

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

SH-4A
Software Manual

32

U
ser’s M

anual

Rev.1.50 2004.10

Renesas 32-Bit RISC
Microcomputer
SuperHTM RISC engine Family

02001s
The revision list can be viewed directly by
clicking the title page.

The revision list summarizes the locations of
revisions and additions. Details should always
be checked by referring to the relevant text.

Rev. 1.50, 10/04, page ii of xx

Rev. 1.50, 10/04, page iii of xx

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

Rev. 1.50, 10/04, page iv of xx

General Precautions on Handling of Product

1. Treatment of NC Pins

Note: Do not connect anything to the NC pins.
The NC (not connected) pins are either not connected to any of the internal circuitry or are
they are used as test pins or to reduce noise. If something is connected to the NC pins, the
operation of the LSI is not guaranteed.

2. Treatment of Unused Input Pins

Note: Fix all unused input pins to high or low level.
Generally, the input pins of CMOS products are high-impedance input pins. If unused pins
are in their open states, intermediate levels are induced by noise in the vicinity, a pass-
through current flows internally, and a malfunction may occur.

3. Processing before Initialization

Note: When power is first supplied, the product’s state is undefined.
The states of internal circuits are undefined until full power is supplied throughout the
chip and a low level is input on the reset pin. During the period where the states are
undefined, the register settings and the output state of each pin are also undefined. Design
your system so that it does not malfunction because of processing while it is in this
undefined state. For those products which have a reset function, reset the LSI immediately
after the power supply has been turned on.

4. Prohibition of Access to Undefined or Reserved Addresses

Note: Access to undefined or reserved addresses is prohibited.
The undefined or reserved addresses may be used to expand functions, or test registers
may have been be allocated to these addresses. Do not access these registers; the system’s
operation is not guaranteed if they are accessed.

5. Reading from/Writing to Reserved Bit of Each Register

Note: Treat the reserved bit of register used in each module as follows except in cases where the
specifications for values which are read from or written to the bit are provided in the
description.
The bit is always read as 0. The write value should be 0 or one, which has been read
immediately before writing.
Writing the value, which has been read immediately before writing has the advantage of
preventing the bit from being affected on its extended function when the function is
assigned.

Rev. 1.50, 10/04, page v of xx

Configuration of This Manual

This manual comprises the following items:

1. General Precautions on Handling of Product

2. Configuration of This Manual

3. Preface

4. Contents

5. Overview

6. Description of Functional Modules

• CPU and System-Control Modules

• On-Chip Peripheral Modules

 The configuration of the functional description of each module differs according to the
module. However, the generic style includes the following items:

i) Feature

ii) Input/Output Pin

iii) Register Description

iv) Operation

v) Usage Note

When designing an application system that includes this LSI, take notes into account. Each
section includes notes in relation to the descriptions given, and usage notes are given, as required,
as the final part of each section.

7. List of Registers

8. Appendix

9. Index

Rev. 1.50, 10/04, page vi of xx

Preface

The SH-4A is a RISC (Reduced Instruction Set Computer) microcomputer which includes a
Renesas Technology-original RISC CPU as its core.

Target Users: This manual was written for users who will be using the SH-4A in the design of
application systems. Users of this manual are expected to understand the
fundamentals of electrical circuits, logical circuits, microcomputers, and assembly/C
languages programming.

Objective: This manual was written to understand the instructions of the SH4A. For the
hardware functions, refer to corresponding hardware manual.

Notes on reading this manual:

• In order to understand the overall functions of the chip

Read the manual according to the contents. This manual can be roughly categorized into parts
on the CPU, system control functions, and instructions.

• In order to understand the instructions

The instruction format and basic operation are explained in section 3, Instruction Set. For
details on each instruction operation, read section 10, Instruction Descriptions.

Rules: Register name: The following notation is used for cases when the same or a

similar function, e.g. serial communication, is implemented
on more than one channel:
XXX_N (XXX is the register name and N is the channel
number)

 Bit order: The MSB is on the left and the LSB is on the right.

 Number notation: Binary is B'xxxx, hexadecimal is H'xxxx, decimal is xxxx.

 Signal notation: An overbar is added to a low-active signal: xxxx

Related Manuals: The latest versions of all related manuals are available from our web site.

Please ensure you have the latest versions of all documents you require.
http://www.renesas.com/

Rev. 1.50, 10/04, page vii of xx

Abbreviations

ALU Arithmetic Logic Unit

ASID Address Space Identifier

CPU Central Processing Unit

FPU Floating Point Unit

LRU Least Recently Used

LSB Least Significant Bit

MMU Memory Management Unit

MSB Most Significant Bit

PC Program Counter

RISC Reduced Instruction Set Computer

TLB Translation Lookaside Buffer

Rev. 1.50, 10/04, page viii of xx

Rev. 1.50, 10/04, page ix of xx

Contents

Section 1 Overview..1
1.1 Features... 1
1.2 Changes from SH-4 to SH-4A .. 4

Section 2 Programming Model ..7
2.1 Data Formats... 7
2.2 Register Descriptions .. 8

2.2.1 Privileged Mode and Banks ... 8
2.2.2 General Registers... 11
2.2.3 Floating-Point Registers... 12
2.2.4 Control Registers ... 14
2.2.5 System Registers.. 16

2.3 Memory-Mapped Registers... 19
2.4 Data Formats in Registers ... 20
2.5 Data Formats in Memory .. 20
2.6 Processing States... 21
2.7 Usage Notes .. 22

2.7.1 Notes on Self-Modified Codes... 22

Section 3 Instruction Set ..23
3.1 Execution Environment .. 23
3.2 Addressing Modes .. 25
3.3 Instruction Set ... 29

Section 4 Pipelining ...43
4.1 Pipelines.. 43
4.2 Parallel-Executability.. 54
4.3 Issue Rates and Execution Cycles... 56

Section 5 Exception Handling ...65
5.1 Summary of Exception Handling.. 65
5.2 Register Descriptions .. 65

5.2.1 TRAPA Exception Register (TRA) ... 66
5.2.2 Exception Event Register (EXPEVT).. 67
5.2.3 Interrupt Event Register (INTEVT)... 68

5.3 Exception Handling Functions.. 69
5.3.1 Exception Handling Flow .. 69
5.3.2 Exception Handling Vector Addresses .. 69

5.4 Exception Types and Priorities ... 70

Rev. 1.50, 10/04, page x of xx

5.5 Exception Flow... 72
5.5.1 Exception Flow.. 72
5.5.2 Exception Source Acceptance.. 73
5.5.3 Exception Requests and BL Bit ... 74
5.5.4 Return from Exception Handling... 74

5.6 Description of Exceptions... 75
5.6.1 Resets... 75
5.6.2 General Exceptions.. 77
5.6.3 Interrupts.. 91
5.6.4 Priority Order with Multiple Exceptions ... 92

5.7 Usage Notes .. 94

Section 6 Floating-Point Unit (FPU)...97
6.1 Features... 97
6.2 Data Formats... 98

6.2.1 Floating-Point Format.. 98
6.2.2 Non-Numbers (NaN) ... 101
6.2.3 Denormalized Numbers ... 102

6.3 Register Descriptions.. 103
6.3.1 Floating-Point Registers .. 103
6.3.2 Floating-Point Status/Control Register (FPSCR) .. 105
6.3.3 Floating-Point Communication Register (FPUL) .. 107

6.4 Rounding... 108
6.5 Floating-Point Exceptions... 109

6.5.1 General FPU Disable Exceptions and Slot FPU Disable Exceptions 109
6.5.2 FPU Exception Sources ... 109
6.5.3 FPU Exception Handling ... 110

6.6 Graphics Support Functions.. 111
6.6.1 Geometric Operation Instructions.. 111
6.6.2 Pair Single-Precision Data Transfer... 112

Section 7 Memory Management Unit (MMU)..113
7.1 Overview of MMU ... 113

7.1.1 Address Spaces .. 115
7.2 Register Descriptions.. 121

7.2.1 Page Table Entry High Register (PTEH)... 122
7.2.2 Page Table Entry Low Register (PTEL) .. 123
7.2.3 Translation Table Base Register (TTB)... 124
7.2.4 TLB Exception Address Register (TEA) ... 124
7.2.5 MMU Control Register (MMUCR) ... 125
7.2.6 Physical Address Space Control Register (PASCR).. 128
7.2.7 Instruction Re-Fetch Inhibit Control Register (IRMCR) 129

7.3 TLB Functions .. 131

Rev. 1.50, 10/04, page xi of xx

7.3.1 Unified TLB (UTLB) Configuration ... 131
7.3.2 Instruction TLB (ITLB) Configuration.. 133
7.3.3 Address Translation Method.. 134

7.4 MMU Functions.. 136
7.4.1 MMU Hardware Management ... 136
7.4.2 MMU Software Management .. 136
7.4.3 MMU Instruction (LDTLB)... 137
7.4.4 Hardware ITLB Miss Handling ... 139
7.4.5 Avoiding Synonym Problems .. 139

7.5 MMU Exceptions.. 140
7.5.1 Instruction TLB Multiple Hit Exception.. 140
7.5.2 Instruction TLB Miss Exception.. 141
7.5.3 Instruction TLB Protection Violation Exception ... 142
7.5.4 Data TLB Multiple Hit Exception ... 143
7.5.5 Data TLB Miss Exception ... 143
7.5.6 Data TLB Protection Violation Exception... 144
7.5.7 Initial Page Write Exception.. 145

7.6 Memory-Mapped TLB Configuration... 146
7.6.1 ITLB Address Array .. 147
7.6.2 ITLB Data Array.. 148
7.6.3 UTLB Address Array... 149
7.6.4 UTLB Data Array .. 150

7.7 32-Bit Address Extended Mode.. 151
7.7.1 Overview of 32-Bit Address Extended Mode.. 152
7.7.2 Transition to 32-Bit Address Extended Mode ... 152
7.7.3 Privileged Space Mapping Buffer (PMB) Configuration 152
7.7.4 PMB Function.. 154
7.7.5 Memory-Mapped PMB Configuration... 154
7.7.6 Notes on Using 32-Bit Address Extended Mode ... 156

Section 8 Caches ..159
8.1 Features... 159
8.2 Register Descriptions .. 162

8.2.1 Cache Control Register (CCR) .. 163
8.2.2 Queue Address Control Register 0 (QACR0).. 165
8.2.3 Queue Address Control Register 1 (QACR1).. 166
8.2.4 On-Chip Memory Control Register (RAMCR) ... 167

8.3 Operand Cache Operation... 169
8.3.1 Read Operation .. 169
8.3.2 Prefetch Operation ... 170
8.3.3 Write Operation ... 171
8.3.4 Write-Back Buffer ... 172
8.3.5 Write-Through Buffer.. 172

Rev. 1.50, 10/04, page xii of xx

8.3.6 OC Two-Way Mode .. 173
8.4 Instruction Cache Operation ... 173

8.4.1 Read Operation .. 173
8.4.2 Prefetch Operation ... 174
8.4.3 IC Two-Way Mode.. 174

8.5 Cache Operation Instruction ... 175
8.5.1 Coherency between Cache and External Memory ... 175
8.5.2 Prefetch Operation ... 176

8.6 Memory-Mapped Cache Configuration .. 176
8.6.1 IC Address Array... 177
8.6.2 IC Data Array .. 178
8.6.3 OC Address Array ... 179
8.6.4 OC Data Array... 181

8.7 Store Queues ... 182
8.7.1 SQ Configuration... 182
8.7.2 Writing to SQ... 182
8.7.3 Transfer to External Memory .. 183
8.7.4 Determination of SQ Access Exception... 184
8.7.5 Reading from SQ ... 184

8.8 Notes on Using 32-Bit Address Extended Mode .. 185

Section 9 L Memory..187
9.1 Features... 187
9.2 Register Descriptions.. 188

9.2.1 On-Chip Memory Control Register (RAMCR) ... 189
9.2.2 L Memory Transfer Source Address Register 0 (LSA0) 190
9.2.3 L Memory Transfer Source Address Register 1 (LSA1) 191
9.2.4 L Memory Transfer Destination Address Register 0 (LDA0) 193
9.2.5 L Memory Transfer Destination Address Register 1 (LDA1) 195

9.3 Operation .. 197
9.3.1 Access from the CPU and FPU.. 197
9.3.2 Access from the SuperHyway Bus Master Module ... 197
9.3.3 Block Transfer ... 197

9.4 L Memory Protective Functions ... 199
9.5 Usage Notes .. 200

9.5.1 Page Conflict ... 200
9.5.2 L Memory Coherency.. 200
9.5.3 Sleep Mode .. 200

9.6 Notes on Using 32-Bit Address Extended Mode .. 200

Section 10 Instruction Descriptions...201
10.1 CPU instruction... 202

10.1.1 ADD (Add binary): Arithmetic Instruction ... 204

Rev. 1.50, 10/04, page xiii of xx

10.1.2 ADDC (Add with Carry): Arithmetic Instruction .. 205
10.1.3 ADDV (Add with (V flag) Overflow Check): Arithmetic Instruction................. 206
10.1.4 AND (AND Logical): Logical Instruction... 208
10.1.5 BF (Branch if False): Branch Instruction... 210
10.1.6 BF/S (Branch if False with Delay Slot): Branch Instruction................................ 212
10.1.7 BRA (Branch): Branch Instruction .. 214
10.1.8 BRAF (Branch Far): Branch Instruction (Delayed Branch Instruction) 216
10.1.9 BT (Branch if True): Branch Instruction ... 217
10.1.10 BT/S (Branch if True with Delay Slot): Branch Instruction 219
10.1.11 CLRMAC (Clear MAC Register): System Control Instruction........................... 221
10.1.12 CLRS (Clear S Bit): System Control Instruction... 222
10.1.13 CLRT (Clear T Bit): System Control Instruction .. 223
10.1.14 CMP/cond (Compare Conditionally): Arithmetic Instruction.............................. 224
10.1.15 DIV0S (Divide (Step 0) as Signed): Arithmetic Instruction 228
10.1.16 DIV0U (Divide (Step 0) as Unsigned): Arithmetic Instruction 229
10.1.17 DIV1 (Divide 1 Step): Arithmetic Instruction ... 230
10.1.18 DMULS.L (Double-length Multiply as Signed): Arithmetic Instruction............. 235
10.1.19 DMULU.L (Double-length Multiply as Unsigned): Arithmetic Instruction........ 237
10.1.20 DT (Decrement and Test): Arithmetic Instruction... 239
10.1.21 EXTS (Extend as Signed): Arithmetic Instruction... 240
10.1.22 EXTU (Extend as Unsigned): Arithmetic Instruction.. 242
10.1.23 ICBI (Instruction Cache Block Invalidate): Data Transfer Instruction 243
10.1.24 JMP (Jump): Branch Instruction.. 244
10.1.25 LDC (Load to Control Register): System Control Instruction 245
10.1.26 LDS (Load to System Register): System Control Instruction.............................. 249
10.1.27 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction
 (Privileged Instruction) .. 251
10.1.28 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction 253
10.1.29 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction.................... 257
10.1.30 MOV (Move data): Data Transfer Instruction ... 260
10.1.31 MOV (Move Constant Value): Data Transfer Instruction 266
10.1.32 MOV (Move Global Data): Data Transfer Instruction... 269
10.1.33 MOV (Move Structure Data): Data Transfer Instruction..................................... 272
10.1.34 MOVA (Move Effective Address): Data Transfer Instruction 275
10.1.35 MOVCA.L (Move with Cache Block Allocation): Data Transfer Instruction..... 276
10.1.36 MOVCO (Move Conditional): Data Transfer Instruction.................................... 277
10.1.37 MOVLI (Move Linked): Data Transfer Instruction... 279
10.1.38 MOVT (Move T Bit): Data Transfer Instruction ... 280
10.1.39 MOVUA (Move Unaligned): Data Transfer Instruction...................................... 281
10.1.40 MUL.L (Multiply Long): Arithmetic Instruction... 283
10.1.41 MULS.W (Multiply as Signed Word): Arithmetic Instruction 284
10.1.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction 285
10.1.43 NEG (Negate): Arithmetic Instruction... 286

Rev. 1.50, 10/04, page xiv of xx

10.1.44 NEGC (Negate with Carry): Arithmetic Instruction.. 287
10.1.45 NOP (No Operation): System Control Instruction... 288
10.1.46 NOT (Not-logical Complement): Logical Instruction ... 289
10.1.47 OCBI (Operand Cache Block Invalidate): Data Transfer Instruction.................. 290
10.1.48 OCBP (Operand Cache Block Purge): Data Transfer Instruction........................ 291
10.1.49 OCBWB (Operand Cache Block Write Back): Data Transfer Instruction........... 292
10.1.50 OR (OR Logical): Logical Instruction... 293
10.1.51 PREF (Prefetch Data to Cache): Data Transfer Instruction 296
10.1.52 PREFI (Prefetch Instruction Cache Block): Data Transfer Instruction................ 297
10.1.53 ROTCL (Rotate with Carry Left): Shift Instruction .. 298
10.1.54 ROTCR (Rotate with Carry Right): Shift Instruction .. 299
10.1.55 ROTL (Rotate Left): Shift Instruction ... 300
10.1.56 ROTR (Rotate Right): Shift Instruction... 301
10.1.57 RTE (Return from Exception): System Control Instruction 302
10.1.58 RTS (Return from Subroutine): Branch Instruction... 304
10.1.59 SETS (Set S Bit): System Control Instruction ... 306
10.1.60 SETT (Set T Bit): System Control Instruction... 307
10.1.61 SHAD (Shift Arithmetic Dynamically): Shift Instruction 308
10.1.62 SHAL (Shift Arithmetic Left): Shift Instruction.. 310
10.1.63 SHAR (Shift Arithmetic Right): Shift Instruction ... 311
10.1.64 SHLD (Shift Logical Dynamically): Shift Instruction... 312
10.1.65 SHLL (Shift Logical Left): Shift Instruction .. 314
10.1.66 SHLLn (n bits Shift Logical Left): Shift Instruction ... 315
10.1.67 SHLR (Shift Logical Right): Shift Instruction... 317
10.1.68 SHLRn (n bits Shift Logical Right): Shift Instruction ... 318
10.1.69 SLEEP (Sleep): System Control Instruction (Privileged Instruction).................. 320
10.1.70 STC (Store Control Register): System Control Instruction
 (Privileged Instruction) .. 321
10.1.71 STS (Store System Register): System Control Instruction 325
10.1.72 SUB (Subtract Binary): Arithmetic Instruction ... 327
10.1.73 SUBC (Subtract with Carry): Arithmetic Instruction .. 328
10.1.74 SUBV (Subtract with (V flag) Underflow Check): Arithmetic Instruction 329
10.1.75 SWAP (Swap Register Halves): Data Transfer Instruction 331
10.1.76 SYNCO (Synchronize Data Operation): Data Transfer Instruction..................... 333
10.1.77 TAS (Test And Set): Logical Instruction... 334
10.1.78 TRAPA (Trap Always): System Control Instruction... 336
10.1.79 TST (Test Logical): Logical Instruction .. 337
10.1.80 XOR (Exclusive OR Logical): Logical Instruction ... 339
10.1.81 XTRCT (Extract): Data Transfer Instruction... 341

10.2 CPU Instructions (FPU related) .. 342
10.2.1 BSR (Branch to Subroutine): Branch Instruction
 (Delayed Branch Instruction)... 342

Rev. 1.50, 10/04, page xv of xx

10.2.2 BSRF (Branch to Subroutine Far): Branch Instruction
 (Delayed Branch Instruction)... 344
10.2.3 JSR (Jump to Subroutine): Branch Instruction (Delayed Branch Instruction)..... 346
10.2.4 LDC (Load to Control Register): System Control Instruction
 (Privileged Instruction) .. 348
10.2.5 LDS (Load to FPU System register): System Control Instruction....................... 349
10.2.6 STC (Store Control Register): System Control Instruction
 (Privileged Instruction) .. 351
10.2.7 STS (Store from FPU System Register): System Control Instruction 352

10.3 FPU Instruction... 354
10.3.1 FABS (Floating-point Absolute Value): Floating-Point Instruction.................... 365
10.3.2 FADD (Floating-point ADD): Floating-Point Instruction 366
10.3.3 FCMP (Floating-point Compare): Floating-Point Instruction.............................. 369
10.3.4 FCNVDS (Floating-point Convert Double to Single Precision):
 Floating-Point Instruction .. 373
10.3.5 FCNVSD (Floating-point Convert Single to Double Precision):
 Floating-Point Instruction .. 376
10.3.6 FDIV (Floating-point Divide): Floating-Point Instruction................................... 378
10.3.7 FIPR (Floating-point Inner Product): Floating-Point Instruction......................... 382
10.3.8 FLDI0 (Floating-point Load Immediate 0.0): Floating-Point Instruction............ 384
10.3.9 FLDI1 (Floating-point Load Immediate 1.0): Floating-Point Instruction............ 385
10.3.10 FLDS (Floating-point Load to System register): Floating-Point Instruction 386
10.3.11 FLOAT (Floating-point Convert from Integer): Floating-Point Instruction 387
10.3.12 FMAC (Floating-point Multiply and Accumulate): Floating-Point Instruction... 389
10.3.13 FMOV (Floating-point Move): Floating-Point Instruction.................................. 395
10.3.14 FMOV (Floating-point Move Extension): Floating-Point Instruction 399
10.3.15 FMUL (Floating-point Multiply): Floating-Point Instruction.............................. 402
10.3.16 FNEG (Floating-point Negate Value): Floating-Point Instruction....................... 405
10.3.17 FPCHG (Pr-bit Change): Floating-Point Instruction ... 406
10.3.18 FRCHG (FR-bit Change): Floating-Point Instruction.. 407
10.3.19 FSCA (Floating Point Sine And Cosine Approximate):
 Floating-Point Instruction .. 408
10.3.20 FSCHG (Sz-bit Change): Floating-Point Instruction ... 410
10.3.21 FSQRT (Floating-point Square Root): Floating-Point Instruction....................... 411
10.3.22 FSRRA (Floating Point Square Reciprocal Approximate):
 Floating-Point Instruction ... 414
10.3.23 FSTS (Floating-point Store System Register): Floating-Point Instruction 416
10.3.24 FSUB (Floating-point Subtract): Floating-Point Instruction................................ 417
10.3.25 FTRC (Floating-point Truncate and Convert to integer):
 Floating-Point Instruction .. 420
10.3.26 FTRV (Floating-point Transform Vector): Floating-Point Instruction 423

Rev. 1.50, 10/04, page xvi of xx

Section 11 List of Registers...427
11.1 Register Addresses
 (by functional module, in order of the corresponding section numbers) 428
11.2 Register States in Each Operating Mode .. 430

Appendix ...431
A. CPU Operation Mode Register (CPUOPM) ... 431
B. Instruction Prefetching and Its Side Effects.. 433
C. Speculative Execution for Subroutine Return... 434
D. Version Registers (PVR, PRR) ... 435

Main Revisions and Additions in this Edition...437

Index ...445

Rev. 1.50, 10/04, page xvii of xx

Figures

Section 1 Overview
Figure 2.1 Data Formats ... 7
Figure 2.2 CPU Register Configuration in Each Processing Mode .. 10
Figure 2.3 General Registers .. 11
Figure 2.4 Floating-Point Registers .. 13
Figure 2.5 Relationship between SZ bit and Endian... 18
Figure 2.6 Formats of Byte Data and Word Data in Register ... 20
Figure 2.7 Data Formats in Memory... 21
Figure 2.8 Processing State Transitions.. 21
Section 4 Pipelining
Figure 4.1 Basic Pipelines .. 43
Figure 4.2 Instruction Execution Patterns (1) ... 45
Figure 4.2 Instruction Execution Patterns (2) ... 46
Figure 4.2 Instruction Execution Patterns (3) ... 47
Figure 4.2 Instruction Execution Patterns (4) ... 48
Figure 4.2 Instruction Execution Patterns (5) ... 49
Figure 4.2 Instruction Execution Patterns (6) ... 50
Figure 4.2 Instruction Execution Patterns (7) ... 51
Figure 4.2 Instruction Execution Patterns (8) ... 52
Figure 4.2 Instruction Execution Patterns (9) ... 53
Section 5 Exception Handling
Figure 5.1 Instruction Execution and Exception Handling... 72
Figure 5.2 Example of General Exception Acceptance Order .. 73
Section 6 Floating-Point Unit (FPU)
Figure 6.1 Format of Single-Precision Floating-Point Number.. 98
Figure 6.2 Format of Double-Precision Floating-Point Number .. 98
Figure 6.3 Single-Precision NaN Bit Pattern .. 101
Figure 6.4 Floating-Point Registers .. 104
Figure 6.5 Relation between SZ Bit and Endian... 106
Section 7 Memory Management Unit (MMU)
Figure 7.1 Role of MMU.. 115
Figure 7.2 Virtual Address Space (AT in MMUCR= 0)... 116
Figure 7.3 Virtual Address Space (AT in MMUCR= 1)... 116
Figure 7.4 P4 Area.. 118
Figure 7.5 Physical Address Space... 119
Figure 7.6 UTLB Configuration ... 131
Figure 7.7 Relationship between Page Size and Address Format... 133
Figure 7.8 ITLB Configuration... 133

Rev. 1.50, 10/04, page xviii of xx

Figure 7.9 Flowchart of Memory Access Using UTLB.. 134
Figure 7.10 Flowchart of Memory Access Using ITLB ... 135
Figure 7.11 Operation of LDTLB Instruction... 138
Figure 7.12 Memory-Mapped ITLB Address Array... 147
Figure 7.13 Memory-Mapped ITLB Data Array .. 148
Figure 7.14 Memory-Mapped UTLB Address Array ... 150
Figure 7.15 Memory-Mapped UTLB Data Array... 151
Figure 7.16 Physical Address Space (32-Bit Address Extended Mode)..................................... 151
Figure 7.17 PMB Configuration ... 152
Figure 7.18 Memory-Mapped PMB Address Array ... 155
Figure 7.19 Memory-Mapped PMB Data Array... 156
Section 8 Caches
Figure 8.1 Configuration of Operand Cache (OC) ... 160
Figure 8.2 Configuration of Instruction Cache (IC) ... 161
Figure 8.3 Configuration of Write-Back Buffer ... 172
Figure 8.4 Configuration of Write-Through Buffer.. 172
Figure 8.5 Memory-Mapped IC Address Array ... 178
Figure 8.6 Memory-Mapped IC Data Array ... 179
Figure 8.7 Memory-Mapped OC Address Array.. 180
Figure 8.8 Memory-Mapped OC Data Array ... 181
Figure 8.9 Store Queue Configuration.. 182
Appendix
Figure B.1 Instruction Prefetch... 433

Rev. 1.50, 10/04, page xix of xx

Tables

Section 1 Overview
Table 1.1 Features... 1
Table 1.2 Changes from SH-4 to SH-4A .. 4
Section 2 Programming Model
Table 2.1 Initial Register Values... 9
Table 2.2 Bit Allocation for FPU Exception Handling... 19
Section 3 Instruction Set
Table 3.1 Execution Order of Delayed Branch Instructions ... 23
Table 3.2 Addressing Modes and Effective Addresses... 25
Table 3.3 Notation Used in Instruction List.. 29
Table 3.4 Fixed-Point Transfer Instructions ... 31
Table 3.5 Arithmetic Operation Instructions .. 33
Table 3.6 Logic Operation Instructions .. 35
Table 3.7 Shift Instructions... 36
Table 3.8 Branch Instructions ... 37
Table 3.9 System Control Instructions.. 37
Table 3.10 Floating-Point Single-Precision Instructions .. 40
Table 3.11 Floating-Point Double-Precision Instructions... 41
Table 3.12 Floating-Point Control Instructions .. 41
Table 3.13 Floating-Point Graphics Acceleration Instructions ... 42
Section 4 Pipelining
Table 4.1 Representations of Instruction Execution Patterns.. 44
Table 4.2 Instruction Groups .. 54
Table 4.3 Combination of Preceding and Following Instructions... 55
Table 4.4 Issue Rates and Execution Cycles... 57
Section 5 Exception Handling
Table 5.1 Register Configuration.. 65
Table 5.2 States of Register in Each Operating Mode .. 65
Table 5.3 Exceptions... 70
Section 6 Floating-Point Unit (FPU)
Table 6.1 Floating-Point Number Formats and Parameters .. 99
Table 6.2 Floating-Point Ranges... 100
Table 6.3 Bit Allocation for FPU Exception Handling... 107
Section 7 Memory Management Unit (MMU)
Table 7.1 Register Configuration.. 121
Table 7.2 Register States in Each Processing State .. 121

Rev. 1.50, 10/04, page xx of xx

Section 8 Caches
Table 8.1 Cache Features.. 159
Table 8.2 Store Queue Features .. 159
Table 8.3 Register Configuration.. 162
Table 8.4 Register States in Each Processing State .. 162
Section 9 L Memory
Table 9.1 L Memory Addresses.. 187
Table 9.2 Register Configuration.. 188
Table 9.3 Register Status in Each Processing State .. 188
Table 9.4 Protective Function Exceptions to Access L Memory.. 199
Appendix
Table D.1 Register Configuration.. 435

 Rev. 1.50, 10/04, page 1 of 448

Section 1 Overview

1.1 Features

The SH-4A is a 32-bit RISC (reduced instruction set computer) microprocessor that is upward
compatible with the SH-1, SH-2, SH-3, and SH-4 microcomputers at instruction set code level. Its
16-bit fixed-length instruction set enables program code size to be reduced by almost 50%
compared with 32-bit instructions. The features of the SH-4A are listed in table 1.1.

Table 1.1 Features

Item Features

CPU • Renesas Technology original architecture

• 32-bit internal data bus

• General-register files:

 Sixteen 32-bit general registers (eight 32-bit shadow registers)

 Seven 32-bit control registers

 Four 32-bit system registers

• RISC-type instruction set (upward compatible with the SH-1, SH-2, SH-3,

and SH-4 microcomputers)

 Instruction length: 16-bit fixed length for improved code efficiency

 Load/store architecture

 Delayed branch instructions

 Instructions executed with conditions

 Instruction set based on the C language

• Super scalar which executes two instructions simultaneously including the

FPU

• Instruction execution time: Two instructions per cycle (max)

• Virtual address space: 4 Gbytes

• Space identifier ASID: 8 bits, 256 virtual address spaces

• On-chip multiplier

• Seven-stage pipeline

Rev. 1.50, 10/04, page 2 of 448

Item Features

Floatingpoint unit

(FPU)

• On-chip floating-point coprocessor

• Supports single-precision (32 bits) and double-precision (64 bits)

• Supports IEEE754-compliant data types and exceptions

• Two rounding modes: Round to Nearest and Round to Zero

• Handling of denormalized numbers: Truncation to zero or interrupt

generation for IEEE754 compliance

• Floating-point registers: 32 bits × 16 words × 2 banks

(single-precision × 16 words or double-precision × 8 words) × 2 banks

• 32-bit CPU-FPU floating-point communication register (FPUL)

• Supports FMAC (multiply-and-accumulate) instruction

• Supports FDIV (divide) and FSQRT (square root) instructions

• Supports FLDI0/FLDI1 (load constant 0/1) instructions

• Instruction execution times

 Latency (FADD/FSUB): 3 cycles (single-precision), 5 cycles (double-

precision)

 Latency (FMAC/ FMUL): 5 cycles (single-precision), 7 cycles (double-

precision)

 Pitch (FADD/FSUB): 1 cycle (single-precision/double-precision)

 Pitch (FMAC/FMUL): 1 cycle (single-precision), 3 cycles (double-

precision)

Note: FMAC is supported for single-precision only.

• 3-D graphics instructions (single-precision only):

 4-dimensional vector conversion and matrix operations (FTRV): 4 cycles

(pitch), 8 cycles (latency)

 4-dimensional vector (FIPR) inner product: 1 cycle (pitch), 5 cycles

(latency)

• Ten-stage pipeline

Memory
management
unit (MMU)

• 4 Gbytes of physical address space, 256 address space identifiers (address

space identifier ASID: 8 bits)

• Supports single virtual memory mode and multiple virtual memory mode

• Supports multiple page sizes: 1 Kbyte, 4 Kbytes, 64 Kbytes, or 1 Mbyte

• 4-entry full associative TLB for instructions

• 64-entry full associative TLB for instructions and operands

• Supports software selection of replacement method and random-counter

replacement algorithms

• Contents of TLB are directly accessible through address mapping

Rev. 1.50, 10/04, page 3 of 448

Item Features

Cache memory • Instruction cache (IC)

 4-way set associative

 32-byte block length

• Operand cache (OC)

 4-way set associative

 32-byte block length

 Selectable write method (copy-back or write-through)

• Storage queue (32 bytes × 2 entries)

Note: For the size of instruction cash and operand cash, see corresponding
hardware manual on the product.

L memory • Two independent read/write ports

 8-/16-/32-/64-bit access from the CPU

 8-/16-/32-/64-bit and 16-/32-byte access from the external devices

Note: For the size of L memory, see the hardware manual of the target product.

Rev. 1.50, 10/04, page 4 of 448

1.2 Changes from SH-4 to SH-4A

Table 1.2 summarizes the changes from SH-4 to SH-4A based on the sections and sub-sections in
this manual.

Table 1.2 Changes from SH-4 to SH-4A

Section No. and
Name

Sub-
section

Sub-section
Name Changes

1. Overview   Modified entirely

(Detailed differences are described in the
following sections).

2. Programming
Model

2.2 Register
Descriptions

The operations in SZ=1 and PR=1 are
added to the floating point status/control
register (FPSCR).

9 instructions are added as CPU
instructions.

3. Instruction Set 3.3 Instruction Set

3 instructions are added as FPU
instructions.

4.1 Pipelines The number of stages in the pipeline is
changed from five to seven.

9 instructions are added as CPU
instructions.

3 instructions are added as FPU
instructions.

4.2 Parallel-
Executability

Instruction group and parallel execution
combinations are modified.

4. Pipelining

4.3 Execution Cycles The number of execution cycles is
modified.

5. Exception Handling   

6.3.2 Floating-Point
Status/Control
Register (FPSCR)

Operations in SZ = 1 and PR = 1 and each
endian are added

6. FPU

6.5 Floating-Point
Exceptions

Specification of FPU exception detection
condition with FPU exception enabled is
changed.

Rev. 1.50, 10/04, page 5 of 448

Section No. and
Name

Sub-
section

Sub-section
Name Changes

Area P4 configuration is modified. 7.1.1 Address Spaces

On-chip RAM space is deleted.

The page table entry assist register (PTEA)
is deleted.

7.2 Register
Descriptions

A physical address space control register is
added.

7.2.6 Physical Address
Space Control
Register (PASCR)

Newly added

7.2.7 Instruction Re-
Fetch Inhibit
Control Register
(IRMCR)

Newly added.

7.3 TLB Functions Space attribute bits (SA [2:0]) and timing
control bit (TC) are deleted from the TLB.

7.4.5 Avoiding Synonym
Problems

The corresponding bits are modified
according to the cache size change and the
index mode deletion.

7.5.1,
7.5.4

Instruction TLB
Multiple Hit
Exception and
Data TLB Multiple
Hit Exception

Multiple hits during the UTLB search
caused by ITLB mishandling are changed
to be handled as a TLB multiple hit
instruction exception.

7.6 Memory-Mapped
TLB Configuration

Data array 2 in the ITLB and UTLB is
deleted.

Associative writes to the UTLB address
array are changed to not generate data
TLB multiple hit exceptions.

7.6.3 UTLB Address
Array

Memory allocated addresses are changed
from H'F6000000–H'F6FFFFFF to
H'F6000000–H'F60FFFFF.

7. Memory
Management Unit

7.6.4 UTLB Data Array Memory allocated addresses are changed
from H'F7000000–H'F77FFFFF to
H'F7000000–H'F70FFFFF.

 7.7 32-Bit Address
Extended Mode

Newly added.

Rev. 1.50, 10/04, page 6 of 448

Section No. and
Name

Sub-
section

Sub-section
Name Changes

Instruction cache capacity is changed to 32
Kbytes.

8.1 Features

The caching method is changed to a 4-way
set-associative method.

8.2 Register
Descriptions

An on-chip memory control register is
added.

8.2.1 Cache Control
Register (CCR)

Modified.

(Descriptions in CCR are modified.)

8.2.4 On-Chip Memory
Control Register
(RAMCR)

Newly added.

8.3 Operand Cache
Operation

RAM mode and OC index mode are
deleted.

8.3.6 OC Two-Way
Mode

Newly added.

8.4 Instruction Cache
Operation

IC index mode is deleted.

8.4.3 IC Two-Way Mode Newly added.

8.5.1 Coherency
between Cache
and External
Memory

The ICBI, PREFI, and SYNCO instructions
are added.

8. Caches

8.6 Memory-Mapped
Cache
Configuration

The entry bits and the way bits are modified
according to the size modification and
changed into 4-way set associative cache.

 8.8 Notes on Using
32-Bit Address
Extended Mode

Newly added.

9. L Memory   Newly added.

9 instructions are added as CPU
instructions.

10. Instruction
Descriptions

 

3 instructions are added as FPU
instructions.

 Rev. 1.50, 10/04, page 7 of 448

Section 2 Programming Model

The programming model of the SH-4A is explained in this section. The SH-4A has registers and
data formats as shown below.

2.1 Data Formats

The data formats supported in the SH-4A are shown in figure 2.1.

Byte (8 bits)

Word (16 bits)

Longword (32 bits)

Single-precision floating-point (32 bits)

Double-precision floating-point (64 bits)

07

015

031

031 30 22

s e f

063 62 51

s e f

[Legend]

s
e
f

:Sign field
:Exponent field
:Fraction field

Figure 2.1 Data Formats

Rev. 1.50, 10/04, page 8 of 448

2.2 Register Descriptions

2.2.1 Privileged Mode and Banks

Processing Modes: This LSI has two processing modes, user mode and privileged mode. This
LSI normally operates in user mode, and switches to privileged mode when an exception occurs or
an interrupt is accepted. There are four kinds of registers—general registers, system registers,
control registers, and floating-point registers—and the registers that can be accessed differ in the
two processing modes.

General Registers: There are 16 general registers, designated R0 to R15. General registers R0 to
R7 are banked registers which are switched by a processing mode change.

• Privileged mode

In privileged mode, the register bank bit (RB) in the status register (SR) defines which banked
register set is accessed as general registers, and which set is accessed only through the load
control register (LDC) and store control register (STC) instructions.

When the RB bit is 1 (that is, when bank 1 is selected), the 16 registers comprising bank 1
general registers R0_BANK1 to R7_BANK1 and non-banked general registers R8 to R15 can
be accessed as general registers R0 to R15. In this case, the eight registers comprising bank 0
general registers R0_BANK0 to R7_BANK0 are accessed by the LDC/STC instructions.
When the RB bit is 0 (that is, when bank 0 is selected), the 16 registers comprising bank 0
general registers R0_BANK0 to R7_BANK0 and non-banked general registers R8 to R15 can
be accessed as general registers R0 to R15. In this case, the eight registers comprising bank 1
general registers R0_BANK1 to R7_BANK1 are accessed by the LDC/STC instructions.

• User mode

In user mode, the 16 registers comprising bank 0 general registers R0_BANK0 to R7_BANK0
and non-banked general registers R8 to R15 can be accessed as general registers R0 to R15.
The eight registers comprising bank 1 general registers R0_BANK1 to R7_BANK1 cannot be
accessed.

Control Registers: Control registers comprise the global base register (GBR) and status register
(SR), which can be accessed in both processing modes, and the saved status register (SSR), saved
program counter (SPC), vector base register (VBR), saved general register 15 (SGR), and debug
base register (DBR), which can only be accessed in privileged mode. Some bits of the status
register (such as the RB bit) can only be accessed in privileged mode.

System Registers: System registers comprise the multiply-and-accumulate registers
(MACH/MACL), the procedure register (PR), and the program counter (PC). Access to these
registers does not depend on the processing mode.

Rev. 1.50, 10/04, page 9 of 448

Floating-Point Registers and System Registers Related to FPU: There are thirty-two floating-
point registers, FR0–FR15 and XF0–XF15. FR0–FR15 and XF0–XF15 can be assigned to either
of two banks (FPR0_BANK0–FPR15_BANK0 or FPR0_BANK1–FPR15_BANK1).

FR0–FR15 can be used as the eight registers DR0/2/4/6/8/10/12/14 (double-precision floating-
point registers, or pair registers) or the four registers FV0/4/8/12 (register vectors), while XF0–
XF15 can be used as the eight registers XD0/2/4/6/8/10/12/14 (register pairs) or register matrix
XMTRX.

System registers related to the FPU comprise the floating-point communication register (FPUL)
and the floating-point status/control register (FPSCR). These registers are used for communication
between the FPU and the CPU, and the exception handling setting.

Register values after a reset are shown in table 2.1.

Table 2.1 Initial Register Values

Type Registers Initial Value*

General registers R0_BANK0 to R7_BANK0,
R0_BANK1 to R7_BANK1,
R8 to R15

Undefined

SR MD bit = 1, RB bit = 1, BL bit = 1, FD bit = 0,
IMASK = B'1111, reserved bits = 0,
others = undefined

GBR, SSR, SPC, SGR, DBR Undefined

Control registers

VBR H'00000000

MACH, MACL, PR Undefined System registers

PC H'A0000000

FR0 to FR15, XF0 to XF15,
FPUL

Undefined Floating-point
registers

FPSCR H'00040001

Note: * Initialized by a power-on reset and manual reset.

The CPU register configuration in each processing mode is shown in figure 2.2.

User mode and privileged mode are switched by the processing mode bit (MD) in the status
register.

Rev. 1.50, 10/04, page 10 of 448

31 0
R0_BANK0*1,*2

R1_BANK0*2

R2_BANK0*2

R3_BANK0*2

R4_BANK0*2

R5_BANK0*2

R6_BANK0*2

R7_BANK0*2

R8
R9

R10
R11
R12
R13
R14
R15

SR

GBR
MACH
MACL

PR

PC

(a) Register configuration
 in user mode

31 0
R0_BANK1*1,*3

R1_BANK1*3

R2_BANK1*3

R3_BANK1*3

R4_BANK1*3

R5_BANK1*3

R6_BANK1*3

R7_BANK1*3

R8
R9
R10
R11
R12
R13
R14
R15

R0_BANK0*1,*4

R1_BANK0*4

R2_BANK0*4

R3_BANK0*4

R4_BANK0*4

R5_BANK0*4

R6_BANK0*4

R7_BANK0*4

(b) Register configuration in
 privileged mode (RB = 1)

GBR
MACH
MACL

VBR
PR

SR
SSR

PC
SPC

31 0

R0_BANK1*1,*3

R1_BANK1*3

R2_BANK1*3

R3_BANK1*3

R4_BANK1*3

R5_BANK1*3

R6_BANK1*3

R7_BANK1*3

R8
R9

R10
R11
R12
R13
R14
R15

R0_BANK0*1,*4

R1_BANK0*4

R2_BANK0*4

R3_BANK0*4

R4_BANK0*4

R5_BANK0*4

R6_BANK0*4

R7_BANK0*4

(c) Register configuration in
 privileged mode (RB = 0)

GBR
MACH
MACL

VBR
PR

SR
SSR

PC
SPC

SGR

DBR

SGR

DBR

R0 is used as the index register in indexed register-indirect addressing mode and
indexed GBR indirect addressing mode.
Banked registers
Banked registers
Accessed as general registers when the RB bit is set to 1 in SR. Accessed only by
LDC/STC instructions when the RB bit is cleared to 0.
Banked registers
Accessed as general registers when the RB bit is cleared to 0 in SR. Accessed only
by LDC/STC instructions when the RB bit is set to 1.

Notes: 1.

2.
3.

4.

Figure 2.2 CPU Register Configuration in Each Processing Mode

Rev. 1.50, 10/04, page 11 of 448

2.2.2 General Registers

Figure 2.3 shows the relationship between the processing modes and general registers. The SH-4A
has twenty-four 32-bit general registers (R0_BANK0 to R7_BANK0, R0_BANK1 to
R7_BANK1, and R8 to R15). However, only 16 of these can be accessed as general registers R0
to R15 in one processing mode. The SH-4A has two processing modes, user mode and privileged
mode.

• R0_BANK0 to R7_BANK0

Allocated to R0 to R7 in user mode (SR.MD = 0)

Allocated to R0 to R7 when SR.RB = 0 in privileged mode (SR.MD = 1).

• R0_BANK1 to R7_BANK1

Cannot be accessed in user mode.

Allocated to R0 to R7 when SR.RB = 1 in privileged mode.

SR.MD = 0 or
(SR.MD = 1, SR.RB = 0)

R0_BANK0
R1_BANK0
R2_BANK0
R3_BANK0
R4_BANK0
R5_BANK0
R6_BANK0
R7_BANK0

R0_BANK0
R1_BANK0
R2_BANK0
R3_BANK0
R4_BANK0
R5_BANK0
R6_BANK0
R7_BANK0

R0_BANK1
R1_BANK1
R2_BANK1
R3_BANK1
R4_BANK1
R5_BANK1
R6_BANK1
R7_BANK1

R0_BANK1
R1_BANK1
R2_BANK1
R3_BANK1
R4_BANK1
R5_BANK1
R6_BANK1
R7_BANK1

R0
R1
R2
R3
R4
R5
R6
R7

R0
R1
R2
R3
R4
R5
R6
R7

R8
R9

R10
R11
R12
R13
R14
R15

R8
R9
R10
R11
R12
R13
R14
R15

R8
R9

R10
R11
R12
R13
R14
R15

(SR.MD = 1, SR.RB = 1)

Figure 2.3 General Registers

Note on Programming: As the user's R0 to R7 are assigned to R0_BANK0 to R7_BANK0, and
after an exception or interrupt R0 to R7 are assigned to R0_BANK1 to
R7_BANK1, it is not necessary for the interrupt handler to save and
restore the user's R0 to R7 (R0_BANK0 to R7_BANK0).

Rev. 1.50, 10/04, page 12 of 448

2.2.3 Floating-Point Registers

Figure 2.4 shows the floating-point register configuration. There are thirty-two 32-bit floating-
point registers, FPR0_BANK0 to FPR15_BANK0, AND FPR0_BANK1 to FPR15_BANK1,
comprising two banks. These registers are referenced as FR0 to FR15, DR0/2/4/6/8/10/12/14,
FV0/4/8/12, XF0 to XF15, XD0/2/4/6/8/10/12/14, or XMTRX. Reference names of each register
are defined depending on the state of the FR bit in FPSCR (see figure 2.4).

1. Floating-point registers, FPRn_BANKj (32 registers)

FPR0_BANK0 to FPR15_BANK0

FPR0_BANK1 to FPR15_BANK1

2. Single-precision floating-point registers, FRi (16 registers)

When FPSCR.FR = 0, FR0 to FR15 are assigned to FPR0_BANK0 to FPR15_BANK0;

when FPSCR.FR = 1, FR0 to FR15 are assigned to FPR0_BANK1 to FPR15_BANK1.

3. Double-precision floating-point registers or single-precision floating-point registers, DRi (8
registers): A DR register comprises two FR registers.

DR0 = {FR0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

4. Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers.

FV0 = {FR0, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

5. Single-precision floating-point extended registers, XFi (16 registers)

When FPSCR.FR = 0, XF0 to XF15 are assigned to FPR0_BANK1 to FPR15_BANK1;

when FPSCR.FR = 1, XF0 to XF15 are assigned to FPR0_BANK0 to FPR15_BANK0.

6. Double-precision floating-point extended registers, XDi (8 registers): An XD register
comprises two XF registers.

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

7. Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers.

XMTRX = XF0 XF4 XF8 XF12

 XF1 XF5 XF9 XF13

 XF2 XF6 XF10 XF14

 XF3 XF7 XF11 XF15

Rev. 1.50, 10/04, page 13 of 448

FPR0_BANK0

FPR1_BANK0

FPR2_BANK0

FPR3_BANK0

FPR4_BANK0

FPR5_BANK0

FPR6_BANK0

FPR7_BANK0

FPR8_BANK0

FPR9_BANK0

FPR10_BANK0

FPR11_BANK0

FPR12_BANK0

FPR13_BANK0

FPR14_BANK0

FPR15_BANK0

XF0

XF1

XF2

XF3

XF4

XF5

XF6

XF7

XF8

XF9

XF10

XF11

XF12

XF13

XF14

XF15

FR0

FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0 XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPR0_BANK1

FPR1_BANK1

FPR2_BANK1

FPR3_BANK1

FPR4_BANK1

FPR5_BANK1

FPR6_BANK1

FPR7_BANK1

FPR8_BANK1

FPR9_BANK1

FPR10_BANK1

FPR11_BANK1

FPR12_BANK1

FPR13_BANK1

FPR14_BANK1

FPR15_BANK1

XF0

XF1

XF2

XF3

XF4

XF5

XF6

XF7

XF8

XF9

XF10

XF11

XF12

XF13

XF14

XF15

FR0

FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPSCR.FR = 0 FPSCR.FR = 1

Figure 2.4 Floating-Point Registers

Rev. 1.50, 10/04, page 14 of 448

2.2.4 Control Registers

Status Register (SR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16BIt:

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

MD RB BL

FD M Q IMASK S T

Initial value:
R R/W R/W R/W R R R R R R R R R R R RR/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0BIt:

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0Initial value:
R/W R R R R R R/W R/W R/W R/W R/W R/W R R R/W R/WR/W:

Bit Bit Name
Initial
Value R/W Description

31 — 0 R Reserved

For details on reading/writing this bit, see General
Precautions on Handling of Product.

30 MD 1 R/W Processing Mode

Selects the processing mode.

0: User mode (Some instructions cannot be executed
 and some resources cannot be accessed.)
1: Privileged mode

This bit is set to 1 by an exception or interrupt.

29 RB 1 R/W Privileged Mode General Register Bank Specification
Bit

0: R0_BANK0 to R7_BANK0 are accessed as general
registers R0 to R7 and R0_BANK1 to R7_BANK1 can
be accessed using LDC/STC instructions

1: R0_BANK1 to R7_BANK1 are accessed as general
registers R0 to R7 and R0_BANK0–R7_BANK0 can
be accessed using LDC/STC instructions

This bit is set to 1 by an exception or interrupt.

28 BL 1 R/W Exception/Interrupt Block Bit

This bit is set to 1 by a reset, an exception, or an
interrupt. While this bit is set to 1, an interrupt request is
masked. In this case, this processor enters the reset
state when a general exception other than a user break
occurs.

27 to 16 — All 0 R Reserved

For details on reading/writing this bit, see General
Precautions on Handling of Product.

Rev. 1.50, 10/04, page 15 of 448

Bit Bit Name
Initial
Value R/W Description

15 FD 0 R/W FPU Disable Bit

When this bit is set to 1 and an FPU instruction is not in
a delay slot, a general FPU disable exception occurs.
When this bit is set to 1 and an FPU instruction is in a
delay slot, a slot FPU disable exception occurs. (FPU
instructions: H'F*** instructions and LDS (.L)/STS(.L)
instructions using FPUL/FPSCR)

14 to 10 — All 0 R Reserved

For details on reading/writing this bit, see General
Precautions on Handling of Product.

9 M 0 R/W M Bit

Used by the DIV0S, DIV0U, and DIV1 instructions.

8 Q 0 R/W Q Bit

Used by the DIV0S, DIV0U, and DIV1 instructions.

7 to 4 IMASK All 1 R/W Interrupt Mask Level Bits
An interrupt whose priority is equal to or less than the
value of the IMASK bits is masked. It can be chosen by
CPU operation mode register (CPUOPM) whether the
level of IMASK is changed to accept an interrupt or not
when an interrupt is occurred. For details, see Appendix
A, CPU Operation Mode Register (CPUOPM).

3, 2 — All 0 R Reserved

For details on reading/writing this bit, see General
Precautions on Handling of Product.

1 S 0 R/W S Bit

Used by the MAC instruction.

0 T 0 R/W T Bit

Indicates true/false condition, carry/borrow, or
overflow/underflow.

For details, see section 3, Instruction Set.

Saved Status Register (SSR) (32 bits, Privileged Mode, Initial Value = Undefined): The
contents of SR are saved to SSR in the event of an exception or interrupt.

Saved Program Counter (SPC) (32 bits, Privileged Mode, Initial Value = Undefined): The
address of an instruction at which an interrupt or exception occurs is saved to SPC.

Global Base Register (GBR) (32 bits, Initial Value = Undefined): GBR is referenced as the
base address of addressing @(disp,GBR) and @(R0,GBR).

Rev. 1.50, 10/04, page 16 of 448

Vector Base Register (VBR) (32 bits, Privileged Mode, Initial Value = H'00000000): VBR is
referenced as the branch destination base address in the event of an exception or interrupt. For
details, see section 5, Exception Handling.

Saved General Register 15 (SGR) (32 bits, Privileged Mode, Initial Value = Undefined): The
contents of R15 are saved to SGR in the event of an exception or interrupt.

Debug Base Register (DBR) (32 bits, Privileged Mode, Initial Value = Undefined): When the
user break debugging function is enabled (CBCR.UBDE = 1), DBR is referenced as the branch
destination address of the user break handler instead of VBR.

2.2.5 System Registers

Multiply-and-Accumulate Registers (MACH and MACL) (32 bits, Initial Value =
Undefined): MACH and MACL are used for the added value in a MAC instruction, and to store
the operation result of a MAC or MUL instruction.

Procedure Register (PR) (32 bits, Initial Value = Undefined): The return address is stored in
PR in a subroutine call using a BSR, BSRF, or JSR instruction. PR is referenced by the subroutine
return instruction (RTS).

Program Counter (PC) (32 bits, Initial Value = H'A0000000): PC indicates the address of the
instruction currently being executed.

Rev. 1.50, 10/04, page 17 of 448

Floating-Point Status/Control Register (FPSCR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
R R R R R R R R R R R/W R/W R/W R/W R/W R/W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Enable (EN)

FR SZ PR DN

Flag RMCause

Cause

BIt:

Initial value:
R/W:

BIt:

Initial value:
R/W:

Bit Bit Name
Initial
Value R/W Description

31 to 22 — All 0 R Reserved
For details on reading/writing this bit, see General
Precautions on Handling of Product.

21 FR 0 R/W Floating-Point Register Bank

0: FPR0_BANK0 to FPR15_BANK0 are assigned to
FR0 to FR15 and FPR0_BANK1 to FPR15_BANK1
are assigned to XF0 to XF15

1: FPR0_BANK0 to FPR15_BANK0 are assigned to
XF0 to XF15 and FPR0_BANK1 to FPR15_BANK1
are assigned to FR0 to FR15

20 SZ 0 R/W Transfer Size Mode

0: Data size of FMOV instruction is 32-bits
1: Data size of FMOV instruction is a 32-bit register
 pair (64 bits)

For relationship between the SZ bit, PR bit, and endian,
see figure 2.5.

19 PR 0 R/W Precision Mode

0: Floating-point instructions are executed as
 single-precision operations
1: Floating-point instructions are executed as
 double-precision operations (graphics support
 instructions are undefined)

For relationship between the SZ bit, PR bit, and endian,
see figure 2.5

18 DN 1 R/W Denormalization Mode

0: Denormalized number is treated as such
1: Denormalized number is treated as zero

Rev. 1.50, 10/04, page 18 of 448

Bit Bit Name
Initial
Value R/W Description

17 to 12 Cause All 0 R/W

11 to 7 Enable (EN) All 0 R/W

6 to 2 Flag All 0 R/W

FPU Exception Cause Field
FPU Exception Enable Field
FPU Exception Flag Field
Each time an FPU operation instruction is executed, the
FPU exception cause field is cleared to 0. When an
FPU exception occurs, the bits corresponding to FPU
exception cause field and flag field are set to 1. The
FPU exception flag field remains set to 1 until it is
cleared to 0 by software.

For bit allocations of each field, see table 2.2.

1, 0 RM 01 R/W Rounding Mode

These bits select the rounding mode.

00: Round to Nearest

01: Round to Zero

10: Reserved

11: Reserved

<Big endian>

DR (2i)

FR (2i) FR (2i+1)

8n+4 8n+78n 8n+3

63 0

63 32 31 0

Floating-point register

Memory area

63 0

<Little endian>

Floating-point register

Memory area

DR (2i)

FR (2i) FR (2i+1)

4n 4m4n+3 4m+3

63 0

63 32 31 0

DR (2i)

FR (2i+1)FR (2i)

8n+48n+78n+3 8n

63 0

63 32 31 0

(1) SZ = 0 (2) SZ = 1, PR = 0

63 0 63 0

DR (2i)

FR (2i+1)FR (2i)

8n8n+38n+7 8n+4

63 0

63 32 31 0

(3) SZ = 1, PR = 1

63 0

*1, *2 *2

Notes: 1. In the case of SZ = 0 and PR = 0, DR register can not be used.

2. The bit-location of DR register is used for double precision format when PR = 1.
 (In the case of (2), it is used when PR is changed from 0 to 1.)

Figure 2.5 Relationship between SZ bit and Endian

Rev. 1.50, 10/04, page 19 of 448

Table 2.2 Bit Allocation for FPU Exception Handling

Field Name
FPU
Error (E)

Invalid
Operation (V)

Division
by Zero (Z)

Overflow
(O)

Underflow
(U)

Inexact
(I)

Cause FPU exception
cause field

Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception flag
field

None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

Floating-Point Communication Register (FPUL) (32 bits, Initial Value = Undefined):
Information is transferred between the FPU and CPU via FPUL.

2.3 Memory-Mapped Registers

Some control registers are mapped to the following memory areas. Each of the mapped registers
has two addresses.

H'1C00 0000 to H'1FFF FFFF
H'FC00 0000 to H'FFFF FFFF

These two areas are used as follows.

• H'1C00 0000 to H'1FFF FFFF

This area must be accessed using the address translation function of the MMU.

Setting the page number of this area to the corresponding field of the TLB enables access to a
memory-mapped register.

The operation of an access to this area without using the address translation function of the
MMU is not guaranteed.

• H'FC00 0000 to H'FFFF FFFF

Access to area H'FC00 0000 to H'FFFF FFFF in user mode will cause an address error.
Memory-mapped registers can be referenced in user mode by means of access that involves
address translation.

Note: Do not access addresses to which registers are not mapped in either area. The operation of

an access to an address with no register mapped is undefined. Also, memory-mapped
registers must be accessed using a fixed data size. The operation of an access using an
invalid data size is undefined.

Rev. 1.50, 10/04, page 20 of 448

2.4 Data Formats in Registers

Register operands are always longwords (32 bits). When a memory operand is only a byte (8 bits)
or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31
S S

S

067

67 0

31
S S

S

01415

1415 0

Figure 2.6 Formats of Byte Data and Word Data in Register

2.5 Data Formats in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be accessed in
an 8-bit byte, 16-bit word, or 32-bit longword form. A memory operand less than 32 bits in length
is sign-extended before being loaded into a register.

A word operand must be accessed starting from a word boundary (even address of a 2-byte unit:
address 2n), and a longword operand starting from a longword boundary (even address of a 4-byte
unit: address 4n). An address error will result if this rule is not observed. A byte operand can be
accessed from any address.

Big endian or little endian byte order can be selected for the data format. The endian should be set
with the external pin after a power-on reset. The endian cannot be changed dynamically. Bit
positions are numbered left to right from most-significant to least-significant. Thus, in a 32-bit
longword, the leftmost bit, bit 31, is the most significant bit and the rightmost bit, bit 0, is the least
significant bit.

The data format in memory is shown in figure 2.7.

Rev. 1.50, 10/04, page 21 of 448

Address A

A

7 0 7 0 7 0 7 0

31

15 0 15 0

31 0

15 0

31 0

23 15 7 0

A + 1 A + 2 A + 3

Byte 0

Word 0

Longword

Word 1

Byte 1 Byte 2 Byte 3

A + 11

7 0 7 0 7 0 7 0

31

15 0

23 15 7 0

A + 10 A + 9 A + 8

Byte 3

Word 1

Longword

Word 0

Byte 2 Byte 1 Byte 0

Address A + 4

Address A + 8

Address A + 8

Address A + 4

Address A

Big endian Little endian

Figure 2.7 Data Formats in Memory

For the 64-bit data format, see figure 2.5.

2.6 Processing States

This LSI has major three processing states: the reset state, instruction execution state, and power-
down state.

Reset State: In this state the CPU is reset. The reset state is divided into the power-on reset state
and the manual reset.

In the power-on reset state, the internal state of the CPU and the on-chip peripheral module
registers are initialized. In the manual reset state, the internal state of the CPU and some registers
of on-chip peripheral modules are initialized. For details, see register descriptions for each section.

Instruction Execution State: In this state, the CPU executes program instructions in sequence.
The Instruction execution state has the normal program execution state and the exception handling
state.

Power-Down State: In a power-down state, CPU halts operation and power consumption is
reduced. The power-down state is entered by executing a SLEEP instruction. There are two modes
in the power-down state: sleep mode and standby mode.

From any state
when reset/manual
reset input

Reset state

Instruction execution state
Sleep instruction execution

Power-down state
Interrupt occurence

Reset/manual
reset clearance

Reset/manual
reset input

Reset/manual
reset input

Figure 2.8 Processing State Transitions

Rev. 1.50, 10/04, page 22 of 448

2.7 Usage Notes

2.7.1 Notes on Self-Modified Codes

The SH-4A prefetches instructions to accelerate the processing speed. Therefore if the instruction
in the memory is modified and it is executed immediately, then the pre-modified code in the
prefetch buffer may be executed. And the SH4AL-DSP supports each instruction and operand
cache, the coherency should be considered. In order to reflect the modified code definitely, one of
the following sequences should be executed.

In Case the Modified Codes are in Non-Cacheable Area:

SYNCO

ICBI @Rn

The target for the ICBI instruction can be any address within the range where no address error
exception occurs.

In Case the Modified Codes are in Cacheable Area (Write-Through):

SYNCO

ICBI @Rn

All instruction cache areas corresponding to the modified codes should be invalidated by the ICBI
instruction. The ICBI instruction should be issued to each cache line. One cache line is 32 bytes.

In Case the Modified Codes are in Cacheable Area (Copy-Back):

OCBP @Rm or OCBWB @Rm

SYNCO

ICBI @Rn

All operand cache areas corresponding to the modified codes should be written back to the main
memory by the OCBP or OCBWB instruction. Then all instruction cache areas corresponding to
the modified codes should be invalidated by the ICBI instruction. The OCBP, OCBWB, and ICBI
instruction should be issued to each cache line. One cache line is 32 bytes.

 Rev. 1.50, 10/04, page 23 of 448

Section 3 Instruction Set

The SH-4A's instruction set is implemented with 16-bit fixed-length instructions. The SH-4A can
use byte (8-bit), word (16-bit), longword (32-bit), and quadword (64-bit) data sizes for memory
access. Single-precision floating-point data (32 bits) can be moved to and from memory using
longword or quadword size. Double-precision floating-point data (64 bits) can be moved to and
from memory using longword size. When the SH-4A moves byte-size or word-size data from
memory to a register, the data is sign-extended.

3.1 Execution Environment

PC: At the start of instruction execution, the PC indicates the address of the instruction itself.

Load-Store Architecture: The SH-4A has a load-store architecture in which operations are
basically executed using registers. Except for bit-manipulation operations such as logical AND
that are executed directly in memory, operands in an operation that requires memory access are
loaded into registers and the operation is executed between the registers.

Delayed Branches: Except for the two branch instructions BF and BT, the SH-4A's branch
instructions and RTE are delayed branches. In a delayed branch, the instruction following the
branch is executed before the branch destination instruction.

Delay Slot: This execution slot following a delayed branch is called a delay slot. For example, the
BRA execution sequence is as follows:

Table 3.1 Execution Order of Delayed Branch Instructions

Instructions Execution Order

 BRA TARGET (Delayed branch instruction) BRA

 ADD (Delay slot) ↓

 : ADD

 : ↓

TARGET target-inst (Branch destination instruction) target-inst

A slot illegal instruction exception may occur when a specific instruction is executed in a delay
slot. For details, see section 5, Exception Handling. The instruction following BF/S or BT/S for
which the branch is not taken is also a delay slot instruction.

T Bit: The T bit in SR is used to show the result of a compare operation, and is referenced by a
conditional branch instruction. An example of the use of a conditional branch instruction is shown
below.

Rev. 1.50, 10/04, page 24 of 448

ADD #1, R0 ; T bit is not changed by ADD operation
CMP/EQ R1, R0 ; If R0 = R1, T bit is set to 1
BT TARGET ; Branches to TARGET if T bit = 1 (R0 = R1)

In an RTE delay slot, the SR bits are referenced as follows. In instruction access, the MD bit is
used before modification, and in data access, the MD bit is accessed after modification. The other
bits—S, T, M, Q, FD, BL, and RB—after modification are used for delay slot instruction
execution. The STC and STC.L SR instructions access all SR bits after modification.

Constant Values: An 8-bit constant value can be specified by the instruction code and an
immediate value. 16-bit and 32-bit constant values can be defined as literal constant values in
memory, and can be referenced by a PC-relative load instruction.

MOV.W @(disp, PC), Rn
MOV.L @(disp, PC), Rn

There are no PC-relative load instructions for floating-point operations. However, it is possible to
set 0.0 or 1.0 by using the FLDI0 or FLDI1 instruction on a single-precision floating-point
register.

Rev. 1.50, 10/04, page 25 of 448

3.2 Addressing Modes

Addressing modes and effective address calculation methods are shown in table 3.2. When a
location in virtual memory space is accessed (AT in MMUCR = 1), the effective address is
translated into a physical memory address. If multiple virtual memory space systems are selected
(SV in MMUCR = 0), the least significant bit of PTEH is also referenced as the access ASID. For
details, see section 7, Memory Management Unit (MMU).

Table 3.2 Addressing Modes and Effective Addresses

Addressing
Mode

Instruction
Format Effective Address Calculation Method

Calculation
Formula

Register
direct

Rn Effective address is register Rn.
(Operand is register Rn contents.)

—

Register
indirect

@Rn Effective address is register Rn contents.

Rn Rn

Rn → EA
(EA: effective
address)

Register
indirect
with post-
increment

@Rn+ Effective address is register Rn contents.
A constant is added to Rn after instruction
execution: 1 for a byte operand, 2 for a word
operand, 4 for a longword operand, 8 for a
quadword operand.

Rn Rn

1/2/4

+Rn + 1/2/4

Rn → EA
After
instruction
execution

Byte:
Rn + 1 → Rn

Word:
Rn + 2 → Rn

Longword:
Rn + 4 → Rn

Quadword:
Rn + 8 → Rn

Register
indirect
with pre-
decrement

@–Rn Effective address is register Rn contents,
decremented by a constant beforehand:
1 for a byte operand, 2 for a word operand,
4 for a longword operand, 8 for a quadword
operand.

Rn

1/2/4

Rn – 1/2/4/8–Rn – 1/2/4

Byte:
Rn – 1 → Rn

Word:
Rn – 2 → Rn

Longword:
Rn – 4 → Rn

Quadword:
Rn – 8 → Rn

Rn → EA
(Instruction
executed
with Rn after
calculation)

Rev. 1.50, 10/04, page 26 of 448

Addressing
Mode

Instruction
Format Effective Address Calculation Method

Calculation
Formula

Register
indirect with
displacement

@(disp:4, Rn) Effective address is register Rn contents with
4-bit displacement disp added. After disp is
zero-extended, it is multiplied by 1 (byte), 2
(word), or 4 (longword), according to the operand
size.

Rn

Rn + disp × 1/2/4+

×

1/2/4

disp
(zero-extended)

Byte: Rn + disp
→ EA

Word: Rn +
disp × 2 → EA

Longword:
Rn + disp × 4
→ EA

Indexed
register
indirect

@(R0, Rn) Effective address is sum of register Rn and R0
contents.

Rn

R0

Rn + R0+

Rn + R0 → EA

GBR indirect
with displace-
ment

@(disp:8, GBR) Effective address is register GBR contents with
8-bit displacement disp added. After disp is
zero-extended, it is multiplied by 1 (byte), 2
(word), or 4 (longword), according to the operand
size.

GBR

1/2/4

GBR
+ disp × 1/2/4

+

×

disp
(zero-extended)

Byte: GBR +
disp → EA

Word: GBR +
disp × 2 → EA

Longword:
GBR + disp × 4
→ EA

Indexed GBR
indirect

@(R0, GBR) Effective address is sum of register GBR and R0
contents.

GBR

R0

GBR + R0+

GBR + R0 →
EA

Rev. 1.50, 10/04, page 27 of 448

Addressing
Mode

Instruction
Format Effective Address Calculation Method

Calculation
Formula

PC-relative
with
displacement

@(disp:8, PC) Effective address is PC + 4 with 8-bit displacement
disp added. After disp is zero-extended, it is
multiplied by 2 (word), or 4 (longword), according
to the operand size. With a longword operand,
the lower 2 bits of PC are masked.

PC

H'FFFF FFFC

PC + 4 + disp
× 2

or PC &
 H'FFFF FFFC
+ 4 + disp × 4

+
4

2/4

×

+

& *

disp
(zero-extended)

* With longword operand

Word: PC + 4
+ disp × 2 →
EA

Longword:
PC & H'FFFF
FFFC + 4 +
disp × 4 → EA

PC-relative disp:8 Effective address is PC + 4 with 8-bit displacement
disp added after being sign-extended and
multiplied by 2.

2

+

×

disp
(sign-extended)

4

+

PC

PC + 4 + disp × 2

PC + 4 + disp
× 2 → Branch-
Target

Rev. 1.50, 10/04, page 28 of 448

Addressing
Mode

Instruction
Format Effective Address Calculation Method

Calculation
Formula

PC-relative disp:12 Effective address is PC + 4 with 12-bit
displacement disp added after being sign-extended
and
multiplied by 2.

2

+

×

disp
(sign-extended)

4

+

PC

PC + 4 + disp × 2

PC + 4 + disp
× 2 → Branch-
Target

 Rn Effective address is sum of PC + 4 and Rn.

PC

4

Rn

+

+ PC + 4 + Rn

PC + 4 + Rn →
Branch-Target

Immediate #imm:8 8-bit immediate data imm of TST, AND, OR, or
XOR instruction is zero-extended.

—

 #imm:8 8-bit immediate data imm of MOV, ADD, or
CMP/EQ instruction is sign-extended.

—

 #imm:8 8-bit immediate data imm of TRAPA instruction is
zero-extended and multiplied by 4.

