
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

Last updated 22 February 2002

SuperHTM (SH)
64-Bit RISC Series

SH-5 CPU Core,
Volume 2:
SHmedia

SuperHTM (SH)
64-Bit RISC Series

SH-5 CPU Core,
Volume 2:
SHmedia

ii

SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

This publication contains proprietary information of SuperH, Inc., and is not to be copied in whole or part.

Issued by the SuperH Documentation Group on behalf of SuperH, Inc.

Information furnished is believed to be accurate and reliable. However, SuperH, Inc. assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of SuperH, Inc. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information

previously supplied. SuperH, Inc. products are not authorized for use as critical components in life support devices or
systems without the express written approval of SuperH, Inc.

is a registered trademark of SuperH, Inc.

SuperH is a registered trademark for products originally developed by Hitachi, Ltd. and is owned by
Hitachi Ltd.

© 2001 SuperH, Inc. All Rights Reserved.

SuperH, Inc.
San Jose, U.S.A. - Bristol, United Kingdom - Tokyo, Japan

www.superh.com

http://www.superh.com/

Contents
Preface xiii

SuperH SH-5 document identification and control xiii
SuperH SH-5 CPU core documentation suite xiv

1 SHmedia specification 1

1.1 Overview 1
1.2 Variables and types 2

1.2.1 Integer 2
1.2.2 Boolean 3

1.2.3 Bit-fields 3
1.2.4 Arrays 3

1.2.5 Floating point values 3

1.3 Expressions 4
1.3.1 Integer arithmetic operators 4

1.3.2 Integer shift operators 5
1.3.3 Integer bitwise operators 6

1.3.4 Relational operators 7
1.3.5 Boolean operators 7

1.3.6 Single-value functions 8

1.4 Statements 13
1.4.1 Undefined behavior 13
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

iv
1.4.2 Assignment 14
1.4.3 Conditional 15

1.4.4 Repetition 16
1.4.5 Exceptions 16

1.4.6 Procedures 17

1.5 Architectural state 18
1.6 Memory model 19

1.6.1 Support functions 21

1.6.2 Reading memory 22
1.6.3 Prefetching memory 24

1.6.4 Writing memory 24
1.6.5 Swapping memory 26

1.7 Sleep and synchronization operations 27
1.8 Cache model 28
1.9 Control register model 28
1.10 Configuration register model 30
1.11 Floating-point model 31

1.11.1 Functions to access SR and FPSCR 31

1.11.2 Functions to model floating-point behavior 32
1.11.3 Floating-point special cases and exceptions 35

1.12 Abstract sequential model 35
1.13 Example instructions 37

1.13.1 Integer add immediate 37
1.13.2 Floating-point single-precision add 38

2 SHmedia instruction set 41

2.1 Alphabetical list of instructions 41
ADD Rm, Rn, Rd 42
ADD.L Rm, Rn, Rd 43
ADDI Rm, imm, Rd 44
ADDI.L Rm, imm, Rd 45
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

v

ADDZ.L Rm, Rn, Rd 46
ALLOCO Rm, disp 47
AND Rm, Rn, Rd 49
ANDC Rm, Rn, Rd 50
ANDI Rm, imm, Rd 51
BEQ Rm, Rn, TRc 52
BEQI Rm, imm, TRc 53
BGE Rm, Rn, TRc 54
BGEU Rm, Rn, TRc 55
BGT Rm, Rn, TRc 56
BGTU Rm, Rn, TRc 57
BLINK TRb, Rd 58
BNE Rm, Rn, TRc 59
BNEI Rm, imm, TRc 60
BRK 61
BYTEREV Rm, Rd 62
CMPEQ Rm, Rn, Rd 63
CMPGT Rm, Rn, Rd 64
CMPGTU Rm, Rn, Rd 65
CMVEQ Rm, Rn, Rw 66
CMVNE Rm, Rn, Rw 67
FABS.D DRg, DRf 68
FABS.S FRg, FRf 69
FADD.D DRg, DRh, DRf 70
FADD.S FRg, FRh, FRf 71
FCMPEQ.D DRg, DRh, Rd 73
FCMPEQ.S FRg, FRh, Rd 74
FCMPGE.D DRg, DRh, Rd 76
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

vi
FCMPGE.S FRg, FRh, Rd 77
FCMPGT.D DRg, DRh, Rd 79
FCMPGT.S FRg, FRh, Rd 80
FCMPUN.D DRg, DRh, Rd 82
FCMPUN.S FRg, FRh, Rd 83
FCNV.DS DRg, FRf 85
FCNV.SD FRg, DRf 86
FCOSA.S FRg, FRf 88
FDIV.D DRg, DRh, DRf 90
FDIV.S FRg, FRh, FRf 91
FGETSCR FRf 94
FIPR.S FVg, FVh, FRf 95
FLD.D Rm, disp, DRf 98
FLD.P Rm, disp, FPf 99
FLD.S Rm, disp, FRf 100
FLDX.D Rm, Rn, DRf 101
FLDX.P Rm, Rn, FPf 102
FLDX.S Rm, Rn, FRf 103
FLOAT.LD FRg, DRf 104
FLOAT.LS FRg, FRf 105
FLOAT.QD DRg, DRf 107
FLOAT.QS DRg, FRf 108
FMAC.S FRg, FRh, FRq 110
FMOV.D DRg, DRf 114
FMOV.DQ DRg, Rd 115
FMOV.LS Rm, FRf 116
FMOV.QD Rm, DRf 117
FMOV.S FRg, FRf 118
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

vii
FMOV.SL FRg, Rd 119
FMUL.D DRg, DRh, DRf 120
FMUL.S FRg, FRh, FRf 121
FNEG.D DRg, DRf 123
FNEG.S FRg, FRf 124
FPUTSCR FRg 125
FSINA.S FRg, FRf 126
FSQRT.D DRg, DRf 128
FSQRT.S FRg, FRf 129
FSRRA.S FRg, FRf 131
FST.D Rm, disp, DRz 133
FST.P Rm, disp, FPz 134
FST.S Rm, disp, FRz 135
FSTX.D Rm, Rn, DRz 136
FSTX.P Rm, Rn, FPz 137
FSTX.S Rm, Rn, FRz 138
FSUB.D DRg, DRh, DRf 139
FSUB.S FRg, FRh, FRf 140
FTRC.DL DRg, FRf 142
FTRC.SL FRg, FRf 143
FTRC.DQ DRg, DRf 145
FTRC.SQ FRg, DRf 146
FTRV.S MTRXg, FVh, FVf 148
GETCFG Rm, disp, Rd 152
GETCON CRk, Rd 153
GETTR TRb, Rd 154
ICBI Rm, disp 155
LD.B Rm, disp, Rd 157
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

viii
LD.L Rm, disp, Rd 158
LD.Q Rm, disp, Rd 160
LD.UB Rm, disp, Rd 162
LD.UW Rm, disp, Rd 163
LD.W Rm, disp, Rd 165
LDHI.L Rm, disp, Rd 167
LDHI.Q Rm, disp, Rd 169
LDLO.L Rm, disp, Rd 172
LDLO.Q Rm, disp, Rd 174
LDX.B Rm, Rn, Rd 177
LDX.L Rm, Rn, Rd 178
LDX.Q Rm, Rn, Rd 179
LDX.UB Rm, Rn, Rd 180
LDX.UW Rm, Rn, Rd 181
LDX.W Rm, Rn, Rd 182
MABS.L Rm, Rd 183
MABS.W Rm, Rd 184
MADD.L Rm, Rn, Rd 185
MADD.W Rm, Rn, Rd 186
MADDS.L Rm, Rn, Rd 187
MADDS.UB Rm, Rn, Rd 188
MADDS.W Rm, Rn, Rd 189
MCMPEQ.B Rm, Rn, Rd 190
MCMPEQ.L Rm, Rn, Rd 191
MCMPEQ.W Rm, Rn, Rd 192
MCMPGT.L Rm, Rn, Rd 193
MCMPGT.UB Rm, Rn, Rd 194
MCMPGT.W Rm, Rn, Rd 195
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

ix
MCMV Rm, Rn, Rw 196
MCNVS.LW Rm, Rn, Rd 197
MCNVS.WB Rm, Rn, Rd 198
MCNVS.WUB Rm, Rn, Rd 199
MEXTR1 Rm, Rn, Rd 200
MEXTR2 Rm, Rn, Rd 201
MEXTR3 Rm, Rn, Rd 202
MEXTR4 Rm, Rn, Rd 203
MEXTR5 Rm, Rn, Rd 204
MEXTR6 Rm, Rn, Rd 205
MEXTR7 Rm, Rn, Rd 206
MMACFX.WL Rm, Rn, Rw 207
MMACNFX.WL Rm, Rn, Rw 209
MMUL.L Rm, Rn, Rd 211
MMUL.W Rm, Rn, Rd 212
MMULFX.L Rm, Rn, Rd 213
MMULFX.W Rm, Rn, Rd 214
MMULFXRP.W Rm, Rn, Rd 215
MMULHI.WL Rm, Rn, Rd 216
MMULLO.WL Rm, Rn, Rd 217
MMULSUM.WQ Rm, Rn, Rw 218
MOVI imm, Rd 219
MPERM.W Rm, Rn, Rd 220
MSAD.UBQ Rm, Rn, Rw 222
MSHALDS.L Rm, Rn, Rd 224
MSHALDS.W Rm, Rn, Rd 225
MSHARD.L Rm, Rn, Rd 226
MSHARD.W Rm, Rn, Rd 227
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

x

MSHARDS.Q Rm, Rn, Rd 228
MSHFHI.B Rm, Rn, Rd 229
MSHFHI.L Rm, Rn, Rd 230
MSHFHI.W Rm, Rn, Rd 231
MSHFLO.B Rm, Rn, Rd 232
MSHFLO.L Rm, Rn, Rd 233
MSHFLO.W Rm, Rn, Rd 234
MSHLLD.L Rm, Rn, Rd 235
MSHLLD.W Rm, Rn, Rd 236
MSHLRD.L Rm, Rn, Rd 237
MSHLRD.W Rm, Rn, Rd 238
MSUB.L Rm, Rn, Rd 239
MSUB.W Rm, Rn, Rd 240
MSUBS.L Rm, Rn, Rd 241
MSUBS.UB Rm, Rn, Rd 242
MSUBS.W Rm, Rn, Rd 243
MULS.L Rm, Rn, Rd 244
MULU.L Rm, Rn, Rd 245
NOP 246
NSB Rm, Rd 247
OCBI Rm, disp 248
OCBP Rm, disp 250
OCBWB Rm, disp 252
OR Rm, Rn, Rd 254
ORI Rm, imm, Rd 255
PREFI Rm, disp 256
PTA label, TRa 257
PTABS Rn, TRa 258
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

xi
PTB label, TRa 259
PTREL Rn, TRa 260
PUTCFG Rm, disp, Ry 261
PUTCON Rm, CRj 262
RTE 263
SHARD Rm, Rn, Rd 264
SHARD.L Rm, Rn, Rd 265
SHARI Rm, imm, Rd 266
SHARI.L Rm, imm, Rd 267
SHLLD Rm, Rn, Rd 268
SHLLD.L Rm, Rn, Rd 269
SHLLI Rm, imm, Rd 270
SHLLI.L Rm, imm, Rd 271
SHLRD Rm, Rn, Rd 272
SHLRD.L Rm, Rn, Rd 273
SHLRI Rm, imm, Rd 274
SHLRI.L Rm, imm, Rd 275
SHORI imm, Rw 276
SLEEP 277
ST.B Rm, disp, Ry 278
ST.L Rm, disp, Ry 279
ST.Q Rm, disp, Ry 280
ST.W Rm, disp, Ry 281
STHI.L Rm, disp, Ry 282
STHI.Q Rm, disp, Ry 284
STLO.L Rm, disp, Ry 287
STLO.Q Rm, disp, Ry 289
STX.B Rm, Rn, Ry 292
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

xii
STX.L Rm, Rn, Ry 293
STX.Q Rm, Rn, Ry 294
STX.W Rm, Rn, Ry 295
SUB Rm, Rn, Rd 296
SUB.L Rm, Rn, Rd 297
SWAP.Q Rm, Rn, Rw 298
SYNCI 299
SYNCO 300
TRAPA Rm 301
XOR Rm, Rn, Rd 302
XORI Rm, imm, Rd 303

A SHmedia instruction encoding 305

A.1 Major formats 305
A.2 Opcode assignment 306
A.3 Reserved bits [0, 3] 307
A.4 Reserved instructions 307
A.5 Reserved operand bits 308
A.6 Floating-point instructions 308
A.7 Minor formats 309
A.8 Major format MND0 310
A.9 Major format MSD6 322
A.10 Major format MSD10 325
A.11 Major format XSD16 326

Index 327
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Preface
This document is part of the SuperH SH-5 CPU core documentation suite detailed
below. Comments on this or other books in the documentation suite should be made
by contacting your local sales office or distributor.

SuperH SH-5 document identification and
control
Each book in the documentation suite carries a unique identifier in the form:

05-CC-nnnnn Vx.x

Where, n is the document number and x.x is the revision.

Whenever making comments on a SuperH SH-5 document the complete
identification 05-CC-1000n Vx.x should be quoted.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

xiv
SuperH SH-5 CPU core documentation suite
The SuperH SH-5 CPU core documentation suite comprises the following volumes:

• SH-5 CPU Core, Volume 1: Architecture (05-CC-10001)

• SH-5 CPU Core, Volume 2: SHmedia (05-CC-10002)

• SH-5 CPU Core, Volume 3: SHcompact (05-CC-10003)

• SH-5 CPU Core, Volume 4: Implementation (05-CC-10004)
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

SuperH, Inc.
05-CC-10002 V1.0
1
SHmedia
specification
1.1 Overview
The behavior of instructions is specified using a simple notational language to
describe the effects of each instruction on the architectural state of the machine.

The language consists of the following features:

• A simple variable and type system.

• Expressions.

• Statements.

• Notation for the architectural state of the machine.

• An abstract sequential model of instruction execution.

These features are described in the following sections. Additional mechanisms are
defined to model memory, control registers, configuration registers, synchronization
instructions, cache instructions and floating-point. The final section gives example
instruction specifications.

Each instruction is described using informal text as well as the formal notational
language. Sometimes it is inappropriate for one of these descriptions to convey the
full semantics. In such cases these two descriptions must be taken together to
constitute the full specification. In the case of an ambiguity or a conflict, the
notational language takes precedence over the text.
SH-5 CPU Core, Volume 2: SHmedia

2 Variables and types
1.2 Variables and types
Variables are used to hold state. The type of a variable determines the set of values
that the variable can take and the available operators to manipulate that variable.

The scalar types are integer, boolean and bit-field. The integer type is the only
arithmetic type provided and obeys standard mathematical properties. Booleans are
used to represent conditions that can be either true or false. Bit-fields are used to
define a bit-accurate representation of a value. Although integers and bit-fields are
distinct types, bit-fields can be read as integer values and written with integer
values using the simple mappings defined in Section 1.2.3: Bit-fields on page 3.

The architectural state of the machine is represented by a set of variables. Each of
these variables has an associated type, which is either a bit-field or an array of
bit-fields. Additional variables are used to hold temporary values. The type of
temporary variables is implicit, and determined by context rather than explicit
declaration. The type of a temporary variable is an integer, a boolean or an array of
these.

1.2.1 Integer

An integer variable can take the value of any mathematical integer. No limits are
imposed on the range of integers supported. Integers obey their standard
mathematical properties. Integer operations do not overflow. The integer operators
are defined so that singularities do not occur. For example, no definition is given to
the result of divide by zero; the operator is simply not available when the divisor is
zero.

The representation of literal integer values is achieved using the following
notations:

• Decimal numbers are represented by the regular expression: {0-9}+

• Hexadecimal numbers are represented by the regular expression: 0x{0-9a-fA-F}+

• Binary numbers are represented by the regular expression: 0b{0-1}+

These notations are standard and map onto integer values in the obvious way.
Underscore characters (‘_’) can be inserted into any of the above literal
representations. These do not change the represented value but can be used as
spacers to aid readability.

The notations allow only zero and positive numbers to be represented directly. A
monadic integer negation operator can subsequently be used to derive a negative
value.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Variables and types 3
1.2.2 Boolean

A boolean variable can take two values:

• Boolean false. The literal representation of boolean false is ‘FALSE’.

• Boolean true. The literal representation of boolean true is ‘TRUE’.

1.2.3 Bit-fields

Bit-fields are provided to define ‘bit-accurate’ storage.

Bit-fields containing arbitrary numbers of bits are supported. A bit-field of b bits
contains bits numbered from 0 (the least significant bit) up to b-1 (the most
significant bit). Each bit can take the value 0 or the value 1. Bit-fields are mapped
to, and from, integers in the usual way. If bit i of a b-bit, bit-field, where i is in [0, b),
is set then it contributes 2i to the integral value of the bit-field. The integral value of
the bit-field as a whole is an integer in the range [0, 2b).

When a bit-field is read, it gives its integral value. When a bit-field is written with
an integral value, the integer must be in the range of values supported by the
bit-field. Typically, the only operations applied directly to bit-fields are conversions
to other types.

1.2.4 Arrays

One-dimensional arrays of the above types are also available. Indexing into an
n-element array A is achieved using the notation A[i] where A is an array of some
type and i is an integer in the range [0, n). This selects the ith. element of the array
A. If i is zero this selects the first entry, and if i is n-1 then this selects the last entry.
The type of the selected element is the base type of the array.

Multi-dimensional arrays are not provided.

1.2.5 Floating point values

Floating-point types and operators are not provided. Instead, the value in a
floating-point register is represented as a bit-field. The organization of the bit-field
is consistent with the IEEE754 format.

When a floating-point register is read, an integral representation of that bit-pattern
is returned. When an integral value is written into a floating-point register, the
value written is the bit-pattern of that integer. Thus, reading and writing is
achieved as bit-pattern transfers, and not by interpreting the bit-patterns as real
numbers.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

4 Expressions
The language does not provide direct means to interpret these bit-patterns as real
numbers. Instead, functions are provided which give the required functionality. For
example, arithmetic on real numbers is represented using a function notation.

1.3 Expressions
Expressions are constructed from monadic operators, dyadic operators and
functions applied to variable and literal values.

There are no defined precedence and associativity rules for the operators.
Parentheses are used to specify the expression unambiguously.

Sub-expressions can be evaluated in any order. If a particular evaluation order is
required, then sub-expressions must be split into separate statements.

1.3.1 Integer arithmetic operators

Since the notation uses straightforward mathematical integers, the set of standard
mathematical operators is available and already defined.

The standard dyadic operators are listed in Table 1.

The standard monadic operators are described in Table 2.

Operation Description

i + j Integer addition

i - j Integer subtraction

i × j Integer multiplication

i / j Integer division

i \ j Integer remainder

Table 1: Standard dyadic operators

Operator Description

- i Integer negation

|i| Integer modulus

Table 2: Standard monadic Operators
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Expressions 5
The division operator truncates towards zero. The remainder operator is consistent
with this. The sign of the result of the remainder operator follows the sign of the
dividend. Division or remainder with a divisor of zero results in a singularity, and
its behavior is not defined.

For a numerator (n) and a denominator (d), the following properties hold where d≠0:

1.3.2 Integer shift operators

The available integer shift operators are listed in Table 3.

The shift operators are defined on integers as follows where b ≥ 0:

Note that right shifting rounds the result towards minus infinity. This contrasts
with division, which rounds towards zero, and is the reason why the right shift
definition is separate for positive and negative n.

n d n d⁄()× n\d()+=

n–() d⁄ n d⁄()– n d–()⁄= =

n–()\d n\d()–=

n\ d–() n\d=

0 n\d() d<≤ where n 0≥ and d 0>

Operation Description

n << b Integer left shift

n >> b Integer right shift

Table 3: Shift operators

n b« n 2
b

×=

n b»
n 2

b
⁄ where n 0≥

n 2
b

1+–() 2
b⁄ where n 0<

�
�
�
�
�

=

SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

6 Expressions
1.3.3 Integer bitwise operators

The available integer bitwise operators are listed in Table 4.

In order to define bitwise operations all integers are considered as having an
infinitely long two’s complement representation. Bit 0 is the least significant bit of
this representation, bit 1 is the next higher bit, and so on. The value of bit b, for all
b such that b ≥ 0, in integer n is given by:

Care must be taken whenever the infinitely long two’s complement representation
of a negative number is constructed. This representation will contain an infinite
number of higher bits with the value 1 representing the sign. Typically, a
subsequent conversion operation is used to discard these upper bits and return the
result back to a finite value.

Bitwise AND (∧), OR (∨), XOR (⊕) and NOT (∼) are defined on integers as follows,
where b takes all values such that b ≥ 0:

Operation Description

i ∧ j Integer bitwise AND

i ∨ j Integer bitwise OR

i ⊕ j Integer bitwise XOR

~ i Integer bitwise NOT

n<b FOR m> Integer field extraction: extract m bits starting at bit b from integer n

n Integer field extraction: extract 1 bit starting at bit b from integer n

Table 4: Bitwise operators

BIT n b,() n 2⁄ b()\2 where n 0≥=

BIT n b,() 1 BIT n 1+()– b,()– where n 0<=

BIT i j∧ b,() BIT i b,() BIT j b,()×=

BIT i j∨ b,() BIT i j∧ b,() BIT i j⊕ b,()+=

BIT i j⊕ b,() BIT i b,() BIT j b,()+()\2=

BIT ~i b,() 1 BIT i b,()–=
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Expressions 7
Note that bitwise NOT of any finite positive i will result in a value containing an
infinite number of higher bits with the value 1 representing the sign.

Bitwise extraction is defined on integers as follows, where b ≥ 0 and m > 0:

The result of n<b FOR m> is an integer in the range [0, 2m).

1.3.4 Relational operators

Relational operators are defined to compare integral values and give a boolean
result.

1.3.5 Boolean operators

Boolean operators are defined to perform logical AND, OR, XOR and NOT. These
operators have boolean sources and result. Additionally, the conversion operator
INT is defined to convert a boolean source into an integer result.

n b FOR m� � n b»() 2
m

1–()∧=

n b� � n b FOR 1� �=

Operation Description

i = j Result is true if i is equal to j, otherwise false

i ≠ j Result is true if i is not equal to j, otherwise false

i < j Result is true if i is less than j, otherwise false

i > j Result is true if i is greater than j, otherwise false

i ≤ j Result is true if i is less than or equal to j, otherwise false

i ≥ j Result is true if i is greater than or equal to j, otherwise false

Table 5: Relational operators

Operation Description

i AND j Result is true if i and j are both true, otherwise false

i OR j Result is true if either/both i and j are true, otherwise false

Table 6: Boolean operators
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

8 Expressions
1.3.6 Single-value functions

In some cases it is inconvenient or inappropriate to describe an expression directly
in the specification language. In these cases a function call is used to reference the
undescribed behavior.

A single-value function evaluates to a single value (the result), which can be used in
an expression. The type of the result value can be determined by the expression
context from which the function is called. There are also multiple-value functions
which evaluate to multiple values. These are only available in an assignment
context, and are described in Section 1.4.2: Assignment on page 14.

Functions can contain side-effects.

Scalar conversions

Two monadic functions are defined to support conversion from finite-precision
signed and unsigned number ranges. For a finite-precision integer representation
containing n bits, the signed number range is [-2n-1, 2n-1) while the unsigned
number range is [0, 2n).

These functions are often used to convert between bit-fields and integer values.

i XOR j Result is true if exactly one of i and j are true, otherwise false

NOT i Result is true if i is false, otherwise false

INT i Result is 0 if i is false, otherwise 1

Operation Description

Table 6: Boolean operators

Function Description

ZeroExtendn(i) Convert integer i to an n-bit 2’s complement unsigned range

SignExtendn(i) Convert integer i to an n-bit 2’s complement signed range

Table 7: Integer range conversion operators
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Expressions 9
These two functions are defined as follows, where n > 0:

For syntactic convenience, conversion functions are also defined for converting an
integer to a single bit and to a 64-bit register. Table 8 shows the additional functions
provided.

Multimedia conversions

Conversion functions are defined to aid the handling of multimedia types.
Multimedia types are held in a packed form within 64-bit registers. The supported
formats are:

• 8 x 8-bit unsigned values, 8 x 8-bit signed values.

• 4 x 16-bit unsigned values, 4 x 16-bit signed values.

• 2 x 32-bit unsigned values, 2 x 32-bit signed values.

Conversions are available to convert from packed integer representations in these
formats to arrays of integer values, and vice versa. The integer array has the same
number of elements as there are values in the multimedia format. For a multimedia
format constructed from n-bit values (where n is 8, 16 or 32), the array will have 64/
n elements.

Operation Description

Bit(i) Convert lowest bit of integer i to a 1-bit unsigned value

This is a convenient notation for i<0>

Register(i) Convert lowest 64 bits of integer i to a 64-bit unsigned value

This is a convenient notation for i<0 FOR 64>

Table 8: Bit and register conversion operators

ZeroExtendn i() i 0 FOR n� �=

SignExtendn i()

i 0 FOR n� � where i n 1–� � 0=

i 0 FOR n 1–()� � 2
n

– where i n 1–� � 1=
�
�
�
�
�

=

SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

10 Expressions
The following conversions are provided from packed integer representations to an
array of integer values:

The conversions are defined as follows, where i takes all values in [0, 64/n):

The following conversion is defined from an array of integer values to a packed
integer representation:

The conversion is defined as follows, where i takes all values in [0, 64/n):

The effect of the second clause in the MultiRegister definition is to define that the
returned integer value is in an unsigned 64-bit range. This ensures that the integer
can be directly assigned to a 64-bit, bit-field.

Operation Description

MultiZeroExtendn(A) Interpret integer A as a 64-bit packed representation, and return an
array of 64/n integers where each element has an n-bit unsigned
integer value (n is 8, 16 or 32)

MultiSignExtendn(A) Interpret integer A as a 64-bit packed representation, and return an
array of 64/n integers where each element has an n-bit signed
integer value (n is 8, 16 or 32)

Table 9: Conversion to multimedia types

Operation Description

MultiRegistern(a) Convert the lowest n bits of each element in the array a of 64/n
integers to a 64-bit packed representation and return as an integer
value (n is 8, 16 or 32)

Table 10: Conversion from multimedia types

MultiZeroExtendn A()() i[] ZeroExtendn A i n×()»()=

MultiSignExtendn A()() i[] SignExtendn A i n×()»()=

MultiRegistern a()()
i n×() FOR n� �

ZeroExtendn a i[]()=

MultiRegistern a()() 64» 0=
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Expressions 11
Saturation

Two monadic functions are defined to support saturation of integers within
representations of finite-precision signed and unsigned number spaces:

These two functions are defined as follows, where n > 0:

Packed byte extraction

Two monadic functions are defined for convenient manipulation of packed byte data:

These two functions are defined as follows, where n is in [0, 8]:

Function Description

UnsignedSaturaten(i) Saturate integer i to an n-bit 2’s complement unsigned range

SignedSaturaten(i) Saturate integer i to an n-bit 2’s complement signed range

Table 11: Integer saturation operators

UnsignedSaturaten i()

0 where i 0<

i where 0 i 2
n

<≤

2
n

1– where 2
n

i≤�
�
�
�
�

=

SignedSaturaten i()

2
n 1–

– where i 2
n 1–

–<

i where 2
n 1–

– i 2
n 1–<≤

2
n 1–

1– where 2
n 1–

i≤�
�
�
�
�
�
�

=

Function Description

LowerBytesn(i) Returns just the lower n (out of 8) bytes of i

UpperBytesn(i) Returns just the upper n (out of 8) bytes of i (without shifting)

Table 12: Integer saturation operators

LowerBytesn i() i 2
n 8×

2
0

–()∧=

UpperBytesn i() i 2
64

2
64 n 8×()–

–()∧=
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

12 Expressions
Floating-point conversions

The specification language manipulates floating-point values as integers containing
the associated IEEE754 bit-pattern. The layout of these bit-patterns is described in
Volume 1, Chapter 3: Data representation. The language does not support a
floating-point type.

Conversion functions are defined to support floating-point. Floating-point values
are held as either scalar values in a single register, or vector values in multiple
registers. The available register formats are:

• One 32-bit value in a single-precision register.

• One 64-bit value in a double-precision register.

• Two 32-bit values in a pair of single-precision registers.

• Four 32-bit values in a four-entry vector of single-precision registers.

• Sixteen 32-bit values in a four-by-four matrix of single-precision registers.

These register formats are mapped onto the same floating-point register file. This
mapping is described in Volume 1, Chapter 2: Architectural state.

Conversions are available to convert between register bit-fields in these formats and
integers or arrays of integers holding the appropriate IEEE754 bit-patterns.

The following conversions are provided to convert from floating-point registers:

Operation Description

FloatValue32(r) Convert a single-precision floating-point register into a 32-bit integer
bit-pattern.

FloatValue64(r) Convert a double-precision floating-point register into a 64-bit integer
bit-pattern.

FloatValuePair32(r) Convert a pair of single-precision floating-point registers into an array of 2 x
32-bit integer bit-patterns.

FloatValueVector32(r) Convert a 4-entry vector of single-precision floating-point registers into an
array of 4 x 32-bit integer bit-patterns.

FloatValueMatrix32(r) Convert a 16-entry matrix of single-precision floating-point registers into an
array of 16 x 32-bit integer bit-patterns.

Table 13: Conversion from floating-point register formats
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Statements 13
The following conversions are provided to convert to floating-point registers:

1.4 Statements
An instruction specification consists of a sequence of statements. These statements
are processed sequentially in order to specify the effect of the instruction on the
architectural state of the machine. The available statements are discussed in this
section.

Each statement has a semi-colon terminator. A sequence of statements can be
aggregated into a statement block using ‘{’ to introduce the block and ‘}’ to terminate
the block. A statement block can be used anywhere that a statement can.

1.4.1 Undefined behavior

The statement:

UNDEFINED();

indicates that the resultant behavior is architecturally undefined.

A particular implementation can choose to specify an implementation-defined
behavior in such cases. It is very likely that any implementation-defined behavior
will vary from implementation to implementation. Exploitation of

Operation Description

FloatRegister32(i) Convert a 32-bit integer bit-pattern into a single-precision
floating-point register.

FloatRegister64(i) Convert a 64-bit integer bit-pattern into a double-precision
floating-point register.

FloatRegisterPair32(a) Convert an array of 2 x 32-bit integer bit-patterns into a pair of
single-precision floating-point registers.

FloatRegisterVector32(a
)

Convert an array of 4 x 32-bit integer bit-patterns into a 4-entry
vector of single-precision floating-point registers.

FloatRegisterMatrix32(a) Convert an array of 16 x 32-bit integer bit-patterns into a 16-entry
matrix of single-precision floating-point registers.

Table 14: Conversion to floating-point register formats
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

14 Statements
implementation-defined behavior should be avoided to allow software to be portable
between implementations.

In cases where architecturally undefined behavior can occur in user mode, the
implementation will ensure that implemented behavior does not break the
protection model. Thus, the implemented behavior will be some execution flow that
is permitted for that user mode thread.

1.4.2 Assignment

The ‘←’ operator is used to denote assignment of an expression to a variable. An
example assignment statement is:

variable ← expression;

The expression can be constructed from variables, literals, operators and functions
as described in Section 1.3: Expressions on page 4. The expression is fully evaluated
before the assignment takes place. The variable can be an integer, a boolean, a
bit-field or an array of one of these types.

Assignment to architectural state

This is where the variable is part of the architectural state (as described in
Table 16: Scalar architectural state on page 18). The type of the expression and the
type of the variable must match.

Assignment to a temporary

Alternatively, if the variable is not part of the architectural state, then it is a
temporary variable. The type of the variable is determined by the type of expression.
A temporary variable must be assigned to, before it is used in the instruction
specification.

Assignment of an undefined value

An assignment of the following form results in a variable being initialized with an
architecturally undefined value:

variable ← UNDEFINED;

After assignment the variable will hold a value which is valid for its type. However,
the value is architecturally undefined. The actual value can be unpredictable; that
is to say the value indicated by UNDEFINED can vary with each use of
UNDEFINED. Architecturally-undefined values can occur in both user and
privileged modes.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Statements 15
A particular implementation can choose to specify an implementation-defined value
in such cases. It is very likely that any implementation-defined values will vary
from implementation to implementation. Exploitation of implementation-defined
values should be avoided to allow software to be portable between implementations.

Assignment of multiple values

Multi-value functions are used to return multiple values, and are only available
when used in a multiple assignment context. The syntax consists of a list of
comma-separated variables, an assignment symbol followed by a function call. The
function is evaluated and returns multiple results into the variables listed. The
number of variables and the number of results of the function must match. The
assigned variables must all be distinct (that is, no aliases).

For example, a two-valued assignment from a function call with 3 parameters can be
represented as:

variable1, variable2 ← call(param1, param2, param3);

1.4.3 Conditional

Conditional behavior is specified using ‘IF’, ‘ELSE IF’ and ‘ELSE’.

Conditions are expressions that result in a boolean value. If the condition after an
‘IF’ is true, then its block of statements is executed and the whole conditional then
completes. If the condition is false, then any ‘ELSE IF’ clauses are processed, in
turn, in the same fashion. If no conditions are met and there is an ‘ELSE’ clause
then its block of statements is executed. Finally, if no conditions are met and there is
no ‘ELSE’ clause, then the statement has no effect apart from the evaluation of the
condition expressions.

The ‘ELSE IF’ and ‘ELSE’ clauses are optional. In ambiguous cases, the ‘ELSE’
matches with the nearest ‘IF’.

For example:

IF (condition1)
block1

ELSE IF (condition2)
block2

ELSE
block3
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

16 Statements
1.4.4 Repetition

Repetitive behavior is specified using the following construct:

REPEAT i FROM m FOR n STEP s
block

The block of statements is iterated n times, with the integer i taking the values:

m, m + s, m + 2s, m + 3s, up to m + (n - 1) × s.

The behavior is equivalent to textually writing the block n times with i being
substituted with the appropriate value in each copy of the block.

The value of n must be greater or equal to 0. The values of the expressions for m, n
and s must be constant across the iteration. The integer i must not be assigned to
within the iterated block. The ‘STEP s’ can be omitted in which case the step-size
takes the default value of 1.

1.4.5 Exceptions

Exception handling is triggered by a THROW statement. When an exception is
thrown, no further statements are executed from the instruction specification and
control passes to an exception handler. The actions associated with the launch of the
handler are not shown in the instruction specification, but are described separately
in Volume 1, Chapter 16: Event handling.

There are two forms of throw statement:

THROW type;

and:

THROW type, value;

where type indicates the type of exception which is launched, and value is an
optional argument to the exception handling sequence.

The set of exceptions used in the instruction specification are shown in Table 15.

