
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

Last updated 22 February 2002

SuperHTM (SH)
64-Bit RISC Series

SH-5 CPU Core,
Volume 4:

Implementation

ii

SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

This publication contains proprietary information of SuperH, Inc., and is not to be copied in whole or part.

Issued by the SuperH Documentation Group on behalf of SuperH, Inc.

Information furnished is believed to be accurate and reliable. However, SuperH, Inc. assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of SuperH, Inc. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information

previously supplied. SuperH, Inc. products are not authorized for use as critical components in life support devices or
systems without the express written approval of SuperH, Inc.

is a registered trademark of SuperH, Inc.

SuperH is a registered trademark for products originally developed by Hitachi, Ltd. and is owned by
Hitachi Ltd.

© 2001 SuperH, Inc. All Rights Reserved.

SuperH, Inc.
San Jose, U.S.A. - Bristol, United Kingdom - Tokyo, Japan

www.superh.com

http://www.superh.com/

Contents
Preface vii

SuperH SH-5 document identification and control vii
SuperH SH-5 CPU core documentation suite viii

1 Overview 1

1.1 Introduction 1
1.2 Undefined behavior and values 2
1.3 SH compatibility model 3
1.4 Floating-point unit (FPU) 3

2 Architectural state 5

2.1 Implementation-specific properties 5

3 Data representation 7

3.1 Implementation-specific properties 7

4 SHmedia instruction set 9

4.1 Implementation-specific properties 9
4.2 Instruction formats 11
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

iv
4.3 Integer instructions 11
4.4 Floating-point instructions 12

4.4.1 Floating-point status and control register 12

4.5 System instructions 14
4.5.1 Control register instructions 14

4.5.2 Configuration register instructions 15

5 SHcompact instruction set 17

5.1 Implementation-specific properties 17
5.2 Floating-point modes 17

6 Control and configuration registers 19

6.1 Specification 19

6.2 Control registers 21
6.2.1 SR 21
6.2.2 SSR 26

6.2.3 PSSR 31
6.2.4 INTEVT 36

6.2.1 EXPEVT 37
6.2.5 PEXPEVT 38

6.2.6 TRA 39
6.2.7 SPC 40

6.2.8 PSPC 41
6.2.9 RESVEC 42

6.2.10 VBR 44
6.2.11 TEA 45

6.2.12 DCR, KCR0, KCR1 46
6.2.13 CTC 47

6.2.14 USR 48
6.2.15 Reserved control registers 50

6.2.16 Undefined control registers 50
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

v

6.3 Configuration registers 51

7 Event handling 55

7.1 Implementation-specific properties 55
7.1.1 Handler address calculation 55
7.1.2 RTE 55

7.1.3 Power-on reset state 56

7.2 System architecture properties 56
7.2.1 Resets and interrupts 56
7.2.2 Debug features 56

7.2.3 Power management 56

8 Memory management 57

8.1 SH-5 MMU organization 57
8.2 SH-5 PTE contents 58

8.2.1 Enable (PTEH.V) 58

8.2.2 Page size (PTEL.SZ) 58
8.2.3 Cache behavior (PTEL.CB) 58

8.2.4 Protection (PTEL.PR) 59
8.2.5 Physical page number (PTEL.PPN) 59

8.2.6 Shared page (PTEH.SH) 59
8.2.7 Address space identifier (PTEH.ASID) 60

8.2.8 Effective page number (PTEH.EPN) 60

8.3 SH-5 translation 60
8.4 SH-5 MMU and caches 60
8.5 SH-5 MMU configuration registers 61

8.5.1 MMU configuration register map 61
8.5.2 MMUIR 61

8.5.3 MMUDR 67

8.6 MMU code sequences 74
8.6.1 Enabling and disabling the MMU 74

8.6.2 Enabling and disabling a PTE 78
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

vi
8.7 Future MMU implementations 79
8.7.1 MMU architecture parameters 79
8.7.2 MMU implementation parameters 80

9 Caches 81

9.1 SH-5 cache implementation 81
9.1.1 SH-5 cache organization 81

9.1.2 SH-5 cache synonyms and aliases 83
9.1.3 SH-5 cache replacement 83

9.1.4 SH-5 cache locking mechanism 86
9.1.5 SH-5 cache instructions 87

9.1.6 SH-5 cache access 90

9.2 SH-5 cache configuration registers 93
9.2.1 Access to ICCR and OCCR 93

9.2.2 Access to tag and data configuration registers 93
9.2.3 Cache configuration register map 94

9.2.4 ICCR 96
9.2.5 ICACHETAG 98

9.2.6 ICACHEDATA 101
9.2.7 OCCR 102

9.2.8 OCACHETAG 106
9.2.9 OCACHEDATA 111

9.3 Cache code sequences 112
9.3.1 Cache initialization sequence 112
9.3.2 Cache coherency sequences 112

9.3.3 Cache locking sequence 114

9.4 Future cache implementations 115
9.4.1 Cache architecture parameters 115
9.4.2 Cache implementation parameters 116

Index 117
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Preface

This document is part of the SuperH SH-5 CPU core documentation suite detailed
below. Comments on this or other books in the documentation suite should be made
by contacting your local sales office or distributor.

SuperH SH-5 document identification and
control
Each book in the documentation suite carries a unique identifier in the form:

05-CC-nnnnn Vx.x

Where, n is the document number and x.x is the revision.

Whenever making comments on a SuperH SH-5 document the complete
identification 05-CC-1000n Vx.x should be quoted.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

viii
SuperH SH-5 CPU core documentation suite
The SuperH SH-5 CPU core documentation suite comprises the following volumes:

• SH-5 CPU Core, Volume 1: Architecture (05-CC-10001)

• SH-5 CPU Core, Volume 2: SHmedia (05-CC-10002)

• SH-5 CPU Core, Volume 3: SHcompact (05-CC-10003)

• SH-5 CPU Core, Volume 4: Implementation (05-CC-10004)
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SuperH, Inc.
05-CC-10004 V1.0 SH-5
1
Overview
1.1 Introduction
This document describes the implementation-defined properties of the SH-5 CPU.

These properties can vary between different implementations of the architecture.
This information should therefore not be exploited where portability of software to
other implementations is desired.

The information here is intended to be read in conjunction with the generic
architecture documents. The chapters in this document correspond to chapters in
the generic architecture documents as follows:

1 Chapter 1: Overview on page 1 to Chapter 3: Data representation on page 31
correspond to similarly named chapters in Volume 1: Architecture (05-CC-10001
V1.0).

2 Chapter 4: SHmedia instruction set on page 9 corresponds to:

- Chapters describing SHmedia in Volume 1: Architecture (05-CC-10001 V1.0).

- The instruction set specification in Volume 2: SHmedia (05-CC-10002 V1.0).

3 Chapter 5: SHcompact instruction set on page 17 corresponds to:

- Chapters describing SHcompact in Volume 1: Architecture (05-CC-10001
V1.0).

- The instruction set specification in Volume 3: SHcompact (05-CC-10003 V1.0).

4 Chapter 6: Control and configuration registers on page 19 to Chapter 9: Caches
on page 81 correspond to similarly named chapters in Volume 1: Architecture
(05-CC-10001 V1.0).
CPU Core, Volume 4: Implementation

2 Undefined behavior and values
1.2 Undefined behavior and values
In certain situations the architecture permits an implementation to exhibit
architecturally-undefined behavior and to return architecturally-undefined values.

This implementation distinguishes three different kinds of
architecturally-undefined behavior:

• Implementation-defined behavior: the implementation provides a well-defined
behavior that is described in this document but is specific to this
implementation.

• Implementation-undefined behavior: the implementation does not provide a
well-defined behavior causing unreliable instruction execution. An instruction,
or sequence of instructions, that exhibits implementation-undefined behavior
can execute incorrectly with respect to the expected semantics. This can result
in, for example, an incorrect register value, an incorrect memory value or an
incorrect PC. However, the implementation will continue to execute instructions
and will not provide any behavior that would breach the privilege model.

• Catastrophic behavior: the behavior of the implementation is completely
undefined. The execution of further instructions in the program could be
inhibited. This state must be avoided by software. It is conceivable that
activation of this state could shorten the operational life-time of the device.

This implementation distinguishes two different kinds of architecturally-undefined
values:

• Implementation-defined value: the implementation provides a well-defined
value, generated in a manner described in this document, though the value is
specific to this implementation.

• Implementation-undefined value: the implementation does not define the value.
The actual value is unreliable.

Software should exploit only architecturally-defined behavior and
architecturally-defined values where portability to future implementations is
required. Where software exercises any of the implementation behavior or values
described above, portability will be impaired.
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH compatibility model 3
1.3 SH compatibility model
The MOVCA.L instruction (move with cache block allocation) and the OCBI
instruction (operand cache block invalidate) implicitly reveal the cache line size to a
program exploiting them. Both SH-4 and SH-5 have a 32-byte cache line. Hence
SHcompact user-visible semantics of MOVCA.L and OCBI are compatible with
SH-4.

The SH-5 MMU architecture provides all of the SH-4 permission attributes. It also
supports all of the SH-4 page sizes except the 1 kbyte page size. SHcompact is
compatible with SH-4 program binaries providing that they do not rely on
translations with 1 kbyte granularity.

The physical address map is a property of the SH-5 system architecture.

1.4 Floating-point unit (FPU)
This specification considers two distinct versions of the SH-5 CPU core. The only
difference between these two cores is that one provides the FPU and the other does
not. The presence of the FPU can be detected by writing 0 to SR.FD and reading its
value back to check whether floating-point was successfully enabled.

For an SH-5 implementation with an FPU, the floating-point registers and
floating-point instructions are available as described in Volume 1, Chapter 8:
SHmedia floating-point and Volume 1, Chapter 13: SHcompact floating-point. The
SR.FD flag can be used to enable or disable the FPU as required.

For an SH-5 implementation without an FPU, the behavior is as if the FPU was
permanently disabled. Any attempt to execute a floating-point opcode or to access
the floating-point register state will generate an exception. It is possible to emulate
the floating-point instructions and state in software.

SH-5 software should take into consideration that the FPU can be removed on some
SH-5 implementations. There are significant software implications when removing
the FPU:

• If the FPU is removed and the application requires floating-point support, then
floating-point arithmetic software will need to be provided. Ideally, this would
have the same feature set as the architectural floating-point support. For
example, this software could take the form of a library of FPU routines, or of
system software that emulates the floating-point instruction set and state.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

4 Floating-point unit (FPU)
• The potential for implementations both with and without an FPU can lead to
multiple parameter passing conventions for floating-point values. For an
implementation with an FPU, it is most efficient to pass floating-point
parameters in floating-point registers. However, this is not the case for an
implementation without an FPU, since access to the floating-point registers will
generate an exception.

An alternative approach is to accept inefficient operation for the implementation
without an FPU, and rely on exceptions and software emulation when passing
floating-point parameters. This approach allows the use of one Application
Binary Interface (ABI) for all SH-5 implementations.

• SH-5 operating system software should consider that the FPU can be removed
on some SH-5 implementations.For example, operating system code for saving
and restoring the floating-point registers should take account of whether the
FPU is present or not.
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SuperH, Inc.
05-CC-10004 V1.0 SH-5
2
Architectural
state
2.1 Implementation-specific properties
The architectural state has the following implementation-specific properties:

• The number of bits in effective addresses is described in Section
3.1: Implementation-specific properties on page 7.

• Implementation-specific properties of control registers are described in Section
4.5.1: Control register instructions on page 14.

• Implementation-specific properties of configuration registers are described in
Section 4.5.2: Configuration register instructions on page 15, Section 8.5: SH-5
MMU configuration registers on page 61 and Section 9.2: SH-5 cache
configuration registers on page 93.

• Some registers are used as scratch state during the execution of SHcompact
instructions. The scratch registers are summarized in Table 1.

Scratch register Becomes implementation undefined:

R20 to R23 inclusive when any SHcompact instruction is executed
(even if the instruction causes an exception).

TR0 to TR3 inclusive when any SHcompact instruction is executed
(even if the instruction causes an exception).

FR33 when any SHcompact floating-point instruction is executed
(even if the instruction causes an exception).

Table 1: Scratch registers
CPU Core, Volume 4: Implementation

6 Implementation-specific properties
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SuperH, Inc.
05-CC-10004 V1.0 SH-5
3
Data
representation
3.1 Implementation-specific properties
The number of implemented bits of effective address, neff, is defined in Table 2.

The value of neff is used to size the implemented part of architectural state that
contains effective addresses:

• Registers that hold effective addresses of instructions:

- The program counter (PC).

- Target registers (TR).

- The following control registers: SPC, PSPC, RESVEC and VBR.

- Configuration registers that hold effective addresses of instructions.

• Registers that hold effective addresses of data:

- The following control register: TEA.

- Configuration registers that hold effective addresses of data.

Quantity Value

neff 32

Table 2: neff
CPU Core, Volume 4: Implementation

8 Implementation-specific properties
PC overflow occurs when any instruction is executed and the PC has one of the
following values:

1 0xFFFFFFFFFFFFFFFE: this is 264 - 2

2 0xFFFFFFFFFFFFFFFC: this is 264 - 4

3 0x000000007FFFFFFE: this is 231 - 2

4 0x000000007FFFFFFC: this is 231 - 4

Note that cases 1 and 3 can only occur for SHcompact instructions, while cases 2
and 4 can occur for both SHmedia and SHcompact instructions. If a PC overflow
occurs, the behavior is implementation undefined.
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SuperH, Inc.
05-CC-10004 V1.0 SH-5
4
SHmedia
instruction
set

4.1 Implementation-specific properties

Table 3 summarizes the SHmedia instructions with implementation-specific
properties.

Instruction Implementation-specific property Reference

Branch instructions:
BEQ, BEQI, BGE, BGEU, BGT,
BGTU, BNE, BNEI

Interpretation of the l-bit. This
interpretation can affect performance but
does not affect semantics.

See Section 4.3

Prepare-target instructions:
PTA, PTABS, PTB, PTREL

Interpretation of the l-bit. This
interpretation can affect performance but
does not affect semantics.

See Section 4.3

Memory prefetch instructions:

LD.B, LD.L, LD.Q,

LD.UB, LD.UW, LD.W,

LDX.B, LDX.L, LDX.Q

LDX.UB, LDX.UW, LDX.W

where destination is R63

Effect of prefetch on performance See Section 9.1.5

Approximate floating-point:
FIPR.S, FTRV.S
FCOSA.S, FSINA.S, FSRRA.S

Algorithms used to compute
approximate floating-point results are
implementation dependent.

The algorithms used
by the SH-5
implementation are
not described.

Table 3: SHmedia instructions with implementation-specific properties
CPU Core, Volume 4: Implementation

10 Implementation-specific properties
Control register access:
GETCON, PUTCON

Control registers have some
implementation-dependent properties.
Future implementations can provide
additional control registers and fields.

See Section 4.5.1

Configuration register access:
GETCFG, PUTCFG

The set of configuration registers and
their fields is highly implementation
dependent.

See Section 4.5.2

Return from exception:
RTE

Effect of RTE with inappropriate SPC or
SSR

See Section 7.1.2

Enter sleep mode:
SLEEP

Behavior in sleep mode. The behavior
affects power consumption but does not
affect semantics.

See Section 7.2

Cache instructions:
ALLOCO, ICBI, OCBI, OCBP,
OCBWB, PREFI

Cache block size.

Presence, organization and size of any
caches

Effect of ALLOCO on memory values

Effect of PREFI on performance

See Section 9.1.5

Instruction Implementation-specific property Reference

Table 3: SHmedia instructions with implementation-specific properties
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Instruction formats 11
4.2 Instruction formats
The architecture requires that reserved fields in the instruction encodings are set to
specific values. The behavior of SH-5 for architecturally-undefined cases is
described in Table 4. The rules used to determine the type of an unused operand are
listed in Volume 1, Chapter 4: SHmedia instructions.

4.3 Integer instructions
Prepare-target and conditional branch instructions include an l-bit (‘l’ for likely)
which can be used to pass a performance hint to the implementation. The l-bit has
no architectural effect on the behavior of the instruction.

Bit-field
type

Reserved bits Required value
Behavior for

inappropriate value

r Reserved bits in a used
operand field

0 Implementation undefined

x Unused general-purpose
source operand

0b111111
(this corresponds to a read of R63)

Implementation undefined

Unused general-purpose
destination operand

0b111111
(this corresponds to a write to R63)

Implementation undefined

Unused floating-point
source operand

Set to the same value as the used
floating-point source operand

Implementation undefined

Unused floating-point
destination operand

0b000000 Implementation undefined

Table 4: Reserved encoding fields
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

12 Floating-point instructions
4.4 Floating-point instructions
The architecture supports implementations with an FPU and without an FPU. The
presence of the FPU can be detected by writing 0 to SR.FD and reading its value
back to check whether floating-point was successfully enabled.

