
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

Last updated 22 February 2002

SuperHTM (SH)
64-Bit RISC Series

SH-5 CPU Core,
Volume 1:

Architecture

ii

SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

This publication contains proprietary information of SuperH, Inc., and is not to be copied in whole or part.

Issued by the SuperH Documentation Group on behalf of SuperH, Inc.

Information furnished is believed to be accurate and reliable. However, SuperH, Inc. assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of SuperH, Inc. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information

previously supplied. SuperH, Inc. products are not authorized for use as critical components in life support devices or
systems without the express written approval of SuperH, Inc.

is a registered trademark of SuperH, Inc.

SuperH is a registered trademark for products originally developed by Hitachi, Ltd. and is owned by
Hitachi Ltd.

© 2001 SuperH, Inc. All Rights Reserved.

SuperH, Inc.
San Jose, U.S.A. - Bristol, United Kingdom - Tokyo, Japan

www.superh.com

http://www.superh.com/

Contents
Preface xv

SuperH SH-5 document identification and control xv
SuperH SH-5 CPU core documentation suite xvi

1 Overview 1

1.1 Introduction 1
1.2 Instruction set architecture 2

1.2.1 SHmedia 2
1.2.2 SHcompact 5

1.2.3 Mode switch 6

1.3 CPU control and configuration 7
1.4 SH compatibility model 8

1.4.1 User-mode compatibility 8

1.4.2 Limits of compatibility 10

2 Architectural state 13

2.1 Overview 13
2.2 User and privileged operation 13
2.3 Effective addresses 13
2.4 Notation 14
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

iv
2.5 User state 14
2.5.1 Mode: MD 15
2.5.2 Instruction set architecture: ISA 15

2.5.3 Program counter: PC 16
2.5.4 General-purpose registers: R 16

2.5.5 Target registers: TR 16
2.5.6 User-accessible control registers: CR 16

2.5.7 Memory: MEM 17
2.5.8 Floating-point status and control register: FPSCR 17

2.5.9 Floating-point registers: FR, DR, FP, FV, MTRX 17

2.6 Privileged state 22
2.6.1 Privileged control registers: CR 23

2.6.2 Configuration registers: CFG 23

2.7 The status register 24
2.8 Register subsets 25
2.9 SHcompact state 26

2.9.1 SHcompact non-floating-point register state 26
2.9.2 SHcompact floating-point register state 27

2.9.3 SHcompact memory 29

3 Data representation 31

3.1 Introduction 31
3.2 Bit conventions 31
3.3 Data types 32
3.4 IEEE754 floating-point numbers 33

3.4.1 Values 33

3.4.2 Single-precision format 34
3.4.3 Double-precision format 35

3.5 Data formats for general-purpose registers 37
3.6 Data formats for floating-point registers 41
3.7 Data representation in memory 43
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

v

3.8 Effective address representation 49
3.9 Program counter overflow 51
3.10 Pointer representation 51
3.11 Other register representations 52

3.11.1 Register naming 53
3.11.2 Register conventions 53

3.11.3 Field conventions 54

4 SHmedia instructions 57

4.1 Overview 57
4.2 Instruction naming conventions 58

4.2.1 Type modifiers 58
4.2.2 Hint modifiers 60

4.3 Format conventions 60
4.3.1 Format bit-fields 60
4.3.2 Major and minor formats 62

4.3.3 Format names 63

4.4 Major formats 64
4.5 Reserved bits 65
4.6 Assembly notation 67

5 SHmedia integer instructions 69

5.1 Overview 69
5.1.1 Control flow 69
5.1.2 64-bit integer operations 70

5.1.3 32-bit integer operations 70
5.1.4 Other integer operations 71

5.2 Constant loading instructions 71
5.3 Control flow instructions 72
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

vi
5.3.1 Prepare-target instructions 73
5.3.2 The unconditional branch instruction 75

5.3.3 Conditional branch instructions 76
5.3.4 The GETTR instruction 79

5.4 Arithmetic instructions 80
5.5 Comparison instructions 83
5.6 Bitwise instructions 84
5.7 Shift instructions 86
5.8 Miscellaneous instructions 88
5.9 General-purpose register move 90

6 SHmedia memory instructions 91

6.1 Overview 91
6.2 Aligned load and store instructions 92
6.3 Misaligned access support 94
6.4 Memory properties 97
6.5 Synchronization 98

6.5.1 Atomic swap 98

6.5.2 Instruction synchronization 99
6.5.3 Data synchronization 99

6.5.4 Implementation aspects 100

6.6 Cache instructions 101
6.6.1 Prefetch 102

6.6.2 Allocate 103
6.6.3 Cache coherency 104

6.7 Example code sequences 107
6.7.1 Synchronizing fetch with data writes 107

7 SHmedia multimedia instructions 109
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

vii
7.1 Overview 109
7.2 Multimedia formats 110

7.2.1 Mathematics 112
7.2.2 Rounding 112

7.2.3 MOSTPOS and MOSTNEG 113

7.3 Multimedia conversions 114
7.4 Multimedia addition and subtraction 115
7.5 Multimedia absolute value 117
7.6 Multimedia sum of absolute differences 118
7.7 Multimedia left shifts 119
7.8 Multimedia arithmetic right shifts 120
7.9 Scalar arithmetic right shift with saturation 121
7.10 Multimedia logical right shifts 122
7.11 Multimedia comparisons 123
7.12 Multimedia full-width multiplies 124
7.13 Multimedia multiplies 125
7.14 Multimedia multiply with rounding 126
7.15 Multimedia multiply and sum 127
7.16 Multimedia fractional multiply accumulate 128
7.17 Multimedia fractional multiply subtract 129
7.18 Multimedia shuffles 130
7.19 Multimedia bitwise conditional move 131
7.20 Multimedia permute 132
7.21 Multimedia extract 133

8 SHmedia floating-point 135

8.1 Introduction 135
8.2 Floating-point disable 135
8.3 IEEE754 floating-point support 136
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

viii
8.3.1 Formats 136
8.3.2 Rounding 136

8.3.3 Hardware operations 137
8.3.4 Software operations 138

8.3.5 Zeroes, infinities, NaNs and sign 138
8.3.6 Exceptional conditions 139

8.3.7 Denormalized numbers 142
8.3.8 Exception launch 143

8.3.9 Recommended functions and predicates 144
8.3.10 Future FPU architecture 144

8.4 Non-IEEE754 floating-point support 145
8.4.1 Treat denormalized numbers as zero 145
8.4.2 Fused multiply accumulate support 145

8.4.3 Special-purpose instructions 146

8.5 Floating-point status and control register 147
8.6 General-purpose floating-point instructions 148

8.6.1 Floating-point status and control 148
8.6.2 Floating-point dyadic arithmetic 149

8.6.3 Floating-point monadic arithmetic 149
8.6.4 Floating-point multiply-accumulate 150

8.6.5 Floating-point conversions 150
8.6.6 Floating-point comparisons 151

8.6.7 Floating-point moves 153

8.7 Special-purpose floating-point instructions 154
8.7.1 Mathematical properties 154

8.7.2 FIPR.S and FTRV.S calculation 155
8.7.3 FIPR.S and FTRV.S accuracy specification 156

8.7.4 FCOSA.S, FSINA.S and FSRRA.S 158

8.8 Floating-point memory instructions 159
8.8.1 Displacement addressing 160

8.8.2 Indexed addressing 161
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

ix
9 SHmedia system instructions 163

9.1 Overview 163
9.2 Event handling instructions 163
9.3 Control registers 164

9.3.1 Control register set 164
9.3.2 Control register instructions 165

9.4 Configuration registers 166
9.4.1 Configuration register space 166
9.4.2 Configuration register instructions 166

10 SHcompact instructions 169

10.1 Overview 169
10.2 Formats 170

11 SHcompact integer instructions 171

11.1 Overview 171
11.2 Control flow instructions 172
11.3 Arithmetic instructions 174
11.4 Comparison instructions 175
11.5 No-operation 175
11.6 Bitwise instructions 176
11.7 Rotate and shift instructions 177
11.8 Miscellaneous instructions 178
11.9 Special instructions 179

12 SHcompact memory instructions 181

12.1 Load/store instructions 182
12.2 Test and set instruction 185
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

x

12.3 Synchronization 186
12.4 Cache instructions 186

13 SHcompact floating-point 189

13.1 Overview 189
13.2 Floating-point disable 189
13.3 Floating-point register set 190
13.4 FPSCR 190
13.5 FPUL 191
13.6 Floating-point instructions 192

13.6.1 Floating-point special register access 192
13.6.2 Floating-point constant loading 192

13.6.3 Floating-point dyadic arithmetic 193
13.6.4 Floating-point monadic arithmetic 193

13.6.5 Floating-point multiply and accumulate 194
13.6.6 Floating-point comparisons 194

13.6.7 Floating-point conversions 195
13.6.8 Special-purpose floating-point instructions 195

13.6.9 Floating-point width and bank change 197
13.6.10 Floating-point move instructions 197

13.6.11 Floating-point load/store instructions 198

13.7 Reserved floating-point behavior 200

14 SHcompact system instructions 205

14.1 System instructions 205

15 Control registers 207

15.1 Control register set 207
15.2 Control register descriptions 209

15.2.1 SR 210
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

xi
15.2.2 SSR 213
15.2.3 PSSR 214

15.2.4 INTEVT, EXPEVT, PEXPEVT, TRA 215
15.2.5 SPC, PSPC 215

15.2.6 RESVEC 216
15.2.7 VBR 216

15.2.8 TEA 217
15.2.9 DCR, KCR0, KCR1 217

15.2.10 CTC 218
15.2.11 USR 219

16 Event handling 221

16.1 Overview 221
16.2 Asynchronous events 222

16.2.1 Resets 222

16.2.2 Interrupts 223
16.2.3 Assertion, deassertion and acceptance 223

16.3 Synchronous events 224
16.3.1 Exceptions 224
16.3.2 Panics 225

16.3.3 Pre-execution and post-execution 226

16.4 Precision 227
16.5 Debug and non-debug events 227
16.6 Launch 228

16.6.1 Power-on reset launch sequence 228

16.6.2 Standard launch sequence 228
16.6.3 Launch point 230

16.6.4 Handler addresses 231
16.6.5 Effect of launch on MMU and caches 233

16.6.6 Event codes 234
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

xii
16.7 Recovery 235
16.8 Instruction synchronization 235
16.9 Resets 236
16.10 Interrupts 239

16.10.1 Non-maskable interrupt 240
16.10.2 Debug interrupt 240

16.10.3 External interrupts 241

16.11 Exceptions 242
16.11.1 Instruction address exceptions 242

16.11.2 Instruction opcode exceptions 243
16.11.3 Data address exceptions 244

16.11.4 FPU exceptions 246
16.11.5 Debug exceptions 247

16.12 Panics 250
16.13 Event ordering and event summary tables 251

16.13.1 Ordering of asynchronous events 251

16.13.2 Ordering of synchronous events 252
16.13.3 SHcompact event ordering 253

16.14 Launch assignments 255
16.14.1 Asynchronous launch 256
16.14.2 Synchronous launch 256

16.15 Power management 257
16.15.1 Entering sleep mode 258
16.15.2 Exiting sleep mode 258

16.15.3 Sleep and wake-up timing 260
16.15.4 Sleep and synchronization 260

16.16 Single-step behavior 261
16.16.1 Single-step across handler launch and RTE 262

16.16.2 Single-step and interrupts 264
16.16.3 Single-step and sleep 265
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

xiii
16.17 Interaction between debugger and target 267
16.17.1 External debugger 267
16.17.2 Other debug arrangements 268

16.18 Event handling and USR 269

17 Memory management 271

17.1 Introduction 271
17.2 Scalability 272
17.3 MMU enable and disable 272
17.4 Address space 272

17.4.1 Physical addresses 272

17.4.2 Effective addresses 273
17.4.3 Virtual addresses 275

17.4.4 Mapping from effective to physical addresses 275

17.5 Pages 276
17.6 Behavior when the MMU is disabled 277
17.7 Behavior when the MMU is enabled 278

17.7.1 PTE array organization 278

17.7.2 MMU configuration registers 279
17.7.3 Implementation options 281

17.7.4 PTE contents 282
17.7.5 Effective address mapping without translation 286

17.7.6 Effective address mapping with translation 287
17.7.7 Mappings required to execute an instruction 289

17.8 MMU and caches 289
17.8.1 Cache behavior when the MMU is disabled 289
17.8.2 Cache behavior when the MMU is enabled 290

17.8.3 Cache coherency when changing the page table 291
17.8.4 Cache synonyms 292

17.8.5 Instruction cache synonyms 293
17.8.6 Operand cache synonyms 294
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

xiv
17.8.7 Constraints to avoid cache synonyms 294

18 Caches 297

18.1 Overview 297
18.2 Cache architecture 297
18.3 Cache organization 298
18.4 Cache block 299
18.5 Cache sets, ways and associativity 300
18.6 Cache mapping 301
18.7 Caches and memory management 303
18.8 Cache operation 303

18.8.1 Initial state 303
18.8.2 Cache access 304

18.8.3 Cache behavior 305
18.8.4 Cache replacement 308

18.8.5 Cache locking 308

18.9 Cache paradoxes 308
18.10 Cache aliases 309
18.11 Speculative memory accesses 311

18.11.1 Speculative memory access when MMU is enabled 311

18.11.2 Speculative memory access when MMU is disabled 312

A SHmedia summary 315

B SHcompact summary 325

Index 335
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Preface
This document is part of the SuperH SH-5 CPU core documentation suite detailed
below. Comments on this or other books in the documentation suite should be made
by contacting your local sales office or distributor.

SuperH SH-5 document identification and
control
Each book in the documentation suite carries a unique identifier in the form:

05-CC-nnnnn Vx.x

Where, n is the document number and x.x is the revision.

Whenever making comments on a SuperH SH-5 document the complete
identification 05-CC-1000n Vx.x should be quoted.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

xvi
SuperH SH-5 CPU core documentation suite
The SuperH SH-5 CPU core documentation suite comprises the following volumes:

• SH-5 CPU Core, Volume 1: Architecture (05-CC-10001)

• SH-5 CPU Core, Volume 2: SHmedia (05-CC-10002)

• SH-5 CPU Core, Volume 3: SHcompact (05-CC-10003)

• SH-5 CPU Core, Volume 4: Implementation (05-CC-10004)
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
1
Overview
1.1 Introduction
The CPU architecture is specified in 4 volumes:

• SH-5 CPU Core, Volume 1: Architecture

• SH-5 CPU Core, Volume 2: SHmedia

• SH-5 CPU Core, Volume 3: SHcompact

• SH-5 CPU Core, Volume 4: Implementation

The first 3 volumes specify the generic CPU architecture. This includes the
instruction set architecture (ISA) and the mechanisms used for CPU control and
configuration. These volumes describe the properties of the architecture which are
independent of implementation.

The first implementation of the architecture is called SH-5. Properties specific to
this implementation are described separately in the fourth volume.

The CPU architecture does not include descriptions of system features such as the
system bus, physical memory system, on-chip peripherals and external interfaces.
Also, it does not include descriptions of debug features such as watch-points, tracing
and monitoring. These are described in a separate set of documents entitled SH-5
System Architecture.
-5 CPU Core, Volume 1: Architecture

2 Instruction set architecture
1.2 Instruction set architecture
The architecture provides two instruction sets, called SHmedia and SHcompact,
with mechanisms to switch between them.

The SHmedia instruction set represents instructions using a fixed-length 32-bit
encoding. SHmedia is used where optimal performance is required, or to access CPU
system control and configuration mechanisms.

The SHcompact instruction set represents instructions using a fixed-length 16-bit
encoding. SHcompact provides user-mode instruction-level compatibility with
previous implementations of the SuperH architecture (see Section 1.4). SHcompact
is used where code density or compatibility is required.

1.2.1 SHmedia

SHmedia uses a 32-bit instruction encoding. This is less compact than the
SHcompact encoding, but has the following advantages:

1 It encodes a three-operand instruction set.

2 Each operand can encode more registers.

3 Constant operands, for immediates and displacements, are wider.

4 It supports a larger instruction set.

5 It has more scope for future extensibility.

6 The encoding is simpler, more regular, and has reduced reliance on mode bits.

These advantages contribute to lower dynamic instruction counts and better
performance.

The main properties of the SHmedia instruction set are summarized below.

Large regular register sets

• 64 general-purpose registers, each 64-bit wide (no register banking).

• 64 floating-point registers, each 32-bit wide (no register banking).

• 8 target registers used for branching.

• 64 control registers, each 64-bit wide.

• Other state: program counter, floating-point status and control register, current
instruction set mode, configuration registers.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Instruction set architecture 3
Instruction encoding

• 32-bit encoding: simple, regular and extensible.

• Three-operand format.

• Reasonable-size immediate and displacement fields.

• Mode bits are not used to distinguish instruction opcodes.

Integer instructions

• Operands and operations are 64-bits wide.

• Instructions are well matched to optimizing compilers for high-level languages.

• Efficient support for 32-bit applications.

Branch instructions

• Branch architecture allows program-directed instruction prefetching and
buffering to reduce branch penalties.

• Architecturally-defined target registers hold the branch target address.

• Compare-folded branch instructions provide powerful branch semantics.

• Architectural support for static branch prediction.

Load and store instructions

• Architecture supports 64-bit addressing.

• Support for 8-bit, 16-bit, 32-bit and 64-bit data.

• Load and store instructions are separate to arithmetic (this is a load/store
architecture).

• Regular addressing modes: register plus register, and register plus scaled
immediate.

• Separate instructions provided for misaligned access.

• A 64-bit atomic swap instruction is provided for synchronization.

• Instructions are provided to impose ordering on instruction fetching and
memory accesses.

• All load and store instructions support bi-endian data formats. Additionally, an
instruction is provided for endianness conversion.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

4 Instruction set architecture
Multimedia instructions

• These operate on multiple data items simultaneously, and improve the
performance of multimedia applications.

• An extensive set of data parallel arithmetic and data manipulation operations
are provided. These include conversions, addition, subtraction, absolute value,
sum of absolute differences, shifts, comparisons, multiplies, multiply
accumulate, shuffle, conditional move, permute and extract.

Floating-point instructions

• These are encoded without precision, width and banking mode bits.

• IEEE754 support for single-precision and double-precision representations.

• Non-IEEE754 support including fast handling of denormalized numbers, fused
multiply accumulate and special-purpose instructions for graphics.

System, control, configuration, debug and cache

• Instructions are provided to access CPU control and configuration registers.

• Control registers control instruction execution and support event handling.

• Configuration registers are used to configure caches and memory management.

• After a reset, an interrupt, an exception or a panic, execution proceeds in
SHmedia.

• A trap instruction is provided to support operating systems.

• A break instruction is provided to support the debug architecture.

• Instructions are provided for cache control.

Future extensibility

• 4 encoding bits are reserved across all instructions to allow extension of the
current instruction set.

• A substantial portion of the opcode space is available for future extensions.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Instruction set architecture 5
1.2.2 SHcompact

SHcompact uses a 16-bit instruction encoding. This is a compact encoding and
should be used where high code density is preferred. SHcompact is also used where
compatibility with previous implementations of the SH architecture is required.
SHcompact does not provide access to CPU system control and configuration
mechanisms. The performance of SHcompact code is less optimal than SHmedia
code. Thus, SHcompact should not be used for performance-critical code.

The main properties of the SHcompact instruction set are summarized below.

Compatibility

• SHcompact provides user-mode instruction-level compatibility with previous
implementations of the SH architecture.

• SHcompact does not support access to CPU system control and configuration
mechanisms.

• A precise definition of the compatibility level is described in Section 1.4.

Compact register sets

• 16 general-purpose registers, each 32-bit wide.

• 2 banks, each of 16 floating-point registers, each 32-bit wide.

• Other state: program counter, procedure link register, global base register,
multiply-accumulate registers, status bits, floating-point status and control
register, and floating-point communication register.

• The SHcompact architectural state is mapped onto the SHmedia architectural
state. This reduces the overall amount of architectural state, and allows efficient
calling conventions to be used between SHmedia and SHcompact code.

Compact instruction encoding

• 16-bit encoding, densely populated encoding, two-operand format.

• High code density.

Integer instructions

• Comprehensive support for integer operations on 32-bit data.

Branch instructions

• Conditional branches based on condition code.

• Delayed branch instructions to hide branch penalties.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

6 Instruction set architecture
Load and store instructions

• Load/store architecture.

• Powerful compact addressing modes.

• Support for bi-endian data formats.

Floating-point instructions

• Mode bits used to control precision, width and banking.

• IEEE754 support for single-precision and double-precision representations.

• Non-IEEE754 support including fast handling of denormalized numbers, fused
multiply accumulate and special-purpose instructions for graphics.

System, debug and cache instructions

• A trap instruction is provided to support operating systems.

• A break instruction is provided to support the debug architecture.

• Instructions are provided for cache control.

1.2.3 Mode switch

The architecture provides mechanisms for switching between SHmedia and
SHcompact. The mechanisms support mixed mode programming. The expectation is
that code which is optimized for speed would be compiled for SHmedia, while code
which is optimized for space would be compiled for SHcompact.

Branch control flow

Mode switch can be effected while executing an unconditional branch or a return
from exception. The lowest bit of the branch target address denotes the target
instruction set. If this bit is 0 the target is SHcompact, otherwise it is SHmedia.
Additionally, the procedure call mechanism supports mode switch by saving the
return address with the lowest bit conditioned to the mode of the caller. This
ensures that a return to the caller will use the correct mode.

One possible software arrangement is to support mode switching at the point of
procedure call and return. With this convention, the granularity for selecting mode
is the procedure. The compiler, or perhaps the user, selects which procedures are
compiled for SHmedia and which for SHcompact. The SHcompact registers are
architecturally mapped onto the SHmedia registers. This allows efficient calling
conventions between the two modes.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

CPU control and configuration 7
Another software arrangement could exploit mode switch within procedures. The
granularity for selecting mode would then be the basic block.

The SHcompact instruction set contains extended semantics, relative to previous
implementations of the architecture, in order to support mode switching.
Compatibility is described in Section 1.4.

Event handling

When a reset, an interrupt, an exception or a panic occurs, the CPU arranges for the
execution of a software handler. This handler is launched in privileged mode using
the SHmedia instruction set, regardless of the mode of the previous context.

SHmedia provides mechanisms for system control and these are used by software
during handler entry and exit. After appropriate handling, software often arranges
for the previous context to be restarted. The restart sequence also executes in
SHmedia, and will switch mode, as required, to restart the previous context.

In between the handler entry and exit sequences, the handler can freely switch
between SHmedia and SHcompact. Both SHmedia and SHcompact instructions can
be executed in privileged mode. Only SHmedia has access to the full architectural
state, and only SHmedia implements system control and configuration instructions.

1.3 CPU control and configuration
The architecture provides powerful mechanisms for control and configuration.
These have been designed to support operation using a minimal run-time
environment or using a real-time kernel.

1 The memory architecture supports bi-endian data formats. The selection
between little endian and big endian organizations is determined by an
implementation-specific mechanism at power-on reset. The selected endianness
is then consistently used by instructions that access memory.

2 The architecture supports the handling of reset, interrupt, exception and panic
conditions.

3 The architecture supports a wide range of memory management
implementations.

4 The architecture supports a wide range of cache implementations.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

8 SH compatibility model
1.4 SH compatibility model
SHcompact provides user-mode instruction-level compatibility with previous
implementations of the SuperH instruction set. The intent is that SuperH
user-mode programs, that exercise only architecturally-defined properties, can be
executed without recompilation using the SHcompact instruction set.

SHcompact provides compatibility with the SH-4 instruction set specifically. The
SH-4 instruction set is a superset of the SH-3, SH-2 and SH-1 instruction sets,
though there are some subtleties in the degree of compatibility through these
evolutions of the SuperH architecture. In cases of ambiguity, SHcompact maintains
compatibility with SH-4.

The extent of the compatibility is described in this section.

1.4.1 User-mode compatibility

Every user-mode instruction supported by SH-4 is implemented in the SHcompact
instruction set. The implementation has identical user-visible semantics, apart from
the following special cases.

Mode switch instructions

SHcompact supports a mode switch mechanism whereas SH-4 does not. The
semantics of the following SHcompact instructions have been extended relative to
SH-4:

• BRAF, BSRF (PC-relative branching with offset specified using a register).

• JMP, JSR (absolute branching with target specified using a register).

• RTS (return from sub-routine with target specified in the procedure link
register).

These are all of the SHcompact instructions that perform unconditional branching
where the target is specified in a register. The least significant bit of the target
register is used by SHcompact to indicate the target mode, whereas on SH-4 this
lowest bit indicates instruction misalignment.

If this bit is 0, then SHcompact and SH-4 have identical behavior. If this bit is 1 and
the second least significant bit is 0, then SHcompact causes the target to be
executed as an SHmedia instruction whereas SH-4 causes a misaligned instruction
exception. If the two least significant bits are both 1, then SHcompact and SH-4
have the same behavior, and both cause a misaligned instruction exception.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SH compatibility model 9
This change does not affect compatibility with programs that execute entirely in
user-mode. However, it limits compatibility with SH-4 programs that use
instruction misalignment exceptions to enter privileged mode.

TAS.B instruction

The semantics of the TAS.B instruction in SHcompact have been reduced relative to
SH-4. The SH-4 TAS.B instruction guarantees atomicity with respect to all memory
accesses from all memory users.

The SHcompact TAS.B instruction provides a test-and-set operation which is atomic
from the CPU perspective. This instruction cannot be interrupted during its
operation. However, atomicity is not provided with respect to accesses from other
memory users. There is no special treatment for TAS.B regarding the cache, and it
behaves in the same way as a memory read followed by a memory write. Depending
on the cache behavior, it is possible for the TAS.B accesses to be completed in the
cache with no external memory activity.

The SHcompact semantics continue to support the use of TAS.B to synchronize
between software threads executing on the same CPU. It cannot be used to
synchronize with other memory users or hardware devices. This change is
consistent with the provision of instruction-level compatibility; the architecture
does not provide compatibility at the system level.

The SHmedia SWAP.Q instruction (see Section 6.5.1: Atomic swap on page 98)
provides an atomic read-modify-write on external memory, and should be used for
synchronization with other memory users.

Floating-point instructions

SHcompact provides a set of special-purpose floating-point instructions which are
used to accelerate certain applications where strict IEEE754 conformance is not
required. These special-purpose FPU instructions give approximate results. The
degree of approximation is defined by an architected error bound that specifies the
maximum amount that an implementation result can differ from the
infinite-precision result.

Both SHcompact and SH-4 honor the same architected error bound for approximate
FPU instructions. However, there is no guarantee that the results in SHcompact
and SH-4 are bit-exact relative to each other.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

10 SH compatibility model
Cache instructions

The MOVCA.L instruction (move with cache block allocation) and the OCBI
instruction (operand cache block invalidate) implicitly reveal the cache line size to a
program exploiting them. This is because the amount of memory that is affected by
these instructions is determined by the cache line size.

For implementations of this architecture that support a 32-byte cache line, the
user-visible behavior of these instructions is compatible with SH-4.

1.4.2 Limits of compatibility

This section lists some of the limits of the SH compatibility model.

Privileged instructions

SHcompact does not support any SH-4 instructions that require privileged
execution. The privileged SH-4 instructions are:

• LDC and STC instructions (excluding those that access GBR)

• LDTLB

• RTE

• SLEEP

Execution of these instructions in SHcompact causes a reserved instruction
exception to be raised regardless of privilege.

Reserved instruction encodings

Execution of the SHcompact instruction encoding 0xFFFD causes a reserved
instruction exception to be raised regardless of privilege. This is the same behavior
as SH-4.

The behavior of SHcompact instruction encodings which are neither defined nor
reserved is implementation specific. The following choices are available to
implementations when such an encoding is executed:

• An implementation can cause a reserved instruction exception to be raised.

• An implementation can exhibit some implementation-defined behavior (though
it must not provide any behavior that would breach the privilege model).
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SH compatibility model 11
Properties of the address space

For compatibility with an existing program binary, it is typically necessary to
execute that program in an effective address space using memory management
features to recreate an appropriate memory environment. This requires some
compatibility in memory management capability to allow the appropriate address
translations to be created. Many properties of the MMU are
implementation-specific, and thus the degree of compatibility achieved here
depends on the implementation.

In most cases, effective address calculation is performed using modulo 64-bit integer
arithmetic. This contrasts with SH-4 which uses modulo 32-bit integer arithmetic.
The behavior of SHcompact for effective address calculations that overflow a 32-bit
address is different from SH-4.

The specific cases are:

• SHcompact load and store instructions that involve effective address calculation
using registers: the available addressing forms include register plus register,
register plus constant, global base register plus constant and register with
pre-decrement. These calculations are performed with modulo 64-bit integer
arithmetic. An exception is generated where the calculation causes an effective
address to be generated outside the implemented effective address space.

Note that register indirect and register with post-increment are also provided. In
both cases the effective address of the access is taken from a source register with
no calculation and there is no opportunity for the access to use an effective
address outside the implemented effective address space.

Also note that PC plus constant addressing does not use modulo 64-bit integer
arithmetic. In this case the calculation of the effective address is performed
using 32-bit integer arithmetic. The resulting effective address is converted to a
sign-extended 32-bit range. This gives an address which is always inside the
implemented effective address space.

• SHcompact branch instructions that involve effective address calculation: the
available addressing forms include PC plus constant and PC plus register. These
calculations are performed with modulo 64-bit integer arithmetic. An exception
is generated where the calculation causes an effective address to be generated
outside the implemented effective address space.

SHcompact’s conditional branch instructions use PC plus constant addressing.
For these instructions, the range check on the calculated effective address is
performed, and an exception taken where required, even when the branch is not
taken.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

12 SH compatibility model
These cases can be caught by an exception and handled in system software.
Software approaches for handling these cases are described in Section
2.9.3: SHcompact memory on page 29.

The CPU architecture does not impose any properties on the layout or contents of
the physical address map. Thus, the CPU architecture does not specify whether the
physical address map, and any memory-mapped mechanisms available within it,
are compatible with SH-4. These properties are implementation dependent.

Exceptions

There is no binary compatibility provided for exception handling software. Thus
SH-4 exception handlers must be ported and recompiled.

The exception launch mechanism has been designed so that the user-visible
behavior of instruction execution, including the effects of exception handling, can be
compatible with SH-4. This compatibility requires appropriate system software.

This is achieved as follows. For each exception taken by some SH-4 code, there will
be a corresponding exception taken by the corresponding SHcompact code. For most
exceptions there is a direct correspondence with those provided on SH-4. However,
in some cases the architecture arranges exception launch somewhat differently. The
user-visible SH-4 behavior can be reconstructed by system software.

There are two important exclusions to the above model:

• There is no requirement for any consistency between the timing of translation
miss exceptions in SHcompact compared with SH-4. This is because translation
misses should be handled, by an operating system, transparently with respect to
program execution. This gives considerable flexibility in the organization of the
memory management unit.

• The mode switch mechanism causes some SH-4 instruction misalignment
exceptions to be treated as mode switch directives. The effect of this change in
behavior is described in Section 1.4.1.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
2
Architectural
state

2.1 Overview

This chapter describes the architectural state of the CPU. The execution of
instructions causes changes to the architectural state. Some state changes can also
be caused by external agents, though these mechanisms are beyond the scope of the
CPU Architecture Manual.

2.2 User and privileged operation
The execution model distinguishes operation in user mode from operation in
privileged mode. Architectural state is divided into user state and privileged state.
Similarly, instructions are divided into user instructions and privileged
instructions. In user mode, only user instructions and user state are available. In
privileged mode, all instructions and all state are available. Thus, in privileged
mode the available mechanisms are a superset of those available in user mode.

This model allows systems to be constructed such that the privileged parts of the
system can be protected against the user parts of the system. Additionally, systems
can be constructed containing multiple independent user parts, such that they are
protected against each other.

2.3 Effective addresses
Some items of architectural state hold effective addresses. The number of
implemented bits in effective addresses is implementation defined. Further
information is given in Section 3.8: Effective address representation on page 49.
-5 CPU Core, Volume 1: Architecture

14 Notation
2.4 Notation
The following notation is used to describe ranges of integral values, where i and j are
integers and i ≤ j:

• [i, j] is the range of integers between i and j, where i and j are included.

• (i, j) is the range of integers between i and j, where i and j are excluded.

• [i, j) is the range of integers between i and j, where i is included and j is excluded.

• (i, j] is the range of integers between i and j, where i is excluded and j is included.

The following notation is used for exponentiation, where i and j are integers and j ≥
0:

• ij denotes the integral result of raising i to the power of j.

2.5 User state
The user state is summarized in Table 1 and Table 2.

User state Description

MD (implicit state) User (0) or privileged (1) mode

ISA (implicit state) Instruction set architecture (0 for SHcompact, 1 for SHmedia)

PC 64-bit program counter

Ri where i is in [0, 63] 64 x 64-bit general-purpose registers

TRi where i is in [0, 7] 8 x 64-bit target address registers

CRi where i is in [32, 63] 32 x 64-bit user-accessible control registers

MEM[i] where i is in [0, 264) Memory

Table 1: User state (general-purpose)
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

User state 15
User state is described in more detail in the following sections.

2.5.1 Mode: MD

MD distinguishes user mode and privileged mode. The value of MD is considered
user state because it implicitly affects the behavior of instructions executed in user
mode. User mode instructions can neither read nor write MD. Instructions
executing in user mode do not have a direct means of determining that they are
running in user mode.

If a privileged instruction is executed in user mode, then a reserved instruction
exception is raised. The attempted privilege violation can be dealt with
appropriately in privileged mode.

MD is actually a synonym for the MD field in the status register (SR). See
Section 2.7 for details.

2.5.2 Instruction set architecture: ISA

ISA distinguishes whether instructions are decoded and executed using the
SHmedia instruction set or using the SHcompact instruction set.

ISA is implicit state, and cannot be read or written directly. The current value of ISA
determines how the current instruction is decoded. Any particular instruction must
be encoded for a particular ISA. Each instruction is implicitly associated with the
ISA that it executes under.

User state Description

FPSCR 32-bit floating-point status and control register

FRi where i is in [0, 63] 64 x 32-bit floating-point registers

DR2i where i is in [0, 31] 32 x 64-bit floating-point registers

FP2i where i is in [0, 31] 32 pairs of 32-bit floating-point registers

FV4i where i is in [0, 15] 16 vectors of 4 x 32-bit floating-point registers

MTRX16i where i is in [0, 3] 4 matrices of 16 x 32-bit floating-point registers

Note that FR, DR, FP, FV and MTRX provide different views of
the same architectural state.

Table 2: User state (floating-point)
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

16 User state
While ISA cannot be written directly, mechanisms are provided to allow ISA to be
updated upon an unconditional branch or a return from exception.

2.5.3 Program counter: PC

PC contains the program counter of the currently executing instruction. The PC is
64 bits wide, though the number of implemented higher bits is implementation
defined.

2.5.4 General-purpose registers: R

R denotes the set of general-purpose registers. Most instructions use
general-purpose registers to supply integer source values and to hold integer
destination values.

There are 64 general-purpose registers, each containing 64 bits. All reads from R63
return zero, and all writes to R63 are discarded. All other general-purpose registers
have conventional read/write behavior.

2.5.5 Target registers: TR

TR denotes the set of 8 target address registers. These are used to hold the target
program counter value for branches. Each target register is 64 bits wide, though the
number of implemented higher bits is implementation defined.

2.5.6 User-accessible control registers: CR

CR denotes the set of control registers. CR32 to CR63 are user-accessible control
registers, and contain CPU control state accessible in either user or privileged
mode.

There are 32 user-accessible control registers, each containing 64 bits. An
implementation need not provide all of these control registers, and not all bits of the
provided control registers need be implemented. Additionally, control register state,
by its very nature, does not have simple read/write semantics. The content and
behavior of control registers are described individually for each control register.

Mechanisms to access control registers are described in Chapter 9: SHmedia system
instructions on page 163. The actual control registers are described in Chapter 15:
Control registers on page 207.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

User state 17
2.5.7 Memory: MEM

MEM denotes memory. Memory is accessed through an effective address space.
Instructions are fetched from memory, and data can be accessed in memory using
load and store instructions.

The effective address space allows 264 bytes of memory to be addressed. The amount
of implemented space is implementation defined, though the number of addressable
bytes is always a power of 2, say 2neff, where neff is in the range [32, 64]. Where
neff<64 the implementation provides a sign-extended subset of the 64-bit effective
address space. Further information is given in Section 3.8: Effective address
representation on page 49.

2.5.8 Floating-point status and control register: FPSCR

FPSCR contains the floating-point status and control register. This is used
principally to control the rounding mode and exception behavior of floating-point
arithmetic. The FPSCR is 32 bits wide, though some of these bits are architecturally
reserved. FPSCR is described in Chapter 8: SHmedia floating-point on page 135.

2.5.9 Floating-point registers: FR, DR, FP, FV, MTRX

FR denotes the set of single-precision floating-point registers. Each register in FR
can hold one single-precision floating-point value using a representation consistent
with the IEEE754 standard. The format is defined in Section 3.4.2: Single-precision
format on page 34. The FR set has 64 registers, each containing 32 bits.

DR denotes the set of double-precision floating-point registers. Each register in DR
can hold one double-precision floating-point value using a representation consistent
with the IEEE754 standard. The format is defined in Section 3.4.3: Double-precision
format on page 35. DR provides a different view of the same architectural state
provided by FR. The DR set has 32 registers, each containing 64 bits. The mapping
from the DR set onto the FR set is achieved as follows:

• The high half of DR2i where i is in [0, 31] maps onto FR2i.

• The low half of DR2i where i is in [0, 31] maps onto FR2i+1.

Additionally, the FR set can be accessed as pairs, as vectors or as 16-element
matrices of single-precision floating-point values (see Figure 1):

• There are 32 x 2-element pairs called FP2i where i is in [0, 31].
Each pair consists of registers FR2i and FR2i+1.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

18 User state
• There are 16 x 4-element vectors called FV4i where i is in [0, 15].
Each vector consists of registers FR4i, FR4i+1, FR4i+2 and FR4i+3.

• There are 4 x 16-element matrices called MTRXi where i is in [0, 3].
Each matrix consists of registers FR16i, FR16i+1, FR16i+2 through to FR16i+15.

The numbering of the elements within a pair, vector and matrix is shown in
Figure 2. The 16-element matrix can also be viewed as a 4x4 matrix with
column-major format as shown in Figure 3.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

User state 19
FR0 DR0 FP0
FV0

MTRX0

FR1
FR2 DR2 FP2FR3
FR4 DR4 FP4

FV4
FR5
FR6 DR6 FP6FR7
FR8 DR8 FP8

FV8
FR9
FR10 DR10 FP10FR11
FR12 DR12 FP12

FV12
FR13
FR14 DR14 FP14FR15
FR16 DR16 FP16

FV16

MTRX16

FR17
FR18 DR18 FP18FR19
FR20 DR20 FP20

FV20
FR21
FR22 DR22 FP22FR23
FR24 DR24 FP24

FV24
FR25
FR26 DR26 FP26FR27
FR28 DR28 FP28

FV28
FR29
FR30 DR30 FP30FR31

Figure 1: Alternate views of the floating-point register set
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

20 User state
FR32 DR32 FP32
FV32

MTRX32

FR33
FR34 DR34 FP34FR35
FR36 DR36 FP36

FV36
FR37
FR38 DR38 FP38FR39
FR40 DR40 FP40

FV40
FR41
FR42 DR42 FP42FR43
FR44 DR44 FP44

FV44
FR45
FR46 DR46 FP46FR47
FR48 DR48 FP48

FV48

MTRX48

FR49
FR50 DR50 FP50FR51
FR52 DR52 FP52

FV52
FR53
FR54 DR54 FP54FR55
FR56 DR56 FP56

FV56
FR57
FR58 DR58 FP58FR59
FR60 DR60 FP60

FV60
FR61
FR62 DR62 FP62FR63

Figure 1: Alternate views of the floating-point register set
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

User state 21
Pair
Element
Number

FP2i

Vector
Element
Number

FV4i

Matrix
Element
Number

MTRX16i

↓ ↓ ↓
0 FR2i+0 0 FR4i+0 0 FR16i+0

1 FR2i+1 1 FR4i+1 1 FR16i+1

2 FR4i+2 2 FR16i+2

3 FR4i+3 3 FR16i+3

4 FR16i+4

5 FR16i+5

6 FR16i+6

7 FR16i+7

8 FR16i+8

9 FR16i+9

10 FR16i+10

11 FR16i+11

12 FR16i+12

13 FR16i+13

14 FR16i+14

15 FR16i+15

Figure 2: FP, FV and MTRX element numbering
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

22 Privileged state
2.6 Privileged state
The privileged state is summarized in Table 3.

Privileged state is described in more detail in the following sections. The key
differences between control registers and configuration registers are that control
registers hold scalar state and are accessed through a control register set, while
configuration registers typically hold arrays of state and are accessed through a
configuration register space.

Column Number → 0 1 2 3

Row Number ↓

0 FR16i+0 FR16i+4 FR16i+8 FR16i+12

1 FR16i+1 FR16i+5 FR16i+9 FR16i+13

2 FR16i+2 FR16i+6 FR16i+10 FR16i+14

3 FR16i+3 FR16i+7 FR16i+11 FR16i+15

Figure 3: MTRX 4x4 element numbering

Privileged State Description

CRi where i is in [0, 31] 32 x 64-bit privileged control registers

CFG[i] where i is in [0, 232) Configuration register space

Table 3: Privileged state
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Privileged state 23
2.6.1 Privileged control registers: CR

CR denotes the set of control registers. CR0 to CR31 are privileged control registers,
and contain CPU control state accessible only in privileged mode. The trap,
exception, interrupt and reset mechanisms use this state.

There are 32 privileged control registers, each containing 64 bits. An
implementation need not provide all of these control registers, and not all bits of the
provided control registers need be implemented. Additionally, control register state,
by its very nature, does not have simple read/write semantics. The content and
behavior of control registers are described individually for each control register.

Mechanisms to access control registers are described in Chapter 9: SHmedia system
instructions on page 163. The actual control registers are described in Chapter 15:
Control registers on page 207.

The status register (SR) is a privileged control register that implicitly affects the
execution of instructions by the current thread of execution. SR is introduced in
Section 2.7.

2.6.2 Configuration registers: CFG

CFG denotes configuration register space. Configuration register space is
completely independent of memory, and is accessed using different instructions.
Configuration space allows 232 configuration registers to be addressed, though the
amount of implemented space is implementation defined.

Configuration registers are 64 bits wide, though not all bits of the provided
configuration registers need be implemented. Additionally, configuration register
state, by its very nature, does not have simple read/write semantics. The content
and behavior of configuration registers are described individually for each
configuration register.

Configuration registers are used for direct access to implementation specific state,
such as cache and MMU state. Configuration registers are highly implementation
dependent and are therefore not defined in this document. Mechanisms to access
configuration registers are described in Chapter 9: SHmedia system instructions on
page 163.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

24 The status register
2.7 The status register
The status register (SR) is a control register that contains fields to control the
behavior of instructions executed by the current thread of execution. The layout of
SR is shown in Figure 4.

The specification of SR is given in Section 15.2.1: SR on page 210. In summary, the
fields of SR are used as follows:

• S, Q and M are used during the execution of SHcompact instructions. They are
described in Chapter 11: SHcompact integer instructions on page 171 and in
Volume 3 Chapter 2: SHcompact instruction set.

• FR, SZ and PR are used to provide additional opcode qualification of SHcompact
floating-point instructions. They are described in Chapter 13: SHcompact
floating-point on page 189.

• IMASK contains 4 bits to allow the CPU to be set to one of 16 priority levels for
masking interrupts. It is described in Chapter 16: Event handling on page 221.

• CD controls whether a read of the clock tick counter from user mode returns the
value of the clock tick counter (when clear) or zero (when set). It is described in
Section 15.2.10: CTC on page 218.

• FD controls whether the floating-point instructions are enabled (when clear) or
disabled (when set). It is described in Chapter 8: SHmedia floating-point on
page 135 and Chapter 13: SHcompact floating-point on page 189.

• ASID indicates the address space identifier of the current thread and is used by
the memory management architecture. It is described in Chapter 17: Memory
management on page 271.

r

63 32

M
M

U

M
D r B
L

S
T

E
P

W
AT

C
H

r ASID F
D

F
R

S
Z

P
R

C
D r M Q IMASK r S r

31 30 29 28 27 26 25 24 23 16 15 14 13 12 11 10 9 8 7 4 3 2 1 0

Figure 4: SR (upper 32 bits and lower 32 bits shown separately)
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Register subsets 25
• WATCH controls whether watchpoints are disabled (when clear) or enabled
(when set). It is described in Chapter 16: Event handling on page 221.

• STEP controls whether single-stepping is disabled (when clear) or enabled
(when set). It is described in Chapter 16: Event handling on page 221.

• BL controls whether exceptions, traps and interrupts are allowed (when clear) or
blocked (when set). It is described in Chapter 16: Event handling on page 221.

• MD controls whether instructions are executed in user mode (when clear) or in
privileged mode (when set). It implicitly affects instruction execution, and is
described in Section 2.5.1: Mode: MD on page 15.

• MMU controls whether the MMU is disabled (when clear) or enabled (when set).
It is described in Chapter 17: Memory management on page 271.

• The ‘r’ field indicates reserved bits.

In privileged mode, the value of SR can be read and written using the SHmedia
GETCON and PUTCON instructions (see Section 9.3.2). However, PUTCON cannot
be used to modify the ASID, WATCH, STEP, MD and MMU fields. These can be
modified using the RTE instruction (see Section 9.2 and Section 16.7).

2.8 Register subsets
The general-purpose and floating-point register sets are each divided into 8 subsets,
and each of theses subsets consists of 8 consecutive registers. For i in the range [0,7]:

• General-purpose register subset i, GPRSi, contains R8i to R8i+7 inclusive.

• Floating-point register subset i, FPRSi, contains FR8i to FR8i+7 inclusive.

Each subset is associated with a dirty bit. All dirty bits are held in the
user-accessible status register (USR), which is described in Section 15.2.11: USR on
page 219. Dirty bits can be read and written by software, either in user mode or in
privileged mode.

When an instruction is executed that writes to a modifiable general-purpose register
or floating-point register, then the dirty bit for the subset containing that register
will be set to 1. However, note that a write to R63 is not required to set its dirty bit
since the value of R63 is always 0. The hardware can set dirty bits under other
circumstances, but it never automatically clears the dirty bits. This is only achieved
by explicit software action.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

26 SHcompact state
This mechanism allows an operating system to keep track of which register subsets
have been written to, and this information can be used to optimize context switches.
For example, an operating system can be arranged such that if a subset of registers
has not been modified since the last context switch, then that subset of registers
does not get saved out to memory on the next context switch. This is particularly
important for threads that execute entirely in SHcompact since these can only use a
small proportion of the available register state.

Additionally, both user and privileged mode software can clear the dirty bits. This
could be used, for example, to indicate that the values in a subset of registers are no
longer required, and that the operating system need not consider that subset as
dirty.

2.9 SHcompact state
SHcompact provides only user instructions. All SHcompact instructions can be
executed in user mode or in privileged mode. State accessed by SHcompact
instructions is user state and is architecturally mapped onto the user architectural
state already described. SHcompact uses a separate naming convention for its state.

2.9.1 SHcompact non-floating-point register state

The mapping of the non-floating-point SHcompact state onto the architectural state
is shown in Table 4. The status register, SR, is not itself directly accessible in
SHcompact, though the S, M and Q flags are accessible through their own names.

Names of SHcompact
state

Description of state
Architectural state

name

PC Program counter Lower 32 bits of PC

Ri where i is in [0, 15] General-purpose registers Lower 32 bits of Ri

GBR Global base register Lower 32 bits of R16

MACL Multiply-accumulate low Lower 32 bits of R17

MACH Multiply-accumulate high Upper 32 bits of R17

PR Procedure link register Lower 32 bits of R18

Table 4: Mapping of SHcompact non-floating-point state
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SHcompact state 27
Special care must be taken by SHmedia software to ensure that unused upper bits
have appropriate values when switching into SHcompact. The requirements are
defined in Volume 3 Chapter 1: SHcompact specification.

2.9.2 SHcompact floating-point register state

The mapping of the SHcompact floating-point state is shown in Table 5 and Table 6.

T Condition code flag Bit 0 of R19

S Multiply-accumulate saturation flag SR.S

M Divide-step M flag SR.M

Q Divide-step Q flag SR.Q

(no names - not visible) These registers are used as scratch state during the
execution of SHcompact instructions. When any
SHcompact instruction is executed, the value of
these registers becomes architecturally undefined
(even if the instruction causes an exception).

R20 to R23 inclusive

TR0 to TR3 inclusive

Names of SHcompact
state

Description of state
Architectural state

name

Table 4: Mapping of SHcompact non-floating-point state

Names of SHcompact state Description of state
Architectural
state name

FPSCR.RM Floating-point status Rounding mode FPSCR.RM

FPSCR.FLAG Exception flags FPSCR.FLAG

FPSCR.ENABLE Exception enables FPSCR.ENABLE

FPSCR.CAUSE Exception causes FPSCR.CAUSE

FPSCR.DN Denormalization mode FPSCR.DN

FPSCR.PR Precision of operation SR.PR

FPSCR.SZ Size of data transfer SR.SZ

FPSCR.FR Bank selection SR.FR

Table 5: Mapping of non-banked SHcompact floating-point state
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

28 SHcompact state
The definition of FPSCR differs between SHmedia and SHcompact for the PR, SZ
and FR flags. For SHmedia, these flags are contained within SR and do not appear
in FPSCR. For SHcompact, these flags appear in FPSCR only and SR is not directly
accessible. Coherency of these flags is maintained automatically and no special
software action is required.

SHcompact provides two banks of floating-point registers. The status register
contains a flag called SR.FR which determines which bank is viewed using the
regular floating-point register names and which as the extended bank. The setting
of this flag determines how the banked SHcompact floating-point state maps onto
the SHmedia floating-point state.

FPUL FPU communication register FR32

(no name - not visible) This register is used as scratch state during the
execution of SHcompact floating-point
instructions. When any SHcompact
floating-point instruction is executed, the value
of this register becomes architecturally
undefined (even if the instruction causes an
exception).

FR33

Names of SHcompact state Description of state
Architectural
state name

Table 5: Mapping of non-banked SHcompact floating-point state

Names of SHcompact state Description of state
Architectural state

name
(when SR.FR = 0)

Architectural state
name

(when SR.FR = 1)

FRi where i is in [0, 15] Single-precision
registers

FRi FRi+16

DR2i where i is in [0, 7] Double-precision
registers

DR2i DR2i+16

Single-precision
register pairs

FP2i FP2i+16

FV4i where i is in [0, 3] Single-precision
vector

FV4i FV4i+16

Table 6: Mapping of banked SHcompact floating-point state
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SHcompact state 29
2.9.3 SHcompact memory

SHcompact provides access to a 32-bit effective address space. This is mapped onto
the 64-bit effective address space provided by the architecture using a
sign-extended convention. The mapping is shown in Table 7.

Although the amount of implemented effective address space is implementation
defined, every implementation provides at least a 32-bit effective address space in a
sign-extended subset of the 64-bit space (see Section 2.5.7: Memory: MEM on
page 17). This ensures that the full SHcompact 32-bit effective address space is
available on all implementations.

In most cases, the effective address calculation in SHcompact load, store and branch
instructions is actually performed using modulo 64-bit integer arithmetic. It is
possible for these SHcompact instructions to access some effective addresses in the
range [0x00000000800000000, 0xFFFFFFFF7FFFFFFF] through effective address
calculation near the discontinuity in the effective address space. Such accesses are
considered as programming errors and should be avoided in SHcompact programs.
The specific cases are listed in Section 1.4.2: Limits of compatibility on page 10.

XFi where i is in [0, 15] Single-precision
extended registers

FRi+16 FRi

XD2i where i is in [0, 7] Double-precision
extended registers

DR2i+16 DR2i

Single-precision
extended register pairs

FP2i+16 FP2i

XMTRX Single-precision
extended register
matrix

MTRX16 MTRX0

Names of SHcompact state Description of state
Architectural state

name
(when SR.FR = 0)

Architectural state
name

(when SR.FR = 1)

Table 6: Mapping of banked SHcompact floating-point state

SHcompact Effective Address Range Architectural Effective Address Range

[0x00000000, 0x7FFFFFFF] [0x0000000000000000, 0x000000007FFFFFFF]

[0x80000000, 0xFFFFFFFF] [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF]

Table 7: Mapping of SHcompact effective address space
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

30 SHcompact state
It is possible for system software to catch exceptions for these accesses. If the
implementation provides exactly 32 bits of effective address space, then accesses
outside of the SHcompact effective address space will cause an address error. If the
implementation provides more than 32 bits of effective address space, then the
address translation mechanism can be used to force translation misses for
addresses outside of the SHcompact effective address space. It is possible to fix up
these exceptions in system software so that addressing is fully compatible with
SH-4.

Alternatively, in the case of an implementation providing more than 32 bits of
effective address space, the translation mechanism could be used to ensure that
these addresses are silently mapped onto the appropriate part of the SHcompact
effective address space. This also gives full addressing compatibility with SH-4.

Further information on effective addresses and pointers can be found in Section
3.8: Effective address representation on page 49 and Section 3.10: Pointer
representation on page 51. Data address exceptions are described in Section
16.11.3: Data address exceptions on page 244, and translation mechanisms are
described in Chapter 17: Memory management on page 271.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
3
Data
representation

3.1 Introduction

This chapter describes the representation of data in the general-purpose registers,
the floating-point registers and in memory. The same data representations apply in
SHmedia and SHcompact to support efficient parameter passing between these
modes.

The SHmedia instruction set is much richer than the SHcompact instruction set. As
a consequence, operations on some data representations, particularly 64-bit wide
data, can be inefficient when performed using the SHcompact instruction set.

This chapter also describes the effective address space and pointer representation.
Finally, the chapter describes the conventions used for control and configuration
registers.

3.2 Bit conventions
A register is a collection of binary bits, where each bit can take a value of 0 or 1. The
number of bits in a register, say b, varies according to the type of register. The bits in
a register are numbered from 0 (the least significant bit) up to b-1 (the most
significant bit). Registers are depicted with the most significant bit left-most on the
page, and the least significant bit right-most.

A bitfield is a contiguous subset of bits taken from a register. If a register contains b
bits, then a bitfield of that register is specified as the set of bits starting at bit
number s and ending at bit number e where the range from s to e is inclusive. The
following relationship holds between s, e and b: 0 ≤ s ≤ e < b. The bits in the bitfield
are numbered from 0 (the least significant bit) up to e-s (the most significant bit).
Bit-fields are depicted with the same ordering convention as registers.
-5 CPU Core, Volume 1: Architecture

32 Data types
3.3 Data types
Data types are provided to support modern high-level programming languages such
as ANSI C, C++ and Java, and standards such as IEEE754 floating-point
arithmetic. The directly supported types are summarized in Table 8.

Signed data is always held using a two’s complement representation. SHcompact
requires multiple instructions to load 8-bit or 16-bit data into an unsigned integer
format.

The architecture contains general-purpose registers and floating-point registers.
Each data type can be held in general-purpose registers or floating-point registers,
though the available operations will vary considerably.

Data type SHmedia support SHcompact support

Unsigned 8-bit integer Load/store Load/store

Signed 8-bit integer Load/store Load/store

Unsigned 16-bit integer Load/store Load/store

Signed 16-bit integer Load/store Load/store

Unsigned 32-bit integer Load/store/arithmetic Load/store/arithmetic

Signed 32-bit integer Load/store/arithmetic Load/store/arithmetic

32-bit pointer Load/store/arithmetic/addressing Load/store/arithmetic/addressing

32-bit floating-point Load/store/IEEE754-arithmetic Load/store/IEEE754-arithmetic

Unsigned 64-bit integer Load/store/arithmetic No direct support

Signed 64-bit integer Load/store/arithmetic No direct support

64-bit pointer Load/store/arithmetic/addressing No direct support

8 x 8-bit multimedia data Load/store/multimedia No direct support

4 x 16-bit multimedia data Load/store/multimedia No direct support

2 x 32-bit multimedia data Load/store/multimedia No direct support

64-bit floating-point Load/store/IEEE754-arithmetic Load/store/IEEE754-arithmetic

Table 8: Supported data types
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

IEEE754 floating-point numbers 33
3.4 IEEE754 floating-point numbers

3.4.1 Values

An IEEE754 floating-point number contains three fields: a sign (s), an exponent (e)
and a fraction (f) in the following format:

The sign, s, is the sign of the represented number. If s is 0, the number is positive. If
s is 1, the number is negative.

The exponent, e, is held as a biased value. The relationship between the biased
exponent, e, and the unbiased exponent, E, is given by e = E+bias, where bias is a
fixed positive number. The unbiased exponent, E, takes any value in the range
[Emin-1, Emax+1]. The minimum and maximum values in that range, Emin-1 and
Emax+1, designate special values such as positive zero, negative zero, positive
infinity, negative infinity, denormalized numbers and “Not a Number” (NaN).

The fraction, f, specifies the binary digits that lie to the right of the binary point. A
normalized floating-point number has a leading bit of 1 which lies to the left of the
binary point. A denormalized floating-point number has a leading bit of 0 which lies
to the left of the binary point. The leading bit is implicitly represented; it is
determined by whether the number is normalized or denormalized, and is not
explicitly encoded. The implicit leading bit and the explicit fraction bits together
form the significand of the floating-point number.

The value, v, of a floating-point number is determined as follows:

NaN: if E = Emax + 1 and f ≠ 0, then v is Not a Number irrespective of the sign s

Positive or negative infinity: if E = Emax + 1 and f = 0, then v = (-1)s (∞)

Normalized number: if Emin ≤ E ≤ Emax, then v = (-1)s 2E(1.f)

Denormalized number: if E = Emin - 1 and f ≠ 0, then v = (-1)s 2Emin(0.f)

Positive or negative zero: if E = Emin - 1 and f = 0, then v = (-1)s 0

The architecture supports two IEEE754 basic floating-point number formats:
single-precision and double-precision.

s e f

Figure 5: IEEE754 floating-point representations
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

34 IEEE754 floating-point numbers
3.4.2 Single-precision format

A single-precision floating-point value has 32 bits:

The single-precision format parameters are:

The types of single-precision floating-point values and their representation are:

s e f

31 30 23 22 0

Figure 6: Single-precision floating-point representation

Single-precision format parameter Value

Width in bits 32

Exponent width in bits 8

Significand bits (fraction bits plus an implicit leading bit) 24

Exponent bias +127

Emax +127

Emin -126

Table 9: Single-precision floating-point parameters

Single-precision value type Representation

+INF (positive infinity) 0x7F800000

+NORM (positive normalized number) 0x00800000 to 0x7F7FFFFF

+DENORM (positive denormalized number) 0x00000001 to 0x007FFFFF

+0.0 (positive zero) 0x00000000

-0.0 (negative zero) 0x80000000

-DENORM (negative denormalized number) 0x807FFFFF to 0x80000001

-NORM (negative normalized number) 0xFF7FFFFF to 0x80800000

Table 10: Single-precision floating-point values
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

IEEE754 floating-point numbers 35
A NaN, in the single-precision format, is represented as:

A single-precision floating-point number is a NaN if the exponent field contains the
maximum representable value and the fraction is non-zero, regardless of the value
of the sign. In the figure above, x can have a value of 0 or 1. If the most significant
bit of the fraction (N, in the figure above) is 1, the value is a signaling NaN (sNaN)
otherwise the value is a quiet NaN (qNaN).

3.4.3 Double-precision format

A double-precision value has 64 bits:

-INF (negative infinity) 0xFF800000

sNaN (signalling not-a-number) 0x7FC00000 to 0x7FFFFFFF, and

0xFFFFFFFF to 0xFFC00000

qNaN (quiet not-a-number) 0x7F800001 to 0x7FBFFFFF, and

0xFFBFFFFF to 0xFF800001

x 11111111 Nxxxxxxxxxxxxxxxxxxxxxx

31 30 23 22 0

Figure 7: Single-precision NaN values

Single-precision value type Representation

Table 10: Single-precision floating-point values

s exponent fraction (most significant part)

63 62 52 51 32
fraction (least significant part)

31 0

Figure 8: Double-precision floating-point representation
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

36 IEEE754 floating-point numbers
The double-precision format parameters are:

The types of double-precision floating-point values and their representation are:

Double-precision format parameter Value

Width in bits 64

Exponent width in bits 11

Significand bits (fraction bits plus an implicit leading bit) 53

Exponent bias +1023

Emax +1023

Emin -1022

Table 11: Double-precision floating-point parameters

Double-precision value type Representation

+INF (positive infinity) 0x7FF00000_00000000

+NORM (positive normalized number) 0x00100000_00000000 to 0x7FEFFFFF_FFFFFFFF

+DENORM (positive denormalized
number)

0x00000000_00000001 to 0x000FFFFF_FFFFFFFF

+0.0 (positive zero) 0x00000000_00000000

-0.0 (negative zero) 0x80000000_00000000

-DENORM (negative denormalized
number)

0x800FFFFF_FFFFFFFF to 0x80000000_00000001

-NORM (negative normalized number) 0xFFEFFFFF_FFFFFFFF to 0x80100000_00000000

-INF (negative infinity) 0xFFF00000_00000000

sNaN (signalling not-a-number) 0x7FF80000_00000000 to 0x7FFFFFFF_FFFFFFFF, and

0xFFFFFFFF_FFFFFFFF to 0xFFF80000_00000000

qNaN (quiet not-a-number) 0x7FF00000_00000001 to 0x7FF7FFFF_FFFFFFFF, and

0xFFF7FFFF_FFFFFFFF to 0xFFF00000_00000000

Table 12: Double-precision floating-point values
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Data formats for general-purpose registers 37
A NaN, in the double-precision format, is represented as:

A double-precision floating-point number is a NaN if the exponent field contains the
maximum representable value and the fraction is non-zero, regardless of the value
of the sign. In the figure above, x can have a value of 0 or 1. If the most significant
bit of the fraction (N, in the figure above) is 1, the value is a signaling NaN (sNaN)
otherwise the value is a quiet NaN (qNaN).