—

Note: For the addressing modes below that use a displacement (disp), the assembler descriptions
in this manual show the value before scaling (×1, ×2, or ×4) is performed according to the
operand size. This is done to clarify the operation of the LSI. Refer to the relevant
assembler notation rules for the actual assembler descriptions.

 @ (disp:4, Rn) ; Register indirect with displacement
 @ (disp:8, GBR) ; GBR indirect with displacement

 @ (disp:8, PC) ; PC-relative with displacement

 disp:8, disp:12 ; PC-relative

Rev. 1.50, 10/04, page 29 of 448

3.3 Instruction Set

Table 3.3 shows the notation used in the SH instruction lists shown in tables 3.4 to 3.13.

Table 3.3 Notation Used in Instruction List

Item Format Description

Instruction
mnemonic

OP.Sz SRC, DEST OP: Operation code
Sz: Size
SRC: Source operand
DEST: Source and/or destination operand
Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement

Operation
notation

 →, ← Transfer direction
(xx) Memory operand
M/Q/T SR flag bits
& Logical AND of individual bits
| Logical OR of individual bits
∧ Logical exclusive-OR of individual bits
~ Logical NOT of individual bits
<<n, >>n n-bit shift

Instruction code MSB ↔ LSB mmmm: Register number (Rm, FRm)
nnnn: Register number (Rn, FRn)
0000: R0, FR0
0001: R1, FR1
 :
1111: R15, FR15
mmm: Register number (DRm, XDm, Rm_BANK)
nnn: Register number (DRn, XDn, Rn_BANK)
000: DR0, XD0, R0_BANK
001: DR2, XD2, R1_BANK
 :
111: DR14, XD14, R7_BANK
mm: Register number (FVm)
nn: Register number (FVn)
00: FV0
01: FV4
10: FV8
11: FV12
iiii: Immediate data
dddd: Displacement

Privileged mode "Privileged" means the instruction can only be executed
in privileged mode.

Rev. 1.50, 10/04, page 30 of 448

Item Format Description

T bit Value of T bit after
instruction execution

—: No change

New  "New" means the instruction which is newly added in this
LSI.

Note: Scaling (×1, ×2, ×4, or ×8) is executed according to the size of the instruction operand.

Rev. 1.50, 10/04, page 31 of 448

Table 3.4 Fixed-Point Transfer Instructions

Instruction Operation Instruction Code Privileged T Bit New

MOV #imm,Rn imm → sign extension → Rn 1110nnnniiiiiiii — — —

MOV.W @(disp*,PC), Rn (disp × 2 + PC + 4) → sign
extension → Rn

1001nnnndddddddd — — —

MOV.L @(disp*,PC), Rn (disp × 4 + PC & H'FFFF FFFC
+ 4) → Rn

1101nnnndddddddd — — —

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 — — —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 — — —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 — — —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 — — —

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 — — —

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 — — —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 — — —

MOV.B Rm,@-Rn Rn-1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 — — —

MOV.W Rm,@-Rn Rn-2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 — — —

MOV.L Rm,@-Rn Rn-4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 — — —

MOV.B @Rm+,Rn (Rm)→ sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 — — —

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 — — —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 — — —

MOV.B R0,@(disp*,Rn) R0 → (disp + Rn) 10000000nnnndddd — — —

MOV.W R0,@(disp*,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd — — —

MOV.L Rm,@(disp*,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd — — —

MOV.B @(disp*,Rm),R0 (disp + Rm) → sign extension
→ R0

10000100mmmmdddd — — —

MOV.W @(disp*,Rm),R0 (disp × 2 + Rm) → sign
extension → R0

10000101mmmmdddd — — —

MOV.L @(disp*,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd — — —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 — — —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 — — —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 — — —

MOV.B @(R0,Rm),Rn (R0 + Rm) →
sign extension → Rn

0000nnnnmmmm1100 — — —

MOV.W @(R0,Rm),Rn (R0 + Rm) →
sign extension → Rn

0000nnnnmmmm1101 — — —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 — — —

Rev. 1.50, 10/04, page 32 of 448

Instruction Operation Instruction Code Privileged T Bit New

MOV.B R0,@(disp*,GBR) R0 → (disp + GBR) 11000000dddddddd — — —

MOV.W R0,@(disp*,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd — — —

MOV.L R0,@(disp*,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd — — —

MOV.B @(disp*,GBR),R0 (disp + GBR) →
sign extension → R0

11000100dddddddd — — —

MOV.W @(disp*,GBR),R0 (disp × 2 + GBR) →
sign extension → R0

11000101dddddddd — — —

MOV.L @(disp*,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd — — —

MOVA @(disp*,PC),R0 disp × 4 +
PC & H'FFFF FFFC
+ 4 → R0

11000111dddddddd — — —

MOVCO.L R0,@Rn LDST → T
If (T == 1) R0 → (Rn)
0 → LDST

0000nnnn01110011  LDST New

MOVLI.L @Rm,R0 1 → LDST
(Rm) → R0
When interrupt/exception
occurred 0 → LDST

0000mmmm01100011   New

MOVUA.L @Rm,R0 (Rm) → R0
Load non-boundary
alignment data

0100mmmm10101001   New

MOVUA.L @Rm+,R0 (Rm) → R0, Rm + 4 →
Rm
Load non-boundary
alignment data

0100mmmm11101001   New

MOVT Rn T → Rn 0000nnnn00101001 — — —

SWAP.B Rm,Rn Rm → swap lower 2 bytes
→ Rn

0110nnnnmmmm1000 — — —

SWAP.W Rm,Rn Rm → swap upper/lower
words → Rn

0110nnnnmmmm1001 — — —

XTRCT Rm,Rn Rm:Rn middle 32 bits →
Rn

0010nnnnmmmm1101 — — —

Note: * The assembler of Renesas uses the value after scaling (×1, ×2, or ×4) as the
displacement (disp).

Rev. 1.50, 10/04, page 33 of 448

Table 3.5 Arithmetic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit New

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 — — —

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii — — —

ADDC Rm,Rn Rn + Rm + T → Rn,
carry → T

0011nnnnmmmm1110 — Carry —

ADDV Rm,Rn Rn + Rm → Rn,
overflow → T

0011nnnnmmmm1111 — Overflow —

CMP/EQ #imm,R0 When R0 = imm, 1 → T
Otherwise, 0 → T

10001000iiiiiiii — Comparison
result

—

CMP/EQ Rm,Rn When Rn = Rm, 1 → T
Otherwise, 0 → T

0011nnnnmmmm0000 — Comparison
result

—

CMP/HS Rm,Rn When Rn ≥ Rm (unsigned),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0010 — Comparison
result

—

CMP/GE Rm,Rn When Rn ≥ Rm (signed),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0011 — Comparison
result

—

CMP/HI Rm,Rn When Rn > Rm (unsigned),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0110 — Comparison
result

—

CMP/GT Rm,Rn When Rn > Rm (signed),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0111 — Comparison
result

—

CMP/PZ Rn When Rn ≥ 0, 1 → T
Otherwise, 0 → T

0100nnnn00010001 — Comparison
result

—

CMP/PL Rn When Rn > 0, 1 → T
Otherwise, 0 → T

0100nnnn00010101 — Comparison
result

—

CMP/STR Rm,Rn When any bytes are equal,
1 → T
Otherwise, 0 → T

0010nnnnmmmm1100 — Comparison
result

—

DIV1 Rm,Rn 1-step division (Rn ÷ Rm) 0011nnnnmmmm0100 — Calculation
result

—

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M, M^Q → T

0010nnnnmmmm0111 — Calculation
result

—

DIV0U 0 → M/Q/T 0000000000011001 — 0 —

DMULS.L Rm,Rn Signed,
Rn × Rm → MAC,
32 × 32 → 64 bits

0011nnnnmmmm1101 — — —

DMULU.L Rm,Rn Unsigned,
Rn × Rm → MAC,
32 × 32 → 64 bits

0011nnnnmmmm0101 — — —

Rev. 1.50, 10/04, page 34 of 448

Instruction Operation Instruction Code Privileged T Bit New

DT Rn Rn – 1 → Rn;
when Rn = 0, 1 → T
When Rn ≠ 0, 0 → T

0100nnnn00010000 — Comparison
result

—

EXTS.B Rm,Rn Rm sign-extended from
byte → Rn

0110nnnnmmmm1110 — — —

EXTS.W Rm,Rn Rm sign-extended from
word → Rn

0110nnnnmmmm1111 — — —

EXTU.B Rm,Rn Rm zero-extended from
byte → Rn

0110nnnnmmmm1100 — — —

EXTU.W Rm,Rn Rm zero-extended from
word → Rn

0110nnnnmmmm1101 — — —

MAC.L @Rm+,@Rn+ Signed,
(Rn) × (Rm) + MAC → MAC
Rn + 4 → Rn, Rm + 4 → Rm
32 × 32 + 64 → 64 bits

0000nnnnmmmm1111 — — —

MAC.W @Rm+,@Rn+ Signed,
(Rn) × (Rm) + MAC → MAC
Rn + 2 → Rn,
Rm + 2 → Rm
16 × 16 + 64 → 64 bits

0100nnnnmmmm1111 — — —

MUL.L Rm,Rn Rn × Rm → MACL
32 × 32 → 32 bits

0000nnnnmmmm0111 — — —

MULS.W Rm,Rn Signed,
Rn × Rm → MACL
16 × 16 → 32 bits

0010nnnnmmmm1111 — — —

MULU.W Rm,Rn Unsigned,
Rn × Rm → MACL
16 × 16 → 32 bits

0010nnnnmmmm1110 — — —

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 — — —

NEGC Rm,Rn 0 – Rm – T → Rn,
borrow → T

0110nnnnmmmm1010 — Borrow —

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 — — —

SUBC Rm,Rn Rn – Rm – T → Rn,
borrow → T

0011nnnnmmmm1010 — Borrow —

SUBV Rm,Rn Rn – Rm → Rn,
underflow → T

0011nnnnmmmm1011 — Underflow —

Rev. 1.50, 10/04, page 35 of 448

Table 3.6 Logic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit New

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 — — —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii — — —

AND.B #imm, @(R0,GBR) (R0 + GBR) & imm
→ (R0 + GBR)

11001101iiiiiiii — — —

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 — — —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 — — —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii — — —

OR.B #imm, @(R0,GBR) (R0 + GBR) | imm
→ (R0 + GBR)

11001111iiiiiiii — — —

TAS.B @Rn When (Rn) = 0, 1 → T
Otherwise, 0 → T
In both cases,
1 → MSB of (Rn)

0100nnnn00011011 — Test
result

—

TST Rm,Rn Rn & Rm;
when result = 0, 1 → T
Otherwise, 0 → T

0010nnnnmmmm1000 — Test
result

—

TST #imm,R0 R0 & imm;
when result = 0, 1 → T
Otherwise, 0 → T

11001000iiiiiiii — Test
result

—

TST.B #imm, @(R0,GBR) (R0 + GBR) & imm;
when result = 0, 1 → T
Otherwise, 0 → T

11001100iiiiiiii — Test
result

—

XOR Rm,Rn Rn ∧ Rm → Rn 0010nnnnmmmm1010 — — —

XOR #imm,R0 R0 ∧ imm → R0 11001010iiiiiiii — — —

XOR.B #imm, @(R0,GBR) (R0 + GBR) ∧ imm →
(R0 + GBR)

11001110iiiiiiii — — —

Rev. 1.50, 10/04, page 36 of 448

Table 3.7 Shift Instructions

Instruction Operation Instruction Code Privileged T Bit New

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 — MSB —

ROTR Rn LSB → Rn → T 0100nnnn00000101 — LSB —

ROTCL Rn T ← Rn ← T 0100nnnn00100100 — MSB —

ROTCR Rn T → Rn → T 0100nnnn00100101 — LSB —

SHAD Rm,Rn When Rm ≥ 0, Rn << Rm → Rn
When Rm < 0, Rn >> Rm →
[MSB → Rn]

0100nnnnmmmm1100 — — —

SHAL Rn T ← Rn ← 0 0100nnnn00100000 — MSB —

SHAR Rn MSB → Rn → T 0100nnnn00100001 — LSB —

SHLD Rm,Rn When Rm ≥ 0, Rn << Rm → Rn
When Rm < 0, Rn >> Rm →
[0 → Rn]

0100nnnnmmmm1101 — — —

SHLL Rn T ← Rn ← 0 0100nnnn00000000 — MSB —

SHLR Rn 0 → Rn → T 0100nnnn00000001 — LSB —

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 — — —

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 — — —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 — — —

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 — — —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 — — —

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 — — —

Rev. 1.50, 10/04, page 37 of 448

Table 3.8 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit New

BF label When T = 0, disp × 2 + PC +
4 → PC
When T = 1, nop

10001011dddddddd — — —

BF/S label Delayed branch; when T = 0,
disp × 2 + PC + 4 → PC
When T = 1, nop

10001111dddddddd — — —

BT label When T = 1, disp × 2 + PC +
4 → PC
When T = 0, nop

10001001dddddddd — — —

BT/S label Delayed branch; when T = 1,
disp × 2 + PC + 4 → PC
When T = 0, nop

10001101dddddddd — — —

BRA label Delayed branch, disp × 2 +
PC + 4 → PC

1010dddddddddddd — — —

BRAF Rn Delayed branch, Rn + PC + 4 →
PC

0000nnnn00100011 — — —

BSR label Delayed branch, PC + 4 → PR,
disp × 2 + PC + 4 → PC

1011dddddddddddd — — —

BSRF Rn Delayed branch, PC + 4 → PR,
Rn + PC + 4 → PC

0000nnnn00000011 — — —

JMP @Rn Delayed branch, Rn → PC 0100nnnn00101011 — — —

JSR @Rn Delayed branch, PC + 4 → PR,
Rn → PC

0100nnnn00001011 — — —

RTS Delayed branch, PR → PC 0000000000001011 — — —

Table 3.9 System Control Instructions

Instruction Operation Instruction Code Privileged T Bit New

CLRMAC 0 → MACH, MACL 0000000000101000 — — —

CLRS 0 → S 0000000001001000 — — —

CLRT 0 → T 0000000000001000 — 0 —

ICBI @Rn Invalidates instruction cache block
indicated by logical address

0000nnnn11100011   New

LDC Rm,SR Rm → SR 0100mmmm00001110 Privileged LSB —

LDC Rm,GBR Rm → GBR 0100mmmm00011110 — — —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 Privileged — —

LDC Rm,SGR Rm → SGR 0100mmmm00111010 Privileged — —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 Privileged — —

Rev. 1.50, 10/04, page 38 of 448

Instruction Operation Instruction Code Privileged T Bit New

LDC Rm,SPC Rm → SPC 0100mmmm01001110 Privileged — —

LDC Rm,DBR Rm → DBR 0100mmmm11111010 Privileged — —

LDC Rm,Rn_BANK Rm → Rn_BANK (n = 0 to 7) 0100mmmm1nnn1110 Privileged — —

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 Privileged LSB —

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 — — —

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 Privileged — —

LDC.L @Rm+,SGR (Rm) → SGR, Rm + 4 → Rm 0100mmmm00110110 Privileged — —

LDC.L @Rm+,SSR (Rm) → SSR, Rm + 4 → Rm 0100mmmm00110111 Privileged — —

LDC.L @Rm+,SPC (Rm) → SPC, Rm + 4 → Rm 0100mmmm01000111 Privileged — —

LDC.L @Rm+,DBR (Rm) → DBR, Rm + 4 → Rm 0100mmmm11110110 Privileged — —

LDC.L @Rm+,Rn_BANK (Rm) → Rn_BANK,
Rm + 4 → Rm

0100mmmm1nnn0111 Privileged — —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 — — —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 — — —

LDS Rm,PR Rm → PR 0100mmmm00101010 — — —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 — — —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 — — —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 — — —

LDTLB PTEH/PTEL → TLB 0000000000111000 Privileged — —

MOVCA.L R0,@Rn R0 → (Rn) (without fetching
cache block)

0000nnnn11000011 — — —

NOP No operation 0000000000001001 — — —

OCBI @Rn Invalidates operand cache
block

0000nnnn10010011 — — —

OCBP @Rn Writes back and invalidates
operand cache block

0000nnnn10100011 — — —

OCBWB @Rn Writes back operand cache
block

0000nnnn10110011 — — —

PREF @Rn (Rn) → operand cache 0000nnnn10000011 — — —

PREFI @Rn Reads 32-byte instruction
block into instruction cache

0000nnnn11010011   New

RTE Delayed branch, SSR/SPC →
SR/PC

0000000000101011 Privileged — —

SETS 1 → S 0000000001011000 — — —

SETT 1 → T 0000000000011000 — 1 —

SLEEP Sleep or standby 0000000000011011 Privileged — —

STC SR,Rn SR → Rn 0000nnnn00000010 Privileged — —

STC GBR,Rn GBR → Rn 0000nnnn00010010 — — —

Rev. 1.50, 10/04, page 39 of 448

Instruction Operation Instruction Code Privileged T Bit New

STC VBR,Rn VBR → Rn 0000nnnn00100010 Privileged — —

STC SSR,Rn SSR → Rn 0000nnnn00110010 Privileged — —

STC SPC,Rn SPC → Rn 0000nnnn01000010 Privileged — —

STC SGR,Rn SGR → Rn 0000nnnn00111010 Privileged — —

STC DBR,Rn DBR → Rn 0000nnnn11111010 Privileged — —

STC Rm_BANK,Rn Rm_BANK → Rn
(m = 0 to 7)

0000nnnn1mmm0010 Privileged — —

STC.L SR,@-Rn Rn – 4 → Rn, SR → (Rn) 0100nnnn00000011 Privileged — —

STC.L GBR,@-Rn Rn – 4 → Rn, GBR → (Rn) 0100nnnn00010011 — — —

STC.L VBR,@-Rn Rn – 4 → Rn, VBR → (Rn) 0100nnnn00100011 Privileged — —

STC.L SSR,@-Rn Rn – 4 → Rn, SSR → (Rn) 0100nnnn00110011 Privileged — —

STC.L SPC,@-Rn Rn – 4 → Rn, SPC → (Rn) 0100nnnn01000011 Privileged — —

STC.L SGR,@-Rn Rn – 4 → Rn, SGR → (Rn) 0100nnnn00110010 Privileged — —

STC.L DBR,@-Rn Rn – 4 → Rn, DBR → (Rn) 0100nnnn11110010 Privileged — —

STC.L Rm_BANK,@-Rn Rn – 4 → Rn,
Rm_BANK → (Rn)
(m = 0 to 7)

0100nnnn1mmm0011 Privileged — —

STS MACH,Rn MACH → Rn 0000nnnn00001010 — — —

STS MACL,Rn MACL → Rn 0000nnnn00011010 — — —

STS PR,Rn PR → Rn 0000nnnn00101010 — — —

STS.L MACH,@-Rn Rn – 4 → Rn, MACH → (Rn) 0100nnnn00000010 — — —

STS.L MACL,@-Rn Rn – 4 → Rn, MACL → (Rn) 0100nnnn00010010 — — —

STS.L PR,@-Rn Rn – 4 → Rn, PR → (Rn) 0100nnnn00100010 — — —

SYNCO Prevents the next instruction
from being issued until
instructions issued before
this instruction have been
completed.

0000000010101011   New

TRAPA #imm PC + 2 → SPC,
SR → SSR, #imm << 2 → TRA,
H'160 → EXPEVT,
VBR + H'0100 → PC

11000011iiiiiiii — — —

Rev. 1.50, 10/04, page 40 of 448

Table 3.10 Floating-Point Single-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit New

FLDI0 FRn H'0000 0000 → FRn 1111nnnn10001101 — — —

FLDI1 FRn H'3F80 0000 → FRn 1111nnnn10011101 — — —

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 — — —

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 — — —

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 — — —

FMOV.S @Rm+,FRn (Rm) → FRn, Rm + 4 → Rm 1111nnnnmmmm1001 — — —

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 — — —

FMOV.S FRm,@-Rn Rn-4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 — — —

FMOV.S FRm,@(R0,Rn) FRm → (R0 + Rn) 1111nnnnmmmm0111 — — —

FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 — — —

FMOV @Rm,DRn (Rm) → DRn 1111nnn0mmmm1000 — — —

FMOV @(R0,Rm),DRn (R0 + Rm) → DRn 1111nnn0mmmm0110 — — —

FMOV @Rm+,DRn (Rm) → DRn, Rm + 8 → Rm 1111nnn0mmmm1001 — — —

FMOV DRm,@Rn DRm → (Rn) 1111nnnnmmm01010 — — —

FMOV DRm,@-Rn Rn-8 → Rn, DRm → (Rn) 1111nnnnmmm01011 — — —

FMOV DRm,@(R0,Rn) DRm → (R0 + Rn) 1111nnnnmmm00111 — — —

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 — — —

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 — — —

FABS FRn FRn & H'7FFF FFFF → FRn 1111nnnn01011101 — — —

FADD FRm,FRn FRn + FRm → FRn 1111nnnnmmmm0000 — — —

FCMP/EQ FRm,FRn When FRn = FRm, 1 → T
Otherwise, 0 → T

1111nnnnmmmm0100 — Comparis
on result

—

FCMP/GT FRm,FRn When FRn > FRm, 1 → T
Otherwise, 0 → T

1111nnnnmmmm0101 — Comparis
on result

—

FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 — — —

FLOAT FPUL,FRn (float) FPUL → FRn 1111nnnn00101101 — — —

FMAC FR0,FRm,FRn FR0*FRm + FRn → FRn 1111nnnnmmmm1110 — — —

FMUL FRm,FRn FRn*FRm → FRn 1111nnnnmmmm0010 — — —

FNEG FRn FRn ∧ H'8000 0000 → FRn 1111nnnn01001101 — — —

FSQRT FRn √FRn → FRn 1111nnnn01101101 — — —

FSUB FRm,FRn FRn – FRm → FRn 1111nnnnmmmm0001 — — —

FTRC FRm,FPUL (long) FRm → FPUL 1111mmmm00111101 — — —

Rev. 1.50, 10/04, page 41 of 448

Table 3.11 Floating-Point Double-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit New

FABS DRn DRn & H'7FFF FFFF FFFF
FFFF → DRn

1111nnn001011101 — — —

FADD DRm,DRn DRn + DRm → DRn 1111nnn0mmm00000 — — —

FCMP/EQ DRm,DRn When DRn = DRm, 1 → T
Otherwise, 0 → T

1111nnn0mmm00100 — Comparison
result

—

FCMP/GT DRm,DRn When DRn > DRm, 1 → T
Otherwise, 0 → T

1111nnn0mmm00101 — Comparison
result

—

FDIV DRm,DRn DRn /DRm → DRn 1111nnn0mmm00011 — — —

FCNVDS DRm,FPUL double_to_ float(DRm) →
FPUL

1111mmm010111101 — — —

FCNVSD FPUL,DRn float_to_ double (FPUL) →
DRn

1111nnn010101101 — — —

FLOAT FPUL,DRn (float)FPUL → DRn 1111nnn000101101 — — —

FMUL DRm,DRn DRn *DRm → DRn 1111nnn0mmm00010 — — —

FNEG DRn DRn ^ H'8000 0000 0000
0000 → DRn

1111nnn001001101 — — —

FSQRT DRn √DRn → DRn 1111nnn001101101 — — —

FSUB DRm,DRn DRn – DRm → DRn 1111nnn0mmm00001 — — —

FTRC DRm,FPUL (long) DRm → FPUL 1111mmm000111101 — — —

Table 3.12 Floating-Point Control Instructions

Instruction Operation Instruction Code Privileged T Bit New

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 — — —

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 — — —

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm+4 → Rm 0100mmmm01100110 — — —

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm+4 → Rm 0100mmmm01010110 — — —

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 — — —

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 — — —

STS.L FPSCR,@-Rn Rn – 4 → Rn, FPSCR → (Rn) 0100nnnn01100010 — — —

STS.L FPUL,@-Rn Rn – 4 → Rn, FPUL → (Rn) 0100nnnn01010010 — — —

Rev. 1.50, 10/04, page 42 of 448

Table 3.13 Floating-Point Graphics Acceleration Instructions

Instruction Operation Instruction Code Privileged T Bit New

FMOV DRm,XDn DRm → XDn 1111nnn1mmm01100 — — —

FMOV XDm,DRn XDm → DRn 1111nnn0mmm11100 — — —

FMOV XDm,XDn XDm → XDn 1111nnn1mmm11100 — — —

FMOV @Rm,XDn (Rm) → XDn 1111nnn1mmmm1000 — — —

FMOV @Rm+,XDn (Rm) → XDn, Rm + 8 → Rm 1111nnn1mmmm1001 — — —

FMOV @(R0,Rm),XDn (R0 + Rm) → XDn 1111nnn1mmmm0110 — — —

FMOV XDm,@Rn XDm → (Rn) 1111nnnnmmm11010 — — —

FMOV XDm,@-Rn Rn – 8 → Rn, XDm → (Rn) 1111nnnnmmm11011 — — —

FMOV XDm,@(R0,Rn) XDm → (R0 + Rn) 1111nnnnmmm10111 — — —

FIPR FVm,FVn inner_product (FVm, FVn) →
FR[n+3]

1111nnmm11101101 — — —

FTRV XMTRX,FVn transform_vector (XMTRX,
FVn) → FVn

1111nn0111111101 — — —

FRCHG ~FPSCR.FR → FPSCR.FR 1111101111111101 — — —

FSCHG ~FPSCR.SZ → FPSCR.SZ 1111001111111101 — — —

FPCHG ~FPSCR.PR → FPSCR.PR 1111011111111101   New

FSRRA FRn 1/sqrt(FRn) → FRn 1111nnnn01111101   New

FSCA FPUL,DRn sin(FPUL) → FRn
cos(FPUL) → FR[n + 1]

1111nnn011111101   New

Note: * sqrt(FRn) is the square root of FRn.

 Rev. 1.50, 10/04, page 43 of 448

Section 4 Pipelining

The SH-4A is a 2-ILP (instruction-level-parallelism) superscalar pipelining microprocessor.
Instruction execution is pipelined, and two instructions can be executed in parallel.

4.1 Pipelines

Figure 4.1 shows the basic pipelines. Normally, a pipeline consists of seven stages: instruction
fetch (I1/I2), decode and register read (ID), execution (E1/E2/E3), and write-back (WB). An
instruction is executed as a combination of basic pipelines.

1. General Pipeline

-Instruction fetch -Instruction decode
-Issue
-Register read

-Write-back-Operation-Forwarding

-Address calculation

I1 I2 ID E1 E2 E3 WB

2. General Load/Store Pipeline

 3. Special Pipeline

 4. Special Load/Store Pipeline

 5. Floating-Point Pipeline

 6. Floating-Point Extended Pipeline

-Instruction fetch -Instruction decode
-Issue

-Operation
-Write-back

-Operation -Operation-Register read
-Forwarding

I1 I2 ID FS1 FS2 FS4FS3 FS

-Operation

-Instruction fetch -Instruction
 decode
-Issue

-Register read
-Forwarding

-Operation -Operation -Operation -Operation -Operation -Operation
-Write-back

I1 I2 ID FE1 FE2 FE3 FE4 FE5 FE6 FS

-Instruction fetch -Instruction decode
-Issue
-Register read

-Write-back-Memory data access

I1 I2 ID E1 E2 E3 WB

-Forwarding-Instruction fetch -Instruction decode
-Issue
-Register read

-Write-back-Operation

I1 I2 ID E1 E2 E3 WB

-Instruction fetch -Instruction decode
-Issue
-Register read

I1 I2 ID E1 E2 E3 WB

Figure 4.1 Basic Pipelines

Rev. 1.50, 10/04, page 44 of 448

Figure 4.2 shows the instruction execution patterns. Representations in figure 4.2 and their
descriptions are listed in table 4.1.

Table 4.1 Representations of Instruction Execution Patterns

Representation Description

E1 E2 E3 WB CPU EX pipe is occupied

S1 S2 S3 WB CPU LS pipe is occupied (with memory access)

s1 s2 s3 WB CPU LS pipe is occupied (without memory access)

E1/S1 Either CPU EX pipe or CPU LS pipe is occupied

E1S1 E1s1, Both CPU EX pipe and CPU LS pipe are occupied

M2 M3 MS CPU MULT operation unit is occupied

FE1 FE2 FE3 FE4 FE5 FE6 FS FPU-EX pipe is occupied

FS1 FS2 FS3 FS4 FS FPU-LS pipe is occupied

ID ID stage is locked

 Both CPU and FPU pipes are occupied

Rev. 1.50, 10/04, page 45 of 448

(1-1) BF, BF/S, BT, BT/S, BRA, BSR:1 issue cycle + 0 to 2 branch cycles

I1 I2

(I1) (ID)

ID E1/S1 E2/s2 E3/s3 WB

(I2)

(1-2) JSR, JMP, BRAF, BSRF: 1 issue cycle + 3 branch cycles

I1 I2 ID E1/S1 E2/S2 E3/S3 WB

(Branch destination instruction)

(1-3) RTS: 1 issue cycle + 0 to 3 branch cycles

I1 I2 ID E1/S1 E2/S2 E3/S3 WB

(1-4) RTE: 4 issue cycles + 1 branch cycles

It is 14 cycles to the ID stage
in the first instruction of exception handler

(1-5) TRAPA: 8 issue cycles + 5 cycles + 1 branch cycle

It is not constant cycles to
the clock halted period.

(1-6) SLEEP: 2 issue cycles

(I1) (ID)(I2) (Branch destination instruction)

(Branch destination instruction)

(I1) (ID)(I2) (Branch destination instruction)

In branch instructions that are categorized
as (1-1), the number of branch cycles
may be reduced by prefetching.

Note:

Note:

I1 I2 ID s1 s2 s3 WB
E2s2ID E3s3

ID
WB

ID

(I1) (ID)(I2)

E1s1

I1 I2 ID S1 S2 S3 WB
E1s1 E3s3E2s2

E1s1
E1s1

E1s1
E1s1

E2s2
E2s2

E2s2
E2s2

E3s3
E3s3

E3s3
E3s3

WB
WB

WB
WB

E2s2 E3s3 WB
E2s2 E3s3 WB

E1s1
E1s1

(I1) (ID)(I2)

ID

ID
ID

ID
ID

ID
ID

WB

I1 I2 ID S1 S2 S3 WB
E1s1 E2s2 E3s3 WBID

Note:

Note: The number of branch cycles may be
0 by prefetching instruction.

Figure 4.2 Instruction Execution Patterns (1)

Rev. 1.50, 10/04, page 46 of 448

(2-1) 1-step operation (EX type): 1 issue cycle

I1 I2 ID E1 E2 E3 WB

I1 I2 ID s1 s2 s3 WB

I1 I2 ID WB

I1 I2 ID E1/S1 E2/s2 E3/s3

E1/s1 E2/s2 E3/S3

WB

(2-2) 1-step operation (LS type): 1 issue cycle

(2-3) 1-step operation (MT type): 1 issue cycle

(2-4) MOV (MT type): 1 issue cycle

EXT[SU].[BW], MOVT, SWAP, XTRCT, ADD*, CMP*, DIV*, DT, NEG*, SUB*, AND, AND#,
NOT, OR, OR#, TST, TST#, XOR, XOR#, ROT*, SHA*, SHL*, CLRS, CLRT, SETS, SETT

MOV#, NOP

MOVA

MOV

Note: Except for AND#, OR#, TST#, and XOR# instructions using GBR relative
 addressing mode

Figure 4.2 Instruction Execution Patterns (2)

Rev. 1.50, 10/04, page 47 of 448

(3-1) Load/store: 1 issue cycle

I1 I2 ID S1 S2 S3 WB

I1 I2 ID S1 S2 S3 WB

(3-2) AND.B, OR.B, XOR.B, TST.B: 3 issue cycles

I1 I2 ID S1 S2 S3 WB

(3-3) TAS.B: 4 issue cycles

(3-4) PREF, OCBI, OCBP, OCBWB, MOVCA.L, SYNCO: 1 issue cycle

MOV.[BWL], MOV.[BWL] @(d,GBR)

I1 I2 ID S1 S2 S3 WB

E2s2 E3s3E1s1

(3-5) LDTLB: 1 issue cycle

I1 I2 ID WB

(3-6) ICBI: 8 issue cycles + 5 cycles + 3 branch cycle

(3-7) PREFI: 5 issue cycles + 5 cycles + 3 branch cycle

(3-8) MOVLI.L: 1 issue cycle

I1 I2 ID S1 S2 S3 WB

(3-9) MOVCO.L: 1 issue cycle

I1 I2 ID S1 S2 S3 WB

(3-10) MOVUA.L: 2 issue cycles

I1 I2 ID S1 S2 S3 WB
S1 S2 S3 WB

 (Branch to the next instruction of ICBI.)

E2S2 E3S3 WBE1S1ID
ID

E2S2 E3S3 WBE1S1

E2S2 E3S3 WBE1S1

ID
ID

ID

I1 I2 ID s1 s2 s3 WB

E1s1
E1s1

E1s1

E2s2
E2s2

E2s2

E3s3
E3s3

E3s3

WB
WB

WB

(I1) (ID)(I2)

ID

ID
ID

ID

ID
ID

ID

5 cycles (min.)

I1 I2 ID s1 s2 s3 WB
E1s1 E2s2 E3s3 WBID

E1s1
E1s1

E1s1

E2s2
E2s2

E2s2

E3s3
E3s3

E3s3

WB
WB

WB

(I1) (ID)(I2)

ID
ID

ID

 (Branch to the next instruction of PREFI.)

5 cycles (min.)

Figure 4.2 Instruction Execution Patterns (3)

Rev. 1.50, 10/04, page 48 of 448

(4-1) LDC to Rp_BANK/SSR/SPC/VBR: 1 issue cycle

I1 I2 ID s1 s2 s3 WB

(4-2) LDC to DBR/SGR: 4 issue cycles

I1 I2 ID s1 s2 s3 WB

(4-3) LDC to GBR: 1 issue cycle

(4-4) LDC to SR: 4 issue cycles + 3 branch cycles

ID
ID

ID

I1 I2 ID s1 s2 s3 WB

I1 I2 ID S1 S2 S3 WB

(4-5) LDC.L to Rp_BANK/SSR/SPC/VBR: 1 issue cycle

I1 I2 ID E1s1 E2s2 E3s3 WB
ID

ID
ID

(4-6) LDC.L to DBR/SGR: 4 issue cycles

(4-7) LDC.L to GBR: 1 issue cycle

I1 I2 ID S1 S2 S3 WB
ID

ID
ID

I1 I2 ID E1S1 E2S2 E3S3 WB
ID

ID
ID

ID
ID

I1 I2 ID S1 S2 S3 WB

(4-8) LDC.L to SR: 6 issue cycles + 3 branch cycles

(I1) (ID)(I2) (Branch to the
next instruction.)

(Branch to the next instruction.)

(I1) (ID)(I2)

Figure 4.2 Instruction Execution Patterns (4)

Rev. 1.50, 10/04, page 49 of 448

(4-9) STC from DBR/GBR/Rp_BANK/SSR/SPC/VBR/SGR: 1 issue cycle

I1 I2 ID s1 s2 s3 WB

(4-10) STC from SR: 1 issue cycle

(4-11) STC.L from DBR/GBR/Rp_BANK/SSR/SPC/VBR/SGR: 1 issue cycle

I1 I2 ID WB

I1 I2 ID S1 S2 S3

E1s1 E2s2 E3s3

WB

(4-12) STC.L from SR: 1 issue cycle

(4-13) LDS to PR: 1 issue cycle

I1 I2 ID WB

I1 I2 ID S1 S2 S3

E1S1 E2S2 E3S3

WB

I1 I2 ID s1 s2 s3 WB

(4-14) LDS.L to PR: 1 issue cycle

I1 I2 ID s1 s2 s3 WB

(4-15) STS from PR: 1 issue cycle

I1 I2 ID S1 S2 S3 WB

(4-16) STS.L from PR: 1 issue cycle

(I1) (I2) (ID) (??1) (??2) (??3) (WB)

(4-17) BSRF, BSR, JSR delay slot instructions (PR set): 0 issue cycle

 The value of PR is changed in the E3 stage of delay slot instruction.
 When the STS and STS.L instructions from PR are used as delay slot instructions,
 changed PR value is used.

Notes:

Figure 4.2 Instruction Execution Patterns (5)

Rev. 1.50, 10/04, page 50 of 448

(5-1) LDS to MACH/L: 1 issue cycle

I1 I2 ID s1 s2 s3 WB
MS

(5-2) LDS.L to MACH/L: 1 issue cycle

(5-3) STS from MACH/L: 1 issue cycle

(5-4) STS.L from MACH/L: 1 issue cycle

I1 I2 ID E1 M2 M3

E1 M2 M3

MS

E1 M2 M3 MS

M2 M3 MS

(5-5) MULS.W, MULU.W: 1 issue cycle

(5-6) DMULS.L, DMULU.L, MUL.L: 1 issue cycle

(5-7) CLRMAC: 1 issue cycle

I1 I2 ID

I1 I2 ID S1 S2 S3 WB
S1 S2 S3 WB

I1 I2 ID

(5-8) MAC.W: 2 issue cycle

(5-9) MAC.L: 2 issue cycle

I1 I2 ID s1 s2 s3 WB
MS

I1 I2 ID S1 S2 S3 WB
MS

I1 I2 ID S1 S2 S3 WB
MS

M2 M3 MS

M2 M3 MS
M2 M3

I1 I2 ID S1 S2 S3 WB
S1 S2 S3 WBID

ID

Figure 4.2 Instruction Execution Patterns (6)

Rev. 1.50, 10/04, page 51 of 448

(6-1) LDS to FPUL: 1 issue cycle

I1 I2 ID s1 s2 s3

s1 s2 s3 WB

s1 s2 s3 WB

FS1 FS2 FS3 FS4

FS1 FS2 FS3 FS4

FS

FS1 FS2 FS3 FS4

FS1 FS2 FS3 FS4

FS1 FS2 FS3 FS4

FS

FS1 FS2 FS3 FS4 FS

FS1 FS2 FS3 FS4

FS1 FS2 FS3 FS4

FS

FS1 FS2 FS3 FS4 FS

(6-2) STS from FPUL: 1 issue cycle

(6-3) LDS.L to FPUL: 1 issue cycle

(6-4) STS.L from FPUL: 1 issue cycle

(6-5) LDS to FPSCR: 1 issue cycle

(6-6) STS from FPSCR: 1 issue cycle

(6-7) LDS.L to FPSCR: 1 issue cycle

(6-8) STS.L from FPSCR: 1 issue cycle

(6-9) FPU load/store instruction FMOV: 1 issue cycle

I1 I2 ID

I1 I2 ID S1 S2 S3 WB

S1 S2 S3

S1 S2 S3

WB

I1 I2 ID s1 s2 s3

I1 I2 ID WB

S1 S2 S3 WB

FS3

S1 S2 S3 WB

FS1 FS2 FS3 FS4 FS
s1 s2 s3 WB

I1 I2 ID

(6-10) FLDS: 1 issue cycle

I1 I2 ID

I1 I2 ID

I1 I2 ID

(6-11) FSTS: 1 issue cycle

I1 I2 ID

I1 I2 ID

FS1 FS2 FS4 FS
s1 s2 s3

Figure 4.2 Instruction Execution Patterns (7)

Rev. 1.50, 10/04, page 52 of 448

(6-12) Single-precision FABS, FNEG/double-precision FABS, FNEG: 1 issue cycle

I1 I2 ID s1 s2 s3
FS1 FS2 FS3 FS4 FS

(6-13) FLDI0, FLDI1: 1 issue cycle

(6-14) Single-precision floating-point computation: 1 issue cycle

(6-15) Single-precision FDIV/FSQRT: 1 issue cycle

(6-16) Double-precision floating-point computation: 1 issue cycle

(6-17) Double-precision floating-point computation: 1 issue cycle

(6-18) Double-precision FDIV/FSQRT: 1 issue cycle

I1 I2 ID s1 s2 s3
FS1 FS2 FS3 FS4

I1 I2 ID FE1 FE2 FE3 FE4 FE5 FE6 FS

FEDS (Divider occupied cycle)

FS

FCMP/EQ, FCMP/GT, FADD, FLOAT, FMAC, FMUL, FSUB, FTRC, FRCHG, FSCHG, FPCHG

FCMP/EQ, FCMP/GT, FADD, FLOAT, FSUB, FTRC, FCNVSD, FCNVDS

FMUL

FEDS (Divider occupied cycle)

I1 I2 ID FE1 FE2 FE3 FE4 FE5 FE6 FS

I1 I2 ID FE1 FE2 FE3 FE4 FE5 FE6 FS

FE3 FE4 FE5 FE6 FS

FE1 FE2 FE3 FE4 FE5 FE6 FS
FE1 FE2 FE3 FE4 FE5 FE6 FS

FE1 FE2 FE3 FE4 FE5 FE6 FS

I1 I2 ID

FE1 FE2 FE3 FE4 FE5 FE6

FE3 FE4 FE5 FE6 FS
FE3 FE4 FE5 FE6 FS

I1 I2 ID FS

Figure 4.2 Instruction Execution Patterns (8)

Rev. 1.50, 10/04, page 53 of 448

(6-19) FIPR: 1 issue cycle

(6-20) FTRV: 1 issue cycle

(6-21) FSRRA: 1 issue cycle

(6-22) FSCA: 1 issue cycle

Function computing unit occupied cycle

Function computing unit occupied cycle

I1 I2 ID FE1 FE2 FE3 FE4 FE5 FE6 FS

I1 I2 ID FE1 FE2
FE1 FE2

FE3 FE4 FE5 FE6 FS
FE3 FE4 FE5 FE6 FS

FE1 FE2 FE3 FE4 FE5 FE6 FS
FE1 FE2 FE3 FE4 FE5 FE6 FS

I1 I2 ID FE1 FE2 FE3
FEPL

FE4 FE5 FE6 FS

FEPL

I1 I2 ID FE1 FE2
FE1 FE2

FE3 FE4 FE5 FE6 FS
FE3 FE4 FE5 FE6 FS

FE1 FE2 FE3 FE4 FE5 FE6 FS

Figure 4.2 Instruction Execution Patterns (9)

Rev. 1.50, 10/04, page 54 of 448

4.2 Parallel-Executability

Instructions are categorized into six groups according to the internal function blocks used, as
shown in table 4.2. Table 4.3 shows the parallel-executability of pairs of instructions in terms of
groups. For example, ADD in the EX group and BRA in the BR group can be executed in parallel.

Table 4.2 Instruction Groups

Instruction
Group Instruction

EX ADD

ADDC

ADDV

AND #imm,R0

AND Rm,Rn

CLRMAC

CLRS

CLRT

CMP

DIV0S

DIV0U

DIV1

DMUS.L

DMULU.L

DT

EXTS

EXTU

MOVT

MUL.L

MULS.W

MULU.W

NEG

NEGC

NOT

OR #imm,R0

OR Rm,Rn

ROTCL

ROTCR

ROTL

ROTR

SETS

SETT

SHAD

SHAL

SHAR

SHLD

SHLL

SHLL2

SHLL8

SHLL16

SHLR

SHLR2

SHLR8

SHLR16

SUB

SUBC

SUBV

SWAP

TST #imm,R0

TST Rm,Rn

XOR #imm,R0

XOR Rm,Rn

XTRCT

MT MOV #imm,Rn MOV Rm,Rn NOP

BR BF

BF/S

BRA

BRAF

BSR

BSRF

BT

BT/S

JMP

JSR

RTS

LS FABS

FNEG

FLDI0

FLDI1

FLDS

FMOV @adr,FR

FMOV FR,@adr

FMOV FR,FR

FMOV.S @adr,FR

FMOV.S FR,@adr

FSTS

LDC Rm,CR1

LDC.L @Rm+,CR1

LDS Rm,SR1

LDS Rm,SR2

LDS.L @adr,SR2

LDS.L @Rm+,SR1

LDS.L @Rm+,SR2

MOV.[BWL] @adr,R

MOV.[BWL] R,@adr

MOVA

MOVCA.L

MOVUA

OCBI

OCBP

OCBWB

PREF

STC CR2,Rn

STC.L CR2,@-Rn

STS SR2,Rn

STS.L SR2,@-Rn

STS SR1,Rn

STS.L SR1,@-Rn

FE FADD

FSUB

FCMP (S/D)

FCNVDS

FCNVSD

FDIV

FIPR

FLOAT

FMAC

FMUL

FRCHG

FSCHG

FSQRT

FTRC

FTRV

FSCA

FSRRA

FPCHG

Rev. 1.50, 10/04, page 55 of 448

Instruction
Group Instruction

CO AND.B #imm,@(R0,GBR)

ICBI

LDC Rm,DBR

LDC Rm, SGR

LDC Rm,SR

LDC.L @Rm+,DBR

LDC.L @Rm+,SGR

LDC.L @Rm+,SR

LDTLB

MAC.L

MAC.W

MOVCO

MOVLI

OR.B #imm,@(R0,GBR)

PREFI

RTE

SLEEP

STC SR,Rn

STC.L SR,@-Rn

SYNCO

TAS.B

TRAPA

TST.B #imm,@(R0,GBR)

XOR.B #imm,@(R0,GBR)

[Legend]
R: Rm/Rn

@adr: Address

SR1: MACH/MACL/PR
SR2: FPUL/FPSCR

CR1: GBR/Rp_BANK/SPC/SSR/VBR

CR2: CR1/DBR/SGR
FR: FRm/FRn/DRm/DRn/XDm/XDn

The parallel execution of two instructions can be carried out under following conditions.

1. Both addr (preceding instruction) and addr+2 (following instruction) are specified within the
minimum page size (1 Kbyte).

2. The execution of these two instructions is supported in table 4.3, Combination of Preceding
and Following Instructions.

3. Data used by an instruction of addr does not conflict with data used by a previous instruction

4. Data used by an instruction of addr+2 does not conflict with data used by a previous
instruction

5. Both instructions are valid

Table 4.3 Combination of Preceding and Following Instructions

 Preceding Instruction (addr)

 EX MT BR LS FE CO

EX No Yes Yes Yes Yes

MT Yes Yes Yes Yes Yes

Following
Instruction
(addr+2)

BR Yes Yes No Yes Yes

 LS Yes Yes Yes No Yes

 FE Yes Yes Yes Yes No

 CO No

Rev. 1.50, 10/04, page 56 of 448

4.3 Issue Rates and Execution Cycles

Instruction execution cycles are summarized in table 4.4. Instruction Group in the table 4.4
corresponds to the category in the table 4.2. Penalty cycles due to a pipeline stall are not
considered in the issue rates and execution cycles in this section.

1. Issue Rate

I1 I2 ID S1 S2 S3 WB

Issue rate: 3

E2S2 E3S3 WB

Issue rates indicates the issue period between one instruction and next instruction.

E.g. AND.B instruction

E1S1

I1 I2 ID S1 S2 S3 WB

MS
S2 S3 WBS1

ID
ID

ID

(I1) (ID)(I2)Next instruction

M3M2
Issue rate: 2

(I1) (ID)(I2)

E.g. MAC.W instruction

Execution cycles indicates the cycle counts an instruction occupied the pipeline based on the next rules.

CPU instruction
E.g. AND.B instruction

I1 I2 ID S1 S2 S3 WB

Execution Cycles: 3

E2S2 E3S3 WBE1S1ID
ID

I1 I2 ID S1 S2 S3 WB

MS
S2 S3 WBS1ID

M3M2

E.g. MAC.W instruction Execution Cycles: 4

2. Execution Cycles

Next instruction

FPU instruction
E.g. FMUL instruction

Execution Cycles: 14E.g. FDIV instruction

FE1 FE2 FE3 FE4 FE5 FE6

FE1 FE2 FE3 FE4 FE5 FE6

FS
FE1 FE2 FE3 FE4 FE5 FE6 FS

FE1 FE2 FE3 FE4 FE5 FE6 FS

I1 I2 ID

I1 I2 ID
Divider occupation cycle

FS
FE3 FE4 FE5 FE6 FS

Execution Cycles: 3

Rev. 1.50, 10/04, page 57 of 448

Table 4.4 Issue Rates and Execution Cycles

Functional
Category No. Instruction

Instruction
Group Issue Rate

Execution
Cycles

Execution
Pattern

1 EXTS.B Rm,Rn EX 1 1 2-1

2 EXTS.W Rm,Rn EX 1 1 2-1

3 EXTU.B Rm,Rn EX 1 1 2-1

4 EXTU.W Rm,Rn EX 1 1 2-1

5 MOV Rm,Rn MT 1 1 2-4

6 MOV #imm,Rn MT 1 1 2-3

7 MOVA @(disp,PC),R0 LS 1 1 2-2

8 MOV.W @(disp,PC),Rn LS 1 1 3-1

9 MOV.L @(disp,PC),Rn LS 1 1 3-1

10 MOV.B @Rm,Rn LS 1 1 3-1

11 MOV.W @Rm,Rn LS 1 1 3-1

12 MOV.L @Rm,Rn LS 1 1 3-1

13 MOV.B @Rm+,Rn LS 1 1 3-1

14 MOV.W @Rm+,Rn LS 1 1 3-1

15 MOV.L @Rm+,Rn LS 1 1 3-1

16 MOV.B @(disp,Rm),R0 LS 1 1 3-1

17 MOV.W @(disp,Rm),R0 LS 1 1 3-1

18 MOV.L @(disp,Rm),Rn LS 1 1 3-1

19 MOV.B @(R0,Rm),Rn LS 1 1 3-1

20 MOV.W @(R0,Rm),Rn LS 1 1 3-1

21 MOV.L @(R0,Rm),Rn LS 1 1 3-1

22 MOV.B @(disp,GBR),R0 LS 1 1 3-1

23 MOV.W @(disp, GBR),R0 LS 1 1 3-1

24 MOV.L @(disp, GBR),R0 LS 1 1 3-1

25 MOV.B Rm,@Rn LS 1 1 3-1

26 MOV.W Rm,@Rn LS 1 1 3-1

27 MOV.L Rm,@Rn LS 1 1 3-1

28 MOV.B Rm,@-Rn LS 1 1 3-1

29 MOV.W Rm,@-Rn LS 1 1 3-1

30 MOV.L Rm,@-Rn LS 1 1 3-1

Data transfer
instructions

31 MOV.B R0,@(disp,Rn) LS 1 1 3-1

Rev. 1.50, 10/04, page 58 of 448

Functional
Category No. Instruction

Instruction
Group Issue Rate

Execution
Cycles

Execution
Pattern

32 MOV.W R0,@(disp,Rn) LS 1 1 3-1

33 MOV.L Rm,@(disp,Rn) LS 1 1 3-1

34 MOV.B Rm,@(R0,Rn) LS 1 1 3-1

35 MOV.W Rm,@(R0,Rn) LS 1 1 3-1

36 MOV.L Rm,@(R0,Rn) LS 1 1 3-1

37 MOV.B R0,@(disp,GBR) LS 1 1 3-1

38 MOV.W R0,@(disp,GBR) LS 1 1 3-1

39 MOV.L R0,@(disp,GBR) LS 1 1 3-1

40 MOVCA.L R0,@Rn LS 1 1 3-4

41 MOVCO.L R0,@Rn CO 1 1 3-9

42 MOVLI.L @Rm,R0 CO 1 1 3-8

43 MOVUA.L @Rm,R0 LS 2 2 3-10

44 MOVUA.L @Rm+,R0 LS 2 2 3-10

45 MOVT Rn EX 1 1 2-1

46 OCBI @Rn LS 1 1 3-4

47 OCBP @Rn LS 1 1 3-4

48 OCBWB @Rn LS 1 1 3-4

49 PREF @Rn LS 1 1 3-4

50 SWAP.B Rm,Rn EX 1 1 2-1

51 SWAP.W Rm,Rn EX 1 1 2-1

Data transfer
instructions

52 XTRCT Rm,Rn EX 1 1 2-1

53 ADD Rm,Rn EX 1 1 2-1

54 ADD #imm,Rn EX 1 1 2-1

55 ADDC Rm,Rn EX 1 1 2-1

56 ADDV Rm,Rn EX 1 1 2-1

57 CMP/EQ #imm,R0 EX 1 1 2-1

58 CMP/EQ Rm,Rn EX 1 1 2-1

59 CMP/GE Rm,Rn EX 1 1 2-1

60 CMP/GT Rm,Rn EX 1 1 2-1

61 CMP/HI Rm,Rn EX 1 1 2-1

Fixed-point
arithmetic
instructions

62 CMP/HS Rm,Rn EX 1 1 2-1

Rev. 1.50, 10/04, page 59 of 448

Functional
Category No. Instruction

Instruction
Group Issue Rate

Execution
Cycles

Execution
Pattern

63 CMP/PL Rn EX 1 1 2-1

64 CMP/PZ Rn EX 1 1 2-1

65 CMP/STR Rm,Rn EX 1 1 2-1

66 DIV0S Rm,Rn EX 1 1 2-1

67 DIV0U EX 1 1 2-1

68 DIV1 Rm,Rn EX 1 1 2-1

69 DMULS.L Rm,Rn EX 1 2 5-6

70 DMULU.L Rm,Rn EX 1 2 5-6

71 DT Rn EX 1 1 2-1

72 MAC.L @Rm+,@Rn+ CO 2 5 5-9

73 MAC.W @Rm+,@Rn+ CO 2 4 5-8

74 MUL.L Rm,Rn EX 1 2 5-6

75 MULS.W Rm,Rn EX 1 1 5-5

76 MULU.W Rm,Rn EX 1 1 5-5

77 NEG Rm,Rn EX 1 1 2-1

78 NEGC Rm,Rn EX 1 1 2-1

79 SUB Rm,Rn EX 1 1 2-1

80 SUBC Rm,Rn EX 1 1 2-1

Fixed-point
arithmetic
instructions

81 SUBV Rm,Rn EX 1 1 2-1

82 AND Rm,Rn EX 1 1 2-1

83 AND #imm,R0 EX 1 1 2-1

84 AND.B #imm,@(R0,GBR) CO 3 3 3-2

85 NOT Rm,Rn EX 1 1 2-1

86 OR Rm,Rn EX 1 1 2-1

87 OR #imm,R0 EX 1 1 2-1

88 OR.B #imm,@(R0,GBR) CO 3 3 3-2

89 TAS.B @Rn CO 4 4 3-3

90 TST Rm,Rn EX 1 1 2-1

91 TST #imm,R0 EX 1 1 2-1

92 TST.B #imm,@(R0,GBR) CO 3 3 3-2

93 XOR Rm,Rn EX 1 1 2-1

Logical
instructions

94 XOR #imm,R0 EX 1 1 2-1

Rev. 1.50, 10/04, page 60 of 448

Functional
Category No. Instruction

Instruction
Group Issue Rate

Execution
Cycles

Execution
Pattern

Logical
instructions

95 XOR.B #imm,@(R0,GBR) CO 3 3 3-2

96 ROTL Rn EX 1 1 2-1

97 ROTR Rn EX 1 1 2-1

98 ROTCL Rn EX 1 1 2-1

99 ROTCR Rn EX 1 1 2-1

100 SHAD Rm,Rn EX 1 1 2-1

101 SHAL Rn EX 1 1 2-1

102 SHAR Rn EX 1 1 2-1

103 SHLD Rm,Rn EX 1 1 2-1

104 SHLL Rn EX 1 1 2-1

105 SHLL2 Rn EX 1 1 2-1

106 SHLL8 Rn EX 1 1 2-1

107 SHLL16 Rn EX 1 1 2-1

108 SHLR Rn EX 1 1 2-1

109 SHLR2 Rn EX 1 1 2-1

110 SHLR8 Rn EX 1 1 2-1

Shift
instructions

111 SHLR16 Rn EX 1 1 2-1

112 BF disp BR 1+0 to 2 1 1-1

113 BF/S disp BR 1+0 to 2 1 1-1

114 BT disp BR 1+0 to 2 1 1-1

115 BT/S disp BR 1+0 to 2 1 1-1

116 BRA disp BR 1+0 to 2 1 1-1

117 BRAF Rm BR 1+3 1 1-2

118 BSR disp BR 1+0 to 2 1 1-1

119 BSRF Rm BR 1+3 1 1-2

120 JMP @Rn BR 1+3 1 1-2

121 JSR @Rn BR 1+3 1 1-2

Branch
instructions

122 RTS BR 1+0 to 3 1 1-3

123 NOP MT 1 1 2-3

124 CLRMAC EX 1 1 5-7

System
control
instructions

125 CLRS EX 1 1 2-1

Rev. 1.50, 10/04, page 61 of 448

Functional
Category No. Instruction

Instruction
Group Issue Rate

Execution
Cycles

Execution
Pattern

126 CLRT EX 1 1 2-1

127 ICBI @Rn CO 8+5+3 13 3-6

128 SETS EX 1 1 2-1

129 SETT EX 1 1 2-1

130 PREFI CO 5+5+3 10 3-7

131 SYNCO @Rn CO Undefined Undefined 3-4

132 TRAPA #imm CO 8+5+1 13 1-5

133 RTE CO 4+1 4 1-4

134 SLEEP CO Undefined Undefined 1-6

135 LDTLB CO 1 1 3-5

136 LDC Rm,DBR CO 4 4 4-2

137 LDC Rm,SGR CO 4 4 4-2

138 LDC Rm,GBR LS 1 1 4-3

139 LDC Rm,Rp_BANK LS 1 1 4-1

140 LDC Rm,SR CO 4+3 4 4-4

141 LDC Rm,SSR LS 1 1 4-1

142 LDC Rm,SPC LS 1 1 4-1

143 LDC Rm,VBR LS 1 1 4-1

144 LDC.L @Rm+,DBR CO 4 4 4-6

145 LDC.L @Rm+,SGR CO 4 4 4-6

146 LDC.L @Rm+,GBR LS 1 1 4-7

147 LDC.L @Rm+,Rp_BANK LS 1 1 4-5

148 LDC.L @Rm+,SR CO 6+3 4 4-8

149 LDC.L @Rm+,SSR LS 1 1 4-5

150 LDC.L @Rm+,SPC LS 1 1 4-5

151 LDC.L @Rm+,VBR LS 1 1 4-5

152 LDS Rm,MACH LS 1 1 5-1

153 LDS Rm,MACL LS 1 1 5-1

154 LDS Rm,PR LS 1 1 4-13

155 LDS.L @Rm+,MACH LS 1 1 5-2

156 LDS.L @Rm+,MACL LS 1 1 5-2

System
control
instructions

157 LDS.L @Rm+,PR LS 1 1 4-14

Rev. 1.50, 10/04, page 62 of 448

Functional
Category No. Instruction

Instruction
Group Issue Rate

Execution
Cycles

Execution
Pattern

158 STC DBR,Rn LS 1 1 4-9

159 STC SGR,Rn LS 1 1 4-9

160 STC GBR,Rn LS 1 1 4-9

161 STC Rp_BANK,Rn LS 1 1 4-9

162 STC SR,Rn CO 1 1 4-10

163 STC SSR,Rn LS 1 1 4-9

164 STC SPC,Rn LS 1 1 4-9

165 STC VBR,Rn LS 1 1 4-9

166 STC.L DBR,@-Rn LS 1 1 4-11

167 STC.L SGR,@-Rn LS 1 1 4-11

168 STC.L GBR,@-Rn LS 1 1 4-11

169 STC.L Rp_BANK,@-Rn LS 1 1 4-11

170 STC.L SR,@-Rn CO 1 1 4-12

171 STC.L SSR,@-Rn LS 1 1 4-11

172 STC.L SPC,@-Rn LS 1 1 4-11

173 STC.L VBR,@-Rn LS 1 1 4-11

174 STS MACH,Rn LS 1 1 5-3

175 STS MACL,Rn LS 1 1 5-3

176 STS PR,Rn LS 1 1 4-15

177 STS.L MACH,@-Rn LS 1 1 5-4

178 STS.L MACL,@-Rn LS 1 1 5-4

System
control
instructions

179 STS.L PR,@-Rn LS 1 1 4-16

180 FLDI0 FRn LS 1 1 6-13

181 FLDI1 FRn LS 1 1 6-13

182 FMOV FRm,FRn LS 1 1 6-9

183 FMOV.S @Rm,FRn LS 1 1 6-9

184 FMOV.S @Rm+,FRn LS 1 1 6-9

185 FMOV.S @(R0,Rm),FRn LS 1 1 6-9

186 FMOV.S FRm,@Rn LS 1 1 6-9

187 FMOV.S FRm,@-Rn LS 1 1 6-9

Single-
precision
floating-point
instructions

188 FMOV.S FRm,@(R0,Rn) LS 1 1 6-9

Rev. 1.50, 10/04, page 63 of 448

Functional
Category No. Instruction

Instruction
Group Issue Rate

Execution
Cycles

Execution
Pattern

189 FLDS FRm,FPUL LS 1 1 6-10

190 FSTS FPUL,FRn LS 1 1 6-11

191 FABS FRn LS 1 1 6-12

192 FADD FRm,FRn FE 1 1 6-14

193 FCMP/EQ FRm,FRn FE 1 1 6-14

194 FCMP/GT FRm,FRn FE 1 1 6-14

195 FDIV FRm,FRn FE 1 14 6-15

196 FLOAT FPUL,FRn FE 1 1 6-14

197 FMAC FR0,FRm,FRn FE 1 1 6-14

198 FMUL FRm,FRn FE 1 1 6-14

199 FNEG FRn LS 1 1 6-12

200 FSQRT FRn FE 1 30 6-15

201 FSUB FRm,FRn FE 1 1 6-14

202 FTRC FRm,FPUL FE 1 1 6-14

203 FMOV DRm,DRn LS 1 1 6-9

204 FMOV @Rm,DRn LS 1 1 6-9

205 FMOV @Rm+,DRn LS 1 1 6-9

206 FMOV @(R0,Rm),DRn LS 1 1 6-9

207 FMOV DRm,@Rn LS 1 1 6-9

208 FMOV DRm,@-Rn LS 1 1 6-9

Single-
precision
floating-point
instructions

209 FMOV DRm,@(R0,Rn) LS 1 1 6-9

210 FABS DRn LS 1 1 6-12

211 FADD DRm,DRn FE 1 1 6-16

212 FCMP/EQ DRm,DRn FE 1 1 6-16

213 FCMP/GT DRm,DRn FE 1 1 6-16

214 FCNVDS DRm,FPUL FE 1 1 6-16

215 FCNVSD FPUL,DRn FE 1 1 6-16

216 FDIV DRm,DRn FE 1 14 6-18

217 FLOAT FPUL,DRn FE 1 1 6-16

218 FMUL DRm,DRn FE 1 3 6-17

Double-
precision
floating-point
instructions

219 FNEG DRn LS 1 1 6-12

Rev. 1.50, 10/04, page 64 of 448

Functional
Category No. Instruction

Instruction
Group Issue Rate

Execution
Cycles

Execution
Pattern

220 FSQRT DRn FE 1 30 6-18

221 FSUB DRm,DRn FE 1 1 6-16

Double-
precision
floating-point
instructions 222 FTRC DRm,FPUL FE 1 1 6-16

223 LDS Rm,FPUL LS 1 1 6-1

224 LDS Rm,FPSCR LS 1 1 6-5

225 LDS.L @Rm+,FPUL LS 1 1 6-3

226 LDS.L @Rm+,FPSCR LS 1 1 6-7

227 STS FPUL,Rn LS 1 1 6-2

228 STS FPSCR,Rn LS 1 1 6-6

229 STS.L FPUL,@-Rn LS 1 1 6-4

FPU system
control
instructions

230 STS.L FPSCR,@-Rn LS 1 1 6-8

231 FMOV DRm,XDn LS 1 1 6-9

232 FMOV XDm,DRn LS 1 1 6-9

233 FMOV XDm,XDn LS 1 1 6-9

234 FMOV @Rm,XDn LS 1 1 6-9

235 FMOV @Rm+,XDn LS 1 1 6-9

236 FMOV @(R0,Rm),XDn LS 1 1 6-9

237 FMOV XDm,@Rn LS 1 1 6-9

238 FMOV XDm,@-Rn LS 1 1 6-9

239 FMOV XDm,@(R0,Rn) LS 1 1 6-9

240 FIPR FVm,FVn FE 1 1 6-19

241 FRCHG FE 1 1 6-14

242 FSCHG FE 1 1 6-14

243 FPCHG FE 1 1 6-14

244 FSRRA FRn FE 1 1 6-21

245 FSCA FPUL,DRn FE 1 3 6-22

Graphics
acceleration
instructions

246 FTRV XMTRX,FVn FE 1 4 6-20

 Rev. 1.50, 10/04, page 65 of 448

Section 5 Exception Handling

5.1 Summary of Exception Handling

Exception handling processing is handled by a special routine which is executed by a reset,
general exception handling, or interrupt. For example, if the executing instruction ends
abnormally, appropriate action must be taken in order to return to the original program sequence,
or report the abnormality before terminating the processing. The process of generating an
exception handling request in response to abnormal termination, and passing control to a user-
written exception handling routine, in order to support such functions, is given the generic name of
exception handling.

The exception handling in the SH-4A is of three kinds: resets, general exceptions, and interrupts.

5.2 Register Descriptions

Table 5.1 lists the configuration of registers related exception handling.

Table 5.1 Register Configuration

Register Name Abbr. R/W P4 Address*
Area 7
Address* Access Size

TRAPA exception register TRA R/W H'FF00 0020 H'1F00 0020 32

Exception event register EXPEVT R/W H'FF00 0024 H'1F00 0024 32

Interrupt event register INTEVT R/W H'FF00 0028 H'1F00 0028 32

Note: * P4 is the address when virtual address space P4 area is used. Area 7 is the address
when physical address space area 7 is accessed by using the TLB.

Table 5.2 States of Register in Each Operating Mode

Register Name Abbr.
Power-on
Reset Manual Reset Sleep Standby

TRAPA exception register TRA Undefined Undefined Retained Retained

Exception event register EXPEVT H'0000 0000 H'0000 0020 Retained Retained

Interrupt event register INTEVT Undefined Undefined Retained Retained

Rev. 1.50, 10/04, page 66 of 448

5.2.1 TRAPA Exception Register (TRA)

The TRAPA exception register (TRA) consists of 8-bit immediate data (imm) for the TRAPA
instruction. TRA is set automatically by hardware when a TRAPA instruction is executed. TRA
can also be modified by software.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

Initial value:

R R R R R R R R R R R R R R R R

R/W R/W R/W

TRACODE

R/W R/W R/W R R

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0
R R R R R R R/W R/W

Bit Bit Name
Initial
Value R/W Description

31 to 10  All 0 R Reserved

For details on reading/writing this bit, see General
Precautions on Handling of Product.

9 to 2 TRACODE Undefine
d

R/W TRAPA Code

8-bit immediate data of TRAPA instruction is set

1, 0  All 0 R Reserved

For details on reading/writing this bit, see General
Precautions on Handling of Product.

Rev. 1.50, 10/04, page 67 of 448

5.2.2 Exception Event Register (EXPEVT)

The exception event register (EXPEVT) consists of a 12-bit exception code. The exception code
set in EXPEVT is that for a reset or general exception event. The exception code is set
automatically by hardware when an exception occurs. EXPEVT can also be modified by software.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0/1 0 0 0 0 0

Initial value:

R R R R R R R R R R R R R R R R

R/W R/W

EXPCODE

R/W R/W R/W R/W R/W R/W

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0
R R R R R/W R/W R/W R/W

Bit Bit Name
Initial
Value R/W Description

31 to 12  All 0 R Reserved
For details on reading/writing this bit, see General
Precautions on Handling of Product.

11 to 0 EXPCODE H'000 or
H'020

R/W Exception Code

The exception code for a reset or general exception is
set. For details, see table 5.3.

Rev. 1.50, 10/04, page 68 of 448

5.2.3 Interrupt Event Register (INTEVT)

The interrupt event register (INTEVT) consists of a 14-bit exception code. The exception code is
set automatically by hardware when an exception occurs. INTEVT can also be modified by
software.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Initial value:

R R R R R R R R R R R R R R R R

R/W

INTCODE

R/W R/W R/W R/W R/W R/W R/W

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0
R R R/W R/W R/W R/W R/W R/W

Bit Bit Name
Initial
Value R/W Description

31 to 14  All 0 R Reserved

For details on reading/writing this bit, see General
Precautions on Handling of Product.

13 to 0 INTCODE Undefined R/W Exception Code

The exception code for an interrupt is set. For details,
see table 5.3.

Rev. 1.50, 10/04, page 69 of 448

5.3 Exception Handling Functions

5.3.1 Exception Handling Flow

In exception handling, the contents of the program counter (PC), status register (SR), and R15 are
saved in the saved program counter (SPC), saved status register (SSR), and saved general
register15 (SGR), and the CPU starts execution of the appropriate exception handling routine
according to the vector address. An exception handling routine is a program written by the user to
handle a specific exception. The exception handling routine is terminated and control returned to
the original program by executing a return-from-exception instruction (RTE). This instruction
restores the PC and SR contents and returns control to the normal processing routine at the point at
which the exception occurred. The SGR contents are not written back to R15 with an RTE
instruction.

The basic processing flow is as follows. For the meaning of the SR bits, see section 2,
Programming Model.

1. The PC, SR, and R15 contents are saved in SPC, SSR, and SGR, respectively.

2. The block bit (BL) in SR is set to 1.

3. The mode bit (MD) in SR is set to 1.

4. The register bank bit (RB) in SR is set to 1.

5. In a reset, the FPU disable bit (FD) in SR is cleared to 0.

6. The exception code is written to bits 11 to 0 of the exception event register (EXPEVT) or
interrupt event register (INTEVT).

7. The CPU branches to the determined exception handling vector address, and the exception
handling routine begins.

5.3.2 Exception Handling Vector Addresses

The reset vector address is fixed at H'A0000000. Exception and interrupt vector addresses are
determined by adding the offset for the specific event to the vector base address, which is set by
software in the vector base register (VBR). In the case of the TLB miss exception, for example,
the offset is H'00000400, so if H'9C080000 is set in VBR, the exception handling vector address
will be H'9C080400. If a further exception occurs at the exception handling vector address, a
duplicate exception will result, and recovery will be difficult; therefore, addresses that are not to
be converted (in P1 and P2 areas) should be specified for vector addresses.

Rev. 1.50, 10/04, page 70 of 448

5.4 Exception Types and Priorities

Table 5.3 shows the types of exceptions, with their relative priorities, vector addresses, and
exception/interrupt codes.

