. 2.00 May 31, 2006 page 122 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.34 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code Cycle TBit
MOVA @(disp,PC),R0 disp x4 + PC - RO 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register R0O. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC is the address four bytes after this instruction, but the lowest
two bits of the PC are corrected to B'00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(l ong d) /* MOVA @di sp, PO), RO */

{
| ong disp;
di sp=(0x000000FF & (long)d);
R[ 0] =( PC&OXFFFFFFFC) +( di sp<<2);
PC+=2;
}
Example:

Address . org H 1006

1006 MOVA STR RO ; Address of STR — RO
1008 MOV.B @RO, R1 ; R =X PC location after correcting the lowest two
bits
100A ADD R4, R5 ; « Original PC location for address calculation for the
MOVA instruction
.align4

100C STR . sdata “ XYZP12”

2002 BRA TRGET ; Delayed branch instruction
2004 MWVA @O0, PC), RO ; Address of TRGET +2 — RO
2006 NOP ;

Rev. 2.00 May 31, 2006 page 123 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.35 MOVT (Move T Bit): Data Transfer Instruction
Format Abstract Code Cycle T Bit
MOVT Rn T - Rn 0000nnnn00101001 1 —

Description: Stores the T bit value into general register Rn. When T =1, 1 is stored in Rn, and
when T =0, 0 is stored in Rn.

/*

MOVT Rn */

R[ n] =(0x00000001 & SR);

Operation:
MOVT(1 ong n)
{

PC+=2;

}

Example:
XOR R2, R2
CWP/ PZ R2
MVT RO
CLRT
MOVT R1

i R2
i T

=0

i RO=1
;T=0

i R1

=0

Rev. 2.00 May 31, 2006 page 124 of 336

REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.36 MUL.L (Multiply Long): Arithmetic Instruction

Format Abstract Code Cycle T Bit
MUL.L Rm,Rn Rn xRm - MACL 0000NnnnnmMmMMD111 2to4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the bottom 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MJL.L(long mlong n)/* MJIL.L RmRn */

{
MACL=R[ n] *R[ n{ ;
PC+=2,
}
Example:
MJULL RO, R1 ; Before execution: RO = H'FFFFFFFE, R1 = H'00005555
. After execution: MACL = H'FFFF5556
STS MACL, RO ; Operation result

Rev. 2.00 May 31, 2006 page 125 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.37 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MULS.W Rm,Rn Signed operation, Rn xRm - MACL 0010nnnnmmmm 111 1t03 —
MULS Rm,Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MJULS(l ong mlong n) /* MILS RmRn */

{
MACL=((l ong) (short)R[ n]*(long) (short)R[ m);
PC+=2;
}
Example:

MJULS RO, R1 ; Before execution: RO = H'FFFFFFFE, R1 = H'00005555
; After execution: MACL = H'FFFF5556
STS MACL, RO ; Operation result

Rev. 2.00 May 31, 2006 page 126 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.38 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MULUW Rm,Rn Unsigned, Rn x Rm - MACL 0010nnnnnmMM1.110 1t03 —
MULU Rm,Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MJULU(l ong mlong n) /* MJUU Rm Rn */
{
MACL=( (unsi gned | ong) (unsi gned short) R n]
*(unsi gned | ong) (unsi gned short)R[ N );
PC+=2;
}

Example:

MJULU RO, R1 ; Before execution: RO =H'00000002, R1 = HFFFFAAAA
; After execution: MACL =H'00015554
STS MACL, RO ; Operation result

Rev. 2.00 May 31, 2006 page 127 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.39 NEG (Negate): Arithmetic Instruction

Format Abstract Code Cycle T Bit

NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmml011 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long mlong n) /* NEG RmRn */

{
RIn]=0-R(ni;
PC+=2;
}
Example:

NEG RO, Rl ; Before execution: RO = H'00000001
; After execution: R1 = HFFFFFFFF

Rev. 2.00 May 31, 2006 page 128 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.40 NEGC (Negate with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit

NEGC Rm,Rn 0-Rm-T - Rn,Borrow - T 0110nnnnmMmmmi010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC(1 ong mlong n) /* NEGC Rm Rn */

{
unsi gned | ong tenp;
tenp=0-R{ ni;
Rl n] =tenp-T,;
if (O<temp) T=1,;
el se T=0;
if (tenp<R[n]) T=1;
PC+=2,

}

Examples:
CLRT ; Sign inversion of R1 and RO (64 bits)

NEGC R1, Rl ; Before execution: R1=H'00000001, T=0
; After execution: R1=H'FFFFFFFF, T=1

NEGC RO, RO ; Before execution: RO =H'00000000, T =1
. After execution: RO = H'FFFFFFFF, T=1

Rev. 2.00 May 31, 2006 page 129 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.41 NOP (No Operation): System Control Instruction

Format Abstract Code

Cycle

T Bit

NOP No operation 0000000000001001

1

Description: Increments the PC to execute the next instruction.
Operation:

NOP() /* NOP */

{
PC+=2,
}
Example:
NOP ; Executes in one cycle

Rev. 2.00 May 31, 2006 page 130 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.42 NOT (NOT—Logical Complement): Logic Operation Instruction

Format Abstract Code Cycle T Bit

NOT Rm,Rn ~Rm - Rn 0110nnnnmm0111 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long mlong n) /* NOT RmRn */

{
Rin]=~R(ni;
PC+=2;
}
Example:

NOT RO, R1 ; Before execution: RO =H'AAAAAAAA
; After execution: R1 =H'55555555

Rev. 2.00 May 31, 2006 page 131 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.43  OR (OR Logical) Logic Operation Instruction

Format Abstract Code Cycle T Bit
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 1 —
OR #imm,R0 RO | imm - RO 1100101%iiiiiiii 1 —
OR.B #mm@(R0,GBR) (RO + GBR)|imm - (RO+GBR) 1100111%iiiiiiii 3 —

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long mlong n) /* OR RmRn */

{
RIn]| =R n;
PC+=2;

}

CRi(long i) /* OR# M RO */

{
R{ 0] | =( 0x000000FF & (long)i);
PC+=2;

}

OCRMlong i) [/* ORB #imm @R0O, BR) */

{
| ong tenp;
temp=(1 ong) Read_Byt e( GBBR+R[ 0] ) ;
t enp| =( 0x000000FF & (long)i);
Wite_Byte(GBR+R 0], tenp);
PC+=2,

}

Rev. 2.00 May 31, 2006 page 132 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Examples:
R RO, R1 ; Before execution: RO =H'AAAAS5555, R1 =H'55550000
; After execution: R1 =H'FFFF5555
OR #H FO, RO ; Before execution: RO =H'00000008

; After execution: RO =H'000000F8

OR. B #H 50, @RO, GBR) ; Before execution: @(R0,GBR) =H'A5
; After execution:  @(R0,GBR) =H'F5

Rev. 2.00 May 31, 2006 page 133 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.44 ROTCL (Rotate with Carry Left): Shift Instruction

Format Abstract Code Cycle T Bit

ROTCL Rn T<Rn«T 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
7.3).

MSB LSB

ROTCL - ﬁ

Figure 7.3 Rotate with Carry Left
Operation:

ROTCL(l ong n) /* ROTCL Rn */

{
I ong tenp;
i f ((R[ n]&x80000000)==0) tenp=0;
el se temp=1;
R[ n] <<=1;
if (T==1) R[n]|=0x00000001;
el se R n] &O0xFFFFFFFE;
if (tenp==1) T=1,
el se T=0;
PC+=2;

}

Example:
ROTCL RO ; Before execution: RO = H'80000000, T =0

; After execution: RO =H'00000000, T=1

Rev. 2.00 May 31, 2006 page 134 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.45 ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code Cycle T Bit
ROTCR Rn T-Rn-T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 7.4).

MSB LSB

ROTCR ﬂ |_>

Figure 7.4 Rotate with Carry Right
Operation:

ROTCR(l ong n) /* ROTCR Rn */
{
| ong tenp;

i f ((R[n] &x00000001)==0) tenp=0;
el se tenp=1;
Rl n] >>=1;
if (T==1) R[n]|=0x80000000;
el se R n] &0x7FFFFFFF;
if (tenp==1) T=1;
el se T=0;
PC+=2;
}

Examples:

ROTCR RO ; Before execution: RO = H'00000001, T=1
; After execution: RO =H'80000000, T=1

Rev. 2.00 May 31, 2006 page 135 of 336
REJ09B0316-0200
RENESAS




Section 7 Instruction Descriptions

7.2.46 ROTL (Rotate Left): Shift Instruction

Format Abstract Code Cycle T Bit

ROTL Rn T -« Rn -« MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 7.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTL ;._‘

Figure 7.5 Rotate Left
Operation:

ROTL(long n) /* ROTL Rn */

{
i f ((R[n] &x80000000)==0) T=0;
el se T=1;
R n] <<=1;
if (T==1) R n]|=0x00000001;
el se R[ n] &0xFFFFFFFE;
PC+=2;

}

Examples:
ROTL RO ; Before execution: RO = H'80000000, T =0

; After execution: RO =H'00000001, T=1

Rev. 2.00 May 31, 2006 page 136 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.47 ROTR (Rotate Right): Shift Instruction

Format Abstract Code Cycle T Bit
ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 7.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

-

Figure 7.6 Rotate Right
Operation:

ROTR(l1 ong n) /* ROTR Rn */

{
i f ((R n]&x00000001)==0) T=0;
el se T=1;
R n] >>=1;
if (T==1) R[n]|=0x80000000;
el se R n] &=0x7FFFFFFF;
PC+=2,

}

Examples:
ROTR RO ; Before execution: RO =H'00000001, T=0

; After execution: RO =H'80000000, T=1

Rev. 2.00 May 31, 2006 page 137 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.48 RTE (Return from Exception): System Control Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

RTE Delayed branch, Stack area — PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value. The T bit is used
as the LSB bit in the SR register restored from the stack area.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTE() /* RTE */

{
unsi gned | ong tenp;
t enp=PC;
PC=Read_Long( R 15]) +4;
R 15] +=4;
SR=Read_Long( R 15] ) &0x0OFFFOFFF;
R 15] +=4;
Del ay_Sl ot (t enp+2);

}

Example:
RTE ; Returns to the original routine

ADD #8, R14 ; Executes ADD before branching

Rev. 2.00 May 31, 2006 page 138 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Note:

When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Rev. 2.00 May 31, 2006 page 139 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.49  RTS (Return from Subroutine): Branch Instruction (Class: Delayed Branch

Instruction)
Format Abstract Code Cycle T Bit
RTS Delayed branch, PR - PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR, BSRF, or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

RTS() /* RTS */

{
unsi gned | ong tenp;
t enp=PC;
PC=PR+4;
Del ay_Sl ot (t enp+2) ;
}

Rev. 2.00 May 31, 2006 page 140 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Example:
MOV. L TABLE, R3 ; R3 = Address of TRGET
JSR @3 : Branches to TRGET
NOP ; Executes NOP before branching
ADD RO, R1 ; < Return address for when the subroutine procedure is
completed (PR data)

TABLE: .data.l TRCGET ; Jump table

TRGET: MOV R1, RO ; « Procedure entrance
RTS ; PR data —» PC
MoV #12, RO ;

Executes MOV before branching

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction — delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.

Rev. 2.00 May 31, 2006 page 141 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.50 SETT (Set T Bit): System Control Instruction

Format Abstract Code

Cycle

T Bit

SETT 1-T 0000000000011000

1

1

Description: Sets the T bitto 1.
Operation:

SETT() /* SETT */

{
T=1;
PC+=2;
}
Example:

SETT ; Before execution: T=0

; After execution: T=1

Rev. 2.00 May 31, 2006 page 142 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.51 SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code Cycle T Bit

SHAL Rn T<«Rn<0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 7.7).

MSB LSB

SHAL le—0

Figure 7.7 Shift Arithmetic Left
Operation:

SHAL(long n) /* SHAL Rn(Sane as SHLL) */

{
i f ((R[n]&0x80000000)==0) T=0;
el se T=1,
R{n] <<=1;
PC+=2,

}

Example:
SHAL RO ; Before execution: RO =H'80000001, T =0

. After execution: RO =H'00000002, T =1

Rev. 2.00 May 31, 2006 page 143 of 336
REJ09B0316-0200
RENESAS




Section 7 Instruction Descriptions

7.2.52 SHAR (Shift Arithmetic Right): Shift Instruction

Format Abstract Code Cycle T Bit

SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
7.8).

MSB LSB

SHAR Ij‘

Figure 7.8 Shift Arithmetic Right
Operation:

SHAR(long n) /* SHAR Rn */

{
| ong tenp;
i f ((R[n]&x00000001)==0) T=0;
el se T=1;
i f ((R[n] &x80000000)==0) tenp=0;
el se tenp=1;
R n] >>=1;
if (tenp==1) R[n]|=0x80000000;
el se R[ n] &0x7FFFFFFF;
PC+=2;

}

Example:
SHAR RO ; Before execution: RO =H'80000001, T=0

; After execution: RO =H'C0000000, T=1

Rev. 2.00 May 31, 2006 page 144 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.53  SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code Cycle T Bit
SHLL Rn T-Rn<0 0100nnnn00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 7.9).

MSB LSB

SHLL le—o0

Figure 7.9 Shift Logical Left
Operation:

SHLL(long n) /* SHLL Rn(Sane as SHAL) */

{
i f ((R[n]&0x80000000)==0) T=0;
el se T=1,
R{n] <<=1;
PC+=2,

}

Examples:
SHLL RO ; Before execution: RO =H'80000001, T=0

; After execution: RO =H'00000002, T=1

Rev. 2.00 May 31, 2006 page 145 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.54 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code Cycle T Bit
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 1 —

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 7.10).

MSB LSB
SHLL2 |
¥
o
MSB LSB
SHLL8 |
/
— -
MSB LSB
SHLL16 | |

e a—

Figure 7.10 Shift Logical Left n Bits

Rev. 2.00 May 31, 2006 page 146 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

Operation:

SHLL2(long n) /* SHLL2 Rn */

{
R n] <<=2;
PC+=2;
}
SHLL8(long n) /* SHLL8 Rn */
{
R n] <<=8;
PC+=2;
}
SHLL16( 1 ong n) /* SHLL16 Rn */
{
R[ n] <<=16;
PC+=2,
}
Examples:
SHLL2 RO ; Before execution: RO =H'12345678
; After execution: RO = H'48D159EQ
SHLL8 RO ; Before execution: RO =H'12345678
; After execution: RO =H'34567800
SHLL16 RO ; Before execution: RO =H'12345678

; After execution: RO =H'56780000

Rev. 2.00 May 31, 2006 page 147 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.55 SHLR (Shift Logical Right): Shift Instruction

Format Abstract Code Cycle T Bit

SHLR Rn 0-Rn-T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 7.11).

MSB LSB

SHLR O—>|

Figure 7.11 Shift Logical Right
Operation:

SHLR(long n) /* SHLR Rn */

{
i f ((R n]&x00000001)==0) T=0;
el se T=1;
R n] >>=1;
Rl n] &=0x7FFFFFFF;
PC+=2;

}

Examples:
SHLR RO ; Before execution: RO =H'80000001, T=0

; After execution: RO =H'40000000, T=1

Rev. 2.00 May 31, 2006 page 148 of 336
REJ09B0316-0200
RENESAS



Section 7

Instruction Descriptions

7.2.56 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code Cycle T Bit
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 1 —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 7.12).

MSB LSB
SHLR2
o
MSB LSB
SHLRS8 |
o —
MSB LSB
SHLR16 |

o |

Figure 7.12 Shift Logical Right n Bits

Rev. 2.00 May 31,

RENESAS

2006 page 149 of 336
REJ09B0316-0200




Section 7 Instruction Descriptions

Operation:

SHLR2(long n) /* SHLR2 Rn */

{
R n] >>=2;
R[ n] &0x3FFFFFFF;
PC+=2,
}
SHLR8(1ong n) /* SHLR8 Rn */
{
R[ n] >>=8;
R[ n] &=0x00FFFFFF;
PC+=2;
}
SHLR16( 1 ong n) /* SHLR16 Rn */
{
R[ n] >>=16;
R[ n] &0x0000FFFF;
PC+=2;
}
Examples:
SHLR2 RO ; Before execution: RO =H'12345678
; After execution: RO = H'048D159E
SHLR8 RO ; Before execution: RO =H'12345678
; After execution: RO =H'00123456
SHLR16 RO ; Before execution: RO =H'12345678

. After execution: RO =H'00001234

Rev. 2.00 May 31, 2006 page 150 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.57 SLEEP (Sleep): System Control Instruction

Format Abstract Code Cycle T Bit
SLEEP Sleep 0000000000011011 3 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU internal status is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.
Operation:

SLEEP()  /* SLEEP */

{
PC- =2;
wai t _for_exception;
}
Example:

SLEEP ; Enters power-down mode

Rev. 2.00 May 31, 2006 page 151 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.58 STC (Store Control Register): System Control Instruction (Interrupt Disabled

Instruction)
Format Abstract Code Cycle T Bit
STC SR,Rn SR - Rn 0000nnNn00000010 1 —
STC GBR,Rn GBR - Rn 0000nnNNN00010010 1 —
STC VBR,Rn VBR - Rn 0000nnnn00100010 1 —
STC.L SR,@-Rn Rn-4 - Rn, SR - (Rn) 0100nnnNn00000011 2 —
STC.L GBR,@-Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 2 —
STC.L VBR,@-Rn Rn-4 - Rn,VBR - (Rn) 0100nnnNn00100011 2 —

Description: Stores control register SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STCSR(| ong n) /* STC SR, Rn */

{
R n] =SR;
PC+=2;
}
STCGBR(| ong n) /* STC GBR, Rn */
{
R[ n] =GBR;
PC+=2;
}
STCVBR(long n) /* STC VBR Rn */
{
R n] =VBR,;
PC+=2;
}

Rev. 2.00 May 31, 2006 page 152 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

STCMSR( | ong n) /[* STC.L SR, @Rn */

{
R n] - =4;
Wite_Long(R[n], SR);
PC+=2;
}
STCMGBR(long n) /* STC.L GBR @Rn */
{
REn] - =4;
Wite_Long(R[n], GBR);
PC+=2;
}
STCMBR(long n) /* STC.L VBR @Rn */
{
R n] - =4;
Wite_Long(R[n], VBR);
PC+=2;
}
Examples:
STC SR, RO ; Before execution:

; After execution:
STC. L GBR, @ R15 ; Before execution:

; After execution:

RO = H'FFFFFFFF, SR = H'00000000
RO =H'00000000

R15=H'10000004

R15 =H'10000000, @R 15 = GBR

Rev. 2.00 May 31, 2006 page 153 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.59  STS (Store System Register): System Control Instruction (Interrupt Disabled

Instruction)
Format Abstract Code Cycle T Bit
STS MACH,Rn MACH - Rn 0000nnnn00001010 —
STS MACL,Rn MACL - Rn 0000nnnn00011010 —
STS PR,Rn PR - Rn 0000nnnn00101010 —

STS.L MACH,@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnNN00000010

STS.L MACL,@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnnNn00010010

AlAalalalala

STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnNn00100010

Description: Stores data from system register MACH, MACL, or PR into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STSMACH(l ong n) /* STS MACH, Rn */

{
R[ n] =MACH,
PC+=2;
}
STSMACL(l ong n) /* STS MACL, Rn */
{
R[ n] =MACL;
PC+=2;
}
STSPR(| ong n) /* STS PR Rn */
{
Rl n] =PR;
PC+=2;
}

Rev. 2.00 May 31, 2006 page 154 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

STSMVACH(l ong n) /* STS.L MACH, @-Rn */

{
R n] —=4;
Wite_Long(R n], MACH);
PC+=2;
}
STSMMACL(long n) /* STS.L MACL, @Rn */
{
Rl n] —=4;
Wite_Long(R[ n], MACL);
PC+=2;
}
STSMPR(long n) /* STS.L PR @Rn */
{
R{n] —=4;
Wite_Long(R[n], PR);
PC+=2;
}
Example:

STS MACH, RO ; Before execution: RO = H'FFFFFFFF, MACH = H'00000000
; After execution: RO =H'00000000

STS. L PR @R15 ; Before execution: R15=H'10000004
; After execution:  R15=H'10000000, @R 15 =PR

Rev. 2.00 May 31, 2006 page 155 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.60 SUB (Subtract Binary): Arithmetic Instruction

Format Abstract Code Cycle T Bit

SUB Rm,Rn Rn-Rm - Rn 0011nnnnmMmmm1000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long mlong n) /* SUB RmRn */

{
Rin]-=Rni;
PC+=2;
}
Example:

SUB RO, Rl ; Before execution: RO =H'00000001, R1 =H'80000000
; After execution:  R1 = H"7FFFFFFF

Rev. 2.00 May 31, 2006 page 156 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.61 SUBC (Subtract with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit
SUBC Rm,Rn Rn-—Rm-T - Rn, Borrow —» T 0011nnnnmmmmi1010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn data, and stores the
result in Rn. The T bit changes according to the result. This instruction is used for subtraction of
data that has more than 32 bits.

Operation:

SUBC(long mlong n) /* SUBC RmRn */

{
unsi gned | ong tnpO, t np1l;
tmpl=R(n]-R{ni;
t mpO=R{ n] ;
R n] =t npl-T;
if (tmpO<tnpl) T=1,;
el se T=0;
if (tmpl<Rn]) T=1;
PC+=2;

}

Examples:
CLRT : RO:R1(64 bits) — R2:R3(64 bits) = RO:R1(64 bits)

SUBC R3,Rl1 ; Before execution: T=0,R1=H'00000000, R3 =H'00000001
; After execution: T =1, R1 = HFFFFFFFF

SUBC R2, R0 ; Before execution: T =1, R0=H'00000000, R2 =H'00000000
; After execution: T =1, RO=H'FFFFFFFF

Rev. 2.00 May 31, 2006 page 157 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.62 SUBYV (Subtract with V Flag Underflow Check): Arithmetic Instruction
Format Abstract Code Cycle T Bit
SUBV Rm,Rn Rn—-Rm - Rn, underflow -~ T 0011lnnnnnmmmmi011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long mlong n) /* SUBVY RmRn */

{

}

| ong dest, src, ans;

if ((long)R n]>=0) dest=0;
el se dest=1;
if ((long) Rl m>=0) src=0;
el se src=1;
src+=dest ;
R n]-=R(ni;
if ((long)R n]>=0) ans=0;
el se ans=1;
ans+=dest ;
if (src==1) {
if (ans==1) T=1,
el se T=0;
}
el se T=0;
PC+=2;

Examples:

SUBV RO, Rl ; Before execution: RO =H'00000002, R1 = H'80000001

; After execution: R1=H'7FFFFFFF, T =1

SUBV R2, R3 ; Before execution: R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

; After execution:  R3 =H'80000000, T =1

Rev. 2.00 May 31, 2006 page 158 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.2.63 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code Cycle T Bit

SWAP.B Rm,Rn Rm - Swap upper and lower 0110nnnnmmmi000 1 —
halves of lower 2 bytes - Rn

SWAP.W Rm,Rn Rm - Swap upper and lower 0110nnnnmmmi001 1 —
word — Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(l ong mlong n)/* SWAP.B Rm Rn */
{
unsi gned | ong tenpO, tenpl;

t enp0=R] m &Oxf f f f 0000;
t empl=( R nj &0x000000f f ) <<8;
R[ n] =( R{ m >>8) &0x000000f f ;
Rin] =R n] | tenpl| tenpO;
PC+=2;

}

SWAPW 1 ong m | ong n)/* SWAP. WRm Rn */
{

unsi gned | ong tenp;

t enp=( R[ n] >>16) &x0000FFFF;

R n] =R[ nj <<16;

Rin] | =tenp;

PC+=2;

Rev. 2.00 May 31, 2006 page 159 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Examples:

SWAP.B RO, R1 ; Before execution: RO =H'12345678
; After execution: R1=H'12347856

SWAP. W RO, Rl ; Before execution: RO =H'12345678
; After execution: R1 =H'56781234

Rev. 2.00 May 31, 2006 page 160 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.64  TAS (Test and Set): Logic Operation Instruction

Format Abstract Code Cycle T Bit
TAS.B @Rn When (Rn)is0,1 - T,1 -~ MSB 0100nnnn00011011 4 Test results
of (Rn)

Description: Reads byte data from the address specified by general register Rn, and sets the T bit
to 1 if the data is O, or clears the T bit to O if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

TAS(long n) /* TAS.B @n */
{
| ong tenp;

tenmp=(1 ong) Read_Byte(R[ n]); /* Bus Lock enable */
if (tenp==0) T=1,
el se T=0;
t enp| =0x00000080;
Wite Byte(R n],tenp); /* Bus Lock disable */
PC+=2;

}

Example:

_LOOP TAS.B @7 ; R7=1000
BF _LOoP ; Loops until data in address 1000 is 0

Rev. 2.00 May 31, 2006 page 161 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.65 TRAPA (Trap Always): System Control Instruction

Format Abstract Code Cycle T Bit
TRAPA #imm PC/SR - Stack area, (imm x4 +VBR) 1100001liiiiiiii 8 —
- PC

Description: Starts the trap exception processing. The PC and SR values are stored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC is the start
address of the next instruction. TRAPA and RTE are both used together for system calls.

Operation:

TRAPA(l ong i) /* TRAPA #inmm */
{
| ong i nm

i m=( 0x000000FF & i);

R 15] - =4;

Wite_Long(R 15], SR);

Rl 15] - =4;

Wite_Long(R 15], PC-2);

PC=Read_Long( VBR+(i nmk<2)) +4;
}

Example:

Address
VBR+H 80 .data.l 10000000 ;

TRAPA #H 20 ; Branches to an address specified by data in address VBR + H'80
TST #0, RO ; « Return address from the trap routine (stacked PC value)
100000000 XOR RO, RO ; « Trap routine entrance
100000002 RTE ; Returns to the TST instruction
100000004 NOP ; Executes NOP before RTE

Rev. 2.00 May 31, 2006 page 162 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.66  TST (Test Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit

TST Rm,Rn Rn & Rm, whenresultis0,1 - T 0010nnnnnmmmi 000 1 Test
results

TST  #imm,R0 RO & imm, whenresultis 0,1 - T 11001000iiiiiiii 1 Test
results

TST.B #imm, (RO + GBR) & imm, when resultis 11001100iiiiiiii 3 Test
@(RO,GBR) 0,1 - T results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register RO can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The RO and memory data do not change.

Operation:

TST(long mlong n) /* TST RmRn */

{
if ((RIn]&R[nj)==0) T=1;
el se T=0;
PC+=2;
}
TSTI(long i) /* TEST #imm RO */
{
| ong tenp;
t emp=R[ 0] & Ox000000FF & (long)i);
if (temp==0) T=1;
el se T=0;
PC+=2;
}

Rev. 2.00 May 31, 2006 page 163 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

TSTMlong i) /* TST.B #i mm @R0, GBR) */
{
| ong tenp;

tenp=(1 ong) Read_Byt e( GBR+R[ 0] ) ;
t enp&=( 0x000000FF & (long)i);
if (tenp==0) T=1;

el se T=0;
PC+=2;
}
Examples:
TST RO, RO ; Before execution: RO = H'00000000
; After execution: T=1
TST #H 80, RO : Before execution: RO = HFFFFFF7F

; After execution: T=1

TST. B #H A5, @ R0, GBBR) ; Before execution: @(R0,GBR)=H'AS5

; After execution: T=0

Rev. 2.00 May 31, 2006 page 164 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.67 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit

XOR  Rm,Rn Rn*Rm - Rn 0010nnnnmMmmmM1010 1 —

XOR  #imm,RO RO A imm - RO 11001010iiiiiiii 1 —

XOR.B #imm, (RO + GBR) *imm - (RO +GBR) 11001110iiiiiiii 3 —
@(R0,GBR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with §-bit immediate data.

Operation:

XOR(long mlong n) /* XOR RmRn */

{
REn] *=R{ni;
PC+=2;

}

XORI(long i) /* XOR #imm RO */

{
R 0] ~=( 0x000000FF & (long)i);
PC+=2;

}

XORMlong i) /* XOR B #inm @R0, GBR) */

{
| ong tenp;
temp=(1 ong) Read_Byt e( GBBR+R[ 0] ) ;
t enp"=( 0x000000FF & (long)i);
Wite_Byte(GBR+R 0], tenp);
PC+=2;

}

Rev. 2.00 May 31, 2006 page 165 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Examples:
XOR RO, R1 ; Before execution: RO =H'AAAAAAAA, R1 =H'55555555
; After execution: R1 = HFFFFFFFF
XOR #H FO, RO : Before execution: RO = HFFFFFFFF

; After execution: RO = H'FFFFFFOF

XOR B #H A5, @ RO, GBR) ; Before execution: @(R0,GBR)=H'A5
; After execution: @(RO,GBR) =H'00

Rev. 2.00 May 31, 2006 page 166 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.2.68 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code Cycle T Bit
XTRCT Rm,Rn Rm: Center 32 bits of Rn —» Rn 0010nnnnmmm101 1 —

Description: Extracts the middle 32 bits from the 64 bits of coupled general registers Rm and Rn,
and stores the 32 bits in Rn (figure 7.13).

MSB LSB MSB LSB
m | n

Rn

Figure 7.13 Extract
Operation:

XTRCT(1 ong mlong n)/* XTRCT Rm Rn */

{
unsi gned | ong tenp;
t enp=( R nj <<16) &OXFFFF0000;
R n] =( R n] >>16) &0x0000FFFF;
R n] | =t enp;
PC+=2;

}

Example:

XTRCT RO, Rl ; Before execution: RO =H'01234567, R1 = H'89ABCDEF
; After execution: R1=H'456789AB

Rev. 2.00 May 31, 2006 page 167 of 336
REJ09B0316-0200
RENESAS




Section 7 Instruction Descriptions

7.3 Floating Point Instructions and FPU Related CPU Instructions
The functions used in the descriptions of the operation of FPU calculations are as follows.

| ong FPSCR;
int T,

int |oad_long(long *adress, *data)

{
/* This function is defined in CPU part */
}
int store_long(long *adress, *data)
{
/* This function is defined in CPU part */
}
int sign_of(long *src)
{
return(*src >> 31);
}
int data_type_of(long *src)
{
fl oat abs;
abs = *src & Ox7fffffff;
i f(abs < 0x00800000) ({
if(sign_of (src) == 0) return(PZERO);
el se r et ur n( NZERO) ;
}
el se i f((0x00800000 <= abs) && (abs < 0x7f800000))
return(NORM ;

el se i f(0x7f 800000 == abs) {
if(sign_of (src) == 0) return(PlNF);
el se return( N NF);

Rev. 2.00 May 31, 2006 page 168 of 336
REJ09B0316-0200
RENESAS



Section 7

Instruction Descriptions

el se i f(0x00400000 & abs)
el se

}

return(sNaN);
return(gNaN);

cl ear _cause_VZ(){ FPSCR &= (~CAUSE_V & ~CAUSE 2); }
set_V(){ FPSCR (= (CAUSE V O FLAG V); }
set_Z(){ FPSCR [ (CAUSE 7 O FLAG 2); }

i nvalid(float *dest)

0x00000000;
0x80000000;

0x7f 800000;
0xf f 800000;

{
set _V();
i f((FPSCR & ENABLE_V) == 0) gnan(dest);
}
}
dz(float *dest, int sign)
{
set _Z();
i f((FPSCR & ENABLE_Z) == 0) inf (dest,sign);
}
zero(fl oat *dest, int sign)
{
if(sign == 0) *dest
el se *dest
}
int(float *dest, int sign)
{
if(sign == 0) *dest
el se *dest
}
gnan(fl oat *dest)
{
*dest = Ox7fbfffff;
}

Rev. 2.00 May 31, 2006 page 169 of 336

RENESAS

REJ09B0316-0200



Section 7 Instruction Descriptions

7.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction

Format Abstract Code Cycle T Bit

FABS FRn [FRn| - FRn 1111nnnn01011101 1 —

Description: Obtains arithmetic absolute value (as a floating point number) of the contents of
floating point register FRn. The calculation result is stored in FRn.

