The SPARC™™ Architecture Manual
Version 7

SOLBOURNE COMPUTER, Inc.
2190 Miller Drive
Longmont, Colorado 80501
303 772-3400

For Solbourne Support Call: 1-800-447-2861

The X Window System is a trademark of MIT.
Sun Microsystems and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
Sun-3, Sun-4, SPARC, and DVMA are trademarks of Sun Microsystems, Inc.

Part Number: 101482-00
September 1988

Reprinted by permission.

Copyright 1988 by Solbourne Computer, Inc. All rights reserved. No part of this publication may
be reproduced, stored in any media or in any type of retrieval system, transmitted in any form
(e.g., electronic, mechanical, photocopying, recording) or translated into any language or
computer language without the prior written permission of Solbourne Computer, inc., 2190 Miller
Drive, Longmont, Colorado 80501. There is no right to reverse engineer, decompile, or
disassemble the information contained herein or in the accompanying software.

Solbourne Computer, Inc. reserves the right to revise this publication and to make changes from
time to time without obligation to notify any person of such revisions or changes.

TABLE OF CONTENTS

SECTION 1: INTRODUCTION aeurenssnescersesseesuessenseessesssassoessesncssnseessessssassnnsnsnsssnansnosnes -1
1.1 Introduction ..eeeceecsecensenne eesesseisasseensisatsanssennen ceeenensens ceesaernesen ceremeeensneneneanenans 1-1
1.2 Architecture and Implementation ererarsassesanesaasane U £ |
1.3 Features teeseesersusatnannesnanensusaes . cerrrseseuesanisnrnenean R £
1.4 Using This Manual weeseceesecssecnisecnsencncnsanisenanes N . eesennsnne ceesesanses e 1-2

1.4.1 CONeNtS wieerrerrensnernesenenees cessetsasaressnennnsasnnssnenans ceenens ceesenessenenneene seseesacsanas 1-2
1.4.2 FONIS iN TEXE ceeureererererancnesnncannrnensanssassonesanes eeneneene recsmesenesnnaennanes . 1-2
1.4.3 NOteS ceeverernscanans resssssssrssnsasasienesnetsantntsasersensnsansantsnas teresssesnsnasancennansnenes 1-3
1.4.4 Glossary .eeeeees eareressssssssssesessensrnstnnransrtnssentraasarenn ceesssenssansnessassnssassacsnanans 1-3
1.4.5 References .cccecsseseceeses eeserenssssesassnsnenauinesnennans ceenens R

SECTION 2: SPARC ARCHITECTURE OVERVIEW ..cccrevsnnees ceeanannennas ceasseesennne ceernusnnnes 2-1
2.1 INrodUCHION seeecercersucnennnresensessesssancneseessesnsanssessasaansnes essesesensssaasasransansasanenes 2-1
2.21U, FPU, and CP .ccccecrececrancnsaenes ceesessans etestssirsssesssesesansesnaannnans ceessssnsersnanansenans 2-1
2.3 REQISIErS airererecerrerensiecnsseresnnscesececrassnssssersnssancesassasens rssesssnsesnsnancnsancasannesas . 23
2.4 Multitasking Support eereessrsenenneas cessessnenansen reesasaenens sesssesantnesannsen ceenene ceeee 2-3
2.5 Instruction Calegories eeieeeeseessassenssnnsenseeseesesssassnnesassanssssansensanssans . cresseerens 2-3

2.5.1 Load and Store INStructions ee.eseeseseessesass ceresessssnssasensesersneserasnssnsnsasansnnsansass 253
2.5.2 Arithmetic/Logical/Shift «eessesecaecsnsaess cecsacnssescessesssanen S~ C
2.5.3 Control-Transfer INStruCtionS ecceeeecseceesseceesansnecens ceesnensens U~
2.5.4 Read/Write Control ReGISter seeseresercrsnsssasnrsnsasiasansacencsesasancsenns csesseeseserenseannn 2-4
2.5.5 Floating-point and Coprocessor Operate INStructions ...ceeesese. -2
2.6 Processor Data TYPES eceererecserraracsarsnsersesnnesansessusesascssnesssessssenae ceveenenenaes creeans 2-5
2.7 Traps and ExCeplions .cceeeesneseess ceseesesasesresseresannes cresesacarses cesnsenanes R - s
2.8 System Interface seeercescenseens ceermesacnasansnass cesestsnssaiasesatnnsanasennne ceesecsunstenens veesennes 2-8

SECTION 3: REGISTERS cuituiicseceenccntennsuimcrsneisessseiraeniasssecsssesssnsserssssassnncas censeeenanens 3-1
3.1 INrOTUCHION sereureucensesetensseratsernesanessesasiecsasnenensessnasesensassscsnsesssnsssacnssesassessnsnnse 3-1
3.2 Integer Unit r REQISIErS eererecrcsreresressercesnisennsaresacsesasnsassansenns sesesesessesesanenenesens 3-1

3.2.1 Programming NOIE weieceererseesescesasnersenseransnssness ceesisnseseneisensseses ceensenenee vernsenes 3-1
3.3 SpecCial I TEQISIErS weecrereesssrnansoareassessssonsescnsnsanssascsnsncsnsans sersscncessnsnssnsarsersns cereess 3-2
3.3.1 Programming NOteS .ccieeerencsuncnneee caresusunsacssssensmnsnonnes cernsseseesaseesassainennsanennss 32
3.4 Integer Unit Control/Status Registers ...cceveeerecenanenes sesscescennensnsstesaunrosnsnsserasenasannns 3-4
3.4.1 Integer Program Counters (PC and nPC) cesrecaran ceeecannenas ceressssestensesarasanans 3-4
3.4.2 Processor State Register (PSR) eeceereescrerensssasersnscreascnsenes ceessssesnnssneseracnnsansas 3-4
3.4.3 Programming NOte sceereesecnscrecssnnes cesesraetseesessnisnane eseeseraeseseesaccasserasnnennane wees 35
3.4.4 Programming NOE .eeeeresecsnesercasercencecsens cresnssnenns [ceesnsaesne ressesesesesesansonns 3-6
3.4.5 Window Invalid Mask Register (WIM) U PR 03
3.4.6 Trap Base Register (TBR) eeceseereeseseacnss ceersnenessnesaaans cecsnsssssecsarenssnssnsansasses 30
3.4.7 Y ReQISIEr cieciecnreeannneiatsaneucnrarennsesnceressecsssancansssseenesasassass seceeseesene ceesneneanas 3-7
3.5 Floating-Point REQISIErS wecsecrcacserresrsastarneesrssnsersessenasessssssssarosnsassasessnssnsssennsnssass 37
3.5.1 Floating-Point f regiSters weieesescsnsesesraccseess cerennsansacarens < 1Y
3.5.2 Floating-Point State Register (FSR) eceeecreserenseeranencesnacnas cneranse cessenrsnrsnensnnsannns 37
3.5.3 Programming NOtE .eeerseersersrensnencnnanns sesucssannsenanee sesnssessssesasssnessenssesassossnesens 39
3.5.4 Programming NOt€ scceerercanens ceteressessssesasensnesisntatsannserarerarasannes ceseresesncansesens 3-11
3.5.5 Floating-Point Queue (FQ) secerreerananrenscnnse rersessesesaresassenns crsessennnnnnne cesesesnsensas 3-11

3.5.6 Implementation Notecvemeresencnnnneenes cnesessensernnese reresenseesnsane eesasecssesnisnsannen 3-11

SECTION 4: INSTRUCTIONS ..ceeeeerenerennnnes soesncseunsivsaeneseussisasansnsse sesssonsssinsonnes sosssesens

4.1 Introduction .eeeseesecnese
4.2 Instruction Formats ..eeueeeeeessssene cronsenee tertsuessesanasetentisenasestesaranesseanan seseesssessennane
4.3 Load/Store INSITUCHIONS weeeceresessesarassascsssessasesessssscassesassssassscsssssansnsesascases verenae

4.3.1 Address Space Identifier e.eessesecesssessscessensassncsnscas

4.3.2 Addressing CONVENLIONS weecesssecasarensnasesssssssnsarssssessssnssssansesssssssansansnsssansassnss
4.4 Arithmetic, Logical, and Shift INStrUCIONS s.ceesereaceetssasessescesassassesasccsnnsassesasenasesneses
4.4.1 Programming Note cecurnsane assencasencsrnne cesenenen
4.4.2 Programming NOtE sieeeecscsesnscesasencesasncasnances S R
4.4.3 Programming NOte eecessesseanaescercerneasae cesenesecsesnaanae cersetsecntesstsnranonasananes
4.5 Control Transfer INSIrUCtioNS ccecseessecsacssessasssacsssasssasees eeemtsantsassnsanesnusnsnnssnnsnasse
4.5.1 Delayed Control Transfers secceeseesssescesaeeseens srenessescussennene ateseressescransasrsannansas
4.5.2 PC and NPC .cccceeseeersnscsensecnesnesaesaneescssansanes csesescsssncenssnenennrseanerasnssannss
4.5.3 Delay Instruction eeeceeeesennes canesseneens seseaseasaasmanseessacennsans eseesereneisessannnaenninne
4.5.4 Annul Bit sieeeecsenseseesnescecnonaness seessasessassesesassinrsesssesasansane ceseseesanens cesecsases
4.5.5 Programming Notes susesanarssesersensonsasnsnastusnsuss . cveecnennenn
4.5.6 Calls and Returns ...ceeeseseeeses
4.5.7 Programming Note ...cceeeneneens sesuncancansnsasansananss casessasusas sesessusscssnes cersesnesesnenns
4.5.8 Trap (Ticc) INStruction eeeeseesecseeses cesesusnnene cenaneas sessensesasnsnsenanes secesesensaseannnn
4.5.9 Programming NOIE secieececeernercecasseesasaesasencsasnennnes eteesensatatnanatesasesennirasnannnns
4.5.10 Delayed Control Transfers COUPIES seeerersarsseesraseserassecsanes sensssssnasaces cnereennens
4.5.11 Programming NOE aieseessssescscoesessescnseasescasscesassessesaesnsensaensssnenseassassnnse
4.6 Read and Write Control RegiSters .ceccescssesnesseansesses eamsenerasensesnasnnns ceesnase ceersarensscns
4.7 Floating Point Operate (FPop) Instructions censesasussnsne vearesnee ettetsaserseseasnetannents
4.8 Coprocessor Operate (CPop) Instructions uececeesesses teesassseeresasasastnrasarassnsasnsarsenaren

SECTION 5: TRAPS, EXCEPTIONS, AND ERROR HANDLING ccctterasecrecsnscasasccssossccssnnene
5.1 INtroduction .iceceserensesercnnessneraseensnosanses P sesessactanssisiesssnnacnnsnse cesnernsennans
5.1.1 Implementation Note .icceveeeees ceresresecnnnenas crtsstatesrssassnterenenanareransane ceeesrasasanse

5.2 Trap ADdressing eeeesecesssceseeseesencnseneensenssaese cecietssesatensasesnsaasansnsaaseasasnasnns cnesnens .
5.3 Trap PrioritieS e.eseees serensanne cerasseensaresansanes cevseennans aeasesarass crnneee carassesene
5.4 Trap Definition eceeeseeceescecsescesanes eesesesnsnees rereesssacsesserenntsanans cesescsssansasesassesnnncane
5.5 Interrupt Detection wccctecscesecsssccnseerarerscnetesasnscacnssssensansesssasssnsnssasssascans ceeareananae
5.5.1 Implementation NOte ..ccececrsreransseacsresassanessesnncasasas

5.6 Floating-point/Coprocessor EXCEPtiON TrapS seeceesssssecesssscseseasasenssscassesnssnsassansassanss
5.7 Trap Descriptions .cieceeeecensese ceessesenessasnnaene cerenesassnessannssnnnnes sesecsscsasasnesnsssasascens

APPENDIX A: SUGGESTED ASSEMBLY LANGUAGE .ccccerrecerereresesnne ceeceseeteasssnasasasnsenes
A.1 Introduction seeecscecercnnceces S setstssatenttansuTsEasEnnPReROsusatns s

APPENDIX B: INSTRUCTION DEFINITIONS .cccevsaranees assssasassassbuzasssne Sessssssassnsssisansansnans
B.1 Introduction eeeeeeeeecsencees teesesnansausssanes serenaresatsnrssuasnsasitatsasuseancasassnes .
B.2 Load Integer Instructions ceeaan ceenenenes cesssecasacsnennns sesamansinanasenee eseseseransas

B.2.1 Implementation NOIE: .iciccesecresecesecsecssesansasensnenesssntosssnscncnsnssssasecescsssnscesnane
B.2.2 Programming NOte eciecerercarnsassersassenes ceesatnenannnan ensens ceeansenee essersesarninnaracras
B.2.3 Programming NOE .ceeceserressesssessassserasasssnncenses cesenesenns estserasassarsasannn ceesenes
B.3 Load Floating-point INStruCtionsS ...ececcesessecseesanisacteucssaiacssesennsansas ceccanerenas cernennenne
B.3.1 Programming Note ...ccceerseeacens sesossine ceeenns sesresnonsenese ceesersarserenes ceeeesuscnseneanans
B.3.2 Programming Note esesnssusnannnssress sersasssssssuntesesansnesenns ssnseessusenesaraanionss
B.4 Load Coprocessor INStructions eceeeceeccssessessacenes seesssinsansenesansnanas T
B.4.1 Implementation Note: esesicisuces RN csesesantmnsrasnsans cecernens cnneennee vesrarente
B.4.2 Programming NOte ...cceessecsnscnnenee eensereinesnnsnenaennes ceesasnesnrantasenses cnesenses caennes

4-1
4-1
4-1
4-2
4-2
4-3
4-4
4-5
45
45
45
4-6
4-6
4-6
4-7
4-8
4-8
4-9
4-9
4-9
4-9
4-10
4-11
4-11
4-11

