
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

Last updated 22 February 2002

SuperHTM (SH)
64-Bit RISC Series

SH-5 CPU Core,
Volume 3:

SHcompact

ii

SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

This publication contains proprietary information of SuperH, Inc., and is not to be copied in whole or part.

Issued by the SuperH Documentation Group on behalf of SuperH, Inc.

Information furnished is believed to be accurate and reliable. However, SuperH, Inc. assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of SuperH, Inc. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information

previously supplied. SuperH, Inc. products are not authorized for use as critical components in life support devices or
systems without the express written approval of SuperH, Inc.

is a registered trademark of SuperH, Inc.

SuperH is a registered trademark for products originally developed by Hitachi, Ltd. and is owned by
Hitachi Ltd.

© 2001 SuperH, Inc. All Rights Reserved.

SuperH, Inc.
San Jose, U.S.A. - Bristol, United Kingdom - Tokyo, Japan

www.superh.com

http://www.superh.com/

Contents
Preface xiii

SuperH SH-5 document identification and control xiii
SuperH SH-5 CPU core documentation suite xiv

1 SHcompact specification 1

1.1 Overview 1
1.2 SHcompact architectural state 1
1.3 General-purpose registers 3

1.3.1 R0 To R15, GBR and PR 3
1.3.2 T-bit 7

1.3.3 MACL and MACH 8
1.3.4 Discussion 8

1.4 Floating-point registers 9
1.5 FPSCR, PR, SZ and FR 11
1.6 Delayed branches and delay slots 12
1.7 Scratch registers 14
1.8 Memory, cache and floating-point models 14
1.9 Abstract sequential model 14

1.9.1 Initial conditions 15
1.9.2 Instruction execution loop 15

1.9.3 Non-delayed and delayed state changes 16
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

iv
2 SHcompact instruction set 19

2.1 Alphabetical list of instructions 19
ADD Rm, Rn 20
ADD #imm, Rn 21
ADDC Rm, Rn 22
ADDV Rm, Rn 23
AND Rm, Rn 24
AND #imm, R0 25
AND.B #imm, @(R0, GBR) 26
BF label 27
BF/S label 29
BRA label 31
BRAF Rn 32
BRK 33
BSR label 34
BSRF Rn 36
BT label 38
BT/S label 40
CLRMAC 42
CLRS 43
CLRT 44
CMP/EQ Rm, Rn 45
CMP/EQ #imm, R0 46
CMP/GE Rm, Rn 47
CMP/GT Rm, Rn 48
CMP/HI Rm, Rn 49
CMP/HS Rm, Rn 50
CMP/PL Rn 51
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

v

CMP/PZ Rn 52
CMP/STR Rm, Rn 53
DIV0S Rm, Rn 54
DIV0U 55
DIV1 Rm, Rn 56
DMULS.L Rm, Rn 57
DMULU.L Rm, Rn 58
DT Rn 59
EXTS.B Rm, Rn 60
EXTS.W Rm, Rn 61
EXTU.B Rm, Rn 62
EXTU.W Rm, Rn 63
FABS DRn 64
FABS FRn 65
FADD DRm, DRn 66
FADD FRm, FRn 67
FCMP/EQ DRm, DRn 69
FCMP/EQ FRm, FRn 70
FCMP/GT DRm, DRn 72
FCMP/GT FRm, FRn 73
FCNVDS DRm, FPUL 75
FCNVSD FPUL, DRn 76
FDIV DRm, DRn 78
FDIV FRm, FRn 79
FIPR FVm, FVn 82
FLDI0 FRn 85
FLDI1 FRn 86
FLDS FRm, FPUL 87
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

vi
FLOAT FPUL, DRn 88
FLOAT FPUL, FRn 89
FMAC FR0, FRm, FRn 91
FMOV DRm, DRn 95
FMOV DRm, XDn 96
FMOV DRm, @Rn 97
FMOV DRm, @-Rn 98
FMOV DRm, @(R0, Rn) 99
FMOV FRm, FRn 100
FMOV.S FRm, @Rn 101
FMOV.S FRm, @-Rn 102
FMOV.S FRm, @(R0, Rn) 103
FMOV XDm, DRn 104
FMOV XDm, XDn 105
FMOV XDm, @Rn 106
FMOV XDm, @-Rn 107
FMOV XDm, @(R0, Rn) 108
FMOV @Rm, DRn 109
FMOV @Rm+, DRn 110
FMOV @(R0, Rm), DRn 111
FMOV.S @Rm, FRn 112
FMOV.S @Rm+, FRn 113
FMOV.S @(R0, Rm), FRn 114
FMOV @Rm, XDn 115
FMOV @Rm+, XDn 116
FMOV @(R0, Rm), XDn 117
FMUL DRm, DRn 118
FMUL FRm, FRn 119
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

vii
FNEG DRn 121
FNEG FRn 122
FRCHG 123
FSCA FPUL, DRn 124
FSCHG 126
FSQRT DRn 127
FSQRT FRn 128
FSRRA FRn 130
FSTS FPUL, FRn 132
FSUB DRm, DRn 133
FSUB FRm, FRn 134
FTRC DRm, FPUL 136
FTRC FRm, FPUL 137
FTRV XMTRX, FVn 139
JMP @Rn 143
JSR @Rn 144
LDC Rm, GBR 146
LDC.L @Rm+, GBR 147
LDS Rm, FPSCR 148
LDS.L @Rm+, FPSCR 149
LDS Rm, FPUL 150
LDS.L @Rm+, FPUL 151
LDS Rm, MACH 152
LDS.L @Rm+, MACH 153
LDS Rm, MACL 154
LDS.L @Rm+, MACL 155
LDS Rm, PR 156
LDS.L @Rm+, PR 157
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

viii
MAC.L @Rm+, @Rn+ 158
MAC.W @Rm+, @Rn+ 160
MOV Rm, Rn 162
MOV #imm, Rn 163
MOV.B Rm, @Rn 164
MOV.B Rm, @-Rn 165
MOV.B Rm, @(R0, Rn) 166
MOV.B R0, @(disp, GBR) 167
MOV.B R0, @(disp, Rn) 168
MOV.B @Rm, Rn 169
MOV.B @Rm+, Rn 170
MOV.B @(R0, Rm), Rn 171
MOV.B @(disp, GBR), R0 172
MOV.B @(disp, Rm), R0 173
MOV.L Rm, @Rn 174
MOV.L Rm, @-Rn 175
MOV.L Rm, @(R0, Rn) 176
MOV.L R0, @(disp, GBR) 177
MOV.L Rm, @(disp, Rn) 178
MOV.L @Rm, Rn 179
MOV.L @Rm+, Rn 180
MOV.L @(R0, Rm), Rn 181
MOV.L @(disp, GBR), R0 182
MOV.L @(disp, PC), Rn 183
MOV.L @(disp, Rm), Rn 184
MOV.W Rm, @Rn 185
MOV.W Rm, @-Rn 186
MOV.W Rm, @(R0, Rn) 187
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

ix
MOV.W R0, @(disp, GBR) 188
MOV.W R0, @(disp, Rn) 189
MOV.W @Rm, Rn 190
MOV.W @Rm+, Rn 191
MOV.W @(R0, Rm), Rn 192
MOV.W @(disp, GBR), R0 193
MOV.W @(disp, PC), Rn 194
MOV.W @(disp, Rm), R0 195
MOVA @(disp, PC), R0 196
MOVCA.L R0, @Rn 197
MOVT Rn 199
MUL.L Rm, Rn 200
MULS.W Rm, Rn 201
MULU.W Rm, Rn 202
NEG Rm, Rn 203
NEGC Rm, Rn 204
NOP 205
NOT Rm, Rn 206
OCBI @Rn 207
OCBP @Rn 208
OCBWB @Rn 209
OR Rm, Rn 210
OR #imm, R0 211
OR.B #imm, @(R0, GBR) 212
PREF @Rn 213
ROTCL Rn 214
ROTCR Rn 215
ROTL Rn 216
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

x

ROTR Rn 217
RTS 218
SETS 219
SETT 220
SHAD Rm, Rn 221
SHAL Rn 222
SHAR Rn 223
SHLD Rm, Rn 224
SHLL Rn 225
SHLL2 Rn 226
SHLL8 Rn 227
SHLL16 Rn 228
SHLR Rn 229
SHLR2 Rn 230
SHLR8 Rn 231
SHLR16 Rn 232
STC GBR, Rn 233
STC.L GBR, @-Rn 234
STS FPSCR, Rn 235
STS.L FPSCR, @-Rn 236
STS FPUL, Rn 237
STS.L FPUL, @-Rn 238
STS MACH, Rn 239
STS.L MACH, @-Rn 240
STS MACL, Rn 241
STS.L MACL, @-Rn 242
STS PR, Rn 243
STS.L PR, @-Rn 244
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

xi
SUB Rm, Rn 245
SUBC Rm, Rn 246
SUBV Rm, Rn 247
SWAP.B Rm, Rn 248
SWAP.W Rm, Rn 249
TAS.B @Rn 250
TRAPA #imm 252
TST Rm, Rn 253
TST #imm, R0 254
TST.B #imm, @(R0, GBR) 255
XOR Rm, Rn 256
XOR #imm, R0 257
XOR.B #imm, @(R0, GBR) 258
XTRCT Rm, Rn 259

A SHcompact instruction encoding 261

A.1 Formats 261
A.2 0 format 261
A.3 n format 262
A.4 m format 263
A.5 nm format 263
A.6 md format 264
A.7 nd4 format 265
A.8 nmd format 265
A.9 d format 266
A.10 d12 format 266
A.11 nd8 format 267
A.12 i format 267
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

xii
A.13 ni format 268
A.14 Opcode assignment 268
A.15 Reserved instructions 269
A.16 Floating-point instructions 272

Index 273
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Preface
This document is part of the SuperH SH-5 CPU core documentation suite detailed
below. Comments on this or other books in the documentation suite should be made
by contacting your local sales office or distributor.

SuperH SH-5 document identification and
control
Each book in the documentation suite carries a unique identifier in the form:

05-CC-nnnnn Vx.x

Where, n is the document number and x.x is the revision.

Whenever making comments on a SuperH SH-5 document the complete
identification 05-CC-1000n Vx.x should be quoted.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

xiv
SuperH SH-5 CPU core documentation suite
The SuperH SH-5 CPU core documentation suite comprises the following volumes:

• SH-5 CPU Core, Volume 1: Architecture (05-CC-10001)

• SH-5 CPU Core, Volume 2: SHmedia (05-CC-10002)

• SH-5 CPU Core, Volume 3: SHcompact (05-CC-10003)

• SH-5 CPU Core, Volume 4: Implementation (05-CC-10004)
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

SuperH, Inc.
05-CC-10003 V1.0 S
1
SHcompact
specification
1.1 Overview
The SHcompact specification uses the language described in Volume 2, Chapter 1:
SHmedia specification. This chapter describes additional details that are specific to
the SHcompact specification.

1.2 SHcompact architectural state
SHcompact state is mapped on the same architectural state used by SHmedia. The
architectural state and this mapping are described in Volume 1, Chapter 2:
Architectural state.

SHcompact instructions are specified in terms of the full architectural state. This
has the following implications:

• General-purpose registers are 64 bits wide in the architectural state. The
specification language reads and writes all 64 bits as required to implement the
32-bit view of these registers seen by SHcompact instructions. Further details
are given in Section 1.3: General-purpose registers on page 3.

• Floating-point registers are not banked in the architectural state. The
specification language has to map the banked view of floating-point registers
seen by SHcompact instructions onto the flat floating-point register set. Further
details are given in Section 1.4: Floating-point registers on page 9.

• FPSCR is formatted as defined by the architectural state. The SHcompact view
of FPSCR also includes 3 bits (PR, SZ and FR) which are copied from SR. The
specification language has to map between these 2 views. Further details are
given in Section 1.5: FPSCR, PR, SZ and FR on page 11.
H-5 CPU Core, Volume 3: SHcompact

2 SHcompact architectural state
• The SHcompact instruction set supported delayed branches and delay slots.
Additional state notation is required to support this mechanism, and this is
described in Section 1.6: Delayed branches and delay slots on page 12.

The view of architectural state used by the specification language is described in
Volume 2, Chapter 1: SHmedia specification. SHcompact specification uses
additional names for some state as described in Table 1.

Name Architectural State Description

GBR R16 Global base register

MACL Lower 32 bits of R17 Multiply-accumulate low

MACH Upper 32 bits of R17 Multiply-accumulate high

PR R18 Procedure link register

T Bit 0 of R19 Condition code flag

S SR.S Multiply-accumulate saturation flag

M SR.M Divide-step M flag

Q SR.Q Divide-step Q flag

FPSCR.PR SR.PR Floating-point precision of operation

FPSCR.SZ SR.SZ Floating-point size of data transfer

FPSCR.FR SR.FR Floating-point bank selection

FPUL FR32 FPU communication register

Table 1: Mapping from additional names to architectural state
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

General-purpose registers 3
1.3 General-purpose registers
General-purpose registers are 64 bits wide. These registers are visible as R0 to R15,
GBR, MACL, MACH, PR and the T-bit to SHcompact instructions. Apart from
MACL and MACH, SHcompact is only able to observe a subset of the bits contained
within these general-purpose registers. For correct operation of SHcompact
instructions, the non-observable bits must be maintained appropriately.

Table 2 shows the non-observable bits and the usual treatment applied while in
SHcompact mode.

1.3.1 R0 To R15, GBR and PR

The architecture defines policies for the interpretation of non-observable bits in
these registers when used as source operands to SHcompact instructions:

• 64-bit sources: the SHcompact instruction interprets the source as a 64-bit
value. The instruction applies its operation to all 64 bits of the source operand.

• 32-bit sources: the SHcompact instruction discards the upper 32 bits of the
source to leave a 32-bit value. The instruction applies its operation to these
lower 32 bits of the operand.

• 32-bit sign-extended sources: the SHcompact instruction requires that the
source operand has a value in the signed 32-bit integer range. If this condition is
met, then the instruction applies its operation to the lower 32 bits of the
operand. If this condition is not met, then the value of the source operand seen
by that instruction is architecturally undefined.

Architectural
state

SHcompact
name

Observable
bits

Non-observable
bits

Treatment for non-observable bits

R0 to R15 R0 to R15 [0, 31] [32, 63] Usual treatment: sign extension of bit 31

R16 GBR [0, 31] [32, 63] Usual treatment: sign extension of bit 31

R17 MACL,
MACH

[0, 63] None No special cases: all bits are observable

R18 PR [0. 31] [32, 63] Usual treatment: sign extension of bit 31

R19 T 0 [1, 63] Usual treatment: all set to zero
(see Section 1.3.2: T-bit on page 7)

Table 2: General-purpose registers visible to SHcompact instructions
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

4 General-purpose registers
These policies are applied to SHcompact instructions as follows:

1 General-purpose register to general-purpose register move operates at 64-bit
width. There are no architecturally undefined cases.

2 Bit-wise AND, NOT, OR and XOR instructions operate at 64-bit width. There are
no architecturally undefined cases.

3 Sign extension, zero extension, rotates, shifts, swaps and extract operate at
32-bit width. There are no architecturally undefined cases.

4 All instructions, apart from general-purpose register to general-purpose register
move, that transfer a value out of a general-purpose register, GBR or PR read
just the required bits of that register. This includes instructions such as
general-purpose register stores, stores from system and control registers, and
loads to system and control registers. There are no architecturally undefined
cases.

5 All instructions that read general-purpose registers, other than the cases listed
above, require that all non-observable bits are sign extensions of bit 31.

The policy in 5 is the usual treatment as described in Table 2. The other policies
allow instructions that perform non-arithmetic data manipulation or data transfer
to be used safely on 64-bit values. The specific cases where the usual treatment is
relaxed are defined in the following tables.

Instruction Operand interpretation Instruction semantics

MOV Rm, Rn Rm is a 64-bit source 64-bit move

AND Rm, Rn Rm and Rn are 64-bit sources 64-bit bitwise AND

AND #imm, R0 R0 is a 64-bit source 64-bit bitwise AND

NOT Rm, Rn Rm is a 64-bit source 64-bit bitwise NOT

OR Rm, Rn Rm and Rn are 64-bit sources 64-bit bitwise OR

OR #imm, R0 R0 is a 64-bit source 64-bit bitwise OR

XOR Rm, Rn Rm and Rn are 64-bit sources 64-bit bitwise XOR

XOR #imm, R0 R0 is a 64-bit source 64-bit bitwise XOR

Table 3: SHcompact instructions with 64-bit source operands
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

General-purpose registers 5
Instruction Operand interpretation Instruction semantics

EXTS.B Rm, Rn
EXTS.W Rm, Rn
EXTU.B Rm, Rn
EXTU.W Rm, Rn

Rm and Rn are 32-bit sources Sign or zero extend to produce
32-bit result

ROTCL Rn
ROTCR Rn

Rn is a 32-bit source Rotate at 32-bit width with carry

ROTL Rn
ROTR Rn

Rn is a 32-bit source Rotate at 32 bit width

SHAD Rm, Rn
SHLD Rm, Rn

Rm and Rn are 32-bit sources Dynamic shift at 32-bit width

SHAL Rn
SHAR Rn
SHLL Rn
SHLL16 Rn
SHLL2 Rn
SHLL8 Rn
SHLR Rn
SHLR16 Rn
SHLR2 Rn
SHLR8 Rn

Rn is a 32-bit source Shift at 32-bit width

SWAP.B Rm, Rn
SWAP.W Rm, Rn

Rm and Rn are 32-bit sources Swap to produce 32-bit result

XTRCT Rm, Rn Rm and Rn are 32-bit sources Extract to produce 32-bit result

Table 4: SHcompact instructions with 32-bit source operands
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

6 General-purpose registers
Instruction Operand interpretation Instruction semantics

MOV.B R0, @(disp,GBR)
MOV.L R0, @(disp,GBR)
MOV.W R0, @(disp,GBR)

GBR is a 32-bit sign-extended source
R0 is a 32-bit source

8/16/32-bit data transfer

MOV.B R0, @(disp,Rn)
MOV.W R0, @(disp,Rn)
MOVCA.L R0, @Rn

Rn is a 32-bit sign-extended source
If R0 is a different register to Rn:

R0 is a 32-bit source

Else:

R0 is a 32-bit sign-extended source

8/16/32-bit data transfer

MOV.B Rm, @-Rn
MOV.B Rm, @Rn
MOV.L Rm, @-Rn
MOV.L Rm, @Rn
MOV.L Rm, @(disp,Rn)
MOV.W Rm, @-Rn
MOV.W Rm, @Rn

Rn is a 32-bit sign-extended source
If Rm is a different register to Rn:

Rm is a 32-bit source

Else:

Rm is a 32-bit sign-extended source

8/16/32-bit data transfer

MOV.B Rm, @(R0,Rn)
MOV.L Rm, @(R0,Rn)
MOV.W Rm, @(R0,Rn)

R0 is a 32-bit sign-extended source

Rn is a 32-bit sign-extended source

If Rm is a different register to R0 and Rn:

Rm is a 32-bit source

Else:

Rm is a 32-bit sign-extended source

8/16/32-bit data transfer

STC GBR, Rn GBR is a 32-bit source 32-bit data transfer

STC.L GBR, @-Rn Rn is a 32-bit sign-extended source
GBR is a 32-bit source

32-bit data transfer

STS PR, Rn PR is a 32-bit source 32-bit data transfer

STS.L PR, @-Rn Rn is a 32-bit sign-extended source
PR is a 32-bit source

32-bit data transfer

Table 5: SHcompact instructions that transfer data from a 32-bit source operand
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

General-purpose registers 7
Software must ensure that non-observable bits in general-purpose register source
operands are correct when an SHcompact instruction is executed:

• If this condition is met, then the SHcompact instruction has the behavior defined
by the architecture.

• If this condition is not met, then the values of each incorrectly-formed source
operand seen by that instruction is architecturally undefined. The instruction
will complete execution, though the results can be unpredictable due to the
undefinedness of its data. This can result in an unexpected exception (for
example, due to an incorrect effective address calculation) or propagation of
architecturally undefined values into destination registers.

Each SHcompact instruction that operates at 64-bit width (see Table 3) has an
important property. If all source operands of that instruction are 32-bit
sign-extended sources, then the result will also be in a 32-bit sign-extended
representation. This is not a requirement for the execution of these instructions, but
it does mean that these instructions have the obvious behavior where software is
using the usual treatment for non-observable bits.

1.3.2 T-bit

The T-bit follows similar policies to those described in Section 1.3.1: R0 To R15, GBR
and PR on page 3 except that only the lowest bit of the T-bit is observable. The upper
63 bits of the T-bit are non-observable, and the allowed values for the T-bit are only
0 and 1.

SHcompact instructions that read the T-bit require that all non-observable bits of
the T-bit are 0. If this condition is met, then the instruction observes the T-bit equal
to 0 or 1 as expected. If this condition is not met, then the value of the T-bit seen by
that instruction is architecturally undefined.

Providing that all necessary conditions are met on source operands, SHcompact
instructions that write to the T-bit will write the T-bit as 0 or 1. However, if

LDC Rm, GBR
LDS Rm, FPSCR
LDS Rm, FPUL
LDS Rm, MACH
LDS Rm, MACL
LDS Rm, PR

Rm is a 32-bit source 32-bit data transfer

Instruction Operand interpretation Instruction semantics

Table 5: SHcompact instructions that transfer data from a 32-bit source operand
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

8 General-purpose registers
conditions on the source operands are not met, then the behavior is already
architecturally undefined and the value written to the T-bit could be neither 0 nor 1.

Observation of inappropriate values for the T-bit can be avoided by software
convention. Two example strategies are:

• Software could ensure that R19 has a value of 0 or 1 on all mode switches from
SHmedia to SHcompact.

• Software could ensure, following a mode switch from SHmedia to SHcompact,
that the T-bit is written before there are any reads of the T-bit.

Consider the following instruction sequence:

1 An SHmedia instruction sets R19 to a value other than 0 or 1.

2 Mode switch from SHmedia to SHcompact.

3 The SHcompact sequence neither reads from nor writes to the T-bit.

4 Mode switch from SHcompact to SHmedia.

5 An SHmedia instruction observes the value of R19.

A consequence of the architecture is that the R19 value read in step 5 is guaranteed
to be the value written to R19 in step 1. Additionally, the behavior of this sequence is
architecturally defined since the T-bit is never read while it contains an
inappropriate value.

1.3.3 MACL and MACH

MACL and MACH occupy all of R17. Since all bits of R17 are observable from
SHcompact mode, special care is not required.

1.3.4 Discussion

In general, general-purpose registers that are visible to SHcompact instructions
should have their non-observable bits set according to the usual treatment defined
in Table 2. If this treatment is in effect at a particular instance, then any
subsequent sequence of SHcompact instructions will continue to uphold this
treatment.

The net effect of these rules is that SHcompact instructions execute correctly,
providing that the necessary conditions are met at interfaces with SHmedia code.
Software conventions are typically used to ensure the SHcompact visible registers
have correctly formed values at mode switches from SHmedia to SHcompact.
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Floating-point registers 9
The special cases defined in Section 1.3.1 are specifically designed to allow software
to relax the usual treatment in situations such as the following:

• A general-purpose register contains an uninitialized value.

• A general-purpose register contains a temporary that can be safely discarded.

• A general-purpose register deliberately contains a 64-bit value (for example, a
parameter).

In these cases, the general-purpose register is not guaranteed to be in a signed
32-bit range. The relaxed treatment allows software to stay within the architecture.

Functions are used in the specification language to denote source operands where a
value is expected to be in a certain signed or unsigned range.

1.4 Floating-point registers
The specification language maps from the banked view of floating-point registers
seen by SHcompact instruction to the flat architectural floating-point register set.

Two additional variable names are used to support this mapping.

Function Description

SignExpectn(value) If value is in [-2n-1, 2n-1), returns value

If value is not in this range, returns an architecturally undefined value

ZeroExpectn(value) If value is in [0, 2n), returns value

If value is not in this range, returns an architecturally undefined value

Table 6: Support functions for sign and zero expectancy

Name Value Description

FRONT If SR.FR is 0, FRONT is 0

If SR.FR is 1, FRONT is 16

First register index in the regular bank of
floating-point registers

BACK If SR.FR is 0, BACK is 16

If SR.FR is 1, BACK is 0

First register index in the extended bank of
floating-point registers

Table 7: Variables to support bank selection
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

10 Floating-point registers
Additionally, SHcompact instructions use the DR notation to refer to pairs of
single-precision floating-point registers. This is mapped onto the correct FP notation
in the instruction specifications. The full set of mappings are given in Table 8.