Exception name Cause Optional argument

BREAK Break Not required

EXECPROT Execute without permission Faulty instruction address

Table 15: Exception list
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Statements 17
The full set of exceptions is described in Volume 1, Chapter 16: Event handling.

1.4.6 Procedures

Procedure statements contain a procedure name followed by a list of
comma-separated arguments contained within parentheses followed by a
semi-colon. The execution of procedures typically causes side-effects to the
architectural state of the machine.

Procedures are generally used where it is difficult or inappropriate to specify the
effect of an instruction using the abstract execution model. A fuller description of
the effect of the instruction will be given in the surrounding text.

An example procedure with two parameters is:

proc(param1, param2);

FPUDIS FPU is disabled Not required

FPUEXC FPU exception FPSCR value

IADDERR Fetch from a malformed or misaligned
address

Faulty instruction address

ITLBMISS Fetch with no MMU mapping Faulty instruction address

RESINST Reserved instruction or execution of a
privileged instruction in user mode

Not required

RADDERR Read from a malformed or misaligned
address

Faulty data address

RTLBMISS Read with no MMU mapping Faulty data address

READPROT Read without permission Faulty data address

TRAP Trap Trap constant value

WADDERR Write to a malformed or misaligned address Faulty data address

WTLBMISS Write with no MMU mapping Faulty data address

WRITEPROT Write without permission Faulty data address

Exception name Cause Optional argument

Table 15: Exception list
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

18 Architectural state
1.5 Architectural state
The architectural state is described in Volume 1, Chapter 2: Architectural state. The
notations used in the model to refer to this state are summarized in Table 16 and
Table 17. Each item of scalar architectural state is a bit-field of a particular width.
Each item of array architectural state is an array of bit-fields of a particular width.

Architectural state
Type is a bit-field

containing:
Description

MD (SR.MD) 1 bit User (0) or privileged (1) mode

ISA 1 bit SHcompact (0) or SHmedia (1) instruction set

PC 64 bits 64-bit program counter

FPSCR 32 bits 32-bit floating-point status and control
register

Ri where i is in [0, 63] 64 bits 64 x 64-bit general purpose registers

R63 reads as zero; writes to R63 are ignored

TRi where i is in [0, 7] 64 bits 8 x 64-bit target address registers

FRi where i is in [0, 63] 32 bits 64 x 32-bit floating-point registers

DR2i where i is in [0,
31]

64 bits 32 x 64-bit floating-point registers

CRi where i is in [0, 63] 64 bits 64 x 64-bit control registers

Table 16: Scalar architectural state

Architectural state
Type is an array of bit-
fields each containing:

Description

FP2i where i is in [0, 31] 32 bits 32 pairs of 32-bit floating-point registers

FV4i where i is in [0, 15] 32 bits 16 vectors of 4 x 32-bit floating-point registers

MTRX16i where i is in [0, 3] 32 bits 4 matrices of 16 x 32-bit floating-point
registers

Table 17: Array architectural state
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Memory model 19
FR, FP, FV, MTRX and DR provide different views of the same architectural state.

There is no implicit meaning to the value held by the collection of bits in a register.
The interpretation of the register is supplied by each instruction that reads or
writes the register value.

PC denotes the program counter of the currently executing instruction. PC’ denotes
the program counter of the next instruction that is to be executed.

Implemented control registers are also given specific names, and these are listed in
Volume 1, Chapter 9: SHmedia system instructions.

1.6 Memory model
Instruction specification uses a simple model of memory. It assumes, for example,
that any caches have no architectural visibility. For typical well-disciplined
instruction sequences these effects will not be architecturally visible. However, a
fuller description of the behavior in other cases is defined by the text of the
architecture manual.

MEM is an array of bytes indexed by an effective address. Elements in arrays are
selected using array indexing notation: MEM[i] selects the ith. entry in the MEM
array. The total range of array indices into MEM is [0, 264), though not all of this
memory is available on all implementations.

Array slicing can be used to view an array as consisting of elements of a larger size.
The notation MEM[s FOR n], where n > 0, denotes a memory slice containing the
elements MEM[s], MEM[s+1] through to MEM[s+n-1]. The type of this slice is a
bit-field exactly large enough to contain a concatenation of the n selected elements.
In this case it contain 8n bits since the base type of MEM is byte.

MEM[i] where i is in [0, 264) 8 bits 264 bytes of memory

CFG[i] where i is in [0, 264) 64 bits 264 x 64-bit configuration registers

Architectural state
Type is an array of bit-
fields each containing:

Description

Table 17: Array architectural state
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

20 Memory model
The order of the concatenation depends on the endianness of the processor:

• If the processor is operating in a little endian mode, the concatenation order
obeys the following condition as i (the byte number) varies in the range [0, n):

This equivalence states that byte number i, using little endian byte numbering
(that is, byte 0 is bits 0 to 7), in the bit-field MEM[s FOR n] is the ith. byte in
memory counting upwards from MEM[s].

• If the processor is operating in a big endian mode, the concatenation order obeys
the following condition as i (the byte number) varies in the range [0, n):

This equivalence states that byte number i, using big endian byte numbering
(that is, byte 0 is bits 8n-8 to 8n-1), in the bit-field MEM[s FOR n] is the ith. byte
in memory counting upwards from MEM[s].

For syntactic convenience, functions and procedures are provided to read, write and
swap memory. The basic primitives support aligned accesses. Misaligned read and
write primitives support the instructions for misaligned load and store.

Additionally, mechanisms are provided for reading and writing pairs of values. Pair
access requires that each half of the pair is endianness converted separately, and
that the lower half is written into memory at the provided address while the upper
half is written into that address plus the object size. This maintains the ordering of
the halves of the pair as they are transferred between registers and memory. Pair
access is used only for loading and storing pairs of single-precision floating-point
registers (see Volume 1, Chapter 8: SHmedia floating-point).

MEM s FOR n[]() 8i FOR 8� � MEM s i+[]=

MEM s FOR n[]() 8 n 1– i–() FOR 8� � MEM s i+[]=
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Memory model 21
1.6.1 Support functions

The specification of the memory instructions relies on the support functions listed in
Table 18. These functions are used to model the behavior of the memory
management unit described in Volume 1, Chapter 17: Memory management.

More detailed properties of translation miss detection are not modelled here. The
conditions that determine whether an access is a translation miss or a hit depend on
the MMU and cache. There is considerable flexibility in the organization of the
MMU and cache, and this typically involves properties specific to the
implementation. Software is often constructed so that translation miss handling
occurs transparently with respect to program execution.

DataAccessMiss is used to check for the absence of a data translation. This function
is used for all data accesses when the MMU is enabled. Three different functions are

Function Description

MalformedAddress(address
)

Returns true if the provided address is a malformed address
(that is, outside of the implemented part of the effective
address space).

MMU() Returns true if the MMU is enabled.

DataAccessMiss(address) Returns true if the provided address does not have a mapping
for a data access.

InstFetchMiss(address) Returns true if the provided address does not have a mapping
for an instruction fetch.

InstInvalidateMiss(address) Returns true if the provided address does not have a mapping
for an instruction invalidation.

InstPrefetchMiss(address) Returns true if the provided address does not have a mapping
for an instruction prefetch.

ReadProhibited(address) Returns true if the provided address has no read permission
for the current privilege.

WriteProhibited(address) Returns true if the provided address has no write permission
for the current privilege.

ExecuteProhibited(address) Returns true if the provided address has no execute
permission for the current privilege.

IsLittleEndian() Returns true if processor is little endian.

Table 18: Support functions for memory access
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

22 Memory model
used to check for the absence of an instruction translation. InstFetchMiss is used for
instruction fetches, InstInvalidateMiss for instruction invalidations and
InstPrefetchMiss for instruction prefetches. These cases differ in exception
handling:

1 Instruction fetch causes a translation miss when executing an instruction
without a translation.

2 Instruction invalidation (ICBI) causes translation misses on some, but not all,
implementations, depending on the MMU and cache organization (see Volume 1,
Chapter 17: Memory management and Volume 1, Chapter 18: Caches).

3 Instruction prefetch (PREFI) silently drops any translation misses.

1.6.2 Reading memory

Functions are provided to read memory.

The ReadMemoryn function takes an integer parameter to indicate the address
being accessed. The number of bits being read (n) is one of 8, 16, 32 or 64 bits. The
required bytes are read from memory, interpreted according to endianness, and an
integer result returns the read bit-field value. If the read memory value is to be
interpreted as signed, then a sign-extension should be used on the result. The
assignment:

result ← ReadMemoryn(a);

is equivalent to:

width ← n >> 3;
IF (MalformedAddress(a) OR ((a∧ (width-1)) ≠ 0)) THROW RADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW RTLBMISS,a;
IF (MMU() AND ReadProhibited(a)) THROW READPROT,a;
result ← MEM[a FOR width];

Function Description

ReadMemoryn(address) Aligned memory read of an n-bit value

ReadMemoryPairn(address) Aligned memory read of a pair of n-bit values

ReadMemoryLown(address) Misaligned memory read of an n-bit value (address is low byte)

ReadMemoryHighn(address) Misaligned memory read of an n-bit value (address is high byte)

Table 19: Support functions to read memory
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Memory model 23
ReadMemoryPairn reads a pair of n-bit values from memory, and returns the pair as
an array of two integers. The alignment check requires alignment for a 2n-bit
access. The access maintains the ordering of the two halves of the pair, with
endianness applied separately to each half. The assignment:

result ← ReadMemoryPairn(a);

is equivalent to:

width ← n >> 3;
pairwidth ← width << 1;
IF (MalformedAddress(a) OR ((a∧ (pairwidth-1)) ≠ 0))

THROW RADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW RTLBMISS,a;
IF (MMU() AND ReadProhibited(a)) THROW READPROT,a;
result[0] ← MEM[a FOR width];
result[1] ← MEM[a+width FOR width];

ReadMemoryLown and ReadMemoryHighn support misaligned access. In this case,
the width can be any whole number of bytes in the range [1, 8] and there is no
alignment check. The address parameter to ReadMemoryLown is the address of the
lowest byte to be read. The assignment:

result ← ReadMemoryLown(a);

is equivalent to:

width ← n >> 3;
IF (MalformedAddress(a)) THROW RADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW RTLBMISS,a;
IF (MMU() AND ReadProhibited(a)) THROW READPROT,a;
result ← MEM[a FOR width];

The address parameter to ReadMemoryHighn is the address of the highest byte to
be read. The assignment:

result ← ReadMemoryHighn(a);

is equivalent to:

width ← n >> 3;
start ← (a - width) + 1;
IF (MalformedAddress(a)) THROW RADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW RTLBMISS,a;
IF (MMU() AND ReadProhibited(a)) THROW READPROT,a;
result ← MEM[start FOR width];
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

24 Memory model
1.6.3 Prefetching memory

A function is provided to denote memory prefetch.

This is used for a software-directed data prefetch from a specified effective address.
This is a hint to give advance notice that particular data will be required. It is
implementation-specific as to whether a prefetch will be performed.

The statement:

result ← PrefetchMemory(a);

is equivalent to:

IF (NOT MalformedAddress(address))
IF (NOT (MMU() AND DataAccessMiss(address)))

IF (NOT (MMU() AND ReadProhibited(address)))
PREFO(address);

result ← 0;

where PREFO is a cache operation defined in Section 1.8: Cache model on page 28.
This function does not raise exceptions. PrefetchMemory evaluates to zero for
syntactic convenience.

1.6.4 Writing memory

Procedures are provided to write memory.

Function Description

PrefetchMemory(address) Memory prefetch

Table 20: Support procedure to prefetch memory

Function Description

WriteMemoryn(address, value) Aligned memory write to an n-bit value

WriteMemoryPairn(address, value) Aligned memory write to a pair of n-bit values

WriteMemoryLown(address, value) Misaligned memory write to an n-bit value (address is low byte)

WriteMemoryHighn(address, value) Misaligned memory write to an n-bit value (address is high byte)

Table 21: Support procedures to write memory
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Memory model 25
The WriteMemoryn procedure takes an integer parameter to indicate the address
being accessed, followed by an integer parameter containing the value to be written.
The number of bits being written (n) is one of 8, 16, 32 or 64 bits. The written value
is interpreted as a bit-field of the required size; all higher bits of the value are
discarded. The bytes are written to memory, ordered according to endianness. The
statement:

WriteMemoryn(a, value);

is equivalent to:

width ← n >> 3;
IF (MalformedAddress(a) OR ((a∧ (width-1)) ≠ 0)) THROW WADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW WTLBMISS,a;
IF (MMU() AND WriteProhibited(a)) THROW WRITEPROT,a;
MEM[a FOR width] ← value<0 FOR n>;

WriteMemoryPairn writes an array of two integers to memory as a pair of n-bit
values. The alignment check requires alignment for a 2n-bit access. The access
maintains the ordering of the two halves of the pair, with endianness applied
separately to each half. The statement:

WriteMemoryPairn(a, value);

is equivalent to:

width ← n >> 3;
pairwidth ← width << 1;
IF (MalformedAddress(a) OR ((a∧ (pairwidth-1)) ≠ 0))

THROW WADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW WTLBMISS,a;
IF (MMU() AND WriteProhibited(a)) THROW WRITEPROT,a;
MEM[a FOR width] ← (value[0])<0 FOR n>;

MEM[a+width FOR width] ← (value[1])<0 FOR n>;

WriteMemoryLown and WriteMemoryHighn support misaligned access. In this case,
the width can be any whole number of bytes in the range [1, 8] and there is no
alignment check. The address parameter to WriteMemoryLown is the address of the
lowest byte to be written. The statement:

WriteMemoryLown(a, value);

is equivalent to:

width ← n >> 3;
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

26 Memory model
IF (MalformedAddress(a)) THROW WADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW WTLBMISS,a;
IF (MMU() AND WriteProhibited(a)) THROW WRITEPROT,a;
MEM[a FOR width] ← value<0 FOR n>;

The address parameter to WriteMemoryHighn is the address of the highest byte to
be written. The statement:

WriteMemoryHighn(a, value);

is equivalent to:

width ← n >> 3;
start ← (a - width) + 1;
IF (MalformedAddress(a)) THROW WADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW WTLBMISS,a;
IF (MMU() AND WriteProhibited(a)) THROW WRITEPROT,a;
MEM[start FOR width] ← value<0 FOR n>;

1.6.5 Swapping memory

A function is provided to swap values with memory locations.

The SwapMemoryn function takes an integer parameter to indicate the address
being accessed, followed by an integer parameter containing the value to be written
The number of bits being swapped (n) is one of 8, 16, 32 or 64 bits (although not all
of these swap widths are provided by the architecture). The required bytes are read
from memory, interpreted according to endianness, and an integer result returns
the read bit-field value. The written value is interpreted as a bit-field of the required
size; all higher bits of the value are discarded. The bytes are written to memory,
ordered according to endianness.The read and write on memory are performed
atomically with respect to other memory users.

The assignment:

result ← SwapMemoryn(a, value);

is equivalent to:

Function Description

SwapMemoryn(address, value) Aligned memory swap

Table 22: Support function to swap memory
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Sleep and synchronization operations 27
width ← n >> 3;
IF (MalformedAddress(a) OR ((a∧ (width-1)) ≠ 0)) THROW WADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW WTLBMISS,a;
IF (MMU() AND ReadProhibited(a)) THROW READPROT,a;
IF (MMU() AND WriteProhibited(a)) THROW WRITEPROT,a;
result ← MEM[a FOR width];
MEM[a FOR width] ← value<0 FOR n>;

If the read memory value is to be interpreted as a signed value, then a
sign-extending conversion should be used on the result. There are no misaligned nor
pair variants.

1.7 Sleep and synchronization operations
The SLEEP operation is used to enter sleep mode. The SYNCI and SYNCO
operations are used to synchronize the instruction stream and operand data
accesses, respectively. The effects of these operations are beyond the scope of the
specification language, and are therefore modelled using procedure calls. The
behavior of these procedure calls is elaborated in the text of the manual.

Procedure Description

SLEEP() Procedure to enter sleep mode

SYNCI() Procedure to synchronize the instruction stream.

SYNCO() Procedure to synchronize operand data.

Table 23: Procedures to model sleep and synchronization operations
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

28 Cache model
1.8 Cache model
Cache operations are used to allocate, prefetch and cohere lines in caches. The
effects of these operations are beyond the scope of the specification language, and
are therefore modelled using procedure calls. The behavior of these procedure calls
is elaborated in the text of the manual.

1.9 Control register model
The control register file is denoted CR. A function called ReadControlRegister is
provided to read control registers. The assignment:

result ← ReadControlRegister(index);

is equivalent to:

result ← CRindex;

A procedure called WriteControlRegister is provided to write control registers. The
statement:

WriteControlRegister(index, value);

is equivalent to:

CRindex ← value;

Procedure Description

ALLOCO(address) Procedure to allocate an operand cache block

ICBI(address) Procedure to invalidate an instruction cache block.

OCBI(address) Procedure to invalidate an operand cache block.

OCBP(address) Procedure to purge an operand cache block.

OCBWB(address) Procedure to write-back an operand cache block.

PREFI(address) Procedure to prefetch an instruction cache block.

PREFO(address) Procedure to prefetch an operand cache block.

Table 24: Procedures to model cache operations
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Control register model 29
Functions are used in the instruction specifications to determine undefined and
privileged control registers, see Table 25.

Functions are also provided for checking the validity of particular control registers,
see Table 26. The invalid cases are described in Volume 1, Chapter 15: Control
registers.

Function Description

IsUndefinedControlRegister(index) Returns true if the index corresponds to an
undefined control register.

IsPrivilegedControlRegister(index) Returns true if the index corresponds to a privileged
control register, that is, if index is in [0,31].

Table 25: Support functions for control register access

Function Description

IsInvalidPC(spc) Returns true if the value of spc is invalid when
interpreted as a program counter (PC)

IsInvalidSR(ssr) Returns true if the value of ssr is invalid when
interpreted as a status register (SR)

Table 26: Support functions for control register validity checking
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

30 Configuration register model
1.10 Configuration register model
The array of configuration registers is denoted CFG. A function called
ReadConfigurationRegister is provided to read configuration registers. The
assignment:

result ← ReadConfigurationRegister(index);

is equivalent to:

result ← CFG[index];

A procedure called WriteConfigurationRegister is provided to write configuration
registers. The statement:

WriteConfigurationRegister(index, value);

is equivalent to:

CFG[index] ← value;

A function is used in the instruction specifications to determine undefined
configuration registers, see Table 27.

Function Description

IsUndefinedConfigurationRegister(index) Returns true if the index corresponds to an
undefined configuration register.

Table 27: Support functions for configuration register access
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Floating-point model 31
1.11 Floating-point model
The floating-point specification is abstracted using functions to hide the low-level
details. Additional information is provided in a tabular form to describe special and
exceptional cases. Volume 1, Chapter 8: SHmedia floating-point provides a textual
description of floating-point operation.

1.11.1 Functions to access SR and FPSCR

The floating-point instruction specifications use a function notation to access SR
and FPSCR state. The used functions are described in Table 28.

Function Description

FpuIsDisabled(SR) True if SR.FD is 1, otherwise false

FpuFlagI(FPSCR) True if FPSCR.FLAG.I (sticky flag for inexact) is 1, otherwise false

FpuFlagU(FPSCR) True if FPSCR.FLAG.U (sticky flag for underflow) is 1, otherwise false

FpuFlagO(FPSCR) True if FPSCR.FLAG.O (sticky flag for overflow) is 1, otherwise false

FpuFlagZ(FPSCR) True if FPSCR.FLAG.Z (sticky flag for divide by zero) is 1, otherwise false

FpuFlagV(FPSCR) True if FPSCR.FLAG.V (sticky flag for invalid) is 1, otherwise false

FpuCauseI(FPSCR) True if FPSCR.CAUSE.I (cause flag for inexact) is 1, otherwise false

FpuCauseU(FPSCR) True if FPSCR.CAUSE.U (cause flag for underflow) is 1, otherwise false

FpuCauseO(FPSCR) True if FPSCR.CAUSE.O (cause flag for overflow) is 1, otherwise false

FpuCauseZ(FPSCR) True if FPSCR.CAUSE.Z (cause flag for divide by zero) is 1, otherwise false

FpuCauseV(FPSCR) True if FPSCR.CAUSE.V (cause flag for invalid) is 1, otherwise false

FpuCauseE(FPSCR) True if FPSCR.CAUSE.E (cause flag for FPU error) is 1, otherwise false

FpuEnableI(FPSCR) True if FPSCR.ENABLE.I (exception enable for inexact) is 1, otherwise false

FpuEnableU(FPSCR) True if FPSCR.ENABLE.U (exception enable for underflow) is 1, otherwise false

FpuEnableO(FPSCR) True if FPSCR.ENABLE.O (exception enable for overflow) is 1, otherwise false

FpuEnableZ(FPSCR) True if FPSCR.ENABLE.Z (exception enable for divide by zero) is 1, otherwise
false

Table 28: SR and FPSCR access
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

32 Floating-point model
1.11.2 Functions to model floating-point behavior

Functions are used to model almost all of the floating-point behavior. Each function
is associated with a list of results and a list of parameters. The functions
encapsulate the computation associated with the instruction. This includes
handling of input denormalized values, special case detection, exceptional cases and
the floating-point arithmetic.

The following tables summarize the functions used by each instruction. The table
shows how the parameters are interpreted and how the results are computed. The
nth. parameter is denoted as Pn and the nth. result as RESn.

The parameters and results of these functions are all modeled as integer values. For
floating-point parameters and results, these values are integer bit-patterns
representing the IEEE754 formats. Multi-value results are used to return two
results: the computed result and a new value for FPSCR. If the new value of FPSCR
causes an exception to be raised, then the destination register will not be updated
with the computed result.

FpuEnableV(FPSCR) True if FPSCR.ENABLE.V (exception enable for invalid) is 1, otherwise false

Function Description

Table 28: SR and FPSCR access

Instruction Function RES0 RES1 P0, P1 P2

FADD.S FADD_S Single result of (P0 +IEEE754 P1) New FPSCR Single Old FPSCR

FADD.D FADD_D Double result of (P0 +IEEE754 P1) New FPSCR Double Old FPSCR

FSUB.S FSUB_S Single result of (P0 -IEEE754 P1) New FPSCR Single Old FPSCR

FSUB.D FSUB_D Double result of (P0 -IEEE754 P1) New FPSCR Double Old FPSCR

FMUL.S FMUL_S Single result of (P0 ×IEEE754 P1) New FPSCR Single Old FPSCR

FMUL.D FMUL_D Double result of (P0 ×IEEE754 P1) New FPSCR Double Old FPSCR

FDIV.S FDIV_S Single result of (P0 /IEEE754 P1) New FPSCR Single Old FPSCR

FDIV.D FDIV_D Double result of (P0 /IEEE754 P1) New FPSCR Double Old FPSCR

Table 29: Floating-point dyadic arithmetic
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Floating-point model 33
Instruction Function RES0 RES1 P0 P1

FABS.S FABS_S Single result of absolute P0 (not used) Single Old FPSCR

FABS.D FABS_D Double result of absolute P0 (not used) Double Old FPSCR

FNEG.S FNEG_S Single result of negating P0 (not used) Single Old FPSCR

FNEG.D FNEG_D Double result of negating of P0 (not used) Double Old FPSCR

FSQRT.S FSQRT_S Single result of IEEE754√P0 New FPSCR Single Old FPSCR

FSQRT.D FSQRT_D Double result of IEEE754√P0 New FPSCR Double Old FPSCR

Table 30: Floating-point monadic arithmetic

Instruction Function RES0 RES1 P0, P1 P2

FCMPEQ.S FCMPEQ_S Boolean result of (P0 =IEEE754 P1) New FPSCR Single Old FPSCR

FCMPEQ.D FCMPEQ_D Boolean result of (P0 =IEEE754 P1) New FPSCR Double Old FPSCR

FCMPGT.S FCMPGT_S Boolean result of (P0 >IEEE754 P1) New FPSCR Single Old FPSCR

FCMPGT.D FCMPGT_D Boolean result of (P0 >IEEE754 P1) New FPSCR Double Old FPSCR

FCMPGE.S FCMPGE_S Boolean result of (P0 ≥IEEE754 P1) New FPSCR Single Old FPSCR

FCMPGE.D FCMPGE_D Boolean result of (P0 ≥IEEE754 P1) New FPSCR Double Old FPSCR

FCMPUN.S FCMPUN_S Boolean result of (P0 ?IEEE754 P1) New FPSCR Single Old FPSCR

FCMPUN.D FCMPUN_D Boolean result of (P0 ?IEEE754 P1) New FPSCR Double Old FPSCR

Table 31: Floating-point comparisons

Instruction Function RES0 RES1 P0 P1

FCNV.SD FCNV_SD P0 is converted to double result New FPSCR Single Old FPSCR

FCNV.DS FCNV_DS P0 is converted to single result New FPSCR Double Old FPSCR

FTRC.SL FTRC_SL P0 is converted to signed 32-bit
integer result

New FPSCR Single Old FPSCR

Table 32: Floating-point conversions
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

34 Floating-point model
FTRC.DL FTRC_DL P0 is converted to signed 32-bit
integer result

New FPSCR Double Old FPSCR

FTRC.SQ FTRC_SQ P0 is converted to signed 64-bit
integer result

New FPSCR Single Old FPSCR

FTRC.DQ FTRC_DQ P0 is converted to signed 64-bit
integer result

New FPSCR Double Old FPSCR

FLOAT.LS FLOAT_LS P0 is converted to single result New FPSCR 32-bit int Old FPSCR

FLOAT.LD FLOAT_LD P0 is converted to double result New FPSCR 32-bit int Old FPSCR

FLOAT.QS FLOAT_QS P0 is converted to single result New FPSCR 64-bit int Old FPSCR

FLOAT.QD FLOAT_QD P0 is converted to double result New FPSCR 64-bit int Old FPSCR

Instruction Function RES0 RES1 P0, P1, P2 P3

FMAC.S FMAC_S Single result of fused (P0 × P1) + P2 New FPSCR Single Old FPSCR

Table 33: Floating-point multiply-accumulate

Instruction Function RES0 RES1 P0 P1 P2

FIPR.S FIPR_S Single result of inner product
of P0 with P1

New FPSCR Array of 4
singles

Array of
4 singles

Old
FPSCR

FTRV.S FTRV_S Array of 4 single results of
matrix transform of P0 with P1

New FPSCR Array of
16 singles

Array of
4 singles

Old
FPSCR

Table 34: Special-purpose floating-point dyadic arithmetic

Instruction Function RES0 RES1 P0 P1

FCOSA.S FCOSA_S Single result approximating
cosine of P0

New FPSCR 32-bit int Old FPSCR

FSINA.S FSINA_S Single result approximating
sine of P0

New FPSCR 32-bit int Old FPSCR

Table 35: Special-purpose floating-point monadic arithmetic

Instruction Function RES0 RES1 P0 P1

Table 32: Floating-point conversions
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Abstract sequential model 35
1.11.3 Floating-point special cases and exceptions

A special-case table is provided for each floating-point instruction that is considered
an operation and has at least one input that is interpreted as a floating-point value.
This table enumerates all different possible combinations of input values and the
results returned by the instruction in the absence of an exception being raised.

Each cell entry in the table describes the result returned for a particular
combination of floating-point inputs. If the combination of inputs is sufficiently
qualified to indicate a specific result, then its value is quoted in the cell. If they are
not sufficiently qualified, the name of the appropriate operation is entered in the
cell. If the cell contains ‘n/a’ then this indicates that an exception is always raised
for that combination of inputs and that the implementation does not associate any
value with the result.

1.12 Abstract sequential model
Instructions are specified using an abstract sequential model to show the effects of
each instruction on the architectural state of the machine. In this abstract model,
each instruction executes completely sequentially with respect to other instructions.
This means that all actions associated with one instruction are completed before
any actions associated with the next instruction are started.

Implementations will generally make substantial optimizations over this abstract
model. For typical well-disciplined instruction sequences these effects will not be
architecturally visible. However, a fuller description of the behavior in other cases is
defined by the text of the architecture manual.

If ISA is 0, the instruction is executed in SHcompact mode as described in Volume 3
Chapter 1: SHcompact specification. Otherwise, the instruction is executed in
SHmedia mode.

FSRRA.S FSRRA_S Single result approximating
reciprocal square root of P0

New FPSCR Single Old FPSCR

Instruction Function RES0 RES1 P0 P1

Table 35: Special-purpose floating-point monadic arithmetic
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

36 Abstract sequential model
The steps associated with executing each SHmedia instruction are:

1 Check for asynchronous events, such as interrupt or reset, and initiate handling
if required.

2 Check the current program counter (PC) for instruction address exceptions, and
initiate handling if required. Instruction address exceptions include instruction
TLB miss, instruction protection violation and instruction address error.

3 Fetch the instruction bytes from the address in memory, as indicated by the
current PC. For SHmedia, 4 bytes need to be fetched for each instruction.

4 Calculate the default value of the next program counter (PC’) assuming
sequential execution. For SHmedia, PC’ is PC+4.

5 Decode and execute the instruction. This includes checks for synchronous events,
such as exceptions and panics, and initiation of handling if required. The
execution of an instruction can change PC’ to achieve a branch.

6 If the value of PC’ is outside of the implemented part of the effective address
space, then the behavior becomes architecturally undefined.

7 Set the current program counter (PC) to the value of the next program counter
(PC’).

The actions associated with the handling of asynchronous and synchronous events
are described in Volume 1, Chapter 16: Event handling. The actions required by step
5 depend on the instruction, and are specified by the instruction specification for
that instruction. Step 6 specifies the behavior for PC overflow. This is described
further in Volume 1, Chapter 3: Data representation.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Example instructions 37
1.13 Example instructions

1.13.1 Integer add immediate

An example specification for this instruction is shown below.

The top half of this figure shows the assembly syntax and the binary encoding of the
instruction. Particular fields within the encoding are identified by single characters.
The interpretation associated with these characters is given in Chapter 4: SHmedia
instructions on page 57. The opcode field, and any extension field, contain the literal
encoding values associated with that instruction. Reserved fields must be encoded
with the literal value given in the figure. Operand fields contain register
designators or immediate constants.

The lower half of this figure specifies the effects of the execution of the instruction
on the architectural state of the machine. The specification statements are
organized into 3 stages as follows:

1 The first 2 statements read all required source information:

source1 ← SignExtend64(Rm);
imm ← SignExtend10(s);

The first statement reads the value of the Rm register, interprets it as a signed
64-bit integer value and assigns this to a temporary integer called ‘source1’. The
second statement reads the value of s, interprets it as a signed 10-bit integer
value and assigns this to a temporary integer called ‘imm’. The name ‘imm’
corresponds to the name of the immediate used in the assembly syntax.

ADDI Rm, imm, Rd

110100 m s d 0000

31 26 25 20 19 10 9 4 3 0

source1 ← SignExtend64(Rm);
imm ← SignExtend10(s);
result ← source1 + imm;
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

38 Example instructions
2 The next statement implements the addition:

result ← source1 + imm;

This statement does not refer to any architectural state. It adds the 2 integers
‘source1’ and ‘imm’ together, and assigns the result to a temporary integer called
‘result’. Note that since this is a conventional mathematical addition, the result
can contain more significant bits of information than the sources.

3 The final statement updates the architectural state:

Rd ← Register(result);

The integer ‘result’ is converted back to the range of a register value, discarding
any redundant higher bits, and assigned to the Rd register.

1.13.2 Floating-point single-precision add

An example specification for this instruction is shown below.

FADD.S FRg, FRh, FRf

001101 g 0000 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FADD_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Example instructions 39
The specification statements are organized as follows:

1 Read all required source information:

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);

2 Execute the instruction:

IF (FpuIsDisabled(sr))
THROW FPUDIS;

result, fps ← FADD_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;

The behavior of the floating-point single-precision addition is modelled by the
FADD_S procedure. This procedure is given the two source operands and the
current value of FPSCR, and calculates the result and the new value of FPSCR.
It is responsible for detecting special cases and exceptions, and setting the result
and new FPSCR values accordingly.

This instruction contains exception cases. These are detected by IF statements
and are raised by THROW statements. When a THROW statement is executed,
no further statements from the specification are processed. Note that when an
exception is detected the specification makes no updates to the architectural
state. Instead, a handler is launched for the exception as described in Volume 1,
Chapter 16: Event handling. The THROW statement includes arguments to
specify the kind of exception and any necessary parameters for that exception.
For an FPUEXC exception, the THROW statement includes an updated value of
‘fps’ which the exception handler uses to initialize FPSCR during the launch
sequence.

3 Update the architectural state:

FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

40 Example instructions
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

SuperH, Inc.
05-CC-10002 V1.0
2
SHmedia
instruction
set

2.1 Alphabetical list of instructions
SH-5 CPU Core, Volume 2: SHmedia

42 Alphabetical list of instructions
ADD Rm, Rn, Rd

Description:

This instruction adds Rm to Rn and places the result in Rd.

ADD Rm, Rn, Rd

000000 m 1001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
result ← source1 + source2;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 43
ADD.L Rm, Rn, Rd

Description:

This instruction adds the lowest 32 bits of Rm to the lowest 32 bits of Rn and places
the sign-extended 32-bit result in Rd. The highest 32 bits of Rm and the highest 32
bits of Rn are ignored.

ADD.L Rm, Rn, Rd

000000 m 1000 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend32(Rm);
source2 ← SignExtend32(Rn);
result ← SignExtend32(source1 + source2);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

44 Alphabetical list of instructions
ADDI Rm, imm, Rd

Description:

This instruction adds Rm to the sign-extended 10-bit immediate s and places the
result in Rd.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after sign extension.

ADDI Rm, imm, Rd

110100 m s d 0000

31 26 25 20 19 10 9 4 3 0

source1 ← SignExtend64(Rm);
imm ← SignExtend10(s);
result ← source1 + imm;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 45
ADDI.L Rm, imm, Rd

Description:

This instruction adds the lowest 32 bits of Rm to the sign-extended 10-bit immediate
s, and places the sign-extended 32-bit result in Rd. The highest 32 bits of Rm are
ignored.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after sign extension.

ADDI.L Rm, imm, Rd

110101 m s d 0000

31 26 25 20 19 10 9 4 3 0

source1 ← SignExtend32(Rm);
imm ← SignExtend10(s);
result ← SignExtend32(source1 + imm);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

46 Alphabetical list of instructions
ADDZ.L Rm, Rn, Rd

Description:

This instruction adds the lowest 32 bits of Rm to the lowest 32 bits of Rn and places
the zero-extended 32-bit result in Rd. The highest 32 bits of Rm and the highest 32
bits of Rn are ignored.

ADDZ.L Rm, Rn, Rd

000000 m 1100 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend32(Rm);
source2 ← ZeroExtend32(Rn);
result ← ZeroExtend32(source1 + source2);
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 47
ALLOCO Rm, disp

Description:

This instruction is used to request allocation of an operand cache block for a
specified effective address. It provides a hint to the implementation that it is not
necessary to retrieve the data of this operand cache block from memory. It is
implementation-specific as to whether the memory access will occur.

