

SuperHTM (SH) 64-Bit RISC Series

SH-5 CPU Core, Volume 4: Implementation

SuperH, Inc.

Last updated 22 February 2002

-**D**-

05-CC-10004 V1.0

This publication contains proprietary information of SuperH, Inc., and is not to be copied in whole or part.

Issued by the SuperH Documentation Group on behalf of SuperH, Inc.

Information furnished is believed to be accurate and reliable. However, SuperH, Inc. assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SuperH, Inc. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SuperH, Inc. products are not authorized for use as critical components in life support devices or systems without the express written approval of SuperH, Inc.

SuperH is a registered trademark for products originally developed by Hitachi, Ltd. and is owned by Hitachi Ltd. © 2001 SuperH, Inc. All Rights Reserved.

> SuperH, Inc. San Jose, U.S.A. - Bristol, United Kingdom - Tokyo, Japan

> > www.superh.com

ii

-D-

SuperH, Inc. SH-5 CPU Core, Volume 4: Implementation

Contents

	Pre	face	vii
		SuperH SH-5 document identification and control	vii
		SuperH SH-5 CPU core documentation suite	viii
1	Ove	erview	1
	1.1	Introduction	1
	1.2	Undefined behavior and values	2
	1.3	SH compatibility model	3
	1.4	Floating-point unit (FPU)	3
2	Arc	hitectural state	5
	2.1	Implementation-specific properties	5
3	Dat	a representation	7
	3.1	Implementation-specific properties	7
4	SHr	nedia instruction set	9
	4.1	Implementation-specific properties	9
	4.2	Instruction formats	11

SH-5 CPU Core, Volume 4: Implementation

5-

	4.3 Integer instructions					
	4.4	Floati	ng-point instructions	12		
		4.4.1	Floating-point status and control register	12		
	4.5	Syster	m instructions	14		
		4.5.1	Control register instructions	14		
		4.5.2	Configuration register instructions	15		
5	SHe	compa	ct instruction set	17		
	5.1	Imple	mentation-specific properties	17		
	5.2	Floati	ng-point modes	17		
6	Cor	ntrol a	nd configuration registers	19		
	6.1	Specif	fication	19		
	6.2	Contr	ol registers	21		
		6.2.1	SR	21		
		6.2.2	SSR	26		
		6.2.3	PSSR	31		
		6.2.4	INTEVT	36		
		6.2.1	EXPEVT	37		
		6.2.5	PEXPEVT	38		
		6.2.6	TRA	39		
		6.2.7	SPC	40		
		6.2.8	PSPC	41		
		6.2.9	RESVEC	42		
		6.2.10	VBR	44		
		6.2.11	TEA	45		
		6.2.12	DCR, KCR0, KCR1	46		
		6.2.13	CTC	47		
		6.2.14	USR	48		
		6.2.15	Reserved control registers	50		
		6.2.16	Undefined control registers	50		

-5-

	6.3	Configuration registers	51
7	Eve	ent handling	55
	7.1	Implementation-specific properties	55
		7.1.1 Handler address calculation	55
		7.1.2 RTE	55
		7.1.3 Power-on reset state	56
	7.2	System architecture properties	56
		7.2.1 Resets and interrupts	56
		7.2.2 Debug features	56
		7.2.3 Power management	56
8	Me	mory management	57
	8.1	SH-5 MMU organization	57
	8.2	SH-5 PTE contents	58
		8.2.1 Enable (PTEH.V)	58
		8.2.2 Page size (PTEL.SZ)	58
		8.2.3 Cache behavior (PTEL.CB)	58
		8.2.4 Protection (PTEL.PR)	59
		8.2.5 Physical page number (PTEL.PPN)	59
		8.2.6 Shared page (PTEH.SH)	59
		8.2.7 Address space identifier (PTEH.ASID)	60
		8.2.8 Effective page number (PTEH.EPN)	60
	8.3	SH-5 translation	60
	8.4	SH-5 MMU and caches	60
	8.5	SH-5 MMU configuration registers	61
		8.5.1 MMU configuration register map	61
		8.5.2 MMUIR	61
		8.5.3 MMUDR	67
	8.6	MMU code sequences	74
		8.6.1 Enabling and disabling the MMU	74
		8.6.2 Enabling and disabling a PTE	78
			?

SuperH, Inc. SH-5 CPU Core, Volume 4: Implementation

v

8.7	Futur	e MMU implementations	79
	8.7.1	MMU architecture parameters	79
	8.7.2	MMU implementation parameters	80
Cac	hes		81
9.1	SH-5	cache implementation	81
	9.1.1	SH-5 cache organization	81
	9.1.2	SH-5 cache synonyms and aliases	83
	9.1.3	SH-5 cache replacement	83
	9.1.4	SH-5 cache locking mechanism	86
	9.1.5	SH-5 cache instructions	87
	9.1.6	SH-5 cache access	90
9.2	SH-5	cache configuration registers	93
	9.2.1	Access to ICCR and OCCR	93
	9.2.2	Access to tag and data configuration registers	93
	9.2.3	Cache configuration register map	94
	9.2.4	ICCR	96
	9.2.5	ICACHETAG	98
	9.2.6	ICACHEDATA	101
	9.2.7	OCCR	102
	9.2.8	OCACHETAG	106
	9.2.9	OCACHEDATA	111
9.3	Cache	e code sequences	112
	9.3.1	Cache initialization sequence	112
	9.3.2	Cache coherency sequences	112
	9.3.3	Cache locking sequence	114
9.4	Futur	e cache implementations	115
	9.4.1	Cache architecture parameters	115
	9.4.2	Cache implementation parameters	116
Ind	ov		117

Preface

This document is part of the SuperH SH-5 CPU core documentation suite detailed below. Comments on this or other books in the documentation suite should be made by contacting your local sales office or distributor.

SuperH SH-5 document identification and control

Each book in the documentation suite carries a unique identifier in the form:

05-CC-nnnnn Vx.x

Where, *n* is the document number and *x.x* is the revision.

Whenever making comments on a SuperH SH-5 document the complete identification 05-CC-1000n Vx.x should be quoted.

SuperH, Inc.

SuperH SH-5 CPU core documentation suite

The SuperH SH-5 CPU core documentation suite comprises the following volumes:

- SH-5 CPU Core, Volume 1: Architecture (05-CC-10001)
- SH-5 CPU Core, Volume 2: SHmedia (05-CC-10002)
- SH-5 CPU Core, Volume 3: SHcompact (05-CC-10003)
- SH-5 CPU Core, Volume 4: Implementation (05-CC-10004)

-77

1.1 Introduction

This document describes the implementation-defined properties of the SH-5 CPU.

These properties can vary between different implementations of the architecture. This information should therefore not be exploited where portability of software to other implementations is desired.

The information here is intended to be read in conjunction with the generic architecture documents. The chapters in this document correspond to chapters in the generic architecture documents as follows:

- 1 *Chapter 1: Overview on page 1* to *Chapter 3: Data representation on page 31* correspond to similarly named chapters in *Volume 1: Architecture (05-CC-10001 V1.0).*
- 2 *Chapter 4: SHmedia instruction set on page 9* corresponds to:
 - Chapters describing SHmedia in Volume 1: Architecture (05-CC-10001 V1.0).
 - The instruction set specification in *Volume 2: SHmedia (05-CC-10002 V1.0).*
- 3 Chapter 5: SHcompact instruction set on page 17 corresponds to:
 - Chapters describing SH compact in *Volume 1: Architecture (05-CC-10001 V1.0).*
 - The instruction set specification in Volume 3: SHcompact (05-CC-10003 V1.0).
- 4 Chapter 6: Control and configuration registers on page 19 to Chapter 9: Caches on page 81 correspond to similarly named chapters in Volume 1: Architecture (05-CC-10001 V1.0).

-**D**-

1.2 Undefined behavior and values

In certain situations the architecture permits an implementation to exhibit architecturally-undefined behavior and to return architecturally-undefined values.

This implementation distinguishes three different kinds of architecturally-undefined behavior:

- Implementation-defined behavior: the implementation provides a well-defined behavior that is described in this document but is specific to this implementation.
- Implementation-undefined behavior: the implementation does not provide a well-defined behavior causing unreliable instruction execution. An instruction, or sequence of instructions, that exhibits implementation-undefined behavior can execute incorrectly with respect to the expected semantics. This can result in, for example, an incorrect register value, an incorrect memory value or an incorrect PC. However, the implementation will continue to execute instructions and will not provide any behavior that would breach the privilege model.
- Catastrophic behavior: the behavior of the implementation is completely undefined. The execution of further instructions in the program could be inhibited. This state must be avoided by software. It is conceivable that activation of this state could shorten the operational life-time of the device.

This implementation distinguishes two different kinds of architecturally-undefined values:

- Implementation-defined value: the implementation provides a well-defined value, generated in a manner described in this document, though the value is specific to this implementation.
- Implementation-undefined value: the implementation does not define the value. The actual value is unreliable.

Software should exploit only architecturally-defined behavior and architecturally-defined values where portability to future implementations is required. Where software exercises any of the implementation behavior or values described above, portability will be impaired.

1.3 SH compatibility model

The MOVCA.L instruction (move with cache block allocation) and the OCBI instruction (operand cache block invalidate) implicitly reveal the cache line size to a program exploiting them. Both SH-4 and SH-5 have a 32-byte cache line. Hence SHcompact user-visible semantics of MOVCA.L and OCBI are compatible with SH-4.

The SH-5 MMU architecture provides all of the SH-4 permission attributes. It also supports all of the SH-4 page sizes except the 1 kbyte page size. SHcompact is compatible with SH-4 program binaries providing that they do not rely on translations with 1 kbyte granularity.

The physical address map is a property of the SH-5 system architecture.

1.4 Floating-point unit (FPU)

This specification considers two distinct versions of the SH-5 CPU core. The only difference between these two cores is that one provides the FPU and the other does not. The presence of the FPU can be detected by writing 0 to SR.FD and reading its value back to check whether floating-point was successfully enabled.

For an SH-5 implementation with an FPU, the floating-point registers and floating-point instructions are available as described in *Volume 1, Chapter 8: SHmedia floating-point* and *Volume 1, Chapter 13: SHcompact floating-point*. The SR.FD flag can be used to enable or disable the FPU as required.

For an SH-5 implementation without an FPU, the behavior is as if the FPU was permanently disabled. Any attempt to execute a floating-point opcode or to access the floating-point register state will generate an exception. It is possible to emulate the floating-point instructions and state in software.

SH-5 software should take into consideration that the FPU can be removed on some SH-5 implementations. There are significant software implications when removing the FPU:

• If the FPU is removed and the application requires floating-point support, then floating-point arithmetic software will need to be provided. Ideally, this would have the same feature set as the architectural floating-point support. For example, this software could take the form of a library of FPU routines, or of system software that emulates the floating-point instruction set and state.

-D-

• The potential for implementations both with and without an FPU can lead to multiple parameter passing conventions for floating-point values. For an implementation with an FPU, it is most efficient to pass floating-point parameters in floating-point registers. However, this is not the case for an implementation without an FPU, since access to the floating-point registers will generate an exception.

An alternative approach is to accept inefficient operation for the implementation without an FPU, and rely on exceptions and software emulation when passing floating-point parameters. This approach allows the use of one Application Binary Interface (ABI) for all SH-5 implementations.

• SH-5 operating system software should consider that the FPU can be removed on some SH-5 implementations.For example, operating system code for saving and restoring the floating-point registers should take account of whether the FPU is present or not.

-75

Architectural state

2.1 Implementation-specific properties

The architectural state has the following implementation-specific properties:

- The number of bits in effective addresses is described in *Section* 3.1: *Implementation-specific properties on page 7.*
- Implementation-specific properties of control registers are described in *Section* 4.5.1: Control register instructions on page 14.
- Implementation-specific properties of configuration registers are described in Section 4.5.2: Configuration register instructions on page 15, Section 8.5: SH-5 MMU configuration registers on page 61 and Section 9.2: SH-5 cache configuration registers on page 93.
- Some registers are used as scratch state during the execution of SHcompact instructions. The scratch registers are summarized in *Table 1*.

Scratch register	Becomes implementation undefined:
R_{20} to R_{23} inclusive	when any SHcompact instruction is executed (even if the instruction causes an exception).
${\sf TR}_0$ to ${\sf TR}_3$ inclusive	when any SHcompact instruction is executed (even if the instruction causes an exception).
FR ₃₃	when any SHcompact floating-point instruction is executed (even if the instruction causes an exception).

Table 1: Scratch registers

SuperH, Inc.

05-CC-10004 V1.0

SH-5 CPU Core, Volume 4: Implementation

-**D**-

-D-

Data representation

3.1 Implementation-specific properties

The number of implemented bits of effective address, neff, is defined in *Table 2*.

Quantity	Value
neff	32

	Ta	ble	2:	neff
--	----	-----	----	------

The value of neff is used to size the implemented part of architectural state that contains effective addresses:

- Registers that hold effective addresses of instructions:
 - The program counter (PC).
 - Target registers (TR).
 - The following control registers: SPC, PSPC, RESVEC and VBR.
 - Configuration registers that hold effective addresses of instructions.
- Registers that hold effective addresses of data:
 - The following control register: TEA.
 - Configuration registers that hold effective addresses of data.

SuperH, Inc.

PC overflow occurs when any instruction is executed and the PC has one of the following values:

- 1 0xFFFFFFFFFFFFFFFE: this is 2⁶⁴ 2
- 2 0xFFFFFFFFFFFFFFFFC: this is 2⁶⁴ 4
- 3 0x00000007FFFFFE: this is 2^{31} 2
- 4 0x00000007FFFFFFC: this is 2^{31} 4

Note that cases 1 and 3 can only occur for SHcompact instructions, while cases 2 and 4 can occur for both SHmedia and SHcompact instructions. If a PC overflow occurs, the behavior is implementation undefined.

-7.

SHmedia instruction set

4.1 Implementation-specific properties

Table 3 summarizes the SHmedia instructions with implementation-specific properties.

Instruction	Implementation-specific property	Reference
Branch instructions: BEQ, BEQI, BGE, BGEU, BGT, BGTU, BNE, BNEI	Interpretation of the I-bit. This interpretation can affect performance but does not affect semantics.	See Section 4.3
Prepare-target instructions: PTA, PTABS, PTB, PTREL	Interpretation of the I-bit. This interpretation can affect performance but does not affect semantics.	See Section 4.3
Memory prefetch instructions: LD.B, LD.L, LD.Q, LD.UB, LD.UW, LD.W, LDX.B, LDX.L, LDX.Q LDX.UB, LDX.UW, LDX.W where destination is R ₆₃	Effect of prefetch on performance	See Section 9.1.5
Approximate floating-point: FIPR.S, FTRV.S FCOSA.S, FSINA.S, FSRRA.S	Algorithms used to compute approximate floating-point results are implementation dependent.	The algorithms used by the SH-5 implementation are not described.

Table 3: SHmedia instructions with implementation-specific properties

-**D**-

Instruction	Implementation-specific property	Reference
Control register access: GETCON, PUTCON	Control registers have some implementation-dependent properties. Future implementations can provide additional control registers and fields.	See Section 4.5.1
Configuration register access: GETCFG, PUTCFG	The set of configuration registers and their fields is highly implementation dependent.	See Section 4.5.2
Return from exception: RTE	Effect of RTE with inappropriate SPC or SSR	See Section 7.1.2
Enter sleep mode: SLEEP	Behavior in sleep mode. The behavior affects power consumption but does not affect semantics.	See Section 7.2
Cache instructions:	Cache block size.	See Section 9.1.5
OCBWB, PREFI	Presence, organization and size of any caches	
	Effect of ALLOCO on memory values	
	Effect of PREFI on performance	

Table 3: SHmedia instructions with implementation-specific properties

4.2 Instruction formats

The architecture requires that reserved fields in the instruction encodings are set to specific values. The behavior of SH-5 for architecturally-undefined cases is described in *Table 4*. The rules used to determine the type of an unused operand are listed in *Volume 1, Chapter 4: SHmedia instructions*.

Bit-field type	Reserved bits	Required value	Behavior for inappropriate value
r	Reserved bits in a used operand field	0	Implementation undefined
х	Unused general-purpose source operand	0b111111 (this corresponds to a read of R63)	Implementation undefined
	Unused general-purpose destination operand	0b111111 (this corresponds to a write to R63)	Implementation undefined
	Unused floating-point source operand	Set to the same value as the used floating-point source operand	Implementation undefined
	Unused floating-point destination operand	0600000	Implementation undefined

 Table 4: Reserved encoding fields

SuperH, Inc.

4.3 Integer instructions

Prepare-target and conditional branch instructions include an l-bit ('l' for likely) which can be used to pass a performance hint to the implementation. The l-bit has no architectural effect on the behavior of the instruction.

4.4 Floating-point instructions

The architecture supports implementations with an FPU and without an FPU. The presence of the FPU can be detected by writing 0 to SR.FD and reading its value back to check whether floating-point was successfully enabled.

4.4.1 Floating-point status and control register

Table 5 specifies the floating-point status and control register, FPSCR.