3.5 Data formats for general-purpose registers
General-purpose registers contain 64 bits. These are numbered from 0 (least
significant bit) to 63 (most significant bit).

Each supported data type consists of a whole number of bytes, where a byte is 8
contiguous bits. When a data type of n bytes is held in a general-purpose register, it
occupies bits in the inclusive range from bit number 0 up to bit number 8n-1.

The order of byte numbering within the data type depends on the endianness. For
little endian, bytes within an n-byte data type are numbered starting from 0 for the
least significant byte up to n-1 for the most significant byte. For big endian, bytes
within the data type are numbered starting from 0 for the most significant byte of
the data type up to n-1 for the least significant byte. The byte numbering indicates
the order in which the bytes are held in memory; the byte number always increases
with the byte address.

The representation obeys the following conventions:

• Data types are always packed into general-purpose registers such that they start
at the least significant bit. Any bits unused by a data type occur at the more
significant end.

• 8-bit and 16-bit unsigned integer values have their upper unused bits set to 0.

x 11111111111 Nxxxxxxxxxxxxxxxxxxx
63 62 52 51 32

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

31 0

Figure 9: Double-precision NaN values
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

38 Data formats for general-purpose registers
• 8-bit and 16-bit signed integer values have their upper unused bits set to sign
extensions of bit 7 and 15, respectively.

• 32-bit unsigned integer, 32-bit signed integer and 32-bit floating-point values
have their upper unused bits set to sign extensions of bit 31. Instructions are
provided to operate on these data types when held in this sign-extended format.
This is known as a sign-extended 32-bit representation. The representation of a
32-bit object with the upper unused bits set to 0 (a zero-extended 32-bit
representation) is not favored by the architecture.

• 64-bit data types have no unused bits and are held in general-purpose registers
in the obvious way.

A multimedia type consists of e elements each containing b bits. Multimedia types
occupy all 64 bits of the general-purpose register, so e multiplied by b is always 64.
The elements are always numbered in the direction of increasing significance
regardless of endianness. Element i, where i is in [0, e), occupies bits in the range
[ib, ib+b).

The 32-bit floating-point type uses the IEEE754 single-precision format. The 64-bit
floating-point type uses the IEEE754 double-precision format. The bit layout of the
floating-point types is described in Chapter 8: SHmedia floating-point on page 135.

The data representation of the supported data types is summarized in the following
diagrams. The shaded cells indicate the data bits carried by each format; unused
bits are zero or sign extensions as defined by the conventions described previously.

Unsigned 8-bit integer

Zero extension 8-bit data Ri

7 0

Signed 8-bit integer

Sign extension from bit 7 8-bit data Ri

7 0

Figure 10: Data representation in general-purpose registers (8-bit types)
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Data formats for general-purpose registers 39
Unsigned 16-bit integer

Zero extension 16-bit data Ri

15 0

Signed 16-bit integer

Sign extension from bit 15 16-bit data Ri

15 0

Figure 11: Data representation in general-purpose registers (16-bit types)

Unsigned 32-bit integer, signed 32-bit integer, 32-bit pointer, 32-bit floating-point

Sign extension from bit 31 32-bit data Ri

31 0

Figure 12: Data representation in general-purpose registers (32-bit types)
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

40 Data formats for general-purpose registers
Each instruction in SHmedia or SHcompact is designed to work with operands of a
particular data representation. Care must be taken with upper unused bits to
ensure that they have the correct values since many instructions rely on this
property. In particular, most SHcompact instructions are designed for 32-bit data
types. These instructions require that their source operands are in a sign-extended
32-bit representation for correct behavior. These instructions then ensure that their
destination operands are in a sign-extended 32-bit representation.

Where both SHmedia and SHcompact support a particular data type, the data
representation is the same. It is possible to arrange appropriate software
conventions that eliminate overhead when passing register-held values between
programs executing in different modes.

SHcompact programs are not aware of the presence or value of the upper 32 bits of
general-purpose registers. SHmedia programs, however, must take care to condition
the upper 32 bits appropriately. This is particularly important when interfacing
with SHcompact code.

Unsigned 64-bit integer, signed 64-bit integer, 64-bit pointer, 64-bit floating-point

64-bit data Ri

63 0

8 x 8-bit multimedia data

8-bit data

Element 7

8-bit data

Element 6

8-bit data

Element 5

8-bit data

Element 4

8-bit data

Element 3

8-bit data

Element 2

8-bit data

Element 1

8-bit data

Element 0

Ri

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

4 x 16-bit multimedia data

16-bit data

Element 3

16-bit data

Element 2

16-bit data

Element 1

16-bit data

Element 0

Ri

63 48 47 32 31 16 15 0

2 x 32-bit multimedia data

32-bit data

Element 1

32-bit data

Element 0

Ri

63 32 31 0

Figure 13: Data representation in general-purpose registers (64-bit types)
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Data formats for floating-point registers 41
3.6 Data formats for floating-point registers
The floating-point registers can be viewed as a set of 64 x 32-bit single-precision
registers, or as a set of 32 x 64-bit double-precision registers.

The bits of a single-precision register are numbered from 0 (least significant bit) to
31 (most significant bit). For little endian, the bytes are numbered from 0 (least
significant byte) to 3 (most significant byte). For big endian, the bytes are number
from 0 (most significant byte) to 3 (least significant byte).

The bits of a double-precision register are numbered from 0 (least significant bit) to
63 (most significant bit). For little endian, the bytes are numbered from 0 (least
significant byte) to 7 (most significant byte). For big endian, the bytes are number
from 0 (most significant byte) to 7 (least significant byte).

Each double-precision register, DR2i where i is in [0, 31], uses the same
architectural state as a pair of single-precision registers, FR2i and FR2i+1. The
upper 32 bits of DR2i are held in FR2i, and the lower 32 bits of DR2i are held in
FR2i+1. The ordering of this split is independent of endianness. Endianness does not
affect the register set organization; it determines the byte numbering and the
memory representation only.

The mapping of data types into these registers is as follows:

• A single-precision register, FRi where i is in [0, 63], can hold any supported
32-bit data type. The single-precision representation is defined in terms of the
equivalent representation in a general-purpose register. The single-precision
register representation simply holds the same bit-pattern as the lower 32 bits of
the general-purpose register representation (the upper 32 bits are not
represented).

• A double-precision register, DR2i where i is in [0, 31], can hold any supported
data type containing 32 or 64 bits. The double-precision representation is
defined in terms of the equivalent representation in a general-purpose register.
The double-precision register representation simply holds the same bit-pattern
as the general-purpose register representation (all 64 bits are represented).

• A pair of single-precision registers, FP2i where i is in [0, 31], can hold two
instances of any supported 32-bit data type. A pair consists of two registers: FR2i
contains element 0 and FR2i+1 contains element 1 of the pair. Each element in
the pair uses the same data representations as those used by single-precision
registers.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

42 Data formats for floating-point registers
Floating-point registers can also hold 8-bit and 16-bit data using conventions
equivalent to the general-purpose registers. However, the floating-point instruction
set provides no operations and no load/store instructions for these narrow types, and
thus these cases are not described here.

Floating-point register pairs are shown with the lower-numbered register lower on
the page.

Any 32-bit type

32-bit data FRi

31 0

Figure 14: Data representation in single-precision registers (32-bit types)

Any 32-bit type

Sign extension from bit 31 32-bit data DR2i

63 32 31 0

Any 64-bit type

64-bit data DR2i

63 0

Figure 15: Data representation in double-precision registers (32-bit and 64-bit types)

Pair of 32-bit types

FR2i+1 32-bit data, element 1 FP2i

FR2i 32-bit data, element 0

31 0

Figure 16: Data representation in pairs of single-precision registers (pair of 32-bit types)
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Data representation in memory 43
3.7 Data representation in memory
Memory is byte-addressed and accessed using effective addresses generated by load
and store instructions. The CPU uses 64-bit effective address arithmetic and this
generates accesses into the effective address space in the inclusive range starting at
byte number 0 and ending at byte number 264-1.

Address space is depicted with the lowest address lowest on the page, and the
highest address highest on the page. Where memory diagrams are drawn with the
memory element being larger than a byte, the memory element is depicted with the
same left-to-right byte ordering conventions as used when depicting registers. This
means that the byte numbering in this memory element varies according to
endianness, but the bit numbering (and the depiction of the held value) is
unchanged.

The CPU directly supports naturally aligned access. An object is naturally aligned if
its address in memory is an exact integral multiple of its size.

The CPU supports accesses to objects that are not naturally aligned using special
load and store instructions. These instructions synthesize a misaligned access using
two aligned accesses plus appropriate masking and shifting.

The data layout in memory is determined by the width of the data type and the
endianness of the CPU. The width of the data type determines the number of bytes
in the memory representation. Unused bytes in the register representation are not
held in the memory representation. The byte labeling within the register depends
on endianness, and this determines the byte ordering in memory.

The mappings for values held in general-purpose registers, for single-precision
floating-point registers and for double-precision floating-point registers are
straightforward. These values each consist of a single object which is mapped into
memory, as dictated by endianness, in a consistent and obvious manner.

The mapping of pairs of single-precision floating-point registers differs because a
pair of values must be treated as two objects which are mapped consecutively into
memory, with endianness ordering applied to each separate object in turn. The
lower-numbered register within the register pair is mapped into lower memory
addresses than the higher-numbered register. This allows the natural array
ordering to be maintained as these values are moved between registers and memory.

The mappings for little endian and big endian memory organizations are illustrated
in the following diagrams. In each case, a data type of a particular width in a
register is shown (on the left hand side), along with the memory representation of
that data type when held in memory at address A (on the right hand side).
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

44 Data representation in memory
8-bit data Memory representation

Ri Byte 0 � Byte 0 Address A

63 0

16-bit data Memory representation

Ri Byte 1 Byte 0 � Byte 1 Address A+1

63 0 Byte 0 Address A

32-bit data Memory representation

Ri Byte 3 Byte 2 Byte 1 Byte 0 � Byte 3 Address A+3

63 0 Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

64-bit data Memory representation

Ri Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 � Byte 7 Address A+7

63 0 Byte 6 Address A+6

Byte 5 Address A+5

Byte 4 Address A+4

Byte 3 Address A+3

Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

Figure 17: Little endian memory representation of values in general-purpose registers
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Data representation in memory 45
32-bit data in a single-precision floating-point register Memory representation

FRi Byte 3 Byte 2 Byte 1 Byte 0 � Byte 3 Address A+3

31 0 Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

64-bit data in a double-precision floating point register Memory representation

DR2i Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 � Byte 7 Address A+7

63 0 Byte 6 Address A+6

Byte 5 Address A+5

Byte 4 Address A+4

Byte 3 Address A+3

Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

2 x 32-bit data in a pair of single-precision floating point registers Memory representation

FP2i FR2i+1 Byte 3’ Byte 2’ Byte 1’ Byte 0’ � Byte 3’ Address A+7

FR2i Byte 3 Byte 2 Byte 1 Byte 0 Byte 2’ Address A+6

31 0 Byte 1’ Address A+5

Byte 0’ Address A+4

Byte 3 Address A+3

Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

Figure 18: Little endian memory representation of values in floating-point registers
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

46 Data representation in memory
8-bit data Memory representation

Ri Byte 0 � Byte 0 Address A

63 0

16-bit data Memory representation

Ri Byte 0 Byte 1 � Byte 1 Address A+1

63 0 Byte 0 Address A

32-bit data Memory representation

Ri Byte 0 Byte 1 Byte 2 Byte 3 � Byte 3 Address A+3

63 0 Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

64-bit data Memory representation

Ri Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 � Byte 7 Address A+7

63 0 Byte 6 Address A+6

Byte 5 Address A+5

Byte 4 Address A+4

Byte 3 Address A+3

Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

Figure 19: Big endian memory representation of values in general-purpose registers
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Data representation in memory 47
32-bit data in a single-precision floating-point register Memory representation

FRi Byte 0 Byte 1 Byte 2 Byte 3 � Byte 3 Address A+3

31 0 Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

64-bit data in a double-precision floating point register Memory representation

DR2i Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 � Byte 7 Address A+7

63 0 Byte 6 Address A+6

Byte 5 Address A+5

Byte 4 Address A+4

Byte 3 Address A+3

Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

2 x 32-bit data in a pair of single-precision floating point registers Memory representation

FP2i FR2i+1 Byte 0’ Byte 1’ Byte 2’ Byte 3’ � Byte 3’ Address A+7

FR2i Byte 0 Byte 1 Byte 2 Byte 3 Byte 2’ Address A+6

31 0 Byte 1’ Address A+5

Byte 0’ Address A+4

Byte 3 Address A+3

Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

Figure 20: Big endian memory representation of values in floating-point registers
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

48 Data representation in memory
The memory mapping of a pair of single-precision registers is not always the same
as that of a double-precision register:

• Regardless of endianness, the lower single-precision register of a pair is mapped
into lower memory addresses than the upper single-precision register.

• A double-precision register must be mapped into memory as one object to give
the correct representation for both endiannesses. Additionally, a
double-precision register can also be viewed as two single-precision registers.
The lower-numbered single-precision register contains the high part of the
double-precision value and the higher-numbered single-precision register
contains the low part. In order to give a consistent endianness-correct
representation of the double-precision register, the mapping of these
single-precision registers into memory must vary with endianness.

Thus the memory ordering of the two halves of a single-precision pair is
independent of endianness, while the memory ordering of the two halves of a
double-precision register varies with endianness.

It turns out that the memory mapping of single-precision pairs and that of
double-precision registers is exactly the same in big endian mode, but different in
little endian mode. This bias arises because the architecture always uses a big
endian convention for splitting its double-precision registers into single-precision
registers.

It is considered very bad practice for software to exploit these properties. The
architecture strongly recommends that appropriate instruction sequences are
always used:

• In SHmedia, the architecture provides a comprehensive set of load/store
instructions. In particular, there are different instructions for the load/store of
pairs of single-precision registers and for the load/store of double-precision
registers. These instructions give the appropriate memory representations
according to the endianness of operation.

• In SHcompact, there are instructions for the load/store of pairs of
single-precision registers but no instructions for the load/store of
double-precision registers. The load/store of double-precision registers should
instead be synthesized using multiple single-precision load/store instructions.
These sequences should be selected to give the appropriate memory
representations according to the endianness of operation.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Effective address representation 49
3.8 Effective address representation
The CPU supports a 64-bit effective address space. Effective addresses are unsigned
quantities, giving the property that effective address 0 has the lowest address value.

An implementation of the CPU architecture implements all of the 64-bit effective
address space, or a subset of the 64-bit effective address space. This is characterized
by a single value, say neff, which represents the number of implemented bits of the
effective address. These neff bits are always the least significant neff bits in the
effective address. The architecture guarantees that neff will be at least 32 and at
most 64 for any implementation.

The value of neff is used to size the implemented part of architectural state that
contains effective addresses:

• Registers that hold effective addresses of instructions:

- The program counter (PC).

- Target registers (TR).

- The following control registers: SPC, PSPC, RESVEC and VBR.

• Registers that hold effective addresses of data:

- The following control register: TEA.

These registers contain neff implemented bits. Upper unused bits must always be a
sign extension of the highest implemented bit (that is, bit neff-1), in order to be valid
effective addresses.

General purpose registers contain 64 bits and can hold any address in the 64-bit
effective address space. Programs should be restrained to the implemented part of
the effective address space through software convention. The CPU causes
instructions that access invalid effective addresses to take an exception.

A pictorial representation of the effective address space (not to scale) is shown in
Figure 21 for any valid neff, and in Figure 22 for the special case of neff=32. Note
that if neff is 64, then all of the effective address space is valid. In these diagrams,
the shaded parts represent the valid effective address ranges. Also, the address
labels show the address of the byte immediately above the adjacent horizontal line.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

50 Effective address representation
Figure 21: Effective address space for any valid neff

Figure 22: Effective address space for neff=32

0

2neff-1

263

264-2neff-1

264

VALID

INVALID

INVALID

VALID

0x0000_0000_0000_0000

0x0000_0000_8000_0000

0x8000_0000_0000_0000

0xFFFF_FFFF_8000_0000

0x1_0000_0000_0000_0000

VALID

INVALID

INVALID

VALID
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Program counter overflow 51
3.9 Program counter overflow
The architecture is arranged so that a branch can never be taken to a program
counter that is outside of the implemented part of the effective address space. This
is because instructions that calculate a branch target address outside of this space
raise an exception. Program counter (PC) overflow can occur, however, when
instructions are executed near the upper limits of the implemented part of the
effective address space.

PC overflow occurs when any instruction is executed and one of the following
conditions is satisfied:

1 PC = 264 - 2

2 PC = 264 - 4

3 (PC = 2neff-1 - 2) AND (neff ≠ 64)

4 (PC = 2neff-1 - 4) AND (neff ≠ 64)

where neff is the number of implemented bits in an effective address.

Cases 1 and 3 can only occur for SHcompact instructions, while cases 2 and 4 can
occur for both SHmedia and SHcompact instructions. If an implementation provides
all of the effective address space then neff=64 and cases 3 and 4 do not exist.

PC overflow results in architecturally undefined behavior and must be avoided by
software. Typically, an address map convention is used to prevent the execution of
instructions near these upper limits.

3.10 Pointer representation
The choice between an unsigned pointer representation and a signed pointer
representation depends upon software convention. This only affects whether pointer
comparisons are implemented using unsigned or signed compares. Although the
choice is not mandated by the architecture, the preferred representation is unsigned
since this matches the convention for effective address space.

Software can choose between a 64-bit and 32-bit pointer representation.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

52 Other register representations
64-bit pointer representation

For software using a 64-bit pointer, pointer values can reference any effective
address. This includes all implemented and any unimplemented effective addresses.
An access to any unimplemented effective address will result in an exception.

32-bit pointer representation

For software using a 32-bit pointer, the pointer should be held using a sign-extended
32-bit representation when held in registers (see Figure 12). Note that this
sign-extended convention is used, regardless of whether software chooses to use a
signed or unsigned pointer representation. The sign-extension of all 32-bit pointers
matches the provision of a sign-extended effective address space. One half of the
32-bit pointer space maps to the bottom 231 bytes of effective address space, and the
other half maps to the top 231 bytes of effective address space.

In fact, all values of 32-bit pointers correspond to effective addresses that will be
implemented by all implementations. However, it is still possible for memory
accesses in load and store instructions to overflow the sign-extended 32-bit space,
because effective address calculation is performed at 64-bit precision. An access to
any unimplemented effective address will result in an exception.

Invalid effective addresses

In both cases, software is expected to avoid invalid effective addresses. This could be
achieved, for example, through software address map conventions. Accesses to
invalid effective addresses could indicate of a programming error or of a program
that needs more effective address than that provided by the implementation.

Effective addresses are mapped onto the physical address space of the machine by a
memory management unit. The properties of this mapping are described in
Chapter 17: Memory management on page 271

3.11 Other register representations
The CPU supports control and configuration registers. These registers are 64 bits
wide. They are always accessed at this width and these accesses are independent of
endianness. The details of their contents varies considerably from instance to
instance. The standards used to specify these registers are described here.

The term ‘register’ in the following description refers to a control register or a
configuration register only, but not to other kinds of register.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Other register representations 53
3.11.1 Register naming

Each register has a unique name. Register names are composed hierarchically by
concatenating sub-names together separated by a period (‘.’). Successive sub-names
repeatedly refine the classification of the register. A register can be refined to a field
by concatenating the register name with the field name separated by a period (‘.’). A
field can be refined to a single bit by concatenating the field with the bit name
separated by a period (‘.’).

The semantics of a register are, in general, specific to that register. However, there
are conventions which all registers adhere to. These conventions are described in
the following sections.

3.11.2 Register conventions

Each register is classified as either UNDEFINED or DEFINED.

UNDEFINED registers

UNDEFINED registers are used to reserve registers for future implementations.
The behavior of accesses to UNDEFINED registers is not defined by the
architecture. A read from an UNDEFINED register returns an
architecturally-undefined value. A write to an UNDEFINED register leads to
behavior that is architecturally undefined.

If a register is UNDEFINED, it is possible that this register could become
DEFINED in a future implementation and exhibit a well-defined behavior. Software
must neither read nor write UNDEFINED registers to allow portability to future
implementations.

DEFINED registers

A DEFINED register is composed of one or more fields. Each field is a contiguous
collection of bits in the register. All bits in a DEFINED register belong to a field.
Further categorization of a DEFINED register is performed at the field level.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

54 Other register representations
3.11.3 Field conventions

Each field in a DEFINED register is classified as one of RESERVED, EXPANSION,
READ-ONLY, READ-WRITE or OTHER.

In addition to the above defined field types, a field is also either volatile or
non-volatile. A non-volatile field is not changed autonomously by hardware
(excluding reset sequences), while a volatile field can be changed autonomously by
hardware. When a field is volatile, the register specification describes the
circumstances that cause the value to be autonomously modified.

When the value of a field is not architecturally defined, the field is said to have an
undefined value. Many fields have an undefined value after power is first applied to
the CPU.

A field can have some values which are reserved. These values must not be written
into that field, otherwise the behavior of the access is not defined by the
architecture. The specification of a particular writable field which has reserved
values will enumerate the reserved values. It is possible that all values apart from
one specific value could be reserved. In this case, the field must be programmed with
only that specific value.

The field types are summarized in the following table.

RESERVED fields

RESERVED fields are used to reserve parts of a register for future expansion of the
architecture. A read from a RESERVED field returns a zero. Writes to a
RESERVED field are ignored. If a field is RESERVED, it is possible that this field
will have a different behavior in a future implementation.

Field type Abbreviation Usage

RESERVED RES Field is reserved

EXPANSION EXP Field is reserved for address space expansion

READ-ONLY RO Field is read-only and cannot be modified by software

READ-WRITE RW Field is readable and writable by software

OTHER OTHER Field has unusual semantics

Table 13: Register field types
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Other register representations 55
When reading from a control register, software should not interpret the value of any
RESERVED fields. When writing to a control register with RESERVED fields,
software should write these fields using a value previously read from that register. If
no appropriate previous value is available, then software should write 0 to
RESERVED fields. This approach will improve software portability to future
implementations.

EXPANSION fields

EXPANSION fields are used to reserve parts of a register for future expansion of the
address space. A read from a EXPANSION field returns a sign-extension of the
highest implemented bit of the register. Writes to a EXPANSION field are ignored.
Bits in EXPANSION fields can be used on future implementations to expand the
address space using a sign-extended convention.

Software should always write a sign-extension of the highest implemented bit of the
register into this field. This approach is necessary if software is to be executed on a
future implementation with more implemented address space.

READ-ONLY fields

The value of a READ-ONLY field cannot be changed by software. A read returns the
value associated with the field, while a write is ignored. A non-volatile READ-ONLY
field has an immutable value.

READ-WRITE fields

A READ-WRITE field has conventional read and write behavior. A read returns the
value of the field, while a write sets the value of the field.

OTHER fields

An OTHER field indicates that the field has unusual semantics. The specification of
an OTHER field will describe the actual semantics.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

56 Other register representations
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
4
SHmedia
instructions

4.1 Overview

All SHmedia instructions are 4 bytes in length, and are held in memory on 4-byte
boundaries. Instructions are described as collections of 32 bits, numbered from 0
(the least significant bit) to 31 (the most significant bit). The endianness of
instructions in memory is dictated by the endianness of the processor.

If the processor is little endian, instructions are held in little-endian order in
memory (see Figure 23). The least significant byte of an instruction, containing bits
0 to 7 of its encoding, is held at the lowest address in the memory representation (at
address A). The most significant byte of this instruction, containing bits 24 to 31 of
its encoding, is held at the highest address (at address A+3).

Alternatively, if the processor is big endian instructions are held in big-endian order
in memory (see Figure 24). The most significant byte of an instruction, containing
bits 24 to 31 of its encoding, is held at the lowest address in the memory
representation (at address A). The least significant byte of this instruction,
containing bits 0 to 7 of its encoding, is held at the highest address (at address A+3).

Instruction encoding Memory representation

Byte 3 Byte 2 Byte 1 Byte 0 � Byte 3 Address A+3

31 0 Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

Figure 23: Little-endian memory representation of an SHmedia instruction
-5 CPU Core, Volume 1: Architecture

58 Instruction naming conventions
The following chapters (Chapter 5: SHmedia integer instructions on page 69 to
Chapter 9: SHmedia system instructions on page 163) summarize the SHmedia
instruction set. Further details can be found in Volume 2 Chapter 2: SHmedia
instruction set.

4.2 Instruction naming conventions
Each instruction mnemonic is formed from a basename followed by an optional
modifier. A basename is a sequence of upper case letters and numbers.

The basename is an abbreviation or acronym related to the behavior of the
instruction. The following conventions are used:

• All floating-point basenames start with ‘F’.

• All multimedia basenames start with ‘M’.

• Immediate is abbreviated to ‘I’; dynamic is abbreviated to ‘D’.

• High is abbreviated to ‘HI’; low is abbreviated to ‘LO’.

• Indexing is abbreviated to ‘X’.

• Saturation is abbreviated to ‘S’.

4.2.1 Type modifiers

The type modifier indicates the width and sign of the operation. A type modifier is a
‘.’ character followed by a sequence of upper case letters. If there is no type modifier
then the operation has either register width or has no associated width. The basic
modifiers are shown in Table 14.

Instruction encoding Memory representation

Byte 0 Byte 1 Byte 2 Byte 3 � Byte 3 Address A+3

31 0 Byte 2 Address A+2

Byte 1 Address A+1

Byte 0 Address A

Figure 24: Big-endian memory representation of an SHmedia instruction
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Instruction naming conventions 59
Some instructions have different widths associated with source and destination
values. These use the compound type modifiers shown in Table 15.

Modifier Width of operation

.B byte, 8 bits (signed)

.UB unsigned byte, 8 bits

.W word, 16 bits (signed)

.UW unsigned word, 16 bits

.L long-word, 32 bits

.Q quad-word, 64 bits

.S single-precision floating-point, 32 bits

.P pair of single-precision floating-point, 2 x 32 bits

.D double-precision floating-point, 64 bits

Table 14: Basic type modifiers

Modifier Source Destination Modifier Source Destination

.DL double-precision long-word .SD single-precision double-precision

.DQ double-precision quad-word .SL single-precision long-word

.DS double-precision single-precision .SQ single-precision quad-word

.LD long-word double-precision .UBQ unsigned byte quad-word

.LS long-word single-precision .WB word byte

.LW long-word word .WL word long-word

.QD quad-word double-precision .WQ word quad-word

.QS quad-word single-precision .WUB word unsigned byte

Table 15: Compound type modifiers
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

60 Format conventions
4.2.2 Hint modifiers

Hint modifiers are used to indicate performance hints for control flow instructions.
A hint modifier is a ‘/’ character followed by an upper case letter. The interpretation
placed on this information is described in Section 5.3: Control flow instructions on
page 72. The available hint modifiers are shown in Table 16.

4.3 Format conventions
Every instruction is associated with an instruction format. The format of an
instruction determines how that instruction is encoded and decoded.

4.3.1 Format bit-fields

Each instruction contains 32 bits. These bits are grouped into contiguous collections
of bits, termed a bit-field. Each bit-field is associated with a bit-field type. The
available types are denoted by single character identifiers and are listed in Table 17.

Modifier Performance hint

/L Likely hint

/U Unlikely hint

(none) Defaults to a likely hint

Table 16: Hint modifiers

Bit-field
type

Bit
positions

Bit-field
size

Interpretation of the bit-field Extracted
as:

o

e

[26, 31]

[16, 19]

6

4

Opcode (all instructions)

Extension opcode (for some instructions)

Unsigned

Unsigned

r

x

Varies

Varies

Varies

6

Reserved (see Section 4.5)

Unused operand (see Section 4.5)

Not applicable

Not applicable

Table 17: Format bit-field conventions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Format conventions 61
For each bit-field type, this table shows:

• the bit positions in the format used to encode that bit-field. Reserved and unused
bits can occur in a variety of bit positions. For immediates, the start bit position
is constant but the range of bit positions depends upon the size of the immediate.
The bit positions associated with all other bit-field types are constant.

• the interpretation placed on the bits of that bit-field. This determines, for
example, whether that bit-field is used as an opcode, to identify a register, to
encode an immediate value or is reserved.

m

n

d

y

w

[20, 25]

[10, 15]

[4, 9]

[4, 9]

[4, 9]

6

6

6

6

6

General-purpose register (left source)

General-purpose register (right source)

General-purpose register (destination)

General-purpose register (extra source)

General-purpose register (source and destination)

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

b

c

a

[20, 22]

[4, 6]

[4, 6]

3

3

3

Target address register (left source)

Target address register (extra source)

Target address register (destination)

Unsigned

Unsigned

Unsigned

l 9 1 Likely bit (this is a performance hint for control
flow)

Unsigned

g

h

f

z

q

[20, 25]

[10, 15]

[4, 9]

[4, 9]

[4, 9]

6

6

6

6

6

Floating-point register (left source)

Floating-point register (right source)

Floating-point register (destination)

Floating-point register (extra source)

Floating-point register (source and destination)

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

k

j

[20, 25]

[4, 9]

6

6

Control register (left source)

Control register (destination)

Unsigned

Unsigned

in

sn

[10, 9+n]

[10, 9+n]

n

n

n-bit unsigned immediate constant (right source)

n-bit signed immediate constant (right source)

Unsigned

Signed

Bit-field
type

Bit
positions

Bit-field
size

Interpretation of the bit-field
Extracted

as:

Table 17: Format bit-field conventions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

62 Format conventions
• whether the value of that bit-field is extracted from the instruction encoding as
an unsigned or as a signed value.

The bit-field type determines how to encode/decode that bit-field, and what the
bit-field is used for. These properties apply to any instruction that contains that
bit-field type in its format.

All formats have an opcode bit-field and this occupies the same bit positions in all
formats. This arrangement allows the instruction decoder to determine the format
quickly for any instruction, impose bit-field boundaries and decode the other
bit-fields. Some formats also have an extension opcode bit-field to allow more
instructions to be encoded.

Bit-fields in an instruction are encoded using the obvious binary representation.
The highest bit number in the bit-field is most-significant; the lowest bit number in
the bit-field is least significant.

A bit-field is extracted as either unsigned or signed as indicated by the bit-field type.
When an n-bit unsigned bit-field is extracted from an encoding, it is zero-extended
to give an integer in the range [0, 2n). When a n-bit signed bit-field is extracted from
an encoding, it is sign-extended to give an integer in the range [-2n-1, 2n-1). Only
signed immediate constants are extracted as signed numbers; all other bit-fields are
extracted as unsigned numbers.

4.3.2 Major and minor formats

The formats are described using a two level scheme consisting of major and minor
formats. Each major format has a different bit-field layout. The number of major
formats is minimized to ease decoding.

Each major format is associated with a set of minor formats. All minor formats that
are associated with a particular major format have the same bit-field layout. Minor
formats are distinguished from each other because they have different operand
types and interpret the operands in different ways. For example, a bit-field encoding
a register operand in a major format, could be interpreted as a general-purpose
register or a floating-point register in different minor formats.

Many minor formats are distinguished in order to allow operand type information to
be determined early in instruction decode.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Format conventions 63
4.3.3 Format names

Many of the bit-field types represent operand details such as register numbers or
immediate constants. Names for minor formats are systematically constructed by
concatenating the bit-field types corresponding to the used operands, and using ‘x’
for unused operands. The order of concatenation is the order in which the operands
are seen in a scan from most significant bit to least significant bit. The number of
bits in the immediate field is appended, or ‘0’ if no immediate.

For example, the format ‘mnd0’ is used for instructions where the first operand is a
general-purpose register (left source), the second operand is a general-purpose
register (right source), and the third operand is a general-purpose register
(destination). The format ‘xsd16’ is used for instructions where the first operand is
unused (no left source), the second operand is a signed 16-bit immediate (right
source), and the third operand is a general-purpose register (destination).

Major formats are named in a similar way to minor formats, but using capitalized
versions of the bit-field types. Additionally, the major format names abstract away
from the types of register operand, and only draw the following distinctions:

• ‘M’ indicates that the first operand is a register.

• ‘N’ indicates that the second operand is a register.

• ‘D’ indicates that the third operand is a register.

• ‘S’ indicates that the second operand is an immediate.

• ‘X’ indicates that the operand is unused.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

64 Major formats
4.4 Major formats
A summary of the major formats is given in Table 18. For each format this gives the
interpretation of the 3 operands. Here, a ‘register’ operand could be a
general-purpose register, target address register, floating-point register or control
register. Not every instruction uses all of the operands provided by its major format.

The bit-field layout of the major formats is given in the following diagrams.

Format Name Operand 1 Operand 2 Operand 3

MND0 register register register

MSD6 register sign-extended 6-bit immediate register

MSD10 register sign-extended 10-bit immediate register

XSD16 never used sign-extended 16-bit immediate register

Table 18: Major format summary

MND0

opcode register ext register register reserved

31 26 25 20 19 16 15 10 9 4 3 0

MSD6

opcode register ext 6bit immediate register reserved

31 26 25 20 19 16 15 10 9 4 3 0

MSD10

opcode register 10 bit immediate register reserved

31 26 25 20 19 10 9 4 3 0
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Reserved bits 65
Volume 2, Appendix A: SHmedia instruction encoding describes minor formats and
opcode assignments.

4.5 Reserved bits
The architecture requires that reserved bits in the instruction encodings are set to
specific values. This allows future expansion of the instruction set without
invalidating existing binaries. The use of inappropriate values leads to a reserved
instruction exception (see Table 19) or to architecturally-undefined behavior (see
Table 20).

Bits [0,3] of every instruction are reserved for the future expansion of the
instruction set architecture. They must be set to 0b0000 on all instructions. In the
current architecture specification, execution of an instruction with a non-zero value
in bits [0,3] leads to a reserved instruction exception. This exception check is
performed prior to decoding the opcode and extension opcode of the instruction.

Software should not rely on the reserved instruction exception generated for
incorrect settings of bits [0, 3]. On a future implementation, the behavior for
non-zero values could be modified to add new mechanism to the architecture.

Unused opcode and extension opcode values are reserved for future expansion of the
instruction set. Execution of a reserved instruction opcode leads to an exception, as
described in Volume 2, Appendix A: SHmedia instruction encoding.

XSD16

opcode 16 bit immediate register reserved
31 26 25 10 9 4 3 0

Figure 25: Major instruction formats

Bit-field
Type

Reserved bits Required value
Behavior for inappropriate

value

r Bits [0,3] of every instruction 0b0000 Reserved instruction exception

Table 19: Reserved encoding fields (architecturally-defined behavior)
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

66 Reserved bits
Reserved bits in a used operand field must be encoded as zero or the behavior is
architecturally undefined. An operand field contains unused bits in the following
cases:

• Bits 3, 4 and 5 of a left source operand for a target address register.

• Bits 3 and 4 of an extra source operand or destination operand for a target
address register. Bit 5 is the ‘likely’ bit in these cases.

• Bit 0 of an operand for a double-precision floating-point register.

• Bit 0 of an operand for a single-precision floating-point register pair.

• Bits 0 and 1 of an operand for a floating-point register vector.

• Bits 0, 1, 2 and 3 of an operand for a floating-point register matrix.

Unused operands are marked as ‘x’ in minor format names. The required encoding
for unused operands depends upon the operand position and type:

• If the first operand is unused, then it is an unused source.

• If the second operand is unused, then it is an unused source.

• If the third operand is unused, then it is an unused destination.

If the first operand is used to hold a floating-point register and the second operand is
unused, then the second operand is also considered to be a floating-point operand. In
all other cases, unused operands are considered to be general-purpose operands.

These distinctions are used in Table 20 to determine how the unused operand
should be encoded.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Assembly notation 67
4.6 Assembly notation
This manual uses a straightforward assembly notation for describing example
instruction sequences.

Each instruction consists of a mnemonic and up to three operands. Mnemonics
correspond to the instruction names used in this manual, though they can be
specified in either lower or upper case.

The operands are separated by commas. The order of the operands and their
meaning are determined by the instruction. Each operand is either a register
designator or an expression.

Register designators are the same as the architectural register names, except that
the subscript notation is not used. For example, R0 is the assembly syntax used to
represent R0. Additionally, the register designators can be specified in either lower
or upper case.

Expressions are constructed using standard integer operators and literal notation.
In expressions, the symbol ‘$’ indicates the value of the current instruction’s PC.

Bit-field
Type

Reserved bits Required value
Behavior for

inappropriate value

r Reserved bits in a used
operand field

0 Architecturally undefined

x Unused general-purpose
source operand

0b111111
(this corresponds to a read of R63)

Architecturally undefined

Unused general-purpose
destination operand

0b111111
(this corresponds to a write to R63)

Architecturally undefined

Unused floating-point
source operand

Set to the same value as the used
floating-point source operand

Architecturally undefined

Unused floating-point
destination operand

0b000000 Architecturally undefined

Table 20: Reserved encoding fields (architecturally-undefined behavior)
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

68 Assembly notation
Program labels are alphanumeric strings. The location of a label is defined by
inserting the label name followed by a ‘:’ in the text. The value of that label is
referred to by quoting the label name in an expression.

For a label referring to an instruction, the value of the label is the absolute address
of that instruction with the lowest bit indicating the instruction mode (0 for
SHcompact, 1 for SHmedia). For a label referring to data, the value of the label is
the absolute address of that data.

Comments are introduced by a ‘;’ prefix and terminated by the end of the line. In the
examples, portions of omitted code are indicated with a line beginning with ‘...’.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
5
SHmedia
integer
instructions

5.1 Overview

The SHmedia instruction set provides efficient support for the most common integer
operations found in typical programs. The integer instruction set contains the
following groups of instructions: constant loading, control flow, arithmetic,
comparison, bitwise operations, shifts and miscellany.

These instructions are described in this chapter.

5.1.1 Control flow

The performance of many programs is highly dependent on the efficiency of
branches. The control flow mechanism has therefore been designed to support
low-penalty branching.

This is achieved by allowing separation of the prepare-target instruction that
notifies the CPU of the branch target, away from the branch instruction that causes
control to flow, perhaps conditionally, to that branch target, This technique allows
the hardware to be informed of branch targets many cycles in advance, enabling a
smooth transition from the current sequence of instructions to the target sequence,
should the branch be taken.

The arrangement also allows for more flexibility in the branch instructions, since
the branches now have sufficient space to encode a comprehensive set of compare
operations.
-5 CPU Core, Volume 1: Architecture

70 Overview
5.1.2 64-bit integer operations

The natural length of operation is 64 bits. General-purpose registers are 64 bits
wide and effective address calculation is performed at 64-bit precision. The
provision of 64-bit support allows the architecture to support programming models
with 64-bit arithmetic and 64-bit addressing.

A sufficient set of instructions is provided to perform the most common integer
operations with 64-bit data. The instructions include constant loading, comparison,
addition, subtraction, bitwise operations and shifts.

Signed and unsigned 64-bit integers are supported. Some operations do not need to
take into account the sign of the operands. In these cases a single instruction is
provided which can be used on both signed and unsigned 64-bit integers.

5.1.3 32-bit integer operations

In many programs, the most common length of operation is 32 bits. Many of the
common integer operations using 32-bit data can be mapped directly onto
operations at 64-bit width. This includes constant loading, comparison, bitwise
operations and some shifts; there is no need to include specialized versions of these
instructions for 32-bit data. Other common integer instructions do require the
narrower width of 32-bit data to be accounted for. Instructions are provided to
perform addition, subtraction, multiplication and the remaining shifts with 32-bit
data.

Signed and unsigned 32-bit integers are supported. The representations of these
data types in registers treat the upper 32 unused bits in a consistent way. The upper
32 bits are held as sign extensions of bit 31 regardless of whether the register
represents a signed or unsigned 32-bit integer. This is known as a 32-bit
sign-extended representation.

The use of a consistent representation for signed and unsigned 32-bit integers
simplifies interactions between SHmedia and SHcompact. In cases where the
operation does not need to take into account the sign of the operands, this
uniformity allows some instructions to be used on both signed and unsigned 32-bit
integers.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Constant loading instructions 71
5.1.4 Other integer operations

Some operations do not occur commonly enough in typical programs to justify
support as a single instruction. Neither divide nor remainder instructions are
supported, for example, and these must be implemented in software where required.
A full set of multiplies is not supported either; the missing operations can be readily
synthesized in sequences using the multiplies provided.

5.2 Constant loading instructions
Constant values are very common in typical programs. Many instructions have an
immediate operand to allow a range of constant values to be encoded directly in the
instruction. If the required constant does not fit, then the constant must be loaded
separately. Some instructions do not have an immediate operand and cannot encode
a constant directly. Again the constant must be loaded separately.

Two instructions are provided for loading constants. MOVI loads a register with
sign-extended 16-bit immediate value. SHORI shifts its source operand 16 bits to
the left, and then combines it with its 16-bit immediate value using a bitwise OR
operation. Constants, up to 64 bits in length, can be loaded by using a MOVI
instruction followed by zero or more SHORI instructions as required. Sign-extended
16-bit constants can be loaded in 1 instruction, sign-extended 32-bit constants in 2
instructions, sign-extended 48-bit constants in 3 instructions and 64-bit constants
in 4 instructions.

Reads from R63 always returns zero, and writes to R63 are always ignored. This can
be used to make any register operand take a zero value. This is very useful as zero is
a particularly common constant. It can also be used to discard the result of an
instruction.

Instruction Summary

MOVI source,result move immediate

SHORI source1,source2_result shift then or immediate

Table 21: Constant loading instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

72 Control flow instructions
5.3 Control flow instructions
The instructions that notify the CPU of the branch target are termed prepare target
instructions, and use mnemonics that commence with the letters ‘PT’. The only
required architectural effect of these instructions is to calculate the target address,
raise an appropriate exception if this address is misformed or otherwise store the
address in the specified target address register.

There are 8 target address registers. These registers are 64-bit wide, but
implementations need only implement enough bits to allow representation of all
valid target addresses.

The target address registers are written by prepare-target instructions. They are
read by branch instructions and the GETTR instruction (see Section 5.3.4: The
GETTR instruction on page 79). If a prepare-target instruction calculates a target
address which is outside the implemented effective address space, then the
instruction raises an exception. Thus, it is not possible for a target address register
to hold an address outside of the implemented effective address space.

All SHmedia instructions are 4 bytes in size, and 4-byte aligned in memory. This
means that there is no need to encode the lowest 2 bits of SHmedia instruction
addresses. All SHcompact instructions are 2 bytes in size, and 2-byte aligned in
memory. This means that there is no need to encode the lowest 1 bit of SHcompact
instruction addresses.

The lowest bit of the target instruction address is used to distinguish the mode of
the target instruction: SHmedia has the lowest bit set to 1, and SHcompact has it as
0. If a prepare-target is executed such that the bottom 2 bits of the target address
are both set, then an exception is raised to signal a misaligned SHmedia instruction.
The branch architecture is arranged so that the PC itself can never become
misaligned.

Only the unconditional branch is capable of mode switching. Conditional branches
disregard the value of the bottom 2 bits of the target address, and do not cause a
mode switch. This arrangement permits simpler and more efficient
implementations by limiting the mode switch mechanism to one SHmedia
instruction.

Note that the misaligned SHmedia instruction check is performed at prepare-target
time regardless of the nature of the branch. Thus, neither an unconditional nor a
conditional branch can ever be executed with a target address register
corresponding to a misaligned SHmedia instruction.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control flow instructions 73
The interpretation of the four possible combinations of the lowest 2 bits are shown
in Table 22. Note that not all prepare-target instructions are capable of generating
all combinations.

5.3.1 Prepare-target instructions

Four different prepare-target instructions provide different ways of forming the
target address.

Bit 1 Bit 0 Interpretation

0 0 Target is an SHcompact instruction on a 4-byte boundary

0 1 Target is an SHmedia instruction

1 0 Target is an SHcompact instruction on a 2-byte, but not on a 4-byte, boundary

1 1 Target is a misaligned SHmedia instruction, exception raised at prepare-target

Table 22: Interpretation of lowest 2 target address bits by an unconditional branch

Bit 1 Bit 0 Interpretation

0 0 Target is an SHmedia instruction

Lowest 2 bits of the target address are discarded when forming the target PC0 1

1 0

1 1 Target is a misaligned SHmedia instruction, exception raised at prepare-target

Table 23: Interpretation of lowest 2 target address bits by a conditional branch

Instruction Summary

PTA offset,target prepare target relative immediate (target indicates SHmedia)

PTB offset,target prepare target relative immediate (target indicates SHcompact)

PTABS address,target prepare target absolute register

PTREL offset,target prepare target relative register

Table 24: Prepare-target instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

74 Control flow instructions
The PTA instruction forms the target address by adding a constant value onto the
PC of the current instruction. The constant is formed by taking a 16-bit immediate
value, shifting it left by 2 bits and adding 1. The target address always indicates an
SHmedia instruction. The target instruction has a byte displacement from the PTA
instruction which is within the range [-131072, 131068]. This instruction is typically
used for ‘direct’ branching to SHmedia instructions that are within range.

The PTB instruction forms the target address by adding a constant value onto the
PC of the current instruction. The constant is formed by taking a 16-bit immediate
value and shifting it left by 2 bits. The target address has the lowest bit clear. This
will cause a switch to SHcompact if it is used by an unconditional branch; no mode
switch occurs if it is used by a conditional branch. The target instruction has a byte
displacement from the PTB instruction which is within the range [-131072, 131068].

The PTB instruction is typically used for ‘direct’ branching to SHcompact
instructions that are within range. Note that bit 1 of the target address is always
zero for PTB. This means that the target SHcompact instruction of a mode change
using an immediate branch, must be 4-byte aligned. PTB can also be used, in
conjunction with GETTR, for loading PC-relative addresses.

The PTABS instruction uses the value of the provided register as the target address.
This can encode any of the 4 possible combinations of the lowest 2 bits. An
instruction misalignment exception is raised if both of the lower bits are set. This
instruction is typically used for ‘indirect’ branching, such as function return and call
by function pointer.

The PTREL instruction forms the target address by adding a register value onto the
PC of the current instruction. This can encode any of the 4 possible combinations of
the lowest 2 bits. An instruction misalignment exception is raised if both of the
lower bits of the target address are set. This instruction is typically used for ‘direct’
branching to either SHmedia or SHcompact instructions where the displacement is
not within range of an immediate-based branch. In this case the long displacement
can be loaded by a sequence of MOVI and SHORI instructions.

The placement of prepare-target instructions is expected to be highly optimized.
Prepare-target instructions can be merged if they refer to the same target
instruction. The main objective is to arrange the code so that each prepare-target
instruction is maximally separated, in the dynamic instruction stream, from the
branch instruction that reads that target address register. This gives the branch
mechanism the maximum amount of time to arrange for the control flow to be
achieved without penalty.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control flow instructions 75
In practice, the migration of prepare-target instructions away from branches will be
limited by the size of functions, by the finite number of target address registers and
by data/control dependency (for indirect branches). The most important
optimization is to hoist prepare-target instructions out of inner-most loops.
Prepare-target optimizations can be achieved through standard compiler
techniques such as loop/block-invariant code motion, common sub-expression
elimination, register allocation and instruction scheduling.

Typically, many prepare-target instructions will be migrated to the beginning of the
function. Most other prepare-target instructions will migrate to the beginning of
basic blocks. Only a few prepare-targets will occur elsewhere, typically where their
migration is blocked by a data or control dependency.

The encoding of all prepare-target instructions includes an l-bit. The l-bit (‘l’ for
likely) should be used to indicate whether it is likely for control to be passed to that
target address. If the instruction mnemonic has no modifier, or if it has a ‘/L’ hint
modifier, then the l-bit is encoded as 1. This indicates that it is considered likely for
control to pass through to the branch instruction using that target address register
and for that branch to be taken. If the instruction mnemonic has a ‘/U’ modifier, then
the l-bit is encoded as 0 indicating that this flow is considered unlikely.

The l-bit has no architectural effect on the behavior of the instruction, but is used to
pass a performance hint to the implementation. An implementation can, for
example, perform some prefetching of likely branch targets, but not of unlikely
branch targets. An appropriate setting for this bit can be deduced, for example, from
compiler heuristics or according to branch profiling information.

5.3.2 The unconditional branch instruction

One unconditional branch, BLINK, is provided.

It is preferable to use this instruction for all unconditional branches, rather than a
conditional branch with an always true condition. This allows the unconditional
nature of the branch to be deduced without operand analysis.

Instruction Summary

BLINK target,link branch unconditionally and link

Table 25: Unconditional branch instruction
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

76 Control flow instructions
BLINK writes the target address of the subsequent instruction to its destination
register. The lowest bit of this target address is set to 1, indicating that this
instruction is to be executed as an SHmedia instruction. This is a procedure link
mechanism, since it allows the target instruction sequence to return control back to
the instruction sequence that invoked it. This is typically used to implement
standard call and return mechanisms.

The choice of link register is not dictated by the SHmedia instruction set. However,
the SHcompact instruction set provides call and return instructions that use PR as
the link register (see Section 11.2: Control flow instructions on page 172). PR is
mapped into the SHmedia general-purpose register set as the lower 32 bits of R18
(see Section 2.9: SHcompact state on page 26). An SHmedia call sequence should
therefore use R18 as the link register where interoperability with SHcompact
procedures is required. Additionally, software must ensure that the SHmedia return
address can be represented in the lower 32-bits of R18 (see Volume 3, Chapter 1:
SHcompact specification).

The write to the destination register can be defeated using R63:

BLINK TRa, R63 ; transfer control to TRa without link

This can be used to achieve an unconditional branch without a link. Since BLINK is
an unconditional branch it does not have a bit to indicate likelihood.

BLINK is the only SHmedia branch that can cause a mode switch. Bit 0 of the target
address register indicates the target mode; 0 indicates SHcompact and 1 indicates
SHmedia. Bit 1 indicates the alignment of the SHcompact target instruction
(whether it is 4-byte aligned or not). Bit 1 is always 0 for SHmedia target
instructions due to the prepare-target checks. BLINK should be used for function
return since, in general, a function will not know whether it will be called from an
SHmedia or an SHcompact caller.

5.3.3 Conditional branch instructions

There are six conditional branches that perform register with register comparisons.

Instruction Summary

BEQ source1,source2,target branch if equal 64-bit

BNE source1,source2,target branch if not equal 64-bit

BGT source1,source2,target branch if greater than 64-bit signed

Table 26: Conditional branch instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control flow instructions 77
The full set of register with register comparisons can be synthesized from these by
swapping the source operands. This exploits the following two equivalences:

(i < j) ≡ (j > i)
(i ≤ j) ≡ (j ≥ i)

The provision of a full compare set means that the sense of the branch can be chosen
arbitrarily. This is because the inversion of the branch condition can be folded, for
free, into the compare using the following equivalences:

NOT (i = j) ≡ (i ≠ j)
NOT (i ≠ j) ≡ (i = j)
NOT (i < j) ≡ (i ≥ j)
NOT (i > j) ≡ (j ≥ i)
NOT (i ≤ j) ≡ (i > j)
NOT (i ≥ j) ≡ (j > i)

This flexibility allows the branch-taken instruction sequence and the
branch-not-taken instruction sequence (that is, fall-through) to be swapped without
any overhead. In general, the instruction sequences should be arranged to favor
fall-through so as to avoid any branch penalty.

Branch conditions are often compares with zero. All cases can be represented in a
single branch instruction, using the above instructions with one source operand set
to R63.

There are two conditional branches that perform register with immediate
comparisons.

BGE source1,source2,target branch if greater than or equal 64-bit signed

BGTU source1,source2,target branch if greater than 64-bit unsigned

BGEU source1,source2,target branch if greater than or equal 64-bit unsigned

Instruction Summary

BEQI source1,source2,target branch if equal to immediate 64-bit

BNEI source1,source2,target branch if not equal to immediate 64-bit

Table 27: Conditional branch with immediate instructions

Instruction Summary

Table 26: Conditional branch instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

78 Control flow instructions
Only equality and inequality are provided for branch compares with immediates.
Other forms require the immediate to be loaded separately. The provided pair are
complements of each other, which again gives the property that the sense of the
branch can be chosen arbitrarily.

Conditional branches are not capable of mode switch. Bits 0 and 1 of the target
address are ignored.

The compare operations in the branches are performed on 64-bit integers. They are
also directly usable for 32-bit integers, providing that the integers are held in a
sign-extended 32-bit representation.

It is important to note that unsigned comparisons can be performed directly at
64-bit width on unsigned 32-bit numbers, even though those numbers are held in a
32-bit sign-extended representation. The effect of the sign-extension is to add (264 -
232) onto the value of each of the unsigned 32-bit numbers in the range [231, 232).
This translation from the unsigned 32-bit number space, via sign-extension, into an
unsigned 64-bit number space preserves the ordering of all of these unsigned
numbers. This means that unsigned 64-bit compares give the correct results.

All conditional branch instructions have an l-bit, which should be used to indicate
whether that branch is likely to be taken. If the instruction mnemonic has no
modifier, or if it has a ‘/L’ modifier, then the l-bit is encoded as 1 indicating that the
branch is considered likely to be taken. If the instruction mnemonic has a ‘/U’
modifier, then the l-bit is encoded as 0 indicating that this branch is considered
unlikely.

The l-bit has no architectural effect on the behavior of the instruction, but is used to
pass a performance hint to the implementation. An implementation can use this
information to indicate whether to favor execution down the taken or not-taken
path. It can, for example, use a static prediction technique to begin execution of the
predicted path before it is known whether the branch is actually taken or not. This
can eliminate branch penalties, where the prediction is correct, but can incur
branch penalties where the prediction is incorrect.

Appropriate setting of the l-bit is important for branch performance. An appropriate
setting for this bit can be deduced, for example, from compiler heuristics or according to
branch profiling information.

Note that l-bits are provided on both prepare-target and conditional branch
instructions. The provided hints are similar but different. The prepare-target hint is
typically used to control prefetch, while the branch hint is typically used to control
prediction. The prepare-target hint has to factor in the likelihood of a branch
instruction using that target address register being reached at all, whereas a
branch hint simply distinguishes taken and not-taken.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control flow instructions 79
Finally, there can be multiple branches associated with a prepare-target instruction,
and the likelihoods of those different branches being taken can vary.

There are no exception cases associated with branch instructions.

5.3.4 The GETTR instruction

The GETTR instruction is used for copying a target address register to a
general-purpose register.

PTABS performs a complementary operation; it copies a general-purpose register
into a target address register. The GETTR instruction always returns a value which
can be reloaded into a target address register (using PTABS) without generating an
exception. The value returned by GETTR ensures that any unimplemented higher
bits of the source target register are seen as sign extensions of the highest
implemented bit.

GETTR and PTABS can be used in sequences to save and restore target registers to
and from memory. This can be used in calling conventions or in a context switch.
GETTR can also be used for loading a PC-relative address. For example:

PTB label, TR0 ; PC-relative load of label into TR0
GETTR TR0, R0 ; move TR0 into R0
...
label: ; label should be 4-byte aligned

Instruction Summary

GETTR target,result move from target register

Table 28: GETTR instruction
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

80 Arithmetic instructions
5.4 Arithmetic instructions
The arithmetic operations supported are addition, subtraction and multiplication.
Neither divide nor remainder instructions are supported, and these must be
implemented in software where required. The provided instructions use modulo
arithmetic. Arithmetic overflow checking is not directly supported, and must be
achieved with additional instructions where required.

Addition and subtraction are very common. Comprehensive support is provided for
32 bit and 64 bit operations, on signed and unsigned integers. In fact, the provided
instructions do not need to take account of sign so only 4 instructions are needed.

ADD and SUB use all 64 bits of their sources and write the result to all 64 bits of
their destination. ADD.L and SUB.L ignore the upper 32 bits of their sources, and
write a 32-bit result that is sign-extended up to 64 bits. This arrangement means
that ADD.L and SUB.L give a free narrowing type conversion on input, and always
produce an output in a sign-extended 32-bit representation.

These instructions also have some other important uses. Negation can be achieved
using the subtract operations with the first source being R63:

SUB R63, Rm, Rd ; 64-bit negation of Rm into Rd
SUB.L R63, Rm, Rd ; 32-bit negation of Rm into Rd

One way to sign extend a 32-bit value through the upper 32 bits is to use ADD.L
with an R63 source:

ADD.L Rm, R63, Rd ; 32-bit sign extend of Rm into Rd

Instruction Summary

ADD source1,source2,result add 64-bit

ADD.L source1,source2,result add 32-bit

SUB source1,source2,result subtract 64-bit

SUB.L source1,source2,result subtract 32-bit

Table 29: Addition and subtraction instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Arithmetic instructions 81
This is useful for converting from a 64-bit integer value down to a 32-bit integer
value. This is appropriate for both signed and unsigned 32-bit numbers since the
representation of both of these types is the same (sign-extended). Note that no
instruction is required to convert between a signed 32-bit integer and an unsigned
32-bit integer since they have the same representation in registers.

Addition of a register value with a constant value, and subtraction of a constant
value from a register value, are also directly supported. The constant is provided as
a sign-extended immediate. This means that only add immediate need be provided.
Subtract immediate can be achieved by adding the negation of the immediate.
Separate instructions are provided for 32-bit and 64-bit operation, and these can be
used on both signed and unsigned integers.

ADDI uses all 64 bits of its register source and writes the result to all 64 bits of its
destination. ADDI.L ignores the upper 32 bits of its register source, and writes a
32-bit result that is sign-extended up to 64 bits. This arrangement means that
ADD.L gives a free narrowing type conversion on input, and always produces an
output in a sign-extended 32-bit representation.

An instruction is provided to perform a 32-bit addition and zero-extend the result up
to 64 bits. This instruction is irregular because it performs a 32-bit operation but
produces a result which is not in a sign-extended 32-bit representation. The result
is, in fact, a 64-bit representation and is always of a positive number. The
instruction is useful because it provides a means to convert unsigned 32-bit integers
up to 64-bit width in a single instruction.

This instruction is commonly used in the form:

ADDZ.L Rm, R63, Rd ; 32-bit zero-extend of Rm into Rd

Instruction Summary

ADDI source1,source2,result add immediate 64-bit

ADDI.L source1,source2,result add immediate 32-bit

Table 30: Addition with immediate instruction

Instruction Summary

ADDZ.L source1,source2,result add with zero-extend 32-bit

Table 31: Addition with zero-extend instruction
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

82 Arithmetic instructions
However, in cases where there is an unsigned addition at 32-bit precision followed
by a conversion up to a 64-bit width, then both the addition and the conversion can
be achieved using this one instruction.

Two multiply instructions are provided. MULS.L performs a multiplication of two
signed 32-bit register values to give a 64-bit result. MULU.L multiplies two
unsigned 32-bit register values and also gives a 64-bit result.Both MULS.L and
MULU.L ignore the upper 32 bits of their register sources to give free narrowing
type conversion on input.

A code sequence to perform a 32-bit by 32-bit multiply to give a 32-bit result is:

MULU.L Rm, Rn, Rd ; multiply Rm and Rn to 64-bit result
ADD.L Rd, R63, Rd ; convert down to a 32-bit result stored in Rd

This sequence can be used for both signed and unsigned 32-bit multiplies since the
lower bits of a multiply are not affected by sign, and since the output
representations of signed 32-bit and unsigned 32-bit numbers are the same. For the
same reasons, the corresponding sequence with MULS.L gives an identical end
result. In some cases, it is possible to eliminate the second instruction of this
sequence by exploiting a free narrowing on subsequent instructions that read the
multiply result.

A sequence for a full 64-bit by 64-bit multiply to give a 64-bit result is:

MULU.L Rm, Rn, Rd ; product of Rm lower by Rn lower into Rd
SHLRI Rm, 32, R1 ; right shift Rm upper half into R1
SHLRI Rn, 32, R2 ; right shift Rn upper half into R2
MULU.L R1, Rn, R3 ; product of Rm upper by Rn lower into R3
MULU.L R2, Rm, R4 ; product of Rn upper by Rm lower into R4
ADD R3, R4, R5 ; add two lower/upper products together into R5
SHLLI R5, 32, R6 ; left shift sum of lower/upper products into R6
ADD Rd, R6, Rd ; calculate final 64-bit result into Rd

This sequence can be used for both signed and unsigned 64-bit multiplication.

Instruction Summary

MULS.L source1,source2,result multiply full 32-bit x 32-bit to 64-bit signed

MULU.L source1,source2,result multiply full 32-bit x 32-bit to 64-bit unsigned

Table 32: Multiply instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Comparison instructions 83
The sequences described above make use of shifting and bitwise instructions which
are defined later. Registers numbers R1 to R6 are used as temporaries. The selected
register allocation is arbitrary; other allocations can be more appropriate in
practice.

5.5 Comparison instructions
The comparison instructions allow two register values to be compared with each
other. All comparison instructions compare all 64 bits of the two sources. The result
of a comparison is a boolean value: 0 indicates that the comparison was false, and 1
that the comparison was true. The result is stored into a register destination.

A minimum number of compare instructions are provided. There are no compares
against immediate values, though compares with zero can be achieved using R63.
Other constant values must be loaded in advance if required. The supported
compares are to test two registers for equality (CMPEQ), to test whether one
register is greater than another register in a signed sense (CMPGT), and to test
whether one register is greater than another register in an unsigned sense
(CMPGTU).