4.4.1 Floating-point status and control register

Table 5 specifies the floating-point status and control register, FPSCR.

FPSCR

Field Bits Size Volatile? Synopsis Type

RM 0 1 No Floating-point rounding mode RW

Operation If 0x0: round to nearest

If 0x1: round to zero

When read Returns current value

When written Updates current value

Power-On reset Undefined

FLAG [2,6] 5 No Floating-point exceptions sticky flags RW

Operation Bit 2 of FPSCR: sticky flag for inexact exceptions (I)

Bit 3 of FPSCR: sticky flag for underflow exceptions (U)

Bit 4 of FPSCR: sticky flag for overflow exceptions (O)

Bit 5 of FPSCR: sticky flag for divide by zero exceptions (Z)

Bit 6 of FPSCR: sticky flag for invalid exceptions (V)

When read Returns current value

When written Updates current value

Power-On reset Undefined

Table 5: FPSCR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Floating-point instructions 13
ENABLE [7,11] 5 No Floating-point exceptions enable flags RW

Operation Bit 7 of FPSCR: enable flag for inexact exceptions (I)

Bit 8 of FPSCR: enable flag for underflow exceptions (U)

Bit 9 of FPSCR: enable flag for overflow exceptions (O)

Bit 10 of FPSCR: enable flag for divide by zero exceptions
(Z)

Bit 11 of FPSCR: enable flag for invalid exceptions (V)

When read Returns current value

When written Updates current value

Power-On reset Undefined

CAUSE [12,17] 6 No Floating-point exceptions cause flags RW

Operation Bit 12 of FPSCR: cause flag for inexact exceptions (I)

Bit 13 of FPSCR: cause flag for underflow exceptions (U)

Bit 14 of FPSCR: cause flag for overflow exceptions (O)

Bit 15 of FPSCR: cause flag for divide by zero exceptions (Z)

Bit 16 of FPSCR: cause flag for invalid exceptions (V)

Bit 17 of FPSCR: cause flag for FPU error exceptions (E)

When read Returns current value

When written Updates current value

Power-On reset Undefined

FPSCR

Field Bits Size Volatile? Synopsis Type

Table 5: FPSCR
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

14 System instructions
4.5 System instructions

4.5.1 Control register instructions

A PUTCON to an UNDEFINED control register causes implementation-undefined
behavior. A GETCON from an UNDEFINED control register returns an
implementation-undefined value. Where the power-on reset value of a control
register or field is architecturally undefined, it is also implementation undefined.

The DEFINED SH-5 control registers are specified in Section 6.2: Control registers
on page 21.

DN 18 1 No Floating-point denormalization mode RW

Operation If 0: a denormalized source operand raises an FPU error
exception

If 1: a denormalized source operand is flushed to zero before
the floating-point operation is performed, and a
denormalized result is flushed to zero after the floating-point
operation is performed

When read Returns current value

When written Updates current value

Power-On reset Undefined

RES 1,
[19,31]

14 No RESERVED RES

Operation Software should always write 0 to these bits. Software
should always ignore the value read from these bits.

When read Reads as 0 (behavior of future implementations may vary)

When written Writes ignored (behavior of future implementations may
vary)

Power-On reset 0 (behavior of future implementations may vary)

FPSCR

Field Bits Size Volatile? Synopsis Type

Table 5: FPSCR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

System instructions 15
4.5.2 Configuration register instructions

A PUTCFG to an UNDEFINED configuration register causes
implementation-undefined behavior. A GETCFG from an UNDEFINED
configuration register returns an implementation-undefined value.

The SH-5 configuration register map is specified in Section 6.3: Configuration
registers on page 51.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

16 System instructions
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SuperH, Inc.
05-CC-10004 V1.0 SH-5
5
SHcompact
instruction
set

5.1 Implementation-specific properties

Table 6 summarizes the SHcompact instructions with implementation-specific
properties.

5.2 Floating-point modes
The floating-point mode setting where FPSCR.PR=1 and FPSCR.SZ=1 is reserved.
The behavior of SHcompact floating-point instructions is architecturally undefined
in this mode. The behavior is also implementation undefined.

Instruction Implementation-specific property Reference

Approximate floating-point:
FIPR, FTRV, FSCA, FSRRA

Algorithms used to compute
approximate floating-point results
are implementation dependent.

The algorithms
used by the SH-5
implementation
are not described.

Cache instructions:
OCBI, OCBP, OCBWB,
MOVCA.L, PREF

Cache block size.

Presence, organization and size of
any caches

Effect of MOVCA.L on memory
values

Effect of PREF on performance

See Section 9.1.5

Table 6: SHmedia instructions with implementation-specific properties
CPU Core, Volume 4: Implementation

18 Floating-point modes
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SuperH, Inc.
05-CC-10004 V1.0 SH-5
6
Control and
configuration
registers

6.1 Specification

The standard format for describing the layout of a control or configuration register
is illustrated in Table 7. This table is only used for DEFINED registers. Registers
that are not DEFINED have no fields and are therefore not described with tables.

The capitalized fields in this table are place-holders for the following information:

• REGISTER: the name of the register.

• REG: this is CON for a control register, and CFG for a configuration register.

• NUMBER: the number of the register.

• FIELD: the name of the field.

REGISTER REG NUMBER

Field Bits Size Volatile? Synopsis Type

FIELD BITS SIZE VOLATILE SYNOPSIS TYPE

Operation OPERATION

When read READ

When written WRITE

Power-On reset RESET

Table 7: Standard table format for describing register layout
CPU Core, Volume 4: Implementation

20 Specification
• BITS: the bit numbers occupied by this field. The least significant bit in a
register is bit 0; the most significant bit in a register is bit 63. A single number
indicates a single bit. The notation [x,y] represents the inclusive contiguous
range of bits starting at bit x and ending at bit y.

• SIZE: the number of bits occupied by this field.

• VOLATILE: a ‘yes’ indicates that the field is volatile, while ‘no’ indicates that the
field is not volatile.

• SYNOPSIS: a summary of the purpose of this field.

• TYPE: the abbreviated type of this field (RES, EXP, RO, RW or OTHER).

• OPERATION: defines the operation of this field.

• READ: defines the behavior of this field for explicit read accesses.

• WRITE: defines the behavior of this field for explicit write accesses.

• RESET: defines the value of this field after a power-on reset.

The set of rows used to describe a field are repeated for each field in the register.

The field types are summarized in the following table.

Further information on the terminology used to define control and configuration
registers can be found in Volume 1, Chapter 3: Data representation.

Field type Abbreviation Usage

RESERVED RES Field is reserved

EXPANSION EXP Field is reserved for address space expansion

READ-ONLY RO Field is read-only and cannot be modified by software

READ-WRITE RW Field is readable and writable by software

OTHER OTHER Field has unusual semantics

Table 8: Register field types
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 21
6.2 Control registers
This section describes the behavior and layout of the SH-5 control registers.

6.2.1 SR

SR CON 0x0

Field Bits Size Volatile? Synopsis Type

S 1 1 No Saturation control (SHcompact mode) RW

Operation See Volume 1, Chapter 11: SHcompact integer instructions

When read Returns current value

When written Updates current value

Power-On reset Undefined

IMASK [4,7] 4 Yes Interrupt request mask level RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

Q 8 1 No State for divide step (SHcompact mode) RW

Operation See Volume 1, Chapter 11: SHcompact integer instructions

When read Returns current value

When written Updates current value

Power-On reset Undefined

Table 9: SR
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

22 Control registers
M 9 1 No State for divide step (SHcompact mode) RW

Operation See Volume 1, Chapter 11: SHcompact integer instructions

When read Returns current value

When written Updates current value

Power-On reset Undefined

CD 11 1 No Clock tick counter disable flag RW

Operation See Volume 1, Chapter 9: SHmedia system instructions

When read Returns current value

When written Updates current value

Power-On reset 0

PR 12 1 No Floating-point precision (SHcompact mode) RW

Operation See Volume 1, Chapter 13: SHcompact floating-point

This field is available with RW semantics regardless of whether the
FPU is enabled, disabled or not provided.

When read Returns current value

When written Updates current value

Power-On reset 0

SZ 13 1 No Floating-point transfer size (SHcompact mode) RW

Operation See Volume 1, Chapter 13: SHcompact floating-point

This field is available with RW semantics regardless of whether the
FPU is enabled, disabled or not provided.

When read Returns current value

When written Updates current value

Power-On reset 0

SR CON 0x0

Field Bits Size Volatile? Synopsis Type

Table 9: SR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 23
FR 14 1 No Floating-point register bank (SHcompact mode) RW

Operation See Volume 1, Chapter 13: SHcompact floating-point

This field is available with RW semantics regardless of whether the
FPU is enabled, disabled or not provided.

When read Returns current value

When written Updates current value

Power-On reset 0

FD 15 1 No Floating-point disable flag RW/RO

Operation See Volume 1, Chapter 8: SHmedia floating-point and Volume 1,
Chapter 13: SHcompact floating-point

This specification considers two distinct versions of the SH-5 CPU core.
The only difference between these two cores is that one provides the
floating-point unit and the other does not.

The behavior of this field differs between the two versions:

If FPU is provided: RW

If FPU is not provided: RO

When read Returns current value

When written If FPU is provided: updates current value

If FPU is not provided: writes ignored

Power-On reset 1

ASID [16,23] 8 No Address Space IDentifier RO

Operation See Volume 1, Chapter 17: Memory management

When read Returns current value

When written Writes ignored (use RTE to modify)

Power-On reset Undefined

SR CON 0x0

Field Bits Size Volatile? Synopsis Type

Table 9: SR
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

24 Control registers
WATCH 26 1 Yes Watch-point enable flag RO

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Writes ignored (use RTE to modify)

Power-On reset 0

STEP 27 1 Yes Single-step enable flag RO

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Writes ignored (use RTE to modify)

Power-On reset 0

BL 28 1 Yes Flag to block exception, trap or interrupt RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset 1

MD 30 1 Yes User or privileged mode RO

Operation MD=1: Privileged mode
MD=0: User mode
See Volume 1, Chapter 2: Architectural state

When read Returns current value

When written Writes ignored (use RTE to modify)

Power-On reset 1

SR CON 0x0

Field Bits Size Volatile? Synopsis Type

Table 9: SR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 25
MMU 31 1 Yes MMU enable flag RO

Operation See Volume 1, Chapter 17: Memory management

When read Returns current value

When written Writes ignored (use RTE to modify)

Power-On reset 0

RES 0, [2,3],
10,
[24,25],
29,
[32,63]

39 No RESERVED RES

Operation When reading from this register, software should not interpret the value
of these bits. When writing to this register, software should write these
bits using a value previously read from this register. If no appropriate
previous value is available, then software should write these bits as 0.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

SR CON 0x0

Field Bits Size Volatile? Synopsis Type

Table 9: SR
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

26 Control registers
6.2.2 SSR

SSR CON 0x1

Field Bits Size Volatile? Synopsis Type

S 1 1 Yes Saturation control (SHcompact mode) RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

IMASK [4,7] 4 Yes Interrupt request mask level RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

Q 8 1 Yes State for divide step (SHcompact
mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

M 9 1 Yes State for divide step (SHcompact
mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

Table 10: SSR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 27
CD 11 1 Yes Clock tick counter disable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

PR 12 1 Yes Floating-point precision
(SHcompact mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

SZ 13 1 Yes Floating-point transfer size
(SHcompact mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

FR 14 1 Yes Floating-point register bank
(SHcompact mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

SSR CON 0x1

Field Bits Size Volatile? Synopsis Type

Table 10: SSR
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

28 Control registers
FD 15 1 Yes Floating-point disable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

If the FPU is not provided by the implementation (i.e. SR.FD
is read-only and reads as 1), the value written to SSR should
not set SSR.FD to 0. This condition will lead to
architecturally-undefined behavior if RTE is then used.

Power-On reset Undefined

ASID [16,23] 8 Yes Address Space IDentifier RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

WATCH 26 1 Yes Watch-point enable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

STEP 27 1 Yes Single-step enable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

SSR CON 0x1

Field Bits Size Volatile? Synopsis Type

Table 10: SSR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 29
BL 28 1 Yes Flag to block exception, trap or interrupt RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

MD 30 1 Yes User or privileged mode RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

MMU 31 1 Yes MMU enable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

SSR CON 0x1

Field Bits Size Volatile? Synopsis Type

Table 10: SSR
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

30 Control registers
RES 0, [2,3],
10,
[24,25],
29,
[32,63]

39 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

Where possible, software should preserve all reserved bits
of SSR from the point of launch to the point of return from
launch.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

SSR CON 0x1

Field Bits Size Volatile? Synopsis Type

Table 10: SSR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 31
6.2.3 PSSR

PSSR CON 0x2

Field Bits Size Volatile? Synopsis Type

S 1 1 Yes Saturation control (SHcompact mode) RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

IMASK [4,7] 4 Yes Interrupt request mask level RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

Q 8 1 Yes State for divide step (SHcompact
mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

M 9 1 Yes State for divide step (SHcompact
mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

Table 11: PSSR
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

32 Control registers
CD 11 1 Yes Clock tick counter disable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

PR 12 1 Yes Floating-point precision
(SHcompact mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

SZ 13 1 Yes Floating-point transfer size
(SHcompact mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

FR 14 1 Yes Floating-point register bank
(SHcompact mode)

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

PSSR CON 0x2

Field Bits Size Volatile? Synopsis Type

Table 11: PSSR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 33
FD 15 1 Yes Floating-point disable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

ASID [16,23] 8 Yes Address Space IDentifier RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

WATCH 26 1 Yes Watch-point enable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

STEP 27 1 Yes Single-step enable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

PSSR CON 0x2

Field Bits Size Volatile? Synopsis Type

Table 11: PSSR
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

34 Control registers
BL 28 1 Yes Flag to block exception, trap or interrupt RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

MD 30 1 Yes User or privileged mode RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

MMU 31 1 Yes MMU enable flag RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

PSSR CON 0x2

Field Bits Size Volatile? Synopsis Type

Table 11: PSSR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 35
RES 0, [2,3],
10,
[24,25],
29,
[32,63]

39 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

Where possible, software should preserve all reserved bits
of PSSR from the launch of a panic handler launch to the
return from that panic handler.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

PSSR CON 0x2

Field Bits Size Volatile? Synopsis Type

Table 11: PSSR
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

36 Control registers
6.2.4 INTEVT

INTEVT CON 0x4

Field Bits Size Volatile? Synopsis Type

CODE [0,31] 32 Yes Holds the event code for most recent
interrupt launch

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

RES [32,63] 32 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

Table 12: INTEVT
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 37
6.2.1 EXPEVT

EXPEVT CON 0x5

Field Bits Size Volatile? Synopsis Type

CODE [0,31] 32 Yes Holds the event code for most recent
exception launch

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset 0

RES [32,63] 32 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

Table 13: EXPEVT
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

38 Control registers
6.2.5 PEXPEVT

PEXPEVT CON 0x6

Field Bits Size Volatile? Synopsis Type

CODE [0,31] 32 Yes Holds the event code of the event
which was being handled before the
panic.

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

RES [32,63] 32 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

Table 14: PEXPEVT
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 39
6.2.6 TRA

TRA CON 0x7

Field Bits Size Volatile? Synopsis Type

VALUE [0,31] 32 Yes Holds the lower 32 bits of the operand
value from a TRAPA instruction

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

RES [32,63] 32 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

Table 15: TRA
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

40 Control registers
6.2.7 SPC

SPC CON 0x8

Field Bits Size Volatile? Synopsis Type

ISA 0 1 Yes ISA mode to be used after returning
from event

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

ADDR [1,31] 31 Yes Address to return to after handling event RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

The value written to SPC should not set both SPC.ISA to 1
and the lowest bit of SPC.ADDR to 1. This condition will lead
to architecturally-undefined behavior if RTE is then used.

Power-On reset Undefined

EXP [32,63] 32 No EXPANSION EXP

Operation These bits may be used on other implementations to expand
the address space using a sign-extended convention.
Software should always write a sign-extension of bit 31 into
these bits. This approach is necessary if software on this
implementation is to be executed on another implementation
with more implemented address space.