FPSCR						
Field	Bits	Size	Volatile? Synopsis Type			
RM	0	1	No Floating-point rounding mode		RW	
	Operation		lf 0x0: rour	If 0x0: round to nearest		
			If 0x1: round to zero			
	When read		Returns current value			
	When written		Updates current value			
Power-On reset		Undefined				
FLAG [2,6]		5	No	Floating-point exceptions sticky flags	RW	
	Operation		Bit 2 of FPSCR: sticky flag for inexact exceptions (I)			
			Bit 3 of FPSCR: sticky flag for underflow exceptions (U)			
			Bit 4 of FPSCR: sticky flag for overflow exceptions (O)			
			Bit 5 of FP	SCR: sticky flag for divide by zero exception	ns (Z)	
			Bit 6 of FPSCR: sticky flag for invalid exceptions (V)			
	When read		Returns current value			
	When written		Updates current value			
Power-		Power-On reset				

Table 5: FPSCR

	FPSCR						
Field	Bits	Size	Volatile? Synopsis Type				
ENABLE	[7,11]	5	No Floating-point exceptions enable flags R		RW		
	Operation		Bit 7 of FP	SCR: enable flag for inexact exceptions (I)			
			Bit 8 of FP	SCR: enable flag for underflow exceptions	(U)		
			Bit 9 of FP	SCR: enable flag for overflow exceptions (0	D)		
		PSCR: enable flag for divide by zero excep	tions				
Bit 11 of FPSCR: enable flag for invalid except)		
When read Returns current				irrent value			
When written U			Updates current value				
	Power-On	reset	Undefined				
CAUSE	[12,17]	6	No Floating-point exceptions cause flags RW		RW		
	Operation		Bit 12 of FPSCR: cause flag for inexact exceptions (I)				
			Bit 13 of Fl	t 13 of FPSCR: cause flag for underflow exceptions (U)			
			Bit 14 of Fl	PSCR: cause flag for overflow exceptions (0)		
			Bit 15 of FI	PSCR: cause flag for divide by zero except	ons (Z)		
			Bit 16 of Fl	PSCR: cause flag for invalid exceptions (V)			
Bit 17 of FPSCR: cause flag for FPU error ex When read Returns current value				PSCR: cause flag for FPU error exceptions	(E)		
				irrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined				

Table 5: FPSCR

-D-

FPSCR								
Field	Bits	Size	Volatile?	Synopsis	Туре			
DN	18	1	No	Floating-point denormalization mode	RW			
	Operation		If 0: a dence exception	If 0: a denormalized source operand raises an FPU error exception				
			If 1: a denormalized source operand is flushed to zero before the floating-point operation is performed, and a denormalized result is flushed to zero after the floating-point operation is performed					
	When read	When read		Returns current value				
	When writ	When written		Updates current value				
	Power-On	reset	Undefined					
RES	1, [19,31]	14	No	RESERVED	RES			
	Operation		Software should always write 0 to these bits. Software should always ignore the value read from these bits.					
	When read	b	Reads as 0 (behavior of future implementations may vary)					
	When writ	ten	Writes ignored (behavior of future implementations may vary)					
	Power-On	reset	0 (behavio	0 (behavior of future implementations may vary)				

Table 5: FPSCR

4.5 System instructions

4.5.1 Control register instructions

A PUTCON to an UNDEFINED control register causes implementation-undefined behavior. A GETCON from an UNDEFINED control register returns an implementation-undefined value. Where the power-on reset value of a control register or field is architecturally undefined, it is also implementation undefined.

The DEFINED SH-5 control registers are specified in *Section 6.2: Control registers on page 21.*

-D-

SuperH, Inc. SH-5 CPU Core, Volume 4: Implementation

4.5.2 Configuration register instructions

A PUTCFG to an UNDEFINED configuration register causes implementation-undefined behavior. A GETCFG from an UNDEFINED configuration register returns an implementation-undefined value.

The SH-5 configuration register map is specified in *Section 6.3: Configuration registers on page 51*.

SHcompact instruction set

5.1 Implementation-specific properties

Table 6 summarizes the SH compact instructions with implementation-specific properties.

Instruction	Implementation-specific property	Reference
Approximate floating-point: FIPR, FTRV, FSCA, FSRRA	Algorithms used to compute approximate floating-point results are implementation dependent.	The algorithms used by the SH-5 implementation are not described.
Cache instructions:	Cache block size.	See Section 9.1.5
OCBI, OCBP, OCBWB, MOVCA.L, PREF	Presence, organization and size of any caches	
	Effect of MOVCA.L on memory values	
	Effect of PREF on performance	

Table 6: SHmedia instructions with implementation-specific properties

5.2 Floating-point modes

The floating-point mode setting where FPSCR.PR=1 and FPSCR.SZ=1 is reserved. The behavior of SHcompact floating-point instructions is architecturally undefined in this mode. The behavior is also implementation undefined.

-**D**-

SuperH, Inc.

-D-

Control and configuration registers

6.1 Specification

The standard format for describing the layout of a control or configuration register is illustrated in *Table 7*. This table is only used for DEFINED registers. Registers that are not DEFINED have no fields and are therefore not described with tables.

REGISTER			REG	NUMBER			
Field	Bits Size		Volatile?	Synopsis	Туре		
FIELD	BITS	SIZE	VOLATILE	SYNOPSIS	TYPE		
	Operation When read When written		OPERATION	N			
			READ				
			WRITE				
	Power-0	On reset	RESET				

Table 7: Standard table format fo	r describing register layout
-----------------------------------	------------------------------

The capitalized fields in this table are place-holders for the following information:

- REGISTER: the name of the register.
- REG: this is CON for a control register, and CFG for a configuration register.
- NUMBER: the number of the register.
- FIELD: the name of the field.

-D-

- BITS: the bit numbers occupied by this field. The least significant bit in a register is bit 0; the most significant bit in a register is bit 63. A single number indicates a single bit. The notation [x,y] represents the inclusive contiguous range of bits starting at bit x and ending at bit y.
- SIZE: the number of bits occupied by this field.
- VOLATILE: a 'yes' indicates that the field is volatile, while 'no' indicates that the field is not volatile.
- SYNOPSIS: a summary of the purpose of this field.
- TYPE: the abbreviated type of this field (RES, EXP, RO, RW or OTHER).
- OPERATION: defines the operation of this field.
- READ: defines the behavior of this field for explicit read accesses.
- WRITE: defines the behavior of this field for explicit write accesses.
- RESET: defines the value of this field after a power-on reset.

The set of rows used to describe a field are repeated for each field in the register.

The field types are summarized in the following table.

Field type	Abbreviation	Usage
RESERVED	RES	Field is reserved
EXPANSION	EXP	Field is reserved for address space expansion
READ-ONLY	RO	Field is read-only and cannot be modified by software
READ-WRITE	RW	Field is readable and writable by software
OTHER	OTHER	Field has unusual semantics

Table 8: Register field types

Further information on the terminology used to define control and configuration registers can be found in *Volume 1, Chapter 3: Data representation*.

6.2 Control registers

This section describes the behavior and layout of the SH-5 control registers.

6.2.1 SR

SR			CON	0x0				
Field	Bits	Size	Volatile?	Synopsis	Туре			
S	1	1	No	Saturation control (SHcompact mode)	RW			
	Operation		See Volum	e 1, Chapter 11: SHcompact integer instructions				
	When read	d	Returns cu	irrent value				
	When writ	ten	Updates cu	Updates current value				
	Power-On	reset						
IMASK	[4,7]	4	Yes	Interrupt request mask level	RW			
	Operation		See Volume 1, Chapter 16: Event handling					
	When read	d	Returns current value					
	When writ	ten	Updates current value					
	Power-On	reset	Undefined					
Q	8	1	No	State for divide step (SHcompact mode)	RW			
	Operation		See Volume 1, Chapter 11: SHcompact integer instructions					
	When read	d	Returns current value					
	When writ	ten	Updates cu	urrent value				
	Power-On	reset	Undefined					

Table 9: SR

-**D**-

SR			CON	0x0			
Field	Bits	Size	Volatile?	Synopsis	Туре		
М	9	1	No	State for divide step (SHcompact mode)	RW		
	Operation		See Volum	e 1, Chapter 11: SHcompact integer instructions			
	When read	b	Returns cu	rrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined				
CD	11	1	No	Clock tick counter disable flag	RW		
	Operation		See Volum	e 1, Chapter 9: SHmedia system instructions			
	When read	When read		Returns current value			
	When written		Updates current value				
	Power-On	reset	0				
PR	12	1	No	Floating-point precision (SHcompact mode)	RW		
	Operation		See Volume 1, Chapter 13: SHcompact floating-point				
			This field is available with RW semantics regardless of whether the FPU is enabled, disabled or not provided.				
	When read		Returns current value				
	When writ	ten	Updates current value				
	Power-On	reset	0				
SZ	13	1	No	Floating-point transfer size (SHcompact mode)	RW		
	Operation		See Volume 1, Chapter 13: SHcompact floating-point				
				This field is available with RW semantics regardless of whether the FPU is enabled, disabled or not provided.			
	When read	b	Returns cu	irrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	0				

Table 9: SR

SR		CON 0x0						
Field	Bits	Size	Volatile?	Synopsis	Туре			
FR	14	1	No	Floating-point register bank (SHcompact mode)	RW			
	Operation		See Volum	e 1, Chapter 13: SHcompact floating-point				
			This field is FPU is ena	s available with RW semantics regardless of whethe abled, disabled or not provided.	r the			
	When read	b	Returns cu	irrent value				
	When writ	ten	Updates cu	urrent value				
	Power-On	reset	0	0				
FD	15	1	No	Floating-point disable flag	RW/RO			
	Operation		See Volume 1, Chapter 8: SHmedia floating-point and Volume 1, Chapter 13: SHcompact floating-point					
			This specification considers two distinct versions of the SH-5 CPU core. The only difference between these two cores is that one provides the floating-point unit and the other does not.					
			The behavior of this field differs between the two versions:					
			If FPU is provided: RW					
			If FPU is not provided: RO					
	When read	b	Returns current value					
	When writ	ten	If FPU is provided: updates current value					
			If FPU is not provided: writes ignored					
	Power-On	reset	1					
ASID	[16,23]	8	No	Address Space IDentifier	RO			
	Operation		See Volume 1, Chapter 17: Memory management					
	When read			Returns current value				
	When writ	ten	Writes igno	pred (use RTE to modify)				
	Power-On	reset	Undefined					

Table 9: SR

SuperH, Inc.

SR		CON	CON 0x0					
Field	Bits	Size	Volatile?	Synopsis	Туре			
WATCH	26	1	Yes	Watch-point enable flag	RO			
	Operation		See Volum	he 1, Chapter 16: Event handling				
	When read	d	Returns cu	irrent value				
	When writ	ten	Writes igno	ored (use RTE to modify)				
	Power-On	reset	0					
STEP	27	1	Yes	Single-step enable flag	RO			
	Operation		See Volume 1, Chapter 16: Event handling					
	When read	When read		Returns current value				
	When written		Writes ignored (use RTE to modify)					
	Power-On	reset	0					
BL	28	1	Yes	Flag to block exception, trap or interrupt	RW			
	Operation	Operation		See Volume 1, Chapter 16: Event handling				
	When read	When read		Returns current value				
	When writ	ten	Updates current value					
	Power-On	Power-On reset		1				
MD	30	1	Yes	User or privileged mode	RO			
	Operation		MD=1: Privileged mode MD=0: User mode See Volume 1, Chapter 2: Architectural state					
	When read	d	Returns cu	irrent value				
	When writ	ten	Writes igno	pred (use RTE to modify)				
	Power-On	reset	1					

Table 9: SR

	SR		CON	0x0			
Field	Bits	Size	Volatile?	Synopsis	Туре		
MMU	31	1	Yes	MMU enable flag	RO		
	Operation		See Volum	ne 1, Chapter 17: Memory management			
	When read	d	Returns current value				
	When written		Writes ignored (use RTE to modify)				
	Power-On reset		0				
RES	0, [2,3], 10, [24,25], 29, [32,63]	39	No	RESERVED	RES		
	Operation		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.				
	When read	d	Reads as 0 (behavior of other implementations may vary)				
	When writ	ten	Writes ignored (behavior of other implementations may vary)				
	Power-On	reset	0 (behavior of other implementations may vary)				

Table 9: SR

6.2.2 SSR

	SSR			0x1			
Field	Bits	Size	Volatile?	Synopsis	Туре		
S	1	1	Yes	Saturation control (SHcompact mode)	RW		
	Operation		See Volum	e 1, Chapter 16: Event handling			
	When read	d	Returns cu	irrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined				
IMASK	[4,7]	4	Yes	Interrupt request mask level	RW		
	Operation		See Volum	e 1, Chapter 16: Event handling			
	When read		Returns current value				
	When written		Updates current value				
	Power-On	reset	Undefined				
Q	8	1	Yes	State for divide step (SHcompact mode)	RW		
	Operation		See Volume 1, Chapter 16: Event handling				
	When read	d	Returns current value				
	When writ	ten	Updates current value				
	Power-On	reset	Undefined				
М	9	1	Yes	State for divide step (SHcompact mode)	RW		
	Operation		See Volume 1, Chapter 16: Event handling				
When read		d	Returns cu	irrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined				

Table 10: SSR

-D-

SSR		CON	0x1				
Field	Bits	Size	Volatile?	Synopsis	Туре		
CD	11	1	Yes	Clock tick counter disable flag	RW		
	Operation		See Volum	e 1, Chapter 16: Event handling			
	When read	d	Returns cu	irrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined				
PR	12	1	Yes	Floating-point precision (SHcompact mode)	RW		
	Operation		See Volume 1, Chapter 16: Event handling				
	When read		Returns current value				
	When writ	When written		Updates current value			
	Power-On	reset	Undefined				
SZ	13	1	Yes	Floating-point transfer size (SHcompact mode)	RW		
	Operation		See Volume 1, Chapter 16: Event handling				
	When read	d	Returns current value				
	When writ	ten	Updates current value				
	Power-On	reset	Undefined				
FR	14	1	Yes	Floating-point register bank (SHcompact mode)	RW		
	Operation		See Volume 1, Chapter 16: Event handling				
	When read	d	Returns cu	irrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined	Undefined			

Table 10: SSR

SSR			CON	0x1	
Field	Bits	Size	Volatile?	Synopsis	Туре
FD	15	1	Yes	Floating-point disable flag	RW
	Operation		See Volume 1, Chapter 16: Event handling		
	When read		Returns current value		
	When written		Updates current value		
			If the FPU is not provided by the implementation (i.e. SR.FD is read-only and reads as 1), the value written to SSR should not set SSR.FD to 0. This condition will lead to architecturally-undefined behavior if RTE is then used.		
	Power-On reset		Undefined		
ASID	[16,23]	8	Yes	Address Space IDentifier	RW
	Operation		See Volume 1, Chapter 16: Event handling		
	When read		Returns current value		
	When written		Updates current value		
Power-On reset		reset	Undefined		
WATCH	26	1	Yes	Watch-point enable flag	RW
	Operation		See Volume 1, Chapter 16: Event handling		
	When read		Returns current value		
	When written		Updates current value		
	Power-On reset		Undefined		
STEP	27	1	Yes	Single-step enable flag	RW
	Operation		See Volume 1, Chapter 16: Event handling		
	When read		Returns current value		
	When written		Updates current value		
	Power-On reset		Undefined		

Table 10: SSR

-5-
SSR		CON	CON 0x1			
Field	Bits	Size	Volatile?	Synopsis	Туре	
BL	28	1	Yes	Flag to block exception, trap or interrupt	RW	
	Operation		See Volum	See Volume 1, Chapter 16: Event handling		
	When read	When read		Returns current value		
	When writ	ten	n Updates current value			
	Power-On	reset	Undefined			
MD	30	1	Yes	User or privileged mode	RW	
	Operation	Operation		See Volume 1, Chapter 16: Event handling		
	When read	b	Returns current value			
	When writ	ten	Updates cu	urrent value		
	Power-On	reset	Undefined			
MMU	31	1	Yes	MMU enable flag	RW	
	Operation		See Volume 1, Chapter 16: Event handling			
	When read	d	Returns current value			
	When writ	ten	Updates cu	urrent value		
	Power-On	reset	Undefined			

Table 10: SSR

·D-

	SSR		CON	CON 0x1			
Field	Bits	Size	Volatile?	Synopsis	Туре		
RES	0, [2,3], 10, [24,25], 29, [32,63]	39	No	RESERVED	RES		
	Operation When reading from this register, software shoul interpret the value of these bits. When writing to software should write these bits using a value pread from this register. If no appropriate previo available, then software should write these bits Where possible, software should preserve all roof SSR from the point of launch to the point of launch.		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.				
			sible, software should preserve all reserve m the point of launch to the point of return f	d bits from			
	When read	b	Reads as 0 (behavior of other implementations may vary)				
	When writ	When written		Writes ignored (behavior of other implementations may vary)			
	Power-On	reset	0 (behavio	of other implementations may vary)			

Table 10: SSR

6.2.3 **PSSR**

	PSSR		CON	CON 0x2			
Field	Bits	Size	Volatile?	Synopsis	Туре		
S	1	1	Yes	Saturation control (SHcompact mode)	RW		
	Operation		See Volum	ne 1, Chapter 16: Event handling			
	When read	d	Returns cu	irrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined				
IMASK	[4,7]	4	Yes	Interrupt request mask level	RW		
	Operation		See Volum	ne 1, Chapter 16: Event handling			
	When read		Returns current value				
	When written		Updates current value				
	Power-On	reset	Undefined				
Q	8	1	Yes	State for divide step (SHcompact mode)	RW		
	Operation		See Volume 1, Chapter 16: Event handling				
	When read	d	Returns current value				
	When writ	ten	Updates current value				
	Power-On	reset	Undefined				
Μ	9	1	Yes	State for divide step (SHcompact mode)	RW		
	Operation		See Volume 1, Chapter 16: Event handling				
	When read	d	Returns cu	irrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined				

Table 11: PSSR

31

·D-

	PSSR		CON	0x2		
Field	Bits	Size	Volatile?	Synopsis	Туре	
CD	11	1	Yes	Clock tick counter disable flag	RW	
	Operation		See Volum	ne 1, Chapter 16: Event handling		
	When rea	d	Returns cu	irrent value		
	When writ	ten	Updates cu	urrent value		
	Power-On	reset	Undefined			
PR	12	1	Yes	Floating-point precision (SHcompact mode)	RW	
	Operation		See Volum	See Volume 1, Chapter 16: Event handling		
	When read		Returns current value			
	When written		Updates current value			
	Power-On	reset	Undefined			
SZ	13	1	Yes	Floating-point transfer size (SHcompact mode)	RW	
	Operation		See Volume 1, Chapter 16: Event handling			
	When rea	d	Returns current value			
	When writ	ten	Updates current value			
	Power-On	reset	Undefined			
FR	14	1	Yes	Floating-point register bank (SHcompact mode)	RW	
	Operation		See Volume 1, Chapter 16: Event handling			
	When rea	d	Returns cu	irrent value		
	When writ	ten	Updates cu	urrent value		
	Power-On	reset	Undefined			

Table 11: PSSR

	PSSR		CON	0x2		
Field	Bits	Size	Volatile?	Synopsis	Туре	
FD	15	1	Yes	Floating-point disable flag	RW	
	Operation		See Volum	ne 1, Chapter 16: Event handling		
	When read	d	Returns cu	irrent value		
	When writ	ten	Updates cu	Updates current value		
	Power-On	reset	Undefined			
ASID	[16,23]	8	Yes	Address Space IDentifier	RW	
	Operation		See Volume 1, Chapter 16: Event handling			
	When read		Returns current value			
	When written		Updates current value			
	Power-On	reset	Undefined			
WATCH	26	1	Yes	Watch-point enable flag	RW	
	Operation		See Volume 1, Chapter 16: Event handling			
	When read	d	Returns current value			
	When writ	ten	Updates current value			
	Power-On	reset	Undefined			
STEP	27	1	Yes	Single-step enable flag	RW	
	Operation		See Volume 1, Chapter 16: Event handling			
	When read	d	Returns current value			
	When writ	ten	Updates cu	urrent value		
	Power-On	reset	Undefined			