Operation:

FABS(float *Frn) /* FABS FRn */

{
cl ear _cause_VZ();
case(data_t ype_of (FRn)) {
NORM if(sign_of (FRN) == 0) *FRn = *FRn;
el se *FRn = -*FRn;
br eak;
PZERO :
NZERO : zero( FRn, 0) ; br eak;
Pl NF
NI NF i nf (FRn, 0); br eak;
gnan : gnan( FRn) ; br eak;
sNaN : i nvali d(FRn); br eak;
}
pc += 2;
}
FABS Special Cases
FRn NORM +0 -0 +INF —INF gNaN sNaN
FABS(FRn) ABS +0 +0 +INF +INF gNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Rev. 2.00 May 31, 2006 page 170 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Examples:

FABS FR2 ; Floating point absolute value
;  Before execution FR2=H C0800000/ * —4 in base 10*/
After execution FR2=H 40800000/ * 4 in base 10*/

Rev. 2.00 May 31, 2006 page 171 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.2 FADD (Floating Point Add): Floating Point Instruction

Format Abstract Code

Cycles T Bit

FADD FRm,FRn FRn + FRm - FRn

1111nnnnnmmmD000

1 —

Description: Arithmetically adds (as floating point numbers) the contents of floating point

registers FRm and FRn. The calculation result is stored in FRn.

Operation:

FADD (float *FRm FRn)

{
cl ear _cause_VZ();
if((data_type_of (FRM = = sNaN) |
(data_type_of (FRn) = = sNaN))
else if((data_type_of (FR) = = gNaN) ||
(data_type_of (FRn) = = gNaN))
el se case(data_type_of (FRM)) {
NORM
case(data_type_of (FRn)) {
Pl NF : i nf (FRn, 0);
NI NF : inf(FRn, 1);
def aul t : *FRn = *FRn + *FRm
}
PZERC:
case(data_type_of (FRn)) {
NORM : *FRn = *FRn + *FRm
PZERO
NZERO : zero( FRn, 0) ;
Pl NF : i nf (FRn, 0) ;
NI NF : inf(FRn,1);
}
NZERG:
case(data_t ype_of (FRn)){
NORM : *FRn = *FRn + *FRm
PZERO : zero( FRn, 0) ;
NZERO : zero(FRn, 1);
Pl NF : i nf (FRn, 0) ;

/* FADD FRm FRn */

i nval i d(FRn);

gnan( FRn) ;

br eak;
br eak;
br eak;
br eak;

br eak;

br eak;
br eak;
br eak;
br eak;

br eak;
br eak;
br eak;
br eak;

Rev. 2.00 May 31, 2006 page 172 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

NI NF : inf(FRn,1); br eak;
} br eak;
PI NF:
case(data_t ype_of (FRn)) {
NI NF : invali d(FRn); br eak;
def aul t : i nf (FRn, 0); br eak;
} br eak;
NI NF:
case(data_type_of (FRn)){
Pl NF : i nval i d(FRn); br eak;
def aul t : inf(FRn, 1); br eak;
} br eak;
}
pc += 2;
}
FADD Special Cases
FRm FRn
NORM +0 ‘ -0 +INF —INF gNaN sNaN
NORM ADD —INF
+0 +0
-0 -0
+INF +INF Invalid
—INF —INF ‘ Invalid —INF
gNaN gNaN
sNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Rev. 2.00 May 31, 2006 page 173 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Examples:

FADD FR2, FR3

FADD  FR5, FR4

Floating point add
Before execution: FR2=H 40400000/ * 3 in base 10*/
FR3=H 3F800000/ * 1 in base 10*/
After execution: FR2=H 40400000
FR3=H 40800000/ * 4 in base 10*/

Before execution: FR5=H 40400000/ * 3 in base 10*/
FR4=H C0000000/ *-2 in base 10*/
After execution: FR5=H 40400000
FR4=H 3F800000/ * 1 in base 10*/

Rev. 2.00 May 31, 2006 page 174 of 336

REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.3.3 FCMP (Floating Point Compare): Floating Point Instruction

Format Abstract Code Cycle T Bit

FCMP/ (FRn==FRm)?1:0 - T 1111nnnnnmmm0100 1 Comparison

EQ FRm,FRn result

FCMP/GT FRm,FRn (FRn>FRm)? 1.0 - T 1111nnnnnmmm0101 1 Comparison
result

Description: Arithmetically compares (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result (true/false) is written to the T bit.

Operation:

FCMP_EQ(f | oat *FRm FRn) /* FCMP/ EQ FRm FRn */

{

}

cl ear _cause_VZ();

if (fcnp_chk(FRm FRn) = = INVALID) {fcnp_invalid(0);
else if(fcmp_chk(FRm FRn) = = EQ T=1;

el se T=0:

pc += 2;

FCMP_GT(f | oat *FRm FRn) /* FCMP/ GT FRm FRn */

{

}
femp_chk(fl

{

el se

cl ear _cause_VZ();

i f (fcnp_chk( FRm FRn) ==I NVALI D) | | {f cmp_chk( FRm FRn) ==

fcnp_invalid(0):}

else if(fcmp_chk(FRm FRn) = = GI) T = 1;
el se T=0;

pc += 2;

oat *FRm *FRn)

if((data_type_of (FRM) == sNaN) ||

(data_type_of (FRn) == sNaN)) return(l NVALI D);
if((data_type_of (FRm) == gNaN) || ||
(data_type_of (FRn) == gNaN)) return(UO ;

}

uo) {

Rev. 2.00 May 31, 2006 page 175 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

el se case(data_type_of (FRm)) {
NORM :case(data_type_of (FRn))
Pl NF ‘return(GrT);
NI NF s return(NOTGT) ;
def aul t :
}
PZERO :
NZERO case(data_type_of (FRn)) {
PZERO :
NZERO rreturn(EQ;
Pl NF ‘return(Grl);
NI NF s return(NOTGT) ;
def aul t :
}
Pl NF case(data_type_of (FRn)) {
Pl NF :return(EQ
def aul t :return(NOTGT) ;
}
NI NF case(data_type_of (FRn)) {
NI NF ‘return(EQ;
def aul t creturn(GT);
}
}
if(*FRh = = *FRm) return(EQ ;
else if(*FRn > *FRm return(GrT);
el se ret ur n( NOTGT) ;
}
femp_invalid(int cnp_flag)
{
set _V();
i f ((FPSCR & ENABLE V) 0) T = cnp_flag;
}

br eak;
br eak;
br eak;
br eak;

br eak;
br eak;
br eak;
br eak;
br eak;

br eak;
br eak;
br eak;

br eak;
br eak;
br eak;

Rev. 2.00 May 31, 2006 page 176 of 336

REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

FCMP Special Cases
FRm FRn
NORM +0 -0 +INF —INF gNaN sNaN
NORM CMP GT IGT
+0 EQ
-0
+INF IGT EQ
—INF GT EQ
gNaN uo
sNaN Invalid

Notes: 1. UO if result is FCMP/EQ, invalid if result is FCMP/GT.
2. Non-normalized values are treated as zero.

Exceptions: Invalid operation

Note: Four comparison operations that are independent of each other are defined in the IEEE
standard, but the SH-2E supports FCMP/EQ and FCMP/GT only. However, all
comparison conditions can be supported by using these two FCMP instructions in
combination with the BT and BF instructions.

(FRm = = FRn) fcnmp/eq FRm FRn ; bt
(FRm! = FRn) fcnp/eq FRm FRn ; Dbf
(FRm < FRn) fcnmp/gt FRm FRn ; bt
(FRm <= FRn) fcnp/ gt FRn, FRm; bt
(FRm > FRn) fcnmp/ gt FRn, FRm; bt
(FRm >= FRn) fecnp/ gt FRm FRn ; Dbf
Unorder FRm FRn fcnp/eq FRm FRm ; bf

Rev. 2.00 May 31, 2006 page 177 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Examples:

FCVP/ EQ
FLDI 1
FLDI 1
CLRT
FCVP/ EQ
BF
NOP
BT/ S
FADD
NOP
TRGET_F FCVP/ EQ
BT/S TRGET_T
FLDI 1
TRGET_T FCVP/ EQ
BF TRGET_F
NOP
. END

FCWVP/ GT:

FLDI 1
FLDI 1
FADD
CLRT
FCWP/ GT
BT/ S
FLDI 1

TRGET_T FCWMWP/ GT
BT
. END

FR6
FR7

FR6, FR7
TRGET_F

TRGET_T
FR6, FR7

FR6, FR7

FR7
FR6, FR7

FR2
FR7
FR2, FR7

FR2, FR7
TRCGET_T
FR7

FR2, FR7
TRGET_T

; FR6=H 3F800000/ * 1 in base 10*/
; FR7=H 3F800000

;T Bit =0

; Floating point compare, equal

; Don't branch ( T=1)

;. Branch
; Delay slot, FR7=H 40000000/ *2 in base 10*/

; Don't branch ( T=0)

; Delay slot

; Thit=0

; Branch first time only

; FR6=FR7=H 3F800000/ * 1 in base 10*/

; FR2=H 3F800000/ * 1 in base 10*/

; FR7=H 40000000/ *2 in base 10*/

; Thit=0

; Floating point compare, gr eater than
; Branch (T=1)

; Thit=0
; Don't branch (T=0)

Rev. 2.00 May 31, 2006 page 178 of 336

REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.3.4 FDIV (Floating Point Divide): Floating Point Instruction

Format Abstract Code Cycles T Bit
FDIV FRm, FRn FRn/FRm - FRn 111innnnnmmO011 13 —

Description: Arithmetically divides (as floating point numbers) the contents of floating point
register FRn by the contents of floating point register FRm. The calculation result is stored in FRn.

Operation:
FDI V(fl oat *FRm *FRn) /* FDI'V FRm FRn */
{
cl ear _cause_VZ();
if((data_type_of (FRM = = sNaN) | |
(data_type_of (FRn) = = sNaN)) i nval i d(FRn);
else if((data_type_of (FRn) = = gNaN) | |
(data_type_of (FRn) = = gqNaN)) gnan( FRn) ;
el se case((data_type_of (FRm {
NORM
case(data_t ype_of (FRn)) {
Pl NF
NI NF :inf(FRn,sign_of (FRM "si gn_of (FRn)); br eak;
default : *FRn =*FRn / *FRm br eak;
} br eak;
PZERO :
NZERO :
case(data_type_of (FRn)) {
PZERO
NZERO . invalid(FRn); br eak;
Pl NF
NI NF : inf(FN, Sign_of (FRm "sign_of (FRn)); br eak;
default : dz(FRn,sign_of (FRM ~sign_of (FRn)); br eak;
} br eak;
Pl NF
NI NF
case(data_t ype_of (FRn)) {

Rev. 2.00 May 31, 2006 page 179 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Pl NF
NI NF : invalid(FRn); br eak;
default :zero (FRn,sign_of (FRM ”sign_of (FRn)); br eak
br eak;
}
pc += 2;
}
FDIV Special Cases
FRm FRn
NORM +0 -0 +INF —INF gNaN sNaN
NORM DIV 0
+0 Dz Invalid INF
-0
+INF 0 +0 -0 Invalid
—INF -0 +0
gNaN gNaN
sNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation, divide by zero
Examples:

FDI V FR6, FR5 ; Floating point divide
;  Before execution: ; FR5=H 40800000/ * 4 in base 10*/
; ; FR6=H 40400000/ * 3 in base 10*/
;  After execution: ; FRE=H 3FAAAAAA/ *1.33... in base 10*/
; FR6=H 40400000

Rev. 2.00 May 31, 2006 page 180 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.5 FLDIO (Floating Point Load Immediate 0): Floating Point Instruction

Format Abstract Code Cycles T Bit
FLDIO FRn H'00000000 - FRn 1111nnnn10001101 1 —

Description: Loads the floating point number 0 (0x00000000) in floating point register FRn.

Operation:
FLDI O(fl oat *FRn) /* FLDIO FRn */
{
*FRn = 0x00000000;
pc += 2;
}

Exceptions: None
Examples:

FLDI O FR1 ;. Load immediate 0
Before execution: FR1=x (don't care)
. After execution: FR1=00000000

Rev. 2.00 May 31, 2006 page 181 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction
Format Abstract Code Cycles T Bit
FLDI1 FRn H'3F800000 - FRn 1111nnnn10011101 1 —

Description: Loads the floating point number 1 (0x3F800000) in floating point register Frn.

Operation:

FLDI 1(fl oat *FRn)

{
*FRn = O0x3F800000;
pc += 2;

}

Exceptions: None
Examples:

FLDI 1 FR2 ; Load immediate 1
; Before execution:

;. After execution:

/* FLDI1 FRn */

FR2=x (don't care)
FR2=H 3F800000/ * 1 in base 10*/

Rev. 2.00 May 31, 2006 page 182 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction

Format Abstract Code Cycles T Bit
FLDS FRm,FPUL FRm - FPUL 1111nnnn00011101 1 —

Description: Loads the contents of floating point register FRm to system register FPUL.

Operation:
FLDS(f | oat *FRm * FPUL) /* FLDS FRm FPUL */
{
*FPUL = *FRm
pc += 2;
}

Exceptions: None

Examples:
; Before execution of FLDS and FSTS:
FLDI 1 FR6 ; FR6=H 3F800000/ * 1 in base 10*/
FLDI O FR2 ; FR2=0
; After execution of FLDS and FSTS:
FLDS FR6, FPUL ; FPUL=H 3F800000
FSTS FPUL, FR2 ; FR2= H 3F800000

Rev. 2.00 May 31, 2006 page 183 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction

Format Abstract Code Cycles T Bit

FLOAT FPUL,FRn (float) FPUL - FRn 1111nnnn00101101 1 —

Description: Interprets the contents of FPUL as an integer value and converts it into a floating
point number. The result is stored in floating point register FRn.

Operation:
FLOAT(i nt,*FPUL, fl oat *FRn) /* FLOAT FRn */
{
cl ear _cause_VZ();
*FRn = (float)*FPUL;
pc += 2;
}

Exceptions: None

Examples:
; Floating Point Convert from Integer
; Before execution of FLOAT instruction:
MOV. L #H 00000003, R1 ; R1=H 00000003
FLDI O FR2 ; FR2=0
; After execution of FLOAT instruction:
LDS R1, FPUL ; FPUL=H 00000003
FLOAT FPUL, FR2 ; FR2=H 40400000/ * 3 in base 10*/

Rev. 2.00 May 31, 2006 page 184 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction

Format Abstract Code Cycles T Bit
FMAC FRO, FRm,FRn FRO x FRm + FRn - FRn 1111nnnnmmmil110 1 —

Description: Arithmetically multiplies (as floating point numbers) the contents of floating point
registers FRO and FRm. To this calculation result is added the contents of floating point register
FRn, and the result is stored in FRn.

Operation:
FMAC(fl oat *FRO, *FRm * FRn) /* FMAC FRO, FRm FRn */
{
| ong t np_FPSCR;
fl oat *tnmp_FMUL = *FRm
FMUL( FO, t np_FMUL) ;
pc -=2; /* correct pc*/
t np_FPSCR = FPSCR, /* save cause field for FRO*FRm */
FADD(t mp_FMUL, FRn) ;
FPSCR | = tnp_FPSCR;, /* reflect cause field for FO*FRm*/
}

Rev. 2.00 May 31, 2006 page 185 of 336
REJ09B0316-0200
RENESAS



Section 7

Instruction Descriptions

FMAC Special Cases

FRn FRO FRm
+NORM‘—NORM‘ +0 \ -0 +INF | -INF | gNaN | sNaN
NORM | NORM MAC INF
0 Invalid
+INF +INF —INF Invalid +INF —INF
—INF —INF +INF —INF +INF
+0 NORM MAC INF
0 +0 Invalid
+INF +INF —INF Invalid +INF —INF
—INF —INF +INF —INF +INF
-0 +NORM | MAC +0 -0 +INF —INF
—NORM -0 +0 —INF +INF
+0 +0 -0 +0 -0 Invalid
-0 -0 +0 -0 +0
+INF +INF —INF Invalid +INF —INF
—INF —INF +INF —INF +INF
+INF | +NORM | +INF Invalid
—NORM +INF
0 Invalid
+INF Invalid +INF
—INF Invalid +INF +INF
—INF | +NORM | -INF ‘ ~INF
—NORM
0
+INF Invalid ‘ Invalid —INF
—INF —INF —INF Invalid
gNaN 0 Invalid
INF \ Invalid
IsNaN
INaN gNaN gNaN
All types | sNaN
sNaN |All types Invalid

Note: Non-normalized values are treated as zero.

Rev. 2.00 May 31, 2006 page 186 of 336
REJ09B0316-0200

RENESAS




Section 7 Instruction Descriptions

Exceptions: Invalid operation
Examples:

FMAC FRO, FR3, FR5 ; Floating point multiply accumulate
FRO* FR3+FR5- >FR5
; Before execution: ~ FRO=H 40000000/ *2 in base 10*/
; FR3=H 40800000/ * 4 in base 10*/
; FR5=H 3F800000/ * 1 in base 10*/
; After execution: FRO=H 40000000/ * 2 in base 10*/
; FR3=H 40800000/ * 4 in base 10*/
; FR5=H 41100000/ *9 in base 10*/

FMAC FRO, FRO, FR5 ; FRO* FRO+FR5- >FR5
; Before execution: ~ FRO=H 40000000/ *2 in base 10*/
; FR5=H 3F800000/ * 1 in base 10*/
; After execution: FRO=H 40000000/ *2 in base 10*/
; FR5=H 40A00000/ * 5 in base 10*/

FMAC FRO, FR5, FRO ; FRO* FR5+FRO- >FR5
; Before execution: ~ FRO=H 40000000/ *2 in base 10*/
; FR5=H 40A00000/ * 5 in base 10*/
; After execution: FRO=H 41400000/ * 12 in base 10*/
; FR5=H 40A00000/ * 5 in base 10*/

Rev. 2.00 May 31, 2006 page 187 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.10 FMOYV (Floating Point Move): Floating Point Instruction

Format Abstract Code Cycles T Bit
1.FMOV  FRm,Frn FRm - FRn 1111nnnnnmmmmi1100 1 —
2. FMOV.S @Rm,FRn (Rm) - FRn 11121nnnnnmmml000 1 —
3. FMOV.S FRm,@Rn FRm - (Rn) 1111nnnnnmmm1010 1 —
4. FMOV.S @Rm+,FRn (Rm) - FRn,Rm+=4  1111nnnnnmmmi001 1 —

5. FMOV.S FRm,@-Rn Rn-=4,FRm - (Rn) 111lnnnnmmml011l 1 —

6. FMOV.S @(R0,Rm),FRn (RO +Rm) - FRn 11121nnnnmmmm0110 1 —

7. FMOV.S FRm,@(RO,Rn) FRm - (RO + Rn) 1111nnnnnmmmo0111 1 —
Description:

1. Moves the contents of floating point register FRm to floating point register FRn.

Loads the contents of the memory addresses specified by general-use register Rm to floating
point register FRn.

Stores the contents of floating point register FRm in the memory address position specified by
general-use register Rm.

Loads the contents of the memory addresses specified by general-use register Rm to floating
point register FRn. After the load completes successfully, increments the value of Rm by 4.
Stores the contents of floating point register FRm in the memory address position specified by
general-use register Rn-4. After the store completes successfully, the decremented value (Rn-
4) becomes the value of Rm.

Loads the contents of the memory addresses specified by general-use registers Rm and RO to
floating point register FRn.

Stores the contents of floating point register FRm in the memory address position specified by
general-use registers Rn and RO.

Rev. 2.00 May 31, 2006 page 188 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

Operation:
FMOV(fl oat *FRm *FRn) /* FMOWV.S FRm FRn */
{
*FRn = *FRm
pc += 2;
}
FMOV_LQAD(| ong *Rm fl oat *FRn) /[* FMOV @Rm FRn */
{ i f(load_l ong(Rm FRn) ! =Address_Error)
I oad_I ong( Rm FRn) ;
pc += 2;
}
FMOV_STORE(f | oat *FRm | ong *Rn) /* FMOV. S FRm @Rn */
{ if(store_long(FRmtnp_address) !=Address_Error)
store_|l ong( FRm Rn) ;
pc += 2,
}
FMOV_RESTORE(| ong *Rm fl oat *FRn) /[* FMOV. S @mt+, FRn */
{ i f(load_l ong(Rm FRn) ! =Address_Error)
*Rm += 4;
pc += 2;
}
FMOV_SAVE(fl oat *FRm | ong *Rn) /[*FMOV. S FRm @ Rn */
{
| ong *t np_address =*Rn -4;
if(store_long(FRmtnp_address) !=Address_Error)
Rn = tnp_address;
pc += 2;
}

FMOV_LQAD i ndex(long *Rm long *RO, float *FRn)/* FMOV.S @RO, Rm), FRn*/
{

if (load_long(& *Rm*R0), FRn), ! = Address_Error);

pc += 2;

Rev. 2.00 May 31, 2006 page 189 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

FMOV_STORE_i ndex(float *FRmlong *RO, long *Rn)/* FMOV. S FRm @ RO, Rn) */

{
if (store_long(FRm & (*Rn+*R0)), ! = Address_Error);
pc += 2;

}

Exceptions: Address error

Examples:
FMOV. S @rl, FR2 : Load
: Before execution: @R1=H 00ABCDEF
; FR2=0
: After execution: @R1=H 00ABCDEF
; FR2=H 00ABCDEF
FMOV. S FR2, @3 ; Store
: Before execution: @3=0
; FR2=H 40800000
: After execution: @B3=H 40800000
; FR2=H 40800000
FMOV. S @3+, FR3 ; Restore
; Before execution: R3=H 0C700028
; @=3=H 40800000
; FR3=0
; After execution: R3=H 0C70002C
; FR3=H 40800000
FMOV. S FR4, @R3 ; Save
; Before execution: R3=H 0C700044
; @r3=0

FR4A=H 01234567

Rev. 2.00 May 31, 2006 page 190 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

FMOV. S

FMOV. S

FMOV. S

; After execution:

@ RO, R3), FR4; Load with index

FR5, @RO, R3)

FR5, FR6

; Before execution:

; After execution:

; Store with index

; Before execution:

; After execution:

; Register file contents

; Before execution:

; After execution:

R3=H 0C700040
@R3=H 01234567
FR4A=H 01234567

RO=H 00000004
R3=H 0C700040

@1 0C700044=H 00ABCDEF
FR=4

RO=H 00000004

R3=H 0C700040

FR4=H OO0ABCDEF

RO=H 00000028

R3=H 0C700040

@4 0C700068=0

FR5=H 76543210

RO=H 00000028

R3=H 0C700040

@1 0C700068=H 76543210

FR5=H 76543210
FR6=x(don't care)
FR5=H 76543210
FR6=H 76543210

Rev. 2.00 May 31, 2006 page 191 of 336
REJ09B0316-0200

RENESAS



Section 7 Instruction Descriptions

7.3.11 FMUL (Floating Point Multiply): Floating Point Instruction

Format Abstract Code Cycles T Bit

FMUL FRm,FRn FRn x FRm - FRn 1111nnnnnmm0010 1 —

Description: Arithmetically multiplies (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result is stored in FRn.

Operation:

FMJUL(fl oat *FRm *FRn) /* FMJL FRm FRn */

{
cl ear _cause_VZ();
if((data_type_of (FRM = = sNaN) | ]
(data_type_of (FRn) = = sNaN)) i nvali d(FRn);
else if((data_type_of (FR) = = gNaN) ||
(data_type_of (FRn) = = gqNaN)) gnan( FRn) ;
el se case(data_type_of (FRm {
NORM
case(data_type_of (FRn)) {
Pl NF
NI NF :inf(FRn, sign_of (FRM "sign_of (FRn)); break;
default: *FRn=(*FRn)*(*FRm; br eak;
} br eak;
PZERO
NZERO :
case(data_type_of (FRn)) {
Pl NF
NI NF : invalid(FRn); br eak;
defaul t: zero(FRn, sign_of (FRM ~si gn_of (FRn)); break;
} br eak;
PI NF
NI NF
case(data_type_of (FRn)) {
PZERO
NZERO : invalid(FRn); br eak;

Rev. 2.00 May 31, 2006 page 192 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

defaul t:inf (FRn,sign_of (FRM~sign_of (FRn)); break

} br eak;
}
pc += 2,
}
FMUL Special Cases
FRm FRn
NORM +0 -0 +INF —INF gNaN sNaN
NORM MUL 0 INF
+0 0 +0 -0 Invalid
-0 -0 +0
+INF INF Invalid +INF —INF
—INF —INF +INF
gNaN gNaN
sNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation
Examples:

FMUL FR2, FR3 ; Floating point multiply
; Before execution: FR2=H 40000000/ *2 in base 10*/
; FR3=H 40800000/ * 4 in base 10*/
; After execution: FR2=H 40000000
FR3=H 41000000/ * 8 in base 10*/

Rev. 2.00 May 31, 2006 page 193 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.12  FNEG (Floating Point Negate): Floating Point Instruction

Format Abstract Code Cycles T Bit

FNEG FRn —-FRn - FRn 1111nnnn01001101 1 —

Description: Arithmetically negates (as a floating point number) the contents of floating point
register FRn. The calculation result is stored in FRn.

Operation:
FNEG(f | oat *Frn) /* FNEG FRn */
{
cl ear _cause_VZ();
case(data_t ype_of (FRn)) {
gNaN : gnan( FRn) ; br eak;
sNaN : i nval i d(FRn); br eak;
default : *FRn = -(*Frn); break;
}
pc += 2;
}
FNEG Special Cases
FRn NORM +0 -0 +INF —INF gNaN sNaN
FNEG(FRn) NEG -0 +0 —INF +INF gNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation
Examples:

FNEG FR2 ; Floating point negate
; Before execution: FR2=H 40800000/ * 4 in base 10*/
; After execution: FR2=H C0800000/ *—4 in base 10*/

Rev. 2.00 May 31, 2006 page 194 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.13  FSTS (Floating Point Store From System Register): Floating Point Instruction

Format Abstract Code Cycles T Bit
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 1 —

Description: Copies the contents of system register FPUL to floating point register FRn.

Operation:
FSTS(fl oat *FRn, * FPUL) /* FSTS FPUL, FRn */
{
*FRn = *FPUL;
pc += 2;
}

Exceptions: None
Examples:

MOV. L #H 00000002, R2 ; Before execution of FSTS instruction: ; R2=H 00000002

FLDI O FR5 ; FR5=0
LDS R2, FPUL ; After execution of FSTS instruction: ; R2=H 00000002
FSTS FPUL, R5 ; FR5= H 00000002

Rev. 2.00 May 31, 2006 page 195 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.14  FSUB (Floating Point Subtract): Floating Point Instruction

Format Abstract Code Cycles T Bit

FSUB FRm, FRn FRn - FRm - FRn 1111nnnnnmm0001 1 —

Description: Arithmetically subtracts (as floating point numbers) the contents of floating point
register FRm from contents of floating point register FRn. The calculation result is stored in FRn.

Operation:
FSUB(fl oat *FRm FRn) /* FSUB FRm FRn */
{
cl ear _cause_VZ();
i f((data_type_of (FRM = = sNaN) |
(data_type_of (FRn) = = sNaN)) i nvali d(FRn);
else if((data_type_of (FR) = = gNaN) | |
(data_type_of (FRn) = = qNaN)) gnan( FRn) ;
el se case(data_type_of (FRm)) {
NORM
case(data_tyoe_of (FRn)) {
Pl NF : i nf (FRn, 0); br eak;
NI NF : inf(FRn, 1); br eak;
def aul t : *FRn = *FRn - *FRm br eak;
} br eak;
PZERO
case(data_type_of (FRn)) {
NORM : *FRn = *FRn- *FRm br eak;
PZERO : zero( FRn, 0) ; br eak;
NZERO : zero(FRn, 1); br eak;
Pl NF : i nf (FRn, 0); br eak;
NI NF : inf(FRn,1); br eak;
} br eak;
NZERO :
case(data_type_of (FRn)) {
NORM : *FRn = *FRn - *FRm break;
PZERO

Rev. 2.00 May 31, 2006 page 196 of 336
REJ09B0316-0200
RENESAS



Section 7

Instruction Descriptions

NZERO zero( FRn, 0) ; br eak;
Pl NF i nf (FRn, 0); br eak;
NI NF inf(FRn,1); br eak;
} br eak;
Pl NF
case(data_type_of (FRn)) {
NI NF i nvali d(FRn); br eak;
def aul t inf(FRn, 1); br eak;
} br eak;
NI NF
case(data_type_of (FRn)) {
Pl NF i nval i d(FRn); br eak;
def aul t i nf (FRn, 0); br eak;
} br eak;
}
pc += 2;
}
FSUB Special Cases
FRm FRn
NORM +0 ‘ -0 +INF —INF gNaN sNaN
NORM SuB +INF —INF
+0 -0
-0 +0
+INF —INF Invalid
—INF +INF Invalid
gNaN gNaN
sNaN Invalid
Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation

Rev. 2.00 May 31, 2006 page 197 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

Examples:

FSUB FRO, FR3 ; Floating point subtract
; Before execution: ; FRO=H 3F800000/ * 1 in base 10*/
; ; FR3=H 40E00000/ * 7 in base 10*/
; After execution: ; FRO=H 3F800000/ * 1 in base 10*/
; FR3=H 40C00000/ * 6 in base 10*/

FSUB FR3, FR2
; Before execution: ; FR2=H 40800000/ * 4 in base 10*/
; ; FR3=H 40C00000/ * 6 in base 10*/
; After execution: ; FR2=H C0000000/ *-2 in base 10*/
; FR3=H 40C00000/ * 6 in base 10*/

Rev. 2.00 May 31, 2006 page 198 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

7.3.15 FTRC (Floating Point Truncate And Convert To Integer): Floating Point
Instruction

Format Abstract Code Cycles T Bit
FTRC FRm, FPUL (long) FRm - FPUL 1111nnnn00111101 1 —

Description: Interprets the contents of floating point register FRm as a floating point number and
converts it to an integer by truncating everything after the decimal point. The calculation result is
stored in FRn.

Operation:
#define N_I NT_RANGE 0xCF000000 /* 01.000000 * 2716 */
#defi ne P_I NT_RANGE 0x47FFFFFF [* 1.fffffe * 2730 */
FTRC(fl oat *FRmint *FPUL) /* FTRC FRm FPUL */
{

cl ear _cause_VZ();
case(ftrc_type_of (FRn)) {

NORM : *FPUL = (1 ong) (*FRmM ; break;
Pl NF : ftrc_invalid(0); br eak;
NI NF : ftrc_invalid(1); br eak;
}
pc += 2;
}
int ftrc_type_of(long *src)
{
| ong abs;
abs = *src & Ox7FFFFFF;
i f(sign_of(src) = = 0) {
i f(abs > O0x7F800000) return(NINF); /* NaN+/
else if(abs > P_INT_RANGE) return(PINF); /* out of range, +I NF*/
el se return(NORM ; /* +0, +NORM  */
}
else {

if(*src > N_INT_RANGE) return(NINF);/* out of range ,+I NF, NaN*/

Rev. 2.00 May 31, 2006 page 199 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

el se return(NORM ; /* -0, - NORW/
}
}
ftrc_invalid(long *dest,int sign)
{
set _V();
i f((FPSCR & ENABLE V) = = 0) {
if(sign = = 0) *dest = OX7FFFFFFF;
el se *dest = 0x80000000;
}
}

FTRC Special Cases

FRn NORM +0 -0 positive |negative| +INF -INF gNaN sNaN
outof | outof
range rarge
FTRC TRC 0 0 7FFFFFF8000000 | Invalid | —-MAX | -MAX | —-MAX
(FRn) F 0 +MAX | Invalid | Invalid | Invalid
Invalid

Note: Non-normalized values are treated as zero.