The effective address is calculated by adding Rm to the sign-extended 6-bit
immediate s multiplied by 32.The scaling factor is fixed at 32 regardless of the cache
block size. There is no misalignment check on this instruction, and the calculated
effective address can be any byte address. The calculated effective address is
automatically aligned downwards to the nearest exact multiple of the cache block
size. The effective address identifies a surrounding block of memory, which starts at
an address aligned to the cache block size and has a size equal to the cache block
size. The cache block size is implementation dependent.

ALLOCO checks for address error, translation miss and protection exception cases.

The value of each location in the memory block targeted by an ALLOCO becomes
architecturally undefined. Programs must not rely on these values. For
compatibility with other implementations, software must exercise care when using
ALLOCO.

ALLOCO Rm, disp

111000 m 0100 s 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s) << 5;
address ← ZeroExtend64(base + disp);
IF (MalformedAddress(address))

THROW WADDERR, address;
IF (MMU() AND DataAccessMiss(address))

THROW WTLBMISS, address;
IF (MMU() AND WriteProhibited(address))

THROW WRITEPROT, address;
ALLOCO(address);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

48 Alphabetical list of instructions
Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 49
AND Rm, Rn, Rd

Description:

This instruction performs a bitwise AND of Rm with Rn and places the result in Rd.

AND Rm, Rn, Rd

000001 m 1011 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
result ← source1 ∧ source2;
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

50 Alphabetical list of instructions
ANDC Rm, Rn, Rd

Description:

This instruction performs a bitwise AND of Rm with the bitwise NOT of Rn and
places the result in Rd.

ANDC Rm, Rn, Rd

000001 m 1111 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
result ← source1 ∧ (~ source2);
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 51
ANDI Rm, imm, Rd

Description:

This instruction performs a bitwise AND of Rm with the sign-extended 10-bit
immediate s and places the result in Rd.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after sign extension.

ANDI Rm, imm, Rd

110110 m s d 0000

31 26 25 20 19 10 9 4 3 0

source1 ← SignExtend64(Rm);
imm ← SignExtend10(s);
result ← source1 ∧ imm;
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

52 Alphabetical list of instructions
BEQ Rm, Rn, TRc

Description:

This instruction copies the value of the target address held in TRc to the PC if the
value in Rm equals the value in Rn. The lowest 2 bits of the target address are
masked to zero in this copy.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that the branch will be taken. This bit is encoded as 1 if the
instruction mnemonic is ‘BEQ’ or ‘BEQ/L’, or as 0 if the mnemonic is ‘BEQ/U’.

BEQ Rm, Rn, TRc

011001 m 0001 n l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

newpc ← ZeroExtend64(PC’);
source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
target ← ZeroExtend64(TRc);
IF (source1 = source2)

newpc ← target ∧ (~ 0x3);
PC’ ← Register(newpc);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 53
BEQI Rm, imm, TRc

Description:

This instruction copies the value of the target address held in TRc to the PC if Rm
equals the sign-extended 6-bit immediate s. The lowest 2 bits of the target address
are masked to zero in this copy.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that the branch will be taken. This bit is encoded as 1 if the
instruction mnemonic is ‘BEQI’ or ‘BEQI/L’, or as 0 if the mnemonic is ‘BEQI/U’.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after sign extension.

BEQI Rm, imm, TRc

111001 m 0001 s l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

newpc ← ZeroExtend64(PC’);
source1 ← SignExtend64(Rm);
imm ← SignExtend6(s);
target ← ZeroExtend64(TRc);
IF (source1 = imm)

newpc ← target ∧ (~ 0x3);
PC’ ← Register(newpc);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

54 Alphabetical list of instructions
BGE Rm, Rn, TRc

Description:

This instruction copies the value of the target address held in TRc to the PC if the
signed value in Rm is greater than or equal to the signed value in Rn. The lowest 2
bits of the target address are masked to zero in this copy.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that the branch will be taken. This bit is encoded as 1 if the
instruction mnemonic is ‘BGE’ or ‘BGE/L’, or as 0 if the mnemonic is ‘BGE/U’.

BGE Rm, Rn, TRc

011001 m 0011 n l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

newpc ← ZeroExtend64(PC’);
source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
target ← ZeroExtend64(TRc);
IF (source1 ≥ source2)

newpc ← target ∧ (~ 0x3);
PC’ ← Register(newpc);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 55
BGEU Rm, Rn, TRc

Description:

This instruction copies the value of the target address held in TRc to the PC if the
unsigned value in Rm is greater than or equal to the unsigned value in Rn. The
lowest 2 bits of the target address are masked to zero in this copy.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that the branch will be taken. This bit is encoded as 1 if the
instruction mnemonic is ‘BGEU’ or ‘BGEU/L’, or as 0 if the mnemonic is ‘BGEU/U’.

BGEU Rm, Rn, TRc

011001 m 1011 n l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

newpc ← ZeroExtend64(PC’);
source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
target ← ZeroExtend64(TRc);
IF (source1 ≥ source2)

newpc ← target ∧ (~ 0x3);
PC’ ← Register(newpc);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

56 Alphabetical list of instructions
BGT Rm, Rn, TRc

Description:

This instruction copies the value of the target address held in TRc to the PC if the
signed value in Rm is greater than the signed value in Rn. The lowest 2 bits of the
target address are masked to zero in this copy.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that the branch will be taken. This bit is encoded as 1 if the
instruction mnemonic is ‘BGT’ or ‘BGT/L’, or as 0 if the mnemonic is ‘BGT/U’.

BGT Rm, Rn, TRc

011001 m 0111 n l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

newpc ← ZeroExtend64(PC’);
source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
target ← ZeroExtend64(TRc);
IF (source1 > source2)

newpc ← target ∧ (~ 0x3);
PC’ ← Register(newpc);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 57
BGTU Rm, Rn, TRc

Description:

This instruction copies the value of the target address held in TRc to the PC if the
unsigned value in Rm is greater than the unsigned value in Rn. The lowest 2 bits of
the target address are masked to zero in this copy.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that the branch will be taken. This bit is encoded as 1 if the
instruction mnemonic is ‘BGTU’ or ‘BGTU/L’, or as 0 if the mnemonic is ‘BGTU/U’.

BGTU Rm, Rn, TRc

011001 m 1111 n l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

newpc ← ZeroExtend64(PC’);
source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
target ← ZeroExtend64(TRc);
IF (source1 > source2)

newpc ← target ∧ (~ 0x3);
PC’ ← Register(newpc);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

58 Alphabetical list of instructions
BLINK TRb, Rd

Description:

This instruction reads the target address held in TRb, clears the least significant bit,
and copies this value to the PC. Bit 0 of TRb gives the new value of the ISA mode for
the next instruction (0 indicates SHcompact and 1 indicates SHmedia). The address
of the following instruction, with the lowest bit set to 1 to indicate SHmedia, is
placed in Rd.

BLINK calculates PC+4 to determine the address of the following instruction and it
is possible for this calculation to give a malformed address. The value placed in Rd
will then be architecturally undefined. This case corresponds to program counter
overflow as described in Volume 1, Chapter 3: Data representation. When program
counter overflow occurs for any instruction, the behavior becomes architecturally
undefined. For BLINK the setting of Rd to an architecturally undefined value is one
aspect of this architecturally undefined behavior, but further undefined behavior is
also possible.

BLINK TRb, Rd

010001 000 b 0001 111111 d 0000

31 26 25 23 22 20 19 16 15 10 9 4 3 0

pc ← ZeroExtend64(PC);
isa ← ZeroExtend1(ISA);
target ← ZeroExtend64(TRb);
address ← pc + 4;
IF (MalformedAddress(address))

link ← UNDEFINED;
ELSE

link ← address + isa;
isa ← target ∧ 0x1;
newpc ← target ∧ (~ 0x1);
Rd ← Register(link);
PC’ ← Register(newpc);
ISA ← Bit(isa);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 59
BNE Rm, Rn, TRc

Description:

This instruction copies the value of the target address held in TRc to the PC if the
value in Rm does not equal the value in Rn. The lowest 2 bits of the target address
are masked to zero in this copy.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that the branch will be taken. This bit is encoded as 1 if the
instruction mnemonic is ‘BNE’ or ‘BNE/L’, or as 0 if the mnemonic is ‘BNE/U’.

BNE Rm, Rn, TRc

011001 m 0101 n l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

newpc ← ZeroExtend64(PC’);
source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
target ← ZeroExtend64(TRc);
IF (source1 ≠ source2)

newpc ← target ∧ (~ 0x3);
PC’ ← Register(newpc);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

60 Alphabetical list of instructions
BNEI Rm, imm, TRc

Description:

This instruction copies the value of the target address held in TRc to the PC if Rm
does not equal the sign-extended 6-bit immediate s. The lowest 2 bits of the target
address are masked to zero in this copy.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that the branch will be taken. This bit is encoded as 1 if the
instruction mnemonic is ‘BNEI’ or ‘BNEI/L’, or as 0 if the mnemonic is ‘BNEI/U’.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after sign extension.

BNEI Rm, imm, TRc

111001 m 0101 s l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

newpc ← ZeroExtend64(PC’);
source1 ← SignExtend64(Rm);
imm ← SignExtend6(s);
target ← ZeroExtend64(TRc);
IF (source1 ≠ imm)

newpc ← target ∧ (~ 0x3);
PC’ ← Register(newpc);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 61
BRK

Description:

This instruction causes a pre-execution break exception. The BRK instruction is
typically reserved for use by the debugger.

Possible exceptions:

BREAK

BRK

011011 111111 0101 111111 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

THROW BREAK;
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

62 Alphabetical list of instructions
BYTEREV Rm, Rd

Description:

This instruction reverses the 8 bytes contained in Rm and places the result in Rd.

BYTEREV Rm, Rd

000000 m 1111 111111 d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← ZeroExtend64(Rm);
result ← 0;
REPEAT i FROM 0 FOR 8
{

result ← (result << 8) ∨ (source ∧ 0xff);
source ← source >> 8;

}
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 63
CMPEQ Rm, Rn, Rd

Description:

This instruction sets Rd to 1 if the value of Rm is equal to the value of Rn, otherwise
it sets Rd to 0.

CMPEQ Rm, Rn, Rd

000000 m 0001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
result ← INT (source1 = source2);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

64 Alphabetical list of instructions
CMPGT Rm, Rn, Rd

Description:

This instruction sets Rd to 1 if the signed value of Rm is greater than the signed
value of Rn, otherwise it sets Rd to 0.

CMPGT Rm, Rn, Rd

000000 m 0011 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
result ← INT (source1 > source2);
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 65
CMPGTU Rm, Rn, Rd

Description:

This instruction sets Rd to 1 if the unsigned value of Rm is greater than the unsigned
value of Rn, otherwise it sets Rd to 0.

CMPGTU Rm, Rn, Rd

000000 m 0111 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
result ← INT (source1 > source2);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

66 Alphabetical list of instructions
CMVEQ Rm, Rn, Rw

Description:

This instruction copies Rn to Rw if the value of Rm is 0, otherwise Rw is not changed.

The mnemonic CMVEQ stands for a ‘Conditional MoVe if EQual to zero’.

CMVEQ Rm, Rn, Rw

001000 m 0001 n w 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
source3_result ← ZeroExtend64(Rw);
IF (source1 = 0)

source3_result ← source2;
Rw ← Register(source3_result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 67
CMVNE Rm, Rn, Rw

Description:

This instruction copies Rn to Rw if the value of Rm is not 0, otherwise Rw is not
changed.

The mnemonic CMVEQ stands for a ‘Conditional MoVe if Not EQual to zero’.

CMVNE Rm, Rn, Rw

001000 m 0101 n w 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
source3_result ← ZeroExtend64(Rw);
IF (source1 ≠ 0)

source3_result ← source2;
Rw ← Register(source3_result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

68 Alphabetical list of instructions
FABS.D DRg, DRf

Description:

This floating-point instruction computes the absolute value of a double-precision
floating-point number. It reads DRg, clears the sign bit and places the result in DRf.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FABS.D DRg, DRf

000110 g 0001 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← FABS_D(source);
DRf ← FloatRegister64(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 69
FABS.S FRg, FRf

Description:

This floating-point instruction computes the absolute value of a single-precision
floating-point number. It reads FRg, clears the sign bit and places the result in FRf.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FABS.S FRg, FRf

000110 g 0000 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← FABS_S(source);
FRf ← FloatRegister32(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

70 Alphabetical list of instructions
FADD.D DRg, DRh, DRf

Description:

This floating-point instruction performs a double-precision floating-point addition.
It adds DRg to DRh and places the result in DRf. The rounding mode is determined
by FPSCR.RM.

Possible exceptions:

FPUDIS, FPUEXC

FADD.D DRg, DRh, DRf

001101 g 0001 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue64(DRg);
source2 ← FloatValue64(DRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FADD_D(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 71
FADD.S FRg, FRh, FRf

Description:

This floating-point instruction performs a single-precision floating-point addition. It
adds FRg to FRh and places the result in FRf. The rounding mode is determined by
FPSCR.RM.

Possible exceptions:

FPUDIS, FPUEXC

FADD.S FRg, FRh, FRf

001101 g 0000 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FADD_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

72 Alphabetical list of instructions
FADD.S and FADD.D special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
the inputs are differently signed infinities.

3 Error: an FPU error is signaled if FPSCR.DN is 0, neither input is a NaN and
either input is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested
by the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘ADD’ case is described by the IEEE754 specification.

source1 →
↓ source2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM
-DNRM

qNaN sNaN

+,-NORM ADD source2 source2 +INF -INF n/a qNaN qNaN

+0 source1 +0 +0 +INF -INF n/a qNaN qNaN

-0 source1 +0 -0 +INF -INF n/a qNaN qNaN

+INF +INF +INF +INF +INF qNaN n/a qNaN qNaN

-INF -INF -INF -INF qNaN -INF n/a qNaN qNaN

+, -DNRM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 73
FCMPEQ.D DRg, DRh, Rd

Description:

This floating-point instruction performs a double-precision floating-point equality
comparison. It sets Rd to 1 if DRg is equal to DRh, and otherwise sets Rd to 0.

Possible exceptions:

FPUDIS, FPUEXC

FCMPEQ.D DRg, DRh, Rd

001100 g 1001 h d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue64(DRg);
source2 ← FloatValue64(DRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCMPEQ_D(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
Rd ← Register(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

74 Alphabetical list of instructions
FCMPEQ.S FRg, FRh, Rd

Description:

This floating-point instruction performs a single-precision floating-point equality
comparison. It sets Rd to 1 if FRg is equal to FRh, and otherwise sets Rd to 0.

Possible exceptions:

FPUDIS, FPUEXC

FCMPEQ.S FRg, FRh, Rd

001100 g 1000 h d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCMPEQ_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
Rd ← Register(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 75
FCMPEQ.S and FCMPEQ.D special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘CMPEQ’ case is described by the IEEE754 specification.

source1 →
↓ source2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM CMPEQ false false false false false false false

+0 false true true false false false false false

-0 false true true false false false false false

+INF false false false true false false false false

-INF false false false false true false false false

+, -DNRM false false false false false CMPEQ false false

qNaN false false false false false false false false

sNaN false false false false false false false false
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

76 Alphabetical list of instructions
FCMPGE.D DRg, DRh, Rd

Description:

This floating-point instruction performs a double-precision floating-point
greater-than-or-equal-to comparison. It sets Rd to 1 if DRg is greater than or equal to
DRh, and otherwise sets Rd to 0.

Possible exceptions:

FPUDIS, FPUEXC

FCMPGE.D DRg, DRh, Rd

001100 g 1111 h d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue64(DRg);
source2 ← FloatValue64(DRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCMPGE_D(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
Rd ← Register(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 77
FCMPGE.S FRg, FRh, Rd

Description:

This floating-point instruction performs a single-precision floating-point
greater-than-or-equal-to comparison. It sets Rd to 1 if FRg is greater than or equal to
FRh, and otherwise sets Rd to 0.

Possible exceptions:

FPUDIS, FPUEXC

FCMPGE.S FRg, FRh, Rd

001100 g 1110 h d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCMPGE_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
Rd ← Register(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

78 Alphabetical list of instructions
FCMPGE.S and FCMPGE.D special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a NaN.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘CMPGE’ case is described by the IEEE754 specification.

source1 →
↓ source2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM CMPGE CMPGE CMPGE true false CMPGE false false

+0 CMPGE true false true false CMPGE false false

-0 CMPGE true true true false CMPGE false false

+INF false false false true false false false false

-INF true true true true true true false false

+, -DNRM CMPGE CMPGE CMPGE true false CMPGE false false

qNaN false false false false false false false false

sNaN false false false false false false false false
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 79
FCMPGT.D DRg, DRh, Rd

Description:

This floating-point instruction performs a double-precision floating-point
greater-than comparison. It sets Rd to 1 if DRg is greater than DRh, and otherwise
sets Rd to 0.

Possible exceptions:

FPUDIS, FPUEXC

FCMPGT.D DRg, DRh, Rd

001100 g 1101 h d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue64(DRg);
source2 ← FloatValue64(DRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCMPGT_D(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
Rd ← Register(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

80 Alphabetical list of instructions
FCMPGT.S FRg, FRh, Rd

Description:

This floating-point instruction performs a single-precision floating-point
greater-than comparison. It sets Rd to 1 if FRg is greater than FRh, and otherwise
sets Rd to 0.

Possible exceptions:

FPUDIS, FPUEXC

FCMPGT.S FRg, FRh, Rd

001100 g 1100 h d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCMPGT_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
Rd ← Register(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 81
FCMPGT.S and FCMPGT.D special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a NaN.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘CMPGT’ case is described by the IEEE754 specification.

source1 →
↓ source2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM CMPGT CMPGT CMPGT true false CMPGT false false

+0 CMPGT false false true false CMPGT false false

-0 CMPGT true false true false CMPGT false false

+INF false false false false false false false false

-INF true true true true false true false false

+, -DNRM CMPGT CMPGT CMPGT true false CMPGT false false

qNaN false false false false false false false false

sNaN false false false false false false false false
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

82 Alphabetical list of instructions
FCMPUN.D DRg, DRh, Rd

Description:

This floating-point instruction performs a double-precision floating-point unordered
comparison. It sets Rd to 1 if DRg is unordered with respect to DRh, and otherwise
sets Rd to 0.

Possible exceptions:

FPUDIS, FPUEXC

FCMPUN.D DRg, DRh, Rd

001100 g 1011 h d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue64(DRg);
source2 ← FloatValue64(DRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCMPUN_D(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
Rd ← Register(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 83
FCMPUN.S FRg, FRh, Rd

Description:

This floating-point instruction performs a single-precision floating-point unordered
comparison. It sets Rd to 1 if FRg is unordered with respect to FRh, and otherwise
sets Rd to 0.

Possible exceptions:

FPUDIS, FPUEXC

FCMPUN.S FRg, FRh, Rd

001100 g 1010 h d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCMPUN_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
Rd ← Register(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

84 Alphabetical list of instructions
FCMPUN.S and FCMPUN.D special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

source1 →
↓ source2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM false false false false false false true true

+0 false false false false false false true true

-0 false false false false false false true true

+INF false false false false false false true true

-INF false false false false false false true true

+, -DNRM false false false false false false true true

qNaN true true true true true true true true

sNaN true true true true true true true true
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 85
FCNV.DS DRg, FRf

Description:

This floating-point instruction performs a double-precision to single-precision
floating-point conversion. It reads a double-precision value from DRg, converts it to
single-precision and places the result in FRf. The rounding mode is determined by
FPSCR.RM.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FCNV.DS DRg, FRf

001110 g 0111 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCNV_DS(source, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

86 Alphabetical list of instructions
FCNV.SD FRg, DRf

Description:

This floating-point instruction performs a single-precision to double-precision
floating-point conversion. It reads a single-precision value from FRg, converts it to
double-precision and places the result in DRf. FPSCR.RM has no effect since the
conversion is exact.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FCNV.SD FRg, DRf

001110 g 0110 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCNV_SD(source, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 87
FCNV.SD and FCNV.DS special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the input is a signaling NaN.

3 Error: an FPU error is signaled if FPSCR.DN is 0 and the input is a denormal-
ized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. These cases occur for FCNV.DS but not for FCNV.SD. When
inexact, underflow or overflow exceptions are requested by the user, an exception
is always raised for FCNV.DS regardless of whether that condition arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘CNV’ case is described by the IEEE754 specification.

source1 → +NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

CNV +0 -0 +INF -INF n/a qNaN qNaN
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

88 Alphabetical list of instructions
FCOSA.S FRg, FRf

Description:

This floating-point instruction computes the cosine of an angle held in FRg and
places the result in FRf. The input angle is the amount of rotation expressed as a
signed fixed-point number in a 2’s complement representation. The value 1
represents an angle of 360o/216. The upper 16 bits indicate the number of full
rotations and the lower 16 bits indicate the remainder angle between 0o and 360o.
The result is the cosine of the angle in single-precision floating-point format.

This is an approximate computation. The specified error in the result value is:

spec_error = 2-21.

Both source operands must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FCOSA.S FRg, FRf

000110 g 1100 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FCOSA_S(source, fps);
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 89
FCOSA.S special cases:

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Inexact: this is an approximate instruction and inexact is always signaled. When
inexact exceptions are requested by the user, an exception is always raised
regardless of whether that condition arose. Overflow and underflow do not occur.

If the instruction does not raise an exception, the instruction computes an
approximate result using an implementation-dependent algorithm.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

90 Alphabetical list of instructions
FDIV.D DRg, DRh, DRf

Description:

This floating-point instruction performs a double-precision floating-point division. It
divides DRg by DRh and places the result in DRf. The rounding mode is determined
by FPSCR.RM.

Possible exceptions:

FPUDIS, FPUEXC

FDIV.D DRg, DRh, DRf

001101 g 0101 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue64(DRg);
source2 ← FloatValue64(DRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FDIV_D(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuEnableZ(fps) AND FpuCauseZ(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 91
FDIV.S FRg, FRh, FRf

Description:

This floating-point instruction performs a single-precision floating-point division. It
divides FRg by FRh and places the result in FRf. The rounding mode is determined
by FPSCR.RM.

Possible exceptions:

FPUDIS, FPUEXC

FDIV.S FRg, FRh, FRf

001101 g 0100 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FDIV_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuEnableZ(fps) AND FpuCauseZ(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

92 Alphabetical list of instructions
FDIV.S and FDIV.D special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
the division is of a zero by a zero, or of an infinity by an infinity.

3 Divide-by-zero: a divide-by-zero is signaled if the divisor is zero and the dividend
is a finite non-zero number.

4 Error: an FPU error is signaled if FPSCR.DN is 0, neither input is a NaN and
either of the following conditions is true: the divisor is a denormalized number,
or the dividend is a denormalized number and the divisor is not a zero.

5 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested
by the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated as follows:

source1 →
↓ source2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM DIV +0, -0 -0, +0 +INF, -INF -INF, +INF n/a qNaN qNaN

+0 +INF, -INF qNaN qNaN +INF -INF +INF, -INF qNaN qNaN

-0 -INF, +INF qNaN qNaN -INF +INF -INF, +INF qNaN qNaN

+INF +0, -0 +0 -0 qNaN qNaN n/a qNaN qNaN

-INF -0, +0 -0 +0 qNaN qNaN n/a qNaN qNaN

+, -DNRM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 93
FPU error is indicated by heavy shading and always raises an exception. Invalid
operations and divide-by-zero are indicated by light shading and raise an exception
if enabled. FPU disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘DIV’ case is described by the IEEE754 specification.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

94 Alphabetical list of instructions
FGETSCR FRf

Description:

This floating-point instruction copies FPSCR to FRf.

Possible exceptions:

FPUDIS

FGETSCR FRf

000111 111111 0010 111111 f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← fps;
FRf ← FloatRegister32(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 95
FIPR.S FVg, FVh, FRf

Description:

This floating-point instruction computes the dot-product of two vectors, FVg and
FVh, and places the result in FRf. Each vector contains four single-precision
floating-point values. The dot-product is specified as:

FRf =

This is an approximate computation. The specified error in the result value is
defined in Volume 1, Chapter 8: SHmedia floating-point.

Possible exceptions:

FPUDIS, FPUEXC

FIPR.S FVg, FVh, FVf

000101 g 0110 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValueVector32(FVg);
source2 ← FloatValueVector32(FVh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FIPR_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);

FRg i+ FRh i+×

i 0=

3

�

SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

96 Alphabetical list of instructions
FIPR.S special cases:

FIPR.S is an approximate instruction. Denormalized numbers are supported:

• When FPSCR.DN is 0, denormalized numbers are treated as their denormalized
value in the FIPR.S calculation. This instruction never signals an FPU error.

• When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied
before exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if any of the following arise:

• Any of the inputs is a signaling NaN.

• Multiplication of a zero by an infinity.

• Addition of differently signed infinities where none of the inputs is a qNaN.

The multiplication is performed with sufficient precision to avoid overflow, and
therefore the multiplication of any two finite numbers does not produce an
infinity. The multiplication result will be an infinity only if there is a
multiplication of an infinity with a normalized number, an infinity with a
denormalized number or an infinity with an infinity.

The addition of differently signed infinities is detected if there is (at least) one
positive infinity and (at least) one negative infinity in the set of 4 multiplication
results.

3 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. This is an approximate instruction and inexact is signaled
except where special cases occur. Precise details of the approximate inner-prod-
uct algorithm, including the detection of underflow and overflow cases, are
implementation dependent. When inexact, underflow or overflow exceptions are
requested by the user, an exception is always raised regardless of whether that
condition arose.

If the instruction does not raise an exception, a result is generated according to the
following tables. Where the behavior is not a special case, the instruction computes
an approximate result using an implementation-dependent algorithm. In the
following tables, invalid operations are indicated by light shading and raise an
exception if enabled. FPU disabled, inexact, underflow and overflow cases are not
shown. Inexact is signaled in the ‘FIPRADD’ case.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 97
Each of the 4 pairs of multiplication operands (source1 and source2) is selected from
corresponding elements of the two 4-element source vectors and multiplied:

If any of the multiplications evaluates to qNaN, then the result of the instruction is
qNaN and no further analysis need be performed. In the ‘FIPRMUL’, +0, -0, +INF
and -INF cases, the 4 addition operands (labeled temp0 to temp3) are summed:

source1 →
↓ source2

+,-NORM,
+,-DNRM

+0 -0 +INF -INF qNaN sNaN

+,-NORM and +,-DNRM FIPRMUL +0, -0 -0, +0 +INF, -INF -INF, +INF qNaN qNaN

+0 +0, -0 +0 -0 qNaN qNaN qNaN qNaN

-0 -0, +0 -0 +0 qNaN qNaN qNaN qNaN

+INF +INF, -INF qNaN qNaN +INF -INF qNaN qNaN

-INF -INF, +INF qNaN qNaN -INF +INF qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

temp0 → FIPRMUL, +0, -0 +INF -INF

↓ temp2
temp1→
↓ temp3

FIPRMUL,
+0, -0

+INF -INF FIPRMUL,
+0, -0

+INF -INF FIPRMUL,
+0, -0

+INF -INF

FIPRMUL,
+0, -0

FIPRMUL,
+0, -0

FIPRADD +INF -INF +INF +INF qNaN -INF qNaN -INF

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF FIPRMUL,
+0, -0

+INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF FIPRMUL,
+0, -0

-INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

98 Alphabetical list of instructions
FLD.D Rm, disp, DRf

Description:

This floating-point instruction loads a double-precision floating-point register from
memory using register plus scaled immediate addressing. The effective address is
formed by multiplying the sign-extended 10-bit immediate s by 8, and adding it to
Rm. The 64 bits read from this effective address are loaded into DRf.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.

FLD.D Rm, disp, DRf

100111 m s f 0000

31 26 25 20 19 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 3;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + disp);
result ← FloatValue64(ReadMemory64(address));
DRf ← FloatRegister64(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 99
FLD.P Rm, disp, FPf

Description:

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register plus scaled immediate addressing. The
effective address (EA) is formed by multiplying the sign-extended 10-bit immediate
s by 8, and adding it to Rm. The 64 bits of data read from this effective address are
loaded into FPf as a pair of single-precision floating-point values. The 32 bits of data
read from EA are placed in FRf, and the 32 bits of data read from EA+4 are placed in
FRf+1.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling. The memory representation of pairs of single-precision floating-point
registers is defined in Volume 1, Chapter 3: Data representation.

FLD.P Rm, disp, FPf

100110 m s f 0000

31 26 25 20 19 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 3;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + disp);
result ← ReadMemoryPair32(address);
FPf ← FloatRegisterPair32(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

100 Alphabetical list of instructions
FLD.S Rm, disp, FRf

Description:

This floating-point instruction loads a single-precision floating-point register from
memory using register plus scaled immediate addressing. The effective address is
formed by multiplying the sign-extended 10-bit immediate s by 4, and adding it to
Rm. The 32 bits read from this effective address are loaded into FRf.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.

FLD.S Rm, disp, FRf

100101 m s f 0000

31 26 25 20 19 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 2;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + disp);
result ← FloatValue32(ReadMemory32(address));
FRf ← FloatRegister32(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 101
FLDX.D Rm, Rn, DRf

Description:

This floating-point instruction loads a double-precision floating-point register from
memory using register plus register addressing. The effective address is formed by
adding Rm to Rn. The 64 bits read from this effective address are loaded into DRf.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, RADDERR, RTLBMISS, READPROT

FLDX.D Rm, Rn, DRf

000111 m 1001 n f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + index);
result ← FloatValue64(ReadMemory64(address));
DRf ← FloatRegister64(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

102 Alphabetical list of instructions
FLDX.P Rm, Rn, FPf

Description:

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register plus register addressing. The effective address
(EA) is formed by adding Rm to Rn. The 64 bits of data read from this effective
address are loaded into FPf as a pair of single-precision floating-point values. The 32
bits of data read from EA are placed in FRf, and the 32 bits of data read from EA+4
are placed in FRf+1.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, RADDERR, RTLBMISS, READPROT

Notes:

The memory representation of pairs of single-precision floating-point registers is
defined in Volume 1, Chapter 3: Data representation.

FLDX.P Rm, Rn, FPf

000111 m 1101 n f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + index);
result ← ReadMemoryPair32(address);
FPf ← FloatRegisterPair32(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 103
FLDX.S Rm, Rn, FRf

Description:

This floating-point instruction loads a single-precision floating-point register from
memory using register plus register addressing. The effective address is formed by
adding Rm to Rn. The 32 bits read from this effective address are loaded into FRf.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, RADDERR, RTLBMISS, READPROT

FLDX.S Rm, Rn, FRf

000111 m 1000 n f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + index);
result ← FloatValue32(ReadMemory32(address));
FRf ← FloatRegister32(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

104 Alphabetical list of instructions
FLOAT.LD FRg, DRf

Description:

This floating-point instruction performs a signed 32-bit integer to double-precision
floating-point conversion. It reads a signed 32-bit integer value from FRg, converts it
to a double-precision range and places the result in DRf. In all cases the provided
integer value will be exactly represented in the destination floating-point format.
FPSCR.RM has no effect since the conversion is exact.

If the required source value is held in the general-purpose register file, it is
necessary to move it to the floating-point register file before the conversion.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FLOAT.LD FRg, DRf

001110 g 1110 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FLOAT_LD(source, fps);
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 105
FLOAT.LS FRg, FRf

Description:

This floating-point instruction performs a signed 32-bit integer to single-precision
floating-point conversion. It reads a signed 32-bit integer value from FRg, converts it
to a single-precision range and places the result in FRf. In cases where the integer
value cannot be exactly represented in the destination floating-point format, the
rounding mode is determined by FPSCR.RM.

If the required source value is held in the general-purpose register file, it is
necessary to move it to the floating-point register file before the conversion.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FLOAT.LS FRg, FRf

001110 g 1100 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FLOAT_LS(source, fps);
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

106 Alphabetical list of instructions
FLOAT.LS and FLOAT.LD special cases:

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Inexact: inexact can occur for FLOAT.LS but not for FLOAT.LD. When inexact
exceptions are requested by the user, an exception is always raised for
FLOAT.LS regardless of whether that condition arose. Overflow and underflow
do not occur for either of these instructions.

If the instruction does not raise an exception, the conversion is performed as
indicated by the IEEE754 specification.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 107
FLOAT.QD DRg, DRf

Description:

This floating-point instruction performs a signed 64-bit integer to double-precision
floating-point conversion. It reads a signed 64-bit integer value from DRg, converts
it to a double-precision range and places the result in DRf. In cases where the
integer value cannot be exactly represented in the destination floating-point format,
the rounding mode is determined by FPSCR.RM.

If the required source value is held in the general-purpose register file, it is
necessary to move it to the floating-point register file before the conversion.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FLOAT.QD DRg, DRf

001110 g 1101 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FLOAT_QD(source, fps);
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

108 Alphabetical list of instructions
FLOAT.QS DRg, FRf

Description:

This floating-point instruction performs a signed 64-bit integer to single-precision
floating-point conversion. It reads a signed 64-bit integer value from DRg, converts
it to a single-precision range and places the result in FRf. In cases where the integer
value cannot be exactly represented in the destination floating-point format, the
rounding mode is determined by FPSCR.RM.

If the required source value is held in the general-purpose register file, it is
necessary to move it to the floating-point register file before the conversion.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FLOAT.QS DRg, FRf

001110 g 1111 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FLOAT_QS(source, fps);
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 109
FLOAT.QS and FLOAT.QD special cases:

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Inexact: inexact can occur for both of these instructions.When inexact exceptions
are requested by the user, an exception is always raised regardless of whether
that condition arose. Overflow and underflow do not occur.

If the instruction does not raise an exception, the conversion is performed as
indicated by the IEEE754 specification.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

110 Alphabetical list of instructions
FMAC.S FRg, FRh, FRq

Description:

This floating-point instruction performs a single-precision floating-point
multiply-accumulate. It multiplies FRg by FRh, adds this intermediate to FRq and
places the result in FRq.

The multiplication and addition are performed as if the exponent and precision
ranges were unbounded, followed by one rounding down to single-precision format.
The rounding mode is determined by FPSCR.RM.

Possible exceptions:

FPUDIS, FPUEXC

FMAC.S FRg, FRh, FRq

001101 g 1110 h q 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
source3_result ← FloatValue32(FRq);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
source3_result, fps ← FMAC_S(source1, source2, source3_result, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRq ← FloatRegister32(source3_result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 111
FMAC.S special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if any of the three inputs is a signaling
NaN, there is a multiplication of a zero by an infinity, or there is an addition of
differently signed infinities.