Table 11: PSSR

-**D**-

PSSR		CON	CON 0x2			
Field	Bits	Size	Volatile?	Synopsis	Туре	
BL	28	1	Yes	Flag to block exception, trap or interrupt	RW	
	Operation		See Volum	See Volume 1, Chapter 16: Event handling		
	When read	When read		Returns current value		
	When writ	ten	Updates c	Updates current value		
	Power-On	reset	Undefined			
MD	30	1	Yes	User or privileged mode	RW	
	Operation		See Volume 1, Chapter 16: Event handling			
	When read	d	Returns current value			
	When writ	ten	Updates c	urrent value		
	Power-On	reset	Undefined			
MMU	31	1	Yes	MMU enable flag	RW	
	Operation		See Volume 1, Chapter 16: Event handling			
	When read	d	Returns current value			
	When writ	ten	Updates current value			
	Power-On	reset	Undefined			

Table 11: PSSR

34

	PSSR		CON	CON 0x2			
Field	Bits	Size	Volatile?	Synopsis	Туре		
RES	0, [2,3], 10, [24,25], 29, [32,63]	39	No	RESERVED	RES		
	Operation		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.				
			Where pos of PSSR fr return from	sible, software should preserve all reserve om the launch of a panic handler launch to n that panic handler.	eserved bits unch to the		
	When read	d	Reads as 0 (behavior of other implementations may vary)				
	When writ	ten	Writes ignored (behavior of other implementations may vary)				
	Power-On	reset	0 (behavio	r of other implementations may vary)			

Table 11: PSSR

35

—**D**-

6.2.4 INTEVT

I	NTEVT		CON	0x4			
Field	Bits	Size	Volatile?	Synopsis	Туре		
CODE	[0,31]	32	Yes	Holds the event code for most recent interrupt launch	RW		
	Operation		See Volume 1, Chapter 16: Event handling				
	When read		Returns current value				
	When written		Updates current value				
	Power-On	reset	Undefined				
RES	[32,63]	32	No	RESERVED	RES		
RES	Operation		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.				
	When read	d	Reads as 0 (behavior of other implementations may vary)				
	When writ	ten	Writes ignored (behavior of other implementations may vary)				
	Power-On	reset	0 (behavior of other implementations may vary)				

Table 12: INTEVT

36

6.2.1 EXPEVT

E	XPEVT		CON	0x5			
Field	Bits	Size	Volatile?	Synopsis	Туре		
CODE	[0,31]	32	Yes	Holds the event code for most recent exception launch	RW		
	Operation	Operation		See Volume 1, Chapter 16: Event handling			
	When read		Returns current value				
	When written		Updates current value				
	Power-On	reset	0				
RES	[32,63]	32	No	RESERVED	RES		
RES	Operation		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.				
	When read	d	Reads as 0 (behavior of other implementations may vary)				
	When writ	ten	Writes ignored (behavior of other implementations may vary)				
	Power-On	reset	0 (behavior of other implementations may vary)				

Table 13: EXPEVT

37

6.2.5 PEXPEVT

P	EXPEVT		CON	0x6			
Field	Bits	Size	Volatile?	Synopsis	Туре		
CODE	[0,31]	32	Yes	Holds the event code of the event which was being handled before the panic.	RW		
	Operation		See Volume 1, Chapter 16: Event handling				
	When read		Returns current value				
	When writ	When written		Updates current value			
	Power-On reset		Undefined				
RES	[32,63]	32	No	RESERVED	RES		
	Operation		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.				
	When read	d	Reads as 0 (behavior of other implementations may vary)				
	When writ	ten	Writes ignored (behavior of other implementations may vary)				
	Power-On	reset	0 (behavior of other implementations may vary)				

Table 14: PEXPEVT

38

6.2.6 TRA

	TRA		CON	CON 0x7			
Field	Bits	Size	Volatile?	Synopsis	Туре		
VALUE	[0,31]	32	Yes	Holds the lower 32 bits of the operand value from a TRAPA instruction	RW		
	Operation		See Volum	See Volume 1, Chapter 16: Event handling			
	When read		Returns current value				
	When written		Updates current value				
	Power-On	reset	Undefined				
RES	[32,63]	32	No	RESERVED	RES		
	Operation		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.				
	When read	d	Reads as 0 (behavior of other implementations may vary)				
	When writ	ten	Writes ignored (behavior of other implementations may vary)				
	Power-On	reset	0 (behavior of other implementations may vary)				

Table 15: TRA

·D-

6.2.7 SPC

	SPC		CON	0x8				
Field	Bits	Size	Volatile?	Volatile? Synopsis				
ISA	0	1	Yes	ISA mode to be used after returning from event	RW			
	Operation		See Volum	See Volume 1, Chapter 16: Event handling				
	When rea	d	Returns current value					
	When writ	ten	Updates cu	urrent value				
	Power-On	reset	Undefined					
ADDR	[1,31]	31	Yes	Address to return to after handling event	RW			
	Operation		See Volum	See Volume 1, Chapter 16: Event handling				
	When read		Returns current value					
	When written		Updates current value					
			The value written to SPC should not set both SPC.ISA to 1 and the lowest bit of SPC.ADDR to 1. This condition will lead to architecturally-undefined behavior if RTE is then used.					
	Power-On	reset	Undefined					
EXP	[32,63]	32	No	EXPANSION	EXP			
	Operation		These bits may be used on other implementations to expand the address space using a sign-extended convention. Software should always write a sign-extension of bit 31 into these bits. This approach is necessary if software on this implementation is to be executed on another implementation with more implemented address space.					
	When rea	d	Reads as a sign-extension of bit 31 (behavior of other implementations may vary)					
	When writ	ten	Writes igno	pred (behavior of other implementations may	vary)			
	Power-On	reset	Sign-extension of bit 31 (behavior of other implementations may vary)					

Table 16: SPC

-D-

6.2.8 **PSPC**

	PSPC		CON	0x9			
Field	Bits	Size	Volatile?	Synopsis	Туре		
ISA	0	1	Yes	The value of SPC.ISA prior to last panic	RW		
	Operation		See Volum	e 1, Chapter 16: Event handling			
	When rea	d	Returns cu	rrent value			
	When writ	ten	Updates cu	irrent value			
	Power-On	reset	Undefined				
ADDR	[1,31]	31	Yes	The value of SPC.ADDR prior to last panic	RW		
-	Operation		See Volume 1, Chapter 16: Event handling				
	When read		Returns current value				
	When written		Updates current value				
	Power-On	reset	Undefined				
EXP	[32,63]	32	No	EXPANSION	EXP		
	Operation		These bits may be used on other implementations to expand the address space using a sign-extended convention. Software should always write a sign-extension of bit 31 into these bits. This approach is necessary if software on this implementation is to be executed on another implementation with more implemented address space.				
	When rea	d	Reads as a sign-extension of bit 31 (behavior of other implementations may vary)				
	When writ	ten	Writes ignored (behavior of other implementations may vary)				
	Power-On	reset	Sign-extension of bit 31 (behavior of other implementations may vary)				

Table 17: PSPC

41

-D-

6.2.9 **RESVEC**

F	ESVEC		CON	0xA	
Field	Bits	Size	Volatile?	Synopsis	Туре
MMUOFF	0	1	No	MMU (and hence cache) disable	RW
	Operation		See Volum	e 1, Chapter 16: Event handling	
	When read	d	Returns cu	rrent value	
	When writ	ten	Updates cu	irrent value	
	Power-On	reset	0		
RES	1	1	No	RESERVED	RES
	Operation		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.		
	When read	b	Reads as 0) (behavior of other implementations may	vary)
	When writ	ten	Writes igno	red (behavior of other implementations ma	ay vary)
	Power-On	reset	0 (behavior	of other implementations may vary)	
ADDR	[2,31]	30	Yes	Reset vector	RW
	Operation		See Volume 1, Chapter 16: Event handling		
	When read	b	Returns current value		
	When writ	ten	Updates cu	irrent value	
	Power-On	reset	0		

Table 18: RESVEC

RESVEC		CON	CON 0xA				
Field	Bits	Size	Volatile?	Synopsis	Туре		
EXP	[32,63]	32	No	EXPANSION	EXP		
	Operation		These bits may be used on other implementations to expand the address space using a sign-extended convention. Software should always write a sign-extension of bit 31 into these bits. This approach is necessary if software on this implementation is to be executed on another implementation with more implemented address space.				
	When read	When readReads as a sign-extension of bit 31 (behavior of othe implementations may vary)		r			
	When writ	ten	Writes igno	red (behavior of other implementations ma	ay vary)		
	Power-On	reset	Sign-extens may vary)	sion of bit 31 (behavior of other implement	tations		

Table 18: RESVEC

43

·D-

6.2.10 VBR

	VBR		CON	0xB		
Field	Bits	Size	Volatile?	Synopsis	Туре	
RES	[0,1]	2	No	RESERVED	RES	
	Operation		When read interpret the software sh read from t available, th	ing from this register, software should not e value of these bits. When writing to this re nould write these bits using a value previou his register. If no appropriate previous valu hen software should write these bits as 0.	egister, usly ue is	
	When read	b	Reads as 0) (behavior of other implementations may v	/ary)	
	When writ	ten	Writes igno	ored (behavior of other implementations ma	ay vary)	
	Power-On	reset	0 (behavior	of other implementations may vary)		
ADDR	[2,31]	30	No	Vector Base Register	RW	
	Operation		See Volume 1, Chapter 16: Event handling			
	When read		Returns current value			
	When writ	ten	Updates current value			
	Power-On	reset	0			
EXP	[32,63]	32	No	EXPANSION	EXP	
	Operation		These bits may be used on other implementations to expand the address space using a sign-extended convention. Software should always write a sign-extension of bit 31 into these bits. This approach is necessary if software on this implementation is to be executed on another implementation with more implemented address space.			
	When read	b	Reads as a sign-extension of bit 31 (behavior of other implementations may vary)			
	When writ	ten	Writes igno	ored (behavior of other implementations ma	ay vary)	
	Power-On	reset	Sign-extens may vary)	sion of bit 31 (behavior of other implement	ations	

Table 19: VBR

-D-

SuperH, Inc.

6.2.11 TEA

	TEA		CON	0xD			
Field	Bits	Size	Volatile?	Synopsis	Туре		
ADDR	[0,31]	32	Yes	This field contains the lowest 32 bits of the address which triggered the most recent instruction fetch or memory access exception. The upper 32 bits of the address are discarded.	RW		
	Operation		See Volum	See Volume 1, Chapter 16: Event handling			
	When read		Returns current value				
	When written		Updates current value				
	Power-On	reset	Undefined				
EXP	[32,63]	32	No	EXPANSION	EXP		
	Operation		 No EXPANSION These bits may be used on other implementations to the address space using a sign-extended convention Software should always write a sign-extension of bit these bits. This approach is necessary if software or implementation is to be executed on another implem with more implemented address space. 		xpand 1 into his ntation		
	When read	b	Reads as a sign-extension of bit 31 (behavior of other implementations may vary)				
	When writ	ten	Writes igno	ored (behavior of other implementations ma	y vary)		
	Power-On	reset	Sign-extension of bit 31 (behavior of other implementations may vary)				

Table 20: TEA

6.2.12 DCR, KCR0, KCR1

DCR		CON	CON 0x10			
Field	Bits	Size	Volatile?	Synopsis	Туре	
VALUE	[0,63]	64	No	Debug control register	RW	
	Operation		Provides privileged state for use by debug software.			
	When read	b	Returns cu	rrent value		
	When writ	ten	irrent value			
	Power-On	reset	Undefined			

Table 21: DCR

KCR0			CON	0x11			
Field	Bits	Size	Volatile?	Synopsis	Туре		
VALUE	[0,63]	64	No	Kernel control register 0	RW		
	Operation		Provides privileged state for use by kernel software.				
	When read	d	Returns current value				
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined				

Table 22: KCR0

KCR1		CON	0x12				
Field	Bits	Size	Volatile?	Synopsis	Туре		
VALUE	[0,63]	64	No	Kernel control register 1	RW		
	Operation		Provides privileged state for use by kernel software.				
	When read	b	Returns cu	rrent value			
	When writ	ten	Updates cu	urrent value			
	Power-On	reset	Undefined				

Table 23: KCR1

-5

6.2.13 CTC

	стс		CON	CON 0x3E			
Field	Bits	Size	Volatile?	Synopsis	Туре		
TICKS	[0,31]	32	Yes	Clock tick counter	RW		
	Operation		The clock tid clock cycle. when it dec clock is syst	ck counter is decremented by 1 on each The counter wraps around to its maxim rements past zero. The frequency of the rem dependent.	n CPU um value e CPU		
	When read When written		If SR.MD is	If SR.MD is 0 and SR.CD is 1, returns zero			
			If SR.MD is 1 or SR.CD is 0, returns current value				
			If SR.MD is 0, writes ignored				
			If SR.MD is 1, updates current value				
	Power-On	reset	Undefined				
RES	[32,63]	32	No	RESERVED	RES		
	Operation		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.				
	When read	b	Reads as 0 (behavior of other implementations may vary)				
	When writ	ten	Writes ignored (behavior of other implementations may vary)				
	Power-On	reset	0 (behavior of other implementations may vary)				

Table 24: CTC

SH-5 provides a 32-bit clock tick counter.

-D-

6.2.14 USR

	USR		CON	0x3F		
Field	Bits	Size	Volatile?	Synopsis	Туре	
GPRS	[0,7]	8	Yes	Dirty bits for general-purpose registers	RW	
	Operation		See Volum	e 1, Chapter 15: Control registers		
	When read	d	Returns cu	rrent value		
	When writ	ten	Updates cu	urrent value		
	Power-On	reset	Undefined			
FPRS	[8,15]	8	Yes	Dirty bits for floating-point registers	RW	
	Operation		See Volum	e 1, Chapter 15: Control registers		
			This field is available with RW semantics regardless of whether the FPU is enabled, disabled or not provided.			
	When read		Returns current value			
	When writ	When written		Updates current value		
	Power-On	reset	Returns current value Updates current value Undefined			
RES	[16,63]	48	No	RESERVED	RES	
	Operation		When reading from this register, software should not interpret the value of these bits. When writing to this register, software should write these bits using a value previously read from this register. If no appropriate previous value is available, then software should write these bits as 0.			
	When read	d	Reads as 0 (behavior of other implementations may vary)			
	When writ	ten	Writes igno	ored (behavior of other implementations ma	ay vary)	
	Power-On	reset	0 (behavio	r of other implementations may vary)		

Table 25: USR

The architectural properties of USR are described in *Volume 1, Chapter 15: Control registers*. The implementation-specific properties for SH-5 are described below:

- SH-5 implements all 8 bits of USR.GPRS. The dirty status of general-purpose registers can be monitored on subsets containing 8 registers. The hardware sets the appropriate bit in USR.GPRS when a register in the subset is written to.
- SH-5 implements all 8 bits of USR.FPRS. The dirty status of floating-point registers can be monitored on subsets containing 8 registers. The hardware sets the appropriate bit in USR.FPRS when a register in the subset is written to.
- After power-on reset, the values of USR.GPRS and USR.FPRS are undefined. They must be initialized before use by software.
- A write to R₆₃ does not set the appropriate dirty bit (bit 7 of USR.GPRS).
- A GETCON from USR will read the value of USR before marking the destination register of the GETCON as dirty.
- The SH-5 implementation guarantees that a GETCON from USR will observe all registers that have become dirty due to previous instructions (since the last PUTCON to USR). Note that R_{63} always reads as zero and is never considered dirty by the SH-5 implementation.
- The SH-5 implementation updates the dirty bits imprecisely:
 - For event launches: the dirty bits can be updated imprecisely for instructions that are partially executed, but do not complete (i.e. they are cancelled), due to the processor accepting an event and launching an event handler.
 - For branches: the dirty bits can be updated imprecisely for instructions that are partially executed, but do not complete (i.e. they are cancelled), from the predicted path of execution following a conditional branch instruction if the predicted branch outcome is found to be incorrect.

If the FPU is disabled or is not present (i.e. SR.FD is set to 1), the USR.FPRS field is still implemented. GETCON can be used to read USR.FPRS and PUTCON can be used to update USR.FPRS to a new value. However, when SR.FD is 1 the implementation will not implicitly set any bits in USR.FPRS to indicate dirty registers. This is because all instructions that can modify floating-point registers will raise an exception when SR.FD is 1. Additionally, when SR.FD is 1 the implementation will not update USR.FPRS imprecisely.

-D

SH-5 CPU Core, Volume 4: Implementation

6.2.15 Reserved control registers

RESERVED[n] where n is in the range [0,29]		CON	0x20 + (1 * n)			
Field	Bits	Size	Volatile?	Synopsis	Туре	
RES	[0,63]	64	No	RESERVED	RES	
	Operation		Software should not read nor write this register			
	When read	d	Reads as 0 (behavior of other implementations may vary)			
	When written		Writes ignored (behavior of other implementations may vary)			
	Power-On	reset	0 (behavior of other implementations may vary)			

Table 26: RESERVED[n]

6.2.16 Undefined control registers

All other control registers exhibit undefined behavior. A PUTCON to an UNDEFINED control register causes implementation-undefined behavior. A GETCON from an UNDEFINED control register returns an implementation-undefined value.

UNDEFINED[n] where n is in the range [0,16]		CON	0x3, 0xC, 0xE, 0xF, [0x13, 0x1F]			
Field	Bits	Size	Volatile?	Synopsis	Туре	
UNDEF	[0,63]	64	UNDEF	UNDEFINED	UNDEF	
	Operation		Software must not read nor write this register			
	When rea	d	Do not rea	d: returns implementation-undefined valu	/alue	
	When writ	tten	Do not writ	e: causes implementation-undefined beh	avior	
	Power-On	reset	Undefined			

Table 27: UNDEFINED[n]

6.3 Configuration registers

This section describes the configuration register map for SH-5. SH-5 uses configuration registers for MMU and cache state. These are described in *Section* 8.5: SH-5 MMU configuration registers on page 61 and Section 9.2: SH-5 cache configuration registers on page 93.

The configuration register space is partitioned using the address conventions shown in *Table 28*.