When read Reads as a sign-extension of bit 31 (behavior of other
implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset Sign-extension of bit 31 (behavior of other implementations
may vary)

Table 16: SPC
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 41
6.2.8 PSPC

PSPC CON 0x9

Field Bits Size Volatile? Synopsis Type

ISA 0 1 Yes The value of SPC.ISA prior to last panic RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

ADDR [1,31] 31 Yes The value of SPC.ADDR prior to last
panic

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

EXP [32,63] 32 No EXPANSION EXP

Operation These bits may be used on other implementations to expand
the address space using a sign-extended convention.
Software should always write a sign-extension of bit 31 into
these bits. This approach is necessary if software on this
implementation is to be executed on another implementation
with more implemented address space.

When read Reads as a sign-extension of bit 31 (behavior of other
implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset Sign-extension of bit 31 (behavior of other implementations
may vary)

Table 17: PSPC
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

42 Control registers
6.2.9 RESVEC

RESVEC CON 0xA

Field Bits Size Volatile? Synopsis Type

MMUOFF 0 1 No MMU (and hence cache) disable RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset 0

RES 1 1 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

ADDR [2,31] 30 Yes Reset vector RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset 0

Table 18: RESVEC
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 43
EXP [32,63] 32 No EXPANSION EXP

Operation These bits may be used on other implementations to expand
the address space using a sign-extended convention.
Software should always write a sign-extension of bit 31 into
these bits. This approach is necessary if software on this
implementation is to be executed on another implementation
with more implemented address space.

When read Reads as a sign-extension of bit 31 (behavior of other
implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset Sign-extension of bit 31 (behavior of other implementations
may vary)

RESVEC CON 0xA

Field Bits Size Volatile? Synopsis Type

Table 18: RESVEC
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

44 Control registers
6.2.10 VBR

VBR CON 0xB

Field Bits Size Volatile? Synopsis Type

RES [0,1] 2 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

ADDR [2,31] 30 No Vector Base Register RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset 0

EXP [32,63] 32 No EXPANSION EXP

Operation These bits may be used on other implementations to expand
the address space using a sign-extended convention.
Software should always write a sign-extension of bit 31 into
these bits. This approach is necessary if software on this
implementation is to be executed on another implementation
with more implemented address space.

When read Reads as a sign-extension of bit 31 (behavior of other
implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset Sign-extension of bit 31 (behavior of other implementations
may vary)

Table 19: VBR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 45
6.2.11 TEA

TEA CON 0xD

Field Bits Size Volatile? Synopsis Type

ADDR [0,31] 32 Yes This field contains the lowest 32 bits of
the address which triggered the most
recent instruction fetch or memory
access exception. The upper 32 bits of
the address are discarded.

RW

Operation See Volume 1, Chapter 16: Event handling

When read Returns current value

When written Updates current value

Power-On reset Undefined

EXP [32,63] 32 No EXPANSION EXP

Operation These bits may be used on other implementations to expand
the address space using a sign-extended convention.
Software should always write a sign-extension of bit 31 into
these bits. This approach is necessary if software on this
implementation is to be executed on another implementation
with more implemented address space.

When read Reads as a sign-extension of bit 31 (behavior of other
implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset Sign-extension of bit 31 (behavior of other implementations
may vary)

Table 20: TEA
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

46 Control registers
6.2.12 DCR, KCR0, KCR1

DCR CON 0x10

Field Bits Size Volatile? Synopsis Type

VALUE [0,63] 64 No Debug control register RW

Operation Provides privileged state for use by debug software.

When read Returns current value

When written Updates current value

Power-On reset Undefined

Table 21: DCR

KCR0 CON 0x11

Field Bits Size Volatile? Synopsis Type

VALUE [0,63] 64 No Kernel control register 0 RW

Operation Provides privileged state for use by kernel software.

When read Returns current value

When written Updates current value

Power-On reset Undefined

Table 22: KCR0

KCR1 CON 0x12

Field Bits Size Volatile? Synopsis Type

VALUE [0,63] 64 No Kernel control register 1 RW

Operation Provides privileged state for use by kernel software.

When read Returns current value

When written Updates current value

Power-On reset Undefined

Table 23: KCR1
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 47
6.2.13 CTC

SH-5 provides a 32-bit clock tick counter.

CTC CON 0x3E

Field Bits Size Volatile? Synopsis Type

TICKS [0,31] 32 Yes Clock tick counter RW

Operation The clock tick counter is decremented by 1 on each CPU
clock cycle. The counter wraps around to its maximum value
when it decrements past zero. The frequency of the CPU
clock is system dependent.

When read If SR.MD is 0 and SR.CD is 1, returns zero

If SR.MD is 1 or SR.CD is 0, returns current value

When written If SR.MD is 0, writes ignored

If SR.MD is 1, updates current value

Power-On reset Undefined

RES [32,63] 32 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

Table 24: CTC
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

48 Control registers
6.2.14 USR

USR CON 0x3F

Field Bits Size Volatile? Synopsis Type

GPRS [0,7] 8 Yes Dirty bits for general-purpose registers RW

Operation See Volume 1, Chapter 15: Control registers

When read Returns current value

When written Updates current value

Power-On reset Undefined

FPRS [8,15] 8 Yes Dirty bits for floating-point registers RW

Operation See Volume 1, Chapter 15: Control registers

This field is available with RW semantics regardless of
whether the FPU is enabled, disabled or not provided.

When read Returns current value

When written Updates current value

Power-On reset Undefined

RES [16,63] 48 No RESERVED RES

Operation When reading from this register, software should not
interpret the value of these bits. When writing to this register,
software should write these bits using a value previously
read from this register. If no appropriate previous value is
available, then software should write these bits as 0.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

Table 25: USR
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Control registers 49
The architectural properties of USR are described in Volume 1, Chapter 15: Control
registers. The implementation-specific properties for SH-5 are described below:

• SH-5 implements all 8 bits of USR.GPRS. The dirty status of general-purpose
registers can be monitored on subsets containing 8 registers. The hardware sets
the appropriate bit in USR.GPRS when a register in the subset is written to.

• SH-5 implements all 8 bits of USR.FPRS. The dirty status of floating-point
registers can be monitored on subsets containing 8 registers. The hardware sets
the appropriate bit in USR.FPRS when a register in the subset is written to.

• After power-on reset, the values of USR.GPRS and USR.FPRS are undefined.
They must be initialized before use by software.

• A write to R63 does not set the appropriate dirty bit (bit 7 of USR.GPRS).

• A GETCON from USR will read the value of USR before marking the destination
register of the GETCON as dirty.

• The SH-5 implementation guarantees that a GETCON from USR will observe all
registers that have become dirty due to previous instructions (since the last
PUTCON to USR). Note that R63 always reads as zero and is never considered
dirty by the SH-5 implementation.

• The SH-5 implementation updates the dirty bits imprecisely:

- For event launches: the dirty bits can be updated imprecisely for instructions
that are partially executed, but do not complete (i.e. they are cancelled), due
to the processor accepting an event and launching an event handler.

- For branches: the dirty bits can be updated imprecisely for instructions that
are partially executed, but do not complete (i.e. they are cancelled), from the
predicted path of execution following a conditional branch instruction if the
predicted branch outcome is found to be incorrect.

If the FPU is disabled or is not present (i.e. SR.FD is set to 1), the USR.FPRS field is
still implemented. GETCON can be used to read USR.FPRS and PUTCON can be
used to update USR.FPRS to a new value. However, when SR.FD is 1 the
implementation will not implicitly set any bits in USR.FPRS to indicate dirty
registers. This is because all instructions that can modify floating-point registers
will raise an exception when SR.FD is 1. Additionally, when SR.FD is 1 the
implementation will not update USR.FPRS imprecisely.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

50 Control registers
6.2.15 Reserved control registers

6.2.16 Undefined control registers

All other control registers exhibit undefined behavior. A PUTCON to an
UNDEFINED control register causes implementation-undefined behavior. A
GETCON from an UNDEFINED control register returns an
implementation-undefined value.

RESERVED[n] where n is in
the range [0,29]

CON 0x20 + (1 * n)

Field Bits Size Volatile? Synopsis Type

RES [0,63] 64 No RESERVED RES

Operation Software should not read nor write this register

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

Table 26: RESERVED[n]

UNDEFINED[n] where n is
in the range [0,16]

CON 0x3, 0xC, 0xE, 0xF, [0x13, 0x1F]

Field Bits Size Volatile? Synopsis Type

UNDEF [0,63] 64 UNDEF UNDEFINED UNDEF

Operation Software must not read nor write this register

When read Do not read: returns implementation-undefined value

When written Do not write: causes implementation-undefined behavior

Power-On reset Undefined

Table 27: UNDEFINED[n]
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Configuration registers 51
6.3 Configuration registers
This section describes the configuration register map for SH-5. SH-5 uses
configuration registers for MMU and cache state. These are described in Section
8.5: SH-5 MMU configuration registers on page 61 and Section 9.2: SH-5 cache
configuration registers on page 93.

The configuration register space is partitioned using the address conventions shown
in Table 28.

Address bits Interpretation Limit SH-5 usage

[32,63] Must be set to zero Not used Not used

[24,31] Region selection Supports up to 256
regions

Region 0x0: MMU

Region 0x1: CACHE

[21,23] Bank selection Supports up to 8
banks

MMU:

Bank 0x0: MMUIR

Bank 0x4: MMUDR

CACHE:

Bank 0x0: ICACHETAG

Bank 0x1: ICACHEDATA

Bank 0x3: ICCR

Bank 0x4: OCACHETAG

Bank 0x5: OCACHEDATA

Bank 0x7: OCCR

[16,20] Way selection Supports up to 32
ways

MMU: unused, must be zero

CACHE: uses ways [0,3]

[4,15] Index selection Supports up to
4096 indices

MMU: uses indices [0,63]

CACHE: uses indices [0,255]

Table 28: SH-5 configuration register addressing
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

52 Configuration registers
Table 29 summarizes the SH-5 configuration registers.

[0,3] Register selection Supports up to 16
registers

MMU:

MMUIR: uses registers [0,1]

MMUDR: uses registers [0,1]

CACHE:

ICACHETAG: uses register 0

ICACHEDATA: uses registers [0,3]

ICCR: uses registers [0,1]

OCACHETAG: uses registers [0,1]

OCACHEDATA: uses registers [0,3]

OCCR: uses registers [0,1]

Address bits Interpretation Limit SH-5 usage

Table 28: SH-5 configuration register addressing

Name Configuration register number
Number of

defined
registers

Behavior

MMUIR 0x00000000 + (16*index) + reg,
where:

index is in [0,63], reg is in [0,1]

128 See Section 8.5.2: MMUIR on
page 61

MMUDR 0x00800000 + (16*index) + reg,
where:

index is in [0,63], reg is in [0,1]

128 See Section 8.5.3: MMUDR on
page 67

ICACHETAG 0x01000000 + (65536*way) +
(16*index) + reg, where:

way is in [0,3]

index is in [0,255], reg is 0

1024 See Section 9.2.5: ICACHETAG
on page 98

Table 29: SH-5 configuration registers
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Configuration registers 53
ICACHEDATA 0x01200000 + (65536*way) +
(16*index) + reg

where:

way is in [0,3]

index is in [0,255], reg is in [0,3]

4096 See Section 9.2.6: ICACHEDATA
on page 101

ICCR 0x01600000 + reg, where

reg is in [0,1]

2 See Section 9.2.4: ICCR on
page 96

OCACHETAG 0x01800000 + (65536*way) +
(16*index) + reg, where:

way is in [0,3]

index is in [0,255], reg is in [0,1]

2048 See Section 9.2.8: OCACHETAG
on page 106

OCACHEDATA 0x01A00000 + (65536*way) +
(16*index) + reg

where:

way is in [0,3]

index is in [0,255], reg is in [0,3]

4096 See Section
9.2.9: OCACHEDATA on
page 111

OCCR 0x01E00000 + reg, where

reg is in [0,1]

2 See Section 9.2.7: OCCR on
page 102

UNDEFINED All other configuration registers Many UNDEFINED

Name Configuration register number
Number of

defined
registers

Behavior

Table 29: SH-5 configuration registers
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

54 Configuration registers
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SuperH, Inc.
05-CC-10004 V1.0 SH-5
7
Event
handling
7.1 Implementation-specific properties

7.1.1 Handler address calculation

If the calculation of the handler address (the addition of a base register with an
offset) results in an address outside of the implemented effective address space, the
behavior is architecturally undefined. The behavior is also implementation
undefined in this case.

7.1.2 RTE

RTE results in architecturally-undefined behavior if the values of SPC and SSR are
inappropriate:

• Execution of RTE when SPC.ISA is 1 and lowest bit of SPC.ADDR is 1: this
setting corresponds to a misaligned SHmedia instruction and is not supported.

• Execution of RTE when SSR.FD is 0 on an implementation without a
floating-point unit: this setting corresponds to an attempt to enable the FPU
when it is not supported.

In both of these cases, the behavior is also implementation undefined.

Note that there are related cases for the values of PSPC and PSSR. The RTE
instruction copies PSPC to SPC and PSSR to SSR without regard to whether the
values of PSPC or PSSR are inappropriate. Thus, RTE is architecturally defined
when PSPR or PSSR take inappropriate values. However, if a subsequent RTE
instruction is executed with inappropriate values in SPC or SSR, then the behavior
is both architecturally undefined and implementation undefined as described above.
CPU Core, Volume 4: Implementation

56 System architecture properties
7.1.3 Power-on reset state

Any state which has an architecturally-undefined value after power-on reset is also
implementation undefined.

7.2 System architecture properties
The CPU events architecture refers to a number of implementation-specific
properties relating to system architecture. There properties are described in the
documentation for the SH-5 system architecture. The following sections summarize
these properties.

7.2.1 Resets and interrupts

The mechanisms used to deliver reset events to the CPU are properties of the
system architecture. The effects of MANUAL and DEBUG resets, as far as the CPU
core architecture is concerned, are the same as a power-on reset. The additional
effects of these resets are specified by the system architecture.

The mechanisms used to deliver interrupt events to the CPU are properties of the
system architecture. The event codes used to qualify debug interrupts and external
interrupts are also determined by the system architecture.

7.2.2 Debug features

The debug vector (DBRVEC) and the vectoring mode (DBRMODE) are properties of
the system architecture. DBRVEC and DBRMODE are memory-mapped registers.
The CPU architecture states that these two registers exist and specifies how the
values of these registers affect debug event launch. Other details of these registers,
including their addresses and layout, are defined separately by the system
architecture.

The mechanisms used to generate watch-point exceptions are properties of the
system architecture.

7.2.3 Power management

The CPU architecture provides mechanisms to allow the CPU to be switched
between sleep and active modes. SH-5 supports power-down of the CPU, and the
power consumed by the CPU is significantly reduced while in sleep mode. SH-5 also
supports independent power-down of the FPU, and power consumption is also
reduced when the FPU is disabled.
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SuperH, Inc.
05-CC-10004 V1.0 SH-5
8
Memory
management
8.1 SH-5 MMU organization
SH-5 provides a fully-featured MMU that supports translation. The MMU is
organized using a split PTE array, giving separate translations for instruction fetch
and data access. The parameters of the MMU are given in Table 30.

MMU parameter Value

Number of implemented bits of effective address space (neff) 32

Number of implemented bits of physical address space (nphys) 32

Number of supported page sizes 4

Number of supported address space identifiers 256

Organization of PTE arrays Split

Number of entries in data PTE array 64

Number of entries in instruction PTE array 64

Table 30: SH-5 MMU parameters
CPU Core, Volume 4: Implementation

58 SH-5 PTE contents
8.2 SH-5 PTE contents
SH-5 implements all of the above registers and fields. For SH-5, neff and nphys are
32. Note that the upper 32 bits of all of these registers are reserved on SH-5.

8.2.1 Enable (PTEH.V)

This bit controls whether this PTE is enabled or disabled. It has no
implementation-specific properties.

8.2.2 Page size (PTEL.SZ)

The SH-5 page sizes are shown in Table 31.

8.2.3 Cache behavior (PTEL.CB)

This field is specified as 2 separate bits:

• PTEL.CB0: this corresponds to bit 0 of PTEL.CB

• PTEL.CB1: this corresponds to bit 1 of PTEL.CB

The PTEL.CB field is defined in Volume 1, Chapter 17: Memory management. The
instruction PTE arrays implement PTEL.CB0 as a reserved bit and PTEL.CB1 as a
read-write bit. The data PTE arrays implement both PTEL.CB0 and PTEL.CB1 as
read-write bits.