The multiplication is performed with sufficient precision to avoid overflow, and
therefore the multiplication of any two finite numbers does not produce an
infinity. The multiplication result will be an infinity only if there is a
multiplication of an infinity with a normalized number, an infinity with a
denormalized number or an infinity with an infinity.

3 Error: an FPU error is signaled if FPSCR.DN is 0 and none of the inputs are a
NaN and at least one of the inputs is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. The multiply-accumulate is implemented using a fused-mac
algorithm, and these are detected during the conversion of the exactly evaluated
intermediate to the single-precision result. When inexact, underflow or overflow
exceptions are requested by the user, an exception is always raised regardless of
whether that condition arose.

If the instruction does not raise an exception, a result is generated according to the
following tables. In these tables, FPU error is indicated by heavy shading and
always raises an exception. Invalid operations are indicated by light shading and
raise an exception if enabled. FPU disabled, inexact, underflow and overflow cases
are not shown.

Firstly, the operands are checked for sNaN:

source1 → other sNaN

source2 →
↓ source3_result

other sNaN other sNaN

other qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

112 Alphabetical list of instructions
If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, source1 and source2 are checked for a zero multiplied by an infinity:

If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, the operands are checked for input qNaN values:

By this stage all operations involving sNaN or qNaN operands have been dealt with.
If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, the operands are checked for the addition of differently signed
infinities:

↓ source2, source1 → other +0 -0 +INF -INF

other

+0 qNaN qNaN

-0 qNaN qNaN

+INF qNaN qNaN

-INF qNaN qNaN

source1 → other qNaN

↓ source3_result, source2 → other qNaN other qNaN

other qNaN qNaN qNaN

qNaN qNaN qNaN qNaN qNaN

source1 → +other -other +INF -INF

source2 →
↓ source3_result

+
ot

he
r

-o
th

er

+
IN

F

-I
N

F

+
ot

he
r

-o
th

er

+
IN

F

-I
N

F

+
ot

he
r

-o
th

er

+
IN

F

-I
N

F

+
ot

he
r

-o
th

er

+
IN

F

-I
N

F
+other, -other

+INF

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

-INF

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 113
If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, source1 and source2 are multiplied:

The empty cells in this table correspond to cases that have already been dealt with.
If either source is denormalized, no further analysis is performed. In the
‘FULLMUL’ case, a multiplication is performed without loss of precision. There is no
rounding nor overflow, and this multiplication cannot produce an intermediate
infinity.

In the ‘FULLMUL’, +0, -0, +INF and -INF cases, the 2 addition operands
(source1*source2 and source3_result) are summed:

The two empty cells in this table correspond to cases that have already been dealt
with. In the ‘FULLADD’ cases the fully-precise addition intermediate is rounded to
give a single-precision result.

source1 →
↓ source2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

+,-NORM FULLMUL +0, -0 -0, +0 +INF, -INF -INF, +INF n/a

+0 +0, -0 +0 -0 n/a

-0 -0, +0 -0 +0 n/a

+INF +INF, -INF +INF -INF n/a

-INF -INF, +INF -INF +INF n/a

+, -DNRM n/a n/a n/a n/a n/a n/a

(source1*source2)→
↓ source3_result

FULLMUL +0 -0 +INF -INF

+,-NORM FULLADD source3_result source3_result +INF -INF

+0 FULLADD +0 +0 +INF -INF

-0 FULLADD +0 -0 +INF -INF

+INF +INF +INF +INF +INF

-INF -INF -INF -INF -INF

+, -DNRM n/a n/a n/a n/a n/a
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

114 Alphabetical list of instructions
FMOV.D DRg, DRf

Description:

This floating-point instruction reads a double-precision floating-point value from
DRg and copies it to DRf. This is a bit-by-bit copy with no interpretation or
conversion of the value.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FMOV.D DRg, DRf

001110 g 0001 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← source;
DRf ← FloatRegister64(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 115
FMOV.DQ DRg, Rd

Description:

This floating-point instruction reads a double-precision floating-point value from
DRg and copies it to Rd. This is a bit-by-bit copy with no interpretation or conversion
of the value. The lower 32 bits of Rd will hold the lower 32 bits of DRg (also known as
FRg+1), and the upper 32 bits of Rd will hold the upper 32 bits of DRg (also known as
FRg).

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FMOV.DQ DRg, Rd

001100 g 0001 g d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← source;
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

116 Alphabetical list of instructions
FMOV.LS Rm, FRf

Description:

This floating-point instruction reads the lower 32 bits of Rd and copies that bit-value
to the single-precision floating-point register FRf. This is a bit-by-bit copy with no
interpretation or conversion of the value. FRf will hold the lower 32 bits of Rm, while
the upper 32 bits of Rm are ignored.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Possible exceptions:

FPUDIS

FMOV.LS Rm, FRf

000111 m 0000 111111 f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← SignExtend32(Rm);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← source;
FRf ← FloatRegister32(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 117
FMOV.QD Rm, DRf

Description:

This floating-point instruction reads all 64 bits of Rd and copies that bit-value to the
double-precision floating-point register DRf. This is a bit-by-bit copy with no
interpretation or conversion of the value. The lower 32 bits of DRf (also known as
FRf+1) will hold the lower 32 bits of Rm, and the upper 32 bits of DRf (also known as
FRf) will hold the upper 32 bits of Rm.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Possible exceptions:

FPUDIS

FMOV.QD Rm, DRf

000111 m 0001 111111 f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← SignExtend64(Rm);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← source;
DRf ← FloatRegister64(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

118 Alphabetical list of instructions
FMOV.S FRg, FRf

Description:

This floating-point instruction reads a single-precision floating-point value from
FRg and copies it to FRf. This is a bit-by-bit copy with no interpretation or
conversion of the value.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FMOV.S FRg, FRf

001110 g 0000 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← source;
FRf ← FloatRegister32(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 119
FMOV.SL FRg, Rd

Description:

This floating-point instruction reads a single-precision floating-point value from
FRg and copies it to Rd. This is a bit-by-bit copy with no interpretation or conversion
of the value. The lower 32 bits of Rd will hold the bit-value of FRg, and the upper 32
bits of Rd will be sign extensions of Rd’s 31st. bit.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FMOV.SL FRg, Rd

001100 g 0000 g d 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← SignExtend32(source);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

120 Alphabetical list of instructions
FMUL.D DRg, DRh, DRf

Description:

This floating-point instruction performs a double-precision floating-point
multiplication. It multiplies DRg by DRh and places the result in DRf. The rounding
mode is determined by FPSCR.RM.

Possible exceptions:

FPUDIS, FPUEXC

FMUL.D DRg, DRh, DRf

001101 g 0111 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue64(DRg);
source2 ← FloatValue64(DRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FMUL_D(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 121
FMUL.S FRg, FRh, FRf

Description:

This floating-point instruction performs a single-precision floating-point
multiplication. It multiplies FRg by FRh and places the result in FRf. The rounding
mode is determined by FPSCR.RM.

Possible exceptions:

FPUDIS, FPUEXC

FMUL.S FRg, FRh, FRf

001101 g 0110 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FMUL_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

122 Alphabetical list of instructions
FMUL.S and FMUL.D special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
this is a multiplication of a zero by an infinity.

3 Error: an FPU error is signaled if FPSCR.DN is 0, neither input is a NaN and
either input is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested
by the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘MUL’ case is described by the IEEE754 specification.

source1 →
↓ source2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM MUL +0, -0 -0, +0 +INF, -INF -INF, +INF n/a qNaN qNaN

+0 +0, -0 +0 -0 qNaN qNaN n/a qNaN qNaN

-0 -0, +0 -0 +0 qNaN qNaN n/a qNaN qNaN

+INF +INF, -INF qNaN qNaN +INF -INF n/a qNaN qNaN

-INF -INF, +INF qNaN qNaN -INF +INF n/a qNaN qNaN

+, -DNRM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 123
FNEG.D DRg, DRf

Description:

This floating-point instruction computes the negated value of a double-precision
floating-point number. It reads DRg, inverts the sign bit and places the result in
DRf.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FNEG.D DRg, DRf

000110 g 0011 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← FNEG_D(source);
DRf ← FloatRegister64(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

124 Alphabetical list of instructions
FNEG.S FRg, FRf

Description:

This floating-point instruction computes the negated value of a single-precision
floating-point number. It reads FRg, inverts the sign bit and places the result in FRf.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases associated with this
instruction.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FNEG.S FRg, FRf

000110 g 0010 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result ← FNEG_S(source);
FRf ← FloatRegister32(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 125
FPUTSCR FRg

Description:

This floating-point instruction copies FRg to FPSCR. This setting of FPSCR does not
cause any floating-point exceptional conditions to be signaled.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS

FPUTSCR FRg

001100 g 0010 g 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fps ← source;
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

126 Alphabetical list of instructions
FSINA.S FRg, FRf

Description:

This floating-point instruction computes the sine of an angle held in FRg and places
the result in FRf. The input angle is the amount of rotation expressed as a signed
fixed-point number in a 2’s complement representation. The value 1 represents an
angle of 360o/216. The upper 16 bits indicate the number of full rotations and the
lower 16 bits indicate the remainder angle between 0o and 360o. The result is the
sine of the angle in single-precision floating-point format.

This is an approximate computation. The specified error in the result value is:

spec_error = 2-21.

Both source operands must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FSINA.S FRg, FRf

000110 g 1000 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FSINA_S(source, fps);
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 127
FSINA.S special cases:

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Inexact: this is an approximate instruction and inexact is always signaled. When
inexact exceptions are requested by the user, an exception is always raised
regardless of whether that condition arose. Overflow and underflow do not occur.

If the instruction does not raise an exception, the instruction computes an
approximate result using an implementation-dependent algorithm.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

128 Alphabetical list of instructions
FSQRT.D DRg, DRf

Description:

This floating-point instruction performs a double-precision floating-point square
root. It extracts the square root of DRg and places the result in DRf. The rounding
mode is determined by FPSCR.RM.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FSQRT.D DRg, DRf

001110 g 0101 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FSQRT_D(source, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 129
FSQRT.S FRg, FRf

Description:

This floating-point instruction performs a single-precision floating-point square
root. It extracts the square root of FRg and places the result in FRf. The rounding
mode is determined by FPSCR.RM.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FSQRT.S FRg, FRf

001110 g 0100 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FSQRT_S(source, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

130 Alphabetical list of instructions
FSQRT.S and FSQRT.D special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the input is a signaling NaN, or if this
is a square root of a number less than zero (including negative infinity and nega-
tive normalized/denormalized numbers, but excluding negative zero).

3 Error: an FPU error is signaled if FPSCR.DN is 0 and the input is a positive
denormalized number.

4 Inexact: only inexact is checked. When inexact exceptions are requested by the
user, an exception is always raised regardless of whether that condition arose.
Overflow and underflow do not occur.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled and inexact cases are not shown.

The behavior of the normal ‘SQRT’ case is described by the IEEE754 specification.

source1 → +NORM -NORM +0 -0 +INF -INF +DNRM -DNRM qNaN sNaN

SQRT qNaN +0 -0 +INF qNaN n/a qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 131
FSRRA.S FRg, FRf

Description:

This floating-point instruction computes the reciprocal of the square root of the
value held in FRg and places the result in FRf. This is an approximate computation.
The specified error in the result value is:

spec_error = 2E-21

where E = unbiased exponent value of result.

Both source operands must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FSRRA.S FRg, FRf

000110 g 1010 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FSRRA_S(source, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuEnableZ(fps) AND FpuCauseZ(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

132 Alphabetical list of instructions
FSRRA.S special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the input is a signaling NaN, or if this
is a reciprocal square root of a number less than zero (including negative infinity
and negative normalized/denormalized numbers, but excluding negative zero).

3 Divide-by-zero: a divide-by-zero is signaled if this is a reciprocal square root of
zero (regardless of the sign of the zero).

4 Error: an FPU error is signaled if FPSCR.DN is 0 and the input is a positive
denormalized number.

5 Inexact: this is an approximate instruction and inexact is signaled if this is a
reciprocal square root of a positive normalized non-zero finite number. Inexact is
not signaled if the input is a negative normalized number, a zero, an infinity, a
denormalized number or a NaN. When inexact exceptions are requested by the
user, an exception is always raised regardless of whether that condition arose.
Overflow and underflow do not occur.

If the instruction does not raise an exception, a result is generated according to the
following table. Where the behavior is not a special case, the instruction computes
an approximate result using an implementation-dependent algorithm.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations and divide-by-zero are indicated by light shading and raise an exception
if enabled. FPU disabled and inexact cases are not shown.

The normal ‘SRRA’ case uses an implementation-specific algorithm to calculate an
approximation of the reciprocal square root of source1.

source1 → +NORM -NORM +0 -0 +INF -INF +DNRM -DNRM qNaN sNaN

SRRA qNaN +INF -INF +0 qNaN n/a qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 133
FST.D Rm, disp, DRz

Description:

This floating-point instruction stores a double-precision floating-point register to
memory using register plus scaled immediate addressing. The effective address is
formed by multiplying the sign-extended 10-bit immediate s by 8, and adding it to
Rm. The 64-bit value of DRz is written to this effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.

FST.D Rm, disp, DRz

101111 m s z 0000

31 26 25 20 19 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 3;
value ← FloatValue64(DRz);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + disp);
WriteMemory64(address, value);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

134 Alphabetical list of instructions
FST.P Rm, disp, FPz

Description:

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register plus scaled immediate addressing. The effective
address (EA) is formed by multiplying the sign-extended 10-bit immediate s by 8,
and adding it to Rm. The 64 bits of data in FPz are written to the effective address as
a pair of single-precision floating-point values. The 32 bits of data written to EA are
from FRf, and the 32 bits of data written to EA+4 are from FRf+1.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.

The memory representation of pairs of single-precision floating-point registers is
defined in Volume 1, Chapter 3: Data representation.

FST.P Rm, disp, FPz

101110 m s z 0000

31 26 25 20 19 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 3;
value ← FloatValuePair32(FPz);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + disp);
WriteMemoryPair32(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 135
FST.S Rm, disp, FRz

Description:

This floating-point instruction stores a single-precision floating-point register to
memory using register plus scaled immediate addressing. The effective address is
formed by multiplying the sign-extended 10-bit immediate s by 4, and adding it to
Rm. The 32-bit value of FRz is written to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.

FST.S Rm, disp, FRz

101101 m s z 0000

31 26 25 20 19 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 2;
value ← FloatValue32(FRz);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + disp);
WriteMemory32(address, value);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

136 Alphabetical list of instructions
FSTX.D Rm, Rn, DRz

Description:

This floating-point instruction stores a double-precision floating-point register to
memory using register plus register addressing. The effective address is formed by
adding Rm to Rn. The 64-bit value of DRz is written to this effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, WADDERR, WTLBMISS, WRITEPROT

FSTX.D Rm, Rn, DRz

001111 m 1001 n z 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
value ← FloatValue64(DRz);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + index);
WriteMemory64(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 137
FSTX.P Rm, Rn, FPz

Description:

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register plus register addressing. The effective address
(EA) is formed by adding Rm to Rn. The 64 bits of data in FPz are written to the
effective address as a pair of single-precision floating-point values. The 32 bits of
data written to EA are from FRf, and the 32 bits of data written to EA+4 are from
FRf+1.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, WADDERR, WTLBMISS, WRITEPROT

Notes:

The memory representation of pairs of single-precision floating-point registers is
defined in Volume 1, Chapter 3: Data representation.

FSTX.P Rm, Rn, FPz

001111 m 1101 n z 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
value ← FloatValuePair32(FPz);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + index);
WriteMemoryPair32(address, value);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

138 Alphabetical list of instructions
FSTX.S Rm, Rn, FRz

Description:

This floating-point instruction stores a single-precision floating-point register to
memory using register plus register addressing. The effective address is formed by
adding Rm to Rn. The 32-bit value of FRz is written to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. This instruction places no interpretation on the value
transferred.

Possible exceptions:

FPUDIS, WADDERR, WTLBMISS, WRITEPROT

FSTX.S Rm, Rn, FRz

001111 m 1000 n z 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
value ← FloatValue32(FRz);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend64(base + index);
WriteMemory32(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 139
FSUB.D DRg, DRh, DRf

Description:

This floating-point instruction performs a double-precision floating-point
subtraction. It subtracts DRh from DRg and places the result in DRf. The rounding
mode is determined by FPSCR.RM.

Possible exceptions:

FPUDIS, FPUEXC

FSUB.D DRg, DRh, DRf

001101 g 0011 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue64(DRg);
source2 ← FloatValue64(DRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FSUB_D(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

140 Alphabetical list of instructions
FSUB.S FRg, FRh, FRf

Description:

This floating-point instruction performs a single-precision floating-point
subtraction. It subtracts FRh from FRg and places the result in FRf. The rounding
mode is determined by FPSCR.RM.

Possible exceptions:

FPUDIS, FPUEXC

FSUB.S FRg, FRh, FRf

001101 g 0010 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValue32(FRg);
source2 ← FloatValue32(FRh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FSUB_S(source1, source2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 141
FSUB.S and FSUB.D special cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
the inputs are similarly signed infinities.

3 Error: an FPU error is signaled if FPSCR.DN is 0, neither input is a NaN and
either input is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested
by the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘SUB’ case is described by the IEEE754 specification.

source1 →
↓ source2

+NORM,
-NORM

+0 -0 +INF -INF +DNRM,
-DNRM

qNaN sNaN

+,-NORM SUB SUB SUB +INF -INF n/a qNaN qNaN

+0 source1 +0 -0 +INF -INF n/a qNaN qNaN

-0 source1 +0 +0 +INF -INF n/a qNaN qNaN

+INF -INF -INF -INF qNaN -INF n/a qNaN qNaN

-INF +INF +INF +INF +INF qNaN n/a qNaN qNaN

+, -DNRM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

142 Alphabetical list of instructions
FTRC.DL DRg, FRf

Description:

This floating-point instruction performs a double-precision floating-point to signed
32-bit integer conversion. It reads a double-precision value from DRg, converts it to
a signed 32-bit integral range and places the result in FRf. The conversion is
achieved by rounding to zero (truncation) with saturation to the limits of the target
signed integral range. The value of FPSCR.RM is ignored.

In order to perform integer operations on the result, it needs to be subsequently
moved to the general-purpose register file.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FTRC.DL DRg, FRf

001110 g 1011 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FTRC_DL(source, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 143
FTRC.SL FRg, FRf

Description:

This floating-point instruction performs a single-precision floating-point to signed
32-bit integer conversion. It reads a single-precision value from FRg, converts it to a
signed 32-bit integral range and places the result in FRf. The conversion is achieved
by rounding to zero (truncation) with saturation to the limits of the target signed
integral range. The value of FPSCR.RM is ignored.

In order to perform integer operations on the result, it needs to be subsequently
moved to the general-purpose register file.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FTRC.SL FRg, FRf

001110 g 1000 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FTRC_SL(source, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FRf ← FloatRegister32(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

144 Alphabetical list of instructions
FTRC.SL and FTRC.DL special cases:

Regardless of FPSCR.DN, denormalized numbers are treated as 0. These
instructions do not cause FPU Error.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the conversion overflows the target
range. This is caused by out-of-range normalized numbers, infinities and NaNs.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘TRC’ case is described by the IEEE754 specification,
though only the round to zero rounding mode is supported by this instruction.

source1 → +NORM,
-NORM
(in range)

+0 -0 +INF or
+NORM
(out of range)

-INF or
-NORM
(out of range)

+DNRM,
-DNRM

qNaN sNaN

TRC 0 0 +231 - 1 -231 0 -231 -231
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 145
FTRC.DQ DRg, DRf

Description:

This floating-point instruction performs a double-precision floating-point to signed
64-bit integer conversion. It reads a double-precision value from DRg, converts it to
a signed 64-bit integral range and places the result in DRf. The conversion is
achieved by rounding to zero (truncation) with saturation to the limits of the target
signed integral range. The value of FPSCR.RM is ignored.

In order to perform integer operations on the result, it needs to be subsequently
moved to the general-purpose register file.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FTRC.DQ DRg, DRf

001110 g 1001 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue64(DRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FTRC_DQ(source, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

146 Alphabetical list of instructions
FTRC.SQ FRg, DRf

Description:

This floating-point instruction performs a single-precision floating-point to signed
64-bit integer conversion. It reads a single-precision value from FRg, converts it to a
signed 64-bit integral range and places the result in DRf. The conversion is achieved
by rounding to zero (truncation) with saturation to the limits of the target signed
integral range. The value of FPSCR.RM is ignored.

In order to perform integer operations on the result, it needs to be subsequently
moved to the general-purpose register file.

Both source operand fields must be encoded with the source register designator g.

Possible exceptions:

FPUDIS, FPUEXC

FTRC.SQ FRg, DRf

001110 g 1010 g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
source ← FloatValue32(FRg);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FTRC_SQ(source, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
DRf ← FloatRegister64(result);
FPSCR ← Register(fps);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 147
FTRC.SQ and FTRC.DQ special cases:

Regardless of FPSCR.DN, denormalized numbers are treated as 0. These
instructions do not cause FPU Error.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the conversion overflows the target
range. This is caused by out-of-range normalized numbers, infinities and NaNs.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘TRC’ case is described by the IEEE754 specification,
though only the round to zero rounding mode is supported by this instruction.

source1 → +NORM,
-NORM

(in range)

+0 -0 +INF or
+NORM
(out of range)

-INF or
-NORM
(out of range)

+DNRM,
-DNRM

qNaN sNaN

TRC 0 0 +263 - 1 -263 0 -263 -263
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

148 Alphabetical list of instructions
FTRV.S MTRXg, FVh, FVf

Description:

This floating-point instruction multiplies a matrix, MTRXg, with a vector, FVh, and
places the resulting vector in FVf. The matrix contains sixteen single-precision
floating-point values. The vector contains four single-precision floating-point values.
The matrix-vector multiplication is specified as:

FRf+0 =

FRf+1 =

FRf+2 =

FTRV.S MTRXg, FVh, FVf

000101 g 1110 h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

sr ← ZeroExtend64(SR);
fps ← ZeroExtend32(FPSCR);
source1 ← FloatValueMatrix32(MTRXg);
source2 ← FloatValueVector32(FVh);
IF (FpuIsDisabled(sr))

THROW FPUDIS;
result, fps ← FTRV_S(source1, source2, fps);
IF (((FpuEnableV(fps) OR FpuEnableI(fps)) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FVf ← FloatRegisterVector32(result);
FPSCR ← Register(fps);

FRg i 4×+ FRh i+×

i 0=

3

�

FRg 1 i 4×+ + FRh i+×

i 0=

3

�

FRg 2 i 4×+ + FRh i+×

i 0=

3

�

SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 149
FRf+3 =

This is an approximate computation. The specified error in the result value is
defined in Volume 1, Chapter 8: SHmedia floating-point.

Possible exceptions:

FPUDIS, FPUEXC

FTRV.S special cases:

FTRV.S is an approximate instruction. Denormalized numbers are supported:

• When FPSCR.DN is 0, denormalized numbers are treated as their denormalized
value in the FTRV.S calculation. This instruction never signals an FPU error.

• When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied
before exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if any of the inputs is a signaling NaN,
there is a multiplication of a zero by an infinity, or there is an addition of differ-
ently signed infinities where none of the inputs is a qNaN.

The multiplication is performed with sufficient precision to avoid overflow, and
therefore the multiplication of any two finite numbers does not produce an
infinity. The multiplication result will be an infinity only if there is a
multiplication of an infinity with a normalized number, an infinity with a
denormalized number or an infinity with an infinity.

The addition of differently signed infinities is detected if there is (at least) one
positive infinity and (at least) one negative infinity in the set of 4 multiplication
results in any of the 4 inner-products calculated by this instruction.

This instruction does not check all of its inputs for invalid operations and then
raise an exception accordingly. If invalid operation exceptions are requested by
the user, this instruction always raises that exception. If this exception is not
requested by the user, then each of the four inner-products is checked separately
for an invalid operation (as described above) and the appropriate result is set to
qNaN for each inner-product that is invalid.

FRg 3 i 4×+ + FRh i+×

i 0=

3

�

SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

150 Alphabetical list of instructions
3 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. This is an approximate instruction and inexact is signaled
except where special cases occur. Precise details of the approximate transform
algorithm, including the detection of underflow and overflow cases, are imple-
mentation dependent. When inexact, underflow or overflow exceptions are
requested by the user, an exception is always raised regardless of whether that
condition arose.

If the instruction does not raise an exception, results are generated according to the
following tables. The special case tables are applied separately with the appropriate
vector operands to each of the four inner-products calculated by this instruction.
Each of the 4 pairs of multiplication operands (source1 and source2) is selected from
corresponding elements of the two 4-element source vectors and multiplied:

source1 →
↓ source2

+,-NORM,
+,-DNRM

+0 -0 +INF -INF qNaN sNaN

+,-NORM and +,-DNRM FTRVMUL +0, -0 -0, +0 +INF, -INF -INF, +INF qNaN qNaN

+0 +0, -0 +0 -0 qNaN qNaN qNaN qNaN

-0 -0, +0 -0 +0 qNaN qNaN qNaN qNaN

+INF +INF, -INF qNaN qNaN +INF -INF qNaN qNaN

-INF -INF, +INF qNaN qNaN -INF +INF qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 151
If any of the multiplications evaluates to qNaN, then the result of the instruction is
qNaN and no further analysis need be performed. In the ‘FTRVMUL’, +0, -0, +INF
and -INF cases, the 4 addition operands (labeled temp0 to temp3) are summed:

Inexact is signaled in the ‘FTRVADD’ case. Exception cases are not indicated by
shading for this instruction. Where the behavior is not a special case, the instruction
computes an approximate result using an implementation-dependent algorithm.

temp0 → FTRVMUL, +0, -0 +INF -INF

↓ temp2
temp1→
↓ temp3

FTRVMUL,
+0, -0

+INF -INF FTRVMUL,
+0, -0

+INF -INF FTRVMUL,
+0, -0

+INF -INF

FTRVMUL,
+0, -0

FTRVMUL,
+0, -0

FTRVADD +INF -INF +INF +INF qNaN -INF qNaN -INF

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF FTRVMUL,
+0, -0

+INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF FTRVMUL,
+0, -0

-INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

152 Alphabetical list of instructions
GETCFG Rm, disp, Rd

Description:

This instruction copies a configuration register to Rd. The source configuration
register is identified by adding Rm to the sign-extended 6-bit immediate s.

GETCFG is a privileged instruction.

A read from an undefined configuration register gives an architecturally-undefined
result. Note that configuration registers do not, in general, have simple read/write
semantics.

Possible exceptions:

RESINST

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

GETCFG Rm, disp, Rd

110000 m 1111 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

md ← ZeroExtend1(MD);
base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
index ← ZeroExtend64(base + disp);
IF (md = 0)

THROW RESINST;
IF (IsUndefinedConfigurationRegister(index))

result ← UNDEFINED;
ELSE

result ← ReadConfigurationRegister(index);
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 153
GETCON CRk, Rd

Description:

This instruction copies CRk to Rd.

GETCON from a privileged control register is a privileged instruction. GETCON
from a user-accessible control register is not a privileged instruction.

A read from an undefined control register gives an architecturally-undefined result.
Note that control registers do not, in general, have simple read/write semantics.

Possible exceptions:

RESINST

GETCON CRk, Rd

001001 k 1111 111111 d 0000

31 26 25 20 19 16 15 10 9 4 3 0

md ← ZeroExtend1(MD);
index ← ZeroExtend6(k);
IF ((md = 0) AND IsPrivilegedControlRegister(index))

THROW RESINST;
IF (IsUndefinedControlRegister(index))

result ← UNDEFINED;
ELSE

result ← ReadControlRegister(index);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

154 Alphabetical list of instructions
GETTR TRb, Rd

Description:

This instruction copies the value held in the target register TRb to Rd. The value
returned by GETTR ensures that any unimplemented higher bits of the source
target register are seen as sign extensions of the highest implemented bit.

GETTR TRb, Rd

010001 000 b 0101 111111 d 0000

31 26 25 23 22 20 19 16 15 10 9 4 3 0

target ← ZeroExtend64(TRb);
result ← target;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 155
ICBI Rm, disp

Description:

This instruction invalidates an instruction cache block (if any) that corresponds to a
specified effective address. If a unified cache organization is used and the data in
the instruction cache block is dirty, it is discarded without write-back to memory.

The effective address is calculated by adding Rm to the sign-extended 6-bit
immediate s multiplied by 32. The scaling factor is fixed at 32 regardless of the
cache block size. There is no misalignment check on this instruction, and the
calculated effective address can be any byte address. The calculated effective
address is automatically aligned downwards to the nearest exact multiple of the
cache block size. The effective address identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

ICBI checks for address error and raises an IADDERR exception if this check fails.
The implementation then determines whether there is an entry in the instruction
cache for this ICBI to invalidate. Some implementations can perform a translation
look-up to determine this; those implementations will raise an ITLBMISS exception
if there is no translation available. Other implementations are able to determine
this without ever raising ITLBMISS. Thus, whether an ITLBMISS exception can be
raised by ICBI is implementation dependent.

ICBI Rm, disp

111000 m 0101 s 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s) << 5;
address ← ZeroExtend64(base + disp);
IF (MalformedAddress(address))

THROW IADDERR, address;
IF (MMU() AND InstInvalidateMiss(address))

THROW ITLBMISS, address;
IF (NOT (MMU() AND ExecuteProhibited(address)))

ICBI(address);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

156 Alphabetical list of instructions
If there is no entry in the instruction cache for this ICBI to invalidate, then the ICBI
can complete since no invalidation is required. If there is an entry in the instruction
cache for this ICBI to invalidate, then a check is made for protection violation. If a
protection violation occurs, the instruction executes to completion without exception
launch, but does not affect the state of the instruction cache.

Explicit synchronization instructions are required to synchronize the effects of
cache coherency instructions. SYNCI must be used to guarantee that previous ICBI
instructions have completed their invalidation on the instruction cache.

After completion, assuming no exception was raised and assuming that no
protection violation was discarded, it is guaranteed that the targeted memory block
in effective address space is not present in any instruction or unified cache.

Note that ICBI performs invalidation on effective addresses. There is no guarantee
of invalidation of aliases at other effective addresses or in other effective address
spaces.

The behavior of this instruction when the MMU is disabled is described in Volume 1,
Chapter 6: SHmedia memory instructions.

Possible exceptions:

IADDERR, ITLBMISS

Notes:

For correct operation, software must exercise care when using ICBI.

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 157
LD.B Rm, disp, Rd

Description:

This instruction loads a byte from the effective address formed by adding Rm to the
sign-extended 10-bit immediate s. If the destination register is not R63, the loaded
byte is sign-extended and placed in Rd. In exceptional cases, an appropriate
exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

LD.B Rm, disp, Rd

100000 m s d 0000

31 26 25 20 19 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s);
address ← ZeroExtend64(base + disp);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← SignExtend8(ReadMemory8(address));
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

158 Alphabetical list of instructions
LD.L Rm, disp, Rd

Description:

This instruction loads a long-word from the effective address formed by adding Rm
to the sign-extended 10-bit immediate s multiplied by 4. If the destination register is
not R63, the loaded long-word is sign-extended and placed in Rd. Note that only one
version of this instruction is provided: the representation of signed and unsigned
32-bit data in a register is the same. In exceptional cases, including misaligned
loads, an appropriate exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LD.L Rm, disp, Rd

100010 m s d 0000

31 26 25 20 19 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 2;
address ← ZeroExtend64(base + disp);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← SignExtend32(ReadMemory32(address));
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 159
Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

160 Alphabetical list of instructions
LD.Q Rm, disp, Rd

Description:

This instruction loads a quad-word from the effective address formed by adding Rm
to the sign-extended 10-bit immediate s multiplied by 8. If the destination register is
not R63, the loaded quad-word is placed in Rd. Note that only one version of this
instruction is provided: sign is unimportant when loading an object of the same size
as a register. In exceptional cases, including misaligned loads, an appropriate
exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LD.Q Rm, disp, Rd

100011 m s d 0000

31 26 25 20 19 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 3;
address ← ZeroExtend64(base + disp);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← ZeroExtend64(ReadMemory64(address));
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 161
Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

162 Alphabetical list of instructions
LD.UB Rm, disp, Rd

Description:

This instruction loads a byte from the effective address formed by adding Rm to the
sign-extended 10-bit immediate s. If the destination register is not R63, the loaded
byte is zero-extended and placed in Rd. In exceptional cases, an appropriate
exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

LD.UB Rm, disp, Rd

100100 m s d 0000

31 26 25 20 19 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s);
address ← ZeroExtend64(base + disp);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← ZeroExtend8(ReadMemory8(address));
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 163
LD.UW Rm, disp, Rd

Description:

This instruction loads a word from the effective address formed by adding Rm to the
sign-extended 10-bit immediate s multiplied by 2. If the destination register is not
R63, the loaded word is zero-extended and placed in Rd. In exceptional cases,
including misaligned loads, an appropriate exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LD.UW Rm, disp, Rd

101100 m s d 0000

31 26 25 20 19 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 1;
address ← ZeroExtend64(base + disp);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← ZeroExtend16(ReadMemory16(address));
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

164 Alphabetical list of instructions
Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 165
LD.W Rm, disp, Rd

Description:

This instruction loads a word from the effective address formed by adding Rm to the
sign-extended 10-bit immediate s multiplied by 2. If the destination register is not
R63, the loaded word is sign-extended and placed in Rd. In exceptional cases,
including misaligned loads, an appropriate exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LD.W Rm, disp, Rd

100001 m s d 0000

31 26 25 20 19 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 1;
address ← ZeroExtend64(base + disp);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← SignExtend16(ReadMemory16(address));
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

166 Alphabetical list of instructions
Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 167
LDHI.L Rm, disp, Rd

Description:

This instruction loads the high part of a misaligned long-word from memory into Rd.
The effective address is formed by adding the sign-extended 6-bit immediate s to
Rm. The effective address points to the highest byte in the misaligned long-word.
The address of the lowest byte in the high part of the misaligned long-word is
determined by masking the least significant 2 bits of the effective address to 0.

This instruction loads the inclusive range of memory bytes starting at that lowest
byte and ending at that highest byte. If the effective address is actually 4-byte
aligned, then all 4 bytes are loaded. The loaded bytes are placed into the appropriate
bytes within Rd, and other bytes are set to 0 or a sign-extension of bit 31 as required.