Exceptions: Invalid operation
Examples:

MOV. L #H 402EDOEB, R2

LDS R2, FPUL

FSTS FPUL, FR6 ; FR6=H 402ED9EB/ *2.7320 in base 10*/
FTRC FR6, FPUL

STS FPUL, R2 ; R2=H 00000002/ *2 in base 10*/

; Before execution of FTRC and STS:
; R2=H 402ED9EB
FR6=H 402ED9EB
; After execution of FTRC and STS:
R2=H 00000002
; FR6=H 402ED9EB

Rev. 2.00 May 31, 2006 page 200 of 336
REJ09B0316-0200

RENESAS




Section 7 Instruction Descriptions

7.3.16 LDS (Load to System Register): FPU Related CPU Instruction

Format Abstract Code Cycles T Bit
1.LDS Rm, FPUL Rm - FPUL 0100nnnn01011010 1 —
2.LDS.L @Rm+,FPUL (Rm) - FPUL, Rm+=4  0100nnnn01010110 1 —
3.LDS Rm,FPSCR Rm - FPSCR 0100nnnn01101010 1 —
4.LDS.L @Rm+,FPSCR (Rm) - FPSCR, Rm+=4 0100nnnn01100110 1 —

Description:

1. Moves the contents of general-use register Rm to system register FPUL.

2. Loads the contents of the memory addresses specified by general-use register Rm to system
register FPUL. After the load completes successfully, increments the value of Rm by 4.

3. Moves the contents of general-use register Rm to system register FPSCR. Previously defined
bits in FPSCR are not changed.

4. Loads the contents of the memory addresses specified by general-use register Rm to system
register FPSCR. After the load completes successfully, increments the value of Rm by 4.
Previously defined bits in FPSCR are not changed.

Operation:

#defi ne FPSCR_MASK 0x00018C60

LDS(1 ong *Rm * FPUL) /* LDS Rm FPUL */
{
*FPUL = *Rm
pc += 2;
}
LDS_RESTORE(!| ong *Rm *FPUL) /* LDS.L @mt+, FPUL */
{
if(load_l ong(Rm FPUL) != Address_Error) *Rm += 4 ;
pc += 2;
}
LDS(I ong *Rm * FPSCR) /* LDS Rm FPSCR */
{

*FPSCR = *Rm & FPSCR_MASK;
pc += 2;

Rev. 2.00 May 31, 2006 page 201 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

}
LDS_RESTORE(| ong *Rm *FPSCR) /* LDS.L @mt+, FPSCR */
{
I ong *t np_FPSCR,;
i f(load_|l ong(Rm tnp_FPSCR) != Address_Error){
*FPSCR =*t mp_FPSCR & FPSCR_MASK;

*Rm += 4 ;
}
pc += 2;
}
Exceptions: Address error
Examples:
e LDS
Example 1
MOV. L #H 12345678, R2 ; Before execution of LDS and FSTS instructions:
; R2=H 12345678
FLDI O FR3 ; FR3=0
LDS R2, FPUL ; After execution of LDS and FSTS instructions:
; R2=H 12345678
FSTS FPUL, FR3 ; FR3= H 12345678
Example 2
MOV. L #H 00040801, R4 ;. After execution of LDS instruction:
LDS R4, FPSCR ; FPSCR=00040801

Rev. 2.00 May 31, 2006 page 202 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

« LDS.LL
Example 1

LD O
MOV. L
MOV. L
MOV. L
LDS. L
FSTS

Example 2

MOV. L
MOV. L
MOV. L

LDS. L

FRO

#H 87654321,
#H 0C700128,
R4, @8

@r8+, FPUL
FPUL, FRO

#H 000400C01,
#H 0C700134,
R4, @8

@8+, FPSCR

R4
R8

R4
R8

; Before execution of LDS.L and FSTS instructions:

1

FRO=0
R8=0C700128

; After execution of LDS.L and FSTS instructions:

1

FRO=87654321
R8=0C70012C

; Before execution of LDS.L instruction:

R8=0C700134

; After execution of LDS.L instruction:

R8=0C700138
FPSCR=00040001

Rev. 2.00 May 31, 2006 page 203 of 336

RENESAS

REJ09B0316-0200



Section 7 Instruction Descriptions

7.3.17  STS (Store from FPU System Register): FPU Related CPU Instruction

Format Abstract Code Cycles T Bit
1.STS FPUL,Rn FPUL - Rn 0000nnnn01011010 1 —
2. STS.L FPUL,@-Rn Rn-=4,FPUL -~ @(Rn) 0100nnnn01010010 1 —
3.8TS FPSCR,Rn FPSCR - Rn 0000nnnn01101010 1 —
4. STS.L FPSCR,@-Rn Rn- =4, FPSCR - @(Rn) 0100nnnn01100010 1 —

Description:

1. Moves the contents of system register FPUL to general-use register Rn.

2. Stores contents of system register FPUL at the memory address position specified by general-
use register Rn-4. After the store completes successfully, the decremented value becomes the
value of Rn.

3. Moves the contents of system register FPSCR to general-use register Rn.

4. Stores contents of system register FPSCR at the memory address position specified by general-
use register Rn-4. After the store completes successfully, the decremented value becomes the
value of Rn.

Operation:
STS(I ong *FPUL, *Rn) /* STS.L FPUL, Rn */
{
*Rn = *FPUL;
pc += 2;
}
STS_SAVE(| ong *FPUL, * Rn) /* STS.L FPUL, @Rn */
{

Il ong *tnp_address = *Rn - 4;
if(store_l ong(FPUL, t np_address) != Address_Error)
Rn = tnp_address;

pc += 2;
}
STS(I ong *FPSCR, *Rn) /* STS FPSCR, Rn */
{

*Rn = *FPSCR,

Rev. 2.00 May 31, 2006 page 204 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

pc += 2;

STS STore from FPU System regi ster

STS_RESTORE | ong *FPSCR, * Rn) /* STS.L FPSCR, @ Rn */
{
|l ong *tnp_address = *Rn - 4;
if(store_|l ong(FPSCR tnp_address) != Address_Error)
Rn = tnp_address
pc += 2;
}

Exceptions: Address error
Examples:

* STS
Example 1

MOV. L #H 12ABCDEF, R12
LDS. L @r12, FPUL

STS FPUL, R13
; After execution of STS instruction:
; R13 = 12ABCDEF
Example 2
STS FPSCR, R2

; After execution of STS instruction:

Contents of FPSCR at that point stored in R2 register

Rev. 2.00 May 31, 2006 page 205 of 336
REJ09B0316-0200
RENESAS



Section 7 Instruction Descriptions

+ STS.L
Example 1

MOV. L #H 0C700148,

STS FPUL, @R7

Example 2

MOV. L #H 0C700154,

STS. L FPSCR, @R8

R7

; Before execution of STS.L instruction:
R7 = H 0C700148
. After execution of STS.L instruction:
R7 = H 0C700144, contents of FPUL saved at
address H 0C700144
| ocation H 0C700144

R8

; After execution of STS.L instruction:
; Contents of FPSCR saved at address H'0C700150

Rev. 2.00 May 31, 2006 page 206 of 336

REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

Section 8 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

8.1 Basic Configuration of Pipelines
The Five-Stage Pipeline: Pipelines are composed of the following five stages:

* [IF (Instruction fetch)
Fetches instruction from the memory where the program is stored.
* ID (Instruction decode)
Decodes the instruction fetched.
* EX (Instruction execution)
Does data operations and address calculations according to the results of decoding.
* MA (Memory access)

Accesses data in memory. Generated by instructions that involve memory access, with some
exceptions.

*  WB (Write back)

Returns the results of the memory access (data) to a register. Generated by instructions that
involve memory loads, with some exceptions.

These stages flow with the execution of the instructions and thereby constitute a pipeline. At a
given instant, five instructions are being executed simultaneously. The basic pipeline flow is as
shown in figure 8.1. The period in which a single stage is operating is called a slot and is indicated
by two-way arrows (« — ).

All instructions have at least the 3 stages IF, ID and EX, but not all have stages MA and WB. The
way the pipeline flows also varies with the type of instruction, with some having two MA stages,
some accessing the FPU (mm), and so on. Finally, conflicts can occur, for example between IF
and MA. When such a conflict occurs, the pipeline flow changes.

Rev. 2.00 May 31, 2006 page 207 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

O OO O OO OO DO > <> <> <+» : Slot
Instruction1l IF ID EX MA WB

Instruction
Instruction 2 IF ID EX MA WB stream
Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB
Instruction 6 IF ID EX MA WB
.—>
Time

Figure 8.1 Basic Structure of Pipeline Flow

FPU Pipeline: The durations of the stages in the FPU pipeline are the same as those of the stages
in the CPU pipeline. In both pipelines, the first stage is instruction fetch (IF). The FPU pipeline
also has the following four additional stages:

* DF (Decode FPU)

Decodes the fetched instruction.
* EIl (FPU execution stage 1)

Initializes the floating-point operation.
* E2 (FPU execution stage 2)

Completes the floating-point operation.
e SF (Store FPU)

Stores the result in the FPU register.

All instructions pass through both the CPU and the FPU pipelines. Depending on the instruction,
operations are performed either by the CPU pipeline alone or by both pipelines.

In the case of floating-point instructions and FPU-related CPU instructions, the FPU pipeline and
CPU pipeline operate simultaneously in parallel.

In the case of instructions involving the CPU only, the FPU pipeline does not operate; only the
CPU pipeline operates.

Refer to 8.8 Instruction Pipeline Operation for details.

Rev. 2.00 May 31, 2006 page 208 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

8.2 Slot and Pipeline Flow

The time period in which a single stage operates called a slot. Slots must follow the rules
described below.

Instruction Execution: Each stage (IF, ID, EX, MA, WB) of an instruction must be executed in
one slot. Two or more stages cannot be executed within one slot (figure 8.2), with exception of
WB and MA. Since WB is executed immediately after MA, however, some instructions may
execute MA and WB within the same slot.

X 4> «—> 4> 4> 4> 4> <> <> <> <> Sot
Instruction 1 IF ID EX MA WA

Instruction 2 IF ID EX MA W/D

Note: ID and EX of instruction 1 are executed in the same slot.

Figure 8.2 Impossible Pipeline Flow 1

Slot Sharing: A maximum of one stage from another instruction may be set per slot, and that
stage must be different from the stage of the first instruction. Identical stages from two different
instructions may never be executed within the same slot (figure 8.3).

X 4> 4> 4> 4> 4> 4> <> <> <> <> : Slot
Instruction 1 IF ID EX MA WB
Instruction 2 IF ID EX MA WB

Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB

Note: Same stage of another instruction is being executed in same slot.

Figure 8.3 Impossible Pipeline Flow 2

Rev. 2.00 May 31, 2006 page 209 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

Slot Length: The number of states (system clock cycles) S for the execution of one slot is
calculated with the following conditions:

* S = (the cycles of the stage with the highest number of cycles of all instruction stages
contained in the slot). This means that the instruction with the longest stage stalls others with
shorter stages.

* The number of execution cycles for each stage:

O IF  The number of memory access cycles for instruction fetch

O ID  Always one cycle

O EX Always one cycle

O MA The number of memory access cycles for data access
0 WB Always one cycle

As an example, figure 8.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is
being stalled.

<+“——P> “——> > «—————p <P <> : Slot

(2 2 1 G (1) (1) < Number of
. cycles
Instruction 1 IF IF ID — EX MA MA MA WB
Instruction 2 IF IF ID EX — — MA WB

Figure 8.4 Slots Requiring Multiple Cycles

Rev. 2.00 May 31, 2006 page 210 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

83 Number of Instruction Execution Cycles

The number of instruction execution cycles is counted as the interval between execution of EX
stages. The number of cycles between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 8.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one cycle, the execution time of instruction
2 is one cycle.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4,
using a MOV Rm, Rn that follows instruction 3. (In figure 8.5, the execution time of instruction 3
would thus be one cycle.) In this example, the MA of instruction 1 and the IF of instruction 4 are
in contention. For operation during the contention between the MA and IF, see section 8.4,
Contention between Instruction Fetch (IF) and Memory Access (MA).

The total execution time for instructions 1 through 3 in Figure 8 is seven cycles (5 + 1 + 1).

<> <4» <4» : Slot

) () @) 4) @ @
Instructionl IF IF ID — — MA MA MA W/D
Instruction 2 IF IF D — — — —
Instruction 3 F IF — — — ID MA
(Instruction 4: MOV Rm, Rn IF 1D [EX])

Figure 8.5 Method for Counting Instruction Execution Cycles

Rev. 2.00 May 31, 2006 page 211 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

8.4 Contention between Instruction Fetch (IF) and Memory Access (MA)

Basic Operation when IF and MA Are in Contention: The IF and MA stages both access
memory, so they cannot operate simultaneously. When the IF and MA stages both try to access
memory within the same slot, the slot splits as shown in figure 8.6. When there is a WB, it is
executed immediately after the MA ends.

A B C D E F G
> 4> 4> 4> > 4> <> <> <> Sot

Instruction1  IF  ID EX W/D MA of instruction 1 and IF of

Instruction 2 IE ID EX W/D instruction 4 contend at D

Instruction 3 IE ID EX MA of instruction 2 and IF of
instruction 5 contend at E

Instruction 4 ID EX

Instruction 5 ID EX

When MA and IF are + in contention, the following occurs:

A B C D E F G
<> 4> 4> «——> «—> <> 4> : Sot
Instruction1 IF ID EX WB Splitat D
Instruction 2 IF ID — EX wB Split at E
Instruction 3 IF — ID — EX
Instruction 4 — ID EX
Instruction 5 ID EX

Figure 8.6 Operation when IF and MA Are in Contention

The slots in which MA and IF contend are split into two cycles. MA is given priority to execute in
the first half (when there is a WB, it immediately follows the MA), and the EX, ID, and IF are
executed simultaneously in the latter half. For example, in figure 8.6 the MA of instruction 1 is
executed in slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are
executed simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX
of instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of cycles for a slot in which MA and IF are in contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

Rev. 2.00 May 31, 2006 page 212 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Relationship between Locations of Instructions in Memory and IF Stages: The SH-2E
accesses instructions in memory in the 32-bit mode. Since all of the SH-2E instructions have a
fixed length of 16 bits, it is basically possible to access two instructions per IF stage. Whether the
IF fetches one instruction or two depends on where in memory the instruction(s) are located
(word/longword boundary).

If an instruction is located at a longword boundary, it is possible to fetch two instructions using a
single IF operation. This means that the IF for the next instruction does not generate a separate bus
cycle in order to fetch the instruction. In addition, the IF for the instruction after that fetches two
instructions, and therefore the IF for the instruction which follows again generates no bus cycle.

In other words, IF stages for instructions located in memory at longword boundaries (instructions
for which the bottom two address bits are 00: A1 = 0, A0 = 0) actually fetch two instructions.
Therefore no bus cycle is generated by the IF for the following instruction. These instruction
fetches that do not generate bus cycles are indicated in lower case as "if" rather than IF. An "if" is
always one cycle.

On the other hand, if due to branching or the like an instruction at a word boundary (instructions
for which the bottom two address bits are 10: A1 = 1, A0 = 0) is fetched, only one instruction can
be fetched in the IF bus cycle. Consequently, the IF for the next instruction generates a bus cycle.
Then two instructions are fetched from the subsequent IF onward. Figure 8.7 illustrates the
operations described above.

32 bits <> <> 4> 4> <> <> <> > > > St

...... Instruction 1 ID EX . Bus cycle generated

Instruction 1! Instruction 2 ) . i :
_ Instruction 2 if 1D EX if 1 No bus cycle

: ) generated
- T KL Instruction 3 LF] ID EX
Instruction 3| Instruction 4
! Instruction 4 if ID EX
Instruction 5[ Instruction 6 | Instruction 5 IF IP EX
1 Instruction 6 if 1D EX

On-chip ROM/RAM
or on-chip cache (a) Fetches Beginning with an Instruction (Instruction 1)
Located at a Long Word Boundary

> 4> 4> 4> <> > <> 4> 4> <> Slot
ID EX : Bus cycle generated

: Instruction 2|| Instruction 2 D EX if . No bus cycle
: i generated
- : R Instruction 3 if ID EX
Instruction 3| Instruction 4
; D EX

Instruction 4

R R Instruction 5 ;
Instruction 5| Instruction 6 if ID EX

Instruction 6 o X ) .
(b) Fetches Beginning with an Instruction (Instruction 2)
Located at a Word Boundary

Figure 8.7 Relationship between Locations of Instructions in Memory and IF Stages

Rev. 2.00 May 31, 2006 page 213 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

Relationship between Position of Instructions Located in On-Chip Memory and Contention
between IF and MA: When an instruction is located in on-chip memory, there are instruction
fetch stages (“if”, written in lower case) that do not generate bus cycles. When an if is in
contention with an MA, the slot will not split, as it does when an IF and an MA are in contention,
because ifs and MAs can be executed simultaneously. Such slots execute in the number of cycles
the MA requires for memory access. This is illustrated in Figure 8.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. In other words, if an instruction with a four (five) stage
pipeline consisting of IF, ID, EX, MA, (MB) is located at a memory longword boundary (the
instruction's bottom two address bits are 00: A1 =0, A0 = 0), the MA stage uses the same slot as
the if following it, so no stall occurs.

32 bits

- > > > > > > > > > >
R P Instruction 1 ID EX MA! WB : Split
Instruction 1| Instruction 2 . ) Vi - i
Instruction 2 if 1D EX MAl — ws -Jf.i :Nosplit
- B R Instruction 3 IF ID — EX
Instruction 3| Instruction 4
! Instruction 4 vif o — ID EX
I YT i EX
Instruction 5|! Instruction 6 Instruction 5 D
Instruction 6 if ID EX

Note: In slot A there is contention between MA and if, so there is no split. In slot B there is contention
between MA and IF, resulting in a split.

Figure 8.8 Relationship between Position of Instructions Located in On-chip Memory and
Contention between IF and MA

Rev. 2.00 May 31, 2006 page 214 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

8.5 Effects of Memory Load Instructions on the Pipeline

Instructions that involve loading from memory return data to the destination register during the
WB stage, which comes at the end of the pipeline. The WB stage of such a load instruction (load
instruction 1) will thus not have ended before after the EX stage of the instruction that
immediately follows it (instruction 2) begins.

When instruction 2 uses the same destination register as load instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. When the destination register of load instruction 1 is the same as the destination, not the
source, of instruction 2 it will still split.

When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched by
instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

¢ When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1

*  When instruction 2 is MAC @Rm+,@Rn+ and the destinations of Rm and load instruction 1
were the same

The number of cycles in the slot generated by the split is the number of MA cycles plus the
number of IF (or if) cycles, as shown in figure 8.9. This means the execution speed will be
lowered if the instruction that will use the results of the load instruction is placed immediately
after the load instruction. The instruction that uses the result of the load instruction will not slow
down the program if placed one or more instructions after the load instruction.

<> 4> 4> «—>» <> <> : Sot
Load instruction 1 (MOV.W@RO,R1) IF EX EX wB

Instruction 2 (ADD R1,R2) IF ID —
Instruction 3 IF — ID EX -
Instruction 4 IF ID

Figure 8.9 Effects of Memory Load Instructions on the Pipeline (1)

Rev. 2.00 May 31, 2006 page 215 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

8.6 FPU Contention

In addition to the LDS and STS instructions, which move data between the CPU and FPU, loading
and storing floating point numbers also uses the MA stage of the pipeline. Consequently, such
instructions create contention with the IF stage.

If the register (FRO to FR15, FPUL) to which the result of a floating point arithmetic calculation
instruction, the FMOV instruction, or a floating point number load instruction is stored is read
(used as the source register) by the next instruction, the execution of this instruction (the next
instruction) is delayed by one slot cycle (Figure 8.10).

Slot 4> 4> 4> 4> 4> 4> 4> <> <>

Floating point arithmetic
calculation instruction
(FADD FR1, FR2)

Next floating point instruction IF DF — El1 E2 SF
(FMOV FR2, FR3)

IF ID E1 E2 SF

Figure 8.10 FPU Contention 1

If the LDS or LDS.L instruction is used to change the value of FPSCR, the execution of the next
instruction is delayed by two slot cycle (Figure 8.11).

Slot 4> 4> 4> 4> <> <> <> <> <>

Instruction 1
(DSR2, Fpscr) F 1D El E2 SF

Instruction 2
IF DF — — E1 E2 F
(FADD FR4, FR5) S

Figure 8.11 FPU Contention 2

If the STS or STS.L instruction is used to read the value of FPSCR the execution is delayed by
two slot cycle (Figure 8.12).

Slot 4> 4> 4> <> > P> P> D> >

Instruction 1
(FADD FR6, FRY) IF ID E1 E2 SF

Instruction 2 IF DF — — E1 E2 SF
(STS FPSCR, R3)

Figure 8.12 FPU Contention 3

Rev. 2.00 May 31, 2006 page 216 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

The FDIV instruction require 13 cycles in the E1 stage. During this period, no other floating point
instruction or FPU-related CPU instruction may enter the E1 stage. If another floating point
instruction or FPU-related CPU instruction are encountered before the FDIV instruction has
finished using the E1 stage, the fixed slot duration for the execution of that instruction is delayed,
and the instruction enters the E1 stage only after the FDIV instruction has finished using the SF
stage (Figure 8.13).

Slot 4> 4> 4> 4> 4> <> 4> D> > <>
Instruction 1

Floating point instruction IF DF --+ -+ -+ .-+ E1 E2 SF
(FMOV FR8, FR10)

Figure 8.13 FPU Contention 4

8.7 Programming Guide

When writing programs, follow the guidelines below in order to increase instruction execution
speed.

* Instructions with memory accesses (MA) should be located in memory at longword boundaries
(position where the instruction's bottom two address bits are 00: A1 =0, A0 = 0). This will
prevent contention between MA and instruction fetch (IF).

* The instruction immediately following a memory load instruction should not use the same
register as the destination register of the load instruction.

» Instructions that use the FPU should be arranged so that they are not sequential. Also,
instructions that access registers MACH and MACL in order to fetch the results of operations
performed by the FPU should no be situated immediately following instructions that use the
FPU.

* The instruction immediately preceding a floating-point arithmetic operation instruction should
not use the destination register of the floating-point operation instruction.

* As far as possible, avoid placing a floating-point instruction or FPU-related CPU instruction
within the 14 instructions following the FDIV instruction.

Rev. 2.00 May 31, 2006 page 217 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

8.8 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
cycles can be calculated.

In the following figures, “Instruction A” refers to the instruction being discussed. When “IF” is
written in the instruction fetch stage, it may refer to either “IF” or “if”. When there is contention
between IF and MA, the slot will split, but the manner of the split is not discussed in the tables,
with a few exceptions. When a slot has split, see section 8.4, Contention between Instruction Fetch
(IF) and Memory Access (MA). Base your response on the rules for pipeline operation given
there.

Table 8.1 shows the number of instruction stages and number of execution cycles as follows:

* Type: Given by function

» Category: Categorized by differences in instruction operation

» Stages: The number of stages in the instruction

* Cycles: The number of execution cycles when there is no contention
» Contention: Indicates the contention that occurs

* Instructions: Gives a mnemonic for the instruction concerned

Rev. 2.00 May 31, 2006 page 218 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Table 8.1 Number of Instruction Stages and Execution Cycles
Type Category Stages Cycles Contention Instruction
Data Register- 3 1 — MoV #i mm Rn
T[ransfer. register NOV RmM Rn
instructions transfer )
instructions MVA  @disp, PC), RO
MOVT Rn

SWAP. B Rm Rn
SWAP. W Rm Rn
XTRCT Rm Rn

Memory 5 1 » Contention occurs MV. W @di sp, PC), Rn
load when an MV.L  @disp, PC), Rn
instructions instruction that
uses the same MV.B  Rm @un
destination MOV. W Rm @n
mmediately afer MOV Rm @
this instruction MOV.B  @m+, Rn
« MA contends with MV. W @mt, Rn
IF MOV.L @R+, Rn
MWV.B @disp, Rm, R0
MV. W @disp, Rm, RO
MWV.L @disp, Rm,Rn
MV.B @RO,Rm, Rn
MOV. W @RO,Rm, Rn
MOV.L @RO,Rm,Rn
MWV.B @disp, GBBR), RO
MOV. W @disp, GBR), RO
MWV.L @disp, GBBR), RO

Rev. 2.00 May 31, 2006 page 219 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Type Category Stages Cycles Contention

Instruction

Data Memory 4 1
transfer store

instructions instructions

(cont)

MA contends with IF MOV. B @Rm Rn

MOV.
MOV.
MOV.

MOV.
MOV.

w

@Rm Rn

@Rm Rn

Rm @-Rn

Rm @-Rn

Rm @-Rn

RO, @di sp, Rn)
RO, @ di sp, Rn)
Rm @di sp, Rn)
Rm @ RO, Rn)
Rm @ RO, Rn)
Rm @ RO, Rn)
RO, @ di sp, GBR)
RO, @ di sp, GBR)
RO, @ di sp, GBR)

Arithmetic  Arithmetic 3 1
instructions instructions

between

registers

(except

multi-

plication

instructions)

— ADD
ADD

ADDC
ADDV

CVP/ EQ
CVP/ EQ
CVP/ HS
CWPI GE

CWP/ HI

CWwP/ GT

Rm Rn
#i mm Rn
Rm Rn
Rm Rn
#i mMmm RO
Rm Rn
Rm Rn
Rm Rn
Rm Rn
Rm Rn

CWP/ PZ Rn
CWP/ PL Rn
CWP/ STRRmM Rn

D v1

Rm Rn

DIVOS RmRn
DI VOU

Rev. 2.00 May 31, 2006 page 220 of 336

REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

Type Category Stages Cycles Contention Instruction
Arithmetic DT Rn
instructions EXTS.B Rm Rn
(cont)

EXTS. W Rm Rn
EXTU. B Rm Rn
EXTU. W Rm Rn
NEG Rm Rn
NEGC Rm Rn
SUB Rm Rn
SUBC Rm Rn
SUBvV Rm Rn

Multiply/add 7 3/(2)*"  « If an instruction MAC. W  @Rm+, @Rn+
instructions that uses the FPU
follows this

instruction, FPU
contention occurs.

* MA contends with

IF
Double- 9 3/(2to < If aninstruction MAC.L @Rm+, @Rn+
length 4y that uses the FPU
multiply/ follows this
accumulate instruction, FPU
instruction contention occurs.

* MA contends with

IF
Multiplica- 6 110 3*" « If an instruction MULS. W Rm Rn
Tuon . that uses'the FPU MULU. W Rm Rn
instructions follows this

instruction, FPU
contention occurs.

* MA contends with

IF
Double- 9 2to4*" « If an instruction DMULS. L Rm Rn
Ienth that uses.the FPU DVULU. L Rm Rn
multiply/ follows this
accumulate instruction, FPU MIL.L  RmRn
instruction contention occurs.

* MA contends with
IF

Rev. 2.00 May 31, 2006 page 221 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Type Category Stages Cycles Contention Instruction
Logic Register- 3 1 — AND Rm Rn
operation register AND # mm RO
instructions logic
operation NOT Rm Rn
instructions OR Rm Rn
oR #i mm RO
TST Rm Rn
TST #i mm RO
XOR Rm Rn
XOR #i mm RO
Memory 6 3 MA contends with IF AND. B #i nm @ RO, GBR)
logic OR B # mm @RO, GBR)
operations ]
instructions TST.B  #imm @QRO, GBR)
XOR. B #i nm @ RO, GBR)
TAS 6 4 MA contends with IF  TAS. B @Rn
instruction
Shift Shift 3 1 — ROTL Rn
instructions instructions ROTR Rn
ROTCL Rn
ROTCR Rn
SHAL Rn
SHAR Rn
SHLL Rn
SHLR Rn
SHLL2 Rn
SHLR2 Rn
SHLL8 Rn
SHLR8 Rn
SHLL16 Rn
SHLR16 Rn

Rev. 2.00 May 31, 2006 page 222 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Type Category Stages Cycles Contention Instruction
Branch Conditional 3 7K R — BF | abel
instructions .branch. BT | abel
instructions
Delayed 3 21* — BF/S | abel
conditional BT/ S | abel
branch
instructions
Uncondition 3 2 — BRA | abel
gl bran(?h BRAFE RmM
instructions
BSR | abel
BSRF Rm
JwP @Rm
JSR @Rm
RTS
System System 3 1 — CLRT
control control ALU LDC Rm SR

instructions instructions
LDC Rm GBR

LDC Rm VBR
LDS Rm PR
NOP

SETT

STC SR, Rn
STC GBR Rn
STC VBR, Rn
STS PR, Rn

LDS.L 5 1 e Contentionoccurs LDS.L @ m+, PR
instructions when an
(PR) instruction that

uses the same

destination

register is placed
immediately after
this instruction

* MA contends with
IF

Rev. 2.00 May 31, 2006 page 223 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Type Category Stages Cycles Contention Instruction
System STS.L 4 1 MA contends with IF  STS. L PR, @-Rn
control instruction
instructions (PR)
(cont)
LDC.L 5 3 « Contentionoccurs LDC.L @Rm+, SR
instructions when an LDC.L @m+, GBR
instruction that ' '
uses the same LDC.L  @Rm, VBR
destination
register is placed
immediately after
this instruction
* MA contends with
IF
STC.L 4 2 MA contends with IF  STC. L SR, @-Rn
instructions STC.L GBR @Rn
STC.L VBR, @Rn
Register -~ 4 1 » Contention occurs CLRVAC
MAC with multiplier LDS RM MACH
transfer .
* MA contends with
instruction IF LDS Rm MACL
Memory - 4 1 * Contentionoccurs LDS.L @+, MACH
MAC with multiplier LDS.L @m+, MACL
.transfer. * MA contends with
instructions IF
MAC - 5 1 » Contention occurs STS MACH, Rn
register with multiplier STS MACL. Rn
.transfer. » Contention occurs
instruction

when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

* MA contends with
IF

Rev. 2.00 May 31, 2006 page 224 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

Type Category Stages Cycles Contention Instruction
System MAC - 4 1 * Contention occurs STS.L MACH, @Rn
control memory with multiplier STS.L MACL, @Rn
instructions .transfer. « MA contends with
(cont) instruction IF
RTE 5 4 — RTE
instruction
TRAP 9 8 — TRAPA #imm
instruction
SLEEP 3 3 — SLEEP
instruction
FPU-related FPULload 5 (FPU 1 » Contention occurs LDS Rm FPUL
CPU instruction pipeline) if next instruction  LDS. L @mt, FPUL
instruction 4 (CPU reads FPUL
pipeline) * MAin CPU
pipeline contends
with IF
FPSCRload 5 (FPU 1 » Contention occurs LDS Rm FPSCR
instruction pipeline) as shown in LDS. L @+, FPSCR
4 (CPU Figure 8.11
pipeline)
FPUL store 4 (FPU 1 » Contention occurs STS FPUL, Rn
instruction pipeline) if next instruction
(STS) 5 (CPU uses Rn
pipeline) * MAin CPU
pipeline contends
with IF
FPUL store 4 (FPU 1 * MAin CPU STS.L FPUL, @ Rn
instruction pipeline) pipeline contends
(STS.L) 4 (CPU with IF
pipeline)

Rev. 2.00 May 31, 2006 page 225 of 336

RENESAS

REJ09B0316-0200



Section 8 Pipeline Operation

Type Category Stages Cycles Contention Instruction
FPU-related FPSCR 4 (FPU 1 » Contention occurs STS FPSCR, Rn
CPU store pipeline) as shown in
instruction  instruction 5 (CPU Figure 8.12
(cont) (STS) pipeline) » Contention occurs
if next instruction
uses Rn
+ MAin CPU
pipeline contends
with IF
FPSCR 4 (FPU 1 * Contentionoccurs STS.L FPSCR, @ Rn
store pipeline) as shown in
instruction 4 (CPU Figure 8.12
(STS.L) pipeline) « MAin CPU
pipeline contends
with IF
Floating- Floating- 5(FPU 1 » Contention occurs FLDS FRm FPUL
point point pipeline) if next instruction ~ FMOV FRm FRn
instruction  register 3 (CPU reads destination FSTS FPUL, FRn
.transfer. pipeline) register
instruction
Floating- 5(FPU 1 « Contention occurs FLDIO FRn
point pipeline) if next instruction FLDI1 FRn
register 3 (CPU reads destination
!mmedlgte pipeline) register
instruction
Floating- 5(FPU 1 « Contention occurs FMOV. S @m FRn
point pipeline) if next instruction ~ FMOV. S @ m+, FRn
register load 4 (CPU reads destinaton FMOV. S @ RO, Rm, FRn
instruction pipeline) register
« MAin CPU
pipeline contends
with IF
Floating- 4 (FPU 1 + MAin CPU FMOV. S FRm @Rn
point pipeline) pipeline contends FMOV. S FRm @ Rn
register 4 (CPU with IF FMOV. S FRm @ RO, Rn)
;tore ) pipeline)
instruction

Rev. 2.00 May 31, 2006 page 226 of 336

REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

Type Category Stages Cycles Contention Instruction
Floating- Floating- 5(FPU 1 » Contention occurs FABS FRn
point point pipeline) if next instruction ~ FADD FRm FRn
instruction  register 3 (CPU reads destination FLOAT FPUL, FRn
(cont) operation pipeline) register FMAC FRO, FRm FRn
instruction FMUL FRm FRn
(other than FNEG FRn
FDIV) FSUB FRmM FRn
FTRC FRm FPUL
Floating- 17 (FPU 13 « Contention occurs FDI V FRm FRn
point pipeline) as shown in
register 3 (CPU Figure 8.13
operation pipeline)
instruction
(FDIV)
Floating- 3(FPU 1 FCWP/ EQFRmM FRn
point pipeline) FCVP/ GT FRm FRn
register 3 (CPU
compare pipeline)
instruction

Notes: 1. The normal minimum number of execution cycles. The number in parentheses is the
number of cycles when there is contention with following instructions.