Table 5.3 Exceptions

Exception Transition
Direction*3

Exception
Category

Execution
Mode

Exception

Priority
Level*2

Priority
Order*2

Vector
Address Offset

Exception
Code*4

Power-on reset 1 1 H'A000 0000 — H'000

Manual reset 1 2 H'A000 0000 — H'020

H-UDI reset 1 1 H'A000 0000 — H'000

Instruction TLB multiple-hit
exception

1 3 H'A000 0000 — H'140

Reset Abort type

Data TLB multiple-hit exception 1 4 H'A000 0000 — H'140

User break before instruction
execution*

2 0 (VBR/DBR) H'100/— H'1E0

Instruction address error 2 1 (VBR) H'100 H'0E0

Instruction TLB miss exception 2 2 (VBR) H'400 H'040

Instruction TLB protection
violation exception

2 3 (VBR) H'100 H'0A0

General illegal instruction
exception

2 4 (VBR) H'100 H'180

Slot illegal instruction exception 2 4 (VBR) H'100 H'1A0

General FPU disable exception 2 4 (VBR) H'100 H'800

Slot FPU disable exception 2 4 (VBR) H'100 H'820

Data address error (read) 2 5 (VBR) H'100 H'0E0

Data address error (write) 2 5 (VBR) H'100 H'100

Data TLB miss exception (read) 2 6 (VBR) H'400 H'040

Data TLB miss exception (write) 2 6 (VBR) H'400 H'060

Data TLB protection
violation exception (read)

2 7 (VBR) H'100 H'0A0

Data TLB protection
violation exception (write)

2 7 (VBR) H'100 H'0C0

FPU exception 2 8 (VBR) H'100 H'120

Re-
execution
type

Initial page write exception 2 9 (VBR) H'100 H'080

Unconditional trap (TRAPA) 2 4 (VBR) H'100 H'160

General
exception

Completion
type

User break after instruction
execution*

2 10 (VBR/DBR) H'100/— H'1E0

Rev. 1.50, 10/04, page 71 of 448

Exception Transition
Direction*3

Exception
Category

Execution
Mode

Exception

Priority
Level*2

Priority
Order*2

Vector
Address Offset

Exception
Code*4

Nonmaskable interrupt 3 — (VBR) H'600 H'1C0 Interrupt Completion
type

General interrupt request 4 — (VBR) H'600 —

Note: 1. When UBDE in CBCR = 1, PC = DBR. In other cases, PC = VBR + H'100.

 2. Priority is first assigned by priority level, then by priority order within each level (the
lowest number represents the highest priority).

 3. Control passes to H'A000 0000 in a reset, and to [VBR + offset] in other cases.
 4. Stored in EXPEVT for a reset or general exception, and in INTEVT for an interrupt.

Rev. 1.50, 10/04, page 72 of 448

5.5 Exception Flow

5.5.1 Exception Flow

Figure 5.1 shows an outline flowchart of the basic operations in instruction execution and
exception handling. For the sake of clarity, the following description assumes that instructions are
executed sequentially, one by one. Figure 5.1 shows the relative priority order of the different
kinds of exceptions (reset, general exception, and interrupt). Register settings in the event of an
exception are shown only for SSR, SPC, SGR, EXPEVT/INTEVT, SR, and PC. However, other
registers may be set automatically by hardware, depending on the exception. For details, see
section 5.6, Description of Exceptions. Also, see section 5.6.4, Priority Order with Multiple
Exceptions, for exception handling during execution of a delayed branch instruction and a delay
slot instruction, or in the case of instructions in which two data accesses are performed.

Execute next instruction

Is highest-
priority exception

re-exception
type?

Cancel instruction execution
result

Yes

Yes

Yes

No

No

No

No

Yes

SSR ← SR
SPC ← PC
SGR ← R15
EXPEVT/INTEVT ← exception code
SR.{MD,RB,BL} ← 111
SR.IMASK ← received interuupt level (*)
PC ← (CBCR.UBDE=1 && User_Break?
 DBR: (VBR + Offset))

Interrupt
requested?

General
exception requested?

Reset
requested?

EXPEVT ← exception code
SR. {MD, RB, BL, FD, IMASK} ← 11101111
PC ← H'A000 0000

Note: * When the exception of the highest priority is an interrupt.
Whether IMASK is updated or not can be set by software.

Figure 5.1 Instruction Execution and Exception Handling

Rev. 1.50, 10/04, page 73 of 448

5.5.2 Exception Source Acceptance

A priority ranking is provided for all exceptions for use in determining which of two or more
simultaneously generated exceptions should be accepted. Five of the general exceptions—general
illegal instruction exception, slot illegal instruction exception, general FPU disable exception, slot
FPU disable exception, and unconditional trap exception—are detected in the process of
instruction decoding, and do not occur simultaneously in the instruction pipeline. These
exceptions therefore all have the same priority. General exceptions are detected in the order of
instruction execution. However, exception handling is performed in the order of instruction flow
(program order). Thus, an exception for an earlier instruction is accepted before that for a later
instruction. An example of the order of acceptance for general exceptions is shown in figure 5.2.

I1
I1

ID
ID

E3

WB
WB

TLB miss (data access)Pipeline flow:

Order of detection:

Instruction n
Instruction n + 1

General illegal instruction exception (instruction n + 1) and
TLB miss (instruction n + 2) are detected simultaneously

Order of exception handling:
TLB miss (instruction n)

Program order

1

Instruction n + 2

General illegal instruction exception

I1 ID WB

I2 ID WB

TLB miss (instruction access)

2

3

4

I1, I2: Instruction fetch
ID : Instruction decode
E1, E2, E3: Instruction execution
 (E2, E3 Memory access)
WB Write-back

Instruction n + 3

TLB miss (instruction n)

Re-execution of instruction n

General illegal instruction exception
(instruction n + 1)

Re-execution of instruction n + 1

TLB miss (instruction n + 2)

Re-execution of instruction n + 2

Execution of instruction n + 3

[Legend]
E3
E3

E2
E2

E1
E1

I2
I2

E1

E1 E2

E2 E3I2

I1

Figure 5.2 Example of General Exception Acceptance Order

Rev. 1.50, 10/04, page 74 of 448

5.5.3 Exception Requests and BL Bit

When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated, the CPU's
internal registers and the registers of the other modules are set to their states following a manual
reset, and the CPU branches to the same address as in a reset (H'A0000000). For the operation in
the event of a user break, see the User Break Controller (UBC) section of the hardware manual of
the target product. If an ordinary interrupt occurs, the interrupt request is held pending and is
accepted after the BL bit has been cleared to 0 by software. If a nonmaskable interrupt (NMI)
occurs, it can be held pending or accepted according to the setting made by software.

Thus, normally, SPC and SSR are saved and then the BL bit in SR is cleared to 0, to enable
multiple exception state acceptance.

5.5.4 Return from Exception Handling

The RTE instruction is used to return from exception handling. When the RTE instruction is
executed, the SPC contents are restored to PC and the SSR contents to SR, and the CPU returns
from the exception handling routine by branching to the SPC address. If SPC and SSR were saved
to external memory, set the BL bit in SR to 1 before restoring the SPC and SSR contents and
issuing the RTE instruction.

Rev. 1.50, 10/04, page 75 of 448

5.6 Description of Exceptions

The various exception handling operations explained here are exception sources, transition address
on the occurrence of exception, and processor operation when a transition is made.

5.6.1 Resets

Power-On Reset:

• Condition:

Power-on reset request

• Operations:

Exception code H'000 is set in EXPEVT, initialization of the CPU and on-chip peripheral
module is carried out, and then a branch is made to the reset vector (H'A0000000). For details,
see the register descriptions in the relevant sections. A power-on reset should be executed
when power is supplied.

Manual Reset:

• Condition:

Manual reset request

• Operations:

Exception code H'020 is set in EXPEVT, initialization of the CPU and on-chip peripheral
module is carried out, and then a branch is made to the branch vector (H'A0000000). The
registers initialized by a power-on reset and manual reset are different. For details, see the
register descriptions in the relevant sections.

H-UDI Reset:

• Source: SDIR.TI[7:4] = B'0110 (negation) or B'0111 (assertion)

• Transition address: H'A0000000

• Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A0000000.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections of the hardware manual of the target product.

Rev. 1.50, 10/04, page 76 of 448

Instruction TLB Multiple Hit Exception:

• Source: Multiple ITLB address matches

• Transition address: H'A0000000

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A0000000.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual
reset. For details, see the register descriptions in the relevant sections of the hardware manual
of the target product.

Data TLB Multiple-Hit Exception:

• Source: Multiple UTLB address matches

• Transition address: H'A0000000

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A0000000.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual
reset. For details, see the register descriptions in the relevant sections of the hardware manual
of the target product.

Rev. 1.50, 10/04, page 77 of 448

5.6.2 General Exceptions

Data TLB Miss Exception:

• Source: Address mismatch in UTLB address comparison

• Transition address: VBR + H'00000400

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR. The R15 contents at this time are saved in SGR.

Exception code H'040 (for a read access) or H'060 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

Data_TLB_miss_exception()

{

 TEA = EXCEPTION_ADDRESS;

 PTEH.VPN = PAGE_NUMBER;

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = read_access ? H'0000 0040 : H'0000 0060;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0400;

}

Rev. 1.50, 10/04, page 78 of 448

Instruction TLB Miss Exception:

• Source: Address mismatch in ITLB address comparison

• Transition address: VBR + H'00000400

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR. The R15 contents at this time are saved in SGR.

Exception code H'40 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

ITLB_miss_exception()

{

 TEA = EXCEPTION_ADDRESS;

 PTEH.VPN = PAGE_NUMBER;

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 0040;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0400;

}

Rev. 1.50, 10/04, page 79 of 448

Initial Page Write Exception:

• Source: TLB is hit in a store access, but dirty bit D = 0

• Transition address: VBR + H'00000100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR. The R15 contents at this time are saved in SGR.

Exception code H'080 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

Initial_write_exception()

{

 TEA = EXCEPTION_ADDRESS;

 PTEH.VPN = PAGE_NUMBER;

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 0080;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 80 of 448

Data TLB Protection Violation Exception:

• Source: The access does not accord with the UTLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode

00 Only read access possible Access not possible

01 Read/write access possible Access not possible

10 Only read access possible Only read access possible

11 Read/write access possible Read/write access possible

• Transition address: VBR + H'00000100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR. The R15 contents at this time are saved in SGR.

Exception code H'0A0 (for a read access) or H'0C0 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100.

Data_TLB_protection_violation_exception()

{

 TEA = EXCEPTION_ADDRESS;

 PTEH.VPN = PAGE_NUMBER;

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = read_access ? H'0000 00A0 : H'0000 00C0;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 81 of 448

Instruction TLB Protection Violation Exception:

• Source: The access does not accord with the ITLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode

0 Access possible Access not possible

1 Access possible Access possible

• Transition address: VBR + H'00000100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR. The R15 contents at this time are saved in SGR.

Exception code H'0A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

ITLB_protection_violation_exception()

{

 TEA = EXCEPTION_ADDRESS;

 PTEH.VPN = PAGE_NUMBER;

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 00A0;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 82 of 448

Data Address Error:

• Sources:

 Word data access from other than a word boundary (2n +1)

 Longword data access from other than a longword data boundary (4n +1, 4n + 2, or 4n +3)

 Quadword data access from other than a quadword data boundary (8n +1, 8n + 2, 8n +3, 8n
+ 4, 8n + 5, 8n + 6, or 8n + 7)

 Access to area H'80000000 to H'FFFFFFFF in user mode

Areas H'E0000000 to H'E3FFFFFF and H'E5000000 to H'E5FFFFFF can be accessed in
user mode. For details, see section 7, Memory Management Unit (MMU) and section 9, L
Memory.

• Transition address: VBR + H'0000100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR. The R15 contents at this time are saved in SGR.

Exception code H'0E0 (for a read access) or H'100 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. For
details, see section 7, Memory Management Unit (MMU).

Data_address_error()

{

 TEA = EXCEPTION_ADDRESS;

 PTEH.VPN = PAGE_NUMBER;

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = read_access? H'0000 00E0: H'0000 0100;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 83 of 448

Instruction Address Error:

• Sources:

 Instruction fetch from other than a word boundary (2n +1)

 Instruction fetch from area H'80000000 to H'FFFFFFFF in user mode

Area H'E5000000 to H'E5FFFFFF can be accessed in user mode. For details, see section 9,
L Memory.

• Transition address: VBR + H'00000100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code H'0E0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100. For details, see section 7, Memory Management Unit
(MMU).

Instruction_address_error()

{

 TEA = EXCEPTION_ADDRESS;

 PTEH.VPN = PAGE_NUMBER;

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 00E0;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 84 of 448

Unconditional Trap:

• Source: Execution of TRAPA instruction

• Transition address: VBR + H'00000100

• Transition operations:

As this is a processing-completion-type exception, the PC contents for the instruction
following the TRAPA instruction are saved in SPC. The value of SR and R15 when the
TRAPA instruction is executed are saved in SSR and SGR. The 8-bit immediate value in the
TRAPA instruction is multiplied by 4, and the result is set in TRA [9:0]. Exception code H'160
is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC =
VBR + H'0100.

TRAPA_exception()

{

 SPC = PC + 2;

 SSR = SR;

 SGR = R15;

 TRA = imm << 2;

 EXPEVT = H'0000 0160;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 85 of 448

General Illegal Instruction Exception:

• Sources:

 Decoding of an undefined instruction not in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S

Undefined instruction: H'FFFD

 Decoding in user mode of a privileged instruction not in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

• Transition address: VBR + H'00000100

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR. The R15 contents at this time are saved in SGR.

Exception code H'180 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code other
than H'FFFD is decoded.

General_illegal_instruction_exception()

{

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 0180;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 86 of 448

Slot Illegal Instruction Exception:

• Sources:

 Decoding of an undefined instruction in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S

Undefined instruction: H'FFFD

 Decoding of an instruction that modifies PC in a delay slot

Instructions that modify PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BF,
BT/S, BF/S, TRAPA, LDC Rm,SR, LDC.L @Rm+,SR, ICBI, PREFI

 Decoding in user mode of a privileged instruction in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

 Decoding of a PC-relative MOV instruction or MOVA instruction in a delay slot

• Transition address: VBR + H'000 0100

• Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR and
R15 contents when this exception occurred are saved in SSR and SGR.

Exception code H'1A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code other
than H'FFFD is decoded.

Slot_illegal_instruction_exception()

{

 SPC = PC - 2;

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 01A0;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 87 of 448

General FPU Disable Exception:

• Source: Decoding of an FPU instruction* not in a delay slot with SR.FD =1

• Transition address: VBR + H'00000100

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR. The R15 contents at this time are saved in SGR.

Exception code H'800 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

Note: * FPU instructions are instructions in which the first 4 bits of the instruction code are F

(but excluding undefined instruction H'FFFD), and the LDS, STS, LDS.L, and STS.L
instructions corresponding to FPUL and FPSCR.

General_fpu_disable_exception()

{

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 0800;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 88 of 448

Slot FPU Disable Exception:

• Source: Decoding of an FPU instruction in a delay slot with SR.FD =1

• Transition address: VBR + H'00000100

• Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR and
R15 contents when this exception occurred are saved in SSR and SGR.

Exception code H'820 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

Slot_fpu_disable_exception()

{

 SPC = PC - 2;

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 0820;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 89 of 448

Pre-Execution User Break/Post-Execution User Break:

• Source: Fulfilling of a break condition set in the user break controller

• Transition address: VBR + H'00000100, or DBR

• Transition operations:

In the case of a post-execution break, the PC contents for the instruction following the
instruction at which the breakpoint is set are set in SPC. In the case of a pre-execution break,
the PC contents for the instruction at which the breakpoint is set are set in SPC.

The SR and R15 contents when the break occurred are saved in SSR and SGR. Exception code
H'1E0 is set in EXPEVT.

The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. It is
also possible to branch to PC = DBR.

For details of PC, etc., when a data break is set, see the User Break Controller (UBC) section
of the hardware manual of the target product.

User_break_exception()

{

 SPC = (pre_execution break? PC : PC + 2);

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 01E0;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = (BRCR.UBDE==1 ? DBR : VBR + H′0000 0100);

}

Rev. 1.50, 10/04, page 90 of 448

FPU Exception:

• Source: Exception due to execution of a floating-point operation

• Transition address: VBR + H'00000100

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR . The R15 contents at this time are saved in SGR. Exception code H'120 is set in
EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR +
H'0100.

FPU_exception()

{

 SPC = PC;

 SSR = SR;

 SGR = R15;

 EXPEVT = H'0000 0120;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0100;

}

Rev. 1.50, 10/04, page 91 of 448

5.6.3 Interrupts

NMI (Nonmaskable Interrupt):

• Source: NMI pin edge detection

• Transition address: VBR + H'00000600

• Transition operations:

The PC and SR contents for the instruction immediately after this exception is accepted are
saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code H'1C0 is set in INTEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0600. When the BL bit in SR is 0, this interrupt is not
masked by the interrupt mask bits in SR, and is accepted at the highest priority level. When the
BL bit in SR is 1, a software setting can specify whether this interrupt is to be masked or
accepted. For details, see the Interrupt Controller section of the hardware manual of the target
product.

NMI()

{

 SPC = PC;

 SSR = SR;

 SGR = R15;

 INTEVT = H'0000 01C0;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 PC = VBR + H'0000 0600;

}

Rev. 1.50, 10/04, page 92 of 448

General Interrupt Request:

• Source: The interrupt mask level bits setting in SR is smaller than the interrupt level of
interrupt request, and the BL bit in SR is 0 (accepted at instruction boundary).

• Transition address: VBR + H'00000600

• Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in
SPC. The SR and R15 contents at the time of acceptance are set in SSR and SGR.

The code corresponding to the each interrupt source is set in INTEVT. The BL, MD, and RB
bits are set to 1 in SR, and a branch is made to VBR + H'0600. For details, see the Interrupt
Controller section of the hardware manual of the target product.

Module_interruption()

{

 SPC = PC;

 SSR = SR;

 SGR = R15;

 INTEVT = H'0000 0400 ~ H'0000 3FE0;

 SR.MD = 1;

 SR.RB = 1;

 SR.BL = 1;

 if (cond) SR.IMASK = level_of accepted_interrupt ();

 PC = VBR + H'0000 0600;

}

5.6.4 Priority Order with Multiple Exceptions

With some instructions, such as instructions that make two accesses to memory, and the
indivisible pair comprising a delayed branch instruction and delay slot instruction, multiple
exceptions occur. Care is required in these cases, as the exception priority order differs from the
normal order.

Rev. 1.50, 10/04, page 93 of 448

• Instructions that make two accesses to memory

With MAC instructions, memory-to-memory arithmetic/logic instructions, TAS instructions,
and MOVUA instructions, two data transfers are performed by a single instruction, and an
exception will be detected for each of these data transfers. In these cases, therefore, the
following order is used to determine priority.

1. Data address error in first data transfer

2. TLB miss in first data transfer

3. TLB protection violation in first data transfer

4. Initial page write exception in first data transfer

5. Data address error in second data transfer

6. TLB miss in second data transfer

7. TLB protection violation in second data transfer

8. Initial page write exception in second data transfer

• Indivisible delayed branch instruction and delay slot instruction

As a delayed branch instruction and its associated delay slot instruction are indivisible, they
are treated as a single instruction. Consequently, the priority order for exceptions that occur in
these instructions differs from the usual priority order. The priority order shown below is for
the case where the delay slot instruction has only one data transfer.

1. A check is performed for the interrupt type and re-execution type exceptions of priority
levels 1 and 2 in the delayed branch instruction.

2. A check is performed for the interrupt type and re-execution type exceptions of priority
levels 1 and 2 in the delay slot instruction.

3. A check is performed for the completion type exception of priority level 2 in the delayed
branch instruction.

4. A check is performed for the completion type exception of priority level 2 in the delay slot
instruction.

5. A check is performed for priority level 3 in the delayed branch instruction and priority
level 3 in the delay slot instruction. (There is no priority ranking between these two.)

6. A check is performed for priority level 4 in the delayed branch instruction and priority
level 4 in the delay slot instruction. (There is no priority ranking between these two.)

If the delay slot instruction has a second data transfer, two checks are performed in step 2, as in
the above case (Instructions that make two accesses to memory).

If the accepted exception (the highest-priority exception) is a delay slot instruction re-
execution type exception, the branch instruction PR register write operation (PC → PR
operation performed in a BSR, BSRF, or JSR instruction) is not disabled. Note that in this
case, the contents of PR register are not guaranteed.

Rev. 1.50, 10/04, page 94 of 448

5.7 Usage Notes

1. Return from exception handling

A. Check the BL bit in SR with software. If SPC and SSR have been saved to memory, set
the BL bit in SR to 1 before restoring them.

B. Issue an RTE instruction. When RTE is executed, the SPC contents are saved in PC, the
SSR contents are saved in SR, and branch is made to the SPC address to return from the
exception handling routine.

2. If an exception or interrupt occurs when BL bit in SR = 1

A. Exception

When an exception other than a user break occurs, a manual reset is executed. The value in
EXPEVT at this time is H'00000020; the SPC and SSR contents are undefined.

B. Interrupt

If an ordinary interrupt occurs, the interrupt request is held pending and is accepted after
the BL bit in SR has been cleared to 0 by software. If a nonmaskable interrupt (NMI)
occurs, it can be held pending or accepted according to the setting made by software.

In sleep or standby mode, however, an interrupt is accepted even if the BL bit in SR is set
to 1.

3. SPC when an exception occurs

A. Re-execution type exception

The PC value for the instruction at which the exception occurred is set in SPC, and the
instruction is re-executed after returning from the exception handling routine. If an
exception occurs in a delay slot instruction, however, the PC value for the delayed branch
instruction is saved in SPC regardless of whether or not the preceding delay slot instruction
condition is satisfied.

B. Completion type exception or interrupt

The PC value for the instruction following that at which the exception occurred is set in
SPC. If an exception occurs in a branch instruction with delay slot, however, the PC value
for the branch destination is saved in SPC.

4. RTE instruction delay slot

A. The instruction in the delay slot of the RTE instruction is executed only after the value
saved in SSR has been restored to SR. The acceptance of the exception related to the
instruction access is determined depending on SR before restoring, while the acceptance of
other exceptions is determined depending on the processing mode by SR after restoring or
the BL bit. The completion type exception is accepted before branching to the destination
of RTE instruction. However, if the re-execution type exception is occurred, the operation
cannot be guaranteed.

B. The user break is not accepted by the instruction in the delay slot of the RTE instruction.

Rev. 1.50, 10/04, page 95 of 448

5. Changing the SR register value and accepting exception

A. When the MD or BL bit in the SR register is changed by the LDC instruction, the
acceptance of the exception is determined by the changed SR value, starting from the next
instruction.* In the completion type exception, an exception is accepted after the next
instruction has been executed. However, an interrupt of completion type exception is
accepted before the next instruction is executed.

Note: * When the LDC instruction for SR is executed, following instructions are fetched again

and the instruction fetch exception is evaluated again by the changed SR.

Rev. 1.50, 10/04, page 96 of 448

 Rev. 1.50, 10/04, page 97 of 448

Section 6 Floating-Point Unit (FPU)

6.1 Features

The FPU has the following features.

• Conforms to IEEE754 standard

• 32 single-precision floating-point registers (can also be referenced as 16 double-precision
registers)

• Two rounding modes: Round to Nearest and Round to Zero

• Two denormalization modes: Flush to Zero and Treat Denormalized Number

• Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overflow, Underflow,
and Inexact

• Comprehensive instructions: Single-precision, double-precision, graphics support, and system
control

• Following three instructions are added in the SH-4A

FSRRA, FSCA, and FPCHG

When the FD bit in SR is set to 1, the FPU cannot be used, and an attempt to execute an FPU
instruction will cause an FPU disable exception (general FPU disable exception or slot FPU
disable exception).

Rev. 1.50, 10/04, page 98 of 448

6.2 Data Formats

6.2.1 Floating-Point Format

A floating-point number consists of the following three fields:

• Sign bit (s)

• Exponent field (e)

• Fraction field (f)

The SH-4A can handle single-precision and double-precision floating-point numbers, using the
formats shown in figures 6.1 and 6.2.

31

s e f

30 23 22 0

Figure 6.1 Format of Single-Precision Floating-Point Number

63

s e f

62 52 51 0

Figure 6.2 Format of Double-Precision Floating-Point Number

The exponent is expressed in biased form, as follows:

e = E + bias

The range of unbiased exponent E is Emin – 1 to Emax + 1. The two values Emin – 1 and Emax + 1 are
distinguished as follows. Emin – 1 indicates zero (both positive and negative sign) and a
denormalized number, and Emax + 1 indicates positive or negative infinity or a non-number (NaN).
Table 6.1 shows floating-point formats and parameters.

Rev. 1.50, 10/04, page 99 of 448

Table 6.1 Floating-Point Number Formats and Parameters

Parameter Single-Precision Double-Precision

Total bit width 32 bits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 bits 11 bits

Fraction field 23 bits 52 bits

Precision 24 bits 53 bits

Bias +127 +1023

Emax +127 +1023

Emin –126 –1022

Floating-point number value v is determined as follows:

If E = Emax + 1 and f ≠ 0, v is a non-number (NaN) irrespective of sign s
If E = Emax + 1 and f = 0, v = (–1)s (infinity) [positive or negative infinity]
If Emin ≤ E ≤ Emax , v = (–1)s2E (1.f) [normalized number]
If E = Emin – 1 and f ≠ 0, v = (–1)s2Emin (0.f) [denormalized number]
If E = Emin – 1 and f = 0, v = (–1)s0 [positive or negative zero]

Table 6.2 shows the ranges of the various numbers in hexadecimal notation. For the signaling non-
number and quiet non-number, see section 6.2.2, Non-Numbers (NaN). For the denormalized
number, see section 6.2.3, Denormalized Numbers.

Rev. 1.50, 10/04, page 100 of 448

Table 6.2 Floating-Point Ranges

Type Single-Precision Double-Precision

Signaling non-number H'7FFF FFFF to H'7FC0 0000 H'7FFF FFFF FFFF FFFF to
H'7FF8 0000 0000 0000

Quiet non-number H'7FBF FFFF to H'7F80 0001 H'7FF7 FFFF FFFF FFFF to
H'7FF0 0000 0000 0001

Positive infinity H'7F80 0000 H'7FF0 0000 0000 0000

Positive normalized
number

H'7F7F FFFF to H'0080 0000 H'7FEF FFFF FFFF FFFF to
H'0010 0000 0000 0000

Positive denormalized
number

H'007F FFFF to H'0000 0001 H'000F FFFF FFFF FFFF to
H'0000 0000 0000 0001

Positive zero H'0000 0000 H'0000 0000 0000 0000

Negative zero H'8000 0000 H'8000 0000 0000 0000

Negative denormalized
number

H'8000 0001 to H'807F FFFF H'8000 0000 0000 0001 to
H'800F FFFF FFFF FFFF

Negative normalized
number

H'8080 0000 to H'FF7F FFFF H'8010 0000 0000 0000 to
H'FFEF FFFF FFFF FFFF

Negative infinity H'FF80 0000 H'FFF0 0000 0000 0000

Quiet non-number H'FF80 0001 to H'FFBF FFFF H'FFF0 0000 0000 0001 to
H'FFF7 FFFF FFFF FFFF

Signaling non-number H'FFC0 0000 to H'FFFF FFFF H'FFF8 0000 0000 0000 to
H'FFFF FFFF FFFF FFFF

Rev. 1.50, 10/04, page 101 of 448

6.2.2 Non-Numbers (NaN)

Figure 6.3 shows the bit pattern of a non-number (NaN). A value is NaN in the following case:

• Sign bit: Don't care

• Exponent field: All bits are 1

• Fraction field: At least one bit is 1

The NaN is a signaling NaN (sNaN) if the MSB of the fraction field is 1, and a quiet NaN (qNaN)
if the MSB is 0.

31 30 23 22 0

x

N = 1:sNaN
N = 0:qNaN

11111111 Nxxxxxxxxxxxxxxxxxxxxxx

Figure 6.3 Single-Precision NaN Bit Pattern

An sNaN is assumed to be the input data in an operation, except the transfer instructions between
registers, FABS, and FNEG, that generates a floating-point value.

• When the EN.V bit in FPSCR is 0, the operation result (output) is a qNaN.

• When the EN.V bit in FPSCR is 1, an invalid operation exception will be generated. In this
case, the contents of the operation destination register are unchanged.

Following three instructions are used as transfer instructions between registers.

• FMOV FRm,FRn

• FLDS FRm,FPUL

• FSTS FPUL,FRn

If a qNaN is input in an operation that generates a floating-point value, and an sNaN has not been
input in that operation, the output will always be a qNaN irrespective of the setting of the EN.V bit
in FPSCR. An exception will not be generated in this case.

The qNAN values as operation results are as follows:

• Single-precision qNaN: H'7FBF FFFF

• Double-precision qNaN: H'7FF7 FFFF FFFF FFFF

See section 10, Instruction Descriptions for details of floating-point operations when a non-
number (NaN) is input.

Rev. 1.50, 10/04, page 102 of 448

6.2.3 Denormalized Numbers

For a denormalized number floating-point value, the exponent field is expressed as 0, and the
fraction field as a non-zero value.

When the DN bit in FPSCR of the FPU is 1, a denormalized number (source operand or operation
result) is always positive or negative zero in a floating-point operation that generates a value (an
operation other than transfer instructions between registers, FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (source operand or operation result) is
processed as it is. See section 10, Instruction Descriptions for details of floating-point operations
when a denormalized number is input.

Rev. 1.50, 10/04, page 103 of 448

6.3 Register Descriptions

6.3.1 Floating-Point Registers

Figure 6.4 shows the floating-point register configuration. There are thirty-two 32-bit floating-
point registers comprised with two banks: FPR0_BANK0 to FPR15_BANK0, and FPR0_BANK1
to FPR15_BANK1. These thirty-two registers are referenced as FR0 to FR15,
DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0 to XF15, XD0/2/4/6/8/10/12/14, and XMTRX.
Corresponding registers to FPR0_BANK0 to FPR15_BANK0, and FPR0_BANK1 to
FPR15_BANK1 are determined according to the FR bit of FPSCR.

1. Floating-point registers, FPRi_BANKj (32 registers)

FPR0_BANK0 to FPR15_BANK0

FPR0_BANK1 to FPR15_BANK1

2. Single-precision floating-point registers, FRi (16 registers)

When FPSCR.FR = 0, FR0 to FR15 are allocated to FPR0_BANK0 to FPR15_BANK0;

when FPSCR.FR = 1, FR0 to FR15 are allocated to FPR0_BANK1 to FPR15_BANK1.

3. Double-precision floating-point registers, DRi (8 registers): A DR register comprises two FR
registers.

DR0 = {FR0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

4. Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers.

FV0 = {FR0, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

5. Single-precision floating-point extended registers, XFi (16 registers)

When FPSCR.FR = 0, XF0 to XF15 are allocated to FPR0_BANK1 to FPR15_BANK1;

when FPSCR.FR = 1, XF0 to XF15 are allocated to FPR0_BANK0 to FPR15_BANK0.

6. Double-precision floating-point extended registers, XDi (8 registers): An XD register
comprises two XF registers.

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

Rev. 1.50, 10/04, page 104 of 448

7. Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers.

XMTRX = XF0 XF4 XF8 XF12

 XF1 XF5 XF9 XF13

 XF2 XF6 XF10 XF14

 XF3 XF7 XF11 XF15

FPR0 BANK0
FPR1 BANK0
FPR2 BANK0
FPR3 BANK0
FPR4 BANK0
FPR5 BANK0
FPR6 BANK0
FPR7 BANK0
FPR8 BANK0
FPR9 BANK0

FPR10 BANK0
FPR11 BANK0
FPR12 BANK0
FPR13 BANK0
FPR14 BANK0
FPR15 BANK0

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0 XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPR0 BANK1
FPR1 BANK1
FPR2 BANK1
FPR3 BANK1
FPR4 BANK1
FPR5 BANK1
FPR6 BANK1
FPR7 BANK1
FPR8 BANK1
FPR9 BANK1

FPR10 BANK1
FPR11 BANK1
FPR12 BANK1
FPR13 BANK1
FPR14 BANK1
FPR15 BANK1

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPSCR.FR = 0 FPSCR.FR = 1

Figure 6.4 Floating-Point Registers

Rev. 1.50, 10/04, page 105 of 448

6.3.2 Floating-Point Status/Control Register (FPSCR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16bit:

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0Initial value:
R R R R R R R R R R R/W R/W R/W R/W R/W R/WR/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0bit:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1Initial value:
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/WR/W:

Enable (EN)

FR SZ PR DN

Flag RMCause

Cause

Bit Bit Name
Initial
Value R/W Description

31 to 22 — All 0 R Reserved

These bits are always read as 0. The write value should
always be 0.

21 FR 0 R/W Floating-Point Register Bank

0: FPR0_BANK0 to FPR15_BANK0 are assigned to
FR0 to FR15 and FPR0_BANK1 to FPR15_BANK1
are assigned to XF0 to XF15

1: FPR0_BANK0 to FPR15_BANK0 are assigned to
XF0 to XF15 and FPR0_BANK1 to FPR15_BANK1
are assigned to FR0 to FR15

20 SZ 0 R/W Transfer Size Mode

0: Data size of FMOV instruction is 32-bits
1: Data size of FMOV instruction is a 32-bit register
 pair (64 bits)

For relations between endian and the SZ and PR bits,
see figure 6.5.

19 PR 0 R/W Precision Mode

0: Floating-point instructions are executed as
 single-precision operations
1: Floating-point instructions are executed as
 double-precision operations (graphics support
 instructions are undefined)

For relations between endian and the SZ and PR bits,
see figure 6.5.

18 DN 1 R/W Denormalization Mode

0: Denormalized number is treated as such
1: Denormalized number is treated as zero

Rev. 1.50, 10/04, page 106 of 448

Bit Bit Name
Initial
Value R/W Description

17 to 12 Cause All 0 R/W

11 to 7 Enable All 0 R/W

6 to 2 Flag All 0 R/W

FPU Exception Cause Field

FPU Exception Enable Field

FPU Exception Flag Field

Each time an FPU operation instruction is executed, the
FPU exception cause field is cleared to 0. When an
FPU exception occurs, the bits corresponding to FPU
exception cause field and flag field are set to 1. The
FPU exception flag field remains set to 1 until it is
cleared to 0 by software.
For bit allocations of each field, see table 6.3.

1

0

RM1

RM0

0

1

R/W

R/W

Rounding Mode

These bits select the rounding mode.

00: Round to Nearest

01: Round to Zero

10: Reserved

11: Reserved

<Big endian>

DR (2i)

FR (2i) FR (2i+1)

8n+4 8n+78n 8n+3

63 0

63 32 31 0

Floating-point register

Memory area

63 0

<Little endian>

Floating-point register

Memory area

DR (2i)

FR (2i) FR (2i+1)

4n 4m4n+3 4m+3

63 0

63 32 31 0

DR (2i)

FR (2i+1)FR (2i)

8n+48n+78n+3 8n

63 0

63 32 31 0

(1) SZ = 0 (2) SZ = 1, PR = 0

63 0 63 0

DR (2i)

FR (2i+1)FR (2i)

8n8n+38n+7 8n+4

63 0

63 32 31 0

(3) SZ = 1, PR = 1

63 0

*1, *2 *2

Notes: 1. In the case of SZ = 0 and PR = 0, DR register can not be used.

2. The bit-location of DR register is used for double precision format when PR = 1.
 (In the case of (2), it is used when PR is changed from 0 to 1.)

Figure 6.5 Relation between SZ Bit and Endian

Rev. 1.50, 10/04, page 107 of 448

Table 6.3 Bit Allocation for FPU Exception Handling

Field Name

FPU
Error (E)

Invalid
Operation (V)

Division
by Zero (Z)

Overflow
(O)

Underflo
w (U)

Inexact
(I)

Cause FPU exception
cause field

Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception
flag field

None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

6.3.3 Floating-Point Communication Register (FPUL)

Information is transferred between the FPU and CPU via FPUL. FPUL is a 32-bit system register
that is accessed from the CPU side by means of LDS and STS instructions. For example, to
convert the integer stored in general register R1 to a single-precision floating-point number, the
processing flow is as follows:

R1 → (LDS instruction) → FPUL → (single-precision FLOAT instruction) → FR1

Rev. 1.50, 10/04, page 108 of 448

6.4 Rounding

In a floating-point instruction, rounding is performed when generating the final operation result
from the intermediate result. Therefore, the result of combination instructions such as FMAC,
FTRV, and FIPR will differ from the result when using a basic instruction such as FADD, FSUB,
or FMUL. Rounding is performed once in FMAC, but twice in FADD, FSUB, and FMUL.

Which of the two rounding methods is to be used is determined by the RM bits in FPSCR.

FPSCR.RM[1:0] = 00: Round to Nearest
FPSCR.RM[1:0] = 01: Round to Zero

Round to Nearest: The operation result is rounded to the nearest expressible value. If there are
two nearest expressible values, the one with an LSB of 0 is selected.

If the unrounded value is 2Emax (2 – 2–P) or more, the result will be infinity with the same sign as the
unrounded value. The values of Emax and P, respectively, are 127 and 24 for single-precision, and
1023 and 53 for double-precision.

Round to Zero: The digits below the round bit of the unrounded value are discarded.

If the unrounded value is larger than the maximum expressible absolute value, the value will
become the maximum expressible absolute value with the same sign as unrounded value.

Rev. 1.50, 10/04, page 109 of 448

6.5 Floating-Point Exceptions

6.5.1 General FPU Disable Exceptions and Slot FPU Disable Exceptions

FPU-related exceptions are occurred when an FPU instruction is executed with SR.FD set to 1.
When the FPU instruction is in other than delayed slot, the general FPU disable exception is
occurred. When the FPU instruction is in the delay slot, the slot FPU disable exception is
occurred.

6.5.2 FPU Exception Sources

The exception sources are as follows:

• FPU error (E): When FPSCR.DN = 0 and a denormalized number is input

• Invalid operation (V): In case of an invalid operation, such as NaN input

• Division by zero (Z): Division with a zero divisor

• Overflow (O): When the operation result overflows

• Underflow (U): When the operation result underflows

• Inexact exception (I): When overflow, underflow, or rounding occurs

The FPU exception cause field in FPSCR contains bits corresponding to all of above sources E, V,
Z, O, U, and I, and the FPU exception flag and enable fields in FPSCR contain bits corresponding
to sources V, Z, O, U, and I, but not E. Thus, FPU errors cannot be disabled.

When an FPU exception occurs, the corresponding bit in the FPU exception cause field is set to 1,
and 1 is added to the corresponding bit in the FPU exception flag field. When an FPU exception
does not occur, the corresponding bit in the FPU exception cause field is cleared to 0, but the
corresponding bit in the FPU exception flag field remains unchanged.

Rev. 1.50, 10/04, page 110 of 448

6.5.3 FPU Exception Handling

FPU exception handling is initiated in the following cases:

• FPU error (E): FPSCR.DN = 0 and a denormalized number is input

• Invalid operation (V): FPSCR.Enable.V = 1 and (instruction = FTRV or invalid operation)

• Division by zero (Z): FPSCR.Enable.Z = 1 and division with a zero divisor or the input of
FSRRA is zero

• Overflow (O): FPSCR.Enable.O = 1 and instruction with possibility of operation result
overflow

• Underflow (U): FPSCR.Enable.U = 1 and instruction with possibility of operation result
underflow

• Inexact exception (I): FPSCR.Enable.I = 1 and instruction with possibility of inexact operation
result

All exception events that originate in the FPU are assigned as the same exception event. The
meaning of an exception is determined by software by reading from FPSCR and interpreting the
information it contains. Also, the destination register is not changed by any FPU exception
handling operation.

If the FPU exception sources except for above are generated, the bit corresponding to source V, Z,
O, U, or I is set to 1, and a default value is generated as the operation result.

• Invalid operation (V): qNaN is generated as the result.

• Division by zero (Z): Infinity with the same sign as the unrounded value is generated.

• Overflow (O):

When rounding mode = RZ, the maximum normalized number, with the same sign as the
unrounded value, is generated.
When rounding mode = RN, infinity with the same sign as the unrounded value is generated.

• Underflow (U):
When FPSCR.DN = 0, a denormalized number with the same sign as the unrounded value, or
zero with the same sign as the unrounded value, is generated.
When FPSCR.DN = 1, zero with the same sign as the unrounded value, is generated.

• Inexact exception (I): An inexact result is generated.

Rev. 1.50, 10/04, page 111 of 448

6.6 Graphics Support Functions

The SH-4A supports two kinds of graphics functions: new instructions for geometric operations,
and pair single-precision transfer instructions that enable high-speed data transfer.

6.6.1 Geometric Operation Instructions

Geometric operation instructions perform approximate-value computations. To enable high-speed
computation with a minimum of hardware, the SH-4A ignores comparatively small values in the
partial computation results of four multiplications. Consequently, the error shown below is
produced in the result of the computation:

Maximum error = MAX (individual multiplication result ×
 2–MIN (number of multiplier significant digits–1, number of multiplicand significant digits–1)) + MAX (result value × 2–23, 2–149)

The number of significant digits is 24 for a normalized number and 23 for a denormalized number
(number of leading zeros in the fractional part).

In a future version of the SH Series, the above error is guaranteed, but the same result between
different processor cores is not guaranteed.

FIPR FVm, FVn (m, n: 0, 4, 8, 12): This instruction is basically used for the following purposes:

• Inner product (m ≠ n):

This operation is generally used for surface/rear surface determination for polygon surfaces.

• Sum of square of elements (m = n):

This operation is generally used to find the length of a vector.

Since an inexact exception is not detected by an FIPR instruction, the inexact exception (I) bit in
both the FPU exception cause field and flag field are always set to 1 when an FIPR instruction is
executed. Therefore, if the I bit is set in the FPU exception enable field, FPU exception handling
will be executed.

FTRV XMTRX, FVn (n: 0, 4, 8, 12): This instruction is basically used for the following
purposes:

• Matrix (4 × 4) ⋅ vector (4):

This operation is generally used for viewpoint changes, angle changes, or movements called
vector transformations (4-dimensional). Since affine transformation processing for angle +
parallel movement basically requires a 4 × 4 matrix, the SH-4A supports 4-dimensional
operations.

• Matrix (4 × 4) × matrix (4 × 4):

This operation requires the execution of four FTRV instructions.

Rev. 1.50, 10/04, page 112 of 448

Since an inexact exception is not detected by an FIRV instruction, the inexact exception (I) bit in
both the FPU exception cause field and flag field are always set to 1 when an FTRV instruction is
executed. Therefore, if the I bit is set in the FPU exception enable field, FPU exception handling
will be executed. It is not possible to check all data types in the registers beforehand when
executing an FTRV instruction. If the V bit is set in the FPU exception enable field, FPU
exception handling will be executed.

FRCHG: This instruction modifies banked registers. For example, when the FTRV instruction is
executed, matrix elements must be set in an array in the background bank. However, to create the
actual elements of a translation matrix, it is easier to use registers in the foreground bank. When
the LDS instruction is used on FPSCR, this instruction takes four to five cycles in order to
maintain the FPU state. With the FRCHG instruction, the FR bit in FPSCR can be changed in one
cycle.

6.6.2 Pair Single-Precision Data Transfer

In addition to the powerful new geometric operation instructions, the SH-4A also supports high-
speed data transfer instructions.

When the SZ bit is 1, the SH-4A can perform data transfer by means of pair single-precision data
transfer instructions.

• FMOV DRm/XDm, DRn/XDRn (m, n: 0, 2, 4, 6, 8, 10, 12, 14)

• FMOV DRm/XDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12, 14; n: 0 to 15)

These instructions enable two single-precision (2 × 32-bit) data items to be transferred; that is, the
transfer performance of these instructions is doubled.

• FSCHG

This instruction changes the value of the SZ bit in FPSCR, enabling fast switching between use
and non-use of pair single-precision data transfer.

 Rev. 1.50, 10/04, page 113 of 448

Section 7 Memory Management Unit (MMU)

The SH-4A supports an 8-bit address space identifier, a 32-bit virtual address space, and a 29-bit
physical address space. Address translation from virtual addresses to physical addresses is enabled
by the memory management unit (MMU) in the SH-4A. The MMU performs high-speed address
translation by caching user-created address translation table information in an address translation
buffer (translation lookaside buffer: TLB).

The SH-4A has four instruction TLB (ITLB) entries and 64 unified TLB (UTLB) entries. UTLB
copies are stored in the ITLB by hardware. A paging system is used for address translation, with
four page sizes (1, 4, and 64 Kbytes, and 1 Mbyte) supported. It is possible to set the virtual
address space access right and implement memory protection independently for privileged mode
and user mode.

7.1 Overview of MMU

The MMU was conceived as a means of making efficient use of physical memory. As shown in
(0) in figure 7.1, when a process is smaller in size than the physical memory, the entire process
can be mapped onto physical memory, but if the process increases in size to the point where it
does not fit into physical memory, it becomes necessary to divide the process into smaller parts,
and map the parts requiring execution onto physical memory as occasion arises ((1) in figure 7.1).
Having this mapping onto physical memory executed consciously by the process itself imposes a
heavy burden on the process. The virtual memory system was devised as a means of handling all
physical memory mapping to reduce this burden ((2) in figure 7.1). With a virtual memory system,
the size of the available virtual memory is much larger than the actual physical memory, and
processes are mapped onto this virtual memory. Thus processes only have to consider their
operation in virtual memory, and mapping from virtual memory to physical memory is handled by
the MMU. The MMU is normally managed by the OS, and physical memory switching is carried
out so as to enable the virtual memory required by a process to be mapped smoothly onto physical
memory. Physical memory switching is performed via secondary storage, etc.

The virtual memory system that came into being in this way works to best effect in a time sharing
system (TSS) that allows a number of processes to run simultaneously ((3) in figure 7.1). Running
a number of processes in a TSS did not increase efficiency since each process had to take account
of physical memory mapping. Efficiency is improved and the load on each process reduced by the
use of a virtual memory system ((4) in figure 7.1). In this virtual memory system, virtual memory
is allocated to each process. The task of the MMU is to map a number of virtual memory areas
onto physical memory in an efficient manner. It is also provided with memory protection functions
to prevent a process from inadvertently accessing another process's physical memory.

Rev. 1.50, 10/04, page 114 of 448

When address translation from virtual memory to physical memory is performed using the MMU,
it may happen that the translation information has not been recorded in the MMU, or the virtual
memory of a different process is accessed by mistake. In such cases, the MMU will generate an
exception, change the physical memory mapping, and record the new address translation
information.

Although the functions of the MMU could be implemented by software alone, having address
translation performed by software each time a process accessed physical memory would be very
inefficient. For this reason, a buffer for address translation (the translation lookaside buffer: TLB)
is provided by hardware, and frequently used address translation information is placed here. The
TLB can be described as a cache for address translation information. However, unlike a cache, if
address translation fails—that is, if an exception occurs—switching of the address translation
information is normally performed by software. Thus memory management can be performed in a
flexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to physical
memory: the paging method, using fixed-length address translation, and the segment method,
using variable-length address translation. With the paging method, the unit of translation is a
fixed-size address space called a page.

In the following descriptions, the address space in virtual memory in the SH-4A is referred to as
virtual address space, and the address space in physical memory as physical address space.

Rev. 1.50, 10/04, page 115 of 448

MMU

MMU

Process 1

Physical
Memory

(1)

(0)

(2)

(3) (4)

Physical
Memory

Physical
Memory

Physical
Memory

Virtual
Memory

Virtual
Memory

Physical
Memory

Process 1

Process 1

Process 2

Process 3

Process 1

Process 1

Process 2

Process 3

Figure 7.1 Role of MMU

7.1.1 Address Spaces

Virtual Address Space: The SH-4A supports a 32-bit virtual address space, and can access a 4-
Gbyte address space. The virtual address space is divided into a number of areas, as shown in
figures 7.2 and 7.3. In privileged mode, the 4-Gbyte space from the P0 area to the P4 area can be
accessed. In user mode, a 2-Gbyte space in the U0 area can be accessed. When the SQMD bit in
the MMU control register (MMUCR) is 0, a 64-Mbyte space in the store queue area can be
accessed. When the RMD bit in the on-chip memory control register (RAMCR) is 1, a 16-Mbyte
space in on-chip memory area can be accessed. Accessing areas other than the U0 area, store
queue area, and on-chip memory area in user mode will cause an address error.

When the AT bit in MMUCR is set to 1 and the MMU is enabled, the P0, P3, and U0 areas can be
mapped onto any physical address space in 1-, 4-, or 64-Kbyte, or 1-Mbyte page units. By using
an 8-bit address space identifier, the P0, P3, and U0 areas can be increased to a maximum of 256.
Mapping from the virtual address space to the 29-bit physical address space is carried out using
the TLB.

Rev. 1.50, 10/04, page 116 of 448

H'0000 0000

H'8000 0000

H'E000 0000

H'E400 0000
H'E500 0000
H'E600 0000
H'FFFF FFFF

H'0000 0000

H'8000 0000

H'FFFF FFFF

H'A000 0000

H'C000 0000

H'E000 0000

Area 0
Area 1
Area 2
Area 3
Area 4
Area 5
Area 6
Area 7

Physical
address space

Address error

Address error

Address error
On-chip memory area

Store queue area

User modePrivileged mode

P1 area
Cacheable

P0 area
Cacheable

P2 area
Non-cacheable

P3 area
Cacheable

P4 area
Non-cacheable

U0 area
Cacheable

Figure 7.2 Virtual Address Space (AT in MMUCR= 0)

Area 0

Area 1

 Area 2

 Area 3

 Area 4

 Area 5

 Area 6

 Area 7

Physical
address space

256256

U0 area
Cacheable

Address translation possible

Address error

Address error

On-chip memory area

Address error

Store queue area

P0 area
Cacheable

Address translation possible

User modePrivileged mode

P1 area
Cacheable

Address translation not possible

P2 area
Non-cacheable

Address translation not possible

P3 area
Cacheable

Address translation possible

P4 area
Non-cacheable

Address translation not possible

H'0000 0000

H'8000 0000

H'E000 0000
H'E400 0000
H'E500 0000
H'E600 0000
H'FFFF FFFFH'FFFF FFFF

H'0000 0000

H'8000 0000

H'A000 0000

H'C000 0000

H'E000 0000

Figure 7.3 Virtual Address Space (AT in MMUCR= 1)

Rev. 1.50, 10/04, page 117 of 448

• P0, P3, and U0 Areas:

The P0, P3, and U0 areas allow address translation using the TLB and access using the cache.

When the MMU is disabled, replacing the upper 3 bits of an address with 0s gives the
corresponding physical address. Whether or not the cache is used is determined by the CCR
setting. When the cache is used, switching between the copy-back method and the write-
through method for write accesses is specified by the WT bit in CCR.

When the MMU is enabled, these areas can be mapped onto any physical address space in 1-,
4-, or 64-Kbyte, or 1-Mbyte page units using the TLB. When CCR is in the cache enabled state
and the C bit for the corresponding page of the TLB entry is 1, accesses can be performed
using the cache. When the cache is used, switching between the copy-back method and the
write-through method for write accesses is specified by the WT bit of the TLB entry.

When the P0, P3, and U0 areas are mapped onto the control register area which is allocated in
the area 7 in physical address space by means of the TLB, the C bit for the corresponding page
must be cleared to 0.

• P1 Area:

The P1 area does not allow address translation using the TLB but can be accessed using the
cache.

Regardless of whether the MMU is enabled or disabled, clearing the upper 3 bits of an address
to 0 gives the corresponding physical address. Whether or not the cache is used is determined
by the CCR setting. When the cache is used, switching between the copy-back method and the
write-through method for write accesses is specified by the CB bit in CCR.

• P2 Area:

The P2 area does not allow address translation using the TLB and access using the cache.

Regardless of whether the MMU is enabled or disabled, clearing the upper 3 bits of an address
to 0 gives the corresponding physical address.

• P4 Area:

The P4 area is mapped onto the internal resource of the SH-4A. This area except the store
queue and on-chip memory areas does not allow address translation using the TLB. This area
cannot be accessed using the cache. The P4 area is shown in detail in figure 7.4.

Rev. 1.50, 10/04, page 118 of 448

H'E000 0000

H'E400 0000

H'F000 0000

H'F100 0000

H'F200 0000

H'F300 0000

H'F400 0000

H'F500 0000

H'F600 0000

H'F700 0000

H'F800 0000

H'FC00 0000

H'FFFF FFFF

Store queue

Reserved area

Reserved area
On-chip memory area

Instruction cache address array

Instruction cache data array

Instruction TLB address array

Instruction TLB data array

Operand cache address array

Operand cache data array

Unified TLB and PMB address array

Unified TLB and PMB data array

Reserved area

Control register area

H'E500 0000
H'E600 0000

Figure 7.4 P4 Area

The area from H'E000 0000 to H'E3FF FFFF comprises addresses for accessing the store queues
(SQs). In user mode, the access right is specified by the SQMD bit in MMUCR. For details, see
section 8.7, Store Queues.

The area from H'E500 0000 to H'E5FF FFFF comprises addresses for accessing the on-chip
memory. In user mode, the access right is specified by the RMD bit in RAMCR. For details, see
section 9, L Memory.

The area from H'F000 0000 to H'F0FF FFFF is used for direct access to the instruction cache
address array. For details, see section 8.6.1, IC Address Array.

The area from H'F100 0000 to H'F1FF FFFF is used for direct access to the instruction cache data
array. For details, see section 8.6.2, IC Data Array.

The area from H'F200 0000 to H'F2FF FFFF is used for direct access to the instruction TLB
address array. For details, see section 7.6.1, ITLB Address Array.

The area from H'F300 0000 to H'F37F FFFF is used for direct access to instruction TLB data
array. For details, see section 7.6.2, ITLB Data Array.

The area from H'F400 0000 to H'F4FF FFFF is used for direct access to the operand cache address
array. For details, see section 8.6.3, OC Address Array.

Rev. 1.50, 10/04, page 119 of 448

The area from H'F500 0000 to H'F5FF FFFF is used for direct access to the operand cache data
array. For details, see section 8.6.4, OC Data Array.

The area from H'F600 0000 to H'F60F FFFF is used for direct access to the unified TLB address
array. For details, see section 7.6.3, UTLB Address Array.

The area from H'F610 0000 to H'F61F FFFF is used for direct access to the PMB address array.
For details, see section 7.7.5, Memory-Mapped PMB Configuration.

The area from H'F700 0000 to H'F70F FFFF is used for direct access to unified TLB data array.
For details, see section 7.6.4, UTLB Data Array.

The area from H'F710 0000 to H'F71F FFFF is used for direct access to the PMB data array. For
details, see section 7.7.5, Memory-Mapped PMB Configuration.

The area from H'FC00 0000 to H'FFFF FFFF is the on-chip peripheral module control register
area. For details, see register descriptions in each section of the hardware manual of the target
product.

Physical Address Space: The SH-4A supports a 29-bit physical address space. The physical
address space is divided into eight areas as shown in figure 7.5. Area 7 is a reserved area. For
details, see the Bus State Controller (BSC) section of the hardware manual of the target product.

Only when area 7 in the physical address space is accessed using the TLB, addresses H'1C00 0000
to H'1FFF FFFF of area 7 are not designated as a reserved area, but are equivalent to the control
register area in the P4 area, in the virtual address space.

H'0000 0000

H'0400 0000

H'0800 0000

H'0C00 0000

H'1000 0000

H'1400 0000

H'1800 0000

H'1C00 0000
H'1FFF FFFF

Area 0

Area 1

Area 2

Area 3

Area 4

Area 5

Area 6

Area 7 (reserved area)

Figure 7.5 Physical Address Space

Rev. 1.50, 10/04, page 120 of 448

Address Translation: When the MMU is used, the virtual address space is divided into units
called pages, and translation to physical addresses is carried out in these page units. The address
translation table in external memory contains the physical addresses corresponding to virtual
addresses and additional information such as memory protection codes. Fast address translation is
achieved by caching the contents of the address translation table located in external memory into
the TLB. In the SH-4A, basically, the ITLB is used for instruction accesses and the UTLB for data
accesses. In the event of an access to an area other than the P4 area, the accessed virtual address is
translated to a physical address. If the virtual address belongs to the P1 or P2 area, the physical
address is uniquely determined without accessing the TLB. If the virtual address belongs to the P0,
U0, or P3 area, the TLB is searched using the virtual address, and if the virtual address is recorded
in the TLB, a TLB hit is made and the corresponding physical address is read from the TLB. If the
accessed virtual address is not recorded in the TLB, a TLB miss exception is generated and
processing switches to the TLB miss exception handling routine. In the TLB miss exception
handling routine, the address translation table in external memory is searched, and the
corresponding physical address and page management information are recorded in the TLB. After
the return from the exception handling routine, the instruction which caused the TLB miss
exception is re-executed.

Single Virtual Memory Mode and Multiple Virtual Memory Mode: There are two virtual
memory systems, single virtual memory and multiple virtual memory, either of which can be
selected with the SV bit in MMUCR. In the single virtual memory system, a number of processes
run simultaneously, using virtual address space on an exclusive basis, and the physical address
corresponding to a particular virtual address is uniquely determined. In the multiple virtual
memory system, a number of processes run while sharing the virtual address space, and particular
virtual addresses may be translated into different physical addresses depending on the process.
The only difference between the single virtual memory and multiple virtual memory systems in
terms of operation is in the TLB address comparison method (see section 7.3.3, Address
Translation Method).

Address Space Identifier (ASID): In multiple virtual memory mode, an 8-bit address space
identifier (ASID) is used to distinguish between multiple processes running simultaneously while
sharing the virtual address space. Software can set the 8-bit ASID of the currently executing
process in PTEH in the MMU. The TLB does not have to be purged when processes are switched
by means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for multiple processes
running simultaneously while using the virtual address space on an exclusive basis.

Note: Two or more entries with the same virtual page number (VPN) but different ASID must
not be set in the TLB simultaneously in single virtual memory mode.

Rev. 1.50, 10/04, page 121 of 448

7.2 Register Descriptions

The following registers are related to MMU processing.

Table 7.1 Register Configuration

Register Name Abbreviation R/W P4 Address*
Area 7
Address* Size

Page table entry high register PTEH R/W H'FF00 0000 H'1F00 0000 32

Page table entry low register PTEL R/W H'FF00 0004 H'1F00 0004 32

Translation table base register TTB R/W H'FF00 0008 H'1F00 0008 32

TLB exception address register TEA R/W H'FF00 000C H'1F00 000C 32

MMU control register MMUCR R/W H'FF00 0010 H'1F00 0010 32

Physical address space control
register

PASCR R/W H'FF00 0070 H'1F00 0070 32

Instruction re-fetch inhibit control
register

IRMCR R/W H'FF00 0078 H'1F00 0078 32

Note: * These P4 addresses are for the P4 area in the virtual address space. These area 7
addresses are accessed from area 7 in the physical address space by means of the
TLB.

Table 7.2 Register States in Each Processing State

Register Name Abbreviation
Power-on
Reset

Manual
Reset Sleep Standby

Page table entry high register PTEH Undefined Undefined Retained Retained

Page table entry low register PTEL Undefined Undefined Retained Retained

Translation table base register TTB Undefined Undefined Retained Retained

TLB exception address register TEA Undefined Retained Retained Retained

MMU control register MMUCR H'0000 0000 H'0000 0000 Retained Retained

Physical address space control
register

PASCR H'0000 0000 H'0000 0000 Retained Retained

Instruction re-fetch inhibit control
register

IRMCR H'0000 0000 H'0000 0000 Retained Retained

Rev. 1.50, 10/04, page 122 of 448

7.2.1 Page Table Entry High Register (PTEH)

PTEH consists of the virtual page number (VPN) and address space identifier (ASID). When an
MMU exception or address error exception occurs, the VPN of the virtual address at which the
exception occurred is set in the VPN bit by hardware. VPN varies according to the page size, but
the VPN set by hardware when an exception occurs consists of the upper 22 bits of the virtual
address which caused the exception. VPN setting can also be carried out by software. The number
of the currently executing process is set in the ASID bit by software. ASID is not updated by
hardware. VPN and ASID are recorded in the UTLB by means of the LDTLB instruction.

After the ASID field in PTEH has been updated, execute one of the following three methods
before an access (including an instruction fetch) to the P0, P3, or U0 area that uses the updated
ASID value is performed.

1. Execute a branch using the RTE instruction. In this case, the branch destination may be the P0,
P3, or U0 area.

2. Execute the ICBI instruction for any address (including non-cacheable area).

3. If the R2 bit in IRMCR is 0 (initial value) before updating the ASID field, the specific
instruction does not need to be executed. However, note that the CPU processing performance
will be lowered because the instruction fetch is performed again for the next instruction after
the ASID field has been updated.

Note that the method 3 may not be guaranteed in the future SuperH Series. Therefore, it is
recommended that the method 1 or 2 should be used for being compatible with the future SuperH
Series.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ASIDVPN

VPN

Bit:

Initial value:

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0
R/W R/W R/W R/W R/W R/W R R R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Bit Bit Name
Initial
Value R/W Description

31 to 10 VPN  R/W Virtual Page Number

9, 8  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

7 to 0 ASID  R/W Address Space Identifier

Rev. 1.50, 10/04, page 123 of 448

7.2.2 Page Table Entry Low Register (PTEL)

PTEL is used to hold the physical page number and page management information to be recorded
in the UTLB by means of the LDTLB instruction. The contents of this register are not changed
unless a software directive is issued.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

0 0 0

0

Initial value:

R R R R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W

PPN

PPN V SZ1 PR1 PR0 SZ0 C D SH WT

R/W R/W R/W R/W R/W

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R R/WR/W R/W R/W R/WR/W R/W

Bit Bit Name
Initial
Value R/W Description

31 to 29  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

28 to 10 PPN  R/W Physical Page Number

9  0 R Reserved

For details on reading from or writing to this bit, see
description in General Precautions on Handling of
Product.

8 V  R/W

7 SZ1  R/W

6 PR1  R/W

5 PR0  R/W

4 SZ0  R/W

3 C  R/W

2 D  R/W

1 SH  R/W

0 WT  R/W

Page Management Information

The meaning of each bit is same as that of
corresponding bit in Common TLB (UTLB).

For details, see section 7.3, TLB Functions.

Rev. 1.50, 10/04, page 124 of 448

7.2.3 Translation Table Base Register (TTB)

TTB is used to store the base address of the currently used page table, and so on. The contents of
TTB are not changed unless a software directive is issued. This register can be used freely by
software.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

Initial value:

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W

TTB

TTB

R/W R/W R/W R/W R/W

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R/WR/WR/W R/W R/W R/WR/W R/W

7.2.4 TLB Exception Address Register (TEA)

After an MMU exception or address error exception occurs, the virtual address at which the
exception occurred is stored. The contents of this register can be changed by software.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

         

   
      

Bit:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Initial value:
R R R R R R R R R R R R R R R R

R R R

TC SA2 SA1 SA0

R R/W R/W R/W R/W

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0
R R R R R R R R

Rev. 1.50, 10/04, page 125 of 448

7.2.5 MMU Control Register (MMUCR)

The individual bits perform MMU settings as shown below. Therefore, MMUCR rewriting should
be performed by a program in the P1 or P2 area.

After MMUCR has been updated, execute one of the following three methods before an access
(including an instruction fetch) to the P0, P3, U0, or store queue area is performed.

1. Execute a branch using the RTE instruction. In this case, the branch destination may be the P0,
P3, or U0 area.

2. Execute the ICBI instruction for any address (including non-cacheable area).

3. If the R2 bit in IRMCR is 0 (initial value) before updating MMUCR, the specific instruction
does not need to be executed. However, note that the CPU processing performance will be
lowered because the instruction fetch is performed again for the next instruction after
MMUCR has been updated.

Note that the method 3 may not be guaranteed in the future SuperH Series. Therefore, it is
recommended that the method 1 or 2 should be used for being compatible with the future SuperH
Series.

MMUCR contents can be changed by software. However, the LRUI and URC bits may also be
updated by hardware.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Initial value:
R/W R/W R/W R/W R/W R/W R R R/W R/W R/W R/W R/W R/W R R

R R R

TI

URBLRUI

URC SQMD SV AT

R R R/W R R/W

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R/W R/W R/W R/W R/W R/W R/W R/W

Rev. 1.50, 10/04, page 126 of 448

Bit Bit Name Initial Value R/W Description

31 to 26 LRUI All 0 R/W Least Recently Used ITLB

These bits indicate the ITLB entry to be replaced.
The LRU (least recently used) method is used to
decide the ITLB entry to be replaced in the event
of an ITLB miss. The entry to be purged from the
ITLB can be confirmed using the LRUI bits.
LRUI is updated by means of the algorithm
shown below. x means that updating is not
performed.

000xxx: ITLB entry 0 is used
1xx00x: ITLB entry 1 is used
x1x1x0: ITLB entry 2 is used
xx1x11: ITLB entry 3 is used
xxxxxx: Other than above

When the LRUI bit settings are as shown below,
the corresponding ITLB entry is updated by an
ITLB miss. Ensure that values for which "Setting
prohibited" is indicated below are not set at the
discretion of software. After a power-on or
manual reset, the LRUI bits are initialized to 0,
and therefore a prohibited setting is never made
by a hardware update.
x means "don't care".

111xxx: ITLB entry 0 is updated
0xx11x: ITLB entry 1 is updated
x0x0x1: ITLB entry 2 is updated
xx0x00: ITLB entry 3 is updated

Other than above: Setting prohibited

25, 24  All 0 R Reserved

For details on reading from or writing to these
bits, see description in General Precautions on
Handling of Product.

23 to 18 URB All 0 R/W UTLB Replace Boundary

These bits indicate the UTLB entry boundary at
which replacement is to be performed. Valid only
when URB ≠ 0.

17, 16  All 0 R Reserved

For details on reading from or writing to these
bits, see description in General Precautions on
Handling of Product.

Rev. 1.50, 10/04, page 127 of 448

Bit Bit Name
Initial
Value R/W Description

15 to 10 URC All 0 R/W UTLB Replace Counter

These bits serve as a random counter for indicating the
UTLB entry for which replacement is to be performed
with an LDTLB instruction. This bit is incremented each
time the UTLB is accessed. If URB > 0, URC is cleared
to 0 when the condition URC = URB is satisfied. Also
note that if a value is written to URC by software which
results in the condition of URC ≥ URB, incrementing is
first performed in excess of URB until URC = H'3F.
URC is not incremented by an LDTLB instruction.

9 SQMD 0 R/W Store Queue Mode Bit

Specifies the right of access to the store queues.

0: User/privileged access possible

1: Privileged access possible (address error exception
in case of user access)

8 SV 0 R/W Single Virtual Memory Mode/Multiple Virtual Memory
Mode Switching Bit

When this bit is changed, ensure that 1 is also written to
the TI bit.

0: Multiple virtual memory mode
1: Single virtual memory mode

7 to 3  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

2 TI 0 R/W TLB Invalidate Bit

Writing 1 to this bit invalidates (clears to 0) all valid
UTLB/ITLB bits. This bit is always read as 0.

1  0 R Reserved

For details on reading from or writing to this bit, see
description in General Precautions on Handling of
Product.

0 AT 0 R/W Address Translation Enable Bit

These bits enable or disable the MMU.

0: MMU disabled
1: MMU enabled

MMU exceptions are not generated when the AT bit is
0. In the case of software that does not use the MMU,
the AT bit should be cleared to 0.

Rev. 1.50, 10/04, page 128 of 448

7.2.6 Physical Address Space Control Register (PASCR)

PASCR controls the operation in the physical address space.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

Initial value:
R R R R R R R R R R R R R R R R

R/W

UB

R/W R/W R/W R/W R/W R/W R/W

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 00 0
R R R R R R R R

Bit Bit Name
Initial
Value R/W Description

31 to 8  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

7 to 0 UB All 0 R/W Buffered Write Control for Each Area (64 Mbytes)

When writing is performed without using the cache or in
the cache write-through mode, these bits specify
whether the next bus access from the CPU waits for the
end of writing for each area.

0 : The CPU does not wait for the end of writing bus
access and starts the next bus access

1 : The CPU waits for the end of writing bus access and
starts the next bus access

UB[7]: Corresponding to the control register area

UB[6]: Corresponding to area 6

UB[5]: Corresponding to area 5

UB[4]: Corresponding to area 4

UB[3]: Corresponding to area 3

UB[2]: Corresponding to area 2

UB[1]: Corresponding to area 1

UB[0]: Corresponding to area 0

Rev. 1.50, 10/04, page 129 of 448

7.2.7 Instruction Re-Fetch Inhibit Control Register (IRMCR)

When the specific resource is changed, IRMCR controls whether the instruction fetch is
performed again for the next instruction. The specific resource means the part of control registers,
TLB, and cache.

In the initial state, the instruction fetch is performed again for the next instruction after changing
the resource. However, the CPU processing performance will be lowered because the instruction
fetch is performed again for the next instruction every time the resource is changed. Therefore, it
is recommended that each bit in IRMCR is set to 1 and the specific instruction should be executed
after all necessary resources have been changed prior to execution of the program which uses
changed resources.

For details on the specific sequence, see descriptions in each resource.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

Initial value:
R R R R R R R R R R R R R R R R

R

R2 R1 LT MT MC

R R R/W R/W R/W R/W R/W

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 00 0
R R R R R R R R

Bit Bit Name
Initial
Value R/W Description

31 to 5  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

4 R2 0 R/W Re-Fetch Inhibit 2 after Register Change

When MMUCR, PASCR, CCR, PTEH, or RAMCR is
changed, this bit controls whether re-fetch is performed
for the next instruction.

0: Re-fetch is performed

1: Re-fetch is not performed

3 R1 0 R/W Re-Fetch Inhibit 1 after Register Change

When a register allocated in addresses H'FF200000 to
H'FF2FFFFF is changed, this bit controls whether re-
fetch is performed for the next instruction.

0: Re-fetch is performed

1: Re-fetch is not performed

Rev. 1.50, 10/04, page 130 of 448

Bit Bit Name
Initial
Value R/W Description

2 LT 0 R/W Re-Fetch Inhibit after LDTLB Execution

This bit controls whether re-fetch is performed for the
next instruction after the LDTLB instruction has been
executed.

0: Re-fetch is performed

1: Re-fetch is not performed

1 MT 0 R/W Re-Fetch Inhibit after Writing Memory-Mapped TLB

This bit controls whether re-fetch is performed for the
next instruction after writing memory-mapped
ITLB/UTLB while the AT bit in MMUCR is set to 1.