This instruction can be used in conjunction with LDLO.L and OR to load and
sign-extend a misaligned long-word into a register. In this case, the LDHI.L effective
address should be 3 bytes larger than the LDLO.L effective address.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDHI.L Rm, disp, Rd

110000 m 0110 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
address ← base + disp;
bytecount ← (address ∧ 0x3) + 1;
bitcount ← bytecount × 8;
shift ← ZeroExtend5((~ (address ∧ 0x3)) × 8);
mem ← ZeroExtendbitcount(ReadMemoryHighbitcount(address));
IF (IsLittleEndian())

result ← SignExtend32(mem << shift);
ELSE

result ← ZeroExtend32(mem);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

168 Alphabetical list of instructions
LDHI.L Byte Mappings:

The mapping between byte locations in memory and byte positions in the
destination register is shown below for each value of the low 2 bits in the effective
address (EA). Each byte in the register is 0, a sign-extension or maps to the given
memory address.

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

When the memory access for LDHI.L causes an exception, the TEA control register
is initialized with the effective address of the access. This corresponds to the address
of the highest byte in the misaligned long-word.

Little endian mode
B

it
63 Target register

B
it

0

Low 2 bits of EA↓ Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0 sign extension of bit 31 EA-0 0 0 0

0x1 sign extension of bit 31 EA-0 EA-1 0 0

0x2 sign extension of bit 31 EA-0 EA-1 EA-2 0

0x3 sign extension of bit 31 EA-0 EA-1 EA-2 EA-3

Big endian mode

B
it

63 Target register

B
it

0

Low 2 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x0 0 0 0 0 0 0 0 EA-0

0x1 0 0 0 0 0 0 EA-1 EA-0

0x2 0 0 0 0 0 EA-2 EA-1 EA-0

0x3 0 0 0 0 EA-3 EA-2 EA-1 EA-0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 169
LDHI.Q Rm, disp, Rd

Description:

This instruction loads the high part of a misaligned quad-word from memory into
Rd. The effective address is formed by adding the sign-extended 6-bit immediate s to
Rm. The effective address points to the highest byte in the misaligned quad-word.
The address of the lowest byte in the high part of the misaligned quad-word is
determined by masking the least significant 3 bits of the effective address to 0.

This instruction loads the inclusive range of memory bytes starting at that lowest
byte and ending at that highest byte. If the effective address is actually 8-byte
aligned, then all 8 bytes are loaded. The loaded bytes are placed into the appropriate
bytes within Rd, and any other bytes are set to 0.

This instruction can be used in conjunction with LDLO.Q and OR to load a
misaligned quad-word from memory into a register. In this case, the LDHI.Q
effective address should be 7 bytes larger than the LDLO.Q effective address.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDHI.Q Rm, disp, Rd

110000 m 0111 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
address ← base + disp;
bytecount ← (address ∧ 0x7) + 1;
bitcount ← bytecount × 8;
shift ← ZeroExtend6((~ (address ∧ 0x7)) × 8);
mem ← ZeroExtendbitcount(ReadMemoryHighbitcount(address));
IF (IsLittleEndian())

result ← ZeroExtend64(mem << shift);
ELSE

result ← ZeroExtend64(mem);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

170 Alphabetical list of instructions
LDHI.Q Byte Mappings:

The mapping between byte locations in memory and byte positions in the
destination register is shown below for each value of the low 3 bits in the effective
address (EA). Each byte in the register is 0 or maps to the given memory address.

Little endian mode

B
it

63 Target register

B
it

0

Low 3 bits of EA↓ Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0 EA-0 0 0 0 0 0 0 0

0x1 EA-0 EA-1 0 0 0 0 0 0

0x2 EA-0 EA-1 EA-2 0 0 0 0 0

0x3 EA-0 EA-1 EA-2 EA-3 0 0 0 0

0x4 EA-0 EA-1 EA-2 EA-3 EA-4 0 0 0

0x5 EA-0 EA-1 EA-2 EA-3 EA-4 EA-5 0 0

0x6 EA-0 EA-1 EA-2 EA-3 EA-4 EA-5 EA-6 0

0x7 EA-0 EA-1 EA-2 EA-3 EA-4 EA-5 EA-6 EA-7

Big endian mode

B
it

63 Target register

B
it

0

Low 3 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x0 0 0 0 0 0 0 0 EA-0

0x1 0 0 0 0 0 0 EA-1 EA-0

0x2 0 0 0 0 0 EA-2 EA-1 EA-0

0x3 0 0 0 0 EA-3 EA-2 EA-1 EA-0

0x4 0 0 0 EA-4 EA-3 EA-2 EA-1 EA-0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 171
Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

When the memory access for LDHI.Q causes an exception, the TEA control register
is initialized with the effective address of the access. This corresponds to the address
of the highest byte in the misaligned quad-word.

0x5 0 0 EA-5 EA-4 EA-3 EA-2 EA-1 EA-0

0x6 0 EA-6 EA-5 EA-4 EA-3 EA-2 EA-1 EA-0

0x7 EA-7 EA-6 EA-5 EA-4 EA-3 EA-2 EA-1 EA-0

Big endian mode

B
it

63 Target register

B
it

0

Low 3 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

172 Alphabetical list of instructions
LDLO.L Rm, disp, Rd

Description:

This instruction loads the low part of a misaligned long-word from memory into Rd.
The effective address is formed by adding the sign-extended 6-bit immediate s to
Rm. The effective address points to the lowest byte in the misaligned long-word. The
address of the highest byte in the low part of the misaligned long-word is
determined by setting the least significant 2 bits of the effective address to 1.

This instruction loads the inclusive range of memory bytes starting at that lowest
byte and ending at that highest byte. If the effective address is actually 4-byte
aligned, then all 4 bytes are loaded. The loaded bytes are placed into the appropriate
bytes within Rd, and other bytes are set to 0 or a sign-extension of bit 31 as required.

This instruction can be used in conjunction with LDHI.L and OR to load and
sign-extend a misaligned long-word into a register. In this case, the LDHI.L effective
address should be 3 bytes larger than the LDLO.L effective address.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDLO.L Rm, disp, Rd

110000 m 0010 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
address ← ZeroExtend64(base + disp);
bytecount ← 4 - (address ∧ 0x3);
bitcount ← bytecount × 8;
shift ← (address ∧ 0x3) × 8;
mem ← ZeroExtendbitcount(ReadMemoryLowbitcount(address));
IF (IsLittleEndian())

result ← ZeroExtend32(mem);
ELSE

result ← SignExtend32(mem << shift);
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 173
LDLO.L Byte Mappings:

The mapping between byte locations in memory and byte positions in the
destination register is shown below for each value of the low 2 bits in the effective
address (EA). Each byte in the register is 0, a sign-extension or maps to the given
memory address.

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

When the memory access for LDLO.L causes an exception, the TEA control register
is initialized with the effective address of the access. This corresponds to the address
of the lowest byte in the misaligned long-word.

Little endian mode
B

it
63 Target register

B
it

0

Low 2 bits of EA↓ Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0 0 0 0 0 EA+3 EA+2 EA+1 EA+0

0x1 0 0 0 0 0 EA+2 EA+1 EA+0

0x2 0 0 0 0 0 0 EA+1 EA+0

0x3 0 0 0 0 0 0 0 EA+0

Big endian mode

B
it

63 Target register

B
it

0

Low 2 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x0 sign extension of bit 31 EA+0 EA+1 EA+2 EA+3

0x1 sign extension of bit 31 EA+0 EA+1 EA+2 0

0x2 sign extension of bit 31 EA+0 EA+1 0 0

0x3 sign extension of bit 31 EA+0 0 0 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

174 Alphabetical list of instructions
LDLO.Q Rm, disp, Rd

Description:

This instruction loads the low part of a misaligned quad-word from memory into Rd.
The effective address is formed by adding the sign-extended 6-bit immediate s to
Rm. The effective address points to the lowest byte in the misaligned quad-word.
The address of the highest byte in the low part of the misaligned quad-word is
determined by setting the least significant 3 bits of the effective address to 1.

This instruction loads the inclusive range of memory bytes starting at that lowest
byte and ending at that highest byte. If the effective address is actually 8-byte
aligned, then all 8 bytes are loaded. The loaded bytes are placed into the appropriate
bytes within Rd, and any other bytes are set to 0.

This instruction can be used in conjunction with LDHI.Q and OR to load a
misaligned quad-word from memory into a register. In this case, the LDHI.Q
effective address should be 7 bytes larger than the LDLO.Q effective address.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDLO.Q Rm, disp, Rd

110000 m 0011 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
address ← ZeroExtend64(base + disp);
bytecount ← 8 - (address ∧ 0x7);
bitcount ← bytecount × 8;
shift ← (address ∧ 0x7) × 8;
mem ← ZeroExtendbitcount(ReadMemoryLowbitcount(address));
IF (IsLittleEndian())

result ← ZeroExtend64(mem);
ELSE

result ← ZeroExtend64(mem << shift);
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 175
LDLO.Q Byte Mappings:

The mapping between byte locations in memory and byte positions in the
destination register is shown below for each value of the low 3 bits in the effective
address (EA). Each byte in the register is 0 or maps to the given memory address.

Little endian mode

B
it

63 Target register

B
it

0

Low 3 bits of EA↓ Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0 EA+7 EA+6 EA+5 EA+4 EA+3 EA+2 EA+1 EA+0

0x1 0 EA+6 EA+5 EA+4 EA+3 EA+2 EA+1 EA+0

0x2 0 0 EA+5 EA+4 EA+3 EA+2 EA+1 EA+0

0x3 0 0 0 EA+4 EA+3 EA+2 EA+1 EA+0

0x4 0 0 0 0 EA+3 EA+2 EA+1 EA+0

0x5 0 0 0 0 0 EA+2 EA+1 EA+0

0x6 0 0 0 0 0 0 EA+1 EA+0

0x7 0 0 0 0 0 0 0 EA+0

Big endian mode

B
it

63 Target register

B
it

0

Low 3 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x0 EA+0 EA+1 EA+2 EA+3 EA+4 EA+5 EA+6 EA+7

0x1 EA+0 EA+1 EA+2 EA+3 EA+4 EA+5 EA+6 0

0x2 EA+0 EA+1 EA+2 EA+3 EA+4 EA+5 0 0

0x3 EA+0 EA+1 EA+2 EA+3 EA+4 0 0 0

0x4 EA+0 EA+1 EA+2 EA+3 0 0 0 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

176 Alphabetical list of instructions
Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

When the memory access for LDLO.Q causes an exception, the TEA control register
is initialized with the effective address of the access. This corresponds to the address
of the lowest byte in the misaligned quad-word.

0x5 EA+0 EA+1 EA+2 0 0 0 0 0

0x6 EA+0 EA+1 0 0 0 0 0 0

0x7 EA+0 0 0 0 0 0 0 0

Big endian mode

B
it

63 Target register

B
it

0

Low 3 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 177
LDX.B Rm, Rn, Rd

Description:

This instruction loads a byte from the effective address formed by adding Rm and
Rn. If the destination register is not R63, the loaded byte is sign-extended and placed
in Rd. In exceptional cases, an appropriate exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDX.B Rm, Rn, Rd

010000 m 0000 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
address ← ZeroExtend64(base + index);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← SignExtend8(ReadMemory8(address));
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

178 Alphabetical list of instructions
LDX.L Rm, Rn, Rd

Description:

This instruction loads a long-word from the effective address formed by adding Rm
and Rn. If the destination register is not R63, the loaded long-word is sign-extended
and placed in Rd. Note that only one version of this instruction is provided: the
representation of signed and unsigned 32-bit data in a register is the same. In
exceptional cases, including misaligned loads, an appropriate exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDX.L Rm, Rn, Rd

010000 m 0010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
address ← ZeroExtend64(base + index);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← SignExtend32(ReadMemory32(address));
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 179
LDX.Q Rm, Rn, Rd

Description:

This instruction loads a quad-word from the effective address formed by adding Rm
and Rn. If the destination register is not R63, the loaded quad-word is placed in Rd.
Note that only one version of this instruction is provided: sign is unimportant when
loading an object of the same size as a register. In exceptional cases, including
misaligned loads, an appropriate exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDX.Q Rm, Rn, Rd

010000 m 0011 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
address ← ZeroExtend64(base + index);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← ZeroExtend64(ReadMemory64(address));
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

180 Alphabetical list of instructions
LDX.UB Rm, Rn, Rd

Description:

This instruction loads a byte from the effective address formed by adding Rm and
Rn. If the destination register is not R63, the loaded byte is zero-extended and placed
in Rd. In exceptional cases, an appropriate exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDX.UB Rm, Rn, Rd

010000 m 0100 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
address ← ZeroExtend64(base + index);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← ZeroExtend8(ReadMemory8(address));
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 181
LDX.UW Rm, Rn, Rd

Description:

This instruction loads a word from the effective address formed by adding Rm and
Rn. If the destination register is not R63, the loaded word is zero-extended and
placed in Rd. In exceptional cases, including misaligned loads, an appropriate
exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDX.UW Rm, Rn, Rd

010000 m 0101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
address ← ZeroExtend64(base + index);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← ZeroExtend16(ReadMemory16(address));
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

182 Alphabetical list of instructions
LDX.W Rm, Rn, Rd

Description:

This instruction loads a word from the effective address formed by adding Rm and
Rn. If the destination register is not R63, the loaded word is sign-extended and
placed in Rd. In exceptional cases, including misaligned loads, an appropriate
exception is raised.

If the destination register is R63, this indicates a software-directed data prefetch
from the specified effective address. Software can use this instruction to give
advance notice that particular data will be required. It is implementation-specific as
to whether a prefetch will be performed. The effective address identifies a
surrounding block of memory, which starts at an address aligned to the cache block
size and has a size equal to the cache block size. The cache block size is
implementation dependent. In exceptional cases, no exception is raised and the
prefetch has no effect.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

LDX.W Rm, Rn, Rd

010000 m 0001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

d_field ← ZeroExtend6(d);
base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
address ← ZeroExtend64(base + index);
IF (d_field = 63)

result ← PrefetchMemory(address);
ELSE

result ← SignExtend16(ReadMemory16(address));
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 183
MABS.L Rm, Rd

Description:

This multimedia instruction calculates the absolute value of each of the packed
32-bit elements held in Rm and places the packed results in Rd.

Multimedia Formats:

MABS.L Rm, Rd

001010 m 1010 111111 d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiSignExtend32(Rm);
REPEAT i FROM 0 FOR 2

IF (source[i] ≥ 0)
result[i] ← source[i];

ELSE
result[i] ← SignedSaturate32(- source[i]);

Rd ← MultiRegister32(result);

Rm source[1] source[0]

63 32 31 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

184 Alphabetical list of instructions
MABS.W Rm, Rd

Description:

This multimedia instruction calculates the absolute value of each of the packed
16-bit elements held in Rm and places the packed results in Rd.

Multimedia Formats:

MABS.W Rm, Rd

001010 m 1001 111111 d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiSignExtend16(Rm);
REPEAT i FROM 0 FOR 4

IF (source[i] ≥ 0)
result[i] ← source[i];

ELSE
result[i] ← SignedSaturate16(- source[i]);

Rd ← MultiRegister16(result);

Rm source[3] source[2] source[1] source[0]

63 48 47 32 31 16 15 0

Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 185
MADD.L Rm, Rn, Rd

Description:

This multimedia instruction performs modulo, 32-bit addition on corresponding
packed 32-bit elements held in Rm and Rn, and places the packed results in Rd. Sign
is unimportant for modulo arithmetic and so this instruction can be used on both
signed and unsigned types.

Multimedia Formats:

MADD.L Rm, Rn, Rd

000010 m 0010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend32(Rm);
source2 ← MultiZeroExtend32(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← ZeroExtend32(source1[i] + source2[i]);
Rd ← MultiRegister32(result);

Rm source1[1] source1[0]

63 32 31 0

Rn source2[1] source2[0]

6
3

3
2

3
1 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

186 Alphabetical list of instructions
MADD.W Rm, Rn, Rd

Description:

This multimedia instruction performs modulo, 16-bit addition on corresponding
packed 16-bit elements held in Rm and Rn, and places the packed results in Rd. Sign
is unimportant for modulo arithmetic and so this instruction can be used on both
signed and unsigned types.

Multimedia Formats:

MADD.W Rm, Rn, Rd

000010 m 0001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend16(Rm);
source2 ← MultiZeroExtend16(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← ZeroExtend16(source1[i] + source2[i]);
Rd ← MultiRegister16(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2] source2[1] source2[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0

Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 187
MADDS.L Rm, Rn, Rd

Description:

This multimedia instruction performs saturating, signed, 32-bit addition on
corresponding packed 32-bit elements held in Rm and Rn, and places the packed
results in Rd. The additions are saturated to the signed range [-231, 231].

Multimedia Formats:

MADDS.L Rm, Rn, Rd

000010 m 0110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend32(Rm);
source2 ← MultiSignExtend32(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← SignedSaturate32(source1[i] + source2[i]);
Rd ← MultiRegister32(result);

Rm source1[1] source1[0]

63 32 31 0

Rn source2[1] source2[0]

6
3

3
2

3
1 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

188 Alphabetical list of instructions
MADDS.UB Rm, Rn, Rd

Description:

This multimedia instruction performs saturating, unsigned, 8-bit addition on
corresponding packed 8-bit elements held in Rm and Rn, and places the packed
results in Rd. The additions are saturated to the unsigned range [0, 256].

Multimedia Formats:

MADDS.UB Rm, Rn, Rd

000010 m 0100 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend8(Rm);
source2 ← MultiZeroExtend8(Rn);
REPEAT i FROM 0 FOR 8

result[i] ← UnsignedSaturate8(source1[i] + source2[i]);
Rd ← MultiRegister8(result);

Rm source1[7] source1[6] source1[5] source1[4] source1[3] source1[2] source1[1] source1[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Rn source2[7] source2[6] source2[5] source2[4] source2[3] source2[2] source2[1] source2[0]

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

Rd result[7] result[6] result[5] result[4] result[3] result[2] result[1] result[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 189
MADDS.W Rm, Rn, Rd

Description:

This multimedia instruction performs saturating, signed, 16-bit addition on
corresponding packed 16-bit elements held in Rm and Rn, and places the packed
results in Rd. The additions are saturated to the signed range [-215, 215].

Multimedia Formats:

MADDS.W Rm, Rn, Rd

000010 m 0101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← SignedSaturate16(source1[i] + source2[i]);
Rd ← MultiRegister16(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2] source2[1] source2[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0

Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

190 Alphabetical list of instructions
MCMPEQ.B Rm, Rn, Rd

Description:

This multimedia instruction compares corresponding packed 8-bit elements held in
Rm and Rn for equality, and places the packed boolean results in Rd. Boolean false is
represented by an all-zeroes element and boolean true by an all-ones element.

Multimedia Formats:

MCMPEQ.B Rm, Rn, Rd

001010 m 0000 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend8(Rm);
source2 ← MultiSignExtend8(Rn);
REPEAT i FROM 0 FOR 8

IF (source1[i] = source2[i])
result[i] ← 0xff;

ELSE
result[i] ← 0x00;

Rd ← MultiRegister8(result);

Rm source1[7] source1[6] source1[5] source1[4] source1[3] source1[2] source1[1] source1[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Rn source2[7] source2[6] source2[5] source2[4] source2[3] source2[2] source2[1] source2[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Rd result[7] result[6] result[5] result[4] result[3] result[2] result[1] result[0]

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 191
MCMPEQ.L Rm, Rn, Rd

Description:

This multimedia instruction compares corresponding packed 32-bit elements held in
Rm and Rn for equality, and places the packed boolean results in Rd. Boolean false is
represented by an all-zeroes element and boolean true by an all-ones element.

Multimedia Formats:

MCMPEQ.L Rm, Rn, Rd

001010 m 0010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend32(Rm);
source2 ← MultiSignExtend32(Rn);
REPEAT i FROM 0 FOR 2

IF (source1[i] = source2[i])
result[i] ← 0xffffffff;

ELSE
result[i] ← 0x00000000;

Rd ← MultiRegister32(result);

Rm source1[1] source1[0]

63 32 31 0

Rn source2[1] source2[0]

63 32 31 0

Rd result[1] result[0]

6
3

3
2

3
1 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

192 Alphabetical list of instructions
MCMPEQ.W Rm, Rn, Rd

Description:

This multimedia instruction compares corresponding packed 16-bit elements held in
Rm and Rn for equality, and places the packed boolean results in Rd. Boolean false is
represented by an all-zeroes element and boolean true by an all-ones element.

Multimedia Formats:

MCMPEQ.W Rm, Rn, Rd

001010 m 0001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 4

IF (source1[i] = source2[i])
result[i] ← 0xffff;

ELSE
result[i] ← 0x0000;

Rd ← MultiRegister16(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2] source2[1] source2[0]

63 48 47 32 31 16 15 0

Rd result[3] result[2] result[1] result[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 193
MCMPGT.L Rm, Rn, Rd

Description:

This multimedia instruction compares corresponding packed 32-bit elements held in
Rm and Rn to test whether each signed Rm element is greater than the
corresponding signed Rn element, and places the packed boolean results in Rd.
Boolean false is represented by an all-zeroes element and boolean true by an
all-ones element.

Multimedia Formats:

MCMPGT.L Rm, Rn, Rd

001010 m 0110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend32(Rm);
source2 ← MultiSignExtend32(Rn);
REPEAT i FROM 0 FOR 2

IF (source1[i] > source2[i])
result[i] ← 0xffffffff;

ELSE
result[i] ← 0x00000000;

Rd ← MultiRegister32(result);

Rm source1[1] source1[0]

63 32 31 0
Rn source2[1] source2[0]

63 32 31 0

Rd result[1] result[0]

6
3

3
2

3
1 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

194 Alphabetical list of instructions
MCMPGT.UB Rm, Rn, Rd

Description:

This multimedia instruction compares corresponding packed 8-bit elements held in
Rm and Rn to test whether each unsigned Rm element is greater than the
corresponding unsigned Rn element, and places the packed boolean results in Rd.
Boolean false is represented by an all-zeroes element and boolean true by an
all-ones element.

Multimedia Formats:

MCMPGT.UB Rm, Rn, Rd

001010 m 0100 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend8(Rm);
source2 ← MultiZeroExtend8(Rn);
REPEAT i FROM 0 FOR 8

IF (source1[i] > source2[i])
result[i] ← 0xff;

ELSE
result[i] ← 0x00;

Rd ← MultiRegister8(result);

Rm source1[7] source1[6] source1[5] source1[4] source1[3] source1[2] source1[1] source1[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
Rn source2[7] source2[6] source2[5] source2[4] source2[3] source2[2] source2[1] source2[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Rd result[7] result[6] result[5] result[4] result[3] result[2] result[1] result[0]

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 195
MCMPGT.W Rm, Rn, Rd

Description:

This multimedia instruction compares corresponding packed 16-bit elements held in
Rm and Rn to test whether each signed Rm element is greater than the
corresponding signed Rn element, and places the packed boolean results in Rd.
Boolean false is represented by an all-zeroes element and boolean true by an
all-ones element.

Multimedia Formats:

MCMPGT.W Rm, Rn, Rd

001010 m 0101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 4

IF (source1[i] > source2[i])
result[i] ← 0xffff;

ELSE
result[i] ← 0x0000;

Rd ← MultiRegister16(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0
Rn source2[3] source2[2] source2[1] source2[0]

63 48 47 32 31 16 15 0

Rd result[3] result[2] result[1] result[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

196 Alphabetical list of instructions
MCMV Rm, Rn, Rw

Description:

This multimedia instruction performs a bitwise conditional move from Rm to Rw
based on the value provided in the mask Rn. If bit i, where i is in [0,63], of Rn is 1
then bit i of Rm is copied to bit i of Rw, otherwise bit i of Rw is left unchanged.

Multimedia Formats:

MCMV Rm, Rn, Rw

010010 m 0011 n w 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
source3_result ← ZeroExtend64(Rw);
source3_result ← (source1 ∧ source2) ∨ (source3_result ∧ (~ source2));
Rw ← Register(source3_result);

Rm source1

63 0

Rn source2

6
3 0

Rw source3_result

63 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 197
MCNVS.LW Rm, Rn, Rd

Description:

This multimedia instruction performs saturating, down-conversions from the
packed 32-bit elements held in Rm and Rn to signed 16-bit values, and places the
packed results in Rd. The results from the Rm conversions are placed in the lower
half of Rd, and those from the Rn conversions in the upper half of Rd. The values are
saturated to the signed range [-215, 215].

Multimedia Formats:

MCNVS.LW Rm, Rn, Rd

010011 m 1101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend32(Rm);
source2 ← MultiSignExtend32(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← SignedSaturate16(source1[i]);
REPEAT i FROM 0 FOR 2

result[i + 2] ← SignedSaturate16(source2[i]);
Rd ← MultiRegister16(result);

Rm source1[1] source1[0]

63 32 31 0
Rn source2[1] source2[0]

63 32 31 0

Rd result[3] result[2] result[1] result[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

198 Alphabetical list of instructions
MCNVS.WB Rm, Rn, Rd

Description:

This multimedia instruction performs saturating, down-conversions from the
packed 16-bit elements held in Rm and Rn to signed 8-bit values, and places the
packed results in Rd. The results from the Rm conversions are placed in the lower
half of Rd, and those from the Rn conversions in the upper half of Rd. The values are
saturated to the signed range [-128, 128].

Multimedia Formats:

MCNVS.WB Rm, Rn, Rd

010011 m 1000 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← SignedSaturate8(source1[i]);
REPEAT i FROM 0 FOR 4

result[i + 4] ← SignedSaturate8(source2[i]);
Rd ← MultiRegister8(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0
Rn source2[3] source2[2] source2[1] source2[0]

63 48 47 32 31 16 15 0

Rd result[7] result[6] result[5] result[4] result[3] result[2] result[1] result[0]

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 199
MCNVS.WUB Rm, Rn, Rd

Description:

This multimedia instruction performs saturating, down-conversions from the
packed 16-bit elements held in Rm and Rn to unsigned 8-bit values, and places the
packed results in Rd. The results from the Rm conversions are placed in the lower
half of Rd, and those from the Rn conversions in the upper half of Rd. The values are
saturated to the unsigned range [0, 256].

Multimedia Formats:

MCNVS.WUB Rm, Rn, Rd

010011 m 1100 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← UnsignedSaturate8(source1[i]);
REPEAT i FROM 0 FOR 4

result[i + 4] ← UnsignedSaturate8(source2[i]);
Rd ← MultiRegister8(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0
Rn source2[3] source2[2] source2[1] source2[0]

63 48 47 32 31 16 15 0

Rd result[7] result[6] result[5] result[4] result[3] result[2] result[1] result[0]

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

200 Alphabetical list of instructions
MEXTR1 Rm, Rn, Rd

Description:

This multimedia instruction concatenates Rm and Rn together to form a 128-bit
intermediate where the lower 64 bits are provided by Rm and the upper 64 bits by
Rn. A 64-bit slice is extracted from this 128-bit intermediate starting at the (1x8)th.

bit, and this result is placed in Rd.

Multimedia Formats:

MEXTR1 Rm, Rn, Rd

001010 m 0111 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
result ← (UpperBytes7(source1) >> (1 × 8)) ∨ (LowerBytes1(source2) << (7 × 8));
Rd ← Register(result);

source1

Rm G F E D C B A

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

source2

Rn H

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

result

Rd H G F E D C B A

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 201
MEXTR2 Rm, Rn, Rd

Description:

This multimedia instruction concatenates Rm and Rn together to form a 128-bit
intermediate where the lower 64 bits are provided by Rm and the upper 64 bits by
Rn. A 64-bit slice is extracted from this 128-bit intermediate starting at the (2x8)th.

bit, and this result is placed in Rd.

Multimedia Formats:

MEXTR2 Rm, Rn, Rd

001010 m 1011 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
result ← (UpperBytes6(source1) >> (2 × 8)) ∨ (LowerBytes2(source2) << (6 × 8));
Rd ← Register(result);

source1

Rm F E D C B A

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

source2

Rn H G

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

result

Rd H G F E D C B A

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

202 Alphabetical list of instructions
MEXTR3 Rm, Rn, Rd

Description:

This multimedia instruction concatenates Rm and Rn together to form a 128-bit
intermediate where the lower 64 bits are provided by Rm and the upper 64 bits by
Rn. A 64-bit slice is extracted from this 128-bit intermediate starting at the (3x8)th.

bit, and this result is placed in Rd.

Multimedia Formats:

MEXTR3 Rm, Rn, Rd

001010 m 1111 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
result ← (UpperBytes5(source1) >> (3 × 8)) ∨ (LowerBytes3(source2) << (5 × 8));
Rd ← Register(result);

source1

Rm E D C B A

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

source2

Rn H G F

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

result

Rd H G F E D C B A

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 203
MEXTR4 Rm, Rn, Rd

Description:

This multimedia instruction concatenates Rm and Rn together to form a 128-bit
intermediate where the lower 64 bits are provided by Rm and the upper 64 bits by
Rn. A 64-bit slice is extracted from this 128-bit intermediate starting at the (4x8)th.

bit, and this result is placed in Rd.

Multimedia Formats:

MEXTR4 Rm, Rn, Rd

001011 m 0011 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
result ← (UpperBytes4(source1) >> (4 × 8)) ∨ (LowerBytes4(source2) << (4 × 8));
Rd ← Register(result);

source1

Rm D C B A

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

source2

Rn H G F E

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

result

Rd H G F E D C B A

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

204 Alphabetical list of instructions
MEXTR5 Rm, Rn, Rd

Description:

This multimedia instruction concatenates Rm and Rn together to form a 128-bit
intermediate where the lower 64 bits are provided by Rm and the upper 64 bits by
Rn. A 64-bit slice is extracted from this 128-bit intermediate starting at the (5x8)th.

bit, and this result is placed in Rd.

Multimedia Formats:

MEXTR5 Rm, Rn, Rd

001011 m 0111 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
result ← (UpperBytes3(source1) >> (5 × 8)) ∨ (LowerBytes5(source2) << (3 × 8));
Rd ← Register(result);

source1

Rm C B A

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

source2

Rn H G F E D

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

result

Rd H G F E D C B A

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 205
MEXTR6 Rm, Rn, Rd

Description:

This multimedia instruction concatenates Rm and Rn together to form a 128-bit
intermediate where the lower 64 bits are provided by Rm and the upper 64 bits by
Rn. A 64-bit slice is extracted from this 128-bit intermediate starting at the (6x8)th.

bit, and this result is placed in Rd.

Multimedia Formats:

MEXTR6 Rm, Rn, Rd

001011 m 1011 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
result ← (UpperBytes2(source1) >> (6 × 8)) ∨ (LowerBytes6(source2) << (2 × 8));
Rd ← Register(result);

source1

Rm B A

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

source2

Rn H G F E D C

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

result

Rd H G F E D C B A

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

206 Alphabetical list of instructions
MEXTR7 Rm, Rn, Rd

Description:

This multimedia instruction concatenates Rm and Rn together to form a 128-bit
intermediate where the lower 64 bits are provided by Rm and the upper 64 bits by
Rn. A 64-bit slice is extracted from this 128-bit intermediate starting at the (7x8)th.

bit, and this result is placed in Rd.

Multimedia Formats:

MEXTR7 Rm, Rn, Rd

001011 m 1111 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend64(Rn);
result ← (UpperBytes1(source1) >> (7 × 8)) ∨ (LowerBytes7(source2) << (1 × 8));
Rd ← Register(result);

source1

Rm A

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

source2

Rn H G F E D C B

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

result

Rd H G F E D C B A

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 207
MMACFX.WL Rm, Rn, Rw

Description:

This multimedia instruction performs full-width, fractional multiplication on
corresponding packed, signed 16-bit elements held in the lower halves of Rm and Rn,
normalizes the results to a 32-bit fractional format, sums with corresponding
packed, signed 32-bit elements held in Rw, saturates to the 32-bit signed fractional
range, and places the packed 32-bit results in Rw. In the special case of a fractional
multiply of -1 by -1, the multiplication result, which would otherwise be out of
representable range, is saturated to the largest representable positive value before
the summing and saturation stages. No rounding is necessary.

MMACFX.WL Rm, Rn, Rw

010010 m 0001 n w 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
source3_result ← MultiSignExtend32(Rw);
REPEAT i FROM 0 FOR 2
{

temp ← source1[i] × source2[i];
temp ← SignedSaturate32(temp << 1);
source3_result[i] ← SignedSaturate32(source3_result[i] + temp);

}
Rw ← MultiRegister32(source3_result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

208 Alphabetical list of instructions
Multimedia Formats:

Rm source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[1] source2[0]
63 48 47 32 31 16 15 0

Rw source3_result[1] source3_result[0]

63 32 31 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 209
MMACNFX.WL Rm, Rn, Rw

Description:

This multimedia instruction performs full-width, fractional multiplication on
corresponding packed, signed 16-bit elements held in the lower halves of Rm and Rn,
normalizes the results to a 32-bit fractional format, subtracts from corresponding
packed, signed 32-bit elements held in Rw, saturates to the 32-bit signed fractional
range, and places the packed 32-bit results in Rw. In the special case of a fractional
multiply of -1 by -1, the multiplication result, which would otherwise be out of
representable range, is saturated to the largest representable positive value before
the subtraction and saturation stages. No rounding is necessary.

MMACNFX.WL Rm, Rn, Rw

010010 m 0101 n w 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
source3_result ← MultiSignExtend32(Rw);
REPEAT i FROM 0 FOR 2
{

temp ← source1[i] × source2[i];
temp ← SignedSaturate32(temp << 1);
source3_result[i] ← SignedSaturate32(source3_result[i] - temp);

}
Rw ← MultiRegister32(source3_result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

210 Alphabetical list of instructions
Multimedia Formats:

Rm source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[1] source2[0]
63 48 47 32 31 16 15 0

Rw source3_result[1] source3_result[0]

63 32 31 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 211
MMUL.L Rm, Rn, Rd

Description:

This multimedia instruction performs modulo, 32-bit multiplication on
corresponding packed 32-bit elements held in Rm and Rn, and places the packed
results in Rd. Sign is unimportant for modulo arithmetic and so this instruction can
be used on both signed and unsigned types.

Multimedia Formats:

MMUL.L Rm, Rn, Rd

010011 m 0010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend32(Rm);
source2 ← MultiZeroExtend32(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← ZeroExtend32(source1[i] × source2[i]);
Rd ← MultiRegister32(result);

Rm source1[1] source1[0]

63 32 31 0

Rn source2[1] source2[0]

6
3

3
2

3
1 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

212 Alphabetical list of instructions
MMUL.W Rm, Rn, Rd

Description:

This multimedia instruction performs modulo, 16-bit multiplication on
corresponding packed 16-bit elements held in Rm and Rn, and places the packed
results in Rd. Sign is unimportant for modulo arithmetic and so this instruction can
be used on both signed and unsigned types.

Multimedia Formats:

MMUL.W Rm, Rn, Rd

010011 m 0001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend16(Rm);
source2 ← MultiZeroExtend16(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← ZeroExtend16(source1[i] × source2[i]);
Rd ← MultiRegister16(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2] source2[1] source2[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0

Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 213
MMULFX.L Rm, Rn, Rd

Description:

This multimedia instruction performs 32-bit fractional multiplication on
corresponding packed, signed, 32-bit elements held in Rm and Rn, rounds the results
back to the 32-bit fractional format, and places the packed results in Rd. The
instruction provides rounding towards minus. In the special case of a fractional
multiply of -1 by -1, the result, which would otherwise be out of representable range,
is saturated to the largest representable positive value.