If a RESERVED cache behavior setting is written to PTEL.CB on SH-5, the values
written to the reserved protection bits will be discarded and ignored. Note that the
PTEL.CB field will then read with a different value to that written. Other
implementations of the architecture can have different behavior, and software must
not rely on the SH-5 behavior otherwise portability will be impaired. Software
should ensure that RESERVED cache behavior settings are not used.

PTEL.SZ Page size

0x0 4 kbytes

0x1 64 kbytes

0x2 1 Mbyte

0x3 512 Mbytes

Table 31: SH-5 page sizes
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 PTE contents 59
8.2.4 Protection (PTEL.PR)

This field is specified as 4 separate bits:

• PTEL.PRR: this corresponds to bit 0 of PTEL.PR

• PTEL.PRX: this corresponds to bit 1 of PTEL.PR

• PTEL.PRW: this corresponds to bit 2 of PTEL.PR

• PTEL.PRU: this corresponds to bit 3 of PTEL.PR

The instruction PTE arrays implement PTEL.PRR and PTEL.PRW as reserved bits,
and PTEL.PRX and PTEL.PRU as read-write bits. The data PTE arrays implement
PTEL.PRX as a reserved bit, and PTEL.PRR, PTEL.PRW and PTEL.PRU as
read-write bits.

If a RESERVED protection setting is written to PTEL.PR on SH-5, the values
written to the reserved protection bits will be discarded and ignored. Note that the
PTEL.PR field will then read with a different value to that written. Other
implementations of the architecture can have different behavior, and software must
not rely on the SH-5 behavior otherwise portability will be impaired. Software
should ensure that RESERVED protection settings are not used.

8.2.5 Physical page number (PTEL.PPN)

SH-5 has 20 bits in the PTEL.PPN field. The number of PPN bits required for each
of the SH-5 page sizes is shown in Table 32.

8.2.6 Shared page (PTEH.SH)

This bit is used to control sharing of pages between different ASID values.

Page size Number of bits in PPN

4 kbytes 20

64 kbytes 16

1 Mbyte 12

512 Mbytes 3

Table 32: SH-5 PPN bits
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

60 SH-5 translation
8.2.7 Address space identifier (PTEH.ASID)

This field is used to distinguish different effective address spaces. All bits in the
8-bit ASID field are implemented supporting 256 different ASID values.The value of
PTEH.ASID is irrelevant for a shared page.

8.2.8 Effective page number (PTEH.EPN)

SH-5 has 20 bits in the PTEH.EPN field. The number of EPN bits required for each
of the SH-5 page sizes is shown in Table 33.

8.3 SH-5 translation
SH-5 provides translation, and all PTE fields are read-write.

If the MMU is enabled and there are multiple mappings present for any effective
address and ASID combination, then the behavior is architecturally undefined. In
this eventuality the implementation can exhibit catastrophic behavior.

8.4 SH-5 MMU and caches
Volume 1, Chapter 17: Memory management describes constraints that are
necessary to avoid cache synonyms. The value of nsynbits for SH-5 is 1. This means
that cachable mappings using 4 kbyte page size are constrained by 1 synonym bit.
Larger page sizes are not constrained at all.

It is highly recommended that software honors the stricter architecturally-defined
nsynmax constraint, rather than the weaker implementation-specific nsynbits
constraint. This guarantee allows software to arrange its memory mappings in a
way that will be compatible with future implementations.

Page size Number of bits in EPN

4 kbytes 20

64 kbytes 16

1 Mbyte 12

512 Mbytes 3

Table 33: SH-5 EPN bits
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 MMU configuration registers 61
8.5 SH-5 MMU configuration registers
The MMU configuration register layout and the precise behavior of each field is
implementation dependent. This section describes the layout for SH-5.

8.5.1 MMU configuration register map

SH-5 uses a split PTE array organization. PTE configuration registers are held in
MMUIR for instruction access and in MMUDR for data access. The structure of the
configuration registers within MMUIR and MMUDR are the same.

There are 64 instruction PTEs with 2 implemented registers per PTE in MMUIR.
Similarly, there are 64 data PTEs with 2 implemented registers per PTE in
MMUDR.

8.5.2 MMUIR

Each element of the MMUIR array contains two implemented configuration
registers as shown in Table 35.

Name Configuration register number
Registers in
this range

Behavior

MMUIR 0x00000000 + (16*index) + reg, where:

index is in [0,63], reg is in [0,1]

128 See Section
8.5.2: MMUIR on
page 61

MMUDR 0x00800000 + (16*index) + reg, where:

index is in [0,63], reg is in [0,1]

128 See Section
8.5.3: MMUDR on
page 67

Table 34: SH-5 MMU configuration register map

Register Offset Behavior

MMUIR[n].PTEH 0 See MMUIR[n].PTEH on page 62

MMUIR[n].PTEL 1 See MMUIR[n].PTEL on page 64

Table 35: Contents of MMUIR[n]
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

62 SH-5 MMU configuration registers
MMUIR[n].PTEH

A PTE is enabled when PTEH.V is 1, and disabled when it is 0. Changes to the PTE
must only be made when the PTE is disabled. When PTEH.V is 1:

• PUTCFG must not be used with PTEL.

• A PUTCFG to PTEH is only allowed if it clears PTEH.V (that is, disables the
PTE), though it can change other PTEH fields at the same time.

When PTEH.V is 0:

• PUTCFG is allowed to both PTEL and PTEH.

• A PUTCFG to PTEH can set PTEH.V (that is, enable the PTE), and at the same
time modify other PTEH fields.

MMUIR[n].PTEH where n is
in the range [0,63]

CFG 0x00000000 + (16 * n)

Field Bits Size Volatile? Synopsis Type

V 0 1 No Enable flag RW

Operation See Section 8.2.1: Enable (PTEH.V) on page 58

When read Returns current value

When written Updates current value (see restrictions in MMUIR[n].PTEH
on page 62)

Power-On reset Undefined

SH 1 1 No Shared page RW

Operation See Section 8.2.6: Shared page (PTEH.SH) on page 59

When read Returns current value

When written Updates current value (see restrictions in MMUIR[n].PTEH
on page 62)

Power-On reset Undefined

Table 36: MMUIR[n].PTEH
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 MMU configuration registers 63
ASID [2,9] 8 No Address space identifier RW

Operation See Section 8.2.7: Address space identifier (PTEH.ASID) on
page 60

The value of PTEH.ASID is irrelevant for a shared page.

When read Returns current value

When written Updates current value (see restrictions in MMUIR[n].PTEH
on page 62)

The values [0, 255] distinguish 256 address spaces

Power-On reset Undefined

RES [10,11] 2 No RESERVED RES

Operation Software should always write 0 to these bits. Software
should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

EPN [12,31] 20 No Effective page number RW

Operation See Section 8.2.8: Effective page number (PTEH.EPN) on
page 60

When read Returns current value

When written Updates current value (see restrictions in MMUIR[n].PTEH
on page 62)

Power-On reset Undefined

MMUIR[n].PTEH where n is
in the range [0,63]

CFG 0x00000000 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 36: MMUIR[n].PTEH
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

64 SH-5 MMU configuration registers
MMUIR[n].PTEL

RESEPN [32,63] 32 No RESERVED for EPN expansion RES

Operation These bits may be used on other implementations to expand
the address space using a sign-extended convention.
Software should always write a sign-extension of bit 31 into
these bits. Software should not interpret the value read from
these bits. This approach is necessary if software on this
implementation is to be executed on another implementation
with more implemented address space.

Note that these bits read as zero on this implementation.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

MMUIR[n].PTEH where n is
in the range [0,63]

CFG 0x00000000 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 36: MMUIR[n].PTEH

MMUIR[n].PTEL where n is
in the range [0,63]

CFG 0x00000001 + (16 * n)

Field Bits Size Volatile? Synopsis Type

CB0 0 1 No Cache behavior bit 0 (reserved) RES

Operation See Section 8.2.3: Cache behavior (PTEL.CB) on page 58

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

Table 37: MMUIR[n].PTEL
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 MMU configuration registers 65
CB1 1 1 No Cache behavior bit 1 (implemented) RW

Operation See Section 8.2.3: Cache behavior (PTEL.CB) on page 58

When read Returns current value

When written Updates current value (see restrictions in MMUIR[n].PTEH
on page 62)

Power-On reset Undefined

SZ [3,4] 2 No Page size RW

Operation See Section 8.2.2: Page size (PTEL.SZ) on page 58

When read Returns current value

When written Updates current value (see restrictions in MMUIR[n].PTEH
on page 62)

Power-On reset Undefined

PRR 6 1 No Protection bit R (reserved) RES

Operation See Section 8.2.4: Protection (PTEL.PR) on page 59

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

PRX 7 1 No Protection bit X (implemented) RW

Operation See Section 8.2.4: Protection (PTEL.PR) on page 59

When read Returns current value

When written Updates current value (see restrictions in MMUIR[n].PTEH
on page 62)

Power-On reset Undefined

MMUIR[n].PTEL where n is
in the range [0,63]

CFG 0x00000001 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 37: MMUIR[n].PTEL
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

66 SH-5 MMU configuration registers
PRW 8 1 No Protection bit W (reserved) RES

Operation See Section 8.2.4: Protection (PTEL.PR) on page 59

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

PRU 9 1 No Protection bit U (implemented) RW

Operation See Section 8.2.4: Protection (PTEL.PR) on page 59

When read Returns current value

When written Updates current value (see restrictions in MMUIR[n].PTEH
on page 62)

Power-On reset Undefined

PPN [12,31] 20 No Physical page number RW

Operation See Section 8.2.5: Physical page number (PTEL.PPN) on
page 59

When read Returns current value

When written Updates current value (see restrictions in MMUIR[n].PTEH
on page 62)

Power-On reset Undefined

RES 2, 5,
[10,11]

4 No RESERVED RES

Operation Software should always write 0 to these bits. Software
should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

MMUIR[n].PTEL where n is
in the range [0,63]

CFG 0x00000001 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 37: MMUIR[n].PTEL
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 MMU configuration registers 67
8.5.3 MMUDR

Each element of the MMUDR array contains two implemented configuration
registers as shown in Table 38.

RESPPN [32,63] 32 No RESERVED for PPN expansion RES

Operation These bits may be used on other implementations to expand
the address space using a sign-extended convention.
Software should always write a sign-extension of bit 31 into
these bits. Software should not interpret the value read from
these bits. This approach is necessary if software on this
implementation is to be executed on another implementation
with more implemented address space.

Note that these bits read as zero on this implementation.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On reset 0 (behavior of other implementations may vary)

MMUIR[n].PTEL where n is
in the range [0,63]

CFG 0x00000001 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 37: MMUIR[n].PTEL

Register Offset Behavior

MMUDR[n].PTEH 0 See MMUDR[n].PTEH on page 68

MMUDR[n].PTEL 1 See MMUDR[n].PTEL on page 71

Table 38: Contents of MMUDR[n]
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

68 SH-5 MMU configuration registers
MMUDR[n].PTEH

A PTE is enabled when PTEH.V is 1, and disabled when it is 0. Changes to the PTE
must only be made when the PTE is disabled. When PTEH.V is 1:

• PUTCFG must not be used with PTEL.

• A PUTCFG to PTEH is only allowed if it clears PTEH.V (that is, disables the
PTE), though it can change other PTEH fields at the same time.

When PTEH.V is 0:

• PUTCFG is allowed to both PTEL and PTEH.

• A PUTCFG to PTEH can set PTEH.V (that is, enable the PTE), and at the same
time modify other PTEH fields.

MMUDR[n].PTEH where n is
in the range [0,63]

CFG 0x00800000 + (16 * n)

Field Bits Size Volatile? Synopsis Type

V 0 1 No Enable flag RW

Operation See Section 8.2.1: Enable (PTEH.V) on page 58

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On reset Undefined

SH 1 1 No Shared page RW

Operation See Section 8.2.6: Shared page (PTEH.SH) on page 59

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On reset Undefined

Table 39: MMUDR[n].PTEH
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 MMU configuration registers 69
ASID [2,9] 8 No Address space identifier RW

Operation See Section 8.2.7: Address space identifier (PTEH.ASID)
on page 60

The value of PTEH.ASID is irrelevant for a shared page.

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

The values [0, 255] distinguish 256 address spaces

Power-On reset Undefined

RES [10,11] 2 No RESERVED RES

Operation Software should always write 0 to these bits. Software
should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may
vary)

Power-On reset 0 (behavior of other implementations may vary)

EPN [12,31] 20 No Effective page number RW

Operation See Section 8.2.8: Effective page number (PTEH.EPN) on
page 60

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On reset Undefined

MMUDR[n].PTEH where n is
in the range [0,63]

CFG 0x00800000 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 39: MMUDR[n].PTEH
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

70 SH-5 MMU configuration registers
RESEPN [32,63] 32 No RESERVED for EPN expansion RES

Operation These bits may be used on other implementations to
expand the address space using a sign-extended
convention. Software should always write a sign-extension
of bit 31 into these bits. Software should not interpret the
value read from these bits. This approach is necessary if
software on this implementation is to be executed on
another implementation with more implemented address
space.

Note that these bits read as zero on this implementation.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may
vary)

Power-On reset 0 (behavior of other implementations may vary)

MMUDR[n].PTEH where n is
in the range [0,63]

CFG 0x00800000 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 39: MMUDR[n].PTEH
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 MMU configuration registers 71
MMUDR[n].PTEL

MMUDR[n].PTEL where n is
in the range [0,63]

CFG 0x00800001 + (16 * n)

Field Bits Size Volatile? Synopsis Type

CB0 0 1 No Cache behavior bit 0 (implemented) RW

Operation See Section 8.2.3: Cache behavior (PTEL.CB) on page 58

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On
reset

Undefined

CB1 1 1 No Cache behavior bit 1 (implemented) RW

Operation See Section 8.2.3: Cache behavior (PTEL.CB) on page 58

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On
reset

Undefined

SZ [3,4] 2 No Page size RW

Operation See Section 8.2.2: Page size (PTEL.SZ) on page 58

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On
reset

Undefined

Table 40: MMUDR[n].PTEL
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

72 SH-5 MMU configuration registers
PRR 6 1 No Protection bit R (implemented) RW

Operation See Section 8.2.4: Protection (PTEL.PR) on page 59

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On
reset

Undefined

PRX 7 1 No Protection bit X (reserved) RES

Operation See Section 8.2.4: Protection (PTEL.PR) on page 59

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On
reset

0 (behavior of other implementations may vary)

PRW 8 1 No Protection bit W (implemented) RW

Operation See Section 8.2.4: Protection (PTEL.PR) on page 59

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On
reset

Undefined

MMUDR[n].PTEL where n is
in the range [0,63]

CFG 0x00800001 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 40: MMUDR[n].PTEL
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 MMU configuration registers 73
PRU 9 1 No Protection bit U (implemented) RW

Operation See Section 8.2.4: Protection (PTEL.PR) on page 59

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On
reset

Undefined

PPN [12,31] 20 No Physical page number RW

Operation See Section 8.2.5: Physical page number (PTEL.PPN) on
page 59

When read Returns current value

When written Updates current value (see restrictions in MMUDR[n].PTEH
on page 68)

Power-On
reset

Undefined

RES 2, 5,
[10,11]

4 No RESERVED RES

Operation Software should always write 0 to these bits. Software
should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On
reset

0 (behavior of other implementations may vary)

MMUDR[n].PTEL where n is
in the range [0,63]

CFG 0x00800001 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 40: MMUDR[n].PTEL
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

74 MMU code sequences
8.6 MMU code sequences
This section describes code sequences that manipulate the MMU. These sequences
must be executed in SHmedia and in privileged mode. Interrupts should typically be
prevented across these critical code sequences.

8.6.1 Enabling and disabling the MMU

It is not possible to enable or disable the MMU using the PUTCON instruction. This
is because the MMU bit of SR is read-only for PUTCON accesses. It is possible to
disable the MMU during event launch, specifically the launches for reset and debug
events. However, it is not possible to enable the MMU during event launch.

Otherwise, only the RTE instruction can enable or disable the MMU since it
transfers the contents of SSR into the SR when it is executed. By providing suitable
SPC and SSR values, the RTE instruction can atomically switch the PC and the SR
to new values. This allows the MMU to be enabled or disabled at the same time as
changing the PC.

RESPPN [32,63] 32 No RESERVED for PPN expansion RES

Operation These bits may be used on other implementations to expand
the address space using a sign-extended convention.
Software should always write a sign-extension of bit 31 into
these bits. Software should not interpret the value read from
these bits. This approach is necessary if software on this
implementation is to be executed on another implementation
with more implemented address space.