2. One state when there is no branch.

Rev. 2.00 May 31, 2006 page 227 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

8.8.1 Data Transfer Instructions
Register-Register Transfer Instructions

Instruction Types:

* MOV #imm, Rn

« MOV Rm, Rn

« MOVA @(disp, PC), RO
« MOVT Rn

« SWAPB  Rm,Rn
« SWAP.W Rm,Rn
« XTRCT Rm, Rn

Pipeline:
<> <> <> <> : Slot
lInstructon A IF__ID _EX]
Next instruction IF ID EX -«
Third instruction in series IF ID EX -
Figure 8.14 Register-Register Transfer Instruction Pipeline
Operation:

The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX stage via the
ALU.

Rev. 2.00 May 31, 2006 page 228 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

Memory Load Instructions

Instruction Types:
e MOV.W @(disp, PC), Rn ¢ MOV.W @(disp, Rm), RO
e MOV.L @(disp, PC), Rn e MOV.L @(disp, Rm), Rn
e MOV.B @Rm, Rn e MOV.B @(RO, Rm), Rn
e MOV.W @Rm, Rn ¢« MOV.W @(RO, Rm), Rn
e MOV.L @Rm, Rn ¢ MOV.L @(RO, Rm), Rn
e MOV.B @Rm+, Rn e MOV.B @(disp, GBR), RO
e MOV.W @Rm+, Rn ¢ MOV.W @(disp, GBR), RO
e MOV.L @Rm+, Rn e MOV.L @(disp, GBR), RO
* MOV.B @(disp, Rm), RO
Pipeline:
> > > 4> <> <> Slot
lInstructon A IF__ID _EX_ MA WB]
Next instruction IF ID EX -
Third instruction in series IF ID EX -
Figure 8.15 Memory Load Instruction Pipeline

Operation:

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.15). If an instruction that uses the
same destination register as this instruction is placed immediately after it, contention will occur.
(See section 8.5 Effects of Memory Load Instructions on the Pipeline)

Rev. 2.00 May 31, 2006 page 229 of 336

RENESAS

REJ09B0316-0200




Section 8 Pipeline Operation

Memory Store Instructions

Instruction Types:

* MOV.B Rm, @Rn *« MOVL Rm, @(disp, Rn)

* MOV.W Rm, @Rn « MOV.B Rm, @(RO, Rn)

« MOV.L Rm, @Rn « MOV.W  Rm, @(RO, Rn)

* MOV.B Rm, @-Rn « MOV.L Rm, @(RO, Rn)

* MOV.W Rm, @-Rn « MOV.B RO, @(disp, GBR)
* MOV.L Rm, @-Rn « MOV.W RO, @(disp, GBR)
+ MOV.B RO, @(disp, Rn) « MOVL RO, @(disp, GBR)

« MOV.W RO, @(disp, Rn)

Pipeline:
<> <> 4> <> <> : Sot
[Instructon A IF__ID__EX_MA]
Next instruction IF ID EX -
Third instruction in series IF ID EX -
Figure 8.16 Memory Store Instructions Pipeline
Operation:

The pipeline has four stages: IF, ID, EX, and MA (figure 8.16). Data is not returned to the register
so there is no WB stage.

Rev. 2.00 May 31, 2006 page 230 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

8.8.2

Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the
following instruction types:

ADD
ADD
ADDC
ADDV
CMP/EQ
CMP/EQ
CMP/HS
CMP/GE
CMP/HI
CMP/GT
CMP/PZ
CMP/PL
CMP/STR

Rm, Rn
#imm, Rn
Rm, Rn
Rm, Rn
#imm, RO
Rm, Rn
Rm, Rn
Rm, Rn
Rm, Rn
Rm, Rn
Rn

Rn

Rm, Rn

« DIVI

* DIVOS

« DIVOU

« DT

« EXTS.B
« EXTS.W
e EXTU.B
« EXTUW
* NEG

* NEGC

« SUB

« SUBC

« SUBV

Rm, Rn
Rm, Rn

Rn

Rm, Rn
Rm, Rn
Rm, Rn
Rm, Rn
Rm, Rn
Rm, Rn
Rm, Rn
Rm, Rn
Rm, Rn

> 4> 4> <> <>

[Instruction A IE ID  EX MA]
Next instruction IF ID EX
IF ID

Third instruction in series

. Slot

Figure 8.17 Pipeline for Arithmetic Instructions between Registers Except Multiplication
Instructions

The pipeline has three stages: IF, ID, and EX (figure 8.17). The data operation is completed in the
EX stage via the ALU.

Rev. 2.00 May 31, 2006 page 231 of 336

RENESAS

REJ09B0316-0200




Section 8 Pipeline Operation

Multiply/Accumulate Instruction: Includes the following instruction type:

* MACW @Rm+, @Rn+

> > 4> P> P> P> <> <> Slot
[InstructionA IF_ID EX MA MA mm mm]
Next instruction IF — ID EX MA WB
Third instruction in series IF ID EX MA WB

Figure 8.18 Multiply/Accumulate Instruction Pipeline

The pipeline has seven stages: IF, ID, EX, MA, MA, mm, and mm. The second MA reads the
memory and accesses the multiplier. mm indicates that the multiplier is operating. mm operates for
two cycles after the final MA ends, regardless of slot. The ID of the instruction after the MAC.W
instruction is stalled for 1 slot. The two MAs of the MAC.W instruction, when they contend with
IF, split the slots as described in Section 8.4, Contention between Instruction Fetch (IF) and
Memory Access (MA).

When an instruction that does not use the multiplier comes after the MAC.W instruction, the
MAC.W instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA,
MA. In such cases, the ID of the next instruction simply stalls one slot and thereafter operates like
a normal pipeline. When an instruction that uses the multiplier comes after the MAC.W
instruction, however, contention occurs with the multiplier, so operation is different from normal.

The following cases are possible:

(a) MAC.W instruction follows immediately after MAC.W instruction

(b) MAC.L instruction follows immediately after MAC.W instruction

(c) MULS.W instruction follows immediately after MAC.W instruction

(d) DMULS.L instruction follows immediately after MAC.W instruction

(e) STS (register) instruction follows immediately after MAC.W instruction

(f) STS.L (memory) instruction follows immediately after MAC.W instruction
(g) LDS (register) instruction follows immediately after MAC.W instruction
(h) LDS.L (memory) instruction follows immediately after MAC.W instruction

Rev. 2.00 May 31, 2006 page 232 of 336
REJ09B0316-0200

RENESAS




Section 8 Pipeline Operation

(a) MAC.W instruction follows immediately after MAC.W instruction

The second MA of MAC.W instruction does not contend with the mm generated by the preceding
multiply instruction.

MAC.W IF ID EX MA MA mm .mm.

MAC.W IF — ID EX MA 'MA: mm mm
Next instruction in series IF— ID EX MA .o

Figure 8.19 MAC.W Instruction Follows Immediately after MAC.W Instruction (1)

If the MAC.W instruction occurs twice in succession, contention between MA and IF could cause

a delay in instruction execution. Refer to the diagram below. This diagram takes into account the
possibility of contention between MA and IF.

-—r w4 > A > w> > > > > - - . S|ot

MAC.W if ID EX MA MA mm mm
MAC.W IF — ID EX MA — MA mm mm
MAC.W if — — ID EX MA MA mm mm

MAC.W IF — 1D EX MA MA mm -

Figure 8.20 MAC.W Instruction Follows Immediately after MAC.W Instruction (2)

If contention occurs between the second MA of the MAC.W instruction and IF, the slot splits

normally. Refer to the diagram below. This diagram takes into account the possibility of
contention between MA and IF.

MACW IF ID EX MA — MA mm :mm.

MAC.W f — — ID EX MA IMA: mm mm
Other instruction IF — ID — EX MA ..
Other instruction if — ID EX e
Other instruction IF

Figure 8.21 MAC.W Instruction Follows Immediately after MAC.W Instruction (3)

Rev. 2.00 May 31, 2006 page 233 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(b) MAC.L instruction follows immediately after MAC.W instruction

The second MA of the MAC.W instruction does not contend with the mm generated by the
preceding multiply instruction.

-—r > w> a> > w> > <> > <> <> SOt
MACW IF ID EX MA MA mm mm!
MAC.L F — ID EX MA 'MA!mm mm mm mm
Next instruction in series F — 1D EX MA -

Figure 8.22 MAC.L Instruction Follows Immediately after MAC.W Instruction
(¢) MULS.W instruction follows immediately after MAC.W instruction

The MULS.W instruction has an MA stage for accessing the multiplier. If contention with the MA
of MULS.W occurs during the MAC.W instruction's multiplier operation (mm), that MA is
delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot. If
there is one or more instruction that does not use the multiplier located between MAC.W and
MULS.W, no contention occurs between MAC.W and MULS.W and there is no delay. Note that
the slot splits if there is contention between the MA of MULS.W and IF.

MAC.W IF ID EX MA
MULS.W IF — ID
Other instruction IF

MAC.W IF 1D EX MA MA mm mm:

Branch destination IF — ID EX

MULS.W IF ID EX iMA: mm mm
Other instruction IF ID EX MA

Figure 8.23 MULS.W Instruction Follows Immediately after MAC.W Instruction

Rev. 2.00 May 31, 2006 page 234 of 336
REJ09B0316-0200

RENESAS




Section 8 Pipeline Operation

(d) DMULS.L instruction follows immediately after MAC.W instruction

The MULS.W instruction has an MA stage for accessing the multiplier, but there is no contention
with the MA of MULS.W during the MAC.W instruction's multiplier operation (mm). Note that
the slot splits if there is contention between the MA of MULS.W and IF.

MAC.W IF ID EX MA MA mm mm:

DMULS.L IF — ID EX MA IMA' mm mm mm mm

Other instruction IF — ID EX MA ...

Figure 8.24 DMULS.L Instruction Follows Immediately after MAC.W Instruction
(e) STS (register) instruction follows immediately after MAC.W instruction

If the STS instruction is used to store the contents of the MAC register to a general-use register,
the STS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of STS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of STS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

- - -

MAC.W IF ID EX
STS if —

Other instruction

Other instruction

. . IF ID EX ...
Other instruction
- - - A A A Slot
MACW if 1D EX MA MA mm imm:
STS IF — ID — EX [MA: WB
Other instruction if — ID EX
Other instruction IF ID EX
if ID EX ...

Other instruction

Figure 8.25 STS (Register) Instruction Follows Immediately after MAC.W Instruction

Rev. 2.00 May 31, 2006 page 235 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

(f) STS.L (memory) instruction follows immediately after MAC.W instruction

If the STS instruction is used to store the contents of the MAC register in memory, the STS
instruction will include an MA stage for accessing the multiplier and writing to memory, as
described below. These diagrams take into account the possibility of contention between MA and
IF.

-

MAC.W IF ID EX

STS.L if —
Other instruction
Other instruction if — — ID EX

IF ID EX ...

Other instruction

MAC.W if ID EX MA MA mm .mm:

STS.L F — ID — EX [MA:
Other instruction if — D EX
Other instruction IF D EX

if ID EX ...

Other instruction

Figure 8.26 STS.L (Memory) Instruction Follows Immediately after MAC.W Instruction

Rev. 2.00 May 31, 2006 page 236 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(g) LDS (register) instruction follows immediately after MAC.W instruction

If the LDS instruction is used to load the contents of the MAC register from a general-use register,
the LDS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of LDS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of LDS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

- o -—
MAC.W IF ID EX MA —
LDS if — — 1D
Other instruction IF

Other instruction

Other instruction

MAC.W f ID EX MA MA mm mm:

-bs F— b —  EX [MA]
Other instruction if — ID EX
Other instruction IF ID EX

if ID EX ...

Other instruction

Figure 8.27 LDS (Register) Instruction Follows Immediately after MAC.W Instruction

Rev. 2.00 May 31, 2006 page 237 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

(h) LDS.L (memory) instruction follows immediately after MAC.W instruction

If the LDS instruction is used to load the contents of the MAC register from memory, the LDS
instruction will include an MA stage for accessing memory and accessing the multiplier, as
described below. If contention with the MA of LDS occurs during the multiplier operation (mm),
that MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single
slot. Also, the MA of LDS contends with IF. This situation is shown in the diagrams below. These
diagrams take into account the possibility of contention between MA and IF.

-

MAC.W IF ID EX
LDS.L if —

Other instruction

Other instruction

Other instruction

MAC.W if ID EX MA MA mm ,mm:

LDS.L F — D — EXx (WAl
Other instruction if — ID EX
Other instruction IF ID EX

if 1D EX ...

Other instruction

Figure 8.28 LDS.L (Memory) Instruction Follows Immediately after MAC.W Instruction

Rev. 2.00 May 31, 2006 page 238 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Double-Length Multiply/Accumulate Instruction: Includes the following instruction type:

* MAC.L @Rm+, @Rn+

P> > > > > > <> > > Slot
lInstructon A IF_ID EX MA MA mm mm mm_ mm)]

Next instruction IF — ID EX MA WB

Third instruction IF ID EX MA WB

Figure 8.29 Double-Length Multiply/Accumulate Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 8.29). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for four cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.L instruction is stalled for one slot. The two MAs of the MAC.L
instruction, when they contend with IF, split the slots as described in section 8.4, Contention
between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA, MA. In
such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline operates
normally. When an instruction that uses the multiplier comes after the MAC.L instruction,
contention occurs with the multiplier, so operation is different from normal.

The following cases are possible:

(a) MAC.L instruction follows immediately after MAC.L instruction

(b) MAC.W instruction follows immediately after MAC.L instruction

(c) DMULS.L instruction follows immediately after MAC.L instruction

(d) MULS.W instruction follows immediately after MAC.L instruction

(e) STS (register) instruction follows immediately after MAC.L instruction

(f) STS.L (memory) instruction follows immediately after MAC.L instruction
(g) LDS (register) instruction follows immediately after MAC.L instruction
(h) LDS.L (memory) instruction follows immediately after MAC.L instruction

Rev. 2.00 May 31, 2006 page 239 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

(a) MAC.L instruction follows immediately after MAC.L instruction

If the second MA of the MAC.L instruction contends with the mm generated by the preceding
multiply instruction, that MA is delayed until the mm finishes (M -- A in the diagram below),

thereby forming a single slot.

If there are two or more instructions that do not use the multiplier located between the one MAC.L
instruction and a second MAC.L instruction, no contention occurs the two MAC.L instructions

and there is no delay.

- - w a a A . w» - <> - SOt

MAC.L IF D EX MA MA mm imm _mm_mm:
MAC.L IF — D EX MA [M————A ' mm mm mm mm
Next instruction in series IF — ID EX — — MA ...

-—r A w w> A A a a a a - > < SOt
MAC.L F D EX MA MA mm mm mm |mm:
Other instruction IF— ID EX MA WB

Other instruction IF D EX MA - wB )

mMace B VAL NAY

Figure 8.30 MAC.L Instruction Follows Immediately after MAC.L Instruction (1)

Even if the succession of MAC.L instructions causes delays in execution due to contention
between MA and IF, multiplier contention may be reduced in some cases. Refer to the diagram
below. This diagram takes into account the possibility of contention between MA and IF.

- - - - . - - -« : Slot
MAC.L f ID EX MA MA mm mm :mm mm.
MAC.L IF — 1D EX MA — | M—A_ ! mm mm mm mm
MAC.L if — — ID EX — MA M———A mm mm mm mm
MAC.L IF — — ID EX — — MA

Figure 8.31 MAC.L Instruction Follows Immediately after MAC.L Instruction (2)

Rev. 2.00 May 31, 2006 page 240 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

If the second MA of the MAC.L instruction is delayed until the mm finishes, and that MA
contends with IF, the slot splits normally. Refer to the diagram below. This diagram takes into
account the possibility of contention between MA and IF.

-— - - - - < <> <> < :Slot
MAC.L F ID EX MA — MA mm [mm_mm_mm:
MAC.L if — — ID EX MA _Ni__—"_A-, mm mm mm mm
Other instruction F - D - — — EX
if — — — ID

Other instruction

Other instruction

Figure 8.32 MAC.L Instruction Follows Immediately after MAC.L Instruction (3)
(b) MAC.W instruction follows immediately after MAC.L instruction

If the second MA of the MAC.L contends with the mm generated by the preceding multiply
instruction, that MA is delayed until the mm finishes (M -- A in the diagram below), thereby
forming a single slot.

If there are two or more instructions that do not use the multiplier located between the MAC.L
instruction and the MAC.W instruction, no multiplier contention occurs between the MAC.L
instruction and the MAC.W instruction, and there is no delay.

- > > - - - - » -« - SOt

MAC.L IF 1D EX MA MA mm .mm_mm_ mm:
MAC.W IF — ID EX MA i M——A ' mm mm
Next instruction in series IF — ID EX — — MA ...

- - - > - - - -« : Slot

MAC.L IF ID EX MA MA mm mm mm :_[n_r_n_f
IF — ID EX MA WB

Other instruction IF D EX MA wB )

MAC.W IF ID EX MA MA' mm mm

Other instruction

Figure 8.33 MAC.W Instruction Follows Immediately after MAC.L Instruction

Rev. 2.00 May 31, 2006 page 241 of 336
REJ09B0316-0200

RENESAS




Section 8 Pipeline Operation

(c) DMULS.L instruction follows immediately after MAC.L instruction

The DMULS.L instruction has an MA stage for accessing the multiplier. If contention with the
second MA of DMULS.L occurs during the MAC.L instruction's multiplier operation (mm), that
MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot.
If there are two or more instructions that do not use the multiplier located between the MAC.L
instruction and the DMULS.L instruction, no contention occurs between MAC.L and DMULS.L,
and there is no delay. Note that the slot splits if there is contention between the MA of DMULS.L
and IF.

- w W s A > 4 -« > > > -« Slot

MAC.L F ID EX MA MA mm imm_ mm _mm:
DMULS.L IF — ID EX MA -M—A, mm mm mm mm
Other instruction F - D — — EX MA ...

- - e e A A e A W e w» a» - " Sot

MAC.L IF 1D EX MA MA mm mm ‘mm _ mm:!

Branch destinaton IF — 1D EX

DMULS.L IF ID EX MA {M—A ! mm mm mm mm
IF — ID — EX MA ...

Other instruction

- - - - A A P A P w4 - - > <> Slot

MAC.L IF D EX MA MA mm_ mm_ mm :mm:
Other instruction IF — ID EX MA WB

Other instruction IF D EX MA - wB ,
DMULS.L IF ID EX MA 'MA:mm mm mm mm

Other instruction

Figure 8.34 DMULS.L Instruction Follows Immediately after MAC.L Instruction

Rev. 2.00 May 31, 2006 page 242 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(d) MULS.W instruction follows immediately after MAC.L instruction

The MULS.W instruction has an MA stage for accessing the multiplier. If contention with the MA
of MULS.W occurs during the MAC.L instruction's multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. If there are
three or more instructions that do not use the multiplier located between MAC.L and MULS.W, no
contention occurs between MAC.L and MULS.W and there is no delay. Note that the slot splits if
there is contention between the MA of MULS.W and IF.

-—r A wr w> wr > A > w> w4 > > > SOt

MAC.L IF ID EX MA
MULS.W IF — ID mm
Other instruction IF D EX — — — MA ...

-—r w wA a w - e » a4 a> <> - - Slot

MAC.L IF ID EX MA MA mm _mm_ mm_mm:

Branch destination IF — IbD EX

MULS.W IF D EX [ M—————=A_ mm mm
IF 1D EX — — MA ...

Other instruction

- - - e e e > A - - - - -  S|Ot

MAC.L IF ID EX MA MA mm mm :__rr]r:n___[n_m_f
Other instruction IF — ID EX MA WB

Other instruction & =% T L )
muLsw = = E=A L 0 H
Other instruction

- W w w a w W A a—> w4 > = SOt

MAC.L F ID EX MA MA mm_ mm mm :mm.
Other instruction IF — ID EX MA WB

Other instruction

Other instructon
MULS.W

IF ID EX MA ...
Other instruction

Figure 8.35 MULS.W Instruction Follows Immediately after MAC.L Instruction

Rev. 2.00 May 31, 2006 page 243 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(e) STS (register) instruction follows immediately after MAC.L instruction

If the STS instruction is used to store the contents of the MAC register to a general-use register,
the STS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of STS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of STS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

s - <> <> <« :Slot
MAC.L IF 1D EX MA —
STS if — — ID
Other instruction IF MA
Other instruction f — — — — ID EX
Other instruction IF ID EX ...
- <> <> < :Slot
[MAC.L f ID EX MA MA mm mm mm_ mm:
STS IF — ID — EX iM—————A_ WB
Other instruction if — ID EX
Other instruction IF D — — EX
if — —_ ID EX ...

Other instruction

Figure 8.36 STS (Register) Instruction Follows Immediately after MAC.L Instruction

Rev. 2.00 May 31, 2006 page 244 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(f) STS.L (memory) instruction follows immediately after MAC.L instruction

If the STS instruction is used to store the contents of the MAC register in memory, the STS
instruction will include an MA stage for accessing the multiplier and writing to memory, as
described below. Also, the MA of STS contends with IF. This situation is shown in the diagrams
below. These diagrams take into account the possibility of contention between MA and IF.

> - - > > - Slot
MAC.L IF 1D EX MA — MA imm_ mm_ mm_mm:
STS.L f  — — D EX Moo AL
Other instruction IF D — — — — EX MA
Other instruction if — - - = ID EX
i i IF ID EX ...

Other instruction
MAC.L if 1D EX MA MA
STS.L F — D —
Other instruction if — ID EX
Other instruction IF D — — EX

if — — ID EX ...

Other instruction

Figure 8.37 STS.L (Memory) Instruction Follows Immediately after MAC.L Instruction

Rev. 2.00 May 31, 2006 page 245 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

(g) LDS (register) instruction follows immediately after MAC.L instruction

If the LDS instruction is used to load the contents of the MAC register from a general-use register,
the LDS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of LDS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of LDS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

- - = - = <= == :Slot
MAC.L IF ID EX MA —
LDS if — — 1D
Other instruction IF D — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF 1D EX ...
- <+ <= == :Slot
MAC.L if ID EX MA MA mm imm_ mm_ mm:
L0 P D - B A
Other instruction if — ID EX
Other instruction IF b — — EX
if — — ID EX ...

Other instruction

Figure 8.38 LDS (Register) Instruction Follows Immediately after MAC.L Instruction

Rev. 2.00 May 31, 2006 page 246 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

(h) LDS.L (memory) instruction follows immediately after MAC.L instruction

If the LDS instruction is used to load the contents of the MAC register from memory, the LDS
instruction will include an MA stage for accessing memory and accessing the multiplier, as
described below. If contention with the MA of LDS occurs during the multiplier operation (mm),
that MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single
slot. Also, the MA of LDS contends with IF. This situation is shown in the diagrams below. These
diagrams take into account the possibility of contention between MA and IF.

- = = - <= <> = :Slot
MAC.L IF ID EX MA —
LDS.L if — — ID
Other instruction IF D — — — — EX MA
Other instruction f — — — — D EX
Other instruction IF ID EX ...
- e «> «» <« Slot
MAC.L f D EX MA MA mm {mm_ mm_ mm:
LDS.L IF — D — EX IM———A}
Other instruction if — ID EX
Other instruction F D — — EX
if — — ID EX ...

Other instruction

Figure 8.39 LDS.L (Memory) Instruction Follows Immediately after MAC.L Instruction

Rev. 2.00 May 31, 2006 page 247 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

Multiplication Instructions: Include the following instruction types:

« MULS.W  Rm,Rn
« MULUW Rm,Rn

<> 4> 4> 4> <> <> <> <> : Sot
[Instruction A  IF  ID EX MA mm mm |
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.40 Multiplication Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, mm, and mm. The MA accesses the multiplier. mm
indicates that the multiplier is operating. mm operates for three cycles after the MA ends,
regardless of slot. The MA of the MULS.W instruction, when it contends with IF, splits the slot as
described in Section 8.4, Contention between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be a four-stage pipeline instruction of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is different from normal.

The following cases are possible:

(a) MAC.W instruction follows immediately after MULS.W instruction

(b) MAC.L instruction follows immediately after MULS.W instruction

(c) MULS.W instruction follows immediately after MULS.W instruction

(d) DMULS.L instruction follows immediately after MULS.W instruction

(e) STS (register) instruction follows immediately after MULS.W instruction

(f) STS.L (memory) instruction follows immediately after MULS.W instruction
(g) LDS (register) instruction follows immediately after MULS.W instruction
(h) LDS.L (memory) instruction follows immediately after MULS.W instruction

Rev. 2.00 May 31, 2006 page 248 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation
(a) MAC.W instruction follows immediately after MULS.W instruction

The second MA of the MAC.W instruction does not contend with the mm generated by the
preceding multiply instruction.

- e e e 4> ws o« > > <« = Slot
MULS.W IF ID EX MA mm mm

MAC.W IF ID EX
Next instruction in series IF

MA MA mm mm
ID EX MA

Figure 8.41 MAC.W Instruction Follows Immediately after MULS.W Instruction

(b) MAC.L instruction follows immediately after MULS.W instruction

The second MA of the MAC.W instruction does not contend with the mm generated by the
preceding multiply instruction.

- > w> 4> 4> «> «> > <> <> <> Slot
MULS.W IF ID EX MA mm mm

MAC.L IF ID EX
Next instruction in series IF

MA MA mm mm mm mm
ID EX MA

Figure 8.42 MAC.L Instruction Follows Immediately after MULS.W Instruction

Rev. 2.00 May 31, 2006 page 249 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(¢) MULS.W instruction follows immediately after MULS.W instruction

The MULS.W instruction has an MA stage for accessing the multiplier. If contention with the MA
of the other MULS.W occurs during the MULS. W instruction's multiplier operation (mm), that
MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot.
If there is one or more instruction that does not use the multiplier located between MULS.W and
MULS.W, no contention occurs between MULS.W and MULS.W and there is no delay. Note that
the slot splits if there is contention between the MA of MULS.W and IF.

MULS.W IF ID EX MA mm _mm,
MULS.W IF 1D EX |M—A_: mm mm
Other instruction IF D EX — MA o

......

MULS.W IF ID EX MA  mm mm:
Other instruction ko B
MULS.W IF ID EX |MA!' mm mm

Other instruction IF D EX MA e

Figure 8.43 MULS.W Instruction Follows Immediately after MULS.W Instruction (1)

If the MA of the MULS.W instruction is delayed until the mm finishes, and that MA contends
with IF, the slot splits normally. Refer to the diagram below. This diagram takes into account the
possibility of contention between MA and IF.

MULS.W IF ID EX MA ‘mm mm;

MULS.W if ID EX { M—A . mm mm

Other instruction IF ID — — EX MA e

Other instruction if — — D EX e
IF ID e

Other instruction

Figure 8.44 MULS.W Instruction Follows Immediately after MULS.W Instruction (2)

Rev. 2.00 May 31, 2006 page 250 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

(d) DMULS.L instruction follows immediately after MULS.W instruction

The second MA of the DMULS.L accesses the multiplier, but there is no contention with the mm

generated by the MULS.W instruction.

-—pr - - - - > > -+ :Slot

MA  mm mm mm mm

MULS.W IF ID EX MA mm mm
DMULS.L IF ID EX MA
IF — ID EX

Other instruction

MA

Figure 8.45 DMULS.L Instruction Follows Immediately after MULS.W Instruction

(e) STS (register) instruction follows immediately after MULS.W instruction

If the STS instruction is used to store the contents of the MAC register to a general-use register,
the STS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of STS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of STS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

- A = <> <= <> :Slot
MULSW IF  ID EX MA imm __mm.
STS if ID EX [ M—A_. WB
Other instruction IF D — — EX MA
Other instruction f — — b EX
Other instruction IF D EX e
- - > = <> <> <> = Slot
MULSW if 1D EX MA mm ‘mm:
STS IF ID — EX _MA! WB
Other instruction if — ID EX
Other instruction IF D EX
if ID EX e

Other instruction

Figure 8.46 STS (Register) Instruction Follows Immediately after MULS.W Instruction

Rev. 2.00 May 31, 2006 page 251 of 336
REJ09B0316-0200

RENESAS




Section 8 Pipeline Operation

(f) STS.L (memory) instruction follows immediately after MULS.W instruction

If the STS instruction is used to store the contents of the MAC register in memory, the STS
instruction will include an MA stage for accessing the multiplier and writing to memory, as
described below. Also, the MA of STS contends with IF. This situation is shown in the diagrams
below. These diagrams take into account the possibility of contention between MA and IF.

- - - - = -« - -« Slot

MULS.W IF ID EX MA mm _mm,;

STS.L if ID EX {MTZAl
Other instruction IF ID — _ EX MA
Other instruction f — — ID EX
IF ID EX e

Other instruction

MULS.W if ID EX MA mm mm

STS.L F ID — EX |MA!
Other instruction if — ID  EX
IF 1D EX

Other instruction

) ) if ID EX e
Other instruction

Figure 8.47 STS.L (Memory) Instruction Follows Immediately after MULS.W Instruction

Rev. 2.00 May 31, 2006 page 252 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

(g) LDS (register) instruction follows immediately after MULS.W instruction

If the LDS instruction is used to load the contents of the MAC register from a general-use register,
the LDS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of LDS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of LDS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

MULS.W IF 1D EX
LDS if 1D
Other instruction IF

Other instruction

Other instruction

MULS.W if 1D EX MA mm mm.
LDS F 1D — EX _MA!
Other instruction f — ID EX
Other instruction IF 1D EX
if ID EX e

Other instruction

Figure 8.48 LDS (Register) Instruction Follows Immediately after MULS.W Instruction

Rev. 2.00 May 31, 2006 page 253 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(h) LDS.L (memory) instruction follows immediately after MULS.W instruction

If the LDS instruction is used to load the contents of the MAC register from memory, the LDS
instruction will include an MA stage for accessing memory and accessing the multiplier, as
described below. If contention with the MA of LDS occurs during the multiplier operation (mm),
that MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single
slot. Also, the MA of LDS contends with IF. This situation is shown in the diagrams below. These
diagrams take into account the possibility of contention between MA and IF.