Multimedia Formats:

MMULFX.L Rm, Rn, Rd

010011 m 0110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend32(Rm);
source2 ← MultiSignExtend32(Rn);
REPEAT i FROM 0 FOR 2
{

temp ← source1[i] × source2[i];
result[i] ← SignedSaturate32(temp >> 31);

}
Rd ← MultiRegister32(result);

Rm source1[1] source1[0]

63 32 31 0

Rn source2[1] source2[0]

63 32 31 0

Rd result[1] result[0]

6
3

3
2

3
1 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

214 Alphabetical list of instructions
MMULFX.W Rm, Rn, Rd

Description:

This multimedia instruction performs 16-bit fractional multiplication on
corresponding packed, signed, 16-bit elements held in Rm and Rn, rounds the results
back to the 16-bit fractional format, and places the packed results in Rd. The
instruction provides rounding towards minus. In the special case of a fractional
multiply of -1 by -1, the result, which would otherwise be out of representable range,
is saturated to the largest representable positive value.

Multimedia Formats:

MMULFX.W Rm, Rn, Rd

010011 m 0101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 4
{

temp ← source1[i] × source2[i];
result[i] ← SignedSaturate16(temp >> 15);

}
Rd ← MultiRegister16(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2] source2[1] source2[0]

63 48 47 32 31 16 15 0

Rd result[3] result[2] result[1] result[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 215
MMULFXRP.W Rm, Rn, Rd

Description:

This multimedia instruction performs 16-bit fractional multiplication on
corresponding packed, signed, 16-bit elements held in Rm and Rn, rounds the results
back to the 16-bit fractional format, and places the packed results in Rd. The
instruction provides rounding towards the nearest-positive. In the special case of a
fractional multiply of -1 by -1, the result, which would otherwise be out of
representable range, is saturated to the largest representable positive value.

Multimedia Formats:

MMULFXRP.W Rm, Rn, Rd

010011 m 1001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 4
{

temp ← source1[i] × source2[i];

result[i] ← SignedSaturate16((temp + 214) >> 15);
}
Rd ← MultiRegister16(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2] source2[1] source2[0]

63 48 47 32 31 16 15 0

Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

216 Alphabetical list of instructions
MMULHI.WL Rm, Rn, Rd

Description:

This multimedia instruction performs full-width multiplication on corresponding
signed, packed, 16-bit elements held in the higher halves of Rm and Rn, and places
the packed, 32-bit results in Rd. Element 0 of Rd contains the full-width
multiplication of the two signed 16-bit values held in element 2 of Rm and in
element 2 of Rn. Element 1 of Rd contains the full-width multiplication of the two
signed 16-bit values held in element 3 of Rm and in element 3 of Rn.

Multimedia Formats:

MMULHI.WL Rm, Rn, Rd

010011 m 1110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← source1[i + 2] × source2[i + 2];
Rd ← MultiRegister32(result);

Rm source1[3] source1[2]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2]

63 48 47 32 31 16 15 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 217
MMULLO.WL Rm, Rn, Rd

Description:

This multimedia instruction performs full-width multiplication on corresponding
signed, packed, 16-bit elements held in the lower halves of Rm and Rn, and places
the packed, 32-bit results in Rd. Element 0 of Rd contains the full-width
multiplication of the two signed 16-bit values held in element 0 of Rm and in
element 0 of Rn. Element 1 of Rd contains the full-width multiplication of the two
signed 16-bit values held in element 1 of Rm and in element 1 of Rn.

Multimedia Formats:

MMULLO.WL Rm, Rn, Rd

010011 m 1010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← source1[i] × source2[i];
Rd ← MultiRegister32(result);

Rm source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[1] source2[0]

63 48 47 32 31 16 15 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

218 Alphabetical list of instructions
MMULSUM.WQ Rm, Rn, Rw

Description:

This multimedia instruction performs full-width multiplications on corresponding,
packed, signed, 16-bit elements held in Rm and Rn, sums all 4 of these 32-bit
intermediate results together, adds the total to the scalar 64-bit value held in Rw,
and places the 64-bit result in Rw. The additions are performed using 64-bit modulo
arithmetic.

Multimedia Formats:

MMULSUM.WQ Rm, Rn, Rw

010010 m 1001 n w 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
source3_result ← SignExtend64(Rw);
acc ← 0;
REPEAT i FROM 0 FOR 4

acc ← acc + (source1[i] × source2[i]);
source3_result ← source3_result + acc;
Rw ← Register(source3_result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0
Rn source2[3] source2[2] source2[1] source2[0]

63 48 47 32 31 16 15 0

Rw source3_result

63 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 219
MOVI imm, Rd

Description:

This instruction copies the sign-extended 16-bit immediate field s to Rd.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after sign extension.

MOVI imm, Rd

110011 s d 0000

31 26 25 10 9 4 3 0

imm ← SignExtend16(s);
result ← imm;
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

220 Alphabetical list of instructions
MPERM.W Rm, Rn, Rd

Description:

This multimedia instruction permutes the packed 16-bit elements in Rm according
to the control value held in the lowest 8 bits of Rn, and places the packed result in
Rd. For each 16-bit element in the result, two bits from the control value determine
which 16-bit element from the source is copied to that result element. The highest
56 bits of Rn are ignored.

MPERM.W Rm, Rn, Rd

001010 m 1101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiZeroExtend16(Rm);
control ← ZeroExtend8(Rn);
REPEAT i FROM 0 FOR 4
{

index ← ZeroExtend2(control >> (i × 2));
result[i] ← source[index];

}
Rd ← MultiRegister16(result);

Bits of Rn Interpretation

[0,1] Selects which of the four 16-bit elements in Rm to place in element 0 of Rd

[2,3] Selects which of the four 16-bit elements in Rm to place in element 1 of Rd

[4,5] Selects which of the four 16-bit elements in Rm to place in element 2 of Rd

[6,7] Selects which of the four 16-bit elements in Rm to place in element 3 of Rd

[8,63] Ignored
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 221
Multimedia Formats:

Rm source[3] source[2] source[1] source[0]

63 48 47 32 31 16 15 0

Rn control (only bits 0 to 7 are used)
63 0

Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

222 Alphabetical list of instructions
MSAD.UBQ Rm, Rn, Rw

Description:

This multimedia instruction calculates the absolute-difference of corresponding
packed, unsigned, 8-bit elements held in Rm and Rn, sums all 8 of these differences,
adds the total to the scalar 64-bit value held in Rw, and places the 64-bit result in
Rw. The additions are performed using 64-bit modulo arithmetic.

MSAD.UBQ Rm, Rn, Rw

010010 m 0000 n w 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend8(Rm);
source2 ← MultiZeroExtend8(Rn);
source3_result ← ZeroExtend64(Rw);
acc ← 0;
REPEAT i FROM 0 FOR 8
{

temp ← source1[i] - source2[i];
IF (temp < 0)

temp ← - temp;
acc ← acc + temp;

}
source3_result ← source3_result + acc;
Rw ← Register(source3_result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 223
Multimedia Formats:

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2] source2[1] source2[0]
63 48 47 32 31 16 15 0

Rw source3_result

63 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

224 Alphabetical list of instructions
MSHALDS.L Rm, Rn, Rd

Description:

This multimedia instruction performs an arithmetic, saturating, left shift on each of
the packed 32-bit elements held in Rm with a shift amount specified in the lowest 5
bits of Rn, and places the packed results in Rd. The highest 59 bits of Rn are ignored.
The shifts are saturated to the signed range [-231, 231].

Multimedia Formats:

MSHALDS.L Rm, Rn, Rd

000011 m 0110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiSignExtend32(Rm);
amount ← ZeroExtend64(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← SignedSaturate32(source[i] << ZeroExtend5(amount));
Rd ← MultiRegister32(result);

Rm source[1] source[0]

6
3

3
2

3
1 0

Rn amount (only bits 0 to 4 are used)

63 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 225
MSHALDS.W Rm, Rn, Rd

Description:

This multimedia instruction performs an arithmetic, saturating, left shift on each of
the packed 16-bit elements held in Rm with a shift amount specified in the lowest 4
bits of Rn, and places the packed results in Rd. The highest 60 bits of Rn are ignored.
The shifts are saturated to the signed range [-215, 215].

Multimedia Formats:

MSHALDS.W Rm, Rn, Rd

000011 m 0101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiSignExtend16(Rm);
amount ← ZeroExtend64(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← SignedSaturate16(source[i] << ZeroExtend4(amount));
Rd ← MultiRegister16(result);

Rm source[3] source[2] source[1] source[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0

Rn amount (only bits 0 to 3 are used)

63 0

Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

226 Alphabetical list of instructions
MSHARD.L Rm, Rn, Rd

Description:

This multimedia instruction performs an arithmetic, right shift on each of the
packed 32-bit elements held in Rm with a shift amount specified in the lowest 5 bits
of Rn, and places the packed results in Rd. The highest 59 bits of Rn are ignored.

Multimedia Formats:

MSHARD.L Rm, Rn, Rd

000011 m 1010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiSignExtend32(Rm);
amount ← ZeroExtend64(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← SignExtend32(source[i] >> ZeroExtend5(amount));
Rd ← MultiRegister32(result);

Rm source[1] source[0]

6
3

3
2

3
1 0

Rn amount (only bits 0 to 4 are used)

63 0
Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 227
MSHARD.W Rm, Rn, Rd

Description:

This multimedia instruction performs an arithmetic, right shift on each of the
packed 16-bit elements held in Rm with a shift amount specified in the lowest 4 bits
of Rn, and places the packed results in Rd. The highest 60 bits of Rn are ignored.

Multimedia Formats:

MSHARD.W Rm, Rn, Rd

000011 m 1001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiSignExtend16(Rm);
amount ← ZeroExtend64(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← SignExtend16(source[i] >> ZeroExtend4(amount));
Rd ← MultiRegister16(result);

Rm source[3] source[2] source[1] source[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0

Rn amount (only bits 0 to 3 are used)

63 0
Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

228 Alphabetical list of instructions
MSHARDS.Q Rm, Rn, Rd

Description:

This multimedia instruction performs an arithmetic, right shift on the scalar value
held in Rm with a shift amount specified in the lowest 6 bits of Rn, and places the
result in Rd. The highest 58 bits of Rn are ignored. The shift is saturated to the
signed range [-215, 215].

Multimedia Formats:

MSHARDS.Q Rm, Rn, Rd

000011 m 1011 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← SignExtend64(Rm);
amount ← ZeroExtend64(Rn);
result ← SignedSaturate16(source >> ZeroExtend6(amount));
Rd ← Register(result);

Rm source

63 0

Rn amount (only bits 0 to 5 are used)

63 0
Rd result

6
3 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 229
MSHFHI.B Rm, Rn, Rd

Description:

This multimedia instruction performs a shuffle on the packed 8-bit elements held in
Rm and Rn, and produces higher-half results that are placed in Rd. The higher 4
elements of Rm are copied (in order) to even-numbered elements of the result, and
the higher 4 elements of Rn are copied (in order) to odd-numbered elements of the
result.

Multimedia Formats:

MSHFHI.B Rm, Rn, Rd

001011 m 0100 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend8(Rm);
source2 ← MultiZeroExtend8(Rn);
REPEAT i FROM 0 FOR 4
{

result[i × 2] ← source1[i + 4];
result[(i × 2) + 1] ← source2[i + 4];

}
Rd ← MultiRegister8(result);

Rm source1[7] source1[6] source1[5] source1[4]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
Rn source2[7] source2[6] source2[5] source2[4]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Rd result[7] result[6] result[5] result[4] result[3] result[2] result[1] result[0]

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

230 Alphabetical list of instructions
MSHFHI.L Rm, Rn, Rd

Description:

This multimedia instruction performs a shuffle on the packed 32-bit elements held
in Rm and Rn, and produces higher-half results that are placed in Rd. The higher
element of Rm is copied to the even-numbered element of the result, and the higher
element of Rn is copied to the odd-numbered element of the result.

Multimedia Formats:

MSHFHI.L Rm, Rn, Rd

001011 m 0110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend32(Rm);
source2 ← MultiZeroExtend32(Rn);
result[0] ← source1[1];
result[1] ← source2[1];
Rd ← MultiRegister32(result);

Rm source1[1]

63 32 31 0

Rn source2[1]

63 32 31 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 231
MSHFHI.W Rm, Rn, Rd

Description:

This multimedia instruction performs a shuffle on the packed 16-bit elements held
in Rm and Rn, and produces higher-half results that are placed in Rd. The higher 2
elements of Rm are copied (in order) to even-numbered elements of the result, and
the higher 2 elements of Rn are copied (in order) to odd-numbered elements of the
result.

Multimedia Formats:

MSHFHI.W Rm, Rn, Rd

001011 m 0101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend16(Rm);
source2 ← MultiZeroExtend16(Rn);
REPEAT i FROM 0 FOR 2
{

result[i × 2] ← source1[i + 2];
result[(i × 2) + 1] ← source2[i + 2];

}
Rd ← MultiRegister16(result);

Rm source1[3] source1[2]

63 48 47 32 31 16 15 0
Rn source2[3] source2[2]

63 48 47 32 31 16 15 0

Rd result[3] result[2] result[1] result[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

232 Alphabetical list of instructions
MSHFLO.B Rm, Rn, Rd

Description:

This multimedia instruction performs a shuffle on the packed 8-bit elements held in
Rm and Rn, and produces lower-half results that are placed in Rd. The lower 4
elements of Rm are copied (in order) to even-numbered elements of the result, and
the lower 4 elements of Rn are copied (in order) to odd-numbered elements of the
result.

Multimedia Formats:

MSHFLO.B Rm, Rn, Rd

001011 m 0000 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend8(Rm);
source2 ← MultiZeroExtend8(Rn);
REPEAT i FROM 0 FOR 4
{

result[i × 2] ← source1[i];
result[(i × 2) + 1] ← source2[i];

}
Rd ← MultiRegister8(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
Rn source2[3] source2[2] source2[1] source2[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Rd result[7] result[6] result[5] result[4] result[3] result[2] result[1] result[0]

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 233
MSHFLO.L Rm, Rn, Rd

Description:

This multimedia instruction performs a shuffle on the packed 32-bit elements held
in Rm and Rn, and produces lower-half results that are placed in Rd. The lower
element of Rm is copied to the even-numbered element of the result, and the lower
element of Rn is copied to the odd-numbered element of the result.

Multimedia Formats:

MSHFLO.L Rm, Rn, Rd

001011 m 0010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend32(Rm);
source2 ← MultiZeroExtend32(Rn);
result[0] ← source1[0];
result[1] ← source2[0];
Rd ← MultiRegister32(result);

Rm source1[0]

63 32 31 0

Rn source2[0]

63 32 31 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

234 Alphabetical list of instructions
MSHFLO.W Rm, Rn, Rd

Description:

This multimedia instruction performs a shuffle on the packed 16-bit elements held
in Rm and Rn, and produces lower-half results that are placed in Rd. The lower 2
elements of Rm are copied (in order) to even-numbered elements of the result, and
the lower 2 elements of Rn are copied (in order) to odd-numbered elements of the
result.

Multimedia Formats:

MSHFLO.W Rm, Rn, Rd

001011 m 0001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend16(Rm);
source2 ← MultiZeroExtend16(Rn);
REPEAT i FROM 0 FOR 2
{

result[i × 2] ← source1[i];
result[(i × 2) + 1] ← source2[i];

}
Rd ← MultiRegister16(result);

Rm source1[1] source1[0]

63 48 47 32 31 16 15 0
Rn source2[1] source2[0]

63 48 47 32 31 16 15 0

Rd result[3] result[2] result[1] result[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 235
MSHLLD.L Rm, Rn, Rd

Description:

This multimedia instruction performs a logical left shift on each of the packed 32-bit
elements held in Rm with a shift amount specified in the lowest 5 bits of Rn, and
places the packed results in Rd. The highest 59 bits of Rn are ignored.

Multimedia Formats:

MSHLLD.L Rm, Rn, Rd

000011 m 0010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiZeroExtend32(Rm);
amount ← ZeroExtend64(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← ZeroExtend32(source[i] << ZeroExtend5(amount));
Rd ← MultiRegister32(result);

Rm source[1] source[0]

6
3

3
2

3
1 0

Rn amount (only bits 0 to 4 are used)

63 0
Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

236 Alphabetical list of instructions
MSHLLD.W Rm, Rn, Rd

Description:

This multimedia instruction performs a logical left shift on each of the packed 16-bit
elements held in Rm with a shift amount specified in the lowest 4 bits of Rn, and
places the packed results in Rd. The highest 60 bits of Rn are ignored.

Multimedia Formats:

MSHLLD.W Rm, Rn, Rd

000011 m 0001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiZeroExtend16(Rm);
amount ← ZeroExtend64(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← ZeroExtend16(source[i] << ZeroExtend4(amount));
Rd ← MultiRegister16(result);

Rm source[3] source[2] source[1] source[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0

Rn amount (only bits 0 to 3 are used)

63 0
Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 237
MSHLRD.L Rm, Rn, Rd

Description:

This multimedia instruction performs a logical right shift on each of the packed
32-bit elements held in Rm with a shift amount specified in the lowest 5 bits of Rn,
and places the packed results in Rd. The highest 59 bits of Rn are ignored.

Multimedia Formats:

MSHLRD.L Rm, Rn, Rd

000011 m 1110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiZeroExtend32(Rm);
amount ← ZeroExtend64(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← ZeroExtend32(source[i] >> ZeroExtend5(amount));
Rd ← MultiRegister32(result);

Rm source[1] source[0]

6
3

3
2

3
1 0

Rn amount (only bits 0 to 4 are used)

63 0
Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

238 Alphabetical list of instructions
MSHLRD.W Rm, Rn, Rd

Description:

This multimedia instruction performs a logical right shift on each of the packed
16-bit elements held in Rm with a shift amount specified in the lowest 4 bits of Rn,
and places the packed results in Rd. The highest 60 bits of Rn are ignored.

Multimedia Formats:

MSHLRD.W Rm, Rn, Rd

000011 m 1101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← MultiZeroExtend16(Rm);
amount ← ZeroExtend64(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← ZeroExtend16(source[i] >> ZeroExtend4(amount));
Rd ← MultiRegister16(result);

Rm source[3] source[2] source[1] source[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0

Rn amount (only bits 0 to 3 are used)

63 0
Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 239
MSUB.L Rm, Rn, Rd

Description:

This multimedia instruction performs modulo, 32-bit subtraction on corresponding
packed 32-bit elements held in Rm and Rn, and places the packed results in Rd. Sign
is unimportant for modulo arithmetic and so this instruction can be used on both
signed and unsigned types.

Multimedia Formats:

MSUB.L Rm, Rn, Rd

000010 m 1010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend32(Rm);
source2 ← MultiZeroExtend32(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← ZeroExtend32(source1[i] - source2[i]);
Rd ← MultiRegister32(result);

Rm source1[1] source1[0]

63 32 31 0

Rn source2[1] source2[0]

6
3

3
2

3
1 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

240 Alphabetical list of instructions
MSUB.W Rm, Rn, Rd

Description:

This multimedia instruction performs modulo, 16-bit subtraction on corresponding
packed 16-bit elements held in Rm and Rn, and places the packed results in Rd. Sign
is unimportant for modulo arithmetic and so this instruction can be used on both
signed and unsigned types.

Multimedia Formats:

MSUB.W Rm, Rn, Rd

000010 m 1001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend16(Rm);
source2 ← MultiZeroExtend16(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← ZeroExtend16(source1[i] - source2[i]);
Rd ← MultiRegister16(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2] source2[1] source2[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0

Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 241
MSUBS.L Rm, Rn, Rd

Description:

This multimedia instruction performs saturating, signed, 32-bit subtraction on
corresponding packed 32-bit elements held in Rm and Rn, and places the packed
results in Rd. The additions are saturated to the signed range [-231, 231].

Multimedia Formats:

MSUBS.L Rm, Rn, Rd

000010 m 1110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend32(Rm);
source2 ← MultiSignExtend32(Rn);
REPEAT i FROM 0 FOR 2

result[i] ← SignedSaturate32(source1[i] - source2[i]);
Rd ← MultiRegister32(result);

Rm source1[1] source1[0]

63 32 31 0

Rn source2[1] source2[0]

6
3

3
2

3
1 0

Rd result[1] result[0]

63 32 31 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

242 Alphabetical list of instructions
MSUBS.UB Rm, Rn, Rd

Description:

This multimedia instruction performs saturating, unsigned, 8-bit subtraction on
corresponding packed 8-bit elements held in Rm and Rn, and places the packed
results in Rd. The additions are saturated to the unsigned range [0, 256].

Multimedia Formats:

MSUBS.UB Rm, Rn, Rd

000010 m 1100 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiZeroExtend8(Rm);
source2 ← MultiZeroExtend8(Rn);
REPEAT i FROM 0 FOR 8

result[i] ← UnsignedSaturate8(source1[i] - source2[i]);
Rd ← MultiRegister8(result);

Rm source1[7] source1[6] source1[5] source1[4] source1[3] source1[2] source1[1] source1[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Rn source2[7] source2[6] source2[5] source2[4] source2[3] source2[2] source2[1] source2[0]

6
3

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

2
4

2
3

1
6

1
5 8 7 0

Rd result[7] result[6] result[5] result[4] result[3] result[2] result[1] result[0]

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 243
MSUBS.W Rm, Rn, Rd

Description:

This multimedia instruction performs saturating, signed, 16-bit subtraction on
corresponding packed 16-bit elements held in Rm and Rn, and places the packed
results in Rd. The additions are saturated to the signed range [-215, 215].

Multimedia Formats:

MSUBS.W Rm, Rn, Rd

000010 m 1101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← MultiSignExtend16(Rm);
source2 ← MultiSignExtend16(Rn);
REPEAT i FROM 0 FOR 4

result[i] ← SignedSaturate16(source1[i] - source2[i]);
Rd ← MultiRegister16(result);

Rm source1[3] source1[2] source1[1] source1[0]

63 48 47 32 31 16 15 0

Rn source2[3] source2[2] source2[1] source2[0]

6
3

4
8

4
7

3
2

3
1

1
6

1
5 0

Rd result[3] result[2] result[1] result[0]

63 48 47 32 31 16 15 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

244 Alphabetical list of instructions
MULS.L Rm, Rn, Rd

Description:

This instruction multiplies the signed lowest 32 bits of Rm by the signed lowest 32
bits of Rn and places the full 64-bit value of the result in Rd. The highest 32 bits of
Rm and the highest 32 bits of Rn are ignored.

MULS.L Rm, Rn, Rd

000001 m 1110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend32(Rm);
source2 ← SignExtend32(Rn);
result ← source1 × source2;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 245
MULU.L Rm, Rn, Rd

Description:

This instruction multiplies the unsigned lowest 32 bits of Rm by the unsigned lowest
32 bits of Rn and places the full 64-bit value of the result in Rd. The highest 32 bits
of Rm and the highest 32 bits of Rn are ignored.

MULU.L Rm, Rn, Rd

000000 m 1110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend32(Rm);
source2 ← ZeroExtend32(Rn);
result ← source1 × source2;
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

246 Alphabetical list of instructions
NOP

Description:

This instruction performs no operation.

NOP

011011 111111 0000 111111 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 247
NSB Rm, Rd

Description:

This instruction counts the number of consecutive sign bits in Rm, subtracts one and
places the result in Rd.

NSB Rm, Rd

000000 m 1101 111111 d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source ← SignExtend64(Rm);
REPEAT i FROM 0 FOR 64
{

n ← 64 - i;
IF (SignExtendn(source) = source)

result ← i;
}
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

248 Alphabetical list of instructions
OCBI Rm, disp

Description:

This instruction invalidates an operand cache block (if any) that corresponds to a
specified effective address. If the data in the operand cache block is dirty, it is
discarded without write-back to memory.

The effective address is calculated by adding Rm to the sign-extended 6-bit
immediate s multiplied by 32. The scaling factor is fixed at 32 regardless of the
cache block size. There is no misalignment check on this instruction, and the
calculated effective address can be any byte address. The calculated effective
address is automatically aligned downwards to the nearest exact multiple of the
cache block size. The effective address identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

OCBI checks for address error, translation miss and protection exception cases.

OCBI invalidates an implementation-dependent amount of data. For compatibility
with other implementations, software must exercise care when using OCBI.

OCBI Rm, disp

111000 m 1001 s 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s) << 5;
address ← ZeroExtend64(base + disp);
IF (MalformedAddress(address))

THROW WADDERR, address;
IF (MMU() AND DataAccessMiss(address))

THROW WTLBMISS, address;
IF (MMU() AND WriteProhibited(address))

THROW WRITEPROT, address;
OCBI(address);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 249
Explicit synchronization instructions are required to synchronize the effects of
cache coherency instructions. SYNCO must be used to guarantee that previous
OCBI instructions have completed their operation on the operand cache.

After completion, assuming no exception was raised, it is guaranteed that the
targeted memory block in physical address space is not present in any operand or
unified cache.

The behavior of this instruction when the MMU is disabled is described in Volume 1,
Chapter 6: SHmedia memory instructions.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

250 Alphabetical list of instructions
OCBP Rm, disp

Description:

This instruction purges an operand cache block (if any) that corresponds to a
specified effective address. If the data in the operand cache block is dirty, it is
written back to memory before being discarded.

The effective address is calculated by adding Rm to the sign-extended 6-bit
immediate s multiplied by 32. The scaling factor is fixed at 32 regardless of the
cache block size. There is no misalignment check on this instruction, and the
calculated effective address can be any byte address. The calculated effective
address is automatically aligned downwards to the nearest exact multiple of the
cache block size. The effective address identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

OCBP checks for address error, translation miss and protection exception cases.

Explicit synchronization instructions are required to synchronize the effects of
cache coherency instructions. SYNCO must be used to guarantee that previous
OCBP instructions have completed their operation on the operand cache and on
memory.

OCBP Rm, disp

111000 m 1000 s 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s) << 5;
address ← ZeroExtend64(base + disp);
IF (MalformedAddress(address))

THROW RADDERR, address;
IF (MMU() AND DataAccessMiss(address))

THROW RTLBMISS, address;
IF (MMU() AND (ReadProhibited(address) AND WriteProhibited(address)))

THROW READPROT, address;
OCBP(address);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 251
After completion, assuming no exception was raised, it is guaranteed that the
targeted memory block in physical address space is not present in any operand or
unified cache.

The behavior of this instruction when the MMU is disabled is described in Volume 1,
Chapter 6: SHmedia memory instructions.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

252 Alphabetical list of instructions
OCBWB Rm, disp

Description:

This instruction write-backs an operand cache block (if any) that corresponds to a
specified effective address. If the data in the operand cache block is dirty, it is
written back to memory but is not discarded.

The effective address is calculated by adding Rm to the sign-extended 6-bit
immediate s multiplied by 32. The scaling factor is fixed at 32 regardless of the
cache block size. There is no misalignment check on this instruction, and the
calculated effective address can be any byte address. The calculated effective
address is automatically aligned downwards to the nearest exact multiple of the
cache block size. The effective address identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

OCBWB checks for address error, translation miss and protection exception cases.

Explicit synchronization instructions are required to synchronize the effects of
cache coherency instructions. SYNCO must be used to guarantee that previous
OCBWB instructions have completed their operation on the operand cache and on
memory.

OCBWB Rm, disp

111000 m 1100 s 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s) << 5;
address ← ZeroExtend64(base + disp);
IF (MalformedAddress(address))

THROW RADDERR, address;
IF (MMU() AND DataAccessMiss(address))

THROW RTLBMISS, address;
IF (MMU() AND (ReadProhibited(address) AND WriteProhibited(address)))

THROW READPROT, address;
OCBWB(address);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 253
After completion, assuming no exception was raised, it is guaranteed that the
targeted memory block in physical address space will not be dirty in any operand or
unified cache.

The behavior of this instruction when the MMU is disabled is described in Volume 1,
Chapter 6: SHmedia memory instructions.

Possible exceptions:

RADDERR, RTLBMISS, READPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

254 Alphabetical list of instructions
OR Rm, Rn, Rd

Description:

This instruction performs a bitwise OR of Rm with Rn and places the result in Rd.

OR Rm, Rn, Rd

000001 m 1001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
result ← source1 ∨ source2;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 255
ORI Rm, imm, Rd

Description:

This instruction performs a bitwise OR of Rm with the sign-extended 10-bit
immediate s and places the result in Rd.

There is no dedicated instruction for moving one general-purpose register value into
another. It is recommended that the ORI instruction is used with an immediate
value of 0:

ORI Rm, 0, Rd ; move Rm into Rd

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after sign extension.

ORI Rm, imm, Rd

110111 m s d 0000

31 26 25 20 19 10 9 4 3 0

source1 ← SignExtend64(Rm);
imm ← SignExtend10(s);
result ← source1 ∨ imm;
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

256 Alphabetical list of instructions
PREFI Rm, disp

Description:

This instruction indicates a software-directed instruction prefetch from a specified
effective address. Software can use this instruction to give advance notice that
particular instructions will be required. It is implementation-specific as to whether
a prefetch will be performed.

The effective address is calculated by adding Rm to the sign-extended 6-bit
immediate s multiplied by 32. The scaling factor is fixed at 32 regardless of the
cache block size. There is no misalignment check on this instruction, and the
calculated effective address can be any byte address. The calculated effective
address is automatically aligned downwards to the nearest exact multiple of the
cache block size. The effective address identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

In exceptional cases, no exception is raised and the prefetch has no effect.

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.

PREFI Rm, disp

111000 m 0001 s 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s) << 5;
address ← ZeroExtend64(base + disp);
IF (NOT MalformedAddress(address))

IF (NOT (MMU() AND InstPrefetchMiss(address)))
IF (NOT (MMU() AND ExecuteProhibited(address)))

PREFI(address);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 257
PTA label, TRa

Description:

This instruction calculates a target address by adding a constant value onto the PC
of the current instruction. The constant is formed by taking the sign-extended 16-bit
immediate s, shifting it left by 2 bits and adding 1. If the computed target address is
outside the implemented effective address range an IADDERR exception is
generated. Otherwise, the target address is placed in the target register TRa.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that control will flow to that target address. This bit is
encoded as 1 if the instruction mnemonic is ‘PTA’ or ‘PTA/L’, or as 0 if the mnemonic
is ‘PTA/U’.

Possible exceptions:

IADDERR

Notes:

The ‘label’ in the assembly syntax represents the absolute address of the target
instruction with bit 0 set to 1 to indicate SHmedia mode.

PTA label, TRa

111010 s l 00 a 0000

31 26 25 10 9 8 7 6 4 3 0

pc ← ZeroExtend64(PC);
offset ← SignExtend16(s) << 2;
label ← ZeroExtend64((pc + offset) + 1);
IF (MalformedAddress(label))

THROW IADDERR, label;
TRa ← Register(label);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

258 Alphabetical list of instructions
PTABS Rn, TRa

Description:

This instruction uses a target address specified by Rn. If the target address is
outside the implemented effective address range an IADDERR exception is
generated. If the target address indicates a misaligned SHmedia instruction an
IADDERR exception is generated. Otherwise, the target address is placed in the
target register TRa.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that control will flow to that target address. This bit is
encoded as 1 if the instruction mnemonic is ‘PTABS’ or ‘PTABS/L’, or as 0 if the
mnemonic is ‘PTABS/U’.

Possible exceptions:

IADDERR

PTABS Rn, TRA

011010 111111 0001 n l 00 a 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

address ← ZeroExtend64(Rn);
target ← address;
IF (MalformedAddress(target) OR ((target ∧ 0x3) = 0x3))

THROW IADDERR, target;
TRa ← Register(target);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 259
PTB label, TRa

Description:

This instruction calculates a target address by adding a constant value onto the PC
of the current instruction. The constant is formed by taking the sign-extended 16-bit
immediate s and shifting it left by 2 bits. If the computed target address is outside
the implemented effective address range an IADDERR exception is generated.
Otherwise, the target address is placed in the target register TRa.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that control will flow to that target address. This bit is
encoded as 1 if the instruction mnemonic is ‘PTB’ or ‘PTB/L’, or as 0 if the mnemonic
is ‘PTB/U’.

Possible exceptions:

IADDERR

Notes:

The ‘label’ in the assembly syntax represents the absolute address of the target
instruction with bit 0 set to 0 to indicate SHcompact mode.

PTB label, TRa

111011 s l 00 a 0000

31 26 25 10 9 8 7 6 4 3 0

pc ← ZeroExtend64(PC);
offset ← SignExtend16(s) << 2;
label ← ZeroExtend64(pc + offset);
IF (MalformedAddress(label))

THROW IADDERR, label;
TRa ← Register(label);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

260 Alphabetical list of instructions
PTREL Rn, TRa

Description:

This instruction calculates a target address by adding Rn onto the PC of the current
instruction. If the computed target address is outside the implemented effective
address range an IADDERR exception is generated.If the target address indicates a
misaligned SHmedia instruction an IADDERR exception is generated. Otherwise,
the target address is placed in the target register TRa.

The encoding contains a single bit, labeled l, which is used to indicate whether it is
likely (1) or unlikely (0) that control will flow to that target address. This bit is
encoded as 1 if the instruction mnemonic is ‘PTREL’ or ‘PTREL/L’, or as 0 if the
mnemonic is ‘PTREL/U’.

Possible exceptions:

IADDERR

PTREL Rn, TRa

011010 111111 0101 n l 00 a 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

pc ← ZeroExtend64(PC);
source ← SignExtend64(Rn);
target ← ZeroExtend64(pc + source);
IF (MalformedAddress(target) OR ((target ∧ 0x3) = 0x3))

THROW IADDERR, target;
TRa ← Register(target);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 261
PUTCFG Rm, disp, Ry

Description:

This instruction copies Ry to a configuration register. The destination configuration
register is identified by adding Rm to the sign-extended 6-bit immediate s.

PUTCFG is a privileged instruction.

A write to an undefined configuration register results in architecturally-undefined
behavior. Note that configuration registers do not, in general, have simple read/
write semantics.

Possible exceptions:

RESINST

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

PUTCFG Rm, disp, Ry

111000 m 1111 s y 0000

31 26 25 20 19 16 15 10 9 4 3 0

md ← ZeroExtend1(MD);
base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
value ← ZeroExtend64(Ry);
index ← ZeroExtend64(base + disp);
IF (md = 0)

THROW RESINST;
IF (IsUndefinedConfigurationRegister(index))

UNDEFINED();
WriteConfigurationRegister(index, value);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

262 Alphabetical list of instructions
PUTCON Rm, CRj

Description:

This instruction copies Rm to CRj.