0: Re-fetch is performed

1: Re-fetch is not performed

0 MC 0 R/W Re-Fetch Inhibit after Writing Memory-Mapped IC

This bit controls whether re-fetch is performed for the
next instruction after writing memory-mapped IC while
the ICE bit in CCR is set to 1.

0: Re-fetch is performed

1: Re-fetch is not performed

Rev. 1.50, 10/04, page 131 of 448

7.3 TLB Functions

7.3.1 Unified TLB (UTLB) Configuration

The UTLB is used for the following two purposes:

1. To translate a virtual address to a physical address in a data access

2. As a table of address translation information to be recorded in the ITLB in the event of an
ITLB miss

The UTLB is so called because of its use for the above two purposes. Information in the address
translation table located in external memory is cached into the UTLB. The address translation
table contains virtual page numbers and address space identifiers, and corresponding physical page
numbers and page management information. Figure 7.6 shows the UTLB configuration. The
UTLB consists of 64 fully-associative type entries. Figure 7.7 shows the relationship between the
page size and address format.

PPN[28:10]

PPN[28:10]

PPN[28:10]

SZ[1:0]

SZ[1:0]

SZ[1:0]

SH

SH

SH

C

C

C

PR[1:0]

PR[1:0]

PR [1:0]

ASID[7:0]

ASID[7:0]

ASID[7:0]

VPN[31:10]

VPN[31:10]

VPN[31:10]

V

V

V

Entry 0

Entry 1

Entry 2

D

D

D

WT

WT

WT

PPN[28:10] SZ[1:0] SH C PR[1:0]ASID[7:0] VPN[31:10] VEntry 63 D WT

Figure 7.6 UTLB Configuration

[Legend]

• VPN: Virtual page number

For 1-Kbyte page: Upper 22 bits of virtual address

For 4-Kbyte page: Upper 20 bits of virtual address

For 64-Kbyte page: Upper 16 bits of virtual address

For 1-Mbyte page: Upper 12 bits of virtual address

• ASID: Address space identifier

Indicates the process that can access a virtual page.

In single virtual memory mode and user mode, or in multiple virtual memory mode, if the SH
bit is 0, this identifier is compared with the ASID in PTEH when address comparison is
performed.

Rev. 1.50, 10/04, page 132 of 448

• SH: Share status bit

When 0, pages are not shared by processes.

When 1, pages are shared by processes.

• SZ[1:0]: Page size bits

Specify the page size.

00: 1-Kbyte page

01: 4-Kbyte page

10: 64-Kbyte page

11: 1-Mbyte page

• V: Validity bit

Indicates whether the entry is valid.

0: Invalid

1: Valid

Cleared to 0 by a power-on reset.

Not affected by a manual reset.

• PPN: Physical page number

Upper 22 bits of the physical address of the physical page number.

With a 1-Kbyte page, PPN[28:10] are valid.

With a 4-Kbyte page, PPN[28:12] are valid.

With a 64-Kbyte page, PPN[28:16] are valid.

With a 1-Mbyte page, PPN[28:20] are valid.

The synonym problem must be taken into account when setting the PPN (see section 7.4.5,
Avoiding Synonym Problems).

• PR[1:0]: Protection key data

2-bit data expressing the page access right as a code.

00: Can be read from only in privileged mode

01: Can be read from and written to in privileged mode

10: Can be read from only in privileged or user mode

11: Can be read from and written to in privileged mode or user mode

• C: Cacheability bit

Indicates whether a page is cacheable.

0: Not cacheable

1: Cacheable

When the control register area is mapped, this bit must be cleared to 0.

Rev. 1.50, 10/04, page 133 of 448

• D: Dirty bit

Indicates whether a write has been performed to a page.

0: Write has not been performed

1: Write has been performed

• WT: Write-through bit

Specifies the cache write mode.

0: Copy-back mode

1: Write-through mode

31

• 1-Kbyte page

10 9 0
Virtual address

31

• 4-Kbyte page

12 11 0
Virtual address

31

• 64-Kbyte page

16 15 0
Virtual address

31

• 1-Mbyte page

20 19 0
Virtual address

VPN Offset

VPN Offset

VPN Offset

VPN Offset

28 10 9 0
Physical address

28 12 11 0
Physical address

28 16 15 0
Physical address

28 20 19 0
Physical address

PPN Offset

PPN Offset

PPN Offset

PPN Offset

Figure 7.7 Relationship between Page Size and Address Format

7.3.2 Instruction TLB (ITLB) Configuration

The ITLB is used to translate a virtual address to a physical address in an instruction access.
Information in the address translation table located in the UTLB is cached into the ITLB. Figure
7.8 shows the ITLB configuration. The ITLB consists of four fully-associative type entries.

PPN[28:10]

PPN[28:10]

PPN[28:10]

PPN[28:10]

SZ[1:0]

SZ[1:0]

SZ[1:0]

SZ[1:0]

SH

SH

SH

SH

C

C

C

C

PR

PR

PR

PR

ASID[7:0]

ASID[7:0]

ASID[7:0]

ASID[7:0]

VPN[31:10]

VPN[31:10]

VPN[31:10]

VPN[31:10]

V

V

V

V

Entry 0

Entry 1

Entry 2

Entry 3

Notes: 1. The D and WT bits are not supported.
2. There is only one PR bit, corresponding to the upper bit of the PR bits in the UTLB.

Figure 7.8 ITLB Configuration

Rev. 1.50, 10/04, page 134 of 448

7.3.3 Address Translation Method

Figure 7.9 shows a flowchart of a memory access using the UTLB.

SR.MD?

R/W?R/W?

Yes

Yes

No

No

No

Yes

Yes

Yes

No

PR? PR?

D?

R/W?
WWW

RRR R

W
R/W?

WT?

1

1

0

0

00 or
01

10 11 01 or 11 00 or 10

Yes
No

Internal resource access

1
0

CCR.OCE?

1
0

CCR.CB?

1

0

CCR.WT?

1
0

CCR.OCE?

No

Data access to virtual address (VA)

VA is
in P4 area

VA is
in P2 area

VA is
in P1 area

VA is in P0, U0,
or P3 area

MMUCR.AT = 1

SH = 0
and (MMUCR.SV = 0 or

SR.MD = 0)

VPNs match,
ASIDs match, and

V = 1

Only one
entry matches

1 (Privileged)

Data TLB multiple
hit exception

Data TLB protection
violation exception

Data TLB miss
exception

0 (User)

VPNs match
and V = 1

Data TLB protection
violation exception

Initial page write
exception

Cache access
in copy-back mode

Cache access
in write-through mode

Memory access
(Non-cacheable)

C = 1 and
CCR.OCE = 1

Figure 7.9 Flowchart of Memory Access Using UTLB

Rev. 1.50, 10/04, page 135 of 448

Figure 7.10 shows a flowchart of a memory access using the ITLB.

Yes

Yes

No

No

No

Yes

Yes

Yes
No

Internal resource access

1

0

1
0

CCR.ICE?

Yes

No

NoYes

No

Instruction access to virtual address (VA)

VA is
in P4 area

VA is
in P2 area

VA is
in P1 area

VA is in P0, U0,
or P3 area

MMUCR.AT = 1

SH = 0
and (MMUCR.SV = 0 or

SR.MD = 0)

VPNs match
and V = 1

VPNs match,
ASIDs match, and

V = 1

Only one
entry matches

SR.MD?

Instruction TLB
multiple hit exception

0 (User)
1 (Privileged)

PR?

C = 1
and CCR.ICE = 1

Cache accessMemory access
(Non-cacheable)

 Instruction TLB protection
violation exception

Instruction TLB
miss exception

Hardware ITLB
miss handling Search UTLB

Match?Record in ITLB

Figure 7.10 Flowchart of Memory Access Using ITLB

Rev. 1.50, 10/04, page 136 of 448

7.4 MMU Functions

7.4.1 MMU Hardware Management

The SH-4A supports the following MMU functions.

1. The MMU decodes the virtual address to be accessed by software, and performs address
translation by controlling the UTLB/ITLB in accordance with the MMUCR settings.

2. The MMU determines the cache access status on the basis of the page management
information read during address translation (C and WT bits).

3. If address translation cannot be performed normally in a data access or instruction access, the
MMU notifies software by means of an MMU exception.

4. If address translation information is not recorded in the ITLB in an instruction access, the
MMU searches the UTLB. If the necessary address translation information is recorded in the
UTLB, the MMU copies this information into the ITLB in accordance with the LRUI bit
setting in MMUCR.

7.4.2 MMU Software Management

Software processing for the MMU consists of the following:

1. Setting of MMU-related registers. Some registers are also partially updated by hardware
automatically.

2. Recording, deletion, and reading of TLB entries. There are two methods of recording UTLB
entries: by using the LDTLB instruction, or by writing directly to the memory-mapped UTLB.
ITLB entries can only be recorded by writing directly to the memory-mapped ITLB. Deleting
or reading UTLB/ITLB entries is enabled by accessing the memory-mapped UTLB/ITLB.

3. MMU exception handling. When an MMU exception occurs, processing is performed based on
information set by hardware.

Rev. 1.50, 10/04, page 137 of 448

7.4.3 MMU Instruction (LDTLB)

A TLB load instruction (LDTLB) is provided for recording UTLB entries. When an LDTLB
instruction is issued, the SH-4A copies the contents of PTEH and PTEL to the UTLB entry
indicated by the URC bit in MMUCR. ITLB entries are not updated by the LDTLB instruction,
and therefore address translation information purged from the UTLB entry may still remain in the
ITLB entry. As the LDTLB instruction changes address translation information, ensure that it is
issued by a program in the P1 or P2 area.

After the LDTLB instruction has been executed, execute one of the following three methods
before an access (include an instruction fetch) the area where TLB is used to translate the address
is performed.

1. Execute a branch using the RTE instruction. In this case, the branch destination may be the
area where TLB is used to translate the address.

2. Execute the ICBI instruction for any address (including non-cacheable area).

3. If the LT bit in IRMCR is 0 (initial value) before executing the LDTLB instruction, the
specific instruction does not need to be executed. However, note that the CPU processing
performance will be lowered because the instruction fetch is performed again for the next
instruction after MMUCR has been updated.

Note that the method 3 may not be guaranteed in the future SuperH Series. Therefore, it is
recommended that the method 1 or 2 should be used for being compatible with the future SuperH
Series.

Rev. 1.50, 10/04, page 138 of 448

The operation of the LDTLB instruction is shown in figure 7.11.

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

C

C

C

PR [1:0]

PR [1:0]

PR [1:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

Entry 0

Entry 1

Entry 2

D

D

D

WT

WT

WT

PPN [28:10] SZ [1:0] SH C PR [1:0]ASID [7:0] VPN [31:10] VEntry 63 D WT

31 2928 9 8 7 6 5 4 3 2 1 0

— — V SZ1 PR[1:0] SZ0 C D SH WT

PTEL

Write

UTLB

31 10 9 8 7 0

— ASID

PTEH

31 26252423 18171615 10 9 8 7 3 2 1 0

LRUI — URB — URC SV — TI — AT

MMUCR

VPN

10

PPN

Entry specification SQMD

Figure 7.11 Operation of LDTLB Instruction

Rev. 1.50, 10/04, page 139 of 448

7.4.4 Hardware ITLB Miss Handling

In an instruction access, the SH-4A searches the ITLB. If it cannot find the necessary address
translation information (ITLB miss occurred), the UTLB is searched by hardware, and if the
necessary address translation information is present, it is recorded in the ITLB. This procedure is
known as hardware ITLB miss handling. If the necessary address translation information is not
found in the UTLB search, an instruction TLB miss exception is generated and processing passes
to software.

7.4.5 Avoiding Synonym Problems

When 1- or 4-Kbyte pages are recorded in TLB entries, a synonym problem may arise. The
problem is that, when a number of virtual addresses are mapped onto a single physical address, the
same physical address data is recorded in a number of cache entries, and it becomes impossible to
guarantee data integrity. This problem does not occur with the instruction TLB and instruction
cache because data is only read in these cases. In this LSI, entry specification is performed using
bits 12 to 5 of the virtual address in order to achieve fast operand cache operation. However, bits
12 to 10 of the virtual address in the case of a 1-Kbyte page, and bit 12 of the virtual address in the
case of a 4-Kbyte page, are subject to address translation. As a result, bits 12 to 10 of the physical
address after translation may differ from bits 12 to 10 of the virtual address.

Consequently, the following restrictions apply to the recording of address translation information
in UTLB entries.

• When address translation information whereby a number of 1-Kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN[12:10]
values are the same.

• When address translation information whereby a number of 4-Kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN[12]
value is the same.

• Do not use 1-Kbyte page UTLB entry physical addresses with UTLB entries of a different
page size.

• Do not use 4-Kbyte page UTLB entry physical addresses with UTLB entries of a different
page size.

The above restrictions apply only when performing accesses using the cache.

Note: When multiple items of address translation information use the same physical memory to
provide for future expansion of the SuperH RISC engine family, ensure that the
VPN[20:10] values are the same. Also, do not use the same physical address for address
translation information of different page sizes.

Rev. 1.50, 10/04, page 140 of 448

7.5 MMU Exceptions

There are seven MMU exceptions: instruction TLB multiple hit exception, instruction TLB miss
exception, instruction TLB protection violation exception, data TLB multiple hit exception, data
TLB miss exception, data TLB protection violation exception, and initial page write exception.
Refer to figures 7.9 and 7.10 for the conditions under which each of these exceptions occurs.

7.5.1 Instruction TLB Multiple Hit Exception

An instruction TLB multiple hit exception occurs when more than one ITLB entry matches the
virtual address to which an instruction access has been made. If multiple hits occur when the
UTLB is searched by hardware in hardware ITLB miss handling, an instruction TLB multiple hit
exception will result.

When an instruction TLB multiple hit exception occurs, a reset is executed and cache coherency is
not guaranteed.

Hardware Processing: In the event of an instruction TLB multiple hit exception, hardware
carries out the following processing:

1. Sets the virtual address at which the exception occurred in TEA.

2. Sets exception code H'140 in EXPEVT.

3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The ITLB entries which caused the multiple hit exception
are checked in the reset handling routine. This exception is intended for use in program
debugging, and should not normally be generated.

Rev. 1.50, 10/04, page 141 of 448

7.5.2 Instruction TLB Miss Exception

An instruction TLB miss exception occurs when address translation information for the virtual
address to which an instruction access is made is not found in the UTLB entries by the hardware
ITLB miss handling routine. The instruction TLB miss exception processing carried out by
hardware and software is shown below. This is the same as the processing for a data TLB miss
exception.

Hardware Processing: In the event of an instruction TLB miss exception, hardware carries out
the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the instruction TLB miss exception handling routine.

Software Processing (Instruction TLB Miss Exception Handling Routine): Software is
responsible for searching the external memory page table and assigning the necessary page table
entry. Software should carry out the following processing in order to find and assign the necessary
page table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table.

2. When the entry to be replaced in entry replacement is specified by software, write that value to
the URC bits in MMUCR. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH and PTEL to the TLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

Rev. 1.50, 10/04, page 142 of 448

7.5.3 Instruction TLB Protection Violation Exception

An instruction TLB protection violation exception occurs when, even though an ITLB entry
contains address translation information matching the virtual address to which an instruction
access is made, the actual access type is not permitted by the access right specified by the PR bit.
The instruction TLB protection violation exception processing carried out by hardware and
software is shown below.

Hardware Processing: In the event of an instruction TLB protection violation exception,
hardware carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0A0 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the instruction TLB protection violation exception handling routine.

Software Processing (Instruction TLB Protection Violation Exception Handling Routine):
Resolve the instruction TLB protection violation, execute the exception handling return instruction
(RTE), terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

Rev. 1.50, 10/04, page 143 of 448

7.5.4 Data TLB Multiple Hit Exception

A data TLB multiple hit exception occurs when more than one UTLB entry matches the virtual
address to which a data access has been made.

When a data TLB multiple hit exception occurs, a reset is executed, and cache coherency is not
guaranteed. The contents of PPN in the UTLB prior to the exception may also be corrupted.

Hardware Processing: In the event of a data TLB multiple hit exception, hardware carries out the
following processing:

1. Sets the virtual address at which the exception occurred in TEA.

2. Sets exception code H'140 in EXPEVT.

3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The UTLB entries which caused the multiple hit
exception are checked in the reset handling routine. This exception is intended for use in program
debugging, and should not normally be generated.

7.5.5 Data TLB Miss Exception

A data TLB miss exception occurs when address translation information for the virtual address to
which a data access is made is not found in the UTLB entries. The data TLB miss exception
processing carried out by hardware and software is shown below.

Hardware Processing: In the event of a data TLB miss exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in the case of a read, or H'060 in the case of a write in EXPEVT
(OCBP, OCBWB: read; OCBI, MOVCA.L: write).

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the data TLB miss exception handling routine.

Rev. 1.50, 10/04, page 144 of 448

Software Processing (Data TLB Miss Exception Handling Routine): Software is responsible
for searching the external memory page table and assigning the necessary page table entry.
Software should carry out the following processing in order to find and assign the necessary page
table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table.

2. When the entry to be replaced in entry replacement is specified by software, write that value to
the URC bits in MMUCR. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH and PTEL to the UTLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

7.5.6 Data TLB Protection Violation Exception

A data TLB protection violation exception occurs when, even though a UTLB entry contains
address translation information matching the virtual address to which a data access is made, the
actual access type is not permitted by the access right specified by the PR bit. The data TLB
protection violation exception processing carried out by hardware and software is shown below.

Hardware Processing: In the event of a data TLB protection violation exception, hardware
carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0A0 in the case of a read, or H'0C0 in the case of a write in EXPEVT
(OCBP, OCBWB: read; OCBI, MOVCA.L: write).

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the data TLB protection violation exception handling routine.

Rev. 1.50, 10/04, page 145 of 448

Software Processing (Data TLB Protection Violation Exception Handling Routine): Resolve
the data TLB protection violation, execute the exception handling return instruction (RTE),
terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

7.5.7 Initial Page Write Exception

An initial page write exception occurs when the D bit is 0 even though a UTLB entry contains
address translation information matching the virtual address to which a data access (write) is
made, and the access is permitted. The initial page write exception processing carried out by
hardware and software is shown below.

Hardware Processing: In the event of an initial page write exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'080 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the initial page write exception handling routine.

Software Processing (Initial Page Write Exception Handling Routine): Software is responsible
for the following processing:

1. Retrieve the necessary page table entry from external memory.

2. Write 1 to the D bit in the external memory page table entry.

3. Write to PTEL the values of the PPN, PR, SZ, C, D, WT, SH, and V bits in the page table
entry recorded in external memory.

4. When the entry to be replaced in entry replacement is specified by software, write that value to
the URC bits in MMUCR. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

5. Execute the LDTLB instruction and write the contents of PTEH and PTEL to the UTLB.

Rev. 1.50, 10/04, page 146 of 448

6. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

7.6 Memory-Mapped TLB Configuration

To enable the ITLB and UTLB to be managed by software, their contents are allowed to be read
from and written to by a program in the P2 area with a MOV instruction in privileged mode.
Operation is not guaranteed if access is made from a program in another area.

After the memory-mapped TLB has been accessed, execute one of the following three methods
before an access (including an instruction fetch) to an area other than the P2 area is performed.

1. Execute a branch using the RTE instruction. In this case, the branch destination may be an area
other than the P2 area.

2. Execute the ICBI instruction for any address (including non-cacheable area).

3. If the MT bit in IRMCR is 0 (initial value) before accessing the memory-mapped TLB, the
specific instruction does not need to be executed. However, note that the CPU processing
performance will be lowered because the instruction fetch is performed again for the next
instruction after MMUCR has been updated.

Note that the method 3 may not be guaranteed in the future SuperH Series. Therefore, it is
recommended that the method 1 or 2 should be used for being compatible with the future SuperH
Series.

The ITLB and UTLB are allocated to the P4 area in the virtual address space. VPN, V, and ASID
in the ITLB can be accessed as an address array, PPN, V, SZ, PR, C, and SH as a data array. VPN,
D, V, and ASID in the UTLB can be accessed as an address array, PPN, V, SZ, PR, C, D, WT, and
SH as a data array. V and D can be accessed from both the address array side and the data array
side. Only longword access is possible. Instruction fetches cannot be performed in these areas. For
reserved bits, a write value of 0 should be specified; their read value is undefined.

Rev. 1.50, 10/04, page 147 of 448

7.6.1 ITLB Address Array

The ITLB address array is allocated to addresses H'F200 0000 to H'F2FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and VPN, V, and ASID to be written to the address array are
specified in the data field.

In the address field, bits [31:24] have the value H'F2 indicating the ITLB address array and the
entry is specified by bits [9:8]. As only longword access is used, 0 should be specified for address
field bits [1:0].

In the data field, bits [31:10] indicate VPN, bit [8] indicates V, and bits [7:0] indicate ASID.

The following two kinds of operation can be used on the ITLB address array:

1. ITLB address array read

VPN, V, and ASID are read into the data field from the ITLB entry corresponding to the entry
set in the address field.

2. ITLB address array write

VPN, V, and ASID specified in the data field are written to the ITLB entry corresponding to
the entry set in the address field.

Address field
31 23 0

1 1 1 1 0 0 0 01 0 E

Data field
31 10 9 0

VVPN

VPN:
V:
 E:
*:

24

Virtual page number
Validity bit
Entry
Don't care

10 9 8 7 2 1

9 8 7

ASID

ASID:
:

Address space identifier
Reserved bits (write value should be 0,
and read value is undefined)

* * * * * * * * * * * * * * * * * * *

Figure 7.12 Memory-Mapped ITLB Address Array

Rev. 1.50, 10/04, page 148 of 448

7.6.2 ITLB Data Array

The ITLB data array is allocated to addresses H'F300 0000 to H'F37F FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, and SH to be written to the data array are
specified in the data field.

In the address field, bits [31:23] have the value H'F30 indicating ITLB data array and the entry is
specified by bits [9:8].

In the data field, bits [28:10] indicate PPN, bit [8] indicates V, bits [7] and [4] indicate SZ, bit [6]
indicates PR, bit [3] indicates C, and bit [1] indicates SH.

The following two kinds of operation can be used on ITLB data array:

1. ITLB data array read

PPN, V, SZ, PR, C, and SH are read into the data field from the ITLB entry corresponding to
the entry set in the address field.

2. ITLB data array write

PPN, V, SZ, PR, C, and SH specified in the data field are written to the ITLB entry
corresponding to the entry set in the address field.

Address field
31 23 0

1 1 1 1 0 0 0 001 1 E

Data field

PPN:
V:
E:

SZ[1:0]:
*:

24

Physical page number
Validity bit
Entry
Page size bits
Don't care

10 9 8 7 2 1

PR:
C:

SH:
:

Protection key data
Cacheability bit
Share status bit
Reserved bits (write value should be 0,
and read value is undefined)

31 2 1 0

V

10 9 8 730 29 28 4 36 5

SZ1 SZ0
SHPR

CPPN

* * * * * * * * * * * * * * * * * *

Figure 7.13 Memory-Mapped ITLB Data Array

Rev. 1.50, 10/04, page 149 of 448

7.6.3 UTLB Address Array

The UTLB address array is allocated to addresses H'F600 0000 to H'F60F FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and VPN, D, V, and ASID to be written to the address array are
specified in the data field.

In the address field, bits [31:20] have the value H'F60 indicating the UTLB address array and the
entry is specified by bits [13:8]. Bit [7] that is the association bit (A bit) in the address field
specifies whether address comparison is performed in a write to the UTLB address array.

In the data field, bits [31:10] indicate VPN, bit [9] indicates D, bit [8] indicates V, and bits [7:0]
indicate ASID.

The following three kinds of operation can be used on the UTLB address array:

1. UTLB address array read

VPN, D, V, and ASID are read into the data field from the UTLB entry corresponding to the
entry set in the address field. In a read, associative operation is not performed regardless of
whether the association bit specified in the address field is 1 or 0.

2. UTLB address array write (non-associative)

VPN, D, V, and ASID specified in the data field are written to the UTLB entry corresponding
to the entry set in the address field. The A bit in the address field should be cleared to 0.

3. UTLB address array write (associative)

When a write is performed with the A bit in the address field set to 1, comparison of all the
UTLB entries is carried out using the VPN specified in the data field and ASID in PTEH. The
usual address comparison rules are followed, but if a UTLB miss occurs, the result is no
operation, and an exception is not generated. If the comparison identifies a UTLB entry
corresponding to the VPN specified in the data field, D and V specified in the data field are
written to that entry. This associative operation is simultaneously carried out on the ITLB, and
if a matching entry is found in the ITLB, V is written to that entry. Even if the UTLB
comparison results in no operation, a write to the ITLB is performed as long as a matching
entry is found in the ITLB. If there is a match in both the UTLB and ITLB, the UTLB
information is also written to the ITLB.

Rev. 1.50, 10/04, page 150 of 448

Address field

Data field

VPN:
V:
E:
D:
*:

Virtual page number
Validity bit
Entry
Dirty bit
Don't care

ASID:
A:

:

Address space identifier
Association bit
Reserved bits (write value should be 0
and read value is undefined)

31 0

VD

10 9 8 7

ASIDVPN

A

8 7 2 131 0

1 1 1 1 0 1 1 0 0 0 0 0 0 0E

1920 14 13

* * * * * * * * * **

Figure 7.14 Memory-Mapped UTLB Address Array

7.6.4 UTLB Data Array

The UTLB data array is allocated to addresses H'F700 0000 to H'F70F FFFF in the P4 area. A
data array access requires a 32-bit address field specification (when reading or writing) and a 32-
bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, D, SH, and WT to be written to data array
are specified in the data field.

In the address field, bits [31:20] have the value H'F70 indicating UTLB data array and the entry is
specified by bits [13:8].

In the data field, bits [28:10] indicate PPN, bit [8] indicates V, bits [7] and [4] indicate SZ, bits
[6:5] indicate PR, bit [3] indicates C, bit [2] indicates D, bit [1] indicates SH, and bit [0] indicates
WT.

The following two kinds of operation can be used on UTLB data array:

1. UTLB data array read

PPN, V, SZ, PR, C, D, SH, and WT are read into the data field from the UTLB entry
corresponding to the entry set in the address field.

2. UTLB data array write

PPN, V, SZ, PR, C, D, SH, and WT specified in the data field are written to the UTLB entry
corresponding to the entry set in the address field.

Rev. 1.50, 10/04, page 151 of 448

Address field

Data field

PPN:
V:
E:

SZ:
D:
*:

Physical page number
Validity bit
Entry
Page size bits
Dirty bit
Don't care

PR:
C:

SH:
WT:

:

Protection key data
Cacheability bit
Share status bit
Write-through bit
Reserved bits (write value should be 0
and read value is undefined)

31 2 1

2 1

0

V

10 9 8 729 28 4 36 5

PR CPPN D

SZ1
SH

WT

31 0

1 1 1 1 0 1 1 1 0 0 0 0 0 0E

1920 8 714 13

* * * * * *** * * * *

Figure 7.15 Memory-Mapped UTLB Data Array

7.7 32-Bit Address Extended Mode

Setting the SE bit in PASCR to 1 changes mode from 29-bit address mode which handles the 29-
bit physical address space to 32-bit address extended mode which handles the 32-bit physical
address space.

P1 (0.5 Gbyte) P1/P2
(1 Gbyte)

0.5 Gbyte

4 Gbytes

U0/P0
(2 Gbytes)

U0/P0
(2 Gbytes)

P2 (0.5 Gbyte)

P3 (0.5 Gbyte) P3 (0.5 Gbyte)

P4 (0.5 Gbyte) P4 (0.5 Gbyte)

Virtual address space 29-bits
address space Virtual address space

32-bit
 address space

29-bit Physical address space
 (Normal mode)

32-bit Physical address space
(Extended mode)

Figure 7.16 Physical Address Space (32-Bit Address Extended Mode)

Rev. 1.50, 10/04, page 152 of 448

7.7.1 Overview of 32-Bit Address Extended Mode

In 32-bit address extended mode, the privileged space mapping buffer (PMB) is introduced. The
PMB maps virtual addresses in the P1 or P2 area which are not translated in 29-bit address mode
to the 32-bit physical address space. In areas which are target for address translation of the TLB
(UTLB/ITLB), upper three bits in the PPN field of the UTLB or ITLB are extended and then
addresses after the TLB translation can handle the 32-bit physical addresses.

As for the cache operation, P1 area is cacheable and P2 area is non-cacheable in the case of 29-bit
address mode, but the cache operation of both P1 and P2 area are determined by the C bit and WT
bit in the PMB in the case of 32-bit address mode.

7.7.2 Transition to 32-Bit Address Extended Mode

The SH-4A enters 29-bit address mode after a power-on reset. Transition is made to 32-bit address
extended mode by setting the SE bit in PASCR to 1. In 32-bit address extended mode, the MMU
operates as follows.

1. When the AT bit in MMUCR is 0, virtual addresses in the U0, P0, or P3 area become 32-bit
physical addresses. Addresses in the P1 or P2 area are translated according to the PMB
mapping information.

2. When the AT bit in MMUCR is 1, virtual addresses in the U0, P0, or P3 area are translated to
32-bit physical addresses according to the TLB conversion information. Addresses in the P1 or
P2 area are translated according to the PMB mapping information.

3. Regardless of the setting of the AT bit in MMUCR, bits 31 to 29 in physical addresses become
B'111 in the control register area (addresses H'FC00 0000 to H'FFFF FFFF). When the control
register area is recorded in the UTLB and accessed, B'111 should be set to PPN[31:29].

7.7.3 Privileged Space Mapping Buffer (PMB) Configuration

In 32-bit address extended mode, virtual addresses in the P1 or P2 area are translated according to
the PMB mapping information. The PMB has 16 entries and configuration of each entry is as
follows.

PPN[31:24]

PPN[31:24]

PPN[31:24]

SZ[1:0]

SZ[1:0]

SZ[1:0]

C

C

C

UB

UB

UB

VPN[31:24]

VPN[31:24]

VPN[31:24]

V

V

V

Entry 0

Entry 1

Entry 2

D

D

D

WT

WT

WT

PPN[31:24] SZ[1:0] C UBVPN[31:24] VEntry 15 D WT

Figure 7.17 PMB Configuration

Rev. 1.50, 10/04, page 153 of 448

[Legend]

• VPN: Virtual page number

For 16-Mbyte page: Upper 8 bits of virtual address

For 64-Mbyte page: Upper 6 bits of virtual address

For 128-Mbyte page: Upper 5 bits of virtual address

For 512-Mbyte page: Upper 3 bits of virtual address

• SZ: Page size bits

Specify the page size.

00: 16-Mbyte page

01: 64-Mbyte page

10: 128-Mbyte page

11: 512-Mbyte page

• V: Validity bit

Indicates whether the entry is valid.

0: Invalid

1: Valid

Cleared to 0 by a power-on reset.

Not affected by a manual reset.

• PPN: Physical page number

Upper 8 bits of the physical address of the physical page number.

With a 16-Mbyte page, PPN[31:24] are valid.

With a 64-Mbyte page, PPN[31:26] are valid.

With a 128-Mbyte page, PPN[31:27] are valid.

With a 512-Mbyte page, PPN[31:29] are valid.

• C: Cacheability bit

Indicates whether a page is cacheable.

0: Not cacheable

1: Cacheable

• WT: Write-through bit

Specifies the cache write mode.

0: Copy-back mode

1: Write-through mode

Rev. 1.50, 10/04, page 154 of 448

• UB: Buffered write bit

Specifies whether a buffered write is performed.

0: Buffered write (Data access of subsequent processing proceeds without waiting for the write
to complete.)

1: Unbuffered write (Data access of subsequent processing is stalled until the write has
completed.)

7.7.4 PMB Function

The SH-4A supports the following PMB functions.

1. Only memory-mapped write can be used for writing to the PMB. The LDTLB instruction
cannot be used to write to the PMB.

2. Software must ensure that every accessed P1 or P2 address has a corresponding PMB entry
before the access occurs. When an access to an address in the P1 or P2 area which is not
recorded in the PMB is made, the SH-4A is reset by the TLB. In this case, the accessed address
in the P1 or P2 area which causes the TLB reset is stored in the TEA and code H′140 in the
EXPEVT.

3. The SH-4A does not guarantee the operation when multiple hit occurs in the PMB. Special
care should be taken when the PMB mapping information is recorded by software.

4. The PMB does not have an associative write function.

5. Since there is no PR field in the PMB, read/write protection cannot be preformed. The address
translation target of the PMB is the P1 or P2 address. In user mode access, an address error
exception occurs.

6. Both entries from the UTLB and PMB are mixed and recorded in the ITLB by means of the
hardware ITLB miss handling. However, these entries can be identified by checking whether
VPN[31:30] is 10 or not. When an entry from the PMB is recorded in the ITLB, H′00, 01, and
1 are recorded in the ASID, PR, and SH fields which do not exist in the PMB, respectively.

7.7.5 Memory-Mapped PMB Configuration

To enable the PMB to be managed by software, its contents are allowed to be read from and
written to by a P1 or P2 area program with a MOV instruction in privileged mode. The PMB
address array is allocated to addresses H'F610 0000 to H'F61F FFFF in the P4 area and the PMB
data array to addresses H'F710 0000 to H'F71F FFFF in the P4 area. VPN and V in the PMB can
be accessed as an address array, PPN, V, SZ, C, WT, and UB as a data array. V can be accessed
from both the address array side and the data array side. A program which executes a PMB
memory-mapped access should be placed in the page area at which the C bit in PMB is cleared to
0.

Rev. 1.50, 10/04, page 155 of 448

1. PMB address array read

When memory reading is performed while bits 31 to 20 in the address field are specified as
H'F61 which indicates the PMB address array and bits 11 to 8 in the address field as an entry,
bits 31 to 24 in the data field are read as VPN and bit 8 in the data field as V.

2. PMB address array write

When memory writing is performed while bits 31 to 20 in the address field are specified as
H'F61 which indicates the PMB address array and bits 11 to 8 in the address field as an entry,
and bits 31 to 24 in the data field are specified as VPN and bit 8 in the data field as V, data is
written to the specified entry.

3. PMB data array read

When memory reading is performed while bits 31 to 20 in the address field are specified as
H'F71 which indicates the PMB data array and bits 11 to 8 in the address field as an entry, bits
31 to 24 in the data field are read as PPN, bit 9 in the data field as UB, bit 8 in the data field as
V, bits 7 and 4 in the data field as SZ, bit 3 in the data field as C, and bit 0 in the data field as
WT.

4. PMB data array write

When memory writing is performed while bits 31 to 20 in the address field are specified as
H'F71 which indicates the PMB data array and bits 11 to 8 in the address field as an entry, and
bits 31 to 24 in the data field are specified as PPN, bit 9 in the data field as UB, bit 8 in the
data field as V, bits 7 and 4 in the data field as SZ, bit 3 in the data field as C, and bit 0 in the
data field as WT, data is written to the specified entry.

Address field

Data field

VPN:
V:
E:

Physical page number
Validity bit
Entry

: Reserved bits (write value should be 0
and read value is undefined)

31 0

V

8

8 7

VPN

31 1920 0

1 1 1 1 0 0 0 01 1 0 1 0 0E

2324

12 11

0 0 0 0 0 0 0 0 0 00 0 0 0

Figure 7.18 Memory-Mapped PMB Address Array

Rev. 1.50, 10/04, page 156 of 448

Address field

Data field

PPN:
V:
E:

SZ:

Physical page number
Validity bit
Entry
Page size bits

UB:
C:

WT:
:

Buffered write bit
Cacheability bit
Write-through bit
Reserved bits (write value should be 0
and read value is undefined)

31 2 1 0

VUB

10 9 8 7 4 36 5

CPPN

31 0

1 1 1 1 0 1 1 1 0 0 0 1 E

2324

1920 8 712 11

SZ WT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7.19 Memory-Mapped PMB Data Array

7.7.6 Notes on Using 32-Bit Address Extended Mode

When using 32-bit address extended mode, note that the items described in this section are
extended or changed as follows.

PASCR: The SE bit is added in bit 31 in the control register (PASCR). The bits 6 to 0 of the UB
in the PASCR are invalid (Note that the bit 7 of the UB is still valid). When writing to the P1 or
P2 area, the UB bit in the PMB controls whether a buffered write is performed or not. When the
MMU is enabled, the UB bit in the TLB controls writing to the P0, P3, or U0 area. When the
MMU is disabled, writing to the P0, P3, or U0 area is always performed as a buffered write.

Bit Bit Name
Initial
Value R/W Description

31 SE 0 R/W 0: 29-bit address mode

1: 32-bit address extended mode

30 to 8  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

7 to 0 UB All 0 R/W Buffered Write Control for Each Area (64 Mbytes)

When writing is performed without using the cache or in
the cache write-through mode, these bits specify
whether the CPU waits for the end of writing for each
area.

0: The CPU does not wait for the end of writing

1: The CPU stalls and waits for the end of writing

UB[7]: Corresponding to the control register area

UB[6:0]: These bits are invalid in 32-bit address
extended mode.

Rev. 1.50, 10/04, page 157 of 448

ITLB: The PPN field in the ITLB is extended to bits 31 to 10.

UTLB: The PPN field in the UTLB is extended to bits 31 to 10. The same UB bit as that in the
PMB is added in each entry of the UTLB.

• UB: Buffered write bit

Specifies whether a buffered write is performed.

0: Buffered write (Subsequent processing proceeds without waiting for the write to complete.)

1: Unbuffered write (Subsequent processing is stalled until the write has completed.)

In a memory-mapped TLB access, the UB bit can be read from or written to by bit 9 in the data
array.

PTEL: The same UB bit as that in the PMB is added in bit 9 in PTEL. This UB bit is written to
the UB bit in the UTLB by the LDTLB instruction. The PPN field is extended to bits 31 to 10.

CCR.CB: The CB bit in CCR is invalid. Whether a cacheable write for the P1 area is performed
in copy-back mode or write-though mode is determined by the WT bit in the PMB.

IRMCR.MT: The MT bit in IRMCR is valid for a memory-mapped PMB write.

QACR0, QACR1: AREA0[4:2]/AREA1[4:2] fields of QACR0/QACR1 are extended to
AREA0[7:2]/AREA1[7:2] corresponding to physical address [31:26]. See section 8.2.2, Queue
Address Control Register 0 (QACR0) and 8.2.3, Queue Address Control Register 1 (QACR1).

LSA0, LSA1, LDA0, LDA1: L0SADR, L1SADR, L0DADR, and L1DADR fields are extended
to bits 31 to 10. See section 9.2.2, L Memory Transfer Source Address Register 0 (LSA0), section
9.2.3, L Memory Transfer Source Address Register 1 (LSA1), section 9.2.4, L Memory Transfer
Destination Address Register 0 (LDA0), and section 9.2.5, L Memory Transfer Destination
Address Register 1 (LDA1).

When using 32-bit address mode, the following notes should be applied to software.

1. For the SE bit switching, only switching from 0 to 1 is supported in boot routine after a power-
on reset or manual reset.

2. After switching the SE bit, an area in which the program is allocated becomes the target of the
PMB address translation. Therefore, the area should be recorded in the PMB before switching
the SE bit. An address which may be accessed in the P1 or P2 area such as the exception
handler should also be recorded in the PMB.

3. When an external memory access occurs by an operand memory access located before the
MOV.L instruction which switches the SE bit, external memory space addresses accessed in
both address modes should be the same.

4. Note that the V bit is mapped to both address array and data array in PMB registration. That is,
first write 0 to the V bit in one of arrays and then write 1 to the V bit in another array.

Rev. 1.50, 10/04, page 158 of 448

 Rev. 1.50, 10/04, page 159 of 448

Section 8 Caches

The SH-4A has an on-chip 32-Kbyte instruction cache (IC) for instructions and an on-chip 32-
Kbyte operand cache (OC) for data.

Note: For the size of instruction cache and operand cache, see the hardware manual of the target
product. This manual describes the 32-Kbyte case for each cache memory.

8.1 Features

The features of the cache are given in table 8.1.

The SH-4A supports two 32-byte store queues (SQs) to perform high-speed writes to external
memory. The features of the store queues are given in table 8.2.

Table 8.1 Cache Features

Item Instruction Cache Operand Cache

Capacity 32-Kbyte cache 32-Kbyte cache

Type 4-way set-associative, virtual
address index/physical address tag

4-way set-associative, virtual
address index/physical address tag

Line size 32 bytes 32 bytes

Entries 256 entries/way 256 entries/way

Write method  Copy-back/write-through selectable

Replacement method LRU (least-recently-used) algorithm LRU (least-recently-used) algorithm

Table 8.2 Store Queue Features

Item Store Queues

Capacity 32 bytes × 2

Addresses H'E000 0000 to H'E3FF FFFF

Write Store instruction (1-cycle write)

Write-back Prefetch instruction (PREF instruction)

Access right When MMU is disabled: Determined by SQMD bit in MMUCR

When MMU is enabled: Determined by PR for each page

Rev. 1.50, 10/04, page 160 of 448

The operand cache of the SH-4A is 4-way set associative, each may comprising 256 cache lines.
Figure 8.1 shows the configuration of the operand cache.

The instruction cache is 4-way set-associative, each way comprising 256 cache lines. Figure 8.2
shows the configuration of the instruction cache.

31 5 4 2

LW0

32 bits

LW1

32 bits

LW2

32 bits

LW3

32 bits

LW4

32 bits

LW5

32 bits

LW6

32 bits

LW7

32 bits 6 bits

MMU

[12:5]

255 19 bits 1 bit 1 bit

Tag U V

Address array
(way 0 to way 3)

Data array
(way 0 to way3) LRU

Entry selection Longword (LW) selection

Virtual address

3
8

22

19

0

Write dataRead data

Hit signal

(Way 0 to way 3)

12 10 0

Comparison

Figure 8.1 Configuration of Operand Cache (OC)

Rev. 1.50, 10/04, page 161 of 448

31 5 4 2

LW0

32 bits

LW1

32 bits

LW2

32 bits

LW3

32 bits

LW4

32 bits

LW5

32 bits

LW6

32 bits

LW7

32 bits

MMU

[12:5]

255 19 bits 1 bit

Tag V

Address array
(way 0 to way 3)

Data array
(way 0 to way3)

Entry selection

Longword (LW) selection

Virtual address

3
8

22

19

0

Read data

13 12 10 0

6 bits

LRU

Hit signal

(Way 0 to way 3)

Comparison

Figure 8.2 Configuration of Instruction Cache (IC)

• Tag

Stores the upper 19 bits of the 29-bit physical address of the data line to be cached. The tag is
not initialized by a power-on or manual reset.

• V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

• U bit (dirty bit)

The U bit is set to 1 if data is written to the cache line while the cache is being used in copy-
back mode. That is, the U bit indicates a mismatch between the data in the cache line and the
data in external memory. The U bit is never set to 1 while the cache is being used in write-
through mode, unless it is modified by accessing the memory-mapped cache (see section 8.6,
Memory-Mapped Cache Configuration). The U bit is initialized to 0 by a power-on reset, but
retains its value in a manual reset.

Rev. 1.50, 10/04, page 162 of 448

• Data array

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initialized
by a power-on or manual reset.

• LRU

In a 4-way set-associative method, up to 4 items of data can be registered in the cache at each
entry address. When an entry is registered, the LRU bit indicates which of the 4 ways it is to be
registered in. The LRU mechanism uses 6 bits of each entry, and its usage is controlled by
hardware. The LRU (least-recently-used) algorithm is used for way selection, and selects the
less recently accessed way. The LRU bits are initialized to 0 by a power-on reset but not by a
manual reset. The LRU bits cannot be read from or written to by software.

8.2 Register Descriptions

The following registers are related to cache.

Table 8.3 Register Configuration

Register Name Abbreviation R/W P4 Address* Area 7 Address* Size

Cache control register CCR R/W H'FF00 001C H'1F00 001C 32

Queue address control register 0 QACR0 R/W H'FF00 0038 H'1F00 0038 32

Queue address control register 1 QACR1 R/W H'FF00 003C H'1F00 003C 32

On-chip memory control register RAMCR R/W H'FF00 0074 H'1F00 0074 32

Note: * These P4 addresses are for the P4 area in the virtual address space. These area 7
addresses are accessed from area 7 in the physical address space by means of the
TLB.

Table 8.4 Register States in Each Processing State

Register Name Abbreviation Power-on Reset Manual Reset Sleep Standby

Cache control register CCR H'0000 0000 H'0000 0000 Retained Retained

Queue address control register 0 QACR0 Undefined Undefined Retained Retained

Queue address control register 1 QACR1 Undefined Undefined Retained Retained

On-chip memory control register RAMCR H'0000 0000 H'0000 0000 Retained Retained

Rev. 1.50, 10/04, page 163 of 448

8.2.1 Cache Control Register (CCR)

CCR controls the cache operating mode, the cache write mode, and invalidation of all cache
entries.

CCR modifications must only be made by a program in the non-cacheable P2 area. After CCR has
been updated, execute one of the following three methods before an access (including an
instruction fetch) to the cacheable area is performed.

1. Execute a branch using the RTE instruction. In this case, the branch destination may be the
cacheable area.

2. Execute the ICBI instruction for any address (including non-cacheable area).

3. If the R2 bit in IRMCR is 0 (initial value) before updating CCR, the specific instruction does
not need to be executed. However, note that the CPU processing performance will be lowered
because the instruction fetch is performed again for the next instruction after CCR has been
updated.

Note that the method 3 may not be guaranteed in the future SuperH Series. Therefore, it is
recommended that the method 1 or 2 should be used for being compatible with the future SuperH
Series.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Initial value:
R R R R R R R R R R R R R R R R

R R R R R/W R R R/W R R R R R/W R/W R/W R/W

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 00 0 0 0 0

ICI ICE OCEWTCBOCI

0

Bit Bit Name
Initial
Value R/W Description

31 to 12  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

11 ICI 0 R/W IC Invalidation Bit

When 1 is written to this bit, the V bits of all IC entries
are cleared to 0. This bit is always read as 0.

Rev. 1.50, 10/04, page 164 of 448

Bit Bit Name
Initial
Value R/W Description

10, 9  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

8 ICE 0 R/W IC Enable Bit

Selects whether the IC is used. Note however when
address translation is performed, the IC cannot be used
unless the C bit in the page management information is
also 1.

0: IC not used
1: IC used

7 to 4  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

3 OCI 0 R/W OC Invalidation Bit

When 1 is written to this bit, the V and U bits of all OC
entries are cleared to 0. This bit is always read as 0.

2 CB 0 R/W Copy-Back Bit

Indicates the P1 area cache write mode.

0: Write-through mode
1: Copy-back mode

1 WT 0 R/W Write-Through Mode

Indicates the P0, U0, and P3 area cache write mode.
When address translation is performed, the value of the
WT bit in the page management information has
priority.

0: Copy-back mode
1: Write-through mode

0 OCE 0 R/W OC Enable Bit

Selects whether the OC is used. Note however when
address translation is performed, the OC cannot be
used unless the C bit in the page management
information is also 1.

0: OC not used
1: OC used

Rev. 1.50, 10/04, page 165 of 448

8.2.2 Queue Address Control Register 0 (QACR0)

QACR0 specifies the area onto which store queue 0 (SQ0) is mapped when the MMU is disabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

Initial value:

R R R R R R R R R R R R R R R R
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
R R R R R R R R R R R R/W R/W R/W R R

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AREA0

Bit Bit Name
Initial
Value R/W Description

31 to 5  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

4 to 2 AREA0 Undefined R/W When the MMU is disabled, these bits generate
physical address bits [28:26] for SQ0.

1, 0  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

Rev. 1.50, 10/04, page 166 of 448

8.2.3 Queue Address Control Register 1 (QACR1)

QACR1 specifies the area onto which store queue 1 (SQ1) is mapped when the MMU is disabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

Initial value:

R R R R R R R R R R R R R R R R
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
R R R R R R R R R R R R/W R/W R/W R R

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AREA1

Bit Bit Name
Initial
Value R/W Description

31 to 5  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

4 to 2 AREA1 Undefined R/W When the MMU is disabled, these bits generate
physical address bits [28:26] for SQ1.

1, 0  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

Rev. 1.50, 10/04, page 167 of 448

8.2.4 On-Chip Memory Control Register (RAMCR)

RAMCR controls the number of ways in the IC and OC.

RAMCR modifications must only be made by a program in the non-cacheable P2 area. After
RAMCR has been updated, execute one of the following three methods before an access
(including an instruction fetch) to the cacheable area or the L memory area is performed.

1. Execute a branch using the RTE instruction. In this case, the branch destination may be the
non-cacheable area or the L memory area.

2. Execute the ICBI instruction for any address (including non-cacheable area).

3. If the R2 bit in IRMCR is 0 (initial value) before updating RAMCR, the specific instruction
does not need to be executed. However, note that the CPU processing performance will be
lowered because the instruction fetch is performed again for the next instruction after RAMCR
has been updated.

Note that the method 3 may not be guaranteed in the future SuperH Series. Therefore, it is
recommended that the method 1 or 2 should be used for being compatible with the future SuperH
Series.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit:

Initial value:

R R R R R R R R R R

RMD RP IC2W OC2W

R R R R R R
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R R R R R R R/W R/W R/W R/W R R R R R R

R/W:

Bit:

Initial value:

R/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit Bit Name
Initial
Value R/W Description

31 to 10  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

9 RMD 0 R/W On-Chip Memory Access Mode Bit

For details, see section 9.4, L Memory Protective
Functions.

8 RP 0 R/W On-Chip Memory Protection Enable Bit

For details, see section 9.4, L Memory Protective
Functions.

Rev. 1.50, 10/04, page 168 of 448

Bit Bit Name
Initial
Value R/W Description

7 IC2W 0 R/W IC Two-Way Mode bit

0: IC is a four-way operation

1: IC is a two-way operation

For details, see section 8.4.3, IC Two-Way Mode.

6 OC2W 0 R/W OC Two-Way Mode bit

0: OC is a four-way operation

1: OC is a two-way operation

For details, see section 8.3.6, OC Two-Way Mode.

5 to 0  All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

Rev. 1.50, 10/04, page 169 of 448

8.3 Operand Cache Operation

8.3.1 Read Operation

When the Operand Cache (OC) is enabled (OCE = 1 in CCR) and data is read from a cacheable
area, the cache operates as follows:

1. The tag, V bit, U bit, and LRU bits on each way are read from the cache line indexed by virtual
address bits [12:5].

2. The tags read from the each way is compared with bits [28:10] of the physical address
resulting from virtual address translation by the MMU:

• If there is a way whose tag matches and its V bit is 1, see No. 3.

• If there is no way whose tag matches and its V bit is 1 and the U bit of the way which is
selected to replace using the LRU bits is 0, see No. 4.

• If there is no way whose tag matches and its V bit is 1 and the U bit of the way which is
selected to replace using the LRU bits is 1, see No. 5.

3. Cache hit

The data indexed by virtual address bits [4:0] is read from the data field of the cache line on
the hitted way in accordance with the access size. Then the LRU bits are updated to indicate
the hitted way is the latest one.

4. Cache miss (no write-back)

Data is read into the cache line on the way, which is selected to replace, from the physical
address space corresponding to the virtual address. Data reading is performed, using the
wraparound method, in order from the quad-word data(8 bytes) including the cache-missed
data. When the corresponding data arrives in the cache, the read data is returned to the CPU.
While the remaining data on the cache line is being read, the CPU can execute the next
processing. When reading of one line of data is completed, the tag corresponding to the
physical address is recorded in the cache, 1 is written to the V bit and 0 is written to the U bit
on the way. Then the LRU bit is updated to indicate the way is latest one.

5. Cache miss (with write-back)

The tag and data field of the cache line on the way which is selected to replace are saved in the
write-back buffer. Then data is read into the cache line on the way which is selected to replace
from the physical address space corresponding to the virtual address. Data reading is
performed, using the wraparound method, in order from the quad-word data (8 bytes)
including the cache-missed data, and when the corresponding data arrives in the cache, the
read data is returned to the CPU. While the remaining one cache line of data is being read, the
CPU can execute the next processing. When reading of one line of data is completed, the tag
corresponding to the physical address is recorded in the cache, 1 is written to the V bit, and 0
to the U bit. And the LRU bits are updated to indicate the way is latest one. The data in the
write-back buffer is then written back to external memory.

Rev. 1.50, 10/04, page 170 of 448

8.3.2 Prefetch Operation

When the Operand Cache (OC) is enabled (OCE = 1 in CCR) and data is prefetched from a
cacheable area, the cache operates as follows:

1. The tag, V bit, U bit, and LRU bits on each way are read from the cache line indexed by virtual
address bits [12:5].

2. The tag, read from each way, is compared with bits [28:10] of the physical address resulting
from virtual address translation by the MMU:

• If there is a way whose tag matches and its V bit is 1, see No. 3.

• If there is no way whose tag matches and the V bit is 1, and the U bit of the way which is
selected to replace using the LRU bits is 0, see No. 4.

• If there is no way whose tag matches and the V bit is 1, and the U bit of the way which is
selected to replace using the LRU bits is 1, see No. 5.

3. Cache hit

Then the LRU bits are updated to indicate the hitted way is the latest one.

4. Cache miss (no write-back)

Data is read into the cache line on the way, which is selected to replace, from the physical
address space corresponding to the virtual address. Data reading is performed, using the
wraparound method, in order from the quad-word data (8 bytes) including the cache-missed
data. In the prefetch operation the CPU doesn't wait the data arrives. While the one cache line
of data is being read, the CPU can execute the next processing. When reading of one line of
data is completed, the tag corresponding to the physical address is recorded in the cache, 1 is
written to the V bit and 0 is written to the U bit on the way. And the LRU bit is updated to
indicate the way is latest one.

5. Cache miss (with write-back)

The tag and data field of the cache line on the way which is selected to replace are saved in the
write-back buffer. Then data is read into the cache line on the way which is selected to replace
from the physical address space corresponding to the virtual address. Data reading is
performed, using the wraparound method, in order from the quad-word data (8 bytes)
including the cache-missed data. In the prefetch operation the CPU doesn't wait the data
arrives. While the one cache line of data is being read, the CPU can execute the next
processing. And the LRU bits are updated to indicate the way is latest one. The data in the
write-back buffer is then written back to external memory.

Rev. 1.50, 10/04, page 171 of 448

8.3.3 Write Operation

When the Operand Cache (OC) is enabled (OCE = 1 in CCR) and data is written to a cacheable
area, the cache operates as follows:

1. The tag, V bit, U bit, and LRU bits on each way are read from the cache line indexed by virtual
address bits [12:5].

2. The tag, read from each way, is compared with bits [28:10] of the physical address resulting
from virtual address translation by the MMU:

• If there is a way whose tag matches and its V bit is 1, see No. 3 for copy-back and No. 4 for
write-through.

• I If there is no way whose tag matches and its V bit is 1 and the U bit of the way which is
selected to replace using the LRU bits is 0, see No. 5 for copy-back and No. 7 for write-
through.

• If there is no way whose tag matches and its V bit is 1 and the U bit of the way which is
selected to replace using the LRU bits is 1, see No. 6 for copy-back and No. 7 for write-
through.

3. Cache hit (copy-back)

A data write in accordance with the access size is performed for the data field on the hit way
which is indexed by virtual address bits [4:0]. Then 1 is written to the U bit. The LRU bits are
updated to indicate the way is the latest one.

4. Cache hit (write-through)

A data write in accordance with the access size is performed for the data field on the hit way
which is indexed by virtual address bits [4:0]. A write is also performed to external memory
corresponding to the virtual address. Then the LRU bits are updated to indicate the way is the
latest one. In this case, the U bit isn't updated.

5. Cache miss (copy-back, no write-back)

A data write in accordance with the access size is performed for the data field on the hit way
which is indexed by virtual address bits [4:0]. Then, the data, excluding the cache-missed data
which is written already, is read into the cache line on the way which is selected to replace
from the physical address space corresponding to the virtual address.

Data reading is performed, using the wraparound method, in order from the quad-word data (8
bytes) including the cache-missed data. While the remaining data on the cache line is being
read, the CPU can execute the next processing. When reading of one line of data is completed,
the tag corresponding to the physical address is recorded in the cache, 1 is written to the V bit
and the U bit on the way. Then the LRU bit is updated to indicate the way is latest one.

Rev. 1.50, 10/04, page 172 of 448

6. Cache miss (copy-back, with write-back)

The tag and data field of the cache line on the way which is selected to replace are saved in the
write-back buffer. Then a data write in accordance with the access size is performed for the
data field on the hit way which is indexed by virtual address bits [4:0]. Then, the data,
excluding the cache-missed data which is written already, is read into the cache line on the
way which is selected to replace from the physical address space corresponding to the virtual
address. Data reading is performed, using the wraparound method, in order from the quad-
word data (8 bytes) including the cache-missed data. While the remaining data on the cache
line is being read, the CPU can execute the next processing. When reading of one line of data
is completed, the tag corresponding to the physical address is recorded in the cache, 1 is
written to the V bit and the U bit on the way. Then the LRU bit is updated to indicate the way
is latest one. Then the data in the write-back buffer is then written back to external memory.

7. Cache miss (write-through)

A write of the specified access size is performed to the external memory corresponding to the
virtual address. In this case, a write to cache is not performed.

8.3.4 Write-Back Buffer

In order to give priority to data reads to the cache and improve performance, the SH-4A has a
write-back buffer which holds the relevant cache entry when it becomes necessary to purge a dirty
cache entry into external memory as the result of a cache miss. The write-back buffer contains one
cache line of data and the physical address of the purge destination.

LW7Physical address bits [28:5] LW6LW5LW4LW3LW2LW1LW0

Figure 8.3 Configuration of Write-Back Buffer

8.3.5 Write-Through Buffer

The SH-4A has a 64-bit buffer for holding write data when writing data in write-through mode or
writing to a non-cacheable area. This allows the CPU to proceed to the next operation as soon as
the write to the write-through buffer is completed, without waiting for completion of the write to
external memory.

Physical address bits[28:0] LW1LW0

Figure 8.4 Configuration of Write-Through Buffer

Rev. 1.50, 10/04, page 173 of 448

8.3.6 OC Two-Way Mode

When the OC2W bit in RAMCR is set to 1, OC two-way mode which only uses way 0 and way 1
in the OC is entered. Thus, power consumption can be reduced. In this mode, only way 0 and way
1 are used even if a memory-mapped OC access is made.

The OC2W bit should be modified by a program in the P2 area. At that time, if the valid line has
already been recorded in the OC, data should be written back by software, if necessary, 1 should
be written to the OCI bit in CCR, and all entries in the OC should be invalid before modifying the
OC2W bit.

8.4 Instruction Cache Operation

8.4.1 Read Operation

When the IC is enabled (ICE = 1 in CCR) and instruction fetches are performed from a cacheable
area, the instruction cache operates as follows:

1. The tag, V bit, U bit and LRU bits on each way are read from the cache line indexed by virtual
address bits [12:5].

2. The tag, read from each way, is compared with bits [28:10] of the physical address resulting
from virtual address translation by the MMU:

• If there is a way whose tag matches and the V bit is 1, see No. 3.

• If there is no way whose tag matches and the V bit is 1, see No. 4.

3. Cache hit

The data indexed by virtual address bits [4:2] is read as an instruction from the data field on
the hit way. The LRU bits are updated to indicate the way is the latest one.

4. Cache miss

Data is read into the cache line on the way which selected using LRU bits to replace from the
physical address space corresponding to the virtual address. Data reading is performed, using
the wraparound method, in order from the quad-word data (8 bytes) including the cache-
missed data, and when the corresponding data arrives in the cache, the read data is returned to
the CPU as an instruction. While the remaining one cache line of data is being read, the CPU
can execute the next processing. When reading of one line of data is completed, the tag
corresponding to the physical address is recorded in the cache, and 1 is written to the V bit, the
LRU bits are updated to indicate the way is the latest one.

Rev. 1.50, 10/04, page 174 of 448

8.4.2 Prefetch Operation

When the IC is enabled (ICE = 1 in CCR) and instruction prefetches are performed from a
cacheable area, the instruction cache operates as follows:

1. The tag, V bit, Ubit and LRU bits on each way are read from the cache line indexed by virtual
address bits [12:5].

2. The tag, read from each way, is compared with bits [28:10] of the physical address resulting
from virtual address translation by the MMU:

• If there is a way whose tag matches and the V bit is 1, see No. 3.

• If there is no way whose tag matches and the V bit is 1, see No. 4.

3. Cache hit

The LRU bits is updated to indicate the way is the latest one.

4. Cache miss

Data is read into the cache line on a way which selected using the LRU bits to replace from the
physical address space corresponding to the virtual address. Data reading is performed, using
the wraparound method, in order from the quad-word data (8 bytes) including the cache-
missed data. In the prefetch operation, the CPU doesn't wait the data arrived. While the one
cache line of data is being read, the CPU can execute the next processing. When reading of one
line of data is completed, the tag corresponding to the physical address is recorded in the
cache, and 1 is written to the V bit, the LRU bits is updated to indicate the way is the latest
one.

8.4.3 IC Two-Way Mode

When the IC2W bit in RAMCR is set to 1, IC two-way mode which only uses way 0 and way 1 in
the IC is entered. Thus, power consumption can be reduced. In this mode, only way 0 and way 1
are used even if a memory-mapped IC access is made.

The IC2W bit should be modified by a program in the P2 area. At that time, if the valid line has
already been recorded in the IC, 1 should be written to the ICI bit in CCR and all entries in the IC
should be invalid before modifying the IC2W bit.

Rev. 1.50, 10/04, page 175 of 448

8.5 Cache Operation Instruction

8.5.1 Coherency between Cache and External Memory

Coherency between cache and external memory should be assured by software. In the SH-4A, the
following six instructions are supported for cache operations. Details of these instructions are
given in section 10, Instruction Descriptions.

• Operand cache invalidate instruction: OCBI @Rn

Operand cache invalidation (no write-back)

• Operand cache purge instruction: OCBP @Rn

Operand cache invalidation (with write-back)

• Operand cache write-back instruction: OCBWB @Rn

Operand cache write-back

• Operand cache allocate instruction: MOVCA.L R0,@Rn

Operand cache allocation

• Instruction cache invalidate instruction: ICBI @Rn

Instruction cache invalidation

• Operand access synchronization instruction: SYNCO

Wait for data transfer completion

The operand cache can receive "PURGE" and "FLUSH" transaction from SuperHyway bus to
control the cache coherency. Since the address used by the PURGE and FLUSH transaction is a
physical address, the following restrictions occur to avoid cache synonym problem in MMU
enable mode.

• 1Kbyte page size cannot be used.

PURGE transaction: When the operand cache is enabled, the PURGE transaction checks the
operand cache and invalidates the hit entry. If the invalidated entry is dirty, the data is written back
to the external memory. If the transaction is not hit to the cache, it is no-operation.

Rev. 1.50, 10/04, page 176 of 448

FLUSH transaction: When the operand cache is enabled, the FLUSH transaction checks the
operand cache and if the hit line is dirty, then the data is written back to the external memory. If
the transaction is not hit to the cache or the hit entry is not dirty, it is no-operation.

8.5.2 Prefetch Operation

The SH-4A supports a prefetch instruction to reduce the cache fill penalty incurred as the result of
a cache miss. If it is known that a cache miss will result from a read or write operation, it is
possible to fill the cache with data beforehand by means of the prefetch instruction to prevent a
cache miss due to the read or write operation, and so improve software performance. If a prefetch
instruction is executed for data already held in the cache, or if the prefetch address results in a
UTLB miss or a protection violation, the result is no operation, and an exception is not generated.
Details of the prefetch instruction are given in section 10, Instruction Descriptions.

• Prefetch instruction (OC) : PREF @Rn

• Prefetch instruction (IC) : PREFI @Rn

8.6 Memory-Mapped Cache Configuration

To enable the IC and OC to be managed by software, the IC contents can be read from or written
to by a program in the P2 area by means of a MOV instruction in privileged mode. Operation is
not guaranteed if access is made from a program in another area. In this case, execute one of the
following three methods for executing a branch to the P0, U0, P1, or P3 area.

1. Execute a branch using the RTE instruction.

2. Execute a branch to the P0, U0, P1, or P3 area after executing the ICBI instruction for any
address (including non-cacheable area).

3. If the MC bit in IRMCR is 0 (initial value) before making an access to the memory-mapped
IC, the specific instruction does not need to be executed. However, note that the CPU
processing performance will be lowered because the instruction fetch is performed again for
the next instruction after making an access to the memory-mapped IC.

Note that the method 3 may not be guaranteed in the future SuperH Series. Therefore, it is
recommended that the method 1 or 2 should be used for being compatible with the future SuperH
Series.

In privileged mode, the OC contents can be read from or written to by a program in the P1 or P2
area by means of a MOV instruction. Operation is not guaranteed if access is made from a
program in another area. The IC and OC are allocated to the P4 area in the virtual address space.
Only data accesses can be used on both the IC address array and data array and the OC address
array and data array, and accesses are always longword-size. Instruction fetches cannot be
performed in these areas. For reserved bits, a write value of 0 should be specified and the read
value is undefined.

Rev. 1.50, 10/04, page 177 of 448

8.6.1 IC Address Array

The IC address array is allocated to addresses H'F000 0000 to H'F0FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The way and entry to be accessed are specified in the address field,
and the write tag and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'F0 indicating the IC address array, and the way
is specified by bits [14:13] and the entry by bits [12:5]. The association bit (A bit) [3] in the
address field specifies whether or not association is performed when writing to the IC address
array. As only longword access is used, 0 should be specified for address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], and the V bit by bit [0]. As the IC address
array tag is 19 bits in length, data field bits [31:29] are not used in the case of a write in which
association is not performed. Data field bits [31:29] are used for the virtual address specification
only in the case of a write in which association is performed.

The following three kinds of operation can be used on the IC address array:

1. IC address array read

The tag and V bit are read into the data field from the IC entry corresponding to the way and
entry set in the address field. In a read, associative operation is not performed regardless of
whether the association bit specified in the address field is 1 or 0.

2. IC address array write (non-associative)

The tag and V bit specified in the data field are written to the IC entry corresponding to the
way and entry set in the address field. The A bit in the address field should be cleared to 0.

3. IC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag in each way
stored in the entry specified in the address field is compared with the tag specified in the data
field. The way numbers of bits [14:13] in the address field are not used. If the MMU is enabled
at this time, comparison is performed after the virtual address specified by data field bits
[31:10] has been translated to a physical address using the ITLB. If the addresses match and
the V bit in the way is 1, the V bit specified in the data field is written into the IC entry. In
other cases, no operation is performed. This operation is used to invalidate a specific IC entry.
If an ITLB miss occurs during address translation, or the comparison shows a mismatch, an
exception is not generated, no operation is performed, and the write is not executed.

Note: This function may not be supported in the future SuperH Series. Therefore, it is

recommended that the ICBI instruction should be used to operate the IC definitely by
handling ITLB miss and reporting ITLB miss exception.

Rev. 1.50, 10/04, page 178 of 448

Address field
31 23 12 5 4 3 2 1 0

1 1 1 1 0 0 0 0 00 0 0Entry A

Data field
31 10 9 1 0

VTag

Way

V
A

24 131415

: Validity bit
: Association bit
: Reserved bits (write value should be 0 and read value is undefined)
: Don't care*

* * * * * * * * *

Figure 8.5 Memory-Mapped IC Address Array

8.6.2 IC Data Array

The IC data array is allocated to addresses H'F100 0000 to H'F1FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The way and entry to be accessed are specified in the address field, and
the longword data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F1 indicating the IC data array, and the way is
specified by bits [14:13] and the entry by bits [12:5]. Address field bits [4:2] are used for the
longword data specification in the entry. As only longword access is used, 0 should be specified
for address field bits [1:0].

The data field is used for the longword data specification.

The following two kinds of operation can be used on the IC data array:

1. IC data array read

Longword data is read into the data field from the data specified by the longword specification
bits in the address field in the IC entry corresponding to the way and entry set in the address
field.

2. IC data array write

The longword data specified in the data field is written for the data specified by the longword
specification bits in the address field in the IC entry corresponding to the way and entry set in
the address field.

Rev. 1.50, 10/04, page 179 of 448

Address field
31 23 12 5 4 2 1 0

1 1 1 1 0 0 0 1 Entry L

Data field
31 0

Longword data

L
*

24 131415

: Longword specification bits
: Don't care

Way

0 0* * * * * * * * *

Figure 8.6 Memory-Mapped IC Data Array

8.6.3 OC Address Array

The OC address array is allocated to addresses H'F400 0000 to H'F4FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The way and entry to be accessed are specified in the address field,
and the write tag, U bit, and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'F4 indicating the OC address array, and the way
is specified by bits [14:13] and the entry by bits [12:5]. The association bit (A bit) [3] in the
address field specifies whether or not association is performed when writing to the OC address
array. As only longword access is used, 0 should be specified for address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], the U bit by bit [1], and the V bit by bit [0].
As the OC address array tag is 19 bits in length, data field bits [31:29] are not used in the case of a
write in which association is not performed. Data field bits [31:29] are used for the virtual address
specification only in the case of a write in which association is performed.

The following three kinds of operation can be used on the OC address array:

1. OC address array read

The tag, U bit, and V bit are read into the data field from the OC entry corresponding to the
way and entry set in the address field. In a read, associative operation is not performed
regardless of whether the association bit specified in the address field is 1 or 0.

2. OC address array write (non-associative)

The tag, U bit, and V bit specified in the data field are written to the OC entry corresponding to
the way and entry set in the address field. The A bit in the address field should be cleared to 0.

When a write is performed to a cache line for which the U bit and V bit are both 1, after write-
back of that cache line, the tag, U bit, and V bit specified in the data field are written.

Rev. 1.50, 10/04, page 180 of 448

3. OC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag in each way
stored in the entry specified in the address field is compared with the tag specified in the data
field. The way numbers of bits [14:13] in the address field are not used. If the MMU is enabled
at this time, comparison is performed after the virtual address specified by data field bits
[31:10] has been translated to a physical address using the UTLB. If the addresses match and
the V bit in the way is 1, the U bit and V bit specified in the data field are written into the OC
entry. In other cases, no operation is performed. This operation is used to invalidate a specific
OC entry. If the OC entry U bit is 1, and 0 is written to the V bit or to the U bit, write-back is
performed. If a UTLB miss occurs during address translation, or the comparison shows a
mismatch, an exception is not generated, no operation is performed, and the write is not
executed.

Note: This function may not be supported in the future SuperH Series. Therefore, it is

recommended that the OCBI, OCBP, or OCBWB instruction should be used to operate the
OC definitely by reporting data TLB miss exception.