MULS.W IF ID EX
LDS.L if 1D
Other instruction IF

Other instruction

Other instruction

MULS.W f 1D EX MA mm .mm.
LDS.L F ID — EX |MA
Other instruction if — ID  EX
Other instruction IF D EX
if ID EX e

Other instruction

Figure 8.49 LDS.L (Memory) Instruction Follows Immediately after MULS.W Instruction

Rev. 2.00 May 31, 2006 page 254 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Double-Length Multiplication Instructions: Include the following instruction types:

 DMULSL Rm,Rn
 DMULUL Rm,Rn

e« MUL.L Rm, Rn
> > 4> 4> > > <> <> <> Slot
[Instruction A IF ID EX MA MA mm mm mm mm]
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.50 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 8.50). The
second MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm
operates for four cycles after the MA ends, regardless of slot. The ID of the instruction following
the DMULS.L instruction is stalled for 1 slot (see the description of the Multiply/Accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 8.4, Contention between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier come after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is different from normal.

The following cases are possible:

(a) MAC.L instruction follows immediately after DMULS.L instruction

(b) MAC.W instruction follows immediately after DMULS.L instruction

(c) DMULS.L instruction follows immediately after DMULS.L instruction

(d) MULS.W instruction follows immediately after DMULS.L instruction

(e) STS (register) instruction follows immediately after DMULS.L instruction

(f) STS.L (memory) instruction follows immediately after DMULS.L instruction
(g) LDS (register) instruction follows immediately after DMULS.L instruction
(h) LDS.L (memory) instruction follows immediately after DMULS.L instruction

Rev. 2.00 May 31, 2006 page 255 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(a) MAC.L instruction follows immediately after DMULS.L instruction

If the second MA of the MAC.L instruction contends with the mm generated by the preceding
multiply instruction, the bus cycle of that MA is extended until the mm finishes (M -- A in the
diagram below), thereby forming a single slot.

If there are two or more instructions that do not use the multiplier located between the DMULS.L
instruction and the MAC.L instruction, no contention occurs between DMULS.L and MAC.L, and
there is no delay.

- - - . - - - a4 - > - Slot

DMULS.L IF ID EX MA MA mm '‘mm_ mm_ mm!
MAC.L F — 1D EX MA | M———A_ ' mm mm mm mm
Next instruction in series IF — ID EX — — MA e

-— e e e e a4 W e A w— w0t

DMULS.L IF ID EX MA MA mm mm mm .mm;
Other instruction IF — ID EX MA WB
IF ID EX MA WB

Other instructon = =% e A=
MAC.L IF ID EX MA MA! mm mm mm mm

Figure 8.51 MAC.L Instruction Follows Immediately after DMULS.L Instruction

Rev. 2.00 May 31, 2006 page 256 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(b) MAC.W instruction follows immediately after DMULS.L instruction

If the second MA of the MAC.W instruction contends with the mm generated by the preceding
multiply instruction, the bus cycle of that MA is extended until the mm finishes (M -- A in the
diagram below), thereby forming a single slot.

If there are two or more instructions that do not use the multiplier located between the DMULS.L
instruction and the MAC.W instruction, no contention occurs between DMULS.L and MAC.W,
and there is no delay.

DMULS.L IF ID EX MA MA mm :mm_ mm _ mm!
MAC.W F — ID EX MA I M———A ' mm mm
Next instruction in series IF — ID EX — — MA e

- e e W e e e W W 4> > > - - G|t

DMULS.L IF ID EX MA MA mm mm mm .mm|

Other instruction IF— ID EX MA WB

Other instruction I ID EX MAwB

MAC.W IF ID EX MA MA: mm mm

Figure 8.52 MAC.W Instruction Follows Immediately after DMULS.L Instruction

Rev. 2.00 May 31, 2006 page 257 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

(c) DMULS.L instruction follows immediately after DMULS.L instruction

The DMULS.L instruction has an MA stage for accessing the multiplier. If contention with the
MA of DMULS.L occurs during the other DMULS.L instruction's multiplier operation (mm), that
MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot.
If there are two or more instructions that do not use the multiplier located between DMULS.L and
DMULS.L, no contention occurs between DMULS.L and DMULS.L and there is no delay. Note
that the slot splits if there is contention between the MA of DMULS.L and IF.

-~ w» = - - S0t

- - -

DMULS.L IF ID EX MA MA mm :mm mm mmf
DMULS.L IF — ID EX MA M—A mm mm mm mm
Other instruction F — D EX — — MA .o

- A A - A A a > 4 - - o - Slot

DMULS.L IF 1D EX MA MA mm mm ;mm __mm:!

Other instruction IF  — ID EX

DMULS.L IF ID EX MA ! M—A ' mm mm mm mm
IF — ID EX — MA -

Other instruction

- - - - - - e - - - - - SOt

DMULS.L IF ID EX MA MA mm mm mm :.mm:

Other instruction IF

Other instruction IF ID EX MA wB

DMULS.L IF 1D EX MA MA' mm mm mm mm

Other instruction

Figure 8.53 DMULS.L Instruction Follows Immediately after DMULS.L Instruction (1)

Rev. 2.00 May 31, 2006 page 258 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

If the MA of the DMULS.L instruction is delayed until the mm finishes, and that MA contends
with IF, the slot splits normally. Refer to the diagram below. This diagram takes into account the
possibility of contention between MA and IF.

- - - .

- - - - Slot

DMULS.L IF

ID

EX

MA~  MA — mm mm mm mm
DMULS.L f — EX — ID MA {M———A _:mm mm mm mm
Other instruction — IF ID — — — EX
Other instruction if - - - ID  EX e
IF D e

Other instruction

Figure 8.54 DMULS.L Instruction Follows Immediately after DMULS.L Instruction (2)

Rev. 2.00 May 31, 2006 page 259 of 336
REJ09B0316-0200

RENESAS




Section 8 Pipeline Operation

(d) MULS.W instruction follows immediately after DMULS.L instruction

The MULS.W instruction has an MA stage for accessing the multiplier. If contention with the MA
of MULS.W occurs during the DMULS.L instruction's multiplier operation (mm), that MA is
delayed until the mm finishes (M -- A in the diagram below), thereby forming a single slot. If
there are three or more instructions that do not use the multiplier located between DMULS.L and
MULS.W, no contention occurs between DMULS.L and MULS.W and there is no delay. Note
that the slot splits if there is contention between the MA of MULS.W and IF.

- - - -  a— a= S0t

DMULS.L IF ID EX MA
MULS.W IF — 1D mm
Other instruction IF ID EX — —  MA ..

DMULS.L IF ID EX MA MA mm mm mm '‘mm;
Other instruction IF — ID EX MA WB
IF ID EX MA WB
IF ID EX MA WB

Other instructon
IF ID EX 'MA.l MA mm mm
MULS.W

Other instruction

Other instruction

Figure 8.55 MULS.W Instruction Follows Immediately after DMULS.L Instruction (1)

If the MA of the DMULS.L instruction is delayed until the mm finishes, and that MA contends
with IF, the slot splits normally. Refer to the diagram below. This diagram takes into account the
possibility of contention between MA and IF.

-— - e -— > <> == = :Slot
DMULSL IF ID EX MA — MA.mm mm mm mm.
MULS.W f — — ID EX: M———————A 'mm mm
Other instruction F D - - — — EX MA ..
f — — — — ID EX

Other instruction

Other instruction

Figure 8.56 MULS.W Instruction Follows Immediately after DMULS.L Instruction (2)

Rev. 2.00 May 31, 2006 page 260 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(e) STS (register) instruction follows immediately after DMULS.L instruction

If the STS instruction is used to store the contents of the MAC register to a general-use register,
the STS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of STS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of STS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

Other instruction

- - - S0t

-— A - > -
[DMULSL IF ID EX MA — MA 'mm_mm_mm_mm.
STS f — — ID EX | M————————A_ WB
Other instruction F D - - — — EX
Other instruction if - - - - ID
Other instruction 7

-— A e - -— e
DMULSL if 1D EX MA MA mm imm_ mm_ mm.:
STS IF  — D — EX [ M_____-A!WB
Other instruction f — ID EX
Other instruction IF ID - - KX

if — — ID EX

Figure 8.57 STS (Register) Instruction Follows Immediately after DMULS.L Instruction

Rev. 2.00 May 31, 2006 page 261 of 336

RENESAS

REJ09B0316-0200



Section 8 Pipeline Operation

(f) STS.L (memory) instruction follows immediately after DMULS.L instruction

If the STS instruction is used to store the contents of the MAC register in memory, the STS
instruction will include an MA stage for accessing the multiplier and writing to memory, as
described below. Also, the MA of STS contends with IF. This situation is shown in the diagrams
below. These diagrams take into account the possibility of contention between MA and IF.

- - - - - «—> > : Slot

DMULSL IF ID EX MA — MA mm mm_ mm_ mm:

sTSL - — D Ex LMo

Other instruction IF ID — — — — EX MA

Other instruction if - - — — b EX

’ ) IF ID EX o
Other instruction
- - - - Slot

DMULS.L if ID EX MA MA mm imm_ mm _ mm:

STS.L IF — ID — EX « M———— A
Other instruction if — ID EX
Other instruction IF LD - — EX
if — — ID EX e

Other instruction

Figure 8.58 STS.L (Memory) Instruction Follows Immediately after DMULS.L Instruction

Rev. 2.00 May 31, 2006 page 262 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

(g) LDS (register) instruction follows immediately after DMULS.L instruction

If the LDS instruction is used to load the contents of the MAC register from a general-use register,
the LDS instruction will include an MA stage for accessing the multiplier, as described below. If
contention with the MA of LDS occurs during the multiplier operation (mm), that MA is delayed
until the mm finishes (M -- A in the diagram below), thereby forming a single slot. Also, the MA
of LDS contends with IF. This situation is shown in the diagrams below. These diagrams take into
account the possibility of contention between MA and IF.

- - e - <> <> < :Slot
DMULSL IF ID EX MA — MA mm mm_mm_ mm:
LDS f — — D EX I M A
Other instruction IF ID — — — — EX MA
Other instruction f - - — — D EX
Other instruction IF D EX e
- e - <= <« :Slot
DMULSL if ID EX MA MA mm mm mm _ mm:
LDS IF — D — EX I M——————A
Other instruction if — ID EX
Other instruction IF ID - - EX
f — — ID EX e

Other instruction

Figure 8.59 LDS (Register) Instruction Follows Immediately after DMULS.L Instruction

Rev. 2.00 May 31, 2006 page 263 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

(h) LDS.L (memory) instruction follows immediately after DMULS.L instruction

If the LDS instruction is used to load the contents of the MAC register from memory, the LDS
instruction will include an MA stage for accessing memory and accessing the multiplier, as
described below. If contention with the MA of LDS occurs during the multiplier operation (mm),
that MA is delayed until the mm finishes (M -- A in the diagram below), thereby forming a single
slot. Also, the MA of LDS contends with IF. This situation is shown in the diagrams below. These
diagrams take into account the possibility of contention between MA and IF.

-—r - - > - - <« - Slot

DMULS.L IF ID EX MA —

LDS.L if — —
Other instruction I ID — — — EX MA
Other instruction if - — — ID  EX
IF ID EX e

Other instruction

DMULS.L if ID EX MA MA

LDS.L F — 1D —
Other instruction if — ID EX
Other instruction IF D — — EX

if — — 1D EX e

Other instruction

Figure 8.60 LDS.L (Memory) Instruction Follows Immediately after DMULS.L Instruction

Rev. 2.00 May 31, 2006 page 264 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

8.8.3 Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

e« AND Rm,Rn e« TST Rm,Rn
e AND #imm, RO e TST  #imm, RO
e NOT Rm,Rn ¢« XOR Rm,Rn
*« OR Rm, Rn ¢ XOR #imm, RO

« OR #imm, RO

<> 4> <> 4> <> <> : Slot
lInstruction A IF__ ID _EX]|
Next instruction IF ID EX -«
Third instruction in series IF ID EX -

Figure 8.61 Register-Register Logic Operation Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 8.61). The data operation is completed in the
EX stage via the ALU.

Rev. 2.00 May 31, 2006 page 265 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

Memory Logic Operations Instructions: Include the following instruction types:

« AND.B #imm, @(R0O, GBR)
« ORB  #imm, @RO, GBR)
« TST.B  #imm, @(RO, GBR)
« XORB #imm, @R0, GBR)

> 4> 4> > 4> > 4> <> Sot
[Instruction A IF_ID EX MA EX MA]
Next instruction IF — — ID EX -

Third instruction in series IF ID EX -

Figure 8.62 Memory Logic Operation Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.62). The ID of the next
instruction stalls for 2 slots. The MAs of these instructions contend with IF.

TAS Instruction: Includes the following instruction type:

« TASB @Rn

> 4> 4> 4> > 4> <> 4> <> Sot
[Instruction A IFE_ID EX MA EX MA]
Next instruction F — — — ID EX -

Third instruction in series IF ID EX -

Figure 8.63 TAS Instruction Pipeline

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.63). The ID of the next
instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

Rev. 2.00 May 31, 2006 page 266 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

8.8.4

Shift Instructions

General Shift Instructions: Include the following instruction types:

ROTL
ROTR
ROTCL
ROTCR
SHAL
SHAR
SHLL

e SHLR

e SHLL2

e SHLR2
SHLLS8

* SHLRS

» SHLLI16
* SHLRI16

gg88¢828¢%
88888 ¢%

“> 4> > > D> <>
lInstruction A IF__ID _EX]
Next instruction IF ID EX -
Third instruction in series IF ID EX -

. Slot

Figure 8.64 General Shift Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 8.64). The data operation is completed in the
EX stage via the ALU.

Rev. 2.00 May 31, 2006 page 267 of 336

RENESAS

REJ09B0316-0200




Section 8 Pipeline Operation

8.8.5 Branch Instructions
Conditional Branch Instructions: Include the following instruction types:

e BF label
e BT label

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.
Conditionally branched instructions are not delay branched.

1. When condition is satisfied
The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch destination
instruction begins its fetch from the slot following the slot which has the EX stage of
instruction A (figure 8.65).

<> 4> 4> 4> 4> 4> 4> <> 4> ;. Sot
[Instructon A IF ID EX]

Next instruction IF — (Fetched but discarded)
Third instruction in series IF — (Fetched but discarded)
Branch destination — IF ID EX -
..... |IF 1D EX

Figure 8.65 Branch Instruction when Condition Is Satisfied

2. When condition is not satisfied
If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.66).

<> 4> 4> 4> 4> 4> 4> <> 4> ;. Sot
[Instructon A IF_ ID EX]

Next instruction IF ID EX -
Third instruction in series IF ID EX -
..... IF ID EX .-

Figure 8.66 Branch Instruction when Condition Is Not Satisfied

Rev. 2.00 May 31, 2006 page 268 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Note: The SH-2E always fetches data as longwords. Consequently, a fetch performed by the
instruction following the status "1. When condition is satisfied" will overlap two
instructions if the address is at the 4n address boundary.

Delayed Conditional Branch Instructions: Include the following instruction types:

e BF/S label
e BT/S label

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 8.67).

<> 4> 4> 4> 4> 4> 4> <> <> ;. Sot
[Instructon A IF 1D EX]

Next instruction IF — ID EX MA WB
Third instruction in series IF — (Fetched but discarded)
Branch destination IF ID EX -
..... IF ID EX -

Figure 8.67 Branch Instruction when Condition Is Satisfied

2. When condition is not satisfied

If it is determined that a condition is not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.68).

<> 4> 4> 4> 4> 4> 4> <> <> ;. Slot
[Instructon A IF__ ID__EX]

Next instruction IF ID EX -
Third instruction in series IF ID EX -
..... IE ID EX -

Figure 8.68 Branch Instruction when Condition Is Not Satisfied

Rev. 2.00 May 31, 2006 page 269 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

Note: The SH-2E always fetches data as longwords. Consequently, a fetch performed by the
instruction following the status "1. When condition is satisfied" will overlap two
instructions if the address is at the 4n address boundary.

Unconditional Branch Instructions: Include the following instruction types:

e BRA label
* BRAF Rm

« BSR label
e« BSRF Rm

e JMP @Rm
« JSR @Rm
e RTS

<> 4> 4> 4> 4> 4> <> 4> <> ;. Sot
[Instructon A IF ID EX|

Delay slot IF — ID EX MA WB
Branch destination IF ID EX -
..... IE ID EX -

Figure 8.69 Unconditional Branch Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 8.69). Unconditionally branched instructions
are delay branched. The branch destination address is calculated in the EX stage. The instruction
following the unconditional branch instruction (instruction A), that is, the delay slot instruction is
not fetched and discarded as conditional branch instructions are, but is instead executed. Note that
the ID slot of the delay slot instruction does stall for one cycle. The branch destination instruction
starts its fetch from the slot after the slot that has the EX stage of instruction A.

Rev. 2.00 May 31, 2006 page 270 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

8.8.6

System Control ALU Instructions: Include the following instruction types:

System Control Instructions

e CLRT e SETT
« LDC Rm,SR e STC SR,Rn
e LDC Rm,GBR e STC GBR,Rn
« LDC Rm,VBR e STC VBR,Rn
e LDS Rm,PR e STS PR,Rn
* NOP
<> <> <> <> <> <> : Slot
lInstruction A IF_ID EX]
Next instruction IF ID EX -
Third instruction in series IF EX e

Figure 8.70 System Control ALU Instruction Pipeline

The pipeline has three stages: IF, ID, and EX (figure 8.70). The data operation is completed in the
EX stage via the ALU.

Rev. 2.00 May 31, 2006 page 271 of 336

RENESAS

REJ09B0316-0200




Section 8 Pipeline Operation

LDC.L Instructions: Include the following instruction types:

« LDC.L @Rmt+, SR
« LDC.L @Rm+, GBR
« LDC.L @Rm+, VBR

> 4> <> > P> <> <> <> Sot
[Instructon A IF 1D EX MA WB]
Next instruction IF — — ID EX -
Third instruction in series IF ID EX -

Figure 8.71 LDC.L Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and EX (figure 8.71). The ID of the following
instruction is stalled two slots.

STC.L Instructions: Include the following instruction types:

« STCL SR, @-Rn
« STCL GBR,@-Rn
« STCL VBR, @-Rn

<> 4> 4> 4> <> <> <> : Sot
[InstructionA IF_ID EX MA]
Next instruction IF — ID EX -
Third instruction in series IF ID EX -

Figure 8.72 STC.L Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.72). The ID of the next instruction is
stalled one slot.

Rev. 2.00 May 31, 2006 page 272 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

LDS.L Instruction (PR): Includes the following instruction type:

« LDSL @Rmt+, PR

<> 4> 4> 4> <> <4» : Slot
[Instruction A IF_ ID EX MA WB]|
Next instruction IF ID EX

Third instruction in series IF ID EX

Figure 8.73 LDS.L Instructions (PR) Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.73). It is the same as an ordinary
load instruction.

STS.L Instruction (PR): Includes the following instruction type:

¢« STSL PR, @Rn

[Instruction A IF ID  EX MA|
Next instruction IF ID EX

Third instruction in series IF ID EX

Figure 8.74 STS.L Instruction (PR) Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.74). It is the same as an ordinary load
instruction.

Rev. 2.00 May 31, 2006 page 273 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Register - MAC Transfer Instructions: Include the following instruction types:

« CLRMAC
e LDS Rm, MACH
e LDS Rm, MACL
<> 4> 4> <> <> <> : Slot
[Instructon A IF_ID EX MA]
Next instruction IF ID EX -
Third instruction in series IF ID EX -

Figure 8.75 Register -~ MAC Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.75). MA is a stage for accessing the
multiplier. MA contends with IF. This makes it the same as ordinary store instructions. Since the
multiplier does contend with the MA, however, the items noted for the multiplication,
Multiply/Accumulate, double-length multiplication, and double-length multiply/accumulate
instructions apply.

Memory — MAC Transfer Instructions: Include the following instruction types:

« LDSL @Rm+, MACH
« LDSL  @Rm+ MACL

<> 4> 4> <> <> <> : Slot
[Instructon A IF_ID EX MA]
Next instruction IF ID EX
Third instruction in series IF ID EX -

Figure 8.76 Memory - MAC Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.76). MA contends with IF. MA is a
stage for memory access and multiplier access. This makes it the same as ordinary load
instructions. Since the multiplier does contend with the MA, however, the items noted for the
multiplication, Multiply/Accumulate, double-length multiplication, and double-length
multiply/accumulate instructions apply.

Rev. 2.00 May 31, 2006 page 274 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

MAC - Register Transfer Instructions: Include the following instruction types:

 STS MACH, Rn
 STS MACL, Rn

<> <> 4> 4> <> <> : Sot
[Instruction A IF__ ID  EX MA WB]|
Next instruction IF ID EX -

Third instruction in series IF ID EX -

Figure 8.77 MAC - Register Transfer Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.77). MA is a stage for accessing
the multiplier. MA contends with IF. This makes it the same as ordinary load instructions. Since
the multiplier does contend with the MA, however, the items noted for the multiplication,
Multiply/Accumulate, double-length multiplication, and double-length multiply/accumulate

instructions apply.

MAC - Memory Transfer Instructions: Include the following instruction types:

« STSL MACH, @Rn
e STSL MACL, @Rn

[Instruction A IF__ ID__EX_ MA]
Next instruction IF ID EX -

Third instruction in series IF ID EX

Figure 8.78 MAC - Memory Transfer Instruction Pipeline

The pipeline has four stages: IF, ID, EX, and MA (figure 8.78). MA is a stage for accessing the
memory and multiplier. MA contends with IF. This makes it the same as ordinary store
instructions. Since the multiplier does contend with the MA, however, the items noted for the
multiplication, Multiply/Accumulate, double-length multiplication, and double-length

multiply/accumulate instructions apply.

Rev. 2.00 May 31, 2006 page 275 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

RTE Instruction: RTE

> 4> > > > > > <> <> Sot
[RTE_IF_ID EX MA MA]
Delay slot IF — — — ID EX -
Branch destination IF ID EX -

Figure 8.79 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 8.79). The MAs do not contend
with IF. RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled 3 slots.
The IF of the branch destination instruction starts from the slot following the MA of the RTE.

TRAP Instruction: TRAPA #imm

> 4> > O D > O D D > > > <> St

[Instruction A IF_ ID EX EX MA MA MA EX EX]
Next instruction IF
Third instruction in series IF
Branch destination IF ID EX -

------ IF ID EX

Figure 8.80 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.80). The MAs
do not contend with IF. TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

SLEEP Instruction: SLEEP

<> <«» <> : Slot
[SLEEP IF ID EX]
Next instruction IF

Figure 8.81 SLEEP Instruction Pipeline

Rev. 2.00 May 31, 2006 page 276 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

The pipeline has three stages: IF, ID and EX (figure 8.81). It is issued until the IF of the next
instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or standby mode.

8.8.7 Exception Processing

Interrupt Exception Processing: The interrupt is received during the ID stage of the instruction
and everything after the ID stage is replaced by the interrupt exception processing sequence. The
pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.82). Interrupt
exception processing is not a delayed branch. In interrupt exception processing, an overrun fetch
(IF) occurs. In branch destination instructions, the IF starts from the slot that has the final EX in
the interrupt exception processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, IRQ, and on-chip
peripheral module interrupts.

> 4> 4> 4> 4> 4> > > > > > > <> Sot

linterrupt ‘IF_ID: EX EX MA MA EX MA EX EX |
Next instruction IF
Branch destination IF ID EX -«

...... IF ID -

Figure 8.82 Interrupt Exception Processing Pipeline

Address Error Exception Processing: The address error is received during the ID stage of the
instruction and everything after the ID stage is replaced by the address error exception processing
sequence. The pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure
8.83). Address error exception processing is not a delayed branch. In address error exception
processing, an overrun fetch (IF) occurs. In branch destination instructions, the IF starts from the
slot that has the final EX in the address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. See the Hardware
Manual for information on the causes of address errors.

> 4> 4> 4> 4> 4> > > > > > > <> Sot

linterrupt :IF_ID: EX EX MA MA EX MA EX EX|
Next instruction IF
Branch destination IF ID EX -

Figure 8.83 Address Error Exception Processing Pipeline

Rev. 2.00 May 31, 2006 page 277 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

Illegal Instruction Exception Processing: The illegal instruction is received during the ID stage
of the instruction and everything after the ID stage is replaced by the illegal instruction exception
processing sequence. The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX
(figure 8.84). Illegal instruction exception processing is not a delayed branch. In illegal instruction
exception processing, overrun fetches (IF) occur. Whether there is an IF only in the next
instruction or in the one after that as well depends on the instruction that was to be executed. In
branch destination instructions, the IF starts from the slot that has the final EX in the illegal
instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by
instructions with illegal slots. When undefined code placed somewhere other than the slot directly
after the delayed branch instruction (called the delay slot) is decoded, ordinary illegal instruction
exception processing occurs. When undefined code placed in the delay slot is decoded or when an
instruction placed in the delay slot to rewrite the program counter is decoded, an illegal slot
instruction occurs.

<> 4> 4> 4> > > 4> > > > > <> Sot

[Interrupt IF. 1D} EX EX MA MA MA EX EX |
Next instruction IF
Third destination IF)
Branch destination IF ID EX -

Figure 8.84 Illegal Instruction Exception Processing Pipeline

Rev. 2.00 May 31, 2006 page 278 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

8.8.8 Relationship between Floating-point Instructions and FPU-related CPU
Instructions

FPUL Load Instructions: Include the following instruction types:

« LDS Rm,FPUL
« LDSL @Rm+,FPUL

Instruction IF ID EX MA : CPU pipeline

IF DF E1l E2 SF : FPU pipeline

Next instruction IF ID EX e : CPU pipeline
IF DF El - : FPU pipeline (CPU instruction only)

Third instruction in series IF ID EX e : CPU pipeline
IF DF E1l - : FPU pipeline (CPU instruction only)

Figure 8.85 FPUL Load Instruction Pipeline

The CPU pipeline has four stages, IF, ID, EX, and MA (figure 8.85) ; and the FPU pipeline has
five stages, IF, DF, E1, E2, and SF. The CPU MA stage contends with IF. Contention will also
result if an instruction that reads FPUL follows immediately after this instruction.

Rev. 2.00 May 31, 2006 page 279 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

FPSCR Load Instructions: Include the following instruction types:

. LDS Rm,FPSCR
« LDSL  @Rm+FPSCR

- w—- a w- - o e - SOt

Instruction IF ID  EX MA : CPU pipeline

IF DF E1 E2 SF - FPU pipeline

Next instruction F D — — EX o : CPU pipeline
IF DF — — E1 : FPU pipeline (CPU instruction only)

Third instruction in series F —  — D EX . : CPU pipeline
F - — DF E1 e : FPU pipeline (CPU instruction only)

Figure 8.86 FPSCR Load Instruction Pipeline

The CPU pipeline has four stages, IF, ID, EX, and MA (figure 8.86) ; and the FPU pipeline has
five stages, IF, DF, E1, E2, and SF. Contention occurs as shown in Figure 8.11, and execution of
the next instruction is delayed by two slots.

Rev. 2.00 May 31, 2006 page 280 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

FPUL Store Instruction (STS): Include the following instruction type:

« STS FPUL,Rn

Instruction IF ID EX MA WB : CPU pipeline

IF DF E1l E2 : FPU pipeline

Next instruction IF ID EX e : CPU pipeline
IF DF = : FPU pipeline (CPU instruction only)

Third instruction in series IF ID EX e : CPU pipeline
IF DF E1 - : FPU pipeline (CPU instruction only)

Figure 8.87 FPUL Store Instruction (STS) Pipeline

The CPU pipeline has five stages, IF, ID, EX, MA, and MB (figure 8.87) ; and the FPU pipeline
has four stages, IF, DF, E1, and E2. The CPU MA stage contends with IF. Contention will also
result if an instruction that uses the destination of this instruction follows immediately after it.

Rev. 2.00 May 31, 2006 page 281 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

FPUL Store Instruction (STS.L): Include the following instruction type:

« STSL  FPUL,@-Rn

Instruction IF ID EX MA : CPU pipeline

IF DF E1l E2 : FPU pipeline

Next instruction IF ID EX o : CPU pipeline
IF DF E1l e : FPU pipeline (CPU instruction only)

Third instruction in series IF ID EX e : CPU pipeline
IF DF E1 - . FPU pipeline (CPU instruction only)

Figure 8.88 FPUL Store Instruction (STS.L) Pipeline

The CPU pipeline has four stages, IF, ID, EX, and MA (figure 8.88) ; and the FPU pipeline has
four stages, IF, DF, E1, and E2. The CPU MA stage contends with IF.

Rev. 2.00 May 31, 2006 page 282 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

FPSCR Store Instruction (STS): Include the following instruction type:

« STS  FPSCR,Rn

“> 4> 4> 4> <+ <> <= < :Slot
Instruction IF D — — EX MA WB : CPU pipeline
IF DF — — E1 E2 : FPU pipeline
Next instruction F — — ID EX - : CPU pipeline
F - — DF E1 . : FPU pipeline (CPU instruction only)
Third instruction in series IFID EX o : CPU pipeline
IF DF E1 o : FPU pipeline (CPU instruction only)

Figure 8.89 FPSCR Store Instruction (STS) Pipeline

The CPU pipeline has five stages, IF, ID, EX, MA, and MB (figure 8.89) ; and the FPU pipeline
has four stages, IF, DF, E1, and E2. Contention occurs as shown in Figure 8.12, and execution of
the next instruction is delayed by two slots. The CPU MA stage contends with IF. Contention will
also result if an instruction that uses the destination of this instruction follows immediately after it.

Rev. 2.00 May 31, 2006 page 283 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

FPSCR Store Instruction (STS.L): Include the following instruction type:

« STSL  FPSCR,@-Rn

- - w- a a - - = SOt

Instruction IF b — — EX MA : CPU pipeline

IF DF — — El1 E2 : FPU pipeline

Next instruction F — — D EX - : CPU pipeline
F - — DF E1 : FPU pipeline (CPU instruction only)

Third instruction in series IFID  EX e : CPU pipeline
IF DF E1 o : FPU pipeline (CPU instruction only)

Figure 8.90 FPSCR Store Instruction (STS.L) Pipeline

The CPU pipeline has four stages, IF, ID, EX, and MA (figure 8.90) ; and the FPU pipeline has
four stages, IF, DF, E1, and E2. Contention occurs as shown in Figure 8.12, and execution of the
next instruction is delayed by two slots. The CPU MA stage contends with IF.

Rev. 2.00 May 31, 2006 page 284 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Floating-point Register Transfer Instructions: Include the following instruction types:

* FLDS FRm,FPUL
* FMOV  FRm,FRn
* FSTS FPUL,FRn

-—r «> <> <> <> <> S0t
Instruction IF ID EX : CPU pipeline
IF DF E1l E2 SF : FPU pipeline
Next instruction IF ID EX e : CPU pipeline
IF DF E1 - : FPU pipeline (CPU instruction only)
Third instruction in series IF ID EX e : CPU pipeline
IF DF E1 e : FPU pipeline (CPU instruction only)

Figure 8.91 Floating-point Register Transfer Instruction Pipeline

The CPU pipeline has three stages, IF, ID, and EX (figure 8.91) ; and the FPU pipeline has five
stages, IF, DF, E1, E2, and SF. Contention occurs if an instruction that reads from the destination
of this instruction follows immediately after it.