5-1
5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-3
5-3

A-1
A-1

B-5
B-5
B-5
B-6
B-6
B-7
B-8
B-8
B-8

B.4.3 Programming NOtE .ccceeesessesnesesceencnnncecsasnnnsesansnnnes ceserassecnsesnsersnsans cesuneenes .
B.5 Store Integer INStrUCIONS eevecessasesscescceceonstsnsscsasssessasasesssssnsnsssearcnsssncesssessansassns
B.5.1 Implementation Note: scccececrecnnecracnccnnanaes vessaes ceenraraens R cessescnnsasansannennnes
B.5.2 Programming NOte ...eeeeeerees ceeevenennnn ceerrneseserensesesennanes reseessesesesessererenenane -
B.6 Store Floating-point Instructions ...cceeeecess. ceseesnesneninsenannne
B.6.1 Implementation NOte: eiccecsecssscancscnseescenees ceeerresssssssessssssacatateansterasennrannararans
B.7 Store Coprocessor INSIrUCHIONS wccerercrreereecscrsasnsserionnecesnsrascasarsacsssarsasas
B.7.1 Implementation NOtE: .icreieracerarerestacnsnsensessestnsansssasasnssssnsasssnens cesesusnesesasees
B.8 Atomic Load-Store Unsigned Byte INStrUCIONS scceaessesceeriecerracnersereersnsracrnsanesseraases
B.8.1 Implementation Note: cereenssanssetsesnsatnesntstssansanrasnrans ceenensees ceeraressssusesesanes
B.8.2 Programming NOIE ececcesesnseseescnncasnnsererssnssacsarcsscasseasescssnsssasssencasssasssnnssons
B.9 SWAP r Register with MEMOTIY eccceareeseeteseessaiiessenteeseresnesnesasessessesetsasasssesnssennes
B.9.1 Programming Noteceeereene e careesmesersenanas cevaeran cereee
B.10 Add InStructions e.ececseccensens esreessessesssenenasennse ereseesennennnenan . .
B.11 Tagged Add Instructions ceseressassaceneseesnessssnnsasasse teesesncsersninasnnnnn ersenncss
B.12 Subtract Instructions ...cceeceeesseese. cenennee eessenensernensnnasannns ceasesesmessisenesenesesennunans
B.12.1 Programming NO€ .ceceereccescscsccenccanens
B.13 Tagged Subtract INStructions s..eeeeeeseensenssesseneanes cresensenans eesssesanantnesneanasncnnnsainen
B.14 Multiply Step Instructionccceececes cessenene cenesanens ceeracsssaces cesssessesesersssenssersesasasanans
B.15 Logical INStrUCtIONS ecucecensesasesassesanssacsnsassesssasanssnsssnssenassasassssnsssacsass cersracsesacnns
B.16 Shift INSIrUCHIONS eeeraseesescrsseresseceesassensserennssaensrenssesananssasnssencssessessenssscseennences
B.16.1 Programming NoOt€ ...cccueeeees ceeseeseennieananens esasaessencsssesenesnranrsrsnsas cesecnasesncans
B.17 SETHI INStrUCHION seseescecnrecseereseesesmessnesencsarsnnscsnssesessesssasansassessssnssncnnsenansness
B.17.1 Programming NOE eececsereececaeisesnesassasiecsesenisasssonseenacaesasnssassssncsessesnanasasse
B.18 SAVE and RESTORE INstructions ...eseeeeseseess cersersseses cesens ceseensacannne
B.19 Branch on Integer Condition INStructions s.e.seeeseceseesseseessensas ceeseesnansnnene eesnesenesanse
B.19.1 Programming NOtE .eccccecrecncrncenieinscnirenteceeiensnacesaniescaseiaseeressnnsacsesensacsass
B.20 Floating-point Branch on Condition Instructions ceeseens cnesense onesesas cressasersasnsnans
B.20.1 Programming NOLE siciercecesecassaserecsssnsccensecncrcasanasecnssscnsens cesaveseancnnnes
B.21 Coprocessor Branch on Condition INStructions ..ceseesseesessensess ceteereennteasaesstnntnnnanns
B.21.1 Programming NOIE seeeecrsereeescescscnnsessaseesssassecnssesssennsssenass g s
B.22 CALL INSIUCHION ceserserssencsansseenaessescassnnssassecsnasinncsnssnssncnnnsens cesnasensaes caeseseanaces
B.22.1 Programming NOE e.eciieereecencrecnnaressensenisecencseesassaasensanenes
B.22.2 Programming Note eesesnee csrerensnesernsansnsanans sesesetasasaeserensaanenns ceonsenanes
B.23 Jump and Link INSIruction seeceseseccsscrersesecnsnsscnnsesans cesesessasasnsssasesasessnasnntassananes
B.23.1 Programming Note Cetaerasiessenntintsnerassnenansennes cresaneerene cesseves vesensencnsanaes
B.23.2 Programming NoOt€ ..ceeees. cesesmeserssasenene cessenes ceesesesenns cesesennenas seseesasesssncsnanss
B.23.3 Programming Note ceresssnssecenassenssennan ceersneessoenanens ceessesersessentnenesennsnnne
B.24 Return from Trap Instruction ..ceceecerecsesns cesessrsesnernsesassanasernsas sesesserennsncncennssennss
B.24.1 Programming NOtE .ceceererecersireceencserocsnnesnronirnensusnsnrsssnesaes cnerssesrcncsnsasnsanne
B.25 Trap on Integer Condition INSITUCTION weeereerreccerreciecsnsesssnnnsnescerssescsessesnsesssacannss
B.26 Read State Register INStructions w.ceseseererasescnses ceessresarcsersesasasasasensasasasantersrasanane
B.26.1 Programming Note reeessesssesersecnsesntasatrsnsatarsntensasarane sesessesnns ecensninens
B.27 Write State Register INSIrUCHIONS e.vecicerenncescssiseninerenscesncssssssssisnnrsssssscasssensacaes
B.27.1 Programming NOt€ .ccccerersecernnenansens sssensacasasssessanas ceetresusencnnnsnsnsannee seresaanene
B.28 Unimplemented INSIrUCtION .e.eeesecsacecscccasascnncancens vesennsenns seesescrecseaseransansonns
B.28.1 Programming NOE e.ceeisereecsarneercesenicssraesacsesassncesssassnsessancans eeesenes cereesannes
B.29 Instruction Cache Flush INStruction e...ceeeseeees eesrenenanas cessnssanes
B.29.1 Implementation NOte: .iccecrnscecenssecencnnes esssesaransses reesstneseennsensntnasnesnasasnssaans
B.30 Floating-point Operate (FPop) Instructions cecesesesasascntasnnenans cecesacesensanasans
B.30.1 Convert Integer to Floating-point Instructions ceserassasen ceensranan cecsssananenns
B.30.2 Convenrt Floating-point 10 INtEGEr .ecieeerrerrecrensiencracensene esaseensersinerserarensatanaes

B-8

B-10
B-11
B-11
B-12
B-13
B-14
B-14
B-16
B-16
B-16
B-17
B-17
B-18
B-19
B-20
B-20
B-21
B-22
B-23
B-24
B-24
B-25
B-25
B-26
B-27
B-28
B-29
B-30
B-31
B-32
B-33
B-33
B-33
B-34
B-34
B-34
B-34
B-35
B-35

B.30.3 Convert Between Floating-point Formats INStruCtionS «sesecseesasscsscsensnsasassencsscnne
B.30.4 Floating-point Move INStructions ..ceecesseeesseecseensenseas enassens
B.30.5 Programming NOte .eececessereesseereensesreenanssennsessaesnasinans cerenssosene eenne [.
B.31 Floating-point Square RoOOt INSLrUCHIONS sisesscsseessesssccasacsascncasassensesescsnnsacssesesssnnes
B.31.1 Floating-point Add and Subtract INStructionse.ceeseeeesees
B.31.2 Floating-point Multiply and Divide INStrUCHIONS ecucereessrreassessaseessscnsesseasaasansanns
B.31.3 Floating-point Compare INStruCtions .e.ceessscesssssseseseansees
B.32 Coprocessor Operate INStrUCtiONS weeccereerecncsensecsersncsaaseenesne teessesetsesensaanssssnsares

APPENDIX C: ISP DESCRIPTIONS ..cceceeecrnecnennensraencnnnnees cescesonssenssssessnssncsssason

C.1 Introduction eccecscesesecese eteseresssstesssassesseasestesstEasatesenstansatrtassrnrantanssanta cerrenens
C.2 Register Definitions ciecerecessssssncscessscssscassacnaes cersessesnserasenans ceesssressssntnrastnsnrncanans
C.3 System Interface Definitions c.ieecccsscsesrescnsasencseesarasssansercscasenssnceess cececnneessnerasanane
C.4 INStruction FildS ceeceesersncecasecnnsernsncensssncosssnssnerarsssnsossessssncesssssassnsnssssnsassssssansas
C.5 Processor States and Instruction Fetch ..cceeseeenens cesernsennaes ceeenes cesessnsesnans ceeesuennnane
C.5.1 Implementation NOE seieeersasseccesorceeessssssescosssesssessesssssascascsnenassssnassnssnssansase
C.6 InStruction DiSPaiCh aeeeceeseeciecescscencssieccarsenncrsesssresenssssensacssassssansssessossnssasesansense
C.7 Floating-Point Instruction ExeCUtion ..ecceesessseseacsnnns cssnssennsen teeeresessnesssnesnnasnnesannns
C.7.1 Floating-Point Queue (FQ) scceernreersesnesessancrenscesancassassannns cressssenssnesnsansenranes .
C.7.2 FQ_Front_Done ..cceanseens cestesrsctaressnsanasesnranssene cerserenanas S— ceserasennanns
C.7.3 FPU States eecrencesessscsesseseensescosannsesssnnsanssnanss rerasesancens ssessncsrasinanninas cersenee
C.8 Coprocessor Instruction EXECULION uceceessesccesessessssseasensusancsancesessssnsanssssesnesasancas .
C.OTrapsS eeeesseesensncnnnascnnse eeetsscestessseestuttastsetasttantantsnsarasanansessensnasassanssnransasnsanannn
C.10 Instruction DefinitioNS secceesecssscssscscssassscsoscsnsesescasasesecsens ssssesisssenssassnsssonsasnsnesan
C.10.1 Load INStrUCiONS .eevecersasacscscrcnnsssncreseresassnsasansnssesasensones cecrsesesensecenanenasanan
C.10.2 Store INStrUCtIONS aiereersssssasecssscserscsessssressacassssssansasasnses sesesesattescsnsasasanaass
C.10.3 Atomic Load-Store Unsigned Byte Instructions ...e... setesestsesensasansentesansansesananas
C.10.4 Swap r Register with Memory INSIrUCHONS sceereeerersecsnccnsacrasessscensscesssarsscanence
C.10.5 Add INStrUCtiONS seeeecescessnesecnnesancesennns eassenassnaas sedrenusnsuassasansssnsansans cesnennes
C.10.6 Tagged Add Instructions cetsesnssatsesnnssnsasasssnssessacnnen cesencessenaenas cnesesane
C.10.7 Subtract Instructions O S
C.10.8 Tagged Subtract InStructions .eeeceseeascssesseess A ceresnsersnenans .-
C.10.9 Multiply Step InStruction ..ecceesceccescssscnssanss teersesacenssersesssssesesessnanns cerseennnranes
C.10.10 Logical INSIrUCtIONS seereerssneescsssacsnsensscnsierarseseosssssssccsssnecsessssssssasassssassace
C.10.11 Shift INStrUCtIONS eesecerensrsnsrancsncsnsencransanne reerssesssesnsnasnsasansas csersssesnssnncnnas .
C.10.12 SETHI Instruction .ceeceseceesenceccacases ceetnsrerearaersssansassens eessessacsnsararsncannsnnsans
C.10.13 SAVE and RESTORE lnstructnons ceseesssestarsensananane sesssssassasssssnssssassanasassnns .
C.10.14 Branch on Integer Condition INStructions .e.ceeeseeeseecencssces esessucssaesseesnssantans .
C.10.15 Floating-Point Branch on Condition Instructions cessassenencnes ceesesessasserensans
C.10.16 Coprocessor Branch on Condition INSITUCHIONS weeeeeseesnserarecsensssescsesssensssnsnenes
C.10.17 CALL Instruction seceecseses cersens csesncssssesusnonss eeesessensenansees ceresessesesssasesssnenans
C.10.18 Jump and Link INSIFUCHON secsecracseeceeecrsnsesseececessncsssesseesseeesssoncssassnsansenssnne
C.10.19 Return from Trap INStrUCION sieesescrrsnssesincescensirassorsscanscessssnssensssnssssssesnssens
C.10.20 Trap on Integer Condition INStrUCHIONS veeseeeranesencssseanccscssasascacsenss ceesrserasennns
C.10.21 Read State Register INSIrUCHIONS vececereseacennrencecasaceesessanssenes crenrasenssescnsannane
C.10.22 Write State Register Instructions setsesseansennssssase sesassaccssansesansrsorsnsansane
C.10.23 Unimplemented INStrucCtion w..ccesesseessecscscscnes reerssassnnnsans ceseasaesnsnesnssasncansaanss
C.10.24 Instruction Cache Flush INStruCtion icseeccecesceecccccceeccncnnes
C.11 Floating-Point Operate INStructions ..eeesssesassss cesrecsnnens cosiesneninane cesestsesenesacannennes .
C.11.1 Convert Integer to Floating-Point INStructionscceeevseeseees ceeseesnesnennannens
C.11.2 Convert Floating-Point t0 INtEer wieeceresescereserssscscneacensenene rersesseereasenes ceamsrnee
C.11.3 Convert Between Floating-Point FOrmats INStrUCtIONS wececeecrensseeseersansensssnensnee

vi

C.11.4 Floating-Point Move INStructions ..ceeescesscsmsessseeseecnneescassnes seteecscentsesnsnnsannese .
C.11.5 Floating-Point Square Root INStrUCHIONS weucersresrcercessesecssncsssassseesescenscncsecsonsns
C.11.6 Floating-Point Add and Subtract INStructions .cceeececseesserearansencsnnes
C.11.7 Floating-Point Multiply and Divide Instructions .eeceessesss
C.11.8 Floating-Point Compare Instructions eroscrnnenass cresessansscssneanrensnnrsnrnnansrans

APPENDIX D: SOFTWARE CONSIDERATIONS ..cciieiiiieiernenceseateensareessncanssnsscessennassens
D.1 INroduCtiON aieeuseessensessensecsnacnssenssnancsssneenersasacassenanss ceeansnnnen
D.1.1 Inand Out REGISIErS wieierecrererereerensecareriaresstronnesnsscnsasassnsssncssssessscnsssasasassses
D.1.2 Local REQISIErS sercensescerassnsnarassacsssonsrennnsnssnsenssessernsnsans eseesnesanans cesesssncaseres
D.1.3 Global Registers ...c.eeue.. esemersssisssesirassansensnsnassarnenans easessessnncsersnnrensonsrarnas
D.1.4 Floating-Point Regisiers ceveesenaes Cmesmseserscasssestresneensesesnsseseseseresntsasasassanarsanans

D.2 The Memory Stack seecreccacsnscmsesanennnns Nessaseresssresassensenansssarantartastatsnsasarsassnannns
D.3 Example COE cieerrerearsensanrnercansansncnnenes ceesersnsnarnanans cesesacnassusnasassensasnesennssanasss
D.4 Functions Returning Aggregate Values sesssassencsesnsasannss

APPENDIX E: EXAMPLE INTEGER MULTIPLICATION AND DIVISION ROUTINES iecsecaneae
E.1 INtroduction seeecieceececeeneneneiecsnasasnennnsennenes eresase ceressesssesenes ceseressesnsntatnene
E.2 Signed Multiplication sesesenssensens cereesessrsenasnssesasassesnsans teesesesesassasnsnsasensasesass
E.3 Unsigned MUlipliCalion .ececsesserscscsseceannncscnannnanes eeresierassecssseesersnssenessesertnssennanse
E.4 DiVISION sevrereisnirecnereniesseresnensesecneinnssensesnsssressesssessssesessassessssssessnsnanassasassesces .