Names of SHcompact state Description of state
Architectural
state name

FRi where i is in [0, 15] Single-precision registers FRFRONT+i

DR2i where i is in [0, 7] Double-precision registers DRFRONT+2i

Single-precision register pairs FPFRONT+2i

FV4i where i is in [0, 3] Single-precision vector FVFRONT+4i

XFi where i is in [0, 15] Single-precision extended registers FRBACK+i

XD2i where i is in [0, 7] Double-precision extended registers DRBACK+2i

Single-precision extended register pairs FPBACK+2i

XMTRX Single-precision extended register matrix MTRXBACK

Table 8: Mapping of banked SHcompact floating-point state
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

FPSCR, PR, SZ and FR 11
1.5 FPSCR, PR, SZ and FR
The specification language has to map the SHcompact view of FPSCR onto the
architectural state. When an SHcompact instruction reads from FPSCR, the
specification has to pack FPSCR, SR.PR, SR.SZ and SR.FR into a single 32-bit
value. When an SHcompact instruction writes to FPSCR, the specification has to
unpack the 32-bit value into FPSCR, SR.PR, SR.SZ and SR.FR.

Two functions are used in the specification language to denote this packing and
unpacking.

These 3 bits have the following effects on the SHcompact instruction specification:

• SR.PR selects the precision of operation: 0 indicates single-precision and 1
indicates double-precision. Some floating-point instructions are only available
when SR.PR has a certain value. These requirements are shown in the
instruction specification.

• SR.SZ selects the width of data-transfer for floating-point loads and stores: 0
indicates transfers of 32-bit registers and 1 indicates transfers of pairs of 32-bit
registers (64 bits). Some floating-point instructions are only available when
SR.SZ has a certain value. These requirements are shown in the instruction
specification.

• SR.FR determines which bank is viewed using the regular floating-point register
names and which as the extended bank: the banking arrangement is described
in Section 1.4: Floating-point registers on page 9.

Function Description

value ← PackFPSCR(fpscr, pr, sz, fr) This function packs the given parameters into a
single FPSCR value as seen in SHcompact.

fpscr, pr, sz, fr ← UnpackFPSCR(value) This function unpacks the single FPSCR value
(as seen in SHcompact) into the given results list.

Table 9: Support functions for FPSCR packing and unpacking
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

12 Delayed branches and delay slots
1.6 Delayed branches and delay slots
SHcompact supports delayed branches. The instruction immediately following a
delayed branch in memory is called a delay slot instruction. For a delayed branch,
the delay slot is executed before the branch is effected. There are special rules and
notations for the modelling of this mechanism.

The delayed branch instructions are listed in the following table.

Any instruction can be placed in a delay slot apart from those listed in Table 11. If
any of these instructions are executed in a delay slot, an ILLSLOT exception is
raised.

Instruction Summary

BF/S label delayed branch if false

BRA label delayed branch

BRAF Rn delayed branch far

BSR label delayed branch to subroutine

BSRF Rn delayed branch to subroutine far

BT/S label delayed branch if true

JMP @Rn delayed jump

JSR @Rn delayed jump to subroutine

RTS delayed return from subroutine

Table 10: Delayed branch instructions

Instruction Summary

BF/S, BRA, BRAF, BSR, BSRF, BT/S,
JMP, JSR, RTS

Any delayed branch instruction (see Table 10)

BF label branch if false

BT label branch if true

MOV.L @(disp, PC), Rn load 32-bits from PC with displacement

Table 11: Illegal delay slot instructions
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Delayed branches and delay slots 13
Any floating-point instruction can be placed in a delay slot. When the FPU is
disabled, the execution of a floating-point instruction normally leads to an FPUDIS
exception. However, when the FPU is disabled and a floating-point instruction in a
delay slot is executed, a SLOTFPUDIS exception is raised instead. This approach
simplifies software emulation of floating-point instructions.

The following additional notation is used:

• PC’ refers to the PC value after this instruction has executed.

• PR’ refers to the PR value after this instruction has executed.

• ISA’ refers to the ISA value after this instruction has executed.

• PC’’ refers to the PC value after this and the next instruction have executed.

• PR’’ refers to the PR value after this and the next instruction have executed.

• ISA’’ refers to the ISA value after this and the next instruction have executed.

The execution model described in Section 1.9: Abstract sequential model on page 14
uses this state to model delayed branches.

A function is used to indicate whether an instruction is executing in a delay slot.

MOV.W @(disp, PC), Rn load 16-bits from PC with displacement

MOVA @(disp, PC), R0 move PC-relative address

TRAPA #imm trap always

Function Description

IsDelaySlot() If instruction is executing in a delay slot, returns true

If instruction is not executing in a delay slot, returns false

Table 12: Support function to distinguish delay slots

Instruction Summary

Table 11: Illegal delay slot instructions
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

14 Scratch registers
1.7 Scratch registers
Volume 1, Chapter 2: Architectural state defines a set of scratch registers that are
used as scratch state during the execution of SHcompact instructions. Scratch
registers are not explicitly modeled in the specification language.

The scratch registers are summarized in Table 13.

1.8 Memory, cache and floating-point models
SHcompact specification uses the same models of memory, cache and floating-point
operation as SHmedia, Volume 2, Chapter 1: SHmedia specification. A subset of
these support functions are used in the SHcompact specifications.

1.9 Abstract sequential model
The abstract sequential model of SHcompact instruction execution is largely similar
to its SHmedia counterpart. The model is modified to accommodate the 2-byte
instructions in SHcompact and the delayed branching mechanism.

Section 1.9.1 describes the initial conditions that are initialized upon a mode switch
from SHmedia to SHcompact. No special actions are required upon a mode switch
from SHcompact to SHmedia. Section 1.9.2 describes the steps taken to execute
each SHcompact instruction in the abstract sequential model. Section 1.9.3
describes the mechanisms used to model delayed branching.

Scratch register Becomes architecturally undefined:

R20 to R23 inclusive when any SHcompact instruction is executed
(even if the instruction causes an exception).

TR0 to TR3 inclusive when any SHcompact instruction is executed
(even if the instruction causes an exception).

FR33 when any SHcompact floating-point instruction is executed
(even if the instruction causes an exception).

Table 13: Scratch registers
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Abstract sequential model 15
1.9.1 Initial conditions

The abstract model described here maintains hidden internal state in the variables
PC’’, PR’’ and ISA’’ to keep track of delayed state changes. These values are
automatically set to appropriate initial conditions at the beginning of a sequence of
SHcompact instructions. The beginning of an SHcompact instruction sequence
occurs when the previous instruction is an SHmedia instruction that mode switches
to SHcompact. The initial state is set as follows:

• PC’’ is set to PC+2

• PR’’ is set to the same value as PR

• ISA’’ is set to 0

1.9.2 Instruction execution loop

If ISA is 1, the instruction is executed in SHmedia mode as described in Volume 2,
Chapter 1: SHmedia specification. Otherwise, the instruction is executed in
SHcompact mode. The steps associated with executing each SHcompact instruction
are:

1 Check for asynchronous events, such as interrupt or reset, and initiate handling
if required. Asynchronous events are not accepted between a delayed branch and
a delay slot. They are delayed until after the delay slot.

2 Check the current program counter (PC) for instruction address exceptions, and
initiate handling if required.

3 Fetch the instruction bytes from the address in memory, as indicated by the
current program counter. For SHcompact, 2 bytes need to be fetched for each
instruction.

4 Calculate the default values of PC’, PR’ and ISA’. PC’ is set to the value of PC’’,
PR’ is set to the value of PR’’ and ISA’ is set to the value of ISA’’.

5 Calculate the default values of PC’’, PR’’ and ISA’’ assuming continued
sequential execution without procedure call or mode switch. For SHcompact, PC’’
is PC’+2, while PR’’ and ISA’’ are unchanged.

6 Decode and execute the instruction. This includes checks for synchronous events,
such as exceptions and panics, and initiation of handling if required.
Synchronous events are not accepted between a delayed branch and a delay slot.
They are detected either before the delayed branch or after the delay slot.
Special case handling of SHcompact events is described in Volume 1, Chapter 16:
Event handling.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

16 Abstract sequential model
The execution of an instruction can update the PC, PR and ISA state as follows:

- The instruction can change PC’ to achieve a branch after this instruction has
completed. It must also update PC’’ to the value of PC’+2 to ensure correct
sequential execution after the control flow.

- The instruction can change PR’ to load the procedure link register. It must
also update PR’’ to the same value as PR’.

- The instruction can change PC’’, PR’’ and ISA’’ to achieve a branch, procedure
call or mode-switch after the next instruction has completed.

Any changes made to PC’, PR’, PC’’, PR’’ or ISA’’ over-ride the default values.

7 If the value of PC’ is outside of the implemented part of the effective address
space, then the behavior becomes architecturally undefined.

8 Set the current program counter (PC) to the value of the next program counter
(PC’). Similarly, set PR to the value of PR’ and set ISA to the value of ISA’.

The actions associated with the handling of asynchronous and synchronous events
are described in Volume 1, Chapter 16: Event handling. The actions required by step
6 depend on the instruction, and are specified by the instruction specification for
that instruction. Step 7 specifies the behavior for PC overflow. This is described
further in Volume 1, Chapter 3: Data representation.

1.9.3 Non-delayed and delayed state changes

Non-delayed and delayed state changes are used to model the branch mechanism.
These correspond to non-delayed and delayed branches.

In the model, PC, PR and ISA are never written directly by an instruction. Instead,
an instruction writes to PC’ or PR’ to cause a non-delayed state change, or to PC’’,
PR’’ or ISA’’ to cause a delayed state change:

• A non-delayed state change is achieved by updating PC’ or PR’ to over-ride their
default values. There is no mechanism to update ISA’ as the result of instruction
execution. After the execution of this instruction, PC’ and PR’ get copied to PC
and PR respectively, and then influence instruction execution. Hence, there is no
delay slot before the values of PC’ and PR’ propagate through to PC and PR.

• A delayed state change is achieved by updating PC’’, PR’’ or ISA’’ to override
their default values. After the execution of this instruction, PC’’, PR’’ or ISA’’ get
copied to PC’, PR’ and ISA’ respectively. After the execution of the next
instruction, PC’, PR’ and ISA’ get copied to PC, PR and ISA respectively, and
then influence instruction execution. Hence, there is a delay slot before the
values of PC’’, PR’’ and ISA’’ propagate through to PC, PR and ISA.
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Abstract sequential model 17
There are potential ambiguities when one instruction makes a delayed state change
and the immediately following instruction (which is in a delay slot) makes a
non-delayed state change. These are handled as follows:

• The case of a delayed state change to PC immediately followed by a non-delayed
state change to PC does not occur. This is because delay slot instructions that
write to PC are illegal and cause an ILLSLOT exception.

• The case of a delayed state change to PR immediately followed by a non-delayed
state change to PR can occur. The ambiguous cases are when a BSR, BSRF or
JSR instruction is followed by an LDS that writes to PR. In this case the PR,
observed by the instruction that dynamically follows the LDS instruction, is the
value written by LDS not the value written by the sub-routine call. This
behavior follows from the model described above.

There are also potential ambiguities when one instruction makes a delayed state
change and the immediately following instruction (which is in a delay slot) reads
from that state. These are handled as follows:

• The case of a delayed state change to PC immediately followed by a read of PC
does not occur. This is because delay slot instructions that read from PC are
illegal and cause an ILLSLOT exception.

• The case of a delayed state change to PR immediately followed by a read from PR
can occur. The ambiguous cases are when a BSR, BSRF or JSR instruction is
followed by an STS that reads from PR. In this case the PR, observed by the STS
instruction, is the value written by the sub-routine call and not the previous
value. This behavior is modeled explicitly in the definition of the STS
instruction. It reads the value from PR’ (rather than the intuitive read from PR).
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

18 Abstract sequential model
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

SuperH, Inc.
05-CC-10003 V1.0 S
2
SHcompact
instruction
set

2.1 Alphabetical list of instructions
H-5 CPU Core, Volume 3: SHcompact

20 Alphabetical list of instructions
ADD Rm, Rn

Description:

This instruction adds Rm to Rn and places the result in Rn.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

ADD Rm, Rn

0011 n m 1100

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
op2 ← op2 + op1;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 21
ADD #imm, Rn

Description:

This instruction adds Rn to the sign-extended 8-bit immediate s and places the
result in Rn.

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The ‘#imm’ in the assembly syntax represents the immediate s after sign extension.

ADD #imm, Rn

0111 n s

15 12 11 8 7 0

imm ← SignExtend8(s);
op2 ← SignExpect32(Rn);
op2 ← op2 + imm;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

22 Alphabetical list of instructions
ADDC Rm, Rn

Description:

This instruction adds Rm, Rn and the T-bit. The result of the addition is placed in Rn.
and the carry-out from the addition is placed in the T-bit.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.
The T-bit source is required to have a 0 or 1 value.

ADDC Rm, Rn

0011 n m 1110

15 12 11 8 7 4 3 0

t ← ZeroExpect1(T);
op1 ← ZeroExtend32(SignExpect32(Rm));
op2 ← ZeroExtend32(SignExpect32(Rn));
op2 ← (op2 + op1) + t;
t ← op2< 32 FOR 1 >;
Rn ← Register(SignExtend32(op2));
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 23
ADDV Rm, Rn

Description:

This instruction adds Rm to Rn and places the result in Rn. The T-bit is set to 1 if the
addition result is outside the 32-bit signed range, otherwise the T-bit is set to 0.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

ADDV Rm, Rn

0011 n m 1111

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
op2 ← op2 + op1;

t ← INT ((op2 < (- 231)) OR (op2 ≥ 231));
Rn ← Register(SignExtend32(op2));
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

24 Alphabetical list of instructions
AND Rm, Rn

Description:

This instruction performs bitwise AND of Rm with Rn and places the result in Rn.

Notes:

This instruction performs a 64-bit bitwise AND. The Rm and Rn sources are not
required to have their upper 32 bits as sign-extensions. However, if both source
values have a 32-bit sign-extended representation, then the result will also have a
32-bit sign-extended representation.

AND Rm, Rn

0010 n m 1001

15 12 11 8 7 4 3 0

op1 ← ZeroExtend64(Rm);
op2 ← ZeroExtend64(Rn);
op2 ← op2 ∧ op1;
Rn ← Register(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 25
AND #imm, R0

Description:

This instruction performs bitwise AND of R0 with the zero-extended 8-bit
immediate i and places the result in R0.

Notes:

This instruction performs a 64-bit bitwise AND. The R0 source is not required to
have its upper 32 bits as sign-extensions. However, if the R0 source value has a
32-bit sign-extended representation, then the result will also have a 32-bit
sign-extended representation.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

AND #imm, R0

11001001 i

15 8 7 0

r0 ← ZeroExtend64(R0);
imm ← ZeroExtend8(i);
r0 ← r0 ∧ imm;
R0 ← Register(r0);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

26 Alphabetical list of instructions
AND.B #imm, @(R0, GBR)

Description:

This instruction performs a bitwise AND of an immediate constant with 8 bits of
data held in memory. The effective address is calculated by adding R0 and GBR. The
8 bits of data at the effective address are read. A bitwise AND is performed of the
read data with the zero-extended 8-bit immediate i. The result is written back to the
8 bits of data at the same effective address.

Possible exceptions:

RADDERR, RTLBMISS, READPROT, WRITEPROT

Notes:

The R0 and GBR sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

AND.B #imm, @(R0, GBR)

11001101 i

15 8 7 0

r0 ← SignExpect32(R0);
gbr ← SignExpect32(GBR);
imm ← ZeroExtend8(i);
address ← ZeroExtend64(r0 + gbr);
value ← ZeroExtend8(ReadMemory8(address));
value ← value ∧ imm;
WriteMemory8(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 27
BF label

Description:

This instruction is a conditional branch. The 8-bit displacement s is sign-extended,
doubled and added to PC+4 to form the target address. If the T-bit is 1, the branch is
not taken. If the T-bit is 0, the target address is copied to the PC.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The T-bit source is required to have a 0 or 1 value.

The target address calculation is performed at 64-bit precision, and can generate an
address outside the sign-extended 32-bit address space. The exception check on the

BF label

10001011 s

15 8 7 0

t ← ZeroExpect1(T);
pc ← SignExpect32(PC);
newpc ← SignExpect32(PC’);
delayedpc ← SignExpect32(PC’’);
offset ← SignExtend8(s) << 1;
label ← (pc + 4) + offset;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (MalformedAddress(label))

THROW IADDERR, label;
IF (t = 0)
{

newpc ← label;
delayedpc ← label + 2;

}
PC’ ← Register(SignExtend32(newpc));
PC’’ ← Register(SignExtend32(delayedpc));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

28 Alphabetical list of instructions
target address is performed regardless of whether the conditional branch is taken or
not-taken.

This is not a delayed branch instruction. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

The ‘label’ in the assembly syntax represents the absolute address of the target
SHcompact instruction.
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 29
BF/S label

Description:

This instruction is a delayed conditional branch. The 8-bit displacement s is
sign-extended, doubled and added to PC+4 to form the target address. If the T-bit is
1, the branch is not taken. If the T-bit is 0, the delay slot is executed and then the
target address is copied to the PC.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The T-bit source is required to have a 0 or 1 value.

The target address calculation is performed at 64-bit precision, and can generate an
address outside the sign-extended 32-bit address space. The exception check on the
target address is performed regardless of whether the conditional branch is taken or
not-taken.

BF/S label

10001111 s

15 8 7 0

t ← ZeroExpect1(T);
pc ← SignExpect32(PC);
delayedpc ← SignExpect32(PC’’);
offset ← SignExtend8(s) << 1;
label ← (pc + 4) + offset;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (MalformedAddress(label))

THROW IADDERR, label;
IF (t = 0)

delayedpc ← label;
PC’’ ← Register(SignExtend32(delayedpc));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

30 Alphabetical list of instructions
The delay slot is executed before branching. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

The ‘label’ in the assembly syntax represents the absolute address of the target
SHcompact instruction.
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 31
BRA label

Description:

This instruction is a delayed unconditional branch. The 12-bit displacement s is
sign-extended, doubled and added to PC+4 to form the target address. The delay slot
is executed and then the target address is copied to the PC.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The target address calculation is performed at 64-bit precision, and can generate an
address outside the sign-extended 32-bit address space.

The delay slot is executed before branching. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

The ‘label’ in the assembly syntax represents the absolute address of the target
SHcompact instruction.

BRA label

1010 s

15 12 11 0

pc ← SignExpect32(PC);
offset ← SignExtend12(s) << 1;
label ← (pc + 4) + offset;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (MalformedAddress(label))

THROW IADDERR, label;
delayedpc ← label;
PC’’ ← Register(SignExtend32(delayedpc));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

32 Alphabetical list of instructions
BRAF Rn

Description:

This instruction is a delayed unconditional branch. The target address is calculated
by adding Rn to PC+4. If the last two bits of the target address are both set, an
IADDERR exception is raised. Otherwise, the delay slot is executed in SHcompact.
Bit zero of the target address gives the new value of the ISA mode for the next
instruction. The least significant bit of the target address is cleared, and this value
is copied to the PC.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The target address calculation is performed at 64-bit precision, and can generate an
address outside the sign-extended 32-bit address space.

The delay slot is executed before branching and before ISA is updated. An ILLSLOT
exception is raised if this instruction is executed in a delay slot.

BRAF Rn

0000 n 00100011

15 12 11 8 7 0

pc ← SignExpect32(PC);
op1 ← SignExpect32(Rn);
IF (IsDelaySlot())

THROW ILLSLOT;
target ← (pc + 4) + op1;
IF (MalformedAddress(target) OR ((target ∧ 0x3) = 0x3))

THROW IADDERR, target;
delayedisa ← target ∧ 0x1;
delayedpc ← target ∧ (~ 0x1);
PC’’ ← Register(SignExtend32(delayedpc));
ISA’’ ← Bit(delayedisa);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 33
BRK

Description:

The BRK instruction causes a pre-execution BREAK exception. This exception is
generated even if BRK is executed in a delay slot. The BRK instruction is typically
reserved for use by the debugger.

Possible exceptions:

BREAK

BRK

0000000000111011

15 0

THROW BREAK;
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

34 Alphabetical list of instructions
BSR label

Description:

This instruction is a delayed unconditional branch used for branching to a
subroutine. The 12-bit displacement s is sign-extended, doubled and added to PC+4
to form the target address. The delay slot is executed and then the target address is
copied to the PC. The address of the instruction immediately following the delay slot
is copied to PR to indicate the return address.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The target address calculation is performed at 64-bit precision, and can generate an
address outside the sign-extended 32-bit address space.

If this instruction does not raise an exception then PR will be updated regardless of
whether the delay slot instruction raises an exception. The delay slot is executed
before branching. An ILLSLOT exception is raised if this instruction is executed in a
delay slot.

BSR label

1011 s

15 12 11 0

pc ← SignExpect32(PC);
offset ← SignExtend12(s) << 1;
delayedpr ← pc + 4;
label ← (pc + 4) + offset;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (MalformedAddress(label))

THROW IADDERR, label;
delayedpc ← label;
PR’’ ← Register(SignExtend32(delayedpr));
PC’’ ← Register(SignExtend32(delayedpc));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 35
The ‘label’ in the assembly syntax represents the absolute address of the target
SHcompact instruction.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

36 Alphabetical list of instructions
BSRF Rn

Description:

This instruction is a delayed unconditional branch used for branching to a far
subroutine. The target address is calculated by adding Rn to PC+4. If the last two
bits of the target address are both set, an IADDERR exception is raised. Otherwise,
the delay slot is executed in SHcompact. Bit zero of the target address gives the new
value of the ISA mode for the next instruction. The least significant bit of the target
address is cleared, and this value is copied to the PC. The address of the instruction
immediately following the delay slot is copied to PR to indicate the return address.

Possible exceptions:

ILLSLOT, IADDERR

BSRF Rn

0000 n 00000011

15 12 11 8 7 0

pc ← SignExpect32(PC);
op1 ← SignExpect32(Rn);
IF (IsDelaySlot())

THROW ILLSLOT;
delayedpr ← pc + 4;
target ← (pc + 4) + op1;
IF (MalformedAddress(target) OR ((target ∧ 0x3) = 0x3))

THROW IADDERR, target;
delayedisa ← target ∧ 0x1;
delayedpc ← target ∧ (~ 0x1);
PR’’ ← Register(SignExtend32(delayedpr));
PC’’ ← Register(SignExtend32(delayedpc));
ISA’’ ← Bit(delayedisa);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 37
Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The target address calculation is performed at 64-bit precision, and can generate an
address outside the sign-extended 32-bit address space.

If this instruction does not raise an exception then PR will be updated regardless of
whether the delay slot instruction raises an exception. The delay slot is executed
before branching and before ISA and PR are updated. An ILLSLOT exception is
raised if this instruction is executed in a delay slot.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

38 Alphabetical list of instructions
BT label

Description:

This instruction is a conditional branch. The 8-bit displacement s is sign-extended,
doubled and added to PC+4 to form the target address. If the T-bit is 0, the branch is
not taken. If the T-bit is 1, the target address is copied to the PC.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The T-bit source is required to have a 0 or 1 value.

The target address calculation is performed at 64-bit precision, and can generate an
address outside the sign-extended 32-bit address space. The exception check on the

BT label

10001001 s

15 8 7 0

t ← ZeroExpect1(T);
pc ← SignExpect32(PC);
newpc ← SignExpect32(PC’);
delayedpc ← SignExpect32(PC’’);
offset ← SignExtend8(s) << 1;
label ← (pc + 4) + offset;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (MalformedAddress(label))

THROW IADDERR, label;
IF (t = 1)
{

newpc ← label;
delayedpc ← label + 2;

}
PC’ ← Register(SignExtend32(newpc));
PC’’ ← Register(SignExtend32(delayedpc));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 39
target address is performed regardless of whether the conditional branch is taken or
not-taken.

This is not a delayed branch instruction. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

The ‘label’ in the assembly syntax represents the absolute address of the target
SHcompact instruction.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

40 Alphabetical list of instructions
BT/S label

Description:

This instruction is a delayed conditional branch. The 8-bit displacement s is
sign-extended, doubled and added to PC+4 to form the target address. If the T-bit is
0, the branch is not taken. If the T-bit is 1, the delay slot is executed and then the
target address is copied to the PC.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The T-bit source is required to have a 0 or 1 value.