PUTCON to a privileged control register is a privileged instruction. PUTCON to a
user-accessible control register is not a privileged instruction.

A write to an undefined control register results in architecturally-undefined
behavior. Note that control registers do not, in general, have simple read/write
semantics.

Possible exceptions:

RESINST

PUTCON Rm, CRj

011011 m 1111 111111 j 0000

31 26 25 20 19 16 15 10 9 4 3 0

md ← ZeroExtend1(MD);
value ← ZeroExtend64(Rm);
index ← ZeroExtend6(j);
IF ((md = 0) AND IsPrivilegedControlRegister(index))

THROW RESINST;
IF (IsUndefinedControlRegister(index))

UNDEFINED();
WriteControlRegister(index, value);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 263
RTE

Description:

This instruction restores the PC and the ISA from the saved value held in SPC, and
restores the SR from the saved value held in SSR. It then restores SPC from PSPC,
and SSR from PSSR. If SPC is an inappropriate value for the program counter, or if
SSR is an inappropriate value for the status register, the behavior is architecturally
undefined.

This is a privileged instruction.

Possible exceptions:

RESINST

RTE

011011 111111 0011 111111 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

ssr ← ZeroExtend64(SSR);
spc ← ZeroExtend64(SPC);
pssr ← ZeroExtend64(PSSR);
pspc ← ZeroExtend64(PSPC);
md ← ZeroExtend1(MD);
IF (md = 0)

THROW RESINST;
IF (IsInvalidPC(spc) OR IsInvalidSR(ssr))

UNDEFINED();
sr ← ssr;
isa ← spc ∧ 0x1;
newpc ← spc ∧ (~ 0x1);
ssr ← pssr;
spc ← pspc;
SSR ← Register(ssr);
SPC ← Register(spc);
ISA ← Bit(isa);
SR ← Register(sr);
PC’ ← Register(newpc);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

264 Alphabetical list of instructions
SHARD Rm, Rn, Rd

Description:

This instruction performs an arithmetic right shift of Rm by a shift amount specified
in the lowest 6 bits of Rn and places the result in Rd. The highest 58 bits of Rn are
ignored.

SHARD Rm, Rn, Rd

000001 m 0111 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← ZeroExtend6(Rn);
result ← source1 >> source2;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 265
SHARD.L Rm, Rn, Rd

Description:

This instruction performs an arithmetic right shift on the lowest 32 bits of Rm by a
shift amount specified in the lowest 5 bits of Rn and places the sign-extended 32-bit
result in Rd. The highest 59 bits of Rn are ignored.

SHARD.L Rm, Rn, Rd

000001 m 0110 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend32(Rm);
source2 ← ZeroExtend5(Rn);
result ← SignExtend32(source1 >> source2);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

266 Alphabetical list of instructions
SHARI Rm, imm, Rd

Description:

This instruction performs an arithmetic right shift of Rm by a shift amount specified
in the 6-bit immediate s and places the result in Rd.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after zero extension.

SHARI Rm, imm, Rd

110001 m 0111 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
imm ← ZeroExtend6(SignExtend6(s));
result ← source1 >> imm;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 267
SHARI.L Rm, imm, Rd

Description:

This instruction performs an arithmetic right shift on the lowest 32 bits of Rm by a
shift amount specified in the lowest 5 bits of the 6-bit immediate s and places the
sign-extended 32-bit result in Rd. The highest bit of the 6-bit immediate s is ignored.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after zero extension.

SHARI.L Rm, imm, Rd

110001 m 0110 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend32(Rm);
imm ← ZeroExtend5(SignExtend6(s));
result ← SignExtend32(source1 >> imm);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

268 Alphabetical list of instructions
SHLLD Rm, Rn, Rd

Description:

This instruction performs a logical left shift of Rm by a shift amount specified in the
lowest 6 bits of Rn and places the result in Rd. The highest 58 bits of Rn are ignored.

SHLLD Rm, Rn, Rd

000001 m 0001 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend6(Rn);
result ← source1 << source2;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 269
SHLLD.L Rm, Rn, Rd

Description:

This instruction performs a logical left shift on the lowest 32 bits of Rm by a shift
amount specified in the lowest 5 bits of Rn and places the sign-extended 32-bit result
in Rd. The highest 59 bits of Rn are ignored.

SHLLD.L Rm, Rn, Rd

000001 m 0000 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend32(Rm);
source2 ← ZeroExtend5(Rn);
result ← SignExtend32(source1 << source2);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

270 Alphabetical list of instructions
SHLLI Rm, imm, Rd

Description:

This instruction performs a logical left shift of Rm by a shift amount specified in the
6-bit immediate s and places the result in Rd.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after zero extension.

SHLLI Rm, imm, Rd

110001 m 0001 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
imm ← ZeroExtend6(SignExtend6(s));
result ← source1 << imm;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 271
SHLLI.L Rm, imm, Rd

Description:

This instruction performs a logical left shift on the lowest 32 bits of Rm by a shift
amount specified in the lowest 5 bits of the 6-bit immediate s and places the
sign-extended 32-bit result in Rd. The highest bit of the 6-bit immediate s is ignored.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after zero extension.

SHLLI.L Rm, imm, Rd

110001 m 0000 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend32(Rm);
imm ← ZeroExtend5(SignExtend6(s));
result ← SignExtend32(source1 << imm);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

272 Alphabetical list of instructions
SHLRD Rm, Rn, Rd

Description:

This instruction performs a logical right shift of Rm by a shift amount specified in
the lowest 6 bits of Rn and places the result in Rd. The highest 58 bits of Rn are
ignored.

SHLRD Rm, Rn, Rd

000001 m 0011 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
source2 ← ZeroExtend6(Rn);
result ← source1 >> source2;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 273
SHLRD.L Rm, Rn, Rd

Description:

This instruction performs a logical right shift on the lowest 32 bits of Rm by a shift
amount specified in the lowest 5 bits of Rn and places the sign-extended 32-bit result
in Rd. The highest 59 bits of Rn are ignored.

SHLRD.L Rm, Rn, Rd

000001 m 0010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend32(Rm);
source2 ← ZeroExtend5(Rn);
result ← SignExtend32(source1 >> source2);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

274 Alphabetical list of instructions
SHLRI Rm, imm, Rd

Description:

This instruction performs a logical right shift of Rm by a shift amount specified in
the 6-bit immediate s and places the result in Rd.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after zero extension.

SHLRI Rm, imm, Rd

110001 m 0011 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend64(Rm);
imm ← ZeroExtend6(SignExtend6(s));
result ← source1 >> imm;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 275
SHLRI.L Rm, imm, Rd

Description:

This instruction performs a logical right shift on the lowest 32 bits of Rm by a shift
amount specified in the lowest 5 bits of the 6-bit immediate s and places the
sign-extended 32-bit result in Rd. The highest bit of the 6-bit immediate s is ignored.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after zero extension.

SHLRI.L Rm, imm, Rd

110001 m 0010 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← ZeroExtend32(Rm);
imm ← ZeroExtend5(SignExtend6(s));
result ← SignExtend32(source1 >> imm);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

276 Alphabetical list of instructions
SHORI imm, Rw

Description:

This instruction left shifts Rw by 16, performs a bitwise OR with the 16-bit
immediate field s, and places the result in Rw.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after zero extension.

SHORI s, Rw

110010 s w 0000

31 26 25 10 9 4 3 0

imm ← ZeroExtend16(SignExtend16(s));
source2_result ← ZeroExtend64(Rw);
source2_result ← (source2_result << 16) ∨ imm;
Rw ← Register(source2_result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 277
SLEEP

Description:

This instruction places the CPU into sleep mode. Execution of instructions is
stopped, though the state of the CPU is preserved. Sleep mode is exited when an
asynchronous event (an interrupt or a reset) arrives, and then instruction execution
continues. If the event causes an event handler to be launched, execution continues
with that handler, otherwise execution continues with the next instruction after the
SLEEP instruction.

This is a privileged instruction.

Possible exceptions:

RESINST

SLEEP

011011 111111 0111 111111 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

md ← ZeroExtend1(MD);
IF (md = 0)

THROW RESINST;
SLEEP();
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

278 Alphabetical list of instructions
ST.B Rm, disp, Ry

Description:

This instruction stores a byte to the effective address formed by adding Rm to the
sign-extended 10-bit immediate s. The byte to be stored is held in the lowest 8 bits of
Ry. In exceptional cases, an appropriate exception is raised.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

ST.B Rm, disp, Ry

101000 m s y 0000

31 26 25 20 19 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend10(s);
value ← ZeroExtend8(Ry);
address ← ZeroExtend64(base + disp);
WriteMemory8(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 279
ST.L Rm, disp, Ry

Description:

This instruction stores a long-word to the effective address formed by adding Rm to
the sign-extended 10-bit immediate s multiplied by 4. The long-word to be stored is
held in the lowest 32 bits of Ry. In exceptional cases, including misaligned stores, an
appropriate exception is raised.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.

ST.L Rm, disp, Ry

101010 m s y 0000

31 26 25 20 19 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 2;
value ← ZeroExtend32(Ry);
address ← ZeroExtend64(base + disp);
WriteMemory32(address, value);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

280 Alphabetical list of instructions
ST.Q Rm, disp, Ry

Description:

This instruction stores a quad-word to the effective address formed by adding Rm to
the sign-extended 10-bit immediate s multiplied by 8. The quad-word to be stored is
held in Ry. In exceptional cases, including misaligned stores, an appropriate
exception is raised.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.

ST.Q Rm, disp, Ry

101011 m s y 0000

31 26 25 20 19 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 3;
value ← ZeroExtend64(Ry);
address ← ZeroExtend64(base + disp);
WriteMemory64(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 281
ST.W Rm, disp, Ry

Description:

This instruction stores a word to the effective address formed by adding Rm to the
sign-extended 10-bit immediate s multiplied by 2. The word to be stored is held in
the lowest 16 bits of Ry. In exceptional cases, including misaligned stores, an
appropriate exception is raised.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension
and scaling.

ST.W Rm, disp, Ry

101001 m s y 0000

31 26 25 20 19 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend10(s) << 1;
value ← ZeroExtend16(Ry);
address ← ZeroExtend64(base + disp);
WriteMemory16(address, value);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

282 Alphabetical list of instructions
STHI.L Rm, disp, Ry

Description:

This instruction stores the high part of a misaligned long-word from Ry into
memory. The effective address is formed by adding the sign-extended 6-bit
immediate s to Rm. The effective address points to the highest byte in the
misaligned long-word. The address of the lowest byte in the high part of the
misaligned long-word is determined by masking the least significant 2 bits of the
effective address to 0.

This instruction stores into the inclusive range of memory bytes starting at that
lowest byte and ending at that highest byte. If the effective address is actually
4-byte aligned, then all 4 bytes are stored. The stored bytes are taken from
appropriate bytes within Ry and any other bytes are ignored.

This instruction can be used in conjunction with STLO.L to store a misaligned
long-word from a register into memory. In this case, the STHI.L effective address
should be 3 bytes larger than the STLO.L effective address.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

STHI.L Rm, disp, Ry

111000 m 0110 s y 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
value ← ZeroExtend32(Ry);
address ← base + disp;
bytecount ← (address ∧ 0x3) + 1;
bitcount ← bytecount × 8;
IF (IsLittleEndian())

start ← 32 - bitcount;
ELSE

start ← 0;
WriteMemoryHighbitcount(address, ZeroExtendbitcount(value >> start));
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 283
STHI.L byte mappings:

The mapping between byte locations in memory and byte positions in the
destination register is shown below for each value of the low 2 bits in the effective
address (EA). Each byte in the register is either ignored or maps to the given
memory address.

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

When the memory access for STHI.L causes an exception, the TEA control register
is initialized with the effective address of the access. This corresponds to the address
of the highest byte in the misaligned long-word.

Little endian mode
B

it
63 Target register

B
it

0

Low 2 bits of EA↓ Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0 ignore EA-0 ignore

0x1 ignore EA-0 EA-1 ignore

0x2 ignore EA-0 EA-1 EA-2 ignore

0x3 ignore EA-0 EA-1 EA-2 EA-3

Big endian mode

B
it

63 Target register

B
it

0

Low 2 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x0 ignore EA-0

0x1 ignore EA-1 EA-0

0x2 ignore EA-2 EA-1 EA-0

0x3 ignore EA-3 EA-2 EA-1 EA-0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

284 Alphabetical list of instructions
STHI.Q Rm, disp, Ry

Description:

This instruction stores the high part of a misaligned quad-word from Ry into
memory. The effective address is formed by adding the sign-extended 6-bit
immediate s to Rm. The effective address points to the highest byte in the
misaligned quad-word. The address of the lowest byte in the high part of the
misaligned quad-word is determined by masking the least significant 3 bits of the
effective address to 0.

This instruction stores into the inclusive range of memory bytes starting at that
lowest byte and ending at that highest byte. If the effective address is actually
8-byte aligned, then all 8 bytes are stored. The stored bytes are taken from
appropriate bytes within Ry and any other bytes are ignored.

This instruction can be used in conjunction with STLO.Q to store a misaligned
quad-word from a register into memory. In this case, the STHI.Q effective address
should be 7 bytes larger than the STLO.Q effective address.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

STHI.Q Rm, disp, Ry

111000 m 0111 s y 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
value ← ZeroExtend64(Ry);
address ← base + disp;
bytecount ← (address ∧ 0x7) + 1;
bitcount ← bytecount × 8;
IF (IsLittleEndian())

start ← 64 - bitcount;
ELSE

start ← 0;
WriteMemoryHighbitcount(address, ZeroExtendbitcount(value >> start));
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 285
STHI.Q byte mappings:

The mapping between byte locations in memory and byte positions in the
destination register is shown below for each value of the low 3 bits in the effective
address (EA). Each byte in the register is either ignored or maps to the given
memory address.

Little endian mode
B

it
63 Target register

B
it

0

Low 3 bits of EA↓ Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0 EA-0 ignore

0x1 EA-0 EA-1 ignore

0x2 EA-0 EA-1 EA-2 ignore

0x3 EA-0 EA-1 EA-2 EA-3 ignore

0x4 EA-0 EA-1 EA-2 EA-3 EA-4 ignore

0x5 EA-0 EA-1 EA-2 EA-3 EA-4 EA-5 ignore

0x6 EA-0 EA-1 EA-2 EA-3 EA-4 EA-5 EA-6 ignore

0x7 EA-0 EA-1 EA-2 EA-3 EA-4 EA-5 EA-6 EA-7

Big endian mode

B
it

63 Target register

B
it

0
Low 3 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x0 ignore EA-0

0x1 ignore EA-1 EA-0

0x2 ignore EA-2 EA-1 EA-0

0x3 ignore EA-3 EA-2 EA-1 EA-0

0x4 ignore EA-4 EA-3 EA-2 EA-1 EA-0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

286 Alphabetical list of instructions
Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

When the memory access for STHI.Q causes an exception, the TEA control register
is initialized with the effective address of the access. This corresponds to the address
of the highest byte in the misaligned quad-word.

0x5 ignore EA-5 EA-4 EA-3 EA-2 EA-1 EA-0

0x6 ignore EA-6 EA-5 EA-4 EA-3 EA-2 EA-1 EA-0

0x7 EA-7 EA-6 EA-5 EA-4 EA-3 EA-2 EA-1 EA-0

Big endian mode

B
it

63 Target register

B
it

0

Low 3 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 287
STLO.L Rm, disp, Ry

Description:

This instruction stores the low part of a misaligned long-word from Ry into memory.
The effective address is formed by adding the sign-extended 6-bit immediate s to
Rm. The effective address points to the lowest byte in the misaligned long-word. The
address of the highest byte in the low part of the misaligned long-word is
determined by setting the least significant 2 bits of the effective address to 1.

This instruction stores into the inclusive range of memory bytes starting at that
lowest byte and ending at that highest byte. If the effective address is actually
4-byte aligned, then all 4 bytes are stored. The stored bytes are taken from
appropriate bytes within Ry and any other bytes are ignored.

This instruction can be used in conjunction with STHI.L to store a misaligned
long-word from a register into memory. In this case, the STHI.L effective address
should be 3 bytes larger than the STLO.L effective address.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

STLO.L Rm, disp, Ry

111000 m 0010 s y 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
value ← ZeroExtend32(Ry);
address ← ZeroExtend64(base + disp);
bytecount ← 4 - (address ∧ 0x3);
bitcount ← bytecount × 8;
IF (IsLittleEndian())

start ← 0;
ELSE

start ← 32 - bitcount;
WriteMemoryLowbitcount(address, ZeroExtendbitcount(value >> start));
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

288 Alphabetical list of instructions
STLO.L Byte Mappings:

The mapping between byte locations in memory and byte positions in the
destination register is shown below for each value of the low 2 bits in the effective
address (EA). Each byte in the register is either ignored or maps to the given
memory address.

Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

When the memory access for STLO.L causes an exception, the TEA control register
is initialized with the effective address of the access. This corresponds to the address
of the lowest byte in the misaligned long-word.

Little endian mode
B

it
63 Target register

B
it

0

Low 2 bits of EA↓ Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0 ignore EA+3 EA+2 EA+1 EA+0

0x1 ignore EA+2 EA+1 EA+0

0x2 ignore EA+1 EA+0

0x3 ignore EA+0

Big endian mode

B
it

63 Target register

B
it

0

Low 2 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x0 ignore EA+0 EA+1 EA+2 EA+3

0x1 ignore EA+0 EA+1 EA+2 ignore

0x2 ignore EA+0 EA+1 ignore

0x3 ignore EA+0 ignore
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 289
STLO.Q Rm, disp, Ry

Description:

This instruction stores the low part of a misaligned quad-word from Ry into memory.
The effective address is formed by adding the sign-extended 6-bit immediate s to
Rm. The effective address points to the lowest byte in the misaligned quad-word.
The address of the highest byte in the low part of the misaligned quad-word is
determined by setting the least significant 3 bits of the effective address to 1.

This instruction stores into the inclusive range of memory bytes starting at that
lowest byte and ending at that highest byte. If the effective address is actually
8-byte aligned, then all 8 bytes are stored. The stored bytes are taken from
appropriate bytes within Ry and any other bytes are ignored.

This instruction can be used in conjunction with STHI.Q to store a misaligned
quad-word from a register into memory. In this case, the STHI.Q effective address
should be 7 bytes larger than the STLO.Q effective address.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

STLO.Q Rm, disp, Ry

111000 m 0011 s y 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
disp ← SignExtend6(s);
value ← ZeroExtend64(Ry);
address ← ZeroExtend64(base + disp);
bytecount ← 8 - (address ∧ 0x7);
bitcount ← bytecount × 8;
IF (IsLittleEndian())

start ← 0;
ELSE

start ← 64 - bitcount;
WriteMemoryLowbitcount(address, ZeroExtendbitcount(value >> start));
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

290 Alphabetical list of instructions
STLO.Q Byte Mappings:

The mapping between byte locations in memory and byte positions in the
destination register is shown below for each value of the low 3 bits in the effective
address (EA). Each byte in the register is either ignored or maps to the given
memory address.

Little endian
mode B

it
63 Target register

B
it

0

Low 3 bits of EA↓ Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0x0 EA+7 EA+6 EA+5 EA+4 EA+3 EA+2 EA+1 EA+0

0x1 ignore EA+6 EA+5 EA+4 EA+3 EA+2 EA+1 EA+0

0x2 ignore EA+5 EA+4 EA+3 EA+2 EA+1 EA+0

0x3 ignore EA+4 EA+3 EA+2 EA+1 EA+0

0x4 ignore EA+3 EA+2 EA+1 EA+0

0x5 ignore EA+2 EA+1 EA+0

0x6 ignore EA+1 EA+0

0x7 ignore EA+0

Big endian mode

B
it

63 Target register

B
it

0
Low 3 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x0 EA+0 EA+1 EA+2 EA+3 EA+4 EA+5 EA+6 EA+7

0x1 EA+0 EA+1 EA+2 EA+3 EA+4 EA+5 EA+6 ignore

0x2 EA+0 EA+1 EA+2 EA+3 EA+4 EA+5 ignore

0x3 EA+0 EA+1 EA+2 EA+3 EA+4 ignore

0x4 EA+0 EA+1 EA+2 EA+3 ignore
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 291
Notes:

The ‘disp’ in the assembly syntax represents the immediate s after sign extension.

When the memory access for STLO.Q causes an exception, the TEA control register
is initialized with the effective address of the access. This corresponds to the address
of the lowest byte in the misaligned quad-word.

0x5 EA+0 EA+1 EA+2 ignore

0x6 EA+0 EA+1 ignore

0x7 EA+0 ignore

Big endian mode

B
it

63 Target register

B
it

0

Low 3 bits of EA↓ Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

292 Alphabetical list of instructions
STX.B Rm, Rn, Ry

Description:

This instruction stores a byte to the effective address formed by adding Rm and Rn.
The byte to be stored is held in the lowest 8 bits of Ry. In exceptional cases, an
appropriate exception is raised.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

STX.B Rm, Rn, Ry

011000 m 0000 n y 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
value ← ZeroExtend8(Ry);
address ← ZeroExtend64(base + index);
WriteMemory8(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 293
STX.L Rm, Rn, Ry

Description:

This instruction stores a long-word to the effective address formed by adding Rm
and Rn. The long-word to be stored is held in the lowest 32 bits of Ry. In exceptional
cases, including misaligned stores, an appropriate exception is raised.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

STX.L Rm, Rn, Ry

011000 m 0010 n y 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
value ← ZeroExtend32(Ry);
address ← ZeroExtend64(base + index);
WriteMemory32(address, value);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

294 Alphabetical list of instructions
STX.Q Rm, Rn, Ry

Description:

This instruction stores a quad-word to the effective address formed by adding Rm
and Rn. The quad-word to be stored is held in Ry. In exceptional cases, including
misaligned stores, an appropriate exception is raised.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

STX.Q Rm, Rn, Ry

011000 m 0011 n y 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
value ← ZeroExtend64(Ry);
address ← ZeroExtend64(base + index);
WriteMemory64(address, value);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 295
STX.W Rm, Rn, Ry

Description:

This instruction stores a word to the effective address formed by adding Rm and Rn.
The word to be stored is held in the lowest 16 bits of Ry. In exceptional cases,
including misaligned stores, an appropriate exception is raised.

Possible exceptions:

WADDERR, WTLBMISS, WRITEPROT

STX.W Rm, Rn, Ry

011000 m 0001 n y 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
value ← ZeroExtend16(Ry);
address ← ZeroExtend64(base + index);
WriteMemory16(address, value);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

296 Alphabetical list of instructions
SUB Rm, Rn, Rd

Description:

This instruction subtracts Rn from Rm and places the result in Rd.

SUB Rm, Rn, Rd

000000 m 1011 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
result ← source1 - source2;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 297
SUB.L Rm, Rn, Rd

Description:

This instruction subtracts the lowest 32 bits of Rn from the lowest 32 bits of Rm and
places the sign-extended 32-bit value of the result in Rd. The highest 32 bits of Rm
and the highest 32 bits of Rn are ignored.

SUB.L Rm, Rn, Rd

000000 m 1010 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend32(Rm);
source2 ← SignExtend32(Rn);
result ← SignExtend32(source1 - source2);
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

298 Alphabetical list of instructions
SWAP.Q Rm, Rn, Rw

Description:

This instruction is an atomic read-modify-write operation on the 64-bit memory
object at the effective address formed by adding Rm and Rn. The quad-word held in
Rw is written to the effective address, and the previous quad-word contents are
returned in Rw.

The memory system guarantees that the read and write parts of the swap
instruction are implemented atomically on the target memory location. Only swaps
to 8-byte aligned addresses are allowed. In exceptional cases, including misaligned
swaps, an appropriate exception is raised.

Possible exceptions:

WADDERR, WTLBMISS, READPROT, WRITEPROT

SWAP.Q Rm, Rn, Rw

001000 m 0011 n w 0000

31 26 25 20 19 16 15 10 9 4 3 0

base ← ZeroExtend64(Rm);
index ← SignExtend64(Rn);
result_value ← ZeroExtend64(Rw);
address ← ZeroExtend64(base + index);
result_value ← ZeroExtend64(SwapMemory64(address, result_value));
Rw ← Register(result_value);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 299
SYNCI

Description:

This instruction is used to synchronize instruction fetch. Execution of a SYNCI
ensures that all previous instructions are completed before any subsequent
instruction is fetched.

Further information on SYNCI and examples of usage can be found in Volume 1,
Chapter 6: SHmedia memory instructions.

SYNCI

011011 111111 0010 111111 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

SYNCI();
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

300 Alphabetical list of instructions
SYNCO

Description:

This instruction is used to synchronize data operations. Execution of a SYNCO
ensures that all data operations from previous instructions are completed before
any data operations from subsequent instructions are started.

Further information on SYNCO and examples of usage can be found in Volume 1,
Chapter 6: SHmedia memory instructions.

SYNCO

011011 111111 0110 111111 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

SYNCO();
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 301
TRAPA Rm

Description:

This instruction causes a pre-execution trap. The value of Rm is used by the handler
launch sequence to characterize the trap.

Possible exceptions:

TRAP

TRAPA Rm

011011 m 0001 111111 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

tra ← ZeroExtend64(Rm);
THROW TRAP, tra;
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

302 Alphabetical list of instructions
XOR Rm, Rn, Rd

Description:

This instruction performs a bitwise XOR of Rm with Rn and places the result in Rd.

XOR Rm, Rn, Rd

000001 m 1101 n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
source2 ← SignExtend64(Rn);
result ← source1 ⊕ source2;
Rd ← Register(result);
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Alphabetical list of instructions 303
XORI Rm, imm, Rd

Description:

This instruction performs a bitwise XOR of Rm with the sign-extended 6-bit
immediate s and places the result in Rd.

Notes:

The ‘imm’ in the assembly syntax represents the immediate s after sign extension.

XORI Rm, imm, Rd

110001 m 1101 s d 0000

31 26 25 20 19 16 15 10 9 4 3 0

source1 ← SignExtend64(Rm);
imm ← SignExtend6(s);
result ← source1 ⊕ imm;
Rd ← Register(result);
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

304 Alphabetical list of instructions
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

SuperH, Inc.
05-CC-10002 V1.0
A
SHmedia
instruction
encoding

A.1 Major formats

The major formats can be quickly distinguished by decoding the 6-bit opcode.
Opcodes labeled ‘reserved’ are not associated with any format.

Opcode bits: 2, 1 and 0

000 001 010 011 100 101 110 111

O
p

co
d

e
bi

ts
:

5,
4

an
d

3

000

MND0

FPU-reserved
MND0

001 MND0

010
reserved

011

100
MSD10

101

110
MSD6 XSD16

111 reserved

Table 36: Opcodes and major formats
SH-5 CPU Core, Volume 2: SHmedia

306
A.2 Opcode assignment
The opcode allocation is shown in Table 37.

For major formats MSD10 and XSD16, this table contains the instruction names
allocated to each opcode. For major formats MND0 and MSD6, this table gives an
italicized name which identified the group of the instructions assigned to that
opcode. These opcodes have 4 extension bits which can distinguish up to 16
instructions. The assignment of these extension bits is described in the following
sections. This table uses the following abbreviations for groups of instructions:

1 ALU: straightforward arithmetic or bitwise instructions.

2 MM: multimedia instructions.

3 FPU: floating-point instructions (not load or store).

4 FLOAD: floating-point load instructions,

5 FSTORE: floating-point store instructions.

6 RMW: instructions that read-modify-write a register operand.

7 MISC: miscellaneous instructions.

Opcode bits: 2, 1 and 0

000 001 010 011 100 101 110 111

O
p

co
d

e
b

it
s:

5,
4

an
d

3

000 ALU ALU MM MM FPU-reserved FPU FPU FLOAD

001 RMW MISC MM MM FPU FPU FPU FSTORE

010 LOAD BRANCH MM MM reserved reserved reserved reserved

011 STORE BRANCH PT MISC reserved reserved reserved reserved

100 LD.B LD.W LD.L LD.Q LD.UB FLD.S FLD.P FLD.D

101 ST.B ST.W ST.L ST.Q LD.UW FST.S FST.P FST.D

110 LOAD ALU SHORI MOVI ADDI ADDI.L ANDI ORI

111 STORE BRANCH PTA PTB reserved reserved reserved reserved

Table 37: Opcode allocation
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

307
8 LOAD: general-purpose load instructions.

9 STORE: general-purpose store instructions.

10 BRANCH: instructions that read target registers.

11 PT: instructions that write target registers.

A.3 Reserved bits [0, 3]
Bits [0,3] of every instruction are reserved for the future expansion of the
instruction set architecture. They must be set to 0b0000 on all instructions. In the
current architecture specification, execution of an instruction with a non-zero value
in bits [0,3] leads to a reserved instruction exception. This exception check is
performed prior to decoding the opcode and extension opcode of the instruction.

Software should not rely on the reserved instruction exception generated for
incorrect settings of bits [0, 3]. On a future implementation, the behavior for
non-zero values could be modified to add new mechanism to the architecture.

A.4 Reserved instructions
There are 13 opcodes marked as ‘reserved’ or ‘FPU-reserved’ in Table 37: Opcode
allocation on page 306. These contain no instructions and are reserved for future
expansion of the instruction set.

Major formats MND0 and MSD6 use an additional 4-bit extension field to
distinguish up to 16 instructions per opcode. The combination of the 6-bit opcode
and the 4-bit extension opcode is called a 10-bit extended opcode.

There are many extended opcode values which are also reserved for future
expansion of the instruction set. These cases are indicated by empty cells in the
opcode assignment tables in Appendix A: Major format MND0 on page 310 and
Appendix A: Major format MSD6 on page 322.

Execution of a reserved opcode leads to a reserved instruction exception:

• The SHmedia instruction with encoding 0x6FF4FFF0 is guaranteed to be
reserved on all implementations. Execution of this SHmedia instruction will
always result in a RESINST exception. This instruction corresponds to an
opcode of 011011 and an extension opcode of 0100.
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

308
• Software should not rely on a RESINST exception for the execution of other
reserved opcodes. On a future implementation, any of these reserved opcodes can
be used to expand the instruction set.

A.5 Reserved operand bits
Some SHmedia instructions have operand fields where some or all of the bits are
unused. These are reserved operand bits and must be set to appropriate values (as
defined in Volume 1 Chapter 4: SHmedia instructions), otherwise the behavior is
architecturally undefined.

A.6 Floating-point instructions
A reserved instruction exception is raised when there is a non-zero value in bits [0,
3] of an instruction, as described in Appendix A: Reserved bits [0, 3] on page 307.
When these bits are all zero, the instruction set is partitioned into general-purpose
instructions and floating-point instructions. The floating-point instruction set
consists of the 14 opcodes from Table 37 that start with the letter ‘F’. The
general-purpose instruction set consists of the remaining opcodes.

An implementation can choose not to provide floating-point and SR.FD will then
always read as 1. If an implementation provides floating-point, software can disable
it by setting the SR.FD flag. In both of these cases, execution of an instruction from
the floating-point instruction set leads to an FPU disabled exception.

Note that if an instruction has a non-zero value in bits [0, 3] and also has an opcode
from Table 37 that starts with the letter ‘F’, then it is not considered to be an FPU
instruction. Execution of this instruction will result in a reserved instruction
exception, not an FPU disabled exception, regardless of whether the floating-point
unit is present or disabled.