5.4.1 Program 1 cceeesereeneenene coemssancasansarennasnann resennne tasescsesnssnnsrancnnns sessssensansesnsens
5.4.2 Program 2 .ececeseseesececncerencennenns cerssesasreseesnennnssusserns cerenesaseenasnans veseesenss cereees
5.4.3 Program 3 ..eceeevesenes seseseseusetsittatutatnsrtossnstsisncasesnnns cesesenee ceseeesesens
5.4.4 PrOgram 4 wceceessessscessscacnesrscsnressorsnssosassnnsassasasssasasans resesessseennnnes
5.4.5 Program 5 aieceerereinceereresesnisesenacresaesinnsencesacnseasensesesesenses vessesnsssneacsesnsesnsneve
5.4.6 Program 6 seceecresecesearescsescsnasessseasessesesscsesnsassesassasssesssssassassrassnss cesenes cenenes .

APPENDIX F: OPCODES AND CONDITION CODES .ctctetccencnceccecreransnsescscnsesrosessasessanses
F.1 INtrOdUCHION sesereerecencerenrassncessnsnsensecensenssssessancsasasconncnssssnnsansassnanes cecnnee crescscanaes

vii

C-36
C-36
C-37
C-37
C-37

E-2

E-6

E-10
E-10
E-11
E-13
E-16
E-19
E-22

F-1

SECTION 1: INTRODUCTION

1.1. Introduction

This manual describes version 7 of the SPARC architecture, Sun Microsystems’ 32-bit RISC
architecture. This architecture makes possible implementations that can execute instructions for
high-level language programs at rates approaching 1 instruction per processor clock. It supports
a floating-point coprocessor with multiple arithmetic units and a second, implementation-
definable coprocessor.

1.2. Archlitecture and Implementation

This document provides a specification for the SPARC architecture; it describes the major
aspects of that architecture. Any design which conforms to this specification is an implementa-
tion; aspects of the design that are not specified in this document are implementation-dependent.
For example, the SPARC architecture defines a set of instructions, a set of registers, how the
registers work, and how traps and interrupts work. It does not define details such as the size
and timing of data and address busses, caches, or memory management units.

Specific information about Sun Microsystems’ implementations of the SPARC architecture
appear in companion manuals.

1.3. Features
The SPARC architecture provides the following features:
- Simple instructions — Most instructions require only a single arithmetic operation.

» Few and simple instruction formats — All instructions are 32 bits wide, and are aligned on
32-bit boundaries in memory. There are only three basic instruction formats, and they
feature uniform placement of opcode and register address fields.

« Register-intensive architecture — Most instructions operate on either two registers or one
register and a constant, and place the result in a third register. Only load and store instruc-
tions access storage.

« Alarge “windowed" register file — The processor has access to a large number of registers
configured into several overlapping sets. This scheme allows compilers to cache local
values across subroutine calls, and provides a register-based parameter passing mechan-
ism.

» Delayed control transfer — The processor always fetches the next instruction after a control
transfer, and either executes it or annuls it, depending on the transfer's “annul” bit. Com-
pilers can rearrange code to place a useful instruction after a delayed control transfer and
thereby take better advantage of the processor’s pipeline.

» One-cycle execution — To take maximum advantage of the SPARC architecture, the
memory system should be able to fetch instructions at an average rate of one per processor
cycle. This allows most instructions to execute in one cycle.

e Concurrent floating point — Floating-point operate instructions can execute concurrently with
each other and with other non-floating-point instructions.

1-1 Introduction 1-1

Solbourne Computer, Inc.

» Coprocessor interface — The architecture supports a simple coprocessor interface. The
coprocessor instruction set is analogous to the floating-point instruction set.

1.4. Using This Manual

This section provides information to help you use this manual. It includes an overview of the
manual, a definition of the intended audience, a description of the fonts used and what they
mean, a glossary, and a list of references.

1.4.1. Contents

The section after this contains an overview of the SPARC architecture. This is followed by sec-
tions that describe the registers, then the instructions, and finally, trapping and exceptions.

A series of appendices follow the sections. The most important is Appendix B, Instruction
Descriptions. This contains a complete description of every instruction that the architecture sup-
ports, and includes tables showing the recommended assembly language syntax for each
instruction. Another appendix contains tables detailing all the opcodes and condition codes, and
another contains ISP description language for all the instructions plus other architecture func-
tions.
1.4.2. Fonts in Text
In this manual, we use the following fonts to make things clearer:
« Roman font is the normal font used for text.
« ltalic font represents either a register class or a field name. For example:

“The rs1 field contains the address of the r register.”

It is also used for regular notes, and for references to sections, sections or appendices in
this manual, or to other documents.

« Typewriter font is used for the names of certain signals that are defined in the section
SPARC Architecture Overview, and for literals in the appendix Suggested Assembly
Language Syntax. These signal names appear in fypewriter font, and contain underbar
characters in the spaces between the words in the name. For example:

The signal bp_reset_in indicates that the system is requesting a reset.
* Bold font indicates that a word or phrase requires emphasis. For example:
“The delay instruction occurs immediately after a control transfer”.

» UPPER CASE items may be either acronyms or instruction names. The most common acro-
nyms appear in the glossary in this section, and the instructions are all listed by name in
Appendix B. Note that names of some instructions contain both upper case and lower case
letters.

* Underbar characters between two or more words mean that the words represent an
identifier, which may be a trap, or some other condition. These appear in ordinary text as
well as in the pseudocode examples in the appendices. For example:

“The IU acknowledges the exception by taking an fp_exception trap.”

1-2 Introduction 1-2

Solbourne Computer, Inc.

1.4.3. Notes

This manual provides three types of notes: ordinary notes, programming notes, and implementa-
tion notes.

Ordinary notes contain incidental information about the current subject; they appear in italic
font.

Programming notes contain incidental information about programming using the SPARC
architecture; they appear in reduced pitch Roman font.

Implementation notes contain information which may be specific to an implementation or
which may differ in different implementations. They also appear in reduced pitch Roman font.

1.4.4. Glossary

The following paragraphs list and describe some of the most important words and acronyms
used in this manual:

Architecture/implementation — The architecture is the set of operating principles defined in
this manual. An implementation is any specific design that conforms to the architecture
defined here.

Current window — The block of 24 r registers currently pointed to by the CWP.
Current Window Pointer (CWP) — Selects the current register window.

Delay instruction — The instruction immediately following a control transfer. This instruction
is always fetched, and is either executed or annulied before the control transfer takes place.

Floating-Point Unit (FPU) — The coprocessor that performs floating-point calculations.

Floating-Point Arithmetic Unit (FAU) — A subsection of the FPU that executes floating-point
operate instructions.

Floating-Point Operate (FPop) instruction — An instruction that performs a floating-point cal-
culation. They do not include loads and stores between memory and the FPU.

Floating-Point Queue (FQ) — The queue where information about floating-point operate
instructions is held while they are being executed by the FPU.

f register — One of the 32 FPU working registers.

Global registers — A block of 8 registers that are available regardless of the value of the
current window pointer.

Integer Unit (IU) — The main computing engine. It fetches all instructions, and executes all
but FPop and CPop instructions.

Next Program Counter (nPC) — Contains the address of the instruction to be executed next
(assuming a trap does not occur).

Processor — The combination of the IU and FPU.
Processor State Register (PSR) — The IU’s status register.

Program Counter (PC) — Contains the address of the current instruction being executed by
the IU.

rregister — A global register or a register in the IU’s current window.

rd, rs1 and rs2 — Fields in instructions. These specify the register operands of an instruc-
tion. rdis the destination register and rs7 and rs2 are the source registers.

Introduction 1-3

Solbourne Computer, Inc.

» rrd], rirs1] and rirs2] — The r registers specified by rd, rs1 and rs2.
*+ Word — A word is 32 bits.

1.4.5. References
For additional information about RISC architecture, see:

* "Reduced Instruction Set Computers", Communications of the ACM, Volume 28, Number 1,
January, 1985 by Dave Patterson.

1-4 Introduction 1-4

SECTION 2: SPARC ARCHITECTURE OVERVIEW

2.1. Introduction

The SPARC architecture is used in 32-bit Reduced Instruction Set Computers (RISCs). It pro-
vides an Integer Unit (IU) to perform basic processing and a Floating-Point Unit (FPU) to perform
floating-point calculations concurrently with the IU. It also provides instruction set support for an
optional coprocessor. The details of the coprocessor itself are implementation-specific.

A typical system that uses the SPARC architecture is organized around a 32-bit virtual address
bus and a 32-bit instruction/data bus. Its storage subsystem consists of a memory management
unit (MMU) and a large cache for both instructions and data. The cache is virtual-address-based.
Depending on the storage subsystem’s interpretation of the processor's address space identifier
(asi) bits, I/0 registers are either addressed directly, bypassing the MMU, or they are mapped by
the MMU into virtual addresses.

2.2. 1U, FPU, and CP

The IU is the basic processing engine of the SPARC architecture. It executes all the instruction
set except floating-point operate instructions and coprocessor instructions. A block diagram of
the 1U appears in Figure 2-1.

The FPU performs floating-point arithmetic using several floating-point arithmetic units (FAUs) to
perform the actual calculations. The number of these units, which is implementation-dependent,
determines the minimum number of floating-point operate instructions that can be executed at
the same time.

The FPU and the IU operate concurrently. The FPU recognizes floating-point operate instruc-
tions and places them into a queue. Meanwhile, the IU continues to execute instructions.
Floating-point operate instructions are executed from the queue when the specified floating-point
registers are free and the required FAU is available. If the FPU encounters a floating-point
operate instruction that doesn't fit in the queue, the U stalls until the required FPU resource
becomes available.

Floating-point load/store instructions are used to move data between the FPU and memory. The
IU generates a memory address and the FPU either sources or sinks the data. Note that
floating-point loads and stores are not floating-point operate instructions.

The architecture hides floating-point concurrency from the programmer, so the implementation
must provide the appropriate register interlocks. A program including fioating-point computa-
tions generates the same results as if all instructions were executed sequentially.

The architecture supports an optional coprocessor. Like the FPU, the coprocessor recognizes
coprocessor arithmetic instructions, and executes them concurrently with instructions executed
by the I1U.

Likewise, coprocessor load/store instructions are used to move data between the coprocessor
and memory. For each fioating-point load/store instruction, there is an analogous coprocessor
load/store instruction.

2-1 SPARC Architecture Overview 2-1

Solbourne Computer, Inc.

rd pont

I Registers

Constants

rs1 port rs2 port
Arithmetic
and Logic Shift Unit
Unit

PCs

Y, PSR, WIM, TBR

32

/
Address Bus

S@Q = — P

I-Decoder

32

Instruction/Data Bus

2-2

SPARC Architecture Overview

2-2

Solbourne Computer, Inc.

2.3. Registers

The register structure forms an important part of the overall architecture. The IU’s working regis-
ters are divided into several windows, each with twenty-four 32-bit working registers, and each
having access to the same eight 32-bit global registers. The current window pointer (CWP) field
in the processor state register (PSR) keeps track of which window is currently “active”.

In addition to the window registers and global registers, the SPARC architecture provides several
control and status registers, and a non-windowed working register file for the FPU.

2.4. Multitasking Support

The SPARC architecture supports a multitasking operating system by providing user and supervi-
sor modes. Some instructions are privileged, and can only be executed while the processor is in
supervisor mode. Changing from user to supervisor mode requires taking a hardware trap, or
using a trap instruction.

2.5. Instruction Categories
Instructions fall into six basic categories:
Load and store
Arithmetic/logical/shift
Control-transfer

Read/write control register
Floating-point operate

O O A W N =

Coprocessor operate
The following sections describe each briefly; for more detail, see the section Instructions.

2.5.1. Load and Store Instructions

Load and store instructions are the only instructions that access memory. They use two U regis-
ters or an IU register and a signed immediate value to calculate the memory address. The
instruction’s destination field specifies either an U register, FPU register, or coprocessor register;
this register supplies the data for a store, or receives the data from a load.

Integer load and store instructions support byte, haltword (16-bit), word (32-bit), and doubleword
(64-bit) accesses. Floating-point and coprocessor load and store instructions support word and
doubleword memory accesses. Halfword accesses must be aligned on a 2-byte boundary, word
accesses must be aligned on a 4-byte boundary, and doubleword accesses must be aligned on
an 8-byte boundary. Improperly aligned addresses cause load or store instructions to trap.

The order of bytes, halfwords, and words appears in Figure 4-2.

2.5.2. Arithmetic/Logical/Shift

These instructions (with one exception) compute a result that is a function of two source
operands; they either write the result into a destination register or discard it. They perform arith-
metic, tagged arithmetic, logical, or shift operations. The exception is a specialized instruction
used to create 32-bit constants in two instructions.

2-3 SPARC Architecture Overview 2-3

Solbourne Computer, Inc.

Shift instructions can be used to shift the contents of a register left or right, by a distance
specified by the instruction or by an IU register.

The tagged arithmetic instructions assume that the least-significant two bits of the operands are
tags and set a condition code bit if they are not zero.