The target address calculation is performed at 64-bit precision, and can generate an
address outside the sign-extended 32-bit address space. The exception check on the
target address is performed regardless of whether the conditional branch is taken or
not-taken.

BT/S label

10001101 s

15 8 7 0

t ← ZeroExpect1(T);
pc ← SignExpect32(PC);
delayedpc ← SignExpect32(PC’’);
offset ← SignExtend8(s) << 1;
label ← (pc + 4) + offset;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (MalformedAddress(label))

THROW IADDERR, label;
IF (t = 1)

delayedpc ← label;
PC’’ ← Register(SignExtend32(delayedpc));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 41
The delay slot is executed before branching. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

The ‘label’ in the assembly syntax represents the absolute address of the target
SHcompact instruction.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

42 Alphabetical list of instructions
CLRMAC

Description:

This instruction clears MACL and MACH.

CLRMAC

0000000000101000

15 0

macl ← 0;
mach ← 0;
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 43
CLRS

Description:

This instruction clears the S-bit.

CLRS

0000000001001000

15 0

s ← 0;
S ← Bit(s);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

44 Alphabetical list of instructions
CLRT

Description:

This instruction clears the T-bit.

CLRT

0000000000001000

15 0

t ← 0;
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 45
CMP/EQ Rm, Rn

Description:

This instruction sets the T-bit if the value of Rn is equal to the value of Rm,
otherwise it clears the T-bit.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

CMP/EQ Rm, Rn

0011 n m 0000

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
t ← INT (op2 = op1);
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

46 Alphabetical list of instructions
CMP/EQ #imm, R0

Description:

This instruction sets the T-bit if the value of R0 is equal to the sign-extended 8-bit
immediate s, otherwise it clears the T-bit.

Notes:

The R0 source is required to have a 32-bit sign-extended representation.

The ‘#imm’ in the assembly syntax represents the immediate s after sign extension.

CMP/EQ #imm, R0

10001000 s

15 8 7 0

r0 ← SignExpect32(R0);
imm ← SignExtend8(s);
t ← INT (r0 = imm);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 47
CMP/GE Rm, Rn

Description:

This instruction sets the T-bit if the signed value of Rn is greater than or equal to the
signed value of Rm, otherwise it clears the T-bit.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

CMP/GE Rm, Rn

0011 n m 0011

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
t ← INT (op2 ≥ op1);
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

48 Alphabetical list of instructions
CMP/GT Rm, Rn

Description:

This instruction sets the T-bit if the signed value of Rn is greater than the signed
value of Rm, otherwise it clears the T-bit.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

CMP/GT Rm, Rn

0011 n m 0111

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
t ← INT (op2 > op1);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 49
CMP/HI Rm, Rn

Description:

This instruction sets the T-bit if the unsigned value of Rn is greater than the
unsigned value of Rm, otherwise it clears the T-bit.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

CMP/HI Rm, Rn

0011 n m 0110

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(SignExpect32(Rm));
op2 ← ZeroExtend32(SignExpect32(Rn));
t ← INT (op2 > op1);
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

50 Alphabetical list of instructions
CMP/HS Rm, Rn

Description:

This instruction sets the T-bit if the unsigned value of Rn is greater than or equal to
the unsigned value of Rm, otherwise it clears the T-bit.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

CMP/HS Rm, Rn

0011 n m 0010

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(SignExpect32(Rm));
op2 ← ZeroExtend32(SignExpect32(Rn));
t ← INT (op2 ≥ op1);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 51
CMP/PL Rn

Description:

This instruction sets the T-bit if the signed value of Rn is greater than 0, otherwise
it clears the T-bit.

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

CMP/PL Rn

0100 n 00010101

15 12 11 8 7 0

op1 ← SignExpect32(Rn);
t ← INT (op1 > 0);
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

52 Alphabetical list of instructions
CMP/PZ Rn

Description:

This instruction sets the T-bit if the signed value of Rn is greater than or equal to 0,
otherwise it clears the T-bit.

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

CMP/PZ Rn

0100 n 00010001

15 12 11 8 7 0

op1 ← SignExpect32(Rn);
t ← INT (op1 ≥ 0);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 53
CMP/STR Rm, Rn

Description:

This instruction sets the T-bit if any byte in Rn has the same value as the
corresponding byte in Rm, otherwise it clears the T-bit.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

CMP/STR Rm, Rn

0010 n m 1100

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
temp ← op1 ⊕ op2;
t ← INT (temp< 0 FOR 8 > = 0);
t ← (INT (temp< 8 FOR 8 > = 0)) ∨ t;
t ← (INT (temp< 16 FOR 8 > = 0)) ∨ t;
t ← (INT (temp< 24 FOR 8 > = 0)) ∨ t;
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

54 Alphabetical list of instructions
DIV0S Rm, Rn

Description:

This instruction initializes the divide-step state for a signed division. The Q-bit is
initialized with the sign-bit of the dividend, and the M-bit with the sign-bit of the
divisor. The T-bit is initialized to 0 if the Q-bit and the M-bit are the same, otherwise
it is initialized to 1.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

DIV0S Rm, Rn

0010 n m 0111

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
q ← op2< 31 FOR 1 >;
m ← op1< 31 FOR 1 >;
t ← m ⊕ q;
Q ← Bit(q);
M ← Bit(m);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 55
DIV0U

Description:

This instruction initializes the divide-step state for an unsigned division. The Q-bit,
M-bit and T-bit are all set to 0.

DIV0U

0000000000011001

15 0

q ← 0;
m ← 0;
t ← 0;
Q ← Bit(q);
M ← Bit(m);
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

56 Alphabetical list of instructions
DIV1 Rm, Rn

Description:

This instruction is used to perform a single-bit divide-step for the division of a
dividend held in Rn by a divisor held in Rm. The Q-bit, M-bit and T-bit are used to
hold additional state through a divide-step sequence. Each DIV1 consumes 1 bit of
the dividend from Rn, and produces 1 bit of result. The divide initialization and step
instructions do not detect divide-by-zero nor overflow. If required, these cases should
be checked using additional instructions.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.
The T-bit source is required to have a 0 or 1 value.

DIV1 Rm, Rn

0011 n m 0100

15 12 11 8 7 4 3 0

q ← ZeroExtend1(Q);
m ← ZeroExtend1(M);
t ← ZeroExpect1(T);
op1 ← ZeroExtend32(SignExpect32(Rm));
op2 ← ZeroExtend32(SignExpect32(Rn));
oldq ← q;
q ← op2< 31 FOR 1 >;
op2 ← ZeroExtend32(op2 << 1) ∨ t;
IF (oldq = m)

op2 ← op2 - op1;
ELSE

op2 ← op2 + op1;
q ← (q ⊕ m) ⊕ op2< 32 FOR 1 >;
t ← 1 - (q ⊕ m);
Rn ← Register(SignExtend32(op2));
Q ← Bit(q);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 57
DMULS.L Rm, Rn

Description:

This instruction multiplies the signed 32-bit value held in Rm with the signed 32-bit
value held in Rn to give a full 64-bit result. The lower half of the result is placed in
MACL and the upper half in MACH.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

DMULS.L Rm, Rn

0011 n m 1101

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
mac ← op2 × op1;
macl ← mac;
mach ← mac >> 32;
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

58 Alphabetical list of instructions
DMULU.L Rm, Rn

Description:

This instruction multiplies the unsigned 32-bit value held in Rm with the unsigned
32-bit value held in Rn to give a full 64-bit result. The lower half of the result is
placed in MACL and the upper half in MACH.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

DMULU.L Rm, Rn

0011 n m 0101

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(SignExpect32(Rm));
op2 ← ZeroExtend32(SignExpect32(Rn));
mac ← op2 × op1;
macl ← mac;
mach ← mac >> 32;
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 59
DT Rn

Description:

This instruction subtracts 1 from Rn and placed the result in Rn. The T-bit is set if
the result is zero, otherwise the T-bit is cleared.

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

DT Rn

0100 n 00010000

15 12 11 8 7 0

op1 ← SignExpect32(Rn);
op1 ← op1 - 1;
t ← INT (op1 = 0);
Rn ← Register(SignExtend32(op1));
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

60 Alphabetical list of instructions
EXTS.B Rm, Rn

Description:

This instruction reads the 8 least significant bits of Rm, sign-extends, and places the
result in Rn.

Notes:

The Rm source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rm are ignored.

EXTS.B Rm, Rn

0110 n m 1110

15 12 11 8 7 4 3 0

op1 ← SignExtend8(Rm);
op2 ← op1;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 61
EXTS.W Rm, Rn

Description:

This instruction reads the 16 least significant bits of Rm, sign-extends, and places
the result in Rn.

Notes:

The Rm source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rm are ignored.

EXTS.W Rm, Rn

0110 n m 1111

15 12 11 8 7 4 3 0

op1 ← SignExtend16(Rm);
op2 ← op1;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

62 Alphabetical list of instructions
EXTU.B Rm, Rn

Description:

This instruction reads the 8 least significant bits of Rm, zero-extends, and places the
result in Rn.

Notes:

The Rm source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rm are ignored.

EXTU.B Rm, Rn

0110 n m 1100

15 12 11 8 7 4 3 0

op1 ← ZeroExtend8(Rm);
op2 ← op1;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 63
EXTU.W Rm, Rn

Description:

This instruction reads the 16 least significant bits of Rm, zero-extends, and places
the result in Rn.

Notes:

The Rm source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rm are ignored.

EXTU.W Rm, Rn

0110 n m 1101

15 12 11 8 7 4 3 0

op1 ← ZeroExtend16(Rm);
op2 ← op1;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

64 Alphabetical list of instructions
FABS DRn

Description:

This floating-point instruction computes the absolute value of a double-precision
floating-point number. It reads DRn, clears the sign bit and places the result in DRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FABS DRn

1111 n >> 1 001011101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
op1 ← FloatValue64(DRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← FABS_D(op1);
DRFRONT+n ← FloatRegister64(op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 65
FABS FRn

Description:

This floating-point instruction computes the absolute value of a single-precision
floating-point number. It reads FRn, clears the sign bit and places the result in FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FABS FRn

1111 n 01011101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend64(SR);
op1 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← FABS_S(op1);
FRFRONT+n ← FloatRegister32(op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

66 Alphabetical list of instructions
FADD DRm, DRn

Description:

This floating-point instruction performs a double-precision floating-point addition.
It adds DRm to DRn and places the result in DRn. The rounding mode is determined
by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FADD DRm, DRn

1111 n >> 1 0 m >> 1 00000

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DRFRONT+m);
op2 ← FloatValue64(DRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FADD_D(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DRFRONT+n ← FloatRegister64(op2);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 67
FADD FRm, FRn

Description:

This floating-point instruction performs a single-precision floating-point addition. It
adds FRm to FRn and places the result in FRn. The rounding mode is determined by
FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FADD FRm, FRn

1111 n m 0000

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRFRONT+m);
op2 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FADD_S(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRFRONT+n ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

68 Alphabetical list of instructions
FADD special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
the inputs are differently signed infinities.

3 Error: an FPU error is signaled if FPSCR.DN is zero, neither input is a NaN and
either input is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested by
the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘ADD’ case is described by the IEEE754 specification.

op1 →
↓ op2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM ADD op2 op2 +INF -INF n/a qNaN qNaN

+0 op1 +0 +0 +INF -INF n/a qNaN qNaN

-0 op1 +0 -0 +INF -INF n/a qNaN qNaN

+INF +INF +INF +INF +INF qNaN n/a qNaN qNaN

-INF -INF -INF -INF qNaN -INF n/a qNaN qNaN

+, -DNRM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 69
FCMP/EQ DRm, DRn

Description:

This floating-point instruction performs a double-precision floating-point equality
comparison. It sets the T-bit to 1 if DRm is equal to DRn, and otherwise sets the T-bit
to 0.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FCMP/EQ DRm, DRn

1111 n >> 1 0 m >> 1 00100

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DRFRONT+m);
op2 ← FloatValue64(DRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
t, fps ← FCMPEQ_D(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

70 Alphabetical list of instructions
FCMP/EQ FRm, FRn

Description:

This floating-point instruction performs a single-precision floating-point equality
comparison. It sets the T-bit to 1 if FRm is equal to FRn, and otherwise sets the T-bit
to 0.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FCMP/EQ FRm, FRn

1111 n m 0100

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRFRONT+m);
op2 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
t, fps ← FCMPEQ_S(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 71
FCMP/EQ special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘CMPEQ’ case is described by the IEEE754 specification.

op1 →
↓ op2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM CMPEQ false false false false false false false

+0 false true true false false false false false

-0 false true true false false false false false

+INF false false false true false false false false

-INF false false false false true false false false

+, -DNRM false false false false false CMPEQ false false

qNaN false false false false false false false false

sNaN false false false false false false false false
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

72 Alphabetical list of instructions
FCMP/GT DRm, DRn

Description:

This floating-point instruction performs a double-precision floating-point
greater-than comparison. It sets the T-bit to 1 if DRn is greater than DRm, and
otherwise sets the T-bit to 0.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FCMP/GT DRm, DRn

1111 n >> 1 0 m >> 1 00101

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DRFRONT+m);
op2 ← FloatValue64(DRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
t, fps ← FCMPGT_D(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 73
FCMP/GT FRm, FRn

Description:

This floating-point instruction performs a single-precision floating-point
greater-than comparison. It sets the T-bit to 1 if FRn is greater than FRm, and
otherwise sets the T-bit to 0.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FCMP/GT FRm, FRn

1111 n m 0101

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRFRONT+m);
op2 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
t, fps ← FCMPGT_S(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

74 Alphabetical list of instructions
FCMP/GT special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a NaN.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘CMPGT’ case is described by the IEEE754 specification.

op2 →
↓ op1

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM CMPGT CMPGT CMPGT true false CMPGT false false

+0 CMPGT false false true false CMPGT false false

-0 CMPGT true false true false CMPGT false false

+INF false false false false false false false false

-INF true true true true false true false false

+, -DNRM CMPGT CMPGT CMPGT true false CMPGT false false

qNaN false false false false false false false false

sNaN false false false false false false false false
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 75
FCNVDS DRm, FPUL

Description:

This floating-point instruction performs a double-precision to single-precision
floating-point conversion. It reads a double-precision value from DRm, converts it to
single-precision and places the result in FPUL. The rounding mode is determined by
FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FCNVDS DRm, FPUL

1111 m >> 1 010111101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DRFRONT+m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul, fps ← FCNV_DS(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
FPUL ← ZeroExtend32(fpul);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

76 Alphabetical list of instructions
FCNVSD FPUL, DRn

Description:

This floating-point instruction performs a single-precision to double-precision
floating-point conversion. It reads a single-precision value from FPUL, converts it to
double-precision and places the result in DRn. FPSCR.RM has no effect since the
conversion is exact.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FCNVSD FPUL, DRn

1111 n >> 1 010101101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
fpul ← SignExtend32(FPUL);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FCNV_SD(fpul, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
DRFRONT+n ← FloatRegister64(op1);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 77
FCNVDS and FCNVSD special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the input is a signaling NaN.

3 Error: an FPU error is signaled if FPSCR.DN is zero and the input is a denor-
malized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. These cases occur for FCNVDS but not for FCNVSD. When inex-
act, underflow or overflow exceptions are requested by the user, an exception is
always raised for FCNVDS regardless of whether that condition arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘CNV’ case is described by the IEEE754 specification.

op1 → +NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

CNV +0 -0 +INF -INF n/a qNaN qNaN
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

78 Alphabetical list of instructions
FDIV DRm, DRn

Description:

This floating-point instruction performs a double-precision floating-point division. It
divides DRn by DRm and places the result in DRn. The rounding mode is determined
by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FDIV DRm, DRn

1111 n >> 1 0 m >> 1 00011

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DRFRONT+m);
op2 ← FloatValue64(DRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FDIV_D(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuEnableZ(fps) AND FpuCauseZ(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DRFRONT+n ← FloatRegister64(op2);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 79
FDIV FRm, FRn

Description:

This floating-point instruction performs a single-precision floating-point division. It
divides FRn by FRm and places the result in FRn. The rounding mode is determined
by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FDIV FRm, FRn

1111 n m 0011

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRFRONT+m);
op2 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FDIV_S(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuEnableZ(fps) AND FpuCauseZ(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRFRONT+n ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

80 Alphabetical list of instructions
FDIV special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
the division is of a zero by a zero, or of an infinity by an infinity.

3 Divide-by-zero: a divide-by-zero is signaled if the divisor is zero and the dividend
is a finite non-zero number.

4 Error: an FPU error is signaled if FPSCR.DN is zero, neither input is a NaN and
either of the following conditions is true: the divisor is a denormalized number,
or the dividend is a denormalized number and the divisor is not a zero.

5 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested by
the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated as follows:

op2 →
↓ op1

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM DIV +0, -0 -0, +0 +INF, -INF -INF, +INF n/a qNaN qNaN

+0 +INF, -INF qNaN qNaN +INF -INF +INF, -INF qNaN qNaN

-0 -INF, +INF qNaN qNaN -INF +INF -INF, +INF qNaN qNaN

+INF +0, -0 +0 -0 qNaN qNaN n/a qNaN qNaN

-INF -0, +0 -0 +0 qNaN qNaN n/a qNaN qNaN

+, -DNRM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 81
FPU error is indicated by heavy shading and always raises an exception. Invalid
operations and divide-by-zero are indicated by light shading and raise an exception
if enabled. FPU disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘DIV’ case is described by the IEEE754 specification.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

82 Alphabetical list of instructions
FIPR FVm, FVn

Description:

This floating-point instruction computes dot-product of two vectors, FVm and FVn,
and places the result in element 3 of FVn. Each vector contains four single-precision
floating-point values. The dot-product is specified as:

FRn+3 =

This is an approximate computation. The specified error in the result value is
defined in Volume 1, Chapter 13: SHcompact floating-point.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FIPR FVm, FVn

1111 n >> 2 m >> 2 11101101

15 12 11 10 9 8 7 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValueVector32(FVFRONT+m);
op2 ← FloatValueVector32(FVFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2[3], fps ← FIPR_S(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FVFRONT+n ← FloatRegisterVector32(op2);
FPSCR ← ZeroExtend32(fps);

FRn i+ FRm i+×

i 0=

3

�

SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 83
FIPR special cases:

FIPR is an approximate instruction. Denormalized numbers are supported:

• When FPSCR.DN is 0, denormalized numbers are treated as their denormalized
value in the FIPR calculation. This instruction never signals an FPU error.

• When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied
before exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if any of the following arise:

• Any of the inputs is a signaling NaN.

• Multiplication of a zero by an infinity.

• Addition of differently signed infinities where none of the inputs is a qNaN.

The multiplication is performed with sufficient precision to avoid overflow, and
therefore the multiplication of any two finite numbers does not produce an
infinity. The multiplication result will be an infinity only if there is a
multiplication of an infinity with a normalized number, an infinity with a
denormalized number or an infinity with an infinity.

The addition of differently signed infinities is detected if there is (at least) one
positive infinity and (at least) one negative infinity in the set of 4 multiplication
results.

3 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. This is an approximate instruction and inexact is signaled
except where special cases occur. Precise details of the approximate inner-prod-
uct algorithm, including the detection of underflow and overflow cases, are
implementation dependent. When inexact, underflow or overflow exceptions are
requested by the user, an exception is always raised regardless of whether that
condition arose.

If the instruction does not raise an exception, a result is generated according to the
following tables. Where the behavior is not a special case, the instruction computes
an approximate result using an implementation-dependent algorithm. In the
following tables, invalid operations are indicated by light shading and raise an
exception if enabled. FPU disabled, inexact, underflow and overflow cases are not
shown. Inexact is signaled in the ‘FIPRADD’ case.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

84 Alphabetical list of instructions
Each of the 4 pairs of multiplication operands (op1 and op2) is selected from
corresponding elements of the two 4-element source vectors and multiplied:

If any of the multiplications evaluates to qNaN, then the result of the instruction is
qNaN and no further analysis need be performed. In the ‘FIPRMUL’, +0, -0, +INF
and -INF cases, the 4 addition operands (labelled temp0 to temp3) are summed:

op1 →
↓ op2

+,-NORM,
+,-DNRM

+0 -0 +INF -INF qNaN sNaN

+,-NORM and +,-DNRM FIPRMUL +0, -0 -0, +0 +INF, -INF -INF, +INF qNaN qNaN

+0 +0, -0 +0 -0 qNaN qNaN qNaN qNaN

-0 -0, +0 -0 +0 qNaN qNaN qNaN qNaN

+INF +INF, -INF qNaN qNaN +INF -INF qNaN qNaN

-INF -INF, +INF qNaN qNaN -INF +INF qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

temp0 → FIPRMUL, +0, -0 +INF -INF

↓ temp2
temp1→
↓ temp3

FIPRMUL,
+0, -0

+INF -INF FIPRMUL,
+0, -0

+INF -INF FIPRMUL,
+0, -0

+INF -INF

FIPRMUL,
+0, -0

FIPRMUL,
+0, -0

FIPRADD +INF -INF +INF +INF qNaN -INF qNaN -INF

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF FIPRMUL,
+0, -0

+INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF FIPRMUL,
+0, -0

-INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 85
FLDI0 FRn

Description:

This floating-point instruction loads a constant representing the single-precision
floating-point value of 0.0 into FRn.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FLDI0 FRn

1111 n 10001101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend64(SR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← 0x00000000;
FRFRONT+n ← FloatRegister32(op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

86 Alphabetical list of instructions
FLDI1 FRn

Description:

This floating-point instruction loads a constant representing the single-precision
floating-point value of 1.0 into FRn.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FLDI1 FRn

1111 n 10011101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend64(SR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← 0x3F800000;
FRFRONT+n ← FloatRegister32(op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 87
FLDS FRm, FPUL

Description:

This floating-point instruction copies FRm to FPUL.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FLDS FRm, FPUL

1111 m 00011101

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
op1 ← FloatValue32(FRFRONT+m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul ← op1;
FPUL ← ZeroExtend32(fpul);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

88 Alphabetical list of instructions
FLOAT FPUL, DRn

Description:

This floating-point instruction performs a signed 32-bit integer to double-precision
floating-point conversion. It reads a signed 32-bit integer value from FPUL,
converts it to a double-precision range and places the result in DRn. In all cases the
provided integer value will be exactly represented in the destination floating-point
format. FPSCR.RM has no effect since the conversion is exact.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FLOAT FPUL, DRn

1111 n >> 1 000101101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

fpul ← SignExtend32(FPUL);
sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FLOAT_LD(fpul, fps);
DRFRONT+n ← FloatRegister64(op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 89
FLOAT FPUL, FRn

Description:

This floating-point instruction performs a signed 32-bit integer to single-precision
floating-point conversion. It reads a signed 32-bit integer value from FPUL,
converts it to a single-precision range and places the result in FRn. In cases where
the integer value cannot be exactly represented in the destination floating-point
format, the rounding mode is determined by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FLOAT FPUL, FRn

1111 n 00101101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
fpul ← SignExtend32(FPUL);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FLOAT_LS(fpul, fps);
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRFRONT+n ← FloatRegister32(op1);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

90 Alphabetical list of instructions
FLOAT special cases:

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Inexact: inexact can occur for FLOAT FPUL, FRn but not for FLOAT FPUL,
DRn. When inexact exceptions are requested by the user, an exception is always
raised for FLOAT FPUL, FRn regardless of whether that condition arose. Over-
flow and underflow do not occur for either of these instructions.

If the instruction does not raise an exception, the conversion is performed as
indicated by the IEEE754 specification.
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 91
FMAC FR0, FRm, FRn

Description:

This floating-point instruction performs a single-precision floating-point
multiply-accumulate. It multiplies FR0 by FRm, adds this intermediate to FRn and
places the result back to FRn. The multiplication and addition are performed as if
the exponent and precision ranges were unbounded, followed by one rounding down
to single-precision format. The rounding mode is determined by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FMAC FR0, FRm, FRn

1111 n m 1110

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
fr0 ← FloatValue32(FRFRONT+0);
op1 ← FloatValue32(FRFRONT+m);
op2 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FMAC_S(fr0, op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRFRONT+n ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

92 Alphabetical list of instructions
FMAC special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if any of the three inputs is a signaling
NaN, there is a multiplication of a zero by an infinity, or there is an addition of
differently signed infinities.

The multiplication is performed with sufficient precision to avoid overflow, and
therefore the multiplication of any two finite numbers does not produce an
infinity. The multiplication result will be an infinity only if there is a
multiplication of an infinity with a normalized number, an infinity with a
denormalized number or an infinity with an infinity.