Address bits	Interpretation	Limit	SH-5 usage
[32,63]	Must be set to zero	Not used	Not used
[24,31]	Region selection	Supports up to 256	Region 0x0: MMU
		regions	Region 0x1: CACHE
[21,23]	Bank selection	Supports up to 8	MMU:
		banks	Bank 0x0: MMUIR
			Bank 0x4: MMUDR
			CACHE:
			Bank 0x0: ICACHETAG
			Bank 0x1: ICACHEDATA
			Bank 0x3: ICCR
			Bank 0x4: OCACHETAG
			Bank 0x5: OCACHEDATA
			Bank 0x7: OCCR
[16,20]	Way selection	Supports up to 32	MMU: unused, must be zero
		ways	CACHE: uses ways [0,3]
[4,15]	Index selection	Supports up to	MMU: uses indices [0,63]
		4096 indices	CACHE: uses indices [0,255]

Table 28: SH-5 configuration register addressing

Address bits	Interpretation	Limit	SH-5 usage
[0,3]	Register selection Supports up to 16 registers	MMU:	
		registers	MMUIR: uses registers [0,1]
			MMUDR: uses registers [0,1]
			CACHE:
			ICACHETAG: uses register 0
			ICACHEDATA: uses registers [0,3]
			ICCR: uses registers [0,1]
			OCACHETAG: uses registers [0,1]
			OCACHEDATA: uses registers [0,3]
			OCCR: uses registers [0,1]

Table 28: SH-5 configuration register addressing

Table 29 summarizes the SH-5 configuration registers.

Name	Configuration register number	Number of defined registers	Behavior
MMUIR	0x00000000 + (16*index) + reg, where: index is in [0,63], reg is in [0,1]	128	See Section 8.5.2: MMUIR on page 61
MMUDR	0x00800000 + (16*index) + reg, where: index is in [0,63], reg is in [0,1]	128	See Section 8.5.3: MMUDR on page 67
ICACHETAG	0x01000000 + (65536*way) + (16*index) + reg, where: way is in [0,3] index is in [0,255], reg is 0	1024	See Section 9.2.5: ICACHETAG on page 98

Table 29: SH-5 configuration registers

Name	Configuration register number	Number of defined registers	Behavior
ICACHEDATA	0x01200000 + (65536*way) + (16*index) + reg	4096	See Section 9.2.6: ICACHEDATA on page 101
	where:		
	way is in [0,3]		
	index is in [0,255], reg is in [0,3]		
ICCR	0x01600000 + reg, where	2	See Section 9.2.4: ICCR on
	reg is in [0,1]		page 96
OCACHETAG	0x01800000 + (65536*way) + (16*index) + reg, where:	2048	See Section 9.2.8: OCACHETAG on page 106
	way is in [0,3]		
	index is in [0,255], reg is in [0,1]		
OCACHEDATA	0x01A00000 + (65536*way) + (16*index) + reg	4096	See Section 9.2.9: OCACHEDATA on
	where:		page 111
	way is in [0,3]		
	index is in [0,255], reg is in [0,3]		
OCCR	0x01E00000 + reg, where	2	See Section 9.2.7: OCCR on
	reg is in [0,1]		page 102
UNDEFINED	All other configuration registers	Many	UNDEFINED

Table 29: SH-5 configuration registers

-D-

Event handling

7.1 Implementation-specific properties

7.1.1 Handler address calculation

If the calculation of the handler address (the addition of a base register with an offset) results in an address outside of the implemented effective address space, the behavior is architecturally undefined. The behavior is also implementation undefined in this case.

7.1.2 RTE

RTE results in architecturally-undefined behavior if the values of SPC and SSR are inappropriate:

- Execution of RTE when SPC.ISA is 1 and lowest bit of SPC.ADDR is 1: this setting corresponds to a misaligned SHmedia instruction and is not supported.
- Execution of RTE when SSR.FD is 0 on an implementation without a floating-point unit: this setting corresponds to an attempt to enable the FPU when it is not supported.

In both of these cases, the behavior is also implementation undefined.

Note that there are related cases for the values of PSPC and PSSR. The RTE instruction copies PSPC to SPC and PSSR to SSR without regard to whether the values of PSPC or PSSR are inappropriate. Thus, RTE is architecturally defined when PSPR or PSSR take inappropriate values. However, if a subsequent RTE instruction is executed with inappropriate values in SPC or SSR, then the behavior is both architecturally undefined and implementation undefined as described above.

-D-

SH-5 CPU Core, Volume 4: Implementation

7.1.3 Power-on reset state

Any state which has an architecturally-undefined value after power-on reset is also implementation undefined.

7.2 System architecture properties

The CPU events architecture refers to a number of implementation-specific properties relating to system architecture. There properties are described in the documentation for the SH-5 system architecture. The following sections summarize these properties.

7.2.1 Resets and interrupts

The mechanisms used to deliver reset events to the CPU are properties of the system architecture. The effects of MANUAL and DEBUG resets, as far as the CPU core architecture is concerned, are the same as a power-on reset. The additional effects of these resets are specified by the system architecture.

The mechanisms used to deliver interrupt events to the CPU are properties of the system architecture. The event codes used to qualify debug interrupts and external interrupts are also determined by the system architecture.

7.2.2 Debug features

The debug vector (DBRVEC) and the vectoring mode (DBRMODE) are properties of the system architecture. DBRVEC and DBRMODE are memory-mapped registers. The CPU architecture states that these two registers exist and specifies how the values of these registers affect debug event launch. Other details of these registers, including their addresses and layout, are defined separately by the system architecture.

The mechanisms used to generate watch-point exceptions are properties of the system architecture.

7.2.3 Power management

The CPU architecture provides mechanisms to allow the CPU to be switched between sleep and active modes. SH-5 supports power-down of the CPU, and the power consumed by the CPU is significantly reduced while in sleep mode. SH-5 also supports independent power-down of the FPU, and power consumption is also reduced when the FPU is disabled.

Memory management

8.1 SH-5 MMU organization

SH-5 provides a fully-featured MMU that supports translation. The MMU is organized using a split PTE array, giving separate translations for instruction fetch and data access. The parameters of the MMU are given in *Table 30*.

MMU parameter	Value
Number of implemented bits of effective address space (neff)	32
Number of implemented bits of physical address space (nphys)	32
Number of supported page sizes	4
Number of supported address space identifiers	256
Organization of PTE arrays	Split
Number of entries in data PTE array	64
Number of entries in instruction PTE array	64

Table 30: SH-5 MMU parameters

-D-

8.2 SH-5 PTE contents

SH-5 implements all of the above registers and fields. For SH-5, neff and nphys are 32. Note that the upper 32 bits of all of these registers are reserved on SH-5.

8.2.1 Enable (PTEH.V)

This bit controls whether this PTE is enabled or disabled. It has no implementation-specific properties.

8.2.2 Page size (PTEL.SZ)

The SH-5 page sizes are shown in *Table 31*.

PTEL.SZ	Page size
0x0	4 kbytes
0x1	64 kbytes
0x2	1 Mbyte
0x3	512 Mbytes

Table 31: SH-5 page sizes

8.2.3 Cache behavior (PTEL.CB)

This field is specified as 2 separate bits:

- PTEL.CB0: this corresponds to bit 0 of PTEL.CB
- PTEL.CB1: this corresponds to bit 1 of PTEL.CB

The PTEL.CB field is defined in *Volume 1, Chapter 17: Memory management*. The instruction PTE arrays implement PTEL.CB0 as a reserved bit and PTEL.CB1 as a read-write bit. The data PTE arrays implement both PTEL.CB0 and PTEL.CB1 as read-write bits.

If a RESERVED cache behavior setting is written to PTEL.CB on SH-5, the values written to the reserved protection bits will be discarded and ignored. Note that the PTEL.CB field will then read with a different value to that written. Other implementations of the architecture can have different behavior, and software must not rely on the SH-5 behavior otherwise portability will be impaired. Software should ensure that RESERVED cache behavior settings are not used.

8.2.4 Protection (PTEL.PR)

This field is specified as 4 separate bits:

- PTEL.PRR: this corresponds to bit 0 of PTEL.PR
- PTEL.PRX: this corresponds to bit 1 of PTEL.PR
- PTEL.PRW: this corresponds to bit 2 of PTEL.PR
- PTEL.PRU: this corresponds to bit 3 of PTEL.PR

The instruction PTE arrays implement PTEL.PRR and PTEL.PRW as reserved bits, and PTEL.PRX and PTEL.PRU as read-write bits. The data PTE arrays implement PTEL.PRX as a reserved bit, and PTEL.PRR, PTEL.PRW and PTEL.PRU as read-write bits.

If a RESERVED protection setting is written to PTEL.PR on SH-5, the values written to the reserved protection bits will be discarded and ignored. Note that the PTEL.PR field will then read with a different value to that written. Other implementations of the architecture can have different behavior, and software must not rely on the SH-5 behavior otherwise portability will be impaired. Software should ensure that RESERVED protection settings are not used.

8.2.5 Physical page number (PTEL.PPN)

SH-5 has 20 bits in the PTEL.PPN field. The number of PPN bits required for each of the SH-5 page sizes is shown in *Table 32*.

Page size	Number of bits in PPN
4 kbytes	20
64 kbytes	16
1 Mbyte	12
512 Mbytes	3

Table 32: SH-5 PPN bits

8.2.6 Shared page (PTEH.SH)

This bit is used to control sharing of pages between different ASID values.

8.2.7 Address space identifier (PTEH.ASID)

This field is used to distinguish different effective address spaces. All bits in the 8-bit ASID field are implemented supporting 256 different ASID values. The value of PTEH.ASID is irrelevant for a shared page.

8.2.8 Effective page number (PTEH.EPN)

SH-5 has 20 bits in the PTEH.EPN field. The number of EPN bits required for each of the SH-5 page sizes is shown in *Table 33*.

Page size	Number of bits in EPN
4 kbytes	20
64 kbytes	16
1 Mbyte	12
512 Mbytes	3

Table 33: SH-5 EPN bits

8.3 SH-5 translation

SH-5 provides translation, and all PTE fields are read-write.

If the MMU is enabled and there are multiple mappings present for any effective address and ASID combination, then the behavior is architecturally undefined. In this eventuality the implementation can exhibit catastrophic behavior.

8.4 SH-5 MMU and caches

Volume 1, Chapter 17: Memory management describes constraints that are necessary to avoid cache synonyms. The value of nsynbits for SH-5 is 1. This means that cachable mappings using 4 kbyte page size are constrained by 1 synonym bit. Larger page sizes are not constrained at all.

It is highly recommended that software honors the stricter architecturally-defined nsynmax constraint, rather than the weaker implementation-specific nsynbits constraint. This guarantee allows software to arrange its memory mappings in a way that will be compatible with future implementations.

8.5 SH-5 MMU configuration registers

The MMU configuration register layout and the precise behavior of each field is implementation dependent. This section describes the layout for SH-5.

8.5.1 MMU configuration register map

SH-5 uses a split PTE array organization. PTE configuration registers are held in MMUIR for instruction access and in MMUDR for data access. The structure of the configuration registers within MMUIR and MMUDR are the same.

There are 64 instruction PTEs with 2 implemented registers per PTE in MMUIR. Similarly, there are 64 data PTEs with 2 implemented registers per PTE in MMUDR.

Name	Configuration register number	Registers in this range	Behavior
MMUIR	0x00000000 + (16*index) + reg, where: index is in [0,63], reg is in [0,1]	128	See Section 8.5.2: MMUIR on page 61
MMUDR	0x00800000 + (16*index) + reg, where: index is in [0,63], reg is in [0,1]	128	See Section 8.5.3: MMUDR on page 67

Table 34: SH-5 MMU configuration register map

8.5.2 MMUIR

Each element of the MMUIR array contains two implemented configuration registers as shown in *Table 35*.

Register	Offset	Behavior
MMUIR[n].PTEH	0	See MMUIR[n].PTEH on page 62
MMUIR[n].PTEL	1	See MMUIR[n].PTEL on page 64

Table 35: Contents of MMUIR[n]

SuperH, Inc.

MMUIR[n].PTEH

A PTE is enabled when PTEH.V is 1, and disabled when it is 0. Changes to the PTE must only be made when the PTE is disabled. When PTEH.V is 1:

- PUTCFG must not be used with PTEL.
- A PUTCFG to PTEH is only allowed if it clears PTEH.V (that is, disables the PTE), though it can change other PTEH fields at the same time.

When PTEH.V is 0:

- PUTCFG is allowed to both PTEL and PTEH.
- A PUTCFG to PTEH can set PTEH.V (that is, enable the PTE), and at the same time modify other PTEH fields.

MMUIR[n].PTEH where n is in the range [0,63]		CFG	0x00000000 + (16 * n)		
Field	Bits	Size	Volatile? Synopsis Ty		
V	0	1	No	Enable flag	RW
	Operation		See Section	n 8.2.1: Enable (PTEH.V) on page 58	
	When rea	ıd	Returns current value		
	When wri	tten	Updates current value (see restrictions in <i>MMUIR[n].PTEH</i> on page 62)		
	Power-Or	n reset	Undefined		
SH	1	1	No	Shared page	RW
	Operation	1	See Section	n 8.2.6: Shared page (PTEH.SH) on page	59
	When read		Returns current value		
When written			Updates current value (see restrictions in <i>MMUIR[n]</i> .PTEH on page 62)		
	Power-Or	n reset	Undefined		

Table 36: MMUIR[n].PTEH

MMUIR[n].PTEH where n is in the range [0,63]		CFG	0x0000000 + (16 * n)		
Field	Bits	Size	Volatile? Synopsis		Туре
ASID	[2,9]	8	No	Address space identifier	RW
	Operation	1	See Section page 60	n 8.2.7: Address space identifier (PTEH.AS	ID) on
			The value of	of PTEH.ASID is irrelevant for a shared page	je.
	When rea	d	Returns cu	rrent value	
	When wri	tten	Updates cu on page 62	rrent value (see restrictions in <i>MMUIR[n].F</i>)	PTEH
			The values	[0, 255] distinguish 256 address spaces	
	Power-Or	n reset	Undefined		
RES [10,11] 2 No RESERVED		RESERVED	RES		
	Operation		Software should always write 0 to these bits. Software should not interpret the value read from these bits.		
	When read		Reads as 0 (behavior of other implementations may vary)		
	When written		Writes ignored (behavior of other implementations may vary)		
	Power-Or	n reset	0 (behavior	of other implementations may vary)	
EPN	[12,31]	20	No	Effective page number	RW
	Operation		See Section 8.2.8: Effective page number (PTEH.EPN) on page 60		
	When read		Returns current value		
	When wri	tten	Updates current value (see restrictions in <i>MMUIR[n].PTEH</i> on page 62)		
	Power-Or	n reset	Undefined		

Table 36: MMUIR[n].PTEH

D-

SuperH, Inc.

SH-5 CPU Core, Volume 4: Implementation

MMUIR[n].PTEH where n is in the range [0,63]			CFG	0x00000000 + (16 * n)		
Field	Bits	Size	Volatile?	Synopsis	Туре	
RESEPN	[32,63]	32	No	RESERVED for EPN expansion	RES	
	Operation		These bits may be used on other implementations to expand the address space using a sign-extended convention. Software should always write a sign-extension of bit 31 into these bits. Software should not interpret the value read from these bits. This approach is necessary if software on this implementation is to be executed on another implementation with more implemented address space. Note that these bits read as zero on this implementation.			
	When read		Reads as 0 (behavior of other implementations may vary)			
When written		Writes ignored (behavior of other implementations may vary)				
	Power-On reset		0 (behavior of other implementations may vary)			

Table 36: MMUIR[n].PTEH

MMUIR[n].PTEL

MMUIR[n].PTEL where n is in the range [0,63]			CFG	0x0000001 + (16 * n)		
Field	Bits	Size	Volatile?	Synopsis	Туре	
CB0	0	1	No	Cache behavior bit 0 (reserved)	RES	
	Operation		See Section 8.2.3: Cache behavior (PTEL.CB) on page 58			
	When read		Reads as 0 (behavior of other implementations may vary)			
	When written		Writes ignored (behavior of other implementations may vary)			
	Power-On reset		0 (behavior of other implementations may vary)			

Table 37: MMUIR[n].PTEL
MMUIR[n].PTEL where n is in the range [0,63]		CFG	0x00000001 + (16 * n)			
Field	Bits	Size	Volatile?	Volatile? Synopsis		
CB1	1	1	No	Cache behavior bit 1 (implemented)	RW	
	Operatio	n	See Sectio	n 8.2.3: Cache behavior (PTEL.CB) on pag	<i>je 58</i>	
	When re	ad	Returns cu	rrent value		
	When wr	itten	Updates current value (see restrictions in <i>MMUIR[n].PTEH</i> on page 62)			
	Power-O	n reset	Undefined	Undefined		
SZ	[3,4]	2	No	Page size	RW	
	Operatio	n	See Sectio	n 8.2.2: Page size (PTEL.SZ) on page 58		
	When read When written		Returns current value			
			Updates current value (see restrictions in <i>MMUIR[n].PTEH</i> on page 62)			
	Power-O	n reset	Undefined			
PRR	6	1	No	Protection bit R (reserved)	RES	
	Operatio	n	See Section 8.2.4: Protection (PTEL.PR) on page 59			
	When re	ad	Reads as 0 (behavior of other implementations may vary)			
	When wr	itten	Writes igno	ored (behavior of other implementations ma	ay vary)	
	Power-O	n reset	0 (behavio	r of other implementations may vary)		
PRX	7	1	No	Protection bit X (implemented)	RW	
	Operatio	n	See Sectio	n 8.2.4: Protection (PTEL.PR) on page 59		
	When re	ad	Returns current value			
	When wr	ritten	Updates current value (see restrictions in <i>MMUIR[n]</i> .PTEH on page 62)			
	Power-O	n reset	Undefined			

Table 37: MMUIR[n].PTEL

D-

SuperH, Inc.

MMUIR[n].PTEL where n is in the range [0,63]		CFG	0x0000001 + (16 * n)			
Field	Bits	Size	Volatile?	Volatile? Synopsis		
PRW	8	1	No	Protection bit W (reserved)	RES	
	Operatio	n	See Sectio	n 8.2.4: Protection (PTEL.PR) on page 59		
	When re	ad	Reads as () (behavior of other implementations may v	ary)	
	When wr	ritten	Writes igno	ored (behavior of other implementations ma	ay vary)	
	Power-O	n reset	0 (behavio	r of other implementations may vary)		
PRU	9	1	No	Protection bit U (implemented)	RW	
	Operatio	n	See Sectio	n 8.2.4: Protection (PTEL.PR) on page 59		
	When re	ad	Returns current value			
	When written		Updates current value (see restrictions in <i>MMUIR[n].PTEH</i> on page 62)			
	Power-O	n reset	Undefined			
PPN	[12,31]	20	No	Physical page number	RW	
	Operatio	n	See Section 8.2.5: Physical page number (PTEL.PPN) on page 59			
	When re	ad	Returns current value			
	When wi	ritten	Updates current value (see restrictions in <i>MMUIR[n].PTEH</i> on page 62)			
	Power-O	n reset	Undefined			
RES	2, 5, [10,11]	4	No	RESERVED	RES	
Operation		n	Software should always write 0 to these bits. Software should not interpret the value read from these bits.			
	When re	ad	Reads as 0 (behavior of other implementations may vary)			
	When wr	ritten	Writes igno	ored (behavior of other implementations ma	ıy vary)	
	Power-O	n reset	0 (behavio	r of other implementations may vary)		

Table 37: MMUIR[n].PTEL

MMUIR[n].PTEL where n is in the range [0,63]		CFG	CFG 0x00000001 + (16 * n)			
Field	Bits	Size	Volatile?	Synopsis	Туре	
RESPPN	[32,63]	32	No	RESERVED for PPN expansion	RES	
	Operation		These bits may be used on other implementations to expand the address space using a sign-extended convention. Software should always write a sign-extension of bit 31 into these bits. Software should not interpret the value read from these bits. This approach is necessary if software on this implementation is to be executed on another implementation with more implemented address space. Note that these bits read as zero on this implementation.			
	When re	ad	Reads as (0 (behavior of other implementations may vary)		
	When wi	ritten	Writes igno	ored (behavior of other implementations ma	ay vary)	
	Power-O	n reset	0 (behavio	r of other implementations may vary)		

Table 37: MMUIR[n].PTEL

8.5.3 MMUDR

Each element of the MMUDR array contains two implemented configuration registers as shown in *Table 38*.