Address field
31 23 5 4 3 2 1 0

1 1 1 1 0 1 0 0 Entry A

Data field
31 10 9 1 0

VTag

24 13121415

2

U

V
U
A

: Validity bit
: Dirty bit
: Association bit
: Reserved bits (write value should be 0 and read value is undefined)
: Don't care

Way

00 0 0* * * * * * * * *

*

Figure 8.7 Memory-Mapped OC Address Array

Rev. 1.50, 10/04, page 181 of 448

8.6.4 OC Data Array

The OC data array is allocated to addresses H'F500 0000 to H'F5FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The way and entry to be accessed are specified in the address field, and
the longword data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F5 indicating the OC data array, and the way is
specified by bits [14:13] and the entry by bits [12:5]. Address field bits [4:2] are used for the
longword data specification in the entry. As only longword access is used, 0 should be specified
for address field bits [1:0].

The data field is used for the longword data specification.

The following two kinds of operation can be used on the OC data array:

1. OC data array read

Longword data is read into the data field from the data specified by the longword specification
bits in the address field in the OC entry corresponding to the way and entry set in the address
field.

2. OC data array write

The longword data specified in the data field is written for the data specified by the longword
specification bits in the address field in the OC entry corresponding to the way and entry set in
the address field. This write does not set the U bit to 1 on the address array side.

Address field
31 23 5 4 3 2 1 0

1 1 1 1 0 1 0 1 Entry

Data field
31 0

Longword data

24 13121415

L
*

: Longword specification bits
: Don't care

Way

0L 0* * * * * * * * *

Figure 8.8 Memory-Mapped OC Data Array

Rev. 1.50, 10/04, page 182 of 448

8.7 Store Queues

The SH-4A supports two 32-byte store queues (SQs) to perform high-speed writes to external
memory.

8.7.1 SQ Configuration

There are two 32-byte store queues, SQ0 and SQ1, as shown in figure 8.9. These two store queues
can be set independently.

SQ0 SQ0[0] SQ0[1] SQ0[2] SQ0[3] SQ0[4] SQ0[5] SQ0[6] SQ0[7]

SQ1 SQ1[0] SQ1[1] SQ1[2] SQ1[3] SQ1[4] SQ1[5] SQ1[6] SQ1[7]

4 byte 4 byte 4 byte 4 byte 4 byte 4 byte 4 byte 4 byte

Figure 8.9 Store Queue Configuration

8.7.2 Writing to SQ

A write to the SQs can be performed using a store instruction for addresses H'E000 0000 to
H'E3FF FFFC in the P4 area. A longword or quadword access size can be used. The meanings of
the address bits are as follows:

[31:26] : 111000 Store queue specification
[25:6] : Don't care Used for external memory transfer/access right
[5] : 0/1 0: SQ0 specification

1: SQ1 specification
[4:2] : LW specification Specifies longword position in SQ0/SQ1
[1:0] : 00 Fixed at 0

Rev. 1.50, 10/04, page 183 of 448

8.7.3 Transfer to External Memory

Transfer from the SQs to external memory can be performed with a prefetch instruction (PREF).
Issuing a PREF instruction for addresses H'E000 0000 to H'E3FF FFFC in the P4 area starts a
transfer from the SQs to external memory. The transfer length is fixed at 32 bytes, and the start
address is always at a 32-byte boundary. While the contents of one SQ are being transferred to
external memory, the other SQ can be written to without a penalty cycle. However, writing to the
SQ involved in the transfer to external memory is kept waiting until the transfer is completed.

The physical address bits [28:0] of the SQ transfer destination are specified as shown below,
according to whether the MMU is enabled or disabled.

• When MMU is enabled (AT = 1 in MMUCR)

The SQ area (H'E000 0000 to H'E3FF FFFF) is set in VPN of the UTLB, and the transfer
destination physical address in PPN. The ASID, V, SZ, SH, PR, and D bits have the same
meaning as for normal address translation, but the C and WT bits have no meaning with regard
to this page. When a prefetch instruction is issued for the SQ area, address translation is
performed and physical address bits [28:10] are generated in accordance with the SZ bit
specification. For physical address bits [9:5], the address prior to address translation is
generated in the same way as when the MMU is disabled. Physical address bits [4:0] are fixed
at 0. Transfer from the SQs to external memory is performed to this address.

• When MMU is disabled (AT = 0 in MMUCR)

The SQ area (H'E000 0000 to H'E3FF FFFF) is specified as the address at which a PREF
instruction is issued. The meanings of address bits [31:0] are as follows:

[31:26] : 111000 Store queue specification

[25:6] : Address Transfer destination physical address bits [25:6]

[5] : 0/1 0: SQ0 specification
 1: SQ1 specification and transfer destination physical
 address bit [5]

[4:2] : Don't care No meaning in a prefetch

[1:0] : 00 Fixed at 0

Physical address bits [28:26], which cannot be generated from the above address, are generated
from QACR0 and QACR1.

QACR0[4:2] : Physical address bits [28:26] corresponding to SQ0

QACR1[4:2] : Physical address bits [28:26] corresponding to SQ1

Physical address bits [4:0] are always fixed at 0 since burst transfer starts at a 32-byte
boundary.

Rev. 1.50, 10/04, page 184 of 448

8.7.4 Determination of SQ Access Exception

Determination of an exception in a write to an SQ or transfer to external memory (PREF
instruction) is performed as follows according to whether the MMU is enabled or disabled. If an
exception occurs during a write to an SQ, the SQ contents before the write are retained. If an
exception occurs in a data transfer from an SQ to external memory, the transfer to external
memory will be aborted.

• When MMU is enabled (AT = 1 in MMUCR)

Operation is in accordance with the address translation information recorded in the UTLB, and
the SQMD bit in MMUCR. Write type exception judgment is performed for writes to the SQs,
and read type exception judgment for transfer from the SQs to external memory (using a PREF
instruction). As a result, a TLB miss exception or protection violation exception is generated
as required. However, if SQ access is enabled in privileged mode only by the SQMD bit in
MMUCR, an address error will occur even if address translation is successful in user mode.

• When MMU is disabled (AT = 0 in MMUCR)

Operation is in accordance with the SQMD bit in MMUCR.

0: Privileged/user mode access possible

1: Privileged mode access possible

If the SQ area is accessed in user mode when the SQMD bit in MMUCR is set to 1, an address
error will occur.

8.7.5 Reading from SQ

In privileged mode in the SH-4A, reading the contents of the SQs may be performed by means of
a load instruction for addresses H'FF00 1000 to H'FF00 103C in the P4 area. Only longword
access is possible.

[31:6] : H'FF00 1000 Store queue specification
[5] : 0/1 0: SQ0 specification

1: SQ1 specification
[4:2] : LW specification Specifies longword position in SQ0/SQ1
[1:0] : 00 Fixed at 0

Rev. 1.50, 10/04, page 185 of 448

8.8 Notes on Using 32-Bit Address Extended Mode

In 32-bit address extended mode, the items described in this section are extended as follows.

1. The tag bits [28:10] (19 bits) in the IC and OC are extended to bits [31:10] (22 bits).

2. An instruction which operates the IC (a memory-mapped IC access and writing to the ICI bit
in CCR) should be located in the P1 or P2 area. The cacheable bit (C bit) in the corresponding
entry in the PMB should be 0.

3. Bits [4:2] (3 bits) for the AREA0 bit in QACR0 and the AREA1 bit in QACR1 are extended to
bits [7:2] (6 bits).

Rev. 1.50, 10/04, page 186 of 448

 Rev. 1.50, 10/04, page 187 of 448

Section 9 L Memory

The SH-4A includes on-chip L-memory which stores instructions or data.

Note: For the size of L-memory, see the hardware manual of the target product.

9.1 Features

• Capacity

Total L memory can be selected from 16 Kbytes, 32 Kbytes, 64 Kbytes, or 128 Kbytes.

• Page

The L memory is divided into two pages (pages 0 and 1).

• Memory map

The L memory is allocated in the addresses shown in table 9.1 in both the virtual address space
and the physical address space.

Table 9.1 L Memory Addresses

Memory Size (Two Pages Total)

Page 16 Kbytes 32 Kbytes 64 Kbytes 128 Kbytes

Page 0 of L
memory

H'E500E000 to
H'E500FFFF

H'E500C000 to
H'E500FFFF

H'E5008000 to
H'E500FFFF

H'E5000000 to
H'E500FFFF

Page 1 of L
memory

H'E5010000 to
H'E5011FFF

H'E5010000 to
H'E5013FFF

H'E5010000 to
H'E5017FFF

H'E5010000 to
H'E501FFFF

• Ports

Each page has three independent read/write ports and is connected to each bus. The instruction
bus is used when L memory is accessed through instruction fetch. The operand bus is used
when L memory is accessed through operand access. The SuperHyway bus is used for L
memory access from the SuperHyway bus master module.

• Priority

In the event of simultaneous accesses to the same page from different buses, the access
requests are processed according to priority. The priority order is: SuperHyway bus > operand
bus > instruction bus.

Rev. 1.50, 10/04, page 188 of 448

9.2 Register Descriptions

The following registers are related to L memory.

Table 9.2 Register Configuration

Name Abbreviation R/W P4 Address*
Area 7
Address* Access Size

On-chip memory control
register

RAMCR R/W H'FF000074 H'1F000074 32

L memory transfer source
address register 0

LSA0 R/W H'FF000050 H'1F000050 32

L memory transfer source
address register 1

LSA1 R/W H'FF000054 H'1F000054 32

L memory transfer
destination address register
0

LDA0 R/W H'FF000058 H'1F000058 32

L memory transfer
destination address register
1

LDA1 R/W H'FF00005C H'1F00005C 32

Note: * The P4 address is the address used when using P4 area in the virtual address space.
The area 7 address is the address used when accessing from area 7 in the physical
address space using the TLB.

Table 9.3 Register Status in Each Processing State

Name Abbreviation
Power-On
Reset Manual Reset Sleep Standby

On-chip memory control
register

RAMCR H'00000000 H'00000000 Retained Retained

L memory transfer source
address register 0

LSA0 Undefined Undefined Retained Retained

L memory transfer source
address register 1

LSA1 Undefined Undefined Retained Retained

L memory transfer
destination address register
0

LDA0 Undefined Undefined Retained Retained

L memory transfer
destination address register
1

LDA1 Undefined Undefined Retained Retained

Rev. 1.50, 10/04, page 189 of 448

9.2.1 On-Chip Memory Control Register (RAMCR)

RAMCR controls the protective functions in the L memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RMD RP IC2W OC2W

Initial value :
R R R R R R R R R R R R R R R RR/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Bit :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Initial value :
R R R R R R R/W R/W R/W R/W R R R R R RR/W:

Bit Bit Name
Initial
Value R/W Description

31to10 — All 0 R Reserved

For read/write in these bits, refer to General
Precautions on Handling of Product.

9 RMD 0 R/W On-Chip Memory Access Mode

Specifies the right of access to the L memory from the
virtual address space.

0: An access in privileged mode is allowed.
(An address error exception occurs in user mode.)

1: An access in user/ privileged mode is allowed.

8 RP 0 R/W On-Chip Memory Protection Enable

Selects whether or not to use the protective functions
using ITLB and UTLB for accessing the L memory from
the virtual address space.

0: Protective functions are not used.

1: Protective functions are used.

For further details, refer to section 9.4, L Memory
Protective Functions.

7 IC2W 0 R/W IC Two-Way Mode

For further details, refer to section 8.4.3, IC Two-Way
Mode.

6 OC2W 0 R/W OC Two-Way Mode

For further details, refer to section 8.3.6, OC Two-Way
Mode.

5 to 0 — All 0 R Reserved

For read/write in these bits, refer to General
Precautions on Handling of Product.

Rev. 1.50, 10/04, page 190 of 448

9.2.2 L Memory Transfer Source Address Register 0 (LSA0)

When MMUCR.AT = 0 or RAMCR.RP = 0, the LSA0 specifies the transfer source physical
address for block transfer to page 0 of the L memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit :

0 0 0Initial value :
R R R R/W R/W R/W R/W R/W R/W R/W

L0SADR

L0SADR L0SSZ

R/W R/W R/W R/W R/W R/WR/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Bit :

0 0 0 0Initial value :
R/W R/W R/W R/W R/W R/W R R R R R/W R/W R/W R/W R/W R/WR/W:

Bit Bit Name
Initial
Value R/W Description

31 to 29 — All 0 R Reserved

For read/write in these bits, refer General Precautions
on Handling of Product.

28 to 10 L0SADR Undefined R/W L Memory Page 0 Block Transfer Source Address

When MMUCR.AT = 0 or RAMCR.RP = 0, these bits
specify the transfer source physical address for block
transfer to page 0 in the L memory.

9 to 6 — All 0 R Reserved

For read/write in these bits, refer to General
Precautions on Handling of Product.

Rev. 1.50, 10/04, page 191 of 448

Bit Bit Name
Initial
Value R/W Description

5 to 0 L0SSZ Undefined R/W L Memory Page 0 Block Transfer Source Address
Select

When MMUCR.AT = 0 or RAMCR.RP = 0, these bits
select whether the operand addresses or L0SADR
values are used as bits 15 to 10 of the transfer source
physical address for block transfer to the L memory.
L0SSZ[5:0] correspond to the transfer source physical
addresses [15:10].

0: The operand address is used as the transfer source
physical address.

1: The L0SADR value is used as the transfer source
physical address.

Settable values:

111111: Transfer source physical address is specified
in 1-Kbyte units.

111110: Transfer source physical address is specified
in 2-Kbyte units.

111100: Transfer source physical address is specified
in 4-Kbyte units.

111000: Transfer source physical address is specified
in 8-Kbyte units.

110000: Transfer source physical address is specified
in 16-Kbyte units.

100000: Transfer source physical address is specified
in 32-Kbyte units.

000000: Transfer source physical address is specified
in 64-Kbyte units.

Settings other than the ones given above are
prohibited.

9.2.3 L Memory Transfer Source Address Register 1 (LSA1)

When MMUCR.AT = 0 or RAMCR.RP = 0, the LSA1 specifies the transfer source physical
address for block transfer to page 1 in the L memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit :

0 0 0Initial value :
R R R R/W R/W R/W R/W R/W R/W R/W

L1SADR

L1SADR L1SSZ

R/W R/W R/W R/W R/W R/WR/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Bit :

0 0 0 0Initial value :
R/W R/W R/W R/W R/W R/W R R R R R/W R/W R/W R/W R/W R/WR/W:

Rev. 1.50, 10/04, page 192 of 448

Bit Bit Name
Initial
Value R/W Description

31 to 29 — All 0 R Reserved

For read/write in these bits, refer to General
Precautions on Handling of Product.

28 to 10 L1SADR Undefined R/W L Memory Page 1 Block Transfer Source Address

When MMUCR.AT = 0 or RAMCR.RP = 0, these bits
specify transfer source physical address for block
transfer to page 1 in the L memory.

9 to 6 — All 0 R Reserved

For read/write in these bits, refer to General
Precautions on Handling of Product.

5 to 0 L1SSZ Undefined R/W L Memory Page 1 Block Transfer Source Address
Select

When MMUCR.AT = 0 or RAMCR.RP = 0, these bits
select whether the operand addresses or L1SADR
values are used as bits 15 to 10 of the transfer source
physical address for block transfer to page 1 in the L
memory. L1SSZ bits [5:0] correspond to the transfer
source physical addresses [15:10].

0: The operand address is used as the transfer source
physical address.

1: The L1SADR value is used as the transfer source
physical address.

Settable values:

111111: Transfer source physical address is specified
in 1-Kbyte units.

111110: Transfer source physical address is specified
in 2-Kbyte units.

111100: Transfer source physical address is specified
in 4-Kbyte units.

111000: Transfer source physical address is specified
in 8-Kbyte units.

110000: Transfer source physical address is specified
in 16-Kbyte units.

100000: Transfer source physical address is specified
in 32-Kbyte units.

000000: Transfer source physical address is specified
in 64-Kbyte units.

Settings other than the ones given above are
prohibited.

Rev. 1.50, 10/04, page 193 of 448

9.2.4 L Memory Transfer Destination Address Register 0 (LDA0)

When MMUCR.AT = 0 or RAMCR.RP = 0, LDA0 specifies the transfer destination physical
address for block transfer to page 0 of the L memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit :

0 0 0Initial value :
R R R R/W R/W R/W R/W R/W R/W R/W

L0DADR

L0DADR L0DSZ

R/W R/W R/W R/W R/W R/WR/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Bit :

0 0 0 0Initial value :
R/W R/W R/W R/W R/W R/W R R R R R/W R/W R/W R/W R/W R/WR/W:

Bit Bit Name
Initial
Value R/W Description

31 to 29 — All 0 R Reserved

For read/write in these bits, refer to General
Precautions on Handling of Product.

28 to 10 L0DADR Undefined R/W L Memory Page 0 Block Transfer Destination Address

When MMUCR.AT = 0 or RAMCR.RP = 0, these bits
specify transfer destination physical address for block
transfer to page 0 in the L memory.

9 to 6 — All 0 R Reserved

For read/write in these bits, refer to General
Precautions on Handling of Product.

Rev. 1.50, 10/04, page 194 of 448

Bit Bit Name
Initial
Value R/W Description

5 to 0 L0DSZ Undefined R/W L Memory Page 0 Block Transfer Destination Address
Select

When MMUCR.AT = 0 or RAMCR.RP = 0, these bits
select whether the operand addresses or L0DADR
values are used as bits 15 to 10 of the transfer
destination physical address for block transfer to page 0
in the L memory. L0DSZ bits [5:0] correspond to the
transfer destination physical address bits [15:10].

0: The operand address is used as the transfer
destination physical address.

1: The L0DADR value is used as the transfer
destination physical address.

Settable values:

111111: Transfer destination physical address is
specified in 1-Kbyte units.

111110: Transfer destination physical address is
specified in 2-Kbyte units.

111100: Transfer destination physical address is
specified in 4-Kbyte units.

111000: Transfer destination physical address is
specified in 8-Kbyte units.

110000: Transfer destination physical address is
specified in 16-Kbyte units.

100000: Transfer destination physical address is
specified in 32-Kbyte units.

000000: Transfer destination physical address is
specified in 64-Kbyte units.

Settings other than the ones given above are
prohibited.

Rev. 1.50, 10/04, page 195 of 448

9.2.5 L Memory Transfer Destination Address Register 1 (LDA1)

When MMUCR.AT = 0 or RAMCR.RP = 0, LDA1 specifies the transfer destination physical
address for block transfer to page 1 in the L memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Bit :

0 0 0Initial value :
R R R R/W R/W R/W R/W R/W R/W R/W

L1DADR

L1DADR L1DSZ

R/W R/W R/W R/W R/W R/WR/W:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Bit :

0 0 0 0Initial value :
R/W R/W R/W R/W R/W R/W R R R R R/W R/W R/W R/W R/W R/WR/W:

Bit Bit Name
Initial
Value R/W Description

31 to 29 — All 0 R Reserved

For read/write in these bits, refer to General
Precautions on Handling of Product.

28 to 10 L1DADR Undefined R/W L Memory Page 1 Block Transfer Destination Address

When MMUCR.AT = 0 or RAMCR.RP = 0, these bits
specify transfer destination physical address for block
transfer to page 1 in the L memory.

9 to 6 — All 0 R Reserved

For read/write in these bits, refer to General
Precautions on Handling of Product.

Rev. 1.50, 10/04, page 196 of 448

Bit Bit Name
Initial
Value R/W Description

5 to 0 L1DSZ Undefined R/W L Memory Page 1 Block Transfer Destination Address
Select

When MMUCR.AT = 0 or RAMCR.RP = 0, these bits
select whether the operand addresses or L1DADR
values are used as bits 15 to 10 of the transfer
destination physical address for block transfer to page 1
in the L memory. L1DSZ bits [5:0] correspond to the
transfer destination physical addresses [15:10].

0: The operand address is used as the transfer
destination physical address.

1: The L1DADR value is used as the transfer
destination physical address.

Settable values:

111111: Transfer destination physical address is
specified in 1-Kbyte units.

111110: Transfer destination physical address is
specified in 2-Kbyte units.

111100: Transfer destination physical address is
specified in 4-Kbyte units.

111000: Transfer destination physical address is
specified in 8-Kbyte units.

110000: Transfer destination physical address is
specified in 16-Kbyte units.

100000: Transfer destination physical address is
specified in 32-Kbyte units.

000000: Transfer destination physical address is
specified in 64-Kbyte units.

Settings other than the ones given above are
prohibited.

Rev. 1.50, 10/04, page 197 of 448

9.3 Operation

9.3.1 Access from the CPU and FPU

L memory access from the CPU and FPU is direct via the instruction bus and operand bus by
means of the virtual address. As long as there is no conflict on the page, the L memory is accessed
in one cycle.

9.3.2 Access from the SuperHyway Bus Master Module

L memory is always accessed by the SuperHyway bus master module, such as DMAC, via the
SuperHyway bus which is a physical address bus. The same addresses as for the virtual addresses
must be used.

9.3.3 Block Transfer

High-speed data transfer can be performed through block transfer between the L memory and
external memory without cache utilization.

Data can be transferred from the external memory to the L memory through a prefetch instruction
(PREF). Block transfer from the external memory to the L memory begins when the PREF
instruction is issued to the address in the L memory area in the virtual address space.

Data can be transferred from the L memory to the external memory through a write-back
instruction (OCBWB). Block transfer from the L memory to the external memory begins when the
OCBWB instruction is issued to the address in the L memory area in the virtual address space.

In either case, transfer rate is fixed to 32 bytes. Since the start address is always limited to a 32-
byte boundary, the lower five bits of the address indicated by Rn are ignored, and are always dealt
with as all 0s. In either case, other pages and cache can be accessed during block transfer, but the
CPU will stall if the page which is being transferred is accessed before data transfer ends.

The physical addresses [28:0] of the external memory performing data transfers with the L
memory are specified as follows according to whether the MMU is enabled or disabled.

When MMU is Enabled (MMUCR.AT = 1) and RAMCR.RP = 1: An address of the L memory
area is specified to the UTLB VPN field, and to the physical address of the transfer source (in the
case of the PREF instruction) or the transfer destination (in the case of the OCBWB instruction) to
the PPN field. The ASID, V, SZ, SH, PR, and D bits have the same meaning as normal address
conversion; however, the C and WT bits have no meaning in this page.

Rev. 1.50, 10/04, page 198 of 448

When the PREF instruction is issued to the L memory area, address conversion is performed in
order to generate the physical address bits [28:10] in accordance with the SZ bit specification. The
physical address bits [9:5] are generated from the virtual address prior to address conversion. The
physical address bits [4:0] are fixed to 0. Block transfer is performed to the L memory from the
external memory which is specified by these physical addresses.

When the OCBWB instruction is issued to the L memory area, address conversion is performed in
order to generate the physical address bits [28:10] in accordance with the SZ bit specification. The
physical address bits [9:5] are generated from the virtual address prior to address conversion. The
physical address bits [4:0] are fixed to 0. Block transfer is performed from the L memory to the
external memory specified by these physical addresses.

In PREF or OCBWB instruction execution, an MMU exception is checked as read type. After the
MMU execution check, a TLB miss exception or protection error exception occurs if necessary. If
an exception occurs, the block transfer is inhibited.

When MMU is Disabled (MMUCR.AT = 0) or RAMCR.RP = 0: The transfer source physical
address in block transfer to page 0 in the L memory is set in the L0SADR bits of the LSA0
register. And the L0SSZ bits in the LSA0 register choose either the virtual addresses specified
through the PRFF instruction or the L0SADR values as bits 15 to 10 of the transfer source
physical address. In other words, the transfer source area can be specified in units of 1 Kbyte to 64
Kbytes.

The transfer destination physical address in block transfer from page 0 in the L memory is set in
the L0DADR bits of the LDA0 register. And the L0DSZ bits in the LDA0 register choose either
the virtual addresses specified through the OCBWB instruction or the L0DADR values as bits 15
to 10 of the transfer destination physical address. In other words, the transfer source area can be
specified in units of 1 Kbyte to 64 Kbytes.

Block transfer to page 1 in the L memory is set to LSA1 and LDA1 as with page 0 in the L
memory.

When the PREF instruction is issued to the L memory area, the physical address bits [28:10] are
generated in accordance with the LSA0 or LSA1 specification. The physical address bits [9:5] are
generated from the virtual address. The physical address bits [4:0] are fixed to 0. Block transfer is
performed from the external memory specified by these physical addresses to the L memory.

When the OCBWB instruction is issued to the L memory area, the physical address bits [28:10]
are generated in accordance with the LDA0 or LDA1 specification. The physical address bits [9:5]
are generated from the virtual address. The physical address bits [4:0] are fixed to 0. Block
transfer is performed from the L memory to the external memory specified by these physical
addresses.

Rev. 1.50, 10/04, page 199 of 448

9.4 L Memory Protective Functions

The SH-4A implements the following protective functions to the L memory by using the on-chip
memory access mode bit (RMD) and the on-chip memory protection enable bit (RP) in the on-chip
memory control register (RAMCR).

• Protective functions for access from the CPU and FPU

When RAMCR.RMD = 0, and the L memory is accessed in user mode, it is determined to be
an address error exception.

When MMUCR.AT = 1 and RAMCR.RP = 1, MMU exception and address error exception are
checked in the L memory area which is a part of area P4 as with the area P0/P3/U0.

The above descriptions are summarized in table 9.4.

Table 9.4 Protective Function Exceptions to Access L Memory

MMUCR.AT RAMCR.RP SR.MD RAMCR. RMD
Always Occurring
Exceptions

Possibly Occurring
Exceptions

0 Address error
exception

— 0

1 — —

0 *

1 * — —

0 Address error
exception

— 0

1 — —

0

1 * — —

0 Address error
exception

— 0

1 — MMU exception

1

1

1 * — MMU exception

[Legend] *: Don't care

Rev. 1.50, 10/04, page 200 of 448

9.5 Usage Notes

9.5.1 Page Conflict

In the event of simultaneous access to the same page from different buses, page conflict occurs.
Although each access is completed correctly, this kind of conflict tends to lower L memory
accessibility. Therefore it is advisable to provide all possible preventative software measures. For
example, conflicts will not occur if each bus accesses different pages.

9.5.2 L Memory Coherency

In order to allocate instructions in the L memory, write an instruction to the L memory, execute
the following sequence, then branch to the rewritten instruction.

• SYNCO

• ICBI @Rn

In this case, the target for the ICBI instruction can be any address (L memory address may be
possible) within the range where no address error exception occurs, and cache hit/miss is possible.

9.5.3 Sleep Mode

The SuperHyway bus master module, such as DMAC, cannot access L memory in sleep mode.

9.6 Note on Using 32-Bit Address Extended Mode

In 32-bit address extended mode, L0SADR fields in LSA0, L1SADR fields in LSA1, L0DADR
fields in LDA0, and L1DADR fields in LDA1 are extended from 19-bit [28:10] to 22-bit [31:10].

 Rev. 1.50, 10/04, page 201 of 448

Section 10 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below.

Instruction Name (Full Name): Instruction Type (Indication of delayed branch instruction
or interrupt-disabling instruction)

Format Operation Instruction Code Cycle T Bit

Assembler input format;
imm and disp are numbers,
expressions, or symbols

A brief description
of operation

Displayed in order
MSB < LSB

Number of
cycles when
there is no
wait state

The value of
T bit after the
instruction is
executed

Description:

Notes:

Operation:

Examples:

Description of operation

Notes on using the instruction

Operation written in C language

Location counter setting
Word integer data allocation
Longword integer data allocation
String data allocation
2-byte boundary alignment
4-byte boundary alignment
32-byte boundary alignment
16-times repeat expansion
32-times repeat expansion
Count-specification repeat expansion end

Possible Exceptions:

A list of exceptions that may occur when an instruction is executed is shown bellow.
But "Instruction TLB multiple-hit exception", "Instruction TLB miss exception", "Instruction TLB protection
exception", and "Instruction address error" are omitted because these exceptions may occur in all
instructions. As for the overflow/underflow exceptions, the detailed occurrence conditions are also described.

An example is shown using assembler mnemonics, indicating the states before and after execution
of the instruction.
Italics (e.g., .align) indicate an assembler control instruction. The meaning of the assembler control
instructions is given below. For details, refer to the C/C++ Compiler, Assembler, Optimizing linkage
editor User's Manual.

 .org
 .data.w
 .data.1
 .sdata
 .align 2
 .align 4
 .align 32
 .arepeat 16
 .arepeat 32
 .aendr

 Note: SH Series cross-assembler version 1.0 does not support conditional assembler function

Rev. 1.50, 10/04, page 202 of 448

10.1 CPU instruction

Note: Of the SH-4A's section, CPU instructions, those which support the FPU or differ
functionally from those of the SH4AL-DSP are described in section 10.2, CPU
instructions (FPU Related). The other instructions are described in section 10.1, CPU
instructions.

The following resources and functions are used in C-language descriptions of the operation of
CPU instructions.

char 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float single-precision floating point number(32 bits)

double double-precision floating point number(64 bits)

These are data types.

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr);

These reflect the respective sizes of address Addr. A word read from other than a 2n address, or a
longword read from other than a 4n address, will be detected as an address error.

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long(unsigned long Addr, unsigned long Data);

These write data Data to address Addr, using the respective sizes. A word write to other than a 2n address,
or a longword write to other than a 4n address, will be detected as an address error.

Delay_Slot(unsigned long Addr);

Shifts to execution of the slot instruction at address (Addr).

unsigned long R[16];

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL,PR;

unsigned long PC;

Registers

Rev. 1.50, 10/04, page 203 of 448

struct SR0 {

 unsigned long dummy0:22;

 unsigned long M0:1;

 unsigned long Q0:1;

 unsigned long I0:4;

 unsigned long dummy1:2;

 unsigned long S0:1;

 unsigned long T0:1;

};

SR structure definitions

define M ((*(struct SR0 *)(&SR)).M0)

#define Q ((*(struct SR0 *)(&SR)).Q0)

#define S ((*(struct SR0 *)(&SR)).S0)

#define T ((*(struct SR0 *)(&SR)).T0)

Definitions of bits in SR

Error(char *er);

Error display function

Rev. 1.50, 10/04, page 204 of 448

10.1.1 ADD (Add binary): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 1 —

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii 1 —

Description: This instruction adds together the contents of general registers Rn and Rm and stores
the result in Rn.

8-bit immediate data can also be added to the contents of general register Rn.

8-bit immediate data is sign-extended to 32 bits, allowing use in decrement operations.

Notes: None

Operation:

ADD(long m, long n) /* ADD Rm,Rn */

{

 R[n] += R[m];

 PC += 2;

}

ADDI(long i, long n) /* ADD #imm,Rn */

{

 if ((i&0x80)==0)

 R[n] += (0x000000FF & (long)i);

 else R[n] += (0xFFFFFF00 | (long)i);

 PC += 2;

}

Example:

ADD R0,R1 ;Before execution R0 = H'7FFFFFFF, R1 = H'00000001

 ;After execution R1 = H'80000000

ADD #H'01,R2 ;Before execution R2 = H'00000000

 ;After execution R2 = H'00000001

ADD #H'FE,R3 ;Before execution R3 = H'00000001

 ;After execution R3 = H'FFFFFFFF

Rev. 1.50, 10/04, page 205 of 448

10.1.2 ADDC (Add with Carry): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

ADDC Rm,Rn Rn + Rm + T → Rn,
carry → T

0011nnnnmmmm1110 1 Carry

Description: This instruction adds together the contents of general registers Rn and Rm and the T
bit, and stores the result in Rn. A carry resulting from the operation is reflected in the T bit. This
instruction is used for additions exceeding 32 bits.

Notes: None

Operation:

ADDC(long m, long n) /* ADDC Rm,Rn */

{

 unsigned long tmp0,tmp1;

 tmp1 = R[n] + R[m];

 tmp0 = R[n];

 R[n] = tmp1 + T;

 if (tmp0>tmp1) T = 1;

 else T = 0;

 if (tmp1>R[n]) T = 1;

 PC += 2;

}

Example:

CLRT ;R0:R1(64 bits) + R2:R3(64 bits) = R0:R1(64 bits)

ADDC R3,R1 ;Before execution T = 0, R1 = H'00000001, R3 = H'FFFFFFFF

 ;After execution T = 1, R1 = H'00000000

ADDC R2,R0 ;Before execution T = 1, R0 = H'00000000, R2 = H'00000000

 ;After execution T = 0, R0 = H'00000001

Rev. 1.50, 10/04, page 206 of 448

10.1.3 ADDV (Add with (V flag) Overflow Check): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

ADDV Rm,Rn Rn + Rm → Rn,
overflow → T

0011nnnnmmmm1111 1 Overflow

Description: This instruction adds together the contents of general registers Rn and Rm and stores
the result in Rn. If overflow occurs, the T bit is set.

Notes: None

Operation:

ADDV(long m, long n) /* ADDV Rm,Rn */

{

 long dest,src,ans;

 if ((long)R[n]>=0) dest = 0;

 else dest = 1;

 if ((long)R[m]>=0) src = 0;

 else src = 1;

 src += dest;

 R[n] += R[m];

 if ((long)R[n]>=0) ans = 0;

 else ans = 1;

 ans += dest;

 if (src==0 || src==2) {

 if (ans==1) T = 1;

 else T = 0;

 }

 else T = 0;

 PC += 2;

}

Rev. 1.50, 10/04, page 207 of 448

Example:

ADDV R0,R1 ;Before execution R0 = H'00000001, R1 = H'7FFFFFFE, T=0

 ;After execution R1 = H'7FFFFFFF, T=0

ADDV R0,R1 ;Before execution R0 = H'00000002, R1 = H'7FFFFFFE, T=0

 ;After execution R1 = H'80000000, T=1

Rev. 1.50, 10/04, page 208 of 448

10.1.4 AND (AND Logical): Logical Instruction

Format Operation Instruction Code Cycle T Bit

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

11001101iiiiiiii 3 —

Description: This instruction ANDs the contents of general registers Rn and Rm and stores the
result in Rn.

This instruction can be used to AND general register R0 contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit
immediate data.

Notes: With AND #imm,R0, the upper 24 bits of R0 are always cleared as a result of the
operation.

Operation:

AND(long m, long n) /* AND Rm,Rn */

{

 R[n] &= R[m];

 PC += 2;

}

ANDI(long i) /* AND #imm,R0 */

{

 R[0] &= (0x000000FF & (long)i);

 PC += 2;

}

ANDM(long i) /* AND.B #imm,@(R0,GBR) */

{

 long temp;

 temp = (long)Read_Byte(GBR+R[0]);

Rev. 1.50, 10/04, page 209 of 448

 temp &= (0x000000FF & (long)i);

 Write_Byte(GBR+R[0],temp);

 PC += 2;

}

Example:

 AND R0,R1 ;Before execution R0 = H'AAAAAAAA, R1=H'55555555

 ;After execution R1 = H'00000000

 AND #H'0F,R0 ;Before execution R0 = H'FFFFFFFF

 ;After execution R0 = H'0000000F

 AND.B #H'80,@(R0,GBR) ;Before execution (R0,GBR) = H'A5

 ;After execution (R0,GBR) = H'80

Possible Exceptions: Exceptions may occur when AND.B instruction is executed.

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Exceptions are checked taking a data access by this instruction as a byte load and a byte store.

Rev. 1.50, 10/04, page 210 of 448

10.1.5 BF (Branch if False): Branch Instruction

Format Operation Instruction Code Cycle T Bit

BF label If T = 0
PC + 4 + disp × 2 → PC
If T = 1, nop

10001011dddddddd 1 —

Description: This is a conditional branch instruction that references the T bit. The branch is taken
if T = 0, and not taken if T = 1. The branch destination is address (PC + 4 + displacement × 2).
The PC source value is the BF instruction address. As the 8-bit displacement is multiplied by two
after sign-extension, the branch destination can be located in the range from –256 to +254 bytes
from the BF instruction.

Notes: If the branch destination cannot be reached, the branch must be handled by using BF in
combination with a BRA or JMP instruction, for example.

Operation:

BF(int d) /* BF disp */

{

 int disp;

 if ((d&0x80)==0)

 disp = (0x000000FF & d);

 else disp = (0xFFFFFF00 | d);

 if (T==0)

 PC = PC+4+(disp<<1);

 else PC += 2;

}

Example:

 CLRT ;Normally T = 0

 BT TRGET_T ;T = 0, so branch is not taken.

 BF TRGET_F ;T = 0, so branch to TRGET_F.

 NOP ;

 NOP ;

TRGET_F: ;← BF instruction branch destination

Rev. 1.50, 10/04, page 211 of 448

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 212 of 448

10.1.6 BF/S (Branch if False with Delay Slot): Branch Instruction

Format Operation Instruction Code Cycle T Bit

BF/S label If T = 0,
PC + 4 + disp × 2 → PC
If T = 1, nop

10001111dddddddd 1 —

Description: This is a delayed conditional branch instruction that references the T bit. If T = 1, the
next instruction is executed and the branch is not taken. If T = 0, the branch is taken after
execution of the next instruction.

The branch destination is address (PC + 4 + displacement × 2). The PC source value is the BF/S
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from –256 to +254 bytes from the BF/S instruction.

Notes: As this is a delayed branch instruction, when the branch condition is satisfied, the
instruction following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction, it
is identified as a slot illegal instruction.

If the branch destination cannot be reached, the branch must be handled by using BF/S in
combination with a BRA or JMP instruction, for example.

Rev. 1.50, 10/04, page 213 of 448

Operation:

BFS(int d) /* BFS disp */

{

 int disp;

 unsigned int temp;

 temp = PC;

 if ((d&0x80)==0)

 disp = (0x000000FF & d);

 else disp = (0xFFFFFF00 | d);

 if (T==0)

 PC = PC + 4 + (disp<<1);

 else PC += 4;

 Delay_Slot(temp+2);

}

Example:

 CLRT ;Normally T = 0

 BT/S TRGET_T ;T = 0, so branch is not taken.

 NOP ;

 BF/S TRGET_F ;T = 0, so branch to TRGET.

 ADD R0,R1 ;Executed before branch.

 NOP ;

TRGET_F: ;← BF/S instruction branch destination

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 214 of 448

10.1.7 BRA (Branch): Branch Instruction

Format Operation Instruction Code Cycle T Bit

BRA label PC + 4 + disp × 2 → PC 1010dddddddddddd 1 —

Description: This is an unconditional branch instruction. The branch destination is address (PC +
4 + displacement × 2). The PC source value is the BRA instruction address. As the 12-bit
displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from –4096 to +4094 bytes from the BRA instruction. If the branch destination cannot be
reached, this branch can be performed with a JMP instruction.

Notes: As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation:

BRA(int d) /* BRA disp */

{

 int disp;

 unsigned int temp;

 temp = PC;

 if ((d&0x800)==0)

 disp = (0x00000FFF & d);

 else disp = (0xFFFFF000 | d);

 PC = PC + 4 + (disp<<1);

 Delay_Slot(temp+2);

}

Example:

 BRA TRGET ;Branch to TRGET.

 ADD R0,R1 ;ADD executed before branch.

 NOP ;

TRGET: ;← BRA instruction branch destination

Rev. 1.50, 10/04, page 215 of 448

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 216 of 448

10.1.8 BRAF (Branch Far): Branch Instruction (Delayed Branch Instruction)

Format Operation Instruction Code Cycle T Bit

BRAF Rn PC + 4 + Rn → PC 0000nnnn00100011 1 —

Description: This is an unconditional branch instruction. The branch destination is address (PC +
4 + Rn). The branch destination address is the result of adding 4 plus the 32-bit contents of general
register Rn to PC.

Notes: As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation:

BRAF(int n) /* BRAF Rn */

{

 unsigned int temp;

 temp = PC;

 PC = PC + 4 + R[n];

 Delay_Slot(temp+2);

}

Example:

 MOV.L #(TRGET-BRAF_PC),R0 ;Set displacement.

 BRAF R0 ;Branch to TRGET.

 ADD R0,R1 ;ADD executed before branch.

 BRAF_PC: ;

 NOP

 TRGET: ;← BRAF instruction branch destination

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 217 of 448

10.1.9 BT (Branch if True): Branch Instruction

Format Operation Instruction Code Cycle T Bit

BT label If T = 1
PC + 4 + disp × 2 → PC
If T = 0, nop

10001001dddddddd 1 —

Description: This is a conditional branch instruction that references the T bit. The branch is taken
if T = 1, and not taken if T = 0.

The branch destination is address (PC + 4 + displacement × 2). The PC source value is the BT
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from –256 to +254 bytes from the BT instruction.

Notes: If the branch destination cannot be reached, the branch must be handled by using BT in
combination with a BRA or JMP instruction, for example.

Operation:

BT(int d) /* BT disp */

{

 int disp;

 if ((d&0x80)==0)

 disp = (0x000000FF & d);

 else disp = (0xFFFFFF00 | d);

 if (T==1)

 PC = PC + 4 + (disp<<1);

 else PC += 2;

}

Example:

 SETT ;Normally T = 1

 BF TRGET_F ;T = 1, so branch is not taken.

 BT TRGET_T ;T = 1, so branch to TRGET_T.

 NOP ;

 NOP ;

TRGET_T: ;← BT instruction branch destination

Rev. 1.50, 10/04, page 218 of 448

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 219 of 448

10.1.10 BT/S (Branch if True with Delay Slot): Branch Instruction

Format Operation Instruction Code Cycle T Bit

BT/S label If T = 1,
PC + 4 + disp × 2 → PC
If T = 0, nop

10001101dddddddd 1 —

Description: This is a conditional branch instruction that references the T bit. The branch is taken
if T = 1, and not taken if T = 0.

The PC source value is the BT/S instruction address. As the 8-bit displacement is multiplied by
two after sign-extension, the branch destination can be located in the range from –256 to +254
bytes from the BT/S instruction.

Notes: As this is a delayed branch instruction, when the branch condition is satisfied, the
instruction following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

If the branch destination cannot be reached, the branch must be handled by using BT/S in
combination with a BRA or JMP instruction, for example.

Operation:

BTS(int d) /* BTS disp */

{

 int disp;

 unsigned temp;

 temp = PC;

 if ((d&0x80)==0)

 disp = (0x000000FF & d);

 else disp = (0xFFFFFF00 | d);

 if (T==1)

 PC = PC + 4 + (disp<<1);

 else PC += 4;

 Delay_Slot(temp+2);

}

Rev. 1.50, 10/04, page 220 of 448

Example:

 SETT ;Normally T = 1

 BF/S TRGET_F ;T = 1, so branch is not taken.

 NOP ;

 BT/S TRGET_T ;T = 1, so branch to TRGET_T.

 ADD R0,R1 ;Executed before branch.

 NOP ;

TRGET_T: ;← BT/S instruction branch destination

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 221 of 448

10.1.11 CLRMAC (Clear MAC Register): System Control Instruction

Format Operation Instruction Code Cycle T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

Description: This instruction clears the MACH and MACL registers.

Notes: None

Operation:

CLRMAC() /* CLRMAC */

{

 MACH = 0;

 MACL = 0;

 PC += 2;

}

Example:

 CLRMAC ;Clear MAC register to initialize.

 MAC.W @R0+,@R1+ ;Multiply-and-accumulate operation

 MAC.W @R0+,@R1+ ;

Rev. 1.50, 10/04, page 222 of 448

10.1.12 CLRS (Clear S Bit): System Control Instruction

Format Operation Instruction Code Cycle T Bit

CLRS 0 → S 0000000001001000 1 —

Description: This instruction clears the S bit to 0.

Notes: None

Operation:

CLRS() /* CLRS */

{

 S = 0;

 PC += 2;

}

Example:

CLRS ;Before execution S = 1

 ;After execution S = 0

Rev. 1.50, 10/04, page 223 of 448

10.1.13 CLRT (Clear T Bit): System Control Instruction

Format Operation Instruction Code Cycle T Bit

CLRT 0 → T 0000000000001000 1 0

Description: This instruction clears the T bit.

Notes: None

Operation:

CLRT() /* CLRT */

{

 T = 0;

 PC += 2;

}

Example:

CLRT ;Before execution T = 1

 ;After execution T = 0

Rev. 1.50, 10/04, page 224 of 448

10.1.14 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

CMP/EQ Rm,Rn If Rn = Rm, 1 → T

Otherwise, 0 → T

0011nnnnmmmm0000 1 Result of
comparison

CMP/GE Rm,Rn If Rn ≥ Rm, signed, 1 → T

Otherwise, 0 → T

0011nnnnmmmm0011 1 Result of
comparison

CMP/GT Rm,Rn If Rn > Rm, signed, 1 → T

Otherwise, 0 → T

0011nnnnmmmm0111 1 Result of
comparison

CMP/HI Rm,Rn If Rn > Rm, unsigned, 1 → T

Otherwise, 0 → T

0011nnnnmmmm0110 1 Result of
comparison

CMP/HS Rm,Rn If Rn ≥ Rm, unsigned, 1 → T

Otherwise, 0 → T

0011nnnnmmmm0010 1 Result of
comparison

CMP/PL Rn If Rn > 0, 1 → T

Otherwise, 0 → T

0100nnnn00010101 1 Result of
comparison

CMP/PZ Rn If Rn ≥ 0, 1 → T

Otherwise, 0 → T

0100nnnn00010001 1 Result of
comparison

CMP/STR Rm,Rn If any bytes are equal, 1 → T

Otherwise, 0 → T

0010nnnnmmmm1100 1 Result of
comparison

CMP/EQ #imm,R0 If R0 = imm, 1 → T

Otherwise, 0 → T

10001000iiiiiiii 1 Result of
comparison

Description: This instruction compares general registers Rn and Rm, and sets the T bit if the
specified condition (cond) is true. If the condition is false, the T bit is cleared. The contents of Rn
are not changed. Nine conditions can be specified. For the two conditions PZ and PL, Rn is
compared with 0.

With the EQ condition, sign-extended 8-bit immediate data can be compared with R0. The
contents of R0 are not changed.

Rev. 1.50, 10/04, page 225 of 448

Mnemonic Description

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn ≥ Rm as signed values, T = 1

CMP/GT Rm,Rn If Rn > Rm as signed values, T = 1

CMP/HI Rm,Rn If Rn > Rm as unsigned values, T = 1

CMP/HS Rm,Rn If Rn ≥ Rm as unsigned values, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn ≥ 0, T = 1

CMP/STR Rm,Rn If any bytes are equal, T = 1

CMP/EQ #imm,R0 If R0 = imm, T = 1

Notes: None

Operation:

CMPEQ(long m, long n) /* CMP_EQ Rm,Rn */

{

 if (R[n]==R[m]) T = 1;

 else T = 0;

 PC += 2;

}

CMPGE(long m, long n) /* CMP_GE Rm,Rn */

{

 if ((long)R[n]>=(long)R[m]) T = 1;

 else T = 0;

 PC += 2;

}

CMPGT(long m, long n) /* CMP_GT Rm,Rn */

{

 if ((long)R[n]>(long)R[m]) T = 1;

 else T = 0;

 PC += 2;

}

Rev. 1.50, 10/04, page 226 of 448

CMPHI(long m, long n) /* CMP_HI Rm,Rn */

{

 if ((unsigned long)R[n]>(unsigned long)R[m]) T = 1;

 else T = 0;

 PC += 2;

}

CMPHS(long m, long n) /* CMP_HS Rm,Rn */

{

 if ((unsigned long)R[n]>=(unsigned long)R[m]) T = 1;

 else T = 0;

 PC += 2;

}

CMPPL(long n) /* CMP_PL Rn */

{

 if ((long)R[n]>0) T = 1;

 else T = 0;

 PC += 2;

}

CMPPZ(long n) /* CMP_PZ Rn */

{

 if ((long)R[n]>=0) T = 1;

 else T = 0;

 PC += 2;

}

CMPSTR(long m, long n) /* CMP_STR Rm,Rn */

{

 unsigned long temp;

 long HH,HL,LH,LL;

Rev. 1.50, 10/04, page 227 of 448

 temp=R[n]^R[m];

 HH = (temp & 0xFF000000) >> 24;

 HL = (temp & 0x00FF0000) >> 16;

 LH = (temp & 0x0000FF00) >> 8;

 LL = temp & 0x000000FF;

 HH = HH && HL && LH && LL;

 if (HH==0) T = 1;

 else T = 0;

 PC += 2;

}

CMPIM(long i) /* CMP_EQ #imm,R0 */

{

 long imm;

 if ((i&0x80)==0) imm=(0x000000FF & (long i));

 else imm=(0xFFFFFF00 | (long i));

 if (R[0]==imm) T = 1;

 else T = 0;

 PC += 2;

}

Example:

CMP/GE R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ;T = 0, so branch is not taken.

CMP/HS R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ;T = 1, so branch is taken.

CMP/STR R2,R3 ;R2 = "ABCD", R3 = "XYCZ"

BT TRGET_T ;T = 1, so branch is taken.

Rev. 1.50, 10/04, page 228 of 448

10.1.15 DIV0S (Divide (Step 0) as Signed): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M,
M^Q → T

0010nnnnmmmm0111 1 Result of
calculation

Description: This instruction performs initial settings for signed division. This instruction is
followed by a DIV1 instruction that executes 1-digit division, for example, and repeated divisions
are executed to find the quotient. See the description of the DIV1 instruction for details.

Notes: None

Operation:

DIV0S(long m, long n) /* DIV0S Rm,Rn */

{

 if ((R[n] & 0x80000000)==0) Q = 0;

 else Q = 1;

 if ((R[m] & 0x80000000)==0) M = 0;

 else M = 1;

 T = !(M==Q);

 PC += 2;

}

Example:

See the examples for the DIV1 instruction.

Rev. 1.50, 10/04, page 229 of 448

10.1.16 DIV0U (Divide (Step 0) as Unsigned): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

DIV0U 0 → M/Q/T 0000000000011001 1 0

Description: This instruction performs initial settings for unsigned division. This instruction is
followed by a DIV1 instruction that executes 1-digit division, for example, and repeated divisions
are executed to find the quotient. See the description of the DIV1 instruction for details.

Notes: None

Operation:

DIV0U() /* DIV0U */

{

 M = Q = T = 0;

 PC += 2;

}

Example:

See the examples for the DIV1 instruction.

Rev. 1.50, 10/04, page 230 of 448

10.1.17 DIV1 (Divide 1 Step): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

DIV1 Rm,Rn 1-step division
(Rn ÷ Rm)

0011nnnnmmmm0100 1 Result of
calculation

Description: This instruction performs 1-digit division (1-step division) of the 32-bit contents of
general register Rn (dividend) by the contents of Rm (divisor). The quotient is obtained by
repeated execution of this instruction alone or in combination with other instructions. The
specified registers and the M, Q, and T bits must not be modified during these repeated
executions.

In 1-step division, the dividend is shifted 1 bit to the left, the divisor is subtracted from this, and
the quotient bit is reflected in the Q bit according to whether the result is positive or negative.

The remainder can be found as follows after first finding the quotient using the DIV1 instruction:

(Remainder) = (dividend) – (divisor) × (quotient)

Detection of division by zero or overflow is not provided. Check for division by zero and overflow
division before executing the division. A remainder operation is not provided. Find the remainder
by finding the product of the divisor and the obtained quotient, and subtracting this value from the
dividend.

Initial settings should first be made with the DIV0S or DIV0U instruction. DIV1 is executed once
for each bit of the divisor. If a quotient of more than 17 bits is required, place an ROTCL
instruction before the DIV1 instruction. See the examples for details of the division sequence.

Notes: None

Operation:

DIV1(long m, long n) /* DIV1 Rm,Rn */

{

 unsigned long tmp0, tmp2;

 unsigned char old_q, tmp1;

 old_q = Q;

 Q = (unsigned char)((0x80000000 & R[n])!=0);

 tmp2 = R[m];

 R[n] <<= 1;

 R[n] |= (unsigned long)T;

Rev. 1.50, 10/04, page 231 of 448

 switch(old_q){

 case 0:switch(M){

 case 0:tmp0 = R[n];

 R[n] -= tmp2;

 tmp1 = (R[n]>tmp0);

 switch(Q){

 case 0:Q = tmp1;

 break;

 case 1:Q = (unsigned char)(tmp1==0);

 break;

 }

 break;

 case 1:tmp0 = R[n];

 R[n] += tmp2;

 tmp1 = (R[n]<tmp0);

 switch(Q){

 case 0:Q = (unsigned char)(tmp1==0);

 break;

 case 1:Q = tmp1;

 break;

 }

 break;

 }

 break;

 case 1:switch(M){

 case 0:tmp0 = R[n];

 R[n] += tmp2;

 tmp1 = (R[n]<tmp0);

 switch(Q){

 case 0:Q = tmp1;

 break;

 case 1:Q = (unsigned char)(tmp1==0);

 break;

 }

 break;

 case 1:tmp0 = R[n];

Rev. 1.50, 10/04, page 232 of 448

 R[n] -= tmp2;

 tmp1 = (R[n]>tmp0);

 switch(Q){

 case 0:Q = (unsigned char)(tmp1==0);

 break;

 case 1:Q = tmp1;

 break;

 }

 break;

 }

 break;

 }

 T = (Q==M);

 PC += 2;

}

Example 1:

 ;R1 (32 bits) ÷ R0 (16 bits) = R1 (16 bits); unsigned

SHLL16 R0 ;Set divisor in upper 16 bits, clear lower 16 bits to 0

TST R0,R0 ;Check for division by zero

BT ZERO_DIV ;

CMP/HS R0,R1 ;Check for overflow

BT OVER_DIV ;

DIV0U ;Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ;Repeat 16 times

.aendr ;

ROTCL R1 ;

EXTU.W R1,R1 ;R1 = quotient

Rev. 1.50, 10/04, page 233 of 448

Example 2:

 ; R1:R2 (64 bits) ÷ R0 (32 bits) = R2 (32 bits); unsigned

TST R0,R0 ;Check for division by zero

BT ZERO_DIV ;

CMP/HS R0,R1 ;Check for overflow

BT OVER_DIV ;

DIV0U ;Flag initialization

.arepeat 32 ;

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ;R2 = quotient

Example 3:

 ;R1 (16 bits) ÷ R0 (16 bits) = R1 (16 bits); signed

SHLL16 R0 ;Set divisor in upper 16 bits, clear lower 16 bits to 0

EXTS.W R1,R1 ;Dividend sign-extended to 32 bits

XOR R2,R2 ;R2 = 0

MOV R1,R3 ;

ROTCL R3 ;

SUBC R2,R1 ;If dividend is negative, subtract 1

DIV0S R0,R1 ;Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ;Repeat 16 times

.aendr ;

EXTS.W R1,R1 ;

ROTCL R1 ;R1 = quotient (one's complement notation)

ADDC R2,R1 ;If MSB of quotient is 1, add 1 to convert to two's complement notation

EXTS.W R1,R1 ;R1 = quotient (two's complement notation)

Rev. 1.50, 10/04, page 234 of 448

Example 4:

 ;R2 (32 bits) ÷ R0 (32 bits) = R2 (32 bits); signed

MOV R2,R3 ;

ROTCL R3 ;

SUBC R1,R1 ;Dividend sign-extended to 64 bits (R1:R2)

XOR R3,R3 ;R3 = 0

SUBC R3,R2 ;If dividend is negative, subtract 1 to convert to one's complement notation

DIV0S R0,R1 ;Flag initialization

.arepeat 32 ;

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ;R2 = quotient (one's complement notation)

ADDC R3,R2 ;If MSB of quotient is 1, add 1 to convert to two's complement notation

 ;R2 = quotient (two's complement notation)

Rev. 1.50, 10/04, page 235 of 448

10.1.18 DMULS.L (Double-length Multiply as Signed): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

DMULS.L Rm,Rn Signed,
Rn × Rm →MAC

0011nnnnmmmm1101 2 —

Description: This instruction performs 32-bit multiplication of the contents of general register Rn
by the contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The
multiplication is performed as a signed arithmetic operation.

Notes: None

Operation:

DMULS(long m, long n) /* DMULS.L Rm,Rn */

{

 unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

 unsigned long temp0,temp1,temp2,temp3;

 long tempm,tempn,fnLmL;

 tempn = (long)R[n];

 tempm = (long)R[m];

 if (tempn<0) tempn = 0 - tempn;

 if (tempm<0) tempm = 0 - tempm;

 if ((long)(R[n]^R[m])<0) fnLmL = -1;

 else fnLmL = 0;

 temp1 = (unsigned long)tempn;

 temp2 = (unsigned long)tempm;

 RnL = temp1&0x0000FFFF;

 RnH = (temp1>>16)&0x0000FFFF;

 RmL = temp2&0x0000FFFF;

 RmH = (temp2>>16)&0x0000FFFF;

Rev. 1.50, 10/04, page 236 of 448

 temp0 = RmL*RnL;

 temp1 = RmH*RnL;

 temp2 = RmL*RnH;

 temp3 = RmH*RnH;

 Res2 = 0;

 Res1 = temp1+temp2;

 if (Res1<temp1) Res2 += 0x00010000;

 temp1 = (Res1<<16)&0xFFFF0000;

 Res0 = temp0 + temp1;

 if (Res0<temp0) Res2++;

 Res2 = Res2 + ((Res1>>16)&0x0000FFFF) + temp3;

 if (fnLmL<0) {

 Res2 = ~Res2;

 if (Res0==0)

 Res2++;

 else

 Res0 = (~Res0) + 1;

 }

 MACH = Res2;

 MACL = Res0;

 PC +=2;

 }

Example:

DMULS.L R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

 ;After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 ;Get operation result (upper)

STS MACL,R1 ;Get operation result (lower)

Rev. 1.50, 10/04, page 237 of 448

10.1.19 DMULU.L (Double-length Multiply as Unsigned): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

DMULU.L Rm,Rn Unsigned,
Rn × Rm →MAC

0011nnnnmmmm0101 2 —

Description: This instruction performs 32-bit multiplication of the contents of general register Rn
by the contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The
multiplication is performed as an unsigned arithmetic operation.

Notes: None

Operation:

DMULU(long m, long n) /* DMULU.L Rm,Rn */

{

 unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

 unsigned long temp0,temp1,temp2,temp3;

 RnL = R[n] & 0x0000FFFF;

 RnH = (R[n]>>16) & 0x0000FFFF;

 RmL = R[m] & 0x0000FFFF;

 RmH = (R[m]>>16) & 0x0000FFFF;

 temp0 = RmL*RnL;

 temp1 = RmH*RnL;

 temp2 = RmL*RnH;

 temp3 = RmH*RnH;

 Res2 = 0

 Res1 = temp1 + temp2;

 if (Res1<temp1) Res2 += 0x00010000;

 temp1 = (Res1<<16) & 0xFFFF0000;

 Res0 = temp0 + temp1;

 if (Res0<temp0) Res2++;

Rev. 1.50, 10/04, page 238 of 448

 Res2 = Res2 + ((Res1>>16)&0x0000FFFF) + temp3;

 MACH = Res2;

 MACL = Res0;

 PC += 2;

}

Example:

DMULU.L R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

 ;After execution MACH = H'00005554, MACL = H'FFFF5556

STS MACH,R0 ;Get operation result (upper)

STS MACL,R1 ;Get operation result (lower)

Rev. 1.50, 10/04, page 239 of 448

10.1.20 DT (Decrement and Test): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

DT Rn Rn – 1 → Rn;
if Rn = 0, 1 → T
if Rn ≠ 0, 0 → T

0100nnnn00010000 1 Result of
comparison

Description: This instruction decrements the contents of general register Rn by 1 and compares
the result with zero. If the result is zero, the T bit is set to 1. If the result is nonzero, the T bit is
cleared to 0.

Notes: None

Operation:

DT(long n)/* DT Rn */

{

 R[n]--;

 if (R[n]==0) T = 1;

 else T = 0;

 PC += 2;

}

Example:

 MOV #4,R5 ;Set loop count

LOOP:

 ADD R0,R1 ;

 DT R5 ;Decrement R5 value and check for 0.

 BF LOOP ;If T = 0, branch to LOOP (in this example, 4 loops are executed).

Rev. 1.50, 10/04, page 240 of 448

10.1.21 EXTS (Extend as Signed): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

EXTS.B Rm,Rn Rm sign-extended from
byte → Rn

0110nnnnmmmm1110 1 —

EXTS.W Rm,Rn Rm sign-extended from
word → Rn

0110nnnnmmmm1111 1 —

Description:

This instruction sign-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, the value of Rm bit 7 is transferred to Rn bits 8 to 31. For a word
specification, the value of Rm bit 15 is transferred to Rn bits 16 to 31.

Notes: None

Operation:

EXTSB(long m, long n) /* EXTS.B Rm,Rn */

{

 R[n] = R[m];

 if ((R[m] & 0x00000080)==0) R[n] & =0x000000FF;

 else R[n] |= 0xFFFFFF00;

 PC += 2;

}

EXTSW(long m, long n) /* EXTS.W Rm,Rn */

{

 R[n] = R[m];

 if ((R[m] & 0x00008000)==0) R[n] & =0x0000FFFF;

 else R[n] |= 0xFFFF0000;

 PC += 2;

}

Rev. 1.50, 10/04, page 241 of 448

Example:

EXTS.B R0,R1 ;Before execution R0 = H'00000080

 ;After execution R1 = H'FFFFFF80

EXTS.W R0,R1 ;Before execution R0 = H'00008000

 ;After execution R1 = H'FFFF8000

Rev. 1.50, 10/04, page 242 of 448

10.1.22 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

EXTU.B Rm,Rn Rm zero-extended from
byte → Rn

0110nnnnmmmm1100 1 —

EXTU.W Rm,Rn Rm zero-extended from
word → Rn

0110nnnnmmmm1101 1 —

Description: This instruction zero-extends the contents of general register Rm and stores the
result in Rn.

For a byte specification, 0 is transferred to Rn bits 8 to 31. For a word specification, 0 is
transferred to Rn bits 16 to 31.

Notes: None

Operation:

EXTUB(long m, long n) /* EXTU.B Rm,Rn */

{

 R[n] = R[m];

 R[n] &= 0x000000FF;

 PC += 2;

}

EXTUW(long m, long n) /* EXTU.W Rm,Rn */

{

 R[n] = R[m];

 R[n] &= 0x0000FFFF;

 PC += 2;

}

Example:

EXTU.B R0,R1 ;Before execution R0 = H'FFFFFF80

 ;After execution R1 = H'00000080

EXTU.W R0,R1 ;Before execution R0 = H'FFFF8000

 ;After execution R1 = H'00008000

Rev. 1.50, 10/04, page 243 of 448

10.1.23 ICBI (Instruction Cache Block Invalidate): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

ICBI @Rn Invalidates the instruction
cache block indicated by
logical address Rn

0000nnnn11100011 13 —

Description: This instruction accesses the instruction cache at the effective address indicated by
the contents of Rn. When the cache is hit, the corresponding cache block is invalidated (the V bit
is cleared to 0). At this time, write-back is not performed. No operation is performed in the case of
a cache miss or access to a non-cache area.

Notes: None

Operation:

ICBI(int n) /* ICBI @Rn */

{

 invalidate_instruction_cache_block(R[n]);

 PC += 2;

}

Example: When a program is overwriting RAM to modify its own execution, the corresponding
block of the instruction cache should be invalidated by the ICBI instruction. This prevents
execution of the program from the instruction cache, where the non-overwritten instructions are
stored.

Possible Exceptions: Exceptions may occur when invalidation is not performed.

• Instruction TLB multiple-hit exception

• Instruction TLB miss exception

• Instruction TLB protection violation exception

• Instruction address error

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 244 of 448

10.1.24 JMP (Jump): Branch Instruction

Format Operation Instruction Code Cycle T Bit

JMP @Rn Rn → PC 0100nnnn00101011 1 —

Description: Unconditionally makes a delayed branch to the address specified by Rn.

Notes: As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation:

JMP(int n)/* JMP @Rn */

{

 unsigned int temp;

 temp = PC;

 PC = R[n];

 Delay_Slot(temp+2);

}

Example:

 MOV.L JMP_TABLE,R0 ;R0 = TRGET address

 JMP @R0 ;Branch to TRGET.

 MOV R0,R1 ;MOV executed before branch.

 .align 4

JMP_TABLE: .data.l TRGET ;Jump table

TRGET: ADD #1,R1 ;← Branch destination

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 245 of 448

10.1.25 LDC (Load to Control Register): System Control Instruction

Format Operation Instruction Code Cycle T Bit

LDC Rm, GBR Rm → GBR 0100mmmm00011110 1 —

LDC Rm, VBR Rm → VBR 0100mmmm00101110 1 —

LDC Rm, SGR Rm → SGR 0100mmmm00111010 4 —

LDC Rm, SSR Rm → SSR 0100mmmm00111110 1 —

LDC Rm, SPC Rm → SPC 0100mmmm01001110 1

LDC Rm, DBR Rm → DBR 0100mmmm11111010 4 —

LDC Rm, R0_BANK Rm → R0_BANK 0100mmmm10001110 1 —

LDC Rm, R1_BANK Rm → R1_BANK 0100mmmm10011110 1 —

LDC Rm, R2_BANK Rm → R2_BANK 0100mmmm10101110 1 —

LDC Rm, R3_BANK Rm → R3_BANK 0100mmmm10111110 1 —

LDC Rm, R4_BANK Rm → R4_BANK 0100mmmm11001110 1 —

LDC Rm, R5_BANK Rm → R5_BANK 0100mmmm11011110 1 —

LDC Rm, R6_BANK Rm → R6_BANK 0100mmmm11101110 1 —

LDC Rm, R7_BANK Rm → R7_BANK 0100mmmm11111110 1 —

LDC.L @Rm+, GBR (Rm) → GBR, Rm+4 → Rm 0100mmmm00010111 1 —

LDC.L @Rm+, VBR (Rm) → VBR, Rm+4 → Rm 0100mmmm00100111 1 —

LDC.L @Rm+, SGR (Rm) → SGR, Rm+4 → Rm 0100mmmm00110110 4 —

LDC.L @Rm+, SSR (Rm) → SSR, Rm+4 → Rm 0100mmmm00110111 1 —

LDC.L @Rm+, SPC (Rm) → SPC, Rm+4 → Rm 0100mmmm01000111 1 —

LDC.L @Rm+, DBR (Rm) → DBR, Rm+4 → Rm 0100mmmm11110110 4 —

LDC.L @Rm+, R0_BANK (Rm) → R0_BANK, Rm+4 → Rm 0100mmmm10000111 1 —

LDC.L @Rm+, R1_BANK (Rm) → R1_BANK, Rm+4 → Rm 0100mmmm10010111 1 —

LDC.L @Rm+, R2_BANK (Rm) → R2_BANK, Rm+4 → Rm 0100mmmm10100111 1 —

LDC.L @Rm+, R3_BANK (Rm) → R3_BANK, Rm+4 → Rm 0100mmmm10110111 1 —

LDC.L @Rm+, R4_BANK (Rm) → R4_BANK, Rm+4 → Rm 0100mmmm11000111 1 —

LDC.L @Rm+, R5_BANK (Rm) → R5_BANK, Rm+4 → Rm 0100mmmm11010111 1 —

LDC.L @Rm+, R6_BANK (Rm) → R6_BANK, Rm+4 → Rm 0100mmmm11100111 1 —

LDC.L @Rm+, R7_BANK (Rm) → R7_BANK, Rm+4 → Rm 0100mmmm11110111 1 —

Description: These instructions store the source operand in the control register GBR, VBR, SSR,
SPC, DBR, SGR, or R0_BANK to R7_BANK.

Rev. 1.50, 10/04, page 246 of 448

Notes: With the exception of LDC Rm,GBR and LDC.L @Rm+,GBR, the LDC/LDC.L
instructions are privileged instructions and can only be used in privileged mode. Use in user mode
will cause an illegal instruction exception. However, LDC Rm,GBR and LDC.L @Rm+,GBR can
also be used in user mode.

With the LDC Rm, Rn_BANK and LDC.L @Rm, Rn_BANK instructions, Rn_BANK0 is
accessed when the RB bit in the SR register is 1, and Rn_BANK1 is accessed when this bit is 0.

Operation:

 LDCGBR(int m) /* LDC Rm,GBR */

 {

 GBR = R[m];

 PC += 2;

 }

 LDCVBR(int m) /* LDC Rm,VBR : Privileged */

 {

 VBR = R[m];

 PC += 2;

 }

 LDCSGR(int m) /* LDC Rm,SGR : Privileged */

 {

 SGR = R[m];

 PC += 2;

 }

 LDCSSR(int m) /* LDC Rm,SSR : Privileged */

 {

 SSR = R[m],

 PC += 2;

 }

 LDCSPC(int m) /* LDC Rm,SPC : Privileged */

 {

 SPC = R[m];

 PC += 2;

 }

Rev. 1.50, 10/04, page 247 of 448

 LDCDBR(int m) /* LDC Rm,DBR : Privileged */

 {

 DBR = R[m];

 PC += 2;

 }

 LDCRn_BANK(int m) /* LDC Rm,Rn_BANK : Privileged */

 /* n=0–7 */

 {

 Rn_BANK = R[m];

 PC += 2;

 }

 LDCMGBR(int m) /* LDC.L @Rm+,GBR */

 {

 GBR=Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

 }

 LDCMVBR(int m) /* LDC.L @Rm+,VBR : Privileged */

 {

 VBR = Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

 }

 LDCMSGR(int m) /* LDC.L @Rm+,SGR : Privileged */

 {

 SGR = Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

 }

Rev. 1.50, 10/04, page 248 of 448

 LDCMSSR(int m) /* LDC.L @Rm+,SSR : Privileged */

 {

 SSR=Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

 }

 LDCMSPC(int m) /* LDC.L @Rm+,SPC : Privileged */

 {

 SPC = Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

 }

 LDCMDBR(int m) /* LDC.L @Rm+,DBR : Privileged */

 {

 DBR = Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

 }

 LDCMRn_BANK(Long m) /* LDC.L @Rm+,Rn_BANK : Privileged */

 /* n=0–7 */

 {

 Rn_BANK = Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

 }

Possible Exceptions:

• Data TLB multiple-hit exception

• General illegal instruction exception

• Slot illegal instruction exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Rev. 1.50, 10/04, page 249 of 448

10.1.26 LDS (Load to System Register): System Control Instruction

Format Operation Instruction Code Cycle T Bit

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 —

LDS Rm,PR Rm→ PR 0100mmmm00101010 1 —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 1 —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 1 —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 1 —

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Notes: None

Operation:

LDSMACH(long m) /* LDS Rm,MACH */

{

 MACH = R[m];

 PC += 2;

}

LDSMACL(long m) /* LDS Rm,MACL */

{

 MACL = R[m];

 PC += 2;

}

LDSPR(long m) /* LDS Rm,PR */

{

 PR = R[m];

 PC += 2;

}

Rev. 1.50, 10/04, page 250 of 448

LDSMMACH(long m) /* LDS.L @Rm+,MACH */

{

 MACH = Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

}

LDSMMACL(lomg m) /* LDS.L @Rm+,MACL */

{

 MACL = Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

}

LDSMPR(long m) /* LDS.L @Rm+,PR */

{

 PR = Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

}

Example:

LDS R0,PR ; Before execution R0 = H'12345678, PR = H'00000000

 ; After execution PR = H'12345678

LDS.L @R15+,MACL ; Before execution R15 = H'10000000

 ; After execution R15 = H'10000004, MACL = (H'10000000)

Possible Exceptions: Exception may occur when LDS.L instruction is executed.