Rev. 2.00 May 31, 2006 page 285 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

Floating-point Register Immediate Instructions: Include the following instruction types:

* FLDIO FRn
e FMDI1 FRn

- - - -« Slot

Instruction IF ID EX : CPU pipeline

IF DF El E2 SF . FPU pipeline

Next instruction IF ID EX e : CPU pipeline
IF DF E1 - : FPU pipeline (CPU instruction only)

Third instruction in series IF ID EX e : CPU pipeline
IF DF E1 - : FPU pipeline (CPU instruction only)

Figure 8.92 Floating-point Register Immediate Instructions

The CPU pipeline has three stages, IF, ID, and EX (figure 8.92) ; and the FPU pipeline has five
stages, IF, DF, E1, E2, and SF. Contention occurs if an instruction that reads from the destination

of this instruction follows immediately after it.

Rev. 2.00 May 31, 2006 page 286 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Floating-point Register Load Instructions: Include the following instruction types:

* FMOV.S @Rm,FRn
* FMOV.S @Rm+FRn
* FMOV.S @(RO,Rm),FRn

Instruction IF ID EX MA : CPU pipeline

IF DF E1l E2 SF . FPU pipeline

Next instruction IF ID EX e : CPU pipeline
IF DF = : FPU pipeline (CPU instruction only)

Third instruction in series IF ID EX e : CPU pipeline
---------- IF DF E1 - :FPU pipeline (CPU instruction only)

Figure 8.93 Floating-point Register Load Instruction Pipeline

The CPU pipeline has four stages, IF, ID, EX and MA (figure 8.93) ; and the FPU pipeline has
five stages, IF, DF, E1, E2, and SF. The CPU MA stage contends with IF. Contention will also
result if an instruction that reads from the destination of this instruction follows immediately after
it.

Rev. 2.00 May 31, 2006 page 287 of 336
REJ09B0316-0200
RENESAS




Section 8 Pipeline Operation

Floating-point Register Store Instructions: Include the following instruction types:

* FMOV.S FRm,@Rn
* FMOV.S FRm,@-Rn
* FMOV.S FRm,@(RO,Rn)

Instruction IF ID EX MA : CPU pipeline

IF DF E1l E2 . FPU pipeline

Next instruction IF ID EX e : CPU pipeline
IF DF E1l e : FPU pipeline (CPU instruction only)

Third instruction in series IF ID EX e : CPU pipeline
IF DF E1l - . FPU pipeline (CPU instruction only)

Figure 8.94 Floating-point Register Store Instruction Pipeline

The CPU pipeline has four stages, IF, ID, EX and MA (figure 8.94) ; and the FPU pipeline has
four stages, IF, DF, E1, and E2. The CPU MA stage contends with IF.

Rev. 2.00 May 31, 2006 page 288 of 336
REJ09B0316-0200
RENESAS



Section 8 Pipeline Operation

Floating-point Operation Instructions (Excluding FDIV): Include the following instruction
types:

FABS  FRn
FADD  FRm,FRn
FLOAT FPUL.FRn
FMAC  FRO,FRm,FRn
FMUL  FRm,FRn
FNEG  FRn

FSUB  FRm,FRn
FTRC  FRm,FPUL

- - - - -« : Slot

Instruction IF ID EX : CPU pipeline

IF DF E1l E2 SF : FPU pipeline

Next instruction IF ID EX e : CPU pipeline
IF DF E1 - : FPU pipeline (CPU instruction only)

Third instruction in series IF ID EX e : CPU pipeline
IF DF E1l e : FPU pipeline (CPU instruction only)

Figure 8.95 Floating-point Operation Instructions (Excluding FDIV) Pipeline

The CPU pipeline has three stages, IF, ID, and EX (figure 8.95) ; and the FPU pipeline has five
stages, IF, DF, E1, E2, and SF. Contention occurs if an instruction that reads from the destination
of this instruction follows immediately after it.

Rev. 2.00 May 31, 2006 page 289 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

Floating-point Operation Instruction (FDIV): Include the following instruction type:

 FDIV FRm,FRn

Case 1: If next instruction is a floating-point instruction or an FPU-related CPU instruction

- > 4> w> > wr 4> > > -« <> Slot
Instruction IF ID  EX e : CPU pipeline
IF  DF E1l E1 - E1l E2 SF : FPU pipeline
Next instruction IF D — e - — — EX e : CPU pipeline
IF DF — e - —  — E1 e : FPU pipeline
Third instruction in series IF = e — — — D EX e : CPU pipeline
IF e — — — DF E1 - : FPU pipeline

.......... (CPU instruction only)

Case 2: If next instruction is a CPU instruction and the following instruction is a floating-point instruction
or an FPU-related CPU instruction

“r 4+ 4> 4> > 4> > > 4+ <> <> :Sht
Instruction IF ID  EX : CPU pipeline
F DF El ELl o El E2 SF : FPU pipeline
Next instruction IF 1D EX e : CPU pipeline
Third instruction in series IF 1D e - — — EX e : CPU pipeline
IF DF e - — — E1 e : FPU pipeline

Figure 8.96 Floating-point Operation Instruction (FDIV) Pipeline

The CPU pipeline has three stages, IF, ID, and EX (figure 8.96) ; and the FPU pipeline has 17
stages, IF, DF, El, E1, E1, El, El, El, El, El, E1, El, El, E1l, E1, E1, E2, and SF. In other
words, 13 E1 stages are repeated in succession.

Contention occurs as shown in Figure 8.13. If the FDIV pipeline overlaps with the pipeline of a
floating-point instruction or an FPU-related CPU instruction, all stages from E1 onward are stalled
until execution of FDIV completes, and the following instructions are also stalled. Consequently,
performance can be improved by not placing any floating-point instructions or FPU-related CPU
instructions within the 14 instructions immediately following the FDIV instruction, since CPU
instructions can execute normally.

Rev. 2.00 May 31, 2006 page 290 of 336
REJ09B0316-0200

RENESAS



Section 8 Pipeline Operation

Floating-point Compare Instructions: Include the following instruction types:

» FCMP/EQ FRm,FRn
* FCMP/GT FRm,FRn

- —— - -« Slot

Instruction IF ID EX : CPU pipeline

IF DF E1l : FPU pipeline

Next instruction IF ID EX e : CPU pipeline
IF DF E1 - : FPU pipeline (CPU instruction only)

Third instruction in series IF ID EX e : CPU pipeline
IF DF E1 e : FPU pipeline (CPU instruction only)

Figure 8.97 Floating-point Compare Instruction Pipeline

The CPU pipeline has three stages, IF, ID, and EX (figure 8.97) ; and the FPU pipeline has three

stages, IF, DF, and E1.

Rev. 2.00 May 31, 2006 page 291 of 336

RENESAS

REJ09B0316-0200



Section 8 Pipeline Operation

Rev. 2.00 May 31, 2006 page 292 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

Appendix A Instruction Code

A.l Instruction Set by Addressing Mode
Table A.1 Instruction Set by Addressing Mode
Addressing Mode Category Sample Instruction Types
No operand — NOP 8
Direct register Destination operand only MOVT  Rn 22
addressing Source and destination ADD Rm Rn 42
operand
Load and store with control LDC Rm SR 18
register or system register STS MACH, Rn
Indirect register Source operand only JWP @m 2
addressing Destination operand only TAS. @n
Data transfer direct from MOV. Rm @rn 8
register
Post-increment indirect Multiply/accumulate operation MAC. @Rm+, @Rn+ 2
register addressing Data transfer direct from MOV. @rmt, Rn
register
Load to control register or LDC. @m+, SR 8
system register
Pre-decrement indirect Data transfer direct from MOV. Rm @-Rn 4
register addressing register
Store from control register or  STC. SR, @-Rn 8
system register
Indirect register Data transfer direct to register MOV. Rm @ di sp, Rn) 6
addressing with
displacement
Indirect indexed register ~ Data transfer direct to register MOV. Rm @ RO, Rn) 8
addressing
Indirect GBR addressing Data transfer direct to register MOV. RO, @di sp, GBBR) 6
with displacement
Indirect indexed GBR Immediate data transfer AND. #i mm @ RO, GBR) 4
addressing
PC relative addressing Data transfer direct to register MOV. @disp,PO),Rn 3
with displacement
Rev. 2.00 May 31, 2006 page 293 of 336

RENESAS

REJ09B0316-0200



Appendix A Instruction Code
Addressing Mode Category Sample Instruction Types
PC relative addressing Branch instruction BRAF Rn 2
with Rn
PC relative addressing Branch instruction BRA | abel
Immediate addressing Load to register FLDIO FRn

Arithmetic logical operations ADD #i mMm Rn

direct with register

Specify exception processing  TRAPA #i nm 1

vector

172

Note: Figures not in parentheses ( ) indicate the number of instructions for the SH-3E and figures
in parentheses ( ) indicate the number of instructions for the SH-3.

A.l.1 No Operand

Table A.2 No Operand
Instruction Operation Code Cycles T Bit
CLRT 0-T 0000000000001000 1 0
CLRVAC 0 - MACH, MACL 0000000000101000 1 —
Dl VOU 0 - MIQ/T 0000000000011001 1 0
NOP No operation 0000000000001001 1 —
RTE Delayed branching, 0000000000101011 4 —
Stack area - PC/SR
RTS Delayed branching, PR -~ PC  0000000000001011 2 —
SETT 1T 0000000000011000 1
SLEEP Sleep 0000000000011011 3 —

Rev. 2.00 May 31, 2006 page 294 of 336
REJ09B0316-0200

RENESAS



Appendix A Instruction Code

A.1.2 Direct Register Addressing

Table A.3 Destination Operand Only

Instruction Operation Code Cycles T Bit

CMP/ PL Rn Rn>0,1 T 0100nnnn00010101 1 Comparison
result

CMP/ PZ Rn Rn=0,1-T 0100nnnn00010001 1 Comparison
result

DT Rn Rn—-1 - Rn, when Rnis 0, 0100nnnn00010000 1 Comparison

1 - T. When Rn is nonzero, result
0-T
FABS FRn abs (FRn - FRn 1111nnnn01011101 1 —
FLOAT FPUL, (float) FPUL - FRn 1111nnnn00101101 1 —
FRn
FNEG FRn -1.0xFRn - FRn 1111nnnn01001101 1 —
FTRC FRm (int) FRm - FPUL 1112mm®00111101 1 —
FPUL

MWVT  Rn T - Rn 0000nnNnNNn00101001 1 —

ROTL Rn T « Rn « MSB 0100nnnn00000100 1 MSB

ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB

ROTCL Rn T<Rn T 0100nnnn00100100 1 MSB

ROTCR Rn T-Rn-T 0100nnnn00100101 1 LSB

SHAL Rn T<Rn<0 0100nnnn00100000 1 MSB

SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB

SHLL Rn T<Rn<0 0100nnnn00000000 1 MSB

SHLR Rn 0O-Rn-T 0100nnnn00000001 1 LSB

SHLL2 Rn Rn<<2 5 Rn 0100nnnn00001000 1 —

SHLR2 Rn Rn>>2 . Rn 0100nnnn00001001 1 —

SHLL8 Rn Rn<<8 -~ Rn 0100nnnNn00011000 1 —

SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 1 —

SHLL16 Rn Rn << 16 -~ Rn 0100nnnn00101000 1 —

SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —

Rev. 2.00 May 31, 2006 page 295 of 336
REJ09B0316-0200

RENESAS



Appendix A

Instruction Code

Table A.4 Source and Destination Operand

Instruction Operation Code Cycles T Bit
ADD Rm Rn Rn +Rm - Rn 0011nnnnmmml100 1 —
ADDC Rm Rn Rn+Rm+T - Rn, 0011nnnnmmmm1110 1 Carry
carry - T
ADDV Rm Rn Rn+Rm - Rn, 001lnnnnmmmi1ll 1 Overflow
overflow - T
AND Rm Rn Rn & Rm - Rn 0010nnnnmmm001 1 —
CW/ EQ Rm Rn WhenRn=Rm, 1 - T 0011nnnnmmmmO000 1 Comparison
result
CMP/HS Rm Rn When unsigned and Rn> 0011nnnnmmm0010 1 Comparison
Rm,1 - T result
CWP/ GE Rm Rn When signed and Rn = 0011lnnnnmmm0011 1 Comparison
Rm,1 - T result
CVMP/H RmRn When unsigned and Rn > 0011nnnnmmm0110 1 Comparison
Rm,1 - T result
CWP/ GT Rm Rn When signed and Rn > 0011lnnnnmmmo0111 1 Comparison
Rm,1 - T result
CWP/ STR Rm Rn When a byte in Rn equals 0010nnnnmmmm1100 1 Comparison
abytesinRm,1 - T result
Dl Vi Rm Rn 1 step division (Rn + Rm) 0011nnnnmmm0100 1 Calculation
result
DIVOS RmRn MSB of Rn - Q, MSB of 0010nnnnnmmm0111 1 Calculation
Rm - M MA"Q - T result
DMULS. L Rm Rn Signed operation of Rn x  0011nnnnmmmmi101 2to4* —
Rm - MACH, MACL
DMULU. L Rm Rn Unsigned operation of Rn  0011nnnnmmm0101 2to 4" —
x Rm - MACH, MACL
EXTS.B Rm Rn Sign — extend Rm from 0110nnnnmmm1110 1 —
byte — Rn
EXTS. W Rm Rn Sign — extend Rm from 0110nnnnmmm111 1 —
word - Rn
EXTU.B Rm Rn Zero — extend Rm from 0110nnnnnmmm1100 1 —
byte - Rn
EXTU. W Rm Rn Zero — extend Rm from 0110nnnnnmmm101 1 —
word - Rn
FADD FRm FRn  FRm + FRn - FRn 1111nnnnnmmm0D000 1 —

Rev. 2.00 May 31, 2006 page 296 of 336

REJ09B0316-0200

RENESAS



Appendix A Instruction Code

Instruction Operation Code Cycles T Bit

FCWP/ EQ FRm FRn  (FRn == FRm)? 1111nnnnpPMmm0100 1 Comparison
10-T result

FCWP/ GT FRm FRn  (FRn > FRm)? 111innnnnmmmm0101 1 Comparison
10T result

FDI vV FRm FRn  FRn/FRm - FRn 1111nnnnnmmm0D011 13 —

FMAC FRO, FRm (FRO x FRm) + FRn - 1111nnnnpmmmi110 1 —

FRn FRn

Fvov FRm FRn  FRm - FRn 1111lnnnnnmmmil100 1 —

FMUL FRm FRn  FRn x FRm - FRn 1111nnnnnmmm0010 1 —

FSuB FRm FRn  FRn-FRm - FRn 1111nnnnnmmm0D001 1 —

MoV Rm Rn Rm - Rn 0110nnnnmmD011 1 —

MJLL.L RmRn Rn x Rm - MAC 0000nnNNMMMO111  2to4* —

MULS. W Rm Rn With sign, Rn xRm - 0010nnnnnmml11l 1to3* —
MAC

MJLU. W Rm Rn Unsigned, Rn xRm - 0010nnnnmmmmM1110  1to 3% __
MAC

NEG Rm Rn 0-Rm - Rn 0110nnnnmml0ol1l 1 —

NEGC Rm Rn 0-Rm-T - Rn, 0110nnnnmmm1010 1 Borrow
Borrow - T

NOT Rm Rn ~Rm - Rn 0110nnnnmm0D111 1 —

OoR Rm Rn Rn|Rm - Rn 0010nnnnmmm0l11 1 —

SUB Rm Rn Rn—-Rm - Rn 0011nnnnmml000 1 —

SUBC Rm Rn Rn—Rm-T - Rn, 0011lnnnnmmm1l010 1 Borrow
Borrow - T

SUBV Rm Rn Rn-Rm - Rn, 0011nnnnmmmil011 1 Underflow
Underflow - T

SWAP. B Rm Rn Rm - Swap upper and 0110nnnnmmm1000 1 —
lower halves of lower 2
bytes — Rn

SWAP. W Rm Rn Rm - Swap upper and 0110nnnnmmm1001 1 —
lower word - Rn

TST Rm Rn Rn & Rm, when result is 0010nnnnnmml000 1 Test results
0,1-T

XOR Rm Rn Rn*Rm - Rn 0010nnnnmMmmm010 1 —

XTRCT RmRn Rm: Center 32 bits of Rn  0010nnnnnmmm.101 1 —
- Rn

Note: * The normal minimum number of execution states.

Rev. 2.00 May 31, 2006 page 297 of 336

RENESAS

REJ09B0316-0200



Appendix A

Instruction Code

Table A.5 Load and Store with Control Register or System Register

Instruction Operation Code Cycles T Bit
FLDS FRm FPUL FRm - FPUL 1111mm®00011101 1 —
FSTS FPUL, FRn FPUL - FRn 1111nnnn00001101 1 —
LDC Rm SR Rm - SR 0100nMmMMD0001110 1 LSB
LDC Rm GBR Rm - GBR 0100mmMmM00011110 1 —
LDC Rm VBR Rm - VBR 0100nMmMmMD0101110 1 —
LDS Rm FPSCR Rm - FPSCR 0100mmMmM®O01101010 1 —
LDS Rm FPUL Rm - FPUL 0100nMmMmMD1011010 1 —
LDS Rm MACH Rm - MACH 0100mmMmM00001010 1 —
LDS Rm MACL Rm - MACL 0100mmMmM00011010 1 —
LDS Rm PR Rm - PR 0100mmMmMD0101010 1 —
STC SR, Rn SR - Rn 0000nnnn00000010 1 —
STC GBR, Rn GBR - Rn 0000nnNNn00010010 1 —
STC VBR, Rn VBR - Rn 0000nnnn00100010 1 —
STS FPSCR, Rn FPSCR - Rn 1111nnnn01101010 1 —
STS FPUL, Rn FPUL - Rn 1111nnnn01011010 1 —
STS MACH, Rn MACH - Rn 0000nnNnn00001010 1 —
STS MACL, Rn MACL - Rn 0000nnnn00011010 1 —
STS PR, Rn PR - Rn 0000nnnNn00101010 1 —

Rev. 2.00 May 31, 2006 page 298 of 336

REJ09B0316-0200

RENESAS



Appendix A Instruction Code

A.13 Indirect Register Addressing

Table A.6 Source Operand Only

Instruction Operation

Code Cycles T Bit

JwP @m Delayed branching,

Rm - PC

0100nnnn00101011 2 —

JSR @Rm Delayed branching,

PC -~ PR,Rm - PC

0100nnnn00001011 2 —

Table A.7 Destination Operand Only

Instruction Operation Code Cycles T Bit
TAS. B @un When (Rn)is 0,1 - T, 0100nnnn00011011 4 Test
1 - MSB of (Rn) results
Table A.8 Data Transfer Direct to Register
Instruction Operation Code Cycles T Bit
FMOV. S FRm @n FRm - (FRn) 1111nnnnnmml010 1 —
FMOV. S @Rm FRn (Rm) - FRn 1111nnnnnmmml000 1 —
MOV. B Rm @Rn Rm - (Rn) 0010nnnnmmmD000 1 —
MOV. W Rm @Rn Rm - (Rn) 0010nnnnmmmD001 1 —
MOV.L Rm @Rn Rm - (Rn) 0010nnnnmmm®D010 1 —
MOV.B @Rm Rn (Rm) - sign extension - 0110nnnnmmmD000 1 —
Rn
MOV. W @Rm Rn (Rm) - sign extension - 0110nnnnmmmD001 1 —
Rn
MOV.L @Rm Rn (Rm) - Rn 0110nnnnmmm®D010 1 —

Rev. 2.00 May 31, 2006 page 299 of 336
REJ09B0316-0200

RENESAS



Appendix A Instruction Code

A.14 Post-Increment Indirect Register Addressing

Table A.9 Multiply/Accumulate Operation

Instruction Operation Code Cycles T Bit

MAC. L @ mt, @+  Signed operation of 0000nnnnMmmMML111  3/(2to 4)* —
(Rn) x (Rm) + MAC - MAC

MAC. W @m+, @n+  Signed operation of 0100nnnnmmmm111  3/(2)* —

(Rn) x (Rm) + MAC - MAC

Note: * Normal minimum number of execution states (the number in parenthesis is the number
of states when there is contention with preceding/following instructions).

Table A.10 Data Transfer Direct from Register

Instruction Operation Code Cycles T Bit

FMOV. S @Rm+, FRn (Rm) - FRn,Rm+4 - Rm 1111nnnnmmmil001 1 —

MOV. B @Rmt, Rn (Rm) - sign extension — 0110nnnnmmm®D100 1 —
Rn,Rm+1 -~ Rm

MOV. W @R+, Rn (Rm) - sign extension - 0110nnnnmmm0101 1 —
Rn,Rm +2 - Rm

MOV.L @Rmt, Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmm®0110 1 —

Table A.11 Load to Control Register or System Register

Instruction Operation Code Cycles T Bit

LDC. L @rm+, SR (Rm) -~ SR,Rm+4 - Rm  0100nmmmD0000111 3 LSB

LDC. L @mt, GBR (Rm) - GBR,Rm+4 - Rm 0100mmm®00010111 3 —

LDC. L @m+, VBR (Rm) - VBR,Rm+4 . Rm 0100nmm©00100111 3 —

LDS. L @Rm+, FPSCR (Rm) - FPSCR,Rm+4 - 0100mmm01100110 1 —
Rm

LDS.L @m+, FPUL  (Rm) - FPUL,Rm+4 - 0100mmMmD1010110 1 —
Rm

LDS. L @m+, MACH (Rm) - MACH, @Rm +4 -~ 0100mmmD0000110 1 —
Rm

LDS.L @m+, MACL  (Rm) - MACL, @Rm+4 - 0100mmm00010110 1 —
Rm

LDS.L @rmt+, PR (Rm) - PR, @Rm +4 -, 0100mmMmD0100110 1 —
Rm

Rev. 2.00 May 31, 2006 page 300 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

A.1.5 Pre-Decrement Indirect Register Addressing

Table A.12 Data Transfer Direct from Register

Instruction Operation Code Cycles T Bit
FMOV. S FRm @-Rn Rn—-4 - Rn, FRm - (Rn) 1111nnnnnmmmil011 1 —
MOV. B Rm @Rn Rn-1 - Rn,Rm - (Rn) 0010nnnnmMmmmD100 1 —
MOV. W Rm @-Rn Rn-2 - Rn,Rm - (Rn) 0010nnnnmmmD101 1 —
MOV.L Rm @-Rn Rn-4 - Rn,Rm - (Rn) 0010nnnnmm®©O110 1 —

Table A.13 Store from Control Register or System Register

Instruction Operation Code Cycles T Bit
STC.L SR @Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 2 —
STC.L GBR @Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 2 —
STC.L VBR @Rn Rn—-4 - Rn, VBR - (Rn) 0100nnnn00100011 2 —
STS.L FPSCR, @Rn  Rn-4 - Rn, FPSCR - (Rn) 0100nnnn01100010 1 —
STS.L FPUL, @Rn Rn—-4 - Rn, FPUL - (Rn) 0100nnnn01010010 1 —
STS. L MACH, @-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 1 —
STS.L MACL, @Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 1 —
STS.L PR @Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 1 —
A.1.6 Indirect Register Addressing with Displacement

Table A.14 Indirect Register Addressing with Displacement

Instruction Operation Code Cycles T Bit
MOV. B RO, @di sp, Rn) RO - (disp + Rn) 10000000nnnndddd 1 —
MOV. W RO, @di sp, Rn) RO - (disp + Rn) 10000001nnnndddd 1 —
MV.L Rm @di sp, Rn) Rm - (disp + Rn) 0001nnnnmmmdddd 1 —
MV.B @disp, R, RO (disp + Rm) - sign 10000100mmmdddd 1 —

extension - RO

MV. W @di sp, R, RO (disp + Rm) - sign 10000101mmmdddd 1 —
extension - RO

MWV.L @disp, R, Rn (disp + Rm) - Rn 0101nnnnmmmdddd 1 —

Rev. 2.00 May 31, 2006 page 301 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

A.1.7  Indirect Indexed Register Addressing

Table A.15 Indirect Indexed Register Addressing

Instruction Operation Code Cycles T Bit

MOV.B Rm @ RO, Rn) Rm - (RO + Rn) 0000nnNNMMMOD100 1 —

MOV. W Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnnMMMD101 1 —

MOV.L Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnnmMMMOD110 1 —

FMOV. S FRm @ RO, Rn) FRm - (RO + Rn) 111innnnnmmm0111 1 —

MV.B @RO,RM, Rn (RO + Rm) - sign 0000nnNNMMMML100 1 —
extension — Rn

MOV. W @RO0, Rm, Rn (RO + Rm) - sign 0000nnnnmmMM1101 1 —
extension - Rn

MOV.L @RO, RM, Rn (RO +Rm) - Rn 0000OnnnnmmmM1110 1 —

FMOV. S @RO, FRmM, FRm (RO + Rn) - FRn 1111nnnnnmmm0110 1 —

A.1.8 Indirect GBR Addressing with Displacement

Table A.16 Indirect GBR Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV. B RO, @disp, GBR) RO - (disp + GBR) 11000000dddddddd 1 —

MOV. W RO, @di sp, GBBR) RO - (disp + GBR) 11000001dddddddd 1 —

MOV.L RO, @disp, BR) RO - (disp + GBR) 11000010dddddddd 1 —

MOV. B @disp, GBR), RO (disp + GBR) - sign 11000100dddddddd 1 —
extension —» RO

MOV. W @di sp, GBBR), RO (disp + GBR) - sign 11000101dddddddd 1 —
extension —» RO

MOV. L @disp, GBR), RO (disp+ GBR) - RO 11000110dddddddd 1 —

Rev. 2.00 May 31, 2006 page 302 of 336
REJ09B0316-0200

RENESAS



Appendix A Instruction Code

A.1.9  Indirect Indexed GBR Addressing

Table A.17 Indirect Indexed GBR Addressing

Instruction Operation Code Cycles T Bit

AND. B #i mnm @ RO, GBBR) (RO + GBR) & imm - 1100110%iiiiiiii 3 —
(RO + GBR)

OR B #imm@R0, GBBR) (RO+GBR)|imm - (RO 11001211%iiiiiiii 3 —
+ GBR)

TST. B #i mnm @ RO, GBBR) (RO + GBR) & imm, 11001100iiiiiiii 3 Test
whenresultis0,1 - T results

XOR B #imm @RO, GBBR) (RO + GBR)*imm - 11001110iiiiiiii 3 —
(RO + GBR)

A.1.10 PC Relative Addressing with Displacement

Table A.18 PC Relative Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV. W @di sp, PC), R0 (disp + PC) - sign 1001nnnndddddddd 1 —
extension - Rn

MOV.L @disp, PC),Rn (disp+PC) - Rn 1101nnnndddddddd 1 —

MOVA  @di sp, PC), R0 disp+PC - RO 11000111dddddddd 1 —

Rev. 2.00 May 31, 2006 page 303 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

A.1.11 PC Relative Addressing

Table A.19 PC Relative Addressing with Rn

Instruction Operation Code Cycles T Bit
BRAF Rm Delayed branch, 0000nnnn00100011 2 —
Rm+PC - PC
BSRF Rm Delayed branch, PC - 0000nnnn00000011 2 —
PR,Rm+PC - PC
Table A.20 PC Relative Addressing
Instruction Operation Code Cycles T Bit
BF | abel When T =0, disp + PC - PC; 10001011dddddddd ~ 3/1* —
when T =1, nop
BF/ S | abel If T=0,disp+PC - PC; 10001111dddddddd  2/1* —
if T=1, nop
BT | abel When T =1, disp + PC - PC; 10001001dddddddd ~ 3/1* —
when T =1, nop
BT/ S | abel If T=1,disp+PC - PC; 10001101dddddddd  2/1* —
if T=0, nop
BRA | abel Delayed branching, disp + PC -~ PC 1010dddddddddddd —
BSR | abel Delayed branching, PC - PR, 1011dddddddddddd —
disp + PC - PC

Note: * One state when it does not branch.

Rev. 2.00 May 31, 2006 page 304 of 336

REJ09B0316-0200

RENESAS



Appendix A Instruction Code
A.1.12 Immediate
Table A.21 Load to Register
Instruction Operation Code Cycles T Bit
FLDIO FRn 0x00000000 - FRn 1111nnnn10001101 1 —
FLDI1 FRn 0x3F800000 - FRn 1111nnnn10011101 1 —

Table A.22 Arithmetic Logical Operations Direct with Register

Instruction Operation Code Cycles T Bit

ADD #i nm Rn Rn +imm - Rn Olldlnnnniiiiiiii 1 —

AND #i mm RO RO & imm - RO 11002100%iiiiiiii 1 —

CWVP/ EQ #i mm RO When RO =imm,1 - T 10001000iiiiiiii 1 Comparison
result

MOV #i mm Rn

imm - sign extension — 1110nnnniiiii
Rn

R #i mm RO

RO | imm - RO 1100101%iiiii

TST #i mm RO

RO & imm, when result is 11001000iiiii
0,1-T

Test results

XOR #i mm RO

RO *imm - RO 11001010iiiii

Table A.23 Specify Exception Processing Vector

Instruction

Operation Code

Cycles T Bit

TRAPA  #i nm

Stack area -~ PC/SR 11000011i
(imm x4 + VBR) - PC

Rev. 2.00 May 31, 2006 page 305 of 336

RENESAS

REJ09B0316-0200



Appendix A Instruction Code

A2 Instruction Sets by Instruction Format

Tables A.24 to A.54 list instruction codes and execution cycles by instruction formats.

Table A.24 Instruction Sets by Format

Format Category Sample Instruction Types
0 — NOP 8
n Direct register addressing MWVT Rn 18
Direct register addressing (store with control ~ STS MACH, Rn
or system registers)
Indirect register addressing TAS.B @n 1
Pre-decrement indirect register addressing STC.L SR @Rn 8
Floating-point instruction FABS FRn 6
m Direct register addressing (load with control LDC Rm SR 8
or system registers)
PC relative addressing with Rm BRAF  Rm 2
Indirect register addressing JwP @m 2
Post-increment indirect register addressing LDC. L @+, SR 8
Floating-point instruction FLDS FRm FPUL 2
nm Direct register addressing ADD Rm Rn 34
Indirect register addressing MOV.L Rm @Rn 6
Post-increment indirect register addressing MAC. W @Rm+, @Rn+
(multiply/accumulate operation)
Post-increment indirect register addressing MOV.L @Rmt, Rn
Pre-decrement indirect register addressing MOV.L Rm @-Rn
Indirect indexed register addressing MOV.L Rm @ RO, Rn)
Floating-point instruction FADD FRm FRn 14
md Indirect register addressing with MOV.B @disp, R, RO 2
displacement
nd4 Indirect register addressing with MOV. B RO, @di sp, Rn) 2
displacement
nmd Indirect register addressing with MOV.L Rm @di sp, Rn) 2

displacement

Rev. 2.00 May 31, 2006 page 306 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

Format Category Sample Instruction Types

d Indirect GBR addressing with displacement MWV.L RO, @disp, GBBR) 6
Indirect PC addressing with displacement MWVA @disp, PC), RO 1
PC relative addressing BF di sp 4

d12 PC relative addressing BRA di sp 2

nd8 PC relative addressing with displacement MWV.L @disp, PC), Rn 2

i Indirect indexed GBR addressing AND. B #imm @RO, GBR) 4
Immediate addressing (arithmetic and logical AND #i mm RO 5

operations direct with register)

Immediate addressing (specify exception TRAPA  #i nm 1

processing vector)
ni Immediate addressing (direct register ADD #i mm Rn 2

arithmetic operations and data transfers )

Total: 172
A21 0 Format
Table A.25 0 Format
Instruction Operation Code Cycles T Bit
CLRT 0-T 0000000000001000 1 0
CLRVAC 0 - MACH, MACL 0000000000101000 1 —
Dl VOU 0 - MQIT 0000000000011001 1 0
NOP No operation 0000000000001001 1 —
RTE Delayed branch, 0000000000101011 4 LSB
Stack area - PC/SR

RTS Delayed branching, PR - PC 0000000000001011 2 —
SETT 1T 0000000000011000 1 1
SLEEP Sleep 0000000000011011 3* —

Note: * The number of excection cycles before the chip enters sleep mode.