Register	Offset	Behavior	
MMUDR[n].PTEH	0	See MMUDR[n].PTEH on page 68	
MMUDR[n].PTEL	1	See MMUDR[n].PTEL on page 71	

Table 38: Contents of MMUDR[n]

 D^{-}

MMUDR[n].PTEH

A PTE is enabled when PTEH.V is 1, and disabled when it is 0. Changes to the PTE must only be made when the PTE is disabled. When PTEH.V is 1:

- PUTCFG must not be used with PTEL.
- A PUTCFG to PTEH is only allowed if it clears PTEH.V (that is, disables the PTE), though it can change other PTEH fields at the same time.

When PTEH.V is 0:

- PUTCFG is allowed to both PTEL and PTEH.
- A PUTCFG to PTEH can set PTEH.V (that is, enable the PTE), and at the same time modify other PTEH fields.

MMUDR[n].PTEH where n is in the range [0,63]		CFG	0x00800000 + (16 * n)				
Field	Bits	Size	Volatile? Synopsis		Туре		
V	0	1	No	Enable flag	RW		
	Operation		See Section 8.2.1: Enable (PTEH.V) on page 58				
	When read		Returns current value				
	When written		Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)				
	Power-Or	n reset	Undefined				
SH	1	1	No	Shared page	RW		
	Operation	ì	See Section 8.2.6: Shared page (PTEH.SH) on page 59				
	When rea	ıd	Returns current value				
When written		Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)					
	Power-Or	n reset	Undefined				

Table 39: MMUDR[n].PTEH

MMUDR[n].PTEH where n is in the range [0,63]		CFG	0x00800000 + (16 * n)			
Field	Bits	Size	Volatile?	Synopsis	Туре	
ASID	[2,9]	8	No	Address space identifier	RW	
	Operatior	1	See Section 8.2.7: Address space identifier (PTEH.ASID) on page 60			
			The value of	of PTEH.ASID is irrelevant for a shared pa	ge.	
	When rea	ld	Returns cu	rrent value		
	When written		Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)			
			The values [0, 255] distinguish 256 address spaces			
	Power-Or	n reset	Undefined			
RES	[10,11]	2	No	RESERVED	RES	
	Operation	1	Software should always write 0 to these bits. Software should not interpret the value read from these bits.			
	When rea	ıd	Reads as 0 (behavior of other implementations may vary)			
	When wri	tten	Writes ignored (behavior of other implementations may vary)			
	Power-Or	n reset	0 (behavior of other implementations may vary)			
EPN	[12,31]	20	No	Effective page number	RW	
	Operation	1	See Section 8.2.8: Effective page number (PTEH.EPN) on page 60			
	When rea	When read		Returns current value		
	When wri	tten	Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)			
	Power-Or	n reset	Undefined			

Table 39: MMUDR[n].PTEH

-D-

SuperH, Inc. SH-5 CPU Core

MMUDR[n].PTEH where n is in the range [0,63]		CFG	6 0x00800000 + (16 * n)				
Field	Bits	Size	Volatile? Synopsis		Туре		
RESEPN	[32,63]	32	No	RESERVED for EPN expansion	RES		
	Operation		These bits may be used on other implementations to expand the address space using a sign-extended convention. Software should always write a sign-extension of bit 31 into these bits. Software should not interpret the value read from these bits. This approach is necessary if software on this implementation is to be executed on another implementation with more implemented address space. Note that these bits read as zero on this implementation.				
	When rea	ld	Reads as 0 (behavior of other implementations may vary)				
	When written		Writes ignored (behavior of other implementations may vary)				
	Power-Or	n reset	0 (behavior	of other implementations may vary)			

Table 39: MMUDR[n].PTEH

70

MMUDR[n].PTEL

MMUDR[n].PTEL where n is in the range [0,63]		CFG	0x00800001 + (16 * n)				
Field	Bits	Size	Volatile?	Synopsis	Туре		
CB0	0	1	No	Cache behavior bit 0 (implemented)	RW		
	Operatio	n	See Sectio	on 8.2.3: Cache behavior (PTEL.CB) on pag	je 58		
	When re	ad	Returns cu	irrent value			
	When written		Updates co on page 68	Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)			
	Power-O reset	'n	Undefined				
CB1	1	1	No	Cache behavior bit 1 (implemented)	RW		
	Operatio	n	See Section 8.2.3: Cache behavior (PTEL.CB) on page 58				
	When read		Returns current value				
	When w	ritten	Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)				
	Power-O reset	'n	Undefined				
SZ	[3,4]	2	No	Page size	RW		
	Operatio	n	See Section 8.2.2: Page size (PTEL.SZ) on page 58				
	When re	ad	Returns current value				
	When written		Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)				
	Power-O reset	'n	Undefined				

Table 40: MMUDR[n].PTEL

D-

MMUDR[n].PTEL where n is in the range [0,63]		CFG	0x00800001 + (16 * n)			
Field	Bits	Size	Volatile?	Volatile? Synopsis		
PRR	6	1	No	Protection bit R (implemented)	RW	
	Operatio	'n	See Sectio	on 8.2.4: Protection (PTEL.PR) on page 59		
	When re	ad	Returns cu	irrent value		
	When written		Updates co on page 68	Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)		
	Power-O reset	n	Undefined			
PRX	7	1	No	Protection bit X (reserved)	RES	
	Operatio	'n	See Section 8.2.4: Protection (PTEL.PR) on page 59			
	When re	ad	Reads as 0 (behavior of other implementations may vary)			
	When wi	ritten	Writes ignored (behavior of other implementations may vary)			
	Power-O reset	n	0 (behavio	r of other implementations may vary)		
PRW	8	1	No	Protection bit W (implemented)	RW	
	Operatio	n	See Section 8.2.4: Protection (PTEL.PR) on page 59			
When read		ad	Returns current value			
	When written		Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)			
	Power-O reset	n	Undefined			

Table 40: MMUDR[n].PTEL

MMUDR[n].PTEL where n is in the range [0,63]		CFG	0x00800001 + (16 * n)			
Field	Bits	Size	Volatile?	Synopsis	Туре	
PRU	9	1	No	Protection bit U (implemented)	RW	
	Operatio	'n	See Sectio	on 8.2.4: Protection (PTEL.PR) on page 59		
	When re	ad	Returns cu	irrent value		
	When written		Updates co on page 68	Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)		
	Power-O reset	n	Undefined			
PPN	[12,31]	20	No	Physical page number	RW	
	Operation When read When written		See Section 8.2.5: Physical page number (PTEL.PPN) on page 59			
			Returns current value			
			Updates current value (see restrictions in <i>MMUDR[n].PTEH</i> on page 68)			
	Power-O reset	'n	Undefined			
RES	2, 5, [10,11]	4	No	RESERVED	RES	
	Operatio	Operation		Software should always write 0 to these bits. Software should not interpret the value read from these bits.		
	When re	ad	Reads as 0 (behavior of other implementations may vary)			
	When w	ritten	Writes ignored (behavior of other implementations may vary)			
	Power-O reset)n	0 (behavio	ehavior of other implementations may vary)		

Table 40: MMUDR[n].PTEL

MMUDR[n].PTEL where n is in the range [0,63]		CFG 0x00800001 + (16 * n)				
Field	Bits	Size	Volatile? Synopsis		Туре	
RESPPN	[32,63]	32	No	RESERVED for PPN expansion	RES	
	Operation		These bits may be used on other implementations to expand the address space using a sign-extended convention. Software should always write a sign-extension of bit 31 into these bits. Software should not interpret the value read from these bits. This approach is necessary if software on this implementation is to be executed on another implementation with more implemented address space. Note that these bits read as zero on this implementation.			
	When re	When read Read		Reads as 0 (behavior of other implementations may vary)		
	When w	ritten	Writes ignored (behavior of other implementations may		y vary)	
	Power-O reset	'n	0 (behavio	r of other implementations may vary)		

Table 40: MMUDR[n].PTEL

8.6 MMU code sequences

This section describes code sequences that manipulate the MMU. These sequences must be executed in SHmedia and in privileged mode. Interrupts should typically be prevented across these critical code sequences.

8.6.1 Enabling and disabling the MMU

It is not possible to enable or disable the MMU using the PUTCON instruction. This is because the MMU bit of SR is read-only for PUTCON accesses. It is possible to disable the MMU during event launch, specifically the launches for reset and debug events. However, it is not possible to enable the MMU during event launch.

Otherwise, only the RTE instruction can enable or disable the MMU since it transfers the contents of SSR into the SR when it is executed. By providing suitable SPC and SSR values, the RTE instruction can atomically switch the PC and the SR to new values. This allows the MMU to be enabled or disabled at the same time as changing the PC.

Instruction fetching is automatically synchronized across an RTE instruction. The RTE instruction is fetched according to the original value of SR. Execution of the RTE instruction atomically switches PC to SPC and SR to SSR. The next executed instruction is at the new PC and is fetched according to the new SR. It is not necessary to use a SYNCI instruction. There is no requirement to use an identity translation when changing the MMU enable/disable status.

Data accesses are not automatically synchronized across an RTE instruction. When the MMU is enabled or disabled, it is necessary to use a SYNCO before the RTE in order to synchronize data accesses. This ensures that all previous data accesses are completed, including flushing of any access buffering, before the MMU status is changed. Data synchronization is important because changing the MMU status can dramatically change the cache behavior, and it is necessary to ensure that this occurs at a well-defined point in time relative to memory accesses.

The code sequences use the following conventions:

```
; - SR denotes the SR control register
; - SSR denotes the SSR control register
; - SPC denotes the SPC control register
; - MMU_BIT is the bit number of the MMU field within SR
; - R0, R1 and TR0 can be used as a temporaries
```

Using an arbitrary translation

An example recommended code sequence for enabling the MMU using an arbitrary translation is given below. The code sequence uses RTE to jump to a target instruction at the point when the MMU is enabled.

R4 specifies the address of the target instruction with the least significant bit of R4 indicating the ISA mode of that target instruction. The PTE configuration should include an executable mapping for the target address.

```
; Pre-conditions:
; - the MMU is currently disabled
; - the PTE configuration is valid
; - a PTE gives the target instruction an executable mapping
; - the cache has been appropriately configured
GETCON SR, R0 ; get current SR, must have suitable ASID value
MOVI 1, R1
SHLLI R1, MMU_BIT, R1
OR R0, R1, R0
PUTCON R0, SSR; set the target SR (with the MMU enabled)
PUTCON R4, SPC ; set the target PC
```


SH-5 CPU Core, Volume 4: Implementation

```
SYNCO ; synchronize data accesses
RTE
; Post-conditions:
; - execution continues at the address indicated by R4
; - execution proceeds with the MMU enabled
```

The MMU can be disabled using a similar sequence. In this case an ANDC instruction is used, instead of the OR, so that the MMU bit of SR is cleared rather than set. Also, the target instruction is specified in R4, and it refers to instructions that are executed with the MMU disabled (and no translation is required).

-5

Using an identity translation

It is sometimes convenient to enable or disable the MMU within the confines of an identity translation. This gives a straightforward code sequence. This can be achieved by ensuring that an identity executable mapping (that is, EPN matches PPN) is provided for the entire set of instructions in the code sequence. This requires an appropriate setup of the PTE configuration registers.

An example recommended code sequence for enabling the MMU using an identity translation is:

```
; Pre-conditions:
; - the MMU is currently disabled
; - the PTE configuration is valid
; - a PTE gives these instructions an identity executable mapping
; - the cache has been appropriately configured
GETCON SR, R0 ; get current SR
MOVI 1, R1
SHLLI R1, MMU BIT, R1
OR R0, R1, R0
PUTCON R0, SSR; set the target SR (with the MMU enabled)
PTA label, TR0 ; calculate target PC
GETTR TRO, RO
PUTCON R0, SPC ; set the target PC
SYNCO ; synchronize data accesses
RTE
label:
; Post-conditions:
; - execution continues at the address indicated by the label
; - execution proceeds with the MMU enabled
```

The MMU can be disabled using a similar sequence. In this case an ANDC instruction is used, instead of the OR, so that the MMU bit of SR is cleared rather than set.

8.6.2 Enabling and disabling a PTE

A PTE can be enabled and disabled using a simple sequence of PUTCFG instructions. When a PTE is enabled or disabled, software should execute a SYNCI or RTE instruction before any access to that PTE. This ensures that translation look-up, exception detection and memory access are performed correctly with respect to the modified PTE state.

An example recommended code sequence for enabling a PTE is:

```
; Pre-conditions:
; - R0 contains configuration space index of the PTE
; - R1 contains new PTEH value (PTEH.V is set)
; - R2 contains new PTEL value
; - OFFSET_PTEH is offset of PTEH within the PTE
; - OFFSET_PTEL is offset of PTEL within the PTE
PUTCFG R0, OFFSET_PTEH, R63; disable PTE before modification
PUTCFG R0, OFFSET_PTEH, R2 ; set new PTEL value
PUTCFG R0, OFFSET_PTEH, R1 ; set new PTEH value, enables the PTE
; Post-conditions:
; - Ensure SYNCI or RTE is executed before any access through
; - the enabled PTE. This ensures that the access is translated
; - correctly using the new PTE.
```

The value of a PTE field must not be modified while the PTE is enabled. The PTE should be disabled before modifying its contents. However, the contents of a PTE can be safely read at any time. A PTE can be disabled by:

```
; Pre-conditions:
; - R0 contains configuration space index of the PTE
; - OFFSET_PTEH is offset of PTEH within the PTE
```

PUTCFG R0, OFFSET_PTEH, R63

8.7 Future MMU implementations

Many properties of the MMU are implementation-specific and can be varied in future implementations of the architecture. The MMU implementation options are described in *Volume 1, Chapter 17: Memory management*, and the SH-5 specific properties are described in this chapter. It is intended that future MMU implementations will be based on the MMU configuration register map and configuration register definitions used by the SH-5 implementation.

Note that the information in this section does not require future implementations to use these options, nor does it constrain future implementations to just these options.

8.7.1 MMU architecture parameters

The SH-5 MMU configuration register map defined in *Section 6.3: Configuration registers on page 51* and in *Section 8.5: SH-5 MMU configuration registers on page 61* supports the different PTE array organizations described by the architecture in *Volume 1, Chapter 17: Memory management*:

- A unified organization consists of a single array of page table entries. Each entry controls the behavior of both data and instruction accesses to the described page. The number of entries in the array is implementation defined and is represented here by u. The configuration registers in the unified array are called:
 - MMUDR[n].PTEH and MMUDR[n].PTEL

where n varies in the range [0, u).

- A split organization consists of two arrays of page table entries. An entry in the data register array controls the behavior of data accesses to the described page, whereas an entry in the instruction register array controls the behavior of instruction accesses to the described page. The number of entries in these arrays is implementation defined and is represented here by d for the data register array and i for the instruction register array. The configuration registers in the data array are called:
 - MMUDR[n].PTEH and MMUDR[n].PTEL

where n varies in the range [0, d). The configuration registers in the instruction array are called:

- MMUIR[n].PTEH and MMUIR[n].PTEL

where n varies in the range [0, i).

All entries in a PTE array are equivalent. The PTE arrays are fully associative.

SH-5 CPU Core, Volume 4: Implementation

8.7.2 MMU implementation parameters

The layout of the SH-5 MMU configuration register map is:

- MMUIR: 0x00000000 + (16*index) + reg
- MMUDR: 0x00800000 + (16*index) + reg

The supported 'index' range in the configuration register map is [0, 4095] using the partitioning described in *Section 6.3: Configuration registers on page 51.* This allows each PTE array to be scaled from 0 entries to 4096 entries in future implementations. There is no requirement for the number of PTEs to be an integral power-of-two. The supported 'reg' range in the configuration register map allows up to 16 registers per PTE.

The MMU configuration register map limits the number of indices to a maximum value which is less than the architectural parameterization. However, there is significant room for future expansion, and this limit is unlikely to be a problem for future implementations.

Additionally, it is possible that future implementations can make extensions to the MMU configuration registers:

- More configuration registers could be provided for each PTE (i.e. in addition to PTEH and PTEL).
- Reserved fields within PTEH and PTEL could be given defined semantics on future implementations. In particular:
 - Extension of EPN (using RESEPN) to support more effective address space.
 - Extension of PPN (using RESPPN) to support more physical address space.
 - Extension of ASID to increase the number of supported address spaces.
 - Extension of CB to increase the number of supported cache behaviors.
 - Extension of SZ to increase the number of supported page sizes.
 - Extension of PR to increase the number of supported protection attributes.

Software should be carefully written with consideration given to potential future changes in the MMU implementation. Ideally, SH-5 software should be parameterized so that it can be readily updated to support future implementations.

Caches

9.1 SH-5 cache implementation

This section describes the implementation-specific properties of the SH-5 cache. This information should not be exploited where portability of software to other implementations is desired.

9.1.1 SH-5 cache organization

SH-5 has a split cache organization. There are separate caches for operand data and for instructions.

The SH-5 caches are indexed using an effective address and tagged by an effective address¹. Additionally, the operand cache contains physical address tags. These allow the implementation to resolve operand cache aliases arising due to the use of effective address tagging.

The cache implementation allows most cache hits to be completed in the cache without needing to consult the PTE arrays, giving performance and power advantages relative to an implementation based on physical addresses. This approach requires that the implementation keeps some of the PTE information in cache blocks.

The MMU and cache architecture described in *Volume 1, Chapter 17: Memory management* and *Volume 1, Chapter 18: Caches* fully supports this arrangement. Note that software must ensure cache coherency when the contents of page table entries are changed. This implication is already accommodated in the architecture.