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Rev. 1.50, 10/04, page 251 of 448

10.1.27 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction (Privileged

Instruction)

Format Operation Instruction Code Cycle T Bit

LDTLB PTEH/PTEL → TLB 0000000000111000 1 —

Description: This instruction loads the contents of the PTEH/PTEL registers into the TLB
(translation lookaside buffer) specified by MMUCR.URC (random counter field in the MMC
control register).

LDTLB is a privileged instruction, and can only be used in privileged mode. Use of this
instruction in user mode will cause an illegal instruction exception.

Notes: As this instruction loads the contents of the PTEH/PTEL registers into a TLB, it should be
used either with the MMU disabled, or in the P1 or P2 virtual space with the MMU enabled (see
section 7, Memory Management Unit (MMU), for details). After this instruction is issued, there
must be at least one instruction between the LDTLB instruction and issuance of an instruction
relating to address to the P0, U0, and P3 areas (i.e. BRAF, BSRF, JMP, JSR, RTS, or RTE).

Operation:

LDTLB() /*LDTLB */

{

 TLB[MMUCR.URC].ASID = PTEH & 0x000000FF;

 TLB[MMUCR.URC].VPN = (PTEH & 0xFFFFFC00) >> 10;

 TLB[MMUCR.URC].PPN = (PTEH & 0x1FFFFC00) >> 10;

 TLB[MMUCR.URC].SZ = (PTEL & 0x00000080) >> 6 |

 (PTEL & 0x00000010) >> 4;

 TLB[MMUCR.URC].SH = (PTEH & 0x00000002) >> 1;

 TLB[MMUCR.URC].PR = (PTEH & 0x00000060) >> 5;

 TLB[MMUCR.URC].WT = (PTEH & 0x00000001);

 TLB[MMUCR.URC].C = (PTEH & 0x00000008) >> 3;

 TLB[MMUCR.URC].D = (PTEH & 0x00000004) >> 2;

 TLB[MMUCR.URC].V = (PTEH & 0x00000100) >> 8;

 PC += 2;

}

Rev. 1.50, 10/04, page 252 of 448

Example:

MOV @R0,R1 ;Load page table entry (upper) into R1

MOV R1,@R2 ;Load R1 into PTEH; R2 is PTEH address (H'FF000000)

LDTLB ;Load PTEH, PTEL registers into TLB

Possible Exceptions:

• General illegal instruction exception

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 253 of 448

10.1.28 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

MAC.L @Rm+,@Rn+ Signed,
(Rn) × (Rm) + MAC → MAC

Rn + 4 → Rn, Rm + 4 → Rm

0000nnnnmmmm1111 5 —

Description: This instruction performs signed multiplication of the 32-bit operands whose
addresses are the contents of general registers Rm and Rn, adds the 64-bit result to the MAC
register contents, and stores the result in the MAC register. Operands Rm and Rn are each
incremented by 4 each time they are read.

If the S bit is 0, the 64-bit result is stored in the linked MACH and MACL registers.

If the S bit is 1, the addition to the MAC register contents is a saturation operation at the 48th bit
from the LSB. In a saturation operation, only the lower 48 bits of the MAC register are valid, and
the result range is limited to H'FFFF800000000000 (minimum value) to H'00007FFFFFFFFFFF
(maximum value).

Notes: None

Operation:

MACL(long m, long n) /* MAC.L @Rm+,@Rn+ */

{

 unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

 unsigned long temp0,temp1,temp2,temp3;

 long tempm,tempn,fnLmL;

 tempn = (long)Read_Long(R[n]);

 R[n] += 4;

 tempm = (long)Read_Long(R[m]);

 R[m] += 4;

 if ((long)(tempn^tempm)<0) fnLmL = -1;

 else fnLmL = 0;

 if (tempn<0) tempn = 0-tempn;

 if (tempm<0) tempm = 0-tempm;

Rev. 1.50, 10/04, page 254 of 448

 temp1 = (unsigned long)tempn;

 temp2 = (unsigned long)tempm;

 RnL = temp1&0x0000FFFF;

 RnH = (temp1>>16) & 0x0000FFFF;

 RmL = temp2 & 0x0000FFFF;

 RmH = (temp2>>16) & 0x0000FFFF;

 temp0 = RmL*RnL;

 temp1 = RmH*RnL;

 temp2 = RmL*RnH;

 temp3 = RmH*RnH;

 Res2 = 0;

Res1 = temp1 + temp2;

if (Res1<temp1) Res2 += 0x00010000;

temp1 =(Res1<<16) & 0xFFFF0000;

Res0 = temp0 + temp1;

if (Res0<temp0) Res2++;

Res2 = Res2 + ((Res1>>16) & 0x0000FFFF) + temp3;

if(fnLmL<0){

 Res2 = ~Res2;

 if (Res0==0) Res2++;

 else Res0 = (~Res0)+1;

}

if(S==1){

 Res0 = MACL + Res0;

 if (MACL>Res0) Res2++;

 if (MACH & 0x00008000);

 else Res2 += MACH|0xFFFF0000;

 Res2 += MACH&0x00007FFF;

Rev. 1.50, 10/04, page 255 of 448

 if(((long)Res2<0)&&(Res2 < 0xFFFF8000)){

 Res2 = 0xFFFF8000;

 Res0 = 0x00000000;

 }

 if(((long)Res2>0)&&(Res2 > 0x00007FFF)){

 Res2 = 0x00007FFF;

 Res0 = 0xFFFFFFFF;

 };

 MACH = (Res2 & 0x0000FFFF)|(MACH & 0xFFFF0000);

 MACL = Res0;

}

 else {

 Res0 = MACL + Res0;

 if (MACL>Res0) Res2++;

 Res2 += MACH;

 MACH = Res2;

 MACL = Res0;

 }

 PC += 2;

}

Rev. 1.50, 10/04, page 256 of 448

Example:

 MOVA TBLM,R0 ;Get table address

 MOV R0,R1 ;

 MOVA TBLN,R0 ;Get table address

 CLRMAC ;MAC register initialization

 MAC.L @R0+,@R1+ ;

 MAC.L @R0+,@R1+ ;

 STS MACL,R0 ;Get result in R0

 .align 2 ;

TBLM .data.l H'1234ABCD ;

 .data.l H'5678EF01 ;

TBLN .data.l H'0123ABCD ;

 .data.l H'4567DEF0 ;

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Rev. 1.50, 10/04, page 257 of 448

10.1.29 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

MAC.W @Rm+,@Rn+

MAC @Rm+,@Rn+

Signed,
(Rn) × (Rm) + MAC →MAC

Rn + 2 → Rn, Rm + 2 → Rm

0100nnnnmmmm1111 4 —

Description: This instruction performs signed multiplication of the 16-bit operands whose
addresses are the contents of general registers Rm and Rn, adds the 32-bit result to the MAC
register contents, and stores the result in the MAC register. Operands Rm and Rn are each
incremented by 2 each time they are read.

If the S bit is 0, a 16 × 16 + 64 → 64-bit multiply-and-accumulate operation is performed, and the
64-bit result is stored in the linked MACH and MACL registers.

If the S bit is 1, a 16 × 16 + 32 → 32-bit multiply-and-accumulate operation is performed, and the
addition to the MAC register contents is a saturation operation. In a saturation operation, only the
MACL register is valid, and the result range is limited to H'80000000 (minimum value) to
H'7FFFFFFF (maximum value). If overflow occurs, the LSB of the MACH register is set to 1.
H'80000000 (minimum value) is stored in the MACL register if the result overflows in the
negative direction, and H'7FFFFFFF (maximum value) is stored if the result overflows in the
positive direction

Notes: If the S bit is 0, a 16 × 16 + 64 → 64-bit multiply-and-accumulate operation is performed.

Operation:

MACW(long m, long n) /* MAC.W @Rm+,@Rn+ */

{

 long tempm,tempn,dest,src,ans;

 unsigned long templ;

 tempn = (long)Read_Word(R[n]);

 R[n] += 2;

 tempm = (long)Read_Word(R[m]);

 R[m] += 2;

 templ = MACL;

 tempm = ((long)(short)tempn*(long)(short)tempm);

 if ((long)MACL>=0) dest = 0;

 else dest = 1;

Rev. 1.50, 10/04, page 258 of 448

 if ((long)tempm>=0) {

 src = 0;

 tempn = 0;

 }

 else {

 src = 1;

 tempn = 0xFFFFFFFF;

 }

 src += dest;

 MACL += tempm;

 if ((long)MACL>=0) ans = 0;

 else ans = 1;

 ans += dest;

 if (S==1) {

 if (ans==1) {

 if (src==0) MACL = 0x7FFFFFFF;

 if (src==2) MACL = 0x80000000;

 }

 }

 else {

 MACH += tempn;

 if (templ>MACL) MACH += 1;

 }

 PC += 2;

}

Rev. 1.50, 10/04, page 259 of 448

Example:

 MOVA TBLM,R0 ;Get table address

 MOV R0,R1 ;

 MOVA TBLN,R0 ;Get table address

 CLRMAC ;MAC register initialization

 MAC.W @R0+,@R1+ ;

 MAC.W @R0+,@R1+ ;

 STS MACL,R0 ;Get result in R0

 .align 2 ;

TBLM .data.w H'1234 ;

 .data.w H'5678 ;

TBLN .data.w H'0123 ;

 .data.w H'4567 ;

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Rev. 1.50, 10/04, page 260 of 448

10.1.30 MOV (Move data): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 —

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 1 —

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 —

MOV.B Rm,@-Rn Rn-1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 —

MOV.W Rm,@-Rn Rn-2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 —

MOV.L Rm,@-Rn Rn-4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 —

MOV.B @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 1 —

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 1 —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 1 —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 —

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1100 1 —

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1101 1 —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 —

Description: This instruction transfers the source operand to the destination. When an operand is
memory, the data size can be specified as byte, word, or longword. When the source operand is
memory, the loaded data is sign-extended to longword before being stored in the register.

Notes: None

Rev. 1.50, 10/04, page 261 of 448

Operation:

MOV(long m, long n) /* MOV Rm,Rn */

{

 R[n] = R[m];

 PC += 2;

}

MOVBS(long m, long n) /* MOV.B Rm,@Rn */

{

 Write_Byte(R[n],R[m]);

 PC += 2;

}

MOVWS(long m, long n) /* MOV.W Rm,@Rn */

{

 Write_Word(R[n],R[m]);

 PC += 2;

}

MOVLS(long m, long n) /* MOV.L Rm,@Rn */

{

 Write_Long(R[n],R[m]);

 PC += 2;

}

MOVBL(long m, long n) /* MOV.B @Rm,Rn */

{

 R[n] = (long)Read_Byte(R[m]);

 if ((R[n]&0x80)==0) R[n] &= 0x000000FF;

 else R[n] |= 0xFFFFFF00;

 PC += 2;

}

Rev. 1.50, 10/04, page 262 of 448

MOVWL(long m, long n) /* MOV.W @Rm,Rn */

{

 R[n] = (long)Read_Word(R[m]);

 if ((R[n]&0x8000)==0) R[n] &= 0x0000FFFF;

 else R[n] |= 0xFFFF0000;

 PC += 2;

}

MOVLL(long m, long n) /* MOV.L @Rm,Rn */

}

 R[n] = Read_Long(R[m]);

 PC += 2;

}

MOVBM(long m, long n) /* MOV.B Rm,@-Rn */

{

 Write_Byte(R[n]-1,R[m]);

 R[n] -= 1;

 PC += 2;

}

MOVWM(long m, long n) /* MOV.W Rm,@-Rn */

{

 Write_Word(R[n]-2,R[m]);

 R[n] -= 2;

 PC += 2;

}

MOVLM(long m, long n) /* MOV.L Rm,@-Rn */

{

 Write_Long(R[n]-4,R[m]);

 R[n] -= 4;

 PC += 2;

}

Rev. 1.50, 10/04, page 263 of 448

MOVBP(long m, long n) /* MOV.B @Rm+,Rn */

{

 R[n] = (long)Read_Byte(R[m]);

 if ((R[n]&0x80)==0) R[n] &= 0x000000FF;

 else R[n] |= 0xFFFFFF00;

 if (n!=m) R[m] += 1;

 PC += 2;

}

MOVWP(long m, long n) /* MOV.W @Rm+,Rn */

{

 R[n] = (long)Read_Word(R[m]);

 if ((R[n]&0x8000)==0) R[n] &= 0x0000FFFF;

 else R[n] |= 0xFFFF0000;

 if (n!=m) R[m] += 2;

 PC += 2;

}

MOVLP(long m, long n) /* MOV.L @Rm+,Rn */

{

 R[n] = Read_Long(R[m]);

 if (n!=m) R[m] += 4;

 PC += 2;

}

MOVBS0(long m, long n) /* MOV.B Rm,@(R0,Rn) */

{

 Write_Byte(R[n]+R[0],R[m]);

 PC += 2;

}

MOVWS0(long m, long n) /* MOV.W Rm,@(R0,Rn) */

{

 Write_Word(R[n]+R[0],R[m]);

 PC+=2;

}

Rev. 1.50, 10/04, page 264 of 448

MOVLS0(long m, long n) /* MOV.L Rm,@(R0,Rn) */

{

 Write_Long(R[n]+R[0],R[m]);

 PC += 2;

}

MOVBL0(long m, long n) /* MOV.B @(R0,Rm),Rn */

{

 R[n] = (long)Read_Byte(R[m]+R[0]);

 if ((R[n]&0x80)==0) R[n] &= 0x000000FF;

 else R[n] |= 0xFFFFFF00;

 PC += 2;

}

MOVWL0(long m, long n) /* MOV.W @(R0,Rm),Rn */

{

 R[n] = (long)Read_Word(R[m]+R[0]);

 if ((R[n]&0x8000)==0) R[n] &= 0x0000FFFF;

 else R[n] |= 0xFFFF0000;

 PC += 2;

}

MOVLL0(long m, long n) /* MOV.L @(R0,Rm),Rn */

{

 R[n] = Read_Long(R[m]+R[0]);

 PC += 2;

}

Rev. 1.50, 10/04, page 265 of 448

Example:

MOV R0,R1 ;Before execution R0 = H'FFFFFFFF, R1 = H'00000000

 ;After execution R1 = H'FFFFFFFF

MOV.W R0,@R1 ;Before execution R0 = H'FFFF7F80

 ;After execution (R1) = H'7F80

MOV.B @R0,R1 ;Before execution (R0) = H'80, R1 = H'00000000

 ;After execution R1 = H'FFFFFF80

MOV.W R0,@-R1 ;Before execution R0 = H'AAAAAAAA, (R1) = H'FFFF7F80

 ;After execution R1 = H'FFFF7F7E, (R1) = H'AAAA

MOV.L @R0+,R1 ;Before execution R0 = H'12345670

 ;After execution R0 = H'12345674, R1 = (H'12345670)

MOV.B R1,@(R0,R2) ;Before execution R2 = H'00000004, R0 = H'10000000

 ;After execution R1 = (H'10000004)

MOV.W @(R0,R2),R1 ;Before execution R2 = H'00000004, R0 = H'10000000

 ;After execution R1 = (H'10000004)

Possible Exceptions: Exceptions may occur when MOV instructions without MOV Rm,Rn are
executed.

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

• Initial page write exception (only write operation)

Rev. 1.50, 10/04, page 266 of 448

10.1.31 MOV (Move Constant Value): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOV #imm,Rn imm → sign extension
→ Rn

1110nnnniiiiiiii 1 —

MOV.W @(disp*,PC),Rn (disp × 2 + PC + 4)
→ sign extension → Rn

1001nnnndddddddd 1 —

MOV.L @(disp*,PC),Rn (disp × 4 + PC &
H'FFFFFFFC + 4)
→ Rn

1101nnnndddddddd 1 —

Note: * The assembler of Renesas Technology uses the value after scaling (×1, ×2, or ×4) as
the displacement (disp).

Description: This instruction stores immediate data, sign-extended to longword, in general
register Rn. In the case of word or longword data, the data is stored from memory address (PC + 4
+ displacement × 2) or (PC + 4 + displacement × 4).

With word data, the 8-bit displacement is multiplied by two after zero-extension, and so the
relative distance from the table is in the range up to PC + 4 + 510 bytes. The PC value is the
address of this instruction.

With longword data, the 8-bit displacement is multiplied by four after zero-extension, and so the
relative distance from the operand is in the range up to PC + 4 + 1020 bytes. The PC value is the
address of this instruction. A value with the lower 2 bits adjusted to B'00 is used in address
calculation.

Notes: If a PC-relative load instruction is executed in a delay slot, a slot illegal instruction
exception will be generated.

Rev. 1.50, 10/04, page 267 of 448

Operation:

MOVI(int i, int n) /* MOV #imm,Rn */

{

 if ((i&0x80)==0) R[n] = (0x000000FF & i);

 else R[n] = (0xFFFFFF00 | i);

 PC += 2;

}

MOVWI(d, n) /* MOV.W @(disp,PC),Rn */

{

 unsigned int disp;

 disp = (unsigned int)(0x000000FF & d);

 R[n] = (int)Read_Word(PC+4+(disp<<1));

 if ((R[n]&0x8000)==0) R[n] &= 0x0000FFFF;

 else R[n] |= 0xFFFF0000;

 PC += 2;

}

 MOVLI(int d, int n)/* MOV.L @(disp,PC),Rn */

{

 unsigned int disp;

 disp = (unsigned int)(0x000000FF & (int)d);

 R[n] = Read_Long((PC & 0xFFFFFFFC)+4+(disp<<2));

 PC += 2;

}

Rev. 1.50, 10/04, page 268 of 448

Example:

Address

1000 MOV #H'80,R1 ;R1 = H'FFFFFF80

1002 MOV.W IMM,R2 ;R2 = H'FFFF9ABC IMM means (PC + 4 + H'08)

1004 ADD #-1,R0 ;

1006 TST R0,R0 ;

1008 MOV.L @(3*,PC),R3 ;R3 = H'12345678

100A BRA NEXT ;Delayed branch instruction

100C NOP

100E IMM .data.w H'9ABC ;

1010 .data.w H'1234 ;

1012 NEXT JMP @R3 ;Distination of BRA branch instruction

1014 CMP/EQ #0,R0 ;

 .align 4 ;

1018 .data.l H'12345678 ;

101C .data.l H'9ABCDEF0 ;

Note: * The assembler of Renesas Technology uses the value after scaling (×1, ×2, or ×4) as

the displacement (disp).

Possible Exceptions: Exceptions may occur when PC-relative load instruction is executed.

• Data TLB multiple-hit exception

• Slot illegal instruction exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Rev. 1.50, 10/04, page 269 of 448

10.1.32 MOV (Move Global Data): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOV.B @(disp*,GBR),R0 (disp + GBR)
→ sign extension → R0

11000100dddddddd 1 —

MOV.W @(disp*,GBR),R0 (disp × 2 + GBR)
→ sign extension → R0

11000101dddddddd 1 —

MOV.L @(disp*,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd 1 —

MOV.B R0,@(disp*,GBR) R0 → (disp + GBR) 11000000dddddddd 1 —

MOV.W R0,@(disp*,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd 1 —

MOV.L R0,@(disp*,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd 1 —

Note: * The assembler of Renesas Technology uses the value after scaling (×1, ×2, or ×4) as
the displacement (disp).

Description: This instruction transfers the source operand to the destination. Byte, word, or
longword can be specified as the data size, but the register is always R0. If the transfer data is
byte-size, the 8-bit displacement is only zero-extended, so a range up to +255 bytes can be
specified. If the transfer data is word-size, the 8-bit displacement is multiplied by two after zero-
extension, enabling a range up to +510 bytes to be specified. With longword transfer data, the 8-
bit displacement is multiplied by four after zero-extension, enabling a range up to +1020 bytes to
be specified.

When the source operand is memory, the loaded data is sign-extended to longword before being
stored in the register.

Notes: When loading, the destination register is always R0.

Operation:

MOVBLG(int d) /* MOV.B @(disp,GBR),R0 */

{

 unsigned int disp;

 disp = (unsigned int)(0x000000FF & d);

 R[0] = (int)Read_Byte(GBR+disp);

 if ((R[0]&0x80)==0) R[0] &= 0x000000FF;

 else R[0] |= 0xFFFFFF00;

 PC += 2;

}

Rev. 1.50, 10/04, page 270 of 448

MOVWLG(int d) /* MOV.W @(disp,GBR),R0 */

{

 unsigned int disp;

 disp = (unsigned int)(0x000000FF & d);

 R[0] = (int)Read_Word(GBR+(disp<<1));

 if ((R[0]&0x8000)==0) R[0] &= 0x0000FFFF;

 else R[0] |= 0xFFFF0000;

 PC += 2;

}

MOVLLG(int d) /* MOV.L @(disp,GBR),R0 */

{

 unsigned int disp;

 disp = (unsigned int)(0x000000FF & d);

 R[0] = Read_Long(GBR+(disp<<2));

 PC += 2;

}

MOVBSG(int d) /* MOV.B R0,@(disp,GBR) */

{

 unsigned int disp;

 disp = (unsigned int)(0x000000FF & d);

 Write_Byte(GBR+disp,R[0]);

 PC += 2;

}

Rev. 1.50, 10/04, page 271 of 448

MOVWSG(int d) /* MOV.W R0,@(disp,GBR) */

{

 unsigned int disp;

 disp = (unsigned int)(0x000000FF & d);

 Write_Word(GBR+(disp<<1),R[0]);

 PC += 2;

}

MOVLSG(int d) /* MOV.L R0,@(disp,GBR) */

{

 unsigned int disp;

 disp = (unsigned int)(0x000000FF & (long)d);

 Write_Long(GBR+(disp<<2),R[0]);

 PC += 2;

}

Example:

MOV.L @(2*,GBR),R0 ;Before execution (GBR+8) = H'12345670

 ;After execution R0 = H'12345670

MOV.B R0,@(1*,GBR) ;Before execution R0 = H'FFFF7F80

 ;After execution (GBR+1) = H'80

Note: * The assembler of Renesas Technology uses the value after scaling (×1, ×2, or ×4) as

the displacement (disp).

Possible Exceptions:

• Data TLB multiple-hit exception

• Slot illegal instruction exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

• Initial page write exception (only write operation)

Rev. 1.50, 10/04, page 272 of 448

10.1.33 MOV (Move Structure Data): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOV.B R0,@(disp*,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 —

MOV.W R0,@(disp*,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd 1 —

MOV.L Rm,@(disp*,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd 1 —

MOV.B @(disp*,Rm),R0 (disp + Rm) →
sign extension → R0

10000100mmmmdddd 1 —

MOV.W @(disp*,Rm),R0 (disp × 2 + Rm) →
sign extension → R0

10000101mmmmdddd 1 —

MOV.L @(disp*,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd 1 —

Note: * The assembler of Renesas Technology uses the value after scaling (×1, ×2, or ×4) as
the displacement (disp).

Description: This instruction transfers the source operand to the destination. It is ideal for
accessing data inside a structure or stack. Byte, word, or longword can be specified as the data
size, but with byte or word data the register is always R0.

If the data is byte-size, the 4-bit displacement is only zero-extended, so a range up to +15 bytes
can be specified. If the data is word-size, the 4-bit displacement is multiplied by two after zero-
extension, enabling a range up to +30 bytes to be specified. With longword data, the 4-bit
displacement is multiplied by four after zero-extension, enabling a range up to +60 bytes to be
specified. If a memory operand cannot be reached, the previously described @(R0,Rn) mode must
be used.

When the source operand is memory, the loaded data is sign-extended to longword before being
stored in the register.

Notes: When loading byte or word data, the destination register is always R0. Therefore, if the
following instruction attempts to reference R0, it is kept waiting until completion of the load
instruction. This allows optimization by changing the order of instructions.

MOV.B
AND
ADD

@(2,R1),R0
#80,R0
#20,R1

MOV.B
ADD
AND

@(2,R1),R0
#20,R1
#80,R0

Rev. 1.50, 10/04, page 273 of 448

Operation:

MOVBS4(long d, long n) /* MOV.B R0,@(disp,Rn) */

{

 long disp;

 disp = (0x0000000F & (long)d);

 Write_Byte(R[n]+disp,R[0]);

 PC += 2;

}

MOVWS4(long d, long n) /* MOV.W R0,@(disp,Rn) */

{

 long disp;

 disp = (0x0000000F & (long)d);

 Write_Word(R[n]+(disp<<1),R[0]);

 PC += 2;

}

MOVLS4(long m, long d, long n) /* MOV.L Rm,@(disp,Rn) */

{

 long disp;

 disp = (0x0000000F & (long)d);

 Write_Long(R[n]+(disp<<2),R[m]);

 PC += 2;

}

MOVBL4(long m, long d) /* MOV.B @(disp,Rm),R0 */

{

 long disp;

 disp = (0x0000000F & (long)d);

 R[0] = Read_Byte(R[m]+disp);

 if ((R[0]&0x80)==0) R[0] &= 0x000000FF;

 else R[0] |= 0xFFFFFF00;

 PC += 2;

}

Rev. 1.50, 10/04, page 274 of 448

MOVWL4(long m, long d) /* MOV.W @(disp,Rm),R0 */

{

 long disp;

 disp = (0x0000000F & (long)d);

 R[0] = Read_Word(R[m]+(disp<<1));

 if ((R[0]&0x8000)==0) R[0] &= 0x0000FFFF;

 else R[0] |= 0xFFFF0000;

 PC += 2;

}

MOVLL4(long m, long d, long n) /* MOV.L @(disp,Rm),Rn */

{

 long disp;

 disp = (0x0000000F & (long)d);

 R[n] = Read_Long(R[m]+(disp<<2));

 PC += 2;

}

Example:

MOV.L @(2*,R0),R1 ;Before execution (R0+8) = H'12345670

 ;After execution R1 = H'12345670

MOV.L R0,@(H'F,R1) ;Before execution R0 = H'FFFF7F80

 ;After execution (R1+60) = H'FFFF7F80

Note: * The assembler of Renesas Technology uses the value after scaling (×1, ×2, or ×4) as

the displacement (disp).

Possible Exceptions:

• Data TLB multiple-hit exception

• Slot illegal instruction exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

• Initial page write exception (only write operation)

Rev. 1.50, 10/04, page 275 of 448

10.1.34 MOVA (Move Effective Address): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOVA
@(disp*,PC),R0

disp × 4 + PC &
H'FFFFFFFC + 4 → R0

11000111dddddddd 1 —

Note: * The assembler of Renesas Technology uses the value after scaling (×1, ×2, or ×4) as
the displacement (disp).

Description: This instruction stores the source operand effective address in general register R0.
The 8-bit displacement is multiplied by four after zero-extension. The PC value is the address of
this instruction, but a value with the lower 2 bits adjusted to B'00 is used in address calculation.

Notes: If this instruction is executed in a delay slot, a slot illegal instruction exception will be
generated.

Operation:

MOVA(int d) /* MOVA @(disp,PC),R0 */

{

 unsigned int disp;

 disp = (unsigned int)(0x000000FF & d);

 R[0] = (PC&0xFFFFFFFC) + 4 + (disp<<2);

 PC += 2;

}

Example:

Address .org H'1006

1006 MOVA STR*,R0 ;STR address → R0

1008 MOV.B @R0,R1 ;R1 = “X” ← Position after adjustment of lower 2 bits of PC

100A ADD R4,R5

 .align 4

100C STR:.sdata "XYZP12"

Note: * The assembler of Renesas Technology uses the value after scaling (×1, ×2, or ×4) as

the displacement (disp).

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 276 of 448

10.1.35 MOVCA.L (Move with Cache Block Allocation): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOVCA.L R0,@Rn R0 → (Rn)
(without fetching cache
block)

0000nnnn11000011 1 —

Description: This instruction stores the contents of general register R0 in the memory location
indicated by effective address Rn. This instruction differs from other store instructions as follows.

If write-back is selected for the accessed memory, and a cache miss occurs, the cache block will
be allocated but an R0 data write will be performed to that cache block without performing a block
read. Other cache block contents are undefined.

Notes: None

Operation:

MOVCAL(int n) /*MOVCA.L R0,@Rn */

 {

 if ((is_write_back_memory(R[n]))

 && (look_up_in_operand_cache(R[n]) == MISS))

 allocate_operand_cache_block(R[n]);

 Write_Long(R[n], R[0]);

 PC += 2;

 }

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Rev. 1.50, 10/04, page 277 of 448

10.1.36 MOVCO (Move Conditional): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOVCO.L R0,@Rn LDST → T

if (T==1) R0 → (Rn)

0 → LDST

0000nnnn01110011 1 LDST

Description: MOVCO is used in combination with MOVLI to realize an atomic read-modify-

write operation in a single processor.

This instruction copies the value of the LDST flag to the T bit. When the T bit is set to 1, the value
of R0 is stored at the address in Rm. If the T bit is cleared to 0, the value is not stored at the
address in Rm. Finally, the LDST flag is cleared to 0. Since the LDST flag is cleared by an
instruction or exception, storage by the MOVCO instruction only proceeds when no interrupt or
exception has occurred between the execution of the MOVLI and MOVCO instructions.

Notes: None

Operation:

MOVCO(long n) /* MOVCO Rn,@Rn */

{

 T = LDST;

 if(T==1)

 Write_Long(R[n],R[0]);

 LDST = 0;

 PC += 2

}

Rev. 1.50, 10/04, page 278 of 448

Example:
Retry: MOVLI.L @Rn,R0 ; Atomic incrementation

 ADD #1,R0

 MOVCO.L R0,@Rn

 BF Retry ; Reexecute if an interrupt or other
 exception occurs between the MOVLI and
 MOVCO instructions

 NOP

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Rev. 1.50, 10/04, page 279 of 448

10.1.37 MOVLI (Move Linked): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOVLI.L @Rm,R0 1 → LDST

(Rm) → R0

If an interrupt or exception
has occurred

0 → LDST

0000nnnn01100011 1 —

Description: MOVLI is used in combination with MOVCO to realize an atomic read-modify-

write operation in a single processor.

This instruction sets the LDST flag to 1 and reads the four bytes of data indicated by Rm into R0.

If, however, an interrupt or exception occurs, LDST is cleared to 0.

Storage by the MOVCO instruction only proceeds when the instruction is executed after the LDST
bit has been set by the MOVLI instruction and not cleared by an interrupt or other exception.
When LDST has been cleared to 0, the MOVCO instruction clears the T bit and does not proceed
with storage.

Notes: None

Operation:

MOVLINK(long m) /* MOVLI Rm,@Rn */

{

 LDST = 1;

 R[0] = Read_Long(R[m]);

 PC += 2

}

Example:
See the examples for the MOVCO instruction.

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Rev. 1.50, 10/04, page 280 of 448

10.1.38 MOVT (Move T Bit): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOVT Rn T → Rn 0000nnnn00101001 1 —

Description: This instruction stores the T bit in general register Rn. When T = 1, Rn = 1; when T
= 0, Rn = 0.

Notes: None

Operation:

MOVT(long n) /* MOVT Rn */

{

 R[n] = (0x00000001 & SR);

 PC += 2;

}

Example:

XOR R2,R2 ;R2 = 0

CMP/PZ R2 ;T = 1

MOVT R0 ;R0 = 1

CLRT ;T = 0

MOVT R1 ;R1 = 0

Rev. 1.50, 10/04, page 281 of 448

10.1.39 MOVUA (Move Unaligned): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

MOVUA.L @Rm,R0 (Rm) → R0

Load non-boundary-aligned
data

0100nnnn10101001 2 —

MOVUA.L @Rm+,R0 (Rm) → R0, Rm + 4 → Rm

Load non-boundary-aligned
data

0100nnnn11101001 2 —

Description: This instruction loads the longword of data from the effective address indicated by
the contents of Rm in memory to R0. The address is not restricted to longword boundaries address
(4n); this instruction allows loading from non-longword-boundary addresses (4n + 1, 4n + 2, and
4n + 3). Data address error exceptions do not occur when access is to non-longword-boundary
addresses (4n + 1, 4n + 2, and 4n + 3).

Notes: None

Operation:

MOVUAL(int m) /* MOVUA.L Rm,R0*/

{

 Read_Unaligned_Long(R0,R[m]);

 PC += 2;

}

MOVUALP(int m) /* MOVUA.L Rm+,R0*/

{

 Read_Unaligned_Long(R0,R[m]);

 if(m != 0) R[m] += 4;

 PC += 2;

}

Rev. 1.50, 10/04, page 282 of 448

Example:

MOVUA.L @R1,R0 ;Before execution R1=H'00001001, R0=H'00000000

 ;After execution R0=(H'00001001)

MOVUA.L @R1+,R0 ;Before execution R1=H'00001007, R0=H'00000000

 ;After execution R1=H'0000100B, R0=(H'00001007)

; Special case in which the source operand is @R0

MOVUA.L @R0,R0 ;Before execution R0=H'00001001

 ;After execution R0=(H'00001001)

MOVUA.L @R0+,R0 ;Before execution R0=H'00001001

 ;After execution R0=(H'00001001)

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error (when the privileged area is accessed from user)

Rev. 1.50, 10/04, page 283 of 448

10.1.40 MUL.L (Multiply Long): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 —

Description: This instruction performs 32-bit multiplication of the contents of general registers
Rn and Rm, and stores the lower 32 bits of the result in the MACL register. The contents of
MACH are not changed.

Notes: None

Operation:

MULL(long m, long n) /* MUL.L Rm,Rn */

{

 MACL = R[n]*R[m];

 PC += 2;

}

Example:

MUL.L R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

 ;After execution MACL = H'FFFF5556

STS MACL,R0 ;Get operation result

Rev. 1.50, 10/04, page 284 of 448

10.1.41 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

MULS.W Rm,Rn Signed, Rn × Rm → MACL 0010nnnnmmmm1111 1 —

Description: This instruction performs 16-bit multiplication of the contents of general registers
Rn and Rm, and stores the 32-bit result in the MACL register. The multiplication is performed as a
signed arithmetic operation. The contents of MACH are not changed.

Notes: None

Operation:

MULS(long m, long n) /* MULS Rm,Rn */

{

 MACL = ((long)(short)R[n]*(long)(short)R[m]);

 PC += 2;

}

Example:

MULS.W R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

 ;After execution MACL = H'FFFF5556

STS MACL,R0 ;Get operation result

Rev. 1.50, 10/04, page 285 of 448

10.1.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

MULU.W Rm,Rn Unsigned, Rn × Rm →
MACL

0010nnnnmmmm1110 1 —

Description: This instruction performs 16-bit multiplication of the contents of general registers
Rn and Rm, and stores the 32-bit result in the MACL register. The multiplication is performed as
an unsigned arithmetic operation. The contents of MACH are not changed.

Notes: None

Operation:

MULU(long m, long n) /* MULU Rm,Rn */

{

 MACL = ((unsigned long)(unsigned short)R[n]*

 (unsigned long)(unsigned short)R[m];

 PC += 2;

}

Example:

MULU.W R0,R1 ;Before execution R0 = H'00000002, R1 = H'FFFFAAAA

 ;After execution MACL = H'00015554

STS MACL,R0 ;Get operation result

Rev. 1.50, 10/04, page 286 of 448

10.1.43 NEG (Negate): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

NEG Rm,Rn 0 - Rm → Rn 0110nnnnmmmm1011 1 —

Description: This instruction finds the two's complement of the contents of general register Rm
and stores the result in Rn. That is, it subtracts Rm from 0 and stores the result in Rn.

Notes: None

Operation:

NEG(long m, long n) /* NEG Rm,Rn */

{

 R[n] = 0-R[m];

 PC += 2;

}

Example:

NEG R0,R1 ;Before execution R0 = H'00000001

 ;After execution R1 = H'FFFFFFFF

Rev. 1.50, 10/04, page 287 of 448

10.1.44 NEGC (Negate with Carry): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

NEGC Rm,Rn 0 – Rm – T → Rn,
borrow → T

0110nnnnmmmm1010 1 Borrow

Description: This instruction subtracts the contents of general register Rm and the T bit from 0
and stores the result in Rn. A borrow resulting from the operation is reflected in the T bit. The
NEGC instruction is used for sign inversion of a value exceeding 32 bits.

Notes: None

Operation:

NEGC(long m, long n) /* NEGC Rm,Rn */

{

 unsigned long temp;

 temp = 0-R[m];

 R[n] = temp-T;

 if (0<temp) T = 1;

 else T = 0;

 if (temp<R[n]) T = 1;

 PC += 2;

}

Example:

CLRT ;Sign inversion of R0:R1 (64 bits)

NEGC R1,R1 ;Before execution R1 = H'00000001, T = 0

 ;After execution R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 ;Before execution R0 = H'00000000, T = 1

 ;After execution R0 = H'FFFFFFFF, T = 1

Rev. 1.50, 10/04, page 288 of 448

10.1.45 NOP (No Operation): System Control Instruction

Format Operation Instruction Code Cycle T Bit

NOP No operation 0000000000001001 1 —

Description: This instruction simply increments the program counter (PC), advancing the
processing flow to execution of the next instruction.

Notes: None

Operation:

NOP() /* NOP */

{

 PC += 2;

}

Example:

NOP ;Time equivalent to one execution state elapses.

Rev. 1.50, 10/04, page 289 of 448

10.1.46 NOT (Not-logical Complement): Logical Instruction

Format Operation Instruction Code Cycle T Bit

NOT Rm,Rn ∼Rm → Rn 0110nnnnmmmm0111 1 —

Description: This instruction finds the one's complement of the contents of general register Rm
and stores the result in Rn. That is, it inverts the Rm bits and stores the result in Rn.

Notes: None

Operation:

NOT(long m, long n) /* NOT Rm,Rn */

{

 R[n] = ∼R[m];

 PC += 2;

}

Example:

NOT R0,R1 ;Before execution R0 = H'AAAAAAAA

 ;After execution R1 = H'55555555

Rev. 1.50, 10/04, page 290 of 448

10.1.47 OCBI (Operand Cache Block Invalidate): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

OCBI @Rn Operand cache block
invalidation

0000nnnn10010011 1 —

Description: This instruction accesses data using the contents indicated by effective address Rn.
In the case of a hit in the cache, the corresponding cache block is invalidated (the V bit is cleared
to 0). If there is unwritten information (U bit = 1), write-back is not performed even if write-back
mode is selected. No operation is performed in the case of a cache miss or an access to a non-
cache area.

Notes: None

Operation:

OCBI(int n) /* OCBI @Rn */

{

 invalidate_operand_cache_block(R[n]);

 PC += 2;

}

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Note that the above exceptions are generated even if OCBI does not operate.

Rev. 1.50, 10/04, page 291 of 448

10.1.48 OCBP (Operand Cache Block Purge): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

OCBP @Rn Writes back and invalidates
operand cache block

0000nnnn10100011 1 —

Description: This instruction accesses data using the contents indicated by effective address Rn.
If the cache is hit and there is unwritten information (U bit = 1), the corresponding cache block is
written back to external memory and that block is invalidated (the V bit is cleared to 0). If there is
no unwritten information (U bit = 0), the block is simply invalidated. No operation is performed in
the case of a cache miss or an access to a non-cache area.

Notes: None

Operation:

OCBP(int n) /* OCBP @Rn */

{

 if(is_dirty_block(R[n])) write_back(R[n])

 invalidate_operand_cache_block(R[n]);

 PC += 2;

}

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Note that the above exceptions are generated even if OCBP does not operate.

Rev. 1.50, 10/04, page 292 of 448

10.1.49 OCBWB (Operand Cache Block Write Back): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

OCBWB @Rn Writes back operand cache
block

0000nnnn10110011 1 —

Description: This instruction accesses data using the contents indicated by effective address Rn.
If the cache is hit and there is unwritten information (U bit = 1), the corresponding cache block is
written back to external memory and that block is cleaned (the U bit is cleared to 0). In other cases
(i.e. in the case of a cache miss or an access to a non-cache area, or if the block is already clean),
no operation is performed.

Notes: None

Operation:

OCBWB(int n) /* OCBWB @Rn */

 {

 if(is_dirty_block(R[n])) write_back(R[n]);

 PC += 2;

 }

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Note that the above exceptions are generated even if OCBWB does not operate.

Rev. 1.50, 10/04, page 293 of 448

10.1.50 OR (OR Logical): Logical Instruction

Format Operation Instruction Code Cycle T Bit

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm
→ (R0 + GBR)

11001111iiiiiiii 3 —

Description: This instruction ORs the contents of general registers Rn and Rm and stores the
result in Rn.

This instruction can be used to OR general register R0 contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to OR 8-bit memory with 8-bit
immediate data.

Notes: None

Rev. 1.50, 10/04, page 294 of 448

Operation:

OR(long m, long n) /* OR Rm,Rn */

{

 R[n] |= R[m];

 PC += 2;

}

ORI(long i) /* OR #imm,R0 */

{

 R[0] |= (0x000000FF & (long)i);

 PC += 2;

}

ORM(long i) /* OR.B #imm,@(R0,GBR) */

{

 long temp;

 temp = (long)Read_Byte(GBR+R[0]);

 temp |= (0x000000FF & (long)i);

 Write_Byte(GBR+R[0],temp);

 PC += 2;

}

Example:

OR R0,R1 ;Before execution R0 = H'AAAA5555, R1 = H'55550000

 ;After execution R1 = H'FFFF5555

OR #H'F0,R0 ;Before execution R0 = H'00000008

 ;After execution R0 = H'000000F8

OR.B #H'50,@(R0,GBR) ;Before execution (R0,GBR) = H'A5

 ;After execution (R0,GBR) = H'F5

Rev. 1.50, 10/04, page 295 of 448

Possible Exceptions: Exceptions may occur when OR.B instruction is executed.

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Exceptions are checked taking a data access by this instruction as a byte load and a byte store.

Rev. 1.50, 10/04, page 296 of 448

10.1.51 PREF (Prefetch Data to Cache): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

PREF @Rn (Rn) → operand cache 0000nnnn10000011 1 —

Description: This instruction reads a 32-byte data block starting at a 32-byte boundary into the
operand cache. The lower 5 bits of the address specified by Rn are masked to zero.

This instruction does not generate data address error and MMU exceptions except data TLB
multiple-hit exception. In the event of an error, the PREF instruction is treated as an NOP (no
operation) instruction.

Notes: None

Operation:

PREF(int n) /* PREF @Rn */

{

 PC += 2;

}

Example:

 MOV.L #SOFT_PF,R1 ;R1 address is SOFT_PF

 PREF @R1 ;Load SOFT_PF data into on-chip cache

 .align 32

SOFT_PF: .data.l H'12345678

 .data.l H'9ABCDEF0

 .data.l H'AAAA5555

 .data.l H'5555AAAA

 .data.l H'11111111

 .data.l H'22222222

 .data.l H'33333333

 .data.l H'44444444

Possible Exceptions:

• Data TLB multiple-hit exception

Rev. 1.50, 10/04, page 297 of 448

10.1.52 PREFI (Prefetch Instruction Cache Block): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

PREFI @Rn Invalidation of instruction
cache indicated by logical
address Rn

0000nnnn11010011 10 —

Description: This instruction reads a 32-byte block of data starting at a 32-byte boundary within
the instruction cache. The lower 5 bits of the address specified by Rn are masked by zeroes.

This instruction does not generate data address error and MMU exceptions. In the event of an

error, the PREFI instruction is treated as an NOP (no operation) instruction.

When the address to be prefetched is missing from UTLB or is protected, the PREFI instruction is
treated as an NOP instruction and a TLB exception does not occur.

Notes: None

Operation:

PREFI(int n) /* PREFI @Rn*/

{

 prefetch_instruction_cache_block(R[n]);

 PC += 2;

}

Example:

 MOVA WakeUp,R0 ; Wakeup address

 PREFI @R0 ; Prefetching of instructions to be
 executed after release from the SLEEP state

 SLEEP

WakeUp:

 NOP

This instruction is used, before the SLEEP command is issued, to
prefetch instructions for execution on return from the SLEEP state.

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 298 of 448

10.1.53 ROTCL (Rotate with Carry Left): Shift Instruction

Format Operation Instruction Code Cycle T Bit

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

Description: This instruction rotates the contents of general register Rn one bit to the left through
the T bit, and stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTCL T

Notes: None

Operation:

ROTCL(long n) /* ROTCL Rn */

{

 long temp;

 if ((R[n] & 0x80000000)==0) temp=0;

 else temp = 1;

 R[n] <<= 1;

 if (T==1) R[n] |= 0x00000001;

 else R[n] &= 0xFFFFFFFE;

 if (temp==1) T = 1;

 else T = 0;

 PC += 2;

}

Example:

ROTCL R0 ;Before execution R0 = H'80000000, T = 0

 ;After execution R0 = H'00000000, T = 1

Rev. 1.50, 10/04, page 299 of 448

10.1.54 ROTCR (Rotate with Carry Right): Shift Instruction

Format Operation Instruction Code Cycle T Bit

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

Description: This instruction rotates the contents of general register Rn one bit to the right
through the T bit, and stores the result in Rn. The bit rotated out of the operand is transferred to
the T bit.

T

MSB LSB

ROTCR

Notes: None

Operation:

ROTCR(long n) /* ROTCR Rn */

{

 long temp;

 if ((R[n] & 0x00000001)==0) temp = 0;

 else temp = 1;

 R[n] >>= 1;

 if (T==1) R[n] |= 0x80000000;

 else R[n] &= 0x7FFFFFFF;

 if (temp==1) T = 1;

 else T = 0;

 PC += 2;

}

Example:

ROTCR R0 ;Before execution R0 = H'00000001, T = 1

 ;After execution R0 = H'80000000, T = 1

Rev. 1.50, 10/04, page 300 of 448

10.1.55 ROTL (Rotate Left): Shift Instruction

Format Operation Instruction Code Cycle T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

Description: This instruction rotates the contents of general register Rn one bit to the left, and
stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTL T

Notes: None

Operation:

ROTL(long n) /* ROTL Rn */

{

 if ((R[n]&0x80000000)==0) T = 0;

 else T = 1;

 R[n] <<= 1;

 if (T==1) R[n] |= 0x00000001;

 else R[n] &= 0xFFFFFFFE;

 PC += 2;

}

Example:

ROTL R0 ;Before execution R0 = H'80000000, T = 0

 ;After execution R0 = H'00000001, T = 1

Rev. 1.50, 10/04, page 301 of 448

10.1.56 ROTR (Rotate Right): Shift Instruction

Format Operation Instruction Code Cycle T Bit

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

Description: This instruction rotates the contents of general register Rn one bit to the right, and
stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTR T

Notes: None

Operation:

ROTR(long n) /* ROTR Rn */

{

 if ((R[n] & 0x00000001)==0) T = 0;

 else T = 1;

 R[n] >>= 1;

 if (T==1) R[n] |= 0x80000000;

 else R[n] &= 0x7FFFFFFF;

 PC += 2;

}

Example:

ROTR R0 ;Before execution R0 = H'00000001, T = 0

 ;After execution R0 = H'80000000, T = 1

Rev. 1.50, 10/04, page 302 of 448

10.1.57 RTE (Return from Exception): System Control Instruction

Format Operation Instruction Code Cycle T Bit

RTE SSR → SR, SPC→ PC 0000000000101011 4 —

Description: This instruction returns from an exception or interrupt handling routine by restoring
the PC and SR values from SPC and SSR. Program execution continues from the address specified
by the restored PC value.

RTE is a privileged instruction, and can only be used in privileged mode. Use of this instruction in
user mode will cause an illegal instruction exception.

Notes: As this is a delayed branch instruction, the instruction following the RTE instruction is
executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. An exception
must not be generated by the instruction in this instruction's delay slot. If the following instruction
is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction, it
is identified as a slot illegal instruction.

The SR value accessed by the instruction in the RTE delay slot is the value restored from SSR by
the RTE instruction. The SR and MD values defined prior to RTE execution are used to fetch the
instruction in the RTE delay slot.

Operation:

RTE() /* RTE */

{

 unsigned int temp;

 temp = PC;

 SR = SSR;

 PC = SPC;

 Delay_Slot(temp+2);

}

Example:

RTE ;Return to original routine.

ADD #8,R14 ;Executed before branch.

Rev. 1.50, 10/04, page 303 of 448

Note: In a delayed branch, the actual branch operation occurs after execution of the slot
instruction, but instruction execution (register updating, etc.) is in fact performed in
delayed branch instruction → delay slot instruction order. For example, even if the register
holding the branch destination address is modified in the delay slot, the branch destination
address will still be the register contents prior to the modification.

Possible Exceptions:

• General illegal instruction exception

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 304 of 448

10.1.58 RTS (Return from Subroutine): Branch Instruction

Format Operation Instruction Code Cycle T Bit

RTS PR → PC 0000000000001011 1 —

Description: This instruction returns from a subroutine procedure by restoring the PC from PR.
Processing continues from the address indicated by the restored PC value. This instruction can be
used to return from a subroutine procedure called by a BSR or JSR instruction to the source of the
call.

Notes: As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

The instruction that restores PR must be executed before the RTS instruction. This restore
instruction cannot be in the RTS delay slot.

Operation:

RTS() /* RTS */

{

 unsigned int temp;

 temp = PC;

 PC = PR;

 Delay_Slot(temp+2);

}

Rev. 1.50, 10/04, page 305 of 448

Example:

 MOV.L TABLE,R3 ;R3 = TRGET address

 JSR @R3 ; Branch to TRGET.

 NOP ;NOP executed before branch.

 ADD R0,R1 ;← Subroutine procedure return destination (PR contents)

TABLE: .data.l TRGET ;Jump table

TRGET: MOV R1,R0 ;← Entry to procedure

 RTS ;PR contents → PC

 MOV #12,R0 ;MOV executed before branch.

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 306 of 448

10.1.59 SETS (Set S Bit): System Control Instruction

Format Operation Instruction Code Cycle T Bit

SETS 1 → S 0000000001011000 1 —

Description: This instruction sets the S bit to 1.

Notes: None

Operation:

SETS() /* SETS */

{

 S = 1;

 PC += 2;

}

Example:

SETS ;Before execution S = 0

 ;After execution S = 1

Rev. 1.50, 10/04, page 307 of 448

10.1.60 SETT (Set T Bit): System Control Instruction

Format Operation Instruction Code Cycle T Bit

SETT 1 → T 0000000000011000 1 1

Description: This instruction sets the T bit to 1.

Notes: None

Operation:

SETT() /* SETT */

{

 T = 1;

 PC += 2;

}

Example:

SETT ;Before execution T = 0

 ;After execution T = 1

Rev. 1.50, 10/04, page 308 of 448

10.1.61 SHAD (Shift Arithmetic Dynamically): Shift Instruction

Format Operation Instruction Code Cycle T Bit

SHAD Rm, Rn When Rm ≥ 0,
Rn << Rm → Rn

When Rm < 0,
Rn >> Rm → [MSB → Rn]

0100nnnnmmmm1100 1 —

Description: This instruction arithmetically shifts the contents of general register Rn. General
register Rm specifies the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if
negative. In a shift to the right, the MSB is added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register. If
the value is negative (MSB = 1), the Rm register is represented as a two's complement. The left
shift range is 0 to 31, and the right shift range, 1 to 32.

MSB LSB

0

MSB

Rm ≥ 0

Rm < 0

MSB LSB

Notes: None

Rev. 1.50, 10/04, page 309 of 448

Operation:

SHAD(int m,n) /*SHAD Rm,Rn */

{

 int sgn = R[m] & 0x80000000;

 if (sgn==0)

 R[n] <<= (R[m] & 0x1F);

 else if ((R[m] & 0x1F) == 0) {

 if ((R[n] & 0x80000000) == 0)

 R[n] = 0;

 else

 R[n] = 0xFFFFFFFF;

 }

 else

 R[n] = (long)R[n] >> ((~R[m] & 0x1F)+1);

 PC += 2;

}

Example:

SHAD R1,R2 ;Before execution R1 = H'FFFFFFEC, R2 = H'80180000

 ;After execution R1 = H'FFFFFFEC, R2 = H'FFFFF801

SHAD R3,R4 ;Before execution R3 = H'00000014, R4 = H'FFFFF801

 ;After execution R3 = H'00000014, R4 = H'80100000

Rev. 1.50, 10/04, page 310 of 448

10.1.62 SHAL (Shift Arithmetic Left): Shift Instruction

Format Operation Instruction Code Cycle T Bit

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

Description:

This instruction arithmetically shifts the contents of general register Rn one bit to the left, and
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHAL T 0

Notes: None

Operation:

SHAL(long n) /* SHAL Rn (Same as SHLL) */

{

 if ((R[n]&0x80000000)==0) T = 0;

 else T = 1;

 R[n] <<= 1;

 PC += 2;

}

Example:

SHAL R0 ;Before execution R0 = H'80000001, T = 0

 ;After execution R0 = H'00000002, T = 1

Rev. 1.50, 10/04, page 311 of 448

10.1.63 SHAR (Shift Arithmetic Right): Shift Instruction

Format Operation Instruction Code Cycle T Bit

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

Description:

This instruction arithmetically shifts the contents of general register Rn one bit to the right, and
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHAR T

Notes: None

Operation:

SHAR(long n) /* SHAR Rn */

{

 long temp;

 if ((R[n]&0x00000001)==0) T = 0;

 else T = 1;

 if ((R[n]&0x80000000)==0) temp = 0;

 else temp = 1;

 R[n] >>= 1;

 if (temp==1) R[n] |= 0x80000000;

 else R[n] &= 0x7FFFFFFF;

 PC += 2;

}

Example:

SHAR R0 ;Before execution R0 = H'80000001, T = 0

 ;After execution R0 = H'C0000000, T = 1

Rev. 1.50, 10/04, page 312 of 448

10.1.64 SHLD (Shift Logical Dynamically): Shift Instruction

Format Operation Instruction Code Cycle T Bit

SHLD Rm, Rn When Rm ≥ 0,
Rn << Rm → Rn

When Rm < 0,
Rn >> Rm → [0 → Rn]

0100nnnnmmmm1101 1 —

Description: This instruction logically shifts the contents of general register Rn. General register
Rm specifies the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if
negative. In a shift to the right, 0s are added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register. If
the value is negative (MSB = 1), the Rm register is represented as a two's complement. The left
shift range is 0 to 31, and the right shift range, 1 to 32.

MSB LSB

MSB

0

LSB

0

Rm ≥ 0

Rm < 0

Notes: None

Rev. 1.50, 10/04, page 313 of 448

Operation:

SHLD(int m,n)/*SHLD Rm,Rn */

{

 int sgn = R[m] & 0x80000000;

 if (sgn == 0)

 R[n] <<= (R[m] & 0x1F);

 else if ((R[m] & 0x1F) == 0)

 R[n] = 0;

 else

 R[n] = (unsigned)R[n] >> ((~R[m] & 0x1F)+1);

 PC += 2;

}

Example:

SHLD R1, R2 ;Before execution R1 = H'FFFFFFEC, R2 = H'80180000

 ;After execution R1 = H'FFFFFFEC, R2 = H'00000801

SHLD R3, R4 ;Before execution R3 = H'00000014, R4 = H'FFFFF801

 ;After execution R3 = H'00000014, R4 = H'80100000

Rev. 1.50, 10/04, page 314 of 448

10.1.65 SHLL (Shift Logical Left): Shift Instruction

Format Operation Instruction Code Cycle T Bit

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

Description: This instruction logically shifts the contents of general register Rn one bit to the left,
and stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

0SHLL T

Notes: None

Operation:

SHLL(long n) /* SHLL Rn (Same as SHAL) */

{

 if ((R[n]&0x80000000)==0) T = 0;

 else T = 1;

 R[n] <<= 1;

 PC += 2;

}

Example:

SHLL R0 ;Before execution R0 = H'80000001, T = 0

 ;After execution R0 = H'00000002, T = 1

Rev. 1.50, 10/04, page 315 of 448

10.1.66 SHLLn (n bits Shift Logical Left): Shift Instruction

Format Operation Instruction Code Cycle T Bit

SHLL2 Rn Rn<<2 → Rn 0100nnnn00001000 1 —

SHLL8 Rn Rn<<8 → Rn 0100nnnn00011000 1 —

SHLL16 Rn Rn<<16 → Rn 0100nnnn00101000 1 —

Description: This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to
the left, and stores the result in Rn. The bits shifted out of the operand are discarded.

MSB LSB

0

SHLL8

SHLL16 MSB LSB

0

MSB LSB

0

SHLL2

Notes: None

Rev. 1.50, 10/04, page 316 of 448

Operation:

SHLL2(long n) /* SHLL2 Rn */

{

 R[n] <<= 2;

 PC += 2;

}

SHLL8(long n) /* SHLL8 Rn */

{

 R[n] <<= 8;

 PC += 2;

}

SHLL16(long n) /* SHLL16 Rn */

{

 R[n] <<= 16;

 PC += 2;

}

Example:

SHLL2 R0 ;Before execution R0 = H'12345678

 ;After execution R0 = H'48D159E0

SHLL8 R0 ;Before execution R0 = H'12345678

 ;After execution R0 = H'34567800

SHLL16 R0 ;Before execution R0 = H'12345678

 ;After execution R0 = H'56780000

Rev. 1.50, 10/04, page 317 of 448

10.1.67 SHLR (Shift Logical Right): Shift Instruction

Format Operation Instruction Code Cycle T Bit

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

Description: This instruction logically shifts the contents of general register Rn one bit to the
right, and stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHLR T0

Notes: None

Operation:

SHLR(long n) /* SHLR Rn */

{

 if ((R[n] & 0x00000001)==0) T = 0;

 else T = 1;

 R[n] >>= 1;

 R[n] &= 0x7FFFFFFF;

 PC += 2;

}

Example:

SHLR R0 ;Before execution R0 = H'80000001, T = 0

 ;After execution R0 = H'40000000, T = 1

Rev. 1.50, 10/04, page 318 of 448

10.1.68 SHLRn (n bits Shift Logical Right): Shift Instruction

Format Operation Instruction Code Cycle T Bit

SHLR2 Rn Rn>>2 → Rn 0100nnnn00001001 1 —

SHLR8 Rn Rn>>8 → Rn 0100nnnn00011001 1 —

SHLR16 Rn Rn>>16 → Rn 0100nnnn00101001 1 —

Description: This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to
the right, and stores the result in Rn. The bits shifted out of the operand are discarded.

MSB LSB

0

SHLR8

SHLR16 MSB LSB

0

MSB LSB

0

SHLR2

Notes: None

Rev. 1.50, 10/04, page 319 of 448

Operation:

SHLR2(long n) /* SHLR2 Rn */

{

 R[n] >>= 2;

 R[n] &= 0x3FFFFFFF;

 PC += 2;

}

SHLR8(long n) /* SHLR8 Rn */

{

 R[n] >>= 8;

 R[n] &= 0x00FFFFFF;

 PC += 2;

}

SHLR16(long n) /* SHLR16 Rn */

{

 R[n] >>= 16;

 R[n] &= 0x0000FFFF;

 PC += 2;

}

Example:

SHLR2 R0 ;Before execution R0 = H'12345678

 ;After execution R0 = H'048D159E

SHLR8 R0 ;Before execution R0 = H'12345678

 ;After execution R0 = H'00123456

SHLR16 R0 ;Before execution R0 = H'12345678

 ;After execution R0 = H'00001234

Rev. 1.50, 10/04, page 320 of 448

10.1.69 SLEEP (Sleep): System Control Instruction (Privileged Instruction)

Format Operation Instruction Code Cycle T Bit

SLEEP Sleep or standby 0000000000011011 Undefined —

Description: This instruction places the CPU in the power-down state.

In power-down mode, the CPU retains its internal state, but immediately stops executing
instructions and waits for an interrupt request. When it receives an interrupt request, the CPU exits
the power-down state.

SLEEP is a privileged instruction, and can only be used in privileged mode. Use of this instruction
in user mode will cause an illegal instruction exception.

Notes: SLEEP performance depends on the standby control register (STBCR). See Power-Down
Modes in the target product's hardware manual, for details.

Operation:

SLEEP() /* SLEEP */

{

 Sleep_standby();

}

Example:

SLEEP ;Transition to power-down mode

Possible Exceptions:

• General illegal instruction exception

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 321 of 448

10.1.70 STC (Store Control Register): System Control Instruction (Privileged Instruction)

Format Operation Instruction Code Cycle T Bit

STC GBR, Rn GBR → Rn 0000nnnn00010010 1 —

STC VBR, Rn VBR → Rn 0000nnnn00100010 1 —

STC SSR, Rn SSR → Rn 0000nnnn00110010 1 —

STC SPC, Rn SPC → Rn 0000nnnn01000010 1 —

STC SGR, Rn SGR → Rn 0000nnnn00111010 1 —

STC DBR, Rn DBR → Rn 0000nnnn11111010 1 —

STC R0_BANK, Rn R0_BANK → Rn 0000nnnn10000010 1 —

STC R1_BANK, Rn R1_BANK → Rn 0000nnnn10010010 1 —

STC R2_BANK, Rn R2_BANK → Rn 0000nnnn10100010 1 —

STC R3_BANK, Rn R3_BANK → Rn 0000nnnn10110010 1 —

STC R4_BANK, Rn R4_BANK → Rn 0000nnnn11000010 1 —

STC R5_BANK, Rn R5_BANK → Rn 0000nnnn11010010 1 —

STC R6_BANK, Rn R6_BANK → Rn 0000nnnn11100010 1 —

STC R7_BANK, Rn R7_BANK → Rn 0000nnnn11110010 1 —

STC.L GBR, @-Rn Rn-4 → Rn, GBR → (Rn) 0100nnnn00010011 1 —

STC.L VBR, @-Rn Rn-4 → Rn, VBR → (Rn) 0100nnnn00100011 1 —

STC.L SSR, @-Rn Rn-4 → Rn, SSR → (Rn) 0100nnnn00110011 1 —

STC.L SPC, @-Rn Rn-4 → Rn, SPC → (Rn) 0100nnnn01000011 1 —

STC.L SGR, @-Rn Rn-4 → Rn, SGR → (Rn) 0100nnnn00110010 1 —

STC.L DBR, @-Rn Rn-4 → Rn, DBR → (Rn) 0100nnnn11110010 1 —

STC.L R0_BANK, @-Rn Rn-4 → Rn, R0_BANK → (Rn) 0100nnnn10000011 1 —

STC.L R1_BANK, @-Rn Rn-4 → Rn, R1_BANK → (Rn) 0100nnnn10010011 1 —

STC.L R2_BANK, @-Rn Rn-4 → Rn, R2_BANK → (Rn) 0100nnnn10100011 1 —

STC.L R3_BANK, @-Rn Rn-4 → Rn, R3_BANK → (Rn) 0100nnnn10110011 1 —

STC.L R4_BANK, @-Rn Rn-4 → Rn, R4_BANK → (Rn) 0100nnnn11000011 1 —

STC.L R5_BANK, @-Rn Rn-4 → Rn, R5_BANK → (Rn) 0100nnnn11010011 1 —

STC.L R6_BANK, @-Rn Rn-4 → Rn, R6_BANK → (Rn) 0100nnnn11100011 1 —

STC.L R7_BANK, @-Rn Rn-4 → Rn, R7_BANK → (Rn) 0100nnnn11110011 1 —

Description: This instruction stores control register GBR, VBR, SSR, SPC, SGR, DBR or
Rm_BANK (m = 0–7) in the destination.

Rm_BANK operands are specified by the RB bit of the SR register:
when the RB bit is 1 Rm_BANK0 is accessed,
when the RB bit is 0 Rm_BANK1 is accessed.

Rev. 1.50, 10/04, page 322 of 448

Notes: STC/STC.L can only be used in privileged mode excepting STC GBR, Rn/STC.L GBR,
@-Rn. Use of these instructions in user mode will cause illegal instruction exceptions.

Operation:

STCGBR(int n) /* STC GBR,Rn */

 {

 R[n] = GBR;

 PC += 2;

 }

STCVBR(int n) /* STC VBR,Rn : Privileged */

 {

 R[n] = VBR;

 PC += 2;

 }

STCSSR(int n) /* STC SSR,Rn : Privileged */

 {

 R[n] = SSR;

 PC += 2;

 }

STCSPC(int n) /* STC SPC,Rn : Privileged */

 {

 R[n] = SPC;

 PC += 2;

 }

STCSGR(int n) /* STC SGR,Rn : Privileged */

 {

 R[n] = SGR;

 PC += 2;

 }

STCDBR(int n) /* STC DBR,Rn : Privileged */

 {

 R[n] = DBR;

 PC += 2;

 }

Rev. 1.50, 10/04, page 323 of 448

STCRm_BANK(int n) /* STC Rm_BANK,Rn : Privileged */

 /* m=0–7 */

 {

 R[n] = Rm_BANK;

 PC += 2;

 }

STCMGBR(int n) /* STC.L GBR,@–Rn */

 {

 R[n] –= 4;

 Write_Long(R[n],GBR);

 PC += 2;

 }

STCMVBR(int n) /* STC.L VBR,@-Rn : Privileged */

 {

 R[n] –= 4;

 Write_Long(R[n],VBR);

 PC += 2;

 }

STCMSSR(int n) /* STC.L SSR,@-Rn : Privileged */

 {

 R[n] –= 4;

 Write_Long(R[n],SSR);

 PC += 2;

 }

STCMSPC(int n) /* STC.L SPC,@-Rn : Privileged */

 {

 R[n] –= 4;

 Write_Long(R[n],SPC);

 PC += 2;

 }

Rev. 1.50, 10/04, page 324 of 448

STCMSGR(int n) /* STC.L SGR,@-Rn : Privileged */

 {

 R[n] –= 4;

 Write_Long(R[n],SGR);

 PC += 2;

 }

STCMDBR(int n) /* STC.L DBR,@-Rn : Privileged */

 {

 R[n] –= 4;

 Write_Long(R[n],DBR);

 PC += 2;

 }

STCMRm_BANK(int n) /* STC.L Rm_BANK,@-Rn : Privileged */

 /* m=0–7 */

 {

 R[n] –= 4;

 Write_Long(R[n],Rm_BANK);

 PC += 2;

 }

Possible Exceptions:

• Data TLB multiple-hit exception

• General illegal instruction exception

• Slot illegal instruction exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Rev. 1.50, 10/04, page 325 of 448

10.1.71 STS (Store System Register): System Control Instruction

Format Operation Instruction Code Cycle T Bit

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 1 —

STS.L MACH,@-Rn Rn - 4 → Rn, MACH → (Rn) 0100nnnn00000010 1 —

STS.L MACL,@-Rn Rn - 4 → Rn, MACL → (Rn) 0100nnnn00010010 1 —

STS.L PR,@-Rn Rn - 4 → Rn, PR → (Rn) 0100nnnn00100010 1 —

Description: This instruction stores system register MACH, MACL, or PR in the destination.

Notes: None

Operation:

STSMACH(int n) /* STS MACH,Rn */

{

 R[n] = MACH;

 PC += 2;

}

STSMACL(int n) /* STS MACL,Rn */

{

 R[n] = MACL;

 PC += 2;

}

STSPR(int n) /* STS PR,Rn */

{

 R[n] = PR;

 PC += 2;

}

Rev. 1.50, 10/04, page 326 of 448

STSMMACH(int n) /* STS.L MACH,@-Rn */

{

 R[n] –= 4;

 Write_Long(R[n],MACH);

 PC += 2;

}

STSMMACL(int n) /* STS.L MACL,@-Rn */

{

 R[n] –= 4;

 Write_Long(R[n],MACL);

 PC += 2;

}

STSMPR(int n) /* STS.L PR,@-Rn */

{

 R[n] –= 4;

 Write_Long(R[n],PR);

 PC += 2;

}

Example:

STS MACH,R0 ; Before execution R0 = H'FFFFFFFF, MACH = H'00000000

 ; After execution R0 = H'00000000

STS.L PR,@-R15 ; Before execution R15 = H'10000004

 ; After execution R15 = H'10000000, (R15) = PR

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Rev. 1.50, 10/04, page 327 of 448

10.1.72 SUB (Subtract Binary): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

SUB Rm,Rn Rn - Rm → Rn 0011nnnnmmmm1000 1 —

Description: This instruction subtracts the contents of general register Rm from the contents of
general register Rn and stores the result in Rn. For immediate data subtraction, ADD #imm,Rn
should be used.

Notes: None

Operation:

SUB(long m, long n) /* SUB Rm,Rn */

{

 R[n] -= R[m];

 PC += 2;

}

Example:

SUB R0,R1 ;Before execution R0 = H'00000001, R1 = H'80000000

 ;After execution R1 = H'7FFFFFFF

Rev. 1.50, 10/04, page 328 of 448

10.1.73 SUBC (Subtract with Carry): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

SUBC Rm,Rn Rn - Rm-T → Rn, borrow
→ T

0011nnnnmmmm1010 1 Borrow

Description: This instruction subtracts the contents of general register Rm and the T bit from the
contents of general register Rn, and stores the result in Rn. A borrow resulting from the operation
is reflected in the T bit. This instruction is used for subtractions exceeding 32 bits.

Notes: None

Operation:

SUBC(long m, long n) /* SUBC Rm,Rn */

{

 unsigned long tmp0,tmp1;

 tmp1 = R[n] - R[m];

 tmp0 = R[n];

 R[n] = tmp1 - T;

 if (tmp0<tmp1) T = 1;

 else T = 0;

 if (tmp1<R[n]) T = 1;

 PC += 2;

}

Example:

CLRT ;R0:R1(64 bits) – R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 ;Before execution T = 0, R1 = H'00000000, R3 = H'00000001

 ;After execution T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 ;Before execution T = 1, R0 = H'00000000, R2 = H'00000000

 ;After execution T = 1, R0 = H'FFFFFFFF

Rev. 1.50, 10/04, page 329 of 448

10.1.74 SUBV (Subtract with (V flag) Underflow Check): Arithmetic Instruction

Format Operation Instruction Code Cycle T Bit

SUBV Rm,Rn Rn - Rm → Rn, underflow
→ T

0011nnnnmmmm1011 1 Underflow

Description: This instruction subtracts the contents of general register Rm from the contents of
general register Rn, and stores the result in Rn. If underflow occurs, the T bit is set.