Rev. 2.00 May 31, 2006 page 307 of 336
REJ09B0316-0200
RENESAS



Appendix A

Instruction Code

A.2.2 n Format

Table A.26 Direct Register

Instruction Operation Code Cycles T Bit

CVMP/ PL Rn Rn>0,1 T 0100nnnn00010101 1 Comparison
result

CMP/ PZ Rn Rn=0,1-T 0100nnnn00010001 1 Comparison
result

DT Rn Rn-1 - Rn,whenRnis0,1 - 0100nnnn00010000 1 Comparison

T. When Rnis nonzero,0 - T result

MWVT Rn T - Rn 0000nnnNn00101001 1 —

ROTL Rn T -« Rn « MSB 0100nnnNn00000100 1 MSB

ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB

ROTCL Rn T<RnT 0100nnnn00100100 1 MSB

ROTCR Rn ToRnoS T 0100nnnn00100101 1 LSB

SHAL Rn T<Rn<0 0100nnnn00100000 1 MSB

SHAR Rn MSB -~ Rn - T 0100nnnn00100001 1 LSB

SHLL Rn T<Rn<0 0100nnnn00000000 1 MSB

SHLR Rn 0-Rn->T 0100nnnn00000001 1 LSB

SHLL2 Rn Rn<<2 5 Rn 0100nnnn00001000 1 —

SHLR2 Rn Rn>>2 . Rn 0100nnnn00001001 1 —

SHLL8 Rn Rn<<8 -~ Rn 0100nnnn00011000 1 —

SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 1 —

SHLL16 Rn Rn << 16 - Rn 0100nnnn00101000 1 —

SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —

Rev. 2.00 May 31, 2006 page 308 of 336

REJ09B0316-0200

RENESAS



Appendix A

Instruction Code

Table A.27 Direct Register (Store with Control and System Registers)

Instruction Operation Code Cycles T Bit
STC SR, Rn SR - Rn 0000nnNnNn00000010 1 —
STC GBR, Rn GBR - Rn 0000nnnn00010010 1 —
STC VBR, Rn VBR - Rn 0000nnNn00100010 1 —
STS FPSCR, Rn FPSCR- Rn 0000nnnn01101010 1 —
STS FPUL, Rn FPUL - Rn 0000nnnNn01011010 1 —
STS MACH, Rn MACH - Rn 0000nnnn00001010 1 —
STS MACL, Rn MACL - Rn 0000nnnNn00011010 1 —
STS PR, Rn PR - Rn 0000nnnn00101010 1 —
Table A.28 Indirect Register
Instruction Operation Code Cycles T Bit
TAS. B @Rrn When (Rn)is 0,1 - T, 0100nnnn00011011 4 Test
1 - MSB of (Rn) results
Table A.29 Indirect Pre-Decrement Register
Instruction Operation Code Cycles T Bit
STC.L SR @Rn Rn—-4 - Rn, SR - (Rn) 0100nnnn00000011 1 —
STC.L GBR @Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 1 —
STC.L VBR @Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 1 —
STS.L FRSCR, @Rn Rn-4 - Rn, FPSCR - Rn  0100nnnn01100010 1 —
STS.L FPUL, @ Rn Rn-4 - Rn, FPUL - Rn 0100nnnn01010010 1 —
STS.L MACH @Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 1 —
STS.L MACL,@Rn  Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 1 —
STS.L PR @Rn Rn-4 - Rn,PR - (Rn) 0100nnnn00100010 1 —
Note: SH-3E instructions.

Rev. 2.00 May 31, 2006 page 309 of 336

RENESAS

REJ09B0316-0200



Appendix A Instruction Code

Table A.30 Floating-Point Instruction

Instruction Operation Code T Bit
FABS FRn [FRn| - FRn 1111nnnn01011101 1 —
FLDIO FRn H'00000000 - FRn 1111nnnn10001101 1 —
FLDI1 FRn H'3F800000 — FRn 1111nnnn10011101 1 —
FLOAT FPUL, FRn (float)FPUL - FRn 1111nnnn00101101 1 —
FNEG FRn —FRn - FRn 1111nnnn01001101 1 —
FSTS FPUL, FRn FPUL - FRn 1111nnnn00001101 1 —
A23 m Format

Table A.31 Direct Register (Load from Control and System Registers)

Instruction Operation Code T Bit
LDC Rm SR Rm - SR 0100nMmMmMD0001110 1 LSB
LDC Rm GBR Rm - GBR 0100mmMmM00011110 1 —
LDC Rm VBR Rm - VBR 0100nMmMmMD0101110 1 —
LDS Rm FPSCR Rm - FPSCR 0100nnnn01101010 1 —
LDS Rm FPUL Rm - FPUL 0100nnnn01011010 1 —
LDS Rm MACH Rm - MACH 0100mmMmMD0001010 1 —
LDS Rm MACL Rm - MACL 0100mmMmM00011010 1 —
LDS Rm PR Rm - PR 0100mmMmMD0101010 1 —
Table A.32 Indirect Register

Instruction Operation Code Cycles T Bit
JMP @m Delayed branch, Rm - PC 0100mM00101011 2 —
JSR @Rm Delayed branch, PC - PR, 0100nmmMmMD0001011 2 —

Rm - PC

Rev. 2.00 May 31, 2006 page 310 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

Table A.33 Indirect Post-Increment Register

Instruction Operation Code Cycles T Bit
LDC. L @rm+, SR (Rm) - SR,Rm+4 - Rm 0100mMmmmD0000111 3 LSB
LDC. L @Rm+, GBR (Rm) - GBR,Rm +4 -, Rm 0100mMmmmD0010111 3 —
LDC. L @rm+, VBR (Rm) - VBR,Rm+4 - Rm 0100mmmD0100111 3 —
LDS. L @m+, FFSCR @Rm - FPSCR,Rm +4 - Rm 0100nnnn01100110 1 —
LDS.L @+, FPUL @Rm - FPUL,Rm+4 -~ Rm 0100nnnn01010110 1 —
LDS.L @m+-, MACH (Rm) - MACH,Rm+4 -~ Rm 0100nmmm©D0000110 1 —
LDS.L @+, MACL (Rm) - MACL,Rm+4 -~ Rm 0100mmm©00010110 1 —
LDS. L @Rm+, PR (Rm) - PR,Rm+4 - Rm 0100mMmmmD0100110 1 —
Table A.34 PC Relative Addressing with Rn
Instruction Operation Code Cycles T Bit
BRAF  Rn Delayed branch, Rn + PC -~ PC 0000nnnn00100011 2 —
BSRF Rn Delayed branch, PC - PR, 0000nnnn00000011 2 —
Rn+PC - PC
Table A.35 Floating-Point Instructions
Instruction Operation Code Cycles T Bit
FLDS FRm FPUL FRm - FPUL 1111nnnn00011101 1 —
FTRC FRm FPUL (long)FRm - FPUL 1111nnnn00111101 1 —

Rev. 2.00 May 31, 2006 page 311 of 336

RENESAS

REJ09B0316-0200



Appendix A Instruction Code

A2.4 nm Format

Table A.36 Direct Register

Instruction Operation Code Cycles T Bit

ADD Rm Rn Rm +Rn - Rn 0011nnnnmmmmi100 1 —

ADDC Rm Rn Rn+Rm+T - Rn, 0011nnnnmmmmi110 1 Carry
carry - T

ADDV Rm Rn Rn+Rm - Rn, 0011nnnnmmmmillll 1 Overflow
overflow - T

AND Rm Rn Rn & Rm - Rn 0010nnnnmmmi001 1 —

CW/ EQ Rm Rn WhenRn=Rm,1 - T 0011nnnnmmmOD000 1 Comparison

result

CVWP/HS Rm Rn When unsigned and Rn = 0011nnnnmmm©0010 1 Comparison
Rm,1 - T result

CMP/ GE Rm Rn When signed and Rn = Rm, 0011nnnnnmmm0011 1 Comparison
1T result

CVWP/H RmRn When unsigned and Rn > 0011nnnnmmmm®D110 1 Comparison
Rm,1 - T result

CMP/ GT Rm Rn When signed and Rn > Rm, 001lnnnnnmmm0111 1 Comparison
1-T result

CMP/ STRRM Rn When a byte in Rn equalsa 0010nnnnnmmmi100 1 Comparison
byteinRm,1 - T result

Dl Vi Rm Rn 1 step division (Rn + Rm) 0011nnnnmmmo0100 1 Calculation

result

DI VOS RmRn MSB of Rn - Q, MSB of 0010nnnnmMmmMmD111 1 Calculation
Rm - MM*"Q->T result

DMULS. L Rm Rn Signed operation of Rn x 0011nnnnnmmil01 2to4* —
Rm - MACH, MACL

DMULU. L Rm Rn Unsigned operation of Rn x  0011nnnnnmmmm0101 2to4* —
Rm - MACH, MACL

EXTS. B Rm Rn Sign-extend Rm from byte  0110nnnnmmm1110 1 —
- Rn

EXTS. W Rm Rn Sign-extend Rm fromword  0110nnnnmmi111 1 —
- Rn

EXTU. B Rm Rn Zero-extend Rm from byte  0110nnnnnmmmi100 1 —
- Rn

Rev. 2.00 May 31, 2006 page 312 of 336
REJ09B0316-0200

RENESAS



Appendix A Instruction Code
Instruction Operation Code Cycles T Bit
EXTU. W Rm Rn Zero-extend Rm from word  0110nnnnnmmmil101 1 —
- Rn
MoV Rm Rn Rm - Rn 0110nnnnmMmmm0011 1 —
ML.L RmRn  RnxRm - MAC 0000nnNNMMMO111  2to 4™ —
MULS. W Rm Rn With sign, Rn xRm -~ MAC 0010nnnnmmml111l 1to 3* —
MJLU. W Rm Rn  Unsigned, Rn xRm - 0010nnnnmmmML110  1to 3% _
MAC
NEG Rm Rn 0-Rm - Rn 0110nnnnmmmmi011l 1 —
NEGC Rm Rn 0-Rm-T - Rn, Borrow 0110nnnnnmmm010 Borrow
- T
NOT Rm Rn ~Rm - Rn 0110nnnnmmmo0111 1 —
OR Rm Rn Rn|Rm - Rn 0010nnnnmmm1011 1 —
SUB Rm Rn Rn—-Rm - Rn 0011nnnnmMmmmil000 1 —
SUBC Rm Rn Rn—Rm-T - Rn, Borrow 00l1lnnnnmmmil010 1 Borrow
- T
SUBV Rm Rn Rn-Rm - Rn, Underflow 0011nnnnmmmmi011 1 Under-flow
- T
SWAP. B Rm Rn Rm - Swap upper and 0110nnnnmmmi1000 1 —
lower halves of lower 2
bytes -~ Rn
SWAP. W Rm Rn Rm - Swap upper and 0110nnnnmmmmi001 1 —
lower word - Rn
TST Rm Rn Rn & Rm, when resultis 0, 0010nnnnmmmmi000 1 Test results
1T
XOR Rm Rn Rn~Rm - Rn 0010nnnnmmm1010 1 —
XTRCT RmRn Rm: Center 32 bits of Rn -~ 0010nnnnmmmm1101 1 —

Rn

Note: The normal minimum number of execution states.

Rev. 2.00 May 31, 2006 page 313 of 336

RENESAS

REJ09B0316-0200



Appendix A Instruction Code

Table A.37 Indirect Register

Instruction Operation Code Cycles TBit
MOV. B Rm @n Rm - (Rn) 0010nnnnmMmmmDO000 1 —
MOV. W Rm @Rn Rm - (Rn) 0010nnnnmmmD001 1 —
MOV.L Rm @Rn Rm - (Rn) 0010nnnnmmmD010 1 —
MOV.B @Rm Rn (Rm) - sign extension - Rn  0110nnnnmmmmD000 1 —
MOV. W @m Rn (Rm) - sign extension - Rn  0110nnnnmmmD001 1 —
MOV.L @Rm Rn (Rm) - Rn 0110nnnnmmmD010 1 —
Table A.38 Indirect Post-Increment Register (Multiply/Accumulate Operation)
Instruction Operation Code Cycles T Bit
MAC. L @ mt, @+ Signed operation of 0000nnnnMmMMML111  3/(2 to 4)* —
(Rn) x (Rm) + MAC -~ MAC
MAC. W @m+, @n+  Signed operation of 0100nnnnmmmmi11l  3/(2)* —

(Rn) x (Rm) + MAC - MAC

Note: *

of states when there is contention with preceding/following instructions).

Table A.39 Indirect Post-Increment Register

Normal minimum number of execution states (the number in parentheses is the number

Instruction Operation Code Cycles T Bit

MOV. B @Rmt, Rn (Rm) - sign extension » Rn, 0110nnnnmmm©0100 1 —
Rm+1 - Rm

MOV. W @mt, Rn (Rm) - sign extension - Rn, 0110nnnnmmm0101 1 —
Rm+2 - Rm

MOV. L @Rm+, Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmm®D110 1 —

Table A.40 Indirect Pre-Decrement Register

Instruction Operation Code Cycles T Bit

MOV. B Rm @Rn Rn-1 - Rn,Rm - (Rn) 0010nnnnmMmmmD100 1 —

MOV. W Rm @-Rn Rn-2 - Rn,Rm - (Rn) oo10nnnnmmm®D101 1 —

MOV.L Rm @Rn Rn—-4 - Rn,Rm - (Rn) oo10nnnnmmm®D110 1 —

Rev. 2.00 May 31, 2006 page 314 of 336
REJ09B0316-0200

RENESAS



Appendix A Instruction Code
Table A.41 Indirect Indexed Register
Instruction Operation Code Cycles T Bit
MOV. B Rm @ RO, Rn) Rm - (RO + Rn) 0000nnNNMMMOD100 1 —
MOV. W Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnNmMMMD101 1 —
MOV.L Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnnmMMMOD110 1 —
MOV.B @RO, Rm, Rn (RO + Rm) - sign 0000nnnnmMMML100 1 —
extension — Rn
MOV. W @ RO, Rm, Rn (RO + Rm) - sign 0000nnnnnMMM1101 1 —
extension - Rn
MOV.L @RO, Rm, Rn (RO +Rm) - Rn 0000nnnnmMM1110 1 —
Table A.42 Floating Point Instructions
Instruction Operation Code Cycles T Bit
FADD FRm FRn FRn + FRm - FRn 1111nnnnnmmmO000 1 —
FCVP/ EQ FRm FRn (FRNn=FRm)?1:0 - T 1111nnnnnmm0100 1 Comparison
result
FCMP/ GT FRm FRn (FRn>FRm)? 1:0 - T 1111nnnnmmmm0101 1 Comparison
result
FDI V FRm FRn FRn/FRm - FRn 1111nnnnnmmmD011 13 —
FMAC  FRO, FRm FRn  FROxFRm+FRn - FRn  1111nnnnnmmmmi110 1 -
FMOV FRm FRn FRm - FRn 1111nnnnnmmmi100 1 —
FMOV. S @RO, Rm), FRn (RO +Rm) - FRn 1111nnnnnmm©0110 1 —
FMOV. S @Rmt, FRn (Rm) -~ FRn, Rm +4 - Rm 1111nnnnnmmmi1001 1 —
FMOV. S @m FRn (Rm) - FRn 1111nnnnnmmm1000 1 —
FMOV. S FRm @ RO, Rn) FRm - (RO +Rn) 1111nnnnmmo111 1 —
FMOV. S FRm @ Rn Rn-4 » Rn,FRm - (Rn)  1111nnnnnmmmi011 1 —
FMOV. S FRm @Rn FRm - (Rn) 1111nnnnmmmil010 1 —
EMUL FRm FRn FRn x FRm - FRn 1111nnnnmmm0010 1 —
FSUB FRm FRn FRn - FRm - FRn 1111nnnnnmmmO001 1 —

Rev. 2.00 May 31, 2006 page 315 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

A.2.5 md Format

Table A.43 md Format

Instruction Operation Code Cycles T Bit

MV.B @disp, R, RO (disp + Rm) - sign 10000100mmmdddd 1 —
extension - RO

MOV. W @disp, RM,R0 (dispx2+Rm) - sign 10000101nmmdddd 1 —
extension - RO

A.2.6 nd4 Format

Table A.44 nd4 Format

Instruction Operation Code Cycles T Bit

MOV. B RO, @di sp, Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MOV. W RO, @di sp, Rn) RO - (disp x 2 + Rn) 10000001nnnndddd 1 —

A.2.7 nmd Format

Table A.45 nmd Format

Instruction Operation Code Cycles T Bit

MOV.L Rm @di sp, Rn) Rm - (disp + Rn) 0001nnnnmmmdddd 1 —

MOV.L @disp,R),Rn (dispx4+Rm) - Rn 0101nnnnmmmdddd 1 —

Rev. 2.00 May 31, 2006 page 316 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

A.2.8 d Format

Table A.46 Indirect GBR with Displacement

Instruction Operation Code Cycles T Bit
MOV.B RO, @disp, BR) RO - (disp + GBR) 11000000dddddddd 1 —
MOV. W RO, @di sp, BBR) RO - (dispx2+ GBR) 11000001dddddddd 1 —
MOV.L RO, @disp, BR) RO - (dispx4+GBR) 11000010dddddddd 1 —
MOV. B @disp, GBBR), RO (disp + GBR) — sign 11000100dddddddd 1 —
extension - RO
MOV. W @disp, GBBR), RO (disp x2 + GBR) - sign 11000101dddddddd 1 —
extension - RO
MOV.L @disp, GBBR), R0 (dispx4+ GBR) -~ RO 11000110dddddddd 1 —
Table A.47 PC Relative with Displacement
Instruction Operation Code Cycles T Bit
MOVA  @disp, PO, RO disp x4 + PC - RO 11000111dddddddd 1 —
Table A.48 PC Relative
Instruction Operation Code Cycles T Bit
BF | abel When T =0, disp x2 +PC - PC; 10001011dddddddd  3/1* —
when T =1, nop
BF/S | abel If T=0,dispx2+PC - PC; 10001111dddddddd ~ 2/1* —
if T=1, nop
BT | abel When T =1, dispx2+PC - PC; 10001001dddddddd  3/1* —
when T =0, nop
BT/S | abel IfT=1,dispx2+PC - PC; 10001101dddddddd ~ 2/1*
if T=0, nop
Note: * One state when it does not branch.

Rev. 2.00 May 31, 2006 page 317 of 336

RENESAS

REJ09B0316-0200



Appendix A Instruction Code

A.29 d12 Format

Table A.49 d12 Format

Instruction Operation Code Cycles T Bit

BRA | abel Delayed branching, 1010dddddddddddd 2 —
dispx2+PC - PC

BSR | abel Delayed branching, 1011dddddddddddd 2 —
PC - PR, dispx2+PC
- PC

A.2.10 nd8 Format

Table A.50 nd8 Format

Instruction Operation Code Cycles T Bit

MOV. W @di sp, PC), Rn (disp x2 + PC) - sign 1001nnnndddddddd 1 —
extension -~ Rn

MOV.L @disp, PC),Rn (dispx4+PC) - Rn 1101nnnndddddddd 1 —

A.2.11 iFormat

Table A.51 Indirect Indexed GBR

Instruction Operation Code Cycles T Bit

AND. B #i nm @ RO, GBR) (RO + GBR) & imm - 1100110%iiiiiiii 3 —
(RO + GBR)

OR B #imm @RO0, GBBR) (RO + GBR)|imm - (RO 1100111liiiiiiii 3 —
+ GBR)

TST.B #i mm @R0, GBR) (RO + GBR) & imm, 11001100iiiiiiii 3 Test
whenresultis0,1 - T results

XOR B #i mm @R0, GBBR) (RO + GBR) " imm - 11001110iiiiiiii 3 —
(RO + GBR)

Rev. 2.00 May 31, 2006 page 318 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

Table A.52 Immediate (Arithmetic Logical Operation with Direct Register)

Instruction Operation Code Cycles T Bit

AND #imm RO RO &imm - RO 1100100%Liiiiiiii 1 —

CVP/ EQ #i nm RO When RO =imm,1 - T 10001000iiiiiiii 1 Comparison

results

orR #imm RO RO |imm - RO 1100101%Liiiiiiii 1 —

TST #i mm RO RO & imm, when resultis 0, 11001000iiiiiiii 1 Test results
15T

XOR #imMm RO  RO”Aimm - RO 11001010iiiiiiii 1 —

Table A.53 Immediate (Specify Exception Processing Vector)

Instruction Operation Code Cycles T Bit

TRAPA #imm Stack area -~ PC/SR 1100001%iiiiiiii 8 —
(imm x 4 + VBR) - PC

A.2.12  ni Format

Table A.54 ni Format

Instruction Operation Code Cycles T Bit

ADD #i mm Rn Rn +imm - Rn Ollinnnniiiiiiii 1 —

MOV #i nm Rn imm - sign extension - Rn 1110nnnniiiiiiii 1 —

Rev. 2.00 May 31, 2006 page 319 of 336
REJ09B0316-0200

RENESAS



Appendix A Instruction Code

A3

Instruction Set by Instruction Code

Table A.55 lists instruction codes and execution cycles by instruction code.

Table A.55 Instruction Set by Instruction Code

Instruction Operation Code Cycles T Bit
CLRT 0-T 0000000000001000 1 0
NOP No operation 0000000000001001 1 —
RTS Delayed branching, 0000000000001011 2 —
PR - PC
SETT 1T 0000000000011000 1
DI VOU 0 - MQ/T 0000000000011001 1 0
SLEEP Sleep 0000000000011011 3 —
CLRVAC 0 - MACH, MACL 0000000000101000 1 —
RTE Delayed branch, 0000000000101011 4 —
SSR/SPC - SR/PC
STC SR, Rn SR - Rn 0000nNNN00000010 1 —
BSRF Rn Delayed branch, PC - 0000nnnn00000011 2 —
PR,Rn +PC - PC
STS MACH, Rn MACH - Rn 0000nnNNN00001010 1 —
STC GBR, Rn GBR - Rn 0000nnNnNn00010010 1 —
STS MACL, Rn MACL - Rn 0000nnNnNn00011010 1 —
STC VBR, Rn VBR - Rn 0000nnNnNn00100010 1 —
BRAF Rm Delayed branch, 0000nnnn00100011 2 —
Rn+PC - PC
MOVT Rn T-Rn 0000nnNnNn00101001 1 —
STS PR, Rn PR - Rn 0000nnNnNn00101010 1 —
STS FPUL, Rn FPUL - Rn 0000nnNnNn01011010 1 —
STS FPSCR, Rn FPSCR - Rn 0000nnNnNn01101010 1 —
MOV.B Rm @ RO, Rn) Rm - (RO + Rn) 0000NnNNNMMMOD100 1 —
MOV. W Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnnMMMD101 1 —
MOV.L Rm @RO, Rn) Rm - (RO + Rn) 0000nnnNMMMOD110 1 —
MJL. L Rm Rn Rn x Rm - MACL 0000nnNnnMMMO111 2to4* —
MOV.B @RO,Rm, Rn (RO + Rm) - sign 0000nnNNMMML100 1 —

extension -~ Rn

Rev. 2.00 May 31, 2006 page 320 of 336

REJ09B0316-0200

RENESAS



Appendix A Instruction Code

Instruction Operation Code Cycles T Bit

MOV.W @RO,Rm, Rn (RO + Rm) - sign 0000nnnnmmMM1101 1 —
extension - Rn

MWV.L @RO,RmM, (RO + Rm) - Rn 0000nnnnMMML110 1 —

Rn

MAC.L  @mt, @n+ Signed operation of 0000Onnnnmmm1111 3/(2to —
(Rn) x (Rm) + MAC - 4)*
MAC

MOV.L Rm Rm - (disp x 4 + Rn) 0001nnnnmmmdddd 1 —

@ di sp, Rn)

MOV.B  Rm @Rn Rm - (Rn) 0010nnnnmmm©D000 1 —

MOV. W Rm @Rn Rm - (Rn) 0010nnnnmmmD001 1 —

MOV.L Rm @n Rm - (Rn) 0010nnnnmmmD010 1 —

MVW.B Rm @Rn Rn-1 - Rn,Rm - 0010nnnnmmm™D100 1 —
(Rn)

MOV. W  Rm @Rn Rn-2 - Rn,Rm - 0010nnnnmmm0101 1 —
(Rn)

MOV. L Rm @-Rn Rn—-4 - Rn,Rm - 0010nnnnmmm0110 1 —
(Rn)

DIVOS RmRn MSB of Rn — Q, MSB 0010nnnnmm©O111 1 Calcu-
of Rm - M M*Q - T lation

result

TST Rm Rn Rn & Rm, when resultis 0010nnnnmmm1000 1 Test
0,1-T results

AND Rm Rn Rn & Rm - Rn 0010nnnnmm001 1 —

XOR Rm Rn Rn”*Rm - Rn 0010nnnnmmm1010 1 —

OoR Rm Rn Rn|Rm - Rn 0010nnnnmmm011 1 —

CVMP/ STR Rm Rn When a byte in Rn 0010nnnnmmm1100 1 Com-
equals a byte in Rm, 1 parison
->T result

XTRCT Rm Rn Rm: Center 32 bits of 0010nnnnmMmmi101 1 —
Rn - Rn

MULU. W Rm Rn Unsigned, Rn xRm - 0010nnnnmmmmi110 1to 3" __
MAC

MULS. W Rm Rn Signed, Rn xRm - 0010nnnnmmmmMi111 1to 3* —

MAC

Rev. 2.00 May 31, 2006 page 321 of 336

RENESAS

REJ09B0316-0200



Appendix A Instruction Code

Instruction Operation Code Cycles T Bit
CWP/EQ Rm Rn WhenRn=Rm,1 - T 0011nnnnmmm®D000 1 Com-
parison
result
CVWP/HS Rm Rn When unsigned 0011nnnnmmmD010 1 Com-
andRn>=Rm,1 - T parison
result
CMP/ GE Rm Rn When signed and Rn > 0011nnnnmm©0011 1 Com-
Rm,1 - T parison
result
Dl V1 Rm Rn 1 step division (Rn + 0011nnnnmmm®D100 1 Calcu-
Rm) lation
result
DMULU. L Rm Rn Unsigned operation of 001lnnnnnmmm0101 2to4* —
Rn x Rm - MACH,
MACL
CW/H RmRn When unsigned and 0011nnnnmmm0110 1 Com-
Rn>Rm,1 - T parison
result
CWP/ GT Rm Rn When signed and 0011lnnnnmmm?0111 1 Com-
Rn>Rm,1 - T parison
result
SUB Rm Rn Rn—-Rm - Rn 0011nnnnmmml000 1 —
SUBC Rm Rn Rn—-Rm-T - Rn, 0011nnnnnmml010 1 Borrow
Borrow - T
SUBV Rm Rn Rn-Rm - Rn, 0011nnnnmmml0ol11l 1 Under-
underflow - T flow
ADD Rm Rn Rm + Rn - Rn 0011nnnnmmml100 1 —
DMULS. L Rm Rn Signed operation of Rn ~ 0011nnnnmmmi101 2to4* —
x Rm - MACH, MACL
ADDC Rm Rn Rn+Rm+T - Rn, 0011lnnnnmmml110 1 Carry
carry - T
ADDV Rm Rn Rn +Rm - Rn, 0011nnnnmml111l 1 Over-
overflow - T flow
SHLL Rn T<Rn<0 0100nnnn00000000 1 MSB
SHLR Rn 0O-Rn->T 0100nnnn00000001 1 LSB
STS. L MACH, @-Rn Rn-4 - Rn, 0100nnnn00000010 1 —
MACH - (Rn)

Rev. 2.00 May 31, 2006 page 322 of 336

REJ09B0316-0200

RENESAS



Appendix A Instruction Code

Instruction Operation Code Cycles T Bit

STC.L SR @®Rn Rn-4 - Rn, 0100nnnn00000011 2 —

SR - (Rn)

ROTL Rn T « Rn -« MSB 0100nnnn00000100 1 MSB

ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB

LDS.L  @Rm+, MACH (Rm) - MACH, 0100mMmMD0000110 1 —

Rm+4 - Rm
LDC.L @m+, SR (Rm) - SR, 0100mMmMmMD0000111 3 LSB
Rm+4 - Rm

SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 1 —

SHLR2 Rn Rn>>2 5 Rn 0100nnnn00001001 1 —

LDS Rm MACH Rm - MACH 0100mMmMD0001010 1 —

JSR @Rm Delayed branching, 0100nnnn00001011 2 —

PC -~ Rn,Rn - PC
LDC Rm SR Rm - SR 0100mMmMD0001110 1 LSB
DT Rn Rn-1 - Rn, when Rn 0100nnnn00010000 1 Com-
is0,1 - T. WhenRnis parison
nonzero,0 - T result

CWP/PZ Rn Rn=0,1-T 0100nnnn00010001 1 Com-
parison
result

STS. L MACL, @-Rn Rn-4 - Rn, 0100nnnn00010010 1 —

MACL - (Rn)
STC.L GBR @Rn Rn—-4 - Rn, 0100nnnn00010011 2 —
GBR - (Rn)

CVWP/PL Rn Rn>0,1-T 0100nnnn00010101 1 Com-
parison
result

LDS. L @ m+, MACL (Rm) - MACL, 0100mMmMmMD0010110 1 —

Rm+4 - Rm
LDC.L @m+, GBR (Rm) - GBR, 0100mMmmMM00010111 3 —
Rm+4 - Rm

SHLL8 Rn Rn<<8 -~ Rn 0100nnnn00011000 1 —

SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 1 —

LDS Rm MACL Rm - MACL 0100mMMD0011010 1 —

TAS.B @ When (Rn)is 0,1 - T, 0100nnnn00011011 4 Test

1 - MSB of (Rn) results

Rev. 2.00 May 31, 2006 page 323 of 336
REJ09B0316-0200

RENESAS



Appendix A Instruction Code

Instruction Operation Code Cycles T Bit

LDC Rm GBR Rm - GBR 0100mmMmMD0011110 1 —

SHAL Rn T<Rn-0 0100nnnNn00100000 1 MSB

SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB

STS.L PR @Rn Rn-4 - Rn,PR - 0100nnnn00100010 1 —
(Rn)

STC.L VBR @Rn Rn-4 - Rn, 0100nnnn00100011 2 —
VBR - (Rn)

ROTCL Rn T«RnT 0100nnnn00100100 1 MSB

ROTCR Rn T-Rn-T 0100nnnn00100101 1 LSB

LDS.L  @m+, PR (Rm) - PR, 0100nMmMMD0100110 1 —
Rm+4 -~ Rm

LDC.L  @m+, VBR (Rm) - VBR, 0100mmMmMD0100111 3 —
Rm+4 - Rm

SHLL16 Rn Rn << 16 - Rn 0100nnnn00101000 1 —

SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —

LDS Rm PR Rm - PR 0100mMmMmMD0101010 1 —

J\VP @Rm Delayed branching, 0100nnnn00101011 2 —
Rm - PC

LDC Rm VBR Rm - VBR 0100mMmMmMD0101110 1 —

STS.L  FPUL, @ Rn Rn-4 - Rn, FPUL - 0100nnnn01010010 1 —
(Rn)