-D-

SH-5 CPU Core, Volume 4: Implementation

^{1.} This arrangement is called a virtual cache in some other architectures.

The internal state of the SH-5 caches is visible through configuration registers, and is described in *Section 9.2: SH-5 cache configuration registers on page 93*.

Property	Operand cache	Instruction cache
Cache block size, nbytes	32 bytes	32 bytes
Set size, nways (the associativity)	4 ways	4 ways
Number of sets, nsets	256 sets	256 sets
Cache size	32 kbytes	32 kbytes
Cache is indexed by:	Effective address	Effective address
Cache is tagged by:	Effective address (for effective look-up)	Effective address
	Physical address (for physical look-up)	
	(see <i>Section 9.1.6</i>)	
Offset bits, log ₂ (nbytes)	5	5
Index bits, log ₂ (nsets)	8	8
Implemented tag bits	19 bits of effective address tag 20 bits of physical address tag	19 bits of effective address tag No physical address tag
Cache look-up (see <i>Section 9.1.6</i>)	Usually by effective address, sometimes by physical address	Always by effective address

The properties of the SH-5 caches are summarized in *Table 41*.

Table 41: SH-5 cache parameters

In a cache which uses the effective address for both indexing and tagging, the number of effective address tag bits is given by the number of bits of effective address less the number of offset and index bits. For SH-5, these numbers are 32, 5 and 8 respectively giving 19 bits for the effective address tag.

The operand cache also contains a physical address tag. The size of this tag is given by the number of bits of physical address less \log_2 of the smallest page size. For SH-5, these numbers are 32 and 12 giving 20 bits for the physical address tag present in the operand cache.

9.1.2 SH-5 cache synonyms and aliases

The constraints placed on software to avoid cache synonyms are described in *Section* 8.4: *SH-5 MMU and caches on page 60* and *Volume 1, Chapter 17: Memory management.*

SH-5 resolves cache aliases in its operand cache as required by the architecture.

SH-5 does not resolve cache aliases in its instruction cache. Since the instruction cache is 4-way associative, there can be up to 4 cache aliases of a particular physical address in the instruction cache. Software must take special care when invalidating instructions. This implication is already accommodated in the architecture as described in *Volume 1, Chapter 18: Caches*.

9.1.3 SH-5 cache replacement

Both SH-5 caches are 4-way associative. The replacement algorithm uses 6 bits of state per set to implement a least-recently-used policy (LRU). The LRU state orders the valid blocks in that set in an order determined by their last usage. This state is equivalent to an ordered list, with the head element representing the least-recently-used valid block and the tail element representing the most-recently used valid block. Invalid blocks do not appear on this list.

Additionally, SH-5 provides a cache locking mechanism. Cache locking allows software to arrange for specified memory blocks to be locked into the cache. The granularity of locking is the way. Each way in the cache may be independently locked or unlocked. Once a way is locked, that way is not a candidate for replacement, and thus normal cache operation will not evict a cache block in a locked way.

For each cachable access, the replacement policy behaves as follows:

- If the access hits the cache, then this cache block is marked as the most-recently-used by moving it to the tail of the order list.
- Otherwise, if the access misses the cache and the set contains blocks that are both invalid and unlocked, then one of those blocks is selected. If there are multiple such blocks, then this implementation selects the block with the lowest way number. The selected block is marked as the most-recently-used by moving it to the tail of the order list.
- Otherwise, if the access misses the cache and the set contains blocks that are both valid and unlocked, then one of those blocks is selected. This implementation selects the block that is least-recently-used; this is the one

-D-

83

SH-5 CPU Core, Volume 4: Implementation

nearest the head of the order list. The selected block is marked as the most-recently-used by moving it to the end of the order list.

• Otherwise, the access has missed the cache and all blocks are locked (they may be valid or invalid). In this case, there are no candidates for replacement and the access is implemented on memory with no caching.

For replacement purposes, all cache instructions count as accesses and cause the least-recently-used information to be updated as required by the above algorithm.

The SH-5 implementation uses a 6-bit field (called LRU) to record the status of the replacement policy. There is an LRU field associated with each cache set. The interpretation of the 6 LRU bits is described in *Table 42*.

LRU bit number	Meaning when clear	Meaning when set
0	Way 0 was accessed less recently than way 1	Way 0 was accessed more recently than way 1
1	Way 0 was accessed less recently than way 2	Way 0 was accessed more recently than way 2
2	Way 0 was accessed less recently than way 3	Way 0 was accessed more recently than way 3
3	Way 1 was accessed less recently than way 2	Way 1 was accessed more recently than way 2
4	Way 1 was accessed less recently than way 3	Way 1 was accessed more recently than way 3
5	Way 2 was accessed less recently than way 3	Way 2 was accessed more recently than way 3

Table 42: SH-5 LRU field

There are 64 possible combinations of the 6 LRU bits. Of these combinations, 24 correspond to valid cache states while the remaining 40 lead to contradictions and are invalid. The valid combinations are given in *Table 43* along with the corresponding way order, shown with the most recently used way on the left through to the least recently used way on the right. For example, the first row shows that the combination with all LRU bits set to zero indicates that way 3 was the most recently accessed, followed by way 2, way 1 and finally way 0.

After POWERON reset the internal state of the cache, including LRU, is undefined. It is necessary to invalidate the caches (see *Section 9.3.1: Cache initialization sequence on page 112*) so that all cache blocks are invalid before the caches are

enabled. Note that the replacement algorithm selects invalid blocks in preference to valid blocks, and that the selection order for invalid blocks is independent of the LRU state. These properties ensure the cache replacement order is deterministic after cache invalidation.

LRU bit 5	LRU bit 4	LRU bit 3	LRU bit 2	LRU bit 1	LRU bit 0	Most recently Least recentl accessed accessed		ecently ssed	
0	0	0	0	0	0	3	2	1	0
0	0	0	0	0	1	3	2	0	1
0	0	0	0	1	1	3	0	2	1
0	0	0	1	1	1	0	3	2	1
0	0	1	0	0	0	3	1	2	0
0	0	1	0	1	0	3	1	0	2
0	0	1	0	1	1	3	0	1	2
0	0	1	1	1	1	0	3	1	2
0	1	1	0	0	0	1	3	2	0
0	1	1	0	1	0	1	3	0	2
0	1	1	1	1	0	1	0	3	2
0	1	1	1	1	1	0	1	3	2
1	0	0	0	0	0	2	3	1	0
1	0	0	0	0	1	2	3	0	1
1	0	0	1	0	1	2	0	3	1
1	0	0	1	1	1	0	2	3	1
1	1	0	0	0	0	2	1	3	0
1	1	0	1	0	0	2	1	0	3
1	1	0	1	0	1	2	0	1	3
1	1	0	1	1	1	0	2	1	3
1	1	1	0	0	0	1	2	3	0

Table 43: Valid LRU combinations

	Т.	
_	·	_
	Ľ	

SH-5 CPU Core, Volume 4: Implementation

LRU bit 5	LRU bit 4	LRU bit 3	LRU bit 2	LRU bit 1	LRU bit 0	Most re acce	ecently ssed	Least re acces	ecently ssed
1	1	1	1	0	0	1	2	0	3
1	1	1	1	1	0	1	0	2	3
1	1	1	1	1	1	0	1	2	3

Table 43: Valid LRU combinations

It is possible to over-ride the above replacement policy to allow a prefetch into a specified way. This feature is provided to allow locked ways to be initialized, and is described in *Section 9.1.4: SH-5 cache locking mechanism on page 86*.

9.1.4 SH-5 cache locking mechanism

Cache locking is configured through cache configuration registers, and can therefore only be managed in privileged mode. The current cache locking configuration affects all threads, both user and privileged, regardless of address space identifier.

A typical usage of cache locking is to partition the cache state between cache operation and RAM operation. One or more cache ways would be locked and loaded with a set of memory locations. Those memory locations will behave as low-latency RAM, while any unlocked cache ways will continue to behave as cache.

The only effect of the cache locking mechanism is to influence the cache replacement algorithm. Other cache properties and behaviors are unaffected by the use of cache locking. When a cache block is locked into the cache, that cache block can still be modified by reads, writes, cache instructions and the normal operation of the cache. The only property that cache locking provides is to prevent a locked cache block from being chosen for replacement.

The SH-5 cache replacement algorithm, including the effects of cache locking, are described in *Section 9.1.3: SH-5 cache replacement on page 83*. Once a way is locked, that way is not a candidate for replacement, and thus normal cache operation will not evict a cache block in a locked way. This rule is applied regardless of whether the cache block is valid or invalid. Thus, an invalid cache block in a locked way is not a candidate for replacement.

It is possible to lock any or all ways in the cache. If some ways are unlocked, normal cache operation continues in all those unlocked ways. If all ways are locked, then cache misses cannot cause cache blocks to be allocated in the cache and are achieved directly on memory without any caching.

86

Cache coherency instructions operate directly on cache blocks regardless of whether those cache blocks are locked. The protection mechanisms provided by the MMU can be used, where required, to protect locked cache blocks against inappropriate access. Note that if a thread has executability for an instruction cache block, then the thread can invalidate that block (regardless of locking). Similarly, if a thread has writability for an operand cache block, the thread can invalidate that block (regardless of locking).

The cache provides a mechanism to over-ride the normal replacement algorithm so that memory blocks can be loaded into a specified way using prefetches. This uses the cache configuration registers defined in *I CCR0 on page 96* and *ICCR1 on page 97*. The mechanism operates as follows:

- When OCCR1.OW_LE is set to 1 and a data prefetch misses the cache and causes a cache block to be allocated, then the way specified by OW_LOAD is chosen. The choice made by the normal replacement algorithm and the lock flags for each way are ignored.
- When ICCR1.IW_LE is set to 1 and an instruction prefetch misses the cache and causes a cache block to be allocated, then the way specified by IW_LOAD is chosen. The choice made by the normal replacement algorithm and the lock flags for each way are ignored.

A suitable sequence for locking a way with certain pre-loaded data is described in *Section 9.3.3: Cache locking sequence on page 114.*

9.1.5 SH-5 cache instructions

This section describes the implementation-specific properties of the cache instructions. All cache instructions operate at cache block granularity. The cache block size is 32 bytes for SH-5.

Allocate

The SH-5 implementation of the ALLOCO instruction has the following behavior.

If the ALLOCO instruction raises an exception, there is no effect on the operand cache.

If the ALLOCO instruction does not raise an exception, then the behavior depends on whether the MMU is enabled and, if so, on the page type:

- 1 If the MMU is disabled, there is no effect on the operand cache.
- 2 If the MMU is enabled, and the resultant cache behavior of the access is device, uncached or write-through, then there is no effect on the operand cache.

SH-5 CPU Core, Volume 4: Implementation

- 3 If the MMU is enabled, and the resultant cache behavior of the access is write-back, then the behavior depends on whether there is cache hit or cache miss:
- If the access hits the operand cache, there is no effect on the operand cache.
- If the access misses the operand cache and no block can be allocated (using the LRU replacement algorithm described in *Section 9.1.3: SH-5 cache replacement on page 83*), there is no effect on the operand cache.
- If the access misses the operand cache and a block can be allocated (using the LRU replacement algorithm described in *Section 9.1.3: SH-5 cache replacement on page 83*), then that block is allocated using the following operations:
 - If the cache block is already dirty, it is written back to memory.
 - The cache block is allocated to the memory block specified by the ALLOCO access without fetch of that block from memory.
 - The allocated cache block is filled with zeroes. This ensures that ALLOCO does not reveal any data which could break the privilege and protection models. Software must not rely on this zero-fill behavior since it is highly implementation-dependent and since the conditions under which a zero-fill takes place are very specific.
 - The allocated block is marked as dirty.

The determination of the resultant cache behavior is described in *Volume 1, Chapter 18: Caches*, and depends on the global cache behavior as well as the page-level cache behavior.

Instruction cache coherency

SH-5 uses an effective-indexed, effective-tagged instruction cache with no physical tags. This has several implications for ICBI:

- The SH-5 implementation of ICBI performs instruction invalidation on effective memory only. There can be up to 4 cache aliases of a particular physical address in the instruction cache. In addition, due to cache synonyms the physical address can be present in either or both of 2 cache sets. This gives a total of 8 different instruction cache blocks that could contain the physical address. Note that software can (optionally) avoid instruction cache synonyms by placing constraints on instruction translations.
- The SH-5 implementation of ICBI never raises an ITLBMISS exception. This is because if there is an entry in the instruction cache that can be invalidated by this ICBI then the protection check can be performed using the protection

information held in the cache. There is no need to perform a translation look-up, and hence there is no need to raise ITLBMISS.

• The SH-5 implementation of ICBI has no effect on the instruction cache when the MMU is disabled. This is because the architecture requires that when the MMU is disabled, the effective address calculated by ICBI is identity translated into a physical address. However, there is no mechanism for this physical address to be used to look-up into the instruction cache since there are no physical tags.

These properties of ICBI are allowed by the architecture.

ICBI disregards cache locking information. An ICBI instruction can invalidate a locked cache block.

Operand cache coherency

These instructions disregard cache locking information. OCBI, OCBWB and OCBP instructions can invalidate, write-back and purge locked cache blocks, respectively.

Prefetch

Prefetch refers specifically to the instructions that perform software-directed prefetching. These are:

- SHmedia PREFI instruction.
- SHmedia aligned load instructions where the destination register is R₆₃.
- SHcompact PREF instruction.

The term 'prefetch' excludes other speculative instruction or data access provided by an implementation that is not initiated by the instructions above.

SH-5 provides cache locking and uses prefetches to preload information into locked parts of the cache. For this implementation prefetches are more than just a hint to the implementation. Providing that the requested prefetch is architecturally possible, the implementation guarantees to prefetch. This property ensures that the cache locking mechanism can be used deterministically.

Note that the generic architecture does not guarantee this prefetch property. Another implementation can choose to treat prefetches as just a hint, and disregard prefetches in some circumstances.

9.1.6 SH-5 cache access

The architectural properties of cache access are described in *Volume 1, Chapter 18: Caches.* In summary, cache access consists of the following stages:

- 1 The address of the access is mapped to a set in the cache through an indexing procedure. SH-5 has separate caches and the instruction cache is used for instruction fetches, and the operand cache for data accesses. For SH-5, indexing uses bits 5 to 12 (inclusive) of the address to select one of the 256 sets in the appropriate cache. Additionally for SH-5, indexing into the operand or instruction cache always uses index bits taken from the effective address and never from the physical address.
- 2 Each cache block in the set is checked to see if its tag matches the tag of the access. This process is called cache look-up. The cache look-up and replacement algorithm is designed so that there can be at most one match in the set. For SH-5, there are 4 cache blocks in each set since the caches are 4-way associative.
- 3 There are two possible outcomes of the tag comparison:
- 3.1 If there is no match then this is a cache miss.
- 3.2 If there is a match, then this is a cache hit.

This section describes the look-up policies for SH-5 in more detail. These implementation choices are summarized in *Table 44* and *Table 45*.

The operand cache supports both effective and physical address tags. Look-up is normally achieved by effective address. This requires the hardware to compare the relevant bits of the effective address with effective address tags from the relevant set in the operand cache. Look-up by physical address requires the hardware to translate the effective address into a physical address using the TLB, before performing a comparison between the relevant bits of the physical address and the physical address tags from the relevant set in the operand cache.

The physical address is used whenever a look-up by effective address misses in order to resolve potential cache aliases. For SWAP.Q, OCBI, OCBP and OCBWB, however, SH-5 does not attempt an effective address look-up and immediately performs a look-up by physical address. If the look-up by physical address misses the cache, then the physical address is not present in the cache and needs to be obtained from memory.

The rationale for the choices taken by this implementation for the operand cache is as follows:

-75

- For this implementation, look-up by effective address is more efficient than look-up by physical address. This results in a performance advantage and power reduction when look-up by effective address is successful.
- Load, store, data prefetch and cache allocate instructions are important instructions for performance and relatively common. Additionally, in the case of a cache hit for the effective address look-up and an appropriate choice of cache behavior, it is possible for the memory access of these instructions to be completed in the cache without an access to external memory. In this case the access can be completed without any use of the physical address.
- The SWAP.Q instruction always causes an external memory access and the physical address is always required. There is no advantage in performing an effective address look-up first. In the case where the data accessed by the SWAP.Q instruction is in the operand cache, the SWAP.Q will automatically invalidate or purge that cache line as required to maintain cache coherency. The actions are described in *Volume 1, Chapter 6: SHmedia memory instructions.* However, note that correct operation of the cache always requires that cache paradoxes are avoided, see *Volume 1, Chapter 18: Caches.*
- The implementation chooses to handle OCBI, OCBP and OCBWB instructions by performing just a physical address look-up. In many cases it is necessary to refer to the physical address anyway, either to resolve potential cache aliases or to cause a write-back to external memory using the physical address (for OCBP and OCBWB only, depending on cache behavior).

In principal, for the case of a cache hit for an effective look-up where no write-back to external memory is required, it is possible for the access to be completed without reference to the physical address. However, the implementation chooses not to take this approach and implements all 3 of these instructions in a regular way using only a look-up by physical address.

The instruction cache only supports an effective address tag, and all instruction cache look-ups are achieved using the effective address. The rationale for this choice is to eliminate physical tags in the instruction cache and to eliminate the associated look-up mechanism. This choice is possible because the architecture allows instruction cache aliases since these do not cause incorrect program behavior.

Apart from potential performance effects, the distinction between an effective and a physical address look-up is otherwise almost irrelevant to software. For the operand cache the hardware transparently uses look-up by physical address to resolve any problems resulting from cache aliases. However, software can distinguish between effective and physical address look-up due to TLB misses. A cache hit using an effective address look-up never causes a TLB miss, since the access can be completed in the cache without consulting the MMU. However, a cache hit using a

SH-5 CPU Core, Volume 4: Implementation

physical address look-up requires a TLB entry, and will cause a TLB miss if a translation is not present.

For both caches, the LRU bits will be updated by all accesses that hit in the cache or cause a block to be allocated or refilled into the cache.