3 Error: an FPU error is signaled if FPSCR.DN is 0 and none of the inputs are a
NaN and at least one of the inputs is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. The multiply-accumulate is implemented using a fused-mac
algorithm, and these are detected during the conversion of the exactly evaluated
intermediate to the single-precision result. When inexact, underflow or overflow
exceptions are requested by the user, an exception is always raised regardless of
whether that condition arose.

If the instruction does not raise an exception, a result is generated according to the
following tables. In these tables, FPU error is indicated by heavy shading and
always raises an exception. Invalid operations are indicated by light shading and
raise an exception if enabled. FPU disabled, inexact, underflow and overflow cases
are not shown.

Firstly, the operands are checked for sNaN:

fr0 → other sNaN

op1 →
↓ op2

other sNaN other sNaN

other qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 93
If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, fr0 and op1 are checked for a zero multiplied by an infinity:

If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, the operands are checked for input qNaN values:

By this stage all operations involving sNaN or qNaN operands have been dealt with.
If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, the operands are checked for the addition of differently signed infinities:

↓ op1, fr0 → other +0 -0 +INF -INF

other

+0 qNaN qNaN

-0 qNaN qNaN

+INF qNaN qNaN

-INF qNaN qNaN

fr0 → other qNaN

↓ op2, op1 → other qNaN other qNaN

other qNaN qNaN qNaN

qNaN qNaN qNaN qNaN qNaN

fr0 → +other -other +INF -INF

op1 →
↓ op2

+
ot

he
r

-o
th

er

+
IN

F

-I
N

F

+
ot

he
r

-o
th

er

+
IN

F

-I
N

F

+
ot

he
r

-o
th

er

+
IN

F

-I
N

F

+
ot

he
r

-o
th

er

+
IN

F

-I
N

F
+other, -other

+INF

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

-INF

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

94 Alphabetical list of instructions
If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, fr0 and op1 are multiplied:

The empty cells in this table correspond to cases that have already been dealt with.
If either source is denormalized, no further analysis is performed. In the
‘FULLMUL’ case, a multiplication is performed without loss of precision. There is no
rounding nor overflow, and this multiplication cannot produce an intermediate
infinity.

In the ‘FULLMUL’, +0, -0, +INF and -INF cases, the 2 addition operands (fr0*op1
and op2) are summed:

The two empty cells in this table correspond to cases that have already been dealt
with. In the ‘FULLADD’ cases the fully-precise addition intermediate is rounded to
give a single-precision result.

fr0 →
↓ op1

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

+,-NORM FULLMUL +0, -0 -0, +0 +INF, -INF -INF, +INF n/a

+0 +0, -0 +0 -0 n/a

-0 -0, +0 -0 +0 n/a

+INF +INF, -INF +INF -INF n/a

-INF -INF, +INF -INF +INF n/a

+, -DNRM n/a n/a n/a n/a n/a n/a

(fr0*op1)→
↓ op2

FULLMUL +0 -0 +INF -INF

+,-NORM FULLADD op2 op2 +INF -INF

+0 FULLADD +0 +0 +INF -INF

-0 FULLADD +0 -0 +INF -INF

+INF +INF +INF +INF +INF

-INF -INF -INF -INF -INF

+, -DNRM n/a n/a n/a n/a n/a
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 95
FMOV DRm, DRn

Description:

This floating-point instruction reads a pair of single-precision floating-point values
from DRm and copies them to DRn. This is a bit-by-bit copy with no interpretation or
conversion of the values.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FMOV DRm, DRn

1111 n >> 1 0 m >> 1 01100

15 12 11 9 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← FloatValuePair32(FPFRONT+m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
FPFRONT+n ← FloatRegisterPair32(op2);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

96 Alphabetical list of instructions
FMOV DRm, XDn

Description:

This floating-point instruction reads a pair of single-precision floating-point values
from DRm and copies them to XDn. This is a bit-by-bit copy with no interpretation or
conversion of the values.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FMOV DRm, XDn

1111 n >> 1 1 m >> 1 01100

15 12 11 9 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← FloatValuePair32(FPFRONT+m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
FPBACK+n ← FloatRegisterPair32(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 97
FMOV DRm, @Rn

Description:

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect with zero-displacement addressing. DRm
is written as two consecutive 32-bit values to the effective address specified in Rn

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

FMOV DRm, @Rn

1111 n m >> 1 01010

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← FloatValuePair32(FPFRONT+m);
op2 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op2);
WriteMemoryPair32(address, op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

98 Alphabetical list of instructions
FMOV DRm, @-Rn

Description:

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect with pre-decrement addressing. Rn is
pre-decremented by 8 to give the effective address. DRm is written as two
consecutive 32-bit values to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

FMOV DRm, @-Rn

1111 n m >> 1 01011

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← FloatValuePair32(FPFRONT+m);
op2 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op2 - 8);
WriteMemoryPair32(address, op1);
op2 ← address;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 99
FMOV DRm, @(R0, Rn)

Description:

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect addressing. The effective address is
formed by adding R0 to Rn. DRm is written as two consecutive 32-bit values to the
effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The R0 and Rn sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

FMOV DRm, @(R0, Rn)

1111 n m >> 1 00111

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
r0 ← SignExpect32(R0);
op1 ← FloatValuePair32(FPFRONT+m);
op2 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(r0 + op2);
WriteMemoryPair32(address, op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

100 Alphabetical list of instructions
FMOV FRm, FRn

Description:

This floating-point instruction reads a single-precision floating-point value from
FRm and copies it to FRn. This is a bit-by-bit copy with no interpretation or
conversion of the value.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FMOV FRm, FRn

1111 n m 1100

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend64(SR);
op1 ← FloatValue32(FRFRONT+m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
FRFRONT+n ← FloatRegister32(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 101
FMOV.S FRm, @Rn

Description:

This floating-point instruction stores a single-precision floating-point register to
memory using register indirect with zero-displacement addressing. The 32-bit value
of FRm is written to the effective address specified in Rn

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

FMOV.S FRm, @Rn

1111 n m 1010

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend64(SR);
op1 ← FloatValue32(FRFRONT+m);
op2 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op2);
WriteMemory32(address, op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

102 Alphabetical list of instructions
FMOV.S FRm, @-Rn

Description:

This floating-point instruction stores a single-precision floating-point register to
memory using register indirect with pre-decrement addressing. Rn is
pre-decremented by 4 to give the effective address. The 32-bit value of FRm is
written to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

FMOV.S FRm, @-Rn

1111 n m 1011

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend64(SR);
op1 ← FloatValue32(FRFRONT+m);
op2 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op2 - 4);
WriteMemory32(address, op1);
op2 ← address;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 103
FMOV.S FRm, @(R0, Rn)

Description:

This floating-point instruction stores a single-precision floating-point register to
memory using register indirect addressing. The effective address is formed by
adding R0 to Rn. The 32-bit value of FRm is written to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The R0 and Rn sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

FMOV.S FRm, @(R0, Rn)

1111 n m 0111

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend64(SR);
r0 ← SignExpect32(R0);
op1 ← FloatValue32(FRFRONT+m);
op2 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(r0 + op2);
WriteMemory32(address, op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

104 Alphabetical list of instructions
FMOV XDm, DRn

Description:

This floating-point instruction reads a pair of single-precision floating-point values
from XDm and copies them to DRn. This is a bit-by-bit copy with no interpretation or
conversion of the values.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FMOV XDm, DRn

1111 n >> 1 0 m >> 1 11100

15 12 11 9 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← FloatValuePair32(FPBACK+m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
FPFRONT+n ← FloatRegisterPair32(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 105
FMOV XDm, XDn

Description:

This floating-point instruction reads a pair of single-precision floating-point values
from XDm and copies them to XDn. This is a bit-by-bit copy with no interpretation or
conversion of the values.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FMOV XDm, XDn

1111 n >> 1 1 m >> 1 11100

15 12 11 9 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← FloatValue64(DRBACK+m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
DRBACK+n ← FloatRegister64(op2);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

106 Alphabetical list of instructions
FMOV XDm, @Rn

Description:

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect with zero-displacement addressing. XDm
is written as two consecutive 32-bit values to the effective address specified in Rn

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

FMOV XDm, @Rn

1111 n m >> 1 11010

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← FloatValuePair32(FPBACK+m);
op2 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op2);
WriteMemoryPair32(address, op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 107
FMOV XDm, @-Rn

Description:

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect with pre-decrement addressing. Rn is
pre-decremented by 8 to give the effective address. XDm is written as two
consecutive 32-bit values to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

FMOV XDm, @-Rn

1111 n m >> 1 11011

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← FloatValuePair32(FPBACK+m);
op2 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op2 - 8);
WriteMemoryPair32(address, op1);
op2 ← address;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

108 Alphabetical list of instructions
FMOV XDm, @(R0, Rn)

Description:

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect addressing. The effective address is
formed by adding R0 to Rn. XDm is written as two consecutive 32-bit values to the
effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The R0 and Rn sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

FMOV XDm, @(R0, Rn)

1111 n m >> 1 10111

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
r0 ← SignExpect32(R0);
op1 ← FloatValuePair32(FPBACK+m);
op2 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(r0 + op2);
WriteMemoryPair32(address, op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 109
FMOV @Rm, DRn

Description:

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect with zero-displacement addressing.
Two consecutive 32-bit values are read from the effective address specified in Rm
and loaded into DRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

FMOV @Rm, DRn

1111 n >> 1 0 m 1000

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op1);
op2 ← ReadMemoryPair32(address);
FPFRONT+n ← FloatRegisterPair32(op2);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

110 Alphabetical list of instructions
FMOV @Rm+, DRn

Description:

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect with post-increment addressing. Two
consecutive 32-bit values are read from the effective address specified in Rm and
loaded into DRn. Rm is post-incremented by 8.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

FMOV @Rm+, DRn

1111 n >> 1 0 m 1001

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op1);
op2 ← ReadMemoryPair32(address);
op1 ← op1 + 8;
Rm ← Register(SignExtend32(op1));
FPFRONT+n ← FloatRegisterPair32(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 111
FMOV @(R0, Rm), DRn

Description:

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect addressing. The effective address is
formed by adding R0 to Rm. Two consecutive 32-bit values are read from the
effective address and loaded into DRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The R0 and Rm sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

FMOV @(R0, Rm), DRn

1111 n >> 1 0 m 0110

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
r0 ← SignExpect32(R0);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(r0 + op1);
op2 ← ReadMemoryPair32(address);
FPFRONT+n ← FloatRegisterPair32(op2);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

112 Alphabetical list of instructions
FMOV.S @Rm, FRn

Description:

This floating-point instruction loads a single-precision floating-point register from
memory using register indirect with zero-displacement addressing. A 32-bit value is
read from the effective address specified in Rm and loaded into FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

FMOV.S @Rm, FRn

1111 n m 1000

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend64(SR);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op1);
op2 ← ReadMemory32(address);
FRFRONT+n ← FloatRegister32(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 113
FMOV.S @Rm+, FRn

Description:

This floating-point instruction loads a single-precision floating-point register from
memory using register indirect with post-increment addressing. A 32-bit value is
read from the effective address specified in Rm and loaded into FRn. Rm is
post-incremented by 4.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

FMOV.S @Rm+, FRn

1111 n m 1001

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend64(SR);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op1);
op2 ← ReadMemory32(address);
op1 ← op1 + 4;
Rm ← Register(SignExtend32(op1));
FRFRONT+n ← FloatRegister32(op2);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

114 Alphabetical list of instructions
FMOV.S @(R0, Rm), FRn

Description:

This floating-point instruction loads a single-precision floating-point register from
memory using register indirect addressing. The effective address is formed by
adding R0 to Rm. A 32-bit value is read from the effective address and loaded into
FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The R0 and Rm sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

FMOV.S @(R0, Rm), FRn

1111 n m 0110

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend64(SR);
r0 ← SignExpect32(R0);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(r0 + op1);
op2 ← ReadMemory32(address);
FRFRONT+n ← FloatRegister32(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 115
FMOV @Rm, XDn

Description:

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect with zero-displacement addressing.
Two consecutive 32-bit values are read from the effective address specified in Rm
and loaded into XDn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

FMOV @Rm, XDn

1111 n >> 1 1 m 1000

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op1);
op2 ← ReadMemoryPair32(address);
FPBACK+n ← FloatRegisterPair32(op2);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

116 Alphabetical list of instructions
FMOV @Rm+, XDn

Description:

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect with post-increment addressing. Two
consecutive 32-bit values are read from the effective address specified in Rm and
loaded into XDn. Rm is post-incremented by 8.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

FMOV @Rm+, XDn

1111 n >> 1 1 m 1001

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op1);
op2 ← ReadMemoryPair32(address);
op1 ← op1 + 8;
Rm ← Register(SignExtend32(op1));
FPBACK+n ← FloatRegisterPair32(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 117
FMOV @(R0, Rm), XDn

Description:

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect addressing. The effective address is
formed by adding R0 to Rm. Two consecutive 32-bit values are read from the
effective address and loaded into XDn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The R0 and Rm sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

FMOV @(R0, Rm), XDn

1111 n >> 1 1 m 0110

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend64(SR);
r0 ← SignExpect32(R0);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(r0 + op1);
op2 ← ReadMemoryPair32(address);
FPBACK+n ← FloatRegisterPair32(op2);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

118 Alphabetical list of instructions
FMUL DRm, DRn

Description:

This floating-point instruction performs a double-precision floating-point
multiplication. It multiplies DRm by DRn and places the result in DRn. The
rounding mode is determined by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FMUL DRm, DRn

1111 n >> 1 0 m >> 1 00010

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DRFRONT+m);
op2 ← FloatValue64(DRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FMUL_D(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DRFRONT+n ← FloatRegister64(op2);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 119
FMUL FRm, FRn

Description:

This floating-point instruction performs a single-precision floating-point
multiplication. It multiplies FRm by FRn and places the result in FRn. The rounding
mode is determined by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FMUL FRm, FRn

1111 n m 0010

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRFRONT+m);
op2 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FMUL_S(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRFRONT+n ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

120 Alphabetical list of instructions
FMUL special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
this is a multiplication of a zero by an infinity.

3 Error: an FPU error is signaled if FPSCR.DN is zero, neither input is a NaN and
either input is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested by
the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘MUL’ case is described by the IEEE754 specification.

op1 →
↓ op2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM MUL +0, -0 -0, +0 +INF, -INF -INF, +INF n/a qNaN qNaN

+0 +0, -0 +0 -0 qNaN qNaN n/a qNaN qNaN

-0 -0, +0 -0 +0 qNaN qNaN n/a qNaN qNaN

+INF +INF, -INF qNaN qNaN +INF -INF n/a qNaN qNaN

-INF -INF, +INF qNaN qNaN -INF +INF n/a qNaN qNaN

+, -DNRM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 121
FNEG DRn

Description:

This floating-point instruction computes the negated value of a double-precision
floating-point number. It reads DRn, inverts the sign bit and places the result in
DRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FNEG DRn

1111 n >> 1 001001101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
op1 ← FloatValue64(DRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← FNEG_D(op1);
DRFRONT+n ← FloatRegister64(op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

122 Alphabetical list of instructions
FNEG FRn

Description:

This floating-point instruction computes the negated value of a single-precision
floating-point number. It reads FRn, inverts the sign bit and places the result in
FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FNEG FRn

1111 n 01001101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend64(SR);
op1 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← FNEG_S(op1);
FRFRONT+n ← FloatRegister32(op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 123
FRCHG

Description:

This floating-point instruction toggles the FPSCR.FR bit. This has the effect of
switching the basic and extended banks of the floating-point register file.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FRCHG

1111101111111101

15 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fr ← ZeroExtend1(SR.FR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fr ← fr ⊕ 1;
SR.FR ← Bit(fr);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

124 Alphabetical list of instructions
FSCA FPUL, DRn

Description:

This floating-point instruction computes the sine and cosine of an angle stored in
FPUL. The lower register in DRn returns the sine of the angle in single-precision
floating-point format. The upper register in DRn returns the cosine of the angle in
single-precision floating-point format. The input angle is the amount of rotation
expressed as a signed fixed-point number in a 2’s complement representation. The
value 1 represents an angle of 360o/216. The upper 16 bits indicate the number of
full rotations and the lower 16 bits indicate the remainder angle between 0o and
360o. This is an approximate computation. The specified error in the result value is:

spec_error = 2-21.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FSCA FPUL, DRn

1111 n >> 1 011111101

15 12 11 9 8 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
fpul ← SignExtend32(FPUL);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1[0], fps ← FSINA_S(fpul, fps);
op1[1], fps ← FCOSA_S(fpul, fps);
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FPFRONT+n ← FloatRegisterPair32(op1);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 125
FSCA special cases:

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Inexact: this is an approximate instruction and inexact is always signaled. When
inexact exceptions are requested by the user, an exception is always raised
regardless of whether that condition arose. Overflow and underflow do not occur.

If the instruction does not raise an exception, the instruction computes an
approximate result using an implementation-dependent algorithm.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

126 Alphabetical list of instructions
FSCHG

Description:

This floating-point instruction toggles the FPSCR.SZ bit. This has the effect of
changing the size of the data transfer for subsequent floating-point loads, stores and
moves. Two transfer sizes are available: FPSCR.SZ = 0 indicates 32-bit transfer and
FPSCR.SZ = 1 indicates 64-bit transfer.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FSCHG

1111001111111101

15 0

Available only when PR=0

sr ← ZeroExtend64(SR);
sz ← ZeroExtend1(SR.SZ);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
sz ← sz ⊕ 1;
SR.SZ ← Bit(sz);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 127
FSQRT DRn

Description:

This floating-point instruction performs a double-precision floating-point square
root. It extracts the square root of DRn and places the result in DRn. The rounding
mode is determined by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FSQRT DRn

1111 n >> 1 001101101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FSQRT_D(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
DRFRONT+n ← FloatRegister64(op1);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

128 Alphabetical list of instructions
FSQRT FRn

Description:

This floating-point instruction performs a single-precision floating-point square
root. It extracts the square root of FRn and places the result in FRn. The rounding
mode is determined by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FSQRT FRn

1111 n 01101101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FSQRT_S(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRFRONT+n ← FloatRegister32(op1);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 129
FSQRT special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the input is a signaling NaN, or if this
is a square root of a number less than zero (including negative infinity and nega-
tive normalized/denormalized numbers, but excluding negative zero).

3 Error: an FPU error is signaled if FPSCR.DN is zero and the input is a positive
denormalized number.

4 Inexact: only inexact is checked. When inexact exceptions are requested by the
user, an exception is always raised regardless of whether that condition arose.
Overflow and underflow do not occur.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled and inexact cases are not shown.

The behavior of the normal ‘SQRT’ case is described by the IEEE754 specification.

op1 → +NORM -NORM +0 -0 +INF -INF +DNRM -DNRM qNaN sNaN

SQRT qNaN +0 -0 +INF qNaN n/a qNaN qNaN qNaN
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

130 Alphabetical list of instructions
FSRRA FRn

Description:

This floating-point instruction computes the reciprocal of the square root of the
value stored in FRn and places the result in FRn. This is an approximate
computation. The specified error in the result value is:

spec_error = 2E-21, where E = unbiased exponent value of the result.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FSRRA FRn

1111 n 01111101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FSRRA_S(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuEnableZ(fps) AND FpuCauseZ(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRFRONT+n ← FloatRegister32(op1);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 131
FSRRA special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the input is a signaling NaN, or if this
is a reciprocal square root of a number less than zero (including negative infinity
and negative normalized/denormalized numbers, but excluding negative zero).

3 Divide-by-zero: a divide-by-zero is signaled if this is a reciprocal square root of
zero (regardless of the sign of the zero).

4 Error: an FPU error is signaled if FPSCR.DN is 0 and the input is a positive
denormalized number.

5 Inexact: this is an approximate instruction and inexact is signaled if this is a
reciprocal square root of a positive normalized non-zero finite number. Inexact is
not signaled if the input is a negative normalized number, a zero, an infinity, a
denormalized number or a NaN. When inexact exceptions are requested by the
user, an exception is always raised regardless of whether that condition arose.
Overflow and underflow do not occur.

If the instruction does not raise an exception, a result is generated according to the
following table. Where the behavior is not a special case, the instruction computes
an approximate result using an implementation-dependent algorithm.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations and divide-by-zero are indicated by light shading and raise an exception
if enabled. FPU disabled and inexact cases are not shown.

The normal ‘SRRA’ case uses an implementation-specific algorithm to calculate an
approximation of the reciprocal square root of op1.

op1 → +NORM -NORM +0 -0 +INF -INF +DNRM -DNRM qNaN sNaN

SRRA qNaN +INF -INF +0 qNaN n/a qNaN qNaN qNaN
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

132 Alphabetical list of instructions
FSTS FPUL, FRn

Description:

This floating-point instruction copies FPUL to FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations.

Possible exceptions:

SLOTFPUDIS, FPUDIS

FSTS FPUL, FRn

1111 n 00001101

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
fpul ← SignExtend32(FPUL);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← fpul;
FRFRONT+n ← FloatRegister32(op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 133
FSUB DRm, DRn

Description:

This floating-point instruction performs a double-precision floating-point
subtraction. It subtracts DRm from DRn and places the result in DRn. The rounding
mode is determined by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FSUB DRm, DRn

1111 n >> 1 0 m >> 1 00001

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DRFRONT+m);
op2 ← FloatValue64(DRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FSUB_D(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DRFRONT+n ← FloatRegister64(op2);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

134 Alphabetical list of instructions
FSUB FRm, FRn

Description:

This floating-point instruction performs a single-precision floating-point
subtraction. It subtracts FRm from FRn and places the result in FRn. The rounding
mode is determined by FPSCR.RM.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FSUB FRm, FRn

1111 n m 0001

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRFRONT+m);
op2 ← FloatValue32(FRFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FSUB_S(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRFRONT+n ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 135
FSUB special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
the inputs are similarly signed infinities.

3 Error: an FPU error is signaled if FPSCR.DN is zero, neither input is a NaN and
either input is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested by
the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘SUB’ case is described by the IEEE754 specification.

op2 →
↓ op1

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM SUB SUB SUB +INF -INF n/a qNaN qNaN

+0 op2 +0 -0 +INF -INF n/a qNaN qNaN

-0 op2 +0 +0 +INF -INF n/a qNaN qNaN

+INF -INF -INF -INF qNaN -INF n/a qNaN qNaN

-INF +INF +INF +INF +INF qNaN n/a qNaN qNaN

+, -DNRM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

136 Alphabetical list of instructions
FTRC DRm, FPUL

Description:

This floating-point instruction performs a double-precision floating-point to signed
32-bit integer conversion. It reads a double-precision value from DRm, converts it to
a signed 32-bit integral range and places the result in FPUL. The conversion is
achieved by rounding to zero (truncation) with saturation to the limits of the target
signed integral range. The value of FPSCR.RM is ignored.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FTRC DRm, FPUL

1111 m >> 1 000111101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DRFRONT+m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul, fps ← FTRC_DL(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPUL ← ZeroExtend32(fpul);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 137
FTRC FRm, FPUL

Description:

This floating-point instruction performs a single-precision floating-point to signed
32-bit integer conversion. It reads a single-precision value from FRm, converts it to a
signed 32-bit integral range and places the result in FPUL. The conversion is
achieved by rounding to zero (truncation) with saturation to the limits of the target
signed integral range. The value of FPSCR.RM is ignored.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FTRC FRm, FPUL

1111 m 00111101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRFRONT+m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul, fps ← FTRC_SL(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPUL ← ZeroExtend32(fpul);
FPSCR ← ZeroExtend32(fps);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

138 Alphabetical list of instructions
FTRC special cases:

Regardless of FPSCR.DN, denormalized numbers are treated as 0. These
instructions do not cause FPU Error.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the conversion overflows the target
range. This is caused by out-of-range normalized numbers, infinities and NaNs.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘TRC’ case is described by the IEEE754 specification,
though only the round to zero rounding mode is supported by this instruction.

op1 → +NORM,
-NORM
(in range)

+0 -0 +INF or
+NORM
(out of range)

-INF or
-NORM
(out of range)

+DNRM,
-DNRM

qNaN sNaN

TRC 0 0 +231 - 1 -231 0 -231 -231
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 139
FTRV XMTRX, FVn

Description:

This floating-point instruction multiplies the matrix, XMTRX, with a vector, FVn,
and places the resulting vector in FVn. The matrix contains sixteen single-precision
floating-point values. The vector contains four single-precision floating-point values.
The matrix-vector multiplication is specified as:

FRn+0 =

FRn+1 =

FTRV XMTRX, FVn

1111 n >> 2 0111111101

15 12 11 10 9 0

Available only when PR=0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
xmtrx ← FloatValueMatrix32(MTRXBACK);
op1 ← FloatValueVector32(FVFRONT+n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FTRV_S(xmtrx, op1, fps);
IF (((FpuEnableV(fps) OR FpuEnableI(fps)) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FVFRONT+n ← FloatRegisterVector32(op1);
FPSCR ← ZeroExtend32(fps);

XFi 4× FRn i+×

i 0=

3

�

XF1 i 4×+ FRn i+×

i 0=

3

�

SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

140 Alphabetical list of instructions
FRn+2 =

FRn+3 =

This is an approximate computation. The specified error in the result value is
defined in Volume 1, Chapter 13: SHcompact floating-point.