Other compares can be synthesized using the following standard equivalences:

(i ≠ j) ≡ NOT (i=j)
(i < j) ≡ (j > i)
(i ≤ j) ≡ NOT (i > j)
(i ≥ j) ≡ NOT (j > i)

Thus by swapping the operand order and providing subsequent boolean negations,
as required, all compares can be generated. The boolean negation can be achieved
using XORI with an immediate value of 1 (see Section 5.6: Bitwise instructions on
page 84). In some cases, it is possible to eliminate the explicit boolean negation by
folding it into the subsequent use of the compare result.

Instruction Summary

CMPEQ source1,source2,result compare equal 64-bit

CMPGT source1,source2,result compare greater than 64-bit signed

CMPGTU source1,source2,result compare greater than 64-bit unsigned

Table 33: Compare instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

84 Bitwise instructions
The compares are defined to operate on 64-bit integers. CMPEQ can operate on
signed or unsigned 64-bit integers, while CMPGT is for signed 64-bit integers and
CMPGTU is for unsigned 64-bit integers.

For the compares to have the correct effect on 32-bit integers, the sign-extended
32-bit representation should be used. CMPEQ can operate on signed or unsigned
32-bit integers, while CMPGT is for signed 32-bit integers and CMPGTU is for
unsigned 32-bit integers.

It is important to note that unsigned comparisons can be performed directly at 64-bit
width on unsigned 32-bit numbers, even though those numbers are held in a 32-bit
sign-extended representation. The effect of the sign-extension is to add (264 - 232)
onto the value of each of the unsigned 32-bit numbers in the range [231, 232). This
translation from the unsigned 32-bit number space, via sign-extension, into an
unsigned 64-bit number space preserves the ordering of all of these unsigned
numbers. This means that unsigned 64-bit compares give the correct results.

Compares often occur in programs to control conditional branches. Rather than use
a compare instruction followed by a branch based on whether that compare result
was true or false, it is possible to fold the effect of the compare directly into the
branch instruction. This form is preferred because it contains one less instruction.
Comparison instructions are typically only used when the compare result is needed
as an arithmetic value.

5.6 Bitwise instructions
All possible bitwise combinations of two bits, A and B, can be formed using an AND,
OR, XOR, or ANDC operation, followed by an optional NOT. A full set of truth tables
follows:

A B 0 A AND B A ANDC B A B ANDC A B A XOR B A OR B

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

Table 34: Bitwise operations
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Bitwise instructions 85
The instruction set supports AND, OR, XOR and ANDC operations directly.

These instructions operate on two 64-bit sources to give a 64-bit result. The
appropriate bitwise operation is performed independently on each of the 64 bit
positions in the sources and result.

The instructions can also be used directly on 32-bit data. If the two 32-bit sources
use a 32-bit sign-extended representations, then the output 64-bit result will also be
in a 32-bit sign-extended representation. This happens because the same bitwise
operation will be applied to the sign bit as to all of the upper 32 bits. It should be
noted that these operations do not give a free narrowing on input for 32-bit integer
values.

Bitwise instructions often occur with one operand as a constant. The instruction set
therefore provides immediate forms of the supported bitwise operations.

A B 1
NOT (A
AND B)

NOT (A
ANDC B)

NOTA
NOT (B

ANDC A)
NOT B

NOT (A
XOR B)

NOT (A
OR B)

0 0 1 1 1 1 1 1 1 1

0 1 1 1 1 1 0 0 0 0

1 0 1 1 0 0 1 1 0 0

1 1 1 0 1 0 1 0 1 0

Table 35: Bitwise operations (continued)

Instruction Summary

AND source1,source2,result bitwise AND 64-bit

OR source1,source2,result bitwise OR 64-bit

XOR source1,source2,result bitwise XOR 64-bit

ANDC source1,source2,result bitwise ANDC 64-bit

Table 36: Bitwise instructions

Instruction Summary

ANDI source1,source2,result bitwise AND immediate 64-bit

Table 37: Bitwise with immediate instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

86 Shift instructions
Each of these instructions uses a sign-extended immediate, Note that an andc
operation with an immediate is not provided since the complement can be folded
into the value of the sign-extended immediate.

The NOT operation is supported using an XORI with -1:

XORI Rm, -1, Rd ; to bit-not Rm into Rd

For some bitwise operations, it is necessary to follow one of the provided bitwise
instructions by a bitwise NOT. However, the most common operations are available
in a single instruction.

5.7 Shift instructions
Three different styles of shifting are supported:

• Shift logical left (‘SHLL’): the value is shifted left by the specified amount and
zero bits are inserted at the least significant end of the shift. In fact, the same
shift left operation can be used for both logical and arithmetic operations since
these operations are identical.

• Shift logical right (‘SHLR’): the value is shifted right by the specified amount
and zero bits are inserted at the most significant end of the shift.

• Shift arithmetic right (‘SHAR’): the value is shifted right by the specified amount
and sign bits are inserted at the most significant end of the shift, so that the sign
of the result is the same as that of the source.

The above list gives the base mnemonic for the shift names. The shift amount can be
specified by an immediate value (an immediate shift) or by a register value (a
dynamic shift). The immediate shift instructions append an ‘I’ to the base shift
mnemonic, while the dynamic shifts append a ‘D’. Shifting operations are supported
at 32-bit and 64-bit width. The 32-bit shift is distinguished from the 64-bit shift by
appending a trailing ‘.L’ to the shift mnemonic.

All of these options are orthogonal. The total number of shift operations supported
is, therefore, three times two times two which is twelve.

ORI source1,source2,result bitwise OR immediate 64-bit

XORI source1,source2,result bitwise XOR immediate 64-bit

Instruction Summary

Table 37: Bitwise with immediate instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Shift instructions 87
For 64-bit shift instructions, only the low 6 bits of the shift amount are used. This
means that the shift amount is modulo 64; for example, a shift of 64 has the same
effect as a shift of 0.

The immediate 64-bit shifts are:

The dynamic 64-bit shifts are:

For 32-bit shift instructions, only the low 5 bits of the shift amount are used. This
means that the shift amount is modulo 32; for example, a shift of 32 has the same
effect as a shift of 0. The 32-bit shift instructions ignore the upper 32 bits of their
sources, and write a 32-bit result which is sign-extended up to 64 bits. This
arrangement means that they give a free narrowing type conversion on input, and
always produce an output in a sign-extended 32-bit representation.

The immediate 32-bit shifts are:

Instruction Summary

SHLLI source1,source2,result shift logical left immediate 64-bit

SHLRI source1,source2,result shift logical right immediate 64-bit

SHARI source1,source2,result shift arithmetic right immediate 64-bit

Table 38: Immediate 64-bit shift instructions

Instruction Summary

SHLLD source1,source2,result shift logical left dynamic 64-bit

SHLRD source1,source2,result shift logical right dynamic 64-bit

SHARD source1,source2,result shift arithmetic right dynamic 64-bit

Table 39: Dynamic 64-bit shift instructions

Instruction Summary

SHLLI.L source1,source2,result shift logical left immediate 32-bit

SHLRI.L source1,source2,result shift logical right immediate 32-bit

SHARI.L source1,source2,result shift arithmetic right immediate 32-bit

Table 40: Immediate 32-bit shift instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

88 Miscellaneous instructions
The dynamic 32-bit shifts are:

Shifts are often used for bit-field manipulation and for scaling. They can be used as
an efficient alternative for multiplication and division by 2n. The value of n must not
be negative and it must be less than the width of the shift instruction.

A logical left shift can be used for the signed or unsigned multiplication of a value by
2n. A logical right shift can be used for the unsigned division of a value by 2n. An
arithmetic right shift can be used for the signed division of a value by 2n. In this last
case, however, the arithmetic right shift will give a division that rounds the result
towards minus infinity. If a division is required that rounds the result towards zero,
then the arithmetic right shift will give unexpected results for some negative input
values. It is possible to correct the behavior of the arithmetic right shift with a short
instruction sequence.

5.8 Miscellaneous instructions
The instruction set provides 5 integer instructions which do not fall naturally into
any of the other categories.

Instruction Summary

SHLLD.L source1,source2,result shift logical left dynamic 32-bit

SHLRD.L source1,source2,result shift logical right dynamic 32-bit

SHARD.L
source1,source2,result

shift arithmetic right dynamic 32-bit

Table 41: Dynamic 64-bit shift instructions

Instruction Summary

BYTEREV source,result byte reversal

CMVEQ source1,source2,source3_result conditional move if equal to zero

CMVNE source1,source2,source3_result conditional move if not equal to zero

NOP no operation

NSB source,result count number of sign bits

Table 42: Miscellaneous instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Miscellaneous instructions 89
The BYTEREV instruction reverses all 8 bytes in the source register, and stores the
result in the destination register. Byte number i, where i is in [0, 7], is moved to byte
number (7-i). This is particularly useful for converting data between little endian
and big endian representations. If a byte reversal on a narrower data type is
required, then a right shift can be used after the BYTEREV. For example, an 8-byte
reversal requires a single instruction:

BYTEREV Rm, Rn ; to byte reverse an 8-byte integer

A 4-byte reversal requires two instructions:

BYTEREV Rm, Rn
SHARI Rn, 32, Rn ; to byte reverse a 4-byte integer

The conditional move instructions can be used to eliminate some conditional
branches. For example, consider a basic block that is executed only if some condition
is true, which computes some side-effect free expression and assigns it to some
variable. Usually this is compiled into a conditional branch to guard execution of the
basic block. With conditional moves, the branch can be eliminated and replaced by a
conditional assignment of the expression result to the variable. This technique is
generally called ‘if-conversion’. It allows small basic blocks to be merged into
surrounding ones, and can remove unpredictable and costly branches.

The CMVEQ instruction moves source2 to result only if source1 is zero. The
CMVNE instruction moves source2 to result only if source1 is not zero. Two
conditional moves are provided in order to give a free negation through choice of the
appropriate conditional move instruction.

Common uses of conditional move are evaluation of the maximum of two values:

CMPGT Rm, Rn, R0
CMVNE R0, Rm, Rn ; Rn = (Rm > Rn) ? Rm : Rn;

and the minimum of two values:

CMPGT Rm, Rn, R0
CMVEQ R0, Rm, Rn ; Rn = (Rm <= Rn) ? Rm : Rn;

The NOP instruction performs no operation. It can be used, for example, to pad a
sequence of instructions up to a particular alignment boundary.

The NSB instruction counts the number of sign bits in its source register, subtracts
1 and stores the result in its destination register. The number of sign bits is the
number of consecutive bits, including the most significant bit and moving down
towards the least significant bit, that have the same bit value.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

90 General-purpose register move
5.9 General-purpose register move
There is no dedicated instruction for moving one general-purpose register value into
another. It is recommended that ORI is used with an immediate value of 0:

ORI Rm, 0, Rd ; move Rm into Rd
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
6
SHmedia
memory
instructions

6.1 Overview

Memory is byte addressed. The memory instructions provide access to data using
little endian or big endian representations. Endianness is specified at power-on
reset, and does not change thereafter. The mechanism for selecting between little
endian and big endian operation is external to the CPU, and is not specified by the
CPU architecture.

This chapter defines the general-purpose load and store instructions. Load and store
instructions for floating-point registers are described separately in Chapter 8:
SHmedia floating-point on page 135.

Load and store instructions transfer data between a register and memory. Some
load instructions have signed and unsigned variants to perform the correct
extension into the register. For byte (8-bit) and word (16-bit) objects, both signed and
unsigned loads exist. For long-word (32-bit) objects, only signed loads are provided
because all 32-bit objects are held in a sign-extended form in registers regardless of
sign. For quad-word (64-bit) objects, there is no distinction between signed and
unsigned.

Two different sets of load and store instructions are provided:

• The first set are defined in Section 6.2: Aligned load and store instructions on
page 92 and support naturally aligned data. This is where the address of the
data is an exact multiple of the width of the access. If one of these instructions
attempts a misaligned access, it will cause a misalignment exception.

• The second set are defined in Section 6.3: Misaligned access support on page 94.
These instructions are used in short sequences to synthesize accesses to
misaligned data without an exception. These instructions should be used where
software cannot statically determine that the data is naturally aligned.
-5 CPU Core, Volume 1: Architecture

92 Aligned load and store instructions
This chapter also describes instructions for synchronization and cache control.

6.2 Aligned load and store instructions
The provided instructions are summarized in Table 43.

If the destination register of an aligned load instruction is R63, then this indicates a
software-directed data prefetch from the specified effective address. Software can
use this instruction to give advance notice that particular data will be required. It is
implementation-specific as to whether a prefetch will be performed. In exceptional
cases, no exception is raised and the prefetch has no effect. Further information on
prefetch is given in Section 6.6.1: Prefetch on page 102.

Displacement addressing

For displacement addressing, the effective address is calculated by adding a
displacement to a base pointer. The displacement is a sign-extended 10-bit
immediate value and the base pointer is held in a general-purpose register. The
immediate value is scaled by the size of the object accessed.

Access Mode
Signed

byte
(8 bits)

Unsigned
byte

(8 bits)

Signed
word

(16 bits)

Unsigned
word

(16 bits)

Long
word

(32 bits)

Quad-word
(64 bits)

Load indexed LDX.B LDX.UB LDX.W LDX.UW LDX.L LDX.Q

displacement LD.B LD.UB LD.W LD.UW LD.L LD.Q

Store indexed STX.B STX.W STX.L STX.Q

displacement ST.B ST.W ST.L ST.Q

Table 43: Aligned load and store instructions

Instruction Summary Displacement scaling factor

LD.B base,offset,result load 8-bit signed 1

LD.UB base,offset,result load 8-bit unsigned 1

LD.W base,offset,result load 16-bit signed 2

LD.UW base,offset,result load 16-bit unsigned 2

Table 44: Aligned load instructions with displacement addressing
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Aligned load and store instructions 93
Indexed addressing

For indexed addressing, the effective address is calculated by adding a base pointer
with an index. Both the base pointer and the index are held in general-purpose
registers. Unlike displacement addressing, the index is not scaled by the size of the
object accessed.

LD.L base,offset,result load 32-bit 4

LD.Q base,offset,result load 64-bit 8

Instruction Summary Displacement scaling factor

ST.B base,offset,value store 8-bit 1

ST.W base,offset,value store 16-bit 2

ST.L base,offset,value store 32-bit 4

ST.Q base,offset,value store 64-bit 8

Table 45: Aligned store instructions with displacement addressing

Instruction Summary Displacement scaling factor

Table 44: Aligned load instructions with displacement addressing

Instruction Summary

LDX.B base,index,result load indexed 8-bit signed

LDX.UB base,index,result load indexed 8-bit unsigned

LDX.W base,index,result load indexed 16-bit signed

LDX.UW base,index,result load indexed 16-bit unsigned

LDX.L base,index,result load indexed 32-bit

LDX.Q base,index,result load indexed 64-bit

Table 46: Aligned load instructions with indexed addressing
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

94 Misaligned access support
6.3 Misaligned access support
All the load and store instructions described so far throw a misalignment trap if
used to access a data object that is not naturally aligned. Instructions are also
included that can be used to construct efficient sequences for loading objects that
are misaligned or with unknown alignment.

Support for loading and storing misaligned long-words and quad-words is provided.
Separate instructions are used to access the low-part and high-part of misaligned
data. Only displacement addressing is supported using a sign-extended 6-bit
immediate. The immediate is not scaled to allow formation of misaligned addresses.

Instruction Summary

STX.B base,index,value store indexed 8-bit

STX.W base,index,value store indexed 16-bit

STX.L base,index,value store indexed 32-bit

STX.Q base,index,value store indexed 64-bit

Table 47: Aligned store instructions with indexed addressing

Instruction Summary

LDHI.L base,offset,result load misaligned high part 32-bit

LDLO.L base,offset,result load misaligned low part 32-bit

LDHI.Q base,offset,result load misaligned high part 64-bit

LDLO.Q base,offset,result load misaligned low part 64-bit

Table 48: Misaligned load instructions

Instruction Summary

STHI.L base,offset,value store misaligned high part 32-bit

STLO.L base,offset,value store misaligned low part 32-bit

STHI.Q base,offset,value store misaligned high part 64-bit

Table 49: Misaligned store instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Misaligned access support 95
Misaligned load

The instructions described in this section can be used to load a misaligned
long-word or quad-word object in 3 instructions. Instruction sequences for
misaligned long-word loads return a sign-extended 32-bit result. The general form
of a misaligned load sequence is as follows:

LDHI.L Rptr, off+3, Rhi
LDLO.L Rptr, off, Rlo
OR Rhi, Rlo, Result

The address of the highest byte in the misaligned object is passed to the “load high
part” instruction, while the address of the lowest byte in the misaligned object is
passed to the “load low part” instruction. Usually, the immediate operand to the
high part instruction is (n-1) more than the immediate operand to the low part
instruction, where “n” is the object size in bytes.

Figure 26 shows a little endian example of loading a misaligned long-word.

STLO.Q base,offset,value store misaligned low part 64-bit

Instruction Summary

Table 49: Misaligned store instructions

Figure 26: Misaligned load example

ABCDEFGHIJ
048

LDHI.L Rptr, 3, Rhi

LDLO.L Rptr, 0, Rlo

memory

000Essss
07

BCD00000
07

OR Rhi, Rlo, ResultBCDEssss
07

(i)

(ii)

(iii)

Rptr (address in register)
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

96 Misaligned access support
Support for loading misaligned words is not included, and alternative instruction
sequences should be used. For example, the little endian load of an unsigned
misaligned word (16 bits) can be achieved using:

LD.UB Rbase, 0, Rtmp0 ; least significant byte
LD.UB Rbase, 1, Rtmp1 ; most significant byte
MSHFLO.B Rtmp0, Rtmp1, Result

The MSHFLO.B instruction (see Section 7.18: Multimedia shuffles on page 130)
combines the two loaded bytes in the correct way to form an unsigned 16-bit word.

An example little endian sequence to load a signed misaligned word is:

LD.UB Rbase, 0, Rtmp0 ; least significant byte
LD.B Rbase, 1, Rtmp1 ; most significant byte
SHLLI Rtmp1, 8, Rtmp1
OR Rtmp0, Rtmp1, Result

Misaligned store

Storing a misaligned long-word or quad-word takes 2 instructions. The general form
of a misaligned store sequence is as follows:

STHI.L Rptr, off+3, Rvalue
STLO.L Rptr, off, Rvalue

As for the misaligned load sequence, the address passed to the high part instruction
should point to the highest byte of the misaligned object, while the address passed to
the low part instruction should point to the lowest byte in the misaligned object.
Figure 27 illustrates a little endian example, storing a misaligned long-word.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Memory properties 97
Support for storing misaligned words is not included, and alternative instruction
sequences should be used. An example little endian sequence to store a misaligned
word is:

ST.B Rbase, 0, Rvalue ; least significant byte
SHLRI Rvalue, 8, Rvalue
ST.B Rbase, 1, Rvalue ; most significant byte

6.4 Memory properties
Data accesses issued by an instruction stream appear to execute in sequential
program order as viewed from that instruction stream. However, these accesses do
not necessarily appear to execute in that order as viewed by other observers. A data
synchronization instruction is provided to allow ordering to be enforced upon data
accesses (see Section 6.5.3: Data synchronization on page 99). This allows the
instruction stream to guarantee that other observers view a particular access order.

A memory grain is a set of 8 contiguous bytes in memory whose base address is
aligned to an 8-byte boundary. Each data access made by the instruction stream is
fully contained within a grain of memory. This property is true for all load and store
instructions, even for those that support misaligned access.

Figure 27: Misaligned store example

0123xxxx

ABCDEFGHIJ

07

048

STHI.L Rptr, 3, RvalueABCD3FGHIJ
048

STLO.L Rptr, 0, RvalueA0123FGHIJ
048

Rvalue (in register)

memory

(i)

(ii)

Rptr (address in register)
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

98 Synchronization
The behavior of concurrent data accesses to a grain from multiple memory users
obeys an atomicity property. The memory system performs each data access on a
grain atomically with respect to other data accesses on that grain. This means that
the behavior of a set of accesses to a particular grain is identical to some completely
sequentialized ordering of those accesses. For example, it is not possible to observe a
grain of memory in a state where it has been partially updated by a write access.

The presence of memory management and caches has a significant effect on the
properties of memory accesses. These effects are described in Chapter 17: Memory
management on page 271 and Chapter 18: Caches on page 297.

6.5 Synchronization
Instructions are provided for synchronization.

6.5.1 Atomic swap

The SWAP.Q instruction is an atomic read-modify-write operation on a memory
location. SWAP.Q is typically used by software to synchronize multiple memory
users through the memory system. It writes a new value into an 8-byte memory
object and returns its previous contents. The memory system guarantees that the
read and write parts of the swap instruction are implemented atomically on the
target memory location with respect to any other accesses to that location.

Swap accesses are performed in memory not in the cache. This provides safe
synchronization in the memory system regardless of the cache behavior.

If the MMU is disabled, then the cache state is bypassed and frozen with respect to
data accesses including swap accesses. If the MMU is enabled, the actions
performed by a SWAP.Q instruction for the various cache behaviors are:

• For device or uncached cache behavior, the effective address will not be cached.
The swap is performed atomically in memory.

Instruction Summary

SWAP.Q
base,index,result_value

atomic swap in memory 64-bit

SYNCI synchronize instructions

SYNCO synchronize operand data

Table 50: Synchronization instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Synchronization 99
• For write-through cache behavior, the effective address can be cached but it will
not be dirty. If it is cached, the cache block will be invalidated. The swap is
performed atomically in memory.

• For write-back cache behavior, the effective address can be cached and can be
dirty. If it is cached, the cache block will be purged (written-back if dirty, then
invalidated). The swap is performed atomically in memory.

In each case, after the execution of the SWAP.Q instruction the targeted memory
location will not be cached. Further information on caches, including cache
terminology, can be found in Chapter 18: Caches on page 297.

6.5.2 Instruction synchronization

The SYNCI instruction is used to synchronize the instruction stream. Execution of a
SYNCI ensures that all previous instructions are completed before any subsequent
instruction is fetched. However, the SYNCI instruction does not ensure that the
effects of those previous instructions on data memory have completed. Data
synchronization can be achieved separately using the SYNCO instruction.

The SYNCI instruction does not cohere the state of any instruction cache. This must
be achieved by explicit cache coherency instructions where required. This is
described in Chapter 18: Caches on page 297.

SYNCI is used by software to:

• Synchronize instruction fetch after code has been loaded or modified (for
example, see Section 6.7.1: Synchronizing fetch with data writes on page 107).

• Synchronize instruction fetch after instruction translations have been modified
(also see Section 16.8: Instruction synchronization on page 235).

• Stop speculative execution of subsequent instructions (for example, see Section
18.11.2: Speculative memory access when MMU is disabled on page 312).

6.5.3 Data synchronization

The SYNCO instruction is used to synchronize data operations. Data operations
include load, store, swap, prefetch, allocate and data cache coherency instructions.
The SYNCO instruction imposes an ordering on data operations that is visible to
other memory users.

Execution of a SYNCO ensures that all data operations from previous instructions
are completed before any data access from subsequent instructions are started.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

100 Synchronization
The SYNCO instruction itself does not complete until all data operations from
previous instruction have completed. A sequence of a SYNCO instruction followed
by a SYNCI instruction guarantees that all previous instructions, and all previous
data operations, are completed before any subsequent instruction is fetched.

The SYNCO instruction does not cohere the state of any data cache. This must be
achieved by explicit cache coherency instructions where required. This is described
in Chapter 18: Caches on page 297.

SYNCO is used by software to:

• Order accesses to a memory location that is shared with another memory user.

• Order accesses to a device memory location.

• Flush any write buffering.

• Prevent memory accesses being merged or deleted.

• Order cache coherency instructions with respect to memory accesses.

• Order configuration register instructions with respect to memory accesses.

6.5.4 Implementation aspects

An implementation can provide mechanisms to optimize instruction fetch. These
mechanisms could include, but are not limited to, the following:

• Instruction prefetching: this is a technique to reduce instruction fetch latency by
fetching instructions before they are needed.

• Instruction buffering: this is a technique to reduce instruction fetch latency by
holding instructions in a buffer close to the CPU, perhaps associated with the
target registers.

SYNCI will cause the implementation to invalidate any such state to ensure that
subsequent instructions are refetched.

An implementation can provide mechanisms to optimize data access. These
mechanisms could include, but are not limited to, the following:

• Write buffering: this is a technique where written data is held in a buffer before
been flushed out to memory at some later point. Write buffers can enhance
memory performance by deferring and gathering writes.

SYNCO will cause the implementation to flush any such state to memory. This
ensures that the previous accesses propagate through to memory.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Cache instructions 101
• Access reordering: this is a technique where a sequence of accesses to memory
locations are reordered by the implementation. An implementation must
maintain sufficient ordering to honor data dependencies through memory
dependencies as observed from the CPU, but can otherwise reorder accesses
arbitrarily.

SYNCO imposes an ordering on accesses generated by the CPU. Execution of a
SYNCO ensures that all data operations from previous instructions are
completed before any data access from subsequent instructions are started.

6.6 Cache instructions
There are 3 categories of cache instruction: prefetch, allocate and coherency
instructions. These instructions allow software to control and optimize cache
operation in a largely implementation-independent manner.

Further information on caches can be found in Chapter 18: Caches on page 297.

The available instructions are summarized below.

These instructions compute an effective address by adding their base and offset
operands. The base operand is held in a general-purpose register. The offset operand
is a 6-bit immediate value which is then scaled by 32 and sign-extended. Thus, the
offset has a value 32i where i is in the range [-32, 31). Note that the scaling factor is
fixed at 32 regardless of the cache block size of the implementation.

There is no misalignment check on these instructions. The calculated effective
address is automatically aligned downwards to the nearest exact multiple of the
cache block size.

Instruction Summary

ALLOCO base,offset allocate operand cache block

ICBI base,offset instruction cache block invalidate

OCBI base,offset operand cache block invalidate

OCBP base,offset operand cache block purge

OCBWB base,offset operand cache block write-back

PREFI base,offset prefetch instruction cache block

Table 51: Cache instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

102 Cache instructions
Most of the cache instructions have no functional effect on the semantics of the
memory model when viewed solely from the instruction stream. However, ALLOCO
and OCBI can result in observable effects on the memory model. These instructions
can modify the value of memory locations, and the number of modified locations is
determined by the cache block size. This value is implementation specific, and
special care should therefore be exercised when using these instructions if
portability to implementations with a difference cache block size is desired.

6.6.1 Prefetch

The architecture provides two mechanisms for software-directed prefetching from a
specified effective address:

• The PREFI instruction is an instruction prefetch.

• An aligned load instruction, where the destination is R63, is a data prefetch.

Instruction prefetch behaves much like an instruction fetch, except that it is
software-directed. Data prefetch behaves much like a read access, except that data
is loaded into a cache block rather than a register. Prefetches behave like normal
accesses with respect to cache behavior and cache paradoxes.

There is no misalignment check for prefetches. The provided effective address is
automatically aligned downwards to the nearest exact multiple of the cache block
size. This applies to both instruction prefetches and data prefetches.

The generic architecture states that a prefetch is a performance hint to the
implementation. A prefetch informs the implementation that there is likely to be a
performance benefit in arranging for that data to be prefetched into the cache.
Prefetches affect timing but not semantics.

It is implementation-specific as to whether a prefetch will be performed. For
example, an implementation could choose to ignore all prefetches, or an
implementation could choose to ignore a particular prefetch depending on the
prevailing conditions.

There are a number of scenarios where a prefetch has no effect:

• An implementation chooses to ignore the prefetch.

• A prefetch when the MMU is disabled has no effect.

• A prefetch with device or uncached behavior has no effect.

• If an implementation does not provide an instruction cache or a unified cache,
then instruction prefetch has no effect. If an implementation does not provide an
operand cache or a unified cache, then data prefetch has no effect.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Cache instructions 103
• Prefetches do not raise address error, translation miss or protection exceptions.
If there is an address error, or a translation is not available, or a protection check
fails, then the prefetch has no effect. These properties allow software to
speculate prefetches. Note that prefetches are automatically aligned to the cache
block size, and are not checked for misalignment.

6.6.2 Allocate

The architecture provides an instruction, ALLOCO, to allocate an operand cache
block for a specified effective address. The effective address identifies a surrounding
block of memory, which starts at an address aligned to the cache block size and has
a size equal to the cache block size.

The allocate instruction provides a hint to the implementation that the allocated
operand cache block need not be fetched from memory. It is implementation-specific
as to whether the operand cache block will be fetched from memory or not.

ALLOCO is specifically designed to be used in combination with write-back cache
behavior. Typically, ALLOCO is used to allocate an operand cache line which is then
completely over-written with new data using store instructions, and subsequently
written-back. ALLOCO can eliminate an unnecessary cache block fetch from
memory, avoiding memory read latency and reducing memory bandwidth.

ALLOCO is checked for address error, translation miss and protection exceptions
just like a data write to that address. There is no misalignment check. ALLOCO
behaves like a normal access with respect to cache behavior and cache paradoxes.

In some situations an allocate instruction has no effect (apart from the detection of
exception cases):

• An allocate when the MMU is disabled has no effect.

• An allocate with device or uncached behavior has no effect.

• If an implementation provides neither an operand cache nor a unified cache,
then allocate has no effect.

In all other cases, the value of each location in the memory block targeted by an
ALLOCO becomes architecturally undefined. However, ALLOCO will not reveal any
data which would break the privilege and protection models. An example
implementation of ALLOCO could have the following properties:

• In user mode, the values of the targeted memory locations seen by that user
mode thread could be unchanged, filled with some implementation-defined
pattern or filled with some other data that is also visible to that thread.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

104 Cache instructions
• In privileged mode, the targeted memory locations could contain any value. This
is allowed since privileged threads can arrange visibility of any memory state.

Other implementations of ALLOCO are possible with different effects on the
targeted memory locations. Software must not rely on these values, otherwise
compatibility will be impaired.

6.6.3 Cache coherency

The architecture provides a set of cache coherency instructions that allow the cache
to be managed by software. These instructions are:

• ICBI: to invalidate an instruction cache block.

• OCBI: to invalidate an operand cache block.

• OCBP: to purge an operand cache block.

• OCBWB: to write-back an operand cache block.

For an invalidation, the cache block is discarded without any write-back to memory.
For a purge, the cache block is written back to memory if dirty, and then discarded.
For a write-back, the cache block is written back memory if dirty, but not discarded.
Write-back is also known as flush.

These instructions operate directly on the state of the cache. In some respects, these
instructions behave quite differently to normal memory accesses:

• The OCBI, OCBP and OCBWB instructions update the state of the cache even if
the MMU is disabled. In this case, the effective address calculated by the cache
coherency instruction is mapped to a physical address using an identity
translation. The MMU is not consulted since it is disabled, and the cache is
accessed using a look-up by physical address. TLB misses and protection
violations cannot occur when the MMU is disabled.

• It is implementation dependent as to whether ICBI updates the state of the
instruction cache when the MMU is disabled. If the instruction cache supports
look-up by physical address, the effective address calculated by ICBI is mapped
to a physical address using an identity translation. The MMU is not consulted
since it is disabled, and the cache is accessed using a look-up by physical
address. However, if the instruction cache does not support look-up by physical
address, then the ICBI has no effect when the MMU is disabled. In either case,
TLB misses and protection violations cannot occur when the MMU is disabled.

• These instructions update the state of the cache regardless of the programmed
cache behavior.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Cache instructions 105
• These instructions are not susceptible to cache paradoxes.

In general, these instructions have a guaranteed effect on the cache regardless of
the cache and MMU configuration.

There are no restrictions placed on execution of cache coherency instructions
directly out of the instruction cache. When the MMU is enabled these instructions
can be executed from an instruction translation with a cachable page, and therefore
these instructions (including ICBI) can be fetched from the instruction cache. The
synchronization requirements are described separately in Synchronization of cache
coherency instructions on page 106.

ICBI and OCBI have the same effect on a unified cache implementation, though
note that their exception checks are different. In this case, software should still
ensure that ICBI is used for instruction invalidation, and OCBI for data
invalidation. This enhances portability to implementations with split caches.

Physical and effective coherency

OCBI, OCBP and OCBWB perform cache coherency on physical memory. These
instructions use an effective address to identify locations in physical memory which
are to be cohered. The achieved coherency applies to all aliases of that physical
memory in the effective address space.

However, ICBI is only guaranteed to achieve coherency on effective memory. This
instruction uses an effective address to identify locations in effective memory which
are to be cohered. The achieved coherency applies only to the effective address and
effective address space seen by that ICBI. It does not necessarily apply to other
mappings of that location with different effective addresses or in a different effective
address space.

An implementation can choose to provide stronger coherency than this (for example,
by implementing this as coherency on physical memory), but software must not rely
on this behavior where portability is required.

Exception checking

These instructions are checked for address error, translation miss and protection
exceptions in a similar way to memory accesses. There is no misalignment check.

OCBI is checked like a data write to that address. It is considered to be a write
because its execution can cause memory values to change (as viewed from the
instruction stream).
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

106 Cache instructions
OCBP and OCBWB are checked for readability or writability to that address. Thus,
a protection exception is raised if both reads and writes are prohibited. This is a
read exception because the execution of these instructions does not cause memory
values to change (as viewed from the instruction stream). These instructions
propagate previously written data beyond the cache, and are not considered to be
writes.

ICBI is checked like an instruction fetch from that address. ICBI checks for address
error and raises an IADDERR exception if this check fails. The implementation then
determines whether there is an entry in the instruction cache for this ICBI to
invalidate. Some implementations perform a translation look-up to determine this;
these implementations will raise an ITLBMISS exception if there is no translation
available. Other implementations can determine this without raising ITLBMISS.

Thus, whether an ITLBMISS exception can be raised by ICBI is implementation
dependent. If there is no entry in the instruction cache for this ICBI to invalidate,
then the ICBI can complete as no invalidation is required. If there is an entry in the
instruction cache for this ICBI to invalidate, then a check is made for protection
violation prior to invalidation. If a protection violation occurs, the instruction
executes to completion without exception launch, but does not affect the state of the
instruction cache. This property does not weaken the protection model, but it does
make it harder to detect some software bugs in ICBI code sequences. This behavior
is specified to allow simpler ICBI implementation.

If an implementation does not provide an instruction cache or a unified cache, then
ICBI is checked for exceptions but otherwise behaves as a no-op. If an
implementation does not provide an operand cache or a unified cache, then OCBI,
OCBP and OCBWB are checked for exceptions but otherwise behave as no-ops.

Synchronization of cache coherency instructions

Explicit synchronization instructions are required to synchronize the effects of
cache coherency instructions:

• SYNCI must be used to guarantee that previous ICBI instructions have
completed their invalidation on the instruction cache.

• SYNCO must be used to guarantee that previous OCBI, OCBP and OCBWB
instructions have completed their operation on the operand cache and on
memory.

Typically, one SYNCI or SYNCO instruction is used to synchronize a whole series of
previous cache coherency instructions.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Example code sequences 107
6.7 Example code sequences
This section describes example code sequences that use the synchronization and
cache instructions.

6.7.1 Synchronizing fetch with data writes

Software can use stores to write a sequence of instructions into memory. For
example, this could be to load a program into memory, to modify code, to set software
break-points or for just-in-time compilation. The recommended procedure to
synchronize instruction fetch with respect to a set of data writes is:

1 Execute the stores.

2 If the stores were to memory using write-back cache semantics, then flush all
data cache blocks in the stored address range.

3 Execute a SYNCO instruction to ensure that the memory accesses in steps 1 and
2 have completed.

4 If the instruction addresses are cachable, then invalidate all instruction cache
blocks in the instruction address range.

5 Execute a SYNCI instruction to ensure that all previous steps have completed
and to synchronize instruction fetch.

6 Code can now be executed from the synchronized instruction address range.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

108 Example code sequences
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
7
SHmedia
multimedia
instructions

7.1 Overview

Although this is a 64-bit architecture, many data elements are much smaller. The
architecture defines a set of multimedia operations which perform an operation on
several small elements concurrently.

An extensive set of data parallel arithmetic and data manipulation operations are
provided. These include conversions, addition, subtraction, absolute value, sum of
absolute differences, shifts, comparisons, multiplies, multiply accumulate, shuffle,
conditional move, permute and extract.

Data formats include packed 8-bit, 16-bit and 32-bit integers. Support is provided
for signed and unsigned integers, and signed fractional formats with no integral
bits. Not all formats are supported at all element sizes.

Multimedia instruction mnemonics are constructed with the prefix ‘M’. For instance
the multimedia 32-bit add is called MADD.L.
-5 CPU Core, Volume 1: Architecture

110 Multimedia formats
7.2 Multimedia formats
Table 52 shows the supported multimedia formats.

Table 53 shows the integral formats and ranges supported.

8 x 8-bit multimedia data

8-bit data

Element 7

8-bit data

Element 6

8-bit data

Element 5

8-bit data

Element 4

8-bit data

Element 3

8-bit data

Element 2

8-bit data

Element 1

8-bit data

Element 0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

4 x 16-bit multimedia data

16-bit data

Element 3

16-bit data

Element 2

16-bit data

Element 1

16-bit data

Element 0

63 48 47 32 31 16 15 0

2 x 32-bit multimedia data

32-bit data

Element 1

32-bit data

Element 0

63 32 31 0

Table 52: Multimedia data types

Element
width

Element type
Field widths Field locations

Range Precision
Sign Int Frac Sign Int Frac

8-bit
integer

Signed byte (B) 1 7 - 7 6-0 - [-128, +127] 1

Unsigned byte (UB) - 8 - - 7-0 - [0, 255] 1

16-bit
integer

Signed word (W) 1 15 - 15 14-0 - [-32678, +32767] 1

Unsigned word (UW) - 16 - - 15-0 - [0, 65535] 1

32-bit
integer

Signed long-word (L) 1 31 - 31 30-0 - [-2147483648,
+2147483647]

1

Table 53: Integral representation
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia formats 111
The architecture additionally supports some formats with fractional bit significance.
These formats are useful in signal processing and graphical algorithms. The
fractional formats are held in 16-bit or 32-bit fields, but the significance of each bit
differs from the integer weight. The fractional format has a single sign bit and the
remainder are fractional weight bits. There are no integral weight bits. The most
positive and most negative representable values have the same bit pattern as the
same-width signed integral formats.

Table 54 shows the formats of the 16-bit and 32-bit fractional data types.

The fractional formats require special multiply instructions, to extract the correct
bits from the full (double sized) result. The same addition, subtraction and scaling
instructions can be used on both the integral and fractional data formats.

If other formats with different placements of the binary point are to be multiplied,
either the full double-length result must be explicitly scaled, or the source operands
scaled so that one of the supported multiplications can be used.

Fractional data formats are described with two numbers separated by a ‘.’. These
specify the number of bits before (including the sign bit) and after the binary point.
16-bit fractional numbers correspond to 1.15 and 32-bit fractional numbers
correspond to 1.31.

Certain operations naturally produce a double-length result. As this cannot be
returned directly, these operations are separated into two instructions, one for each
half of the result. These are denoted by ‘LO’ and ‘HI’ suffices, for the low half and
high half of the double-length result respectively.

Element
width

Element type
Field widths Field locations

Range Precision
Sign Int Frac Sign Int Frac

16-bit
fractional

Signed
fractional word
(W)

1 - 15 15 - 14-0 [-1, +1) ~31x10-6

32-bit
fractional

Signed
fractional
long-word (L)

1 - 31 31 - 30-0 [-1, +1) ~466x10-12

Table 54: Fractional representation
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

112 Multimedia formats
7.2.1 Mathematics

Arithmetic on multimedia datatypes is defined as follows.

Signed numbers are held in 2’s complement form.

Some operations behave in a modulo fashion. Operands producing an intermediate
result that is outside the representable range, return the least significant n bits of
the intermediate result where n is the element width (as defined in Table 53). For
example, incrementing the most positive representable value of an unsigned type
gives a result of zero.

Some operations behave in a saturating manner. Operands producing an
intermediate result that is outside the representable range, return the most positive
or most negative representable value as appropriate. This saturating behavior is
emphasized in the instruction names by the suffix ‘S’ being appended to the major
operator identifier (for example, MADDS.W). Where there is no possibility of
saturating, the ‘S’ suffix is omitted.

7.2.2 Rounding

Because of the fractional data formats, certain operations produce an intermediate
result which has more fractional bits of precision than the result data type. The
intermediate result is rounded to the representable type.

Two rounding modes are provided,

Most of the fractional multiplies provided employ round toward minus. Only one
instruction is provided that uses round towards nearest positive: see Section
7.12: Multimedia full-width multiplies on page 124.

Round towards Minus
(RM)

The result is the greatest representable number which is no
greater than the precise result.

This rounding mode, sometimes termed truncation, is provided
by ignoring the excess precision bits. It guarantees that each
representable value has equal weighting.

Round towards Nearest
Positive (RP)

The result is the representable number closest to the precise
result, except when the precise result lies exactly between two
representable values. When this occurs the result is the greater
representable value.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia formats 113
Figure 28 shows the behavior of these two rounding modes.

7.2.3 MOSTPOS and MOSTNEG

This chapter uses the following notation:

MOSTPOS indicates the most positive representable value in a signed range.

MOSTNEG indicates the most negative representable value in a signed range.

For an integer signed format containing n bits, these are defined as:

MOSTPOS = 2n-1-1

MOSTNEG = -(2n-1)

For a fractional signed format containing n bits, these are defined as:

MOSTPOS = 1 - 21-n

MOSTNEG = -1

Figure 28: Rounding

-1/4

-1/2

+1/4

-3/4

+3/4

+1/2

0

-1

2

1

+5/4

+7/4

+3/2

RM RP

P
re

ci
se

R
es

ul
t

0

-1

2

1

R
ep

re
se

nt
ab

le
R

es
ul

t

SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

114 Multimedia conversions
7.3 Multimedia conversions
A conversion that reduces the size of packed elements is termed “down conversion”,
while a conversion that increases the size of packed elements is termed “up
conversion”. Down conversion can either be modulo or saturating, while up
conversion can either be sign or zero extending.

Only saturating down conversions are supported by single instruction sequences.

Figure 29: Example conversions

Instruction Summary

MCNVS.WB source1,source2,result Multimedia convert signed 16-bit to signed 8-bit
after saturation

MCNVS.WUB source1,source2,result Multimedia convert signed 16-bit to unsigned 8-bit
after saturation

MCNVS.LW source1,source2,result Multimedia convert signed 32-bit to signed 16-bit
after saturation

Table 55: Multimedia conversion instructions

01234567
Source Hi Source Lo

Result

dddddddd

Result Hi Result Lo

Source

uuuuuuuu

01234567
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia addition and subtraction 115
Table 56 shows the provided saturating down conversion instructions. Some other
conversions can be performed using short instruction sequences. These employ
additional multimedia instructions defined elsewhere in this chapter.

7.4 Multimedia addition and subtraction
Multimedia addition and subtraction are provided.

From→
8-bit unsigned

integer
8-bit signed

integer
16-bit signed

integer
32-bit signed

integer
To↓

8-bit unsigned
integer

MCMPGT.UB

MCMV

MCNVS.WUB MCNVS.LW

MCNVS.WUB

8-bit signed
integer

MCMPGT.UB

MCMV

MCNVS.WB MCNVS.LW

MCNVS.WB

16-bit signed
integer

MSHFLO.B
MSHFHI.B

MCMPGT.UB
MSHFLO.B
MSHFHI.B

MCNVS.LW

32-bit signed
integer

MSHFLO.B
MSHFHI.B

MSHFLO.W
MSHFHI.W

MCMPGT.UB
MSHFLO.B
MSHFHI.B

MCMPGT.W
MSHFLO.W
MSHFHI.W

MCMPGT.W
MSHFLO.W
MSHFHI.W

Table 56: Multimedia conversions

Figure 30: Multimedia addition

D+H

D C B A H G F E
Source 2 Source 1

+

Result

+ + +

C+G B+F A+E
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

116 Multimedia addition and subtraction
Both modulo (wrapping) and saturating forms are provided, although not all forms
are provided at all sizes. On packed 8-bit elements the saturating operations are
unsigned, while for packed 16-bit and packed 32-bit elements the saturating
operations are signed.

Sign is unimportant in modulo arithmetic, and so the modulo add and subtract
instructions can be used for both signed and unsigned types. Since bit significance is
unimportant in addition and subtraction, the same set of instructions can be used to
operate on both integral and fractional types.

Instruction Summary

MADDS.UB source1,source2,result Multimedia add unsigned 8-bit with saturation

MADD.W source1,source2,result Multimedia add 16-bit

MADDS.W source1,source2,result Multimedia add signed 16-bit with saturation

MADD.L source1,source2,result Multimedia add 32-bit

MADDS.L source1,source2,result Multimedia add signed 32-bit with saturation

MSUBS.UB source1,source2,result Multimedia subtract unsigned 8-bit with saturation

MSUB.W source1,source2,result Multimedia subtract 16-bit

MSUBS.W source1,source2,result Multimedia subtract signed 16-bit with saturation

MSUB.L source1,source2,result Multimedia subtract 32-bit

MSUBS.L source1,source2,result Multimedia subtract signed 32-bit with saturation

Table 57: Multimedia addition and subtraction instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia absolute value 117
7.5 Multimedia absolute value
These instructions perform an absolute value operation on each signed element in a
packed vector.

Taking the absolute value of the most negative representable value would produce
an unsigned result out of the representable range. In this case the result is
saturated to the most positive representable value.

Instructions to operate on packed 16-bit and packed 32-bit vectors are provided.

Figure 31: Multimedia absolute value

Instruction Summary

MABS.W source,result multimedia absolute value signed 16-bit with saturation

MABS.L source,result multimedia absolute value signed 32-bit with saturation

Table 58: Multimedia absolute value

|D|

D C B A
Source

| |

Result
|C| |B| |A|

| | | | | |
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

118 Multimedia sum of absolute differences
7.6 Multimedia sum of absolute differences
This instruction performs pair-wise absolute difference operations on two vectors of
packed unsigned 8-bits, then sums the results and adds the sum to an
accumulation. The operation being performed is:

The MSAD.UBQ instruction consists of 24 elementary operations (8 subtractions, 8
absolute values and 8 additions) performed on byte-wide data.

Instruction Summary

MSAD.UBQ
source1,source2,source3_result

Multimedia sum of absolute differences of
unsigned 8-bit

Table 59: Multimedia sum of absolute differences

r r ai bi–

i 0=

7

�+=
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia left shifts 119
7.7 Multimedia left shifts
These instructions perform a left shift operation on each packed element. Each
element is shifted by the same amount. Only the least significant 4 or 5 bits of the
shift amount are used, the remaining significant bits are ignored. This is consistent
with the general-purpose shift instructions.

Both logical and saturating versions of the left shifts are provided. Sign is
unimportant for a non-saturating left shift, and so the logical left shift instructions
can be used for both signed and unsigned types. The saturating left shifts are
provided only in signed form.

Left shifts are provided for packed 16-bit and packed 32-bit vectors.

Figure 32: Multimedia 16-bit left shift

Instruction Summary

MSHLLD.W source,amount,result Multimedia shift logical left dynamic 16-bit

MSHLLD.L source,amount,result Multimedia shift logical left dynamic 32-bit

MSHALDS.W
source,amount,result

Multimedia shift arithmetic left dynamic 16-bit with
saturation

MSHALDS.L source,amount,result Multimedia shift arithmetic left dynamic 32-bit with
saturation

Table 60: Multimedia left shift instructions

D C B A Shift

<<
<<

<<
<<

D<<C<< B<< A<<

Source 1 Source 2

Result
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

120 Multimedia arithmetic right shifts
7.8 Multimedia arithmetic right shifts
These instructions perform an arithmetic (signed) right shift operation on each
packed element. Each element is shifted by the same amount. Only the least
significant 4 or 5 bits of the shift amount are used, the remaining significant bits are
ignored. This is consistent with the general-purpose shift instructions.

Arithmetic right shifts are provided for packed 16-bit and packed 32-bit vectors.

Figure 33: Multimedia 16-bit right shift

Instruction Summary

MSHARD.W source,amount,result multimedia shift arithmetic right dynamic 16-bit

MSHARD.L source,amount,result multimedia shift arithmetic right dynamic 32-bit

Table 61: Multimedia arithmetic right shift instructions

D C B A Shift

>>
>>

>>
>>

D>>C>> B>> A>>

Source 1 Source 2

Result
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Scalar arithmetic right shift with saturation 121
7.9 Scalar arithmetic right shift with saturation
This instruction performs an arithmetic (signed) right shift on a signed, scalar
64-bit element, then saturate that single element into the 16-bit signed range
[-215,+215).

The result of this instruction is a 16-bit scalar integer value. The upper 48 bits of the
result are sign extensions of bit 15. This operation is useful for reducing
multiply-accumulate results.

Figure 34: Scalar 64-bit Right shift with saturation to 16-bit

Instruction Summary

MSHARDS.Q
source,amount,result

multimedia shift arithmetic right dynamic with saturation
to signed 16-bit

Table 62: Scalar arithmetic shift with saturation

A Shift

>>

Source 1 Source 2

Result
A>>

sat
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

122 Multimedia logical right shifts
7.10 Multimedia logical right shifts
These instructions perform a logical (unsigned) right shift operation on each packed
element. Each element is shifted by the same amount. Only the least significant 4 or
5 bits of the shift amount are used, the remaining significant bits are ignored. This
is consistent with the general-purpose shift instructions.

Logical right shifts are provided for packed 16-bit and packed 32-bit vectors.

Figure 35: Multimedia 16-bit right shift

Instruction Summary

MSHLRD.W source,amount,result Multimedia shift logical right dynamic 16-bit

MSHLRD.L source,amount,result Multimedia shift logical right dynamic 32-bit

Table 63: Multimedia logical right shift instructions

D C B A Shift

>>
>>

>>
>>

D>>C>> B>> A>>

Source 1 Source 2

Result
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia comparisons 123
7.11 Multimedia comparisons
Multimedia comparisons are provided that return all ones for true and all zeroes for
false in each element within the packed result. This allows the results to be used
directly as masks.

Sign is unimportant when comparing for equality, so only one flavor of compare for
equality need be provided. For the greater-than compares, unsigned versions are
provided for packed 8-bit elements, while signed versions are provided for packed
16-bit and packed 32-bit elements.

Figure 36: Multimedia comparisons

Instruction Summary

MCMPEQ.B source1,source2,result Multimedia compare equal 8-bit

MCMPEQ.W source1,source2,result Multimedia compare equal 16-bit

MCMPEQ.L source1,source2,result Multimedia compare equal 32-bit

MCMPGT.UB source1,source2,result Multimedia compare greater than unsigned 8-bit

MCMPGT.W source1,source2,result Multimedia compare greater than signed 16-bit

MCMPGT.L source1,source2,result Multimedia compare greater than signed 32-bit

Table 64: Multimedia compare instructions

HopD

D C B A H G F E
Source 2 Source 1

op

Result
GopC FopB EopA

op op op

“op” can be:
= (equality)
> (signed greater than)
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

124 Multimedia full-width multiplies
The sense of “equals” and “greater than” can be inverted to “not equals” and “less
than or equal to” respectively by a bitwise inversion of the comparison results. Also,
“less than” can be obtained by switching the source operands and using “greater
than”. Finally, “greater than or equal to” can be obtained by switching the source
operands, using “greater than” and then a bitwise inversion of the comparison
result.

Since the comparison result often feeds into a packed conditional move (see Section
7.21: Multimedia extract on page 133) this inversion can often be for free, simply by
switching the source operands to the conditional move.

7.12 Multimedia full-width multiplies
Multiplication of packed 16-bit quantities giving full-width results is provided.

Since the resulting elements are twice the size of the inputs, two instructions are
required; one to produce the low half of the results, and another to produce the high
half.

Figure 37: Multimedia 16-bit full multiplication

Instruction Summary

MMULLO.WL source1,source2,result multimedia full multiply signed 16-bit low

MMULHI.WL source1,source2,result multimedia full multiply signed 16-bit high

Table 65: Multimedia full-width multiplication instructions

D C B A H G F E
Source 2 Source 1

D×H C×G B×F A×E

× × ××

Result High Result Low
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia multiplies 125
7.13 Multimedia multiplies
Multiplications are provided for packed 16-bit and packed 32-bit types, in integral
and fractional forms.

Integral multiplies use modulo arithmetic. For fractional multiplies where a
multiplication of MOSTNEG by MOSTNEG occurs, the result, which would
otherwise be outside the representable range, is saturated to MOSTPOS. The
instruction provides rounding towards minus.

Figure 38: Multimedia 16-bit multiplies

Instruction Summary

MMUL.W source1,source2,result Multimedia multiply 16-bit

MMUL.L source1,source2,result Multimedia multiply 32-bit

MMULFX.W source1,source2,result Multimedia fractional multiply signed 16-bit

MMULFX.L source1,source2,result Multimedia fractional multiply signed 32-bit

Table 66: Multimedia multiplication instructions

D C B A H G F E
Source 2 Source 1

D×H C×G B×F A×E

× × ××

r r r r

D×H C×G B×F A×E

“r” is a 32->16 bit conversion,
using modulo arithmetic

Result
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

126 Multimedia multiply with rounding
7.14 Multimedia multiply with rounding
A multiplication instruction is provided for packed 16-bit, fractional types that
performs a rounding using the “round nearest positive” mode. The 32-bit
intermediate results are rounded back to 16-bit fractional form by performing a
“round nearest positive” rounding on the lower 16 fractional bits.

As with the other fractional multiplies, the special case of MOSTNEG by
MOSTNEG is saturated to yield MOSTPOS.

Figure 39: 16-Bit fractional rounding multiply

Instruction Summary

MMULFXRP.W source1,source2,result Multimedia fractional multiply signed 16-bit, round
nearest positive

Table 67: Multimedia multiply with rounding

×

Source 2 Source 1

round

Result

overflow

1.15 fractional number 1.15 fractional number

2.30 fractional number

upper 17 bits

lower 15 bits

2.15 fractional number

1.15 fractional number
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia multiply and sum 127
7.15 Multimedia multiply and sum
This instruction performs full-width multiplications on packed, signed, 16-bit
elements, before summing the 32-bit intermediate results together and adding the
result to an accumulation. The accumulator is a 64-bit scalar value, and the
accumulation is performed using 64-bit modulo addition.

The same register operand specifies both source 3 and the result.

Since no precision can be lost in this operation, it can be applied to both integer and
fractional types, although the latter will require some shifting at the end of the
accumulation phase to produce a correctly-formed fractional quantity. Note that the
MSHARDS.Q instruction, described in Section 7.9, can be used to reduce 64-bit
accumulations back to 16-bit form.

Figure 40: Multimedia 16-bit multiply sum

D C B A H G F E
Source 2 Source 1

D×H C×G B×F A×E

× × ××

++

+

Source 3

Result

+

Instruction Summary

MMULSUM.WQ source1,source2,source3_result Multimedia multiply and sum signed 16-bit

Table 68: Multimedia multiply and sum
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

128 Multimedia fractional multiply accumulate
7.16 Multimedia fractional multiply accumulate
This is a packed version of a traditional DSP multiply accumulate. It performs
full-width multiplications on the lower halves of packed, fractional, 16-bit elements,
then sums the packed 32-bit intermediate result with an accumulator also in packed
32-bit form.

The multiplication result is left shifted by 1 to align its fixed point with that of the
accumulator. In the special case where a multiplication of MOSTNEG by
MOSTNEG occurs, the result, which would otherwise be outside the representable
range, is saturated to MOSTPOS.

The summing can give 33 bits of result for each accumulation, so a final saturation
to 32 bits is performed on each half to give a properly formed result in packed,
signed, fractional 32-bit format.

The same register operand specifies both source 3 and the result.

Figure 41: Multimedia 16-bit fractional multiply accumulate

B A F E
Source 2 Source 1

AccHi AccLo B×F A×E

××

+ +

AccHi’ AccLo’

<<1 <<1

Source 3

Result

Instruction Summary

MMACFX.WL source1,source2,source3_result Multimedia fractional multiply and accumulate
signed 16-bit with saturation

Table 69: Multimedia fractional multiply accumulate
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia fractional multiply subtract 129
7.17 Multimedia fractional multiply subtract
This is a packed version of a traditional DSP multiply accumulate with negation. It
performs full-width multiplications on the lower halves of packed, fractional, 16-bit
elements, then subtracts the packed 32-bit intermediate result from an accumulator
also in packed 32-bit form.

The multiplication result is left shifted by 1 to align its fixed point with that of the
accumulator. In the special case where a multiplication of MOSTNEG by
MOSTNEG occurs, the result, which would otherwise be outside the representable
range, is saturated to MOSTPOS.

The subtraction can give 33 bits of result for each accumulation, so a final
saturation to 32 bits is performed on each half to give a properly formed result in
packed, signed, fractional 32-bit format.

The same register operand specifies both source 3 and the result.

Figure 42: Multimedia 16-bit fractional multiply subtract

B A F E
Source 2 Source 1

AccHi AccLo B×F A×E

××

+ +

AccHi’ AccLo’

<<1 <<1

+ − + −

Source 3

Result

Instruction Summary

MMACNFX.WL source1,source2,source3_result Multimedia fractional multiply and subtract signed
16-bit with saturation

Table 70: Multimedia fractional multiply subtract
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

130 Multimedia shuffles
7.18 Multimedia shuffles
These instructions provide a set of perfect shuffles on all packed data widths. These
can be used for conversions between different packed data formats, transposing
matrices, rotating arrays and FFT butterflies.

The shuffles interleave two vectors, each of 64-bits in total, and hence the results
are 128-bits long. Since the architecture has 64-bit registers, the shuffle instructions
are defined in pairs, with one to produce the low half of the 128-bit result, and
another to produce the high half.

There are 3 shuffles operations, one for each of the 3 packed element sizes: 8-bit,
16-bit and 32-bit. Each shuffle needs 2 instructions, one for the low half and one for
the high half. The 3 shuffle operations and 6 required instructions are shown below.

Data format Shuffles High half Low half

8-bit (byte) MSHFHI.B MSHFLO.B

16-bit (word) MSHFHI.W MSHFLO.W

32-bit
(long-word)

MSHFHI.L MSHFLO.L

Figure 43: Multimedia shuffles

0123456789AC BDEF

04 15 26 37 8C 9ADE BF

Source 2 Source 1

Result High Result Low

01234567
Source 2 Source 1

Result High Result Low
7 6 0123 45

0123

01 23
Result LowResult High

Source 2 Source 1
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia bitwise conditional move 131
7.19 Multimedia bitwise conditional move
This instruction performs a bitwise conditional move from the source into the
destination based on the value provided in a mask.

The same register operand specifies both source 3 and the result.

Instruction Summary

MSHFHI.B source1,source2,result Multimedia shuffle upper-half 8-bit

MSHFLO.B source1,source2,result Multimedia shuffle lower-half 8-bit

MSHFHI.W source1,source2,result Multimedia shuffle upper-half 16-bit

MSHFLO.W source1,source2,result Multimedia shuffle lower-half 16-bit

MSHFHI.L source1,source2,result Multimedia shuffle upper-half 32-bit

MSHFLO.L source1,source2,result Multimedia shuffle lower-half 32-bit

Table 71: Multimedia shuffle instructions

Figure 44: Bitwise conditional move

Instruction Summary

MCMV source1,source2,source3_result Multimedia bitwise conditional move

Table 72: Multimedia bitwise conditional move

Source 1 Source 3

∧

∨

(A ∧ m) ∨ (B ∧ ~m)

A B

Result

Source 2
m

∧
~

Legend:

∧ is bitwise AND

∨ is bitwise OR

~ is bitwise NOT
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

132 Multimedia permute
7.20 Multimedia permute
This instruction performs 16-bit element permutations. For each 16-bit field in the
result, two bits from the control operand determine which 16-bit field from the
source is copied into that result field. Figure 45 shows how field i (i=0,...,3) of the
result is generated from the source operand. The instruction performs the operation
for all four of the 16-bit fields in the result.

This instruction can be used to replicate 16-bit and 32-bit fields throughout a
packed vector. It can also be used to reverse the order of 16-bit or 32-bit fields. Many
other permutations are possible. Figure 46 shows some examples:

Figure 45: Permute

Instruction Summary

MPERM.W source,control,result Multimedia permute 16-bits

Table 73: Multimedia permute

Figure 46: Permute examples

0123 Source

Result[i]

Control[2*i,2*i+1]
2

D C B A
Source

Result
B B B B

0b01010101
Control

D C B A
Source

Result
A B C D

0b00011011
Control

16-bit replicate 16-bit reverse
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Multimedia extract 133
7.21 Multimedia extract
This instruction concatenates two 64-bit vector source operands together to form a
128-bit intermediate result, then extracts a contiguous 64-bit sub-vector from this
at 8-bit offsets.

Extract is effectively a 4 operand instruction (two register sources, an immediate
specifying the offset, and the result register). The architecture does not have
instruction formats that directly support 4 operand instructions, and so extract is
split into 7 different instructions, with the possible offsets of [1, 7] being represented
in the opcode.

Figure 47: Extract operation

Instruction Summary

MEXTR1 source1,source2,result Multimedia extract 64 bits from 128 bits using a 1x8-bit
offset

MEXTR2 source1,source2,result Multimedia extract 64 bits from 128 bits using a 2x8-bit
offset

MEXTR3 source1,source2,result Multimedia extract 64 bits from 128 bits using a 3x8-bit
offset

MEXTR4 source1,source2,result Multimedia extract 64 bits from 128 bits using a 4x8-bit
offset

MEXTR5 source1,source2,result Multimedia extract 64 bits from 128 bits using a 5x8-bit
offset

MEXTR6 source1,source2,result Multimedia extract 64 bits from 128 bits using a 6x8-bit
offset

MEXTR7 source1,source2,result Multimedia extract 64 bits from 128 bits using a 7x8-bit
offset

Table 74: Multimedia extract

Source 2 Source 1

Result

Offset

01234567DEF 89ABC

56789ABC
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

134 Multimedia extract
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
8
SHmedia
floating-point
8.1 Introduction
SHmedia provides a comprehensive set of floating-point instructions for
single-precision and double-precision representations. The SHmedia floating-point
instructions are the set of instructions that are defined in this chapter. The
SHmedia floating-point state consists of the SHmedia floating-point register set and
FPSCR. These are defined in Chapter 2: Architectural state on page 13.