Notes: None

Operation:

SUBV(long m, long n) /* SUBV Rm,Rn */

{

 long dest,src,ans;

 if ((long)R[n]>=0) dest = 0;

 else dest = 1;

 if ((long)R[m]>=0) src = 0;

 else src = 1;

 src += dest;

 R[n] -= R[m];

 if ((long)R[n]>=0) ans = 0;

 else ans = 1;

 ans += dest;

 if (src==1) {

 if (ans==1) T = 1;

 else T = 0;

 }

 else T = 0;

 PC += 2;

}

Rev. 1.50, 10/04, page 330 of 448

Example:

SUBV R0,R1 ;Before execution R0 = H'00000002, R1 = H'80000001

 ;After execution R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 ;Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

 ;After execution R3 = H'80000000, T = 1

Rev. 1.50, 10/04, page 331 of 448

10.1.75 SWAP (Swap Register Halves): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

SWAP.B Rm,Rn Rm → lower-2-byte upper/
lower-byte swap → Rn

0110nnnnmmmm1000 1 —

SWAP.W Rm,Rn Rm → upper-/lower-word
swap → Rn

0110nnnnmmmm1001 1

Description: This instruction swaps the upper and lower parts of the contents of general register
Rm, and stores the result in Rn.

In the case of a byte specification, the 8 bits from bit 15 to bit 8 of Rm are swapped with the 8 bits
from bit 7 to bit 0. The upper 16 bits of Rm are transferred directly to the upper 16 bits of Rn.

In the case of a word specification, the 16 bits from bit 31 to bit 16 of Rm are swapped with the 16
bits from bit 15 to bit 0.

Notes: None

Operation:

SWAPB(long m, long n) /* SWAP.B Rm,Rn */

{

 unsigned long temp0,temp1;

 temp0 = R[m] & 0xFFFF0000;

 temp1 = (R[m] & 0x000000FF) << 8;

 R[n] = (R[m] & 0x0000FF00) >> 8;

 R[n] = R[n] | temp1 | temp0;

 PC += 2;

}

SWAPW(long m, long n) /* SWAP.W Rm,Rn */

{

 unsigned long temp;

Rev. 1.50, 10/04, page 332 of 448

 temp = (R[m]>>16)&0x0000FFFF;

 R[n] = R[m]<<16;

 R[n] |= temp;

 PC += 2;

}

Example:

SWAP.B R0,R1 ;Before execution R0 = H'12345678

 ;After execution R1 = H'12347856

SWAP.W R0,R1 ;Before execution R0 = H'12345678

 ;After execution R1 = H'56781234

Rev. 1.50, 10/04, page 333 of 448

10.1.76 SYNCO (Synchronize Data Operation): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

SYNCO Data accesses invoked by the
following instruction are not
executed until execution of
data accesses which precede
this instruction has been
completed.

0000000010101011 Undefined —

Description: This instruction is used to synchronize data operations. When this instruction is
executed, the subsequent bus accesses are not executed until the execution of all preceding bus
accesses has been completed.

Notes: The SYNCO instruction can not guarantee the ordering of receipt timing which is notified
by the memory-mapped peripheral resources through the method except bus when the register is
changed by bus accesses. Refer to the description of each registers to guarantee this ordering.

Operation:

SYNCO /* SYNCO*/

{

 synchronize_data_operaiton();

 PC += 2;

}

Example:

1. Ordering access to memory areas which are shared with other memory users

2. Flushing all write buffers

3. Stopping memory-access operations from merging and becoming ineffective

4. Waiting for the completion of cache-control instructions

Rev. 1.50, 10/04, page 334 of 448

10.1.77 TAS (Test And Set): Logical Instruction

Format Operation Instruction Code Cycle T Bit

TAS.B @Rn If (Rn) = 0, 1 → T, else 0 → T

1 → MSB of (Rn)

0100nnnn00011011 4 Test result

Description: This instruction purges the cache block corresponding to the memory area specified
by the contents of general register Rn, reads the byte data indicated by that address, and sets the T
bit to 1 if that data is zero, or clears the T bit to 0 if the data is nonzero. The instruction then sets
bit 7 to 1 and writes to the same address. The bus is not released during this period.

The purge operation is executed as follows.

In a purge operation, data is accessed using the contents of general register Rn as the effective
address. If there is a cache hit and the corresponding cache block is dirty (U bit = 1), the contents
of that cache block are written back to external memory, and the cache block is then invalidated
(by clearing the V bit to 0). If there is a cache hit and the corresponding cache block is clean (U bit
= 0), the cache block is simply invalidated (by clearing the V bit to 0). A purge is not executed in
the event of a cache miss, or if the accessed memory location is non-cacheable.

The two TAS.B memory accesses are executed automatically. Another memory access is not
executed between the two TAS.B accesses.

Notes: None

Operation:

TAS(int n) /* TAS.B @Rn */

{

 int temp;

 temp = (int)Read_Byte(R[n]); /* Bus Lock */

 if (temp==0) T = 1;

 else T = 0;

 temp |= 0x00000080;

 Write_Byte(R[n],temp); /* Bus unlock */

 PC += 2;

}

Rev. 1.50, 10/04, page 335 of 448

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Exceptions are checked taking a data access by this instruction as a byte load and a byte store.

Rev. 1.50, 10/04, page 336 of 448

10.1.78 TRAPA (Trap Always): System Control Instruction

Format Operation Instruction Code Cycle T Bit

TRAPA #imm Imm<<2 → TRA, PC + 2 →
SPC, SR → SSR, R15 → SGR,
1 → SR.MD/BL/RB,
H'160 → EXPEVT,
VBR + H'00000100 → PC

11000011iiiiiiii 13 —

Description: This instruction starts trap exception handling. The values of (PC + 2), SR, and R15
are saved to SPC, SSR and SGR, and 8-bit immediate data is stored in the TRA register (bits 9 to
2). The processor mode is switched to privileged mode (the MD bit in SR is set to 1), and the BL
bit and RB bit in SR are set to 1. As a result, exception and interrupt requests are masked (not
accepted), and the BANK1 registers (R0_BANK1 to R7_BANK1) are selected. Exception code
H'160 is written to the EXPEVT register (bits 11 to 0). The program branches to address (VBR +
H'00000100), indicated by the sum of the VBR register contents and offset H'00000100.

Notes: None

Operation:

TRAPA(int i) /* TRAPA #imm */

 {

 int imm;

 imm = (0x000000FF & i);

 TRA = imm<<2;

 SSR = SR;

 SPC = PC+2;

 SGR = R15;

 SR.MD = 1;

 SR.BL = 1;

 SR.RB=1;

 EXPEVT = 0x00000160;

 PC = VBR + 0x00000100;

}

Possible Exceptions:

• Unconditional trap

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 337 of 448

10.1.79 TST (Test Logical): Logical Instruction

Format Operation Instruction Code Cycle T Bit

TST Rm,Rn Rn & Rm; if result is 0,
1 → T, else 0 → T

0010nnnnmmmm1000 1 Test result

TST #imm,R0 R0 & imm; if result is 0,
1 → T, else 0 → T

11001000iiiiiiii 1 Test result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm;
if result is 0, 1 → T,
else 0 → T

11001100iiiiiiii 3 Test result

Description: This instruction ANDs the contents of general registers Rn and Rm, and sets the T
bit if the result is zero. If the result is nonzero, the T bit is cleared. The contents of Rn are not
changed.

This instruction can be used to AND general register R0 contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit
immediate data. The contents of R0 or the memory are not changed.

Notes: None

Operation:

TST(long m, long n) /* TST Rm,Rn */

{

 if ((R[n]&R[m])==0) T = 1;

 else T = 0;

 PC += 2;

}

TSTI(long i) /* TST #imm,R0 */

{

 long temp;

 temp = R[0]&(0x000000FF & (long)i);

 if (temp==0) T = 1;

 else T = 0;

 PC += 2;

}

Rev. 1.50, 10/04, page 338 of 448

TSTM(long i) /* TST.B #imm,@(R0,GBR) */

{

 long temp;

 temp = (long)Read_Byte(GBR+R[0]);

 temp &= (0x000000FF & (long)i);

 if (temp==0) T = 1;

 else T = 0;

 PC += 2;

}

Example:

TST R0,R0 ;Before execution R0 = H'00000000

 ;After execution T = 1

TST #H'80,R0 ;Before execution R0 = H'FFFFFF7F

 ;After execution T = 1

TST.B #H'A5,@(R0,GBR) ;Before execution (R0,GBR) = H'A5

 ;After execution T = 0

Possible Exceptions: Exceptions may occur when TST.B instruction is executed.

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Exceptions are checked taking a data access by this instruction as a byte load and a byte store.

Rev. 1.50, 10/04, page 339 of 448

10.1.80 XOR (Exclusive OR Logical): Logical Instruction

Format Operation Instruction Code Cycle T Bit

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 —

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 —

XOR.B #imm,@(R0,GBR) (R0 + GBR)^imm →
(R0 + GBR)

11001110iiiiiiii 3 —

Description: This instruction exclusively ORs the contents of general registers Rn and Rm, and
stores the result in Rn.

This instruction can be used to exclusively OR register R0 contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to exclusively OR 8-bit memory
with 8-bit immediate data.

Notes: None

Operation:

XOR(long m, long n) /* XOR Rm,Rn */

{

 R[n] ^= R[m];

 PC += 2;

}

XORI(long i) /* XOR #imm,R0 */

{

 R[0] ^= (0x000000FF & (long)i);

 PC += 2;

}

XORM(long i) /* XOR.B #imm,@(R0,GBR) */

{

 int temp;

 temp = (long)Read_Byte(GBR+R[0]);

 temp ^= (0x000000FF &(long)i);

 Write_Byte(GBR+R[0],temp);

 PC += 2;

}

Rev. 1.50, 10/04, page 340 of 448

Example:

XOR R0,R1 ;Before execution R0 = H'AAAAAAAA, R1 = H'55555555

 ;After execution R1 = H'FFFFFFFF

XOR #H'F0,R0 ;Before execution R0 = H'FFFFFFFF

 ;After execution R0 = H'FFFFFF0F

XOR.B #H'A5,@(R0,GBR) ;Before execution (R0,GBR) = H'A5

 ;After execution (R0,GBR) = H'00

Possible Exceptions: Exceptions may occur when XOR.B instruction is executed.

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Exceptions are checked taking a data access by this instruction as a byte load and a byte store.

Rev. 1.50, 10/04, page 341 of 448

10.1.81 XTRCT (Extract): Data Transfer Instruction

Format Operation Instruction Code Cycle T Bit

XTRCT Rm,Rn Middle 32 bits of Rm:Rn → Rn 0010nnnnmmmm1101 1 —

Description: This instruction extracts the middle 32 bits from the 64-bit contents of linked general
registers Rm and Rn, and stores the result in Rn.

MSB

RnRm

Rn

LSBMSB LSB

Notes: None

Operation:

XTRCT(long m, long n) /* XTRCT Rm,Rn */

{

 unsigned long temp;

 temp = (R[m]<<16) & 0xFFFF0000;

 R[n] = (R[n]>>16) & 0x0000FFFF;

 R[n] |= temp;

 PC += 2;

}

Example:

XTRCT R0,R1 ;Before execution R0 = H'01234567, R1 = H'89ABCDEF

 ;After execution R1 = H'456789AB

Rev. 1.50, 10/04, page 342 of 448

10.2 CPU Instructions (FPU related)

Of the SH-4A CPU's instructions, those which support the FPU and those which differ in function
from instructions of the SH3A-DSP are described in this section.

10.2.1 BSR (Branch to Subroutine): Branch Instruction (Delayed Branch Instruction)

Format Operation Instruction Code Cycle T Bit

BSR label PC+4 → PR,
PC+4+disp×2 → PC

1011dddddddddddd 1 —

Description: This instruction branches to address (PC + 4 + displacement × 2), and stores address
(PC + 4) in PR. The PC source value is the BSR instruction address. As the 12-bit displacement is
multiplied by two after sign-extension, the branch destination can be located in the range from –
4096 to +4094 bytes from the BSR instruction. If the branch destination cannot be reached, this
branch can be performed with a JSR instruction.

Notes: As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation:

BSR(int d) /* BSR disp */

{

 int disp;

 unsigned int temp;

 temp = PC;

 if ((d&0x800)==0)

 disp = (0x00000FFF & d);

 else disp = (0xFFFFF000 | d);

 PR = PC + 4;

 PC = PC + 4 + (disp<<1);

 Delay_Slot(temp + 2);

}

Rev. 1.50, 10/04, page 343 of 448

Example

 BSR TRGET ;Branch to TRGET.

 MOV R3,R4 ;MOV executed before branch.

 ADD R0,R1 ;Subroutine procedure return destination (contents of PR)

TRGET: ;← Entry to procedure

 MOV R2,R3 ;

 RTS ;Return to above ADD instruction.

 MOV #1,R0 ;MOV executed before branch.

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 344 of 448

10.2.2 BSRF (Branch to Subroutine Far): Branch Instruction (Delayed Branch

Instruction)

Format Operation Instruction Code Cycle T Bit

BSRF Rn PC+4 → PR,
PC+4+Rn → PC

0000nnnn00000011 1 —

Description: This instruction branches to address (PC + 4 + Rn), and stores address (PC + 4) in
PR. The PC source value is the BSRF instruction address. The branch destination address is the
result of adding the 32-bit contents of general register Rn to PC + 4.

Notes: As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation:

BSRF(int n) /* BSRF Rn */

{

 unsigned int temp;

 temp = PC;

 PR = PC + 4;

 PC = PC + 4 + R[n];

 Delay_Slot(temp + 2);

}

Rev. 1.50, 10/04, page 345 of 448

Example:

 MOV.L #(TRGET-BSRF_PC),R0 ;Set displacement.

 BSRF R0 ;Branch to TRGET.

 MOV R3,R4 ;MOV executed before branch.

 BSRF_PC: ;

 ADD R0,R1 ;

 TRGET: ;← Entry to procedure

 MOV R2,R3 ;

 RTS ;Return to above ADD instruction.

 MOV #1,R0 ;MOV executed before branch.

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 346 of 448

10.2.3 JSR (Jump to Subroutine): Branch Instruction (Delayed Branch Instruction)

Format Operation Instruction Code Cycle T Bit

JSR @Rn PC+4 → PR, Rn → PC 0100nnnn00001011 1 —

Description: This instruction makes a delayed branch to the subroutine procedure at the specified
address after execution of the following instruction. Return address (PC + 4) is saved in PR, and a
branch is made to the address indicated by general register Rn. JSR is used in combination with
RTS for subroutine procedure calls.

Notes: As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation:

JSR(int n)/* JSR @Rn */

{

 unsigned int temp;

 temp = PC;

 PR = PC + 4;

 PC = R[n];

 Delay_Slot(temp+2);

}

Rev. 1.50, 10/04, page 347 of 448

Example:

 MOV.L JSR_TABLE,R0 ;R0 = TRGET address

 JSR @R0 ;Branch to TRGET.

 XOR R1,R1 ;XOR executed before branch.

 ADD R0,R1 ;← Procedure return destination (PR contents)

 .align 4

JSR_TABLE: .data.l TRGET ;Jump table

TRGET: NOP ;← Entry to procedure

 MOV R2,R3 ;

 RTS ;Return to above ADD instruction.

 MOV #70,R1 ;MOV executed before RTS.

Possible Exceptions:

• Slot illegal instruction exception

Rev. 1.50, 10/04, page 348 of 448

10.2.4 LDC (Load to Control Register): System Control Instruction (Privileged

Instruction)

Format Operation Instruction Code Cycle T Bit

LDC Rm,SR Rm → SR 0100mmmm00001110 4 LSB

LDC.L @Rm+,SR (Rm) → SR, Rm+4 → Rm 0100mmmm00000111 4 LSB

Description: This instruction stores the source operand in the control register SR.

Notes: This instruction is only usable in privileged mode. Issuing this instruction in user mode
will cause an illegal instruction exception.

Operation:

LDCSR(int m) /* LDC Rm,SR : Privileged */

{

 SR = R[m] & 0x700083F3;

 PC += 2;

}

LDCMSR(int m) /* LDC.L @Rm+,SR: Privileged */

{

 SR = Read_Long(R[m]) & 0x700083F3;

 R[m] += 4;

 PC += 2;

}

Possible exception:

• Data TLB multiple-hit exception

• General illegal instruction exception

• Slot illegal instruction exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Rev. 1.50, 10/04, page 349 of 448

10.2.5 LDS (Load to FPU System register): System Control Instruction

Format Operation Instruction Code Cycle T Bit

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 1 —

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm + 4
→ Rm

0100mmmm01010110 1 —

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 1 —

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm + 4
→ Rm

0100mmmm01100110 1 —

Description: This instruction loads the source operand into FPU system registers FPUL and
FPSCR.

Notes: None

Operation:

#define FPSCR_MASK 0x003FFFFF

LDSFPUL(int m, int *FPUL) /* LDS Rm,FPUL */

{

 *FPUL = R[m];

 PC += 2;

}

LDSMFPUL(int m, int *FPUL) /* LDS.L @Rm+,FPUL */

{

 *FPUL = Read_Long(R[m]);

 R[m] += 4;

 PC += 2;

}

LDSFPSCR(int m) /* LDS Rm,FPSCR */

{

 FPSCR = R[m] & FPSCR_MASK;

 PC += 2;

}

Rev. 1.50, 10/04, page 350 of 448

LDSMFPSCR(int m) /* LDS.L @Rm+,FPSCR */

{

 FPSCR = Read_Long(R[m]) & FPSCR_MASK;

 R[m] += 4;

 PC += 2;

}

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Data address error

Rev. 1.50, 10/04, page 351 of 448

10.2.6 STC (Store Control Register): System Control Instruction (Privileged Instruction)

Format Operation Instruction Code Cycle T Bit

STC SR,Rn SR → Rn 0000nnnn00000010 1 —

STC.L SR,@-Rn Rn - 4 →Rn, SR → (Rn) 0100nnnn00000011 1 —

Description: This instruction stores the control register SR in the destination.

Notes: STC can only be used in privileged mode. Use of this instruction in user mode will cause
illegal instruction exception.

Operation:

STCSR(int n) /* STC SR,Rn : Privileged */

{

 R[n] = SR;

 PC += 2;

}

STCMSR(int n) /* STC.L SR,@-Rn : Privileged */

{

 R[n] -= 4;

 Write_Long(R[n],SR);

 PC += 2;

}

Possible exceptions:

• Data TLB multiple-hit exception

• General illegal instruction exception

• Slot illegal instruction exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Rev. 1.50, 10/04, page 352 of 448

10.2.7 STS (Store from FPU System Register): System Control Instruction

Format Operation Instruction Code Cycle T Bit

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 1 —

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 1 —

STS.L FPUL,@-Rn Rn-4 → Rn, FPUL → (Rn) 0100nnnn01010010 1 —

STS.L FPSCR,@-Rn Rn-4 → Rn, FPSCR → (Rn) 0100nnnn01100010 1 —

Description: This instruction stores FPU system register FPUL or FPSCR in the destination.

Notes: None

Operation:

STSFPUL(int n, int *FPUL) /* STS FPUL,Rn */

{

 R[n] = *FPUL;

 PC += 2;

}

STSMFPUL(int n, int *FPUL) /* STS.L FPUL,@-Rn */

{

 R[n] -= 4;

 Write_Long(R[n],*FPUL) ;

 PC += 2;

}

STSFPSCR(int n) /* STS FPSCR,Rn */

{

 R[n] = FPSCR & 0x003FFFFF;

 PC += 2;

}

STSMFPSCR(int n) /* STS.L FPSCR,@-Rn */

{

 R[n] -= 4;

 Write_Long(R[n],FPSCR & 0x003FFFFF)

 PC += 2;

}

Rev. 1.50, 10/04, page 353 of 448

Examples:

• STS

Example 1:

MOV.L #H'12ABCDEF, R12

LDS R12, FPUL

STS FPUL, R13

 ; After executing the STS instruction:

 ; R13 = 12ABCDEF

Example 2:

STS FPSCR, R2

 ; After executing the STS instruction:

 ; The current content of FPSCR is stored in register R2

• STS.L

Example 1:

MOV.L #H'0C700148, R7

STS.L FPUL, @-R7

 ; Before executing the STS.L instruction:

 ; R7 = 0C700148

 ; After executing the STS.L instruction:

 ; R7 = 0C700144, and the content of FPUL is saved at memory

 ; location 0C700144.

Example 2:

MOV.L #H'0C700154, R8

STS.L FPSCR, @-R8

 ; After executing the STS.L instruction:

 ; The content of FPSCR is saved at memory location 0C700150.

Possible Exceptions:

• Data TLB multiple-hit exception

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Data address error

Rev. 1.50, 10/04, page 354 of 448

10.3 FPU Instruction

The following resources and functions are for use in C-language descriptions of the operation of
FPU instructions and supplement the resources and functions used in describing the operation of
CPU instructions.

These are floating-point number definition statements.

#define PZERO 0

#define NZERO 1

#define DENORM 2

#define NORM 3

#define PINF 4

#define NINF 5

#define qNaN 6

#define sNaN 7

#define EQ 0

#define GT 1

#define LT 2

#define UO 3

#define INVALID 4

#define FADD 0

#define FSUB 1

#define CAUSE 0x0003f000 /* FPSCR(bit17-12) */

#define SET_E 0x00020000 /* FPSCR(bit17) */

#define SET_V 0x00010040 /* FPSCR(bit16,6) */

#define SET_Z 0x00008020 /* FPSCR(bit15,5) */

#define SET_O 0x00004010 /* FPSCR(bit14,4) */

#define SET_U 0x00002008 /* FPSCR(bit13,3) */

#define SET_I 0x00001004 /* FPSCR(bit12,2) */

#define ENABLE_VOUI 0x00000b80 /* FPSCR(bit11,9-7) */

#define ENABLE_V 0x00000800 /* FPSCR(bit11) */

#define ENABLE_Z 0x00000400 /* FPSCR(bit10) */

#define ENABLE_OUI 0x00000380 /* FPSCR(bit9-7) */

#define ENABLE_I 0x00000080 /* FPSCR(bit7) */

#define FLAG 0x0000007C /* FPSCR(bit6-2) */

Rev. 1.50, 10/04, page 355 of 448

#define FPSCR_FR FPSCR>>21&1

#define FPSCR_PR FPSCR>>19&1

#define FPSCR_DN FPSCR>>18&1

#define FPSCR_I FPSCR>>12&1

#define FPSCR_RM FPSCR&1

#define FR_HEX frf.l[FPSCR_FR]

#define FR frf.f[FPSCR_FR]

#define DR_HEX frf.l[FPSCR_FR]

#define DR frf.d[FPSCR_FR]

#define XF_HEX frf.l[~FPSCR_FR]

#define XF frf.f[~FPSCR_FR]

#define XD frf.d[~FPSCR_FR]

union {

 int l[2][16];

 float f[2][16];

 double d[2][8];

} frf;

int FPSCR;

int sign_of(int n)

{

 return(FR_HEX[n]>>31);

}

int data_type_of(int n) {

int abs;

 abs = FR_HEX[n] & 0x7fffffff;

 if(FPSCR_PR == 0) { /* Single-precision */

 if(abs < 0x00800000){

 if((FPSCR_DN == 1) || (abs == 0x00000000)){

 if(sign_of(n) == 0) {zero(n, 0); return(PZERO);}

 else {zero(n, 1); return(NZERO);}

 }

 else return(DENORM);

 }

Rev. 1.50, 10/04, page 356 of 448

 else if(abs < 0x7f800000) return(NORM);

 else if(abs == 0x7f800000) {

 if(sign_of(n) == 0) return(PINF);

 else return(NINF);

 }

 else if(abs < 0x7fc00000) return(qNaN);

 else return(sNaN);

 }

 else { /* Double-precision */

 if(abs < 0x00100000){

 if((FPSCR_DN == 1) ||

 ((abs == 0x00000000) && (FR_HEX[n+1] == 0x00000000)){

 if(sign_of(n) == 0) {zero(n, 0); return(PZERO);}

 else {zero(n, 1); return(NZERO);}

 }

 else return(DENORM);

 }

 }

 else if(abs < 0x7ff00000) return(NORM);

 else if((abs == 0x7ff00000) &&

 (FR_HEX[n+1] == 0x00000000)) {

 if(sign_of(n) == 0) return(PINF);

 else return(NINF);

 }

 else if(abs < 0x7ff80000) return(qNaN);

 else return(sNaN);

 }

}

void register_copy(int m,n)

{

 FR[n] = FR[m];

 if(FPSCR_PR == 1) FR[n+1] = FR[m+1];

}

void normal_faddsub(int m,n,type)

{

Rev. 1.50, 10/04, page 357 of 448

union {

 float f;

 int l;

} dstf,srcf;

union {

 long d;

 int l[2];

} dstd,srcd;

union { /* “long double” format: */

 long double x; /* 1-bit sign */

 int l[4]; /* 15-bit exponent */

} dstx; /* 112-bit mantissa */

 if(FPSCR_PR == 0) {

 if(type == FADD) srcf.f = FR[m];

 else srcf.f = -FR[m];

 dstd.d = FR[n]; /* Conversion from single-precision to double-precision */

 dstd.d += srcf.f;

 if(((dstd.d == FR[n]) && (srcf.f != 0.0)) ||

 ((dstd.d == srcf.f) && (FR[n] != 0.0))) {

 set_I();

 if(sign_of(m)^ sign_of(n)) {

 dstd.l[1] -= 1;

 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

 }

 }

 if(dstd.l[1] & 0x1fffffff) set_I();

 dstf.f += srcf.f; /* Round to nearest */

 if(FPSCR_RM == 1) {

 dstd.l[1] &= 0xe0000000; /* Round to zero */

 dstf.f = dstd.d;

 }

 check_single_exception(&FR[n],dstf.f);

 } else {

Rev. 1.50, 10/04, page 358 of 448

 if(type == FADD) srcd.d = DR[m>>1];

 else srcd.d = -DR[m>>1];

 dstx.x = DR[n>>1];

 /* Conversion from double-precision to extended double-precision */

 dstx.x += srcd.d;

 if(((dstx.x == DR[n>>1]) && (srcd.d != 0.0)) ||

 ((dstx.x == srcd.d) && (DR[n>>1] != 0.0))) {

 set_I();

 if(sign_of(m)^ sign_of(n)) {

 dstx.l[3] -= 1;

 if(dstx.l[3] == 0xffffffff) {dstx.l[2] -= 1;

 if(dstx.l[2] == 0xffffffff) {dstx.l[1] -= 1;

 if(dstx.l[1] == 0xffffffff) {dstx.l[0] -= 1;}}}

 }

 }

 if((dstx.l[2] & 0x0fffffff) || dstx.l[3]) set_I();

 dst.d += srcd.d; /* Round to nearest */

 if(FPSCR_RM == 1) {

 dstx.l[2] &= 0xf0000000; /* Round to zero */

 dstx.l[3] = 0x00000000;

 dst.d = dstx.x;

 }

 check_double_exception(&DR[n>>1] ,dst.d);

 }

}

void normal_fmul(int m,n)

{

union {

 float f;

 int l;

} tmpf;

union {

 double d;

 int l[2];

} tmpd;

Rev. 1.50, 10/04, page 359 of 448

union {

 long double x;

 int l[4];

} tmpx;

 if(FPSCR_PR == 0) {

 tmpd.d = FR[n]; /* Single-precision to double-precision */

 tmpd.d *= FR[m]; /* Precise creation */

 tmpf.f *= FR[m]; /* Round to nearest */

 if(tmpf.f != tmpd.d) set_I();

 if((tmpf.f > tmpd.d) && (FPSCR_RM == 1)) {

 tmpf.l -= 1; /* Round to zero */

 }

 check_single_exception(&FR[n],tmpf.f);

 } else {

 tmpx.x = DR[n>>1]; /* Single-precision to double-precision */

 tmpx.x *= DR[m>>1]; /* Precise creation */

 tmpd.d *= DR[m>>1]; /* Round to nearest */

 if(tmpd.d != tmpx.x) set_I();

 if(tmpd.d > tmpx.x) && (FPSCR_RM == 1)) {

 tmpd.l[1] -= 1; /* Round to zero */

 if(tmpd.l[1] == 0xffffffff) tmpd.l[0] -= 1;

 }

 check_double_exception(&DR[n>>1], tmpd.d);

 }

}

void fipr(int m,n)

{

union {

 double d;

 int l[2];

} mlt[4];

Rev. 1.50, 10/04, page 360 of 448

float dstf;

 if((data_type_of(m) == sNaN) || (data_type_of(n) == sNaN) ||

 (data_type_of(m+1) == sNaN) || (data_type_of(n+1) == sNaN) ||

 (data_type_of(m+2) == sNaN) || (data_type_of(n+2) == sNaN) ||

 (data_type_of(m+3) == sNaN) || (data_type_of(n+3) == sNaN) ||

 (check_product_invalid(m,n)) ||

 (check_product_invalid(m+1,n+1)) ||

 (check_product_invalid(m+2,n+2)) ||

 (check_product_invalid(m+3,n+3))) invalid(n+3);

 else if((data_type_of(m) == qNaN)|| (data_type_of(n) == qNaN)||

 (data_type_of(m+1) == qNaN) || (data_type_of(n+1) == qNaN) ||

 (data_type_of(m+2) == qNaN) || (data_type_of(n+2) == qNaN) ||

 (data_type_of(m+3) == qNaN) || (data_type_of(n+3) == qNaN))
qnan(n+3);

 else if (check_ positive_infinity() &&

 (check_ negative_infinity()) invalid(n+3);

 else if (check_ positive_infinity()) inf(n+3,0);

 else if (check_ negative_infinity()) inf(n+3,1);

 else {

 for(i=0;i<4;i++) {

 /* If FPSCR_DN == 1, zeroize */

 if (data_type_of(m+i) == PZERO) FR[m+i] = +0.0;

 else if(data_type_of(m+i) == NZERO) FR[m+i] = -0.0;

 if (data_type_of(n+i) == PZERO) FR[n+i] = +0.0;

 else if(data_type_of(n+i) == NZERO) FR[n+i] = -0.0;

 mlt[i].d = FR[m+i];

 mlt[i].d *= FR[n+i];

 /* To be precise, with FIPR, the lower 18 bits are discarded; therefore, this description

 is simplified, and differs from the hardware. */

 mlt[i].l[1] &= 0xff000000;

 mlt[i].l[1] |= 0x00800000;

 }

 mlt[0].d += mlt[1].d + mlt[2].d + mlt[3].d;

 mlt[0].l[1] &= 0xff800000;

 dstf = mlt[0].d;

 set_I();

Rev. 1.50, 10/04, page 361 of 448

 check_single_exception(&FR[n+3],dstf);

 }

}

void check_single_exception(float *dst,result)

{

union {

 float f;

 int l;

} tmp;

float abs;

 if(result < 0.0) tmp.l = 0xff800000; /* – infinity */

 else tmp.l = 0x7f800000; /* + infinity */

 if(result == tmp.f) {

 set_O(); set_I();

 if(FPSCR_RM == 1) {

 tmp.l -= 1; /* Maximum value of normalized number */

 result = tmp.f;

 }

 }

 if(result < 0.0) abs = -result;

 else abs = result;

 tmp.l = 0x00800000; /* Minimum value of normalized number */

 if(abs < tmp.f) {

 if((FPSCR_DN == 1) && (abs != 0.0)) {

 set_I();

 if(result < 0.0) result = -0.0; /* Zeroize denormalized number */

 else result = 0.0;

 }

 if(FPSCR_I == 1) set_U();

 }

 if(FPSCR & ENABLE_OUI) fpu_exception_trap();

 else *dst = result;

}

Rev. 1.50, 10/04, page 362 of 448

void check_double_exception(double *dst,result)

{

union {

 double d;

 int l[2];

} tmp;

double abs;

 if(result < 0.0) tmp.l[0] = 0xfff00000; /* – infinity */

 else tmp.l[0] = 0x7ff00000; /* + infinity */

 tmp.l[1] = 0x00000000;

 if(result == tmp.d)

 set_O(); set_I();

 if(FPSCR_RM == 1) {

 tmp.l[0] -= 1;

 tmp.l[1] = 0xffffffff;

 result = tmp.d; /* Maximum value of normalized number */

 }

 }

 if(result < 0.0) abs = -result;

 else abs = result;

 tmp.l[0] = 0x00100000; /* Minimum value of normalized number */

 tmp.l[1] = 0x00000000;

 if(abs < tmp.d) {

 if((FPSCR_DN == 1) && (abs != 0.0)) {

 set_I();

 if(result < 0.0) result = -0.0;

 /* Zeroize denormalized number */

 else result = 0.0;

 }

 if(FPSCR_I == 1) set_U();

 }

 if(FPSCR & ENABLE_OUI) fpu_exception_trap();

 else *dst = result;

}

Rev. 1.50, 10/04, page 363 of 448

int check_product_invalid(int m,n)

{

 return(check_product_infinity(m,n) &&

 ((data_type_of(m) == PZERO) || (data_type_of(n) == PZERO) ||

 (data_type_of(m) == NZERO) || (data_type_of(n) == NZERO)));

}

int check_ product_infinity(int m,n)

{

 return((data_type_of(m) == PINF) || (data_type_of(n) == PINF) ||

 (data_type_of(m) == NINF) || (data_type_of(n) == NINF));

}

int check_ positive_infinity(int m,n)

{

 return(((check_ product_infinity(m,n) && (~sign_of(m)^
sign_of(n))) ||

 ((check_ product_infinity(m+1,n+1) && (~sign_of(m+1)^
sign_of(n+1))) ||

 ((check_ product_infinity(m+2,n+2) && (~sign_of(m+2)^
sign_of(n+2))) ||

 ((check_ product_infinity(m+3,n+3) && (~sign_of(m+3)^
sign_of(n+3))));

}

int check_ negative_infinity(int m,n)

{

 return(((check_ product_infinity(m,n) && (sign_of(m)^ sign_of(n))) ||

 ((check_ product_infinity(m+1,n+1) && (sign_of(m+1)^
sign_of(n+1))) ||

 ((check_ product_infinity(m+2,n+2) && (sign_of(m+2)^
sign_of(n+2))) ||

 ((check_ product_infinity(m+3,n+3) && (sign_of(m+3)^
sign_of(n+3))));

}

void clear_cause () {FPSCR &= ~CAUSE;}

void set_E() {FPSCR |= SET_E; fpu_exception_trap();}

void set_V() {FPSCR |= SET_V;}

void set_Z() {FPSCR |= SET_Z;}

void set_O() {FPSCR |= SET_O;}

void set_U() {FPSCR |= SET_U;}

void set_I() {FPSCR |= SET_I;}

Rev. 1.50, 10/04, page 364 of 448

void invalid(int n)

{

 set_V();

 if((FPSCR & ENABLE_V) == 0 qnan(n);

 else fpu_exception_trap();

}

void dz(int n,sign)

{

 set_Z();

 if((FPSCR & ENABLE_Z) == 0 inf(n,sign);

 else fpu_exception_trap();

}

void zero(int n,sign)

{

 if(sign == 0) FR_HEX [n] = 0x00000000;

 else FR_HEX [n] = 0x80000000;

 if (FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;

}

void inf(int n,sign) {

 if (FPSCR_PR==0) {

 if(sign == 0) FR_HEX [n] = 0x7f800000;

 else FR_HEX [n] = 0xff800000;

 } else {

 if(sign == 0) FR_HEX [n] = 0x7ff00000;

 else FR_HEX [n] = 0xfff00000;

 FR_HEX [n+1] = 0x00000000;

 }

}

void qnan(int n)

{

 if (FPSCR_PR==0) FR[n] = 0x7fbfffff;

 else { FR[n] = 0x7ff7ffff;

 FR[n+1] = 0xffffffff;

 }

}

Rev. 1.50, 10/04, page 365 of 448

10.3.1 FABS (Floating-point Absolute Value): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FABS FRn FRn & H'7FFFFFFF → FRn 1111nnnn01011101 1 —

1 FABS DRn DRn & H'7FFFFFFFFFFFFFFF
 → DRn

1111nnn001011101 1 —

Description: This instruction clears the most significant bit of the contents of floating-point
register FRn/DRn to 0, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.

Notes: None

Operation:

void FABS (int n){

 FR[n] = FR[n] & 0x7fffffff;

 pc += 2;

}

/* Same operation is performed regardless of precision. */

Possible Exceptions: None

Rev. 1.50, 10/04, page 366 of 448

10.3.2 FADD (Floating-point ADD): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FADD FRm,FRn FRn+FRm → FRn 1111nnnnmmmm0000 1 —

1 FADD DRm,DRn DRn+DRm → DRn 1111nnn0mmm00000 1 —

Description: When FPSCR.PR = 0: Arithmetically adds the two single-precision floating-point
numbers in FRn and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically adds the two double-precision floating-point numbers in
DRn and DRm, and stores the result in DRn.

When FPSCR.enable.I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When FPSCR.enable.O/U is set, FPU exception traps are generated on
actual generation by the FPU exception source and on the satisfaction of certain special conditions
that apply to this the instruction. These special conditions are described in the remaining parts of
this section. When an exception occurs, correct exception information is reflected in FPSCR.cause
and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should therefore be
performed by software.

Notes: None

Operation:

void FADD (int m,n)

{

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

 else switch (data_type_of(m)){

 case NORM: switch (data_type_of(n)){

 case NORM: normal_faddsub(m,n,ADD); break;

 case PZERO:

 case NZERO:register_copy(m,n); break;

 default: break;

Rev. 1.50, 10/04, page 367 of 448

 } break;

 case PZERO: switch (data_type_of(n)){

 case NZERO: zero(n,0); break;

 default: break;

 } break;

 case NZERO: break;

 case PINF: switch (data_type_of(n)){

 case NINF: invalid(n); break;

 default: inf(n,0); break;

 } break;

 case NINF: switch (data_type_of(n)){

 case PINF: invalid(n); break;

 default: inf(n,1); break;

 } break;

 }

}

FADD Special Cases

FADD FRn,DRm

FRm,DRm +NORM -NORM +0 –0 +inf –inf qNaN sNaN

+NORM FADD

-NORM

+0 +0

–0 –0 –inf

+inf +inf invalid

–inf –inf invalid –inf

qNaN qNaN

sNaN invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

 When DN = 0, calculation for denormalized numbers is the same as for normalized
numbers.

Rev. 1.50, 10/04, page 368 of 448

Possible Exceptions and Overflow/Underflow Exception Trap Generating Conditions:

• FPU error

• Invalid operation

• Overflow

Generation of overflow-exception traps

FPSCR.PR = 0: FRn and FRm have the same sign and the exponent of at least one value is
H'FE

FPSCR.PR = 1: DRn and DRm have the same sign and the exponent of at least one value is
H'7FE

• Underflow

Generation of underflow-exception traps
FPSCR.PR = 0: FRn and FRm have different signs and neither has an exponent greater than
H'18

FPSCR.PR = 1: DRn and DRm have different signs and neither has an exponent greater than
H'035

• Inexact

Rev. 1.50, 10/04, page 369 of 448

10.3.3 FCMP (Floating-point Compare): Floating-Point Instruction

No. PR Format Operation Instruction Code Cycle T Bit

1. 0 FCMP/EQ FRm,FRn When FRn = FRm,1 → T
Otherwise, 0 → T

1111nnnnmmmm0100 1 1/0

2. 1 FCMP/EQ DRm,DRn When DRn = DRm,1 → T
Otherwise, 0 → T

1111nnn0mmm00100 1 1/0

3. 0 FCMP/GT FRm,FRn When FRn > FRm,1 → T
Otherwise, 0 → T

1111nnnnmmmm0101 1 1/0

4. 1 FCMP/GT DRm,DRn When DRn > DRm,1 → T
Otherwise, 0 → T

1111nnn0mmm00101 1 1/0

Description:

1. When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

2. When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

3. When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if FRn > FRm, or 0 otherwise.

4. When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if DRn > DRm, or 0 otherwise.

Notes: None

Rev. 1.50, 10/04, page 370 of 448

Operation:

void FCMP_EQ(int m,n) /* FCMP/EQ FRm,FRn */

{

 pc += 2;

 clear_cause();

 if(fcmp_chk(m,n) == INVALID) fcmp_invalid();

 else if(fcmp_chk(m,n) == EQ) T = 1;

 else T = 0;

}

void FCMP_GT(int m,n) /* FCMP/GT FRm,FRn */

{

 pc += 2;

 clear_cause();

 if ((fcmp_chk(m,n) == INVALID) ||

 (fcmp_chk(m,n) == UO)) fcmp_invalid();

 else if(fcmp_chk(m,n) == GT) T = 1;

 else T = 0;

}

int fcmp_chk (int m,n)

{

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) return(INVALID);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) return(UO);

 else switch(data_type_of(m)){

 case NORM: switch(data_type_of(n)){

 case PINF :return(GT); break;

 case NINF :return(LT); break;

 default: break;

 } break;

 case PZERO:

 case NZERO: switch(data_type_of(n)){

 case PZERO :

 case NZERO :return(EQ); break;

 default: break;

 } break;

Rev. 1.50, 10/04, page 371 of 448

 case PINF : switch(data_type_of(n)){

 case PINF :return(EQ); break;

 default:return(LT); break;

 } break;

 case NINF : switch(data_type_of(n)){

 case NINF :return(EQ); break;

 default:return(GT); break;

 } break;

 }

 if(FPSCR_PR == 0) {

 if(FR[n] == FR[m]) return(EQ);

 else if(FR[n] > FR[m]) return(GT);

 else return(LT);

 }else {

 if(DR[n>>1] == DR[m>>1]) return(EQ);

 else if(DR[n>>1] > DR[m>>1]) return(GT);

 else return(LT);

 }

}

void fcmp_invalid()

{

 set_V(); if((FPSCR & ENABLE_V) == 0) T = 0;

 else fpu_exception_trap();

}

Rev. 1.50, 10/04, page 372 of 448

FCMP Special Cases

FCMP/EQ FRn,DRn

FRm,DRm NORM DNORM +0 –0 +INF –INF qNaN sNaN

NORM CMP

DNORM

+0 EQ

–0

+INF EQ

–INF EQ

qNaN !EQ

sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

FCMP/GT FRn,DRn

FRm,DRm NORM DENORM +0 –0 +INF –INF qNaN sNaN

NORM CMP GT !GT

DENORM

+0 !GT

–0

+INF !GT !GT

–INF GT !GT

qNaN UO

sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

 UO means unordered. Unordered is treated as false (!GT).

Possible Exceptions:

• Invalid operation

Rev. 1.50, 10/04, page 373 of 448

10.3.4 FCNVDS (Floating-point Convert Double to Single Precision): Floating-Point

Instruction

PR Format Operation Instruction Code Cycle T Bit

0 — — — — —

1 FCNVDS DRm,FPUL (float)DRm → FPUL 1111mmm010111101 1 —

Description: When FPSCR.PR = 1: This instruction converts the double-precision floating-point
number in DRm to a single-precision floating-point number, and stores the result in FPUL.

When FPSCR.enable. I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When FPSCR.enable.O/U is set, FPU exception traps are generated on
actual generation by the FPU exception source and on the satisfaction of certain special conditions
that apply to this the instruction. These special conditions are described in the remaining parts of
this section. When an exception occurs, correct exception information is reflected in FPSCR.cause
and FPSCR.flag, and FPUL is not updated. Appropriate processing should therefore be performed
by software.

Notes: None

Operation:

void FCNVDS(int m, float *FPUL){

 case((FPSCR.PR){

 0: undefined_operation(); /* reserved */

 1: fcnvds(m, *FPUL); break; /* FCNVDS */

 }

}

void fcnvds(int m, float *FPUL)

{

 pc += 2;

 clear_cause();

 case(data_type_of(m)){

 NORM :

 PZERO :

 NZERO : normal_ fcnvds(m, *FPUL); break;

 DENORM : set_E();

 PINF : *FPUL = 0x7f800000; break;

 NINF : *FPUL = 0xff800000; break;

Rev. 1.50, 10/04, page 374 of 448

 qNaN : *FPUL = 0x7fbfffff; break;

 sNaN : set_V();

 if((FPSCR & ENABLE_V) == 0) *FPUL = 0x7fbfffff;

 else fpu_exception_trap(); break;

 }

}

void normal_fcnvds(int m, float *FPUL)

{

int sign;

float abs;

union {

 float f;

 int l;

} dstf,tmpf;

union {

 double d;

 int l[2];

} dstd;

 dstd.d = DR[m>>1];

 if(dstd.l[1] & 0x1fffffff)) set_I();

 if(FPSCR_RM == 1) dstd.l[1] &= 0xe0000000; /* round toward zero*/

 dstf.f = dstd.d;

 check_single_exception(FPUL, dstf.f);

}

FCNVDS Special Cases

DRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FCNVDS(DRn FPUL) FCNVDS FCNVDS +0 –0 +INF –INF qNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 1.50, 10/04, page 375 of 448

Possible Exceptions and Overflow/Underflow Exception Trap Generating Conditions:

• FPU error

• Invalid operation

• Overflow

Generation of overflow-exception traps

The exponent of DRn is not less than H'47E

• Underflow

Generation of underflow-exception traps

The exponent of DRn is not more than H'380

• Inexact

Rev. 1.50, 10/04, page 376 of 448

10.3.5 FCNVSD (Floating-point Convert Single to Double Precision): Floating-Point

Instruction

PR Format Operation Instruction Code Cycle T Bit

0 — — — — —

1 FCNVSD FPUL,DRn (double) FPUL → DRn 1111nnn01010110
1

1 —

Description: When FPSCR.PR = 1: This instruction converts the single-precision floating-point
number in FPUL to a double-precision floating-point number, and stores the result in DRn.

Notes: None

Operation:

void FCNVSD(int n, float *FPUL){

 pc += 2;

 clear_cause();

 case((FPSCR_PR){

 0: undefined_operation(); /* reserved */

 1: fcnvsd (n, *FPUL); break; /* FCNVSD */

 }

}

void fcnvsd(int n, float *FPUL)

{

 case(fpul_type(*FPUL)){

 PZERO :

 NZERO :

 PINF :

 NINF : DR[n>>1] = *FPUL; break;

 DENORM : set_E(); break;

 qNaN : qnan(n); break;

 sNaN : invalid(n); break;

 }

}

int fpul_type(int *FPUL)

{

int abs;

Rev. 1.50, 10/04, page 377 of 448

 abs = *FPUL & 0x7fffffff;

 if(abs < 0x00800000){

 if((FPSCR_DN == 1) || (abs == 0x00000000)){

 if(sign_of(src) == 0) return(PZERO);

 else return(NZERO);

 }

 else return(DENORM);

 }

 else if(abs < 0x7f800000) return(NORM);

 else if(abs == 0x7f800000) {

 if(sign_of(src) == 0) return(PINF);

 else return(NINF);

 }

 else if(abs < 0x7fc00000) return(qNaN);

 else return(sNaN);

}

FCNVSD Special Cases

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FCNVSD(FPUL FRn) +NORM –NORM +0 –0 +INF –INF qNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

• FPU error

• Invalid operation

Rev. 1.50, 10/04, page 378 of 448

10.3.6 FDIV (Floating-point Divide): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 14 —

1 FDIV DRm,DRn DRn/DRm → DRn 1111nnn0mmm00011 30 —

Description: When FPSCR.PR = 0: Arithmetically divides the single-precision floating-point
number in FRn by the single-precision floating-point number in FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically divides the double-precision floating-point number in DRn
by the double-precision floating-point number in DRm, and stores the result in DRn.

When FPSCR.enable.I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When FPSCR.enable.O/U is set, FPU exception traps are generated on
actual generation by the FPU exception source and on the satisfaction of certain special conditions
that apply to this the instruction. These special conditions are described in the remaining parts of
this section. When an exception occurs, correct exception information is reflected in FPSCR.cause
and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should therefore be
performed by software.

Notes: None

Operation:

void FDIV(int m,n) /* FDIV FRm,FRn */

{

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else switch (data_type_of(m)){

 case NORM: switch (data_type_of(n)){

 case PINF:

 case NINF: inf(n,sign_of(m)^sign_of(n));break;

 case PZERO:

 case NZERO: zero(n,sign_of(m)^sign_of(n));break;

 case DENORM:set_E(); break;

 default: normal_fdiv(m,n); break;

Rev. 1.50, 10/04, page 379 of 448

 } break;

 case PZERO: switch (data_type_of(n)){

 case PZERO:

 case NZERO: invalid(n);break;

 case PINF:

 case NINF: break;

 default: dz(n,sign_of(m)^sign_of(n));break;

 } break;

 case NZERO: switch (data_type_of(n)){

 case PZERO:

 case NZERO: invalid(n); break;

 case PINF: inf(n,1); break;

 case NINF: inf(n,0); break;

 default: dz(FR[n],sign_of(m)^sign_of(n)); break;

 } break;

 case DENORM: set_E(); break;

 case PINF :

 case NINF : switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case PINF:

 case NINF: invalid(n); break;

 default: zero(n,sign_of(m)^sign_of(n));break

 } break;

 }

}

void normal_fdiv(int m,n)

{

union {

 float f;

 int l;

} dstf,tmpf;

union {

 double d;

 int l[2];

} dstd,tmpd;

union {

 int double x;

Rev. 1.50, 10/04, page 380 of 448

 int l[4];

} tmpx;

 if(FPSCR_PR == 0) {

 tmpf.f = FR[n]; /* save destination value */

 dstf.f /= FR[m]; /* round toward nearest or even */

 tmpd.d = dstf.f; /* convert single to double */

 tmpd.d *= FR[m];

 if(tmpf.f != tmpd.d) set_I();

 if((tmpf.f < tmpd.d) && (FPSCR_RM == 1))

 dstf.l -= 1; /* round toward zero */

 check_single_exception(&FR[n], dstf.f);

 } else {

 tmpd.d = DR[n>>1]; /* save destination value */

 dstd.d /= DR[m>>1]; /* round toward nearest or even */

 tmpx.x = dstd.d; /* convert double to int double */

 tmpx.x *= DR[m>>1];

 if(tmpd.d != tmpx.x) set_I();

 if((tmpd.d < tmpx.x) && (FPSCR_RM == 1)) {

 dstd.l[1] -= 1; /* round toward zero */

 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

 }

 check_double_exception(&DR[n>>1], dstd.d);

 }

}

Rev. 1.50, 10/04, page 381 of 448

FDIV Special Cases

FDIV FRn,DRn

FRm,DRm +NORM -NORM +DENORM –DENORM +0 -0 +inf –inf qNaN sNaN

+NORM FDIV +0 -0 +inf -inf

-NORM -0 +0 -inf +inf

+DENORM +0 -0 +inf -inf

–DENORM Error -0 +0 -inf +inf

+0 +inf -inf

-0 DZ invalid -inf DZ+inf

+inf +0 -0 +0 -0 +0 -0

–inf -0 +0 -0 +0 -0 +0 invalid

qNaN qNaN

sNaN invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions and Overflow/Underflow Exception Trap Generating Conditions:

• FPU error

• Invalid operation

• Divide by zero

• Overflow

Generation of overflow-exception traps

FPSCR.PR = 0: (exponent of FRn) − (exponent of FRm) + H'7F is not less than H'FF

FPSCR.PR = 1: (exponent of DRn) − (exponent of DRm) + H'3FF is not less than H'7FF

• Underflow

Generation of underflow-exception traps

FPSCR.PR = 0: (exponent of FRn) − (exponent of FRm) + H'7F is not more than H'01

FPSCR.PR = 1: (exponent of DRn) − (exponent of DRm) + H'3FF is not more than H'001

• Inexact

Rev. 1.50, 10/04, page 382 of 448

10.3.7 FIPR (Floating-point Inner Product): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FIPR FVm,FVn Inner_product(FVm, FVn)
→ FR[n+3]

1111nnmm11101101 1 —

— — — — — —

Notes: FV0 = {FR0, FR1, FR2, FR3}

 FV4 = {FR4, FR5, FR6, FR7}

 FV8 = {FR8, FR9, FR10, FR11}
 FV12 = {FR12, FR13, FR14, FR15}

Description: When FPSCR.PR = 0: This instruction calculates the inner products of the 4-
dimensional single-precision floating-point vector indicated by FVn and FVm, and stores the
results in FR[n + 3].

The FIPR instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FIPR
execution sequence is as follows:

1. Multiplies all terms. The results are 28 bits long.

2. Aligns these results, rounding them to fit within 30 bits.

3. Adds the aligned values.

4. Performs normalization and rounding.

Special processing is performed in the following cases:

1. If an input value is an sNaN, an invalid exception is generated.

2. If the input values to be multiplied include a combination of 0 and infinity, an invalid
exception is generated.

3. In cases other than the above, if the input values include a qNaN, the result will be a qNaN.

4. In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

5. If the input values do not include an sNaN, qNaN, or infinity, processing is performed in the
normal way.

When FPSCR.enable.U/I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When FPSCR.enable.O is set, FPU exception traps are generated on
actual generation by the FPU exception source and on the satisfaction of certain special conditions
that apply to this the instruction. These special conditions are described in the remaining parts of
this section. When an exception occurs, correct exception information is reflected in FPSCR.cause

Rev. 1.50, 10/04, page 383 of 448

and FPSCR.flag, and FR[n+3] is not updated. Appropriate processing should therefore be
performed by software.

Notes: None

Operation:

void FIPR(int m,n) /* FIPR FVm,FVn */

{

 if(FPSCR_PR == 0) {

 pc += 2;

 clear_cause();

 fipr(m,n);

 }

 else undefined_operation();

}

Possible Exceptions and Overflow Exception Trap Generating Conditions:

• Invalid operation

• Overflow

Generation of overflow-exception traps

At least one of following results is not less than H'FC

(exponent of FRn) + (exponent of FRm)

(exponent of FR(n + 1)) + (exponent of FR(m + 1))

(exponent of FR(n + 2)) + (exponent of FR(m + 2))

(exponent of FR(n + 3)) + (exponent of FR(m + 3))

• Underflow

• Inexact

Rev. 1.50, 10/04, page 384 of 448

10.3.8 FLDI0 (Floating-point Load Immediate 0.0): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FLDI0 FRn 0x00000000 → FRn 1111nnnn10001101 1 —

1 — — — — —

Description: When FPSCR.PR = 0, this instruction loads floating-point 0.0 (0x00000000) into
FRn.

Notes: None

Operation:

void FLDI0(int n)

{

 FR[n] = 0x00000000;

 pc += 2;

}

Possible Exceptions: None

Rev. 1.50, 10/04, page 385 of 448

10.3.9 FLDI1 (Floating-point Load Immediate 1.0): Floating-Point Instruction

Format Operation Instruction Code Cycle T Bit

FLDI1 FRn 0x3F800000 → FRn 1111nnnn10011101 1 —

— — — — —

Description: When FPSCR.PR = 0, this instruction loads floating-point 1.0 (0x3F800000) into
FRn.

Notes: None

Operation:

void FLDI1(int n)

{

 FR[n] = 0x3F800000;

 pc += 2;

}

Possible Exceptions: None

Rev. 1.50, 10/04, page 386 of 448

10.3.10 FLDS (Floating-point Load to System register): Floating-Point Instruction

Format Operation Instruction Code Cycle T Bit

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 1 —

Description: This instruction loads the contents of floating-point register FRm into system
register FPUL.

Notes: None

Operation:

void FLDS(int m, float *FPUL)

{

 *FPUL = FR[m];

 pc += 2;

}

Possible Exceptions: None

Rev. 1.50, 10/04, page 387 of 448

10.3.11 FLOAT (Floating-point Convert from Integer): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FLOAT FPUL,FRn (float)FPUL → FRn 1111nnnn00101101 1 —

1 FLOAT FPUL,DRn (double)FPUL → DRn 1111nnn000101101 1 —

Description:

When FPSCR.PR = 0: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
single-precision floating-point number and stores the result in FRn.

When FPSCR.PR = 1: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
double-precision floating-point number and stores the result in DRn.

When FPSCR.enable.I = 1 and FPSCR.PR = 0, an FPU exception trap is generated regardless of
whether or not an exception has occurred. When an exception occurs, correct exception
information is reflected in FPSCR.cause and FPSCR.flag, and FRn is not updated. Appropriate
processing should therefore be performed by software.

Notes: None

Operation:

void FLOAT(int n, float *FPUL)

{

union {

 double d;

 int l[2];

} tmp;

 pc += 2;

 clear_cause();

 if(FPSCR.PR==0){

 FR[n] = *FPUL; /* convert from integer to float */

 tmp.d = *FPUL;

 if(tmp.l[1] & 0x1fffffff) inexact();

 } else {

 DR[n>>1] = *FPUL; /* convert from integer to double */

 }

}

Rev. 1.50, 10/04, page 388 of 448

Possible Exceptions:

• Inexact: Not generated when FPSCR.PR = 1.

Rev. 1.50, 10/04, page 389 of 448

10.3.12 FMAC (Floating-point Multiply and Accumulate): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FMAC FR0,FRm,FRn FR0 × FRm+FRn → FRn 1111nnnnmmmm1110 1 —

1 — — — — —

Description: When FPSCR.PR = 0: This instruction arithmetically multiplies the two single-
precision floating-point numbers in FR0 and FRm, arithmetically adds the contents of FRn, and
stores the result in FRn.

When FPSCR.enable.I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When FPSCR.enable.O/U is set, FPU exception traps are generated on
actual generation by the FPU exception source and on the satisfaction of certain special conditions
that apply to this the instruction. These special conditions are described in the remaining parts of
this section. When an exception occurs, correct exception information is reflected in FPSCR.cause
and FPSCR.flag, and FRn is not updated. Appropriate processing should therefore be performed
by software.

Notes: None

Operation:

void FMAC(int m,n)

{

 pc += 2;

 clear_cause();

 if(FPSCR_PR == 1) undefined_operation();

 else if((data_type_of(0) == sNaN) ||

 (data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(0) == qNaN) ||

 (data_type_of(m) == qNaN)) qnan(n);

 else if((data_type_of(0) == DENORM) ||

 (data_type_of(m) == DENORM)) set_E();

 else switch (data_type_of(0){

 case NORM: switch (data_type_of(m)){

 case PZERO:

 case NZERO: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

Rev. 1.50, 10/04, page 390 of 448

 case PZERO:

 case NZERO: zero(n,sign_of(0)^ sign_of(m)^sign_of(n));
break;

 default: break;

 }

 case PINF:

 case NINF: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 case PINF:

 case NINF: if(sign_of(0)^ sign_of(m)^sign_of(n)) invalid(n);

 else inf(n,sign_of(0)^ sign_of(m)); break;

 default: inf(n,sign_of(0)^ sign_of(m)); break;

 }

 case NORM: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 case PINF:

 case NINF: inf(n,sign_of(n)); break;

 case PZERO:

 case NZERO:

 case NORM: normal_fmac(m,n); break;

 } break;

 case PZERO:

 case NZERO: switch (data_type_of(m)){

 case PINF:

 case NINF: invalid(n); break;

 case PZERO:

 case NZERO:

 case NORM: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 case PZERO:

 case NZERO: zero(n,sign_of(0)^ sign_of(m)^sign_of(n)); break;

 default: break;

 } break;

 } break;

 case PINF :

Rev. 1.50, 10/04, page 391 of 448

 case NINF : switch (data_type_of(m)){

 case PZERO:

 case NZERO:invalid(n); break;

 default: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 default: inf(n,sign_of(0)^sign_of(m)^sign_of(n));break

 } break;

 } break;

 }

}

void normal_fmac(int m,n)

{

union {

 int double x;

 int l[4];

} dstx,tmpx;

float dstf,srcf;

 if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))

 srcf = 0.0; /* flush denormalized value */

 else srcf = FR[n];

 tmpx.x = FR[0]; /* convert single to int double */

 tmpx.x *= FR[m]; /* exact product */

 dstx.x = tmpx.x + srcf;

 if(((dstx.x == srcf) && (tmpx.x != 0.0)) ||

 ((dstx.x == tmpx.x) && (srcf != 0.0))) {

 set_I();

 if(sign_of(0)^ sign_of(m)^ sign_of(n)) {

 dstx.l[3] -= 1; /* correct result */

 if(dstx.l[3] == 0xffffffff) dstx.l[2] -= 1;

 if(dstx.l[2] == 0xffffffff) dstx.l[1] -= 1;

 if(dstx.l[1] == 0xffffffff) dstx.l[0] -= 1;

 }

 else dstx.l[3] |= 1;

 }

 if((dstx.l[1] & 0x01ffffff) || dstx.l[2] || dstx.l[3]) set_I();

 if(FPSCR_RM == 1) {

Rev. 1.50, 10/04, page 392 of 448

 dstx.l[1] &= 0xfe000000; /* round toward zero */

 dstx.l[2] = 0x00000000;

 dstx.l[3] = 0x00000000;

 }

 dstf = dstx.x;

 check_single_exception(&FR[n],dstf);

}

Rev. 1.50, 10/04, page 393 of 448

FMAC Special Cases

FMAC FRm

FRn FR0 +NORM -NORM +0 –0 +inf –inf qNaN sNaN

+NORM FMAC +inf -inf

-NORM -inf +inf

+0

-0 invalid

+inf +inf -inf +inf -inf

NORM

-inf -inf +inf invalid -inf +inf

+NORM FMAC +inf -inf

-NORM -inf +inf

+0

-0 +0 invalid

+inf +inf -inf +inf -inf

+0

-inf -inf +inf invalid -inf +inf

+NORM FMAC +0 -0 +inf -inf

-NORM -0 +0 -inf +inf

+0 +0 -0 +0 -0

-0 -0 +0 -0 +0 invalid

+inf +inf -inf +inf -inf

-0

-inf -inf +inf invalid -inf +inf

+NORM +inf invalid

-NORM invalid +inf

+0

-0 +inf invalid

+inf +inf invalid +inf invalid

+inf

-inf invalid +inf invalid invalid +inf

+NORM invalid -inf

-NORM -inf invalid

+0

-0 -inf invalid

+inf invalid -inf invalid -inf

-inf

-inf -inf invalid invalid -inf invalid qNaN invalid

Rev. 1.50, 10/04, page 394 of 448

FMAC FRm

FRn FR0 +NORM -NORM +0 –0 +inf –inf qNaN sNaN

+NORM

-NORM

+0

-0 invalid

+inf

qNaN

-inf invalid

!sNaN qNaN qNaN

all types sNaN

sNaN all types invalid

Notes: When DN = 1, the value of a denormalized numbers is treated as 0.

 When DN = 0, calculation for denormalized numbers is the same as for normalized
numbers.

Possible Exceptions and Overflow/Underflow Exception Trap Generating Conditions:

• FPU error

• Invalid operation

• Overflow

Generation of overflow-exception traps

At least one of following results is not less than H′FD

(exponent of FR0) + (exponent of FRm)

exponent of FRn

• Underflow

Generation of underflow-exception traps

At least one of following results is not more than H′2E

(exponent of FR0) + (exponent of FRm)

exponent of FRn

• Inexact

Rev. 1.50, 10/04, page 395 of 448

10.3.13 FMOV (Floating-point Move): Floating-Point Instruction

No. SZ Format Operation Instruction Code Cycle T Bit

1. 0 FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 1 —

2. 1 FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 1 —

3. 0 FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 1 —

4. 1 FMOV DRm,@Rn DRm → (Rn) 1111nnnnmmm01010 1 —

5. 0 FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 1 —

6. 1 FMOV @Rm,DRn (Rm) → DRn 1111nnn0mmmm1000 1 —

7. 0 FMOV.S @Rm+,FRn (Rm) → FRn,Rm+4
→ Rm

1111nnnnmmmm1001 1 —

8. 1 FMOV @Rm+,DRn (Rm) → DRn, Rm+8
→ Rm

1111nnn0mmmm1001 1 —

9. 0 FMOV.S FRm,@-Rn Rn-4 → Rn,FRm →
(Rn)

1111nnnnmmmm1011 1 —

10. 1 FMOV DRm,@-Rn Rn-8 → Rn,DRm →
(Rn)

1111nnnnmmm01011 1 —

11. 0 FMOV.S @(R0,Rm),FRn (R0+Rm) → FRn 1111nnnnmmmm0110 1 —

12. 1 FMOV @(R0,Rm),DRn (R0+Rm) → DRn 1111nnn0mmmm0110 1 —

13. 0 FMOV.S FRm,@(R0,Rn) FRm → (R0+Rn) 1111nnnnmmmm0111 1 —

14. 1 FMOV DRm,@(R0,Rn) DRm → (R0+Rn) 1111nnnnmmm00111 1 —

Description:

1. This instruction transfers FRm contents to FRn.

2. This instruction transfers DRm contents to DRn.

3. This instruction transfers FRm contents to memory at address indicated by Rn.

4. This instruction transfers DRm contents to memory at address indicated by Rn.

5. This instruction transfers contents of memory at address indicated by Rm to FRn.

6. This instruction transfers contents of memory at address indicated by Rm to DRn.

7. This instruction transfers contents of memory at address indicated by Rm to FRn, and adds 4 to
Rm.

8. This instruction transfers contents of memory at address indicated by Rm to DRn, and adds 8
to Rm.

9. This instruction subtracts 4 from Rn, and transfers FRm contents to memory at address
indicated by resulting Rn value.

10. This instruction subtracts 8 from Rn, and transfers DRm contents to memory at address
indicated by resulting Rn value.

11. This instruction transfers contents of memory at address indicated by (R0 + Rm) to FRn.

Rev. 1.50, 10/04, page 396 of 448

12. This instruction transfers contents of memory at address indicated by (R0 + Rm) to DRn.

13. This instruction transfers FRm contents to memory at address indicated by (R0 + Rn).

14. This instruction transfers DRm contents to memory at address indicated by (R0 + Rn).

Notes: None

Operation:

void FMOV(int m,n) /* FMOV FRm,FRn */

{

 FR[n] = FR[m];

 pc += 2;

}

void FMOV_DR(int m,n) /* FMOV DRm,DRn */

{

 DR[n>>1] = DR[m>>1];

 pc += 2;

}

void FMOV_STORE(int m,n) /* FMOV.S FRm,@Rn */

{

 store_int(FR[m],R[n]);

 pc += 2;

}

void FMOV_STORE_DR(int m,n) /* FMOV DRm,@Rn */

{

 store_quad(DR[m>>1],R[n]);

 pc += 2;

}

 void FMOV_LOAD(int m,n) /* FMOV.S @Rm,FRn */

{

 load_int(R[m],FR[n]);

 pc += 2;

}

void FMOV_LOAD_DR(int m,n) /* FMOV @Rm,DRn */

{

 load_quad(R[m],DR[n>>1]);

 pc += 2;

}

void FMOV_RESTORE(int m,n) /* FMOV.S @Rm+,FRn */

Rev. 1.50, 10/04, page 397 of 448

{

 load_int(R[m],FR[n]);

 R[m] += 4;

 pc += 2;

}

void FMOV_RESTORE_DR(int m,n) /* FMOV @Rm+,DRn */

{

 load_quad(R[m],DR[n>>1]) ;

 R[m] += 8;

 pc += 2;

}

void FMOV_SAVE(int m,n) /* FMOV.S FRm,@–Rn */

{

 store_int(FR[m],R[n]-4);

 R[n] -= 4;

 pc += 2;

}

void FMOV_SAVE_DR(int m,n) /* FMOV DRm,@–Rn */

{

 store_quad(DR[m>>1],R[n]-8);

 R[n] -= 8;

 pc += 2;

}

void FMOV_INDEX_LOAD(int m,n) /* FMOV.S @(R0,Rm),FRn */

{

 load_int(R[0] + R[m],FR[n]);

 pc += 2;

}

void FMOV_INDEX_LOAD_DR(int m,n) /*FMOV @(R0,Rm),DRn */

{

 load_quad(R[0] + R[m],DR[n>>1]);

 pc += 2;

}

void FMOV_INDEX_STORE(int m,n) /*FMOV.S FRm,@(R0,Rn)*/

{

 store_int(FR[m], R[0] + R[n]);

 pc += 2;

Rev. 1.50, 10/04, page 398 of 448

}

void FMOV_INDEX_STORE_DR(int m,n)/*FMOV DRm,@(R0,Rn)*/

{

 store_quad(DR[m>>1], R[0] + R[n]);

 pc += 2;

}

Possible Exceptions:

• Data TLB miss exception

• Data protection violation exception

• Initial page write exception

• Data address error

Rev. 1.50, 10/04, page 399 of 448

10.3.14 FMOV (Floating-point Move Extension): Floating-Point Instruction

No. SZ Format Operation Instruction Code Cycle T Bit

1. 1 FMOV XDm,@Rn XRm → (Rn) 1111nnnnmmm11010 1 —

2. 1 FMOV @Rm,XDn (Rm) → XDn 1111nnn1mmmm1000 1 —

3. 1 FMOV @Rm+,XDn (Rm) → XDn, Rm+8
→ Rm

1111nnn1mmmm1001 1 —

4. 1 FMOV XDm,@-Rn Rn-8 → Rn,XDm →
(Rn)

1111nnnnmmm11011 1 —

5. 1 FMOV @(R0,Rm),XDn (R0+Rm) → XDn 1111nnn1mmmm0110 1 —

6. 1 FMOV XDm,@(R0,Rn) XDm → (R0+Rn) 1111nnnnmmm10111 1 —

7. 1 FMOV XDm,XDn XDm → XDn 1111nnn1mmm11100 1 —

8. 1 FMOV XDm,DRn XDm → DRn 1111nnn0mmm11100 1 —

9. 1 FMOV DRm,XDn DRm → XDn 1111nnn1mmm01100 1 —

Description:

1. This instruction transfers XDm contents to memory at address indicated by Rn.

2. This instruction transfers contents of memory at address indicated by Rm to XDn.

3. This instruction transfers contents of memory at address indicated by Rm to XDn, and adds 8
to Rm.

4. This instruction subtracts 8 from Rn, and transfers XDm contents to memory at address
indicated by resulting Rn value.