Possible exceptions:

SLOTFPUDIS, FPUDIS, FPUEXC

FTRV special cases:

FTRV is an approximate instruction. Denormalized numbers are supported:

• When FPSCR.DN is 0, denormalized numbers are treated as their denormalized
value in the FTRV calculation. This instruction never signals an FPU error.

• When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied
before exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if any of the inputs is a signaling NaN,
there is a multiplication of a zero by an infinity, or there is an addition of differ-
ently signed infinities where none of the inputs is a qNaN.

The multiplication is performed with sufficient precision to avoid overflow, and
therefore the multiplication of any two finite numbers does not produce an
infinity. The multiplication result will be an infinity only if there is a
multiplication of an infinity with a normalized number, an infinity with a
denormalized number or an infinity with an infinity.

The addition of differently signed infinities is detected if there is (at least) one
positive infinity and (at least) one negative infinity in the set of 4 multiplication
results in any of the 4 inner-products calculated by this instruction.

This instruction does not check all of its inputs for invalid operations and then
raise an exception accordingly. If invalid operation exceptions are requested by
the user, this instruction always raises that exception. If this exception is not

XF2 i 4×+ FRn i+×

i 0=

3

�

XF3 i 4×+ FRn i+×

i 0=

3

�

SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 141
requested by the user, then each of the four inner-products is checked separately
for an invalid operation (as described above) and the appropriate result is set to
qNaN for each inner-product that is invalid.

3 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. This is an approximate instruction and inexact is signaled
except where special cases occur. Precise details of the approximate inner-prod-
uct algorithm, including the detection of underflow and overflow cases, are
implementation dependent. When inexact, underflow or overflow exceptions are
requested by the user, an exception is always raised regardless of whether that
condition arose.

If the instruction does not raise an exception, results are generated according to the
following tables. The special case tables are applied separately with the appropriate
vector operands to each of the four inner-products calculated by this instruction.
Each of the 4 pairs of multiplication operands (op1 and op2) is selected from
corresponding elements of the two 4-element source vectors and multiplied:

op1 →
↓ op2

+,-NORM,
+,-DNRM

+0 -0 +INF -INF qNaN sNaN

+,-NORM and +,-DNRM FTRVMUL +0, -0 -0, +0 +INF, -INF -INF, +INF qNaN qNaN

+0 +0, -0 +0 -0 qNaN qNaN qNaN qNaN

-0 -0, +0 -0 +0 qNaN qNaN qNaN qNaN

+INF +INF, -INF qNaN qNaN +INF -INF qNaN qNaN

-INF -INF, +INF qNaN qNaN -INF +INF qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

142 Alphabetical list of instructions
If any of the multiplications evaluates to qNaN, then the result of the instruction is
qNaN and no further analysis need be performed. In the ‘FTRVMUL’, +0, -0, +INF
and -INF cases, the 4 addition operands (labelled temp0 to temp3) are summed:

Inexact is signaled in the ‘FTRVADD’ case. Exception cases are not indicated by
shading for this instruction. Where the behavior is not a special case, the instruction
computes an approximate result using an implementation-dependent algorithm.

temp0 → FTRVMUL, +0, -0 +INF -INF

↓ temp2
temp1→
↓ temp3

FTRVMUL,
+0, -0

+INF -INF FTRVMUL,
+0, -0

+INF -INF FTRVMUL,
+0, -0

+INF -INF

FTRVMUL,
+0, -0

FTRVMUL,
+0, -0

FTRVADD +INF -INF +INF +INF qNaN -INF qNaN -INF

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF FTRVMUL,
+0, -0

+INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF FTRVMUL,
+0, -0

-INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 143
JMP @Rn

Description:

This instruction is a delayed unconditional branch used for jumping to the target
address specified in Rn. If the last two bits of the target address are both set, an
IADDERR exception is raised. Otherwise, the delay slot is executed in SHcompact.
Bit zero of the target address gives the new value of the ISA mode for the next
instruction. The least significant bit of the target address is cleared, and this value
is copied to the PC.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The delay slot is executed before branching and before ISA is updated. An ILLSLOT
exception is raised if this instruction is executed in a delay slot.

JMP @Rn

0100 n 00101011

15 12 11 8 7 0

op1 ← SignExpect32(Rn);
IF (IsDelaySlot())

THROW ILLSLOT;
target ← op1;
IF ((target ∧ 0x3) = 0x3)

THROW IADDERR, target;
delayedisa ← target ∧ 0x1;
delayedpc ← target ∧ (~ 0x1);
PC’’ ← Register(SignExtend32(delayedpc));
ISA’’ ← Bit(delayedisa);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

144 Alphabetical list of instructions
JSR @Rn

Description:

This instruction is a delayed unconditional branch used for jumping to the
subroutine starting at the target address specified in Rn. If the last two bits of the
target address are both set, an IADDERR exception is raised. Otherwise, the delay
slot is executed in SHcompact. Bit zero of the target address gives the new value of
the ISA mode for the next instruction. The least significant bit of the target address
is cleared, and this value is copied to the PC. The address of the instruction
immediately following the delay slot is copied to PR to indicate the return address.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

If this instruction does not raise an exception then PR will be updated regardless of
whether the delay slot instruction raises an exception. The delay slot is executed

JSR @Rn

0100 n 00001011

15 12 11 8 7 0

pc ← SignExpect32(PC);
op1 ← SignExpect32(Rn);
IF (IsDelaySlot())

THROW ILLSLOT;
delayedpr ← pc + 4;
target ← op1;
IF ((target ∧ 0x3) = 0x3)

THROW IADDERR, target;
delayedisa ← target ∧ 0x1;
delayedpc ← target ∧ (~ 0x1);
PR’’ ← Register(SignExtend32(delayedpr));
PC’’ ← Register(SignExtend32(delayedpc));
ISA’’ ← Bit(delayedisa);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 145
before branching and before ISA and PR are updated. An ILLSLOT exception is
raised if this instruction is executed in a delay slot.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

146 Alphabetical list of instructions
LDC Rm, GBR

Description:

This instruction copies Rm to GBR.

Notes:

The Rm source is not required to have a 32-bit sign-extended representation. The
upper 32 bits of Rm are ignored.

LDC Rm, GBR

0100 m 00011110

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
gbr ← op1;
GBR ← Register(SignExtend32(gbr));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 147
LDC.L @Rm+, GBR

Description:

This instruction loads GBR from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into GBR. Rm is post-incremented by 4.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

LDC.L @Rm+, GBR

0100 m 00010111

15 12 11 8 7 0

op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
gbr ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(SignExtend32(op1));
GBR ← Register(SignExtend32(gbr));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

148 Alphabetical list of instructions
LDS Rm, FPSCR

Description:

This floating-point instruction copies Rm to FPSCR. The setting of FPSCR does not
cause any floating-point exceptional conditions to be signaled.

Possible exceptions:

SLOTFPUDIS, FPUDIS

Notes:

The Rm source is not required to have a 32-bit sign-extended representation. The
upper 32 bits of Rm are ignored.

LDS Rm, FPSCR

0100 m 01101010

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fps, pr, sz, fr ← UnpackFPSCR(op1);
FPSCR ← ZeroExtend32(fps);
SR.PR ← Bit(pr);
SR.SZ ← Bit(sz);
SR.FR ← Bit(fr);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 149
LDS.L @Rm+, FPSCR

Description:

This floating-point instruction loads FPSCR from memory using register indirect
with post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into FPSCR. Rm is post-incremented by 4. The setting of
FPSCR does not cause any floating-point exceptional conditions to be signaled.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

LDS.L @Rm+, FPSCR

0100 m 01100110

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op1);
value ← ReadMemory32(address);
fps, pr, sz, fr ← UnpackFPSCR(value);
op1 ← op1 + 4;
Rm ← Register(SignExtend32(op1));
FPSCR ← ZeroExtend32(fps);
SR.PR ← Bit(pr);
SR.SZ ← Bit(sz);
SR.FR ← Bit(fr);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

150 Alphabetical list of instructions
LDS Rm, FPUL

Description:

This floating-point instruction copies Rm to FPUL.

Possible exceptions:

SLOTFPUDIS, FPUDIS

Notes:

The Rm source is not required to have a 32-bit sign-extended representation. The
upper 32 bits of Rm are ignored.

LDS Rm, FPUL

0100 m 01011010

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul ← op1;
FPUL ← ZeroExtend32(fpul);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 151
LDS.L @Rm+, FPUL

Description:

This floating-point instruction loads FPUL from memory using register indirect
with post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into FPUL. Rm is post-incremented by 4.

Possible exceptions:

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

LDS.L @Rm+, FPUL

0100 m 01010110

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
op1 ← SignExpect32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op1);
fpul ← ReadMemory32(address);
op1 ← op1 + 4;
Rm ← Register(SignExtend32(op1));
FPUL ← ZeroExtend32(fpul);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

152 Alphabetical list of instructions
LDS Rm, MACH

Description:

This instruction copies Rm to MACH.

Notes:

The Rm source is not required to have a 32-bit sign-extended representation. The
upper 32 bits of Rm are ignored.

LDS Rm, MACH

0100 m 00001010

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
mach ← op1;
MACH ← ZeroExtend32(mach);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 153
LDS.L @Rm+, MACH

Description:

This instruction loads MACH from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into MACH. Rm is post-incremented by 4.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

LDS.L @Rm+, MACH

0100 m 00000110

15 12 11 8 7 0

op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
mach ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(SignExtend32(op1));
MACH ← ZeroExtend32(mach);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

154 Alphabetical list of instructions
LDS Rm, MACL

Description:

This instruction copies Rm to MACL.

Notes:

The Rm source is not required to have a 32-bit sign-extended representation. The
upper 32 bits of Rm are ignored.

LDS Rm, MACL

0100 m 00011010

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
macl ← op1;
MACL ← ZeroExtend32(macl);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 155
LDS.L @Rm+, MACL

Description:

This instruction loads MACL from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into MACL. Rm is post-incremented by 4.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

LDS.L @Rm+, MACL

0100 m 00010110

15 12 11 8 7 0

op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
macl ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(SignExtend32(op1));
MACL ← ZeroExtend32(macl);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

156 Alphabetical list of instructions
LDS Rm, PR

Description:

This instruction copies Rm to PR.

Notes:

The Rm source is not required to have a 32-bit sign-extended representation. The
upper 32 bits of Rm are ignored.

LDS Rm, PR

0100 m 00101010

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
newpr ← op1;
delayedpr ← newpr;
PR’ ← Register(SignExtend32(newpr));
PR’’ ← Register(SignExtend32(delayedpr));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 157
LDS.L @Rm+, PR

Description:

This instruction loads PR from memory using register indirect with post-increment
addressing. A 32-bit value is read from the effective address specified in Rm and
loaded into PR. Rm is post-incremented by 4.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

LDS.L @Rm+, PR

0100 m 00100110

15 12 11 8 7 0

op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
newpr ← SignExtend32(ReadMemory32(address));
delayedpr ← newpr;
op1 ← op1 + 4;
Rm ← Register(SignExtend32(op1));
PR’ ← Register(SignExtend32(newpr));
PR’’ ← Register(SignExtend32(delayedpr));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

158 Alphabetical list of instructions
MAC.L @Rm+, @Rn+
Description:

This instruction reads the signed 32-bit value at the effective address specified in
Rn, and then post-increments Rn by 4. It also reads the signed 32-bit value at the
effective address specified in Rm, and then post-increments Rm by 4. These 2 values
are multiplied together to give a 64-bit result, and this result is added to the 64-bit
accumulator held in MACL and MACH. This accumulation gives an output with 65
bits of precision.

If the S-bit is 0, the result is the lower 64 bits of the accumulation. If the S-bit is 1,
the result is calculated by saturating the accumulation to the signed range [-248,
248). In either case, the 64-bit result is split into low and high halves, which are
placed into MACL and MACH respectively.

Possible exceptions:

All exception checks on the Rn operand are performed before any of the exception
checks on the Rm operand. The exception checks for each operand are in the usual
precedence order. However, the overall order for the MAC.L exceptions is:

RADDERR, RTLBMISS, READPROT (for Rn access)

followed by:

RADDERR, RTLBMISS, READPROT (for Rm access)

which differs from the usual precedence order.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

If Rm and Rn refer to the same register (that is, m = n), then this register will be
post-incremented twice. The instruction will read two long-words from consecutive
memory locations.
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 159
MAC.L @Rm+, @Rn+

0000 n m 1111

15 12 11 8 7 4 3 0

macl ← ZeroExtend32(MACL);
mach ← ZeroExtend32(MACH);
s ← ZeroExtend1(S);
m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
m_address ← SignExpect32(Rm);
n_address ← SignExpect32(Rn);
value2 ← SignExtend32(ReadMemory32(ZeroExtend64(n_address)));
n_address ← n_address + 4;
IF (n_field = m_field)
{

m_address ← m_address + 4;
n_address ← n_address + 4;

}
value1 ← SignExtend32(ReadMemory32(ZeroExtend64(m_address)));
m_address ← m_address + 4;
mul ← value2 × value1;
mac ← (mach << 32) + macl;
result ← mac + mul;
IF (s = 1)

IF (((result ⊕ mac) ∧ (result ⊕ mul))< 63 FOR 1 > = 1)
IF (mac< 63 FOR 1 > = 0)

result ← 247 - 1;
ELSE

result ← - 247;
ELSE

result ← SignedSaturate48(result);
macl ← result;
mach ← result >> 32;
Rm ← Register(SignExtend32(m_address));
Rn ← Register(SignExtend32(n_address));
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

160 Alphabetical list of instructions
MAC.W @Rm+, @Rn+
Description:

This instruction reads the signed 16-bit value at the effective address specified in
Rn, and then post-increments Rn by 2. It also reads the signed 16-bit value at the
effective address specified in Rm, and then post-increments Rm by 2. These 2 values
are multiplied together to give a 32-bit result.

If the S-bit is 0, the 32-bit multiply result is added to the 64-bit accumulator held in
MACL and MACH. This accumulation gives an output with 65 bits of precision, and
the result is the lower 64 bits of the accumulation. The result is split into low and
high halves, which are placed into MACL and MACH respectively.

If the S-bit is 1, the 32-bit multiply result is added to the 32-bit accumulator held in
MACL. This accumulation gives an output with 33 bits of precision, and is saturated
to the signed range [-231, 231), and then placed in MACL. If the accumulation
overflows this signed range, then MACH is set to 1 to denote overflow otherwise
MACH is unchanged.

Possible exceptions:

All exception checks on the Rn operand are performed before any of the exception
checks on the Rm operand. The exception checks for each operand are in the usual
precedence order. However, the overall order for the MAC.W exceptions is:

RADDERR, RTLBMISS, READPROT (for Rn access)

followed by:

RADDERR, RTLBMISS, READPROT (for Rm access)

which differs from the usual precedence order.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

If Rm and Rn refer to the same register (that is, m = n), then this register will be
post-incremented twice. The instruction will read two words from consecutive
memory locations.
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 161
MAC.W @Rm+, @Rn+

0100 n m 1111

15 12 11 8 7 4 3 0

macl ← ZeroExtend32(MACL);
mach ← ZeroExtend32(MACH);
s ← ZeroExtend1(S);
m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
m_address ← SignExpect32(Rm);
n_address ← SignExpect32(Rn);
value2 ← SignExtend16(ReadMemory16(ZeroExtend64(n_address)));
n_address ← n_address + 2;
IF (n_field = m_field)
{

m_address ← m_address + 2;
n_address ← n_address + 2;

}
value1 ← SignExtend16(ReadMemory16(ZeroExtend64(m_address)));
m_address ← m_address + 2;
mul ← value2 × value1;
IF (s = 1)
{

macl ← SignExtend32(macl) + mul;
temp ← SignedSaturate32(macl);
IF (macl = temp)

result ← (mach << 32) ∨ ZeroExtend32(macl);
ELSE

result ← (0x1 << 32) ∨ ZeroExtend32(temp);
}
ELSE

result ← ((mach << 32) + macl) + mul;
macl ← result;
mach ← result >> 32;
Rm ← Register(SignExtend32(m_address));
Rn ← Register(SignExtend32(n_address));
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

162 Alphabetical list of instructions
MOV Rm, Rn

Description:

This instruction copies the value of Rm to Rn.

Notes:

This instruction performs a 64-bit copy. The source is not required to have its upper
32 bits as sign-extensions. However, if the source value has a 32-bit sign-extended
representation, then the result will also have a 32-bit sign-extended representation.

MOV Rm, Rn

0110 n m 0011

15 12 11 8 7 4 3 0

op1 ← ZeroExtend64(Rm);
op2 ← op1;
Rn ← Register(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 163
MOV #imm, Rn

Description:

This instruction sign-extends the 8-bit immediate s and places the result in Rn.

Notes:

The ‘#imm’ in the assembly syntax represents the immediate s after sign extension.

MOV #imm, Rn

1110 n s

15 12 11 8 7 0

imm ← SignExtend8(s);
op2 ← imm;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

164 Alphabetical list of instructions
MOV.B Rm, @Rn

Description:

This instruction stores a byte to memory using register indirect with
zero-displacement addressing. The effective address is specified in Rn. The byte to
be stored is held in the lowest 8 bits of Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. If Rm and
Rn are different registers, then the Rm source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of Rm are ignored. However, if
Rm and Rn are the same register, then this register’s source value is required to have
a 32-bit sign-extended representation.

MOV.B Rm, @Rn

0010 n m 0000

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(op2);
WriteMemory8(address, op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 165
MOV.B Rm, @-Rn

Description:

This instruction stores a byte to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 1 to give the effective address. The byte to be
stored is held in the lowest 8 bits of Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. If Rm and
Rn are different registers, then the Rm source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of Rm are ignored. However, if
Rm and Rn are the same register, then this register’s source value is required to have
a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

MOV.B Rm, @-Rn

0010 n m 0100

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(op2 - 1);
WriteMemory8(address, op1);
op2 ← address;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

166 Alphabetical list of instructions
MOV.B Rm, @(R0, Rn)

Description:

This instruction stores a byte to memory using register indirect addressing. The
effective address is formed by adding R0 to Rn. The byte to be stored is held in the
lowest 8 bits of Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The R0 and Rn sources are required to have a 32-bit sign-extended representation.

If Rm is a different register to both R0 and Rn, then the Rm source value is not
required to have a 32-bit sign-extended representation and the upper 32 bits of Rm
are ignored. However, if Rm is the same register as either of R0 or Rn, then the Rm
source value is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

MOV.B Rm, @(R0, Rn)

0000 n m 0100

15 12 11 8 7 4 3 0

r0 ← SignExpect32(R0);
op1 ← SignExtend32(Rm);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(r0 + op2);
WriteMemory8(address, op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 167
MOV.B R0, @(disp, GBR)

Description:

This instruction stores a byte to memory using GBR-relative with displacement
addressing. The effective address is formed by adding GBR to the zero-extended
8-bit immediate i. The byte to be stored is held in the lowest 8 bits of R0.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The GBR source is required to have a 32-bit sign-extended representation. The R0
source value is not required to have a 32-bit sign-extended representation. The
upper 32 bits of R0 are ignored.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension.

MOV.B R0, @(disp, GBR)

11000000 i

15 8 7 0

gbr ← SignExpect32(GBR);
r0 ← SignExtend32(R0);
disp ← ZeroExtend8(i);
address ← ZeroExtend64(disp + gbr);
WriteMemory8(address, r0);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

168 Alphabetical list of instructions
MOV.B R0, @(disp, Rn)

Description:

This instruction stores a byte to memory using register indirect with displacement
addressing. The effective address is formed by adding Rn and the zero-extended
4-bit immediate i. The byte to be stored is held in the lowest 8 bits of R0.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. If R0 and
Rn are different registers, then the R0 source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of R0 are ignored. However, if R0
and Rn are the same register, then this register’s source value is required to have a
32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension.

MOV.B R0, @(disp, Rn)

10000000 n i

15 8 7 4 3 0

r0 ← SignExtend32(R0);
disp ← ZeroExtend4(i);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(disp + op2);
WriteMemory8(address, r0);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 169
MOV.B @Rm, Rn

Description:

This instruction loads a signed byte from memory using register indirect with
zero-displacement addressing. The effective address is specified in Rm. The byte is
loaded from the effective address, sign-extended and placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

MOV.B @Rm, Rn

0110 n m 0000

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
op2 ← SignExtend8(ReadMemory8(address));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

170 Alphabetical list of instructions
MOV.B @Rm+, Rn

Description:

This instruction loads a signed byte from memory using register indirect with
post-increment addressing. The byte is loaded from the effective address specified in
Rm and sign-extended. Rm is post-incremented by 1, and then the loaded byte is
placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

If Rm and Rn refer to the same register (that is, m = n), the result placed in this
register will be the sign-extended byte loaded from memory.

MOV.B @Rm+, Rn

0110 n m 0100

15 12 11 8 7 4 3 0

m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
op2 ← SignExtend8(ReadMemory8(address));
IF (m_field = n_field)

op1 ← op2;
ELSE

op1 ← op1 + 1;
Rm ← Register(SignExtend32(op1));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 171
MOV.B @(R0, Rm), Rn

Description:

This instruction loads a signed byte from memory using register indirect
addressing. The effective address is formed by adding R0 to Rm. The byte is loaded
from the effective address, sign-extended and placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The R0 and Rm sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

MOV.B @(R0, Rm), Rn

0000 n m 1100

15 12 11 8 7 4 3 0

r0 ← SignExpect32(R0);
op1 ← SignExpect32(Rm);
address ← ZeroExtend64(r0 + op1);
op2 ← SignExtend8(ReadMemory8(address));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

172 Alphabetical list of instructions
MOV.B @(disp, GBR), R0

Description:

This instruction loads a signed byte from memory using GBR-relative with
displacement addressing. The effective address is formed by adding GBR to the
zero-extended 8-bit immediate i. The byte is loaded from the effective address,
sign-extended and placed in R0.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The GBR source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension.

MOV.B @(disp, GBR), R0

11000100 i

15 8 7 0

gbr ← SignExpect32(GBR);
disp ← ZeroExtend8(i);
address ← ZeroExtend64(disp + gbr);
r0 ← SignExtend8(ReadMemory8(address));
R0 ← Register(SignExtend32(r0));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 173
MOV.B @(disp, Rm), R0

Description:

This instruction loads a signed byte from memory using register indirect with
displacement addressing. The effective address is formed by adding Rm to the
zero-extended 4-bit immediate i. The byte is loaded from the effective address,
sign-extended and placed in R0.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension.

MOV.B @(disp, Rm), R0

10000100 m i

15 8 7 4 3 0

disp ← ZeroExtend4(i);
op2 ← SignExpect32(Rm);
address ← ZeroExtend64(disp + op2);
r0 ← SignExtend8(ReadMemory8(address));
R0 ← Register(SignExtend32(r0));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

174 Alphabetical list of instructions
MOV.L Rm, @Rn

Description:

This instruction stores a long-word to memory using register indirect with
zero-displacement addressing. The effective address is specified in Rn. The
long-word to be stored is held in Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. If Rm and
Rn are different registers, then the Rm source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of Rm are ignored. However, if
Rm and Rn are the same register, then this register’s source value is required to have
a 32-bit sign-extended representation.