2.5.3. Control-Transfer Instructions

Control-transfer instructions include jumps, calls, traps, and branches. Control transfer is usually
delayed so that the instruction immediately following the control transfer is executed before con-
trol actually transfers to the target address. The instruction following the control-transfer instruc-
tion is called a delay Instruction. The delay instruction is always fetched, even when the control
transfer is an unconditional branch. However, a bit in the control-transter instruction can cause
the delay instruction to be annulled (i.e. to have no effect) if the branch is not taken (or in one
case, if the branch is taken).

Branch and call instructions use PC-relative displacements. The jump and link (JMPL) instruction
uses a register-indirect displacement: it computes its target address as either the sum of two
registers, or the sum of a register and a 13-bit signed immediate. The branch instruction provides
a displacement of + 8 Mbytes, while the call instruction’s 30-bit word displacement allows a
transfer to an arbitrary address.

2.5.4. Read/Write Control Register

The SPARC architecture provides instructions to read and write the contents of the various con-
trol registers. For reads and writes, the source and destination (respectively) are implied by the
instruction itself.

2.5.5. Floating-point and Coprocessor Operate Instructions

Floating-point operate instructions perform all floating-point calculations. These are register-to-
register instructions that use the floating-point registers. Like arithmetic/logical/shift instructions,
these also compute some result that is a function of two source operands. However, they always
write the result into a destination register.

Floating-point operate instructions execute concurrently with IU instructions and possibly with
other floating-point instructions. A particular floating-point operate instruction is specified by a
subfield of the FPop instructions.

Coprocessor arithmetic instructions are defined by the implemented coprocessor, if any. They
are specified by the CPop instruction. The architecture supports 1024 distinct coprocessor arith-
metic instructions.

Floating-point loads and stores are NOT floating-point operate instructions (FPops), and copro-
cessor loads and stores are NOT coprocessor operate instructions. Floating-point and coproces-
sor loads -and stores fall in the category “loads and stores”.

Because the IU and the FPU can execute instructions concurrently, when a floating-point excep-
tion occurs, the program counter usually does not contain the address of the floating-point
instruction that caused the exception. However, the first element of the floating-point queue
points to the instruction that caused the exception, and the remaining elements point to floating-
point operate instructions that have not yet completed. These can be re-executed or emulated.

Likewise, if the coprocessor executes instructions concurrently with the 1U, the coprocessor can
support a queue that, at the time of a coprocessor exception, will contain the instruction that

2-4 SPARC Architecture Overview 2-4

Solbourne Computer, Inc.

generated the exception and remaining, unexecuted coprocessor instructions.

2.6. Processor Data Types

The architecture defines nine data types; these appear in Figure 2-2. The integer types include
byte, unsigned byte, halfword, unsigned halfword, word and unsigned word. The
ANSV/IEEE 754-1985 floating-point types include single, double, and extended. A byte is 8 bits
wide, a halfword is 16 bits, a word is 32 bits, a double is 64 bits, and an extended is 128 bits.

The floating-point double type includes two subfields: 1) the double-e, which contains the sign,
exponent, and high-order fraction, and 2) the double-f, which includes the low-order fraction.
The floating-point extended type includes 4 subfields: 1) the extended-e, which contains the sign
and exponent, 2) the extended-f, which contains the integer part of the mantissa, and the high-
order part of the fraction, 3) the extended-f-low, which contains the low-order fraction, and 4) the
extended-u which is unused.

The following tables show a) the double and extended types in memory, b) the single-, double-,
and extended-precision formats, and ¢) the processor data types:

2-5 SPARC Architecture Overview 2-5

Solbourne Computer, Inc.

Byte

s

7 6]
Unsigned Byte

7 0
Halfword

S h

15 14 0
Unsigned Halfword

h

15]
Word

s w |

31 30 0
Unsigned Word

w |

31 0
Single

s |

31 30 23 22 0
Double
Double -e

S f-msb l

31 30 20 19 0
Double -f

f-lsb .

31]
Extended Precision
Extended -e

s e unused/reserved

31 30 16 15 0
2-6 SPARC Architecture Overview 2-6

Solbourne Computer, Inc.

Extended -f

j f-msb
31 0 0
Extended -f low
f-Isb
31 V]
Extended -u
unused/reserved
31 0
subfield address
double-e n
double-f n+4
extended-e n
extended-f n+4
extended-f-low | n+8
extended-u n+12
s = sign (1)

2-7

€ = biased exponent (8)
t = fraction (23)

normalized number (0 < e <255):
subnormal number (e =0):
zero (e =0):

(_1)8 * 29'127 * 1.f

(_1)S - 2'126 * 0.1
(1°°0

signaling NaN: s =u; e =255 (max); f = .Ouuu— uu
(at least one bit must be nonzero)
quiet NaN: s = u; e = 255 (max); f = .1uuu— wu
infinity: s=u; e =255 (max); f =.000— 00
(all zeroes)

s = sign (1)

e = biased exponent (11)
f-msb — f-Isb = f = fraction (52)

normalized number (0 < € < 2047):
subnormal number (e=0):
zero (e =0):

« »e-1023 .
(-1)S* 2% 11
(_1)S * 2’1022 * O.f

(_.‘)S *0

signaling NaN:

quiet NaN:
infinity:

s = U, e = 2047 (max); f = .Ouuu— wu
(at least one bit must be nonzero)

s = U; e = 2047 (max); f = .1uuu— uwu
s = u; e = 2047 (max); f = .000— 00
(all zeroes)

SPARC Architecture Overview

2-7

Solbourne Computer, Inc.

s = sign (1)

e = biased exponent (15)

j = integer part (1)

f-msb — {-Isb = f = fraction (63)

normalized number (0 < e < 32767;] =1):t (-1)S + 28-16383 .. .4

subnormal number (e =0;j=0): (1)S+ 2-16383. jf

zero (s =0; e = 0): (18*0

signaling NaN: s=u;e=32767 (max); j= u; f = .Quuu— uu
(at least one bit must be nonzero)

quiet NaN: s=u;e=32767 (max); j= u; f = .1uuu— uu

infinity: s =u; e = 32767 (max);j = u; f =.000— 00

(all zeroes)

2.7. Traps and Exceptions

SPARC supports three types of traps: synchronous, floating-point/coprocessor and asyn-
chronous (asynchronous traps are also called interrupts).

Synchronous traps are caused by an instruction, and occur before the instruction is com-
pleted. .

Floating-point/coprocessor traps are caused by a floating-point operate (FPop) or coproces-
sor (CPop) instruction, and occur before the instruction is completed. However, due to the
concurrent operation of the IU and the FPU, other non-floating-point instructions may have
executed in the meantime.

Asynchronous traps occur when an external event interrupts the processor; they are not
related to any particular instruction and occur between the execution of instructions.

Synchronous and floating-point/coprocessor traps are generally taken before the instruction
changes any processor or system state visible to a programmer; they happen “between” instruc-
tions. Instructions which access memory twice (double loads and stores and atomic instructions)
are the only exceptions.

Traps transfer control to an offset within a table. The base address is specified in the trap base
register (TBR), and the offset depends on the type of trap. Reset traps, however, cause the pro-
cessor to transfer control to address 0. Because the program counters are not updated until after
an instruction completes, the trap hardware captures both program counters and guarantees that
the PC points to either the instruction that caused a synchronous trap, or to the instruction that
was about to execute when a floating-point/coprocessor or asynchronous trap occurred. For
floating-point/coprocessor traps, the instruction that caused the trap is in the floating-point queue
(FQ) or the coprocessor queue (CP), and the PC will usually not point to it.

Traps are described in the section Traps, Exceptions, and Error Handling.

2.8. System Interface

- The SPARC architecture does not define many of the standard signals, such as bus grant and
request lines, or acknowledges; these may differ among implementations. However, it does
define the following signals, which are used by the instruction set:

1 The architecture does not define or create results with 0 < e < 32767, j = 0.

2-8 SPARC Architecture Overview 2-8

Solbourne Computer, Inc.

bp_IRL<3:0>

This external signal presents an asynchronous interrupt request to the processor. Level 0
indicates that no interrupt is being requested, and levels 1 through 15 request interrupts,

with level 15 having the highest priority. Level 15 is non-maskable unless all traps are dis-
abled. The interrupt acknowledge signal is implementation-dependent.

bp_reset_in
This signal indicates that the external system is requesting a reset. The processor responds
by entering reset_mode and clearing pb_error.

pb_error

The processor asserts this signal when it is in error_mode.
pb_retain_bus

The processor asserts this signal to ensure that the memory bus logic will not relinquish the
bus.
bp_FPU_present

This signal indicates that the FPU is present.
bp_CP_present

This signal indicates that a coprocessor is present.

bp_|_cache_present
This signal indicates that there is an external instruction cache present. The IFLUSH
instruction uses this signal.

bp_CP_exception

The coprocessor asserts this signal in order to cause a cp_exception trap. An implementa-
tion may delay the taking of the trap to the next CPop instruction.
bp_CP_cc(1:0)

The coprocessor supplies these condition codes for the coprocessor branch instruction
(CBccc).

bp_memory_access_exception
The memory system asserts this signal when the memory system is unable to provide the
data at the requested address. The assertion of this signal will cause either an
instruction_access_exception or a data_access_exception trap.

SPARC Architecture Overview

SECTION 3: REGISTERS

3.1. Introduction

The integer unit has two types of registers associated with it; working registers (r registers) and
control/status registers. Working registers are used for normal operations, and control/status
registers keep track of and control the state of the IU. The FPU has 32 working registers (called f
registers), and two control/status registers: the Floating-point State Register (FSR), and the
Floating-point Queue (FQ).

3.2. Integer Unit r Registers

All r registers are 32 bits wide. They are divided into 8 global registers and a number of blocks
called windows. Each window contains 24 r registers.

The number of windows (NWINDOWS) ranges from 2 to 32 depending on the impiementation.
Implemented windows must be contiguously numbered from 0 to NWINDOWS -1.

3.2.1. Programming Note

At most NWINDOWS -1 windows are available to user code since one window must be available
for trap handlers.

The windows are addressed by the CWP, a field of the Processor State Register (PSR). The
CWP is incremented by a RESTORE or RETT instruction and decremented by a SAVE instruc-
tion. The active window is defined as the window currently pointed to by the CWP.

The Window Invalid Mask (WIM) is a register which, under software control, detects the
occurrence of IU register file overflows and underflows.

The registers in each window are divided into ins, outs, and locals. Note that the globals, while
not really part of any paricular window, can be addressed when any window is active. When
any particular window is active, the registers are addressed as follows:

Register numbers Name
r[24] to r[31] ins
r[16] to r[23] locals
r[8] to r[15] outs
r[0] to r[7] globals

Each window shares its ins and outs with adjacent windows. The outs from a previous window
(CWP +1) are the ins of the current window, and the outs from the current window are the ins for
the next window (CWP -1). The globals are equally available from all windows, and the locals
are unique to each window.

The register addresses overlap such that, given a register with address o where

8 <0< 15, o refers to exactly the same register as (0 + 16) after the CWP is decremented by 1
modulo NWINDOWS (points to the next window). Likewise, given a register with address i
where 24 < j < 31, i refers to exactly the same register as address (i — 16) after the CWP is

3-1 Registers 3-1

Solbourne Computer, Inc.

incremented by 1 modulo NWINDOWS (points to the previous window).

The windows are joined together in a circular stack, where the highest numbered window is adja-
cent to the lowest. If NWINDOWS = 8, the outs of window 7 are the ins of window 0. Figures 3-1
and 3-2 show the relationships.

3.3. Special r registers
The utilization of two r registers is partially fixed by the instruction set:

« If global register r[0] is addressed as a source operand (rs1 or rs2 = 0), the operand value 0
is returned. If r[0] is addressed as a destination operand (rd = 0), no register is modified.

« The CALL instruction writes its own address into out register r{15].

Also note that traps save the program counters (PC and nPC) into two locals of the next window.
This is described in the section Traps, Exceptions, and Error Handling.

3.3.1. Programming Notes

Because the processor logically provides new locals and outs after every procedure call, register
local values need not be saved and restored across calls. The overlap registers also minimize
the overhead of passing and returning values. They can be used as follows:

» In preparation for a procedure call, a routine generally moves the parameters into its out
registers. After the CALL, the CWP is decremented with the SAVE instruction, what was the
next window becomes the active window, and the parameters are directly accessible by the
callee, since the caller's outs are the callee’s ins.

« Likewise, in preparing for a procedure return, a routine generally moves its result(s) into its in
registers. After the CWP is incremented via the RESTORE instruction, what was the previ-
ous window becomes the active window, and the return values are accessible by the retur-
nee, because the returner’s ins are the returnee’s outs. Note that the terms ins and outs are
defined relative to calling, not returning.

Since any implementation has only a finite number of windows, the register file becomes full after
the number of procedure calls exceeds the number of returns by NWINDOWS - 1. A subse-
quent call causes the operating system to move one or more (in and local sets of) windows from
the register file into memory. The SAVE instruction automatically checks for the
window_overflow condition.

Similarly, the register file can become empty when the number of procedure returns exceeds the
number of calls by NWINDOWS -1. A subsequent return causes one or more previously saved
windows to be moved from memory into the register file. The RESTORE instruction automati-
cally checks for the window_underflow condition. The architecture works best with efficient
window_overflow and window_underflow handlers.

w w w NOTE % & %
By software convention, you can provide additional locals (and
consequently, fewer ins and outs). For example, software can
assume that the boundary is actually between r[26] and r[27],
providing 6 outs, 10 locals, and 6 ins.

3-2 Registers 3-2

Solbourne Computer, Inc.

previous window

n31]
: ins
r24]
rf23]
: locals
r{16] active window
r[15] r[31]
: outs : ins
re] r{24]
23]
: locals
18] next window
M15) M31]
: outs : ins
r[8] r[24]
23]
: locals
M16]
r15]
: . outs
8]
7]
globals
r0]

In this figure, NWINDOWS = 8. It does not show the 8 globals. If the procedure corresponding to
the window labeled w0 does a procedure call (executes a SAVE instruction), a window_overflow
trap will occur. The overflow trap handler uses the Jocals of w7:

CWP=0 active window =0

CWP+1 =1 previous window = 1
CWP-1=7 nextwindow =7
WIM=100000002 trap window = 7

3-3 Registers 3-3

Solbourne Computer, Inc.