The IEEE754 floating-point standard is supported through a combination of
hardware and system software. This is described in Section 8.3: IEEE754
floating-point support on page 136.

The architecture also provides non-IEEE754 support including fast handling of
denormalized numbers, fused multiply accumulate and special-purpose
instructions. This is described in Section 8.4: Non-IEEE754 floating-point support
on page 145.

8.2 Floating-point disable
The architecture allows the floating-point unit to be disabled by software. This is
achieved by setting SR.FD to 1. Once disabled, any attempt to execute a
floating-point opcode will generate an exception. The set of floating-point opcodes is
described in Volume 2, Appendix A: SHmedia instruction encoding.

If an implementation does not provide a floating-point unit, then the behavior of
floating-point instructions is the same as an implementation with a floating-point
unit that is permanently disabled. On such an implementation, SR.FD is
permanently set to 1 and the implementation does not provide the floating-point
-5 CPU Core, Volume 1: Architecture

136 IEEE754 floating-point support
state. Any attempt to access the floating-point state will generate an exception. It is
possible to emulate the floating-point instructions and state in software.

8.3 IEEE754 floating-point support
The architecture supports IEEE754 floating-point. This is achieved through a
combination of hardware and system software. The hardware provides a
comprehensive set of floating-point instructions. These support standard
floating-point data types and implement the most frequently required IEEE754
behavior. This allows a simple and high-performance hardware implementation.

This section defines which parts of the IEEE754 standard are provided in hardware.
For systems requiring complete IEEE754 behavior, the remaining cases can be
provided in system software. All details of such system software are strongly
dependent on the software environment, and this is beyond the scope of this CPU
architecture manual. Note that the term ‘system software’ is used here to mean
software that is provided with the system, and does not necessarily imply that the
software is part of an operating system.

The IEEE754 floating-point standard is defined in:

IEEE Standard for Binary Floating-point Arithmetic,
ANSI/IEEE Std. 754-1985.

It is assumed that the reader is familiar with the terminology used in this standard.

8.3.1 Formats

The architecture supports both IEEE754 basic formats: the 32-bit single format and
the 64-bit double format. The encodings of these formats are described in Section
3.4: IEEE754 floating-point numbers on page 33 and follow the IEEE754 standard.

Note that the architecture also supports the single extended format. This is
implemented identically to the 64-bit double format. The architecture does not
support the double extended format.

8.3.2 Rounding

The architecture provides hardware support for the round toward nearest and
round toward zero rounding modes. There is no hardware support for round toward
+∞ nor for round toward -∞. These cases can be emulated in system software for
systems requiring complete IEEE754 compliance.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

IEEE754 floating-point support 137
For conversions from floating-point formats to integer formats, hardware support is
provided for only round toward zero. There is no hardware support for round toward
nearest for these conversions. These can be provided in system software for systems
requiring complete IEEE754 compliance.

The architecture provides the normal behavior of rounding results to the precision
of the destination format. Thus, single-precision results are rounded to
single-precision and held in single format, while double-precision results are
rounded to double-precision and held in double format. This contrasts with some
other systems that deliver results only to double or extended destinations.

8.3.3 Hardware operations

The architecture provides instructions for the following operations:

• Arithmetic: addition, subtraction, multiplication and division. Instructions are
provided for both floating-point formats that perform these operations on 2
sources of that format yielding a result of the same format. Mixed format
arithmetic can be synthesized by converting the narrower-format source to that
of the wider-format source (this is an exact conversion), and using the
appropriate wider-format operation.

• Square root extraction. Instructions are provided for both floating-point formats
that perform this operation on a source of either format yielding a result of the
same format.

• Conversion between different floating-point formats. Instructions are provided
that convert, in either direction, between the two supported floating-point
formats.

• Conversion between floating-point and integer formats. The supported integer
formats for these conversions are signed 32-bit numbers and signed 64-bit
numbers. Instructions are provided that convert, in either direction, between the
two supported floating-point formats and these two signed integer formats.

• Compares: a sufficient set of compare instructions is provided. The full set can be
synthesized using short instruction sequences. Instructions are provided for both
floating-point formats that perform these operations on 2 sources of that format
yielding a boolean result. Mixed format compares can be synthesized by
converting the narrower-format source to that of the wider-format source (this is
an exact conversion), and using the appropriate wider-format operation.

The architecture also provides instructions to copy floating-point values without
change of format. These are not considered floating-point operations, and do not
trigger any of the IEEE754 exceptional conditions.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

138 IEEE754 floating-point support
8.3.4 Software operations

The following operations must be provided in system software for complete
IEEE754 compliance:

• Arithmetic: remainder.

• Round to an integer value in floating-point format. This operation takes a
floating-point value and rounds it to an integral-valued floating-point number in
the same format.

• Convert between binary floating-point numbers and decimal strings.

For example, these operations could be provided in the form of compiler intrinsics,
as a software library, or in some other form.

8.3.5 Zeroes, infinities, NaNs and sign

The IEEE754 standard specifies the bit-patterns for zeroes and infinities, and
specifies the behavior of arithmetic with zero and infinite sources. These numbers
are signed and the standard specifies the interpretation of the sign. The
architecture supports zeroes and infinities exactly as required by the standard.

The IEEE754 standard distinguishes signaling NaNs and quiet NaNs, and specifies
ranges of values that correspond to these categories of NaN. The standard does not
place any interpretation on the sign of a NaN.

The architecture supports NaNs in a manner that complies with the standard. The
architecture distinguishes source values as signaling NaNs or quiet NaNs as
dictated by the standard. For destination values, the architecture always uses the
representations for quiet NaNs given in Table 75 Quiet NaN values. This means
that it is possible for an operation to have one (or more) quiet NaN inputs, and for
the output to be a quiet NaN with a different representation.

There are no cases where the architecture sets a destination to a signaling NaN
value. The selection and interpretation of signaling NaN values is left to system
software. The architecture chooses to not signal an IEEE754 exceptional condition
when a signaling NaN is copied without a change of format.

Format Quiet NaN value

Single 0x7FBFFFFF

Double 0x7FF7FFFF_FFFFFFFF

Table 75: Quiet NaN values
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

IEEE754 floating-point support 139
The behavior for NaNs complies with IEEE754.

8.3.6 Exceptional conditions

The architecture supports an exception mechanism which, in combination with
appropriate system software, is compliant with IEEE754. The terminology used
here differs from the IEEE754 standard:

• An ‘exceptional condition’ occurs when an arithmetic operation detects an
exceptionally unusual case. The equivalent IEEE754 term is ‘exception’.

• When an exceptional condition is detected, it is signaled to the user. This
signaling is accomplished by the setting of status bits. It can also cause an
‘exception’ to be raised using the standard exception launch mechanism. The
equivalent IEEE754 term is ‘trap’.

• Exception launch causes the execution of system software before being passed
onto an ‘exception handler’. The equivalent IEEE754 term is ‘trap handler’.

The IEEE754 standard defines 5 exceptional conditions: invalid operation, division
by zero, overflow, underflow and inexact. Each of these exceptional conditions is
associated with the following state:

• A cause bit: this bit is set by the hardware if this instruction has detected this
particular exceptional condition. This bit is automatically cleared by the
hardware before the execution of any floating-point instruction which has the
potential to raise any of the 5 IEEE754 exceptional conditions.

• A flag bit: this bit is set by the hardware if this instruction has detected this
particular exceptional condition. This bit is only cleared at the request of the
user. The flag bit acts as a ‘sticky’ bit recording any and all instances of this
particular exceptional condition, across sequences of instructions delineated by
the user.

• An enable bit: this bit allows the user to control whether detection of this
particular exceptional condition raises an exception or not.

There are 3 bits for each of the 5 exceptional conditions giving a total of 15 bits used
to support the IEEE754 exceptional conditions. The user can test and alter these
bits individually, and can save and restore them together.

When an instruction raises an exception, no result is written. System software
should arrange for the correct value to be written to the result, where required for
IEEE754 compliance.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

140 IEEE754 floating-point support
The distinction between the terms ‘signal’ and ‘raise’ is important. The detection of
an exceptional condition is always signaled to the user through the setting of the
relevant cause and enable bits. However, whether this signaling causes an exception
to be raised depends upon the relevant enable bit.

Invalid operation

The architecture detects the standard IEEE754 invalid operations:

• Any operation on a signaling NaN. A copy without a change of format does not
constitute an operation.

• Addition of differently signed infinities or subtraction of similarly signed infinities.

• Multiplication of a zero by an infinity.

• Division of a zero by a zero, or of an infinity by an infinity.

• Square root of numbers less than zero (note that this does not include the square
root of -0, which is a valid operation yielding -0).

• Conversion of a floating-point number to an integer format where the floating-point
number is an infinity, a NaN or overflows the integral range of the result format.

• Comparisons, which are neither unordered nor equality, where either source
operand is a NaN.

An invalid operation is signaled when one of these conditions is detected.

If exceptions are enabled for invalid operations, then an exception is also raised. If
no exception is raised and the destination has a floating-point format, the result is a
quiet NaN. If no exception is raised and the destination has an integer format, then
the result is either the most positive or most negative representable integer chosen
according to the sign of the non-representable result. If no exception is raised and
the destination has a boolean format, then the result is the appropriate boolean
outcome of the comparison.

Remainder is not implemented in hardware. The remainder exceptional cases occur
when the dividend is infinite or the divisor is zero. System software is responsible
for signaling these cases.

Division by zero

The architecture detects the standard IEEE754 division by zero. A division by zero
is signaled when the divisor is zero and the dividend is a finite non-zero number.

If exceptions are enabled for divide by zero, then an exception is also raised. If no
exception is raised, the result is an appropriately signed infinity.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

IEEE754 floating-point support 141
Note that division of an infinity by a zero is not an exceptional condition. It results
in an appropriately signed infinity.

Overflow

An overflow condition is signaled when the rounded floating-point result, calculated
as if the exponent range were unbounded, exceeds the largest representable finite
number in the destination floating-point format.

If exceptions are enabled for overflow, then an exception is also raised. If no exception is
raised, the result depends on the rounding mode:

• If the rounding mode is round toward nearest, then the result is an infinity with
the same sign as the precise result.

• If the rounding mode is round toward zero, then the result is the largest
representable finite number in the destination format with the same sign as the
precise result.

When overflow exceptions are enabled, the architecture raises overflow exceptions
on all instructions capable of overflow regardless of whether the overflow exception
is signaled. System software is required to give the IEEE754 behavior. This is
described in Section 8.3.8.

Underflow

An underflow condition arises due to tininess and loss of accuracy:

• Tininess results from the creation of a tiny non-zero result between ±2Emin.
These tiny numbers can lead to subsequent exceptional conditions; for example
an overflow upon division.

The architecture detects tininess after rounding. Tininess occurs when the
result, calculated as if the exponent range were unbounded, is non-zero and lies
strictly between ±2Emin where Emin is -126 for single format and -1022 for double
format.

• Loss of accuracy is detected when the result cannot be represented exactly. It
occurs when the result differs from which would have been calculated were both
the exponent range and the precision unbounded. Loss of accuracy is the same as
the inexact condition described in Inexact on page 142.

Underflow is signaled when both tininess and loss of accuracy are detected. Tininess
or loss of accuracy alone are not sufficient to signal underflow.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

142 IEEE754 floating-point support
If exceptions are enabled for underflow, then an exception is also raised. If no
exception is raised, the result can be a zero, a denormalized number or ±2Emin as
required by IEEE754 arithmetic.

When underflow exceptions are enabled, the architecture raises underflow
exceptions on all instructions capable of underflow regardless of whether the
underflow exception is signaled. System software is required to give the IEEE754
behavior. This is described in Section 8.3.8.

The IEEE754 standard states that when underflow exceptions are enabled and
tininess is detected, then underflow is signaled regardless of whether there is loss of
accuracy. This behavior is not provided directly in hardware, and system software is
required to give the IEEE754 behavior.

Inexact

An inexact condition is signaled when the rounded result of an operation differs
from the exact result or when the result has overflowed.

If exceptions are enabled for inexact conditions, then an exception is also raised. If no
exception is raised, the result is the expected rounded or overflowed value.

When inexact exceptions are enabled, the architecture raises inexact exceptions on
all instructions capable of inexact regardless of whether the inexact exception is
signaled. System software is required to give the IEEE754 behavior. This is
described in Section 8.3.8.

For IEEE754 behavior, inexact should not be signaled when an overflow exception is
raised. This behavior is not provided directly in hardware, and system software is
required to give the IEEE754 behavior.

8.3.7 Denormalized numbers

The architecture supports IEEE754 denormalized numbers through a combination
of hardware and system software.

When the hardware performs a floating-point arithmetic operation that yields a
denormalized result, the hardware produces the correct denormalized result as
required by the IEEE754 standard.

When a denormalized number is encountered as a source to the computational
floating-point operations defined below, an exception (called an FPU Error) is raised.
FPU Error is associated with a cause bit to indicate when it occurs. Neither a flag
bit nor an enable bit is provided.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

IEEE754 floating-point support 143
The FPU Error exception is raised only for denormalized sources. It can be readily
distinguished from other exception cases, and is not raised in combination with
other exception cases. System software is required to emulate the required IEEE754
behavior for computational operations involving source denormalized numbers.
This emulation should include any further IEEE754 exceptions resulting from that
operation.

The IEEE754-compliant computational operations which can raise FPU Error are:

• Arithmetic: addition, subtraction, multiplication and division.

• Square root extraction.

• Conversion between different floating-point formats.

If a dyadic floating-point instruction has a denormalized source and a NaN source
(either signaling or quiet), then there is no FPU Error. Instead, the instruction
signals an invalid operation (for a signaling NaN source), or produces a quiet NaN
result. In such cases the denormalized source has no effect on the behavior.

The hardware fully supports denormalized sources for floating-point to integer
conversions, compares and copies without change of format.

If IEEE754 compliant handling of denormalized numbers is not required, then a
mode is provided which forces both source and result denormalized numbers to an
appropriately signed zero. This is known as flush-to-zero and is described in
Section 8.4.1.

8.3.8 Exception launch

The architecture provides hardware that can raise an exception for all cases
required by the IEEE754 standard. Appropriate system software can use these
exceptions to call an exception handler with the facilities indicated by IEEE754.

The only combinations of exception that can be signaled together are overflow with
inexact and underflow with inexact. In fact, the floating-point architecture is
arranged such that overflow and underflow are always accompanied by inexact.
Note that it is possible for inexact to be signaled without either overflow or
underflow occurring.

If multiple floating-point exceptions are raised by the execution of a particular
floating-point instruction, then one exception handler is launched. The cause and
flag bits are updated for all detected exceptions.

The overflow, underflow and inexact exceptions are raised ‘early’ by the hardware
before it is known whether those exceptional conditions will arise. This means that
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

144 IEEE754 floating-point support
if one or more of these exceptions are enabled, then a floating-point instruction
which has the potential to raise one of those enabled exceptions will always raise an
exception, regardless of whether that condition actually arises with the provided
source operands. The cause and flag bits are still updated accurately and their
correct values will be delivered through the launch mechanism. System software
can take appropriate action to provide the required IEEE754 behavior.

8.3.9 Recommended functions and predicates

The architecture provides additional hardware support consistent with the
IEEE754 recommendations:

• Instructions are provided to negate a source operand in either of the supported
floating-point formats. This simply reverses the sign bit. This is not considered
an arithmetic operation, and does not signal invalid operations.

• Instructions are provided for unordered comparison of two source operands both
of which are in one of the supported floating-point formats.

The remaining IEEE754 recommended functions and predicates should be
implemented in software if required.

Additionally, the architecture provides instructions to take the absolute value of a
source operand in either of the supported floating-point formats. This simply clears
the sign bit. This is not considered an arithmetic operation, and does not signal
invalid operations.

8.3.10 Future FPU architecture

The architecture retains the option of extending the IEEE754 floating-point support
in future versions. Specifically:

• The supported rounding modes could be extended to include rounding toward +∞
and rounding toward -∞.

• The overflow, underflow and inexact exceptional conditions could be detected
‘late’ so that exceptions are only raised when these exceptional conditions are
signaled. The effect of this potential architectural extension is that the overflow,
underflow and inexact exceptions are raised only when required by the IEEE754
standard, and that other cases that currently raise these exceptions give the
correct IEEE754 result without the intervention of system software.

• The IEEE754 behavior for denormalized source operands could be provided in
hardware. The effect of this potential architectural extension is that the FPU Error
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Non-IEEE754 floating-point support 145
exception is not raised, and that all instructions with denormalized source operands
give the correct IEEE754 result without the intervention of system software.

Software must not exploit the current FPU architecture in a way that would be
incompatible with these potential future extensions. In particular, software must
not exploit the current definitions of the overflow, underflow, inexact and FPU Error
exceptions in a way that would be incompatible with the future extensions described
above.

The information in this section does not require future architecture versions to use
these options, nor does it constrain future architecture versions to just these
options.

8.4 Non-IEEE754 floating-point support
The architecture supports additional floating-point support beyond that required for
IEEE754 conformance. The following features should not be used where strict
IEEE754 behavior is required.

8.4.1 Treat denormalized numbers as zero

When FPSCR.DN is set to 1, denormalized numbers are not handled according to
the IEEE754 standard. Instead, negative denormalized numbers are treated as -0,
and positive denormalized numbers are treated as +0.

For denormalized source values, this conversion occurs before exceptional conditions
and special cases are handled. Thus the instruction executes exactly as if any
denormalized source values were an appropriately signed zero.

For denormalized result values, the conversion occurs as a final stage of processing
after the result has been calculated according to IEEE754. Additionally, when a
denormalized result is flushed-to-zero, inexact and underflow conditions are
signaled to denote the loss of precision.

8.4.2 Fused multiply accumulate support

A single-precision floating-point multiply-accumulate instruction (FMAC.S) is
provided. The multiplication and addition are performed as if the exponent and
precision ranges were unbounded, followed by one rounding down to
single-precision format. This algorithm is called a fused-mac and is typically
implemented in fewer cycles than a separate multiply and addition.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

146 Non-IEEE754 floating-point support
The results of this instruction can differ from those which would be generated by a
separate multiply followed by an addition:

• The fused-mac algorithm produces more precise results than using a multiply
followed by an addition. This because the fused-mac algorithm uses a
single-rounding down to single precision, as opposed to the two roundings used
in a multiply and addition sequence.

• Special case detection can give different behavior. The multiply-accumulate
detects special cases through analysis of the three input operands. A multiply
and addition sequence detects special cases on the multiplication sources, and
then on the addition sources. Consider a case where the multiplication sources
are finite, but where the multiplication result would overflow to positive infinity
if converted to a single-precision format. The multiply-accumulate will compute
a fully precise intermediate, rather than an infinity, and will not cause an
invalid operation should this intermediate be added to an oppositely signed
infinity.

8.4.3 Special-purpose instructions

Special-purpose instructions are provided to accelerate certain applications where
strict IEEE754 conformance is not required. These instructions are:

• FIPR.S: approximate single-precision floating-point inner product.

• FTRV.S: approximate single-precision floating-point matrix transformation.

• FCOSA.S: approximate single-precision floating-point cosine.

• FSINA.S: approximate single-precision floating-point sine.

• FSRRA.S: approximate single-precision floating-point reciprocal of a square root.

These instructions yield results that can differ from the exact results within an
architecturally specified bound. Results on different implementations can vary
within these allowed bounds, though any particular implementation gives
deterministic results for given sources. These instructions signal the inexact
condition to denote potential loss of precision.

Further details of these instructions are given in Section 8.7: Special-purpose
floating-point instructions on page 154 and Volume 2 Chapter 2: SHmedia
instruction set.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Floating-point status and control register 147
8.5 Floating-point status and control register
The floating-point status and control register, FPSCR, is 32 bits wide. It is accessed
using the FGETSCR and FPUTSCR instructions. The SHmedia view of FPSCR is
shown in Figure 48. The ‘r’ field indicates reserved bits.

The interpretation of each field is given in the following table.

r

D
N CAUSE ENABLE FLAG r

R
M

31 19 18 17 12 11 7 6 2 1 0

Figure 48: FPSCR register

Field name FPSCR bit Behavior

RM 0 If 0x0: round to nearest. If 0x1: round to zero

FLAG 2
3
4
5
6

Sticky flag for inexact exceptions (FLAG.I)
Sticky flag for underflow exceptions (FLAG.U)
Sticky flag for overflow exceptions (FLAG.O)
Sticky flag for divide by zero exceptions (FLAG.Z)
Sticky flag for invalid exceptions (FLAG.V)

ENABLE 7
8
9
10
11

Enable flag for inexact exceptions (ENABLE.I)
Enable flag for underflow exceptions (ENABLE.U)
Enable flag for overflow exceptions (ENABLE.O)
Enable flag for divide by zero exceptions (ENABLE.Z)
Enable flag for invalid exceptions (ENABLE.V)

CAUSE 12
13
14
15
16
17

Cause flag for inexact exceptions (CAUSE.I)
Cause flag for underflow exceptions (CAUSE.U)
Cause flag for overflow exceptions (CAUSE.O)
Cause flag for divide by zero exceptions (CAUSE.Z)
Cause flag for invalid exceptions (CAUSE.V)
Cause flag for FPU error exceptions (CAUSE.E)

DN 18 If 0: a denormalized source operand raises an FPU error exception

If 1: a denormalized source operand is flushed to zero before the
floating-point operation is performed, and a denormalized result is
flushed to zero after the floating-point operation is performed

Table 76: FPSCR fields
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

148 General-purpose floating-point instructions
8.6 General-purpose floating-point instructions
This section describes the general-purpose floating-point instruction set. This
includes:

• Floating-point status and control

• Floating-point dyadic arithmetic

• Floating-point monadic arithmetic

• Floating-point comparisons

• Floating-point conversions

• Floating-point multiply-accumulate

• Floating-point moves

8.6.1 Floating-point status and control

Two instructions are used to access the status of the floating-point unit. The
instructions operate on a user-visible status and control register called FPSCR,
described in Section 8.5. Instructions are provided to transfer a value from a
single-precision floating-point register into FPSCR, and to transfer a value from
FPSCR into a single-precision floating-point register.

Separate instructions are provided to transfer values between floating-point
registers and general-purpose registers (see Section 8.6.7: Floating-point moves on
page 153).

Reserved
(r)

1 and
19 to 31

Write reserved bits as zero; ignore value read from reserved bits

Field name FPSCR bit Behavior

Table 76: FPSCR fields

Instruction Summary

FPUTSCR source move to floating-point status/control register

FGETSCR result move from floating-point status/control register

Table 77: Floating-point status and control instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

General-purpose floating-point instructions 149
8.6.2 Floating-point dyadic arithmetic

This set of floating-point instructions operate on two floating-point source operands.
The following instructions are defined:

8.6.3 Floating-point monadic arithmetic

This set of floating-point instructions operate on one floating-point source operand.
The following instructions are defined:

The absolute and negate operations are not considered as arithmetic operations and
they do not generate a floating-point exception.

Instruction Summary

FADD.S source1,source2,result add two single-precision numbers

FADD.D source1,source2,result add two double-precision numbers

FSUB.S source1,source2,result subtract two single-precision numbers

FSUB.D source1,source2,result subtract two double-precision numbers

FMUL.S source1,source2,result multiply two single-precision numbers

FMUL.D source1,source2,result multiply two double-precision numbers

FDIV.S source1,source2,result divide two single-precision numbers

FDIV.D source1,source2,result divide two double-precision numbers

Table 78: Floating-point dyadic arithmetic instructions

Instruction Summary

FABS.S source,result get absolute value of a single-precision number

FABS.D source,result get absolute value of a double-precision number

FNEG.S source,result negate a single-precision number

FNEG.D source,result negate a double-precision number

FSQRT.S source,result find square root of a single-precision number

FSQRT.D source,result find square root of a double-precision number

Table 79: Floating-point monadic arithmetic instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

150 General-purpose floating-point instructions
8.6.4 Floating-point multiply-accumulate

A floating-point multiply and accumulate instruction is defined to multiply two
source operands and then add this to a third source operand. The third source
operand also defines the destination into which the result is placed. The effect is
that the output of the multiplication is accumulated into the destination register.

The multiplication and addition are performed as if the exponent and precision
ranges were unbounded, followed by one rounding down to single-precision format.
This algorithm is called a fused-mac. Where IEEE754 compliance is required, the
programmer should use separate multiply and add instructions.

8.6.5 Floating-point conversions

A set of conversion instructions are defined to convert between the two
floating-point formats and between integer and floating-point formats:

Instruction Summary

FMAC.S source1,source2,source3_result single-precision fused multiply accumulate

Table 80: Floating-point multiply-accumulate

Instruction Summary

FCNV.SD source,result single-precision to double-precision conversion

FCNV.DS source,result double-precision to single-precision conversion

FTRC.SL source,result single-precision to 32-bit integer conversion

FTRC.DL source,result double-precision to 32-bit integer conversion

FTRC.SQ source,result single-precision to 64-bit integer conversion

FTRC.DQ source,result double-precision to 64-bit integer conversion

FLOAT.LS source,result 32-bit integer to single-precision conversion

FLOAT.LD source,result 32-bit integer to double-precision conversion

FLOAT.QS source,result 64-bit integer to single-precision conversion

FLOAT.QD source,result 64-bit integer to double-precision conversion

Table 81: Floating-point conversion instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

General-purpose floating-point instructions 151
All instructions read inputs from floating-point registers and write results to
floating-point registers. The integer to floating-point conversion instructions
interpret their source as an integer value. The floating-point to integer conversions
write an integer result.

All floating-point to integer conversions convert by truncation (also known as round
to zero). The floating-point to 32-bit integer conversion saturates the output to
maximum/minimum values in a signed 32-bit range. The floating-point to 64-bit
integer conversion saturates the output to maximum/minimum values in a signed
64-bit range.

8.6.6 Floating-point comparisons

The following comparison instructions are defined:

Two floating-point numbers, x and y, are related by exactly one of the following four
mutually exclusive relations:

• x is less than y

• x is equal to y

• x is greater than y

• x and y are unordered

Unordered occurs when at least one of x or y is a NaN, even if they are the same
NaN.

Instruction Summary

FCMPEQ.S source1,source2,result compare single-precision numbers for equality

FCMPEQ.D source1,source2,result compare double-precision numbers for equality

FCMPGT.S source1,source2,result compare single-precision numbers for greater-than

FCMPGT.D source1,source2,result compare double-precision numbers for greater-than

FCMPGE.S source1,source2,result compare single-precision numbers for greater-or-equal

FCMPGE.D source1,source2,result compare double-precision numbers for greater-or-equal

FCMPUN.S source1,source2,result compare single-precision numbers for unorderedness

FCMPUN.D source1,source2,result compare double-precision numbers for unorderedness

Table 82: Floating-point compare instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

152 General-purpose floating-point instructions
Table 83 shows the mapping from IEEE754 comparisons onto supported
floating-point instructions. In this table, the result of the compare is stored as a
boolean in a general-purpose register Rd.

The remaining IEEE754 comparisons can be synthesized using the equivalent
sequences shown in Table 84. The same equivalences are applicable to both
single-precision and double-precision operations.

Format
IEEE754 comparison

(ad hoc notation)
Comparison description Instruction

Single FRx = FRy Equal FCMPEQ.S FRx, FRy, Rd

FRx > FRy Greater than FCMPGT.S FRx, FRy, Rd

FRx >= FRy Greater than or equal FCMPGE.S FRx, FRy, Rd

FRx ? FRy Unordered FCMPUN.S FRx, FRy, Rd

Double DRx = DRy Equals FCMPEQ.D DRx, DRy, Rd

DRx > DRy Greater than FCMPGT.D DRx, DRy, Rd

DRx >= DRy Greater than or equal FCMPGE.D DRx, DRy, Rd

DRx ? DRy Unordered FCMPUN.D DRx, DRy, Rd

Table 83: Floating-point compares

IEEE754 comparison
(ad hoc notation)

Comparison description Equivalent sequence

x ?<> y Not equal NOT (x = y)

x < y Less than y > x

x <= y Less than or equal y >= x

x <> y Less than or greater than (x > y) OR (y > x)

x <=> y Less than or equal or greater than (x > y) OR (y >= x)

x ?> y Unordered or greater than (x ? y) || (x > y)

x ?>= y Unordered or greater than or equal (x ? y) || (x >= y)

Table 84: Equivalent floating-point compares
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

General-purpose floating-point instructions 153
In Table 84, OR represents conventional boolean-or and NOT represents
conventional boolean-not. The ‘||’ notation is used to denote a short-circuited
boolean-or, where the second operand is not evaluated if the first operand is true.
This is necessary to avoid taking inappropriate invalid operation exceptions, and
can be realized by branching around the evaluation of the second operand.

The ‘ad hoc’ notation used in Table 83 and Table 84, and the set of comparisons
described, correspond to those defined in the IEEE754 standard. The result of an
IEEE754 comparison can be negated using an integer instruction to negate the
boolean result. In some cases this negation can be folded into a branch or
conditional move to give a better sequence.

8.6.7 Floating-point moves

A set of register-to-register moves are defined to transfer values from and to
floating-point registers. These instructions transfer bit-patterns and do not
interpret or modify the values transferred. They are not considered arithmetic
instructions and do not generate any floating-point exception. Some of the following
instructions transfer values between floating-point registers; some of them transfer
values between a floating-point register and a general-purpose register.

x ?< y Unordered or less than (x ? y) || (y > x)

x ?<= y Unordered or less than or equal (x ? y) || (y >= x)

x ?= y Unordered or equal (x ? y) OR (x = y)

IEEE754 comparison
(ad hoc notation)

Comparison description Equivalent sequence

Table 84: Equivalent floating-point compares

Instruction Summary

FMOV.S source,result 32-bit floating-point to floating-point register move

FMOV.D source,result 64-bit floating-point to floating-point register move

FMOV.SL source,result 32-bit floating-point to general register move

FMOV.DQ source,result 64-bit floating-point to general register move

FMOV.LS source,result 32-bit general to floating-point register move

FMOV.QD source,result 64-bit general to floating-point register move

Table 85: Floating-point move instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

154 Special-purpose floating-point instructions
8.7 Special-purpose floating-point instructions
This section describes a set of instructions that are mainly used in special-purpose
applications (for example, graphics). These instructions do not conform to the
IEEE754 standard. Further details of these instructions are given in their
specification in Volume 2 Chapter 2: SHmedia instruction set.

8.7.1 Mathematical properties

These instructions return approximate results. An implementation will return a
result which is strictly within a specified error bound relative to the fully precise
result. Thus, the absolute error in the result will be less than the error bound
specified for that instruction. The approximate result computations allow faster and
more cost-effective implementations of these instructions.

The actual error in the returned value of an approximate instruction is denoted as:

actual_error = |fideal - fimplementation|

Where fideal is the infinitely precise result and fimplementation is the finite-precision
floating-point value returned by a particular implementation of that instruction.
The specified error, spec_error, defined for each approximate instruction, specifies a
strict upper bound on the actual_error. An implementation of the architecture
satisfies the following condition for all cases:

actual_error < spec_error

For a given set of operand values, a particular implementation of these instructions
is guaranteed to give a deterministic result. This means that every time that an
approximate instruction is executed on a particular implementation with a given set
of operand values, then the same result will be calculated. However, a different

Instruction Summary

FIPR.S source1,source2,result compute inner (dot) product of two vectors

FTRV.S source1,source2,result transform vector

FCOSA.S source,result compute cosine of an angle

FSINA.S source,result compute sine of an angle

FSRRA.S source,result compute reciprocal of a square root of a value

Table 86: Special-purpose floating-point instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Special-purpose floating-point instructions 155
implementation is not guaranteed to give the same result for that same set of
operand values, though all implementations will produce results strictly within the
architected error bound.

8.7.2 FIPR.S and FTRV.S calculation

FIPR.S and FTRV.S use vector and matrix data structures:

• A vector, FVx, is defined as a collection of four single-precision floating-point
registers in the following order:

FV4n = {FR4n, FR4n+1, FR4n+2, FR4n+3}, n = 0, 1, through to 15.

• A matrix, MTRXx, is defined as a collection of sixteen single-precision
floating-point registers:

MTRX16n = {FR16n, FR16n+1, through to FR16n+15}, n = 0, 1, 2, 3.

The use of these data structures by FIPR.S and FTRV.S is shown in Figure 49 and
Figure 50. All operands of these instructions are single-precision floating-point.

FIPR.S takes two vectors FVg and FVh and performs a 4-element floating-point
inner product to give one floating-point result which is placed in FRf.

FTRV.S takes a matrix MTRXg and a vector FVh and performs a matrix by vector
multiplication to give a vector floating-point result which is placed in FVf. The
matrix uses a column-major ordering; this means that the element numbers in the
matrix increment by 1 down a column, but by 4 across a row.

FRg+0 FRg+1 FRg+2 FRg+3 x FRh+0 -> FRf

FRh+1

FRh+2

FRh+3

Figure 49: FIPR.S
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

156 Special-purpose floating-point instructions
FIPR.S and FTRV.S support denormalized numbers. When FPSCR.DN is 0,
denormalized numbers are treated as their denormalized value in the calculation.
When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. These instructions never signal an FPU error.

FTRV.S does not check all of its inputs for invalid operations and then raise an
exception accordingly. If invalid operation exceptions are requested by the user, the
FTRV.S instruction always raises that exception. If this exception is not requested
by the user, then each of the four inner-products is checked separately for an invalid
operation and the appropriate result is set to a quiet NaN for each inner-product
that is invalid.

8.7.3 FIPR.S and FTRV.S accuracy specification

The FIPR.S instruction computes the dot-product of two vectors, FVg and FVh, and
places the result in FRf. Each vector contains four single-precision floating-point
values: FVg contains FRg, FRg+1, FRg+2 and FRg+3, while FVh contains FRh, FRh+1,
FRh+2 and FRh+3. The dot-product is specified as:

FRf =

The limited accuracy reduces the number of significant bits in the fraction of the
result. The absolute amount of allowed error in the result depends on the exponent
of the result. Additionally, the result is computed as a limited-precision sum of four
intermediate values. This means that the absolute amount of allowed error also
depends on the largest exponent of these four intermediates.

The accuracy specification is defined as follows. Firstly, define a notation to
represent the biased exponent values of the input operands FRg+i and FRh+i:

eFRg+i = biased exponent value of FRg+i

eFRh+i = biased exponent value of FRh+i

FRg+0 FRg+4 FRg+8 FRg+12

x

FRh+0

->

FRf+0

FRg+1 FRg+5 FRg+9 FRg+13 FRh+1 FRf+1

FRg+2 FRg+6 FRg+10 FRg+14 FRh+2 FRf+2

FRg+3 FRg+7 FRg+11 FRg+15 FRh+3 FRf+3

Figure 50: FTRV.S

FRg i+ FRh i+×

i 0=

3

�

SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Special-purpose floating-point instructions 157
These values are simply the values of ‘e’ for each floating-point source as defined in
Section 3.4: IEEE754 floating-point numbers on page 33. These values will be in the
range [1, 254].

The unbiased pre-normalized exponent of the product of FRg+i and FRh+i is now
calculated. The pre-normalized exponent of this product is given simply by adding
the two multiplicand exponents together. Since this is a pre-normalized exponent
there is no need to consider the contribution of the multiplied fractions. The
pre-normalized exponent is converted to an unbiased form by subtracting 127 twice,
removing the biases of each multiplicand. This gives values in the range [-252, 254].

Additionally, if either multiplicand is zero the result is special-cased to a value of
EZ. The value of EZ is selected to be easily distinguishable from other possible
values: a value of -253 is convenient. The detection of multiplications by zero allows
the error bound to be forced to zero in the special case where all addition terms are
multiplications by zero. The calculation of the unbiased pre-normalized exponent
EPi of the product of FRg+i and FRh+i can now be specified as:

EPi =

The specified error depends on the largest intermediate term to the 4-element
addition. The largest value of EPi where i is in [0, 3] is calculated as:

EPm = max (EP0, EP1, EP2, EP3)

where ‘max’ computes the maximum of its operands. The value of EZ is less than all
other possible values of EPi. This means that EPm will only take the value of EZ if
all 4 EPi are EZ. The range of EPm is [-252, 254] if the special value EZ is excluded.

The specified error in the result value can now be defined as:

spec_error =

The rounding mode is indicated by rm:

rm =

E is the unbiased exponent of the actual result produced by the FIPR.S instruction.
If the result is a non-zero normalized number, the value of E is the biased exponent
of the result minus the exponent bias; this is (e - 127). If the result is a denormalized

EZ

max eFRg i+ 1(,) max eFRh i+ 1(,) 254–+�
�
� if FRg i+ 0.0=()OR FRh i+ 0.0=()()

otherwise

0

2
EPm 24–

2
E 24– rm+

+�
�
� if EPm EZ=()

if EPm EZ≠()

0

1�
�
� if round to– nearest–()

if round to– zero–()
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

158 Special-purpose floating-point instructions
number, the value of E is Emin, which has the value -126. If the result is exactly a
positive or negative zero, then E is also Emin. Thus, the range of E is [-126, 127].

In the special case where EPm is EZ the specified error is zero. Otherwise, the
specified error is defined as the sum of two terms. The first term is calculated from
the maximum, unbiased, pre-normalized exponent among the four addends. This
term gives an error contribution of 2EPm-24, resulting from 23 bits of precision in the
calculation of the largest multiplication. The second term is calculated from the
unbiased exponent of the actual FIPR.S result. This term gives an error
contribution of 2E-24+rm, resulting from (23 - rm) bits of precision in the addition of
the four addends and normalization back to the IEEE754 format. Round-to-nearest
gives 23 bits of precision in this term, while this is reduced to 22 bits of precision for
round-to-zero due to the increased amount of error introduced by this rounding. The
total error is the sum of these two error contributions.

The FTRV.S instruction is numerically equivalent to performing 4 separate FIPR.S
operations on the rows of a 4x4 matrix against the column of a 4x1 vector to give a
4x1 vector result. The specified error in each element of the result is computed using
the same algorithm as that described for FIPR.S.

These instructions are not guaranteed to obey the standard mathematical notions of
commutativity and associativity. This means that swapping the order of the source
operands to a multiply or to an addition can cause the result to change.
Furthermore, the association of the additions is not defined and they can be
evaluated in any order chosen by the implementation.

8.7.4 FCOSA.S, FSINA.S and FSRRA.S

The FCOSA.S and FSINA.S instructions compute the cosine and sine (respectively)
of an angle held in FRg and place the result in FRf. The input angle is the amount of
rotation expressed as a signed fixed-point number in a 2’s complement
representation. The value 1 represents an angle of 360o/216. The upper 16 bits
indicate the number of full rotations and the lower 16 bits indicate the remainder
angle between 0o and 360o. The result is the cosine or sine of the angle in
single-precision floating-point format.

The FSRRA.S instruction computes the reciprocal of the square root of the value
held in FRg and places the result in FRf. The source and result of this instruction are
both held in single-precision floating-point format.

These are approximate instructions. The specified error in the result value is:

spec_error = 2E-21

where E is the unbiased exponent value of result.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Floating-point memory instructions 159
8.8 Floating-point memory instructions
Load and store instructions transfer data between floating-point registers and
memory. Three different widths of data are supported:

• A suffix of ‘.S’ indicates an instruction that transfers 32-bit data to a 4-byte
aligned effective address. The floating-point operand FRi, where i is in [0, 63],
denotes one of 64 single-precision floating-point registers.

• A suffix of ‘.D’ indicates an instruction that transfers 64-bit data to an 8-byte
aligned effective address. The floating-point operand DR2i, where i is in [0, 31],
denotes one of 32 double-precision floating-point registers.

• A suffix of ‘.P’ indicates an instruction that transfers a pair of two 32-bit data
values to an 8-byte aligned effective address. The floating-point operand FP2i,
where i is in [0, 31], denotes one of 32 pairs of single-precision floating-point
registers.

The behavior of ‘.D’ and ‘.P’ transfers is different due to endianness. A full
description of the behavior is given in Section 3.7: Data representation in memory on
page 43. Floating-point load and store instructions are provided for naturally
aligned data only. If access to misaligned data is required, the integer load and store
instructions for misaligned access should be used, with an appropriate move
instruction to transfer the data between the floating-point and general-purpose
register sets.

The floating-point load and store instructions are typically used for transferring
floating-point data. However, these instructions place no interpretation on the
values that they transfer. They can also be used to load and store integer values into
the floating-point registers. This can be convenient since some instructions (notably
conversions to and from integers) interpret floating-point registers as integers.

The two supported addressing modes are displacement and indexed. The supported
instructions are summarized in the following table.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

160 Floating-point memory instructions
8.8.1 Displacement addressing

For displacement addressing, the effective address is calculated by adding a base
pointer to a displacement. The base register is held in a general-purpose register,
and the displacement is given as a sign-extended 10-bit immediate value. The
immediate value is scaled by the size of the object accessed.

Access Mode Single-precision Double-precision Single-precision pair

Load indexed FLDX.S FLDX.D FLDX.P

displacement FLD.S FLD.D FLD.P

Store indexed FSTX.S FSTX.D FSTX.P

displacement FST.S FST.D FST.P

Table 87: Aligned floating-point load and store instructions

Instruction Summary Displacement scaling factor

FLD.S base,offset,result load 32-bit value 4

FLD.D base,offset,result load 64-bit value 8

FLD.P base,offset,result load two 32-bit values 8

FST.S base,offset,value store 32-bit value 4

FST.D base,offset,value store 64-bit value 8

FST.P base,offset,value store two 32-bit values 8

Table 88: Aligned floating-point load and store instructions with displacement addressing
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Floating-point memory instructions 161
8.8.2 Indexed addressing

For indexed addressing, the effective address is calculated by adding a base pointer
with an index. Both the base pointer and the index are held in general-purpose
registers. Unlike displacement addressing, the index is not scaled.

Instruction Summary

FLDX.S base,index,result load indexed 32-bit value

FLDX.D base,index,result load indexed 64-bit value

FLDX.P base,index,result load indexed two 32-bit values

FSTX.S base,index,value store indexed 32-bit value

FSTX.D base,index,value store indexed 64-bit value

FSTX.P base,index,value store indexed two 32-bit values

Table 89: Aligned floating-point load and store instructions with indexed addressing
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

162 Floating-point memory instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
9
SHmedia
system
instructions

9.1 Overview

System instructions are used for supporting the event handling mechanism, and for
accessing control and configuration registers The instructions that support event
handling are described in Section 9.2. Instructions to access control registers are
described in Section 9.3, and instructions to access configuration registers are
described in Section 9.4.

9.2 Event handling instructions
There are three system instructions related to event handling. Further information
on event handling can be found in Chapter 16: Event handling on page 221.

RTE is used to return from an event handler, and has no operands. RTE is a
privileged instruction and raises a RESINST exception if executed in user mode.
The actions performed by RTE are described in Section 16.7: Recovery on page 235.

TRAPA is used to cause a trap exception to be taken unconditionally. TRAPA has a
register operand which is used when initializing the TRA control register during a

Instruction Summary

RTE return from exception

TRAPA tra cause a trap

BRK cause a break

Table 90: Event handling instructions
-5 CPU Core, Volume 1: Architecture

164 Control registers
trap handler launch. The trap exception is called TRAP and is described in Section
16.11.2: Instruction opcode exceptions on page 243.

BRK is used to cause a debug exception to be taken unconditionally. BRK has no
operands. The debug exception is called BREAK and is described in Section
16.11.5: Debug exceptions on page 247. The BRK instruction is typically reserved for
use by the debugger.

9.3 Control registers
The architecture defines sixty-four, 64-bit control registers held in a control register
set. These provide a uniform mechanism for accessing the state used to control the
CPU. Control registers implicitly affect the execution of instructions.

Many of the control registers relate to reset, interrupt, exception and panic
handling, and these interactions are described in Chapter 16: Event handling on
page 221.

9.3.1 Control register set

CR denotes the set of control registers. CR0 to CR31 are privileged control registers,
and CR32 to CR63 are user-accessible control registers. The behavior of each control
register can be different in privileged mode or user mode. The behaviors are selected
from the following list:

• DEFINED: the control register has an architecturally defined behavior for reads
and writes.

• UNDEFINED: the control register has no architecturally defined behavior for
reads and writes. This behavior does not occur for user mode accesses, so that
user mode programs are not able to cause architecturally undefined behavior.

• EXCEPTION: reads and writes to the control register cause a reserved
instruction exception. This behavior is used to detect access to privileged control
registers from user mode. It does not occur for privileged mode accesses.

• RESERVED: reads to the control register return zero, and writes to the control
register are ignored.

The DEFINED control registers are described in Chapter 15: Control registers on
page 207.

Where a control register exhibits UNDEFINED, EXCEPTION or RESERVED
behavior, software should not access that register. These registers could be used to
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control registers 165
extend the architecture in some future revision. Future implementations could
exhibit different behavior to that described above.

9.3.2 Control register instructions

Control registers are accessed using two instructions. GETCON performs a 64-bit
data transfer from a control register to a general-purpose register. PUTCON
performs a 64-bit data transfer from a general-purpose register to a control register.

The behavior of GETCON and PUTCON is summarized in the following table.

GETCON and PUTCON are precise. All immediate side-effects of a PUTCON
instruction take effect on the completion of the PUTCON instruction, and are visible
to the immediately following instructions. In some situations, additional software
actions are required to ensure correct architectural behavior. These requirements
are explicitly described in the text.

Instruction Summary

GETCON index,result move from control register

PUTCON value,index move to control register

Table 91: Control register instructions

Behavior
Privileged mode User mode

GETCON PUTCON GETCON PUTCON

DEFINED Gets control register
value

Puts control register
value

Gets control
register value

Puts control
register value

UNDEFINED Returns architecturally
undefined value

Causes architecturally
undefined behavior

(does not occur)

RESERVED Reads as zero Write ignored Reads as zero Write ignored

EXCEPTION (does not occur) Reserved instruction exception is
raised

Table 92: GETCON and PUTCON behavior
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

166 Configuration registers
9.4 Configuration registers
Configuration registers are used to configure highly implementation-dependent
parts of the CPU, such as memory management and the cache. Configuration
registers hold arrays of state and are accessed through a configuration register
space.

An implementation with an MMU provides MMU configuration registers. An
implementation with caches provides cache configuration registers. Other
configuration registers can be provided depending on the implementation. The
configuration register map is not defined in this document because its contents are
highly implementation dependent.

9.4.1 Configuration register space

The architecture provides a configuration space containing 232 64-bit configuration
registers. This space is unrelated to the memory address space. It is not translated
and it is not accessible by load and store instructions. It is not byte-addressed; it is
addressed by configuration register number. The notation CFG[i] refers to the ith.

64-bit configuration register.

The set of defined configuration registers is implementation specific. However,
configuration registers with indices outside of the range [0, 232) are undefined on all
implementations. Reading from an undefined configuration register gives an
architecturally-undefined value. Writing to an undefined configuration register
gives architecturally-undefined behavior.

9.4.2 Configuration register instructions

Configuration registers are accessed using two instructions. These are privileged
instructions. Execution of these two instructions in user mode will result in a
reserved instruction exception. GETCFG performs a 64-bit data transfer from a
configuration register to a general-purpose register. PUTCFG performs a 64-bit
data transfer from a general-purpose register to a configuration register. The
configuration register is identified by adding a base value (provided in a register)
with an offset value (provided as an immediate).
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Configuration registers 167
GETCFG and PUTCFG are precise. All immediate side-effects of a PUTCFG
instruction take effect on the completion of the PUTCFG instruction, and are visible
to the immediately following instructions. In some situations, additional software
actions are required to ensure correct architectural behavior. These requirements
are explicitly described in the text.

Instruction Summary

GETCFG base,offset,result move from configuration register

PUTCFG base,offset,value move to configuration register

Table 93: Configuration register instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

168 Configuration registers
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
10
SHcompact
instructions
10.1 Overview
All SHcompact instructions are 2 bytes in length, and are held in memory on 2-byte
boundaries. Instructions are described as collections of 16 bits, numbered from 0
(the least significant bit) to 15 (the most significant bit). The endianness of
instructions in memory is dictated by the endianness of the processor.

If the processor is little endian, instructions are held in little-endian order in
memory (see Figure 51). The least significant byte of an instruction, containing bits
0 to 7 of its encoding, is held at the lower address in the memory representation (at
address A). The most significant byte of this instruction, containing bits 8 to 15 of its
encoding, is held at the higher address (at address A+1).

Alternatively, if the processor is big endian instructions are held in big-endian order
in memory (see Figure 52). The most significant byte of an instruction, containing
bits 8 to 15 of its encoding, is held at the lower address in the memory
representation (at address A). The least significant byte of this instruction,
containing bits 0 to 7 of its encoding, is held at the higher address (at address A+1).

Instruction encoding Memory representation

Byte 1 Byte 0 � Byte 1 Address A+1

15 0 Byte 0 Address A

Figure 51: Little-endian memory representation of an SHcompact instruction
-5 CPU Core, Volume 1: Architecture

170 Formats
The following chapters (Chapter 11 on page 171 to Chapter 14 on page 205)
summarize the SHcompact instruction set. Further details can be found in Volume 3
Chapter 2: SHcompact instruction set.

10.2 Formats
Every SHcompact instruction is associated with an instruction format. The format
of an instruction determines how that instruction is encoded and decoded. Each
instruction format contains 16 bits, and these are grouped together into bit-fields.
Each bit-field is a contiguous collection of bits and is associated with a bit-field type.

The available bit-field types are denoted by single character identifiers:

• x: instruction opcode. The opcode uniquely identifies an instruction.

• m: source register. This bit-field type identifies the right source operand.

• n: destination/source register. For a single-source (monadic) instruction, this
bit-field type identifies the destination. For a double-source (dyadic) instruction,
this bit-field type identifies the left source operand, as well as the destination
operand. In the latter case, the left source value is overwritten with the result
computed by the instruction.

• i: immediate. An immediate is a constant source value encoded directly in the
instruction. Some instructions extract the immediate as an unsigned number,
while others extract it as a signed number.

• d: displacement. A displacement is a constant source value encoded directly in
the instruction. This bit-field type is used in address calculations performed by
load, store and branch instructions. Some instructions extract the displacement
as an unsigned number, while others extract it as a signed number.

SHcompact instruction formats are specified in Volume 3, Appendix A: SHcompact
instruction encoding.

Instruction encoding Memory representation

Byte 0 Byte 1 � Byte 1 Address A+1

15 0 Byte 0 Address A

Figure 52: Big-endian memory representation of an SHcompact instruction
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
11
SHcompact
integer
instructions

11.1 Overview

This chapter describes the SHcompact integer instructions.

These instructions are classified as follows:

1 Control flow instructions: these instructions are used to determine the control
flow through the program.

2 Arithmetic instructions: these instructions perform integer arithmetic. The
operations include addition, subtraction, multiplication, support for division,
multiply-and-accumulate, negation and decrement.

3 Comparison instructions: a set of instructions are provided for comparison of
signed and unsigned integer data, and of string data.

4 No-operation: an instruction is provided to perform no operation.

5 Bitwise instructions: these instructions perform bitwise operations on integer
data. The set of operations include bitwise AND, OR, XOR and NOT.

6 Rotate and shift instructions: these instructions perform rotations of integer
data, arithmetic shifts and logical shifts. Shift amounts can be specified in
immediates or registers.

7 Miscellaneous instructions: this class includes instructions to move values
between registers, to load an immediate value into a register, and to read the
T-bit. Instructions are also provided to construct PC-relative effective addresses,
to swap bytes and words in registers, and to extract data from a pair of registers.

8 Special instructions: these instructions operate on special registers and special
flags. The special registers are the multiply-and-accumulate low and high
registers (MACL and MACH), the procedure register (PR) and the global base
-5 CPU Core, Volume 1: Architecture

172 Control flow instructions
register (GBR). Instructions are defined to move values between general-purpose
registers and special registers, to move values between memory and special
registers and to clear the multiply-and-accumulate registers. The instructions
for the special flags can clear and set the S-bit and the T-bit.

11.2 Control flow instructions
These instructions determine the control flow through the program.

SHcompact supports delayed branches. The instruction immediately following a
delayed branch in memory is called a delay slot instruction. The delayed branch and
the delay slot are still executed in their program order. However, for a delayed
branch, the delay slot is executed before the branch is effected. This means that the
delay slot is executed regardless of whether the branch is taken or not.

For a non-delayed branch, there is no delay slot and the branch is effected
immediately after the execution of the non-delayed branch instruction.

Conditional branches

These instructions cause a conditional transfer of control depending on the value of
the T-bit. The T-bit is usually set by a previous compare instruction.

Unconditional branch

This instruction causes an unconditional transfer of control.

Instruction Summary

BF label non-delayed branch to PC-relative label address if T-bit is 0

BF/S label delayed branch to PC-relative label address if T-bit is 0

BT label non-delayed branch to PC-relative label address if T-bit is 1

BT/S label delayed branch to PC-relative label address if T-bit is 1

Table 94: Conditional branch instructions

Instruction Summary

BRA label delayed branch to PC-relative label address

Table 95: Unconditional branch
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control flow instructions 173
Branch subroutine

This instruction causes an unconditional transfer of control, and also sets the
procedure register (PR). The value of PR can be used to return to the instruction
following the branch sub-routine instruction. The target instruction executes in
SHcompact mode.

Branches with mode switch

The mode of operation can be changed using the least significant bit of the target
address of these instructions. A ‘0’ in this bit indicates that the target instruction
will execute in SHcompact while a ‘1’ indicates SHmedia. The mode switching
behavior of these instructions correspond to instruction address error exceptions on
SH-4.

The least significant bit is only used for mode indication, and is masked out to give
the target program counter value. All mode-switching instructions are
unconditional delayed branches. The mode switch occurs after the delay slot has
been executed.

Instruction Summary

BSR label delayed branch to PC-relative label address,
set the procedure register

Table 96: Branch sub-routine

Instruction Summary

BRAF Rn delayed branch to PC-relative target address

BSRF Rn delayed branch to PC-relative target address, set the procedure register

JMP @Rn delayed branch to absolute target address

JSR @Rn delayed branch to absolute target address, set the procedure register

RTS delayed branch to absolute target address held in the procedure register

Table 97: Mode-switching branch instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

174 Arithmetic instructions
11.3 Arithmetic instructions
These instructions perform standard arithmetic operations on 32-bit data (except
where stated otherwise). Some instructions use an immediate value for one of the
operands, and some operate on data held in memory.

The DIV0S, DIV0U and DIV1 instructions use M, Q and T bits in the status register
to hold additional state. The S-bit determines whether MAC.L and MAC.W calculate
a saturated result.

Instruction Summary

ADD Rm, Rn add register to register

ADD #imm, Rn add register to immediate

ADDC Rm, Rn add register to register with carry

ADDV Rm, Rn add register to register with overflow check

DIV0S Rm, Rn divide step 0 as signed

DIV0U divide step 0 as unsigned

DIV1 Rm, Rn divide step 1

DMULS.L Rm, Rn double-length multiply as signed (32 x 32 to 64)

DMULU.L Rm, Rn double-length multiply as unsigned (32 x 32 to 64)

DT Rn decrement register and test for zero

MAC.L @Rm+, @Rn+ multiply and accumulate long, operands from memory

MAC.W @Rm+, @Rn+ multiply and accumulate word, operands from memory

MUL.L Rm, Rn multiply long (32 x 32 to 32)

MULS.W Rm, Rn multiply signed word (16 x 16 to 32)

MULU.W Rm, Rn multiply unsigned word (16 x 16 to 32)

NEG Rm, Rn negate register

NEGC Rm, Rn negate register with carry

SUB Rm, Rn subtract register from register

Table 98: Arithmetic instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Comparison instructions 175
11.4 Comparison instructions
These instructions compare 32-bit values and place a boolean result in the T-bit.

11.5 No-operation
The no-operation instruction is often used to pad out the instruction text to a
required alignment. It is also often used to fill empty delay slots.

SUBC Rm, Rn subtract register from register with carry

SUBV Rm, Rn subtract register from register with underflow check

Instruction Summary

Table 98: Arithmetic instructions

Instruction Summary

CMP/EQ Rm, Rn compare register equal to register

CMP/EQ #imm, R0 compare register equal to immediate

CMP/GE Rm, Rn compare register greater than or equal to register

CMP/GT Rm, Rn compare register greater than register

CMP/HI Rm, Rn compare register higher than register

CMP/HS Rm, Rn compare register higher or same as register

CMP/PL Rn compare register greater than 0

CMP/PZ Rn compare register greater equal 0

CMP/STR Rm, Rn compare string data held in registers

Table 99: Comparison instructions

Instruction Summary

NOP no operation

Table 100: No operation
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

176 Bitwise instructions
11.6 Bitwise instructions
These instructions performing standard bitwise operations. Operations are
performed on 32-bit data except where explicitly specified otherwise.

Bitwise operations

These include monadic and dyadic operations. Some instructions use an immediate
value for one of the operands, and some operate on data held in memory.

Test operations

These instructions perform tests on data held in a register or in memory. The result
is placed in the T-bit.

Instruction Summary

AND Rm, Rn bitwise AND of register with register

AND #imm, R0 bitwise AND of register with immediate value

AND.B #imm, @(R0, GBR) bitwise AND of immediate with 8-bit memory value

NOT Rm, Rn bitwise NOT of register

OR Rm, Rn bitwise OR of register with register

OR #imm, R0 bitwise OR of register with immediate value

OR.B #imm, @(R0, GBR) bitwise OR of immediate with 8-bit memory value

XOR Rm, Rn bitwise XOR of register with register

XOR #imm, R0 bitwise XOR of register with immediate value

XOR.B #imm, @(R0, GBR) bitwise XOR of immediate with 8-bit memory value

Table 101: Bitwise instructions

Instruction Summary

TST Rm, Rn bitwise AND of register with register to set T-bit

TST #imm, R0 bitwise AND of register with immediate value to set T-bit

TST.B #imm, @(R0, GBR) bitwise AND of immediate with 8-bit memory value to set T-bit

Table 102: Test instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Rotate and shift instructions 177
11.7 Rotate and shift instructions
These instructions perform rotate and shifts on a register operand.

Rotates

Shifts

Instruction Summary

ROTCL Rn rotate left T-bit and register

ROTCR Rn rotate right T-bit and register

ROTL Rn rotate left register, T-bit gets most significant bit

ROTR Rn rotate right register, T-bit gets least significant bit

Table 103: Rotate instructions

Instruction Summary

SHAD Rm, Rn dynamic arithmetic shift of register

SHAL Rn 1-bit left shift of register

SHAR Rn 1-bit arithmetic right shift of register

SHLD Rm, Rn dynamic logical shift of register

SHLL Rn shift logical left by 1

SHLL2 Rn shift logical left by 2

SHLL8 Rn shift logical left by 8

SHLL16 Rn shift logical left by 16

SHLR Rn shift logical right by 1

SHLR2 Rn shift logical right by 2

SHLR8 Rn shift logical right by 8

SHLR16 Rn shift logical right by 16

Table 104: Shift instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

178 Miscellaneous instructions
11.8 Miscellaneous instructions
These instructions perform various moves into registers, and perform register to
register transfers with some data reformatting. Move instructions that access
memory are described in Chapter 12: SHcompact memory instructions on page 181.

Various Move Instructions

Register to register transfers

Instruction Summary

MOV #imm, Rn move immediate value to a register

MOV Rm, Rn register to register move, copies 64-bit data

MOVA @(disp, PC), R0 calculate a PC-relative effective address

MOVT Rn move T-bit to a register

Table 105: Various move instructions

Instruction Summary

EXTS.B Rm, Rn sign-extend 8-bit data in register

EXTS.W Rm, Rn sign-extend 16-bit data in register

EXTU.B Rm, Rn zero-extend 8-bit data in register

EXTU.W Rm, Rn zero-extend 16-bit data in register

SWAP.B Rm, Rn swap register bytes

SWAP.W Rm, Rn swap register words

XTRCT Rm, Rn extract a long-word from a pair of registers

Table 106: Register transfer instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Special instructions 179
11.9 Special instructions
These instructions are used for manipulating special state.

Loading a special register

Storing a special register

Instruction Summary

LDC Rm, GBR load from register to GBR

LDC.L @Rm+, GBR load from memory to GBR with post-increment

LDS Rm, MACH load from register to MACH

LDS.L @Rm+, MACH load from memory to MACH with post-increment

LDS Rm, MACL load from register to MACL

LDS.L @Rm+, MACL load from memory to MACL with post-increment

LDS Rm, PR load from register to PR

LDS.L @Rm+, PR load from memory to PR with post-increment

Table 107: Load special register instructions

Instruction Summary

STC GBR, Rn store to register from GBR

STC.L GBR, @-Rn store to memory from GBR with pre-decrement

STS MACH, Rn store to register from MACH

STS.L MACH, @-Rn store to memory from MACH with pre-decrement

STS MACL, Rn store to register from MACL

STS.L MACL, @-Rn store to memory from MACL with pre-decrement

STS PR, Rn store to register from PR

STS.L PR, @-Rn store to memory from PR with pre-decrement

Table 108: Store special register instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

180 Special instructions
Clearing and setting special registers and flags

Instruction Summary

CLRMAC clear MACL and MACH registers

CLRS clear S-bit

CLRT clear T-bit

SETS set S-bit

SETT set T-bit

Table 109: Clear special register and flag instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
12
SHcompact
memory
instructions
This chapter defines the SHcompact load, store and cache instructions for
general-purpose registers. The load/store instructions for floating-point registers
are described separately in Chapter 13: SHcompact floating-point on page 189.