Access type	Cache index by effective address or physical address	Cache look-up by effective address or physical address?	LRU updated? (on condition)
Any load instruction (including SHmedia data prefetches)	Effective address	Effective address (then physical address if effective address misses)	Yes (hit/refill)
Any store instruction	Effective address	Effective address (then physical address if effective address misses)	Yes (hit/refill)
ALLOCO (SHmedia)	Effective address	Effective address (then physical address if effective address misses)	Yes (hit/allocate)
MOVCA.L (SHcompact)	Effective address	Effective address (then physical address if effective address misses)	Yes (hit/allocate)
PREF (SHcompact)	Effective address	Effective address (then physical address if effective address misses)	Yes (hit/refill)
SWAP.Q (SHmedia)	Effective address	Physical address	Yes (hit)
OCBI (SHmedia or SHcompact)	Effective address	Physical address	Yes (hit)
OCBP (SHmedia or SHcompact)	Effective address	Physical address	Yes (hit)
OCBWB (SHmedia or SHcompact)	Effective address	Physical address	Yes (hit)

Table 44: Operand cache look-up

Access type	Cache index by effective address or physical address	Cache look-up by effective address or physical address?	LRU updated? (condition)
PREFI (SHmedia)	Effective address	Effective address	Yes (hit/refill)
ICBI (SHmedia)	Effective address	Effective address	Yes (hit)

Table 45: Instruction cache look-up

9.2 SH-5 cache configuration registers

The cache configuration register layout and the precise behavior of each field is implementation dependent. This section describes the layout for SH-5.

SH-5 supports separate instruction and operand caches. The cache configuration registers are also split in the same way. Each cache is associated with the following registers:

- Cache configuration registers to control global cache behavior and cache locking (ICCR and OCCR).
- An array of configuration registers containing cache tag information (ICACHETAG and OCACHETAG).
- An array of configuration registers containing cache data information (ICACHEDATA and OCACHEDATA).

9.2.1 Access to ICCR and OCCR

ICCR and OCCR can be read using GETCFG and written using PUTCFG. They are used to enable caching, global cache invalidation, write-through/write-back selection (operand cache only) and management of cache locking.

A PUTCFG to ICCR must be followed by SYNCI, while a PUTCFG to OCCR must be followed by SYNCO. These instructions ensure synchronization of instruction fetch and data access while cache properties are being modified.

9.2.2 Access to tag and data configuration registers

These configuration registers can be read using GETCFG. This allows a privileged mode thread to view the internal state of the cache. This can be used in combination with cache coherency instructions to cohere specific cache blocks (see *Section 9.3.2: Cache coherency sequences on page 112* for examples). It can also be used a debugger to give visibility of cache state while debugging.

Note that the cache state is highly volatile and some care is required to achieve predictable results. The cache state can be observed in a stable state in the following situations:

• When the MMU is disabled, both the instruction cache and operand cache are frozen. The state of these caches will be non-volatile when observed through GETCFG.

-**D**-

SuperH, Inc.

- When the MMU is enabled, considerable care is needed to observe a stable cache state. One technique is to use the cache locking mechanism to prevent the cache replacement strategy from changing cache state:
 - The ICACHETAG and ICACHEDATA configuration registers, corresponding to locked instruction cache ways, will be non-volatile when observed through GETCFG.
 - For the operand cache, it is also necessary to avoid making any load or store accesses that hit the operand cache since these can result in changes to OCACHETAG and OCACHEDATA. In order to observe a stable operand cache state, software should be written to avoid using load and stores in these GETCFG sequences; this may require appropriate SYNCO barriers. In this case, the OCACHETAG and OCACHEDATA configuration registers, corresponding to locked operand cache ways, will be non-volatile when observed through GETCFG.

These configuration registers should not be written to. A PUTCFG to any of these registers leads to implementation-undefined behavior. In particular, the memory model could be compromised and the behavior of memory accesses can be unpredictable.

9.2.3 Cache configuration register map

Name	Configuration register number	Number of defined registers in this range	Behavior
ICACHETAG	0x01000000 + (65536*way) + (16*index) + reg, where: way is in [0,3] index is in [0,255] reg is 0	1024	See <i>Section</i> 9.2.5: ICACHETAG on page 98

Table 46 summarizes the SH-5 cache configuration registers.

Table 46: SH-5 cache configuration register map

Name	Configuration register number	Number of defined registers in this range	Behavior
ICACHEDATA	0x01200000 + (65536*way) + (16*index) + reg where: way is in [0,3] index is in [0,255] reg is in [0,3]	4096	See Section 9.2.6: ICACHEDATA on page 101
ICCR	0x01600000 + reg, where reg is in [0,1]	2	See Section 9.2.4: ICCR on page 96
OCACHETAG	0x01800000 + (65536*way) + (16*index) + reg, where: way is in [0,3] index is in [0,255] reg is in [0,1]	2048	See Section 9.2.8: OCACHETAG on page 106
OCACHEDAT A	0x01A00000 + (65536*way) + (16*index) + reg where: way is in [0,3] index is in [0,255] reg is in [0,3]	4096	See Section 9.2.9: OCACHEDATA on page 111
OCCR	0x01E00000 + reg, where reg is in [0,1]	2	See Section 9.2.7: OCCR on page 102

Table 46: SH-5 cache configuration register map

9.2.4 ICCR

There are 2 instruction cache control registers: ICCR0 and ICCR1.

ICCR0

Software should exercise care when writing to this register. If instruction caching is changed from enabled to disabled, the instruction cache should simultaneously be invalidated to prevent cache paradoxes.

ICCR0		CFG	FG 0x01600000				
Field	Bits	Size	Volatile?	Synopsis	Туре		
ICE	0	1	No	Instruction cache enable	RW		
	Operation		If 0: instruc If 1: instruc	If 0: instruction cache is disabled If 1: instruction cache is enabled			
	When rea	d	Returns cu	rrent value			
	When writ	tten	Updates cu	urrent value			
Power-on reset Undefined							
ICI	1	1	No	Instruction cache invalidate	OTHER		
	Operation		Write with 1 to invalidate the entire instruction cache				
	When read		Returns 0				
	When written		Write of 0: no effect Write of 1: invalidate the entire instruction cache Writes have no effect on the value of this field				
	Power-on	reset	0				
RES	[2,63]	62	No	RESERVED	RES		
	Operation		Software should always write 0 to these bits. Software should not interpret the value read from these bits.				
	When rea	d	Reads as 0 (behavior of other implementations may vary)				
	When writ	tten	Writes ignored (behavior of other implementations may vary)				
	HARD res	set	0 (behavio	r of other implementations may vary)			

-5-

ICCR1

I	CCR1		CFG	CFG 0x01600001			
Field	Bits	Size	Volatile?	Synopsis	Туре		
IW_LOAD	[0,1]	2	No	Instruction way load	RW		
	Operation		Selects ins IW_LE is so ways in the way. See <i>S</i> page 114.	Selects instruction cache way for instruction prefetch when IW_LE is set. The value of IW_LOAD selects one of the 4 ways in the instruction cache. It does not contain a bit per way. See Section 9.3.3: Cache locking sequence on page 114.			
	When re	ad	Returns cu	rrent value			
	When w	ritten	Updates cu	irrent value			
	Power-o	n reset	Undefined				
IW_LE	7	1	No	Instruction way load enable	RW		
	Operatio	'n	if 0: prefetched instructions go to way selected by replacement algorithm. if 1: prefetched instructions go to way selected by IW_LOAD				
	When re	ad	Returns cu	rrent value			
	When w	ritten	Updates cu	urrent value			
	Power-o	n reset	Undefined				
IW_LOCK	[8,11]	4	No	Instruction way lock	RW		
	Operation		Bit w of IW_LOCK is the lock bit for way w in the instruction cache. If bit w is 0, way w of the instruction cache is unlocked. If bit w is 1, way w of the instruction cache is locked.				
	When read Returns current value						
	When w	ritten	Updates current value				
	Power-o	n reset	Undefined				

Table 48: ICCR1

ICCR1		CFG	G 0x01600001			
Field	Bits	Size	Volatile?	Synopsis	Туре	
RES	[2,6], [12,63]	57	No	RESERVED	RES	
	Operation		Software should always write 0 to these bits. Software should not interpret the value read from these bits.			
	When read		Reads as 0 (behavior of other implementations may vary)			
	When written		Writes ignored (behavior of other implementations may vary)			
	HARD reset		0 (behavior of other implementations may vary)			

Table 48: ICCR1

9.2.5 ICACHETAG

The ICACHETAG configuration registers are organized as a 2-dimensional array. This array is subscripted by way number and index number to give the tag information for a particular block in the instruction cache.

The tag information for each instruction cache block is held in 1 configuration register: ICACHETAGO holds the effective address tag. This register contains a valid bit. This will be clear to indicate an invalid block, or set to indicate a valid block. When a block is invalid, all other fields have undefined values.

ICACHETAG0[w,i] where w is in the range [0,3] and i is in the range [0,255]		CFG	0x01000000 + (65536 * w) + (16 * i)				
Field	Bits	Size	Volatile?	Synopsis	Туре		
V	0	1	Yes	Valid bit	OTHER		
	Operation		If 0: the cac If 1: the cac				
	When rea	When read		Returns current value			
	When wri	tten	n A write gives implementation-undefined behavior				
	Power-on	reset	Undefined				

Table 49: Instruction cache tag

ICACHETAG0[w,i] where w is in the range [0,3] and i is in the range [0,255]			CFG	0x01000000 + (65536 * w) + (16 * i)	
Field	Bits	Size	Volatile?	Synopsis	Туре
SH	1	1	Yes	Shared bit	OTHER
	Operation		If 0: the cache block is not shared		
			If 1: the cache block is shared		
			This field is a copy of the associated PTEH.SH		
	When read		Returns current value		
	When written		A write gives implementation-undefined behavior		
	Power-on reset		Undefined		
ASID	[2,9]	8	Yes	Address space identifier	OTHER
	Operation		Identifies the address space identifier for this cache block		
			This field is a copy of the SR.ASID for the thread that caused this cache block to be allocated in the cache. For unshared pages this is the same as the associated PTEH.ASID. For shared pages the values of SR.ASID and PTEH.ASID can differ.		
	When read		Returns current value		
	When written		A write gives implementation-undefined behavior		
	Power-on reset		Undefined		
EADDR	[13,31]	19	Yes	Effective address tag	OTHER
	Operation		Identifies the effective address tag for this cache block		
			Bits 0 to 4 of the effective address are the offset into this cache block. Bits 5 to 12 of the effective address are the index into the cache (i).		
	When read		Returns current value		
	When written		A write gives implementation-undefined behavior		
	Power-on reset		Undefined		

Table 49: Instruction cache tag

ICACHETAG0[w,i] where w is in the range [0,3] and i is in the range [0,255]			CFG	0x01000000 + (65536 * w) + (16 * i)		
Field	Bits	Size	Volatile?	Synopsis	Туре	
PRU	55	1	Yes	Access protection	OTHER	
	Operation		If 0: the cache block is accessible to just privileged mode			
			If 1: the cache block is accessible to user and privileged mode			
			This field is a copy of the associated PTEL.PR.U			
	When read		Returns current value			
	When written		A write gives implementation-undefined behavior			
	Power-on reset		Undefined			
LRU	[58,63]	6	Yes	Replacement information	OTHER	
	Operation		This field contains the replacement information for a set. All cache blocks in the same set are associated with the same LRU state. See <i>Table 42: SH-5 LRU field on page 84</i> .			
	When read		Returns current value			
	When written		A write gives implementation-undefined behavior			
	Power-on reset		Undefined			
RES	[10,12], [32,54], [56,57]	28	No	RESERVED	RES	
	Operation		Software should not interpret the value read from these bits.			
	When read		Reads as 0 (behavior of other implementations may vary)			
	When written		A write gives implementation-undefined behavior			
	Power-on reset		0 (behavior of other implementations may vary)			

Table 49: Instruction cache tag

9.2.6 ICACHEDATA

The ICACHEDATA configuration registers are organized as a 3-dimensional array. This array is subscripted by way number, index number and register number to give the data information for a particular block in the instruction cache. The information in ICACHEDATA is only defined when the corresponding ICACHETAG is valid.

On SH-5, each instruction cache block contains 32 bytes of data. These 32 bytes are distributed over four 64-bit configuration registers. These registers are numbered r where r is in [0,3]. Let the physical address cached by this block be represented by P where P is a multiple of the cache block size. Let physical memory be represented by a byte-array called PMEM, and support slicing using the memory slicing notation from *Volume 2, Chapter 1: SHmedia specification*.

Register r contains cached instructions corresponding to PMEM[P+8r FOR 8].

The endianness of the instructions in each ICACHEDATA register is consistent with a 64-bit memory access. GETCFG performs a 64-bit read and will therefore return a value which is consistent with memory endianness.

ICACHEDATA[w,i,r] where w is in the range [0,3] and i is in the range [0,255] and r is in the range [0,3]		CFG	0x01200000 + (65536 * w) + (16 ⁻	* i) + r					
Field	Bits	Size	Volatile?	Synopsis	Туре				
DATA	[0,63]	64	Yes	Instruction cache data	OTHER				
	Operation			This register contains 64 bits of data corresponding to the r ^{th.} element of the 32 byte cache block					
	When re	ead	Returns current value						
	When w	ritten	A write gives implementation-undefined behavior						
	Power-c	on reset	Undefined						

Table 50: Instruction cache data

SuperH, Inc.

9.2.7 OCCR

There are 2 operand cache control registers: OCCR0 and OCCR1.

OCCR0

Software should exercise care when writing to this register. If the operand cache is invalidated, then the state of any dirty cache blocks will be lost. Changing the value of either OCCR0.OCE or OCCR0.OWT can result in a change in cache behavior. It may be necessary to flush, purge or invalidate the operand cache to avoid paradoxes.

	OCCR0		CFG	0x01E00000							
Field	Bits	Size	Volatile?	Synopsis	Туре						
OCE	0	1	No	Operand cache enable.	RW						
	Operation		If 0: operan If 1: operan	d cache is disabled d cache is enabled							
	When read	d	Returns current value								
	When writ	ten	Updates current value								
	Power-on	reset	Undefined								
OCI	1	1	No	Operand cache invalidate	OTHER						
	Operation		Write with 1 to invalidate the entire operand cache								
	When read	d	Returns 0								
	When writ	ten	Write of 0: no effect								
		Write of 1: invalidate the entire operand cache									
			Writes do n	ot change the value of this field							
	Power-on	reset	Undefined								

Table 51: OCCR0

	OCCR0		CFG	0x01E00000							
Field	Bits	Size	Volatile?	Synopsis	Туре						
OWT	2	1	No	Operand cache write-through mode	RW						
	Operation		If 0: write-th If 1: write-ba	If 0: write-through and write-back are distinguished by MMU If 1: write-back is implemented as write-through							
	When read	d	Returns current value								
	When writ	ten	Updates current value								
	Power-on	reset	Undefined								
RES	[3,63]	61	No	RESERVED	RES						
	Operation		Software should always write 0 to these bits. Software should not interpret the value read from these bits.								
	When read	d	Reads as 0 (behavior of other implementations may vary)								
	When writ	ten	Writes ignored (behavior of other implementations may vary)								
	Power-on	reset	0 (behavior	of other implementations may vary)							

Table 51: OCCR0

OCCR1

0	CCR1		CFG	0x01E00001							
Field	Bits	Size	Volatile?	Synopsis	Туре						
OW_LOAD	[0,1]	2	No	Operand way load	RW						
	Operation	n	Selects operation of the operation of the section 9.3	Selects operand cache way for data prefetch when OW_LE is set. The value of OW_LOAD selects one of the 4 ways in the operand cache. It does not contain a bit per way. See <i>Section 9.3.3: Cache locking sequence on page 114</i> .							
	When rea	ad	Returns current value								
	When wr	itten	Updates current value								
	Power-or	n reset	Undefined								
OW_LE	7	1	No	Operand way load enable	RW						
	Operatio	n	If 0: prefetched data goes to way selected by replacement algorithm. If 1: prefetched data goes to way selected by OW I OAD								
	When rea	ad	Returns current value								
	When wr	itten	Updates cu	irrent value							
	Power-or	n reset	Undefined	1							
OW_LOCK	[8,11]	4	No	Operand Way Lock	RW						
	Operation	n	Bit w of OW_LOCK is the lock bit for way w in the operand cache. If bit w is 0, way w of the operand cache is unlocked. If bit w is 1, way w of the operand cache is locked.								
	When rea	ad	Returns current value								
	When written Updates current value										
	Power-or	n reset	Undefined								

Table 52: OCCR1

OCCR1			CFG	0x01E00001						
Field	Bits	Size	Volatile?	Synopsis	Туре					
RES	[2,6], [12,63]	57	No	RESERVED	RES					
	Operatio	n	Software should always write 0 to these bits. Software should not interpret the value read from these bits.							
	When rea	ad	Reads as 0	Reads as 0 (behavior of other implementations may vary)						
	When wr	itten	Writes ignored (behavior of other implementations may vary)							
	HARD re	set	0 (behavior	of other implementations may vary)						

Table 52: OCCR1

9.2.8 OCACHETAG

The OCACHETAG configuration registers are organized as a 2-dimensional array. This array is subscripted by way number and index number to give the tag information for a particular block in the operand cache.

The tag information for each operand cache block is held in 2 configuration registers: OCACHETAG0 holds the effective address tag, and OCACHETAG1 holds the physical address tag. Each register contains a valid bit. These will either both be clear to indicate an invalid block, or both be set to indicate a valid block. When a block is invalid, all other fields have undefined values.

OCACHETAG0[w,i] where w is in the range [0,3] and i is in the range [0,255]		CFG	0x01800000 + (65536 * w) + (16 * i)								
Field	Bits	Size	Volatile?	Synopsis	Туре						
V	0	1	Yes	Valid bit	OTHER						
	Operation		If 0: the ca	If 0: the cache block is invalid							
			If 1: the ca	If 1: the cache block is valid							
	When read	d	Returns current value								
	When writ	ten	A write give	es implementation-undefined behavior							
	Power-on	reset	Undefined								
SH	1	1	Yes	Shared bit	OTHER						
	Operation		If 0: the cache block is not shared								
			If 1: the ca	che block is shared							
			This field is	a copy of the associated PTEH.SH							
	When read	d	Returns current value								
	When writ	ten	A write gives implementation-undefined behavior								
	Power-on	reset	Undefined								

OCACHETAG0 is described in *Table 53*.

Table 53: Operand cache tag register 0

OCACHE w is in the i is in th	TAG0[w,i] w e range [0,3 e range [0,2	TAG0[w,i] where e range [0,3] and e range [0,255]		G 0x01800000 + (65536 * w) + (16 * i)						
Field	Bits	Size	Volatile?	Synopsis	Туре					
ASID	[2,9]	8	Yes	Address space identifier	OTHER					
	Operation		Identifies the address space identifier for this cache block							
			This field is caused this unshared p PTEH.ASII PTEH.ASII	Inis field is a copy of the SR.ASID for the thread that caused this cache block to be allocated in the cache. For unshared pages this is the same as the associated PTEH.ASID. For shared pages the values of SR.ASID and PTEH.ASID can differ.						
	When rea	d	Returns cu	rrent value						
	When writ	ten	A write gives implementation-undefined behavior							
	Power-on	reset	Undefined	ndefined						
EADDR	[13,31]	19	Yes	Effective address tag	OTHER					
	Operation		Identifies th	ne effective address tag for this cache b	lock					
			Bits 0 to 4 of the effective address are the offset into this cache block. Bits 5 to 12 of the effective address are the index into the cache (i).							
	When rea	d	Returns cu	rrent value						
	When writ	ten	A write gives implementation-undefined behavior							
	Power-on	reset	Undefined							
PRR	52	1	Yes	Read protection	OTHER					
	Operation		If 0: the cad	che block is non-readable						
			If 1: the cad	che block is readable						
			a copy of the associated PTEL.PR.R							
	When rea	d	Returns cu	rrent value						
	When writ	ten	A write give	es implementation-undefined behavior						
	Power-on	reset	Undefined							

Table 53: Operand cache tag register 0

SuperH, Inc.