3.4. Integer Unit Control/Status Registers

The IU's control/status registers are all 32-bit read/write registers unless specified otherwise.
They include the program counters (PC and nPC), the Processor State Register (PSR), the Win-
dow Invalid Mask register (WIM), the Trap Base Register (TBR), and the multlply step (Y) regis-
ter.

w W % NOTE % % ¢
Control/status registers contain two types of fields, mode and
status. Mode fields are set by the programmer; they appear in
UPPER CASE (for example, PIL). Status fields appear in lower
case italic font (for example, ver).

3.4.1. Integer Program Counters (PC and nPC)

The Program Counter (PC) contains the address of the instruction currently being executed by
the IU, and the nPC holds the address of the next instruction to be executed (assuming a trap
does not occur).

In delayed control transfers, the instruction that immediately follows a control transfer may be
executed before control is transferred to the target. The nPC is necessary to implement this
feature.

3.4.2. Processor State Register (PSR)

This 32-bit register contains various fields describing the state of the 1U. It can be modified by
the SAVE, RESTORE, Ticc and RETT instructions, or by instructions that modify the condition
codes. The (privileged) instructions RDPSR and WRPSR read and write it directly.

The PSR provides the following fields:

impl ver icc reserved EC|EF PIL S [PSET] cwp

31:28 27:24 23:20 19:14 1312 11:8 7 65 4:0
impl!

Bits 31 through 28 identify the implementation number of the processor. The WRPSR

instruction does not modify this field.

ver Bits 27 through 24 contain a constant: the meaning of this constant depends on the value of
the implfield. The WRPSR instruction does not modify this field.

icc Bits 23 through 20 contains the integer unit's condition codes. These bits are modified by
the WRPSR instruction, and by arithmetic and logical instructions whose names end with the
letters cc (for example, ANDcc). The Bicc and Ticc instructions base their control transfer on
these bits, which are defined as follows:

n V4 v c
23 22 21 20

| Negative (n)
Bit 23 indicates whether the ALU result was negative for the last instruction that modified the
iccfield. 1 = negative, 0 = not negative.

Zero (2)
Bit 22 indicates whether the ALU result was zero for the last instruction that modified the icc

3-4 Registers 3-4

Solbourne Computer, Inc.

field. 1 = result was zero, and 0 = result was nonzero.

Overflow (V)
If bit 21 is 1, it indicates that an arithmetic overflow occurred during the last instruction that
modified the icc tield. If bit 21 is 0, this indicates that an arithmetic overflow did not occur.
Logical instructions that modify the icc field always set the overflow bit to 0.

Carry (0) ‘
If bit 20 is 1, it indicates that either an arithmetic carry out of bit 31 occurred as the result of
the last addition that modified the icc, or that a borrow into bit 31 occurred as the result of
the last subtraction that modified the icc. If bit 20 is 0, this indicates that a carry did not
occur. Logical instructions that modify the icc field always set the carry bit to 0.

reserved :
Bits 19 through 14 are reserved. This field should only be written to 0 by the WRPSR
instruction.

EC This bit determines whether the coprocessor is enabled or disabled.
1 = enabled, 0 = disabled.

EF This bit determines whether the FPU is enabled or disabled.
1 = enabled, 0 = disabled.

3.4.3. Programming Note

If the FPU is either disabled, or enabled and not present, an FPop, FBfcc, or floating-point
load/store instruction causes an fp_disabled trap. Similarly, if the coprocessor is either dis-
abled, or enabled and not present, a CPop, CBccc, or coprocessor load/store instruction
causes a cp_disabled trap.

When the FPU (or CP) is disabled, it retains its state until it is reenabled or reset. When dis-
abled, the FPU can continue to execute instructions in its queue. The CP can also, if it has
a queue.

When the FPU is present, software can use the EF bit to determine whether a particular pro-
cess uses the FPU. If a process does not use the FPU, the FPU’s registers need not be
saved and restored across context swilches. Also, if the FPU is not present, (as indicated by
the bp_FPU_present signal), the fp_disabled trap can be used to emulate the floating-point
instruction set. (This also applies to the coprocessor.)

PIL Bits 11 through 8 identity the processor interrupt level. The processor only accepts inter-
rupts whose interrupt level is greater than the value in PIL. Bit 11 is the MSB and bit 8 is the
LSB.

S Bit 7 determines whether the processor is in supervisor mode: when S = 1, the processor is
in supervisor mode. Note that because the instructions to write the PSR are only available in
supervisor mode, supervisor mode can only be entered by a software or hardware trap.

PS Bit 6 contains the value of the S bit at the time of the most recent trap.

ET Bit 5 is the Trap Enable bit. When ET = 1, traps are enabled. When ET = 0, traps are dis-
abled, and all asynchronous traps are ignored. Synchronous ftraps and floating-
point/coprocessor traps cause the U to halt and enter error_mode. (See Appendix C for a
definition of error_mode.)

3-5 Registers . 3-5

Solbourne Computer, Inc.

3.4.4. Programming Note

If traps are enabled (ET=1), some care must be taken when you disable them (ET=0). Since
the “RDPSR, WRPSR"” instruction sequence is interruptible, it may not be appropriate in
some situations. Here are two alternatives: 1) generate a “trap_instruction” trap instead
(this disables traps); or 2) use the “RDPSR, WRPSR" sequence and write the interrupt trap
handlers so that before they return to the supervisor, they restore the PSR to the value it had
when the interrupt handler was entered. Note that the PS bit cannot be restored. In alterna-
tive (1), the trap handler should verify that it was called from the supervisor state before
returning to the supervisor.

CwP
Bits 4 through 0 comprise the Current Window Pointer, which points to the current active r
register window. It is decremented by traps and the SAVE instruction, and incremented by
RESTORE and RETT instructions.

The CWP cannot point to an unimplemented window; therefore arithmetic on the CWP is
done modulo the number of implemented windows (NWINDOWS).

3.4.5. Window Invalid Mask Register (WIM)

This register is used to determine whether a window_overflow or window_underflow trap should
be generated by a SAVE, RESTORE, or RETT instruction. Each bit in the WIM register
corresponds to a window. For example, bit 0 corresponds to window 0 (CWP = 0), bit 1
corresponds to window 1 (CWP = 1), and so on. If a SAVE, RESTORE, or RETT would cause
the CWP to point to a window whose corresponding WIM bit equals 1, it causes a
window_overflow (SAVE) or window_underflow (RESTORE, RETT) trap.

This register can be read by the RDWIM instruction, and written by the WRWIM instruction. Bits
corresponding to unimplemented windows read as zeroes and values written to unimplemented
bits are ignored.

The WIM provides the following fields:

w31|w30| w29 w2 |wl w0
31 30 29 2 1 0

3.4.6. Trap Base Register (TBR)

The trap base register contains three fields that generate the address of the trap handler when a
trap occurs. These are:

TBA tt zZero
31:12 114 3.0

TBA
Bits 31 through 12 comprise the Trap Base Address (TBA), which is controlled by software.
It contains the most-significant 20 bits of the trap table address. (Note that the reset trap is
an exception; it traps to address 0). The TBA field can be written by the WRTBR instruction.

" ft Bits 11 through 4 comprise the Trap Type (tf) field. This is an 8-bit field that is written by the
processor at the time of a trap, and retains its value until the next trap. It provides an offset
into the trap table. The WRTBR instruction does not affect the tt field.

zero
Bits 3 through 0 are zeroes. The WRTBR instruction does not affect this field.

3-6 Registers 3-6

Solbourne Computer, Inc.
For additional information, see the section Traps, Exceptions, and Error Handling.

3.4.7. Y Register

The multiply step instruction (MULScc) uses the 32-bit Y register to create 64-bit products. An
example algorithm is described in Appendix B.

This register can be read and written using the RDY and WRY instructions.

3.5. Floating-Point Registers

The floating-point unit has 32 working registers called f registers, a Floating-Point State Register
(FSR) that contains mode and status information about the FPU, and a Floating-Point Queue
(FQ) that holds one or more 64-bit instruction/address pairs. Software uses the FQ to recover
from floating-point exceptions. ‘

3.5.1. Floating-Point f registers

The 32-bit f registers are numbered from f[0] to f[31]. These can be read and written by floating-
point operate (FPop and FPcmp) instructions, or by load/store single/double floating-point
instructions (LDF, LDDF, STF, STDF). They are addressable at all times.

A single f register can hold one single-precision operand. Double-precision operands require an f
register pair, where the double-e datum occupies an even-numbered register, and the double-f
datum occupies the following odd-numbered register. Extended-precision operands require an f
register quad, with extended-e, extended-f, extended-f low, and extended-u in register addresses
0, 1, 2, and 3 modulo 4, respectively. Thus, the f register file can hold 8 extended, 16 double, or
32 single-precision operands.

3.5.2. Floating-Point State Register (FSR)
The FSR register fields contain FPU mode and status information. The fields are:

RD | RP TEM AU reserved ftt |gne|res| fcc aexc cexc

31:30 29:28 27:23 22 21:17 16:14 13 12 11:10 9:5 4:0

Rounding Direction (RD)
Bits 31 and 30 select the rounding direction for floating-point results, according to the
ANSV/IEEE 754-1985 Standard:

RD Round Toward:

0 Nearest (even, if a tie)
1 0

2 + 00

3 - o

Extended Rounding Precision (RP)
Bits 28 and 29 determine the precision to which extended results are rounded, according to
the ANSI/IEEE 754-1985 Standard:

37 Registers ' 3-7

Solbourne Computer, Inc.

RP Roundto:
0 Extended
1 Single
2 Double
3 (Unused)

Trap Enable Mask (TEM)

Bits 27 to 23 are enable bits for each of the five floating-point exceptions that can be indi-
cated in the current_exception field (cexc). (See definition of cexc below.) If a floating-point
operate instruction generates one or more exceptions and the TEM bit corresponding to one
or more of the exceptions is set (1), an fp_exception trap is caused. A reset (0) TEM bit
prevents that exception type from generating a trap. (See below.) The TEM field may be
read and written by the STFSR and LDFSR instructions.

NVM |OFM [UFM | DZM |NXM
27 26 26 24 28

The TEM field may be read and written by the STFSR and LDFSR instructions.

An implementation need not implement all of the TEM bits as defined above, except NXM,
which must be implemented as described above. If a particular bit of the TEM field is not
implemented according to the above definition, then it is implemented as a state bit instead.
That is, if the particular bit is written to a value by a LDFSR instruction, that same value will
be read by a subsequent STFSR instruction.

Abrupt Underflow (AU)

Bit 22, when set to 1, causes denormalized floating-point operands and/or results to be
rounded to zero. The definition of AU mode is implementation-dependent and is not defined
by the ANSI/IEEE 754-1985 Standard.

Reserved

Bits 21 through 17 and bit 12 are reserved. When read by an STFSR instruction, this field
delivers all zeroes. This field should only be written to zero by the LDFSR instruction.

Floating-Point Trap Type (ft1)

Bits 16 through 14 identify fp_exception traps. After a floating-point exception trap occurs,
the ftt field encodes the type of exception. ftt remains valid until the next FPop instruction
completes. (Note that the exception-causing FPop and its address are in the first entry of
the Floating-point Queue — see below.)

.The fit field can be read by the STFSR instruction. An LDFSR instruction does not affect ftt.
This field encodes the exception types as follows:

Registers 3-8

Solbourne Computer, Inc.

fit Trap Type

None

IEEE_exception
unfinished_FPop
unimplemented_FPop
sequence_error

HWN 2O

An |EEE_exception indicates that an ANSI/IEEE 754-1985 exception occurred for the
FPop identified by the front entry of the FQ. The exception type(s) is indicated in the
cexc field. If the IEEE_exception results in a fp_exception trap (as determined by the
TEM) then the destination f register, fcc, and aexc fields remain unchanged. However,
if the IEEE_exception does not result in a trap, then the f register, fcc, and aexc fields
are updated to their new values

An unfinished_FPop indicates that an implementation’s FPU was unable to generate
correct results or exceptions, as defined by the ANSI/IEEE 754-1985 Standard. In this
case, the cexcfield is undefined. (However, the aexc and fcc fields, and the destination f
register are not affected by the exception.)

An unimplemented_FPop indicales that an implementation’s FPU decoded an FPop that
it did not implement. In this case, the cexc field is undefined. (However, the aexc and
fec fields, and the destination f register are not affected by the exception.)

3.5.3. Programming Note

In the case of an unfinished_FPop or unimplemented_FPop, the software should emulate or
reexecute the instructions in the FQ, and update the FSR and destination f register(s).

A sequence_error indicates that an FPop or a load floating-point instruction is fetched while
the FPU is in FPU_exception_mode, waiting for the FQ to be emptied by software. (See
Appendix C).

Queue Not Empty (gne)

Bit 13 indicates whether the Floating-point Queue (FQ) is empty after an fp_exception trap or
after a Store Double Floating-point Queue (STDFQ) instruction is executed. If gne = 0, the
queue is empty; if gne = 1, the queue is not empty.

The gne bit can be read by the STFSR instruction. The LDFSR instruction does not affect
gne. However, executing successive STDFQ instructions will (eventually) cause the FQ to
become empty (gne=0).

Floating-point Condition Codes (fcc)

3-9

Bits 11 and 10 contain the FPU condition codes. These bits are updated by floating-point
compare instructions (FCMP and FCMPE) and are read and written by the STFSR and
LDFSR instructions, respectively. Note that fcc is updated even it FCMPE generates an
IEEE_exception trap.

In the following table, fs7 and fs2 correspond to the values in the f registers specified by an
instruction’s rs7 and rs2fields. The question mark (?) indicates an unordered relation, which
is true if either fs1 or fs2 is a signaling or quiet NaN (see the section Processor Data Types
in the section SPARC Architecture Overview).

Registers 3-9

Solbourne Computer, Inc.

The FBfcc instruction bases its control transfer on this field, which is interpreted as follows:

fcc Relation
0 fs1 =1s2
1 fs1 < fs2
2 fs1>fs2
3 fs1 ?1{s2 (unordered)

Accrued Exception Bits (aexc)
Bits 9 through 5 accumulate IEEE floating-point exceptions while fp_exception traps are dis-
abled. After an FPop completes, the TEM and cexc fields are logically andd together. If the
result is nonzero, an FP_exception trap is generated; otherwise, the new cexc field is ord
into the aexc field. Thus, while traps are masked, exceptions are accumulated in the aexc
field. (See below).

nva | ofa | ufa | dza | nxa
9 8 7 6 5
The aexc field is read and written by the STFSR and LDFSR instructions.