The endianness of the data is properly converted when loaded from memory to a
register or when stored from a register into memory.

The following datatypes are supported for load/store instructions:

• Byte (suffix ‘.B’): 8 bits of data.

• Word (suffix ‘.W’): 16 bits of data.

• Long-word (suffix ‘.L’): 32 bits of data.

All byte and word data is sign-extended when loaded. Load and store instructions
raise an exception if the accessed data is not naturally aligned in memory. The
effective address for an access of width n bytes should be an exact multiple of n,
otherwise an exception is raised to indicate misalignment.
-5 CPU Core, Volume 1: Architecture

182 Load/store instructions
12.1 Load/store instructions
These instructions are used to move data between general-purpose registers and
memory. The instructions are grouped here according to their addressing mode.

PC indirect with displacement

The effective address is calculated by adding a displacement to PC. This addressing
mode is only available for word and long-word loads.

GBR indirect with displacement

The effective address is calculated by adding a displacement to GBR.The
displacement is scaled by the width of the access.

Instruction Summary

MOV.W @(disp, PC), Rn load 16-bits indirect from PC with displacement

MOV.L @(disp, PC), Rn load 32-bits indirect from PC with displacement

Table 110: Memory instructions using PC indirect with displacement addressing

Instruction Summary

MOV.B R0, @(disp, GBR) store 8-bits indirect to GBR with displacement

MOV.W R0, @(disp, GBR) store 16-bits indirect to GBR with displacement

MOV.L R0, @(disp, GBR) store 32-bits indirect to GBR with displacement

MOV.B @(disp, GBR), R0 load 8-bits indirect from GBR with displacement

MOV.W @(disp, GBR), R0 load 16-bits indirect from GBR with displacement

MOV.L @(disp, GBR), R0 load 32-bits indirect from GBR with displacement

Table 111: Memory instructions using GBR indirect with displacement addressing
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Load/store instructions 183
Register indirect

The effective address is specified in a register.

Register indirect with displacement

The effective address is calculated by adding a register and a displacement. The
displacement is scaled by the width of the access.

Instruction Summary

MOV.B Rm, @Rn store 8-bits indirect

MOV.W Rm, @Rn store 16-bits indirect

MOV.L Rm, @Rn store 32-bits indirect

MOV.B @Rm, Rn load 8-bits indirect

MOV.W @Rm, Rn load 16-bits indirect

MOV.L @Rm, Rn load 32-bits indirect

Table 112: Memory instructions using register indirect addressing

Instruction Summary

MOV.B R0, @(disp, Rn) store 8-bits indirect with displacement

MOV.W R0, @(disp, Rn) store 16-bits indirect with displacement

MOV.L Rm, @(disp, Rn) store 32-bits indirect with displacement

MOV.B @(disp, Rm), R0 load 8-bits indirect with displacement

MOV.W @(disp, Rm), R0 load 16-bits indirect with displacement

MOV.L @(disp, Rm), Rn load 32-bits indirect with displacement

Table 113: Memory instructions using register indirect with displacement addressing
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

184 Load/store instructions
Register indirect with pre-decrement

A register is pre-decremented by the width of the access, and the resulting value
specifies the effective address. This addressing mode is only available for stores.

Register indirect with post-increment

The effective address is specified in a register. This register is post-incremented by
the width of the access. This addressing mode is only available for loads.

Register indirect with indexing

The effective address is calculated by adding two registers together.

Instruction Summary

MOV.B Rm, @-Rn store 8-bits indirect with pre-decrement

MOV.W Rm, @-Rn store 16-bits indirect with pre-decrement

MOV.L Rm, @-Rn store 32-bits indirect with pre-decrement

Table 114: Memory instructions using register indirect with pre-decrement addressing

Instruction Summary

MOV.B @Rm+, Rn load 8-bits indirect with post-increment

MOV.W @Rm+, Rn load 16-bits indirect with post-increment

MOV.L @Rm+, Rn load 32-bits indirect with post-increment

Table 115: Memory instructions using register indirect with post-increment addressing

Instruction Summary

MOV.B Rm, @(R0, Rn) store 8-bits indirect with indexing

MOV.W Rm, @(R0, Rn) store 16-bits indirect with indexing

MOV.L Rm, @(R0, Rn) store 32-bits indirect with indexing

MOV.B @(R0, Rm), Rn load 8-bits indirect with indexing

MOV.W @(R0, Rm), Rn load 16-bits indirect with indexing

MOV.L @(R0, Rm), Rn load 32-bits indirect with indexing

Table 116: Memory instructions using register indirect with indexing addressing
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Test and set instruction 185
12.2 Test and set instruction
This instruction performs a test-and-set operation on the byte data at the effective
address specified in Rn. The 8 bits of data at the effective address are read from
memory. If the read data is 0 the T-bit is set, otherwise the T-bit is cleared. The
highest bit of the 8-bit data (bit 7) is then set, and the result is written back to the
memory at the same effective address.

This test-and-set is atomic from the CPU perspective. This instruction cannot be
interrupted during its operation. However, atomicity is not provided with respect to
accesses from other memory users. It is possible that a memory access from another
memory user could observe or modify the memory state between the read and write.

There is no special treatment for TAS.B regarding the cache, and it behaves in the
same way as a load followed by a store. Depending on the cache behavior, it is
possible for the TAS.B accesses to be completed in the cache with no external
memory activity. If the MMU is disabled, the accesses will be performed on external
memory. If the MMU is enabled, the accesses will be performed according to the
cache behavior of the translation:

• For device or uncached cache behavior, the access will be performed on external
memory locations.

• For write-through and write-back cache behaviors, the read can be performed on
the cache if there is a cache hit. If there is a cache miss the read access can cause
a cache block to be allocated and this can cause other cache blocks to be evicted
or written-back from the cache. For write-through cache behavior, the write will
be written to external memory. For write-back cache behavior the write can be
completed in the cache (if it hits) without an external memory write. Note that
the full behavior depends on other details of cache operation.

As described earlier, the read and write memory accesses caused by TAS.B (if any)
are not guaranteed to implemented atomically on the external memory location
with respect to other memory users.

The SHmedia SWAP.Q instruction (see Section 6.5.1: Atomic swap on page 98)
provides an atomic read-modify-write on external memory, and should be used for
synchronization with other memory users.

Instruction Summary

TAS.B @Rn test 8-bit memory value and set T-bit

Table 117: Test and set instruction
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

186 Synchronization
12.3 Synchronization
No SHcompact mechanisms are provided for:

• Data synchronization

• Instruction synchronization

• Memory synchronization that is atomic with respect to other memory users.

The SHmedia mechanisms described in Section 6.5: Synchronization on page 98
should be used instead.

12.4 Cache instructions
There are 3 categories of cache instruction: prefetch (PREF), allocate (MOVCA.L)
and coherency (OCBI, OCBP and OCBWB) instructions.

These instructions allow software to control and optimize cache operation in a
largely implementation-independent manner. Note that the cache block size is
exposed by these instructions and this value is implementation specific.

These instructions have behaviors corresponding to SHmedia instructions described
in Section 6.6: Cache instructions on page 101.

Instruction Summary

MOVCA.L R0, @Rn move with cache block allocation

OCBI @Rn operand cache block invalidate

OCBP @Rn operand cache block purge

OCBWB @Rn operand cache block writeback

PREF @Rn prefetch data from memory to operand cache

Table 118: Cache instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Cache instructions 187
SHcompact does not provide instructions for invalidation or prefetch of instruction
cache blocks. The SHmedia mechanisms described in Section 6.6: Cache instructions
on page 101 should be used instead.

Further information on caches can be found in Chapter 18: Caches on page 297.

SHcompact Instruction Analogous SHmedia Instructions

MOVCA.L R0, @Rn ALLOCO of address in Rn,
followed by a 32-bit store of R0 to address in Rn

OCBI @Rn OCBI of address in Rn

OCBP @Rn OCBP of address in Rn

OCBWB @Rn OCBWB of address in Rn

PREF @Rn Aligned load from address in Rn to R63 (data prefetch)

Table 119: Cache instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

188 Cache instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
13
SHcompact
floating-point
13.1 Overview
SHcompact provides a comprehensive set of floating-point instructions for
single-precision and double-precision representations. The SHcompact
floating-point instructions are the set of instructions that are defined in this
chapter. The SHcompact floating-point state consists of the floating-point register
set, FPSCR and FPUL. These are defined in Section 2.9: SHcompact state on
page 26.

The IEEE754 floating-point standard is supported through a combination of
hardware and system software. This is described in Section 8.3: IEEE754
floating-point support on page 136.

The architecture also provides non-IEEE754 support including fast handling of
denormalized numbers, fused multiply accumulate and special-purpose
instructions. This is described in Section 8.4: Non-IEEE754 floating-point support
on page 145.

13.2 Floating-point disable
The architecture allows the floating-point unit to be disabled by software. This is
achieved by setting SR.FD to 1. Once disabled, any attempt to execute a
floating-point opcode will generate an exception. The set of floating-point opcodes is
described in Volume 3, Appendix A: SHcompact instruction encoding.

If an implementation does not provide a floating-point unit, then the behavior of
floating-point instructions is the same as an implementation with a floating-point
unit that is permanently disabled. On such an implementation, SR.FD is
permanently set to 1 and the implementation does not provide the floating-point
-5 CPU Core, Volume 1: Architecture

190 Floating-point register set
state. Any attempt to access the floating-point state will generate an exception. It is
possible to emulate the floating-point instructions and state in software.

13.3 Floating-point register set
The SHcompact floating-point register set is described in Chapter 2: Architectural
state on page 13. In SHcompact mode, it consists of two banks, each containing 16
single-precision (32 bit) floating-point registers. These registers can also be viewed
as double-precision (64 bit) values, pairs of single-precision values, 4-element
vectors of single-precision values and 16-element matrices of single-precision
values.

13.4 FPSCR
The floating-point status and control register, FPSCR, is 32 bits wide. It is used to
control, read and write the floating-point status. The SHcompact view of FPSCR is
shown in Figure 53. The ‘r’ field indicates reserved bits.

The RM, FLAG, ENABLE, CAUSE and DN fields have the behavior described in
Section 8.6.1: Floating-point status and control on page 148.

The SHmedia view of FPSCR does not contain the PR, SZ and FR fields. The
mapping between the SHmedia and SHcompact views are described in Section
2.9.2: SHcompact floating-point register state on page 27.

These 3 fields are used to provide additional encoding information for SHcompact
floating-point instructions. They are used as follows:

• FPSCR.PR selects the precision of operation: 0 indicates single-precision and 1
indicates double-precision. Some floating-point instructions are only available
when FPSCR.PR has a certain value.

• FPSCR.SZ selects the width of data-transfer for floating-point loads and stores:
0 indicates transfers of 32-bit registers and 1 indicates transfers of pairs of

r

F
R

S
Z

P
R

D
N CAUSE ENABLE FLAG r

R
M

31 22 21 20 19 18 17 12 11 7 6 2 1 0

Figure 53: FPSCR
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

FPUL 191
32-bit registers (64 bits). Some floating-point instructions are only available
when FPSCR.SZ has a certain value.

• FPSCR.FR selects which bank is viewed using the regular floating-point register
names and which as the extended bank: the banking arrangement is described
in Section 2.9.2: SHcompact floating-point register state on page 27.

13.5 FPUL
FPUL is a 32-bit register used to move and convert data between general-purpose
registers and floating-point registers. All operations using FPUL transfer 32 bits of
data into or out of FPUL. This can be a long-word integer or a single-precision
floating-point value.

The operations that use FPUL are listed in Table 120 and Table 121.

Operation Source Destination

Move FPUL Single-precision floating-point register

Move FPUL General-purpose register

Move FPUL Memory

Convert long-word to single FPUL Single-precision floating-point register

Convert long-word to double FPUL Double-precision floating-point register

Convert single to double FPUL Double-precision floating-point register

Table 120: Operations that read from FPUL

Operation Source Destination

Move Single-precision floating-point register FPUL

Move General-purpose register FPUL

Move Memory FPUL

Convert single to long-word Single-precision floating-point register FPUL

Convert double to long-word Double-precision floating-point register FPUL

Convert double to single Double-precision floating-point register FPUL

Table 121: Operations that write to FPUL
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

192 Floating-point instructions
13.6 Floating-point instructions
This section describes the SHcompact floating-point instructions. The SHcompact
floating-point provision is largely analogous to that for SHmedia. For further
details, refer to Chapter 8: SHmedia floating-point on page 135.

13.6.1 Floating-point special register access

These instructions support access to the FPSCR and FPUL registers. All of these
accesses transfer 32 bits of data.

13.6.2 Floating-point constant loading

These instructions are used to load single-precision constants 0.0 and 1.0 into
floating-point registers:

Instruction Summary

FLDS FRm, FPUL floating-point load from register to FPUL

FSTS FPUL, FRn floating-point store to register from FPUL

LDS Rm, FPSCR load from register to FPSCR

LDS.L @Rm+, FPSCR load from memory to FPSCR with post-increment

LDS Rm, FPUL load from register to FPUL

LDS.L @Rm+, FPUL load from memory to FPUL with post-increment

STS FPSCR, Rn store to register from FPSCR

STS.L FPSCR, @-Rn store to memory from FPSCR with pre-decrement

STS FPUL, Rn store to register from FPUL

STS.L FPUL, @-Rn store to memory from FPUL with pre-decrement

Table 122: Floating-point special register access instructions

Instruction Summary

FLDI0 FRn single floating-point load of 0.0

FLDI1 FRn single floating-point load of 1.0

Table 123: Floating-point constant loading instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Floating-point instructions 193
13.6.3 Floating-point dyadic arithmetic

This set of floating-point instructions operate on two floating-point source operands.
The following instructions are defined:

13.6.4 Floating-point monadic arithmetic

This set of floating-point instructions operate on one floating-point source operand.
The following instructions are defined:

Instruction Summary

FADD DRm, DRn double floating-point add

FADD FRm, FRn single floating-point add

FDIV DRm, DRn double floating-point divide

FDIV FRm, FRn single floating-point divide

FMUL DRm, DRn double floating-point multiply

FMUL FRm, FRn single floating-point multiply

FSUB DRm, DRn double floating-point subtract

FSUB FRm, FRn single floating-point subtract

Table 124: Floating-point dyadic arithmetic instructions

Instruction Summary

FABS DRn double floating-point absolute

FABS FRn single floating-point absolute

FNEG DRn double floating-point negate

FNEG FRn single floating-point negate

FSQRT DRn double floating-point square root

FSQRT FRn single floating-point square root

Table 125: Floating-point monadic arithmetic instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

194 Floating-point instructions
13.6.5 Floating-point multiply and accumulate

A floating-point multiply and accumulate instruction is defined to multiply two
source operands and then add this to a third source operand. The third source
operand also defines the destination into which the result is placed. The effect is
that the output of the multiplication is accumulated into the result.

In terms of register operands, the FMAC instruction computes (FR0 × FRm) + FRn
and places the result in FRn.

13.6.6 Floating-point comparisons

The following comparison instructions are defined:

The boolean result of the comparison is placed in the T-bit.

Instruction Summary

FMAC FR0, FRm, FRn single floating-point multiply and accumulate

Table 126: Floating-point multiply and accumulate

Instruction Summary

FCMP/EQ DRm, DRn double floating-point compare equal

FCMP/EQ FRm, FRn single floating-point compare equal

FCMP/GT DRm, DRn double floating-point compare greater

FCMP/GT FRm, FRn single floating-point compare greater

Table 127: Floating-point comparison instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Floating-point instructions 195
13.6.7 Floating-point conversions

A set of conversion instructions are defined to convert between the two
floating-point formats, and between integer and floating-point formats:

13.6.8 Special-purpose floating-point instructions

These instructions are mainly used in special-purpose applications (for example,
graphics). The special-purpose floating-point instructions are:

These instructions do not conform to the IEEE754 standard and return
approximate results. An implementation will return a result which is strictly within
a specified error bound relative to the fully precise result. The numerical properties
of each of these SHcompact instructions is the same as the corresponding SHmedia
instruction. Further information can be found in Section 8.7: Special-purpose
floating-point instructions on page 154.

Instruction Summary

FCNVDS DRm, FPUL double to single floating-point convert

FCNVSD FPUL, DRn single to double floating-point convert

FLOAT FPUL, DRn double floating-point convert from integer

FLOAT FPUL, FRn single floating-point convert from integer

FTRC DRm, FPUL double floating-point truncate and convert to integer

FTRC FRm, FPUL single floating-point truncate and convert to integer

Table 128: Floating-point conversion instructions

Instruction Summary

FIPR FVm, FVn single floating-point inner product

FTRV XMTRX, FVn single floating-point transform vector

FSCA FPUL, DRn single floating-point sine cosine approximate

FSRRA FRn single reciprocal square root approximate

Table 129: Special-purpose floating-point instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

196 Floating-point instructions
FIPR

The numerical properties of the SHcompact FIPR instruction correspond to those of
the SHmedia FIPR.S instruction. The correspondence between the FIPR and
FIPR.S operands is as follows:

• FVm source operand of FIPR corresponds to the FVh operand of FIPR.S

• FVn source operand of FIPR corresponds to the FVg operand of FIPR.S

• FRn+3 result operand of FIPR corresponds to the FRf operand of FIPR.S

FTRV

Similarly, the numerical properties of the SHcompact FTRV instruction correspond
to those of the SHmedia FTRV.S instruction. The correspondence between the FTRV
and FTRV.S operands is as follows:

• XMTRX source operand of FTRV corresponds to the MTRXg operand of FTRV.S

• FVn source operand of FTRV corresponds to the FVh operand of FTRV.S

• FVn result operand of FTRV corresponds to the FVf result operand of FTRV.S

FSCA

FSCA produces two single-precision results, representing the sine and the cosine of
the source operand. These two results are placed into a pair of single-precision
registers which are denoted in Table 129 using the double-precision notation DRn.
The most significant half of DRn (also known as FRn) contains the sine result, and
the least significant half of DRn (also known as FRn+1) contains the cosine result.

The numerical properties of FSCA correspond to those of the SHmedia FSINA.S and
FCOSA.S instructions.

FSRRA

FSRRA produces a single-precision result which is an approximation to the
reciprocal square-root of the source operand. The numerical properties of FSRRA
correspond to those of the SHmedia FSRRA.S instruction.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Floating-point instructions 197
13.6.9 Floating-point width and bank change

These instructions are used to toggle the state of the FPSCR.FR and FPSCR.SZ bits:
No analogous instruction is provided to toggle the state of the FPSCR.PR bit. These
bits are described in Section 13.4: FPSCR on page 190.

13.6.10 Floating-point move instructions

These instructions are used to transfer values between floating-point registers:

FMOV FRm, FRn is a single-precision transfer and moves 32 bits of data.

The other 4 FMOV instructions in Table 131 are double-precision transfers and
move 64 bits of data. Note that a double-precision transfer actually moves a pair of
single-precision registers.

Instruction Summary

FRCHG FR-bit change

FSCHG SZ-bit change

Table 130: Floating-point width and bank change instructions

Instruction Summary

FMOV FRm, FRn single to single floating-point move

FMOV DRm, DRn single-pair to single-pair floating-point move

FMOV DRm, XDn single-pair to extended single-pair floating-point move

FMOV XDm, DRn extended single-pair to single-pair floating-point move

FMOV XDm, XDn extended single-pair to extended single-pair floating-point
move

Table 131: Floating-point move instructions
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

198 Floating-point instructions
13.6.11 Floating-point load/store instructions

These instructions are used to move data between floating-point registers and
memory.

Load and store instructions raise an exception if the accessed data is not naturally
aligned in memory. The effective address for an access of width n bytes should be an
exact multiple of n, otherwise an exception is raised to indicate misalignment.

Note that a double-precision memory access is actually an access to a pair of
single-precision values. These two interpretations have different behavior due to the
endianness effects discussed in Section 3.7: Data representation in memory on
page 43.

Register indirect

The effective address is specified in a general-purpose register.

Register indirect with pre-decrement

A general-purpose register is pre-decremented by the width of the access, and the
resulting value specifies the effective address. This addressing mode is only
available for stores.

Instruction Summary

FMOV DRm, @Rn single-pair floating-point store indirect

FMOV.S FRm, @Rn single floating-point store indirect

FMOV XDm, @Rn extended single-pair floating-point store indirect

FMOV @Rm, DRn single-pair floating-point load indirect

FMOV.S @Rm, FRn single floating-point load indirect

FMOV @Rm, XDn extended single-pair floating-point load indirect

Table 132: Floating-point memory instructions using register indirect addressing

Instruction Summary

FMOV DRm, @-Rn single-pair floating-point store indirect with pre-decrement

FMOV.S FRm, @-Rn single floating-point store indirect with pre-decrement

Table 133: Floating-point memory instructions using register indirect with pre-decrement
addressing
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Floating-point instructions 199
Register indirect with post-increment

The effective address is specified in a general-purpose register. This register is
post-incremented by the width of the access. This addressing mode is only available
for loads.

Register indirect with indexing

The effective address is calculated by adding two general-purpose registers together.

FMOV XDm, @-Rn extended single-pair floating-point store indirect with pre-decrement

Instruction Summary

Table 133: Floating-point memory instructions using register indirect with pre-decrement
addressing

Instruction Summary

FMOV @Rm+, DRn single-pair floating-point load indirect with post-increment

FMOV.S @Rm+, FRn single floating-point load indirect with post-increment

FMOV @Rm+, XDn extended single-pair floating-point load indirect with
post-increment

Table 134: Floating-point memory instructions using register indirect with post-increment
addressing

Instruction Summary

FMOV DRm, @(R0, Rn) single-pair floating-point store indirect with indexing

FMOV.S FRm, @(R0, Rn) single floating-point store indirect with indexing

FMOV XDm, @(R0, Rn) extended single-pair floating-point store indirect with indexing

FMOV @(R0, Rm), DRn single-pair floating-point load indirect with indexing

FMOV.S @(R0, Rm), FRn single floating-point load indirect with indexing

FMOV @(R0, Rm), XDn extended single-pair floating-point load indirect with indexing

Table 135: Floating-point memory instructions using register indirect with indexing
addressing
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

200 Reserved floating-point behavior
13.7 Reserved floating-point behavior
The behavior of SHcompact floating-point instructions is architecturally undefined
when both FPSCR.PR=1 and FPSCR.SZ=1. This floating-point mode setting is
reserved. Software must not rely on the behavior of SHcompact floating-point
instructions in this mode, otherwise compatibility with other implementations will
be impaired.

The settings for FPSCR.PR and FPSCR.SZ are summarized in Table 136.

Even excluding the mode where FPSCR.PR=1 and FPSCR.SZ, not all SHcompact
FPU instructions are available in each of the remaining 3 modes. The supported
combinations are indicated by an entry of ‘�’ in Table 137. An entry of ‘�’ indicates
that the combination is not possible due to inherent properties of the encoding. All
other combinations are reserved and lead to architecturally undefined behavior
when used.

FPSCR.PR FPSCR.SZ Behavior

0 0 Single-precision arithmetic, 32-bit load/store

0 1 Single-precision arithmetic, 2 x 32-bit load/store (pairs of singles)

1 0 Double-precision arithmetic, 32-bit load/store

1 1 Reserved, behavior is architecturally undefined

Table 136: Summary of FPSCR.PR and FPSCR.SZ settings

Instruction
FPSCR.PR=0 FPSCR.PR=1

FPSCR.SZ=0 FPSCR.SZ=1 FPSCR.SZ=0 FPSCR.SZ=1

FABS DRn � � � UNDEFINED

FABS FRn � � � �

FADD DRm, DRn � � � UNDEFINED

FADD FRm, FRn � � � �

FCMP/EQ DRm, DRn � � � UNDEFINED

Table 137: FPU instruction availability by FPSCR.PR and FPSCR.SZ settings
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Reserved floating-point behavior 201
FCMP/EQ FRm, FRn � � � �

FCMP/GT DRm, DRn � � � UNDEFINED

FCMP/GT FRm, FRn � � � �

FCNVDS DRm, FPUL UNDEFINED UNDEFINED � UNDEFINED

FCNVSD FPUL, DRn UNDEFINED UNDEFINED � UNDEFINED

FDIV DRm, DRn � � � UNDEFINED

FDIV FRm, FRn � � � �

FIPR FVm, FVn � � UNDEFINED UNDEFINED

FLDS FRm, FPUL � � � UNDEFINED

FLDI0 FRn � � UNDEFINED UNDEFINED

FLDI1 FRn � � UNDEFINED UNDEFINED

FLOAT FPUL, DRn � � � UNDEFINED

FLOAT FPUL, FRn � � � �

FMAC FR0, FRm, FRn � � UNDEFINED UNDEFINED

FMOV DRm, DRn � � � UNDEFINED

FMOV DRm, XDn � � � UNDEFINED

FMOV DRm, @Rn � � � UNDEFINED

FMOV DRm, @-Rn � � � UNDEFINED

FMOV DRm, @(R0, Rn) � � � UNDEFINED

FMOV FRm, FRn � � � �

FMOV.S FRm, @Rn � � � �

FMOV.S FRm, @-Rn � � � �

FMOV.S FRm, @(R0, Rn) � � � �

Instruction
FPSCR.PR=0 FPSCR.PR=1

FPSCR.SZ=0 FPSCR.SZ=1 FPSCR.SZ=0 FPSCR.SZ=1

Table 137: FPU instruction availability by FPSCR.PR and FPSCR.SZ settings
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

202 Reserved floating-point behavior
FMOV XDm, DRn � � � UNDEFINED

FMOV XDm, XDn � � � UNDEFINED

FMOV XDm, @Rn � � � UNDEFINED

FMOV XDm, @-Rn � � � UNDEFINED

FMOV XDm, @(R0, Rn) � � � UNDEFINED

FMOV @Rm, DRn � � � UNDEFINED

FMOV @Rm+, DRn � � � UNDEFINED

FMOV @(R0, Rm), DRn � � � UNDEFINED

FMOV.S @Rm, FRn � � � �

FMOV.S @Rm+, FRn � � � �

FMOV.S @(R0, Rm), FRn � � � �

FMOV @Rm, XDn � � � UNDEFINED

FMOV @Rm+, XDn � � � UNDEFINED

FMOV @(R0, Rm), XDn � � � UNDEFINED

FMUL DRm, DRn � � � UNDEFINED

FMUL FRm, FRn � � � �

FNEG DRn � � � UNDEFINED

FNEG FRn � � � �

FRCHG � � UNDEFINED UNDEFINED

FSCA FPUL, DRn � � UNDEFINED UNDEFINED

FSCHG � � UNDEFINED UNDEFINED

FSQRT DRn � � � UNDEFINED

FSQRT FRn � � � �

Instruction
FPSCR.PR=0 FPSCR.PR=1

FPSCR.SZ=0 FPSCR.SZ=1 FPSCR.SZ=0 FPSCR.SZ=1

Table 137: FPU instruction availability by FPSCR.PR and FPSCR.SZ settings
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Reserved floating-point behavior 203
Some SHcompact FPU instructions have reserved operand bits. These arise due to:

• Operands for double-precision and single-pair data: the lowest bit is reserved
since all double-precision registers have even numbers.

• Operands for 4-element vector data: the lowest 2 bits are reserved since all
4-element vector registers have numbers that are a multiple of 4.

In all cases the required settings for any reserved operand bits are fully specified in
the architecture description of the SHcompact encodings. The required settings vary
from case to case, and the bits need to be set to 0 or 1 exactly as specified in the
encodings in the instruction descriptions. In some cases, these bits are used for
opcode information to distinguish different instructions. The behavior is
architecturally undefined if incorrect settings are used for these bits.

FSRRA FRn � � UNDEFINED UNDEFINED

FSTS FPUL, FRn � � � UNDEFINED

FSUB DRm, DRn � � � UNDEFINED

FSUB FRm, FRn � � � �

FTRC DRm, FPUL � � � UNDEFINED

FTRC FRm, FPUL � � � �

FTRV XMTRX, FVn � � UNDEFINED UNDEFINED

LDS Rm, FPSCR � � � UNDEFINED

LDS.L @Rm+, FPSCR � � � UNDEFINED

LDS Rm, FPUL � � � UNDEFINED

LDS.L @Rm+, FPUL � � � UNDEFINED

STS FPSCR, Rn � � � UNDEFINED

STS.L FPSCR, @-Rn � � � UNDEFINED

STS FPUL, Rn � � � UNDEFINED

STS.L FPUL, @-Rn � � � UNDEFINED

Instruction
FPSCR.PR=0 FPSCR.PR=1

FPSCR.SZ=0 FPSCR.SZ=1 FPSCR.SZ=0 FPSCR.SZ=1

Table 137: FPU instruction availability by FPSCR.PR and FPSCR.SZ settings
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

204 Reserved floating-point behavior
Software must not rely on the behavior for incorrect settings of reserved operand
bits for SHcompact floating-point instructions, otherwise compatibility with other
implementations will be impaired.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
14
SHcompact
system
instructions

14.1 System instructions

This chapter describes the system instructions. These two instructions are related
to event handling. All provided SHcompact instructions can be executed in both user
and privileged modes. There are no privileged-only SHcompact instructions.

Break

BRK is used to cause a debug exception to be taken unconditionally. BRK has no
operands. The debug exception is called BREAK and is described in Section
16.11.5: Debug exceptions on page 247. The BRK instruction is typically reserved for
use by the debugger

Trap

TRAPA is used to cause a trap exception to be taken unconditionally. TRAPA has an
immediate operand which is used when initializing the TRA control register during
a trap handler launch. The trap exception is called TRAP and is described in Section
16.11.2: Instruction opcode exceptions on page 243.

Instruction Summary

BRK cause a pre-execution break exception

Table 138: Break instruction

Instruction Summary

TRAPA #imm trap always

Table 139: Trap instruction
-5 CPU Core, Volume 1: Architecture

206 System instructions
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
15
Control
registers
15.1 Control register set
The available control registers are largely implementation independent, though the
layout of control registers has some implementation-specific properties. In
particular, the width of the implemented parts of some control registers depends
upon the number of bits of effective address (neff) supported by the implementation.

Table 140 and Table 141 summarize the control register set.

Register
number

Register
name

Description Behavior in privileged mode

0 SR Status register DEFINED (see Section 15.2.1)

1 SSR Saved status register DEFINED (see Section 15.2.2)

2 PSSR Panic-saved status register DEFINED (see Section 15.2.3)

3 - Undefined control register UNDEFINED

4 INTEVT Interrupt event register DEFINED (see Section 15.2.4)

5 EXPEVT Exception event register DEFINED (see Section 15.2.4)

6 PEXPEVT Panic-saved exception event register DEFINED (see Section 15.2.4)

7 TRA TRAP exception register DEFINED (see Section 15.2.4)

8 SPC Saved program counter DEFINED (see Section 15.2.5)

9 PSPC Panic-saved program counter DEFINED (see Section 15.2.5)

Table 140: Control register set (privileged mode)
-5 CPU Core, Volume 1: Architecture

208 Control register set
DEFINED, UNDEFINED, EXCEPTION and RESERVED are defined in Section
9.3.1: Control register set on page 164.

10 RESVEC Reset vector DEFINED (see Section 15.2.6)

11 VBR Vector base register DEFINED (see Section 15.2.7)

12 - Undefined control register UNDEFINED

13 TEA Faulting effective address register DEFINED (see Section 15.2.8)

[14,15] - Undefined control registers UNDEFINED

16 DCR Debug control register DEFINED (see Section 15.2.9)

17 KCR0 Kernel register 0 DEFINED (see Section 15.2.9)

18 KCR1 Kernel register 1 DEFINED (see Section 15.2.9)

[19,31] - Undefined control registers UNDEFINED

[32,61] - Reserved control registers RESERVED

62 CTC Clock tick counter DEFINED (see Section 15.2.10)

63 USR User-accessible status register DEFINED (see Section 15.2.11)

Register
number

Register
name

Description Behavior in user mode

[0,31] - Privileged-only control registers EXCEPTION

[32,61] - Reserved control registers RESERVED

62 CTC Clock tick counter DEFINED (see Section 15.2.10)

63 USR User-accessible status register DEFINED (see Section 15.2.11)

Table 141: Control register set (user mode)

Register
number

Register
name

Description Behavior in privileged mode

Table 140: Control register set (privileged mode)
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control register descriptions 209
15.2 Control register descriptions
The following sections describe the implementation-independent properties of
control registers. Each register is specified by a table showing the field names and
their layout. The annotations below each register denote bit numbers. Further
details of control register layout are implementation dependent.

The ‘r’ field indicates bits that are reserved for future expansion of the architecture.
When reading from a control register, software should not interpret the value of any
reserved bits. When writing to a control register with reserved bits, software should
write these bits using a value previously read from that register. If no appropriate
previous value is available, then software should write reserved bits as 0.

The ‘e’ field indicates bits reserved for future expansion of the address space using a
sign-extended convention. Expansion bits will read as a sign-extension of the
highest implemented bit. Software should write a sign-extension of the highest
implemented bit into expansion bits. This approach is necessary if software is to be
executed on a future implementation with more implemented address space.

Power-on reset values for control registers are summarized in the following table.

Control Register Field Power-on Reset Value

SR CD 0

PR 0

SZ 0

FR 0

FD 1

WATCH 0

STEP 0

BL 1

MD 1

MMU 0

EXPEVT 0

RESVEC 0

Table 142: Power-on reset values for control registers
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

210 Control register descriptions
15.2.1 SR

The status register (SR) contains fields to control the behavior of instructions
executed by the current thread of execution.

The fields of SR are summarized in the following table.

VBR 0

All other control registers and fields UNDEFINED

Control Register Field Power-on Reset Value

Table 142: Power-on reset values for control registers

r

63 32

M
M

U

M
D r B
L

S
T

E
P

W
AT

C
H

r ASID F
D

F
R

S
Z

P
R

C
D r M Q IMASK r S r

31 30 29 28 27 26 25 24 23 16 15 14 13 12 11 10 9 8 7 4 3 2 1 0

Figure 54: SR (upper 32 bits and lower 32 bits shown separately)

SR field Accessibility for
GETCON/PUTCON

Synopsis Operation

S RW Saturation control See Chapter 11: SHcompact
integer instructions on page 171

Q RW State for divide step

M RW State for divide step

PR RW Floating-point precision See Chapter 13: SHcompact
floating-point on page 189

SZ RW Floating-point transfer size

FR RW Floating-point register bank

IMASK RW Interrupt request mask level See Chapter 16: Event handling
on page 221

Table 143: SR fields
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control register descriptions 211
SR is explicitly read and written using GETCON and PUTCON. Additionally, SR is
implicitly accessed as follows:

• SR is read during the execution of instructions.

• SR is written by some instructions (for example, SHcompact can write to S, Q
and M).

• SR is written during launch sequences.

• SR is written by RTE (see Chapter 16: Event handling on page 221).

PUTCON can modify all fields of SR apart from ASID, WATCH, STEP, MD and
MMU. Explicit writes to these particular fields have no effect.

The anticipated usage of SR fields is as follows. The ASID, WATCH, STEP, MD and
MMU fields are managed asynchronously with respect to the current thread,

CD RW Clock tick counter disable flag See Section 15.2.10: CTC on
page 218

FD If the implementation
provides an FPU: RW

If the implementation
does not provide an
FPU: RO

Floating-point disable flag See Section 8.2: Floating-point
disable on page 135 and
Section 13.2: Floating-point
disable on page 189

ASID RO (use RTE to write) Address Space IDentifier See Chapter 17: Memory
management on page 271

WATCH RO (use RTE to write) Watch-point enable flag See Section 16.11.5: Debug
exceptions on page 247

STEP RO (use RTE to write) Single-step enable flag See Section 16.11.5: Debug
exceptions on page 247

BL RW Flag to block exception, trap or
interrupt

See Chapter 16: Event handling
on page 221

MD RO (use RTE to write) User (0) or privileged (1) mode See Chapter 2: Architectural
state on page 13

MMU RO (use RTE to write) MMU enable flag See Chapter 17: Memory
management on page 271

SR field
Accessibility for

GETCON/PUTCON
Synopsis Operation

Table 143: SR fields
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

212 Control register descriptions
perhaps by a kernel or by a debugger. The other SR fields are managed by the
current thread when it is executing in privileged mode. They are typically modified
by privileged threads using a GETCON to get the current SR value, some bit
manipulation to change that value and a PUTCON to set the new SR value. This
sequence of instructions is not necessarily atomic with respect to traps, exceptions
and interrupts. Since the PUTCON does not affect the ASID, WATCH, STEP, MD
and MMU fields, these fields are automatically preserved across such sequences.
This property allows them to be managed independently without difficult or
expensive software synchronization.

Unlike PUTCON, however, the RTE instruction can modify all defined fields within
SR. Where it is necessary for a privileged thread to modify the ASID, WATCH,
STEP, MD or MMU fields within SR, this can be achieved by placing appropriate
values into SSR and SPC and using an RTE instruction.

SR.FD is 1 after a reset to indicate that floating-point is disabled. Software can
distinguish whether the implementation provides a floating-point unit by writing 0
to SR.FD and reading its value back. If SR.FD reads as zero then a floating-point
unit is provided, otherwise it is not.

Execution of a floating-point instruction with SR.FD set to 1 causes a floating-point
disabled exception. If an implementation provides a floating-point unit, SR.FD must
be cleared to allow floating-point instructions to be executed. If an implementation
does not provide a floating-point unit, SR.FD is permanently set to 1.

Future implementations of the architecture could provide defined semantics for
reserved bits of SR. It is therefore important that software preserves reserved bits of
SR where possible. It is strongly recommended that SR is modified using instruction
sequences equivalent to the following:

• Use GETCON to read SR into a temporary register.

• Modify necessary bits in the temporary register (leaving other bits unchanged).

• Use PUTCON to write SR from the temporary register.

For modifications to the ASID, WATCH, STEP, MD and MMU fields the above
sequence should be adapted to write to SSR, so that RTE can then be used.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control register descriptions 213
15.2.2 SSR

SSR is used to hold a saved copy of SR. The fields of SSR correspond to those in SR,
except that every defined field is readable and writable.

SSR is used during launch and during return from launch sequences. During a
launch sequence, hardware saves the previous SR into SSR. During a return from
launch, hardware restores the current SSR into SR. For further information see
Section 16.6.2: Standard launch sequence on page 228 and Section 16.7: Recovery on
page 235.

Future implementations of the architecture could provide defined semantics for
reserved bits of the status register. It is therefore important that software preserves
all reserved bits of SSR from the point of launch to the point of return from launch.
This approach will improve compatibility with future implementations.

For an implementation that does not provide a floating-point unit, SR.FD is
read-only and is permanently set to 1. However, the corresponding field in SSR
(SSR.FD) will be readable and writable. If software sets SSR.FD to 0 on an
implementation without an FPU and executes an RTE instruction, the behavior will
be architecturally undefined.

r

63 32

M
M

U

M
D r B
L

S
T

E
P

W
AT

C
H

r ASID F
D

F
R

S
Z

P
R

C
D r M Q IMASK r S r

31 30 29 28 27 26 25 24 23 16 15 14 13 12 11 10 9 8 7 4 3 2 1 0

Figure 55: SSR (upper 32 bits and lower 32 bits shown separately)
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

214 Control register descriptions
15.2.3 PSSR

PSSR is used to hold a saved copy of SSR. The fields of PSSR correspond to those in
SR and SSR. Every defined field is readable and writable.

PSSR is used during panic launch and during return from launch sequences. During
a panic launch sequence, hardware saves the previous SSR into PSSR. During a
return from launch, hardware restores the current PSSR into SSR. For further
information see Section 16.6.2: Standard launch sequence on page 228 and Section
16.7: Recovery on page 235.

Future implementations of the architecture could provide defined semantics for
reserved bits of the status register. It is therefore important that software preserves
all reserved bits of PSSR from the point of panic launch to the point of return from
launch. This approach will improve compatibility with future implementations.

For an implementation that does not provide a floating-point unit, SR.FD is
read-only and is permanently set to 1. However, the corresponding field in PSSR
(PSSR.FD) will be readable and writable. If software sets PSSR.FD to 0 on an
implementation without an FPU and executes an RTE instruction, the 0 value of
PSSR.FD will be copied to SSR.FD as expected. However, if another RTE is executed
with SSR.FD set to 0, then the behavior will become architecturally undefined as
described in Section 15.2.2: SSR on page 213.

r

63 32

M
M

U

M
D r B
L

S
T

E
P

W
AT

C
H

r ASID F
D

F
R

S
Z

P
R

C
D r M Q IMASK r S r

31 30 29 28 27 26 25 24 23 16 15 14 13 12 11 10 9 8 7 4 3 2 1 0
Table 144: PSSR (upper 32 bits and lower 32 bits shown separately)
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control register descriptions 215
15.2.4 INTEVT, EXPEVT, PEXPEVT, TRA

INTEVT is used to indicate the cause of the most recent interrupt. It is set during
interrupt launch sequences.

EXPEVT is used to indicate the cause of the most recent reset, panic or exception. It
is set during launch sequences.

PEXPEVT is used to hold the pre-panic value of EXPEVT. It is set during panic
launch sequences.

TRA holds the operand value from a TRAPA instruction (see Section 9.2: Event
handling instructions on page 163). When a TRAPA instruction is executed, the
lower 32 bits of its operand value are loaded into TRA.

The launch sequence is described in Section 16.6.2: Standard launch sequence on
page 228. These registers have the same representation shown in the following
diagram. The CODE field is readable and writable.

15.2.5 SPC, PSPC

SPC is used to hold a saved copy of PC and ISA. It is used during launch and during
return from launch sequences. For further information see Section 16.6.2: Standard
launch sequence on page 228 and Section 16.7: Recovery on page 235. Every defined
field is readable and writable. The expansion field is reserved for future expansion
of the address space.

PSPC is used to hold the pre-panic value of SPC. It is set during panic launch
sequences. For further information see Section 16.6.2: Standard launch sequence on
page 228 and Section 16.7: Recovery on page 235. Every defined field is readable and
writable. The expansion field is reserved for future expansion of the address space.

SPC and PSPC have the same representation shown in the following diagram.

r CODE

63 32 31 0

Figure 56: INTEVT, EXPEVT, PEXPEVT, TRA

e ADDR

IS
A

63 ne
ff

ne
ff-

1 1 0

Figure 57: SPC, PSPC
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

216 Control register descriptions
If SPC indicates a misaligned SHmedia instruction (that is, if bits 0 and 1 are both
set) and an RTE instruction is executed, then the behavior is architecturally
undefined.

If bits 0 and 1 of PSPC are both set to 1 and an RTE instruction is executed, then
these bits will be copied to SPC as expected. However, if another RTE instruction is
executed with this value of SPC, the behavior will be architecturally undefined as
described above.

15.2.6 RESVEC

RESVEC is used to determine the launch address at which execution is started after
a reset, panic or debug event. A debug mechanism is provided that also allow these
events to be re-vectored to a debugger. The lowest bit of RESVEC is used to indicate
whether the MMU is automatically disabled during the launch. Further information
is given in Section 16.6.4: Handler addresses on page 231 and Section
16.11.5: Debug exceptions on page 247.

Every defined field is readable and writable. The expansion field is reserved for
future expansion of the address space.

15.2.7 VBR

VBR is used to indicate the base address from which non-debug handler addresses
are vectored. Further information is given in Section 16.6.4: Handler addresses on
page 231. Every defined field is readable and writable. The expansion field is
reserved for future expansion of the address space.

e ADDR r

M
M

U
O

F
F

63 ne
ff

ne
ff-

1 1 0

Figure 58: RESVEC

e ADDR r

63 ne
ff

ne
ff-

1 1 0

Figure 59: VBR
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control register descriptions 217
15.2.8 TEA

TEA is used to hold an effective address during some exception launches (see
Section 16.6.2: Standard launch sequence on page 228). Every defined field is
readable and writable. The expansion field is reserved for future expansion of the
address space.

15.2.9 DCR, KCR0, KCR1

DCR is provided specifically for use by a debugger. The architecture makes no
interpretation of the value held in this register. DCR is 64 bits wide, matching the
width of general-purpose registers, and every bit is readable and writable. A
debugger would typically use this register as a save location for a general-purpose
register during debug event launch and restart. It is likely that debug software will
not preserve the value of DCR across debug event handling. Thus software that is
unrelated to debug should not access this register, since its value could be modified
non-deterministically by debug software.

KCR0 and KCR1 are provided for the use of privileged mode software, such as an
operating system kernel. The architecture makes no interpretation of the values
held in these registers. They are 64 bits wide, matching the width of
general-purpose registers, and every bit is readable and writable.

DCR, KCR0 and KCR1 have the same representation shown in the following
diagram.

e ADDR

63 ne
ff

ne
ff-

1 0

Figure 60: TEA

VALUE

63 0
Figure 61: DCR, KCR0, KCR1
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

218 Control register descriptions
15.2.10 CTC

CTC is the clock tick counter. It is typically used for performance monitoring.

The number of implemented bits in CTC is implementation dependent. This value is
denoted nctc and is in the range [32,64]. The frequency of the CPU clock is
determined by an external clock reference and is system dependent. Also, the rate of
execution of instructions is completely implementation dependent, and thus the
values seen by reads from CTC will vary from implementation to implementation.

CTC has an undefined value after power-on reset. The counter should be initialized
by software to give it a defined value.

When the CPU is not in sleep mode, CTC is decremented by 1 on every CPU clock
cycle. The counter silently wraps around to its maximum value (which is
implementation-dependent) when it decrements past zero. When the CPU is in
sleep mode (see Section 16.15: Power management on page 257), the counter stops
decrementing and its value does not change. No other mechanisms are provided for
starting and stopping the counter.

The implemented bits of CTC are readable and writable in privileged mode. In user
mode, a write to CTC never changes the value of CTC. In user mode, the behavior of
reads from CTC is controlled by SR.CD. This allows privileged mode software to
decide whether to allow a user thread to view the passing of time. If SR.CD is 0 then
user-mode reads are enabled and return the value of CTC. If SR.CD is 1 then
user-mode reads are disabled and always return 0.

The behavior of reads and writes to CTC are summarized in the following table.

r TICKS

63

nc
tc

nc
tc

-1 0

Figure 62: CTC

SR.MD SR.CD Behavior for GETCON Behavior for PUTCON

0 (user mode) 0 (enabled) Returns current value Write ignored

1 (disabled) Returns 0 Write ignored

1 (privileged mode) 0 (enabled) Returns current value Updates current value

1 (disabled)

Table 145: Behavior of CTC accesses
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Control register descriptions 219
15.2.11 USR

USR is a user-accessible status register. It contains two fields, GPRS and FPRS,
that can be used by software to track whether a register subset is in a dirty state or
not.

The bits of GPRS and FPRS are used as follows for i in the range [0,7]:

• Bit i of USR.GPRS is the dirty bit for registers R8i to R8i+7 inclusive.

• Bit i of USR.FPRS is the dirty bit for registers FR8i to FR8i+7 inclusive.

Dirty bits can be read and written by software, either in user mode or in privileged
mode.

When an instruction is executed that writes to a modifiable general-purpose register
or floating-point register, then the dirty bit for the subset containing that register
will be set to 1. However, note that a write to R63 is not required to set its dirty bit
since the value of R63 is always 0.

The hardware can set dirty bits under other circumstances, but it never
automatically clears the dirty bits. This is only achieved by explicit software action.

In the case of a GETCON from USR to a general-purpose register, the read of USR
happens before the general-purpose register is written. The architecture does not
require that the written general-purpose register is marked as dirty in the value
read from USR. However, the architecture does require that the written
general-purpose register is marked as dirty in a subsequent read from USR.

As an example, consider:

PUTCON R63, USR ; clear USR
GETCON USR, R0 ; USR read happens before R0 write
GETCON USR, R1 ; USR read happens before R1 write

where USR denotes the user-accessible status register. The architecture does not
require that the write to R0 is visible in the value read from USR into R0. However,
the architecture does require that the write to R0 is visible in the value read from
USR into R1.

r FPRS GPRS

63 16 15 8 7 0

Figure 63: USR
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

220 Control register descriptions
The architecture leaves considerable flexibility in the implementation of the dirty
bits. The only requirements are that all writes to modifiable general-purpose
registers and floating-point registers cause the appropriate dirty bits to be set, and
that a GETCON from USR is precise with respect to all such earlier updates.

An implementation is allowed to set dirty bits under other circumstances. Thus, a
GETCON from USR can observe a set dirty bit that does not correspond to an
earlier register modification. The important property is that writes to modifiable
registers are never lost, though spurious writes can be reported.

Allowed implementation options include (but are not limited to):

• A write to R63 could set the appropriate dirty bit.

• GETCON from USR could mark the target register as dirty before reading USR.

• An implementation could update dirty bits imprecisely such that future writes to
registers are reported speculatively. Possible situations that could lead to
imprecise updates include (but are not limited to):

- Event launches (see Chapter 16: Event handling on page 221): the dirty bits
could be updated imprecisely for instructions that are partially executed, but
do not complete (i.e. they are cancelled), due to the processor accepting an
event and launching an event handler.

- Branches: the dirty bits could be updated imprecisely for instructions that are
partially executed, but do not complete (i.e. they are cancelled), due to
speculative execution following a branch instruction.

In general, note that the architecture maintains a precise architectural state
(see Section 16.4: Precision on page 227). The USR control register is the
exception to this rule.

• An implementation could implement larger subsets (that is, 4 subsets of 16
registers, 2 subsets of 32 registers or 1 subset of 64 registers) provided that all
dirty bits corresponding to the larger subset are set appropriately.

• An implementation could choose not to implement any dynamic monitoring of
register updates, and permanently set all of the dirty bits to 1.

If the FPU is disabled or is not present (i.e. SR.FD is set to 1), the USR.FPRS field is
still implemented. GETCON can be used to read USR.FPRS and PUTCON can be
used to update USR.FPRS to a new value. However, when SR.FD is 1 the
implementation will not implicitly set any bits in USR.FPRS to indicate dirty
registers. This is because all instructions that can modify floating-point registers
will raise an exception when SR.FD is 1. Additionally, when SR.FD is 1 the
implementation will not modify USR.FPRS imprecisely.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
16
Event
handling
16.1 Overview
An event is a condition which requires the CPU to discontinue the normal execution
of the current thread. Events can occur asynchronously or synchronously with
respect to the execution of instructions.

When an event occurs, the processor stops executing the current program stream in
order to respond to the event. Launch is the set of activities performed by the
processor before execution of the next instruction. The processor saves some
elements of the program state, and then arranges to execute instructions to handle
the event. Full details of the launch sequence are described in Section 16.6: Launch
on page 228.

A handler is the set of instructions that are executed in response to the event. The
program counter of the first instruction of the handler (the handler address) is
calculated during the launch sequence. This is achieved by adding some constant
offset value onto the value of some base register. The selected offset and the selected
base register depend on the event type. Further details of this calculation are
described in Section 16.6.4: Handler addresses on page 231.

In many cases a handler completes execution by using the RTE instruction. This is
described in Section 16.7: Recovery on page 235.
-5 CPU Core, Volume 1: Architecture

222 Asynchronous events
16.2 Asynchronous events
An asynchronous event is caused when some external condition is signaled to the
CPU. Asynchronous events do not result directly from the execution of an
instruction. The mechanisms used to deliver asynchronous events to the CPU are
not specified by the CPU architecture. A typical mechanism is through signals
delivered into the CPU core by wires.

There are two classes of asynchronous event: resets and interrupts.

16.2.1 Resets

A reset is an event that causes the current execution to be stopped, and to then be
continued from some initial state. The mechanisms used to deliver reset events to
the CPU are properties of the system architecture.

There are two kinds of reset distinguished by the CPU architecture and these are
listed in Table 146.

A power-on reset results from the first application of power to the CPU device, and
causes the CPU to initialize itself into a specific power-on reset state. A power-on
reset is special in that the CPU has no previous state.

A CPU reset is used to reset the CPU device while it is powered on. Previous state is
available after CPU reset allowing analysis of the pre-reset state of the system.
However, not all of the previous state is preserved. Restart of the previous program
state is typically neither possible nor attempted.

The system architecture provides two further kinds of reset:

• MANUAL reset behaves in the same way as a POWERON reset, except that
some parts of the memory system are preserved. This provides a power-on reset
without loss of values held in volatile memory.

• DEBUG reset behaves in the same way as a POWERON reset, except that some
items of debug state are preserved. This allows a complete system to be
debugged immediately after it comes up from its power-on state.

Event Handle Event Name

CPURESET CPU Reset

POWERON Power-on Reset

Table 146: Reset handles
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Asynchronous events 223
The effect of these two resets, as far as the CPU core architecture is concerned, is
the same as a power-on reset. The additional effects of these resets are specified by
the system architecture.

16.2.2 Interrupts

An interrupt is an event resulting from some external stimulus, perhaps delivered
through an interrupt pin from some external device. Interrupts are typically used to
bring to the attention of the CPU the fact that some interesting condition has arisen
on some other part of the system.

After an interrupt the previous program state is usually restartable. Restart can be
achieved without disturbing the interrupted program (apart from the latency of the
handling). However, there is one special form of interrupt, called a non-maskable
interrupt, which can result in some architectural state being lost. It is not generally
possible to restart the previous program state after a non-maskable interrupt.

16.2.3 Assertion, deassertion and acceptance

Specific terminology is used to describe the delivery of asynchronous events. The
status of an asynchronous event is delivered from its source to the CPU using a
signal. If the event requires the attention of the CPU, then this signal is asserted,
otherwise the signal is deasserted.

When a signal has an asserted value, and the CPU is able to launch a handler for
that event, the event is said to be accepted by the CPU. The CPU checks the
acceptance condition of each signal between the execution of consecutive
instructions. If a signal is asserted but cannot be accepted by the CPU at a
particular instant, it is still possible for that asserted signal to be accepted at some
future instant provided that the signal is asserted at that future time. Acceptance of
an event causes a handler to be launched for that event.

The acceptance point of an asynchronous event is non-deterministic. The event is
handled between some pair of instructions chosen by the implementation in a

Event Handle Event Name

DEBUGINT Debug Interrupt

EXTINT External Interrupt

NMI Non-maskable Interrupt

Table 147: Interrupt handles
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

224 Synchronous events
timing-dependent manner. Implementations should endeavor to minimize the
latency of asynchronous events (in particular, interrupts) to improve real-time
behavior.

The mechanisms that cause signals to be asserted and deasserted are
implementation-specific. There are 2 common arrangements:

• Level-triggered event: the assertion/deassertion status of the signal is derived
directly from the source of the event. Acceptance of this event by the CPU does
not implicitly deassert the value of the signal. Typically, software action is
needed to deassert the signal value (for example, by memory accesses).

• Edge-triggered event: the signal becomes asserted each time that an edge is
detected on the source of the event. The details of how this edge is detected are
implementation-specific. Acceptance of this event by the CPU causes the signal
to become automatically deasserted. No software action is needed to deassert the
signal value.

16.3 Synchronous events
A synchronous event is caused by the execution of an instruction. A synchronous
event is handled before or after the execution of the instruction that caused that
event. There are two classes of synchronous event: exceptions and panics. Both of
these events are caused by abnormal program behavior, but they differ in the
severity of the problem.

16.3.1 Exceptions

Exception can usually be recovered from to allow program execution to be
continued.

Event handle Event name Event handle Event name

BREAK Software break ITLBMISS Instruction TLB Miss Error

DEBUGIA Instruction Address Debug
Exception

RADDERR Data Address Error Read

DEBUGIV Instruction Value Debug
Exception

READPROT Data TLB Protection Violation
Read

Table 148: Exception handles
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Synchronous events 225
The exception mechanism supports the translation capabilities of the memory
management unit. When an access is made to a page that has no entry in the
translation lookaside buffer (TLB), a TLB miss exception is taken. Further details
are given in Chapter 17: Memory management on page 271.

16.3.2 Panics

A panic results from a serious software failure. Software systems are typically
constructed to avoid panics. The panic handling mechanism is provided as a debug
aid to allow panic situations to be debugged. The panic mechanism can also be used
to debug critical code sections such as exception and interrupt launch.

DEBUGOA Operand Address Debug
Exception

RESINST Reserved Instruction Exception

DEBUGSS Single Step Debug Exception RTLBMISS Data TLB Miss Read

EXECPROT Instruction Protection Violation SLOTFPUDIS Delay Slot FPU Disabled
Exception

FPUDIS FPU Disabled Exception TRAP Unconditional trap

FPUEXC FPU Exception WADDERR Data Address Error Write

IADDERR Instruction Address Error WRITEPROT Data TLB Protection Violation
Write

ILLSLOT Illegal Slot Exception WTLBMISS Data TLB Miss Write

Event handle Event name Event handle Event name

Table 148: Exception handles

Event handle Event name

PANIC Panic

Table 149: Panic handles
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

226 Synchronous events
16.3.3 Pre-execution and post-execution

There are two points when a synchronous event can be delivered relative to the
execution of the instruction that causes that event.

If the event is delivered before the instruction updates architectural state, then it is
a pre-execution synchronous event. The program counter, at the point where the
event is taken, refers to the instruction that caused the event.

If the event is delivered after the instruction updates architectural state, then it is a
post-execution synchronous event. The program counter, at the point where the
event is taken, refers to the next instruction that would normally execute after the
instruction that caused the event. Thus, this ‘next’ instruction is the instruction
that would have executed next if the post-execution event had not happened. There
is no architectural guarantee that this ‘next’ instruction will ever be executed since
that depends on the actions of the launched exception handler. Even if that handler
restarts execution at that ‘next’ instruction, another event could occur before that
‘next’ instruction causing yet another handler launch.

There is only one post-execution synchronous event in the architecture. This is used
to support single-stepping of instructions for debugging. In this case, post-execution
is the natural choice since it allows instructions to be executed one at a time with
minimal software overheads.

All other synchronous events in the architecture are pre-execution. In most cases
this is the natural choice. Often, software handles the condition that caused the
event and restarts the originating instruction. Where software requires restart at
the instruction after the originating instruction, it is necessary for software to
calculate the next instruction pointer. Typically, this is a very simple calculation
such as incrementing the delivered program counter by the instruction size.

The distinction between pre-execution and post-execution is not useful for
asynchronous events. Asynchronous events occur between instructions. Whether an
asynchronous event is said to occur after the previous instruction or before the next
instruction is arbitrary.

SHcompact provides instructions with architecturally-visible delayed branching.
There are special rules for the meaning of pre-execution and post-execution for
these branches. These rules are described in Section 16.6.3.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Precision 227
16.4 Precision
The launch of interrupt, exception and panic handlers is precise with respect to the
instruction stream prior to the launch. The launch happens exactly between two
instructions from that stream. All previous instructions from that stream have
completed execution and updated the architecturally-visible state. No subsequent
instruction from that stream have updated the architecturally-visible state.

These properties are upheld from the point of view of instructions executing on the
CPU. An implementation can make substantial optimization over this model
provided that the architecturally-visible properties are upheld.

For power-on reset, precision has no meaning since there is no previous instruction
stream. The launch of a CPU reset handler is not guaranteed to be precise. The
previous state of the machine observed by a CPU reset handler is not guaranteed to
be completely accurate.

Note that the architecture allows an implementation to update the USR control
register imprecisely, and that this is an exception to the architectural rules on
precision (see Section 15.2.11: USR on page 219).

16.5 Debug and non-debug events
The architecture distinguishes between debug and non-debug events. This
distinction is orthogonal to the other categorizations. Debug events can be vectored
separately to non-debug events, to allow a debugger to be implemented
independently of other target software.

The asynchronous debug events are CPURESET and DEBUGINT. The synchronous
debug events are BREAK, DEBUGIA, DEBUGIV, DEBUGOA, DEBUGSS and
PANIC. All other events are non-debug.

Debug events can be launched using either the debug vector (DBRVEC) or launched
using the reset vector (RESVEC). The selection between DBRVEC and RESVEC is
controlled through a flag called DBRMODE. Debug events also have the capability
to disable the MMU, and hence the caches, during the launch sequence. These
properties allow debug software to be highly decoupled from other system software,
and gives a powerful non-intrusive debug architecture.

Further information on DBRVEC and DBRMODE is given in Section
16.6.4: Handler addresses on page 231.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

228 Launch
16.6 Launch
This section describes the activities associated with a launch sequence. These
activities are mostly described in a generic way, though there are important
differences between reset, interrupt, exception and panic launches. The particular
conditions which cause different events to arise are described separately in
Section 16.9, Section 16.10, Section 16.11 and Section 16.12.

Many of the control registers are used when responding to an event, and these are
described in Chapter 15: Control registers on page 207. The launch sequence sets
control registers to save the previous thread state, to characterize the event and to
launch a handler. Control registers are read to determine where the instructions of
the handler are to be fetched from.

The state that is established for each kind of launch is summarized in Section 16.14.

16.6.1 Power-on reset launch sequence

The actions for a power-on reset are:

1 Set all initialized state to its power-on reset values (as defined in Section
16.9: Resets on page 236). The power-on reset value of the PC is 0.

2 Execution of instructions starts in SHmedia mode.

On some implementations it is possible to change the value of the PC between step
1 and step 2, so that execution of instructions starts at an address which differs

from the power-on reset value of the PC. Whether this mechanism is supported and
how it is achieved are properties of the system architecture and not defined here.

16.6.2 Standard launch sequence

When an event occurs, the processor initiates a launch sequence to allow execution
of a handler. This sequence preserves some of the original thread context, and then
establishes a suitable thread context for running the handler. The standard launch
sequence is used for all events apart from power-on reset, which is described
separately in Section 16.6.1.