Note that these bits read as zero on this implementation.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-On
reset

0 (behavior of other implementations may vary)

MMUDR[n].PTEL where n is
in the range [0,63]

CFG 0x00800001 + (16 * n)

Field Bits Size Volatile? Synopsis Type

Table 40: MMUDR[n].PTEL
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

MMU code sequences 75
Instruction fetching is automatically synchronized across an RTE instruction. The
RTE instruction is fetched according to the original value of SR. Execution of the
RTE instruction atomically switches PC to SPC and SR to SSR. The next executed
instruction is at the new PC and is fetched according to the new SR. It is not
necessary to use a SYNCI instruction. There is no requirement to use an identity
translation when changing the MMU enable/disable status.

Data accesses are not automatically synchronized across an RTE instruction. When
the MMU is enabled or disabled, it is necessary to use a SYNCO before the RTE in
order to synchronize data accesses. This ensures that all previous data accesses are
completed, including flushing of any access buffering, before the MMU status is
changed. Data synchronization is important because changing the MMU status can
dramatically change the cache behavior, and it is necessary to ensure that this
occurs at a well-defined point in time relative to memory accesses.

The code sequences use the following conventions:

; - SR denotes the SR control register
; - SSR denotes the SSR control register
; - SPC denotes the SPC control register
; - MMU_BIT is the bit number of the MMU field within SR
; - R0, R1 and TR0 can be used as a temporaries

Using an arbitrary translation

An example recommended code sequence for enabling the MMU using an arbitrary
translation is given below. The code sequence uses RTE to jump to a target
instruction at the point when the MMU is enabled.

R4 specifies the address of the target instruction with the least significant bit of R4
indicating the ISA mode of that target instruction. The PTE configuration should
include an executable mapping for the target address.

; Pre-conditions:
; - the MMU is currently disabled
; - the PTE configuration is valid
; - a PTE gives the target instruction an executable mapping
; - the cache has been appropriately configured

GETCON SR, R0 ; get current SR, must have suitable ASID value
MOVI 1, R1
SHLLI R1, MMU_BIT, R1
OR R0, R1, R0
PUTCON R0, SSR; set the target SR (with the MMU enabled)
PUTCON R4, SPC ; set the target PC
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

76 MMU code sequences
SYNCO ; synchronize data accesses
RTE

; Post-conditions:
; - execution continues at the address indicated by R4
; - execution proceeds with the MMU enabled

The MMU can be disabled using a similar sequence. In this case an ANDC
instruction is used, instead of the OR, so that the MMU bit of SR is cleared rather
than set. Also, the target instruction is specified in R4, and it refers to instructions
that are executed with the MMU disabled (and no translation is required).
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

MMU code sequences 77
Using an identity translation

It is sometimes convenient to enable or disable the MMU within the confines of an
identity translation. This gives a straightforward code sequence. This can be
achieved by ensuring that an identity executable mapping (that is, EPN matches
PPN) is provided for the entire set of instructions in the code sequence. This
requires an appropriate setup of the PTE configuration registers.

An example recommended code sequence for enabling the MMU using an identity
translation is:

; Pre-conditions:
; - the MMU is currently disabled
; - the PTE configuration is valid
; - a PTE gives these instructions an identity executable mapping
; - the cache has been appropriately configured

GETCON SR, R0 ; get current SR
MOVI 1, R1
SHLLI R1, MMU_BIT, R1
OR R0, R1, R0
PUTCON R0, SSR; set the target SR (with the MMU enabled)
PTA label, TR0 ; calculate target PC
GETTR TR0, R0
PUTCON R0, SPC ; set the target PC
SYNCO ; synchronize data accesses
RTE
label:

; Post-conditions:
; - execution continues at the address indicated by the label
; - execution proceeds with the MMU enabled

The MMU can be disabled using a similar sequence. In this case an ANDC
instruction is used, instead of the OR, so that the MMU bit of SR is cleared rather
than set.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

78 MMU code sequences
8.6.2 Enabling and disabling a PTE

A PTE can be enabled and disabled using a simple sequence of PUTCFG
instructions. When a PTE is enabled or disabled, software should execute a SYNCI
or RTE instruction before any access to that PTE. This ensures that translation
look-up, exception detection and memory access are performed correctly with
respect to the modified PTE state.

An example recommended code sequence for enabling a PTE is:

; Pre-conditions:
; - R0 contains configuration space index of the PTE
; - R1 contains new PTEH value (PTEH.V is set)
; - R2 contains new PTEL value
; - OFFSET_PTEH is offset of PTEH within the PTE
; - OFFSET_PTEL is offset of PTEL within the PTE
PUTCFG R0, OFFSET_PTEH, R63; disable PTE before modification
PUTCFG R0, OFFSET_PTEL, R2 ; set new PTEL value
PUTCFG R0, OFFSET_PTEH, R1 ; set new PTEH value, enables the PTE
; Post-conditions:
; - Ensure SYNCI or RTE is executed before any access through
; - the enabled PTE. This ensures that the access is translated
; - correctly using the new PTE.

The value of a PTE field must not be modified while the PTE is enabled. The PTE
should be disabled before modifying its contents. However, the contents of a PTE
can be safely read at any time. A PTE can be disabled by:

; Pre-conditions:
; - R0 contains configuration space index of the PTE
; - OFFSET_PTEH is offset of PTEH within the PTE

PUTCFG R0, OFFSET_PTEH, R63
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Future MMU implementations 79
8.7 Future MMU implementations
Many properties of the MMU are implementation-specific and can be varied in
future implementations of the architecture. The MMU implementation options are
described in Volume 1, Chapter 17: Memory management, and the SH-5 specific
properties are described in this chapter. It is intended that future MMU
implementations will be based on the MMU configuration register map and
configuration register definitions used by the SH-5 implementation.

Note that the information in this section does not require future implementations to
use these options, nor does it constrain future implementations to just these options.

8.7.1 MMU architecture parameters

The SH-5 MMU configuration register map defined in Section 6.3: Configuration
registers on page 51 and in Section 8.5: SH-5 MMU configuration registers on
page 61 supports the different PTE array organizations described by the
architecture in Volume 1, Chapter 17: Memory management:

• A unified organization consists of a single array of page table entries. Each entry
controls the behavior of both data and instruction accesses to the described page.
The number of entries in the array is implementation defined and is represented
here by u. The configuration registers in the unified array are called:

- MMUDR[n].PTEH and MMUDR[n].PTEL

where n varies in the range [0, u).

• A split organization consists of two arrays of page table entries. An entry in the
data register array controls the behavior of data accesses to the described page,
whereas an entry in the instruction register array controls the behavior of
instruction accesses to the described page. The number of entries in these arrays
is implementation defined and is represented here by d for the data register
array and i for the instruction register array. The configuration registers in the
data array are called:

- MMUDR[n].PTEH and MMUDR[n].PTEL

where n varies in the range [0, d). The configuration registers in the instruction
array are called:

- MMUIR[n].PTEH and MMUIR[n].PTEL

where n varies in the range [0, i).

All entries in a PTE array are equivalent. The PTE arrays are fully associative.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

80 Future MMU implementations
8.7.2 MMU implementation parameters

The layout of the SH-5 MMU configuration register map is:

• MMUIR: 0x00000000 + (16*index) + reg

• MMUDR: 0x00800000 + (16*index) + reg

The supported ‘index’ range in the configuration register map is [0, 4095] using the
partitioning described in Section 6.3: Configuration registers on page 51. This allows
each PTE array to be scaled from 0 entries to 4096 entries in future
implementations. There is no requirement for the number of PTEs to be an integral
power-of-two. The supported ‘reg’ range in the configuration register map allows up
to 16 registers per PTE.

The MMU configuration register map limits the number of indices to a maximum
value which is less than the architectural parameterization. However, there is
significant room for future expansion, and this limit is unlikely to be a problem for
future implementations.

Additionally, it is possible that future implementations can make extensions to the
MMU configuration registers:

• More configuration registers could be provided for each PTE (i.e. in addition to
PTEH and PTEL).

• Reserved fields within PTEH and PTEL could be given defined semantics on
future implementations. In particular:

- Extension of EPN (using RESEPN) to support more effective address space.

- Extension of PPN (using RESPPN) to support more physical address space.

- Extension of ASID to increase the number of supported address spaces.

- Extension of CB to increase the number of supported cache behaviors.

- Extension of SZ to increase the number of supported page sizes.

- Extension of PR to increase the number of supported protection attributes.

Software should be carefully written with consideration given to potential future
changes in the MMU implementation. Ideally, SH-5 software should be
parameterized so that it can be readily updated to support future implementations.
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SuperH, Inc.
05-CC-10004 V1.0 SH-5
9
Caches
9.1 SH-5 cache implementation
This section describes the implementation-specific properties of the SH-5 cache.
This information should not be exploited where portability of software to other
implementations is desired.

9.1.1 SH-5 cache organization

SH-5 has a split cache organization. There are separate caches for operand data and
for instructions.

The SH-5 caches are indexed using an effective address and tagged by an effective
address1. Additionally, the operand cache contains physical address tags. These
allow the implementation to resolve operand cache aliases arising due to the use of
effective address tagging.

The cache implementation allows most cache hits to be completed in the cache
without needing to consult the PTE arrays, giving performance and power
advantages relative to an implementation based on physical addresses. This
approach requires that the implementation keeps some of the PTE information in
cache blocks.

The MMU and cache architecture described in Volume 1, Chapter 17: Memory
management and Volume 1, Chapter 18: Caches fully supports this arrangement.
Note that software must ensure cache coherency when the contents of page table
entries are changed. This implication is already accommodated in the architecture.

1. This arrangement is called a virtual cache in some other architectures.
CPU Core, Volume 4: Implementation

82 SH-5 cache implementation
The internal state of the SH-5 caches is visible through configuration registers, and
is described in Section 9.2: SH-5 cache configuration registers on page 93.

The properties of the SH-5 caches are summarized in Table 41.

In a cache which uses the effective address for both indexing and tagging, the
number of effective address tag bits is given by the number of bits of effective
address less the number of offset and index bits. For SH-5, these numbers are 32, 5
and 8 respectively giving 19 bits for the effective address tag.

The operand cache also contains a physical address tag. The size of this tag is given
by the number of bits of physical address less log2 of the smallest page size. For
SH-5, these numbers are 32 and 12 giving 20 bits for the physical address tag
present in the operand cache.

Property Operand cache Instruction cache

Cache block size,
nbytes

32 bytes 32 bytes

Set size, nways
(the associativity)

4 ways 4 ways

Number of sets,
nsets

256 sets 256 sets

Cache size 32 kbytes 32 kbytes

Cache is indexed by: Effective address Effective address

Cache is tagged by: Effective address (for effective look-up)

Physical address (for physical look-up)

(see Section 9.1.6)

Effective address

Offset bits,
log2(nbytes)

5 5

Index bits,
log2(nsets)

8 8

Implemented tag bits 19 bits of effective address tag
20 bits of physical address tag

19 bits of effective address tag
No physical address tag

Cache look-up
(see Section 9.1.6)

Usually by effective address,
sometimes by physical address

Always by effective address

Table 41: SH-5 cache parameters
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache implementation 83
9.1.2 SH-5 cache synonyms and aliases

The constraints placed on software to avoid cache synonyms are described in Section
8.4: SH-5 MMU and caches on page 60 and Volume 1, Chapter 17: Memory
management.

SH-5 resolves cache aliases in its operand cache as required by the architecture.

SH-5 does not resolve cache aliases in its instruction cache. Since the instruction
cache is 4-way associative, there can be up to 4 cache aliases of a particular physical
address in the instruction cache. Software must take special care when invalidating
instructions. This implication is already accommodated in the architecture as
described in Volume 1, Chapter 18: Caches.

9.1.3 SH-5 cache replacement

Both SH-5 caches are 4-way associative. The replacement algorithm uses 6 bits of
state per set to implement a least-recently-used policy (LRU). The LRU state orders
the valid blocks in that set in an order determined by their last usage. This state is
equivalent to an ordered list, with the head element representing the
least-recently-used valid block and the tail element representing the most-recently
used valid block. Invalid blocks do not appear on this list.

Additionally, SH-5 provides a cache locking mechanism. Cache locking allows
software to arrange for specified memory blocks to be locked into the cache. The
granularity of locking is the way. Each way in the cache may be independently
locked or unlocked. Once a way is locked, that way is not a candidate for
replacement, and thus normal cache operation will not evict a cache block in a
locked way.

For each cachable access, the replacement policy behaves as follows:

• If the access hits the cache, then this cache block is marked as the
most-recently-used by moving it to the tail of the order list.

• Otherwise, if the access misses the cache and the set contains blocks that are
both invalid and unlocked, then one of those blocks is selected. If there are
multiple such blocks, then this implementation selects the block with the lowest
way number. The selected block is marked as the most-recently-used by moving
it to the tail of the order list.

• Otherwise, if the access misses the cache and the set contains blocks that are
both valid and unlocked, then one of those blocks is selected. This
implementation selects the block that is least-recently-used; this is the one
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

84 SH-5 cache implementation
nearest the head of the order list. The selected block is marked as the
most-recently-used by moving it to the end of the order list.

• Otherwise, the access has missed the cache and all blocks are locked (they may
be valid or invalid). In this case, there are no candidates for replacement and the
access is implemented on memory with no caching.

For replacement purposes, all cache instructions count as accesses and cause the
least-recently-used information to be updated as required by the above algorithm.

The SH-5 implementation uses a 6-bit field (called LRU) to record the status of the
replacement policy. There is an LRU field associated with each cache set.The
interpretation of the 6 LRU bits is described in Table 42.

There are 64 possible combinations of the 6 LRU bits. Of these combinations, 24
correspond to valid cache states while the remaining 40 lead to contradictions and
are invalid. The valid combinations are given in Table 43 along with the
corresponding way order, shown with the most recently used way on the left through
to the least recently used way on the right. For example, the first row shows that the
combination with all LRU bits set to zero indicates that way 3 was the most recently
accessed, followed by way 2, way 1 and finally way 0.

After POWERON reset the internal state of the cache, including LRU, is undefined.
It is necessary to invalidate the caches (see Section 9.3.1: Cache initialization
sequence on page 112) so that all cache blocks are invalid before the caches are

LRU bit number Meaning when clear Meaning when set

0 Way 0 was accessed less recently
than way 1

Way 0 was accessed more
recently than way 1

1 Way 0 was accessed less recently
than way 2

Way 0 was accessed more
recently than way 2

2 Way 0 was accessed less recently
than way 3

Way 0 was accessed more
recently than way 3

3 Way 1 was accessed less recently
than way 2

Way 1 was accessed more
recently than way 2

4 Way 1 was accessed less recently
than way 3

Way 1 was accessed more
recently than way 3

5 Way 2 was accessed less recently
than way 3

Way 2 was accessed more
recently than way 3

Table 42: SH-5 LRU field
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache implementation 85
enabled. Note that the replacement algorithm selects invalid blocks in preference to
valid blocks, and that the selection order for invalid blocks is independent of the
LRU state. These properties ensure the cache replacement order is deterministic
after cache invalidation.

LRU
bit 5

LRU
bit 4

LRU
bit 3

LRU
bit 2

LRU
bit 1

LRU
bit 0

Most recently
accessed

Least recently
accessed

0 0 0 0 0 0 3 2 1 0

0 0 0 0 0 1 3 2 0 1

0 0 0 0 1 1 3 0 2 1

0 0 0 1 1 1 0 3 2 1

0 0 1 0 0 0 3 1 2 0

0 0 1 0 1 0 3 1 0 2

0 0 1 0 1 1 3 0 1 2

0 0 1 1 1 1 0 3 1 2

0 1 1 0 0 0 1 3 2 0

0 1 1 0 1 0 1 3 0 2

0 1 1 1 1 0 1 0 3 2

0 1 1 1 1 1 0 1 3 2

1 0 0 0 0 0 2 3 1 0

1 0 0 0 0 1 2 3 0 1

1 0 0 1 0 1 2 0 3 1

1 0 0 1 1 1 0 2 3 1

1 1 0 0 0 0 2 1 3 0

1 1 0 1 0 0 2 1 0 3

1 1 0 1 0 1 2 0 1 3

1 1 0 1 1 1 0 2 1 3

1 1 1 0 0 0 1 2 3 0

Table 43: Valid LRU combinations
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

86 SH-5 cache implementation
It is possible to over-ride the above replacement policy to allow a prefetch into a
specified way. This feature is provided to allow locked ways to be initialized, and is
described in Section 9.1.4: SH-5 cache locking mechanism on page 86.