D-

OCACHE w is in the i is in the	TAG0[w,i] w e range [0,3 e range [0,2	/here] and 255]	CFG	0x01800000 + (65536 * w) + (10	5 * i)						
Field	Bits	Size	Volatile?	Synopsis	Туре						
PRW	54	1	Yes	Write protection	OTHER						
	Operation		If 0: the cad	If 0: the cache block is non-writable							
			If 1: the cad	che block is writable							
			This field is a copy of the associated PTEL.PR.W								
	When read	d	Returns current value								
	When writ	ten	A write gives implementation-undefined behavior								
	Power-on	reset	Undefined	Undefined							
PRU	55	1	Yes	Access protection	OTHER						
	Operation		If 0: the cad	che block is accessible to just privileged	l mode						
			If 1: the cache block is accessible to user and privileged mode								
			This field is a copy of the associated PTEL.PR.U								
	When read	d	Returns current value								
	When writ	ten	A write gives implementation-undefined behavior								
	Power-on	reset	Undefined								
WT	56	1	Yes	Write-through/write-back bit	OTHER						
	Operation		If 0: the cad	che block is in write-back mode							
			If 1: the cad	che block is in write-through mode							
			This field is	a copy of the associated PTEL.CB0							
	When read	d	Returns cu	rrent value							
	When writ	ten	A write gives implementation-undefined behavior								
	Power-on	reset	Undefined								

Table 53: Operand cache tag register 0

OCACHE w is in the i is in th	TAG0[w,i] w e range [0,3 e range [0,2	vhere 8] and 255]	CFG	0x01800000 + (65536 * w) + (16 * i)						
Field	Bits	Size	Volatile?	Synopsis	Туре					
U	57	1	Yes	Line dirty bit	OTHER					
	Operation		If 0: the cache block is clean If 1: the cache block is dirty							
	When rea	d	Returns current value							
	When writ	ten	A write gives implementation-undefined behavior							
	Power-on	reset	Undefined							
LRU	[58,63]	6	Yes	Replacement information	OTHER					
	Operation			This field contains the replacement information for a set. All cache blocks in the same set are associated with the same LRU state. See <i>Table 42: SH-5 LRU field on page 84</i> .						
	When rea	d	Returns current value							
	When writ	ten	A write gives implementation-undefined behavior							
	Power-on	reset	Undefined							
RES	[10,12], [32,51], 53	24	No	RESERVED	RES					
	Operation		Software s	hould not interpret the value read from	these bits.					
	When read			Reads as 0 (behavior of other implementations may vary)						
	When writ	ten	A write gives implementation-undefined behavior							
	Power-on	reset	0 (behavior of other implementations may vary)							

Table 53: Operand cache tag register 0

OCACHETAG1 is described in *Table 54*.

OCACHE w is in the i is in the	OCACHETAG1[w,i] where w is in the range [0,3] and i is in the range [0,255]			0x01800001 + (65536 * w) + (16 * i)							
Field	Bits	Size	Volatile?	Synopsis	Туре						
V	0	1	Yes	Valid bit	OTHER						
	Operation		If 0: the cache block is invalid								
			If 1: the cache block is valid								
	When read	b	Returns current value								
	When writ	ten	A write gives implementation-undefined behavior								
	Power-on	reset	Undefined	Undefined							
PADDR	[12,31]	20	Yes	Physical address tag	OTHER						
	Operation		Identifies the	physical address tag for this cache	block						
			All 20 bits of this tag are implemented by SH-5								
				Bits 0 to 4 of the physical address are the offset into this cache block. Bits 5 to 11 of the physical address are the lower 7 bits of the index into the cache (i). Note that bit 12 of the physical address is indicated by PADDR and not by i.							
	When read	d	Returns current value								
	When writ	ten	A write gives implementation-undefined behavior								
	Power-on	reset	Undefined								
RES	[1,11], [32,63]	43	No	RESERVED	RES						
	Operation		Software should not interpret the value read from these bits.								
	When read	b	Reads as 0 (behavior of other implementations may vary)								
	When writ	ten	A write gives implementation-undefined behavior								
	Power-on	reset	0 (behavior o	f other implementations may vary)							

Table 54: Operand cache tag register 1

9.2.9 OCACHEDATA

The OCACHEDATA configuration registers are organized as a 3-dimensional array. This array is subscripted by way number, index number and register number to give the data information for a particular block in the operand cache. The information in OCACHEDATA is only defined when the corresponding OCACHETAG is valid.

On SH-5, each operand cache block contains 32 bytes of data. These 32 bytes are distributed over four 64-bit configuration registers. These registers are numbered r where r is in [0,3]. Let the physical address cached by this block be represented by P where P is a multiple of the cache block size. Let physical memory be represented by a byte-array called PMEM, and support slicing using the memory slicing notation from *Volume 2, Chapter 1: SHmedia specification*.

Register r contains cached data corresponding to PMEM[P+8r FOR 8].

The endianness of the data in each OCACHEDATA register is consistent with a 64-bit memory access. GETCFG performs a 64-bit read and will therefore return a value which is consistent with memory endianness.

OCACHEDATA[w,i,r] where w is in the range [0,3] and i is in the range [0,255] and r is in the range [0,3]		CFG	0x01A00000 + (65536 * w) + (16 *	i) + r					
Field	Bits	Size	Volatile?	Synopsis	Туре				
DATA	[0,63]	64	Yes	Operand cache data	OTHER				
	Operation			This register contains 64 bits of data corresponding to the r ^{th.} 8-byte element of the 32 byte cache block					
	When re	ead	Returns current value						
	When w	ritten	A write gives implementation-undefined behavior						
	Power-c	on reset	Undefined						

Table 55: Operand cache data

SuperH, Inc.

9.3 Cache code sequences

This section describes recommended code sequences and algorithms for managing the cache.

9.3.1 Cache initialization sequence

The cache must be initialized before the MMU is enabled. The necessary steps are:

- Write to OCCR0 to specify the global behavior of the operand cache, and to invalidate the state of the operand cache before it is used.
- Write to OCCR1 to configure the operand cache locking information.
- Write to ICCR0 to specify the global behavior of the instruction cache, and to invalidate the state of the instruction cache before it is used.
- Write to ICCR1 to configure the instruction cache locking information.

If cache locking is to be used, note that the caches cannot be pre-loaded until the MMU is enabled since this is necessary for pre-fetches to modify cache state. Cache locking sequences are described in *Section 9.3.3: Cache locking sequence on page 114.*

9.3.2 Cache coherency sequences

There are 4 basic coherency operations:

- Invalidation of operand cache blocks. This is achieved using OCBI or OCCR0.OCI. Note that invalidation of operand cache blocks will result in dirty operand cache blocks being discarded. This should be done with care since it can result in loss of memory state.
- Write-back of operand cache blocks. This is achieved using OCBWB.
- Purge of operand cache blocks. This is achieved using OCBP.
- Invalidation of instruction cache blocks. This is achieved using ICBI or ICCR0.ICI.

SuperH, Inc.

-75

These can be performed at 3 different granularities.

- Memory location: the appropriate instruction should be applied to the memory location. This will cohere a cache block sized memory block surrounding the supplied effective address. This can be achieved in user or privileged mode.
- Page of memory: for a small page of memory (such as the 4 kbyte page on SH-5), the appropriate cache coherency instruction should be iterated through the page with the effective address incrementing through the page in cache block size intervals. This can be achieved in user or privileged mode. For larger memory pages, it is more efficient to use privileged mode and to scan through the cache state as viewed though the cache configuration registers. Each cache block that contains address information corresponding to the target page should be cohered using the appropriate cache coherency instruction. The target effective address can be calculated from the address information in the cache block.
- All cache: this can be achieved in privileged mode only. Invalidation of the whole operand cache can be achieved using OCCR0.OCI, and of the whole instruction cache using ICCR0.ICI. For write-back or purge operations, a scan is necessary through the cache state as viewed through the cache configuration registers. Each valid cache block should be cohered using the appropriate cache coherency instruction. The target effective address can be calculated from the address information in the cache block.

When instruction cache invalidation is achieved through ICBI, invalidation is only guaranteed for cache blocks corresponding to the effective address used for the invalidation. This is because the instruction cache does not contain physical tags and does not support look-up by physical address.

In some cases, however, instruction invalidation may be required at the physical level, to ensure that the instruction is invalidated in all effective address spaces that map the physical address of the instruction. The recommended approach is to use privileged mode and to inspect the instruction cache state through the cache configuration registers. The instruction cache state should be indexed using the cache index field of the effective address being invalidated. This identifies a set in the cache; all cache blocks that can hold a copy of the instruction will be in this set providing that the constraints in *Volume 1, Chapter 17: Memory management* are being followed. Each of these cache blocks should be investigated in the cache configuration registers, and invalidated using an appropriately targeted ICBI if required. It may be quicker to invalidate each case unconditionally, rather than performing a software check to see if that invalidation is really necessary.

If it is necessary to invalidate many physical instructions, it may be easier or quicker to simply invalidate the entire instruction cache using ICCR0.ICI.

·**D**-

SH-5 CPU Core, Volume 4: Implementation

9.3.3 Cache locking sequence

The following sequence can be used to lock a single cache block in a particular way:

- 1 The following pre-conditions must hold:
 - Privileged mode must be used since configuration register access is needed.
 - The MMU must be enabled; SR.MMU should be set.
 - Caching must be enabled. OCCR0.OCE should be set if locking into the operand cache; ICCR0.ICE should be set if locking into the instruction cache.
 - The target effective address should be mapped by a translation that is cachable and contains appropriate permission. Read permission is required for prefetching into the data cache, and execute permission for the instruction cache.
- 2 The target way should be locked. The appropriate bit of OCCR1.OW_LOCK or ICCR1.IW_LOCK should be set. The way should be locked before following steps to ensure that other accesses do not interfere with this sequence.
- 3 The target effective address should not already be in the cache. If this is not the case, it can be removed from the cache using OCBP, OCBI or ICBI as appropriate. Since instruction fetching is performed independently of program execution, instruction invalidation should always be achieved explicitly using ICBI. This must be done after locking the way in step *2*.
- 4 The cache should be configured so that prefetches are performed into the target way. For operand cache locking, OCCR1.OW_LE should be set and OCCR1.OW_LOAD should be set to indicate the target way. For instruction cache locking, ICCR1.IW_LE should be set and ICCR1.IW_LOAD should be set to indicate the target way.
- 5 The cache block should be prefetched. Execute a data prefetch or an instruction prefetch, as appropriate, on the target effective address. The previous steps have arranged that this prefetch will miss the cache and cause the cache block in the specified way to be refilled from memory. Note that if there is no translation or if the prefetch has no permission, then the prefetch will be ignored. Software must arrange for appropriate translation as described in step *1*.
- 6 The load enable bit, OCCR1.OW_LE or ICCR1.IW_LE, can now be cleared to restart normal cache replacement.

A locked cache block can be removed from the cache through an appropriate purge or invalidation instruction. If the way is subsequently unlocked, then that way becomes a candidate for cache replacement.

9.4 Future cache implementations

Many properties of the cache are implementation-specific and can be varied in future implementations of the architecture. The cache implementation options are described in *Volume 1, Chapter 18: Caches*, and the SH-5 specific properties are described in this chapter. It is intended that future cache implementations will be based on the cache configuration register map and configuration register definitions used by the SH-5 implementation.

Note that the information in this section does not require future implementations to use these options, nor does it constrain future implementations to just these options.

9.4.1 Cache architecture parameters

The SH-5 cache configuration register map defined in *Section 6.3: Configuration registers on page 51* and in *Section 9.2: SH-5 cache configuration registers on page 93* supports the different cache organizations described by the architecture in *Volume 1, Chapter 18: Caches*.

- No cache: all accesses are performed on memory without caching.
- Unified cache: data and instruction accesses pass through a single cache.
- Split cache: data and instruction accesses are treated separately. The following implementation-specific options are available:
 - Only an operand cache is provided. Data accesses pass through the operand cache, while instruction accesses are performed on memory without caching. The terms 'operand cache' and 'data cache' are interchangeable.
 - Only an instruction cache is provided. Instruction accesses pass through the instruction cache. Data accesses are performed on memory without caching.
 - Both an operand cache and an instruction cache are provided. Data access pass through the operand cache, while instruction accesses pass independently and separately through the instruction cache.

The architecture defines that a cache is parameterized by:

- nbytes: the number of bytes in a cache block.
 nbytes can be any 2ⁱ such that i is an integer in [3, 12].
- nways: the number of cache blocks in a set. nways is a power-of-2 and greater than 0.
- nsets: the number of sets of cache blocks in the cache. nsets is a power-of-2 and greater than 0.

-**D**-

SH-5 CPU Core, Volume 4: Implementation

9.4.2 Cache implementation parameters

The layout of the SH-5 cache configuration register map is:

- ICACHETAG: 0x01000000 + (65536*way) + (16*index) + reg
- ICACHEDATA: 0x01200000 + (65536*way) + (16*index) + reg
- ICCR: 0x01600000 + reg
- OCACHETAG: 0x01800000 + (65536*way) + (16*index) + reg
- OCACHEDATA: 0x01A00000 + (65536*way) + (16*index) + reg
- OCCR: 0x01E00000 + reg

The supported 'index' range (corresponding to the architectural parameter nsets) in the configuration register map is [0, 4095] using the partitioning described in *Section 6.3: Configuration registers on page 51*. Similarly, the supported 'way' range (corresponding to the architectural parameter nways) is [0, 31]. The supported 'reg' range allows up to 16 registers. Since each register can provide 8 bytes of data in the ICACHEDATA and OCACHEDATA registers, the maximum supported cache block size is 128 bytes (corresponding to the architectural parameter nbytes).

The cache configuration register map limits nbytes, nways and nsets to maximum values which are less then the architectural parameterization. However, there is significant room for future expansion, and these limits are unlikely to be a problem for future implementations.

Additionally, it is possible that future implementations can make extensions to the cache configuration registers:

- More configuration registers could be provided.
- Reserved fields within existing configuration registers be given defined semantics on future implementations. For ICACHETAG and OCACHETAG:
 - Extension of EADDR to support more effective address space.
 - Extension of PADDR to support more physical address space.
 - Extension of ASID to increase the number of supported address spaces.
 - Extensions to increase the number of supported cache behaviors.
 - Extensions to increase the number of supported protection attributes.

Software should be carefully written with consideration given to potential future changes in the cache implementation. Ideally, SH-5 software should be parameterized so that it can be readily updated to support future implementations.

Index

A

ALLOCO									1	0,	87	7-8	8
ANDC	•	 •					•		•		76	6-7	7

B

BEQ			 											.9
BEQI		 	 •											.9
BGE			 											.9
BGEU	J	 	 •											.9
BGT			 											.9
BGTU	J		•											.9
BNE			 											.9
BNEI														.9

D

DBRMODE	.56
DBRVEC	.56
DEFINED	.14

E

EPN .					.60,77
-------	--	--	--	--	--------

F

Field ASID 59-60, 75, 99, 107

СВ 58, 108
DATA
EADDR
ICE
ICI
IW_LE
IW_LOAD
IW_LOCK
LRU 83-84, 100, 109
OCE 102, 112-114
OCI
OW_LE
OW_LOAD
OW_LOCK 104, 114
OWT 102-103
PR 59, 100, 107-108
PRR
PRU
PRW
RES 14, 96, 98, 100, 103, 105, 109-110
SZ
U
V . 12-13, 58, 62, 68, 78, 98, 106, 110
WT
FIPR
FIPR.S
FOR
FPU
FTRV

SuperH, Inc.

SH-5 CPU Core, Volume 4: Implementation

Б-

FTRV.S	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9	
--------	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

G

GETCFG .	10, 15, 93-94, 101, 111
GETCON	10, 14, 75, 77
GETTR	

H

HARD								•					•					.96,	98,	105
------	--	--	--	--	--	--	--	---	--	--	--	--	---	--	--	--	--	------	-----	-----

I

ICBI	.10, 88-89, 112-114
ICCR0.ICE	
ITLBMISS	

L

LD.B			•							•	•	•		.9
LD.L			•							•	•	•		.9
LD.Q			•							•	•	•		.9
LD.UB .														.9
LD.UW .														.9
LD.W														.9
LDX.B														.9
LDX.L														.9
LDX.Q .														.9
LDX.UB														.9
LDX.UW														.9
LDX.W .														.9

M

MMU 3, 57, 60-61, 74-77, 81, 87, 93-9	94,
112,	114
MMUDR 61, 67-68,	71
MMUIR 61-62,	64
MOVACA.L	. 17
MOVCA.L	17
MOVI75,	77

0

OCACHETAG0 106
OCACHETAG1 106, 110
OCBI
OCBP 10, 17, 89, 112, 114
OCBWB
OCCR0 102, 112-114
OCCR0.OCE 102, 112-114
OCCR0.OWT102
OCCR1
OFFSET_PTEH78
OFFSET_PTEL
OR 75-77

P

119

R

Register
Field Type
EXPANSION
OTHER
READ-ONLY
READ-WRITE
RESERVED
ICACHEDATA 93-95, 101, 116
ICACHETAG 93-94, 98, 101, 116
ICACHETAG0
ICCR 93, 95-96, 116
ICCR0 96, 112-114
ICCR1 87, 96-97, 112, 114
OCACHEDATA 93-95, 111, 116
OCACHETAG 93-95, 106, 111, 116
OCCR
R 5, 75-78, 89
SR 74-77, 114
SR.MMU114
SSR
TEA
TR5, 7, 75, 77
VBR
RESERVED . 14, 96, 98, 100, 103, 105,
109110
RESVEC

S

SHLLI	75, 77
SLEEP	10
SPC 7, 10, 55, 74-7	75, 77
SPC.ADDR	55
SPC.ISA	55
SYNCI75, 7	78, 93
SYNCO75-77,	93-94

UNDEFINED									14-15
	•								

SuperH, Inc. SH-5 CPU Core, Volume 4: Implementation

-5