For CPU resets, interrupts, exceptions and panics, the processor does the following:

1 Determine the context of the original thread for the point at which the event is
taken. The preciseness of this context is consistent with the properties stated in
Section 16.4. For synchronous events the choice between pre-execution and
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Launch 229
post-execution is determined by the event type as described in Section 16.3.3.
Further information on special cases is given in Section 16.6.3.

2 If the event is a panic, the SSR, SPC and EXPEVT of the original thread are
saved into PSSR, PSPC and PEXPEVT respectively. This additional saving of
state allows the panic handler to reconstruct the conditions that led to the panic.

3 The PC, ISA and SR of the original thread are saved:

3.1 The PC and ISA are saved into SPC. The lowest bit of SPC holds ISA (a “1”
indicates SHmedia while a “0” indicates SHcompact) and the remainder of
SPC holds the PC. The SR of the original thread is saved into SSR.

Note that the saves to SSR, SPC, PSSR and PSPC are mirrored by the restores
performed by the RTE instruction (see Section 16.7: Recovery on page 235).

4 Establish an appropriate context for the handler using the following
assignments:

4.1 Ensure the handler will execute in privileged mode by setting SR.MD to 1.

4.2 Ensure the handler will execute in SHmedia by setting ISA to 1.

4.3 Ensure the handler will execute with blocking by setting SR.BL to 1. Nested
launches for further exceptions and blockable interrupts do not occur until
the handler has had an opportunity to save some necessary state.

4.4 If this launch is for a debug event, SR.STEP and SR.WATCH are cleared.
This ensures that single-step and watch-point exceptions are not taken
during debug handling. Otherwise, this launch is for a non-debug event, and
SR.STEP and SR.WATCH are preserved. Non-debug handlers automatically
inherit the single-step and watch-point behavior of the excepting or
interrupting thread. This allows non-debug handlers to be debugged using
the single-step, watch-point and panic mechanism.

4.5 If this launch is for a CPU reset, set SR.CD, SR.FD, SR.FR, SR.SZ and SR.PR
to their CPU reset values.

4.6 If the event is a maskable interrupt, set SR.IMASK to the level of this
interrupt. This ensures that only higher priority interrupts will be accepted
while handling this interrupt. This mechanism supports efficient nested
interrupts. Note that no maskable interrupts will be accepted while
interrupts are blocked by SR.BL.

4.7 Determine the appropriate value of SR.MMU (described in Section 16.6.5).

5 Provide information to characterize the event through the following
assignments:
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

230 Launch
5.1 If the event is an external interrupt or NMI, write the appropriate code to
INTEVT. If the event is a debug interrupt, then INTEVT is not changed.

5.2 If the event is not an interrupt, write the appropriate event code to EXPEVT.

5.3 If the event is a trap, write the value of the trap operand to TRA.

5.4 If the event is an exception that delivers an address, write that address to
TEA.

5.5 If the event is a floating-point execution exception, set FPSCR to indicate the
cause of the exception.

If the event is a panic, note that EXPEVT is updated but that INTEVT, TRA,
TEA and FPSCR are preserved.

6 Determine the handler address (described in Section 16.6.4) and set PC to it.

7 Execution of instructions continues in SHmedia at the new PC.

16.6.3 Launch point

During launch, the processor stores an address in the SPC. In most cases, SPC
indicates the address and ISA to which the handler should return after handling the
event. The SPC contents depend on the type of the event and the instruction on
which the event is taken. Table 150 describes the behavior.

Special cases arise for the SHcompact delayed branch mechanism. When a delayed
branch is executed, any resulting flow of control to the branch destination is delayed
by 1 instruction. The instruction that sequentially follows the delayed branch in the
program text is called the delay slot. The delay slot is executed regardless of
whether the branch is taken. SHcompact contains conventional and delayed
branches.

An SHcompact delayed branch instruction and its delay slot are executed indivisibly
with respect to events. Events are either taken before the delayed branch or after
the delay slot. An event is never taken between the delayed branch and the delay
slot. Pre-execution events that occur on either instruction are taken before the
delayed branch. Post-execution events that occur on either instruction are taken
after the delay slot, and the delivered SPC depends on whether the branch was
taken or not.

SHmedia does not have delayed branches. The special cases arise in SHcompact
only.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Launch 231
16.6.4 Handler addresses

A handler address is calculated by adding a base register value with an offset.The
architecture provides three base registers: VBR, RESVEC and DBRVEC. The choice
of base register and offset value depends on the event type, and is specified in
Table 151.

This can occur in mode: Exception occurs
SPC contents for a
pre-execution event

SPC contents for a
post-execution event

SHmedia/SHcompact Not in delay-slot and
not on a branch

Address of instruction Address of following
instruction

SHmedia/SHcompact On non-delayed,
untaken branch

Address of branch
instruction

Address of following
instruction

SHmedia/SHcompact On non-delayed,
taken branch

Address of branch
instruction

Address of target
instruction

SHcompact only On delayed, untaken
branch

Address of branch
instruction

Address of instruction
following delay slot

SHcompact only On delayed, taken
branch

Address of branch
instruction

Address of target
instruction

SHcompact only In delay-slot of
untaken branch

Address of branch
instruction

Address of instruction
following delay slot

SHcompact only In delay-slot of taken
branch

Address of branch
instruction

Address of target
instruction

Table 150: SPC contents

Event Type
Base Register

Offset
(DBRMODE=0) (DBRMODE=1)

Power-on reset 0x0 0x0

Non-debug
exception

Not a TLB miss VBR 0x100

TLB miss VBR 0x400

Non-debug interrupt VBR 0x600

CPU reset or panic RESVEC DBRVEC 0x0

Table 151: Handler start addresses
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

232 Launch
The control register containing the base register is read as a 64-bit value. The two
least-significant bits of this value are then forced to 0 to ensure 4-byte alignment.
Note that the lowest bit of RESVEC and DBRVEC is used to control MMU disabling
(see Section 16.6.5) and is masked off for the handler address calculation.

No checking is performed on the addition of the base register value with the offset.
The base registers and the offsets are architected so that this calculation can never
result in a misaligned instruction pointer. If the addition of the base register with
the offset results in an address outside of the implemented effective address space,
the behavior is architecturally undefined. This situation must be avoided by
software.

VBR

The vector base register (VBR) is used for all non-debug exceptions and non-debug
interrupts. Different offsets are used for the following 3 cases:

• Non-debug exceptions not pertaining to translation look-up misses.

• Non-debug exceptions pertaining to translation look-up misses.

• Non-debug interrupts.

This separation reduces the handler latency for translation look-up misses and
interrupts. It also allows unrelated handling code to be decoupled from each other.
Translation look-up is described in Chapter 17: Memory management on page 271.

VBR is a control register and can be read and written using GETCON and PUTCON
(see Section 15.2.7: VBR on page 216).

RESVEC and DBRVEC

Debug events are vectored using either the reset vector base register (RESVEC, see
Section 15.2.6: RESVEC on page 216) or the debug base register vector (DBRVEC).
The selection between RESVEC and DBRVEC is specified through the DBR mode
(DBRMODE). The debug events are listed in Section 16.5 and include debug
exceptions, debug interrupts, CPURESET and PANIC.

Debug exception RESVEC DBRVEC 0x100

Debug interrupt RESVEC DBRVEC 0x200

Event Type
Base Register

Offset
(DBRMODE=0) (DBRMODE=1)

Table 151: Handler start addresses
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Launch 233
RESVEC is a control register and can be read and written using GETCON and
PUTCON. RESVEC is given the value 0x0 after a power-on reset. RESVEC is not
used to vector power-on reset. The power-on reset vector is always 0x0.

DBRVEC and DBRMODE are memory-mapped registers. The CPU architecture
states that these two registers exist and specifies how the values of these registers
affect debug event launch. Other details of these registers, including their addresses
and layout, are defined separately by the system architecture.

DBRMODE controls whether debug events are vectored through RESVEC (when
DBRMODE is 0) or DBRVEC (when DBRMODE is 1). The power-on values of
DBRVEC and DBRMODE are implementation-specific.

The vector offsets used by RESVEC and DBRVEC are symmetrical. CPU reset and
panic use one offset, debug exceptions use a second offset, and debug interrupts use
a third offset (as specified in Table 151). These offsets allow separation of different
handlers.

RESVEC is provided for the use of privileged mode software running on the
processor (for example, an operating system). DBRVEC and DBRMODE are
provided for the debugger. By programming DBRVEC and DBRMODE, a debugger
can attach debug handlers to the processor without interaction with other software
running on the processor.

16.6.5 Effect of launch on MMU and caches

The status bit SR.MMU controls whether the MMU and caches are disabled or
enabled. After a power-on reset, SR.MMU is 0. Launches for all non-debug
exceptions and non-debug interrupts leave SR.MMU unchanged. Launches for CPU
reset and panic events always clear SR.MMU.

Launches for debug exceptions and debug interrupts have a programmable
capability to disable the MMU, and hence the caches, during the launch sequence.
This is a debug-specific feature that is not provided for non-debug events.

This feature is controlled by the lowest bit of the base register used to vector the
debug event. When DBRMODE is 0, the lowest bit of RESVEC (called
RESVEC.MMUOFF) is used. When DBRMODE is 1, the lowest bit of DBRVEC
(called DBRVEC.MMUOFF) is used. There are 2 cases:

• If MMUOFF is zero, then the value of SR.MMU is not changed by a launch for a
debug event.

• If MMUOFF is one, then the value of SR.MMU is automatically cleared by a
launch for a debug event. This has the effect of disabling the MMU and also
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

234 Launch
disabling the caches. This behavior is described in Section 17.8.1: Cache behavior
when the MMU is disabled on page 289. The previous value of SR.MMU is saved
in SSR.MMU. This allows the previous state of the MMU to be recovered.

Note that the value of MMUOFF is ignored for CPU reset and panic. These debug
events always clear SR.MMU regardless of MMUOFF.

16.6.6 Event codes

Every event is characterized by an event code. The event codes used by the
architecture are specified in Section 16.13: Event ordering and event summary
tables on page 251.

Event codes are held in INTEVT for interrupts, and in EXPEVT for other events.
Additionally, PEXPEVT is used to save EXPEVT during a panic launch. These 3
registers each provide 32 bits of state. They are initialized automatically by
hardware during launch sequence, and can also be read and written by software.

The event codes that are assigned by the architecture are listed in Section
16.13: Event ordering and event summary tables on page 251. These assigned codes
have the format shown in Table 152. This means that all assigned event codes are in
the range [0x000, 0x1000) and are exact multiples of 0x20. Note that only a subset
of the 128 event codes in this range are currently assigned.

Event codes in the range [0, 0x80000000) can be used by future versions of the
architecture to distinguish more kinds of event. Future architectures will assign
event codes such that the least significant 5 bits are 0, and will therefore maintain
the property that all event codes are exact multiples of 0x20. Event codes in the
[0, 0x80000000) range that are currently unassigned are reserved. They must not be
used for software purposes.

Event codes in the range [0x80000000, 0x100000000) are not assigned by the
current architecture and will not be assigned by future versions of the architecture.
They are available for use by software, and can be used to distinguish different
kinds of software event.

0 7-bit value 0

31 12 11 5 4 0

Table 152: Assigned event code format
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Recovery 235
16.7 Recovery
The RTE instruction (see Section 9.2: Event handling instructions on page 163)
allows a handler to recover a previous program context. This is often used as the
final instruction of a handler. RTE performs the following actions:

1 PC and ISA are restored from SPC. The lowest bit of SPC determines the ISA
mode of the next instruction to be executed. The remaining bits of SPC
determine the program counter of the next instruction to be executed.

2 SR is restored from SSR.

3 SPC is restored from PSPC, and SSR is restored from PSSR. These restores
allow recovery from panic events.

4 Execution of instructions continues from PC in the mode indicated by ISA.

RTE results in architecturally-undefined behavior if the values of SPC and SSR are
inappropriate:

• Execution of RTE when SPC.ISA is 1 and lowest bit of SPC.ADDR is 1: this
setting corresponds to a misaligned SHmedia instruction and is not supported.

• Execution of RTE when SSR.FD is 0 on an implementation without a
floating-point unit: this setting corresponds to an attempt to enable the FPU
when it is not supported.

16.8 Instruction synchronization
Event launch and recovery (RTE) synchronize the instruction stream. The
implementation implicitly performs the same instruction synchronization as
defined for SYNCI (see Section 6.5.2: Instruction synchronization on page 99).

The next instruction after a launch or after an RTE is fetched correctly according to
the architectural state in force at that time. For example, a launch or RTE can cause
the following major changes to the architectural state:

• The MMU can be enabled or disabled.

• The privilege level MD can change.

• The ASID can change (RTE only).

• The ISA mode can change.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

236 Resets
The implementations of launch and RTE ensures that the next instruction is fetched
correctly with respect to such changes. Note that MMU, MD and ASID changes can
cause substantial changes to address translation, and that this is correctly handled
by the implementation.

16.9 Resets
The CPU architecture distinguishes power-on reset and CPU reset.

Power on reset (POWERON)

Cause External to the CPU core. This occurs when power is first applied.

Actions CPU is initialized to its power-on reset state (see following table) and begins
executing the code located at address 0

State Value

ISA (implicit state) 1 (execution in SHmedia)

PC 0 (this is the power-on reset value of RESVEC)

General purpose registers, R R0 to R62 are UNDEFINED, R63 reads as zero

Target registers, TR UNDEFINED

Floating-point registers, FR UNDEFINED

FPSCR UNDEFINED

MEM Power-on memory state is not specified by CPU
architecture

SR.WATCH 0 (watch-points disabled)

SR.BL 1 (blocked)

SR.MD 1 (privileged execution)

SR.MMU 0 (MMU and cache disabled)

SR.FD 1 (FPU disabled)

Table 153: Power-on reset state
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Resets 237
CPU reset (CPURESET)

SR.CD, SR.FR, SR.SZ, SR.PR 0 (default values)

SR.STEP 0 (single-step disabled)

EXPEVT 0 (event code to indicate a power-on reset)

RESVEC 0

VBR 0

All other control register fields UNDEFINED

All configuration registers UNDEFINED

Data and instruction cache
state

UNDEFINED

State Value

Table 153: Power-on reset state

Cause External to the CPU core. CPU reset preserves much of the state of the CPU,
and causes an event launch through RESVEC or DBRVEC according to
DBRMODE. It is reasonable to consider CPU reset as being a special
non-restartable interrupt.

Actions CPU is initialized to its CPU reset state (see following table) and begins
executing the code located at the address specified in RESVEC.

State Value

ISA (implicit state) 1 (execution in SHmedia)

PC If DBRMODE is 0: PC is RESVEC

If DBRMODE is 1: PC is DBRVEC

General purpose registers, R UNCHANGED

Target registers, TR UNCHANGED

Floating-point registers, FR UNCHANGED

Table 154: CPU reset state
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

238 Resets
CPU reset is not classed as an exception and therefore does not cause a panic when
CPU reset occurs while SR.BL is set. This means that SPC, SSR and EXPEVT are
never saved to PSPC, PSSR and PEXPEVT (respectively) on a CPU reset launch.
The prior state of SPC, SSR and EXPEVT is lost upon CPU reset.

A CPU reset does not cancel pending interrupts. Using the terminology of
Section 16.2.3, if an interrupt signal is asserted while conditions do not allow that
interrupt to be accepted and a CPU reset occurs, then the CPU reset does not
automatically cause the interrupt signal to be deasserted. If the interrupt source
continues to assert the signal and conditions subsequently allow that interrupt to be
accepted, then the interrupt event will be taken.

Specifically, this means that pending EXTINT and DEBUGINT interrupts which
happen to be masked or blocked (as appropriate) are not cancelled if a CPU reset
occurs. If the interrupt source continues to assert the signal, the interrupt event will

FPSCR UNCHANGED

MEM UNCHANGED

SR.WATCH 0 (watch-points disabled)

SR.BL 1 (blocked)

SR.MD 1 (privileged execution)

SR.MMU 0 (MMU and cache disabled)

SR.FD 1 (FPU disabled)

SR.CD, SR.FR, SR.SZ, SR.PR 0 (default values)

SR.STEP 0 (single-step disabled)

EXPEVT 0x20 (event code to indicate a CPU reset)

SPC Saved PC (holds the PC prior to the CPU reset)

SSR Saved SR (holds the SR prior to the CPU reset)

All other control register fields UNCHANGED

All configuration registers UNCHANGED

Data and instruction cache state UNCHANGED

State Value

Table 154: CPU reset state
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Interrupts 239
be taken after the CPU reset should conditions allow. Note that NMI can be neither
masked nor blocked so NMI interrupts are never held pending. Assertion of an NMI
interrupt will be detected before or after any concurrent CPU reset, and will be
handled before or after that CPU reset, depending on the relative timing of these
two asynchronous events.

16.10 Interrupts
This section describes the properties of the CPU architecture for handling
interrupts.

Two mechanisms are provided for controlling when an asserted interrupt is
accepted by the CPU and a handler launched for it:

• Blocking is achieved by setting SR.BL. When SR.BL is set, blockable interrupts
are not accepted by the CPU.

• Masking is achieved through the interrupt mask field (SR.IMASK). This
specifies the priority level of the CPU. A maskable interrupt is not accepted by
the CPU if the interrupt’s priority level is less than or equal to the CPU’s priority
level.

Three kinds of interrupt are distinguished by the CPU.

The mechanisms used to generate interrupts are implementation specific.

Event handle Event name Priority Maskable? Blockable?

NMI Non-maskable interrupt 17 No No

DEBUGINT Debug interrupt 16 No Yes

EXTINT External interrupt 0 to 15 Yes Yes

Table 155: Interrupts
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

240 Interrupts
16.10.1 Non-maskable interrupt

There is a single source of non-maskable interrupts (NMI). When this interrupt is
asserted, it causes the launch of a handler at the next available gap between
executing instructions. An NMI is accepted regardless of the state of the CPU, even
if other interrupts are blocked or masked. This is potentially a destructive operation
since the launch can lose some of the pre-interrupt context (for example, SPC and
SSR). In general, an NMI handler should not attempt to return to the pre-interrupt
context.

NMI has a priority level of 17, and therefore takes priority over any other pending
interrupts. This priority level is greater than any CPU priority level, and NMI is
accepted regardless of the value of SR.IMASK.

The event code associated with NMI is specified by the CPU architecture. The value
of SR.IMASK is not changed when a handler is launched for NMI.

Non-maskable interrupt (NMI)

16.10.2 Debug interrupt

There is a single source of debug interrupts (DEBUGINT). Debug interrupts are
blocked when SR.BL is set, but cannot be masked.

DEBUGINT has a priority level of 16. NMI has a higher priority than DEBUGINT,
but DEBUGINT has a higher priority than all other interrupts. This priority level is
also greater than any CPU priority level, and a debug interrupt is accepted
regardless of the value of SR.IMASK.

There is no event code associated with a debug interrupt, and the value of INTEVT
is not changed during the launch sequence for a debug interrupt. The base register
and offset used for calculating the handler address for debug interrupts are not used
by other events (see Section 16.6.4: Handler addresses on page 231). This allows
debug interrupts to be distinguished from other all events without relying on an
event code.

The value of SR.IMASK is not changed when a handler is launched for DEBUGINT.

Cause External to the CPU core.

Actions Standard launch sequence is followed. INTEVT is set with the event code of
the interrupt. This event is asynchronous and can be neither blocked nor
masked.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Interrupts 241
Debug interrupt (DEBUGINT)

16.10.3 External interrupts

External interrupts are maskable and are assigned a priority level in the range [0,
15]. The lowest priority interrupt has the lowest value (0) and the highest priority
interrupt has the highest value (15). An asserted external interrupt is accepted
when all of the following conditions are true:

• It is the highest priority pending interrupt.

• SR.BL is zero.

• The priority level of the interrupt is greater than the CPU’s priority level.

An interrupt with priority level 0 is never accepted since it cannot have a priority
level greater than that of the CPU. A priority level 0 interrupt can cause the CPU to
exit sleep mode (see Section 16.15.2: Exiting sleep mode on page 258) even though
the interrupt will never be accepted and will never cause a handler to be launched.

The event code associated with an external interrupt is not specified by the CPU
architecture. When an external interrupt is accepted by the CPU, the source of the
interrupt signal (which is external to the CPU core) provides an event code to
identify the interrupt. This code is loaded into INTEVT during the launch sequence.

The processor priority level (SR.IMASK) is set to the priority level of the interrupt.
This supports nested interrupt handling in an efficient manner.

External interrupt (EXTINT)

Cause External to the CPU core.

Actions Standard launch sequence is followed. This is a debug event and is vectored
through RESVEC or DBRVEC according to DBRMODE.This event is
asynchronous. It can be blocked but cannot be masked.

Cause External to the CPU core.

Actions Standard launch sequence is followed. INTEVT is set with the event code of the
interrupt. This event is asynchronous and can be both blocked and masked.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

242 Exceptions
16.11 Exceptions
Exceptions are categorized into instruction address exceptions, instruction opcode
exceptions, data address exceptions, floating-point exceptions and debug exceptions.

If an exception occurs while SR.BL is 1, it is treated as a panic (see Section 16.12).
All exceptions are pre-execution unless otherwise stated.

16.11.1 Instruction address exceptions

Instruction address exceptions are related to the memory management features
described in Chapter 17: Memory management on page 271.

Instruction TLB miss (ITLBMISS)

Instruction protection violation (EXECPROT)

Cause Fetch from an address which does not have a translation

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. TEA is set with the faulty instruction address

Cause Instruction fetch from a prohibited page. In privileged mode this occurs if the
fetch address is in a non-executable page. In user mode this occurs if the
fetch address is in a non-executable page or a page that is not accessible
from user mode.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. TEA is set with the faulty instruction address.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Exceptions 243
Instruction address error (IADDERR)

16.11.2 Instruction opcode exceptions

These exceptions are detected by decoding the instruction opcode.

Illegal slot exception (ILLSLOT)

Unconditional trap (TRAP)

SHmedia Preparation of a target register with an instruction address that is
misaligned or not in the implemented effective address space.

SHcompact Branch to an instruction address that is misaligned or not in the
implemented effective address space.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. TEA is set with the faulty instruction address. The
number of implemented bits in TEA matches the number of bits in effective
addresses. If the faulty address is not in the implemented effective address
space, then upper bits of the faulty address will be lost.

SHmedia Never occurs

SHcompact The instruction is in a delay slot, and the instruction is one of the following:
a reserved instruction, an instruction that modifies PC (any branch or
RTS), a PC-relative move instruction, MOVA or TRAPA.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception.

SHmedia Execution of the TRAPA instruction. The SHmedia TRAPA instruction is
described in Section 9.2: Event handling instructions on page 163.

SHcompact Execution of a TRAPA instruction that is not in a delay slot. The
SHcompact TRAPA instruction is described in Section 14.1: System
instructions on page 205.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. The operand of the TRAPA instruction is loaded into the
TRA register (see Section 15.2.4: INTEVT, EXPEVT, PEXPEVT, TRA on
page 215).
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

244 Exceptions
Reserved instruction exception (RESINST)

16.11.3 Data address exceptions

Data address exceptions are related to the memory management features described
in Chapter 17: Memory management on page 271.

Read address error (RADDERR)

SHmedia Execution of a reserved instruction or of a privileged-mode instruction
while in user mode. The full set of reserved SHmedia instructions are
specified in Volume 2, Appendix A: SHmedia instruction encoding. Note
that the SHmedia instruction with encoding 0x6FF4FFF0 is guaranteed to
be reserved on all implementations.

SHcompact Execution of a reserved instruction that is not in a delay slot. The full set of
reserved SHcompact instructions are specified in Volume 3,
Appendix A: SHcompact instruction encoding. Note that the SHcompact
instruction with encoding 0xFFFD is guaranteed to be reserved on all
implementations.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception.

Cause Load using a misaligned address, or using an address that is not in the
implemented effective address space.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. TEA is set with the faulty data address. The number of
implemented bits in TEA matches the number of bits in effective
addresses. If the faulty address is not in the implemented effective address
space, then upper bits of the faulty address will be lost.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Exceptions 245
Write address error (WADDERR)

Read TLB miss (RTLBMISS)

Write TLB miss (WTLBMISS)

Read protection violation (READPROT)

Cause Store using a misaligned address, or using an address that is not in the
implemented effective address space.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. TEA is set with the faulty data address. The number of
implemented bits in TEA matches the number of bits in effective
addresses. If the faulty address is not in the implemented effective address
space, then upper bits of the faulty address will be lost.

Cause Load using an address which does not have a translation.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. TEA is set with the faulty data address.

Cause Store using an address which does not have a translation.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. TEA is set with the faulty data address.

Cause Read access from a prohibited page. In privileged mode this occurs if the
read address is in a non-readable page. In user mode this occurs if the
read address is in a non-readable page or a page that is not accessible
from user mode.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. TEA is set with the faulty data address.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

246 Exceptions
Write protection violation (WRITEPROT)

16.11.4 FPU exceptions

Three exceptions are used by the floating-point architecture.

FPU disabled exception (FPUDIS)

Delay-slot FPU disabled exception (SLOTFPUDIS)

Cause Write access to a prohibited page. In privileged mode this occurs if the
written address is in a non-writable page. In user mode this occurs if the
written address is in a non-writable page or a page that is not accessible
from user mode.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. TEA is set with the faulty data address.

SHmedia Execution of a floating-point instruction while the floating-point unit is
disabled. The set of SHmedia floating-point instructions is defined in
Volume 2, Appendix A: SHmedia instruction encoding. All floating-point
instructions have a zero value in bits [0, 3] of their encoding. If these bits
are non-zero, the instruction is never considered a floating-point
instruction and its execution will cause a RESINST exception.

SHcompact Execution of a floating-point instruction while the floating-point unit is
disabled. This exception is not taken if the instruction is in a delay slot. The
set of SHcompact floating-point instructions are specified in Volume 3,
Appendix A: SHcompact instruction encoding.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception.

SHmedia Never occurs.

SHcompact Execution of a floating-point instruction in a delay slot while the
floating-point unit is disabled.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Exceptions 247
FPU execution exception (FPUEXC)

16.11.5 Debug exceptions

This section describes the debug exceptions. There are 5 debug exceptions that
support 3 independent debug mechanisms: watch-point, break and single-step.

Watch-points

The debug architecture uses watch-points to detect 3 different exceptions for
instruction fetch and data access:

• Debug instruction address (IA) exceptions are detected by comparing the fetched
instruction address against watch-point address ranges.

• Debug instruction value (IV) exceptions are detected by comparing the
instruction encoding against watch-point instruction patterns.

• Debug operand address (OA) exceptions are detected by comparing accessed
data addresses against watch-point address ranges.

Watch-point detection is disabled when SR.WATCH is 0, and enabled when
SR.WATCH is 1. The mechanisms used to generate watch-point exceptions are
properties of the system architecture.

Break

The BRK instruction (see Section 9.2: Event handling instructions on page 163)
unconditionally raises a debug exception and is useful for implementing soft
break-points. The BRK instruction is typically reserved for use by the debugger.

Single-step

The single-step mechanism is used to trigger a debug exception after the execution
of each instruction. Unlike all other exceptions, single-step is post-execution.

Single-step exceptions are raised when SR.STEP is 1. SR.STEP can only be changed
explicitly by the RTE instruction; a PUTCON to SR does not change SR.STEP.
Reset, panic and debug launches automatically clear SR.STEP to prevent

Cause The FPU is enabled, and execution of an FPU instruction raises a
floating-point exception.

Actions Standard launch sequence is followed. EXPEVT is set with the event code
of the exception. FPSCR is set to indicate the reason for the floating-point
exception.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

248 Exceptions
inappropriate single-stepping of those handlers. Other launches preserve SR.STEP
so that those handlers can be single-stepped.

There is only one way in which the single-step condition can arise. This is when an
RTE instruction is executed with SSR.STEP set. The RTE instruction causes SR to
be restored from SSR, while PC is restored from SPC. The instruction referred to by
PC is executed, the PC is updated to the next instruction, and then a single-step
exception is raised.

If SR.BL is 0 this results in a debug handler being launched, while if SR.BL is 1
then a panic handler is launched instead. In both of these cases it is possible to
restart the program after the single-stepped instruction.

The values of SR.STEP and SR.BL that are used to make these decisions are
sampled after the RTE is executed but before the single-stepped instruction is
executed. If the single-stepped instruction changes SR.STEP and/or SR.BL (that is,
it is an RTE or a PUTCON) then these changes do not effect the launch of the
single-step event following that instruction. In other words, the values of SSR.STEP
and SSR.BL seen by an RTE instruction (and restored into SR.STEP and SR.BL)
determine the single-step post-execution behavior of the next instruction executed
after the RTE.

All other exceptions take precedence over single-step. This follows naturally since
single-step is the only post-execution exception. Consider the behavior when an
instruction is executed when SR.STEP is set. If that instruction raises a
pre-execution exception then that will take precedence over the single-step.
However, the value of SR.STEP is saved into SSR, so that if the instruction is
restarted and it completes without a pre-execution exception, then the single-step
will be correctly taken.

It is possible to single-step any instruction including the RTE instruction itself. The
architected behavior follows from the above description. There are some particularly
interesting single-step cases and these are described in Section 16.16: Single-step
behavior on page 261.

When executing in SHcompact, a delayed branch and its delay slot are executed
indivisibly. A single-step exception is not taken between these 2 instructions. When
single-stepping through a delayed branch and its delay slot, a single-step exception
will be taken with the SPC referring to the delayed branch and the next will be
taken with the SPC referring to the instruction that executes after the delay slot
(which instruction depends on whether the branch is taken or not).
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Exceptions 249
Debug instruction address exception (DEBUGIA)

Debug instruction value exception (DEBUGIV)

Debug operand address exception (DEBUGOA)

Break (BREAK)

Cause Execution of an instruction when SR.WATCH is 1 and the instruction
address triggers a debug IA watch-point.

Actions Standard launch sequence. This is a debug event and is vectored through
RESVEC or DBRVEC according to DBRMODE. EXPEVT is set with the
event code of the exception. TEA is not set. Software must instead deduce
the triggering instruction address from the value of SPC.

Cause Execution of an instruction when SR.WATCH is 1 and the instruction
encoding triggers a debug IV watch-point.

Actions Standard launch sequence. This is a debug event and is vectored through
RESVEC or DBRVEC according to DBRMODE. EXPEVT is set with the
event code of the exception. TEA is set with the address of the matched
instruction.

Cause Execution of an instruction when SR.WATCH is 1 and the operand
address triggers a debug OA watch-point.

Actions Standard launch sequence. This is a debug event and is vectored through
RESVEC or DBRVEC according to DBRMODE. EXPEVT is set with the
event code of the exception. TEA is set with the matched operand
address.

SHmedia Execution of the BRK instruction.

SHcompact Execution of the BRK instruction (even if in a delay slot).

Actions Standard launch sequence is followed. This is a debug event and is
vectored through RESVEC or DBRVEC according to DBRMODE.
EXPEVT is set with the event code of the exception. A BRK will cause a
pre-execution debug exception. For more information on the BRK
instruction see Section 9.2: Event handling instructions on page 163. The
BRK instruction is typically reserved for use by the debugger.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

250 Panics
Debug single step exception (DEBUGSS)

16.12 Panics
If an exception occurs while SR.BL is 1, a panic launch is initiated rather than an
exception launch. This rule applies to all exceptions, including debug exceptions.

Normally, software is designed so that exceptions do not occur while SR.BL is 1. If
this situation arises, it is usually indicative of a serious system fault. The panic
feature is provided as a debugging aid to allow the conditions that led to the panic to
be reconstructed and analyzed. The single-stepping mechanism uses panic to allow
single-stepping into code sequences with SR.BL is 1. This allows, for example,
single-step debugging of exception and interrupt handlers.

The architecture provides panic control registers to save the state modified by the
panic launch. This approach ensures that the pre-panic state is available. It is
possible to return from a panic without loss of architectural state (apart from the
state specifically provided for panic handling).

Panic (PANIC)

Cause Execution of an instruction when SR.STEP is 1. This is a post-execution
exception, and is raised after the single-stepped instruction completes.

Actions Standard launch sequence is followed. This is a debug event and is
vectored through RESVEC or DBRVEC according to DBRMODE.
EXPEVT is set with the event code of the exception.

Cause An exception occurs while SR.BL is 1.

Actions A panic launch is pre-execution if the exception that caused the panic was
pre-execution. A panic launch is post-execution if the exception that
caused the panic was post-execution. The only post-execution panic
occurs when a single-step exception is taken when SR.BL is 1.

Standard launch sequence is followed. The MMU is disabled. The PSPC,
PSSR and PEXPEVT control registers are used to preserve the values of
SPC, SSR and EXPEVT prior to the panic. SPC and SSR are used to
preserve the values of PC and SR prior to the panic. EXPEVT is set with
the event code of the exception that caused the panic. This event code is
always distinct from the codes used for POWERON and CPURESET.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Event ordering and event summary tables 251
16.13 Event ordering and event summary tables
It is possible for multiple events to occur at the same time. This section defines the
arbitration between these multiple events to choose which event should result in a
launch. This is achieved by specifying an ordering between those events. When
multiple events occur, the event with the lowest order number is taken.

Event ordering is specified in Table 156 and Table 157. These tables also give the
abbreviated names (handles), handler addresses and event codes for every event.
The acceptance point of asynchronous events is non-deterministic with respect to
instruction execution, and with respect to the detection of synchronous events.

16.13.1 Ordering of asynchronous events

The ordering of asynchronous events is shown in the following table. The event with
the lowest order number has precedence. There are multiple external interrupts
and these are ordered by priority level (see Section 16.10.3). For external interrupts,
the interrupt event code is provided by the source of the interrupt signal.

Event handle Event name Order Vectora

a. If DBRMODE is 0, VEC is RESVEC, otherwise VEC is DBRVEC.

Offset EXPEVT or INTEVT

POWERON Power-on Reset 1 0x0 0x0 0x000 (EXPEVT)

CPURESET CPU Reset 2 VEC 0x0 0x020 (EXPEVT)

NMI Non-maskable
Interrupt

3 VBR 0x600 0x1C0 (INTEVT)

DEBUGINT Debug Interrupt 4 VEC 0x200 Not changed

EXTINT External Interrupt 5 VBR 0x600 Various (INTEVT)

Table 156: Ordering of asynchronous events
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

252 Event ordering and event summary tables
16.13.2 Ordering of synchronous events

The ordering of synchronous events is shown in the following table. The event with
the lowest order number has precedence. Where two or more events share an order
number those events can never occur simultaneously.

Event handle Event name Order Vectora Offset EXPEVT Pre or Post

PANIC Panic 1 VEC 0x0 Variousb Pre/Postc

DEBUGIA Instruction Address Debug 2 VEC 0x100 0x900 Pre

ITLBMISS Instruction TLB Miss Error 3 VBR 0x400 0xA40 Pre

EXECPROT Instruction Protection Violation 4 VBR 0x100 0xAA0 Pre

DEBUGIV Instruction Value Debug 5 VEC 0x100 0x920 Pre

FPUDIS FPU Disabled 6 VBR 0x100 0x800 Pre

SLOTFPUDIS Delay Slot FPU Disabled 6 VBR 0x100 0x820 Pre

BREAK Software break 7 VEC 0x100 0x940 Pre

TRAP Unconditional trap 7 VBR 0x100 0x160 Pre

RESINST Reserved Instruction 7 VBR 0x100 0x180 Pre

ILLSLOT Illegal Slot Exception 7 VBR 0x100 0x1A0 Pre

IADDERR Instruction Address Errord 8 VBR 0x100 0xAE0 Pre

DEBUGOA Operand Address Debug 9 VEC 0x100 0x960 Pre

RADDERR Data Address Error Read 10 VBR 0x100 0x0E0 Pre

WADDERR Data Address Error Write 10 VBR 0x100 0x100 Pre

RTLBMISS Data TLB Miss Read 11 VBR 0x400 0x040 Pre

WTLBMISS Data TLB Miss Write 11 VBR 0x400 0x060 Pre

READPROT Data Protection Violation Read 12 VBR 0x100 0x0A0 Pre

WRITEPROT Data Protection Violation Write 13 VBR 0x100 0x0C0 Pre

FPUEXC FPU Exception 14 VBR 0x100 0x120 Pre

DEBUGSS Single Step Debug 15 VEC 0x100 0x980 Post

Table 157: Ordering of synchronous events
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Event ordering and event summary tables 253
16.13.3 SHcompact event ordering

There are 2 cases where the SHcompact priority order differs from the normal order.

Instructions with 2 memory accesses

Some SHcompact instructions make 2 accesses to memory; exceptions are detected
separately for these 2 accesses. The affected instructions are shown in the table.

Exception checking is achieved in the following order for read/read cases:

1 RADDERR, then RTLBMISS, then READPROT for first read access

2 Memory is read for first read access

3 RADDERR, then RTLBMISS, then READPROT for second read access

4 Memory is read for second read access

Exception checking is achieved in the following order for read/write cases:

1 RADDERR, then RTLBMISS, then READPROT for read access

2 Memory is read

3 WRITEPROT for write access

a. If DBRMODE is 0, VEC is RESVEC, otherwise VEC is DBRVEC.

b. The event code for a panic depends upon the code of the event that causes the panic.

c. Panic is pre- or post-execution depending upon the disposition of the event causing the panic.

d. IADDERR occurs during execution of SHmedia prepare-target and SHcompact branch
instructions.

SHcompact instruction First access Second access

MAC.L @Rm+, @Rn+ Read from @Rn+ Read from @Rm+

MAC.W @Rm+, @Rn+

AND.B #imm, @(R0, GBR) Read from @(R0, GBR) Write to @(R0, GBR)

OR.B #imm, @(R0, GBR)

XOR.B #imm, @(R0, GBR)

TAS.B @Rn Read from @Rn Write to @Rn

Table 158: SHcompact instructions with multiple accesses
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

254 Event ordering and event summary tables
4 Memory is written

In both cases, note that memory is read for the first access before exception
conditions are checked for the second access. This means that exception checking is
not completely precise on these instructions. Care is required if these instructions
are used on memory locations that have side-effects on reads (for example, some
devices have this property).

Delayed branch and delay slots

In general, SHcompact delayed branches and delay slots are executed indivisibly
with respect to event launch. Exception checking is achieved in the following order:

1 The delayed branch is checked for pre-execution exceptions (that is, all
exceptions apart from single-step). If an exception arises, the exception handler
is launched based on the state prior to the execution of the delayed branch and
the delay slot.

2 The delay slot is checked for all pre-execution exceptions (that is, all exceptions
apart from single-step). If an exception arises, the exception handler is launched
based on the state prior to the execution of the delayed branch and the delay
slot.

3 The delayed branch is executed and updates architectural state.

4 The delay slot is executed and updates architectural state.

5 The single-step exception is checked after the execution of both instructions. If
an exception arises, the exception handler is launched based on the state after
the execution of both the delayed branch or the delay slot.

There is a special case which deviates from the behavior described above. If the
delayed branch instruction writes to PR and does not raise a pre-execution
exception, but the delay slot instruction does raise a pre-execution exception, then
PR will be updated before the exception handler is launched.

In this case the execution of the delayed branch and the delay slot is not completely
indivisible, and the state observed by the exception handler is not completely
precise. The state delivered to the exception handler, apart from PR, is consistent
with the state prior to the execution of either the delayed branch or the delay slot.

This special case affects the following instructions:

• BSR label

• BSRF Rn

• JSR @Rn
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Launch assignments 255
Thus, where an exception is raised on the delay slot of one of these instructions, PR
is updated with the procedure link value (the PC of the instruction following the
delay slot) before the exception handler is launched. Note that these instructions do
not read the value of PR. If the exception handler can fix the cause of the exception,
then it can safely restart execution at the delayed branch instruction without
affecting the correct behavior of the original thread.

16.14 Launch assignments
This section summarizes the changes made to the architectural state during launch.

Every launch makes the following assignments:

• ISA is set to 1 to indicate execution in SHmedia.

• SR.MD is set to 1 to indicate privileged execution.

• SR.BL is set to 1 to indicate blocking.

• PC is set to the handler address (as indicated in Table 156 and Table 157).

Additionally, a launch can optionally update SPC, SSR, EXPEVT, INTEVT, TEA,
TRA, SR.MMU, SR.STEP, SR.WATCH, SR.IMASK, FPSCR, PSSR, PSPC and
PEXPEVT. These assignments are summarized in Table 159 and Table 160. The
entry in each cell of the table is one of the following:

UN: this state has an undefined value after this launch.

0: this state is always initialized to zero by this launch.

�: this state is initialized as described in Section 16.6.2: Standard launch
sequence on page 228.

(no entry): this state is not initialized by this launch (that is, it is preserved).
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

256 Launch assignments
16.14.1 Asynchronous launch

Power-on and CPU reset set SR.CD, SR.FD, SR.FR, SR.SZ and SR.PR to their reset
values. Additionally, power-on reset sets RESVEC and VBR to their reset values.

16.14.2 Synchronous launch

Handle
SPC
SSR

EXPEVT INTEVT TEA TRA
SR.STEP

SR.WATCH
SR.IMASK SR.MMU FPSCR

PSSR
PSPC

PEXPEVT

POWERON UN � UN UN UN 0 UN 0 UN UN

CPURESET � � 0 0

NMI � �

DEBUGINT � 0 �

EXTINT � � �

Table 159: Launch assignments for asynchronous events

Handle
SPC
SSR

EXPEVT INTEVT TEA TRA
SR.STEP

SR.WATCH
SR.IMASK SR.MMU FPSCR

PSSR
PSPC

PEXPEVT

PANIC � � 0 0 �

DEBUGIA � � 0 �

ITLBMISS � � �

EXECPROT � � �

DEBUGIV � � � 0 �

BREAK � � 0 �

TRAP � � �

RESINST � �

ILLSLOT � �

FPUDIS � �

SLOTFPUDIS � �

DEBUGOA � � � 0 �

Table 160: Launch assignments for synchronous events
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Power management 257
16.15 Power management
The CPU supports two modes of operation. In normal mode, the CPU executes
instructions as usual. In sleep mode, execution of instructions is suspended. On
implementations that support power-down of the CPU, the power consumed by the
CPU will be significantly reduced while in sleep mode.

The transition from normal mode to sleep mode is achieved by the execution of the
SLEEP instruction. The transition from sleep mode to normal mode is triggered by
the assertion of an interrupt or a CPU reset. The state of the CPU is preserved
across sleep periods. In some cases the exit from sleep mode is associated with an
event handler launch, and this launch causes the standard set of launch
assignments to the architectural state.

On implementations that provide an FPU and support independent power-down of
the FPU, there will also be a power-saving when the FPU is disabled. It is therefore
recommended that the FPU is disabled, by setting SR.FD to 1, where it is known
that floating-point instructions are not required.

Other power management properties are implementation-specific.

IADDERR � � �

RADDERR � � �

WADDERR � � �

RTLBMISS � � �

WTLBMISS � � �

READPROT � � �

WRITEPROT � � �

FPUEXC � � �

DEBUGSS � � 0 �

Handle
SPC
SSR

EXPEVT INTEVT TEA TRA
SR.STEP

SR.WATCH
SR.IMASK SR.MMU FPSCR

PSSR
PSPC

PEXPEVT

Table 160: Launch assignments for synchronous events
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

258 Power management
16.15.1 Entering sleep mode

Sleep mode is entered by executing the SLEEP instruction. This is a privileged
instruction. Execution of this instruction in user mode will cause a reserved
instruction exception.

Upon execution of the SLEEP instruction, the CPU is placed into sleep mode and
stops executing further instructions until sleep mode is exited. On entry to sleep
mode all earlier instructions including the SLEEP instruction have completed
execution, and no subsequent instructions have started execution.

SLEEP does not automatically synchronize instruction fetch and data accesses.
Section 16.15.4 describes the necessary actions to achieve this synchronization.

The SLEEP instruction does not modify the blocking status (SR.BL) nor the
interrupt mask level of the CPU (SR.IMASK). These two fields continue to control
the blocking and masking of interrupt launch in the usual way.

16.15.2 Exiting sleep mode

At the point of sleep, the SLEEP instruction is considered to have completed
execution, though any post-execution exception conditions on that instruction will
not yet have been checked. The PC at the point of sleep is the address of the
instruction immediately following the SLEEP instruction. This property ensures
that an interrupt launch after the sleep will deliver an SPC to allow restart at the
instruction that immediately follows the SLEEP instruction.

Sleep mode is exited when any asynchronous event source is asserted. This is
regardless of whether conditions allow that event to be accepted and cause a
handler launch. For example, assertion of an external interrupt at priority level 0
causes the CPU to exit sleep mode, even though the interrupt will never be accepted
and will never cause a handler to be launched (see Section 16.10.3: External
interrupts on page 241).

When the CPU leaves sleep mode, the SLEEP instruction is checked for
post-execution exceptions before any handler launch for the asynchronous wake-up
event. This is because asynchronous conditions are checked between instructions:
that is, after the post-execution checks of the previous instruction but before the

Instruction Summary

SLEEP enter sleep mode

Table 161: Sleep instruction
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Power management 259
pre-execution checks of the following instruction. After post-execution exceptions
have been checked, the CPU checks for asynchronous conditions.

The asynchronous events that can cause an exit from sleep are CPURESET, NMI,
DEBUGINT and EXTINT. These cause an appropriate handler launch as soon as
conditions allow the event to be accepted. CPURESET and NMI cannot be blocked,
and immediately cause a handler launch. The handler launch for DEBUGINT and
EXTINT can be delayed due to blocking or masking.

The different cases are:

1 CPURESET: a reset handler is launched.

2 NMI: an NMI handler is launched.

3 DEBUGINT: a debug interrupt handler is launched if interrupts are not blocked.
If interrupts are blocked, then the handler is not launched and execution
continues with the next instruction after the SLEEP instruction.

4 EXTINT: an interrupt handler is launched if the interrupt is not blocked and not
masked. If the interrupt is blocked or is masked, then the handler is not
launched and execution continues with the next instruction after the SLEEP
instruction.

An asserted DEBUGINT or EXTINT causes the CPU to exit sleep mode regardless
of whether that interrupt causes a launch. The interrupt will be accepted when it is
both asserted and the CPU is ready to accept that interrupt. Software will typically
arrange for SR.BL to be cleared or for SR.IMASK to be reduced, as appropriate, so
that the wake-up interrupt can be accepted.

If it is desired for only a subset of the possible wake-up events to wake the CPU,
then this is achieved by controlling the generation of those events at their source.
Alternatively, the SLEEP instruction can be iterated to repeatedly put the CPU into
sleep mode until the desired condition is reached.

Handler launch uses the standard launch mechanism. No specific indication is given
to the handler that the CPU was previously in sleep mode. However, the interrupt
event code (INTEVT) can be used to distinguish different interrupt causes.

Architectural state, including memory, is preserved across sleep periods. Exit from
sleep can involve an event handler launch and this will cause assignments to state.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

260 Power management
16.15.3 Sleep and wake-up timing

Wake-up signals are asynchronous events and are therefore asserted
asynchronously with respect to instruction execution. The CPU checks the assertion
of asynchronous events between the execution of consecutive instructions. This
means that when a wake-up signal transitions from deasserted to asserted, this will
be detected by the CPU either before or after a SLEEP instruction.

If the CPU detects an asserted wake-up signal after a SLEEP instruction, then the
CPU will wake-up. If the event can be accepted, a handler is launched.

If the CPU detects an asserted wake-up signal before a SLEEP instruction and that
event can be accepted, then a handler is launched. If the event is not accepted then
no handler is launched. If the SLEEP instruction is executed and there is already an
asserted asynchronous event, then the CPU will wake-up immediately after the
execution of the SLEEP. In this case, the SLEEP instruction has the same
architectural effect as NOP.

It is common that a sequence containing a SLEEP instruction is executed with
interrupts blocked. This ensures that a launch for a blockable interrupt is delayed
until after the SLEEP instruction has executed. Only once interrupts are unblocked
can that launch be made.

16.15.4 Sleep and synchronization

The SLEEP instruction provides only limited synchronization of instruction fetches
and data accesses.

At the point where the CPU enters sleep mode, the CPU arranges that there are no
outstanding transactions in the memory system outside of the CPU core. However,
it is possible that there could be earlier memory accesses which have not yet
initiated such a memory transaction. To ensure that all previous memory accesses
have completed out to external memory, software must use a SYNCO instruction
prior to the SLEEP.

The SLEEP instruction ensures that all previous instructions have completed
execution. However, it does not guarantee any synchronization of subsequent
instruction fetch:

1 In cases where sleep exit causes a handler launch, instruction fetch is implicitly
synchronized by the launch mechanism.

2 In cases where sleep exit does not cause a handler launch and instead restarts
the instruction after the SLEEP, the hardware does not guarantee instruction
fetch synchronization and this must be achieved by software. SYNCI must be
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Single-step behavior 261
executed immediately after the SLEEP instruction to cause the necessary
synchronization.

For correct synchronization, SLEEP must be used in the following code sequence:

SYNCO ; synchronize data accesses
SLEEP ; enter sleep mode
SYNCI ; synchronize instruction fetch

16.16 Single-step behavior
An abstract model of instruction execution illustrates the single-step behavior. An
instruction can be executed using the following actions:

1 If an interrupt or reset signal can be accepted, then update state to launch a
handler. In this case, the current instruction becomes the first instruction of the
launched handler.

2 If there is a pre-execution panic or exception condition on the current
instruction, then update state so as to launch a handler. In this case, the current
instruction becomes the first instruction of the launched handler.

3 Save SR.STEP in some temporary non-architected state (for example,
saved_step).

4 Save SR.BL in some temporary non-architected state (for example, saved_bl).

5 Execute the current instruction (that is, the one at PC). The architectural state
is updated and the PC is advanced to the next instruction. The calculation of the
next instruction does not take into account any subsequent event launch.

6 If the current instruction is a SLEEP instruction, then enter sleep mode. Sleep
mode is exited when an asynchronous event is asserted, as described in Section
16.15: Power management on page 257.

7 If saved_step is set, a post-execution single-step exception launch is required:

If saved_bl is clear, then update state so as to launch a debug handler.

If saved_bl is set, then update state so as to launch a panic handler.

The current instruction becomes the first instruction of the launched handler.

8 Goto step 1 to execute another instruction.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

262 Single-step behavior
A key property of this model is that asynchronous events are accepted between
instructions. They are checked after the post-execution checks of the previous
instruction but before the pre-execution checks of the following instruction.

The above description is illustrative and not intended to constrain implementations
beyond the stated architectural requirements. Other models of execution are
possible, though they must be indistinguishable from the above model from an
architectural perspective.

16.16.1 Single-step across handler launch and RTE

There are two very interesting cases: single-step across a handler launch and
single-step across an RTE. These cases are particularly important because of the
ability to single-step in critical regions. The resulting behavior is described in the
following example.

Let a program contain instructions Ia, Ib and Ic. Previous instructions have
arranged for single-stepping through the program. Let instruction Ib cause an
exception handler to be launched before its execution. Let the invoked handler have
instructions Il, Im and In (where n is RTE)1. The handler fixes up the exception, and
then performs an RTE back to Ib such that Ib can execute successfully. An
alternative example would be the case of an interrupt being accepted before the
execution of Ib; this would exhibit the same single-stepping behavior to that
described here.

Let the debugger install single-step and panic handlers with instructions Ix, Iy and
Iz (where Iz is RTE), and simply restart at the delivered SPC with single-step still
enabled.

The architecture specifies that single-stepping is propagated into the exception
handler. The launch of a debug handler or panic handler, however, always clears
SR.STEP so these handlers will not be single-stepped.

The sequence of instructions that will be executed is:

1 Previous instructions are executed such that SR.STEP is now set

2 Execute Ia

Launch DEBUGSS with SPC=Ib: execute Ix, execute Iy, execute Iz (RTE to Ib)

1. In these examples, the number of instructions in handlers is minimized for
ease of presentation. Typically, more instructions will be used to fix-up an
exception.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Single-step behavior 263
3 Pre-execution event causes handler launch with SPC=Ib: execute Il

Launch PANIC with SPC=Im: execute Ix, execute Iy, execute Iz (RTE to Im)

4 Execute Im

Launch PANIC with SPC=In: execute Ix, execute Iy, execute Iz (RTE to In)

5 Execute In (RTE to Ib)

Launch PANIC with SPC=Ib: execute Ix, execute Iy, execute Iz (RTE to Ib)

6 Execute Ib

Launch DEBUGSS with SPC=Ic: execute Ix, execute Iy, execute Iz (RTE to Ic)

7 Subsequent instructions are executed

The numbered lines in this sequence show instructions being executed in the
original program or in the exception handler. The unnumbered lines show
instructions being executed in the debugger. Note that the debugger sees exactly one
single-step exception between every executed instruction.

The order of SPC values seen by the debugger is: Ia Ib Im In Ib Ic. The non-debugger
instructions actually executed are: Ia Il Im In Ib Ic. Thus, Ib is repeated and Il is not
observed.

This behavior is explained as follows. The SPC delivered to the debugger refers to
the next instruction. Next instruction means the next instruction that would be
executed in the normal flow of instructions; that is, assuming that no event launch
will immediately follow the current instruction. This is logical because single-step is
a post-execution event of the current instruction, and therefore happens before the
CPU has an opportunity to take a following interrupt or any exception on the next
instruction.

When the debugger sees a particular SPC and then restarts that instruction, there
is no guarantee that the SPC instruction will complete: there could be an interrupt
or exception that causes a handler launch and a different instruction to be executed.

In this example instruction Ib raises a pre-execution exception, and instruction Il is
executed in its place. Debug software should be aware of this anomalous behavior.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

264 Single-step behavior
16.16.2 Single-step and interrupts

Single-step exceptions are always raised on the instruction following an RTE.

If block and mask conditions allow, it is possible for an interrupt to be accepted after
the RTE but before the following instruction executes and thus before a single-step
can be delivered for that following instruction. Using the rules already described, an
interrupt handler will be launched. For an NMI or EXTINT interrupt, this interrupt
handler will inherit the single-step bit of the interrupted thread and in this case will
therefore execute with SR.STEP set. This means that the single step condition will
be present after the first instruction of the interrupt handler is executed. Since the
launch of the interrupt handler will also have caused SR.BL to be set, this
single-step event will be delivered as a panic. The launch of a debug handler
(including DEBUGINT) or panic handler, however, always clears SR.STEP so these
handlers will not be single-stepped. The overall effect is that single stepping
propagates into NMI and EXTINT interrupt handlers.

In general, the architecture makes no statements about the timing of interrupts
from their assertion in the outside world to their acceptance by the CPU. The CPU
architecture describes the acceptance point of interrupts as non-deterministic
giving an implementation considerable leeway. Clearly interrupts should be
propagated in a timely manner to achieve good real-time behavior, but issues of
timing are beyond the CPU architecture.

However, the architecture requires that an implementation must allow interrupts to
be accepted between the RTE and a following single-stepped instruction (where
blocking and masking allow). This ensures that interrupts can be delivered in the
context of a single-stepped program.

If an implementation always delayed interrupts such that this never occurred, then
single-step debugging could become functionally intrusive. The worst case is when
the single-step handler itself runs completely with interrupts blocked; in this
scenario EXTINT and DEBUGINT interrupts would never be accepted. This
arrangement is avoided by declaring that such an implementation is not a valid
realization of the architecture.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Single-step behavior 265
16.16.3 Single-step and sleep

Single-stepping through a sleep sequence is another interesting case.

Let a program contain instructions Ia, Ib and Ic. Previous instructions have
arranged for single-stepping through the program. Let instruction Ib be the SLEEP
instruction, and let an EXTINT interrupt subsequently become asserted and return
the CPU to normal mode. Let this interrupt be neither blocked nor masked, so that
it is possible to launch a handler for it. Let the invoked interrupt handler have
instructions Il, Im and In (where n is RTE). The handler performs an RTE back to Ic.

Let the debugger install single-step and panic handlers with instructions Ix, Iy and
Iz (where Iz is RTE), and simply restart at the delivered SPC with single-step still
enabled.

The sequence of instructions that will be executed is:

1 Previous instructions are executed such that SR.STEP is now set

2 Execute Ia

Launch DEBUGSS with SPC=Ib: execute Ix, execute Iy, execute Iz (RTE to Ib)

3 Execute Ib and enter sleep mode

After some cycles, an interrupt causes exit from sleep mode

Launch DEBUGSS with SPC=Ic: execute Ix, execute Iy, execute Iz (RTE to Ic)

4 Interrupt condition causes handler launch with SPC=Ic; execute Il

Launch PANIC with SPC=Im: execute Ix, execute Iy, execute Iz (RTE to Im)

5 Execute Im

Launch PANIC with SPC=In: execute Ix, execute Iy, execute Iz (RTE to In)

6 Execute In (RTE to Ib)

Launch PANIC with SPC=Ib: execute Ix, execute Iy, execute Iz (RTE to Ic)

7 Subsequent instructions are executed

The numbered lines in this sequence show instructions being executed in the
original program or in the exception handler. The unnumbered lines show
instructions being executed in the debugger. Note that the debugger sees exactly one
single-step exception between every executed instruction.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

266 Single-step behavior
When instruction Ib executes it causes the CPU to be placed into SLEEP mode. This
is achieved before single-step is checked because single-step is a post-execution
exception. When the CPU leaves sleep mode, the single-step condition causes a
single-step handler to be launched. The single-step condition takes priority over the
asserted interrupt. This is consistent with the execution model described in
Section 16.16. An alternative arrangement would be to accept the asserted interrupt
first. This would be less satisfactory because a single-step event would be lost.

If the wake-up event is an NMI or a CPU reset, the behavior is slightly different
because the NMI or CPU reset handler cannot be blocked. Let the NMI or CPU reset
handler contain instructions Il, Im and In but assume that it does not attempt to
RTE.

The sequence of instructions that will be executed is:

1 Previous instructions are executed such that SR.STEP is now set

2 Execute Ia

Launch DEBUGSS with SPC=Ib: execute Ix, execute Iy, execute Iz (RTE to Ib)

3 Execute Ib and enter sleep mode

After some cycles, an NMI or CPU reset causes exit from sleep mode

Launch DEBUGSS with SPC=Ic and PC=Ix

4 NMI or manual reset causes handler launch with SPC=Ix; execute Il

5 Execute Im

6 Execute In

7 Subsequent instructions are executed

Note that a single-step exception is launched at Ix with SPC set to Ic. However,
before Ix can be executed, the NMI or CPU reset condition causes another launch
with PC at Il and SPC set to Ix. No instructions from the single-step handler are
executed, but the transitional flow of control to the single-step handler is visible
through the value of SPC delivered to the NMI or CPU reset handler.

Note that a CPU reset launch automatically clears SR.STEP while an NMI launch
preserves SR.STEP. In this case, however, the earlier launch of the single-step
handler causes SR.STEP to be cleared, and thus an NMI handler would not itself be
single-stepped.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Interaction between debugger and target 267
16.17 Interaction between debugger and target
The CPU’s debug support consists of additional state and mechanism provided
specifically for the debugger. This support can be protected from user mode access,
but is fully accessible to privileged mode code. Target software should use the debug
support in a way that is compatible with its debug requirements.

16.17.1 External debugger

The CPU architecture is arranged so that an external debugger can attach to the
CPU and debug the target system. The external debugger and the target software
can be highly decoupled allowing the debugging of arbitrary target software. When
using an external debugger, the following conventions are recommended:

1 Target software should provide handlers using RESVEC to catch and handle
debug exceptions. When DBRMODE is 0, external debugging features are not
enabled and debug events will be vectored through RESVEC to target software.

2 DBRVEC and DBRMODE (see Section 16.6.4: Handler addresses on page 231)
should be reserved for the debugger. They should not be accessed by target
software. An external debugger can program DBRVEC and set DBRMODE to
allow debug events to be handled by the external debugger. If the external
debugger chooses not to handle a particular event, it can pass the handling of
that event onto target software by emulating handler launch through RESVEC.

3 Target software should not access PSSR, PEXPEVT, PSPC or DCR (see Section
9.3.2: Control register instructions on page 165). This state should be reserved
for the debugger.These control registers are used when handling debug events.
Their value could be modified non-deterministically from the point of view of
privileged mode target software.

4 Boot-strap code is the initialization code that executes after a reset. The
debugger can arrange for the boot-strap to be debugged from the very first
instruction executed after reset. For example, a debugger can use debug features
provided by the system architecture to arrange for SR.STEP and/or SR.WATCH
to be set. This allows single-stepping and/or watch-points to be enabled
immediately after reset but before execution of the first instruction of the target
program.

Boot-strap code must be aware that SR.STEP and SR.WATCH can be modified
from their reset value by the debugger before execution of the first instruction.
Typically, a boot-strap will initialize architectural state (e.g. control and
configuration registers), and then execute RTE. It is important that SR.STEP
and SR.WATCH are preserved through this RTE so that single-stepping and
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

268 Interaction between debugger and target
watch-points are not inadvertently disabled. One way to achieve this is for the
boot-strap to read SR, modify only those fields that the boot-strap needs to
change, write the new value to SSR, and then use RTE.

5 In general, target software should preserve the current values of SR.STEP and
SR.WATCH. This allows the debugger to control the single-stepping and
watch-pointing properties of target software. For an operating system
supporting multiple threads of execution, the operating system should preserve
the values of SR.STEP and SR.WATCH independently for each thread to allow
the debugger to control these features on a per-thread basis. Thus, SR.STEP and
SR.WATCH should be considered as part of the thread context, and accordingly
saved and restored at thread context switches.

6 The launch sequence for all debug exceptions causes EXPEVT to be set with the
event code associated with that debug event. Additionally, for DEBUGOA and
DEBUGIV events, TEA is set with the matched operand address or the address
of the matched instruction. For non-panic events, it is not possible for the
debugger to preserve EXPEVT and TEA across all debug handlers. Target
software should not rely upon the values in EXPEVT and TEA when SR.BL is 0.
Note that these registers can be preserved for panic events.