9.1.4 SH-5 cache locking mechanism

Cache locking is configured through cache configuration registers, and can therefore
only be managed in privileged mode. The current cache locking configuration affects
all threads, both user and privileged, regardless of address space identifier.

A typical usage of cache locking is to partition the cache state between cache
operation and RAM operation. One or more cache ways would be locked and loaded
with a set of memory locations. Those memory locations will behave as low-latency
RAM, while any unlocked cache ways will continue to behave as cache.

The only effect of the cache locking mechanism is to influence the cache replacement
algorithm. Other cache properties and behaviors are unaffected by the use of cache
locking. When a cache block is locked into the cache, that cache block can still be
modified by reads, writes, cache instructions and the normal operation of the cache.
The only property that cache locking provides is to prevent a locked cache block from
being chosen for replacement.

The SH-5 cache replacement algorithm, including the effects of cache locking, are
described in Section 9.1.3: SH-5 cache replacement on page 83. Once a way is locked,
that way is not a candidate for replacement, and thus normal cache operation will
not evict a cache block in a locked way. This rule is applied regardless of whether the
cache block is valid or invalid. Thus, an invalid cache block in a locked way is not a
candidate for replacement.

It is possible to lock any or all ways in the cache. If some ways are unlocked, normal
cache operation continues in all those unlocked ways. If all ways are locked, then
cache misses cannot cause cache blocks to be allocated in the cache and are achieved
directly on memory without any caching.

1 1 1 1 0 0 1 2 0 3

1 1 1 1 1 0 1 0 2 3

1 1 1 1 1 1 0 1 2 3

LRU
bit 5

LRU
bit 4

LRU
bit 3

LRU
bit 2

LRU
bit 1

LRU
bit 0

Most recently
accessed

Least recently
accessed

Table 43: Valid LRU combinations
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache implementation 87
Cache coherency instructions operate directly on cache blocks regardless of whether
those cache blocks are locked. The protection mechanisms provided by the MMU can
be used, where required, to protect locked cache blocks against inappropriate access.
Note that if a thread has executability for an instruction cache block, then the
thread can invalidate that block (regardless of locking). Similarly, if a thread has
writability for an operand cache block, the thread can invalidate that block
(regardless of locking).

The cache provides a mechanism to over-ride the normal replacement algorithm so
that memory blocks can be loaded into a specified way using prefetches. This uses
the cache configuration registers defined in I CCR0 on page 96 and ICCR1 on
page 97. The mechanism operates as follows:

• When OCCR1.OW_LE is set to 1 and a data prefetch misses the cache and
causes a cache block to be allocated, then the way specified by OW_LOAD is
chosen. The choice made by the normal replacement algorithm and the lock flags
for each way are ignored.

• When ICCR1.IW_LE is set to 1 and an instruction prefetch misses the cache and
causes a cache block to be allocated, then the way specified by IW_LOAD is
chosen. The choice made by the normal replacement algorithm and the lock flags
for each way are ignored.

A suitable sequence for locking a way with certain pre-loaded data is described in
Section 9.3.3: Cache locking sequence on page 114.

9.1.5 SH-5 cache instructions

This section describes the implementation-specific properties of the cache
instructions. All cache instructions operate at cache block granularity. The cache
block size is 32 bytes for SH-5.

Allocate

The SH-5 implementation of the ALLOCO instruction has the following behavior.

If the ALLOCO instruction raises an exception, there is no effect on the operand
cache.

If the ALLOCO instruction does not raise an exception, then the behavior depends
on whether the MMU is enabled and, if so, on the page type:

1 If the MMU is disabled, there is no effect on the operand cache.

2 If the MMU is enabled, and the resultant cache behavior of the access is device,
uncached or write-through, then there is no effect on the operand cache.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

88 SH-5 cache implementation
3 If the MMU is enabled, and the resultant cache behavior of the access is
write-back, then the behavior depends on whether there is cache hit or cache
miss:

• If the access hits the operand cache, there is no effect on the operand cache.

• If the access misses the operand cache and no block can be allocated (using the
LRU replacement algorithm described in Section 9.1.3: SH-5 cache replacement
on page 83), there is no effect on the operand cache.

• If the access misses the operand cache and a block can be allocated (using the
LRU replacement algorithm described in Section 9.1.3: SH-5 cache replacement
on page 83), then that block is allocated using the following operations:

- If the cache block is already dirty, it is written back to memory.

- The cache block is allocated to the memory block specified by the ALLOCO
access without fetch of that block from memory.

- The allocated cache block is filled with zeroes. This ensures that ALLOCO
does not reveal any data which could break the privilege and protection
models. Software must not rely on this zero-fill behavior since it is highly
implementation-dependent and since the conditions under which a zero-fill
takes place are very specific.

- The allocated block is marked as dirty.

The determination of the resultant cache behavior is described in Volume 1,
Chapter 18: Caches, and depends on the global cache behavior as well as the
page-level cache behavior.

Instruction cache coherency

SH-5 uses an effective-indexed, effective-tagged instruction cache with no physical
tags. This has several implications for ICBI:

• The SH-5 implementation of ICBI performs instruction invalidation on effective
memory only. There can be up to 4 cache aliases of a particular physical address
in the instruction cache. In addition, due to cache synonyms the physical address
can be present in either or both of 2 cache sets. This gives a total of 8 different
instruction cache blocks that could contain the physical address. Note that
software can (optionally) avoid instruction cache synonyms by placing
constraints on instruction translations.

• The SH-5 implementation of ICBI never raises an ITLBMISS exception. This is
because if there is an entry in the instruction cache that can be invalidated by
this ICBI then the protection check can be performed using the protection
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache implementation 89
information held in the cache. There is no need to perform a translation look-up,
and hence there is no need to raise ITLBMISS.

• The SH-5 implementation of ICBI has no effect on the instruction cache when
the MMU is disabled. This is because the architecture requires that when the
MMU is disabled, the effective address calculated by ICBI is identity translated
into a physical address. However, there is no mechanism for this physical
address to be used to look-up into the instruction cache since there are no
physical tags.

These properties of ICBI are allowed by the architecture.

ICBI disregards cache locking information. An ICBI instruction can invalidate a
locked cache block.

Operand cache coherency

These instructions disregard cache locking information. OCBI, OCBWB and OCBP
instructions can invalidate, write-back and purge locked cache blocks, respectively.

Prefetch

Prefetch refers specifically to the instructions that perform software-directed
prefetching. These are:

• SHmedia PREFI instruction.

• SHmedia aligned load instructions where the destination register is R63.

• SHcompact PREF instruction.

The term ‘prefetch’ excludes other speculative instruction or data access provided by
an implementation that is not initiated by the instructions above.

SH-5 provides cache locking and uses prefetches to preload information into locked
parts of the cache. For this implementation prefetches are more than just a hint to
the implementation. Providing that the requested prefetch is architecturally
possible, the implementation guarantees to prefetch. This property ensures that the
cache locking mechanism can be used deterministically.

Note that the generic architecture does not guarantee this prefetch property.
Another implementation can choose to treat prefetches as just a hint, and disregard
prefetches in some circumstances.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

90 SH-5 cache implementation
9.1.6 SH-5 cache access

The architectural properties of cache access are described in Volume 1, Chapter 18:
Caches. In summary, cache access consists of the following stages:

1 The address of the access is mapped to a set in the cache through an indexing
procedure. SH-5 has separate caches and the instruction cache is used for
instruction fetches, and the operand cache for data accesses. For SH-5, indexing
uses bits 5 to 12 (inclusive) of the address to select one of the 256 sets in the
appropriate cache. Additionally for SH-5, indexing into the operand or
instruction cache always uses index bits taken from the effective address and
never from the physical address.

2 Each cache block in the set is checked to see if its tag matches the tag of the
access. This process is called cache look-up. The cache look-up and replacement
algorithm is designed so that there can be at most one match in the set. For
SH-5, there are 4 cache blocks in each set since the caches are 4-way associative.

3 There are two possible outcomes of the tag comparison:

3.1 If there is no match then this is a cache miss.

3.2 If there is a match, then this is a cache hit.

This section describes the look-up policies for SH-5 in more detail. These
implementation choices are summarized in Table 44 and Table 45.

The operand cache supports both effective and physical address tags. Look-up is
normally achieved by effective address. This requires the hardware to compare the
relevant bits of the effective address with effective address tags from the relevant
set in the operand cache. Look-up by physical address requires the hardware to
translate the effective address into a physical address using the TLB, before
performing a comparison between the relevant bits of the physical address and the
physical address tags from the relevant set in the operand cache.

The physical address is used whenever a look-up by effective address misses in
order to resolve potential cache aliases. For SWAP.Q, OCBI, OCBP and OCBWB,
however, SH-5 does not attempt an effective address look-up and immediately
performs a look-up by physical address. If the look-up by physical address misses
the cache, then the physical address is not present in the cache and needs to be
obtained from memory.

The rationale for the choices taken by this implementation for the operand cache is
as follows:
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache implementation 91
• For this implementation, look-up by effective address is more efficient than
look-up by physical address. This results in a performance advantage and power
reduction when look-up by effective address is successful.

• Load, store, data prefetch and cache allocate instructions are important
instructions for performance and relatively common. Additionally, in the case of
a cache hit for the effective address look-up and an appropriate choice of cache
behavior, it is possible for the memory access of these instructions to be
completed in the cache without an access to external memory. In this case the
access can be completed without any use of the physical address.

• The SWAP.Q instruction always causes an external memory access and the
physical address is always required. There is no advantage in performing an
effective address look-up first. In the case where the data accessed by the
SWAP.Q instruction is in the operand cache, the SWAP.Q will automatically
invalidate or purge that cache line as required to maintain cache coherency. The
actions are described in Volume 1, Chapter 6: SHmedia memory instructions.
However, note that correct operation of the cache always requires that cache
paradoxes are avoided, see Volume 1, Chapter 18: Caches.

• The implementation chooses to handle OCBI, OCBP and OCBWB instructions
by performing just a physical address look-up. In many cases it is necessary to
refer to the physical address anyway, either to resolve potential cache aliases or
to cause a write-back to external memory using the physical address (for OCBP
and OCBWB only, depending on cache behavior).

In principal, for the case of a cache hit for an effective look-up where no
write-back to external memory is required, it is possible for the access to be
completed without reference to the physical address. However, the
implementation chooses not to take this approach and implements all 3 of these
instructions in a regular way using only a look-up by physical address.

The instruction cache only supports an effective address tag, and all instruction
cache look-ups are achieved using the effective address. The rationale for this choice
is to eliminate physical tags in the instruction cache and to eliminate the associated
look-up mechanism. This choice is possible because the architecture allows
instruction cache aliases since these do not cause incorrect program behavior.

Apart from potential performance effects, the distinction between an effective and a
physical address look-up is otherwise almost irrelevant to software. For the operand
cache the hardware transparently uses look-up by physical address to resolve any
problems resulting from cache aliases. However, software can distinguish between
effective and physical address look-up due to TLB misses. A cache hit using an
effective address look-up never causes a TLB miss, since the access can be
completed in the cache without consulting the MMU. However, a cache hit using a
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

92 SH-5 cache implementation
physical address look-up requires a TLB entry, and will cause a TLB miss if a
translation is not present.

For both caches, the LRU bits will be updated by all accesses that hit in the cache or
cause a block to be allocated or refilled into the cache.

Access type
Cache index by

effective address
or physical address

Cache look-up by
effective address

or physical address?

LRU updated?
(on condition)

Any load instruction
(including SHmedia
data prefetches)

Effective address Effective address (then physical
address if effective address misses)

Yes (hit/refill)

Any store instruction Effective address Effective address (then physical
address if effective address misses)

Yes (hit/refill)

ALLOCO
(SHmedia)

Effective address Effective address (then physical
address if effective address misses)

Yes
(hit/allocate)

MOVCA.L
(SHcompact)

Effective address Effective address (then physical
address if effective address misses)

Yes
(hit/allocate)

PREF
(SHcompact)

Effective address Effective address (then physical
address if effective address misses)

Yes (hit/refill)

SWAP.Q (SHmedia) Effective address Physical address Yes (hit)

OCBI (SHmedia or
SHcompact)

Effective address Physical address Yes (hit)

OCBP (SHmedia or
SHcompact)

Effective address Physical address Yes (hit)

OCBWB (SHmedia or
SHcompact)

Effective address Physical address Yes (hit)

Table 44: Operand cache look-up

Access type
Cache index by

effective address
or physical address

Cache look-up by
effective address

or physical address?

LRU updated?
(condition)

PREFI (SHmedia) Effective address Effective address Yes (hit/refill)

ICBI (SHmedia) Effective address Effective address Yes (hit)

Table 45: Instruction cache look-up
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 93
9.2 SH-5 cache configuration registers
The cache configuration register layout and the precise behavior of each field is
implementation dependent. This section describes the layout for SH-5.

SH-5 supports separate instruction and operand caches. The cache configuration
registers are also split in the same way. Each cache is associated with the following
registers:

• Cache configuration registers to control global cache behavior and cache locking
(ICCR and OCCR).

• An array of configuration registers containing cache tag information
(ICACHETAG and OCACHETAG).

• An array of configuration registers containing cache data information
(ICACHEDATA and OCACHEDATA).

9.2.1 Access to ICCR and OCCR

ICCR and OCCR can be read using GETCFG and written using PUTCFG. They are
used to enable caching, global cache invalidation, write-through/write-back
selection (operand cache only) and management of cache locking.

A PUTCFG to ICCR must be followed by SYNCI, while a PUTCFG to OCCR must be
followed by SYNCO. These instructions ensure synchronization of instruction fetch
and data access while cache properties are being modified.

9.2.2 Access to tag and data configuration registers

These configuration registers can be read using GETCFG. This allows a privileged
mode thread to view the internal state of the cache. This can be used in combination
with cache coherency instructions to cohere specific cache blocks (see Section
9.3.2: Cache coherency sequences on page 112 for examples). It can also be used a
debugger to give visibility of cache state while debugging.

Note that the cache state is highly volatile and some care is required to achieve
predictable results. The cache state can be observed in a stable state in the following
situations:

• When the MMU is disabled, both the instruction cache and operand cache are
frozen. The state of these caches will be non-volatile when observed through
GETCFG.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

94 SH-5 cache configuration registers
• When the MMU is enabled, considerable care is needed to observe a stable cache
state. One technique is to use the cache locking mechanism to prevent the cache
replacement strategy from changing cache state:

- The ICACHETAG and ICACHEDATA configuration registers, corresponding
to locked instruction cache ways, will be non-volatile when observed through
GETCFG.

- For the operand cache, it is also necessary to avoid making any load or store
accesses that hit the operand cache since these can result in changes to
OCACHETAG and OCACHEDATA. In order to observe a stable operand
cache state, software should be written to avoid using load and stores in these
GETCFG sequences; this may require appropriate SYNCO barriers. In this
case, the OCACHETAG and OCACHEDATA configuration registers,
corresponding to locked operand cache ways, will be non-volatile when
observed through GETCFG.

These configuration registers should not be written to. A PUTCFG to any of these
registers leads to implementation-undefined behavior. In particular, the memory
model could be compromised and the behavior of memory accesses can be
unpredictable.

9.2.3 Cache configuration register map

Table 46 summarizes the SH-5 cache configuration registers.

Name
Configuration register

number

Number of
defined

registers in
this range

Behavior

ICACHETAG 0x01000000 + (65536*way) +
(16*index) + reg, where:

way is in [0,3]

index is in [0,255]

reg is 0

1024 See Section
9.2.5: ICACHETAG on
page 98

Table 46: SH-5 cache configuration register map
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 95
ICACHEDATA 0x01200000 + (65536*way) +
(16*index) + reg

where:

way is in [0,3]

index is in [0,255]

reg is in [0,3]

4096 See Section
9.2.6: ICACHEDATA on
page 101

ICCR 0x01600000 + reg, where

reg is in [0,1]

2 See Section
9.2.4: ICCR on page 96

OCACHETAG 0x01800000 + (65536*way) +
(16*index) + reg, where:

way is in [0,3]

index is in [0,255]

reg is in [0,1]

2048 See Section
9.2.8: OCACHETAG on
page 106

OCACHEDAT
A

0x01A00000 + (65536*way) +
(16*index) + reg

where:

way is in [0,3]

index is in [0,255]

reg is in [0,3]

4096 See Section
9.2.9: OCACHEDATA
on page 111

OCCR 0x01E00000 + reg, where

reg is in [0,1]

2 See Section
9.2.7: OCCR on
page 102

Name
Configuration register

number

Number of
defined

registers in
this range

Behavior

Table 46: SH-5 cache configuration register map
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

96 SH-5 cache configuration registers
9.2.4 ICCR

There are 2 instruction cache control registers: ICCR0 and ICCR1.