5. This instruction transfers contents of memory at address indicated by (R0 + Rm) to XDn.

6. This instruction transfers XDm contents to memory at address indicated by (R0 + Rn).

7. This instruction transfers XDm contents to XDn.

8. This instruction transfers XDm contents to DRn.

9. This instruction transfers DRm contents to XDn.

Rev. 1.50, 10/04, page 400 of 448

Operation:

void FMOV_STORE_XD(int m,n) /* FMOV XDm,@Rn */

{

 store_quad(XD[m>>1],R[n]);

 pc += 2;

}

void FMOV_LOAD_XD(int m,n) /* FMOV @Rm,XDn */

{

 load_quad(R[m],XD[n>>1]);

 pc += 2;

}

void FMOV_RESTORE_XD(int m,n) /* FMOV @Rm+,XDn */

{

 load_quad(R[m],XD[n>>1]);

 R[m] += 8;

 pc += 2;

}

void FMOV_SAVE_XD(int m,n) /* FMOV XDm,@–Rn */

{

 store_quad(XD[m>>1],R[n]-8);

 R[n] -= 8;

 pc += 2;

}

void FMOV_INDEX_LOAD_XD(int m,n) /* FMOV @(R0,Rm),XDn */

{

 load_quad(R[0] + R[m],XD[n>>1]);

 pc += 2;

}

void FMOV_INDEX_STORE_XD(int m,n) /* FMOV XDm,@(R0,Rn) */

{

 store_quad(XD[m>>1], R[0] + R[n]);

 pc += 2;

}

 void FMOV_XDXD(int m,n) /* FMOV XDm,XDn */

{

 XD[n>>1] = XD[m>>1];

 pc += 2;

Rev. 1.50, 10/04, page 401 of 448

}

void FMOV_XDDR(int m,n) /* FMOV XDm,DRn */

{

 DR[n>>1] = XD[m>>1];

 pc += 2;

}

void FMOV_DRXD(int m,n) /* FMOV DRm,XDn */

{

 XD[n>>1] = DR[m>>1];

 pc += 2;

}

Possible Exceptions:

• Data TLB miss exception

• Data protection violation exception

• Initial page write exception

• Data address error

Rev. 1.50, 10/04, page 402 of 448

10.3.15 FMUL (Floating-point Multiply): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FMUL FRm,FRn FRn × FRm → FRn 1111nnnnmmmm0010 1 —

1 FMUL DRm,DRn DRn × DRm → DRn 1111nnn0mmm00010 3 —

Description: When FPSCR.PR = 0: Arithmetically multiplies the two single-precision floating-
point numbers in FRn and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically multiplies the two double-precision floating-point numbers
in DRn and DRm, and stores the result in DRn.

When FPSCR.enable.I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When FPSCR.enable.O/U is set, FPU exception traps are generated on
actual generation by the FPU exception source and on the satisfaction of certain special conditions
that apply to this the instruction. These special conditions are described in the remaining parts of
this section. When an exception occurs, correct exception information is reflected in FPSCR.cause
and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should therefore be
performed by software.

Notes: None

Operation:

void FMUL(int m,n)

{

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

 else switch (data_type_of(m){

 case NORM: switch (data_type_of(n)){

 case PZERO:

 case NZERO: zero(n,sign_of(m)^sign_of(n)); break;

 case PINF:

 case NINF: inf(n,sign_of(m)^sign_of(n)); break;

Rev. 1.50, 10/04, page 403 of 448

 default: normal_fmul(m,n); break;

 } break;

 case PZERO:

 case NZERO: switch (data_type_of(n)){

 case PINF:

 case NINF: invalid(n); break;

 default: zero(n,sign_of(m)^sign_of(n));break;

 } break;

 case PINF :

 case NINF : switch (data_type_of(n)){

 case PZERO:

 case NZERO: invalid(n); break;

 default: inf(n,sign_of(m)^sign_of(n));break

 } break;

 }

}

FMUL Special Cases (FPSCR.PR = 0)

FMUL FRn

FRm +NORM -NORM +0 –0 +inf –inf qNaN sNaN

+NORM FMUL +0 –0 +inf -inf

-NORM –0 +0 -inf +inf

+0 +0 –0 +0 –0

–0 –0 +0 –0 +0 invalid

+inf +inf -inf +inf -inf

–inf -inf +inf invalid -inf +inf

qNaN qNaN

sNaN invalid

Note: When DN = 0, calculation for denormalized numbers is the same as for normalized
numbers.

Rev. 1.50, 10/04, page 404 of 448

FMUL Special Cases (FPSCR.PR = 1)

FMUL DRn

DRm +NORM -NORM +DENORM –DENORM +0 -0 +inf –inf qNaN sNaN

+NORM FMUL

 +0 -0 +inf -inf

-NORM -0 +0 -inf +inf

+DENORM +0 -0 +inf -inf

–DENORM Error -0 +0 -inf +inf

+0 +0 -0 +0 -0 +0 -0

-0 -0 +0 -0 +0 -0 +0 invalid

+inf +inf -inf +inf -inf +inf -inf

–inf -inf +inf -inf +inf invalid -inf +inf

qNaN qNaN

sNaN invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions and Overflow/Underflow Exception Trap Generating Conditions:

• FPU error

• Invalid operation

• Overflow

Generation of overflow-exception traps

FPSCR.PR = 0: (exponent of FRn) + (exponent of FRm) − H'7F is not less than H'FE

FPSCR.PR = 1: (exponent of DRn) + (exponent of DRm) − H'3FF is not less than H'7FE

• Underflow

Generation of underflow-exception traps

FPSCR.PR = 0:

When both FRn and FRm are normalized numbers: (exponent of FRn) + (exponent of FRm) −
H'7F is not more than H'00

When at least FRn or FRm is not a normalized number: (exponent of FRn) + (exponent of
FRm) − H'7F is not more than H'18

FPSCR.PR = 1: (exponent of DRn) + (exponent of DRm) − H'3FF is not more than H'000

• Inexact

Rev. 1.50, 10/04, page 405 of 448

10.3.16 FNEG (Floating-point Negate Value): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FNEG FRn FRn ^ H'80000000 → FRn 1111nnnn01001101 1 —

1 FNEG DRn DRn ^ H'8000000000000000
→ DRn

1111nnn001001101 1 —

Description: This instruction inverts the most significant bit (sign bit) of the contents of floating-
point register FRn/DRn, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.

Notes: None

Operation:

void FNEG (int n){

 FR[n] = -FR[n];

 pc += 2;

}

/* Same operation is performed regardless of precision. */

Possible Exceptions: None

Rev. 1.50, 10/04, page 406 of 448

10.3.17 FPCHG (Pr-bit Change): Floating-Point Instruction

Format Operation Instruction Code Cycle T Bit

FPCHG ~FPSCR.PR → FPSCR.PR 1111011111111101 1 —

Description: This instruction inverts the PR bit of the floating-point status register FPSCR. The
value of this bit selects single-precision or double-precision operation.

Notes: None

Operation:

void FPCHG(){/* FPCHG */}

{

FPSCR ^= 0x00080000; /* bit 19 */

PC += 2;

}

Possible Exceptions: None

Rev. 1.50, 10/04, page 407 of 448

10.3.18 FRCHG (FR-bit Change): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FRCHG ~FPSCR.FR → FPSCR.FR 1111101111111101 1 —

1 — — — — —

Description: This instruction inverts the FR bit in floating-point register FPSCR. When the FR bit
in FPSCR is changed, FR0 to FR15 in FPR0_BANK0 to FPR15_BANK0 and FPR0_BANK1 to
FPR15_BANK1 become XR0 to XR15, and XR0 to XR15 become FR0 to FR15. When
FPSCR.FR = 0, FPR0_BANK0 to FPR15_BANK0 correspond to FR0 to FR15, and
FPR0_BANK1 to FPR15_BANK1 correspond to XR0 to XR15. When FPSCR.FR = 1,
FPR0_BANK1 to FPR15_BANK1 correspond to FR0 to FR15, and FPR0_BANK0 to
FPR15_BANK0 correspond to XR0 to XR15.

Notes: None

Operation:

void FRCHG() /* FRCHG */

{

 if(FPSCR_PR == 0){

 FPSCR ^= 0x00200000; /* bit 21 */

 PC += 2;

 }

 else undefined_operation();

}

Possible Exceptions: None

Rev. 1.50, 10/04, page 408 of 448

10.3.19 FSCA (Floating Point Sine And Cosine Approximate): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FSCA FPUL,DRn sin(FPUL) → FRn

cos(FPUL) → FR[n+1]

1111nnn011111101 3 —

1 — reserved 1111nnnn11111101 — —

Description: This instruction calculates the sine and cosine approximations of FPUL (absolute

error is within ±2^–21) as single-precision floating point values, and places the values of the sine

and cosine in FRn and FR[n + 1], respectively. Since this instruction is an approximate operation

instruction, an imprecision exception is always required (even if the input is a 0, the result is

imprecise).

When FPSCR.enable.I is set, an FPU exception trap is generated. When an exception occurs,
correct exception information is reflected in FPSCR.cause and FPSCR.flag, and FRn and FR[n +
1] is not updated. Appropriate processing should therefore be performed by software.

Notes: None

Operation:

void FSCA(int n){

 float angle;

 long offset = 0x00010000;

 long fraction = 0x0000ffff;

 case((FPSCR.PR){

 0: clear_cause();

 set_I();

 /* extract sub-rotation (fraction) part */

 fraction &= FPUL;

 /* convert to float */

 angle = fraction;

 /* convert to radian */

 angle = 2*M_PI*angle / offset;

 FR[n] ~= sin(angle)

 FR[n+1] ~= cos(angle)

 pc += 2; break;

Rev. 1.50, 10/04, page 409 of 448

 1: undefined_operation(); /* reserved */

 }

}

Data Format of Source Operand:

Angle is specified as shown below, i.e., as a signed fraction in twos complement. The result of
sin/cos is a single-precision floating-point number.

0x7FFFFFFF to 0x00000001 : 360 × 215 − 360/216 to 360/216 degrees

0x00000000 : 0 degree

0xffffffff to 0x80000000 : –360/216 to –360 × 215 degrees

Possible Exceptions:

• Inexact

Rev. 1.50, 10/04, page 410 of 448

10.3.20 FSCHG (Sz-bit Change): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FSCHG ~FPSCR.SZ → FPSCR.SZ 1111001111111101 1 —

Description: This instruction inverts the SZ bit of the floating-point status register FPSCR.
Changing the value of the SZ bit in FPSCR switches the amount of data for transfer by the FMOV
instruction between one single-precision data and a pair of single-precision data. When FPSCR.SZ
= 0, an FMOV instruction transfers a single-precision number. When FPSCR.SZ = 1, the FMOV
instruction transfers a pair of single-precision numbers.

Notes: None

Operation:

void FSCHG() /* FSCHG */

{

 if(FPSCR_PR == 0){

 FPSCR ^= 0x00100000; /* bit 20 */

 PC += 2;

 }

 else undefined_operation();

}

Possible Exceptions: None

Rev. 1.50, 10/04, page 411 of 448

10.3.21 FSQRT (Floating-point Square Root): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FSQRT FRn sqrt (FRn)* → FRn 1111nnnn01101101 14 —

1 FSQRT DRn sqrt (DRn)* → DRn 1111nnn001101101 30 —

Note: * sqrt(FRn) and sqrt(DRn) are the square roots of FRn and DRn, respectively.

Description: When FPSCR.PR = 0: Finds the arithmetical square root of the single-precision
floating-point number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Finds the arithmetical square root of the double-precision floating-point
number in DRn, and stores the result in DRn.

When FPSCR.enable.I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Notes: None

Operation:

void FSQRT(int n){

 pc += 2;

 clear_cause();

 switch(data_type_of(n)){

 case NORM : if(sign_of(n) == 0) normal_ fsqrt(n);

 else invalid(n); break;

 case DENORM: if(sign_of(n) == 0) set_E();

 else invalid(n); break;

 case PZERO :

 case NZERO :

 case PINF : break;

 case NINF : invalid(n); break;

 case qNaN : qnan(n); break;

 case sNaN : invalid(n); break;

 }

}

Rev. 1.50, 10/04, page 412 of 448

void normal_fsqrt(int n)

{

union {

 float f;

 int l;

} dstf,tmpf;

union {

 double d;

 int l[2];

} dstd,tmpd;

union {

 int double x;

 int l[4];

} tmpx;

 if(FPSCR_PR == 0) {

 tmpf.f = FR[n]; /* save destination value */

 dstf.f = sqrt(FR[n]); /* round toward nearest or even */

 tmpd.d = dstf.f; /* convert single to double */

 tmpd.d *= dstf.f;

 if(tmpf.f != tmpd.d) set_I();

 if((tmpf.f < tmpd.d) && (FPSCR_RM == 1))

 dstf.l -= 1; /* round toward zero */

 if(FPSCR & ENABLE_I) fpu_exception_trap();

 else FR[n] = dstf.f;

 } else {

 tmpd.d = DR[n>>1]; /* save destination value */

 dstd.d = sqrt(DR[n>>1]); /* round toward nearest or even */

 tmpx.x = dstd.d; /* convert double to int double */

 tmpx.x *= dstd.d;

 if(tmpd.d != tmpx.x) set_I();

 if((tmpd.d < tmpx.x) && (FPSCR_RM == 1)) {

 dstd.l[1] -= 1; /* round toward zero */

 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

 }

 if(FPSCR & ENABLE_I) fpu_exception_trap();

 else DR[n>>1] = dstd.d;

 }

}

Rev. 1.50, 10/04, page 413 of 448

FSQRT Special Cases:

FRn +NORM –NORM +DENORM –DENORM +0 –0 +INF –INF qNaN sNaN

FSQRT
(FRn)

SQRT Invalid Error Error +0 –0 +INF Invalid qNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

• FPU error

• Invalid operation

• Inexact

Rev. 1.50, 10/04, page 414 of 448

10.3.22 FSRRA (Floating Point Square Reciprocal Approximate): Floating-Point

Instruction

PR Format Operation Instruction Code Cycle T Bit

0

1

FSRRA FRn

—

1/ sqrt(FRn)* → FRn

reserved

1111nnnn01111101

1111nnnn01111101

1 —

Note: * sqrt(FRn) is the square root of FRn.

Description: This instruction takes the approximate inverse of the arithmetic square root (absolute

error is within ±2^–21) of the single-precision floating-point in FRn and writes the result to FRn.

Since the this instruction operates by approximation, an imprecision exception is required when

the input is a normalized value. In other cases, the instruction does not require an imprecision

exception.

When FPSCR.enable.I is set, an FPU exception trap is generated. When an exception occurs,
correct exception information is reflected in FPSCR.cause and FPSCR.flag, and FRn is not
updated. Appropriate processing should therefore be performed by software.

Notes: None

Operation:

Void FSRRA(int n){

 case(FPSCR.PR){

 0: fsrra_single(n); break;

 1: undefined_operation(); break;

 }

 PC += 2;

}

 fsrra_single(int n)

{ clear_cause();

 case(data_type_of(n)){

 NORM: if(sign_of(n)==0)

 set_I();

 FR[n] = 1/sqrt(FR[n]);

 else invalid(n); break;

 DENORM: if(sign_of(n)==0)

 fpu_error(); break;

 else invalid(n); break

Rev. 1.50, 10/04, page 415 of 448

 PZERO:

 NZERO: dz(n,sign_of(n)); break;

 PINF: FR[n]=0;break;

 NINF: invalid(n); break;

 qNAN: qnan(n); break;

 sNAN invalid(n); break;

 }

}

FSRRA Special Cases

FRn +NORM –NORM +DENORM –DENORM +0 –0 +INF –INF qNaN sNaN

FSRRA(FRn) 1/SQRT Invalid Error Invalid DZ DZ +0 Invalid qNaN Invalid

Note: When DN = 1, the value of denormalized number is treated as 0.

Possible Exceptions:

• FPU error

• Invalid operation

• Divided by Zero

• Inexact

Rev. 1.50, 10/04, page 416 of 448

10.3.23 FSTS (Floating-point Store System Register): Floating-Point Instruction

Format Operation Instruction Code Cycle T Bit

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 —

Description: This instruction transfers the contents of system register FPUL to floating-point
register FRn.

Notes: None

Operation:

void FSTS(int n, float *FPUL)

{

 FR[n] = *FPUL;

 pc += 2;

}

Possible Exceptions: None

Rev. 1.50, 10/04, page 417 of 448

10.3.24 FSUB (Floating-point Subtract): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FSUB FRm,FRn FRn-FRm → FRn 1111nnnnmmmm0001 1 —

1 FSUB DRm,DRn DRn-DRm → DRn 1111nnn0mmm00001 1 —

Description: When FPSCR.PR = 0: Arithmetically subtracts the single-precision floating-point
number in FRm from the single-precision floating-point number in FRn, and stores the result in
FRn.

When FPSCR.PR = 1: Arithmetically subtracts the double-precision floating-point number in
DRm from the double-precision floating-point number in DRn, and stores the result in DRn.

When FPSCR.enable.I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When FPSCR.enable.O/U is set, FPU exception traps are generated on
actual generation by the FPU exception source and on the satisfaction of certain special conditions
that apply to this the instruction. These special conditions are described in the remaining parts of
this section. When an exception occurs, correct exception information is reflected in FPSCR.cause
and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should therefore be
performed by software.

Operation

void FSUB (int m,n)

{

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

 else switch (data_type_of(m)){

 case NORM: switch (Pe-of(n)){

 case NORM: normal_faddsub(m,n,SUB); break;

 case PZERO:

 case NZERO: register_copy(m,n); FR[n] = -FR[n];break;

 default: break;

 } break;

Rev. 1.50, 10/04, page 418 of 448

 case PZERO: break;

 case NZERO: switch (data_type_of(n)){

 case NZERO: zero(n,0); break;

 default: break;

 } break;

 case PINF: switch (data_type_of(n)){

 case PINF: invalid(n); break;

 default: inf(n,1); break;

 } break;

 case NINF: switch (data_type_of(n)){

 case NINF: invalid(n); break;

 default: inf(n,0); break;

 } break;

 }

}

FSUB Special Cases

FSUB FRn,DRn

FRm,DRm +NORM -NORM +0 –0 +inf –inf qNaN sNaN

+NORM FSUB

-NORM

+0 –0

–0 +0 +inf

+inf –inf invalid –inf

–inf +inf invalid

qNaN qNaN

sNaN invalid

Notes: When DN = 1, the value of a denormalized number is treated as 0.

 When DN = 0, calculation for denormalized numbers is the same as for normalized
numbers.

Rev. 1.50, 10/04, page 419 of 448

Possible Exceptions and Overflow/Underflow Exception Trap Generating Conditions:

• FPU error

• Invalid operation

• Overflow

Generation of overflow-exception traps

FPSCR.PR = 0: FRn and FRm have the different signs and the exponent of at least one value is
H'FE

FPSCR.PR = 1: DRn and DRm have the different signs and the exponent of at least one value
is H'7FE

• Underflow

Generation of underflow-exception traps
FPSCR.PR = 0: FRn and FRm have same sign and neither has an exponent greater than H'18

FPSCR.PR = 1: DRn and DRm have same sign and neither has an exponent greater than H'035

• Inexact

Rev. 1.50, 10/04, page 420 of 448

10.3.25 FTRC (Floating-point Truncate and Convert to integer): Floating-Point

Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FTRC FRm,FPUL (long)FRm → FPUL 1111mmmm00111101 1 —

1 FTRC DRm,FPUL (long)DRm → FPUL 1111mmm000111101 1 —

Description: When FPSCR.PR = 0: Converts the single-precision floating-point number in FRm
to a 32-bit integer, and stores the result in FPUL.

When FPSCR.PR = 1: Converts the double-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

The rounding mode is always truncation.

Notes: None

Operation:

#define N_INT_SINGLE_RANGE 0xcf000000 & 0x7fffffff /* -1.000000 * 2^31 */

#define P_INT_SINGLE_RANGE 0x4effffff /* 1.fffffe * 2^30 */

#define N_INT_DOUBLE_RANGE 0xc1e0000000200000 & 0x7fffffffffffffff

#define P_INT_DOUBLE_RANGE 0x41e0000000000000

void FTRC(int m, int *FPUL)

{

 pc += 2;

 clear_cause();

 if(FPSCR.PR==0){

 case(ftrc_single_ type_of(m)){

 NORM: *FPUL = FR[m]; break;

 PINF: ftrc_invalid(0,*FPUL); break;

 NINF: ftrc_invalid(1,*FPUL); break;

 }

 }

Rev. 1.50, 10/04, page 421 of 448

 else{ /* case FPSCR.PR=1 */

 case(ftrc_double_type_of(m)){

 NORM: *FPUL = DR[m>>1]; break;

 PINF: ftrc_invalid(0,*FPUL); break;

 NINF: ftrc_invalid(1, *FPUL); break;

 }

 }

}

int ftrc_signle_type_of(int m)

{

 if(sign_of(m) == 0){

 if(FR_HEX[m] > 0x7f800000) return(NINF); /* NaN */

 else if(FR_HEX[m] > P_INT_SINGLE_RANGE)

 return(PINF); /* out of range,+INF */

 else return(NORM); /* +0,+NORM */

 } else {

 if((FR_HEX[m] & 0x7fffffff) > N_INT_SINGLE_RANGE)

 return(NINF); /* out of range ,+INF,NaN*/

 else return(NORM); /* -0,-NORM */

 }

}

int ftrc_double_type_of(int m)

{

 if(sign_of(m) == 0){

 if((FR_HEX[m] > 0x7ff00000) ||

 ((FR_HEX[m] == 0x7ff00000) &&

 (FR_HEX[m+1] != 0x00000000))) return(NINF); /* NaN */

 else if(DR_HEX[m>>1] >= P_INT_DOUBLE_RANGE)

 return(PINF); /* out of range,+INF */

 else return(NORM); /* +0,+NORM */

 } else {

 if((DR_HEX[m>>1] & 0x7fffffffffffffff) >= N_INT_DOUBLE_RANGE)

 return(NINF); /* out of range ,+INF,NaN*/

 else return(NORM); /* -0,-NORM */

 }

}

Rev. 1.50, 10/04, page 422 of 448

void ftrc_invalid(int sign, int *FPUL)

{

 set_V();

 if((FPSCR & ENABLE_V) == 0){

 if(sign == 0) *FPUL = 0x7fffffff;

 else *FPUL = 0x80000000;

 }

 else fpu_exception_trap();

}

FTRC Special Cases

FRn,DRn NORM +0 –0

Positive
Out of
Range

Negative
Out of
Range +INF –INF qNaN sNaN

FTRC
(FRn,DRn)

TRC 0 0 Invalid
+MAX

Invalid
–MAX

Invalid
+MAX

Invalid
–MAX

Invalid
–MAX

Invalid
–MAX

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

• Invalid operation

Rev. 1.50, 10/04, page 423 of 448

10.3.26 FTRV (Floating-point Transform Vector): Floating-Point Instruction

PR Format Operation Instruction Code Cycle T Bit

0 FTRV XMTRX,FVn transform_vector
(XMTRX, FVn) → FVn

1111nn0111111101 4 —

1 — — — — —

Description: When FPSCR.PR = 0: This instruction takes the contents of floating-point registers
XF0 to XF15 indicated by XMTRX as a 4-row × 4-column matrix, takes the contents of floating-
point registers FR[n] to FR[n + 3] indicated by FVn as a 4-dimensional vector, multiplies the array
by the vector, and stores the results in FV[n].

XMTRX FVn FVn
 XF[0] XF[4] XF[8] XF[12] FR[n] FR[n]
 XF[1] XF[5] XF[9] XF[13] × FR[n+1] → FR[n+1]
 XF[2] XF[6] XF[10] XF[14] FR[n+2] FR[n+2]
 XF[3] XF[7] XF[11] XF[15] FR[n+3] FR[n+3]

The FTRV instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FTRV
execution sequence is as follows:

1. Multiplies all terms. The results are 28 bits long.

2. Aligns these results, rounding them to fit within 30 bits.

3. Adds the aligned values.

4. Performs normalization and rounding.

Special processing is performed in the following cases:

1. If an input value is an sNaN, an invalid exception is generated.

2. If the input values to be multiplied include a combination of 0 and infinity, an invalid
operation exception is generated.

3. In cases other than the above, if the input values include a qNaN, the result will be a qNaN.

4. In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

5. If the input values do not include an sNaN, qNaN, or infinity, processing is performed in the
normal way.

Rev. 1.50, 10/04, page 424 of 448

When FPSCR.enable.V/O/U/I is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FVn is not updated. Appropriate processing
should therefore be performed by software.

Notes: None

Operation:

void FTRV (int n) /* FTRV FVn */

{

float saved_vec[4],result_vec[4];

int saved_fpscr;

int dst,i;

 if(FPSCR_PR == 0) {

 PC += 2;

 clear_cause();

 saved_fpscr = FPSCR;

 FPSCR &= ~ENABLE_VOUI; /* mask VOUI enable */

 dst = 12 - n; /* select other vector than FVn */

 for(i=0;i<4;i++)saved_vec [i] = FR[dst+i];

 for(i=0;i<4;i++){

 for(j=0;j<4;j++) FR[dst+j] = XF[i+4j];

 fipr(n,dst);

 saved_fpscr |= FPSCR & (CAUSE|FLAG) ;

 result_vec [i] = FR[dst+3];

 }

 for(i=0;i<4;i++)FR[dst+i] = saved_vec [i];

 FPSCR = saved_fpscr;

 if(FPSCR & ENABLE_VOUI) fpu_exception_trap();

 else for(i=0;i<4;i++) FR[n+i] = result_vec [i];

 }

 else undefined_operation();

}

Rev. 1.50, 10/04, page 425 of 448

Possible Exceptions:

• Invalid operation

• Overflow

• Underflow

• Inexact

Rev. 1.50, 10/04, page 426 of 448

 Rev. 1.50, 10/04, page 427 of 448

Section 11 List of Registers

The address map gives information on the on-chip I/O registers and is configured as described
below.

Register Addresses (by functional module, in order of the corresponding section numbers):

• Descriptions by functional module, in order of the corresponding section numbers

• Access to reserved addresses which are not described in this list is disabled.

Register States in Each Operating Mode:

• Register states are described in the same order as the Register Addresses (by functional
module, in order of the corresponding section numbers).

• For the initial state of each bit, refer to the description of the register in the corresponding
section.

• The register states described are for the basic operating modes. If there is a specific reset for an
on-chip module, refer to the section on that on-chip module.

Rev. 1.50, 10/04, page 428 of 448

11.1 Register Addresses
(by functional module, in order of the corresponding section
numbers)

Entries under Access size indicates numbers of bits.

Note: Access to undefined or reserved addresses is prohibited. Since operation or continued
operation is not guaranteed when these registers are accessed, do not attempt such access.

Module Name Abbreviation R/W P4 Address*
Area 7
Address*

Access
Size

Exception
handling

TRAPA exception register TRA R/W H'FF00 0020 H'1F00 0020 32

 Exception event register EXPEVT R/W H'FF00 0024 H'1F00 0024 32

 Interrupt event register INTEVT R/W H'FF00 0028 H'1F00 0028 32

MMU Page table entry high
register

PTEH R/W H'FF00 0000 H'1F00 0000 32

 Page table entry low
register

PTEL R/W H'FF00 0004 H'1F00 0004 32

 Translation table base
register

TTB R/W H'FF00 0008 H'1F00 0008 32

 TLB exception address
register

TEA R/W H'FF00 000C H'1F00 000C 32

 MMU control register MMUCR R/W H'FF00 0010 H'1F00 0010 32

 Physical address space
control register

PASCR R/W H'FF00 0070 H'1F00 0070 32

 Instruction re-fetch inhibit
control register

IRMCR R/W H'FF00 0078 H'1F00 0078 32

Cache Cache control register CCR R/W H'FF00 001C H'1F00 001C 32

 Queue address control
register 0

QACR0 R/W H'FF00 0038 H'1F00 0038 32

 Queue address control
register 1

QACR1 R/W H'FF00 003C H'1F00 003C 32

 On-chip memory control
register

RAMCR R/W H'FF00 0074 H'1F00 0074 32

Rev. 1.50, 10/04, page 429 of 448

Module Name Abbreviation R/W P4 Address*
Area 7
Address*

Access
Size

L memory L memory transfer source
address register 0

LSA0 R/W H'FF00 0050 H'1F00 0050 32

 L memory transfer source
address register 1

LSA1 R/W H'FF00 0054 H'1F00 0054 32

 L memory transfer
destination address
register 0

LDA0 R/W H'FF00 0058 H'1F00 0058 32

 L memory transfer
destination address
register 1

LDA1 R/W H'FF00 005C H'FF00 005C 32

Note: * The P4 address is the address used when using P4 area in the virtual address space.
The area 7 address is the address used when accessing from area 7 in the physical
address space using the TLB.

Rev. 1.50, 10/04, page 430 of 448

11.2 Register States in Each Operating Mode

Module Name Abbreviation
Power-on
Reset

Manual
Reset Sleep Standby

Exception
handling

TRAPA exception register TRA Undefined Undefined Retained Retained

 Exception event register EXPEVT H'0000 0000 H'0000 0020 Retained Retained

 Interrupt event register INTEVT Undefined Undefined Retained Retained

MMU Page table entry high
register

PTEH Undefined Undefined Retained Retained

 Page table entry low
register

PTEL Undefined Undefined Retained Retained

 Translation table base
register

TTB Undefined Undefined Retained Retained

 TLB exception address
register

TEA Undefined Retained Retained Retained

 MMU control register MMUCR H'0000 0000 H'0000 0000 Retained Retained

 Physical address space
control register

PASCR H'0000 0000 H'0000 0000 Retained Retained

 Instruction re-fetch inhibit
control register

IRMCR H'0000 0000 H'0000 0000 Retained Retained

Cache Cache control register CCR H'0000 0000 H'0000 0000 Retained Retained

 Queue address control
register 0

QACR0 Undefined Undefined Retained Retained

 Queue address control
register 1

QACR1 Undefined Undefined Retained Retained

 On-chip memory control
register

RAMCR H'0000 0000 H'0000 0000 Retained Retained

L memory L memory transfer source
address register 0

LSA0 Undefined Undefined Retained Retained

 L memory transfer source
address register 1

LSA1 Undefined Undefined Retained Retained

 L memory transfer
destination address
register 0

LDA0 Undefined Undefined Retained Retained

 L memory transfer
destination address
register 1

LDA1 Undefined Undefined Retained Retained

Rev. 1.50, 10/04, page 431 of 448

Appendix

A. CPU Operation Mode Register (CPUOPM)

The CPUOPM is used to control the CPU operation mode. This register can be read from or
written to the address H'FF2F0000 in P4 area or H'1F2F0000 in area 7 as 32-bit size.

The write value to the reserved bits should be the initial value.

The operation is not guaranteed if the write value is not the initial value.

The CPUOPM register should be updated by the CPU store instruction not the access from
SuperHyway bus master except CPU.

After the CPUOPM is updated, read CPUOPM once, and execute one of the following two
methods.

1. Execute a branch using the RTE instruction.

2. Execute the ICBI instruction for any address (including non-cacheable area).

After one of these methods are executed, it is guaranteed that the CPU runs under the updated
CPUOPM value.

Bit:

Initial value:
R/W: R R R R R/W R/W R R R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

 INTMURABD

Bit:

Initial value:
R/W: R R R R R R R R R R R R R R R R

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

   

R R R

  

R



R

 

R



R

  





          

Rev. 1.50, 10/04, page 432 of 448

Bit Bit Name
Initial
Value R/W Description

31 to 6  H'000000F R Reserved

The write value must be the initial value.

5 RABD 1 R/W Speculative execution bit for subroutine return

0: Instruction fetch for subroutine return is issued
speculatively. When this bit is set to 0, refer to
Appendix C, Speculative Execution for Subroutine
Return.

1: Instruction fetch for subroutine return is not issued
speculatively.

4  0 R Reserved

The write value must be the initial value.

3 INTMU 0 R/W Interrupt mode switch bit

0: SR.IMASK is not changed when an interrupt is
accepted.

1: SR.IMASK is changed to the accepted interrupt level.

2 to 0  All 0 R Reserved

The write value must be the initial value.

Rev. 1.50, 10/04, page 433 of 448

B. Instruction Prefetching and Its Side Effects

This LSI is provided with an internal buffer for holding pre-read instructions, and always performs
pre-reading. Therefore, program code must not be located in the last 64-byte area of any memory
space. If program code is located in these areas, a bus access for instruction prefetch may occur
exceeding the memory areas boundary. A case in which this is a problem is shown below.

Address
 :
H'03FF FFF8
H'03FF FFFA
H'03FF FFFC
H'03FF FFFE
H'4000 0000
H'4000 0002 Instruction prefetch address

Instruction
 :
ADD R1,R4 PC (Program Counter)
JMP @R2
NOP
NOPArea 0

Area 1

Figure B.1 Instruction Prefetch

Figure B.1 presupposes a case in which the instruction (ADD) indicated by the program counter
(PC) and the address H'04000002 instruction prefetch are executed simultaneously. It is also
assumed that the program branches to an area other than area 1 after executing the following JMP
instruction and delay slot instruction.

In this case, a bus access (instruction prefetch) to area 1 may unintentionally occur from the
programming flow.

Instruction Prefetch Side Effects

1. It is possible that an external bus access caused by an instruction prefetch may result in
misoperation of an external device, such as a FIFO, connected to the area concerned.

2. If there is no device to reply to an external bus request caused by an instruction prefetch, hang-
up will occur.

Remedies

1. These illegal instruction fetches can be avoided by using the MMU.

2. The problem can be avoided by not locating program code in the last 64 bytes of any area.

Rev. 1.50, 10/04, page 434 of 448

C. Speculative Execution for Subroutine Return

The SH-4A has the mechanism to issue an instruction fetch speculatively when returning from
subroutine. By issuing an instruction fetch speculatively, the execution cycles to return from
subroutine may be shortened.

This function is enabled by setting 0 to the bit 5 (RABD) of CPU Operation Mode register
(CPUOPM). But this speculative instruction fetch may issue the access to the address that should
not be accessed from the program. Therefore, a bus access to an unexpected area or an internal
instruction address error may cause a problem. As for the effect of this bus access to unexpected
memory area, refer to Appendix B, Instruction Prefetching and Its Side Effects.

Usage Condition: When the speculative execution for subroutine return is enabled, the RTS
instruction should be used to return to the address set in PR by the JSR, BSR,
or BSRF instructions. It can prevent the access to unexpected address and
avoid the problem.

Rev. 1.50, 10/04, page 435 of 448

D. Version Registers (PVR, PRR)

The SH-4A has the read-only registers which show the version of a processor core, and the version
of a product. By using the value of these registers, it becomes possible to be able to distinguish the
version and product of a processor from software, and to realize the scalability of the high system.
Since the values of the version registers differ for every product, please refer to the hardware
manual or contact Renesas Technology Corp..

Note: The bit 7 to bit 0 of PVR register and the bit 3 to bit 0 of PRR register should be masked
by the software.

Table D.1 Register Configuration

Register Name Abbr. R/W P4 Address Area 7 Address Size

Processor version register PVR R H'FF000030 H'1F000030 32

Product register PRR R H'FF000044 H'1F000044 32

Processor Version Register (PVR):

R R R R R R R R R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

* * * * * * * *        

 

R R R R R R R R R R R R R R R R

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 1 0 0 0 0 * * * * * * * *

R R R R R R



R

  

CHIP VER

CUT

Bit:

Initial value:
R/W:

Bit:

Initial value:
R/W:

Bit Bit Name
Initial
Value R/W Description

31 to 24 CHIP H'10 R Processor Family

The read value is always H'10 in the SH-4A.

23 to 16 VER * R Major Version

This value is changed when performing major
enhancement of the architecture. The version of this
manual is H'20.

15 to 8 CUT * R Minor Version

This value is changed when performing minor
enhancement of the architecture. It differs from one
product to another.

7 to 0 — Undefined R This value is undefined. It should be masked by
software when using it.

Note: * This value depends on a product.

Rev. 1.50, 10/04, page 436 of 448

Product Register (PRR):

R R R R R R R R R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

* * * * * * * * * * * *    

CUT

R R R R R R R R R R R R R R R R
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R R R R R R R

 Product

Bit:

Initial value:
R/W:

Bit:

Initial value:
R/W:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

               

Bit Bit Name
Initial
Value R/W Description

31 to 16 — All 0 R Reserved

For details on reading from or writing to these bits, see
description in General Precautions on Handling of
Product.

15 to 8 Product * R Major Version

This value is changed when performing major
enhancement of the product. It differs from one product
to another.

7 to 4 CUT * R Minor Version

This value is changed when performing minor
enhancement of the product. It differs from one product
to another.

3 to 0 — Undefined R This value is undefined. It should be masked by
software when using it.

Note: * This value depends on a product.

Rev. 1.50, 10/04, page 437 of 448

Main Revisions and Additions in this Edition

Item Page Revision (See Manual for Details)

Preface — Deleted.

The SH-4A is a RISC (Reduced Instruction Set
Computer) microcomputer which includes a Renesas
Technology-original RISC CPU as its core. and the
peripheral functions required to configure a system.

1.1 Features 1 Amended.

The SH-4A is a 32-bit RISC (reduced instruction set
computer) microprocessor that is upward compatible
with the SH-1, SH-2, SH-3, SH-3E, and SH-4
microcomputers at instruction set code level. Its 16-bit
fixed-length instruction set enables program code size
to be reduced by almost 50% compared with 32-bit
instructions.

Table 1.1 Features

CPU

1 Amended.

• RISC-type instruction set (upward compatible with

the SH-1, SH-2, SH-3, and SH-4 microcomputers)

Table 1.1 Features

L memory

3 Amended.

• Two independent read/write ports

 8-/16-/32-/64-bit access from the CPU

 8-/16-/32-/64-bit and 16-/32-byte access from

the external devices

Note: For the size of L memory, see the hardware
manual of the target product.

Table 1.2 Changes from SH-4 to
SH-4A

4 Amended.
Section No. and
Name

Sub-
section

Sub-section
Name Changes

9 instructions are added as
CPU instructions.

3. Instruction Set 3.3 Instruction Set

3 instructions are added as
FPU instructions.

4. Pipelining 4.2 Parallel-
Executability

9 instructions are added as
CPU instructions.

 3 instructions are added as
FPU instructions.

 5 Added.
Section No. and
Name

Sub-
section

Sub-section
Name Changes

7. Memory
Management Unit

7.7 32-Bit Address
Extended Mode

Newly added.

Rev. 1.50, 10/04, page 438 of 448

Item Page Revision (See Manual for Details)

Table 1.2 Changes from SH-4 to
SH-4A

6 Added.
Section No. and
Name Sub-section

Sub-section
Name Changes

8.3.6 OC Two-Way
Mode

Newly added.

8.4 Instruction Cache
Operation

IC index mode is
deleted.

8.4.3 IC Two-Way
Mode

Newly added.

8.5.1 Coherency
between Cache
and External
Memory

The ICBI, PREFI, and
SYNCO instructions are
added.

8. Caches

8.6 Memory-Mapped
Cache
Configuration

The entry bits and the
way bits are modified
according to the size
modification and
changed into 4-way set
associative cache.

 8.8 Notes on Using
32-Bit Address
Extended Mode

Newly added.

9. L Memory   Newly added.

9 instructions are added
as CPU instructions.

10. Instruction
Descriptions

 

3 instructions are added
as FPU instructions.

2.2.4 Control Registers

Status Register (SR)

15 Amended.

Bit Bit Name
Initial
Value R/W Description

1 S 0 R/W S Bit

Used by the MAC instruction.

0 T 0 R/W T Bit

Indicates true/false condition,
carry/borrow, or
overflow/underflow.

For details, see section 3,
Instruction Set.

2.2.5 System Registers

Floating-Point Status/Control
Register (FPSCR)

18 Amended.

2.7 Usage Notes 22 Added.

Rev. 1.50, 10/04, page 439 of 448

Item Page Revision (See Manual for Details)

Figure 4.2 Instruction Execution
Patterns (7)

51 Amended.

(6-3) LDS.L to FPUL: 1 issue cycle

(6-5) LDS to FPSCR: 1 issue cycle

(6-7) LDS.L to FPSCR: 1 issue cycle

Table 4.2 Instruction Groups 54 Amended.
Instruction
Group Instruction

LS MOV.[BWL] @adr,R
MOV.[BWL] R,@adr
MOVA
MOVCA.L
MOVUA
OCBI
OCBP
OCBWB
PREF

STC CR2,Rn
STC.L CR2,@-Rn
STS SR2,Rn
STS.L SR2,@-Rn
STS SR1,Rn
STS.L SR1,@-Rn

6.5.3 FPU Exception Handling 110 Amended.

• Division by zero (Z): FPSCR.Enable.Z = 1 and

division with a zero divisor or the input of FSRRA is

zero

Figure 7.4 P4 Area 118 Amended.

Operand cache data array

Unified TLB and PMB address array

Unified TLB and PMB data array
H'F800 0000

H'F700 0000

H'F600 0000

7.1.1 Address Spaces

• P4 Area

119 Added.

The area from H'F610 0000 to H'F61F FFFF is used for
direct access to the PMB address array. For details,
see section 7.7.5, Memory-Mapped PMB Configuration.

The area from H'F700 0000 to H'F70F FFFF is used for
direct access to unified TLB data array. For details, see
section 7.6.4, UTLB Data Array.

The area from H'F710 0000 to H'F71F FFFF is used for
direct access to the PMB data array. For details, see
section 7.7.5, Memory-Mapped PMB Configuration.

Rev. 1.50, 10/04, page 440 of 448

Item Page Revision (See Manual for Details)

7.2.2 Page Table Entry Low
Register (PTEL)

123 Added.

Bit Bit Name Initial Value R/W

0 WT  R/W

7.2.6 Physical Address Space
Control Register (PASCR)

128 Amended.

Bit
Bit
Name Description

7 to 0 UB Buffered Write Control for Each Area (64 Mbytes)

When writing is performed without using the cache
or in the cache write-through mode, these bits
specify whether the next bus access from the CPU
waits for the end of writing for each area.

0 : The CPU does not wait for the end of writing
bus access and starts the next bus access

1 : The CPU waits for the end of writing bus
access and starts the next bus access

7.2.7 Instruction Re-Fetch Inhibit
Control Register (IRMCR)

129,
130

Amended.

Bit Bit Name Initial Value R/W

4 R2 0 R/W

3 R1 0 R/W

2 LT 0 R/W

7.7 32-Bit Address Extended
Mode

151 to
158

Added.

Section 8 Caches 159 Note added.

8.5.1 Coherency between Cache
and External Memory

175 Deleted.

• 1Kbyte page size cannot be used.

• In the case of 64KB size operand cache, the bit [13]

of virtual address must be same as the bit [13] of

the physical address in 4KB page mode.

• In the case of 128KB size operand cache, the bits

[14:13] of virtual address must be same as the bits

[14:13] of the physical address in 4KB page mode.

8.6.1 IC Address Array 177 Note added.

8.6.3 OC Address Array 180 Note added.

Rev. 1.50, 10/04, page 441 of 448

Item Page Revision (See Manual for Details)

8.7.3 Transfer to External
Memory

• When MMU is enabled (AT =

1 in MMUCR)

183 Deleted.

The SQ area (H'E000 0000 to H'E3FF FFFF) is set in
VPN of the UTLB, and the transfer destination physical
address in PPN. The ASID, V, SZ, SH, PR, and D bits
have the same meaning as for normal address
translation, but the C and WT bits have no meaning
with regard to this page. Transfer to the PCMCIA
interface area by means of the SQs is not allowed.

8.8 Notes on Using 32-Bit
Address Extended Mode

185 Added.

Section 9 L Memory 187 Note added.

Table 9.2 Register Configuration 188 Amended.

Name Abbr. R/W

P4

Address*

Area 7

Address*

L memory transfer

destination

address register 1

LDA1 R/W H'FF00005C H'1F00005C

9.3.3 Block Transfer 198 Amended.

When MMU is Disabled (MMUCR.AT = 0) or
RAMCR.RP = 0: The transfer source physical address
in block transfer to page 0 in the L memory is set in the
L0SADR bits of the LSA0 register. And the L0SSZ bits
in the LSA0 register choose either the virtual addresses
specified through the PRFF instruction or the L0SADR
values as bits 15 to 10 of the transfer source physical
address. In other words, the transfer source area can
be specified in units of 1 Kbyte to 64 Kbytes.

The transfer destination physical address in block
transfer from page 0 in the L memory is set in the
L0DADR bits of the LDA0 register. And the L0DSZ bits
in the LDA0 register choose either the virtual addresses
specified through the OCBWB instruction or the
L0DADR values as bits 15 to 10 of the transfer
destination physical address. In other words, the
transfer source area can be specified in units of 1
Kbyte to 64 Kbytes.

Block transfer to page 1 in the L memory is set to LSA1
and LDA1 as with page 0 in the L memory.

9.6 Note on Using 32-Bit Address
Extended Mode

200 Added.

Rev. 1.50, 10/04, page 442 of 448

Item Page Revision (See Manual for Details)

10.1.4 AND (AND Logical)

• Possible Exceptions

209 Added.

Exceptions are checked taking a data access by this
instruction as a byte load and a byte store.

10.1.50 OR (OR Logical)

• Possible Exceptions

295 Added.

Exceptions are checked taking a data access by this
instruction as a byte load and a byte store.

Amended.

This instruction does not generate data address error
and MMU exceptions except data TLB multiple-hit
exception. In the event of an error, the PREF
instruction is treated as an NOP (no operation)
instruction.

10.1.51 PREF (Prefetch Data to
Cache)

• Description

• Possible Exceptions:

296

Added.

• Data TLB multiple-hit exception

10.1.52 PREFI (Prefetch
Instruction Cache Block)

297 Amended.

This instruction does not generate data address error
and MMU exceptions. In the event of an error, the
PREFI instruction is treated as an NOP (no operation)
instruction.

10.1.76 SYNCO (Synchronize
Data Operation)

333 Amended.

Format Operation

SYNCO Data accesses invoked by the following
instruction are not executed until execution of
data accesses which precede this instruction
has been completed.

10.1.76 SYNCO (Synchronize
Data Operation)

• Description

333 Amended.

This instruction is used to synchronize data operations.
When this instruction is executed, the subsequent bus
accesses are not executed until the execution of all
preceding bus accesses has been completed.

10.1.76 SYNCO (Synchronize
Data Operation)

• Notes

333 Changed.

The SYNCO instruction can not guarantee the ordering
of receipt timing which is notified by the memory-
mapped peripheral resources through the method
except bus when the register is changed by bus
accesses. Refer to the description of each registers to
guarantee this ordering.

Rev. 1.50, 10/04, page 443 of 448

Item Page Revision (See Manual for Details)

10.1.76 SYNCO (Synchronize
Data Operation)

• Example

333 Deleted.

1. Ordering access to memory areas which are shared

with other memory users

2. Ordering access to memory-mapped hardware

registers

2. Flushing all write buffers

3. Stopping memory-access operations from merging

and becoming ineffective

4. Waiting for the completion of cache-control

instructions

10.1.77 TAS (Test And Set):
Logical Instruction

• Possible Exceptions

335 Amended.

Exceptions are checked taking a data access by this
instruction as a byte load and a byte store.

10.1.79 TST (Test Logical)

• Possible Exceptions

338 Added.

Exceptions are checked taking a data access by this
instruction as a byte load and a byte store.

10.1.80 XOR (Exclusive OR
Logical)

• Possible Exceptions

340 Added.

Exceptions are checked taking a data access by this
instruction as a byte load and a byte store.

10.3.19 FSCA (Floating Point
Sine And Cosine Approximate)

• Description

408 Amended.

(absolute error is within ±2^–21)

10.3.22 FSRRA (Floating Point
Square Reciprocal Approximate)

• Description

414 Added.

This instruction takes the approximate inverse of the
arithmetic square root (absolute error is within ±2^–21)
of the single-precision floating-point in FRn and writes
the result to FRn.

Section 11 List of Registers

• Register Addresses (by

functional module, in order of

the corresponding section

numbers)

427 Deleted.

• Descriptions by functional module, in order of the

corresponding section numbers

• Access to reserved addresses which are not described in

this list is disabled.

• When registers consist of 16 or 32 bits, the addresses of

the MSBs are given, on the presumption of a big-endian

system.

Rev. 1.50, 10/04, page 444 of 448

Item Page Revision (See Manual for Details)

431 Added.

The write value to the reserved bits should be the initial
value.

The operation is not guaranteed if the write value is not
the initial value.

The CPUOPM register should be updated by the CPU
store instruction not the access from SuperHyway bus
master except CPU.

After the CPUOPM is updated, read CPUOPM once,
and execute one of the following two methods.

1. Execute a branch using the RTE instruction.

2. Execute the ICBI instruction for any address

(including non-cacheable area).

After one of these methods are executed, it is
guaranteed that the CPU runs under the updated
CPUOPM value.

Appendix A

432 Amended.

Bit

Bit

Name

Initial

Value R/W Description

31 to
6

 H'000000F R Reserved

The write value must be the initial value.

5 RABD 1 R/W Speculative execution bit for subroutine return

0: Instruction fetch for subroutine return is issued
speculatively. When this bit is set to 0, refer to
Appendix C, Speculative Execution for Subroutine
Return.

1: Instruction fetch for subroutine return is not issued
speculatively.

4  0 R Reserved

The write value must be the initial value.

3 INTM
U

0 R/W Interrupt mode switch bit

0: SR.IMASK is not changed when an interrupt is
accepted.

1: SR.IMASK is changed to the accepted interrupt
level.

2 to 0  All 0 R Reserved

The write value must be the initial value.

Appendix C. Speculative
Execution for Subroutine Return

434 Added.

Appendix D Version Registers
(PVR, PRR)

435,
436

Added.

Rev. 1.50, 10/04, page 445 of 448

Index

 32-Bit address extended mode............... 151

Address space identifier (ASID)............. 120
Address translation 120
Addressing modes..................................... 25
Arithmetic operation instructions 33
ASID... 131

Big endian... 20
Branch instructions 37

Cacheability bit....................................... 132
Caches... 159
Control registers ... 8

Data address error 82
Data TLB miss exception 77, 143
Data TLB multiple hit exception 143
Data TLB multiple-hit exception.............. 76
Data TLB protection violation
exception... 80, 144
Delay slot.. 23
Delayed branches...................................... 23
Dirty bit .. 133
Division by zero...................................... 109
Double-precision floating-point
extended registers 12
Double-precision floating-point registers . 12

Effective address....................................... 25
Exception flow.. 72
Exception handling 65
Exception/interrupt codes 70
Execution cycles 56

Fixed-point transfer instructions............... 31
Floating-point control instructions............ 41
Floating-point double-precision
instructions ... 41

Floating-point graphics acceleration
instructions.. 42
Floating-point registers 9, 12
Floating-point
single-precision instructions 40
FPU error .. 109
FPU exception... 90
FPU exception handling.......................... 110
FPU Exception sources 109

General FPU disable exception................. 87
General FPU disable exceptions and slot
FPU disable exceptions........................... 109
General illegal instruction exception 85
General interrupt request........................... 92
General registers ... 8
Geometric operation instructions 111

H-UDI reset... 75

Inexact exception 109
Initial page write exception............... 79, 145
Instruction address error............................ 83
Instruction execution state 21
Instruction set.. 23
Instruction TLB miss exception........ 78, 141
Instruction TLB multiple hit exception.... 76,
140
Instruction TLB protection violation
exception... 81, 142
Invalid operation 109
Issue rates.. 56
ITLB ... 133
ITLB address array 147
ITLB data array....................................... 148

Little endian .. 20
Load-store architecture 23
Logic operation instructions...................... 35

Rev. 1.50, 10/04, page 446 of 448

Manual reset ... 75
Memory management unit...................... 113
Memory-mapped registers 19
Multiple virtual memory mode............... 120

NMI (nonmaskable interrupt) 91

Overflow... 109

P0, P3, and U0 areas............................... 117
P1 area .. 117
P2 area .. 117
P4 area .. 117
Page size bits .. 132
Pair single-precision data transfer
instructions ... 112
Physical address space............................ 119
Pipelining.. 43
Power-down state 21
Power-on reset .. 75
PPN... 132
Pre-execution user break/post-execution
user break.. 89
Privileged mode.. 8
Processing modes 8
Programming model 7
Protection key data 132

Registers

CCR.................................... 163, 428, 430
CPUOPM.. 431
DBR.. 16
EXPEVT............................... 67, 428, 430
FPSCR.. 17, 105
FPUL .. 107
GBR.. 15
INTEVT................................ 68, 428, 430
IRMCR 129, 428, 430
LDA0.................................. 193, 429, 430
LDA1.................................. 195, 429, 430
LSA0 190, 429, 430
LSA1 191, 429, 430
MACH .. 16

MACL... 16
MMUCR............................. 125, 428, 430
PASCR................................ 128, 428, 430
PC ... 16
PR ... 16
PRR... 436
PTEH 122, 428, 430
PTEL................................... 123, 428, 430
PVR... 435
QACR0 165, 428, 430
QACR1 166, 428, 430
RAMCR...................... 167, 189, 428, 430
SGR... 16
SPC ... 15
SR ... 14
SSR ... 15
TEA..................................... 124, 428, 430
TRA 66, 428, 430
TTB..................................... 124, 428, 430
VBR .. 16

Relative priorities...................................... 70
Reset state ... 21
Rounding... 108

Share status bit .. 132
Shift instructions 36
Sign-extended ... 20
Single virtual memory mode................... 120
Single-precision floating-point extended .. 12
Single-precision floating-point extended
register matrix ... 12
Single-precision floating-point registers ... 12
Single-precision floating-point vector
registers... 12
Slot FPU disable exception....................... 88
Slot illegal instruction exception............... 86
System control instructions....................... 37
System registers .. 8
System registers related to FPU.................. 9

T bit... 23
Types of exceptions 70

Rev. 1.50, 10/04, page 447 of 448

Unconditional trap 84
Underflow... 109
User mode... 8
UTLB.. 131
UTLB address array................................ 149
UTLB data array..................................... 150

Validity bit .. 132
Vector addresses 70
Virtual address space 115
VPN .. 131

Write-through bit 133

Rev. 1.50, 10/04, page 448 of 448

Renesas 32-Bit RISC Microcomputer
Software Manual
SH-4A

Publication Date: Rev.1.00, Nov 27, 2003
 Rev.1.50, Oct 29, 2004
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Technical Documentation & Information Department
 Renesas Kodaira Semiconductor Co., Ltd.

 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

RENESAS SALES OFFICES

Colophon 2.0

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

SH-4A

REJ09B0003-0150Z

Software Manual

	Cover
	Keep safety first in your circuit designs!
	Notes regarding these materials
	General Precautions on Handling of Product
	Configuration of This Manual
	Preface
	Contents
	Figures
	Tables
	Section 1 Overview
	1.1 Features
	1.2 Changes from SH-4 to SH-4A

	Section 2 Programming Model
	2.1 Data Formats
	2.2 Register Descriptions
	2.2.1 Privileged Mode and Banks
	2.2.2 General Registers
	2.2.3 Floating-Point Registers
	2.2.4 Control Registers
	2.2.5 System Registers

	2.3 Memory-Mapped Registers
	2.4 Data Formats in Registers
	2.5 Data Formats in Memory
	2.6 Processing States
	2.7 Usage Notes
	2.7.1 Notes on Self-Modified Codes

	Section 3 Instruction Set
	3.1 Execution Environment
	3.2 Addressing Modes
	3.3 Instruction Set

	Section 4 Pipelining
	4.1 Pipelines
	4.2 Parallel-Executability
	4.3 Issue Rates and Execution Cycles

	Section 5 Exception Handling
	5.1 Summary of Exception Handling
	5.2 Register Descriptions
	5.2.1 TRAPA Exception Register (TRA)
	5.2.2 Exception Event Register (EXPEVT)
	5.2.3 Interrupt Event Register (INTEVT)

	5.3 Exception Handling Functions
	5.3.1 Exception Handling Flow
	5.3.2 Exception Handling Vector Addresses

	5.4 Exception Types and Priorities
	5.5 Exception Flow
	5.5.1 Exception Flow
	5.5.2 Exception Source Acceptance
	5.5.3 Exception Requests and BL Bit
	5.5.4 Return from Exception Handling

	5.6 Description of Exceptions
	5.6.1 Resets
	5.6.2 General Exceptions
	5.6.3 Interrupts
	5.6.4 Priority Order with Multiple Exceptions

	5.7 Usage Notes

	Section 6 Floating-Point Unit (FPU)
	6.1 Features
	6.2 Data Formats
	6.2.1 Floating-Point Format
	6.2.2 Non-Numbers (NaN)
	6.2.3 Denormalized Numbers

	6.3 Register Descriptions
	6.3.1 Floating-Point Registers
	6.3.2 Floating-Point Status/Control Register (FPSCR)
	6.3.3 Floating-Point Communication Register (FPUL)

	6.4 Rounding
	6.5 Floating-Point Exceptions
	6.5.1 General FPU Disable Exceptions and Slot FPU Disable Exceptions
	6.5.2 FPU Exception Sources
	6.5.3 FPU Exception Handling

	6.6 Graphics Support Functions
	6.6.1 Geometric Operation Instructions
	6.6.2 Pair Single-Precision Data Transfer

	Section 7 Memory Management Unit (MMU)
	7.1 Overview of MMU
	7.1.1 Address Spaces

	7.2 Register Descriptions
	7.2.1 Page Table Entry High Register (PTEH)
	7.2.2 Page Table Entry Low Register (PTEL)
	7.2.3 Translation Table Base Register (TTB)
	7.2.4 TLB Exception Address Register (TEA)
	7.2.5 MMU Control Register (MMUCR)
	7.2.6 Physical Address Space Control Register (PASCR)
	7.2.7 Instruction Re-Fetch Inhibit Control Register (IRMCR)

	7.3 TLB Functions
	7.3.1 Unified TLB (UTLB) Configuration
	7.3.2 Instruction TLB (ITLB) Configuration
	7.3.3 Address Translation Method

	7.4 MMU Functions
	7.4.1 MMU Hardware Management
	7.4.2 MMU Software Management
	7.4.3 MMU Instruction (LDTLB)
	7.4.4 Hardware ITLB Miss Handling
	7.4.5 Avoiding Synonym Problems

	7.5 MMU Exceptions
	7.5.1 Instruction TLB Multiple Hit Exception
	7.5.2 Instruction TLB Miss Exception
	7.5.3 Instruction TLB Protection Violation Exception
	7.5.4 Data TLB Multiple Hit Exception
	7.5.5 Data TLB Miss Exception
	7.5.6 Data TLB Protection Violation Exception
	7.5.7 Initial Page Write Exception

	7.6 Memory-Mapped TLB Configuration
	7.6.1 ITLB Address Array
	7.6.2 ITLB Data Array
	7.6.3 UTLB Address Array
	7.6.4 UTLB Data Array

	7.7 32-Bit Address Extended Mode
	7.7.1 Overview of 32-Bit Address Extended Mode
	7.7.2 Transition to 32-Bit Address Extended Mode
	7.7.3 Privileged Space Mapping Buffer (PMB) Configuration
	7.7.4 PMB Function
	7.7.5 Memory-Mapped PMB Configuration
	7.7.6 Notes on Using 32-Bit Address Extended Mode

	Section 8 Caches
	8.1 Features
	8.2 Register Descriptions
	8.2.1 Cache Control Register (CCR)
	8.2.2 Queue Address Control Register 0 (QACR0)
	8.2.3 Queue Address Control Register 1 (QACR1)
	8.2.4 On-Chip Memory Control Register (RAMCR)

	8.3 Operand Cache Operation
	8.3.1 Read Operation
	8.3.2 Prefetch Operation
	8.3.3 Write Operation
	8.3.4 Write-Back Buffer
	8.3.5 Write-Through Buffer
	8.3.6 OC Two-Way Mode

	8.4 Instruction Cache Operation
	8.4.1 Read Operation
	8.4.2 Prefetch Operation
	8.4.3 IC Two-Way Mode

	8.5 Cache Operation Instruction
	8.5.1 Coherency between Cache and External Memory
	8.5.2 Prefetch Operation

	8.6 Memory-Mapped Cache Configuration
	8.6.1 IC Address Array
	8.6.2 IC Data Array
	8.6.3 OC Address Array
	8.6.4 OC Data Array

	8.7 Store Queues
	8.7.1 SQ Configuration
	8.7.2 Writing to SQ
	8.7.3 Transfer to External Memory
	8.7.4 Determination of SQ Access Exception
	8.7.5 Reading from SQ

	8.8 Notes on Using 32-Bit Address Extended Mode

	Section 9 L Memory
	9.1 Features
	9.2 Register Descriptions
	9.2.1 On-Chip Memory Control Register (RAMCR)
	9.2.2 L Memory Transfer Source Address Register 0 (LSA0)
	9.2.3 L Memory Transfer Source Address Register 1 (LSA1)
	9.2.4 L Memory Transfer Destination Address Register 0 (LDA0)
	9.2.5 L Memory Transfer Destination Address Register 1 (LDA1)

	9.3 Operation
	9.3.1 Access from the CPU and FPU
	9.3.2 Access from the SuperHyway Bus Master Module
	9.3.3 Block Transfer

	9.4 L Memory Protective Functions
	9.5 Usage Notes
	9.5.1 Page Conflict
	9.5.2 L Memory Coherency
	9.5.3 Sleep Mode

	9.6 Note on Using 32-Bit Address Extended Mode

	Section 10 Instruction Descriptions
	10.1 CPU instruction
	10.1.1 ADD (Add binary): Arithmetic Instruction
	10.1.2 ADDC (Add with Carry): Arithmetic Instruction
	10.1.3 ADDV (Add with (V flag) Overflow Check): Arithmetic Instruction
	10.1.4 AND (AND Logical): Logical Instruction
	10.1.5 BF (Branch if False): Branch Instruction
	10.1.6 BF/S (Branch if False with Delay Slot): Branch Instruction
	10.1.7 BRA (Branch): Branch Instruction
	10.1.8 BRAF (Branch Far): Branch Instruction (Delayed Branch Instruction)
	10.1.9 BT (Branch if True): Branch Instruction
	10.1.10 BT/S (Branch if True with Delay Slot): Branch Instruction
	10.1.11 CLRMAC (Clear MAC Register): System Control Instruction
	10.1.12 CLRS (Clear S Bit): System Control Instruction
	10.1.13 CLRT (Clear T Bit): System Control Instruction
	10.1.14 CMP/cond (Compare Conditionally): Arithmetic Instruction
	10.1.15 DIV0S (Divide (Step 0) as Signed): Arithmetic Instruction
	10.1.16 DIV0U (Divide (Step 0) as Unsigned): Arithmetic Instruction
	10.1.17 DIV1 (Divide 1 Step): Arithmetic Instruction
	10.1.18 DMULS.L (Double-length Multiply as Signed): Arithmetic Instruction
	10.1.19 DMULU.L (Double-length Multiply as Unsigned): Arithmetic Instruction
	10.1.20 DT (Decrement and Test): Arithmetic Instruction
	10.1.21 EXTS (Extend as Signed): Arithmetic Instruction
	10.1.22 EXTU (Extend as Unsigned): Arithmetic Instruction
	10.1.23 ICBI (Instruction Cache Block Invalidate): Data Transfer Instruction
	10.1.24 JMP (Jump): Branch Instruction
	10.1.25 LDC (Load to Control Register): System Control Instruction
	10.1.26 LDS (Load to System Register): System Control Instruction
	10.1.27 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction (Privileged Instruction)
	10.1.28 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction
	10.1.29 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction
	10.1.30 MOV (Move data): Data Transfer Instruction
	10.1.31 MOV (Move Constant Value): Data Transfer Instruction
	10.1.32 MOV (Move Global Data): Data Transfer Instruction
	10.1.33 MOV (Move Structure Data): Data Transfer Instruction
	10.1.34 MOVA (Move Effective Address): Data Transfer Instruction
	10.1.35 MOVCA.L (Move with Cache Block Allocation): Data Transfer Instruction
	10.1.36 MOVCO (Move Conditional): Data Transfer Instruction
	10.1.37 MOVLI (Move Linked): Data Transfer Instruction
	10.1.38 MOVT (Move T Bit): Data Transfer Instruction
	10.1.39 MOVUA (Move Unaligned): Data Transfer Instruction
	10.1.40 MUL.L (Multiply Long): Arithmetic Instruction
	10.1.41 MULS.W (Multiply as Signed Word): Arithmetic Instruction
	10.1.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
	10.1.43 NEG (Negate): Arithmetic Instruction
	10.1.44 NEGC (Negate with Carry): Arithmetic Instruction
	10.1.45 NOP (No Operation): System Control Instruction
	10.1.46 NOT (Not-logical Complement): Logical Instruction
	10.1.47 OCBI (Operand Cache Block Invalidate): Data Transfer Instruction
	10.1.48 OCBP (Operand Cache Block Purge): Data Transfer Instruction
	10.1.49 OCBWB (Operand Cache Block Write Back): Data Transfer Instruction
	10.1.50 OR (OR Logical): Logical Instruction
	10.1.51 PREF (Prefetch Data to Cache): Data Transfer Instruction
	10.1.52 PREFI (Prefetch Instruction Cache Block): Data Transfer Instruction
	10.1.53 ROTCL (Rotate with Carry Left): Shift Instruction
	10.1.54 ROTCR (Rotate with Carry Right): Shift Instruction
	10.1.55 ROTL (Rotate Left): Shift Instruction
	10.1.56 ROTR (Rotate Right): Shift Instruction
	10.1.57 RTE (Return from Exception): System Control Instruction
	10.1.58 RTS (Return from Subroutine): Branch Instruction
	10.1.59 SETS (Set S Bit): System Control Instruction
	10.1.60 SETT (Set T Bit): System Control Instruction
	10.1.61 SHAD (Shift Arithmetic Dynamically): Shift Instruction
	10.1.62 SHAL (Shift Arithmetic Left): Shift Instruction
	10.1.63 SHAR (Shift Arithmetic Right): Shift Instruction
	10.1.64 SHLD (Shift Logical Dynamically): Shift Instruction
	10.1.65 SHLL (Shift Logical Left): Shift Instruction
	10.1.66 SHLLn (n bits Shift Logical Left): Shift Instruction
	10.1.67 SHLR (Shift Logical Right): Shift Instruction
	10.1.68 SHLRn (n bits Shift Logical Right): Shift Instruction
	10.1.69 SLEEP (Sleep): System Control Instruction (Privileged Instruction)
	10.1.70 STC (Store Control Register): System Control Instruction (Privileged Instruction)
	10.1.71 STS (Store System Register): System Control Instruction
	10.1.72 SUB (Subtract Binary): Arithmetic Instruction
	10.1.73 SUBC (Subtract with Carry): Arithmetic Instruction
	10.1.74 SUBV (Subtract with (V flag) Underflow Check): Arithmetic Instruction
	10.1.75 SWAP (Swap Register Halves): Data Transfer Instruction
	10.1.76 SYNCO (Synchronize Data Operation): Data Transfer Instruction
	10.1.77 TAS (Test And Set): Logical Instruction
	10.1.78 TRAPA (Trap Always): System Control Instruction
	10.1.79 TST (Test Logical): Logical Instruction
	10.1.80 XOR (Exclusive OR Logical): Logical Instruction
	10.1.81 XTRCT (Extract): Data Transfer Instruction

	10.2 CPU Instructions (FPU related)
	10.2.1 BSR (Branch to Subroutine): Branch Instruction (Delayed Branch Instruction)
	10.2.2 BSRF (Branch to Subroutine Far): Branch Instruction (Delayed Branch Instruction)
	10.2.3 JSR (Jump to Subroutine): Branch Instruction (Delayed Branch Instruction)
	10.2.4 LDC (Load to Control Register): System Control Instruction (Privileged Instruction)
	10.2.5 LDS (Load to FPU System register): System Control Instruction
	10.2.6 STC (Store Control Register): System Control Instruction (Privileged Instruction)
	10.2.7 STS (Store from FPU System Register): System Control Instruction

	10.3 FPU Instruction
	10.3.1 FABS (Floating-point Absolute Value): Floating-Point Instruction
	10.3.2 FADD (Floating-point ADD): Floating-Point Instruction
	10.3.3 FCMP (Floating-point Compare): Floating-Point Instruction
	10.3.4 FCNVDS (Floating-point Convert Double to Single Precision): Floating-Point Instruction
	10.3.5 FCNVSD (Floating-point Convert Single to Double Precision): Floating-Point Instruction
	10.3.6 FDIV (Floating-point Divide): Floating-Point Instruction
	10.3.7 FIPR (Floating-point Inner Product): Floating-Point Instruction
	10.3.8 FLDI0 (Floating-point Load Immediate 0.0): Floating-Point Instruction
	10.3.9 FLDI1 (Floating-point Load Immediate 1.0): Floating-Point Instruction
	10.3.10 FLDS (Floating-point Load to System register): Floating-Point Instruction
	10.3.11 FLOAT (Floating-point Convert from Integer): Floating-Point Instruction
	10.3.12 FMAC (Floating-point Multiply and Accumulate): Floating-Point Instruction
	10.3.13 FMOV (Floating-point Move): Floating-Point Instruction
	10.3.14 FMOV (Floating-point Move Extension): Floating-Point Instruction
	10.3.15 FMUL (Floating-point Multiply): Floating-Point Instruction
	10.3.16 FNEG (Floating-point Negate Value): Floating-Point Instruction
	10.3.17 FPCHG (Pr-bit Change): Floating-Point Instruction
	10.3.18 FRCHG (FR-bit Change): Floating-Point Instruction
	10.3.19 FSCA (Floating Point Sine And Cosine Approximate): Floating-Point Instruction
	10.3.20 FSCHG (Sz-bit Change): Floating-Point Instruction
	10.3.21 FSQRT (Floating-point Square Root): Floating-Point Instruction
	10.3.22 FSRRA (Floating Point Square Reciprocal Approximate): Floating-Point Instruction
	10.3.23 FSTS (Floating-point Store System Register): Floating-Point Instruction
	10.3.24 FSUB (Floating-point Subtract): Floating-Point Instruction
	10.3.25 FTRC (Floating-point Truncate and Convert to integer): Floating-Point Instruction
	10.3.26 FTRV (Floating-point Transform Vector): Floating-Point Instruction

	Section 11 List of Registers
	11.1 Register Addresses (by functional module, in order of the corresponding section numbers)
	11.2 Register States in Each Operating Mode

	Appendix
	A. CPU Operation Mode Register (CPUOPM)
	B. Instruction Prefetching and Its Side Effects
	C. Speculative Execution for Subroutine Return
	D. Version Registers (PVR, PRR)

	Main Revisions and Additions in this Edition
	Index
	Colophon
	Address List
	Back Cover