7 For non-panic debug events, the previous values of SPC and SSR are lost during
the debug handler launch. It is not possible for the debugger to preserve SPC
and SSR in these cases. Thus, target software should not rely upon these values
when SR.BL is 0, since their values could be modified non-deterministically by
debug software. It is not sufficient for target software to raise SR.IMASK to its
highest level (15). Although this will mask external interrupts, it will not mask
debug exceptions and debug interrupts. The value of SR.BL should be 1 across
any code sequence that depends on the values of SPC and SSR being retained.
Debug exceptions will then use the panic mechanism, preserving SPC and SSR.
Note that all event handler launches automatically set SR.BL to 1.

Note that these conventions are recommendations and not mandatory.

16.17.2 Other debug arrangements

The statements in Section 16.17.1 assume the use of an external debugger. There
are alternative environments where software can choose to exploit the core debug
features in other ways. For example:

• There could be a requirement for the target to prevent or hinder debug activities.

• There could be no requirement for the target to support any debug mechanism.

• The debugger could be integrated into the target software.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Event handling and USR 269
• The target could support both internal and external debug.

These arrangements could require different approaches and different software
conventions to those described in Section 16.17.1.

16.18 Event handling and USR
Event handling code must take special care with the USR control register (see
Section 15.2.11: USR on page 219). USR can be used to optimize context switch as
described in Section 2.8: Register subsets on page 25. The key architectural property
of USR is that when an instruction with a modifiable destination register is
executed, the relevant bit of USR will be set.

The following approach is required for maximal preservation of USR across an event
handling sequence:

• Following event launch, USR must be saved into a general-purpose register
using GETCON before any instruction is executed that has a destination
register.

• Before recovery from an event, USR must be restored from a general-purpose
register using PUTCON. There must be no other instructions with a destination
register between this PUTCON and the recovery RTE.

To implement these save and restore sequences, it is necessary to reserve a
general-purpose register for the use of event handlers.

Alternatively, software can choose to preserve only a subset of USR. For example, if
the event handler is allowed to modify one bit of USR.GPRS, then 8 different
general-purpose registers can be written to in the launch and recovery sequences
without further loss of information in USR.

The architecture leaves considerable flexibility in the implementation of the dirty
bits. An implementation is allowed to set dirty bits under other circumstances in
addition to those guaranteed by the architecture. Therefore, the degree to which
USR can be preserved across an event handling sequence is a property of the
implementation and not guaranteed by the architecture.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

270 Event handling and USR
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
17
Memory
management
17.1 Introduction
The architecture provides a memory management unit (MMU). The MMU is
present in all implementations, though the functionality of the MMU is scalable.
This allows the memory management features supported by an implementation to
be tailored to its requirements.

The main features that are provided by the MMU are:

• Disable/enable: a mechanism to allow the MMU to be disabled (for boot-strap)
and enabled (for program execution).

• Protection: a mechanism to associate protection information with address ranges
to allow those address ranges to be protected against inappropriate access.

• Cache control: a mechanism to associate cache behavior information with
address ranges to allow control of the cache for those address ranges.

• Effective address space: all memory accesses made by executing instructions on
the CPU are to addresses in effective address space.

• Physical address space: all memory accesses made by the CPU to the memory
system are to addresses in physical address space.

• Translation (optional): if translation is not supported, then effective addresses are
turned into physical addresses by an identity mapping. If translation is supported,
then the mapping of effective addresses into physical addresses is programmable.

Some MMU properties are managed using MMU configuration registers. The
organization of these registers is highly implementation dependent and is not
described in this document.
-5 CPU Core, Volume 1: Architecture

272 Scalability
17.2 Scalability
The MMU allows the following parameters to be scaled/varied between different
implementations:

• Number of implemented bits in effective addresses.

• Number of implemented bits in physical addresses.

• Page sizes: number of page sizes, and their actual sizes.

• Caching: number of supported cache behaviors.

• Translation: supported or not supported.

• Number of effective address spaces.

• Organization and size of the translation description.

17.3 MMU enable and disable
After power-on reset or CPU reset, the CPU starts executing with the MMU
disabled. The enable/disable state of the MMU can be accessed through the SR
control register. The MMU can be enabled or disabled using the RTE instruction.

17.4 Address space
All implementations support effective addresses and physical addresses. The
mapping between these depends on whether the implementation supports
translation.

17.4.1 Physical addresses

The CPU core interacts with the physical memory system using physical addresses.
There is a single physical address space. The contents of the physical memory map
are determined by the system architecture not by the CPU core.

The total physical address space contains 264 bytes. Physical addresses are
unsigned and therefore vary in the range [0, 264).

Implementations do not necessarily implement all of the physical address space; the
amount provided can vary between implementations. The number of bits in the
implemented physical address, nphys, will be in the range [32, 64].
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Address space 273
These implemented bits are always the least significant bits of the physical address.
The implemented subset of the 64-bit total physical address space has the upper
(64-nphys) bits of the physical address set to the same value as bit number
(nphys-1).

The physical address space is depicted in Figure 64.

Essentially the unimplemented bits follow the value of the most significant
implemented bit. The implemented physical address space occupies physical
addresses in the range [0, 2nphys-1) and the range [264-2nphys-1, 264). In the case
where nphys is 64, this collapses to a single range [0, 264).

17.4.2 Effective addresses

All memory accesses made by the CPU are characterized by an effective address and
a data width. The total effective address space is 64 bits since the effective address
computation in load/store instructions is performed to 64-bit precision.

The organization of the 64-bit effective address space is analogous to that of the
physical address space. The total effective address space contains 264 bytes.
Effective addresses are unsigned and therefore vary in the range [0, 264). The total
effective address space is flat.

Figure 64: Physical address space for any valid nphys

0

2nphys-1

263

264-2nphys-1

264

VALID

INVALID

INVALID

VALID
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

274 Address space
Implementations do not necessarily implement all of the effective address space; the
amount provided can vary between implementations. The number of bits in the
implemented effective address is neff. If the implementation does not support
translation then neff has the same value as nphys. If the implementation does
support translation, then neff will be in the range [nphys, 64]. This means that the
implemented effective address space is always sufficient to map all of the
implemented physical address space.

These implemented bits are always the least significant bits of the effective address.
The implemented subset of the 64-bit total effective address space has the upper
(64-neff) bits of the effective address set to the same value as bit number (neff-1).

The effective address space is depicted in Figure 65.

Essentially the unimplemented bits follow the value of the most significant
implemented bit. The implemented effective address space occupies effective
addresses in the range [0, 2neff-1) and the range [264-2neff-1, 264). In the case where
neff is 64, this collapses to a single range [0, 264).

Figure 65: Effective address space for any valid neff

0

2neff-1

263

264-2neff-1

264

VALID

INVALID

INVALID

VALID
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Address space 275
17.4.3 Virtual addresses

When the MMU is enabled and the MMU supports translation, conventional virtual
address space can be supported. In this case, the term ‘virtual address’ is
interchangeable with ‘effective address’.

However, if the MMU is disabled or if the MMU does not support translation,
conventional virtual address space is not supported. In this case, it would be
misleading to interchange the term ‘virtual address’ with the term ‘effective
address’.

For this reason, this architecture is described in terms of effective addresses rather
than virtual addresses.

17.4.4 Mapping from effective to physical addresses

The mappings from effective addresses to physical addresses are out-lined below.
When the MMU is disabled, the mapping algorithm is common to all
implementations. When the MMU is enabled, the mapping algorithm depends on
whether the implementation supports translation.

When the CPU makes an access to an effective address, the mapping is achieved as
follows:

1 The effective address is checked for validity. Validity checking increases
compatibility between implementations with varying amounts of implemented
effective address space. If neff is 64, then the effective address is always valid.
Otherwise, if the effective address is in the range [2neff-1, 264 - 2neff-1) then it is
invalid and an appropriate exception is raised. The exceptions that are used for
addresses outside the implemented effective address space are IADDERR for
instruction addresses, RADDERR for loads and WADDERR for writes. Note that
these exceptions are also used for misaligned access. If the effective address is
valid, the mapping continues.

2 If the MMU is disabled, the effective address is converted directly into a physical
address without translation. This mapping is described in Section 17.6: Behavior
when the MMU is disabled on page 277.

3 If the MMU is enabled and the MMU does not support translation, the effective
address is converted directly into a physical address without translation. This
mapping is described in Section 17.7.5: Effective address mapping without
translation on page 286. Although there is no address translation, various
properties can be associated with the access.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

276 Pages
4 If the MMU is enabled and the MMU does support translation, the effective
address is converted into a physical address by a translation process. The
translation mechanism supports multiple effective address spaces. Each
effective address space is typically associated with a different process. The
effective address spaces are distinguished by an address space identifier (ASID).
This mapping is described in Section 17.7.6: Effective address mapping with
translation on page 287. The current value of ASID is specified in SR.ASID (see
Section 15.2.1: SR on page 210) and can only be changed using the RTE
instruction.

17.5 Pages
The granularity for associating attributes with address space is the page.

Multiple page sizes can be supported, though the actual number of page sizes and
their sizes are implementation defined. Any or all of the different page sizes can be
in use at the same time.

Page sizes are always a power-of-2, 2n, where n varies in the range [12, nphys]. The
smallest possible page size is 4 kbytes, and the largest possible page size exactly fills
the physical address space. A page in memory always starts at an address which is
aligned to its page size.

Physical address space is partitioned into pages. For a page size, 2n, bits 0 to n-1 of
the physical address represent the byte-index within the page, and bits n to nphys-1
represent the physical page number (PPN).

Effective address space is also partitioned into pages. Translation information, if
supported, is associated with each effective page. For a page size, 2n, bits 0 to n-1 of
the effective address represent the byte-index within the page, and bits n to neff-1
represent the effective page number (EPN).

Each memory access made by the instruction stream is fully contained within an
8-byte grain of memory aligned to an 8-byte boundary. This means that no accesses
straddle a page boundary. Every access is fully contained within a single page.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Behavior when the MMU is disabled 277
17.6 Behavior when the MMU is disabled
After a power-on reset, a CPU reset or a panic, the CPU executes code with the
MMU disabled. Execution of code with the MMU disabled is well behaved
regardless of the state of the MMU configuration registers. This is important
because MMU implementations can contain many programmable fields and these
fields have an architecturally-undefined value after power-on reset.

The intention is that the amount of code that executes with the MMU disabled is
very small. This code, typically called a boot-strap, needs to program the MMU with
an appropriate memory management configuration and then enable the MMU. The
details of the configuration depend upon the memory management features
provided by the implementation. The initial MMU configuration can be very simple
depending on the implementation and the required mappings.

The speed of execution of code when the MMU is disabled is not critically important.
This is because one of the first actions of the boot-strap code will be to configure the
MMU and enable it. This can be achieved with a relatively small number of
instructions. This means that the execution model for code when the MMU is
disabled can be very simple.

When code executes with the MMU disabled:

• Effective addresses are mapped directly to physical addresses. This mapping is
essentially an identity translation.

However, in the case where the implementation supports more effective address
space than physical address space (that is, neff > nphys), the physical address
space appears replicated throughout the effective address space. The effective
address (EA) is mapped to a physical address (PA) by sign-extending EA from bit
number nphys-1. Thus, any bits of PA in the range [nphys, 64) will be copies of
bit number nphys-1 of PA. This mapping is exactly an identity translation when
neff and nphys are identical.

• There is no protection mechanism.

• All data accesses, including swap accesses, are implemented as though they were
device accesses. The data cache is frozen and bypassed. The precise amount of
data is transferred. There is no speculative data access.

• Instruction fetches are not cached. The instruction cache is frozen and bypassed.
Additionally, the amount of speculative instruction fetch is restricted to avoid
prefetches from device areas of physical memory.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

278 Behavior when the MMU is enabled
Properties of speculative memory access are described in Section 18.11: Speculative
memory accesses on page 311.

Since accesses are not cached while the MMU is enabled, optimal performance
cannot be achieved. It is strongly recommended that the MMU is configured and
enabled as soon as possible after reset.

17.7 Behavior when the MMU is enabled
When the MMU is enabled, the mappings from effective addresses to physical
addresses are described using page table entries (PTE). Each page table entry
consists of two configuration registers which are called the high PTE (PTEH) and
the low PTE (PTEL). The distinction between ‘high’ and ‘low’ is for naming
convenience only. These specify the properties of that page in effective and physical
address space. Page table entries are held in an array to allow multiple pages to be
described.

A PTE array is also called a translation lookaside buffer (TLB).

The following sections describe the organization of the PTE arrays, the contents of
the PTE configuration registers, the mapping mechanisms and implementation
options.

17.7.1 PTE array organization

There are two possible organizations of the page table entry arrays: unified and
split:

• A unified organization consists of a single array of page table entries. Each entry
controls the behavior of both data and instruction accesses to the described page.
The number of entries in the array is implementation defined and is represented
here by u.

The configuration registers in the unified array are called:

- MMUDR[n].PTEH

- MMUDR[n].PTEL

where n varies in the range [0, u).

• A split organization consists of two arrays of page table entries. An entry in the
data register array controls the behavior of data accesses to the described page,
whereas an entry in the instruction register array controls the behavior of
instruction accesses to the described page. The number of entries in these arrays
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Behavior when the MMU is enabled 279
is implementation defined and is represented here by d for the data register
array and i for the instruction register array.

The configuration registers in the data array are called:

- MMUDR[n].PTEH

- MMUDR[n].PTEL

where n varies in the range [0, d). The configuration registers in the instruction
array are called:

- MMUIR[n].PTEH

- MMUIR[n].PTEL

where n varies in the range [0, i).

All entries in a PTE array are equivalent. The PTE arrays are fully associative.
Each entry can hold information for any effective to physical address mapping.

17.7.2 MMU configuration registers

The MMU configuration registers are summarized in the following diagrams.
Further details of configuration register layout are implementation dependent.
Each configuration register is 64 bits wide. The annotations above each register
denote field widths, while the annotations below denote bit numbers.

64-neff bits neff-12 bits 2 8 1 1

e EPN r ASID S
H V

63 ne
ff

ne
ff-

1 12 11 10 9 2 1 0

Figure 66: PTEH configuration register

64-nphys bits nphys-12 bits 2 4 1 2 1 2

e PPN r PR r SZ r CB

63

np
hy

s

np
hy

s-
1 12 11 10 9 6 5 4 3 2 1 0

Figure 67: PTEL configuration register
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

280 Behavior when the MMU is enabled
The ‘r’ field indicates bits that are reserved for future expansion of the architecture.
Software should ignore the value read from reserved bits, and write these bits as 0.

Possible future uses of the ‘r’ fields include:

• Extension of ASID to increase the number of supported address spaces.

• Extension of CB to increase the number of supported cache behaviors.

• Extension of SZ to increase the number of supported page sizes.

• Extension of PR to increase the number of supported protection attributes.

The ‘e’ field indicates bits reserved for future expansion of the address space using a
sign-extended convention. Software should ignore the value read from these bits.
Software should write a sign-extension of the highest implemented bit into
expansion bits. This approach is necessary if software is to be executed on a future
implementation with more implemented address space.

Note that the above information does not require future architecture versions to use
these options, nor does it constrain future architecture versions to just these
options.

Table 162 indicates where the descriptions of these registers and fields can be found.

The PTEH and PTEL configuration registers are replicated to provide an array of
PTEs that describe the available mappings from effective to physical addresses.

State Description Behavior

PTEH.EPN

PTEH.ASID

PTEH.SH

PTEH.V

Effective page number

Address space identifier

Shared page flag

PTE enable

See Effective page number (PTEH.EPN) on page 286

See Address space identifier (PTEH.ASID) on page 286

See Shared page (PTEH.SH) on page 285

See Enable (PTEH.V) on page 282

PTEL.PPN

PTEL.PR

PTEL.SZ

PTEL.CB

Physical page number

Protection information

Page size

Cache behavior information

See Physical page number (PTEL.PPN) on page 285

See Protection (PTEL.PR) on page 284

See Page size (PTEL.SZ) on page 282

See Cache behavior (PTEL.CB) on page 282

Table 162: PTEH and PTEL fields
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Behavior when the MMU is enabled 281
17.7.3 Implementation options

In addition to the variation possible in the PTE array organization, the MMU
architecture supports three different implementations of the PTE state. These are:

1 Translation not supported, implemented PTE fields are read-only: this variant
gives a set of hard-wired non-translated mappings, and results in a very simple
implementation. The PTE look-up can be implemented by decoding bits from the
effective address, rather than by an associative look-up into a PTE array. This
variant only supports systems with very simple MMU requirements.

2 Translation not supported, implemented PTE fields are read-write: this variant
gives programmable control of protection and caching at the page level, but
without support for translation. This variant supports systems that require
protection without the cost of translation.

3 Translation supported, implemented PTE fields are read-write: this variant is
fully featured and can support standard virtual memory.

A summary of the semantics of each PTE field is given in Table 163 to show how the
behavior varies for these different implementations.

PTE field

Translation not supported Translation supported

Implemented PTE
fields are read-only

Implemented PTE fields
are read-write

Implemented PTE
fields are read-write

PTEH.EPN RES RES RW

PTEH.ASID RES RES RW

PTEL.PPN RO RW RW

PTEL.PR RO RW RW

PTEL.CB RO RW RW

PTEH.SH RO RW RW

PTEL.SZ RO RW RW

PTEH.V RO RW RW

Table 163: PTE implementation options
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

282 Behavior when the MMU is enabled
17.7.4 PTE contents

This section describes the fields within the PTE configuration registers. Some fields
are only provided on implementations that support translation. The behavior of
some fields depends on whether the PTE array organization is unified or split.

Enable (PTEH.V)

An enable bit is provided to control whether this PTE is enabled or disabled. This
allows software to disable unused PTEs, and to ensure that PTEs are disabled while
they are programmed. The enable field (PTEH.V) is described in Table 164.

Page size (PTEL.SZ)

The number of supported page sizes, npage, can vary between implementations,
though every implementation must provide at least 1 page size. The sizes of the
supported pages are also implementation defined. The page size field (PTEL.SZ) is
described in Table 165.

Future versions of the architecture reserve the option to extend PTEL.SZ to support
more page sizes (see Section 17.7.2: MMU configuration registers on page 279).

Cache behavior (PTEL.CB)

The implementation can optionally provide instruction and data caches. Different
cache behaviors can be selected to allow the behavior of the cache to be specified at
the page level. If caches are not supported, then the cache behavior field should be
set to uncached.

The different cache behaviors are distinguished using the cache behavior field
(PTEL.CB). Cache behavior is a property of the physical page, and must be used
consistently at the granularity of the smallest page size supported by the
architecture (4 kbytes). The architecture allows multiple mappings to share the

Name of field Size in bits Behavior

PTEH.V 1 If 0: the PTE is disabled
If 1: the PTE is enabled

Table 164: V field

Name of field Size in bits Behavior

PTEL.SZ 2 Distinguishes up to 4 supported page sizes.

Table 165: Page size field
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Behavior when the MMU is enabled 283
same physical page with different cache behaviors, providing that they are accessed
mutually exclusively at this granularity. Thus, any particular 4 kbyte physical page
must be accessed consistently with one cache behavior. The actions required to
change the cache behavior of a particular physical page are described in Section
17.8.3: Cache coherency when changing the page table on page 291. If a physical
page is not accessed with a consistent cache behavior, the behavior of memory
accesses to that page will be unpredictable and cache paradox conditions can result
(see Section 18.9: Cache paradoxes on page 308).

The available instruction cache behaviors are:

• Cached instruction fetches.

• Uncached instruction fetches.

The available data cache behaviors are:

• Cached accesses with write-back behavior.

• Cached accesses with write-through behavior.

• Device accesses (these are uncached and the exact amount of data is accessed).

• Uncached accesses (these are uncached but the accesses can be implemented
more efficiently than is permitted for device pages).

Future versions of the architecture reserve the option to extend PTEL.CB to support
more cache behaviors (see Section 17.7.2: MMU configuration registers on page 279).

The cache behavior field is described in Table 166. If a RESERVED setting is used,
then the behavior is architecturally undefined.

Name of
field and

size

PTEL.CB
value

Behavior with a unified PTE array Behavior with a split PTE array

Instruction fetch Data access Instruction fetch Data access

PTEL.CB

2 bits

0x0 uncachable uncachable uncachable uncachable

0x1 uncachable device RESERVED device

0x2 cachable cachable,
write-back

cachable cachable,
write-back

0x3 cachable cachable,
write-through

RESERVED cachable,
write-through

Table 166: Cache behavior field
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

284 Behavior when the MMU is enabled
Protection (PTEL.PR)

Accesses are checked for various kinds of protection violation. Protection violation
causes an appropriate exception to be raised. Protection is a property of the effective
page. There is no requirement for mappings that share the same physical page to
use the same protection attributes.

Each PTE has a protection field (PTEL.PR) containing the following bits:

1 PTEL.PRU: when set the page is accessible to user and privileged mode,
otherwise it is accessible to just privileged mode.

2 PTEL.PRW: when set the page is writable, otherwise non-writable.

3 PTEL.PRR: when set the page is readable, otherwise non-readable.

4 PTEL.PRX: when set the page is executable, otherwise non-executable.

Future versions of the architecture reserve the option to extend PTEL.PR to support
more protection attributes (see Section 17.7.2: MMU configuration registers on
page 279).

Permission is granted to privileged mode for an access if the appropriate access
permission is given regardless of the value of PTEL.PRU. Permission is granted to
user mode for an access if the appropriate access permission is given and
PTEL.PRU is set. Prohibited accesses raise an appropriate exception.

The protection field is described in Table 167.If a RESERVED setting is used, then
the behavior is architecturally undefined.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Behavior when the MMU is enabled 285
Physical page number (PTEL.PPN)

For a page size of 2n bytes there are (nphys-n) bits in the PPN. The PTEL.PPN field
contains sufficient bits to support the smallest page size allowed by the architecture
(4 kbytes). Thus, PTEL.PPN contains (nphys-12) bits. Where the actual page size is
greater than this smallest page size, the PPN must be stored in the most significant
bits of the PTEL.PPN field and the remaining least significant bits of PTEL.PPN
must be cleared.

Shared page (PTEH.SH)

This field is provided only on implementations that support translation. The shared
page field (PTEH.SH) is used to control sharing of pages between different ASID
values. It is used in the effective address look-up mechanism described in Section
17.7.6: Effective address mapping with translation on page 287.

The PTEH.SH field is described in Table 168.

Name of field
and size

Bit number
of PTEL.PR

Value
of bit

Interpretation
with a unified

PTE array

Interpretation with a split PTE array

Instruction side Data side

PTEL.PR

4 bits

0 (R) 0 not readable BIT MUST BE 0 not readable

1 readable RESERVED readable

1 (X) 0 not executable not executable BIT MUST BE 0

1 executable executable RESERVED

2 (W) 0 not writable BIT MUST BE 0 not writable

1 writable RESERVED writable

3 (U) 0 privileged only privileged only privileged only

1 privileged and
user accessible

privileged and
user accessible

privileged and
user accessible

Table 167: Protection field

Name of field Size in bits Behavior

PTEH.SH 1 If 0: the page is not shared
If 1: the page is shared

Table 168: SH field
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

286 Behavior when the MMU is enabled
Address space identifier (PTEH.ASID)

This field is provided only on implementations that support translation. The
PTEH.ASID field is used to distinguish different effective address spaces. It is used
in the effective address look-up mechanism described in Section 17.7.6: Effective
address mapping with translation on page 287. The value of PTEH.ASID is
irrelevant for a shared page.

The number of provided effective address spaces can vary between
implementations. The PTEH.ASID field contains 8 bits, but the number of these bits
that are implemented is implementation dependent. If the number of implemented
bits is nasids, then nasids is in the range [0,8] and this field can be programmed
with values in the range [0, 2nasids), while any values in the range [2nasids, 28) are
reserved.

Future versions of the architecture reserve the option to extend PTEH.ASID to
support more address spaces (see Section 17.7.2: MMU configuration registers on
page 279).

The PTEH.ASID field is described in Table 169.

Effective page number (PTEH.EPN)

This field is provided only on implementations that support translation.

For a page size of 2n bytes there are (neff-n) bits in the EPN. The PTEH.EPN field
contains sufficient bits to support the smallest page size allowed by the architecture
(4 kbytes). Thus, PTEH.EPN contains (neff-12) bits. Where the actual page size is
greater than this smallest page size, the EPN must be stored in the most significant
bits of the PTEH.EPN field and the remaining least significant bits of PTEH.EPN
must be cleared.

17.7.5 Effective address mapping without translation

This section describes the effective address mapping procedure for implementations
that do not support translation. Implementations with translation follow the
procedure described in Section 17.7.6: Effective address mapping with translation
on page 287.

Name of field Size in bits Behavior

PTEH.ASID 8 Distinguishes up to 256 different effective address spaces

Table 169: ASID field
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Behavior when the MMU is enabled 287
The values of neff and nphys are identical for an implementation that does not
support translation. Effective addresses are mapped directly to physical addresses.
This mapping is an identity translation: the physical address is identical to the
effective address. An identity mapping is sufficient since the range of valid effective
addresses exactly matches the range of physical addresses.

This physical address is then used to perform an associative look-up in the
appropriate PTE array. A match is found if the physical page described by a PTE
contains the physical address of the access.

If a match is found, the look-up determines the protection and cache attributes to be
used for that access. If a match is not found, then an exception is raised to indicate
an instruction miss (ITLBMISS) or data miss (RTLBMISS or WTLBMISS).

The content of the PTE arrays must be arranged such that there is, at most, one
PTE that describes the mapping of any physical address. If there are multiple
mappings for any physical address, then the behavior is architecturally undefined.

17.7.6 Effective address mapping with translation

An implementation can optionally support translation. The required mechanisms
are described here. None of this mechanism is needed for implementations that do
not support translation.

Translation gives flexible control over the mappings from effective addresses into
physical addresses. Standard virtual memory can be supported by using effective
address space, the translation mechanism and appropriate software. In this case,
the virtual memory map is determined entirely by software not by the CPU
architecture.

This effective address mapping is achieved as follows. The effective address of the
access and the ASID of the current process are used to perform an associative
look-up into the appropriate PTE array. The following checks are made against each
PTE:

• An effective address match is found if the EPN of the effective address of the
access matches the PTEH.EPN field. Note that the bits of the effective address
used in this comparison depend on the page size of that PTE. For a page of size
2n bytes, bits n to neff-1 inclusive of the effective address are compared.

• An ASID match is found if PTEH.SH is 1, or if the ASID of the current process
matches the PTEH.ASID field. The PTEH.SH allows pages to be shared across
all processes regardless of ASID.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

288 Behavior when the MMU is enabled
A PTE match requires an effective address match and an ASID match in the same
PTE.

If a PTE match is found, the look-up determines the attributes (physical page
number, protection and cache attributes) to be used for that access. The translation
from effective address to physical address is achieved in the conventional way by
substituting the physical page number for the effective page number. Thus, the
byte-index within the page is retained, and the EPN is replaced by the PPN. This
process is illustrated in Figure 68.

If a PTE match is not found, then an exception is raised to indicate an instruction
miss (ITLBMISS) or data miss (RTLBMISS or WTLBMISS). This exception can be
used to cause software refill of the appropriate PTE array, and to detect accesses to
invalid addresses. PTE refill is performed completely in software; there is no
hardware page-table walking.

There must be, at most, one PTE that describes the mapping of any effective address
in any effective address space. If there are multiple mappings present for any
effective address and ASID combination, then the behavior is architecturally
undefined.

Figure 68: Effective to physical mapping

Index

Index

Effective Page Number

Physical Page Number

Replaced Copied

Effective address

Physical address

This boundary is
determined by the page
size of the translation.

These boundaries are
fixed by the
implementation.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

MMU and caches 289
17.7.7 Mappings required to execute an instruction

The number of mappings required for an instruction to execute is a property of the
instruction set architecture. Note that instructions and memory accesses never
straddle page boundaries.

Each SHmedia instruction requires:

1 A mapping for its instruction bytes.

2 If it is an instruction that accesses memory, a mapping for its data.

Each SHcompact instruction requires:

1 A mapping for its instruction bytes.

2 If it is an instruction that accesses memory, one or two mappings for its data.
Some SHcompact instructions (specifically, MAC.W and MAC.L) read two
separate memory locations. Mappings must be simultaneously available for both
read accesses in order for such instructions to execute without a page miss
exception.

In summary, any instruction can be executed using one mapping for its instruction
bytes and at most two mappings for its data.

17.8 MMU and caches
This section describes the interaction between the memory management unit and
the caches. This elaborates on information presented earlier in this chapter. Further
information on these mechanisms can be found in the cache chapter (see
Chapter 18: Caches on page 297).

This section is not relevant to implementations without caches.

17.8.1 Cache behavior when the MMU is disabled

When the MMU is disabled, all cache state is bypassed and frozen with respect to
accesses. This behavior is provided regardless of whether the caches are themselves
enabled. The cache enable flag only has an effect when the MMU is enabled. Thus,
in the case that the MMU is disabled but the caches are enabled, the cache state is
still bypassed and frozen.

Bypassing means that accesses do not see the state of any caches; essentially,
accesses always miss a bypassed cache. Freezing means that accesses do not modify
the state of any cache. In effect, accesses proceed as if the cache were not present.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

290 MMU and caches
Cache coherency instructions and the cache configuration mechanisms still operate
on the cache state, and will access the cache as usual. This provides software with a
means to manage the cache state regardless of whether the MMU is enabled or
disabled.

There are a number of advantages to this arrangement:

• The behavior of the cache when the MMU is disabled is fully specified, allowing
the well-behaved execution of instructions without encountering paradoxical
cache situations.

• After a CPU reset, software can observe the complete state of the cache prior to
the reset. This is important for post-mortem debugging.

• In normal operation the MMU is enabled. It is possible to arrange for the MMU
to be disabled, instructions to be executed without translation, and the MMU to
be re-enabled without affecting the cache state. This behavior allows the system
to support fully-decoupled, interactive debugging. Essentially, a debugger can
arrange to run its own code, with the MMU disabled, without affecting the
functional behavior of the target system.

17.8.2 Cache behavior when the MMU is enabled

When the MMU is enabled, the behavior of the caches can be programmed by
software. The cache behavior is specified at the page level using PTEL.CB, but this
setting can be globally over-ridden by the cache configuration. The semantics of
cache behavior are described in the cache chapter (see Chapter 18: Caches on
page 297).

When the MMU is enabled, software is responsible for guaranteeing that the caches
are used in a safe way. In particular, software must ensure that cache paradoxes are
avoided. A cache paradox occurs when a memory access finds that the current cache
state is inconsistent with the required cache behavior. An example is a device access
which finds that the accessed data is in the cache; this situation is inconsistent with
device semantics.

Software conventions must be used to prevent such situations. It is necessary to
ensure that all mappings that share the same physical page have the same cache
behavior, otherwise the behavior of memory accesses to that page will be
unpredictable. A more detailed description of the necessary constraints can be found
in Section 18.8.3: Cache behavior on page 305. Particular care is required when
changing page table contents; this is described in Section 17.8.3: Cache coherency
when changing the page table on page 291.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

MMU and caches 291
17.8.3 Cache coherency when changing the page table

For implementations that have read-write PTE fields, software is able to change the
contents of a PTE. The MMU architecture places a usage model on page table
updates to allow a wide variety of implementations. This model requires software to
honor certain constraints when changing the contents of a page mapping.

The MMU architecture uses the model that the entries in the PTE arrays (the hard
PTEs) are a subset of a larger set of notional PTE values maintained in some way by
software (the soft PTEs). Software is given complete freedom as to how the soft
PTEs are managed. For example, they can be stored in a memory-held PTE data
structure, they can be calculated dynamically, or whatever.

The MMU is informed of the existence of a soft PTE at the point where that PTE is
loaded into a hard PTE and enabled. While the MMU is informed of the existence of
a soft PTE, the MMU can (optionally) cache the hard PTE into a cached PTE. The
cached PTE allows the MMU to retain the state of the soft PTE even when the
corresponding hard PTE has been reprogrammed. This property supports
implementations that copy PTE information in the cache. This arrangement is
called a virtual cache.

Under normal use, software will evict entries from hard PTEs and refill from soft
PTEs as required by page misses. These evictions and refills do not generally
require the state of the soft PTEs to be changed, and no special operations are
required to keep the cached PTE state coherent.

When a soft PTE is modified then the cached PTE state must be made coherent by
explicit software actions. This can be achieved by software by meeting the following
two conditions (at the same time):

• There must be no enabled hard PTE corresponding to the soft PTE. This can be
achieved by disabling the hard PTE, if any, which corresponds to that soft PTE.

• There must be no valid or dirty lines in any cache corresponding to effective
addresses mapped by that soft PTE. This condition is automatically satisfied if
the cache behavior of the PTE is device or uncached. If it is cached, the condition
must be satisfied through an appropriate cache coherency operation.Cache
coherency is described in Chapter 18: Caches on page 297.

When these two conditions are met, then the MMU is no longer aware of the
existence of the soft PTE and the soft PTE can be safely modified.

The soft PTE identifies an effective page in the effective address space defined by
PTEH.EPN, PTEH.ASID and PTEL.SZ. The following scenarios constitute
modifications to the soft PTE:
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

292 MMU and caches
1 The effective page is being demapped (that is, becomes no longer accessible).

2 The effective page is being remapped (that is, PTEL.PPN is being changed).

3 The sharability (PTEH.SH) of the effective page is being changed.

4 The cache behavior (PTEL.CB) of the effective page is being changed. Note that
cache behavior is a property of the physical page, and must be used consistently
at the granularity of the smallest page size supported by the architecture (see
Section : Cache behavior (PTEL.CB) on page 282).

5 The protection properties (PTEL.PR) of the effective page are being changed
such that one or more of the protection attributes has an increase in protection
(that is, there are accesses to the old PTE which are no longer permitted to the
new PTE). This occurs if any of the permission bits are changed from 1 to 0.

If none of the protection bits are changed so as to increase their protection (that
is, each bit is either unchanged or is changed to allow more accesses), this does
not count as a PTE modification. This concession allows software to avoid PTE
coherency costs in some important cases.

For example, software can mark a clean page as non-writable, catch the initial
write exception and then enable write permission in the hard PTE. Enabling
write permission does not require PTE coherency. The architecture guarantees
that if a protection violation is detected in the cached PTE, the implementation
will refer to the hard PTE to determine whether an exception is to be launched.

17.8.4 Cache synonyms

The architecture allows the implementation to select whether cache look-ups are
performed using index bits from the effective address or from the physical address
(see Section 18.6: Cache mapping on page 301). If an implementation chooses to use
index bits from the effective address, then it is possible for cache synonyms to occur
depending on the size and organization of the cache.

Cache synonyms occur when data from the same physical location is present in two
different sets in the cache1. For data that can be modified, cache synonyms can lead
to incorrect memory behavior since there is no mechanism defined by the
architecture to keep the modifications consistent between these different sets.
Cache synonyms are a potential problem only when multiple translations (with
different effective addresses) are used to map the same physical location.

1. Please see Chapter 18: Caches on page 297 for further details of cache
organization and behavior including definitions of cache blocks and sets.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

MMU and caches 293
The following sections describe how the architecture manages cache synonym
problems.

The architecture also recognizes a related, but distinct, property of caches. This is
the concept of cache aliases, which is described separately in Section 18.10: Cache
aliases on page 309. Cache aliases occur only in caches when the tags in the cache
are derived from the effective address rather than the physical address and where
the cache look-up is completed using just the effective address without an address
translation.

Such implementations must consider whether the same physical location can be
present in two different cache blocks in the same set since this results in cache
aliases. Like cache synonyms, cache aliases also lead to incorrect memory behavior
and are a potential problem only when multiple translations (with different
effective addresses) are used to map the same physical location.

The architecture chooses to use different names for ‘cache synonyms’ and ‘cache
aliases’ because very different techniques are used in the architecture to solve these
distinct problems. Cache synonyms are multiple copies of the same physical location
occurring in different sets due to indexing into the cache using the effective address.
Cache aliases are multiple copies of the same physical location occurring in the
same set due to the use of effective address tags in the cache. The use of different
names for these concepts leads to a clearer and simpler description. Please note that
some other architectures use these terms interchangeably without making any such
distinction.

17.8.5 Instruction cache synonyms

The architecture allows an implementation to use an instruction cache organization
that leads to synonyms. Since there is no mechanism to write into the instruction
cache, synonyms in the instruction cache will remain coherent with each other.
Therefore, the architecture imposes no constraints on software for managing
instruction cache synonyms.

However, for some applications it can be desirable to avoid instruction cache
synonyms. For example, instruction cache synonyms cause instructions to be held in
multiple places in the instruction cache which can lead to lower utilization of the
instruction cache. Additionally, if a physical location has instruction cache
synonyms then complete invalidation of that location in the instruction cache
requires all of the synonyms to be invalidated.

If software chooses to avoid instruction cache synonyms then the constraints
specified in Section 17.8.7: Constraints to avoid cache synonyms on page 294 should
also be applied to instruction translations. Note again that the architecture and
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

294 MMU and caches
implementations do not require these constraints for correct instruction cache
operation.

17.8.6 Operand cache synonyms

Unlike the instruction cache, the operand cache supports writes and operand cache
synonyms must be avoided. The constraints described in Section 17.8.7: Constraints
to avoid cache synonyms on page 294 are mandatory for correct operand cache
operation.

17.8.7 Constraints to avoid cache synonyms

When translation is used, cache synonyms can be avoided by placing constraints on
the values of PTEH.EPN and PTEL.PPN for cachable pages.

nsynbits

The constraint is specified by a parameter, nsynbits, which has an
implementation-specific value. This parameter gives the number of least significant
bits of PTEH.EPN and PTEL.PPN that can suffer from cache synonyms. These bits
are called synonym bits.

Note that the smallest page size supported by the architecture is 4 kbytes, and thus
both PTEH.EPN and PTEL.PPN do not include the least significant 12 bits of the
address.

Cache synonyms will be avoided if PTE values for all cachable pages, regardless of
their page size, are programmed such that the synonym bits have identical values in
all PTEH.EPN instances that map the same PTEL.PPN. This constraint allows
cache implementations to index into the cache using lower order bits from the
effective address rather than the physical address. This implementation option is
described further in the cache chapter (see Chapter 18: Caches on page 297).

Note that if the selected page size is 212+nsynbits bytes or larger, then the constraint
is automatically honored due to page alignment.

nsynmax

The architecture specifies that nsynbits will be in the range [0, nsynmax] for all
implementations. This means that bits of PTEH.EPN and PTEL.PPN above
nsynmax never suffer from synonym problems.

The value of nsynmax is 4. For example, an implementation can require that
cachable mappings using a 4 kbytes page are constrained by 4 synonym bits.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

MMU and caches 295
However, it is guaranteed that an implementation will not constrain mappings that
use 64 kbytes page size or larger.

Software implications

It is highly recommended that software honors the stricter architecturally-defined
nsynmax constraint, rather than the weaker implementation-specific nsynbits
constraint. This guarantee allows software to arrange its memory mappings in a
way that will be compatible with future implementations.

The following discussion assumes that software honors nsynmax. If software
chooses to make use of the implementation-specific nsynbits then replace nsynmax
with nsynbits in the following paragraphs.

To avoid cache synonyms, software has to arrange the memory mappings of cachable
pages such that bits [0, nsynmax) of all PTEH.EPN instances that map the same
PTEL.PPN are identical. This constraint applies regardless of the page sizes being
used. If a particular PTEL.PPN is only mapped once then there is no constraint.
However, if there are 2 or more mappings of a particular PTEL.PPN, then software
must arrange the PTEH.EPN values to satisfy this constraint.

Where multiple page sizes are used to map the same PTEL.PPN, the larger page
size can force a constraint onto the smaller page size due to the stricter alignment of
the larger page.

For example, consider an implementation supporting 4 kbytes and 64 kbytes pages
where a particular physical address is mapped by pages of both these sizes. Since
the 64 kbytes page is aligned to 64 kbytes, the bits in [0,4) of PTEH.EPN and
PTEL.PPN for the 64 kbytes page will all be zero. In order to satisfy the synonym
constraint, this forces the 4 kbytes page to have the same value in bits [0,4) of its
PTEH.EPN as bits [0,4) of its PTEL.PPN. The overall effect, in this example, is that
there are no choices available when selecting the synonym bits in the smaller page.
Effectively, the required constraint has become that the synonym bits in PTEH.EPN
must match the synonym bits in PTEL.PPN for both of these pages.

The recommended approach is for software to only allow translations that are
consistent with these constraints. If software chooses to employ translations that
are inconsistent with these constraints, then great care is required. Specifically,
software must enforce cache coherency to avoid cache synonyms. If software has
made accesses through a particular translation, then any cache entries
corresponding to that translation must be removed by an appropriate cache
coherency operation, before accesses can be safely made through an inconsistent
translation. Cache coherency is described in Chapter 18: Caches on page 297.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

296 MMU and caches
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
18
Caches
18.1 Overview
A cache is a high-performance associative memory used for holding frequently
accessed data or instructions close to the CPU. Caches exploit predictable memory
usage patterns that occur in many programs, for example spatial and temporal
locality of access. A cache can delay, aggregate, eliminate and re-order memory
accesses. These techniques enable high load/store performance even where memory
latency is substantially higher than the CPU cycle time.

This chapter introduces the principles of cache operation. Cache instructions are
described in Section 6.6 Cache instructions on page 101. Some cache properties are
managed using cache configuration registers. The organization of these registers is
highly implementation dependent and is not described in this document.

18.2 Cache architecture
This section describes the architectural properties and behavior of caches. However,
many aspects are highly implementation dependent. This includes, for example,
whether that implementation provides any caches, and if it does how those caches
are organized and exactly how those caches behave.

Although caches can have a significant effect on performance, the presence of the
cache is functionally transparent to most software. This is because caches do not
generally affect the memory model when viewed from just an instruction stream.
Software that manages the cache directly, however, is exposed to the
implementation-dependent properties of the cache.

Some properties of the cache can be described by implementation-specific
parameters. Software that manages the cache should be written in terms of these
-5 CPU Core, Volume 1: Architecture

298 Cache organization
parameters and provide mechanisms to allow the parameters to be set
appropriately for the target implementation. Ideally, these parameters should be
configurable at load-time or run-time to allow binary-level compatibility between
implementations with different cache organizations. However, in some
circumstances it can be necessary to bind this information statically into programs.

Two mechanisms are provided for cache management:

• Cache prefetch, allocate and coherency instructions: these are available to user
and privileged mode, and insulate software from most implementation-specific
cache properties.

• Cache configuration registers: these can be accessed using the configuration
space from privileged mode. This is a highly implementation-specific
mechanism. Any software that uses this mechanism will require significant
attention should it be ported to another implementation with a different cache
organization.

The strong recommendation of the architecture is that cache configuration registers
should be used sparingly by software. The cache prefetch, allocate and coherency
instructions should be used instead where they can achieve the desired effect.

18.3 Cache organization
The CPU architecture defines the behavior for one level of caches. The organization
of the caches is implementation specific. Each implementation will select a level one
cache organization from the following alternatives defined by the architecture:

• No cache: all accesses are performed on memory without caching.

• Unified cache: data and instruction accesses pass through a single cache.

• Split cache: data and instruction accesses are treated separately. The following
implementation-specific options are available:

- Only an operand cache is provided. Data accesses pass through the operand
cache, while instruction accesses are performed on memory without caching.
The terms ‘operand cache’ and ‘data cache’ are interchangeable.

- Only an instruction cache is provided. Instruction accesses pass through the
instruction cache. Data accesses are performed on memory without caching.

- Both an operand cache and an instruction cache are provided. Data access
pass through the operand cache, while instruction accesses pass
independently and separately through the instruction cache.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Cache block 299
The choice of cache organization is independent of the PTE organization of the
MMU (see Section 17.7.1 PTE array organization on page 278).

Where an implementation provides a separate instruction cache, no mechanisms
are provided to write memory through that cache.

An implementation or an external memory system can provide more levels of
caches. The CPU architecture does not define how any such caches behave or are
controlled.

18.4 Cache block
The unit of allocation in the cache is the cache block. A cache block is used to hold a
copy of the state of some memory block. The terms ‘cache block’ and ‘cache line’ are
interchangeable.

A cache block consists of data and address information:

• The data is used to hold a copy of the memory block.

• The address information is used to provide additional information specific to the
memory block (if any) that is currently being cached. The precise information is
implementation specific, but generally it consists of the following parts:

- A flag to indicate whether that cache block is in use (valid) or not in use
(invalid).

- A flag to indicate whether that cache block contains data has not yet been
written-back to memory (dirty) or not (clean).

- Information to identify the memory block in the address map.

- Cache, access and replacement information for that cache block.

The number of bytes of data associated with a cache block is called the cache block
size. The cache block size is nbytes where nbytes is a power-of-2. The value of nbytes
is at least the register size of the architecture (8 bytes) and at most the smallest
page size of the architecture (4 kilobytes). The actual value of nbytes is
implementation specific. If an implementation provides separate instruction and
operand caches, then the cache block size can be different for each cache.

A memory block is a contiguous block of memory bytes. The memory block size is
nbytes. The physical and effective addresses of the memory block are exact
multiples of nbytes (that is, cache block size aligned).
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

300 Cache sets, ways and associativity
Software that manages the cache directly is often exposed to the cache block size.
Ideally, software should treat the cache block size as an implementation-specific
parameter and provide mechanisms to allow it to be set appropriately for the target
implementation.

However, it is recognized that there can be circumstances where this approach is not
sufficiently practical or efficient. Where binary-level software compatibility for
cache instructions is required across a set of implementations of the architecture,
the cache block size of those implementations will be the same. Conversely, should
the cache block size of two implementations differ, there is no guarantee of
binary-level software compatibility for cache instructions between those
implementations.

An instruction cache contains instruction cache blocks. An operand cache contains
operand cache blocks. In a unified cache, each cache block is both an instruction and
operand cache block, and can be used for both instruction and data accesses.

18.5 Cache sets, ways and associativity
A cache block is replicated to form a set. The value used to select a cache block from
a set is called the way. The number of ways is given by the set size and is denoted
nways, where nways is a power-of-2 and greater than 0.

A set is then replicated to form a cache. The value used to select a set from a cache
is called the index. The number of sets is denoted nsets, where nsets is a power-of-2
and greater than 0.

The process of mapping a memory block into the cache is described in Section 18.6
Cache mapping on page 301. Essentially, the address of a memory block determines
which set the memory block can be cached into.

The memory block can be cached into any of the cache blocks within the selected set.
The number of different cache blocks into which a particular memory block can be
mapped is known as the associativity of the cache, and is given by nways.

Associativity is a key cache parameter. Increasing the associativity allows more
flexibility in the mapping of memory blocks to cache blocks and reduces cache
hot-spots. However, increasing the associativity leads to more costly cache
implementations and potentially slower cache access times.

The following arrangements are possible:
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Cache mapping 301
1 If nways=1, then this is a direct-mapped cache. A memory block can be mapped
into exactly one cache block in the cache.

2 If nways>1 and nsets>1, then this is a set-associative cache. A memory block can
be mapped into any of the nways cache blocks in a particular set in the cache.

3 If nways>1 and nsets=1, then this is a fully-associative cache. A memory block
can be mapped into any of the cache blocks in the cache.

Note that each of these arrangements corresponds to a particular selection of the
nways and nsets parameters. This parameterization covers all 3 arrangements.

The cache size in bytes is given by multiplying the cache block size by the set size by
the number of sets. If an implementation provides separate instruction and operand
caches, then the set size and number of sets can differ for each cache.

18.6 Cache mapping
The mapping of memory blocks to cache blocks is based on the address of the
memory block. An address is split into an offset, an index and a tag as shown in
Figure 69.

The boundaries between these fields are determined by the implementation-specific
properties already described. The fields are used as follows:

1 The offset selects a byte within the cache block. The number of bits in the offset
field is log2(nbytes).

2 The index selects a set within the cache. The number of bits in the index field is
log2(nsets).

3 The tag consists of all of the remaining address bits. The number of bits in the
tag field is 64 - log2(nsets) - log2(nbytes).

The mapping of an address proceeds by subscripting into the cache by the index to
identify a set. This set consists of all of the cache blocks that this address can be
mapped to.

tag index offset

63 0

Figure 69: Address decomposition
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

302 Cache mapping
The implementation determines whether this mapping is based on the effective
address or the physical address of the access. If there is no translation or if there is
an identity translation, then this distinction is immaterial. Additionally, if the
smallest page size of the implementation is such that the index of the address is
unchanged by the translation process, then again the distinction is mute.

However, if these properties are not all upheld, then the behavior of these
approaches is different. The implementation must state whether it indexes after
translation (using the physical address), or indexes before translation (using the
effective address).

If indexing is achieved using the effective address then cache synonyms must be
considered (see Section 17.8.4 Cache synonyms on page 292). Cache synonyms occur
when the use of an effective address index causes a physical location to be mapped
into multiple different sets in the cache. The architecture allows instruction cache
synonyms to occur since the instruction cache does not support writes. However, the
operand cache supports writes and the presence of operand cache synonyms can
lead to incorrect cache operation.

The MMU architecture solves this potential problem by placing constraints on data
translations (see Section 17.8.7 Constraints to avoid cache synonyms on page 294). If
these constraints are honored then all effective address space translations of a
particular address will index into the same set and operand cache synonyms are
avoided. If these constraints are not honored then accesses through different
translations in the effective address space of a particular physical address can be
mapped into different sets leading to multiple copies of some memory locations in
the operand cache. The operand cache provides no mechanisms to keep these cache
synonyms coherent, and this will lead to an unpredictable and faulty memory
model.

When an address is held in a particular cache block in a set, tag information is
recorded in the cache block to identify this particular address. The index and offset
fields need not be recorded as their value is inherent in the cache structure.

The tag information that is associated with each cache block is implementation
dependent, and can be different for the instruction cache and operand cache. The
available choices are:

• Each cache block is associated with a tag from the physical address of the access.

• Each cache block is associated with a tag from the effective address of the access.

• Each cache block is associated with a tag from the effective address of the access
and with a tag from the physical address of the access.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Caches and memory management 303
Implementations that use a tag from the effective address behave as described in
Section 18.10 Cache aliases on page 309 with regard to cache aliases.

If the implementation does not implement all of the address space, then some of the
upper tag bits will be redundant. For tags derived from the effective address the top
(64-neff) bits of the tag are redundant where neff bits of effective address space are
implemented. Similarly, for tags derived from the physical address the top
(64-nphys) bits of the tag are redundant where nphys bits of physical address space
are implemented.

18.7 Caches and memory management
There are significant interactions between the cache and MMU architectures. These
are described in Section 17.8 MMU and caches on page 289. The main points are:

• Normal cache operation is only provided when the MMU is enabled.

• Constraints are placed on MMU configuration for data translation to avoid the
cache synonym problems described in Section 17.8.7 Constraints to avoid cache
synonyms on page 294 and Section 18.6 Cache mapping on page 301.

• Changing page table entries typically requires software management of the cache.

18.8 Cache operation
This section describes the general operation of the cache. Subsequent sections will
enhance this description by specifying additional cache mechanisms.

18.8.1 Initial state

After a power-on reset, the values of all cache state and all cache configuration
registers are architecturally undefined. However, the MMU is disabled and this
ensures that all cache state is bypassed and frozen with respect to instruction
fetches, data accesses and swap accesses. The semantics of cache operation with the
MMU disabled are described in Section 17.8.1 Cache behavior when the MMU is
disabled on page 289.

The cache should be configured appropriately before the MMU is enabled. This
requires that the caches are invalidated and appropriate values are given to the
cache configuration registers.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

304 Cache operation
Once the MMU is enabled, the cache becomes enabled. The cache behavior of
accesses is then determined by the MMU and cache configurations.

There are various circumstances under which the MMU can be disabled. This can be
due to an RTE instruction, a CPU reset, a panic, a debug exception or a debug
interrupt. When the MMU is disabled, the cache returns to its frozen and bypassed
state regardless of the cache configuration.

18.8.2 Cache access

All read and write accesses supported by the architecture act on up to 8 bytes of
data held in an 8-byte-aligned grain of memory. Since the cache block size is at least
8 bytes, then each access falls within a single cache block on all implementations of
the architecture.

Operand caches support write-through and write-back behaviors:

• For write-through, each write access updates any associated cache block and is
then also propagated through to memory. A property of this approach is that
write-through cache blocks are always a copy of the memory state, and can be
discarded without requiring any further memory update.

• For write-back, write accesses can be performed on the cache block and the write
to memory is postponed until that cache block is discarded. Write-back cache
behavior uses a bit in each cache block to distinguish clean and dirty data.
Write-back allows aggregation of write accesses to a particular cache block.

The generic behavior of the cache for cachable read and write accesses is as follows:

1 The address of the access is mapped to a set in the cache through the indexing
procedure described in Section 18.6 Cache mapping on page 301.

2 Each cache block in the set is checked to see if its tag matches the tag of the
access. The cache look-up and replacement algorithm is designed so that there
can be at most one match in the set.

3 There are two possible outcomes of the tag match:

3.1 If there is no match then this is a cache miss. An implementation-defined
replacement algorithm (see Section 18.8.4 Cache replacement on page 308) is
used to select an appropriate cache block in the set. If there is no replaceable
cache block, then the access is performed on memory and there is no change
to the cache state. If there is a replaceable cache block, then that cache block
is replaced. If that cache block is clean, then it can simply be reused; however,
if that cache block is dirty, then its data must be written back out to memory
before it is reused. The cache block is marked as clean and refilled from the
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Cache operation 305
memory address of this access, then the access continues as if the tag had
matched.

3.2 If there is a match, then this is a cache hit. Read accesses simply return the
appropriate bytes from the cache block. Write accesses update the
appropriate bytes in the cache block. For write-through behavior, a write
updates both the cache block state and the memory state. For write-back
behavior, a write updates just the cache block state and marks the cache
block as dirty.

The behavior for other accesses can differ from the above:

• Swap accesses are described in Section 6.5.1 Atomic swap on page 98.

• Prefetch accesses are described in Section 6.6.1 Prefetch on page 102.

• Allocate accesses are described in Section 6.6.2 Allocate on page 103.

• Cache coherency instructions are described in Section 6.6.3 Cache coherency on
page 104.

18.8.3 Cache behavior

The cache behavior of an instruction fetch, or data access is determined as follows:

• If the MMU is disabled, then the access bypasses the cache.

• If the MMU is enabled, then the cache behavior is determined by the global
cache behavior (specified in cache configuration registers) and by the page-level
cache behavior (specified in the PTE for that access). These two behaviors are
combined by choosing the more restrictive behavior to give the resultant cache
behavior. The combination is specified in Table 170 and Table 171.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

306 Cache operation
Cache behavior is a property of a physical page in memory. Software must ensure
that all accesses to a particular physical page use compatible cache behaviors. All
data accesses to a physical page must use the same operand cache behavior. All
instruction fetches from a physical page must use the same instruction cache
behavior.

Cache behavior can be selected independently for instruction accesses and data
accesses, but there are restrictions on the allowed combinations for a particular
physical page. If a physical page is uncachable for instructions, then it must have
either device or uncached behavior for data. If a physical page is cachable for
instructions, then it must have either write-through or write-back behavior for data.
These restrictions are necessary to ensure correct behavior on implementations
with a unified cache.

The properties of the resultant cache behaviors are described in the following
sections.

Global cache behavior
(as specified by cache

configuration registers)

Page-level cache behavior
(see Table 166: Cache behavior field on page 283)

Uncachable page Cachable page

Instruction caching disabled UNCACHED UNCACHED

Instruction caching enabled UNCACHED CACHED

Table 170: Instruction cache behavior resolution

Global cache behavior
(as specified by cache

configuration registers)

Page-level cache behavior
(see Table 166: Cache behavior field on page 283)

Device
page

Uncachable
page

Cachable,
write-through

page

Cachable,
write-back page

Data caching disabled DEVICE UNCACHED UNCACHED UNCACHED

Data caching enabled,
data write-back disabled

DEVICE UNCACHED WRITE-
THROUGH

WRITE-
THROUGH

Data caching enabled,
data write-back enabled

DEVICE UNCACHED WRITE-
THROUGH

WRITE-BACK

Table 171: Operand cache behavior resolution
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Cache operation 307
Uncached instruction

Accesses with this behavior are performed directly on the memory system.
Uncached instructions are never placed in the cache, and therefore these accesses
never hit the cache nor change the state of the cache. An implementation can
optimize these accesses. The implementation can transfer more data than that
specified in the access, and can aggregate the access with other accesses.

Cached instruction

Accesses with this behavior are performed through the cache. These accesses can hit
the cache and can allocate clean cache blocks. An implementation can optimize
these accesses. The implementation can transfer more data than that specified in
the access, and can aggregate the access with other accesses.

Device data

Accesses with this behavior are performed directly on the memory system. Device
data is never placed in the cache, and therefore these accesses never hit the cache
nor change the state of the cache. An implementation does not optimize device
accesses. The precise amount of data specified in the access is transferred and the
access is not aggregated with any other. Note that it is necessary to use the SYNCO
instruction (see Section 6.5.3 Data synchronization on page 99) to impose ordering
on device accesses where required.

Uncached data

Accesses with this behavior are performed directly on the memory system.
Uncached data is never placed in the cache, and therefore these accesses never hit
the cache nor change the state of the cache. An implementation can optimize these
accesses. The implementation can transfer more data than that specified in the
access, and can aggregate the access with other accesses.

Write-through data

Accesses with this behavior are performed through the cache using write-through
semantics. These accesses can hit the cache and can allocate clean cache blocks.
Dirty data is never placed in the cache, and therefore these accesses never hit on
dirty data. An implementation can optimize these accesses. The implementation can
transfer more data than that specified in the access, and can aggregate the access
with other accesses.

Write-back data

Accesses with this behavior are performed through the cache using write-back
semantics. These accesses can hit the cache and can allocate clean or dirty cache
blocks. An implementation can optimize these accesses. The implementation can
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

308 Cache paradoxes
transfer more data than that specified in the access, and can aggregate the access
with other accesses.

18.8.4 Cache replacement

When a cachable access misses the cache, the cache replacement algorithm is used
to determine which, if any, cache block is to be evicted from the cache to allow the
new access to be cached. The address of the access is used to index into the cache (as
described in Section 18.6 Cache mapping on page 301) and select a set. There will be
nways cache blocks in the selected set, and these are candidates for replacement.

The details of the cache replacement algorithm are implementation specific. Typical
algorithms maintain some additional state for each set to allow the choice to be
influenced by the recent access history to that set. A common algorithm is to select
the cache block which has been least-recently-used.

18.8.5 Cache locking

Optionally, an implementation can choose to provide a cache locking feature. This is
a mechanism that allows data to be loaded into cache blocks and then locked.
Locked cache blocks are not eligible for replacement and will therefore remain in the
cache until explicitly discarded.

If it is possible to lock all cache blocks in a particular set, then the replacement
algorithm will find no replaceable blocks. Any cache miss for that set will be
performed on memory without caching.

All other details of cache locking are implementation specific.

18.9 Cache paradoxes
When the MMU is enabled, inappropriate use of cache behavior can result in an
access finding the cache in an inconsistent state. These states are called cache
paradoxes.

Cache behavior is determined by page-level cache behavior and global cache
behavior as described in Section 18.8.3 Cache behavior on page 305. Inappropriate
management of page-level or global cache behavior can lead to cache paradoxes.

The following situations must be avoided:

• An instruction access using ‘UNCACHED INSTRUCTION’ behavior hits the
cache.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Cache aliases 309
• A data access using ‘DEVICE’ behavior hits the cache.

• A data access using ‘UNCACHED DATA’ behavior hits the cache.

• A data access using ‘WRITE-THROUGH DATA’ behavior hits the cache and the
cache block is dirty.

The behavior of these accesses is architecturally undefined. Software must explicitly
cohere the cache to avoid these situations when the cache behavior of a particular
physical page is changed.

When the MMU is disabled, the state of the cache is bypassed and frozen, and cache
paradoxes cannot occur. A possible scenario is for software to be running with the
MMU enabled, to then disable the MMU for some reason, and to subsequently
re-enable the MMU. If software requires a coherent memory model through this
sequence, then coherency must be achieved in software through appropriate cache
management.

18.10 Cache aliases
The architecture allows cache blocks to be tagged by either physical addresses or by
effective addresses (see Section 18.6 Cache mapping on page 301).

When a cache implementation uses effective addresses to tag cache blocks, the
potential problem of cache aliases must be considered. The MMU architecture
allows a particular physical address to be mapped into multiple effective addresses
and in multiple effective address spaces. The issue is whether these address space
aliases can result in multiple cache blocks to be simultaneously valid in the same
set for a particular physical address; that is, whether the cache can contain cache
aliases. If cache aliases are allowed, then coherency of those aliases has to be
considered.

The architecture takes the following position on cache aliases:

• Cache aliases are guaranteed not to exist for operand cache blocks. The
implementation provides transparent mechanisms to resolve operand cache
aliases, such that there is guaranteed to be at most one operand cache block in a
particular set corresponding to any physical address.

The mechanisms used to achieve this are implementation-specific. One
implementation choice is to use a direct-mapped operand cache since this
contains only one cache block per set. Another implementation choice is to record
both the effective address tag and physical address tag in each cache block, and
use the physical address tags to detect and avoid cache aliases. Both of these
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

310 Cache aliases
arrangements ensure that there can be at most one operand cache block in a
particular set corresponding to any physical address. The architecture does not
limit implementations to these approaches.

• Cache aliases can exist for instruction cache blocks. An implementation is not
required to provide mechanisms to resolve instruction cache aliases. There can
be multiple instruction cache blocks in a particular set that correspond to the
same physical address.