ICCR0

Software should exercise care when writing to this register. If instruction caching is
changed from enabled to disabled, the instruction cache should simultaneously be
invalidated to prevent cache paradoxes.

ICCR0 CFG 0x01600000

Field Bits Size Volatile? Synopsis Type

ICE 0 1 No Instruction cache enable RW

Operation If 0: instruction cache is disabled
If 1: instruction cache is enabled

When read Returns current value

When written Updates current value

Power-on reset Undefined

ICI 1 1 No Instruction cache invalidate OTHER

Operation Write with 1 to invalidate the entire instruction cache

When read Returns 0

When written Write of 0: no effect
Write of 1: invalidate the entire instruction cache
Writes have no effect on the value of this field

Power-on reset 0

RES [2,63] 62 No RESERVED RES

Operation Software should always write 0 to these bits. Software
should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

HARD reset 0 (behavior of other implementations may vary)

Table 47: ICCR0
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 97
ICCR1

ICCR1 CFG 0x01600001

Field Bits Size Volatile? Synopsis Type

IW_LOAD [0,1] 2 No Instruction way load RW

Operation Selects instruction cache way for instruction prefetch when
IW_LE is set. The value of IW_LOAD selects one of the 4
ways in the instruction cache. It does not contain a bit per
way. See Section 9.3.3: Cache locking sequence on
page 114.

When read Returns current value

When written Updates current value

Power-on reset Undefined

IW_LE 7 1 No Instruction way load enable RW

Operation if 0: prefetched instructions go to way selected by
replacement algorithm.

if 1: prefetched instructions go to way selected by IW_LOAD

When read Returns current value

When written Updates current value

Power-on reset Undefined

IW_LOCK [8,11] 4 No Instruction way lock RW

Operation Bit w of IW_LOCK is the lock bit for way w in the instruction
cache. If bit w is 0, way w of the instruction cache is unlocked.
If bit w is 1, way w of the instruction cache is locked.

When read Returns current value

When written Updates current value

Power-on reset Undefined

Table 48: ICCR1
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

98 SH-5 cache configuration registers
9.2.5 ICACHETAG

The ICACHETAG configuration registers are organized as a 2-dimensional array.
This array is subscripted by way number and index number to give the tag
information for a particular block in the instruction cache.

The tag information for each instruction cache block is held in 1 configuration
register: ICACHETAG0 holds the effective address tag. This register contains a
valid bit. This will be clear to indicate an invalid block, or set to indicate a valid
block. When a block is invalid, all other fields have undefined values.

RES [2,6],
[12,63]

57 No RESERVED RES

Operation Software should always write 0 to these bits. Software should
not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

HARD reset 0 (behavior of other implementations may vary)

ICCR1 CFG 0x01600001

Field Bits Size Volatile? Synopsis Type

Table 48: ICCR1

ICACHETAG0[w,i] where
w is in the range [0,3] and

i is in the range [0,255]
CFG 0x01000000 + (65536 * w) + (16 * i)

Field Bits Size Volatile? Synopsis Type

V 0 1 Yes Valid bit OTHER

Operation If 0: the cache block is invalid

If 1: the cache block is valid

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

Table 49: Instruction cache tag
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 99
SH 1 1 Yes Shared bit OTHER

Operation If 0: the cache block is not shared

If 1: the cache block is shared

This field is a copy of the associated PTEH.SH

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

ASID [2,9] 8 Yes Address space identifier OTHER

Operation Identifies the address space identifier for this cache block

This field is a copy of the SR.ASID for the thread that caused
this cache block to be allocated in the cache. For unshared
pages this is the same as the associated PTEH.ASID. For
shared pages the values of SR.ASID and PTEH.ASID can
differ.

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

EADDR [13,31] 19 Yes Effective address tag OTHER

Operation Identifies the effective address tag for this cache block

Bits 0 to 4 of the effective address are the offset into this
cache block. Bits 5 to 12 of the effective address are the
index into the cache (i).

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

ICACHETAG0[w,i] where
w is in the range [0,3] and

i is in the range [0,255]
CFG 0x01000000 + (65536 * w) + (16 * i)

Field Bits Size Volatile? Synopsis Type

Table 49: Instruction cache tag
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

100 SH-5 cache configuration registers
PRU 55 1 Yes Access protection OTHER

Operation If 0: the cache block is accessible to just privileged mode

If 1: the cache block is accessible to user and privileged
mode

This field is a copy of the associated PTEL.PR.U

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

LRU [58,63] 6 Yes Replacement information OTHER

Operation This field contains the replacement information for a set. All
cache blocks in the same set are associated with the same
LRU state. See Table 42: SH-5 LRU field on page 84.

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

RES [10,12],
[32,54],
[56,57]

28 No RESERVED RES

Operation Software should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written A write gives implementation-undefined behavior

Power-on reset 0 (behavior of other implementations may vary)

ICACHETAG0[w,i] where
w is in the range [0,3] and

i is in the range [0,255]
CFG 0x01000000 + (65536 * w) + (16 * i)

Field Bits Size Volatile? Synopsis Type

Table 49: Instruction cache tag
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 101
9.2.6 ICACHEDATA

The ICACHEDATA configuration registers are organized as a 3-dimensional array.
This array is subscripted by way number, index number and register number to give
the data information for a particular block in the instruction cache. The information
in ICACHEDATA is only defined when the corresponding ICACHETAG is valid.

On SH-5, each instruction cache block contains 32 bytes of data. These 32 bytes are
distributed over four 64-bit configuration registers. These registers are numbered r
where r is in [0,3]. Let the physical address cached by this block be represented by P
where P is a multiple of the cache block size. Let physical memory be represented by
a byte-array called PMEM, and support slicing using the memory slicing notation
from Volume 2, Chapter 1: SHmedia specification.

Register r contains cached instructions corresponding to PMEM[P+8r FOR 8].

The endianness of the instructions in each ICACHEDATA register is consistent
with a 64-bit memory access. GETCFG performs a 64-bit read and will therefore
return a value which is consistent with memory endianness.

ICACHEDATA[w,i,r] where
w is in the range [0,3] and
i is in the range [0,255] and

r is in the range [0,3]

CFG 0x01200000 + (65536 * w) + (16 * i) + r

Field Bits Size Volatile? Synopsis Type

DATA [0,63] 64 Yes Instruction cache data OTHER

Operation This register contains 64 bits of data corresponding to the rth.

element of the 32 byte cache block

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

Table 50: Instruction cache data
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

102 SH-5 cache configuration registers
9.2.7 OCCR

There are 2 operand cache control registers: OCCR0 and OCCR1.

OCCR0

Software should exercise care when writing to this register. If the operand cache is
invalidated, then the state of any dirty cache blocks will be lost. Changing the value
of either OCCR0.OCE or OCCR0.OWT can result in a change in cache behavior. It
may be necessary to flush, purge or invalidate the operand cache to avoid paradoxes.

OCCR0 CFG 0x01E00000

Field Bits Size Volatile? Synopsis Type

OCE 0 1 No Operand cache enable. RW

Operation If 0: operand cache is disabled
If 1: operand cache is enabled

When read Returns current value

When written Updates current value

Power-on reset Undefined

OCI 1 1 No Operand cache invalidate OTHER

Operation Write with 1 to invalidate the entire operand cache

When read Returns 0

When written Write of 0: no effect

Write of 1: invalidate the entire operand cache

Writes do not change the value of this field

Power-on reset Undefined

Table 51: OCCR0
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 103
OWT 2 1 No Operand cache write-through mode RW

Operation If 0: write-through and write-back are distinguished by MMU
If 1: write-back is implemented as write-through

When read Returns current value

When written Updates current value

Power-on reset Undefined

RES [3,63] 61 No RESERVED RES

Operation Software should always write 0 to these bits. Software
should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may vary)

Power-on reset 0 (behavior of other implementations may vary)

OCCR0 CFG 0x01E00000

Field Bits Size Volatile? Synopsis Type

Table 51: OCCR0
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

104 SH-5 cache configuration registers
OCCR1

OCCR1 CFG 0x01E00001

Field Bits Size Volatile? Synopsis Type

OW_LOAD [0,1] 2 No Operand way load RW

Operation Selects operand cache way for data prefetch when OW_LE
is set. The value of OW_LOAD selects one of the 4 ways in
the operand cache. It does not contain a bit per way. See
Section 9.3.3: Cache locking sequence on page 114.

When read Returns current value

When written Updates current value

Power-on reset Undefined

OW_LE 7 1 No Operand way load enable RW

Operation If 0: prefetched data goes to way selected by replacement
algorithm.

If 1: prefetched data goes to way selected by OW_LOAD

When read Returns current value

When written Updates current value

Power-on reset Undefined

OW_LOCK [8,11] 4 No Operand Way Lock RW

Operation Bit w of OW_LOCK is the lock bit for way w in the operand
cache. If bit w is 0, way w of the operand cache is unlocked.
If bit w is 1, way w of the operand cache is locked.

When read Returns current value

When written Updates current value

Power-on reset Undefined

Table 52: OCCR1
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 105
RES [2,6],
[12,63]

57 No RESERVED RES

Operation Software should always write 0 to these bits. Software
should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written Writes ignored (behavior of other implementations may
vary)

HARD reset 0 (behavior of other implementations may vary)

OCCR1 CFG 0x01E00001

Field Bits Size Volatile? Synopsis Type

Table 52: OCCR1
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

106 SH-5 cache configuration registers
9.2.8 OCACHETAG

The OCACHETAG configuration registers are organized as a 2-dimensional array.
This array is subscripted by way number and index number to give the tag
information for a particular block in the operand cache.

The tag information for each operand cache block is held in 2 configuration
registers: OCACHETAG0 holds the effective address tag, and OCACHETAG1 holds
the physical address tag. Each register contains a valid bit. These will either both be
clear to indicate an invalid block, or both be set to indicate a valid block. When a
block is invalid, all other fields have undefined values.

OCACHETAG0 is described in Table 53.

OCACHETAG0[w,i] where
w is in the range [0,3] and

i is in the range [0,255]
CFG 0x01800000 + (65536 * w) + (16 * i)

Field Bits Size Volatile? Synopsis Type

V 0 1 Yes Valid bit OTHER

Operation If 0: the cache block is invalid

If 1: the cache block is valid

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

SH 1 1 Yes Shared bit OTHER

Operation If 0: the cache block is not shared

If 1: the cache block is shared

This field is a copy of the associated PTEH.SH

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

Table 53: Operand cache tag register 0
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 107
ASID [2,9] 8 Yes Address space identifier OTHER

Operation Identifies the address space identifier for this cache block

This field is a copy of the SR.ASID for the thread that
caused this cache block to be allocated in the cache. For
unshared pages this is the same as the associated
PTEH.ASID. For shared pages the values of SR.ASID and
PTEH.ASID can differ.

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

EADDR [13,31] 19 Yes Effective address tag OTHER

Operation Identifies the effective address tag for this cache block

Bits 0 to 4 of the effective address are the offset into this
cache block. Bits 5 to 12 of the effective address are the
index into the cache (i).

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

PRR 52 1 Yes Read protection OTHER

Operation If 0: the cache block is non-readable

If 1: the cache block is readable

This field is a copy of the associated PTEL.PR.R

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

OCACHETAG0[w,i] where
w is in the range [0,3] and

i is in the range [0,255]
CFG 0x01800000 + (65536 * w) + (16 * i)

Field Bits Size Volatile? Synopsis Type

Table 53: Operand cache tag register 0
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

108 SH-5 cache configuration registers
PRW 54 1 Yes Write protection OTHER

Operation If 0: the cache block is non-writable

If 1: the cache block is writable

This field is a copy of the associated PTEL.PR.W

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

PRU 55 1 Yes Access protection OTHER

Operation If 0: the cache block is accessible to just privileged mode

If 1: the cache block is accessible to user and privileged
mode

This field is a copy of the associated PTEL.PR.U

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

WT 56 1 Yes Write-through/write-back bit OTHER

Operation If 0: the cache block is in write-back mode

If 1: the cache block is in write-through mode

This field is a copy of the associated PTEL.CB0

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

OCACHETAG0[w,i] where
w is in the range [0,3] and

i is in the range [0,255]
CFG 0x01800000 + (65536 * w) + (16 * i)

Field Bits Size Volatile? Synopsis Type

Table 53: Operand cache tag register 0
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 109
U 57 1 Yes Line dirty bit OTHER

Operation If 0: the cache block is clean

If 1: the cache block is dirty

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

LRU [58,63] 6 Yes Replacement information OTHER

Operation This field contains the replacement information for a set. All
cache blocks in the same set are associated with the same
LRU state. See Table 42: SH-5 LRU field on page 84.

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

RES [10,12],
[32,51],
53

24 No RESERVED RES

Operation Software should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written A write gives implementation-undefined behavior

Power-on reset 0 (behavior of other implementations may vary)

OCACHETAG0[w,i] where
w is in the range [0,3] and

i is in the range [0,255]
CFG 0x01800000 + (65536 * w) + (16 * i)

Field Bits Size Volatile? Synopsis Type

Table 53: Operand cache tag register 0
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

110 SH-5 cache configuration registers
OCACHETAG1 is described in Table 54.

OCACHETAG1[w,i] where
w is in the range [0,3] and

i is in the range [0,255]
CFG 0x01800001 + (65536 * w) + (16 * i)

Field Bits Size Volatile? Synopsis Type

V 0 1 Yes Valid bit OTHER

Operation If 0: the cache block is invalid

If 1: the cache block is valid

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

PADDR [12,31] 20 Yes Physical address tag OTHER

Operation Identifies the physical address tag for this cache block

All 20 bits of this tag are implemented by SH-5

Bits 0 to 4 of the physical address are the offset into this
cache block. Bits 5 to 11 of the physical address are the
lower 7 bits of the index into the cache (i). Note that bit 12 of
the physical address is indicated by PADDR and not by i.

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

RES [1,11],
[32,63]

43 No RESERVED RES

Operation Software should not interpret the value read from these bits.

When read Reads as 0 (behavior of other implementations may vary)

When written A write gives implementation-undefined behavior

Power-on reset 0 (behavior of other implementations may vary)

Table 54: Operand cache tag register 1
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

SH-5 cache configuration registers 111
9.2.9 OCACHEDATA

The OCACHEDATA configuration registers are organized as a 3-dimensional array.
This array is subscripted by way number, index number and register number to give
the data information for a particular block in the operand cache. The information in
OCACHEDATA is only defined when the corresponding OCACHETAG is valid.

On SH-5, each operand cache block contains 32 bytes of data. These 32 bytes are
distributed over four 64-bit configuration registers. These registers are numbered r
where r is in [0,3]. Let the physical address cached by this block be represented by P
where P is a multiple of the cache block size. Let physical memory be represented by
a byte-array called PMEM, and support slicing using the memory slicing notation
from Volume 2, Chapter 1: SHmedia specification.

Register r contains cached data corresponding to PMEM[P+8r FOR 8].

The endianness of the data in each OCACHEDATA register is consistent with a
64-bit memory access. GETCFG performs a 64-bit read and will therefore return a
value which is consistent with memory endianness.

OCACHEDATA[w,i,r] where
w is in the range [0,3] and
i is in the range [0,255] and

r is in the range [0,3]

CFG 0x01A00000 + (65536 * w) + (16 * i) + r

Field Bits Size Volatile? Synopsis Type

DATA [0,63] 64 Yes Operand cache data OTHER

Operation This register contains 64 bits of data corresponding to the rth.

8-byte element of the 32 byte cache block

When read Returns current value

When written A write gives implementation-undefined behavior

Power-on reset Undefined

Table 55: Operand cache data
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

112 Cache code sequences
9.3 Cache code sequences
This section describes recommended code sequences and algorithms for managing
the cache.

9.3.1 Cache initialization sequence

The cache must be initialized before the MMU is enabled. The necessary steps are:

• Write to OCCR0 to specify the global behavior of the operand cache, and to
invalidate the state of the operand cache before it is used.

• Write to OCCR1 to configure the operand cache locking information.

• Write to ICCR0 to specify the global behavior of the instruction cache, and to
invalidate the state of the instruction cache before it is used.

• Write to ICCR1 to configure the instruction cache locking information.