MOV.L Rm, @Rn

0010 n m 0010

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(op2);
WriteMemory32(address, op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 175
MOV.L Rm, @-Rn

Description:

This instruction stores a long-word to memory using register indirect with
pre-decrement addressing. Rn is pre-decremented by 4 to give the effective address.
The long-word to be stored is held in Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. If Rm and
Rn are different registers, then the Rm source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of Rm are ignored. However, if
Rm and Rn are the same register, then this register’s source value is required to have
a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

MOV.L Rm, @-Rn

0010 n m 0110

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(op2 - 4);
WriteMemory32(address, op1);
op2 ← address;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

176 Alphabetical list of instructions
MOV.L Rm, @(R0, Rn)

Description:

This instruction stores a long-word to memory using register indirect addressing.
The effective address is formed by adding R0 to Rn. The long-word to be stored is
held in Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The R0 and Rn sources are required to have a 32-bit sign-extended representation.

If Rm is a different register to both R0 and Rn, then the Rm source value is not
required to have a 32-bit sign-extended representation and the upper 32 bits of Rm
are ignored. However, if Rm is the same register as either of R0 or Rn, then the Rm
source value is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

MOV.L Rm, @(R0, Rn)

0000 n m 0110

15 12 11 8 7 4 3 0

r0 ← SignExpect32(R0);
op1 ← SignExtend32(Rm);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(r0 + op2);
WriteMemory32(address, op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 177
MOV.L R0, @(disp, GBR)

Description:

This instruction stores a long-word to memory using GBR-relative with
displacement addressing. The effective address is formed by adding GBR to the
zero-extended 8-bit immediate i multiplied by 4. The long-word to be stored is held
in R0.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The GBR source is required to have a 32-bit sign-extended representation. The R0
source value is not required to have a 32-bit sign-extended representation. The
upper 32 bits of R0 are ignored.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L R0, @(disp, GBR)

11000010 i

15 8 7 0

gbr ← SignExpect32(GBR);
r0 ← SignExtend32(R0);
disp ← ZeroExtend8(i) << 2;
address ← ZeroExtend64(disp + gbr);
WriteMemory32(address, r0);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

178 Alphabetical list of instructions
MOV.L Rm, @(disp, Rn)

Description:

This instruction stores a long-word to memory using register indirect with
displacement addressing. The effective address is formed by adding Rn to the
zero-extended 4-bit immediate i multiplied by 4. The long-word to be stored is held
in Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. If Rm and
Rn are different registers, then the Rm source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of Rm are ignored. However, if
Rm and Rn are the same register, then this register’s source value is required to have
a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L Rm, @(disp, Rn)

0001 n m i

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
disp ← ZeroExtend4(i) << 2;
op3 ← SignExpect32(Rn);
address ← ZeroExtend64(disp + op3);
WriteMemory32(address, op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 179
MOV.L @Rm, Rn

Description:

This instruction loads a signed long-word from memory using register indirect with
zero-displacement addressing. The effective address is specified in Rm. The
long-word is loaded from the effective address and placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

MOV.L @Rm, Rn

0110 n m 0010

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
op2 ← SignExtend32(ReadMemory32(address));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

180 Alphabetical list of instructions
MOV.L @Rm+, Rn

Description:

This instruction loads a signed long-word from memory using register indirect with
post-increment addressing. The long-word is loaded from the effective address
specified in Rm. Rm is post-incremented by 4, and then the loaded long-word is
placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

If Rm and Rn refer to the same register (that is, m = n), the result placed in this
register will be the long-word loaded from memory.

MOV.L @Rm+, Rn

0110 n m 0110

15 12 11 8 7 4 3 0

m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
op2 ← SignExtend32(ReadMemory32(address));
IF (m_field = n_field)

op1 ← op2;
ELSE

op1 ← op1 + 4;
Rm ← Register(SignExtend32(op1));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 181
MOV.L @(R0, Rm), Rn

Description:

This instruction loads a signed long-word from memory using register indirect
addressing. The effective address is formed by adding R0 to Rm. The long-word is
loaded from the effective address and placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The R0 and Rm sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

MOV.L @(R0, Rm), Rn

0000 n m 1110

15 12 11 8 7 4 3 0

r0 ← SignExpect32(R0);
op1 ← SignExpect32(Rm);
address ← ZeroExtend64(r0 + op1);
op2 ← SignExtend32(ReadMemory32(address));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

182 Alphabetical list of instructions
MOV.L @(disp, GBR), R0

Description:

This instruction loads a signed long-word from memory using GBR-relative with
displacement addressing. The effective address is formed by adding GBR to the
zero-extended 8-bit immediate i multiplied by 4. The long-word is loaded from the
effective address and placed in R0.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The GBR source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L @(disp, GBR), R0

11000110 i

15 8 7 0

gbr ← SignExpect32(GBR);
disp ← ZeroExtend8(i) << 2;
address ← ZeroExtend64(disp + gbr);
r0 ← SignExtend32(ReadMemory32(address));
R0 ← Register(SignExtend32(r0));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 183
MOV.L @(disp, PC), Rn

Description:

This instruction loads a signed long-word from memory using PC-relative with
displacement addressing. The effective address is formed by calculating PC+4,
clearing the lowest 2 bits, and adding the zero-extended 8-bit immediate i
multiplied by 4. The effective address is then converted to a sign-extended 32-bit
range. The long-word is loaded from this effective address and placed in Rn.

The address calculation ensures that the effective address is correctly aligned for a
long-word access regardless of the PC alignment. Additionally, the calculation
cannot generate an address outside the sign-extended 32-bit address space. The
RADDERR exception is therefore not possible for this instruction.

Possible exceptions:

ILLSLOT, RTLBMISS, READPROT

Notes:

An ILLSLOT exception is raised if this instruction is executed in a delay slot.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L @(disp, PC), Rn

1101 n i

15 12 11 8 7 0

pc ← SignExpect32(PC);
disp ← ZeroExtend8(i) << 2;
IF (IsDelaySlot())

THROW ILLSLOT;
address ← SignExtend32(disp + ((pc + 4) ∧ (~ 0x3)));
op2 ← SignExtend32(ReadMemory32(address));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

184 Alphabetical list of instructions
MOV.L @(disp, Rm), Rn

Description:

This instruction loads a signed long-word from memory using register indirect with
displacement addressing. The effective address is formed by adding Rm to the
zero-extended 4-bit immediate i multiplied by 4. The long-word is loaded from the
effective address and placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L @(disp, Rm), Rn

0101 n m i

15 12 11 8 7 4 3 0

disp ← ZeroExtend4(i) << 2;
op2 ← SignExpect32(Rm);
address ← ZeroExtend64(disp + op2);
op3 ← SignExtend32(ReadMemory32(address));
Rn ← Register(SignExtend32(op3));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 185
MOV.W Rm, @Rn

Description:

This instruction stores a word to memory using register indirect with
zero-displacement addressing. The effective address is specified in Rn. The word to
be stored is held in the lowest 16 bits of Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. If Rm and
Rn are different registers, then the Rm source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of Rm are ignored. However, if
Rm and Rn are the same register, then this register’s source value is required to have
a 32-bit sign-extended representation.

MOV.W Rm, @Rn

0010 n m 0001

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(op2);
WriteMemory16(address, op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

186 Alphabetical list of instructions
MOV.W Rm, @-Rn

Description:

This instruction stores a word to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 2 to give the effective address. The word to be
stored is held in the lowest 16 bits of Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. If Rm and
Rn are different registers, then the Rm source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of Rm are ignored. However, if
Rm and Rn are the same register, then this register’s source value is required to have
a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

MOV.W Rm, @-Rn

0010 n m 0101

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(op2 - 2);
WriteMemory16(address, op1);
op2 ← address;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 187
MOV.W Rm, @(R0, Rn)

Description:

This instruction stores a word to memory using register indirect addressing. The
effective address is formed by adding R0 to Rn. The word to be stored is held in the
lowest 16 bits of Rm.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The R0 and Rn sources are required to have a 32-bit sign-extended representation.

If Rm is a different register to both R0 and Rn, then the Rm source value is not
required to have a 32-bit sign-extended representation and the upper 32 bits of Rm
are ignored. However, if Rm is the same register as either of R0 or Rn, then the Rm
source value is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

MOV.W Rm, @(R0, Rn)

0000 n m 0101

15 12 11 8 7 4 3 0

r0 ← SignExpect32(R0);
op1 ← SignExtend32(Rm);
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(r0 + op2);
WriteMemory16(address, op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

188 Alphabetical list of instructions
MOV.W R0, @(disp, GBR)

Description:

This instruction stores a word to memory using GBR-relative with displacement
addressing. The effective address is formed by adding GBR to the zero-extended
8-bit immediate i multiplied by 2. The word to be stored is held in the lowest 16 bits
of R0.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The GBR source is required to have a 32-bit sign-extended representation. The R0
source value is not required to have a 32-bit sign-extended representation. The
upper 32 bits of R0 are ignored.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W R0, @(disp, GBR)

11000001 i

15 8 7 0

gbr ← SignExpect32(GBR);
r0 ← SignExtend32(R0);
disp ← ZeroExtend8(i) << 1;
address ← ZeroExtend64(disp + gbr);
WriteMemory16(address, r0);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 189
MOV.W R0, @(disp, Rn)

Description:

This instruction stores a word to memory using register indirect with displacement
addressing. The effective address is formed by adding Rn to the zero-extended 4-bit
immediate i multiplied by 2. The word to be stored is held in the lowest 16 bits of R0.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. If R0 and
Rn are different registers, then the R0 source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of R0 are ignored. However, if R0
and Rn are the same register, then this register’s source value is required to have a
32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W R0, @(disp, Rn)

10000001 n i

15 8 7 4 3 0

r0 ← SignExtend32(R0);
disp ← ZeroExtend4(i) << 1;
op2 ← SignExpect32(Rn);
address ← ZeroExtend64(disp + op2);
WriteMemory16(address, r0);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

190 Alphabetical list of instructions
MOV.W @Rm, Rn

Description:

This instruction loads a signed word from memory using register indirect with
zero-displacement addressing. The effective address is specified in Rm. The word is
loaded from the effective address, sign-extended and placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

MOV.W @Rm, Rn

0110 n m 0001

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
op2 ← SignExtend16(ReadMemory16(address));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 191
MOV.W @Rm+, Rn

Description:

This instruction loads a signed word from memory using register indirect with
post-increment addressing. The word is loaded from the effective address specified
in Rm and sign-extended. Rm is post-incremented by 2, and then the loaded word is
placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

If Rm and Rn refer to the same register (that is, m = n), the result placed in this
register will be the sign-extended word loaded from memory.

MOV.W @Rm+, Rn

0110 n m 0101

15 12 11 8 7 4 3 0

m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
op1 ← SignExpect32(Rm);
address ← ZeroExtend64(op1);
op2 ← SignExtend16(ReadMemory16(address));
IF (m_field = n_field)

op1 ← op2;
ELSE

op1 ← op1 + 2;
Rm ← Register(SignExtend32(op1));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

192 Alphabetical list of instructions
MOV.W @(R0, Rm), Rn

Description:

This instruction loads a signed word from memory using register indirect
addressing. The effective address is formed by adding R0 to Rm. The word is loaded
from the effective address, sign-extended and placed in Rn.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The R0 and Rm sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

MOV.W @(R0, Rm), Rn

0000 n m 1101

15 12 11 8 7 4 3 0

r0 ← SignExpect32(R0);
op1 ← SignExpect32(Rm);
address ← ZeroExtend64(r0 + op1);
op2 ← SignExtend16(ReadMemory16(address));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 193
MOV.W @(disp, GBR), R0

Description:

This instruction loads a signed word from memory using GBR-relative with
displacement addressing. The effective address is formed by adding GBR to the
zero-extended 8-bit immediate i multiplied by 2. The word is loaded from the
effective address, sign-extended and placed in R0.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The GBR source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W @(disp, GBR), R0

11000101 i

15 8 7 0

gbr ← SignExpect32(GBR);
disp ← ZeroExtend8(i) << 1;
address ← ZeroExtend64(disp + gbr);
r0 ← SignExtend16(ReadMemory16(address));
R0 ← Register(SignExtend32(r0));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

194 Alphabetical list of instructions
MOV.W @(disp, PC), Rn

Description:

This instruction loads a signed word from memory using PC-relative with
displacement addressing. The effective address is formed by calculating PC+4, and
adding the zero-extended 8-bit immediate i multiplied by 2. The effective address is
then converted to a sign-extended 32-bit range. The word is loaded from this
effective address, sign-extended and placed in Rn.

The address calculation ensures that the effective address is correctly aligned for a
word access. Additionally, the calculation cannot generate an address outside the
sign-extended 32-bit address space. The RADDERR exception is therefore not
possible for this instruction.

Possible exceptions:

ILLSLOT, RTLBMISS, READPROT

Notes:

An ILLSLOT exception is raised if this instruction is executed in a delay slot.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W @(disp, PC), Rn

1001 n i

15 12 11 8 7 0

pc ← SignExpect32(PC);
disp ← ZeroExtend8(i) << 1;
IF (IsDelaySlot())

THROW ILLSLOT;
address ← SignExtend32(disp + (pc + 4));
op2 ← SignExtend16(ReadMemory16(address));
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 195
MOV.W @(disp, Rm), R0

Description:

This instruction loads a signed word from memory using register indirect with
displacement addressing. The effective address is formed by adding Rm to the
zero-extended 4-bit immediate i multiplied by 2. The word is loaded from the
effective address, sign-extended and placed in R0.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W @(disp, Rm), R0

10000101 m i

15 8 7 4 3 0

disp ← ZeroExtend4(i) << 1;
op2 ← SignExpect32(Rm);
address ← ZeroExtend64(disp + op2);
r0 ← SignExtend16(ReadMemory16(address));
R0 ← Register(SignExtend32(r0));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

196 Alphabetical list of instructions
MOVA @(disp, PC), R0

Description:

This instruction calculates an effective address using PC-relative with displacement
addressing. The effective address is formed by calculating PC+4, clearing the lowest
2 bits, and adding the zero-extended 8-bit immediate i multiplied by 4. This address
calculation ensures that the effective address is correctly aligned for a long-word
access regardless of the PC alignment. The effective address is then converted to a
sign-extended 32-bit range. The effective address is placed in R0.

Possible exceptions:

ILLSLOT

Notes:

An ILLSLOT exception is raised if this instruction is executed in a delay slot.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOVA @(disp, PC), R0

11000111 i

15 8 7 0

pc ← SignExpect32(PC);
disp ← ZeroExtend8(i) << 2;
IF (IsDelaySlot())

THROW ILLSLOT;
r0 ← disp + ((pc + 4) ∧ (~ 0x3));
R0 ← Register(SignExtend32(r0));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 197
MOVCA.L R0, @Rn

Description:

This instruction stores the long-word in R0 to memory at the effective address
specified in Rn. It provides a hint to the implementation that it is not necessary to
retrieve the data of this operand cache block from memory. It is
implementation-specific as to whether the memory access will occur.

The effective address specified in Rn identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

MOVCA.L checks for address error, translation miss and protection exception cases.

Apart from the written long-word, the value of all other locations in the memory
block targeted by a MOVCA.L becomes architecturally undefined. Programs must
not rely on these values. For compatibility with other implementations, software
must exercise care when using MOVCA.L.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

MOVCA.L R0, @Rn

0000 n 11000011

15 12 11 8 7 0

r0 ← SignExtend32(R0);
op1 ← SignExpect32(Rn);
IF (MalformedAddress(op1) OR ((op1 ∧ 0x3) ≠ 0))

THROW WADDERR, op1;
IF (MMU() AND DataAccessMiss(op1))

THROW WTLBMISS, op1;
IF (MMU() AND WriteProhibited(op1))

THROW WRITEPROT, op1;
ALLOCO(op1);
address ← ZeroExtend64(op1);
WriteMemory32(op1, r0);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

198 Alphabetical list of instructions
Notes:

The Rn source is required to have a 32-bit sign-extended representation. If R0 and
Rn are different registers, then the R0 source value is not required to have a 32-bit
sign-extended representation and the upper 32 bits of R0 are ignored. However, if R0
and Rm are the same register, then this register’s source value is required to have a
32-bit sign-extended representation.
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 199
MOVT Rn

Description:

This instruction copies the T-bit to Rn.

Notes:

The T-bit source is required to have a 0 or 1 value.

MOVT Rn

0000 n 00101001

15 12 11 8 7 0

t ← ZeroExpect1(T);
op1 ← t;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

200 Alphabetical list of instructions
MUL.L Rm, Rn

Description:

This instruction multiplies the 32-bit value in Rm by the 32-bit value in Rn, and
places the least significant 32 bits of the result in MACL. The most significant 32
bits of the result are not provided, and MACH is not modified.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

MUL.L Rm, Rn

0000 n m 0111

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
macl ← op1 × op2;
MACL ← ZeroExtend32(macl);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 201
MULS.W Rm, Rn

Description:

This instruction multiplies the signed lowest 16 bits of Rm by the signed lowest 16
bits of Rn, and places the full 32-bit result in MACL. MACH is not modified.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

MULS.W Rm, Rn

0010 n m 1111

15 12 11 8 7 4 3 0

op1 ← SignExtend16(SignExpect32(Rm));
op2 ← SignExtend16(SignExpect32(Rn));
macl ← op1 × op2;
MACL ← ZeroExtend32(macl);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

202 Alphabetical list of instructions
MULU.W Rm, Rn

Description:

This instruction multiplies the unsigned lowest 16 bits of Rm by the unsigned lowest
16 bits of Rn, and places the full 32-bit result in MACL. MACH is not modified.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

MULU.W Rm, Rn

0010 n m 1110

15 12 11 8 7 4 3 0

op1 ← ZeroExtend16(SignExpect32(Rm));
op2 ← ZeroExtend16(SignExpect32(Rn));
macl ← op1 × op2;
MACL ← ZeroExtend32(macl);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 203
NEG Rm, Rn

Description:

This instruction subtracts Rm from zero and places the result in Rn.

Notes:

The Rm source is required to have a 32-bit sign-extended representation.

NEG Rm, Rn

0110 n m 1011

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← - op1;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

204 Alphabetical list of instructions
NEGC Rm, Rn

Description:

This instruction subtracts Rm and the T-bit from zero and places the result in Rn.
The borrow from the subtraction is placed in the T-bit.

Notes:

The Rm source is required to have a 32-bit sign-extended representation. The T-bit
source is required to have a 0 or 1 value.

NEGC Rm, Rn

0110 n m 1010

15 12 11 8 7 4 3 0

t ← ZeroExpect1(T);
op1 ← ZeroExtend32(SignExpect32(Rm));
op2 ← (- op1) - t;
t ← op2< 32 FOR 1 >;
Rn ← Register(SignExtend32(op2));
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 205
NOP

Description:

This instruction performs no operation.

NOP

0000000000001001

15 0
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

206 Alphabetical list of instructions
NOT Rm, Rn

Description:

This instruction performs a bitwise NOT on Rm and places the result in Rn.

Notes:

This instruction performs a 64-bit bitwise NOT. The Rm source is not required to
have its upper 32 bits as sign-extensions. However, if the source value has a 32-bit
sign-extended representation, then the result will also have a 32-bit sign-extended
representation.

NOT Rm, Rn

0110 n m 0111

15 12 11 8 7 4 3 0

op1 ← ZeroExtend64(Rm);
op2 ← ~ op1;
Rn ← Register(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 207
OCBI @Rn

Description:

This instruction invalidates an operand cache block (if any) that corresponds to a
specified effective address. If the data in the operand cache block is dirty, it is
discarded without write-back to memory. Immediately after execution of OCBI,
assuming no exception was raised, it is guaranteed that the targeted memory block
in physical address space is not present in any operand or unified cache.

There is no misalignment check on this instruction, and the specified effective
address can be any byte address. The effective address specified in Rn is
automatically aligned downwards to the nearest exact multiple of the cache block
size.The effective address identifies a surrounding block of memory, which starts at
an address aligned to the cache block size and has a size equal to the cache block
size. The cache block size is implementation dependent. OCBI checks for address
error, translation miss and protection exception cases.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. OCBI
invalidates an implementation-dependent amount of data. For compatibility with
other implementations, software must exercise care when using OCBI.

OCBI @Rn

0000 n 10010011

15 12 11 8 7 0

op1 ← SignExpect32(Rn);
IF (MalformedAddress(op1))

THROW WADDERR, op1;
IF (MMU() AND DataAccessMiss(op1))

THROW WTLBMISS, op1;
IF (MMU() AND WriteProhibited(op1))

THROW WRITEPROT, op1;
OCBI(op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

208 Alphabetical list of instructions
OCBP @Rn

Description:

This instruction purges an operand cache block (if any) that corresponds to a
specified effective address. If the data in the operand cache block is dirty, it is
written back to memory before being discarded. Immediately after execution of
OCBP, assuming no exception was raised, it is guaranteed that the targeted
memory block in physical address space is not present in any operand or unified
cache.

There is no misalignment check on this instruction, and the specified effective
address can be any byte address. The effective address specified in Rn is
automatically aligned downwards to the nearest exact multiple of the cache block
size.The effective address identifies a surrounding block of memory, which starts at
an address aligned to the cache block size and has a size equal to the cache block
size. The cache block size is implementation dependent. OCBP checks for address
error, translation miss and protection exception cases.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

OCBP @Rn

0000 n 10100011

15 12 11 8 7 0

op1 ← SignExpect32(Rn);
IF (MalformedAddress(op1))

THROW RADDERR, op1;
IF (MMU() AND DataAccessMiss(op1))

THROW RTLBMISS, op1;
IF (MMU() AND (ReadProhibited(op1) AND WriteProhibited(op1)))

THROW READPROT, op1;
OCBP(op1);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 209
OCBWB @Rn

Description:

This instruction write-backs an operand cache block (if any) that corresponds to a
specified effective address. If the data in the operand cache block is dirty, it is
written back to memory but is not discarded. Immediately after execution of
OCBWB, assuming no exception was raised, it is guaranteed that the targeted
memory block in physical address space will not be dirty in any operand or unified
cache.

There is no misalignment check on this instruction, and the specified effective
address can be any byte address. The effective address specified in Rn is
automatically aligned downwards to the nearest exact multiple of the cache block
size.The effective address identifies a surrounding block of memory, which starts at
an address aligned to the cache block size and has a size equal to the cache block
size. The cache block size is implementation dependent. OCBWB checks for address
error, translation miss and protection exception cases.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

OCBWB @Rn

0000 n 10110011

15 12 11 8 7 0

op1 ← SignExpect32(Rn);
IF (MalformedAddress(op1))

THROW RADDERR, op1;
IF (MMU() AND DataAccessMiss(op1))

THROW RTLBMISS, op1;
IF (MMU() AND (ReadProhibited(op1) AND WriteProhibited(op1)))

THROW READPROT, op1;
OCBWB(op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

210 Alphabetical list of instructions
OR Rm, Rn

Description:

This instruction performs a bitwise OR of Rm with Rn and places the result in Rn.

Notes:

This instruction performs a 64-bit bitwise OR. The Rm and Rn sources are not
required to have their upper 32 bits as sign-extensions. However, if both source
values have a 32-bit sign-extended representation, then the result will also have a
32-bit sign-extended representation.

OR Rm, Rn

0010 n m 1011

15 12 11 8 7 4 3 0

op1 ← ZeroExtend64(Rm);
op2 ← ZeroExtend64(Rn);
op2 ← op2 ∨ op1;
Rn ← Register(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 211
OR #imm, R0

Description:

This instruction performs a bitwise OR of R0 with the zero-extended 8-bit
immediate i and places the result in R0.

Notes:

This instruction performs a 64-bit bitwise OR. The R0 source is not required to have
its upper 32 bits as sign-extensions. However, if the R0 source value has a 32-bit
sign-extended representation, then the result will also have a 32-bit sign-extended
representation.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

OR #imm, R0

11001011 i

15 8 7 0

r0 ← ZeroExtend64(R0);
imm ← ZeroExtend8(i);
r0 ← r0 ∨ imm;
R0 ← Register(r0);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

212 Alphabetical list of instructions
OR.B #imm, @(R0, GBR)

Description:

This instruction performs a bitwise OR of an immediate constant with 8 bits of data
held in memory. The effective address is calculated by adding R0 and GBR. The 8
bits of data at the effective address are read. A bitwise OR is performed of the read
data with the zero-extended 8-bit immediate i. The result is written back to the 8
bits of data at the same effective address.