There are asymmetries between the policies for cache alias resolution for the
operand cache and the instruction cache. This is because the instruction cache does
not support writes, and multiple copies of instructions do not lead to incoherency in
the instruction cache. However, this property is visible to software through the ICBI
instruction (see Section 6.6.3 Cache coherency on page 104).

The architecture recognizes a related, but distinct, property of caches. This is the
concept of cache synonyms, which is described separately in Section 17.8.4 Cache
synonyms on page 292. Cache synonyms are caused by indexing into the cache using
an index from the effective address (see Section 18.6) and are solved by software
constraints not by hardware mechanism.

Section 17.8 MMU and caches on page 289 describes the constraints which must be
obeyed to avoid cache synonyms in the operand cache. If the MMU and cache
architectures are used correctly, then neither cache synonyms nor cache aliases will
exist in the operand cache. This ensures correct cache operation for data. The MMU
and cache architectures allow both cache synonyms and cache aliases to exist for the
instruction cache, since they do not lead to incorrect instruction cache operation.
However, software must consider instruction cache synonyms and aliases when
invalidating instructions.

The architecture chooses to use different names for ‘cache synonyms’ and ‘cache
aliases’ because very different techniques are used in the architecture to solve these
distinct problems. Cache synonyms are multiple copies of the same physical location
occurring in different sets due to indexing into the cache using the effective address.
Cache aliases are multiple copies of the same physical location occurring in the
same set due to the use of effective address tags in the cache. The use of different
names for these concepts leads to a clearer and simpler description. Please note that
some other architectures use these terms interchangeably without making any such
distinction.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Speculative memory accesses 311
18.11 Speculative memory accesses
A speculative memory access is an access made by the implementation that is not
required by the abstract sequential model of instruction execution. This model is
described in Volume 2 Chapter 1: SHmedia specification. Memory accesses that
result from data or instruction prefetch are also considered speculative.

The architecture places limits on speculative memory accesses. This allows software
to be arranged so that device memory is not exposed to speculative memory access.

The architectural limits depend on whether the MMU is enabled or disabled. The
limits are defined in terms of accesses to external memory (that is, beyond the
cache).

18.11.1 Speculative memory access when MMU is enabled

When the MMU is enabled, speculative memory access is controlled by protection
attributes (see Protection (PTEL.PR) on page 284) and resultant cache behavior (see
Section 18.8.3 Cache behavior on page 305).

In general, an implementation is only allowed to perform speculative memory
accesses that are consistent with the protection and cache behavior settings for a
page.

The architecture allows an implementation to perform:

• Speculative instruction fetch from a page with an active executable translation.

• Speculative data loads from a page with an active accessible translation which
has a cache behavior of UNCACHED, WRITE-THROUGH or WRITE-BACK
DATA.

• Speculative data stores to a page with an active writable translation which has a
cache behavior of UNCACHED, WRITE-THROUGH or WRITE-BACK DATA.

The architecture disallows an implementation from performing:

• Speculative instruction fetch from a page without an active executable
instruction translation.

• Speculative data loads from a page without an active accessible data translation.

• Speculative data stores to a page without an active writable data translation.

• Speculative data loads or stores from a page with an active data translation
which has a cache behavior of DEVICE.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

312 Speculative memory accesses
In the above description, an active translation corresponds to a PTE that the MMU
is aware of (see Section 17.8.3 Cache coherency when changing the page table on
page 291).

Executable means that the translation has executability for the current privilege.
Accessible means that the translation has readability or writability for the current
privilege. Writable means that the translation has writability for the current
privilege.

The architecture is arranged so that data and instruction prefetches are guaranteed
to have no effect in the cases above where speculative access is not allowed.

18.11.2 Speculative memory access when MMU is disabled

When the MMU is disabled, speculative access cannot be controlled by page table
entries. Speculative accesses are limited as follows:

• All data accesses, including swap accesses, are implemented as though they were
device accesses. The data cache is frozen and bypassed. The precise amount of
data is transferred. There is no speculative data access.

• Instruction fetches are not cached. The instruction cache is frozen and bypassed.
Additionally, the amount of speculative instruction fetch is restricted to avoid
prefetches from device areas of physical memory.

The architecture allows an implementation to perform speculative fetch of
instructions that are in:

• the page that encloses the program counter.

• the page immediately following the page that encloses the program counter.

• the pages that enclose each of the locations referred to by the 8 target registers.

In each case above, the page has the smallest page size that is supported by the
implementation and starts at an effective address that is aligned to that page size.

When the MMU is disabled, software must prevent target registers from referring
to device memory. However, note that after POWERON reset, target registers
contain undefined values and the MMU is disabled. All implementations guarantee
not to prefetch from these undefined addresses as long as a branch instruction is not
executed. Therefore, after a POWERON reset software must initialize the target
registers before branch instructions are executed.
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Speculative memory accesses 313
The following sequence is recommended:

PTABS/U R63, TR0
PTABS/U R63, TR1
PTABS/U R63, TR2
PTABS/U R63, TR3
PTABS/U R63, TR4
PTABS/U R63, TR5
PTABS/U R63, TR6
PTABS/U R63, TR7
SYNCI

The effect of the 8 PTABS instructions is to give a defined value to each target
register. The SYNCI instruction prevents speculative execution of subsequent
instructions (see Section 6.5.2 Instruction synchronization on page 99). It ensures
that all target registers are properly defined before any subsequent branch
instruction can cause instruction prefetch.

This initialization should occur very early in the software boot-strap.
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

314 Speculative memory accesses
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
A
SHmedia
summary
Instruction Summary

ADD Rm,Rn,Rd add 64-bit

ADD.L Rm,Rn,Rd add 32-bit

ADDI Rm,imm,Rd add immediate 64-bit

ADDI.L Rm,imm,Rd add immediate 32-bit

ADDZ.L Rm,Rn,Rd add with zero-extend 32-bit

ALLOCO Rm,disp allocate operand cache block

AND Rm,Rn,Rd bitwise AND 64-bit

ANDC Rm,Rn,Rd bitwise ANDC 64-bit

ANDI Rm,imm,Rd bitwise AND immediate 64-bit

BEQ Rm,Rn,TRc branch if equal 64-bit

BEQI Rm,imm,TRc branch if equal to immediate 64-bit

BGE Rm,Rn,TRc branch if greater than or equal 64-bit signed

BGEU Rm,Rn,TRc branch if greater than or equal 64-bit unsigned

BGT Rm,Rn,TRc branch if greater than 64-bit signed

BGTU Rm,Rn,TRc branch if greater than 64-bit unsigned

Table 172: SHmedia instruction set summary
-5 CPU Core, Volume 1: Architecture

316
BLINK TRb,Rd branch unconditionally and link

BNE Rm,Rn,TRc branch if not equal 64-bit

BNEI Rm,imm,TRc branch if not equal to immediate 64-bit

BRK cause a break

BYTEREV Rm,Rd byte reversal

CMPEQ Rm,Rn,Rd compare equal 64-bit

CMPGT Rm,Rn,Rd compare greater than 64-bit signed

CMPGTU Rm,Rn,Rd compare greater than 64-bit unsigned

CMVEQ Rm,Rn,Rw conditional move if equal to zero

CMVNE Rm,Rn,Rw conditional move if not equal to zero

FABS.D DRg,DRf get absolute value of a double-precision number

FABS.S FRg,FRf get absolute value of a single-precision number

FADD.D DRg,DRh,DRf add two double-precision numbers

FADD.S FRg,FRh,FRf add two single-precision numbers

FCMPEQ.D DRg,DRh,Rd compare double-precision numbers for equality

FCMPEQ.S FRg,FRh,Rd compare single-precision numbers for equality

FCMPGE.D DRg,DRh,Rd compare double-precision numbers for greater-or-equal

FCMPGE.S FRg,FRh,Rd compare single-precision numbers for greater-or-equal

FCMPGT.D DRg,DRh,Rd compare double-precision numbers for greater-than

FCMPGT.S FRg,FRh,Rd compare single-precision numbers for greater-than

FCMPUN.D DRg,DRh,Rd compare double-precision numbers for unorderedness

FCMPUN.S FRg,FRh,Rd compare single-precision numbers for unorderedness

FCNV.DS DRg,FRf double-precision to single-precision conversion

FCNV.SD FRg,DRf single-precision to double-precision conversion

FCOSA.S FRg,FRf approximate cosine of an angle

Instruction Summary

Table 172: SHmedia instruction set summary
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

317
FDIV.D DRg,DRh,DRf divide two double-precision numbers

FDIV.S FRg,FRh,FRf divide two single-precision numbers

FGETSCR FRf move from floating-point status/control register

FIPR.S FVg,FVh,FRf compute inner (dot) product of two vectors

FLD.D Rm,disp,DRf load 64-bit value

FLD.P Rm,disp,FPf load two 32-bit values

FLD.S Rm,disp,FRf load 32-bit value

FLDX.D Rm,Rn,DRf load indexed 64-bit value

FLDX.P Rm,Rn,FPf load indexed two 32-bit values

FLDX.S Rm,Rn,FRf load indexed 32-bit value

FLOAT.LD FRg,DRf 32-bit integer to double-precision conversion

FLOAT.LS FRg,FRf 32-bit integer to single-precision conversion

FLOAT.QD DRg,DRf 64-bit integer to double-precision conversion

FLOAT.QS DRg,FRf 64-bit integer to single-precision conversion

FMAC.S FRg,FRh,FRq single-precision fused multiply accumulate

FMOV.D DRg,DRf 64-bit floating-point to floating-point register move

FMOV.DQ DRg,Rd 64-bit floating-point to general register move

FMOV.LS Rm,FRf 32-bit general to floating-point register move

FMOV.QD Rm,DRf 64-bit general to floating-point register move

FMOV.S FRg,FRf 32-bit floating-point to floating-point register move

FMOV.SL FRg,Rd 32-bit floating-point to general register move

FMUL.D DRg,DRh,DRf multiply two double-precision numbers

FMUL.S FRg,FRh,FRf multiply two single-precision numbers

FNEG.D DRg,DRf negate a double-precision number

FNEG.S FRg,FRf negate a single-precision number

Instruction Summary

Table 172: SHmedia instruction set summary
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

318
FPUTSCR FRg move to floating-point status/control register

FSINA.S FRg,FRf approximate sine of an angle

FSQRT.D DRg,DRf find square root of a double-precision number

FSQRT.S FRg,FRf find square root of a single-precision number

FSRRA.S FRg,FRf approximate reciprocal of a square root of a value

FST.D Rm,disp,DRz store 64-bit value

FST.P Rm,disp,FPz store two 32-bit values

FST.S Rm,disp,FRz store 32-bit value

FSTX.D Rm,Rn,DRz store indexed 64-bit value

FSTX.P Rm,Rn,FPz store indexed two 32-bit values

FSTX.S Rm,Rn,FRz store indexed 32-bit value

FSUB.D DRg,DRh,DRf subtract two double-precision numbers

FSUB.S FRg,FRh,FRf subtract two single-precision numbers

FTRC.DL DRg,FRf double-precision to 32-bit integer conversion

FTRC.SL FRg,FRf single-precision to 32-bit integer conversion

FTRC.DQ DRg,DRf double-precision to 64-bit integer conversion

FTRC.SQ FRg,DRf single-precision to 64-bit integer conversion

FTRV.S MTRXg,FVh,FVf transform vector

GETCFG Rm,disp,Rd move from configuration register

GETCON CRk,Rd move from control register

GETTR TRb,Rd move from target register

ICBI Rm,disp instruction cache block invalidate

LD.B Rm,disp,Rd load 8-bit signed

LD.L Rm,disp,Rd load 32-bit

LD.Q Rm,disp,Rd load 64-bit

Instruction Summary

Table 172: SHmedia instruction set summary
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

319
LD.UB Rm,disp,Rd load 8-bit unsigned

LD.UW Rm,disp,Rd load 16-bit unsigned

LD.W Rm,disp,Rd load 16-bit signed

LDHI.L Rm,disp,Rd load misaligned high part 32-bit

LDHI.Q Rm,disp,Rd load misaligned high part 64-bit

LDLO.L Rm,disp,Rd load misaligned low part 32-bit

LDLO.Q Rm,disp,Rd load misaligned low part 64-bit

LDX.B Rm,Rn,Rd load indexed 8-bit signed

LDX.L Rm,Rn,Rd load indexed 32-bit

LDX.Q Rm,Rn,Rd load indexed 64-bit

LDX.UB Rm,Rn,Rd load indexed 8-bit unsigned

LDX.UW Rm,Rn,Rd load indexed 16-bit unsigned

LDX.W Rm,Rn,Rd load indexed 16-bit signed

MABS.L Rm,Rd multimedia absolute value signed 32-bit with saturation

MABS.W Rm,Rd multimedia absolute value signed 16-bit with saturation

MADD.L Rm,Rn,Rd multimedia add 32-bit

MADD.W Rm,Rn,Rd multimedia add 16-bit

MADDS.L Rm,Rn,Rd multimedia add signed 32-bit with saturation

MADDS.UB Rm,Rn,Rd multimedia add unsigned 8-bit with saturation

MADDS.W Rm,Rn,Rd multimedia add signed 16-bit with saturation

MCMPEQ.B Rm,Rn,Rd multimedia compare equal 8-bit

MCMPEQ.L Rm,Rn,Rd multimedia compare equal 32-bit

MCMPEQ.W Rm,Rn,Rd multimedia compare equal 16-bit

MCMPGT.L Rm,Rn,Rd multimedia compare greater than signed 32-bit

MCMPGT.UB Rm,Rn,Rd multimedia compare greater than unsigned 8-bit

Instruction Summary

Table 172: SHmedia instruction set summary
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

320
MCMPGT.W Rm,Rn,Rd multimedia compare greater than signed 16-bit

MCMV Rm,Rn,Rw multimedia bitwise conditional move

MCNVS.LW Rm,Rn,Rd multimedia convert signed 32-bit to signed 16-bit after saturation

MCNVS.WB Rm,Rn,Rd multimedia convert signed 16-bit to signed 8-bit after saturation

MCNVS.WUB Rm,Rn,Rd multimedia convert signed 16-bit to unsigned 8-bit after saturation

MEXTR1 Rm,Rn,Rd multimedia extract 64 bits from 128 bits using a 1x8-bit offset

MEXTR2 Rm,Rn,Rd multimedia extract 64 bits from 128 bits using a 2x8-bit offset

MEXTR3 Rm,Rn,Rd multimedia extract 64 bits from 128 bits using a 3x8-bit offset

MEXTR4 Rm,Rn,Rd multimedia extract 64 bits from 128 bits using a 4x8-bit offset

MEXTR5 Rm,Rn,Rd multimedia extract 64 bits from 128 bits using a 5x8-bit offset

MEXTR6 Rm,Rn,Rd multimedia extract 64 bits from 128 bits using a 6x8-bit offset

MEXTR7 Rm,Rn,Rd multimedia extract 64 bits from 128 bits using a 7x8-bit offset

MMACFX.WL Rm,Rn,Rw multimedia fractional multiply and accumulate signed 16-bit with saturation

MMACNFX.WL Rm,Rn,Rw multimedia fractional multiply and subtract signed 16-bit with saturation

MMUL.L Rm,Rn,Rd multimedia multiply 32-bit

MMUL.W Rm,Rn,Rd multimedia multiply 16-bit

MMULFX.L Rm,Rn,Rd multimedia fractional multiply signed 32-bit

MMULFX.W Rm,Rn,Rd multimedia fractional multiply signed 16-bit

MMULFXRP.W Rm,Rn,Rd multimedia fractional multiply signed 16-bit, round nearest positive

MMULHI.WL Rm,Rn,Rd multimedia full multiply signed 16-bit high

MMULLO.WL Rm,Rn,Rd multimedia full multiply signed 16-bit low

MMULSUM.WQ Rm,Rn,Rw multimedia multiply and sum signed 16-bit

MOVI imm,Rd move immediate

MPERM.W Rm,Rn,Rd multimedia permute 16-bits

MSAD.UBQ Rm,Rn,Rw multimedia sum of absolute differences of unsigned 8-bit

Instruction Summary

Table 172: SHmedia instruction set summary
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

321
MSHALDS.L Rm,Rn,Rd multimedia shift arithmetic left dynamic 32-bit with saturation

MSHALDS.W Rm,Rn,Rd multimedia shift arithmetic left dynamic 16-bit with saturation

MSHARD.L Rm,Rn,Rd multimedia shift arithmetic right dynamic 32-bit

MSHARD.W Rm,Rn,Rd multimedia shift arithmetic right dynamic 16-bit

MSHARDS.Q Rm,Rn,Rd multimedia shift arithmetic right dynamic with saturation to signed 16-bit

MSHFHI.B Rm,Rn,Rd multimedia shuffle upper-half 8-bit

MSHFHI.L Rm,Rn,Rd multimedia shuffle upper-half 32-bit

MSHFHI.W Rm,Rn,Rd multimedia shuffle upper-half 16-bit

MSHFLO.B Rm,Rn,Rd multimedia shuffle lower-half 8-bit

MSHFLO.L Rm,Rn,Rd multimedia shuffle lower-half 32-bit

MSHFLO.W Rm,Rn,Rd multimedia shuffle lower-half 16-bit

MSHLLD.L Rm,Rn,Rd multimedia shift logical left dynamic 32-bit

MSHLLD.W Rm,Rn,Rd multimedia shift logical left dynamic 16-bit

MSHLRD.L Rm,Rn,Rd multimedia shift logical right dynamic 32-bit

MSHLRD.W Rm,Rn,Rd multimedia shift logical right dynamic 16-bit

MSUB.L Rm,Rn,Rd multimedia subtract 32-bit

MSUB.W Rm,Rn,Rd multimedia subtract 16-bit

MSUBS.L Rm,Rn,Rd multimedia subtract signed 32-bit with saturation

MSUBS.UB Rm,Rn,Rd multimedia subtract unsigned 8-bit with saturation

MSUBS.W Rm,Rn,Rd multimedia subtract signed 16-bit with saturation

MULS.L Rm,Rn,Rd multiply full 32-bit x 32-bit to 64-bit signed

MULU.L Rm,Rn,Rd multiply full 32-bit x 32-bit to 64-bit unsigned

NOP no operation

NSB Rm,Rd count number of sign bits

OCBI Rm,disp operand cache block invalidate

Instruction Summary

Table 172: SHmedia instruction set summary
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

322
OCBP Rm,disp operand cache block purge

OCBWB Rm,disp operand cache block write-back

OR Rm,Rn,Rd bitwise OR 64-bit

ORI Rm,imm,Rd bitwise OR immediate 64-bit

PREFI Rm,disp prefetch instruction cache block

PTA label,TRa prepare target relative immediate (target is SHmedia)

PTABS Rn,TRa prepare target absolute register

PTB label,TRa prepare target relative immediate (target is SHcompact)

PTREL Rn,TRa prepare target relative register

PUTCFG Rm,disp,Ry move to configuration register

PUTCON Rm,CRj move to control register

RTE return from exception

SHARD Rm,Rn,Rd shift arithmetic right dynamic 64-bit

SHARD.L Rm,Rn,Rd shift arithmetic right dynamic 32-bit

SHARI Rm,imm,Rd shift arithmetic right immediate 64-bit

SHARI.L Rm,imm,Rd shift arithmetic right immediate 32-bit

SHLLD Rm,Rn,Rd shift logical left dynamic 64-bit

SHLLD.L Rm,Rn,Rd shift logical left dynamic 32-bit

SHLLI Rm,imm,Rd shift logical left immediate 64-bit

SHLLI.L Rm,imm,Rd shift logical left immediate 32-bit

SHLRD Rm,Rn,Rd shift logical right dynamic 64-bit

SHLRD.L Rm,Rn,Rd shift logical right dynamic 32-bit

SHLRI Rm,imm,Rd shift logical right immediate 64-bit

SHLRI.L Rm,imm,Rd shift logical right immediate 32-bit

SHORI imm,Rw shift then or immediate

Instruction Summary

Table 172: SHmedia instruction set summary
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

323
SLEEP enter sleep mode

ST.B Rm,disp,Ry store 8-bit

ST.L Rm,disp,Ry store 32-bit

ST.Q Rm,disp,Ry store 64-bit

ST.W Rm,disp,Ry store 16-bit

STHI.L Rm,disp,Ry store misaligned high part 32-bit

STHI.Q Rm,disp,Ry store misaligned high part 64-bit

STLO.L Rm,disp,Ry store misaligned low part 32-bit

STLO.Q Rm,disp,Ry store misaligned low part 64-bit

STX.B Rm,Rn,Ry store indexed 8-bit

STX.L Rm,Rn,Ry store indexed 32-bit

STX.Q Rm,Rn,Ry store indexed 64-bit

STX.W Rm,Rn,Ry store indexed 16-bit

SUB Rm,Rn,Rd subtract 64-bit

SUB.L Rm,Rn,Rd subtract 32-bit

SWAP.Q Rm,Rn,Rw atomic swap in memory 64-bit

SYNCI synchronize instructions

SYNCO synchronize operand data

TRAPA Rm cause a trap

XOR Rm,Rn,Rd bitwise XOR 64-bit

XORI Rm,imm,Rd bitwise XOR immediate 64-bit

Instruction Summary

Table 172: SHmedia instruction set summary
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

324
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

SuperH, Inc.
05-CC-10001 V1.0 SH
B
SHcompact
summary
Instruction Summary

ADD Rm, Rn add

ADD #imm, Rn add immediate

ADDC Rm, Rn add with carry

ADDV Rm, Rn add with overflow check

AND Rm, Rn bitwise AND

AND #imm, R0 bitwise AND immediate

AND.B #imm, @(R0, GBR) bitwise AND memory

BF label branch if T-bit is false

BF/S label delayed branch if T-bit is false

BRA label delayed branch

BRAF Rn delayed branch far

BRK cause a break

BSR label delayed branch to subroutine

BSRF Rn delayed branch to subroutine far

BT label branch if T-bit is true

Table 173: SHcompact instruction set summary
-5 CPU Core, Volume 1: Architecture

326
BT/S label delayed branch if T-bit is true

CLRMAC clear MACL and MACH registers

CLRS clear S-bit

CLRT clear T-bit

CMP/EQ Rm, Rn compare equal, result placed in T-bit

CMP/EQ #imm, R0 compare equal immediate, result placed in T-bit

CMP/GE Rm, Rn compare greater than or equal, result placed in T-bit

CMP/GT Rm, Rn compare greater than, result placed in T-bit

CMP/HI Rm, Rn compare higher, result placed in T-bit

CMP/HS Rm, Rn compare higher same, result placed in T-bit

CMP/PL Rn compare greater than 0, result placed in T-bit

CMP/PZ Rn compare greater equal 0, result placed in T-bit

CMP/STR Rm, Rn compare string, result placed in T-bit

DIV0S Rm, Rn divide step 0 as signed

DIV0U divide step 0 as unsigned

DIV1 Rm, Rn divide step 1

DMULS.L Rm, Rn double-length multiply as signed

DMULU.L Rm, Rn double-length multiply as unsigned

DT Rn decrement and test

EXTS.B Rm, Rn byte extend as signed

EXTS.W Rm, Rn word extend as signed

EXTU.B Rm, Rn byte extend as unsigned

EXTU.W Rm, Rn word extend as unsigned

FABS DRn double floating-point absolute value

FABS FRn single floating-point absolute value

Instruction Summary

Table 173: SHcompact instruction set summary
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

327
FADD DRm, DRn double floating-point add

FADD FRm, FRn single floating-point add

FCMP/EQ DRm, DRn double floating-point compare equal, result placed in T-bit

FCMP/EQ FRm, FRn single floating-point compare equal, result placed in T-bit

FCMP/GT DRm, DRn double floating-point compare greater, result placed in T-bit

FCMP/GT FRm, FRn single floating-point compare greater, result placed in T-bit

FCNVDS DRm, FPUL double to single floating-point convert

FCNVSD FPUL, DRn single to double floating-point convert

FDIV DRm, DRn double floating-point divide

FDIV FRm, FRn single floating-point divide

FIPR FVm, FVn single floating-point inner product

FLDI0 FRn single floating-point load of 0.0

FLDI1 FRn single floating-point load of 1.0

FLDS FRm, FPUL floating-point load from register to FPUL

FLOAT FPUL, DRn double floating-point convert from integer

FLOAT FPUL, FRn single floating-point convert from integer

FMAC FR0, FRm, FRn single floating-point multiply and accumulate

FMOV DRm, DRn single-pair to single-pair floating-point move

FMOV DRm, XDn single-pair to extended single-pair floating-point move

FMOV DRm, @Rn single-pair floating-point store indirect

FMOV DRm, @-Rn single-pair floating-point store indirect with pre-decrement

FMOV DRm, @(R0, Rn) single-pair floating-point store indirect with indexing

FMOV FRm, FRn single to single floating-point move

FMOV.S FRm, @Rn single floating-point store indirect

FMOV.S FRm, @-Rn single floating-point store indirect with pre-decrement

Instruction Summary

Table 173: SHcompact instruction set summary
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

328
FMOV.S FRm, @(R0, Rn) single floating-point store indirect with indexing

FMOV XDm, DRn extended single-pair to single-pair floating-point move

FMOV XDm, XDn extended single-pair to extended single-pair floating-point move

FMOV XDm, @Rn extended single-pair floating-point store indirect

FMOV XDm, @-Rn extended single-pair floating-point store indirect with pre-decrement

FMOV XDm, @(R0, Rn) extended single-pair floating-point store indirect with indexing

FMOV @Rm, DRn single-pair floating-point load indirect

FMOV @Rm+, DRn single-pair floating-point load indirect with post-increment

FMOV @(R0, Rm), DRn single-pair floating-point load indirect with indexing

FMOV.S @Rm, FRn single floating-point load indirect

FMOV.S @Rm+, FRn single floating-point load indirect with post-increment

FMOV.S @(R0, Rm), FRn single floating-point load indirect with indexing

FMOV @Rm, XDn extended single-pair floating-point load indirect

FMOV @Rm+, XDn extended single-pair floating-point load indirect with post-increment

FMOV @(R0, Rm), XDn extended single-pair floating-point load indirect with indexing

FMUL DRm, DRn double floating-point multiply

FMUL FRm, FRn single floating-point multiply

FNEG DRn double floating-point negate

FNEG FRn single floating-point negate

FRCHG FR-bit change (toggle)

FSCA FPUL, DRn single floating-point sine cosine approximate

FSCHG SZ-bit change (toggle)

FSQRT DRn double floating-point square root

FSQRT FRn single floating-point square root

FSRRA FRn single reciprocal square root approximate

Instruction Summary

Table 173: SHcompact instruction set summary
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

329
FSTS FPUL, FRn floating-point store to register from FPUL

FSUB DRm, DRn double floating-point subtract

FSUB FRm, FRn single floating-point subtract

FTRC DRm, FPUL double floating-point truncate and convert to integer

FTRC FRm, FPUL single floating-point truncate and convert to integer

FTRV XMTRX, FVn single floating-point transform vector

JMP @Rn delayed jump

JSR @Rn delayed jump to subroutine

LDC Rm, GBR load from register to GBR

LDC.L @Rm+, GBR load from memory to GBR with post-increment

LDS Rm, FPSCR load from register to FPSCR

LDS.L @Rm+, FPSCR load from memory to FPSCR with post-increment

LDS Rm, FPUL load from register to FPUL

LDS.L @Rm+, FPUL load from memory to FPUL with post-increment

LDS Rm, MACH load from register to MACH

LDS.L @Rm+, MACH load from memory to MACH with post-increment

LDS Rm, MACL load from register to MACL

LDS.L @Rm+, MACL load from memory to MACL with post-increment

LDS Rm, PR load from register to PR

LDS.L @Rm+, PR load from memory to PR with post-increment

MAC.L @Rm+, @Rn+ multiply and accumulate long

MAC.W @Rm+, @Rn+ multiply and accumulate word

MOV Rm, Rn move data

MOV #imm, Rn move immediate data

MOV.B Rm, @Rn store 8-bits indirect

Instruction Summary

Table 173: SHcompact instruction set summary
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

330
MOV.B Rm, @-Rn store 8-bits indirect with pre-decrement

MOV.B Rm, @(R0, Rn) store 8-bits indirect with indexing

MOV.B R0, @(disp, GBR) store 8-bits indirect to GBR with displacement

MOV.B R0, @(disp, Rn) store 8-bits indirect with displacement

MOV.B @Rm, Rn load 8-bits indirect

MOV.B @Rm+, Rn load 8-bits indirect with post-increment

MOV.B @(R0, Rm), Rn load 8-bits indirect with indexing

MOV.B @(disp, GBR), R0 load 8-bits indirect from GBR with displacement

MOV.B @(disp, Rm), R0 load 8-bits indirect with displacement

MOV.L Rm, @Rn store 32-bits indirect

MOV.L Rm, @-Rn store 32-bits indirect with pre-decrement

MOV.L Rm, @(R0, Rn) store 32-bits indirect with indexing

MOV.L R0, @(disp, GBR) store 32-bits indirect to GBR with displacement

MOV.L Rm, @(disp, Rn) store 32-bits indirect with displacement

MOV.L @Rm, Rn load 32-bits indirect

MOV.L @Rm+, Rn load 32-bits indirect with post-increment

MOV.L @(R0, Rm), Rn load 32-bits indirect with indexing

MOV.L @(disp, GBR), R0 load 32-bits indirect from GBR with displacement

MOV.L @(disp, PC), Rn load 32-bits indirect from PC with displacement

MOV.L @(disp, Rm), Rn load 32-bits indirect with displacement

MOV.W Rm, @Rn store 16-bits indirect

MOV.W Rm, @-Rn store 16-bits indirect with pre-decrement

MOV.W Rm, @(R0, Rn) store 16-bits indirect with indexing

MOV.W R0, @(disp, GBR) store 16-bits indirect to GBR with displacement

MOV.W R0, @(disp, Rn) store 16-bits indirect with displacement

Instruction Summary

Table 173: SHcompact instruction set summary
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

331
MOV.W @Rm, Rn load 16-bits indirect

MOV.W @Rm+, Rn load 16-bits indirect with post-increment

MOV.W @(R0, Rm), Rn load 16-bits indirect with indexing

MOV.W @(disp, GBR), R0 load 16-bits indirect from GBR with displacement

MOV.W @(disp, PC), Rn load 16-bits indirect from PC with displacement

MOV.W @(disp, Rm), R0 load 16-bits indirect with displacement

MOVA @(disp, PC), R0 move PC-relative address

MOVCA.L R0, @Rn store long not fetching block

MOVT Rn move T-bit

MUL.L Rm, Rn multiply long

MULS.W Rm, Rn multiply signed word

MULU.W Rm, Rn multiply unsigned word

NEG Rm, Rn negate

NEGC Rm, Rn negate with carry

NOP no operation

NOT Rm, Rn bitwise NOT

OCBI @Rn operand cache block invalidate

OCBP @Rn operand cache block purge

OCBWB @Rn operand cache block writeback

OR Rm, Rn or logical

OR #imm, R0 bitwise OR immediate

OR.B #imm, @(R0, GBR) bitwise OR memory

PREF @Rn prefetch operand data

ROTCL Rn rotate with carry left

ROTCR Rn rotate with carry right

Instruction Summary

Table 173: SHcompact instruction set summary
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

332
ROTL Rn rotate left

ROTR Rn rotate right

RTS delayed return from subroutine

SETS set S-bit

SETT set T-bit

SHAD Rm, Rn shift arithmetic dynamic

SHAL Rn shift arithmetic left by 1

SHAR Rn shift arithmetic right by 1

SHLD Rm, Rn shift logical dynamic

SHLL Rn shift logical left by 1

SHLL2 Rn shift logical left by 2

SHLL8 Rn shift logical left by 8

SHLL16 Rn shift logical left by 16

SHLR Rn shift logical right by 1

SHLR2 Rn shift logical right by 2

SHLR8 Rn shift logical right by 8

SHLR16 Rn shift logical right by 16

STC GBR, Rn store to register from GBR

STC.L GBR, @-Rn store to memory from GBR with pre-decrement

STS FPSCR, Rn store to register from FPSCR

STS.L FPSCR, @-Rn store to memory from FPSCR with pre-decrement

STS FPUL, Rn store to register from FPUL

STS.L FPUL, @-Rn store to memory from FPUL with pre-decrement

STS MACH, Rn store to register from MACH

STS.L MACH, @-Rn store to memory from MACH with pre-decrement

Instruction Summary

Table 173: SHcompact instruction set summary
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

333
STS MACL, Rn store to register from MACL

STS.L MACL, @-Rn store to memory from MACL with pre-decrement

STS PR, Rn store to register from PR

STS.L PR, @-Rn store to memory from PR with pre-decrement

SUB Rm, Rn subtract

SUBC Rm, Rn subtract with carry

SUBV Rm, Rn subtract with underflow check

SWAP.B Rm, Rn swap register bytes

SWAP.W Rm, Rn swap register words

TAS.B @Rn test and set memory byte

TRAPA #imm trap always

TST Rm, Rn bitwise test, result placed in T-bit

TST #imm, R0 bitwise test immediate, result placed in T-bit

TST.B #imm, @(R0, GBR) bitwise test memory, result placed in T-bit

XOR Rm, Rn bitwise XOR

XOR #imm, R0 bitwise XOR immediate

XOR.B #imm, @(R0, GBR) bitwise XOR memory

XTRCT Rm, Rn extract a long-word

Instruction Summary

Table 173: SHcompact instruction set summary
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

334
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

Index
A
ADD 80-82, 90, 174
ADD.L . 80-82
ADDC . 174
ADDI . 81
ADDI.L . 81
ADDV . 174
ADDZ.L . 81
ALLOCO 101-104
AND 51, 85, 176, 253
AND.B 176, 253
ANDC . 85
ANDI . 85
ANSI . 32, 136
ASID . . 24, 210-214, 235-236, 276, 279-

281, 285-288, 291

B
BEQ .76
BEQI . 77
BF . 172
BGE .77
BGEU . 77
BGT .76
BGTU . 77

BL .24-25, 209-211, 213-214, 229, 236,
238-242, 248, 250, 255, 258-259,
. 261

BLINK . 75-76
BNE . 76
BNEI . 77
BRA . 172
BRAF . 8, 173
BREAK . . 164, 205, 224, 227, 249, 252,

256
BRK 163-164, 205, 247, 249
BSR . 173
BSRF . 8, 173
BT . 172
BYTEREV 88-89

C
CACHED 306-307
CAUSE.I . 147
CAUSE.O . 147
CAUSE.U . 147
CAUSE.V . 147
CAUSE.Z . 147
CD 24, 209, 211, 218, 229, 237-238, 256
CFG 22-23, 166
CLRMAC . 180
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

336
CLRS . 180
CLRT . 180
CMPEQ . 83-84
CMPGT 83-84, 89
CMPGTU 83-84
CMVEQ . 88-89
CMVNE . 88-89
CPURESET 222, 227, 232, 237, 250-251,

. 256, 259
CTC .208, 218

D
DBR .232
DBRMODE 227, 231-233, 237, 241, 249-

251, 253, 267
DBRVEC . . 227, 231-233, 241, 249-251,

253, 267
DEBUGINT 223, 227, 239-241, 251, 256,

. 259
DEBUGSS 225, 227, 250, 252, 257, 262-

263, 265-266
DEVICE 306-307, 309
DIV0S . 174
DIV0U . 174
DIV1 . 174
DMULS.L . 174
DMULU.L . 174
DN 27, 145, 147, 156, 190
DSP . 128-129
DT . 174

E
EA . 277
ENABLE.I . 147
ENABLE.O .147
ENABLE.U .147
ENABLE.V .147

ENABLE.Z . 147
EPN . 276, 279-281, 286-288, 291, 294-

295
EXCEPTION 164-165, 208
EXTINT . 223, 239, 241, 251, 256, 259,

265
EXTS.B . 178
EXTS.W . 178
EXTU.B . 178
EXTU.W . 178

F
FABS . 149, 193
FABS.D . 149
FABS.S . 149
FADD . 149, 193
FADD.D . 149
FADD.S . 149
FCMPEQ.D 151-152
FCMPEQ.S 151-152
FCMPGE.D 151-152
FCMPGE.S 151-152
FCMPGT.D 151-152
FCMPGT.S 151-152
FCMPUN.D 151-152
FCMPUN.S 151-152
FCNV.DS . 150
FCNV.SD . 150
FCNVDS . 195
FCNVSD . 195
FCOSA.S 146, 154
FD 24, 135, 189, 209-214, 229, 236, 238,

. 256-257
FDIV . 149, 193
FDIV.D . 149
FDIV.S . 149
FFT . 130
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

337
FGETSCR 147-148
FIPR 146, 154-156, 195
FIPR.S 146, 154-156
FLAG.I . 147
FLAG.O . 147
FLAG.U . 147
FLAG.V . 147
FLAG.Z . 147
FLD.D . 160
FLD.P . 160
FLD.S . 160
FLDI . 192
FLDS . 192
FLDX.D 160-161
FLDX.P 160-161
FLDX.S 160-161
FLOAT 150, 195
FLOAT.LD . 150
FLOAT.LS . 150
FLOAT.QD .150
FLOAT.QS . 150
FMAC 145, 150, 194
FMAC.S 145, 150
FMOV 153, 197-199
FMOV.D .153
FMOV.DQ . 153
FMOV.LS . 153
FMOV.QD . 153
FMOV.S 153, 197-199
FMOV.SL . 153
FMUL . 149, 193
FMUL.D .149
FMUL.S . 149
FNEG . 149, 193
FNEG.D . 149
FNEG.S . 149

FPU . . 28, 142-145, 147, 156, 211, 225,
246-. 247, 252, 257

FPUL 28, 189, 191-192, 195
FPUTSCR 147-148
FSCA . 195
FSINA.S 146, 154
FSQRT 149, 193
FSQRT.D . 149
FSQRT.S . 149
FSRRA 146, 154, 195
FSRRA.S 146, 154
FST.D . 160
FST.P . 160
FST.S . 160
FSTS . 192
FSTX.D 160-161
FSTX.P 160-161
FSTX.S 160-161
FSUB . 149, 193
FSUB.D . 149
FSUB.S . 149
FTRC . 150, 195
FTRC.DL . 150
FTRC.DQ . 150
FTRC.SL . 150
FTRC.SQ . 150
FTRV 146, 154-156, 195
FTRV.S 146, 154-156
FV . 15

G
GETCFG 166-167
GETCON . 165, 211-212, 218-220, 232-

233
GETTR 72, 74, 79
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

338
I
IA . 247, 249
IADDERR . 106, 225, 243, 252-253, 257
ICBI 101, 104-106, 310
IMASK 24, 210, 213-214, 229, 239-241,

255- 256, 258-259
INSTRUCTION 307-308
ISA . . 1, 14-16, 215, 229-230, 235-237,

255
ITLBMISS 106, 224, 242, 252, 256, 287-

288
IV . 247, 249

J
JMP .8, 173
JSR . 8, 173

L
LD.B . 92, 96
LD.L . 92-93
LD.Q . 92-93
LD.UB . 92, 96
LD.UW . 92
LD.W . 92
LDC .10, 179
LDC.L . 179
LDHI.L . 94-95
LDHI.Q . 94
LDLO.L . 94-95
LDLO.Q . 94
LDS .179, 192
LDS.L . 179, 192
LDTLB . 10
LDX.B . 92-93
LDX.L . 92-93
LDX.Q . 92-93
LDX.UB . 92-93

LDX.UW . 92-93
LDX.W . 92-93

M
MABS.L . 117
MABS.W . 117
MAC.L 174, 253, 289
MAC.W 174, 253, 289
MACH 26, 171, 179-180
MACL 26, 171, 179-180
MADD.L 109, 116
MADD.W . 116
MADDS.L . 116
MADDS.UB 116
MADDS.W 112, 116
MALADDRESS 275
MCMPEQ.B 123
MCMPEQ.L 123
MCMPEQ.W 123
MCMPGT.L 123
MCMPGT.UB 115, 123
MCMPGT.W 123
MCMV 115, 131
MCNVS.LW 114-115
MCNVS.WB 114-115
MCNVS.WUB 114-115
MD . . .14-15, 24-25, 209-214, 218, 229,

235-. 236, 238, 255
MEM 14, 17, 236, 238
MEXTR1 . 133
MEXTR2 . 133
MEXTR3 . 133
MEXTR4 . 133
MEXTR5 . 133
MEXTR6 . 133
MEXTR7 . 133
MMACFX.WL 128
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

339
MMACNFX.WL 129
MMU 11, 23-25, 98, 102-105, 166, 209-

214, . . .216, 227, 229, 233-236,
238, 250, 255-256, 271-272, 275-
279, 281, 289-291, 299, 302-305,
. 308-309

MMUL.L .125
MMUL.W . 125
MMULFX.L 125
MMULFX.W 125
MMULFXRP.W 126
MMULHI.WL 124
MMULLO.WL 124
MMULSUM.WQ 127
MMUOFF 216, 233-234
MOSTNEG125-126, 128-129
MOSTPOS.125-126, 128-129
MOV 178, 182-184
MOV.B 182-184
MOV.L 182-184
MOV.W 182-184
MOVA . 178, 243
MOVCA.L 10, 186-187
MOVI . 71, 74
MOVT . 178
MPERM.W . 132
MSAD.UBQ 118
MSHALDS.L 119
MSHALDS.W 119
MSHARD.L .120
MSHARD.W 120
MSHARDS.Q 121, 127
MSHFHI.B 130-131
MSHFHI.L 130-131
MSHFHI.W 130-131
MSHFLO.B 96, 130-131
MSHFLO.L 130-131

MSHFLO.W 130-131
MSHLLD.L . 119
MSHLLD.W 119
MSHLRD.L . 122
MSHLRD.W 122
MSUB.L . 116
MSUB.W . 116
MSUBS.L . 116
MSUBS.UB . 116
MSUBS.W . 116
MUL.L . 174
MULS.W . 174
MULU.L . 82
MULU.W . 174

N
NEG . 174
NEGC . 174
NMI . 223, 239-240, 251, 256, 259, 266
NOP 88-89, 175, 260
NOT 77, 83, 152-153, 176
NSB . 88-89

O
OA . 247, 249
OCBI . . 10, 101-102, 104-106, 186-187
OCBP101, 104-106, 186-187
OCBWB101, 104-106, 186-187
OR85, 95-96, 152-153, 176, 253
OR.B . 176, 253
ORI . 86

P
PA . 277
PANIC . . 225, 227, 232, 250, 252, 256,

263, 265
paradox . 105
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

340
paradoxes 102-103
PC .8, 14, 16, 26, 49, 51, 67, 72-74, 79,

171-173, 178, 182, 215, 229-230,
235-238, 243, 248, 250, 255, 258,
. 261, 266

POWERON 222, 236, 250-251, 256
PPN .276, 279-281, 285, 288, 292, 294-

295
PR .24, 26-28, 171, 173, 179, 190, 197,

209- 210, 213-214, 229, 237-238,
256,279-281, 284-285, 292

PREF . 186-187
PREFI . 101-102
PSPC .49, 207, 215-216, 229, 235, 250,

255-256, 267
PSPC.ISA . 235
PTA . 73-74
PTABS 73-74, 79
PTB . 73-74, 79
PTE . 278-285, 287-288, 291-292, 294,

299, 305
PTEH 278-282, 285-287, 291-292, 294-

295
PTEH.ASID280-281, 286-287, 291
PTEH.EPN 280-281, 286-287, 291, 294-

295
PTEH.SH 280-281, 285, 287, 292
PTEL 278-285, 290-292, 294-295
PTEL.CB 280-283, 290, 292
PTEL.EPN . 295
PTEL.PPN .280-281, 285, 292, 294-295
PTEL.PR.U .284
PTEL.SZ. 291
PTREL . 73-74
PUTCFG 166-167
PUTCON . 165, 211-212, 218-219, 232-

233, 247-248

R
RADDERR 224, 244, 252-253, 257
READPROT . . . 224, 245, 252-253, 257
Register

Classified
DEFINED . 53-54, 164-165, 207-208
UNDEFINED 53, 164-165, 207-208,

210, 236-237
CR 14, 16, 22-23, 164
DCR 208, 217, 267
DR . .15, 17, 28-29, 41-42, 45, 47, 159
EXPEVT 207, 209, 215, 229-230, 234,

237- . . 238, 242-247, 249-252, 255-
256, . 268

Field Type
EXPANSION 54-55
OTHER 54-55
READ-ONLY 54-55, 211, 281
READ-WRITE . .54-55, 210-211, 281
RESERVED . 54, 164-165, 208, 281,

283- 285
FP . .15, 17, 28-29, 41-42, 45, 47, 159
FPRS . 219
FPSCR . .15, 17, 27-28, 135, 145, 147-

148, . 156, 189-192, 197, 230, 236,
238, 247, 255-256

FPSCR Field
CAUSE 27, 147, 190

I . 147
O . 147
U . 147
V . 147
Z . 147

DN 27, 145, 156
ENABLE 27, 147, 190

I . 147
O . 147
U . 147
V . 147
Z . 147

FLAG 27, 147, 190
I . 147
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

341
O .147
U .147
V .147
Z .147

FR27, 191, 197
PR27, 190, 197
RM27, 112, 147, 190
SZ 27, 190-191, 197

FR . . 15, 17, 24, 27-29, 41-42, 45, 47,
159, . . 190-191, 197, 209-210, 213-
214, 229, 236-238, 256

FV .15, 18, 28
GBR . .10, 26, 172, 176, 179, 182, 253
GPRS .219
INTEVT .207, 215, 230, 234, 240-241,

251, 255-256, 259
KCR0 208, 217
KCR1 208, 217
MTRX . 15
PEXPEVT . . 207, 215, 229, 234, 250,

255-256, 267
PSSR . . 207, 214, 229, 235, 250, 255-

256, .267
R 14, 16, 26-27, 38-40, 44, 46, 67, 71,

76- . 77, 79-83, 89-90, 92, 102, 175-
176, . . 178, 182-184, 186-187, 199,
219- . . .220, 236-237, 253, 284-285

SPC .216
SR . . 15, 23-24, 26-28, 135, 189, 207,

209- . .214, 218, 229, 233-242, 247-
250, . . 255-259, 261-262, 264-266,
268, .272

SR.BL . .229, 236, 238-242, 248, 250,
255, 258-259, 261

SR.CD 218, 229, 237-238, 256
SR.FD . 135, 189, 212, 229, 236, 238,

256- .257
SR.FR27-28, 229, 237-238, 256
SR.IMASK . . . 229, 239-241, 255-256,

258- .259
SR.MD218, 229, 236, 238, 255
SR.MMU 229, 233-234, 236, 238, 255-

256
SR.PR 27, 229, 237-238, 256
SR.STEP 229, 237-238, 247-248, 250,

255- . . .256, 261-262, 264-266, 268
SR.SZ 27, 229, 237-238, 256
SR.WATCH . 229, 236, 238, 247, 249,

255- 256, 268
SSR 207, 213-214, 229, 234-235, 238,

240, 248, 250, 255-256
SSR.BL . 248
SSR.MMU 234
SSR.STEP 248
TEA . 49, 208, 217, 230, 242-246, 249,

255- 256, 268
TR 14, 16, 27, 49, 79, 236-237
TRA 163, 205, 207, 215, 230, 243, 255-

256
USR 25, 208, 219-220
USR.FPRS 219
USR.GPRS 219
VBR . 49, 208, 210, 216, 231-232, 237,

251- 252, 256
RESINST 163, 225, 244, 252, 256
RESVEC . . .49, 208-209, 216, 227, 231-

233, 236-237, 241, 249-251, 253,
. 256, 267

ROTCL . 177
ROTCR . 177
ROTL . 177
ROTR . 177
RTE . .10, 163, 211-212, 221, 229, 235-

236, 247-248, 262-266, 272, 304
RTLBMISS 225, 245, 252-253, 257, 287-

288
RTS 8, 173, 243

S
SETS . 180
SETT . 180
SHAD . 177
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

342
SHAL . 177
SHAR . 86, 177
SHARD . 87-88
SHARD.L . 88
SHARI . 87, 89
SHLD . 177
SHLL . 86, 177
SHLLD . 87-88
SHLLD.L . 88
SHLLI 82, 87, 96
SHLLI.L .87
SHLR . 86, 177
SHLRD . 87-88
SHLRD.L . 88
SHLRI 82, 87, 97
SHLRI.L .87
SHORI . 71, 74
SLEEP10, 257-261, 265-266
SPC . .49, 207, 215, 229-231, 235, 238,

240, 248-250, 255-256, 258, 262-
263, 265-266

SPC.ADDR . 235
SPC.ISA . 235
ST . 92-93, 97
ST.B . 92-93, 97
ST.L . 92-93
ST.Q . 92-93
ST.W . 92-93
STC .10, 179
STC.L . 179
STEP . . 24-25, 209-214, 229, 237-238,

247- 248, 250, 255-256, 261-262,
264-266, 268

STHI.L . 94, 96
STHI.Q . 94
STLO.L . 94, 96
STLO.Q . 95

STS . 179, 192
STS.L . 179, 192
STX.B . 92, 94
STX.L . 92, 94
STX.Q . 92, 94
STX.W . 92, 94
SUB . 80, 174
SUB.L . 80
SUBC . 175
SUBV . 175
SWAP.B . 178
SWAP.Q . 98-99
SWAP.W . 178
SYNCI . 98-100, 106-107, 235, 260-261
SYNCO . 98-101, 106-107, 260-261, 307
synonym15, 292-295, 302-303, 310
SZ . . .24, 27-28, 190-191, 197, 209-210,

213-214, 229, 237-238, 256, 279-
282, 291

T
TAS.B 9, 185, 253
TLB . 224-225, 231, 242, 245, 252, 278
TRAP 164, 205, 207, 225, 243, 252, 256
TRAPA 163, 205, 215, 243
TST . 176
TST.B . 176

U
UNCACHED 306-309

V
VEC 237, 251-253

W
WADDERR 225, 245, 252, 257
WATCH 24-25, 209-214, 229, 236, 238,
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

343
247, 249, 255-256, 268
WRITEPROT . . 225, 246, 252-253, 257
WTLBMISS 225, 245, 252, 257, 287-288

XYZ
XOR85, 176, 253
XOR.B 176, 253
XORI . 83, 86
XTRCT . 178
SuperH, Inc.
05-CC-10001 V1.0 SH-5 CPU Core, Volume 1: Architecture

344
SuperH, Inc.
SH-5 CPU Core, Volume 1: Architecture 05-CC-10001 V1.0

	Preface
	SuperH SH-5 document identification and control
	SuperH SH-5 CPU core documentation suite

	Overview
	1.1 Introduction
	1.2 Instruction set architecture
	1.2.1 SHmedia
	1.2.2 SHcompact
	1.2.3 Mode switch

	1.3 CPU control and configuration
	1.4 SH compatibility model
	1.4.1 User-mode compatibility
	1.4.2 Limits of compatibility

	Architectural state
	2.1 Overview
	2.2 User and privileged operation
	2.3 Effective addresses
	2.4 Notation
	2.5 User state
	2.5.1 Mode: MD
	2.5.2 Instruction set architecture: ISA
	2.5.3 Program counter: PC
	2.5.4 General-purpose registers: R
	2.5.5 Target registers: TR
	2.5.6 User-accessible control registers: CR
	2.5.7 Memory: MEM
	2.5.8 Floating-point status and control register: FPSCR
	2.5.9 Floating-point registers: FR, DR, FP, FV, MTRX

	2.6 Privileged state
	2.6.1 Privileged control registers: CR
	2.6.2 Configuration registers: CFG

	2.7 The status register
	2.8 Register subsets
	2.9 SHcompact state
	2.9.1 SHcompact non-floating-point register state
	2.9.2 SHcompact floating-point register state
	2.9.3 SHcompact memory

	Data representation
	3.1 Introduction
	3.2 Bit conventions
	3.3 Data types
	3.4 IEEE754 floating-point numbers
	3.4.1 Values
	3.4.2 Single-precision format
	3.4.3 Double-precision format

	3.5 Data formats for general-purpose registers
	3.6 Data formats for floating-point registers
	3.7 Data representation in memory
	3.8 Effective address representation
	3.9 Program counter overflow
	3.10 Pointer representation
	3.11 Other register representations
	3.11.1 Register naming
	3.11.2 Register conventions
	3.11.3 Field conventions

	SHmedia instructions
	4.1 Overview
	4.2 Instruction naming conventions
	4.2.1 Type modifiers
	4.2.2 Hint modifiers

	4.3 Format conventions
	4.3.1 Format bit-fields
	4.3.2 Major and minor formats
	4.3.3 Format names

	4.4 Major formats
	4.5 Reserved bits
	4.6 Assembly notation

	SHmedia integer instructions
	5.1 Overview
	5.1.1 Control flow
	5.1.2 64-bit integer operations
	5.1.3 32-bit integer operations
	5.1.4 Other integer operations

	5.2 Constant loading instructions
	5.3 Control flow instructions
	5.3.1 Prepare-target instructions
	5.3.2 The unconditional branch instruction
	5.3.3 Conditional branch instructions
	5.3.4 The GETTR instruction

	5.4 Arithmetic instructions
	5.5 Comparison instructions
	5.6 Bitwise instructions
	5.7 Shift instructions
	5.8 Miscellaneous instructions
	5.9 General-purpose register move

	SHmedia memory instructions
	6.1 Overview
	6.2 Aligned load and store instructions
	6.3 Misaligned access support
	6.4 Memory properties
	6.5 Synchronization
	6.5.1 Atomic swap
	6.5.2 Instruction synchronization
	6.5.3 Data synchronization
	6.5.4 Implementation aspects

	6.6 Cache instructions
	6.6.1 Prefetch
	6.6.2 Allocate
	6.6.3 Cache coherency

	6.7 Example code sequences
	6.7.1 Synchronizing fetch with data writes

	SHmedia multimedia instructions
	7.1 Overview
	7.2 Multimedia formats
	7.2.1 Mathematics
	7.2.2 Rounding
	7.2.3 MOSTPOS and MOSTNEG

	7.3 Multimedia conversions
	7.4 Multimedia addition and subtraction
	7.5 Multimedia absolute value
	7.6 Multimedia sum of absolute differences
	7.7 Multimedia left shifts
	7.8 Multimedia arithmetic right shifts
	7.9 Scalar arithmetic right shift with saturation
	7.10 Multimedia logical right shifts
	7.11 Multimedia comparisons
	7.12 Multimedia full-width multiplies
	7.13 Multimedia multiplies
	7.14 Multimedia multiply with rounding
	7.15 Multimedia multiply and sum
	7.16 Multimedia fractional multiply accumulate
	7.17 Multimedia fractional multiply subtract
	7.18 Multimedia shuffles
	7.19 Multimedia bitwise conditional move
	7.20 Multimedia permute
	7.21 Multimedia extract

	SHmedia floating-point
	8.1 Introduction
	8.2 Floating-point disable
	8.3 IEEE754 floating-point support
	8.3.1 Formats
	8.3.2 Rounding
	8.3.3 Hardware operations
	8.3.4 Software operations
	8.3.5 Zeroes, infinities, NaNs and sign
	8.3.6 Exceptional conditions
	8.3.7 Denormalized numbers
	8.3.8 Exception launch
	8.3.9 Recommended functions and predicates
	8.3.10 Future FPU architecture

	8.4 Non-IEEE754 floating-point support
	8.4.1 Treat denormalized numbers as zero
	8.4.2 Fused multiply accumulate support
	8.4.3 Special-purpose instructions

	8.5 Floating-point status and control register
	8.6 General-purpose floating-point instructions
	8.6.1 Floating-point status and control
	8.6.2 Floating-point dyadic arithmetic
	8.6.3 Floating-point monadic arithmetic
	8.6.4 Floating-point multiply-accumulate
	8.6.5 Floating-point conversions
	8.6.6 Floating-point comparisons
	8.6.7 Floating-point moves

	8.7 Special-purpose floating-point instructions
	8.7.1 Mathematical properties
	8.7.2 FIPR.S and FTRV.S calculation
	8.7.3 FIPR.S and FTRV.S accuracy specification
	8.7.4 FCOSA.S, FSINA.S and FSRRA.S

	8.8 Floating-point memory instructions
	8.8.1 Displacement addressing
	8.8.2 Indexed addressing

	SHmedia system instructions
	9.1 Overview
	9.2 Event handling instructions
	9.3 Control registers
	9.3.1 Control register set
	9.3.2 Control register instructions

	9.4 Configuration registers
	9.4.1 Configuration register space
	9.4.2 Configuration register instructions

	SHcompact instructions
	10.1 Overview
	10.2 Formats

	SHcompact integer instructions
	11.1 Overview
	11.2 Control flow instructions
	11.3 Arithmetic instructions
	11.4 Comparison instructions
	11.5 No-operation
	11.6 Bitwise instructions
	11.7 Rotate and shift instructions
	11.8 Miscellaneous instructions
	11.9 Special instructions

	SHcompact memory instructions
	12.1 Load/store instructions
	12.2 Test and set instruction
	12.3 Synchronization
	12.4 Cache instructions

	SHcompact floating-point
	13.1 Overview
	13.2 Floating-point disable
	13.3 Floating-point register set
	13.4 FPSCR
	13.5 FPUL
	13.6 Floating-point instructions
	13.6.1 Floating-point special register access
	13.6.2 Floating-point constant loading
	13.6.3 Floating-point dyadic arithmetic
	13.6.4 Floating-point monadic arithmetic
	13.6.5 Floating-point multiply and accumulate
	13.6.6 Floating-point comparisons
	13.6.7 Floating-point conversions
	13.6.8 Special-purpose floating-point instructions
	13.6.9 Floating-point width and bank change
	13.6.10 Floating-point move instructions
	13.6.11 Floating-point load/store instructions

	13.7 Reserved floating-point behavior

	SHcompact system instructions
	14.1 System instructions

	Control registers
	15.1 Control register set
	15.2 Control register descriptions
	15.2.1 SR
	15.2.2 SSR
	15.2.3 PSSR
	15.2.4 INTEVT, EXPEVT, PEXPEVT, TRA
	15.2.5 SPC, PSPC
	15.2.6 RESVEC
	15.2.7 VBR
	15.2.8 TEA
	15.2.9 DCR, KCR0, KCR1
	15.2.10 CTC
	15.2.11 USR

	Event handling
	16.1 Overview
	16.2 Asynchronous events
	16.2.1 Resets
	16.2.2 Interrupts
	16.2.3 Assertion, deassertion and acceptance

	16.3 Synchronous events
	16.3.1 Exceptions
	16.3.2 Panics
	16.3.3 Pre-execution and post-execution

	16.4 Precision
	16.5 Debug and non-debug events
	16.6 Launch
	16.6.1 Power-on reset launch sequence
	16.6.2 Standard launch sequence
	16.6.3 Launch point
	16.6.4 Handler addresses
	16.6.5 Effect of launch on MMU and caches
	16.6.6 Event codes

	16.7 Recovery
	16.8 Instruction synchronization
	16.9 Resets
	16.10 Interrupts
	16.10.1 Non-maskable interrupt
	16.10.2 Debug interrupt
	16.10.3 External interrupts

	16.11 Exceptions
	16.11.1 Instruction address exceptions
	16.11.2 Instruction opcode exceptions
	16.11.3 Data address exceptions
	16.11.4 FPU exceptions
	16.11.5 Debug exceptions

	16.12 Panics
	16.13 Event ordering and event summary tables
	16.13.1 Ordering of asynchronous events
	16.13.2 Ordering of synchronous events
	16.13.3 SHcompact event ordering

	16.14 Launch assignments
	16.14.1 Asynchronous launch
	16.14.2 Synchronous launch

	16.15 Power management
	16.15.1 Entering sleep mode
	16.15.2 Exiting sleep mode
	16.15.3 Sleep and wake-up timing
	16.15.4 Sleep and synchronization

	16.16 Single-step behavior
	16.16.1 Single-step across handler launch and RTE
	16.16.2 Single-step and interrupts
	16.16.3 Single-step and sleep

	16.17 Interaction between debugger and target
	16.17.1 External debugger
	16.17.2 Other debug arrangements

	16.18 Event handling and USR

	Memory management
	17.1 Introduction
	17.2 Scalability
	17.3 MMU enable and disable
	17.4 Address space
	17.4.1 Physical addresses
	17.4.2 Effective addresses
	17.4.3 Virtual addresses
	17.4.4 Mapping from effective to physical addresses

	17.5 Pages
	17.6 Behavior when the MMU is disabled
	17.7 Behavior when the MMU is enabled
	17.7.1 PTE array organization
	17.7.2 MMU configuration registers
	17.7.3 Implementation options
	17.7.4 PTE contents
	17.7.5 Effective address mapping without translation
	17.7.6 Effective address mapping with translation
	17.7.7 Mappings required to execute an instruction

	17.8 MMU and caches
	17.8.1 Cache behavior when the MMU is disabled
	17.8.2 Cache behavior when the MMU is enabled
	17.8.3 Cache coherency when changing the page table
	17.8.4 Cache synonyms
	17.8.5 Instruction cache synonyms
	17.8.6 Operand cache synonyms
	17.8.7 Constraints to avoid cache synonyms

	Caches
	18.1 Overview
	18.2 Cache architecture
	18.3 Cache organization
	18.4 Cache block
	18.5 Cache sets, ways and associativity
	18.6 Cache mapping
	18.7 Caches and memory management
	18.8 Cache operation
	18.8.1 Initial state
	18.8.2 Cache access
	18.8.3 Cache behavior
	18.8.4 Cache replacement
	18.8.5 Cache locking

	18.9 Cache paradoxes
	18.10 Cache aliases
	18.11 Speculative memory accesses
	18.11.1 Speculative memory access when MMU is enabled
	18.11.2 Speculative memory access when MMU is disabled

	Index