An implementation need not implement all of the aexc bits as defined above, except nxa,
which must be implemented as described above. If a particular bit of the aexc field is not
implemented according to the above definition, then it is implemented as a state bit instead.
That is, if the particular bit is written to a value by a LDFSR instruction, that same value will
be read by a subsequent STFSR instruction.

Current Exception Bits (cexc)
Bits 4 through 0 indicate one or more IEEE exceptions that were generated by the most
recently executed FPop instruction. The absence of an exception causes the corresponding
bit to be cleared.

nve | ofc | ufc | dzc | nxc
4 3 2 1 0
The cexcfield is read and written by the STFSR and LDFSR instructions.

An implementation need not implement all of the cexc bits as defined above, except nxc,
which must be implemented as described above. If a particular bit of the cexc field is not
implemented according to the above definition, then it is implemented as a state bit instead.
That is, if the particular bit is written to a value by a LDFSR instruction, that same value will
be read by a subsequent STFSR instruction.

The cexc bits are not defined following an FPop that causes an unimplemented_FPop or
unfinished_FPop fp_exception trap. Following an FPop that does not generate an
fp_exception trap or that generates an IEEE_exception trap, the cexc bits are set as follows:

nve = 1 indicates invalid: an operand is improper for the operation to be performed. For
example, 0/0, and « — e are invalid.

ofc = 1 indicates overflow: the rounded result would be larger in magnitude than the

3-10 Registers 3-10

Solbourne Computer, Inc.

largest normalized number in the specified format.

ufe = 1 indicates underflow: the rounded result is inexact, and would be smaller in mag-
nitude than the smaliest normalized number in the indicated format.

dzc = 1 indicates division-by-zero: X/0, where X is subnormal or normahzed Note that
0/0 does not set the dzc bit.

nxc = 1 indicates inexact: The rounded result differs from the infinitely precise correct
result.

The following illustration summarizes the handling of IEEE_exception traps. Note that the aexc
and ftt fields can normally only be cleared by software.

FPop generates an IEEE exception;

cexc « |EEE exceptions generated by this FPop;

if (cexc and TEM)=0

then (aexc « aexc or cexc; i[] « result; fcc « fcc_result)
else (ftit « IEEE_exception; cause fp_exception trap)

3.5.4. Programming Note

Since the operating system must be capable of simulating the entire FPU in order to properly
handle the unimplemented_FPop and unfinished_FPop floating-point exceptions, a user process
always “sees” a fully implemented FSR as defined above. In other words, a user process always
“sees” cexc, aexc, and TEM fields that conform to the ANSI/IEEE 754-1985 Standard.

3.5.5. Floating-Point Queue (FQ)

The Floating-point Queue keeps track of FPops that are pending completion by the FPU when an
fp_exception trap occurs. When an fp_exception trap occurs, the first entry in the queue gives
the address of the FPop that caused the exception and the instruction itself. Any remaining
entries in the queue contain FPop instructions (and their addresses) that had not finished when
the exception occurred.

3.5.6. Implementation Note

If an implementation provides n entries in the queue, at most n FPops can execute simultane-
ously in the FPU. For example, if the FPU provides one adder and one multiplier that can
operate independently, then the FQ has no fewer than two entries.

3-11 Registers 3-11

SECTION 4: INSTRUCTIONS

4.1. Introduction

Functionally, SPARC architecture instructions fall into six categories: 1) load and store 2)
arithmetic/logical/shift, 3) control transfer, 4) read/write control register, 5) floating-point operate,
and 6) coprocessor operate. Instructions may also be classified into three major formats, two of
which include subformats.

4.2. Instruction Formats

The three instruction formats are called format 1, format 2, and format 3. Figure 4-1 shows each
instruction format, with its fields and bit positions. It also lists the types of instructions that use
that format:

The fields in these instructions have the following meanings:
op This field places the instruction into one of the 3 major formats:

Format opvalue Instruction
1 1 Call
2 0 Bicc, FBfcc, CBccc, SETHI
3 2o0r3 other

op2 This field comprises bits 24 through 22 of format 2 instructions. It selects the instruction as
follows:

op2 value Instruction

UNIMP
Bicc
SETHI
FBfcc
CBccc

NoOANMO

rd For store instructions, this register selects an r register (or an f register pair), or an f register
(or an f register pair) to be the source. For all other instructions, this field selects an r regis-
ter (or an f register pair), or an f register (or an f register pair) to be the destination.

w % % NOTE & & %

Reading r{0] produces the result 0, and writing it causes the
result to be discarded.

For more information on r registers, see the section Registers.

a The “a” bit means “annul” in format 2 instructions. This bit changes the behavior of the
instruction encountered immediately after a control transfer, as described later in this sec-
tion.

4-1 Instructions 4-1

Solbourne Computer, Inc.

cond
This field selects the condition code for format 2 instructions.

imm22
This field is a 22-bit constant value used by the SETHI instruction.

disp22 and disp30
These fields are 30-bit and 22-bit sign-extended word displacements, for PC-relative calls
and branches, respectively.

op3 The op3 field selects one of the format 3 opcodes.

i The ibit selects the type of the second ALU operand for non-FPop instructions. If i= 0, the
second operand is rirs2]. If i= 1, the second operand is sign-extended simm?13.

asi This 8-bit field is the address space identifier generated by load/store alternate instructions.
See discussion below.

rs1 This 5-bit field selects the first source operand from either the r registers or the f registers.

rs2 This 5-bit field selects the second source operand from either the r registers or the f regis-
ters.

simm13

This field is a sign-extended 13-bit immediate value used as the second ALU operand when i
=1.

opf
This 9-bit field identifies a floating-point operate (FPop) instruction or a coprocessor operate
(CPop) instruction. Note that it uses the synonym opc for coprocessor operate instructions
(see the coprocessor operate instructions in Appendix B). A table in Appendix F shows the
relationship between the opffield and FPop instructions.

4.3. Load/Store Instructions

Load and store instructions are the only instructions that access memory and registers external
to the processor. They generate a 32-bit byte address. In addition to the address, the processor
always generates an address space identifier, or asi.

4.3.1. Address Space Identifier

The address space identifier generated by the processor is made available to the external sys-
tem to distinguish up to 256 address spaces. These spaces can include system control registers,
main memory, etc. The number of defined spaces is implementation-dependent.

The SPARC architecture defines four address spaces and their asi values; these appear in Table
4-3. They indicate to the external system whether the processor is in user or supervisor mode
(as indicated by the PSR), and whether the access is an instruction or a data reference.

asi Assignment

0-7 Implementation-definable

8 User instruction space

9 Supervisor instruction space
10 User data space

11 Supervisor data space
12-255 Implementation-definable

4-2 Instructions 4-2

Solbourne Computer, Inc.

Load/store instructions normally generate an asi of either 10 or 11 for the data access, depend-
ing on whether the processor is in user or supervisor mode. However, the load from alternate
space and store into alternate space instructions use the asi field supplied by the instruction
itself.

" Note that the load/store alternate instructions are privileged; they can only be executed in super-
visor mode.

4.3.2. Addressing Conventions
The load and store instructions use the following addressing conventions:

Bytes
For load and store byte instructions, increasing the address generally means decreasing the
significance of the byte within a word: the most significant byte (MSB) of a word is accessed
when address bits <1:0> are 0 and the least significant byte (LSB) is accessed when
address<1:0> = 3.

Halfwords
For load and store halfword instructions, when address bit 1 = 1, the least significant half-
word of a word is accessed, and when address bit 1 = 0, the most significant halfword is
accessed.

Doublewords
For load and store double instructions, the most significant word is accessed when address
bit 2 = 0, and the least significant word is accessed when address bit 2 = 1.

In general, the address of a doubleword, word, or halfword is the address of its most significant
byte. These conventions are illustrated in the following figure:

4-3 Instructions 4-3

Solbourne Computer, Inc.

Bytes
address<1:0> 0 1 2 3
7 017 07 0|7 0
MSB ' LSB
Halfwords
address<1:0> 0 2
15 0|15 0
Word
31 0
Doubleword
address<2>
0 (63 32
1 131 0

A doubleword-aligned datum is located at a doubleword address, which must be evenly divisible
by 8. A word-aligned datum is located at a word address, which must be evenly divisible by 4. A
halfword-aligned datum is located at a halfword address, which must be divisible by 2.

If a doubleword, word, or halfword load or store instruction generates an improperly aligned
address, a memory_address_not_aligned trap occurs.

4.4. Arithmetic, Logical, and Shift Instructions

All of these instructions compute some result that is a function of two source operands, and
either write the result into a destination r register (r[rd]) or discard it. One of the operands is
always rfrs1]. The other operand depends on the / bit in the instruction: if / = 0, the operand is
frs2], but if i = 1, the operand is the sign-extended constant sign_extend(simm13).

Reading r[0] produces the value zero. If the destination field indicates a write into r[0], no r regis-
teris modified and the result is discarded.

Most of these instructions have dual versions which modify the integer condition codes (icc) as a
- side effect.

4-4 Instructions 4-4

Solbourne Computer, Inc.

4.4.1. Programming Note ' -

r{0] can be used to implement a register-to-register move in one of several ways: ADD with 0, OR
with 0, etc. Subtract and set condition codes (SUBcc) can be used as an integer COMPARE
instruction.

The tagged add and subtract instructions (TADDcec, TSUBcc, TADDcecTV and TSUBccTV)
operate on tagged data where the tag is the low-order two bits of the data. If either of the
instruction’s two operands has a nonzero tag, the overflow bit of the PSR is set. The “trap on
overflow” versions, TADDccTV and TSUBccTV, in addition to writing the condition codes, also
cause an overflow trap.

4.4.2. Programming Note

One possible model for tagging is to use 0 to tag integers and 3 for pointers to doublewords, i.e.
list cells.

If trapping overhead is insignificant, then TADDccTV or TSUBccTV is faster than the non-
trapping versions, which would need to be followed by ‘branch on overflow' instructions.

Suppose p contains a tagged pointer to a list cell, i.e. has 3 in its low-order two bits. Since the
load and store instructions execute successfully only with properly aligned addresses, a load or
store word with an address specifier of “p - 3" or “p + 1" will succeed, accessing the first or
second word of the list cell, respectively; if, on the other hand, p contains a tag value other than
3, they will trap.

Shift instructions shift an r register left or right by a constant or variable amount, as described in
Appendix B. None of the shift instructions changes the condition codes.

The “set high 22 bits of r’ (SETHI) instruction writes a 22-bit constant from the instruction into the
high-order bits of the destination register. It clears the low-order 10 bits, and does not change
the condition codes.

4.4.3. Programming Note
SETHI can be used to construct a 32-bit constant using two instructions.

4.5. Control Transfer Instructions

Control-transfer instructions change the values of PC and nPC. There are five types of control
transfer instructions:

1) Conditional branch (Bicc, FBfcc, CBccc)
2) Jump and Link (JMPL)

3) Call (CALL)

4) Trap (Ticc)

5) Returnfromtrap (RETT)

Each of these can be further categorized according to whether it is 1) PC-relative or register-
indirect, or 2) delayed or non-delayed. The following matrix shows these characteristics:

4-5 Instructions 4-5

Solbourne Computer, Inc.

Instruction PC-relative or Delayed
Register-indirect
Bice, FBfcc, CBcec, CALL PC-Relative Yes
JMPL, RETT Reg-Indirect Yes
Tice Reg-Indirect No

The following paragraphs describe each of the characteristics:

PC-relative
A PC-relative control transfer computes its target address by adding the (shifted) sign-
extended immediate displacement to the program counter (PC).

Register-indirect
A register-indirect instruction computes its target address as either “rfrs1] + r{rs2]" if /= 0, or
“r{rs1] + sign_ext(simm13)” if i= 1.

Delayed
A control transfer instruction is delayed if it transfers control to the target address after a
one-instruction delay. Delayed control transfers are described in the next section.

4.5.1. Delayed Control Transfers

Traditional architectures usually execute the target of a control transfer instruction immediately
after the control-transfer instruction. The SPARC architecture delays by one instruction the exe-
cution of the target of a delayed control-transfer instruction. The instruction encountered immedi-
ately after a delayed control transfer is called the delay instruction.

4.5.2. PCand nPC

In general, the PC points to the instruction being executed by the 1U, and the nPC points to the
instruction to be executed next. Most instructions complete by copying the contents of the nPC
into the PC, then either increment nPC by 4, or, if the instruction implies a control transfer, write
the computed target address into nPC. The PC now points to the instruction that will be exe-
cuted next, and the nPC points to the instruction that will be executed after the next one; in other
words, two instructions hence.

The sequence is:

PC ¢« nPC :
nPC « nPC + 4 or target address

4.5.3. Delay Instruction

The instruction pointed to by the nPC when a delayed control-transfer instruction is encountered
is called the delay instruction. Normally, this is the next sequential instruction in the code space.
However, if the instruction that preceded the delayed control transfer was itself a delayed control
transfer, the address of the delay instruction is the target of the (first) control-transfer instruction,
since that is where the nPC will point. This behavior is explained further in the section Back-to-
Back Delayed Control Transfers below.

The following example shows the order of execution for a simple (not back-to-back) delayed con-
trol transfer. The order of execution is 8, 12, 16, 40. If the delayed control transfer-instruction
were not taken, the order would be 8, 12, 16, 20.

4-6 Instructions 4-6

Solbourne Computer, Inc.

PC nPC Instruction
before before
instruction instruction
8 12 Non-contro! transfer
12 16 Control transfer (target = 40)
16 40 Non-control transfer (delay instruction)

Transfers control to 40

40 44

4.5.4. Annul Bit

The a (annul) bit changes the behavior of the delay instruction. This bit is only available on con-
ditional branch instructions (Bicc, FBfcc and CBccc). If ais set on a conditional branch (except
BA, FBA and CBA) and the branch is not taken, the delay instruction is “annulled” (not exe-
cuted). An annulled instruction has no effect on the state of the 1U nor can a trap occur during an
annulled instruction. If the branch is taken, the a bit is ignored and the delay instruction is exe-
cuted. Forexample:

PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (a=1) 40 Not taken
16 40 Non-control transfer Annulled (not executed)
20 24 Executed
PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (a=0) 40 Not taken
16 40 Executed
40 44 Executed

BA, FBA and CBA instructions are a special case; if the a bit is set in these instructions the delay
instruction is not executed if the branch is taken, but it is executed if the branch is not taken.