LDS.L  @m+, FPUL (Rm) - FPUL, Rm+4 . 0100nmm01010110 1 —
Rm

LDS Rm FPUL Rm - FPUL 0100nMmMmMD1011010 1 —

STS.L  FPSCR, @ Rn Rn-4 - Rn, FPSCR -  0100nnnn01100010 1 —
(Rn)

LDS.L  @m FPSCR (Rm) — FPSCR, Rm+4  0100mmm®01100110 1 —
- Rm

LDS Rm FPSCR Rm - FPSCR 0100nnmMmM01101010 1 —

MAC. W @Rmt+, @+ With sign, (Rn) x (Rm) + 0100nnnnnmmil111  3/2)* —
MAC - MAC

MOV.L  @disp, R, Rn (disp+Rm) - Rn 0101nnnnmmmdddd 1 —

MOV.B @m Rn (Rm) - sign extension ~ 0110nnnnnmmm0000 1 —

- Rn

Rev. 2.00 May 31, 2006 page 324 of 336
REJ09B0316-0200

RENESAS



Appendix A Instruction Code

Instruction Operation Code Cycles T Bit

MOV. W @M Rn (Rm) - sign extension ~ 0110nnnnnmmm0001 1 —
- Rn

MOV.L  @m Rn (Rm) - Rn 0110nnnnmmm©D010 1 —

MoV Rm Rn Rm - Rn 0110nnnnmmm0011 1 —

MOV.B  @mt, Rn (Rm) - sign extension ~ 0110nnnnnmmm0100 1 —
- Rn,Rm+1 - Rm

MOV. W @+, Rn (Rm) - sign extension  0110nnnnnmmm0101 1 —
- Rn,Rm+2 - Rm

MOV. L @Rm+, Rn (Rm) - Rn,Rm+4 0110nnnnmm®©0110 1 —
Rm

NOT Rm Rn ~Rm - Rn 0110nnnnmm©0111 1 —

SWAP. B Rm Rn Rm - Swap upperand 0110nnnnmmml000 1 —
lower halves of lower 2
bytes - Rn

SWAP. W Rm Rn Rm - Swap upperand 0110nnnnmmmmi001 1 —
lower word -~ Rn

NEGC Rm Rn 0-Rm-T - Rn, 0110nnnnmml010 1 Borrow
Borrow - T

NEG Rm Rn 0-Rm - Rn 0110nnnnmmmi011 1 —

EXTU.B Rm Rn Zero-extend Rm from 0110nnnnmmmi1100 1 —
byte - Rn

EXTU. W Rm Rn Zero-extend Rm from 0110nnnnmmmil101 1 —
word - Rn

EXTS.B Rm Rn Sign-extend Rm from 0110nnnnmmml110 1 —
byte — Rn

EXTS. W Rm Rn Sign-extend Rm from 0110nnnnmmmm111 1 —
word - Rn

ADD #i mMm Rn Rn + #imm - Rn Olllnnnniiiiiiii 1 —

MOV.B RO, @disp,Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MOV.W RO, @disp, Rn) RO - (disp + Rn) 10000001nnnndddd 1 —

MV.B @disp, R, RO (disp+ Rm) - sign 10000100mmmdddd 1 —
extension - RO

MOV. W @disp, RmM, R0 (disp+Rm) - sign 10000101nmmmdddd 1 —

extension - RO

Rev. 2.00 May 31, 2006 page 325 of 336
REJ09B0316-0200
RENESAS



Appendix A Instruction Code

Instruction Operation Code Cycles T Bit
CVWP/ EQ #imm RO When RO=imm,1 - T 10001000iiiiiiii 1 Com-
parison
result
BT | abel When T =1, 10001001dddddddd 3/1**  —
disp + PC - PC; when
T=1, nop.
BF | abel When T =0, 10001011dddddddd 3/1*? —
disp + PC - PC; when
T=1, nop
BT/ S | abel If T=1,disp+PC - 10001101dddddddd 2/1*? —
PC; if T=0, nop
BF/ S | abel If T=0,disp+PC - 10001111dddddddd 2/1*? —
PC; if T=1, nop
MV. W @disp, PC), Rn (disp + PC) - sign 1001nnnndddddddd 1 —
extension -~ Rn
BRA | abel Delayed branching, disp 1010dddddddddddd 2 —
+PC - PC
BSR | abel Delayed branching, PC ~ 1011dddddddddddd 2 —
- PR, disp + PC -, PC
MOV.B RO, @di sp, GBBR) RO - (disp + GBR) 11000000dddddddd 1 —
MOV.W RO, @di sp, BR) RO - (dispx2+ GBR) 11000001dddddddd 1 —
MOV. L RO, @di sp, GBBR) RO - (disp x4+ GBR) 11000010dddddddd 1 —
TRAPA  #imm Stack area — PC/SR 1100001%iiiiiiii 8 —
(imm x 4 + VBR) - PC
MOV.B  @disp, GBR), RO (disp + GBR) - sign 11000100dddddddd 1 —
extension - RO
MOV. W @disp, GBBR), RO (disp x2+ GBR) - sign 11000101dddddddd 1 —
extension - RO
MOV.L @disp, GBBR), RO (dispx4+GBR) -~ RO 11000110dddddddd 1 —
MOVA @disp,PC), R0 dispx4+PC - RO 11000111dddddddd 1 —
TST #i mm RO RO & imm, when result 11001000iiiiiiii 1 Test
is0,1 T results
AND #i mMm RO RO & imm - RO 1100100%iiiiiiii 1 —
XOR #i mm RO RO A imm - RO 11001010iiiiiiii 1 —
R #i mMm RO RO | imm - RO 1100102%iiiiiiii 1 —

Rev. 2.00 May 31, 2006 page 326 of 336

REJ09B0316-0200

RENESAS



Appendix A Instruction Code

Instruction Operation Code Cycles T Bit
TST.B  #imm @RO, GBBR) (RO + GBR) & imm, 11001100iiiiiiii 3 Test
whenresultis0,1 - T results
AND. B  #i mm @ RO, GBBR) (RO + GBR) & imm - 1100210%iiiiiiii 3 —
(RO + GBR)
XOR. B #imm @R0, GBBR) (RO + GBR)”imm - 110022110iiiiiiii 3 —
(RO + GBR)
OR B #i mm @ RO, GBR) (RO + GBR) | imm - 11002122%iiiiiiii 3 —
(RO + GBR)
MOV.L  @disp,PC),Rn (dispx4+PC) - Rn 1101nnnndddddddd 1 —
MoV #i mm Rn #imm - sign extension  1110nnnniiiiiiii 1 —
- Rn
FSTS FPUL, FRn FPUL - FRn 1111nnnn00001101 1 —
FLDS FRm FPUL FRm - FPUL 1111nnnn00011101 1 —
FLOAT FPUL, FRn (float) FPUL - FRn 1111nnnn00101101 1 —
FTRC FRm FPUL (long) FRm - FPUL 1111nnnn00111101 1 —
FNEG FRn —FRn - FRn 1111nnnn01001101 1 —
FABS FRn IFRn| - FRn 1111nnnn01011101 1 —
FLDIO FRn H'00000000 - FRn 1111nnnn10001101 1 —
FLDI1 FRn H'3F800000 - FRn 1111nnnn10011101 1 —
FADD FRm FRn FRn + FRm - FRn 1111nnnnnmmm0D000 1 —
FSUB FRm FRn FRn - FRm - FRn 1111nnnnmmm0001 1 —
FMUL FRm FRn FRn x FRm - FRn 111Innnnmmm©O0010 1 —
FDI Vv FRmM FRn FRn/FRm - FRn 1111nnnnnmm0011 13 —
FCVP/ EQ FRm FRn (FRn=FRm)?1:0 - T 1111nnnnnmm0100 1 Com-
parison
result
FCWP/ GT FRm FRn (FRn>FRm)?1:0 - T 1111nnnnnmm0101 1 Com-
parison
result
FMOV. S @RO, Rm, FRn (RO + Rm) - FRn 111innnnnmmm0110 1 —
FMOV. S FRm @ RO, Rn) (FRm) - (RO + Rn) 111innnnnmmmO111 1 —
FMOV.S @Rm FRn (Rm) - FRn 1111nnnnnmmmil 000 1 —
FMOV. S @Rm+, FRn (Rm) - FRn,Rm+4 - 1111nnnnnmmmil001 1 —

Rm

Rev. 2.00 May 31, 2006 page 327 of 336

RENESAS

REJ09B0316-0200



Appendix A Instruction Code

Instruction Operation Code Cycles T Bit

FMOV. S FRm @Rn FRm - (Rn) 1111nnnnnmml010 1 —

FMOV.S FRm @ Rn Rn-4 - Rn, FRm - 1111nnnnmmml011 1 —
(Rn)

FMOV FRm FRn FRm - FRn 111Innnnmmmm1100 1 —

FMAC FRO, FRm FRn FRO x FRm + FRn - 1111nnnnmmml110 1 —
FRn

Notes: 1. Normal minimum number of execution states (the number in parenthesis is the number
of states when there is contention with preceding/following instructions).

2. One state when it does not branch.

Rev. 2.00 May 31, 2006 page 328 of 336
REJ09B0316-0200

RENESAS



Appendix A Instruction Code
A4 Operation Code Map
Table A.56 shows operation code map.
Table A.56 Operation Code Map
Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
0000 |[Rn |Fx 0000
0000 |Rn |Fx 0001
0000 |[Rn |Fx |0010 |STC SR, Rn STC GBR, Rn SsTC VBR, Rn
0000 |Rn |Fx 0011 |BSRF  Rm BRAF  Rm
0000 (Rn |Rm |01MD | MOV. B MOV, W MOV. L MIL.L  RmRn
Rm @ RO, Rn) Rm @ RO, Rn) Rm @ RO, Rn)
0000 {0000 |Fx |1000 |CLRT SETT CLRVAC
0000 {0000 |Fx  |1001 |NOP DI VOU
0000 {0000 |Fx [1010
0000 {0000 |Fx [1011 |RTS SLEEP RTE
0000 |Rn |Fx 1000
0000 |Rn |Fx 1001 MNVT  Rn
0000 (Rn |Fx [1010 |STS MACH, R0 [STS MACL, Rn  |STS PR, Rn STS FPUL, Rn/
STS FPSCR, Rn
0000 |Rn |Fx 1011
0000 (Rn |RM |11MD | MOV. B MOV, W MOV. L MAC. L
@RO,RM, Rn @R0, Rm, Rn @R0, Rm, Rn @mt, @n+
0001 |Rn Rm |disp |[MOV.L Rm @di sp: 4, Rn)
0010 {[Rn  |Rm |0OMD |MOV.B  Rm @n MV. W Rm @n MV.L  Rm @n
0010 |[Rn  |Rm |01MD /MV.B Rm@Rn |MV.W Rm@Rn |MV.L Rm@Rn |DIVOS RmRn
0010 |{Rn  |Rm |10MD |TST Rm Rn AND Rm Rn XOR Rm Rn R Rm Rn
0010 |[Rn  |Rm |11MD |CMP/ STR Rm Rn XTRCT  Rm Rn MILU. W Rm Rn MILLS. W Rm Rn
0011 |[Rn  |Rm |0OMD |CMP/ EQ Rm Rn CWP/HS Rm Rn CWP/ GE Rm Rn
0011 |[Rn  |[Rm |01MD|DIV1  RmRn DMULU. L Rm Rn CVWP/H  RmRn CWP/ GT  Rm Rn
0011 |Rn  |Rm |10MD |SUB Rm Rn SUBC  RmRn SUBV  RmRn
0011 |[Rn  |Rm |11MD ADD Rm Rn DMULS. L Rm Rn ADDC  RmRn ADDV  RmRn
0100 |{Rn |Fx 0000 |SHLL  Rn DT Rn SHAL  Rn
0100 |{Rn |Fx |0001 |SHLR  Rn CVP/ PZ Rn SHAR  Rn

Rev. 2.00 May 31, 2006 page 329 of 336

RENESAS

REJ09B0316-0200




Appendix A Instruction Code

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
0100 |Rn Fx 0010 [STS.L  MACH, @Rn |STS.L  MACL, @Rn |STS.L PR @Rn STC. L
FPSCR, @ Rn
STC. L
FPUL, @ Rn
0100 |Rn 00MD [0011 |STC.L SR, @Rn STC.L GBR @Rn |STC.L VBR @Rn
0100 |Rn Fx 0100 |ROTL Rn ROTCL  Rn
0100 |Rn Fx 0101 |ROTR Rn CWP/PL Rn ROTCR  Rn
0100 |Rm Fx 0110 |LDS. L @ mt+, MACH |LDS. L @Rm+, MACL |LDS. L @Rmt, PR LDS. L
@m+, FPSCR
LDS. L
@mt, FPUL
0100 |Rm Fx 0111 |LDC. L @ mt+, SR LDC. L @m+, GBR |LDC. L @Rm+, VBR
0100 |Rn Fx 1000 |SHLL2 Rn SHLL8 Rn SHLL16 Rn
0100 |Rn Fx 1001 |SHLR2 Rn SHLR8 Rn SHLR16 Rn
0100 |Rm Fx 1010 |LDS Rm MACH LDS Rm MACL LDS Rm PR LDS Rm FPSCR
LDS Rm FPUL
0100 |Rm/ |Fx 1011 |JSR @m TAS.B  @Rm JIMP @m
Rn

0100 [Rm |Fx 1100

0100 [Rm |Fx 1101

0100 [Rm |Fx 1110 |LDC Rm SR LDC Rm GBR LDC Rm VBR

LDC Rm SSR

0100 |Rn Rm [1111 [MAC W @+, @GR+

0101 |Rn Rm |disp |MOV.L  @disp:4, R, Rn

0110 |Rn Rm |0OMD | MOV.B  @m Rn MOV. W @m Rn MOV.L  @mRn

0110 |Rn Rm |01MD |MOV. B @mt, Rn MOV. W @Rmt, Rn MOV.L  @Rm+, Rn

0110 |Rn Rm |10MD |SWAP. B @m Rn SWAP. W @m Rn NEGC Rm Rn

NEG Rm Rn

0110 |Rn Rm |11MD |EXTU.B Rm Rn EXTU. W Rm Rn EXTS.B Rm Rn EXTS. W Rm Rn
0111 |Rn imm ADD #i mm 8, Rn
1000 |OOMD |Rn disp |MOV.B MOV. W

RO, @di sp: 4, Rn) RO, @ di sp: 4, Rn)
1000 |{01MD|Rm |disp |MOV.B MOV. W

@disp:4,Rm, RO @disp:4,RM), R0
1000 |[10MD| imm/disp |CMP/ EQ #inm 8, RO |BT disp: 8 BF disp: 8
1000 |[10MD | imm/disp BT/ S di sp: 8 BF/ S disp: 8

Rev. 2.00 May 31, 2006 page 330 of 336
REJ09B0316-0200
RENESAS




Appendix A Instruction Code
Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
1001 |Rn disp MOV. W @di sp: 8, PC), Rn
1010 disp BRA di sp: 12
1011 disp BSR di sp: 12
1100 |OOMD | imm/disp |MOV. B MOV. W MOV. L TRAPA  #imm 8
RO, @di sp: 8, GBR) | RO, @di sp: 8, GBR) | RO, @di sp: 8, GBR)
1100 |01MD disp MOV. B MOV. W MOV. L MOVA
@disp:8, GBR),R0O| @disp:8 GBR),R0| @disp:8 GBR),R0| @disp:8,PC), RO
1100 |[10MD imm TST #inm 8, RO (AND #i mm 8, RO XOR #imm 8, RO OR #imm 8, RO
1100 |11MD imm TST. B AND. B XOR. B OR B
#inm 8, @RO, GBR) | #imm 8, @R0, GBR) | #inm 8, @R0, GBR) | #i nm 8, @R, GBR)
1101 |Rn disp MOV.L  @disp:8,PC), RO
1110 |Rn imm MoV #i mm 8, Rn
1111 — Fl oat i ng- poi nt instruction

Rev. 2.00 May 31, 2006 page 331 of 336

RENESAS

REJ09B0316-0200




Appendix B Pipeline Operation and Contention

Appendix B Pipeline Operation and Contention

The SH-2E is designed so that basic instructions are executed in one cycle. Two or more cycles
are required for instructions when, for example, the branch destination address is changed by a
branch instruction or when the number of cycles is increased by contention between MA and IF.
Table B.1 gives the number of execution cycles and stages for different types of contention and
their instructions. Instructions without contention and instructions that require 2 or more cycles
even without contention are also shown.

Instructions contend in the following ways:

CPU instructions

* Operations and transfers between registers are executed in one cycle with no contention.

* No contention occurs, but the instruction still requires 2 or more cycles.

* Contention occurs, increasing the number of execution cycles. Contention combinations are:
O MA contends with IF
0 MA contends with IF and sometimes with memory loads as well

O MA contends with IF and sometimes with the multiplier as well

O

MA contends with IF and sometimes with memory loads and sometimes with the multiplier

Floating-point instructions or FPU-related CPU instructions

* No contention occurs with the FCMP instruction.

*  MA contends with IF in the case of store instructions involving FRO to FR15 and FRUL.
» For floating-point operation instructions other than FDIV, floating-point register transfer

instructions, and floating-point register immediate instructions, contention occurs if an
instruction that reads from the destination of the instruction follows immediately after it.

*  MA contends with IF in the case of load instructions involving FRO to FR15 and FRUL. Also,
contention occurs if an instruction that reads from the destination of the instruction follows
immediately after it.

e Contention occurs if an instruction that uses Rn follows the STS FPUL,Rn or STS FPSCR,Rn
instruction.

* In the case of FPSCR load instructions, contention occurs as shown in Figure 8.11.

* In the case of FPSCR store instructions, contention occurs as shown in Figure 8.12, and MA
contends with IF.

* In the case of the FDIV instruction, contention occurs as shown in Figure 8.13.

Rev. 2.00 May 31, 2006 page 332 of 336
REJ09B0316-0200
RENESAS



Appendix B Pipeline Operation and Contention

Table B.1 Instructions and Their Contention Patterns
Contention Cycles Stages Instructions
None 1 3 + Transfers between registers
» Operations between registers (except
when a multiplier is involved)
» Logical operations between registers
« Shift instructions
» System control ALU instructions
2 3 Unconditional branches
3N 3 Conditional branches
3 3 SLEEP instruction
4 5 RTE instruction
8 9 TRAP instruction
MA contends with IF 1 4 * Memory store instructions
+ STS.L instruction (PR)
2 4 STC.L instruction
3 6 Memory logic operations
4 6 TAS instruction
MA contends with IF and 1 5 * Memory load instructions
sometimes with memory loads . LDS.L instruction (PR)
as well.
3 LDC.L instruction
MA contends with IF and 1 4 * Register to MAC transfer instructions
zcs)n\:vitlilmes with the multiplier + Memory to MAC transfer instructions
* MAC to memory transfer instructions
1to 3* 6 Multiplication instructions
3/(2)* 7 Multiply/accumulate instructions
3/2to4)* 9 Double length multiply/accumulate
instructions (SH-2 CPU only)
2to 4% 9 Double length multiplication instructions
(SH-2 CPU only)
MA contends with IF and 1 5 MAC to register transfer instructions

sometimes with memory loads
and sometimes with the
multiplier.

Note: *

The normal minimum number of execution states. (The number in parentheses is the

number in contention with the preceding/following instructions.)

Rev. 2.00 May 31, 2006 page 333 of 336
REJ09B0316-0200

RENESAS



Appendix B Pipeline Operation and Contention

Table B.2  Types of Contention and Instruction Behavior (Floating-point Instructions or
FPU-related CPU Instructions)
Contention Cycles Stages Instructions
None 1 3 (FPU pipeline) FCWP/ EQ FRm FRn
3 (CPU pipeline) FCMP/ GT FRm FRn
* MA in CPU pipeline 1 4 (FPU pipeline) STS. L FPUL, @ Rn
contends with IF 4 (CPU pipeline) FMOV. S FRm @n
FMOV.S FRm @Rn
FMOV. S FRm @ RO, Rn)
» Contention occurs if next 1 5 (FPU pipeline) FLDS FRm FPUL
instruction reads destination 3 (CPU pipeline) FMOV FRmM FRn
register FSTS FPUL, FRn
FLDI O FRn
FLD 1 FRn
FABS FRn
FADD FRm FRn
FLOAT FPUL, FRn
FMVAC FRO, FRm FRn
FMUL FRm FRn
FNEG FRn
FSUB FRm FRn
FTRC FRm FPUL
» Contention occurs if next 1 5 (FPU pipeline) LDS Rm FPUL
instruction reads destination 4 (CPU pipeline) LDS. L @mt, FPUL
register FMOV. S @Rm FRn
- MA in CPU pipeline FMOV. S @R, FRn
contends with IF FMOV. S @R0, R, FRn
» Contention occurs if next 1 4 (FPU pipeline) STS FPUL, Rn
instruction uses Rn 5 (CPU pipeline)
* MAin CPU pipeline
contends with IF
» Contention occurs as shown 1 5 (FPU pipeline) LDS Rm FPSCR
in Figure 8.11 4 (CPU pipeline) LDS. L @mt, FPSCR
» Contention occurs as shown 1 4 (FPU pipeline) STS FPSCR, Rn
in Figure 8.12 5 (CPU pipeline)

* Contention occurs if next
instruction uses Rn

* MA in CPU pipeline
contends with IF

Rev. 2.00 May 31, 2006 page 334 of 336

REJ09B0316-0200

RENESAS



Appendix B Pipeline Operation and Contention

Contention Cycles

Stages Instructions

Contention occurs as shown 1
in Figure 8.12

MA in CPU pipeline

contends with IF

4 (FPU pipeline) STS. L FPSCR, @ Rn
4 (CPU pipeline)

Contention occurs as shown 13
in Figure 8.13

17 (FPU pipeline) FDI V FRm FRn
3 (CPU pipeline)

Rev. 2.00 May 31, 2006 page 335 of 336
REJ09B0316-0200

RENESAS



Appendix B Pipeline Operation and Contention

Rev. 2.00 May 31, 2006 page 336 of 336
REJ09B0316-0200
RENESAS



Renesas 32-Bit RISC Microcomputer
Software Manual
SH-2E

Publication Date: 1st Edition, March 1999
Rev.2.00, May 31, 2006

Published by: Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Customer Support Department
Global Strategic Communication Div.
Renesas Solutions Corp.

©2006. Renesas Technology Corp., All rights reserved. Printed in Japan.



RenesasTech nology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

LENESAS
RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, N0.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: <603> 7955-9390, Fax: <603> 7955-9510

Colophon 6.0



SH-2E
Software Manual

LENESAS

Renesas Electronics Corporation
1758, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJO9B0316-0200



	Cover
	Cautions
	Introduction
	Main Revisions for This Edition
	Contents
	Section 1 Features
	1.1 SH-2E Features

	Section 2 Register Configuration
	2.1 General Registers
	2.2 Control Registers
	2.3 System Registers
	2.4 Floating-Point Registers
	2.5 Floating-Point System Registers
	2.6 Initial Values of Registers

	Section 3 Data Formats
	3.1 Data Format in Registers
	3.2 Data Format in Memory
	3.3 Immediate Data Format

	Section 4 Floating-Point Unit (FPU)
	4.1 Overview
	4.2 Floating-Point Registers and Floating-Point System Registers
	4.2.1 Floating-Point Register File
	4.2.2 Floating-Point Communication Register (FPUL)
	4.2.3 Floating-Point Status/Control Register (FPSCR)

	4.3 Floating-Point Format
	4.3.1 Floating-Point Format
	4.3.2 Non-Numbers (NaN)
	4.3.3 Denormalized Number Values
	4.3.4 Other Special Values

	4.4 Floating-Point Exception Model
	4.4.1 Enable State Exceptions
	4.4.2 Disable State Exceptions
	4.4.3 FPU Exception Event and Code
	4.4.4 Floating-Point Data Arrangement in Memory
	4.4.5 Arithmetic Operations Involving Special Operands

	4.5 Synchronization with CPU

	Section 5 Instruction Features
	5.1 RISC-Type Instruction Set
	5.2 Addressing Modes
	5.3 Instruction Format

	Section 6 Instruction Set
	6.1 Instruction Set by Classification
	6.2 Instruction Set in Alphabetical Order

	Section 7 Instruction Descriptions
	7.1 Sample Description (Name): Classification
	7.2 CPU Instruction
	7.2.1 ADD (ADD Binary): Arithmetic Instruction
	7.2.2 ADDC (ADD with Carry): Arithmetic Instruction
	7.2.3 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction
	7.2.4 AND (AND Logical): Logic Operation Instruction
	7.2.5 BF (Branch if False): Branch Instruction
	7.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction
	7.2.7 BRA (Branch): Branch Instruction
	7.2.8 BRAF (Branch Far): Branch Instruction
	7.2.9 BSR (Branch to Subroutine): Branch Instruction
	7.2.10 BSRF (Branch to Subroutine Far): Branch Instruction
	7.2.11 BT (Branch if True): Branch Instruction
	7.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction
	7.2.13 CLRMAC (Clear MAC Register): System Control Instruction
	7.2.14 CLRT (Clear T Bit): System Control Instruction
	7.2.15 CMP/cond (Compare Conditionally): Arithmetic Instruction
	7.2.16 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction
	7.2.17 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction
	7.2.18 DIV1 (Divide 1 Step): Arithmetic Instruction
	7.2.19 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction
	7.2.20 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction
	7.2.21 DT (Decrement and Test): Arithmetic Instruction
	7.2.22 EXTS (Extend as Signed): Arithmetic Instruction
	7.2.23 EXTU (Extend as Unsigned): Arithmetic Instruction
	7.2.24 JMP (Jump): Branch Instruction
	7.2.25 JSR (Jump to Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	7.2.26 LDC (Load to Control Register): System Control Instruction (Class: Interrupt Disabled Instruction)
	7.2.27 LDS (Load to System Register): System Control Instruction
	7.2.28 MAC.L (Multiply and Accumulate Calculation Long): Arithmetic Instruction
	7.2.29 MAC.W (Multiply and Accumulate Calculation Word): Arithmetic Instruction
	7.2.30 MOV (Move Data): Data Transfer Instruction
	7.2.31 MOV (Move Immediate Data): Data Transfer Instruction
	7.2.32 MOV (Move Peripheral Data): Data Transfer Instruction
	7.2.33 MOV (Move Structure Data): Data Transfer Instruction
	7.2.34 MOVA (Move Effective Address): Data Transfer Instruction
	7.2.35 MOVT (Move T Bit): Data Transfer Instruction
	7.2.36 MUL.L (Multiply Long): Arithmetic Instruction
	7.2.37 MULS.W (Multiply as Signed Word): Arithmetic Instruction
	7.2.38 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
	7.2.39 NEG (Negate): Arithmetic Instruction
	7.2.40 NEGC (Negate with Carry): Arithmetic Instruction
	7.2.41 NOP (No Operation): System Control Instruction
	7.2.42 NOT (NOT-Logical Complement): Logic Operation Instruction
	7.2.43 OR (OR Logical) Logic Operation Instruction
	7.2.44 ROTCL (Rotate with Carry Left): Shift Instruction
	7.2.45 ROTCR (Rotate with Carry Right): Shift Instruction
	7.2.46 ROTL (Rotate Left): Shift Instruction
	7.2.47 ROTR (Rotate Right): Shift Instruction
	7.2.48 RTE (Return from Exception): System Control Instruction
	7.2.49 RTS (Return from Subroutine): Branch Instruction (Class: Delayed Branch Instruction)
	7.2.50 SETT (Set T Bit): System Control Instruction
	7.2.51 SHAL (Shift Arithmetic Left): Shift Instruction
	7.2.52 SHAR (Shift Arithmetic Right): Shift Instruction
	7.2.53 SHLL (Shift Logical Left): Shift Instruction
	7.2.54 SHLLn (Shift Logical Left n Bits): Shift Instruction
	7.2.55 SHLR (Shift Logical Right): Shift Instruction
	7.2.56 SHLRn (Shift Logical Right n Bits): Shift Instruction
	7.2.57 SLEEP (Sleep): System Control Instruction
	7.2.58 STC (Store Control Register): System Control Instruction (Interrupt Disabled Instruction)
	7.2.59 STS (Store System Register): System Control Instruction (Interrupt Disabled Instruction)
	7.2.60 SUB (Subtract Binary): Arithmetic Instruction
	7.2.61 SUBC (Subtract with Carry): Arithmetic Instruction
	7.2.62 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction
	7.2.63 SWAP (Swap Register Halves): Data Transfer Instruction
	7.2.64 TAS (Test and Set): Logic Operation Instruction
	7.2.65 TRAPA (Trap Always): System Control Instruction
	7.2.66 TST (Test Logical): Logic Operation Instruction
	7.2.67 XOR (Exclusive OR Logical): Logic Operation Instruction
	7.2.68 XTRCT (Extract): Data Transfer Instruction

	7.3 Floating Point Instructions and FPU Related CPU Instructions
	7.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction
	7.3.2 FADD (Floating Point Add): Floating Point Instruction
	7.3.3 FCMP (Floating Point Compare): Floating Point Instruction
	7.3.4 FDIV (Floating Point Divide): Floating Point Instruction
	7.3.5 FLDI0 (Floating Point Load Immediate 0): Floating Point Instruction
	7.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction
	7.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction
	7.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction
	7.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction
	7.3.10 FMOV (Floating Point Move): Floating Point Instruction
	7.3.11 FMUL (Floating Point Multiply): Floating Point Instruction
	7.3.12 FNEG (Floating Point Negate): Floating Point Instruction
	7.3.13 FSTS (Floating Point Store From System Register): Floating Point Instruction
	7.3.14 FSUB (Floating Point Subtract): Floating Point Instruction
	7.3.15 FTRC (Floating Point Truncate And Convert To Integer): Floating Point Instruction
	7.3.16 LDS (Load to System Register): FPU Related CPU Instruction
	7.3.17 STS (Store from FPU System Register): FPU Related CPU Instruction


	Section 8 Pipeline Operation
	8.1 Basic Configuration of Pipelines
	8.2 Slot and Pipeline Flow
	8.3 Number of Instruction Execution Cycles
	8.4 Contention between Instruction Fetch (IF) and Memory Access (MA)
	8.5 Effects of Memory Load Instructions on the Pipeline
	8.6 FPU Contention
	8.7 Programming Guide
	8.8 Operation of Instruction Pipelines
	8.8.1 Data Transfer Instructions
	8.8.2 Arithmetic Instructions
	8.8.3 Logic Operation Instructions
	8.8.4 Shift Instructions
	8.8.5 Branch Instructions
	8.8.6 System Control Instructions
	8.8.7 Exception Processing
	8.8.8 Relationship between Floating-point Instructions and FPU-related CPU Instructions


	Appendix A Instruction Code
	A.1 Instruction Set by Addressing Mode
	A.1.1 No Operand
	A.1.2 Direct Register Addressing
	A.1.3 Indirect Register Addressing
	A.1.4 Post-Increment Indirect Register Addressing
	A.1.5 Pre-Decrement Indirect Register Addressing
	A.1.6 Indirect Register Addressing with Displacement
	A.1.7 Indirect Indexed Register Addressing
	A.1.8 Indirect GBR Addressing with Displacement
	A.1.9 Indirect Indexed GBR Addressing
	A.1.10 PC Relative Addressing with Displacement
	A.1.11 PC Relative Addressing
	A.1.12 Immediate

	A.2 Instruction Sets by Instruction Format
	A.2.1 0 Format
	A.2.2 n Format
	A.2.3 m Format
	A.2.4 nm Format
	A.2.5 md Format
	A.2.6 nd4 Format
	A.2.7 nmd Format
	A.2.8 d Format
	A.2.9 d12 Format
	A.2.10 nd8 Format
	A.2.11 i Format
	A.2.12 ni Format

	A.3 Instruction Set by Instruction Code
	A.4 Operation Code Map

	Appendix B Pipeline Operation and Contention
	Colophon
	Address List
	Back Cover