If cache locking is to be used, note that the caches cannot be pre-loaded until the
MMU is enabled since this is necessary for pre-fetches to modify cache state. Cache
locking sequences are described in Section 9.3.3: Cache locking sequence on
page 114.

9.3.2 Cache coherency sequences

There are 4 basic coherency operations:

• Invalidation of operand cache blocks. This is achieved using OCBI or
OCCR0.OCI. Note that invalidation of operand cache blocks will result in dirty
operand cache blocks being discarded. This should be done with care since it can
result in loss of memory state.

• Write-back of operand cache blocks. This is achieved using OCBWB.

• Purge of operand cache blocks. This is achieved using OCBP.

• Invalidation of instruction cache blocks. This is achieved using ICBI or
ICCR0.ICI.
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Cache code sequences 113
These can be performed at 3 different granularities.

• Memory location: the appropriate instruction should be applied to the memory
location. This will cohere a cache block sized memory block surrounding the
supplied effective address. This can be achieved in user or privileged mode.

• Page of memory: for a small page of memory (such as the 4 kbyte page on SH-5),
the appropriate cache coherency instruction should be iterated through the page
with the effective address incrementing through the page in cache block size
intervals. This can be achieved in user or privileged mode. For larger memory
pages, it is more efficient to use privileged mode and to scan through the cache
state as viewed though the cache configuration registers. Each cache block that
contains address information corresponding to the target page should be cohered
using the appropriate cache coherency instruction. The target effective address
can be calculated from the address information in the cache block.

• All cache: this can be achieved in privileged mode only. Invalidation of the whole
operand cache can be achieved using OCCR0.OCI, and of the whole instruction
cache using ICCR0.ICI. For write-back or purge operations, a scan is necessary
through the cache state as viewed through the cache configuration registers.
Each valid cache block should be cohered using the appropriate cache coherency
instruction. The target effective address can be calculated from the address
information in the cache block.

When instruction cache invalidation is achieved through ICBI, invalidation is only
guaranteed for cache blocks corresponding to the effective address used for the
invalidation. This is because the instruction cache does not contain physical tags
and does not support look-up by physical address.

In some cases, however, instruction invalidation may be required at the physical
level, to ensure that the instruction is invalidated in all effective address spaces
that map the physical address of the instruction. The recommended approach is to
use privileged mode and to inspect the instruction cache state through the cache
configuration registers. The instruction cache state should be indexed using the
cache index field of the effective address being invalidated. This identifies a set in
the cache; all cache blocks that can hold a copy of the instruction will be in this set
providing that the constraints in Volume 1, Chapter 17: Memory management are
being followed. Each of these cache blocks should be investigated in the cache
configuration registers, and invalidated using an appropriately targeted ICBI if
required. It may be quicker to invalidate each case unconditionally, rather than
performing a software check to see if that invalidation is really necessary.

If it is necessary to invalidate many physical instructions, it may be easier or
quicker to simply invalidate the entire instruction cache using ICCR0.ICI.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

114 Cache code sequences
9.3.3 Cache locking sequence

The following sequence can be used to lock a single cache block in a particular way:

1 The following pre-conditions must hold:

- Privileged mode must be used since configuration register access is needed.

- The MMU must be enabled; SR.MMU should be set.

- Caching must be enabled. OCCR0.OCE should be set if locking into the
operand cache; ICCR0.ICE should be set if locking into the instruction cache.

- The target effective address should be mapped by a translation that is
cachable and contains appropriate permission. Read permission is required
for prefetching into the data cache, and execute permission for the instruction
cache.

2 The target way should be locked. The appropriate bit of OCCR1.OW_LOCK or
ICCR1.IW_LOCK should be set. The way should be locked before following steps
to ensure that other accesses do not interfere with this sequence.

3 The target effective address should not already be in the cache. If this is not the
case, it can be removed from the cache using OCBP, OCBI or ICBI as
appropriate. Since instruction fetching is performed independently of program
execution, instruction invalidation should always be achieved explicitly using
ICBI. This must be done after locking the way in step 2.

4 The cache should be configured so that prefetches are performed into the target
way. For operand cache locking, OCCR1.OW_LE should be set and
OCCR1.OW_LOAD should be set to indicate the target way. For instruction
cache locking, ICCR1.IW_LE should be set and ICCR1.IW_LOAD should be set
to indicate the target way.

5 The cache block should be prefetched. Execute a data prefetch or an instruction
prefetch, as appropriate, on the target effective address. The previous steps have
arranged that this prefetch will miss the cache and cause the cache block in the
specified way to be refilled from memory. Note that if there is no translation or if
the prefetch has no permission, then the prefetch will be ignored. Software must
arrange for appropriate translation as described in step 1.

6 The load enable bit, OCCR1.OW_LE or ICCR1.IW_LE, can now be cleared to
restart normal cache replacement.

A locked cache block can be removed from the cache through an appropriate purge
or invalidation instruction. If the way is subsequently unlocked, then that way
becomes a candidate for cache replacement.
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Future cache implementations 115
9.4 Future cache implementations
Many properties of the cache are implementation-specific and can be varied in
future implementations of the architecture. The cache implementation options are
described in Volume 1, Chapter 18: Caches, and the SH-5 specific properties are
described in this chapter. It is intended that future cache implementations will be
based on the cache configuration register map and configuration register definitions
used by the SH-5 implementation.

Note that the information in this section does not require future implementations to
use these options, nor does it constrain future implementations to just these options.

9.4.1 Cache architecture parameters

The SH-5 cache configuration register map defined in Section 6.3: Configuration
registers on page 51 and in Section 9.2: SH-5 cache configuration registers on
page 93 supports the different cache organizations described by the architecture in
Volume 1, Chapter 18: Caches:

• No cache: all accesses are performed on memory without caching.

• Unified cache: data and instruction accesses pass through a single cache.

• Split cache: data and instruction accesses are treated separately. The following
implementation-specific options are available:

- Only an operand cache is provided. Data accesses pass through the operand
cache, while instruction accesses are performed on memory without caching.
The terms ‘operand cache’ and ‘data cache’ are interchangeable.

- Only an instruction cache is provided. Instruction accesses pass through the
instruction cache. Data accesses are performed on memory without caching.

- Both an operand cache and an instruction cache are provided. Data access
pass through the operand cache, while instruction accesses pass
independently and separately through the instruction cache.

The architecture defines that a cache is parameterized by:

• nbytes: the number of bytes in a cache block.
nbytes can be any 2i such that i is an integer in [3, 12].

• nways: the number of cache blocks in a set.
nways is a power-of-2 and greater than 0.

• nsets: the number of sets of cache blocks in the cache.
nsets is a power-of-2 and greater than 0.
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

116 Future cache implementations
9.4.2 Cache implementation parameters

The layout of the SH-5 cache configuration register map is:

• ICACHETAG: 0x01000000 + (65536*way) + (16*index) + reg

• ICACHEDATA: 0x01200000 + (65536*way) + (16*index) + reg

• ICCR: 0x01600000 + reg

• OCACHETAG: 0x01800000 + (65536*way) + (16*index) + reg

• OCACHEDATA: 0x01A00000 + (65536*way) + (16*index) + reg

• OCCR: 0x01E00000 + reg

The supported ‘index’ range (corresponding to the architectural parameter nsets) in
the configuration register map is [0, 4095] using the partitioning described in
Section 6.3: Configuration registers on page 51. Similarly, the supported ‘way’ range
(corresponding to the architectural parameter nways) is [0, 31]. The supported ‘reg’
range allows up to 16 registers. Since each register can provide 8 bytes of data in the
ICACHEDATA and OCACHEDATA registers, the maximum supported cache block
size is 128 bytes (corresponding to the architectural parameter nbytes).

The cache configuration register map limits nbytes, nways and nsets to maximum
values which are less then the architectural parameterization. However, there is
significant room for future expansion, and these limits are unlikely to be a problem
for future implementations.

Additionally, it is possible that future implementations can make extensions to the
cache configuration registers:

• More configuration registers could be provided.

• Reserved fields within existing configuration registers be given defined
semantics on future implementations. For ICACHETAG and OCACHETAG:

- Extension of EADDR to support more effective address space.

- Extension of PADDR to support more physical address space.

- Extension of ASID to increase the number of supported address spaces.

- Extensions to increase the number of supported cache behaviors.

- Extensions to increase the number of supported protection attributes.

Software should be carefully written with consideration given to potential future
changes in the cache implementation. Ideally, SH-5 software should be
parameterized so that it can be readily updated to support future implementations.
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

Index
A
ALLOCO 10, 87-88
ANDC . 76-77

B
BEQ .9
BEQI . 9
BGE .9
BGEU . 9
BGT .9
BGTU . 9
BNE .9
BNEI . 9

D
DBRMODE .56
DBRVEC .56
DEFINED . 14

E
EPN .60, 77

F
Field

ASID 59-60, 75, 99, 107

CB . 58, 108
DATA 101, 111
EADDR 99, 107
ICE 96, 112-114
ICI . 96, 113
IW_LE 87, 97, 114
IW_LOAD 87, 97, 114
IW_LOCK 97, 114
LRU 83-84, 100, 109
OCE 102, 112-114
OCI . 102
OW_LE 87, 104, 114
OW_LOAD 87, 104, 114
OW_LOCK 104, 114
OWT 102-103
PR 59, 100, 107-108
PRR . 107
PRU . 100, 108
PRW . 108
RES 14, 96, 98, 100, 103, 105, 109-110
SZ . 58
U12-13, 100, 108-109
V . 12-13, 58, 62, 68, 78, 98, 106, 110
WT . 108

FIPR . 9
FIPR.S . 9
FOR . 101, 111
FPU 3, 12-14, 56
FTRV . 9, 17
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

118
FTRV.S . 9

G
GETCFG 10, 15, 93-94, 101, 111
GETCON 10, 14, 75, 77
GETTR . 77

H
HARD 96, 98, 105

I
ICBI10, 88-89, 112-114
ICCR0.ICE 112-114
ITLBMISS 88-89

L
LD.B . 9
LD.L . 9
LD.Q . 9
LD.UB . 9
LD.UW . 9
LD.W . 9
LDX.B . 9
LDX.L . 9
LDX.Q . 9
LDX.UB . 9
LDX.UW .9
LDX.W . 9

M
MMU 3, 57, 60-61, 74-77, 81, 87, 93-94,

112, 114
MMUDR 61, 67-68, 71
MMUIR 61-62, 64
MOVACA.L .17
MOVCA.L . 3, 17
MOVI . 75, 77

O
OCACHETAG0 106
OCACHETAG1 106, 110
OCBI 3, 10, 17, 89, 112, 114
OCBP 10, 17, 89, 112, 114
OCBWB 10, 17, 89, 112
OCCR0 102, 112-114
OCCR0.OCE 102, 112-114
OCCR0.OWT 102
OCCR1 87, 102, 104, 112, 114
OFFSET_PTEH 78
OFFSET_PTEL 78
OR . 75-77

P
PADDR . 110
PC2, 7-8, 74-75, 77
PPN . 59, 77
PREF . 17
PREFI . 10, 89
PSPC . 7, 55
PSPC.ISA . 55
PTA . 9
PTABS . 9
PTB . 9, 77
PTE . . . 57-58, 60-62, 68, 75, 77-79, 81
PTEH 58-62, 67-68, 78-79, 99, 106-107
PTEH.EPN . 60
PTEH.V 58, 62, 68, 78
PTEL 58-59, 61-62, 64, 67-68, 71, 78-79,

. 100, 107-108
PTEL.PPN . 59
PTREL . 9
PUTCFG 10, 15, 62, 68, 78, 93-94
PUTCON 10, 14, 74-75, 77
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

119
R
Register

Field Type
EXPANSION 20
OTHER .20
READ-ONLY 20
READ-WRITE 20
RESERVED 20

ICACHEDATA 93-95, 101, 116
ICACHETAG 93-94, 98, 101, 116
ICACHETAG098
ICCR 93, 95-96, 116
ICCR0 96, 112-114
ICCR1 87, 96-97, 112, 114
OCACHEDATA 93-95, 111, 116
OCACHETAG . . 93-95, 106, 111, 116
OCCR 93, 95, 102, 116
R 5, 75-78, 89
SR 74-77, 114
SR.MMU .114
SSR 74-75, 77
TEA .7
TR5, 7, 75, 77
VBR .7

RESERVED . 14, 96, 98, 100, 103, 105,
109- .110

RESVEC .7
RTE 10, 55, 74-78

S
SHLLI . 75, 77
SLEEP . 10
SPC 7, 10, 55, 74-75, 77
SPC.ADDR . 55
SPC.ISA . 55
SYNCI 75, 78, 93
SYNCO75-77, 93-94

U
UNDEFINED 14-15
SuperH, Inc.
05-CC-10004 V1.0 SH-5 CPU Core, Volume 4: Implementation

120
SuperH, Inc.
SH-5 CPU Core, Volume 4: Implementation 05-CC-10004 V1.0

	Preface
	SuperH SH-5 document identification and control
	SuperH SH-5 CPU core documentation suite

	Overview
	1.1 Introduction
	1.2 Undefined behavior and values
	1.3 SH compatibility model
	1.4 Floating-point unit (FPU)

	Architectural state
	2.1 Implementation-specific properties

	Data representation
	3.1 Implementation-specific properties

	SHmedia instruction set
	4.1 Implementation-specific properties
	4.2 Instruction formats
	4.3 Integer instructions
	4.4 Floating-point instructions
	4.4.1 Floating-point status and control register

	4.5 System instructions
	4.5.1 Control register instructions
	4.5.2 Configuration register instructions

	SHcompact instruction set
	5.1 Implementation-specific properties
	5.2 Floating-point modes

	Control and configuration registers
	6.1 Specification
	6.2 Control registers
	6.2.1 SR
	6.2.2 SSR
	6.2.3 PSSR
	6.2.4 INTEVT
	6.2.1 EXPEVT
	6.2.5 PEXPEVT
	6.2.6 TRA
	6.2.7 SPC
	6.2.8 PSPC
	6.2.9 RESVEC
	6.2.10 VBR
	6.2.11 TEA
	6.2.12 DCR, KCR0, KCR1
	6.2.13 CTC
	6.2.14 USR
	6.2.15 Reserved control registers
	6.2.16 Undefined control registers

	6.3 Configuration registers

	Event handling
	7.1 Implementation-specific properties
	7.1.1 Handler address calculation
	7.1.2 RTE
	7.1.3 Power-on reset state

	7.2 System architecture properties
	7.2.1 Resets and interrupts
	7.2.2 Debug features
	7.2.3 Power management

	Memory management
	8.1 SH-5 MMU organization
	8.2 SH-5 PTE contents
	8.2.1 Enable (PTEH.V)
	8.2.2 Page size (PTEL.SZ)
	8.2.3 Cache behavior (PTEL.CB)
	8.2.4 Protection (PTEL.PR)
	8.2.5 Physical page number (PTEL.PPN)
	8.2.6 Shared page (PTEH.SH)
	8.2.7 Address space identifier (PTEH.ASID)
	8.2.8 Effective page number (PTEH.EPN)

	8.3 SH-5 translation
	8.4 SH-5 MMU and caches
	8.5 SH-5 MMU configuration registers
	8.5.1 MMU configuration register map
	8.5.2 MMUIR
	8.5.3 MMUDR

	8.6 MMU code sequences
	8.6.1 Enabling and disabling the MMU
	8.6.2 Enabling and disabling a PTE

	8.7 Future MMU implementations
	8.7.1 MMU architecture parameters
	8.7.2 MMU implementation parameters

	Caches
	9.1 SH-5 cache implementation
	9.1.1 SH-5 cache organization
	9.1.2 SH-5 cache synonyms and aliases
	9.1.3 SH-5 cache replacement
	9.1.4 SH-5 cache locking mechanism
	9.1.5 SH-5 cache instructions
	9.1.6 SH-5 cache access

	9.2 SH-5 cache configuration registers
	9.2.1 Access to ICCR and OCCR
	9.2.2 Access to tag and data configuration registers
	9.2.3 Cache configuration register map
	9.2.4 ICCR
	9.2.5 ICACHETAG
	9.2.6 ICACHEDATA
	9.2.7 OCCR
	9.2.8 OCACHETAG
	9.2.9 OCACHEDATA

	9.3 Cache code sequences
	9.3.1 Cache initialization sequence
	9.3.2 Cache coherency sequences
	9.3.3 Cache locking sequence

	9.4 Future cache implementations
	9.4.1 Cache architecture parameters
	9.4.2 Cache implementation parameters

	Index