The following display shows the effect of the a bit on the delay instruction after various kinds of
branches:

abit Type of branch Delay instr. executed?

a= Always No
Conditional, taken Yes
Conditional, not taken No

a=0 Always Yes
Conditional, taken Yes
Conditional, non taken Yes

4-7 Instructions 4-7

Solbourne Computer, Inc.

4.5.5. Programming Notes

The annul bit increases the likelihood that a compiler or optimizer can place a useful instruction in
the delay slot after a branch. Refer to the following table:

Address Instruction Target
L non-control transfer instruction
Ll
Bicc L
D NOP

If the Bicc has a = 0, a code optimizer may be able to move a non-control-transfer instruction
from within the loop into location D. If the Bicc has a = 1, then the compiler can copy the non-
control-transfer instruction at location L into location D, and change the branch to Bicc L.

The annul bit can also be used to optimize “if-then-else” statements. Since the conditional
branch instructions provide both true and false tests for all the conditions, an optimizer can
arrange the code so that a non-control-transfer instruction from either the “else” branch or the
“then” branch can be moved into the delay position after the branch instruction. For example:

Address Instruction | Address Instruction
Bicc(cond, a=1) THEN | Bicc(cond, a=1) ELSE

Delay: then-phrase-instr-1 | Delay: else-phrase-instr-1
else-phrase-instr-1 | then-phrase-instr-1
else-phrase-instr-2 | then-phrase-instr-2
goto ... | goto ...
: | :

THEN: then-phrase-instr-2 | ELSE: else-phrase-instr-2
then-phrase-instr-3] else-phrase-instr-3
. | .

When set in a branch always instruction (BA, BFA), the annul bit implements a “traditional,” non-
delayed branch instruction. This can also be used to dynamically replace unimplemented
instructions with branches to software emulation routines as this requires less overhead than a
trap.

4.5.6. Calls and Returns

A procedure that requires a register window is invoked by executing both a CALL (or a JMPL)
and a SAVE instruction. A procedure that does not need a register window, a so-called “leaf”
routine, is invoked by executing only a CALL (or a JMPL). Leaf routines can use only the out
registers.

The CALL instruction stores PC, which points to the CALL itself, into register r[15] (an out regis-
ter). JMPL stores PC, which points to the JMPL instruction, into the specified r register. These
instructions then cause a transfer of control to a target that can be arbitrarily distant.

The SAVE instruction is similar to an ADD instruction, except that it also decrements the CWP by
one, causing the active window to become the previous window, thereby “saving” the caller's
window. Also, the source registers for the addition are from the previous window while the result
is written into the new window.

4-8 Instructions 4-8

Solbourne Computer, Inc.

A procedure that uses a register window returns by executing both a RESTORE and a JMPL
instruction. A leaf procedure returns by executing a JMPL only. The JMPL instruction typically
returns to the instruction following the CALL’s or JMPL's delay instruction; in other words, the typ-
ical return address is 8 plus the address saved by the CALL. \

The RESTORE instruction, also like an ADD instruction, increments the CWP by one, causing
the previous window to become the active window, thereby “restoring” the caller's window. Also,
the source registers for the addition are from the current window while the result is written into
the previous window.

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to
check for window overflow or underflow.

4.5.7. Programming Note

The SAVE and RESTORE instructions can be used to atomically update the CWP while estab-
lishing a new memory stack pointer in an r register.

4.5.8. Trap (Tice) Instruction

The Ticc instruction evaluates the condition codes specified by its cond field, and if the result is
frue, it causes a trap with no delay instruction. If the condition codes evaluate to false, it exe-
cutes as a NOP.

A taken Ticc identifies the software trap by writing “trap_number + 128" into the ft field of the
TBR. The processor enters supervisor mode, disables traps, decrements the CWP, and saves
PC and nPC into the locals r[17] and r[18] (respectively) of the new window.

4.5.9. Programming Note

Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for
run-time checks, such as out-of-range array indices, integer overflow, etc.

4.5.10. Delayed Control Transfers Couples

When a delayed control transfer is encountered immediately after another delayed control
transfer, this creates what is called a delayed control-transfer couple, which the processor han-
dles differently from a simple control transfer.

The following tables show, first, a sequence of instructions that includes a delayed control-
transfer couple, and second, a table that illustrates the order of execution depending on the
nature of the control-transfer instructions.

4-9 Instructions 4-9

Solbourne Computer, Inc.

* % %W NOTE & =&« %

In the following tables, 'delayed control-transfer instruction’ is
abbreviated to 'DCTI'. Note that a “non-DCTI” may be either a
non-control-transfer instruction, or a control-transfer instruction
which is not delayed (i.e. a Ticc).

address: instruction target
8: non-DCTI

12: DCTI 40

16: DCTI 60

20: non-DCTI

24.

40. non-DCTI

44

60: non-DCTI

64:
Case | 12: DCTI40 16: any DCTI 60 Order of Execution:
1 DCTI! unconditional | DCTIl taken 12, 16, 40, 60, 64, ...
2 DCT! unconditional | B*cc(a=0) untaken | 12, 16, 40, 44, ...
3 DCTi unconditional | B*cc(a=1) untaken | 12, 16, 44, 48, ... (40 annulled)
4 DCTI unconditional | B*A(a=1) 12, 16, 60, 64, ... (40 annulled)
5 B*A(a=1) any CTI 12, 40, 44, ... (16 annulled)
6 B*cc DCTI not supported (see text)

Where the annul bit is not indicated, it may be either 0 or 1. Abbreviations are as follows:

B*A BA, FBA or CBA

B*cc Bicc, FBfce, or CBccc (except B*A)

DCTl unconditional CALL, JMPL, RETT, or B*A{a=0)

DCTI taken CALL, JMPL, RETT, B*cc taken, or B*A(a=0)

When the first instruction of a delayed control-transfer couple is a conditional branch, the transfer
of control is undefined (case 6). If such a couple is executed, the location where execution con-
tinues is within the same address space but otherwise undefined. This sequence does not
change any other aspect of the processor state.

Case 1 of the above table includes the “JMPL, RETT"” couple. RETT must always be preceded
by a JMPL instruction. (lf it is not, the location where execution continues is not necessarily
within the address space implied by the PS bit of the PSR.)

4.5.11. Programming Note
Trap handlers complete execution by executing the “JMPL, RETT"” couple.

4-10 Instructions 4-10

Solbourne Computer, Inc.

4.6. Read and Write Control Registers

These instructions read or write the contents of the programmer-visible control registers. This
category includes instructions to read and write the PSR, the WIM, the TBR, the Y register, the
FSR, and the CSR. These instructions are all privileged (available in supervisor state only),
except those that read and write the Y register, the FSR, and the CSR.

4.7. Floating Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) are generally three-register instructions that compute
some result that is a function of one or two source operands, and place the result in a destination
f register. The exception is floating-point compare operations, which update the fcc field of the
FSR.

The term “FPop” does NOT include the load/store floating-point instructions.

Multiple-precision instructions assume that their operands are in multiple contiguous f registers.
The operands must be aligned in the f registers according to their size: the number of the first f
register of a multiprecision operand must be a multiple of the operand size in words.

All FPops except move instructions can modify the status fields of the FSR.

FPops execute concurrently with U instructions and other FPops. Concurrent operation is
described in the section SPARC architecture Overview and in Appendix C.

There are no direct IU-to-FPU or FPU-to-IU move instructions.

4.8. Coprocessor Operate (CPop) Instructions

The coprocessor operate instructions are executed by the attached coprocessor. If there is no
attached coprocessor, a CPop instruction generates a cp_disabled trap.

The instruction fields of a CPop instruction, except for op and op3, are interpreted only by the
coprocessor. A CPop takes all operands from and returns all results to coprocessor registers.

Note that the term “CPop” does NOT include the load/store coprocessor instructions.

4-11 Instructions 4-11

SECTION 5: TRAPS, EXCEPTIONS, AND ERROR HANDLING

5.1. Introduction

SPARC supports three types of traps: synchronous, floating-point/coprocessor and asyn-
chronous (asynchronous traps are also called interrupts). Synchronous traps are caused by an
instruction, and occur before the instruction is completed. Floating-point/coprocessor traps are
caused by a Floating-Point Operate (FPop) or coprocessor (CPop) instruction, and occur before
the instruction is completed. However, due to the concurrent operation of the 1U and the FPU,
other non-floating-point instructions may have executed in the meantime. Asynchronous traps
occur when an external event interrupts the processor. They are not related to any particular
instruction and occur between the execution of instructions.

Synchronous and floating-point/coprocessor traps are generally taken before the instruction
changes any processor or system state visible to a programmer; they happen “between” instruc-
tions. Instructions which access memory twice (double loads and stores and atomic instructions)
are the only exceptions.

An instruction is defined to be trapped if any trap occurs during the course of its execution. If
multiple traps occur during one instruction, the highest priority trap is taken. Lower priority traps
are ignored because the traps are arranged under the assumption that the lower priority traps
persist, recur, or are meaningless due to the presence of the higher priority trap. For example, if
a mem_address_not_aligned trap is detected during an instruction fetch, the potential
unimplemented_instruction trap is meaningless because the address is invalid. Pending inter-
rupts persist; therefore, they have the lowest priority.

The ET bit in the PSR must be set for traps to occur normally. If a synchronous trap occurs while
traps are disabled the processor halts and enters an error state. In most implementations, this
causes a reset trap.

5.1.1. Implementation Note

Since interrupts are ignored while traps are disabled, they should persist until they are ack-
nowledged.

Load/store instructions generally trap before the instruction changes the state of the processor.
However, those instructions that do more than one memory access (namely the load and store
doubles and the atomic load and store instructions) may trap on a data_access_exception after
the first memory access, causing a trap after the processor state has been partially modified.
This can only occur for non-resumable exceptions, such as uncorrectable memory errors. (See
Appendix B for instruction descriptions.)

5.2. Trap Addressing

The Trap Base Register (TBR) generates the exact address of a trap handling routine. When a
trap (other than some types of reset trap) occurs, the hardware writes a value into the trap type
() field of the TBR. This uniquely identifies the trap and serves as an offset into the table whose
starting address is given by the TBA field of the TBR.

5-1 Traps, Exceptions, and Error Handling 51

Solbourne Computer, Inc.

The 8-bit wide tt field allows for 256 distinct types of traps. Half of these (0 - 127) are dedicated
to hardware traps, and half (128-255) are dedicated to programmer-initiated traps (see the Ticc
instruction). The ttfield remains valid until another trap occurs.

5.3. Trap Priorities
The following table shows the trap types, priorities, and assignments.

Trap Priority tt
reset 1 —
instruction_access_exception 2 1
illegal_instruction 3 2
privileged_instruction 4 3
fp_disabled 5 4
cp_disabled 5 36
window_overflow 6 5
window_underflow 7 6
mem_address_not_aligned 8 7
fp_exception 9 8
cp_exception 9 40
data_access_exception 10 9
tag_overflow 11 10
trap_instruction (Ticc) 12 128-255
interrupt_level_15 13 31
interrupt_level_14 14 30
interrupt_level_13 15 29
interrupt_level_12 16 28
interrupt_level_11 17 27
interrupt_level_10 18 26
interrupt_level_9 19 25
interrupt_level_8 20 24
interrupt_level_7 21 23
interrupt_level_6 22 22
interrupt_level_5 23 21
interrupt_level_4 24 20
interrupt_level_3 25 19
interrupt_level_2 26 18
interrupt_level_1 27 17

5.4. Trap Definition

A trap causes the following action:

* It disables traps (ET « 0).

» It copies the S field of the PSR into the PS field and then sets the S field to 1.
¢ [t decrements the CWP by 1, modulo the number of implemented windows.

» It saves the PC and nPC into r{17] and r{18], respectively, of the new window.
« |t sets the ttfield of the TBR to the appropriate value.

« [fthe trap is not a reset, it writes the PC with the contents of TBR, and the nPC with the con-
tents of TBR + 4. If the trap is a reset, it loads the PC with 0 and the nPC with 4.

5-2 Traps, Exceptions, and Error Handling 5-2

Solbourne Computer, Inc.

w % % NOTE &« = %

Unlike many other processors, the SPARC architecture does not
automatically save the PSR into memory during a trap. Instead,
it saves the volatile S field into the PSR itself and the remaining
fields are either altered in a reversible way (ET and CWP), or
should not be altered in a trap handler until the PSR has been
saved into memory.

The last two instructions of a trap handler should be a JMPL fol-
lowed by a RETT. This restores the PC, the nPC and the S bit
of the PSR.

Because the FPU and IU operate concurrently, the address that is saved from the PC as a result
of a floating-point exception may not be the address of the FPop that caused the exception. If a
floating-point exception occurs, the first element in the FQ points to the FPop that caused the
exception, and the remaining elements point to FPops that have been started by the FPU but
have not yet completed. These can be re-executed or emulated.

For additional information on trap handlers, see Appendix C.

5.5. Interrupt Detection

As long as ET = 1, the IU checks for interrupts. It compares the exiernal interrupt level (bp_I/RL)
against the PIL field of the PSR, and if bp_I/RL is greater than the PIL, or if bp IRL is 15
(unmaskable), then a trap occurs at the level requested by bp_/RL.

5.5.1. Implementation Note
Processor implementations may ignore interrupts for multiple cycles even though ET=1.

5.6. Floating-point/Coprocessor Exception Traps

Floating-point/coprocessor exception traps are considered a separate class of traps because
they are both synchronous and asynchronous. They are asynchronous because they occur
sometime after the floating-point or coprocessor instruction that caused the exception. However,
they are synchronous because a floating-point or coprocessor instruction must be encountered in
the instruction stream before the trap is taken.

When the FPU or CP recognizes an exception condition, it enters an “exception_pending_mode”
state, and remains in this state until the IU takes the fp_exception trap. When the IU takes the
exception trap, the FPU leaves “exception_pending” state, and enters “exception_mode" state.
The FPU or coprocessor remains in the exception_mode state until the floating-point or copro-
cessor queue has been emptied by execution of one or more STDFQ or STDCQ instructions.

The PC that corresponds to a floating-point or coprocessor exception always points to a floating-

point or coprocessor instruction. However, the exception itself is always due to a previously exe-

cuted floating-point or coprocessor instruction. The instruction and the value of the PC from
which it was fetched are in the floating-point (or coprocessor) queue.