In other cases, the FPU disabled exception takes precedence over the reserved
instruction exception. Thus, execution of a reserved floating-point instruction where
the floating-point instruction set is not available, leads to a floating-point disabled
exception.
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

309
A.7 Minor formats
The minor formats are packed into opcodes as shown in Table 38.

Opcode bits: 2, 1 and 0

000 001 010 011 100 101 110 111

O
p

co
d

e
b

it
s:

5,
4

an
d

3

000
mnd0
mxd0

mnd0 mnd0 mnd0 FPU-reserved ghf0 gxf0
mxf0 xxf0

mnf0

001 mnw0 kxd0
mnd0
mxd0

mnd0
gxd0 ghd0

gxx0
ghf0
ghq0

gxf0 mnz0

010 mnd0 bxd0 mnw0 mnd0 reserved reserved reserved reserved

011 mny0 mnc0 xna0
mxj0 mxx0

xxx0
reserved reserved reserved reserved

100 msd10 msd10 msd10 msd10 msd10 msf10 msf10 msf10

101 msy10 msy10 msy10 msy10 msy10 msz10 msz10 msz10

110 msd6 msd6 xsw16 xsd16 msd10 msd10 msd10 msd10

111
msx6
msy6

msc6 xsa16 xsa16 reserved reserved reserved reserved

Table 38: Opcodes and minor formats
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

310
A.8 Major format MND0
This major format contains the minor formats listed in the following table.

Format Name Example Mnemonic(s) Operands

xna0 PTABS Rn, Ta

bxd0 BLINK Tb, Rd

kxd0 GETCON Ck, Rd

mnd0 ADD Rm, Rn, Rd

mxd0 BYTEREV Rm, Rd

mxj0 PUTCON Rm, Cj

xxx0 RTE

mnw0 CMVEQ Rm, Rn, Rw

mnc0 BEQ Rm, Rn, Tc

mny0 STX.B Rm, Rn, Ry

mxx0 TRAPA Rm

xxf0 FGETSCR Ff

gxx0 FPUTSCR Fg

ghq0 FMAC.S Fg, Fh, Fq

ghf0 FADD.S FADD.D Fg, Fh, Ff Dg, Dh, Df

ghd0 FCMPEQ.S FCMPEQ.D Fg, Fh, Rd Dg, Dh, Rd

gxf0 FSQRT.S FSQRT.D Fg, Ff Dg, Df

gxd0 FMOV.SL FMOV.DQ Fg, Rd Dg, Rd

mxf0 FMOV.LS FMOV.QD Rm, Ff Rm, Df

mnf0 FLDX.S FLDX.D Rm, Rn, Ff Rm, Rn, Df

mnz0 FSTX.S FSTX.D Rm, Rn, Fz Rm, Rn, Dz
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

311
The bit allocation of these minor formats is described by the subsequent diagrams.

xna0

o 111111 e n l 00 a 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

bxd0

o 000 b e 111111 d 0000

31 26 25 23 22 20 19 16 15 10 9 4 3 0

kxd0

o k e 111111 d 0000

31 26 25 20 19 16 15 10 9 4 3 0

mnd0

o m e n d 0000

31 26 25 20 19 16 15 10 9 4 3 0

mxd0

o m e 111111 d 0000

31 26 25 20 19 16 15 10 9 4 3 0
mxj0

o m e 111111 j 0000

31 26 25 20 19 16 15 10 9 4 3 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

312
xxx0

o 111111 e 111111 111111 0000
31 26 25 20 19 16 15 10 9 4 3 0

mnw0

o m e n w 0000

31 26 25 20 19 16 15 10 9 4 3 0

mnc0

o m e n l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0

mny0

o m e n y 0000

31 26 25 20 19 16 15 10 9 4 3 0

mxx0

o m e 111111 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

xxf0

o 111111 e 111111 f 0000

31 26 25 20 19 16 15 10 9 4 3 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

313
gxx0

o g e g 111111 0000
31 26 25 20 19 16 15 10 9 4 3 0

ghq0

o g e h q 0000

31 26 25 20 19 16 15 10 9 4 3 0

ghf0

o g e h f 0000

31 26 25 20 19 16 15 10 9 4 3 0

ghd0

o g e h d 0000

31 26 25 20 19 16 15 10 9 4 3 0

gxf0

o g e g f 0000

31 26 25 20 19 16 15 10 9 4 3 0

gxd0

o g e g d 0000

31 26 25 20 19 16 15 10 9 4 3 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

314
The MSD0 format contains 4 extension bits. Each opcode can support up to 16
instructions. These are assigned by the following tables.

mxf0

o m e 111111 f 0000
31 26 25 20 19 16 15 10 9 4 3 0

mnf0

o m e n f 0000

31 26 25 20 19 16 15 10 9 4 3 0

mnz0

o m e n z 0000

31 26 25 20 19 16 15 10 9 4 3 0

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 CMPEQ CMPGT

01 CMPGTU

10 ADD.L ADD SUB.L SUB

11 ADDZ.L NSB MULU.L BYTEREV

Table 39: Opcode 000000, ALU
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

315
Extension opcode bits: 1 and 0

00 01 10 11
B

it
s:

3
an

d
2

00 SHLLD.L SHLLD SHLRD.L SHLRD

01 SHARD.L SHARD

10 OR AND

11 XOR MULS.L ANDC

Table 40: Opcode 000001, ALU

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 MADD.W MADD.L

01 MADDS.UB MADDS.W MADDS.L

10 MSUB.W MSUB.L

11 MSUBS.UB MSUBS.W MSUBS.L

Table 41: Opcode 000010, MM

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 MSHLLD.W MSHLLD.L

01 MSHALDS.W MSHALDS.L

10 MSHARD.W MSHARD.L MSHARDS.Q

11 MSHLRD.W MSHLRD.L

Table 42: Opcode 000011, MM
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

316
Extension opcode bits: 1 and 0

00 01 10 11
B

it
s:

3
an

d
2

00

01 FIPR.S

10

11 FTRV.S

Table 43: Opcode 000101, FPU

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 FABS.S FABS.D FNEG.S FNEG.D

01

10 FSINA.S FSRRA.S

11 FCOSA.S

Table 44: Opcode 000110, FPU

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 FMOV.LS FMOV.QD FGETSCR

01

10 FLDX.S FLDX.D

11 FLDX.P

Table 45: Opcode 000111, FLOAD
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

317
Extension opcode bits: 1 and 0

00 01 10 11
B

it
s:

3
an

d
2

00 CMVEQ SWAP.Q

01 CMVNE

10

11

Table 46: Opcode 001000, RMW

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00

01

10

11 GETCON

Table 47: Opcode 001001, MISC

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 MCMPEQ.B MCMPEQ.W MCMPEQ.L

01 MCMPGT.UB MCMPGT.W MCMPGT.L MEXTR1

10 MABS.W MABS.L MEXTR2

11 MPERM.W MEXTR3

Table 48: Opcode 001010, MM
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

318
Extension opcode bits: 1 and 0

00 01 10 11
B

it
s:

3
an

d
2

00 MSHFLO.B MSHFLO.W MSHFLO.L MEXTR4

01 MSHFHI.B MSHFHI.W MSHFHI.L MEXTR5

10 MEXTR6

11 MEXTR7

Table 49: Opcode 001011, MM

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 FMOV.SL FMOV.DQ FPUTSCR

01

10 FCMPEQ.S FCMPEQ.D FCMPUN.S FCMPUN.D

11 FCMPGT.S FCMPGT.D FCMPGE.S FCMPGE.D

Table 50: Opcode 001100, FPU

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 FADD.S FADD.D FSUB.S FSUB.D

01 FDIV.S FDIV.D FMUL.S FMUL.D

10

11 FMAC.S

Table 51: Opcode 001101, FPU
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

319
Extension opcode bits: 1 and 0

00 01 10 11
B

it
s:

3
an

d
2

00 FMOV.S FMOV.D

01 FSQRT.S FSQRT.D FCNV.SD FCNV.DS

10 FTRC.SL FTRC.DQ FTRC.SQ FTRC.DL

11 FLOAT.LS FLOAT.QD FLOAT.LD FLOAT.QS

Table 52: Opcode 001110, FPU

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00

01

10 FSTX.S FSTX.D

11 FSTX.P

Table 53: Opcode 001111, FSTORE

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 LDX.B LDX.W LDX.L LDX.Q

01 LDX.UB LDX.UW

10

11

Table 54: Opcode 010000, LOAD
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

320
Extension opcode bits: 1 and 0

00 01 10 11
B

it
s:

3
an

d
2

00 BLINK

01 GETTR

10

11

Table 55: Opcode 010001, BRANCH

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 MSAD.UBQ MMACFX.WL MCMV

01 MMACNFX.WL

10
MMULSUM.W

Q

11

Table 56: Opcode 010010, MM

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 MMUL.W MMUL.L

01 MMULFX.W MMULFX.L

10 MCNVS.WB MMULFXRP.W MMULLO.WL

11 MCNVS.WUB MCNVS.LW MMULHI.WL

Table 57: Opcode 010011, MM
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

321
Extension opcode bits: 1 and 0

00 01 10 11
B

it
s:

3
an

d
2

00 STX.B STX.W STX.L STX.Q

01

10

11

Table 58: Opcode 011000, STORE

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 BEQ BGE

01 BNE BGT

10 BGEU

11 BGTU

Table 59: Opcode 011001, BRANCH

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 PTABS

01 PTREL

10

11

Table 60: Opcode 011010, PT
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

322
A.9 Major format MSD6
This major format contains the minor formats given in Table 62.

The bit allocation of these minor formats is described by the subsequent diagrams.

Extension opcode bits: 1 and 0

00 01 10 11
B

it
s:

3
an

d
2

00 NOP TRAPA SYNCI RTE

01 BRK SYNCO SLEEP

10

11 PUTCON

Table 61: Opcode 011011, MISC

Format Name Example Mnemonic Operands

msc6 BEQI Rm, s6, Tc

msd6 SHLLI Rm, s6, Rd

msx6 ALLOCO Rm, s6

msy6 STHI.L Rm, s6, Ry

Table 62: MSD6 format summary

msc6

o m e s l 00 c 0000

31 26 25 20 19 16 15 10 9 8 7 6 4 3 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

323
The MSD6 format contains 4 extension bits. Each opcode can support up to 16
instructions. These are assigned by the following tables.

msd6

o m e s d 0000
31 26 25 20 19 16 15 10 9 4 3 0

msx6

o m e s 111111 0000

31 26 25 20 19 16 15 10 9 4 3 0

msy6

o m e s y 0000

31 26 25 20 19 16 15 10 9 4 3 0

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 LDLO.L LDLO.Q

01 LDHI.L LDHI.Q

10

11 GETCFG

Table 63: Opcode 110000, LOAD
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

324
Extension opcode bits: 1 and 0

00 01 10 11
B

it
s:

3
an

d
2

00 SHLLI.L SHLLI SHLRI.L SHLRI

01 SHARI.L SHARI

10

11 XORI

Table 64: Opcode 110001, ALU

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 PREFI STLO.L STLO.Q

01 ALLOCO ICBI STHI.L STHI.Q

10 OCBP OCBI

11 OCBWB PUTCFG

Table 65: Opcode 111000, STORE

Extension opcode bits: 1 and 0

00 01 10 11

B
it

s:
3

an
d

2

00 BEQI

01 BNEI

10

11

Table 66: Opcode 111001, BRANCH
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

325
A.10Major format MSD10
This major format contains the minor formats given in Table 67

These formats contain no extension bits. There is 1 instruction for each opcode.

Format Name Example Mnemonic(s) Operands

msd10 LD.B

ST.B

Rm, s10, Rd

Rm, s10, Rymsy10

msf10 FLD.S FLD.D Rm, s10, Ff Rm, s10, Df

msz10 FST.S FST.D Rm, s10, Fz Rm, s10, Dz

Table 67: MSD10 format summary

msd10

o m s d 0000

31 26 25 20 19 10 9 4 3 0

msy10

o m s y 0000

31 26 25 20 19 10 9 4 3 0

msf10

o m s f 0000

31 26 25 20 19 10 9 4 3 0

msz10

o m s z 0000

31 26 25 20 19 10 9 4 3 0
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

326
A.11Major format XSD16
This major format contains the minor formats given in Table 68.

These formats contain no extension bits. There is 1 instruction for each opcode.

Format Name Example Mnemonic Operands

xsa16 PTA s16, Ta

xsd16 MOVI s16, Rd

xsw16 SHORI s16, Rw

Table 68: XSD16 format summary

xsa16

o s l 00 a 0000

31 26 25 10 9 8 7 6 4 3 0

xsd16

o s d 0000

31 26 25 10 9 4 3 0

xsw16

o s w 0000

31 26 25 10 9 4 3 0
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

Index
A
ADD 42-43, 72, 255, 310, 314
ADD.L . 43, 314
ADDI 37, 44-45, 306
ADDI.L . 45, 306
ADDZ.L 46, 314
ALLOCO28, 47, 322, 324
AND 7, 22-27, 39, 49, 315
ANDC . 50, 315
ANDI . 51, 306

B
BEQ52, 310, 321
BEQI 53, 322, 324
BGE .54, 321
BGEU . 55, 321
BGT .56, 321
BGTU . 57, 321
BLINK 58, 310, 320
BNE .59, 321
BNEI . 60, 324
BREAK . 16, 61
BRK .61, 322
BYTEREV 62, 310, 314

C
CFG. 30
CMPEQ 63, 75, 314
CMPGT 64, 81, 314
CMPGTU 65, 314
CMVEQ 66, 310, 317
CMVNE 67, 317

E
ELSE . 15
EXECPROT . 16

F
FABS.D 33, 68, 316
FABS.S 33, 69, 316
FADD.D 32, 70, 72, 310, 318
FADD.S 32, 38, 71-72, 310, 318
FCMPEQ.D 33, 73, 75, 310, 318
FCMPEQ.S 33, 74-75, 310, 318
FCMPGE.D 33, 76, 78, 318
FCMPGE.S 33, 77-78, 318
FCMPGT.D 33, 79, 81, 318
FCMPGT.S 33, 80-81, 318
FCMPUN.D 33, 82, 84, 318
FCMPUN.S 33, 83-84, 318
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

328
FCNV.DS 33, 85, 87, 319
FCNV.SD 33, 86-87, 319
FCOSA.S 34, 88, 316
FDIV.D 32, 88, 90, 92, 318
FDIV.S 32, 91-92, 318
FGETSCR 94, 310, 316
FIPR.S 34, 95-96, 316
FLD.D 98, 306, 325
FLD.P . 99, 306
FLD.S 100, 306, 325
FLDX.D 101, 310, 316
FLDX.P 102, 316
FLDX.S 103, 310, 316
FLOAT.LD 34, 104, 106, 319
FLOAT.LS 34, 105-106, 319
FLOAT.QD34, 107, 109, 319
FLOAT.QS 34, 108-109, 319
FMAC.S 34, 110-111, 310, 318
FMOV.D114, 319
FMOV.DQ 115, 310, 318
FMOV.LS 116, 310, 316
FMOV.QD 117, 310, 316
FMOV.S 118, 319
FMOV.SL 119, 310, 318
FMUL.D32, 120, 122, 318
FMUL.S 32, 121-122, 318
FNEG.D 33, 123, 316
FNEG.S 33, 124, 316
FOR . . . 6-7, 9, 16, 19-20, 22-23, 25-27
FPU 17, 31, 72, 75, 78, 81, 84, 87, 89, 92,

96, 106, 109, 111, 122, 127, 130,
132, 141, 144, 147, 149, 306-309,
. 316, 318-319

FPUDIS 17, 39, 68-71, 73-74, 76-77, 79-
80, 82-83, 85-86, 88, 90-91, 94-
95, . 98-105, 107-108, 110, 114-
121, 123-126, 128-129, 131, 133-

140,142-143, 145-146, 149
FPUEXC 17, 39, 70-71, 73-74, 76-77, 79-

80, .82-83, 85-86, 88, 90-91, 95,
105, 107-108, 110, 120-121, 126,
128-129, 131, 139-140, 142-143,
145-. 146, 149

FPUTSCR 125, 310, 318
FROM . 16
FSINA.S 34, 126-127, 316
FSQRT.D 33, 128, 130, 310, 319
FSQRT.S 33, 129-130, 310, 319
FSRRA.S 35, 131-132, 316
FST.D 133, 306, 325
FST.P . 134, 306
FST.S 135, 306, 325
FSTX.D 136, 310, 319
FSTX.P 137, 319
FSTX.S 138, 310, 319
FSUB.D 32, 139, 141, 318
FSUB.S 32, 140-141, 318
FTRC.DL 34, 142, 144, 319
FTRC.DQ 34, 145, 147, 319
FTRC.SL 33, 143-144, 319
FTRC.SQ 34, 146-147, 319
FTRV.S 34, 148-149, 316
Function

Bit(i) . 9
DataAccessMiss(address) 21, 24
ExecuteProhibited(address) 21
FABS_D . 33
FABS_S . 33
FADD_D . 32
FADD_S 32, 39
FCMPEQ_D 33
FCMPEQ_S 33
FCMPGE_D 33
FCMPGE_S 33
FCMPGT_D 33
FCMPGT_S 33
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

329
FCMPUN_D 33
FCMPUN_S 33
FCNV_DS . 33
FCNV_SD . 33
FCOSA_S .34
FDIV_D . 32
FDIV_S . 32
FIPR_S . 34
FLOAT_LD 34
FLOAT_LS . 34
FLOAT_QD 34
FLOAT_QS 34
FloatRegister32(i) 13
FloatRegister64(i) 13
FloatRegisterMatrix32(a) 13
FloatRegisterPair32(a) 13
FloatRegisterVector32(a) 13
FloatValue32(r) 12
FloatValue64(r) 12
FloatValueMatrix32(r) 12
FloatValuePair32(r) 12
FloatValueVector32(r) 12
FMAC_S . 34
FMUL_D . 32
FMUL_S . 32
FNEG_D . 33
FNEG_S . 33
FpuCauseE()31, 39
FpuCauseI() 31
FpuCauseO() 31
FpuCauseU() 31
FpuCauseV()31, 39
FpuCauseZ() 31
FpuEnableI()31, 39
FpuEnableO()31, 39
FpuEnableU()31, 39
FpuEnableV()32, 39
FpuEnableZ() 31
FpuFlagI() . 31
FpuFlagO() . 31
FpuFlagU() 31
FpuFlagV() . 31

FpuFlagZ() . 31
FpuIsDisabled() 31, 39
FSINA_S . 34
FSQRT_D . 33
FSQRT_S . 33
FSRRA_S . 35
FSUB_D . 32
FSUB_S . 32
FTRC_DL . 34
FTRC_DQ . 34
FTRC_SL . 33
FTRC_SQ . 34
FTRV_S . 34
InstFetchMiss(address) 21
InstInvalidateMiiss(address) 21
InstPrefetchMiss(address) 21
IsLittleEndian() 21
IsPrivilegedControlRegister(index) . . 29
IsUndefinedConfigurationRegister(in-

dex) . 30
IsUndefinedControlRegister(index) . . 29
LowerBytesn(i) 11
MalformedAddress(address) 21-27
MMU() . 21-27
MultiRegistern 10
MultiSignExtendn 10
MultiZeroExtendn 10
OCBI(address) 28
OCBP(address) 28
OCBWB(address) 28
PrefetchMemory(address) 24
PREFI(address) 28
PREFO(address) 24, 28
ReadConfigurationRegister(index) . . 30
ReadControlRegister(index) 28
ReadMemoryHighn(address) . . . 22-23
ReadMemoryLown(address) 22-23
ReadMemoryn(address) 22
ReadMemoryPairn(address) 22-23
ReadProhibited(address) . . . 21-24, 27
Register(i) . 9
SignedSaturaten(i) 11
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

330
SignExtendn(i)8
SwapMemoryn(address, value) 26
UnsignedSaturaten(i)11
UpperBytesn(i) 11
WriteConfigurationRegister(index, val-

ue) . 30
WriteControlRegister(index, value) . 17,

25- . 28, 48, 133-138, 249, 278-282,
284, 287, 289, 292-295, 298

WriteMemoryHighn(a, value) . . . 25-26
WriteMemoryLown(address, value) . 24-

25
WriteMemoryn(address, value) . . 24-25
WriteMemoryPairn(address, value) . 24-

25
WriteProhibited(address) . . . 21, 25-27
ZeroExtendn(i)8

G
GETCFG152, 323
GETCON 153, 310, 317
GETTR 154, 320

I
IADDERR17, 155-156, 257-260
ICBI 22, 28, 155-156, 324
IF 15, 22-27, 39
INT . 8
ISA 18, 35, 58, 263
ITLBMISS 17, 155-156

L
LD.B 157, 306, 325
LD.L . 158, 306
LD.Q . 160, 306
LD.UB 162, 306
LD.UW 163, 306
LD.W . 165, 306
LDHI.L 167-168, 172, 323

LDHI.Q 169-170, 174, 323
LDLO.L 167, 172-173, 323
LDLO.Q 169, 174-175, 323
LDX.B 177, 319
LDX.L . 178, 319
LDX.Q 179, 319
LDX.UB 180, 319
LDX.UW 181, 319
LDX.W 182, 319

M
MABS.L 183, 317
MABS.W 184, 317
MADD.L 185, 315
MADD.W 186, 315
MADDS.L 187, 315
MADDS.UB 188, 315
MADDS.W 189, 315
MCMPEQ.B 190, 317
MCMPEQ.L 191, 317
MCMPEQ.W 192, 317
MCMPGT.L 193, 317
MCMPGT.UB 194, 317
MCMPGT.W 195, 317
MCMV 196, 320
MCNVS.LW 197, 320
MCNVS.WB 198, 320
MCNVS.WUB 199, 320
MD . 18
MEM 19-20, 22-23, 25-27
MEXTR1 200, 317
MEXTR2 201, 317
MEXTR3 202, 317
MEXTR4 203, 318
MEXTR5 204, 318
MEXTR6 205, 318
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

331
MEXTR7206, 318
MMACFX.WL 207, 320
MMACNFX.WL 209, 320
MMU 17, 21-27
MMUL.L211, 320
MMUL.W 212, 320
MMULFX.L 213, 320
MMULFX.W 214, 320
MMULFXRP.W 215, 320
MMULHI.WL 216, 320
MMULLO.WL 217, 320
MMULSUM.WQ 218, 320
MND0 305-307, 310
MOVI 219, 306, 326
MPERM.W 220, 317
MSAD.UBQ 222, 320
MSD305-307, 314, 322-323, 325
MSHALDS.L 224, 315
MSHALDS.W 225, 315
MSHARD.L226, 315
MSHARD.W 227, 315
MSHARDS.Q 228, 315
MSHFHI.B 229, 318
MSHFHI.L 230, 318
MSHFHI.W231, 318
MSHFLO.B232, 318
MSHFLO.L233, 318
MSHFLO.W 234, 318
MSHLLD.L235, 315
MSHLLD.W 236, 315
MSHLRD.L237, 315
MSHLRD.W 238, 315
MSUB.L 239, 315
MSUB.W240, 315
MSUBS.L 241, 315
MSUBS.UB242, 315

MSUBS.W 243, 315
MULU.L 244-245, 314

N
NOP . 246, 322
NOT . 8, 24
NSB . 247, 314

O
OCBI 28, 248-249, 324
OCBP 28, 250, 324
OCBWB 28, 252, 324
OR . 7, 22-23, 25, 27, 39, 167, 169, 172,

174, 254, 315
ORI . 255, 306

P
P0 . 32-35
PC 18-19, 36, 52-60, 257, 259-260, 263
PREFI 22, 28, 256, 324
PREFO . 24, 28
PSPC . 263
PTA 257, 306, 326
PTABS 258, 310, 321
PTB . 259, 306
PTREL 260, 321
PUTCFG 261, 324
PUTCON 262, 310, 322

R
RADDERR .17, 22-23, 98-103, 157-158,

160, . . . 162-163, 165, 167, 169,
172, . . . 174, 177-182, 251, 253

READPROT 17, 22-23, 27, 98-103, 157-
158, . . . 160, 162-163, 165, 167,
169, . . . 172, 174, 177-182, 251,
253, 298
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

332
Register
CR . 28
DR . 19
FPSCR 17-18, 31-35, 39, 70-72, 75, 78,

. 81, 84-87, 90-92, 94, 96, 104-105,
107- . . 108, 110-111, 120-122, 125,
128- 130, 132, 139-147, 149

FPSCR.CAUSE.E 31
FPSCR.CAUSE.I 31
FPSCR.CAUSE.O 31
FPSCR.CAUSE.U 31
FPSCR.CAUSE.V 31
FPSCR.CAUSE.Z 31
FPSCR.DN . 72, 75, 78, 81, 84, 87, 92,

96, . . 111, 122, 130, 132, 141, 144,
147, .149

FPSCR.ENABLE.I 31
FPSCR.ENABLE.O 31
FPSCR.ENABLE.U 31
FPSCR.ENABLE.V 32
FPSCR.ENABLE.Z 31
FPSCR.FLAG.I 31
FPSCR.FLAG.O 31
FPSCR.FLAG.U 31
FPSCR.FLAG.V 31
FPSCR.FLAG.Z 31
FPSCR.RM . 70-71, 85-86, 90-91, 104-

105, . . 107-108, 110, 120-121, 128-
129, . . . 139-140, 142-143, 145-146

MTRX . 19
PSSR .263
R 18, 157-158, 160, 162-163, 165, 177-

182, .255
SPC .263
SR18, 31, 39, 263, 308
SR.FD31, 308
SSR .263

REPEAT .16
RESINST . . .17, 152-153, 261-263, 277
RTE263, 310, 322
RTLBMISS 17, 22-23, 98-103, 157-158,

160, . . .162-163, 165, 167, 169,

172, . . . 174, 177-182, 251, 253

S
SHARD 264-265, 315
SHARD.L 265, 315
SHARI 266, 324
SHLLD 268-269, 315
SHLLD.L 269, 315
SHLLI 270-271, 322, 324
SHLLI.L 271, 324
SHLRD 272-273, 315
SHLRD.L 273, 315
SHLRI 267, 274-275, 324
SHLRI.L 267, 275, 324
SHORI 276, 306, 326
SLEEP 27, 277, 322
ST 278-281, 306, 325
ST.B 278, 306, 325
ST.L . 279, 306
ST.Q . 280, 306
ST.W . 281, 306
STEP . 16
STHI.L 282-283, 287, 322, 324
STHI.Q 284-285, 289, 324
STLO.L 282, 287-288, 324
STLO.Q 284, 289-290, 324
STX.B 292, 310, 321
STX.L . 293, 321
STX.Q . 294, 321
STX.W 295, 321
SUB 141, 296-297, 314
SUB.L . 297, 314
SWAP.Q 298, 317
SYNCI 27, 156, 299, 322
SYNCO 27, 249-250, 252, 300, 322
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

333
T
THROW16, 22-23, 25-27, 39
TRAP . 17, 301
TRAPA 301, 310, 322

U
UNDEFINED 13-14

W
WRITEPROT . . 17, 25-27, 48, 133-138,

249, . . .278-282, 284, 287, 289,
292-295, 298

WTLBMISS 17, 25-27, 48, 133-138, 249,
278-282, 284, 287, 289, 292-295,
. 298

XYZ
XMSD10 .325
XMSD6 . 322
XOR8, 302, 315
XORI . 303, 324
XSD16 305-306, 326
XXSD16 . 326
SuperH, Inc.
05-CC-10002 V1.0 SH-5 CPU Core, Volume 2: SHmedia

334
SuperH, Inc.
SH-5 CPU Core, Volume 2: SHmedia 05-CC-10002 V1.0

	Preface
	SuperH SH-5 document identification and control
	SuperH SH-5 CPU core documentation suite

	SHmedia specification
	1.1 Overview
	1.2 Variables and types
	1.2.1 Integer
	1.2.2 Boolean
	1.2.3 Bit-fields
	1.2.4 Arrays
	1.2.5 Floating point values

	1.3 Expressions
	1.3.1 Integer arithmetic operators
	1.3.2 Integer shift operators
	1.3.3 Integer bitwise operators
	1.3.4 Relational operators
	1.3.5 Boolean operators
	1.3.6 Single-value functions

	1.4 Statements
	1.4.1 Undefined behavior
	1.4.2 Assignment
	1.4.3 Conditional
	1.4.4 Repetition
	1.4.5 Exceptions
	1.4.6 Procedures

	1.5 Architectural state
	1.6 Memory model
	1.6.1 Support functions
	1.6.2 Reading memory
	1.6.3 Prefetching memory
	1.6.4 Writing memory
	1.6.5 Swapping memory

	1.7 Sleep and synchronization operations
	1.8 Cache model
	1.9 Control register model
	1.10 Configuration register model
	1.11 Floating-point model
	1.11.1 Functions to access SR and FPSCR
	1.11.2 Functions to model floating-point behavior
	1.11.3 Floating-point special cases and exceptions

	1.12 Abstract sequential model
	1.13 Example instructions
	1.13.1 Integer add immediate
	1.13.2 Floating-point single-precision add

	SHmedia instruction set
	2.1 Alphabetical list of instructions
	ADD Rm, Rn, Rd
	ADD.L Rm, Rn, Rd
	ADDI Rm, imm, Rd
	ADDI.L Rm, imm, Rd
	ADDZ.L Rm, Rn, Rd
	ALLOCO Rm, disp
	AND Rm, Rn, Rd
	ANDC Rm, Rn, Rd
	ANDI Rm, imm, Rd
	BEQ Rm, Rn, TRc
	BEQI Rm, imm, TRc
	BGE Rm, Rn, TRc
	BGEU Rm, Rn, TRc
	BGT Rm, Rn, TRc
	BGTU Rm, Rn, TRc
	BLINK TRb, Rd
	BNE Rm, Rn, TRc
	BNEI Rm, imm, TRc
	BRK
	BYTEREV Rm, Rd
	CMPEQ Rm, Rn, Rd
	CMPGT Rm, Rn, Rd
	CMPGTU Rm, Rn, Rd
	CMVEQ Rm, Rn, Rw
	CMVNE Rm, Rn, Rw
	FABS.D DRg, DRf
	FABS.S FRg, FRf
	FADD.D DRg, DRh, DRf
	FADD.S FRg, FRh, FRf
	FCMPEQ.D DRg, DRh, Rd
	FCMPEQ.S FRg, FRh, Rd
	FCMPGE.D DRg, DRh, Rd
	FCMPGE.S FRg, FRh, Rd
	FCMPGT.D DRg, DRh, Rd
	FCMPGT.S FRg, FRh, Rd
	FCMPUN.D DRg, DRh, Rd
	FCMPUN.S FRg, FRh, Rd
	FCNV.DS DRg, FRf
	FCNV.SD FRg, DRf
	FCOSA.S FRg, FRf
	FDIV.D DRg, DRh, DRf
	FDIV.S FRg, FRh, FRf
	FGETSCR FRf
	FIPR.S FVg, FVh, FRf
	FLD.D Rm, disp, DRf
	FLD.P Rm, disp, FPf
	FLD.S Rm, disp, FRf
	FLDX.D Rm, Rn, DRf
	FLDX.P Rm, Rn, FPf
	FLDX.S Rm, Rn, FRf
	FLOAT.LD FRg, DRf
	FLOAT.LS FRg, FRf
	FLOAT.QD DRg, DRf
	FLOAT.QS DRg, FRf
	FMAC.S FRg, FRh, FRq
	FMOV.D DRg, DRf
	FMOV.DQ DRg, Rd
	FMOV.LS Rm, FRf
	FMOV.QD Rm, DRf
	FMOV.S FRg, FRf
	FMOV.SL FRg, Rd
	FMUL.D DRg, DRh, DRf
	FMUL.S FRg, FRh, FRf
	FNEG.D DRg, DRf
	FNEG.S FRg, FRf
	FPUTSCR FRg
	FSINA.S FRg, FRf
	FSQRT.D DRg, DRf
	FSQRT.S FRg, FRf
	FSRRA.S FRg, FRf
	FST.D Rm, disp, DRz
	FST.P Rm, disp, FPz
	FST.S Rm, disp, FRz
	FSTX.D Rm, Rn, DRz
	FSTX.P Rm, Rn, FPz
	FSTX.S Rm, Rn, FRz
	FSUB.D DRg, DRh, DRf
	FSUB.S FRg, FRh, FRf
	FTRC.DL DRg, FRf
	FTRC.SL FRg, FRf
	FTRC.DQ DRg, DRf
	FTRC.SQ FRg, DRf
	FTRV.S MTRXg, FVh, FVf
	GETCFG Rm, disp, Rd
	GETCON CRk, Rd
	GETTR TRb, Rd
	ICBI Rm, disp
	LD.B Rm, disp, Rd
	LD.L Rm, disp, Rd
	LD.Q Rm, disp, Rd
	LD.UB Rm, disp, Rd
	LD.UW Rm, disp, Rd
	LD.W Rm, disp, Rd
	LDHI.L Rm, disp, Rd
	LDHI.Q Rm, disp, Rd
	LDLO.L Rm, disp, Rd
	LDLO.Q Rm, disp, Rd
	LDX.B Rm, Rn, Rd
	LDX.L Rm, Rn, Rd
	LDX.Q Rm, Rn, Rd
	LDX.UB Rm, Rn, Rd
	LDX.UW Rm, Rn, Rd
	LDX.W Rm, Rn, Rd
	MABS.L Rm, Rd
	MABS.W Rm, Rd
	MADD.L Rm, Rn, Rd
	MADD.W Rm, Rn, Rd
	MADDS.L Rm, Rn, Rd
	MADDS.UB Rm, Rn, Rd
	MADDS.W Rm, Rn, Rd
	MCMPEQ.B Rm, Rn, Rd
	MCMPEQ.L Rm, Rn, Rd
	MCMPEQ.W Rm, Rn, Rd
	MCMPGT.L Rm, Rn, Rd
	MCMPGT.UB Rm, Rn, Rd
	MCMPGT.W Rm, Rn, Rd
	MCMV Rm, Rn, Rw
	MCNVS.LW Rm, Rn, Rd
	MCNVS.WB Rm, Rn, Rd
	MCNVS.WUB Rm, Rn, Rd
	MEXTR1 Rm, Rn, Rd
	MEXTR2 Rm, Rn, Rd
	MEXTR3 Rm, Rn, Rd
	MEXTR4 Rm, Rn, Rd
	MEXTR5 Rm, Rn, Rd
	MEXTR6 Rm, Rn, Rd
	MEXTR7 Rm, Rn, Rd
	MMACFX.WL Rm, Rn, Rw
	MMACNFX.WL Rm, Rn, Rw
	MMUL.L Rm, Rn, Rd
	MMUL.W Rm, Rn, Rd
	MMULFX.L Rm, Rn, Rd
	MMULFX.W Rm, Rn, Rd
	MMULFXRP.W Rm, Rn, Rd
	MMULHI.WL Rm, Rn, Rd
	MMULLO.WL Rm, Rn, Rd
	MMULSUM.WQ Rm, Rn, Rw
	MOVI imm, Rd
	MPERM.W Rm, Rn, Rd
	MSAD.UBQ Rm, Rn, Rw
	MSHALDS.L Rm, Rn, Rd
	MSHALDS.W Rm, Rn, Rd
	MSHARD.L Rm, Rn, Rd
	MSHARD.W Rm, Rn, Rd
	MSHARDS.Q Rm, Rn, Rd
	MSHFHI.B Rm, Rn, Rd
	MSHFHI.L Rm, Rn, Rd
	MSHFHI.W Rm, Rn, Rd
	MSHFLO.B Rm, Rn, Rd
	MSHFLO.L Rm, Rn, Rd
	MSHFLO.W Rm, Rn, Rd
	MSHLLD.L Rm, Rn, Rd
	MSHLLD.W Rm, Rn, Rd
	MSHLRD.L Rm, Rn, Rd
	MSHLRD.W Rm, Rn, Rd
	MSUB.L Rm, Rn, Rd
	MSUB.W Rm, Rn, Rd
	MSUBS.L Rm, Rn, Rd
	MSUBS.UB Rm, Rn, Rd
	MSUBS.W Rm, Rn, Rd
	MULS.L Rm, Rn, Rd
	MULU.L Rm, Rn, Rd
	NOP
	NSB Rm, Rd
	OCBI Rm, disp
	OCBP Rm, disp
	OCBWB Rm, disp
	OR Rm, Rn, Rd
	ORI Rm, imm, Rd
	PREFI Rm, disp
	PTA label, TRa
	PTABS Rn, TRa
	PTB label, TRa
	PTREL Rn, TRa
	PUTCFG Rm, disp, Ry
	PUTCON Rm, CRj
	RTE
	SHARD Rm, Rn, Rd
	SHARD.L Rm, Rn, Rd
	SHARI Rm, imm, Rd
	SHARI.L Rm, imm, Rd
	SHLLD Rm, Rn, Rd
	SHLLD.L Rm, Rn, Rd
	SHLLI Rm, imm, Rd
	SHLLI.L Rm, imm, Rd
	SHLRD Rm, Rn, Rd
	SHLRD.L Rm, Rn, Rd
	SHLRI Rm, imm, Rd
	SHLRI.L Rm, imm, Rd
	SHORI imm, Rw
	SLEEP
	ST.B Rm, disp, Ry
	ST.L Rm, disp, Ry
	ST.Q Rm, disp, Ry
	ST.W Rm, disp, Ry
	STHI.L Rm, disp, Ry
	STHI.Q Rm, disp, Ry
	STLO.L Rm, disp, Ry
	STLO.Q Rm, disp, Ry
	STX.B Rm, Rn, Ry
	STX.L Rm, Rn, Ry
	STX.Q Rm, Rn, Ry
	STX.W Rm, Rn, Ry
	SUB Rm, Rn, Rd
	SUB.L Rm, Rn, Rd
	SWAP.Q Rm, Rn, Rw
	SYNCI
	SYNCO
	TRAPA Rm
	XOR Rm, Rn, Rd
	XORI Rm, imm, Rd
	A.1 Major formats
	A.2 Opcode assignment
	A.3 Reserved bits [0, 3]
	A.4 Reserved instructions
	A.5 Reserved operand bits
	A.6 Floating-point instructions
	A.7 Minor formats
	A.8 Major format MND0
	A.9 Major format MSD6
	A.10 Major format MSD10
	A.11 Major format XSD16

	Index