Possible exceptions:

RADDERR, RTLBMISS, READPROT, WRITEPROT

Notes:

The R0 and GBR sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

OR.B #imm, @(R0, GBR)

11001111 i

15 8 7 0

r0 ← SignExpect32(R0);
gbr ← SignExpect32(GBR);
imm ← ZeroExtend8(i);
address ← ZeroExtend64(r0 + gbr);
value ← ZeroExtend8(ReadMemory8(address));
value ← value ∨ imm;
WriteMemory8(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 213
PREF @Rn

Description:

This instruction indicates a software-directed data prefetch from the specified
effective address. Software can use this instruction to give advance notice that
particular data will be required. It is implementation-specific as to whether a
prefetch will be performed.

There is no misalignment check on this instruction, and the specified effective
address can be any byte address. The effective address specified in Rn is
automatically aligned downwards to the nearest exact multiple of the cache block
size.The effective address identifies a surrounding block of memory, which starts at
an address aligned to the cache block size and has a size equal to the cache block
size. The cache block size is implementation dependent.

In exceptional cases, no exception is raised and the prefetch has no effect.

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

PREF @Rn

0000 n 10000011

15 12 11 8 7 0

op1 ← SignExpect32(Rn);
IF (NOT MalformedAddress(op1))

IF (NOT (MMU() AND DataAccessMiss(op1)))
IF (NOT (MMU() AND ReadProhibited(op1)))

PREFO(op1);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

214 Alphabetical list of instructions
ROTCL Rn

Description:

This instruction performs a one-bit left rotation of the bits held in Rn and the T-bit.
The 32-bit value in Rn is shifted one bit to the left, the least significant bit is given
the old value of the T-bit, and the bit that is shifted out is moved to the T-bit.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored. The T-bit source is required to have a 0 or 1
value.

ROTCL Rn

0100 n 00100100

15 12 11 8 7 0

t ← ZeroExpect1(T);
op1 ← ZeroExtend32(Rn);
op1 ← (op1 << 1) ∨ t;
t ← op1< 32 FOR 1 >;
Rn ← Register(SignExtend32(op1));
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 215
ROTCR Rn

Description:

This instruction performs a one-bit right rotation of the bits held in Rn and the T-bit.
The 32-bit value in Rn is shifted one bit to the right, the most significant bit is given
the old value of the T-bit, and the bit that is shifted out is moved to the T-bit.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored. The T-bit source is required to have a 0 or 1
value.

ROTCR Rn

0100 n 00100101

15 12 11 8 7 0

t ← ZeroExpect1(T);
op1 ← ZeroExtend32(Rn);
oldt ← t;
t ← op1< 0 FOR 1 >;
op1 ← (op1 >> 1) ∨ (oldt << 31);
Rn ← Register(SignExtend32(op1));
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

216 Alphabetical list of instructions
ROTL Rn

Description:

This instruction performs a one-bit left rotation of the bits held in Rn. The 32-bit
value in Rn is shifted one bit to the left, and the least significant bit is given the
value of the bit that is shifted out. The bit that is shifted out of the operand is also
copied to the T-bit.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

ROTL Rn

0100 n 00000100

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
t ← op1< 31 FOR 1 >;
op1 ← (op1 << 1) ∨ t;
Rn ← Register(SignExtend32(op1));
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 217
ROTR Rn

Description:

This instruction performs a one-bit right rotation of the bits held in Rn. The 32-bit
value in Rn is shifted one bit to the right, and the most significant bit is given the
value of the bit that is shifted out. The bit that is shifted out of the operand is also
copied to the T-bit.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

ROTR Rn

0100 n 00000101

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
t ← op1< 0 FOR 1 >;
op1 ← (op1 >> 1) ∨ (t << 31);
Rn ← Register(SignExtend32(op1));
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

218 Alphabetical list of instructions
RTS

Description:

This instruction is a delayed unconditional branch used for returning from a
subroutine. The value in PR specifies the target address. If the last two bits of the
target address are both set, an IADDERR exception is raised. Otherwise, the delay
slot is executed in SHcompact. Bit zero of the target address gives the new value of
the ISA mode for the next instruction. The least significant bit of the target address
is cleared, and this value is copied to the PC.

Possible exceptions:

ILLSLOT, IADDERR

Notes:

The PR source is required to have a 32-bit sign-extended representation.

Since this is a delayed branch instruction, the delay slot is executed before
branching and before ISA is updated. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

RTS

0000000000001011

15 0

pr ← SignExpect32(PR);
IF (IsDelaySlot())

THROW ILLSLOT;
target ← pr;
IF ((target ∧ 0x3) = 0x3)

THROW IADDERR, target;
delayedisa ← target ∧ 0x1;
delayedpc ← target ∧ (~ 0x1);
PC’’ ← Register(SignExtend32(delayedpc));
ISA’’ ← Bit(delayedisa);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 219
SETS

Description:

This instruction sets the S-bit to 1.

SETS

0000000001011000

15 0

s ← 1;
S ← Bit(s);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

220 Alphabetical list of instructions
SETT

Description:

This instruction sets the T-bit to 1.

SETT

0000000000011000

15 0

t ← 1;
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 221
SHAD Rm, Rn

Description:

This instruction performs an arithmetic shift of Rn, with the dynamic shift direction
and shift amount indicated by Rm, and places the result in Rn. If Rm is zero, no shift
is performed. If Rm is greater than zero, this is a left shift and the shift amount is
given by the least significant 5 bits of Rm. If Rm is less than zero, this is an
arithmetic right shift and the shift amount is given by the least significant 5 bits of
Rm subtracted from 32. In the case where Rm indicates an arithmetic right shift by
32, the result is filled with copies of the sign-bit of the original Rn.

Notes:

The Rm and Rn source values are not required to have a 32-bit sign-extended
representation. The upper 32 bits of Rm and Rn are ignored.

SHAD Rm, Rn

0100 n m 1100

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
shift_amount ← ZeroExtend5(op1);
IF (op1 ≥ 0)

op2 ← op2 << shift_amount;
ELSE IF (shift_amount ≠ 0)

op2 ← op2 >> (32 - shift_amount);
ELSE IF (op2 < 0)

op2 ← - 1;
ELSE

op2 ← 0;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

222 Alphabetical list of instructions
SHAL Rn

Description:

Arithmetically shifts Rn to the left by one bit and places the result in Rn. The bit
that is shifted out of the operand is moved to T-bit.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHAL Rn

0100 n 00100000

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
t ← op1< 31 FOR 1 >;
op1 ← op1 << 1;
Rn ← Register(SignExtend32(op1));
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 223
SHAR Rn

Description:

Arithmetically shifts Rn to the right by one bit and places the result in Rn. The bit
that is shifted out of the operand is moved to T-bit.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHAR Rn

0100 n 00100001

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
t ← op1< 0 FOR 1 >;
op1 ← op1 >> 1;
Rn ← Register(SignExtend32(op1));
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

224 Alphabetical list of instructions
SHLD Rm, Rn

Description:

This instruction performs a logical shift of Rn, with the dynamic shift direction and
shift amount indicated by Rm, and places the result in Rn. If Rm is zero, no shift is
performed. If Rm is greater than zero, this is a left shift and the shift amount is
given by the least significant 5 bits of Rm. If Rm is less than zero, this is a logical
right shift and the shift amount is given by the least significant 5 bits of Rm
subtracted from 32. In the case where Rm indicates a logical right shift by 32, the
result is 0.

Notes:

The Rm and Rn source values are not required to have a 32-bit sign-extended
representation. The upper 32 bits of Rm and Rn are ignored.

SHLD Rm, Rn

0100 n m 1101

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← ZeroExtend32(Rn);
shift_amount ← ZeroExtend5(op1);
IF (op1 ≥ 0)

op2 ← op2 << shift_amount;
ELSE IF (shift_amount ≠ 0)

op2 ← op2 >> (32 - shift_amount);
ELSE

op2 ← 0;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 225
SHLL Rn

Description:

This instruction performs a logical left shift of Rn by 1 bit and places the result in
Rn. The bit that is shifted out is moved to the T-bit.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHLL Rn

0100 n 00000000

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
t ← op1< 31 FOR 1 >;
op1 ← op1 << 1;
Rn ← Register(SignExtend32(op1));
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

226 Alphabetical list of instructions
SHLL2 Rn

Description:

This instruction performs a logical left shift of Rn by 2 bits and places the result in
Rn. The bits that are shifted out are discarded.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHLL2 Rn

0100 n 00001000

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 << 2;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 227
SHLL8 Rn

Description:

This instruction performs a logical left shift of Rn by 8 bits and places the result in
Rn. The bits that are shifted out are discarded.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHLL8 Rn

0100 n 00011000

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 << 8;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

228 Alphabetical list of instructions
SHLL16 Rn

Description:

This instruction performs a logical left shift of Rn by 16 bits and places the result in
Rn. The bits that are shifted out are discarded.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHLL16 Rn

0100 n 00101000

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 << 16;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 229
SHLR Rn

Description:

This instruction performs a logical right shift of Rn by 1 bit and places the result in
Rn. The bit that is shifted out is moved to the T-bit.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHLR Rn

0100 n 00000001

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
t ← op1< 0 FOR 1 >;
op1 ← op1 >> 1;
Rn ← Register(SignExtend32(op1));
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

230 Alphabetical list of instructions
SHLR2 Rn

Description:

This instruction performs a logical right shift of Rn by 2 bits and places the result in
Rn. The bits that are shifted out are discarded.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHLR2 Rn

0100 n 00001001

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 >> 2;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 231
SHLR8 Rn

Description:

This instruction performs a logical right shift of Rn by 8 bits and places the result in
Rn. The bits that are shifted out are discarded.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHLR8 Rn

0100 n 00011001

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 >> 8;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

232 Alphabetical list of instructions
SHLR16 Rn

Description:

This instruction performs a logical right shift of Rn by 16 bits and places the result
in Rn. The bits that are shifted out are discarded.

Notes:

The Rn source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rn are ignored.

SHLR16 Rn

0100 n 00101001

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 >> 16;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 233
STC GBR, Rn

Description:

This instruction copies GBR to Rn.

Notes:

The GBR source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of GBR are ignored.

STC GBR, Rn

0000 n 00010010

15 12 11 8 7 0

gbr ← SignExtend32(GBR);
op1 ← gbr;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

234 Alphabetical list of instructions
STC.L GBR, @-Rn

Description:

This instruction stores GBR to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of GBR is written to the effective address.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. The GBR
source value is not required to have a 32-bit sign-extended representation. The
upper 32 bits of GBR are ignored.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

STC.L GBR, @-Rn

0100 n 00010011

15 12 11 8 7 0

gbr ← SignExtend32(GBR);
op1 ← SignExpect32(Rn);
address ← ZeroExtend64(op1 - 4);
WriteMemory32(address, gbr);
op1 ← address;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 235
STS FPSCR, Rn

Description:

This floating-point instruction copies FPSCR to Rn.

Possible exceptions:

SLOTFPUDIS, FPUDIS

STS FPSCR, Rn

0000 n 01101010

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
pr ← ZeroExtend1(SR.PR);
sz ← ZeroExtend1(SR.SZ);
fr ← ZeroExtend1(SR.FR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← PackFPSCR(fps, pr, sz, fr);
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

236 Alphabetical list of instructions
STS.L FPSCR, @-Rn

Description:

This floating-point instruction stores FPSCR to memory using register indirect with
pre-decrement addressing. Rn is pre-decremented by 4 to give the effective address.
The 32-bit value of FPSCR is written to the effective address.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

STS.L FPSCR, @-Rn

0100 n 01100010

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
pr ← ZeroExtend1(SR.PR);
sz ← ZeroExtend1(SR.SZ);
fr ← ZeroExtend1(SR.FR);
op1 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
value ← PackFPSCR(fps, pr, sz, fr);
address ← ZeroExtend64(op1 - 4);
WriteMemory32(address, value);
op1 ← address;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 237
STS FPUL, Rn

Description:

This floating-point instruction copies FPUL to Rn.

Possible exceptions:

SLOTFPUDIS, FPUDIS

STS FPUL, Rn

0000 n 01011010

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
fpul ← SignExtend32(FPUL);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← fpul;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

238 Alphabetical list of instructions
STS.L FPUL, @-Rn

Description:

This floating-point instruction stores FPUL to memory using register indirect with
pre-decrement addressing. Rn is pre-decremented by 4 to give the effective address.
The 32-bit value of FPUL is written to the effective address.

Possible exceptions:

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

STS.L FPUL, @-Rn

0100 n 01010010

15 12 11 8 7 0

sr ← ZeroExtend64(SR);
fpul ← SignExtend32(FPUL);
op1 ← SignExpect32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(op1 - 4);
WriteMemory32(address, fpul);
op1 ← address;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 239
STS MACH, Rn

Description:

This instruction copies MACH to Rn.

STS MACH, Rn

0000 n 00001010

15 12 11 8 7 0

mach ← SignExtend32(MACH);
op1 ← mach;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

240 Alphabetical list of instructions
STS.L MACH, @-Rn

Description:

This instruction stores MACH to memory using register indirect with
pre-decrement addressing. Rn is pre-decremented by 4 to give the effective address.
The 32-bit value of MACH is written to the effective address.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

STS.L MACH, @-Rn

0100 n 00000010

15 12 11 8 7 0

mach ← SignExtend32(MACH);
op1 ← SignExpect32(Rn);
address ← ZeroExtend64(op1 - 4);
WriteMemory32(address, mach);
op1 ← address;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 241
STS MACL, Rn

Description:

This instruction copies MACL to Rn.

STS MACL, Rn

0000 n 00011010

15 12 11 8 7 0

macl ← SignExtend32(MACL);
op1 ← macl;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

242 Alphabetical list of instructions
STS.L MACL, @-Rn

Description:

This instruction stores MACL to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of MACL is written to the effective address.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

STS.L MACL, @-Rn

0100 n 00010010

15 12 11 8 7 0

macl ← SignExtend32(MACL);
op1 ← SignExpect32(Rn);
address ← ZeroExtend64(op1 - 4);
WriteMemory32(address, macl);
op1 ← address;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 243
STS PR, Rn

Description:

This instruction copies PR to Rn.

Notes:

The PR source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of PR are ignored.

STS PR, Rn

0000 n 00101010

15 12 11 8 7 0

pr ← SignExtend32(PR’);
op1 ← pr;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

244 Alphabetical list of instructions
STS.L PR, @-Rn

Description:

This instruction stores PR to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of PR is written to the effective address.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The Rn source is required to have a 32-bit sign-extended representation. The PR
source value is not required to have a 32-bit sign-extended representation. The
upper 32 bits of PR are ignored.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

STS.L PR, @-Rn

0100 n 00100010

15 12 11 8 7 0

pr ← SignExtend32(PR’);
op1 ← SignExpect32(Rn);
address ← ZeroExtend64(op1 - 4);
WriteMemory32(address, pr);
op1 ← address;
Rn ← Register(SignExtend32(op1));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 245
SUB Rm, Rn

Description:

This instruction subtracts Rm from Rn and places the result in Rn.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

SUB Rm, Rn

0011 n m 1000

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
op2 ← op2 - op1;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

246 Alphabetical list of instructions
SUBC Rm, Rn

Description:

This instruction subtracts Rm and the T-bit from Rn and places the result in Rn. The
borrow from the subtraction is placed in the T-bit.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.
The T-bit source is required to have a 0 or 1 value.

SUBC Rm, Rn

0011 n m 1010

15 12 11 8 7 4 3 0

t ← ZeroExpect1(T);
op1 ← ZeroExtend32(SignExpect32(Rm));
op2 ← ZeroExtend32(SignExpect32(Rn));
op2 ← (op2 - op1) - t;
t ← op2< 32 FOR 1 >;
Rn ← Register(SignExtend32(op2));
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 247
SUBV Rm, Rn

Description:

This instruction subtracts Rm from Rn and places the result in Rn. The T-bit is set to
1 if the subtraction result is outside the 32-bit signed range, otherwise the T-bit is
set to 0.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

SUBV Rm, Rn

0011 n m 1011

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
op2 ← op2 - op1;

t ← INT ((op2 < (- 231)) OR (op2 ≥ 231));
Rn ← Register(SignExtend32(op2));
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

248 Alphabetical list of instructions
SWAP.B Rm, Rn

Description:

This instruction swaps the values of the lower 2 bytes in Rm and places the result in
Rn. Bits [0,7] take the value of bits [8,15]. Bits [8,15] take the value of bits [0,7]. Bits
[16,31] are unchanged.

Notes:

The Rm source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rm are ignored.

SWAP.B Rm, Rn

0110 n m 1000

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← ((op1< 16 FOR 16 > << 16) ∨ (op1< 0 FOR 8 > << 8)) ∨ op1< 8 FOR 8 >;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 249
SWAP.W Rm, Rn

Description:

This instruction swaps the values of the 2 words in Rm and places the result in Rn.
Bits [0,15] take the value of bits [16,31]. Bits [16,31] take the value of bits [0,15].

Notes:

The Rm source value is not required to have a 32-bit sign-extended representation.
The upper 32 bits of Rm are ignored.

SWAP.W Rm, Rn

0110 n m 1001

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← (op1< 0 FOR 16 > << 16) ∨ op1< 16 FOR 16 >;
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

250 Alphabetical list of instructions
TAS.B @Rn

Description:

This instruction performs a test-and-set operation on the byte data at the effective
address specified in Rn. The 8 bits of data at the effective address are read. If the
read data is 0 the T-bit is set, otherwise the T-bit is cleared. The highest bit of the
8-bit data (bit 7) is set, and the result is written to the same effective address.

This test-and-set is atomic from the CPU perspective. This instruction cannot be
interrupted during its operation. However, atomicity is not provided with respect to
accesses from other memory users. It is possible that another memory access from
another memory user could occur between the two TAS.B accesses.

There is no special treatment for TAS.B regarding the cache, and it behaves in the
same way as a load followed by a store. Depending on the cache behavior, it is
possible for the TAS.B accesses to be completed in the cache with no external
memory activity.

The SHmedia SWAP.Q instruction (see Volume 1, Chapter 6: SHmedia memory
instructions) provides an atomic read-modify-write on external memory, and should
be used for synchronization with other memory users.

Possible exceptions:

RADDERR, RTLBMISS, READPROT, WRITEPROT

TAS.B @Rn

0100 n 00011011

15 12 11 8 7 0

op1 ← SignExpect32(Rn);
address ← ZeroExtend64(op1);
value ← ZeroExtend8(ReadMemory8(address));
t ← INT (value = 0);
value ← value ∨ (1 << 7);
WriteMemory8(address, value);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 251
Notes:

The Rn source is required to have a 32-bit sign-extended representation.

The atomicity properties of this instruction are reduced relative to SH-4. The SH-4
TAS.B instruction guarantees atomicity with respect to all memory accesses from
all memory users. The SHcompact semantics continue to support the use of TAS.B
to synchronize between software threads executing on the same CPU. It cannot be
used to synchronize with other memory users or hardware devices.
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

252 Alphabetical list of instructions
TRAPA #imm

Description:

This instruction causes a pre-execution trap. The value of the zero-extended 8-bit
immediate i is used by the handler launch sequence to characterize the trap.

Possible exceptions:

ILLSLOT, TRAP

Notes:

An ILLSLOT exception is raised if this instruction is executed in a delay slot.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

TRAPA #imm

11000011 i

15 8 7 0

imm ← ZeroExtend8(i);
IF (IsDelaySlot())

THROW ILLSLOT;
THROW TRAP, imm;
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 253
TST Rm, Rn

Description:

This instruction performs a bitwise AND of Rm with Rn. If the result is 0, the T-bit is
set, otherwise the T-bit is cleared.

Notes:

The Rm and Rn sources are required to have a 32-bit sign-extended representation.

TST Rm, Rn

0010 n m 1000

15 12 11 8 7 4 3 0

op1 ← SignExpect32(Rm);
op2 ← SignExpect32(Rn);
t ← INT ((op1 ∧ op2) = 0);
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

254 Alphabetical list of instructions
TST #imm, R0

Description:

This instruction performs a bitwise AND of R0 with the zero-extended 8-bit
immediate i. If the result is 0, the T-bit is set, otherwise the T-bit is cleared.

Notes:

The R0 source is required to have a 32-bit sign-extended representation.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

TST #imm, R0

11001000 i

15 8 7 0

r0 ← SignExpect32(R0);
imm ← ZeroExtend8(i);
t ← INT ((r0 ∧ imm) = 0);
T ← Bit(t);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 255
TST.B #imm, @(R0, GBR)

Description:

This instruction performs a bitwise test of an immediate constant with 8 bits of data
held in memory. The effective address is calculated by adding R0 and GBR. The 8
bits of data at the effective address are read. A bitwise AND is performed of the read
data with the zero-extended 8-bit immediate i. If the result is 0, the T-bit is set,
otherwise the T-bit is cleared.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The R0 and GBR sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

TST.B #imm, @(R0, GBR)

11001100 i

15 8 7 0

r0 ← SignExpect32(R0);
gbr ← SignExpect32(GBR);
imm ← ZeroExtend8(i);
address ← ZeroExtend64(r0 + gbr);
value ← ZeroExtend8(ReadMemory8(address));
t ← ((value ∧ imm) = 0);
T ← Bit(t);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

256 Alphabetical list of instructions
XOR Rm, Rn

Description:

This instruction performs a bitwise XOR of Rm with Rn and places the result in Rn.

Notes:

This instruction performs a 64-bit bitwise XOR. The Rm and Rn sources are not
required to have their upper 32 bits as sign-extensions. However, if both source
values have a 32-bit sign-extended representation, then the result will also have a
32-bit sign-extended representation.

XOR Rm, Rn

0010 n m 1010

15 12 11 8 7 4 3 0

op1 ← ZeroExtend64(Rm);
op2 ← ZeroExtend64(Rn);
op2 ← op2 ⊕ op1;
Rn ← Register(op2);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 257
XOR #imm, R0

Description:

This instruction performs a bitwise XOR of R0 with the zero-extended 8-bit
immediate i and places the result in R0.

Notes:

This instruction performs a 64-bit bitwise XOR. The R0 source is not required to
have its upper 32 bits as sign-extensions. However, if the R0 source value has a
32-bit sign-extended representation, then the result will also have a 32-bit
sign-extended representation.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

XOR #imm, R0

11001010 i

15 8 7 0

r0 ← ZeroExtend64(R0);
imm ← ZeroExtend8(i);
r0 ← r0 ⊕ imm;
R0 ← Register(r0);
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

258 Alphabetical list of instructions
XOR.B #imm, @(R0, GBR)

Description:

This instruction performs a bitwise XOR of an immediate constant with 8 bits of
data held in memory. The effective address is calculated by adding R0 and GBR. The
8 bits of data at the effective address are read. A bitwise XOR is performed of the
read data with the zero-extended 8-bit immediate i. The result is written back to the
8 bits of data at the same effective address.

Possible exceptions:

RADDERR, RTLBMISS, READPROT, WRITEPROT

Notes:

The R0 and GBR sources are required to have a 32-bit sign-extended representation.

The effective address calculation is performed at 64-bit precision, and can generate
an address outside the sign-extended 32-bit address space.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

XOR.B #imm, @(R0, GBR)

11001110 i

15 8 7 0

r0 ← SignExpect32(R0);
gbr ← SignExpect32(GBR);
imm ← ZeroExtend8(i);
address ← ZeroExtend64(r0 + gbr);
value ← ZeroExtend8(ReadMemory8(address));
value ← value ⊕ imm;
WriteMemory8(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Alphabetical list of instructions 259
XTRCT Rm, Rn

Description:

This instruction extracts the lower 16-bit word from Rm and the upper 16-bit word
from Rn, swaps their order, and places the result in Rn. Bits [0,15] of Rn take the
value of bits [16,31] of the original Rn. Bits [16,31] of Rn take the value of bits [0,15]
of Rm.

Notes:

The Rm and Rn source values are not required to have a 32-bit sign-extended
representation. The upper 32 bits of Rm and Rn are ignored.

XTRCT Rm, Rn

0010 n m 1101

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← ZeroExtend32(Rn);
op2 ← op2< 16 FOR 16 > ∨ (op1< 0 FOR 16 > << 16);
Rn ← Register(SignExtend32(op2));
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

260 Alphabetical list of instructions
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

SuperH, Inc.
05-CC-10003 V1.0 S
A
SHcompact
instruction
encoding

A.1 Formats

SHcompact uses the following instruction formats to encode its 16-bit instructions.

A.2 0 format

Instructions in this format do not have explicit operands. The opcode indirectly
refers to a special action to be taken (possibly on an implicit resource).

x

15 0

Format name Example mnemonic(s) Operands

0 CLRT

NOP

RTE

DIV0U

SLEEP

Table 14: 0 format summary
H-5 CPU Core, Volume 3: SHcompact

262
A.3 n format

Instructions in this format operate on operands constructed from:

• Direct register

• Indirect register

• Special register

x n x

15 12 11 8 7 0

Format name Example mnemonic(s) Operands

n CMP/PZ Rn

SHLL Rn

STC GBR, Rn

STS MACH, Rn

JMP @Rn

STC.L GBR, @-Rn

STS.L MACH, @-Rn

BSRF Rn

Table 15: n format summary
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

263
A.4 m format

Instructions in this format operate on operands constructed from:

• Direct register

• Indirect register

• Special register

A.5 nm format

Instructions in this format operate on operands constructed from:

• Direct register

• Indirect register

• Special register

x m x

15 12 11 8 7 0

Format Name Example Mnemonic(s) Operands

m STC Rm, GBR

LDS Rm, MACH

LDC.L @Rm+, GBR

LDC.L @Rm+, MACH

Table 16: m format summary

x n m x

15 12 11 8 7 4 3 0
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

264
A.6 md format

Instructions in this format operate on operands constructed from:

• Direct register

• Indirect register with displacement

Format name Example mnemonic(s) Operands

nm ADD Rm, Rn

XOR Rm, Rn

MOV.B Rm, @Rn

MAC.L @Rm+, @Rn+

MOV.L @Rm+, Rn

MOV.W Rm, @-Rn

MOV.W Rm, @(R0, Rn)

MOV.L @(R0, Rm), Rn

Table 17: nm format summary

x m d

15 8 7 4 3 0

Format name Example mnemonic(s) Operands

md MOV.B @(disp, Rm), R0

MOV.W @(disp, Rm), R0

Table 18: md format summary
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

265
A.7 nd4 format

Instructions in this format operate on operands constructed from:

• Direct register

• Indirect register with displacement

A.8 nmd format

Instructions in this format operate on operands constructed from:

• Direct register

• Indirect register with displacement

x n d

15 8 7 4 3 0

Format name Example mnemonic(s) Operands

nd4 MOV.B R0, @(disp, Rn)

MOV.W R0, @(disp, Rn)

Table 19: nd4 format summary

x n m d

15 12 11 8 7 4 3 0

Format name Example mnemonic(s) Operands

nmd MOV.L Rm, @(disp, Rn)

MOV.L @(disp, Rm), Rn

Table 20: nmd format summary
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

266
A.9 d format

Instructions in this format operate on operands constructed from:

• Direct register

• Indirect Global Base Register (GBR) with displacement

• Program Counter (PC) with displacement

A.10d12 format

Instructions in this format operate on operands constructed from:

• Program Counter (PC) with displacement

x d

15 8 7 0

Format Name Example Mnemonic(s) Operands

d MOV.B R0, @(disp, GBR)

MOV.L @(disp, GBR), R0

MOVA @(disp, PC), R0

BT disp

Table 21: d format summary

x d

15 12 11 0

Format name Example mnemonic(s) Operands

d12 BRA disp

BSR disp

Table 22: d12 format summary
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

267
A.11nd8 format

Instructions in this format operate on operands constructed from:

• Direct register

• Program Counter (PC) with displacement

A.12i format

Instructions in this format operate on operands constructed from:

• Immediate field

• Direct register

• Indirect Global Base Register (GBR) with index

x n d

15 12 11 8 7 0

Format name Example mnemonic(s) Operands

nd8 MOV.W @(disp, PC), Rn

MOV.L @(disp, PC), Rn

Table 23: nd8 format summary

x i

15 8 7 0
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

268
A.13ni format

Instructions in this format operate on operands constructed from:

• Immediate field

• Direct register

A.14Opcode assignment
The opcode assignments for each SHcompact instruction are given in Chapter 2:
SHcompact instruction set on page 19.

Format name Example mnemonic(s) Operands

i AND.B #imm, @(R0, GBR)

TST #imm, R0

CMP/EQ #imm, R0

TRAPA #imm

Table 24: i format summary

x n i

15 12 11 8 7 0

Format Name Example Mnemonic(s) Operands

ni ADD #imm, Rn

MOV #imm, Rn

Table 25: ni format summary
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

269
A.15Reserved instructions
Execution of a reserved opcode leads to a reserved instruction exception:

• The SHcompact instruction with encoding 0xFFFD is guaranteed to be reserved
on all implementations. Execution of this SHcompact instruction will always
result in either a RESINST exception if the instruction is not in a delay slot, or
an ILLSLOT exception if the instruction is in a delay slot.

• SHcompact does not implement the privileged instructions of previous SuperH
architectures. All privileged-mode instructions of previous SuperH architectures
are reserved in the SHcompact architecture, and raise a reserved instruction
exception if executed. The non-implemented instructions are listed in Table 26.

• Software should not rely on a RESINST exception for the execution of other
reserved opcodes. On a future implementation, any of these reserved opcodes can
be used to expand the instruction set.

Reserved instruction
Binary encoding
(bit 15 to bit 0)

Reserved instruction summary

LDC Rm, DBR 0100mmmm11111010 Copy general-purpose register to debug base
register

LDC Rm, Rn_BANK 0100mmmm1nnn1110 Copy general-purpose register to register Rn in
back bank: SR.RB = 0 selects BANK1 and
SR.RB = 1 selects BANK0, where n is in [0,7]

LDC Rm, SPC 0100mmmm01001110 Copy general-purpose register to saved program
counter

LDC Rm, SR 0100mmmm00001110 Copy general-purpose register to status register

LDC Rm, SSR 0100mmmm00111110 Copy general-purpose register to saved status
register

LDC Rm, VBR 0100mmmm00101110 Copy general-purpose register to vector base
register

LDC.L @Rm+, DBR 0100mmmm11110110 Load debug base register from memory with
post-increment

LDC.L @Rm+, Rn_BANK 0100mmmm1nnn0111 Load register Rn in back bank from memory with
post-increment: SR.RB = 0 selects BANK1 and
SR.RB = 1 selects BANK0, where n is in [0,7]

Table 26: SHcompact reserved instructions
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

270
LDC.L @Rm+, SPC 0100mmmm01000111 Load saved program counter from memory with
post-increment

LDC.L @Rm+, SR 0100mmmm00000111 Load status register from memory with
post-increment

LDC.L @Rm+, SSR 0100mmmm00110111 Load saved status register from memory with
post-increment

LDC.L @Rm+, VBR 0100mmmm00100111 Load vector base register from memory with
post-increment

LDTLB 0000000000111000 Load a TLB entry from PTEH and PTEL registers

RTE 0000000000101011 Return from exception

SLEEP 0000000000011011 Place the CPU into power-down mode

STC DBR, Rn 0000nnnn11111010 Copy debug base register to general-purpose
register

STC SGR, Rn 0000nnnn00111010 Copy saved general register 15 to
general-purpose register

STC Rm_BANK, Rn 0000nnnn1mmm0010 Copy register Rm in back bank to
general-purpose register: SR.RB = 0 selects
BANK1 and SR.RB = 1 selects BANK0, where m
is in [0,7]

STC SPC, Rn 0000nnnn01000010 Copy saved program counter to general-purpose
register

STC SR, Rn 0000nnnn00000010 Copy status register to general-purpose register

STC SSR, Rn 0000nnnn00110010 Copy saved status register to general-purpose
register

STC VBR, Rn 0000nnnn00100010 Copy vector base register to general-purpose
register

STC.L DBR, @-Rn 0100nnnn11110010 Store debug base register to memory with
pre-decrement

STC.L SGR, @-Rn 0100nnnn00110010 Store saved general register 15 to memory with
pre-decrement

Reserved instruction
Binary encoding
(bit 15 to bit 0)

Reserved instruction summary

Table 26: SHcompact reserved instructions
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

271
There is no provision by the architecture for any additional state required by just
these unimplemented instructions. This includes DBR, PTEH, PTEL, SGR, SR.RB
and the back-bank of 8 32-bit registers.

STC.L Rm_BANK, @-Rn 0100nnnn1mmm0011 Store contents of register Rm in back bank to
memory with pre-decrement: SR.RB = 0 selects
BANK1 and SR.RB = 1 selects BANK0, where m
is in [0,7]

STC.L SPC, @-Rn 0100nnnn01000011 Store saved program counter to memory with
pre-decrement

STC.L SR, @-Rn 0100nnnn00000011 Store status register to memory with
pre-decrement

STC.L SSR, @-Rn 0100nnnn00110011 Store saved status register to memory with
pre-decrement

STC.L VBR, @-Rn 0100nnnn00100011 Store vector base register to memory with
pre-decrement

(no mnemonic) 1111111111111101 0xFFFD is guaranteed to be a reserved
instruction and always generates a reserved
instruction exception

Reserved instruction
Binary encoding
(bit 15 to bit 0)

Reserved instruction summary

Table 26: SHcompact reserved instructions
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

272
A.16Floating-point instructions
The floating-point instruction set consists of:

• All instructions where the highest 4 bits (bit 12 to bit 15) of the instruction
encoding have the value 0xF, excluding the reserved instruction which has
encoding 0xFFFD.

• The LDS, STS, LDS.L and STS.L instructions that access FPUL and FPSCR

An implementation can choose not to provide floating-point and SR.FD will then
always read as 1. If an implementation provides floating-point, software can disable
it by setting the SR.FD flag. In both of these cases, execution of an instruction from
the floating-point instruction set leads to an FPU disabled exception.

The FPU disabled exception (FPUDIS) takes precedence over a reserved instruction
exception (RESINST). Thus, execution of a reserved floating-point instruction, that
is not in a delay slot and where the floating-point instruction set is not available,
leads to an FPU disabled exception.

Similarly, the delay-slot FPU disabled exception (SLOTFPUDIS) takes precedence
over an illegal slot exception (ILLSLOT). Thus, execution of a reserved
floating-point instruction, that is in a delay slot and where the floating-point
instruction set is not available, leads to a delay-slot FPU disabled exception.

The SHcompact instruction with encoding 0xFFFD is not considered an FPU
instruction. Regardless of whether the FPU is enabled or disabled, execution of this
instruction will result in a RESINST exception if the instruction is not in a delay
slot, or an ILLSLOT exception if the instruction is in a delay slot. This instruction
does not cause FPUDIS or SLOTFPUDIS exceptions.
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

Index
A
ADD 20-21, 68, 264, 268
ADDC . 22
ADDV . 23
AND 24-26, 268
AND.B .26, 268

B
BACK .9
BANK1 269-271
BF .12, 27, 29
BRA12, 31, 266
BRAF .12, 32
BREAK . 33
BRK .33
BSR12, 17, 34, 266
BSRF12, 17, 36, 262
BT12, 38, 40, 266

C
CMPGT . 74

D
DIV0S . 54
DIV1 . 56

DMULS.L . 57
DMULU.L . 58
DT . 59

E
EXTS.B . 60
EXTS.W . 61
EXTU.B . 62
EXTU.W . 63

F
FABS . 64-65
FADD . 66-68
FCNVDS . 75, 77
FCNVSD . 76-77
FDIV . 78-80
FIPR . 82-83
FIPR.S . 83
FLDI . 85-86
FLDS . 87
FLOAT . 88-90
FMAC . 91
FMAC.S . 92
FMOV . 95-117
FMOV.S100-103, 112-114
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

274
FMUL . 118-120
FNEG . 121-122
FPU 2, 13, 68, 71, 74, 77, 80, 83, 90, 92,

. . 120, 125, 129, 131, 135, 138,
140,272

FPUDIS 13, 64-67, 69-70, 72-73, 75-76,
78- . . . 79, 82, 85-89, 91, 95-119,
121-124, 126-128, 130, 132-134,
136- .137, 140, 148-151, 235-238

FPUL . . 2, 75-76, 87-90, 124, 132, 136-
137,150-151, 237-238, 272

FRONT .9
FSCA 124-125, 130
FSQRT 127-129
FSRRA 130-131
FSRRA.S .131
FSTS .132
FSUB . 133-135
FTRC . 136-138
FTRV . 139-140
FTRV.S .140
Function

IsDelaySlot() 13
PackFPSCR 11
SignExpectn(value)9
UnpackFPSCR 11
ZeroExpectn(value)9

I
IADDERR .27, 29, 31-32, 34, 36, 38, 40,

143-144, 218
ILLSLOT 12, 17, 27-32, 34, 36-41, 143-

145, . . .183, 194, 196, 218, 252
ISA . 13, 15-16, 32, 36-37, 143-145, 218

J
JMP12, 143, 262
JSR . 12, 17, 144

L
LDC146-147, 263, 269-270
LDC.L 147, 263, 269-270
LDS 17, 148-157, 263, 272
LDS.L 149, 151, 153, 155, 157, 272
LDTLB . 270
LTB . 270

M
MAC.L 158-159, 264
MAC.W 160-161
MACH 2, 42, 57-58, 152-153, 158, 160,

200-.202, 239-240, 262-263
MACL . 2, 42, 57-58, 154-155, 158, 160,

200-. 202, 241-242
MOV 12-13, 162-195, 264-268
MOV.B164-173, 264-266
MOV.L12, 174-184, 264-267
MOV.W13, 185-195, 264-265, 267
MOVA 13, 196, 266
MOVCA.L . 197
MOVT . 199
MUL.L . 200
MULS.W . 201
MULU.W . 202

N
NEG . 203
NEGC . 204
NOT . 206

O
OCBI . 207
OCBP . 208
OCBWB . 209
OR . 210-212
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

275
OR.B .212

P
PC 12-13, 15-17, 27, 29, 31-32, 34, 36,

38, .40, 143-144, 183, 194, 196,
218, 266-267

PR . 1-2, 11, 13, 15-17, 34, 36-37, 144-
145,156-157, 218, 243-244

PREF .213
PTEH .270
PTEL .270

R
Reggister

VBR . 269-271
Register

DR . 10
FP .10
FPSCR . 1-2, 11, 66-68, 71, 74-80, 83,

88- . . 89, 91-92, 118-120, 123, 126-
129, . . 131, 133-138, 140, 148-149,
235-236, 272

FPSCR.DN . 68, 71, 74, 77, 80, 83, 92,
120,129, 131, 135, 138, 140

FPSCR.FR2, 123
FPSCR.RM 66-67, 75-76, 78-79, 88-89,

. . . 91, 118-119, 127-128, 133-134,
136- .137

FPSCR.SZ2, 126
FR 1-2, 9, 11, 91, 123
GBR . . .2, 26, 146-147, 167, 172, 177,

182, . .188, 193, 212, 233-234, 255,
258,262-263, 266-268

R 13-14, 25-26, 46, 99, 103, 108, 111,
114, . . 117, 166-168, 171-173, 176-
177, . . 181-182, 187-189, 192-193,
195- . . 197, 211-212, 254-255, 257-
258, 264-266, 268

Rm 20, 22-24, 45, 47-50, 53-54, 56-58,
. 60-63, 109-117, 146-162, 164-166,
169- . . 171, 173-176, 178-181, 184-

187, . 189-192, 195, 200-204, 206,
210, . 221, 224, 245-249, 253, 256,
259,263-265, 269-270

SR1-2, 9, 11, 269-272
SR.FD . 272
SR.FR 2, 9, 11
SR.PR . 2, 11
SR.RB 269-271
SR.SZ . 2, 11
SSR . 269-271
TR . 14
XFi . 10

Regsiter
DBR . 269-270
SGR . 270

Ri_BANK 269-271
ROTCL . 214
ROTCR . 215
ROTL . 216
ROTR . 217
RTE . 261, 270

S
SHAD . 221
SHAL . 222
SHAR . 223
SHLD . 224
SHLL 225-228, 262
SHLR . 229-232
SLEEP 261, 270
SLOTFPUDIS . .13, 64-67, 69-70, 72-73,

75-. 76, 78-79, 82, 85-89, 91, 95-
119, 121-124, 126-128, 130, 132-
134, 136-137, 140, 148-151, 235-
238

SPC . 269-271
STC 233-234, 262-263, 270-271
STC.L 234, 262, 270-271
STS 17, 235-244, 262, 272
SuperH, Inc.
05-CC-10003 V1.0 SH-5 CPU Core, Volume 3: SHcompact

276
STS.L 236, 238, 240, 242, 244, 262, 272
SUB .135, 245
SUBC .246
SUBV .247
SWAP.B .248
SWAP.W .249
SZ . 1-2, 11, 126

T
TAS.B . 250-251
TRAPA13, 252, 268
TST 253-255, 268
TST.B .255

XYZ
XMTRX .10, 139
XOR 256-258, 264
XOR.B .258
XTRCT .259
SuperH, Inc.
SH-5 CPU Core, Volume 3: SHcompact 05-CC-10003 V1.0

	Preface
	SuperH SH-5 document identification and control
	SuperH SH-5 CPU core documentation suite

	SHcompact specification
	1.1 Overview
	1.2 SHcompact architectural state
	1.3 General-purpose registers
	1.3.1 R0 To R15, GBR and PR
	1.3.2 T-bit
	1.3.3 MACL and MACH
	1.3.4 Discussion

	1.4 Floating-point registers
	1.5 FPSCR, PR, SZ and FR
	1.6 Delayed branches and delay slots
	1.7 Scratch registers
	1.8 Memory, cache and floating-point models
	1.9 Abstract sequential model
	1.9.1 Initial conditions
	1.9.2 Instruction execution loop
	1.9.3 Non-delayed and delayed state changes

	SHcompact instruction set
	2.1 Alphabetical list of instructions
	ADD Rm, Rn
	ADD #imm, Rn
	ADDC Rm, Rn
	ADDV Rm, Rn
	AND Rm, Rn
	AND #imm, R0
	AND.B #imm, @(R0, GBR)
	BF label
	BF/S label
	BRA label
	BRAF Rn
	BRK
	BSR label
	BSRF Rn
	BT label
	BT/S label
	CLRMAC
	CLRS
	CLRT
	CMP/EQ Rm, Rn
	CMP/EQ #imm, R0
	CMP/GE Rm, Rn
	CMP/GT Rm, Rn
	CMP/HI Rm, Rn
	CMP/HS Rm, Rn
	CMP/PL Rn
	CMP/PZ Rn
	CMP/STR Rm, Rn
	DIV0S Rm, Rn
	DIV0U
	DIV1 Rm, Rn
	DMULS.L Rm, Rn
	DMULU.L Rm, Rn
	DT Rn
	EXTS.B Rm, Rn
	EXTS.W Rm, Rn
	EXTU.B Rm, Rn
	EXTU.W Rm, Rn
	FABS DRn
	FABS FRn
	FADD DRm, DRn
	FADD FRm, FRn
	FCMP/EQ DRm, DRn
	FCMP/EQ FRm, FRn
	FCMP/GT DRm, DRn
	FCMP/GT FRm, FRn
	FCNVDS DRm, FPUL
	FCNVSD FPUL, DRn
	FDIV DRm, DRn
	FDIV FRm, FRn
	FIPR FVm, FVn
	FLDI0 FRn
	FLDI1 FRn
	FLDS FRm, FPUL
	FLOAT FPUL, DRn
	FLOAT FPUL, FRn
	FMAC FR0, FRm, FRn
	FMOV DRm, DRn
	FMOV DRm, XDn
	FMOV DRm, @Rn
	FMOV DRm, @-Rn
	FMOV DRm, @(R0, Rn)
	FMOV FRm, FRn
	FMOV.S FRm, @Rn
	FMOV.S FRm, @-Rn
	FMOV.S FRm, @(R0, Rn)
	FMOV XDm, DRn
	FMOV XDm, XDn
	FMOV XDm, @Rn
	FMOV XDm, @-Rn
	FMOV XDm, @(R0, Rn)
	FMOV @Rm, DRn
	FMOV @Rm+, DRn
	FMOV @(R0, Rm), DRn
	FMOV.S @Rm, FRn
	FMOV.S @Rm+, FRn
	FMOV.S @(R0, Rm), FRn
	FMOV @Rm, XDn
	FMOV @Rm+, XDn
	FMOV @(R0, Rm), XDn
	FMUL DRm, DRn
	FMUL FRm, FRn
	FNEG DRn
	FNEG FRn
	FRCHG
	FSCA FPUL, DRn
	FSCHG
	FSQRT DRn
	FSQRT FRn
	FSRRA FRn
	FSTS FPUL, FRn
	FSUB DRm, DRn
	FSUB FRm, FRn
	FTRC DRm, FPUL
	FTRC FRm, FPUL
	FTRV XMTRX, FVn
	JMP @Rn
	JSR @Rn
	LDC Rm, GBR
	LDC.L @Rm+, GBR
	LDS Rm, FPSCR
	LDS.L @Rm+, FPSCR
	LDS Rm, FPUL
	LDS.L @Rm+, FPUL
	LDS Rm, MACH
	LDS.L @Rm+, MACH
	LDS Rm, MACL
	LDS.L @Rm+, MACL
	LDS Rm, PR
	LDS.L @Rm+, PR
	MAC.L @Rm+, @Rn+
	MAC.W @Rm+, @Rn+
	MOV Rm, Rn
	MOV #imm, Rn
	MOV.B Rm, @Rn
	MOV.B Rm, @-Rn
	MOV.B Rm, @(R0, Rn)
	MOV.B R0, @(disp, GBR)
	MOV.B R0, @(disp, Rn)
	MOV.B @Rm, Rn
	MOV.B @Rm+, Rn
	MOV.B @(R0, Rm), Rn
	MOV.B @(disp, GBR), R0
	MOV.B @(disp, Rm), R0
	MOV.L Rm, @Rn
	MOV.L Rm, @-Rn
	MOV.L Rm, @(R0, Rn)
	MOV.L R0, @(disp, GBR)
	MOV.L Rm, @(disp, Rn)
	MOV.L @Rm, Rn
	MOV.L @Rm+, Rn
	MOV.L @(R0, Rm), Rn
	MOV.L @(disp, GBR), R0
	MOV.L @(disp, PC), Rn
	MOV.L @(disp, Rm), Rn
	MOV.W Rm, @Rn
	MOV.W Rm, @-Rn
	MOV.W Rm, @(R0, Rn)
	MOV.W R0, @(disp, GBR)
	MOV.W R0, @(disp, Rn)
	MOV.W @Rm, Rn
	MOV.W @Rm+, Rn
	MOV.W @(R0, Rm), Rn
	MOV.W @(disp, GBR), R0
	MOV.W @(disp, PC), Rn
	MOV.W @(disp, Rm), R0
	MOVA @(disp, PC), R0
	MOVCA.L R0, @Rn
	MOVT Rn
	MUL.L Rm, Rn
	MULS.W Rm, Rn
	MULU.W Rm, Rn
	NEG Rm, Rn
	NEGC Rm, Rn
	NOP
	NOT Rm, Rn
	OCBI @Rn
	OCBP @Rn
	OCBWB @Rn
	OR Rm, Rn
	OR #imm, R0
	OR.B #imm, @(R0, GBR)
	PREF @Rn
	ROTCL Rn
	ROTCR Rn
	ROTL Rn
	ROTR Rn
	RTS
	SETS
	SETT
	SHAD Rm, Rn
	SHAL Rn
	SHAR Rn
	SHLD Rm, Rn
	SHLL Rn
	SHLL2 Rn
	SHLL8 Rn
	SHLL16 Rn
	SHLR Rn
	SHLR2 Rn
	SHLR8 Rn
	SHLR16 Rn
	STC GBR, Rn
	STC.L GBR, @-Rn
	STS FPSCR, Rn
	STS.L FPSCR, @-Rn
	STS FPUL, Rn
	STS.L FPUL, @-Rn
	STS MACH, Rn
	STS.L MACH, @-Rn
	STS MACL, Rn
	STS.L MACL, @-Rn
	STS PR, Rn
	STS.L PR, @-Rn
	SUB Rm, Rn
	SUBC Rm, Rn
	SUBV Rm, Rn
	SWAP.B Rm, Rn
	SWAP.W Rm, Rn
	TAS.B @Rn
	TRAPA #imm
	TST Rm, Rn
	TST #imm, R0
	TST.B #imm, @(R0, GBR)
	XOR Rm, Rn
	XOR #imm, R0
	XOR.B #imm, @(R0, GBR)
	XTRCT Rm, Rn

	SHcompact instruction encoding
	A.1 Formats
	A.2 0 format
	A.3 n format
	A.4 m format
	A.5 nm format
	A.6 md format
	A.7 nd4 format
	A.8 nmd format
	A.9 d format
	A.10 d12 format
	A.11 nd8 format
	A.12 i format
	A.13 ni format
	A.14 Opcode assignment
	A.15 Reserved instructions
	A.16 Floating-point instructions

	Index