5.7. Trap Descriptions
The following paragraphs describe the various traps, and the conditions that cause them.

5-3 Traps, Exceptions, and Error Handling 5-3

Solbourne Computer, Inc.

reset

A reset trap occurs when the U leaves reset_mode and enters execute_mode. This is con-
trolled by the bp_reset_in signal. The IU enters reset_mode when bp_reset_in = 1, and
enters execute mode when bp_reset _in = 0. Except in one situation, reset does not change
the value of the ft field of the TBR; the exception is when a retumn from trap instruction is
executed while traps are not enabled and the processor is not in supervisor mode (see
description of retum from trap instruction in Appendix B). Also, a reset trap causes the U to
begin execution at location 0, regardless of the value of the TBR.

Reset traps set the PSR S bit to 1 and the ET bit to 0. All other PSR fields, and all other
registers retain their values from the last execute_mode, except that on power-up they are
undefined.

instruction_access_exception
This trap occurs when bp_memory_access_exception = 1 for a memory address used in an
instruction fetch.

illegal_instruction
This trap occurs 1) when the UNIMP instruction is encountered, 2) when an unimplemented
instruction which is not an FPop or a CPop is encountered, or 3) when an instruction is
fetched which, if executed, would result in an illegal processor state (e.g. writing an illegal
CWP into the PSR). Unimplemented floating point operate and unimplemented coprocessor
operate instructions generate fp_exceptions and cp_exception traps, respectively. '

privileged_instruction
This trap occurs when a privileged instruction is encountered while the S bit in the PSR = 0.

fp_disabled
This trap occurs when a FPop, FBfcc, or a floating-point load or store is encountered while
the EF bit in the PSR = 0 or no FPU is present.

cp_disabled
This trap occurs when a CPop, CBccc, or a coprocessor load or store instruction is decoded
while the EC bit in the PSR = 0 or no coprocessor is present.

window_overflow
This trap occurs when a SAVE instruction would, if executed, cause the CWP to point to a
window marked invalid in the WIM.

window_underflow
This trap occurs when a RESTORE instruction would, if executed, cause the CWP to point to
a window marked invalid in the WIM.

mem_address_not_aligned
This trap occurs when a load, store or JMPL instruction would, if executed, generate a
memory address or a new PC value that is not properly aligned.

fp_exception
This trap occurs when the FPU is in exception_pending state and a floating-point instuction
(FP operate, floating-point load/store, FBfcc) is encountered in the instruction stream. The
type of exception is encoded in the ft field of the FSR as described in the section Registers.

cp_exception
This trap occurs when the CP is in exception_pending state and a coprocessor instuction
(CP operate, coprocessor load/store, CBccc) is encountered in the instruction stream.

data_access_exception
This trap occurs when bp_memory_exception=1 for a memory address that corresponds to a
data movement by a load or store instruction.

5-4 Traps, Exceptions, and Error Handling 5-4

Solbourne Computer, Inc.

tag_overfiow
This trap occurs when a TADDccTV or TSUBcCTV instruction is executed which causes the
overflow bit of the integer condition codes to be set.

trap_instruction
This trap occurs when a taken Ticc instruction is executed.

interrupt_level<3.0>
External interrupts are controlled by the value of bp IRL. A value of 0 indicates that no
interrupt is requested. Level 1 is the lowest priority interrupt and 15 is the highest. Interrupt
level 15 cannot be masked by the Processor Interrupt Level (PIL) field of the PSR. When ET
= 1, an external interrupt is recognized if bp_IRL = 15 or bp_IRL > PIL. When ET =0 or
(bp_IRL # 15 and bp_IARL < PIL), no external interrupt is recognized.

5-5 ' Traps, Exceptions, and Error Handling 5-5

APPENDIX A: SUGGESTED ASSEMBLY LANGUAGE

A.1. Introduction

This appendix supports Appendix B, Instruction Descriptions. Every instruction description in
Appendix B includes a table that describes the suggested assembly language format for that
instruction. This appendix describes the notation used in the assembly language syntax descrip-
tions. :

Understanding the use of type fonts is crucial to understanding the syntax descriptions in
Appendix B. ltems in typewriter font are literals, to be entered exactly as they appear. ltems in
talic font are metasymbols which are to be replaced by numeric or symbolic values when actual
SPARC assembly-language code is written. For example, “as/’ would be replaced by a number
in the range of 0 to 255 (the value of the asi bits in the binary instruction), or by a symbol which
had been bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the generated binary
instruction. For example, reg,. is a reg (i.e. register name) whose binary value will end up in the
rs2 field of the resulting instruction.

Register Names
reg A regis an Integer Unit register. It can have a value of:

%0 through %31 all integer registers

%g0through %g7 global registers — same as %0 through %7
%00 through %07 outregisters — same as %8 through %15
%10 through %/7 localregisters — same as %76 through %23
%i0 through %i7 in registers — same as %24 through %31

Subscripts further identify the placement of the operand in the binary instruction as one
of:

reg.s; — rsfield
reg sp — rs2 field
reg,y — rdfieid

freg An freg is a floating-point register. It can have a value from %f0 through %f31. Sub-
scripts further identify the placement of the operand in the binary instruction as one of:

freg,s; — rs1field
freg sp — rs2 field
freg,q — rdfield

A-1 Suggested Assembly Language A-1

Solbourne Computer, Inc.

creg
A creg is a coprocessor register. It can have a value from %c0 through %c371. Sub-
scripts further identify the placement of the operand in the binary instruction as one of:

creg,s1 — rsfield
creg sp — rsé field
Cregry — rdfield

Special Symbol Names
Certain special symbols need to be written exacﬂy as they appear in the syntax table. These
appear in typewriter font, and include a percent sign (%), also in typewriter font. The percent
sign is part of the symbol name; it must appear as part of the literal value.

The symbol names are:

%psr Processor State Register

%wim Window Invalid Mask register

%tbr Trap Base Register

%y Y register

%fsr Floating-point State Register

%csr Coprocessor State Register

%fq Floating-point Queue

%cq Coprocessor Queue

%hi Unary operator that extracts high 22 bits of its operand
%lo Unary operation that extracts low 10 bits of its operand

Values
Some instructions use operands comprising values as follows:
simm13 — A signed immediate constant that fits in 13 bits
const22 — A constant that fits in 22 bits
asi— An alternate address space identifier (0 to 255)

Label
A sequence of characters, comprised of alphabetic letters (a-z, A-Z [upper and lower case
distinct]), underscore (), dollar sign ($), period (.), and decimal digits (0-9), which does not
begin with a decimal digit.

Some instructions offer a choice of operands. These are grouped as follows:
regaddr.

regrsy
regrsy + regsz

A-2 Suggested Assembly Language A-2

aaaress.

reg_or_imm

régrs1

regrs; + regrsz
reg,s; + simmi3

reg,s; — simm13
simm13
simm13 + reg sy

regrsz
simm13

Solbourne Computer, Inc.

Suggested Assembly Language

APPENDIX B: INSTRUCTION DEFINITIONS

B.1. Introduction

This appendix describes the SPARC architecture’s instruction set. A more detailed, algorithmic
definition of the instruction set appears in Appendix C.

Related instructions are grouped into subsections. Each subsection consists of five parts:

(1) A table of the opcodes defined in the subsection with the values of the field(s) which
uniquely identify the instruction(s).)

(2) Anillustration of the applicable instruction format(s).

(3) A table of the suggested assembly language syntax. (The syntax notation is described in
Appendix A.)

(4) A description of the salient features, restrictions, and trap conditions.

(6) A list of the synchronous or floating-point/coprocessor traps which can occur as a conse-
quence of executing the instruction(s).

This section does not include any timing information (in either cycles or absolute time) since tim-
ing is strictly implementation-dependent.

The following table lists all the instructions:

B-1 Instruction Definitions B-1

Solbourne Computer, Inc.

Opcode Name
LDSB (LDSBAt1) Load Signed Byte (from Alternate space)
LDSH (LDSHA1Y) Load Signed Halfword (from Alternate space)
LDUB (LDUBAY) Load Unsigned Byte (from Alternate space)
LDUH (LDUHAY) Load Unsigned Halfword (from Altemate space)
LD (LDAY) Load Word (from Alternate space)
LDD (LDDA)t Load Doubleword (from Alternate space)
LDF Load Floating-point
LDDF Load Double Floating-point
LDFSR Load Floating-point State Register
LDC Load Coprocessor
LDDC Load Double Coprocessor
LDCSR Load Coprocessor State Register
STB (STBAY) Store Byte (into Alternate space)
STH (STHAT) Store Halfword (into Alternate space)
ST (STAY) Store Word (into Alternate space)
STD (STDAY) Store Doubleword (into Alternate space)
STF Store Floating-point
STDF Store Double Floating-point
STFSR Store Floating-point State Register
STDFQt Store Double Floating-point Queue
STC Store Coprocessor
STDC Store Double Coprocessor
STCSR Store Coprocessor State Register
STDCAQt Store Double Coprocessor Queue
LDSTUB (LDSTUBAt) Atomic Load-Store Unsigned Byte (in Alternate space)
SWAP (SWAPAT) Swap r Register with Memory (in Alternate space)
ADD (ADDcc) Add (and modity icc)
ADDX (ADDXcc) Add with Carry (and modify icc)
TADDcc (TADDcceTV) Tagged Add and modify icc (and Trap on overflow)
SUB (SUBcc) Subtract (and modify icc)
SUBX (SuBXcc) Subtract with Carry (and modify icc)
TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on overflow)
MULSce Multiply Step and modify icc
AND (ANDcc) And (and modity icc)
ANDN (ANDNCcc) And Not (and modify icc)
OR (ORcc) Inclusive-Or (and modify icc)
ORN (ORNcc) Inclusive-Or Not (and modify icc)
XOR (XORcc) Exclusive-Or (and modify icc)
XNOR (XNORcc) Exclusive-Nor (and modify icc)
SLL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic
SETHI Set High 22 bits of r register
SAVE Save caller's window
RESTORE Restore caller's window
B-2 Instruction Definitions B-2

Solbourne Computer, Inc.

Opcode Name
Bicc Branch on integer condition codes
FBfcc Branch on floating-point condition codes
CBcce Branch on coprocessor condition codes
CALL Call
JMPL Jump and Link
RETTt Return from Trap
Tice Trap on integer condition codes
RDY Read Y register
RDPSRt Read Processor State Register
RDWIMt Read Window Invalid Mask register
RDTBRt Read Trap Base Register
WRY Write Y register
WRPSRt Write Processor State Register
WRWIMt Write Window Invalid Mask register
WRTBRt Write Trap Base Register
UNIMP Unimplemented instruction
IFLUSH Instruction cache Flush
FPop Floating-point Operate: FiTO(s,d,x), F(s,d,x)TOi
FsTOd, FsTOx, FdTOs, FdTOx, FxTOs, FxTOd, FMOVs, FNEGs, FABSs,
FSQRT(s,d,x), FADD(s,d,x), FSUB(s,d,x), FMUL(s,d,x), FDIV(s,d,x),
| FCMP(s,d,x), FCMPE(s,d,x)
 CPop Coprocessor operate

1 privileged instruction

Instruction Definitions

Solbourne Computer, Inc.

B.2. Load Integer Instructions

opcode op3 operation

LDSB 001001 | Load Signed Byte

LDSBAt | 011001 | Load Signed Byte from Alternate space

LDSH 001010 | Load Signed Halfword

LDSHAtT | 011010 | Load Signed Halfword from Alternate space
LDUB 000001 | Load Unsigned Byte

LDUBAt | 010001 | Load Unsigned Byte from Alternate space
LDUH 000010 | Load Unsigned Halfword

LDUHAt | 010010 | Load Unsigned Halfword from Alternate space

LD 000000 | Load Word
LDAYt 010000 | Load Word from Alternate space
LDD 000011 | Load Doubieword

LDDAYt 010011 | Load Doubleword from Alternate space

1 privileged instruction

Format (3):
{11] nd | op3 [rst]i=0] asi [rs2 |
31 23 24 18 13 12 4 0
{11] rd | op3 [rst]i=1] simm13]
31 25 24 18 13 12 0
Suggested Assembly Language Syntax
idsb [address], regry
Idsba [regaddr] asi, reg.q
Idsh [address], reg.q
ldsha [regaddr] asi, reg,y
Idub [address), reg,q
Iduba [regaddr] asi, reg,q
iduh [address]), regq
Iduha [regaddr] asi, reg,q
id [address]), reg.q
Ida [regaddr] asi, reg.q
Idd [address]), reg.q
ldda [regaddr] asi, reg.q
Description:

The load single integer instructions move either a byte, halfword, or word from memory into
the r register defined by the rd field. A fetched byte or halfword is right-justified in rd and
may be either zero-filled or sign-extended.

The load double integer instructions (LDD, LDDA) move a doubleword from memory into an r
register pair. The most significant word at the effective memory address is moved into the
even r register. The least significant word at the effective memory address + 4 is moved into
the odd r register. The least significant bit of the rd field is ignored. (Note that a load double
with rd = 0 modifies only r{1].)

The effective address for a load instruction is either “rirs1] + rrs2]" if the i field is zero, or
“rfrs1] + sign_ext(simm13)” if the /i field is one. Instructions which load from an alternate

B-4 Instruction Definitions B-4

Solbourne Computer, Inc.

address space must have zero in the ifield and the address space identifier to be used for
the load in the asifield. Otherwise the address space indicates either a user or system data
space access, according to the S bit of the PSR.

LD and LDA cause a mem_address_not_aligned trap if the effective address is not word-
aligned; LDUH, LDSH, LDUHA, and LDSHA trap if the address is not halfword-aligned; and
LDD and LDDA trap if the address is not doubleword-aligned.

If a load single instruction traps, the destination register remains unchanged.

If a load double instruction is trapped with a data access exception during the effective
address memory access, the destination registers remain unchanged. However a specific
implementation might cause a data_access_exception trap during the effective address + 4
memory access, but not during the effective address access. Thus, the even destination r
register can be changed in this case. (Note that this cannot happen across a page boundary
because of the doubleword-alignment restriction.)

B.2.1. Implementation Note:

On effective address + 4 accesses, the system should limit data_access_exceptions to non-
restartable errors, such as uncorrectable memory errors.

B.2.2. Programming Note

The execution time of a load integer instruction may increase if the next instruction uses the
register specified by the rd field of the load instruction as a source operand (rs? or rs2). In
the case of load doubleword instructions, this applies to both destination registers. Whether
the time increase occurs or not is implementation-dependent.

B.2.3. Programming Note

When i= 1 and rs7 = 0, any location in the lowest or highest 4K bytes of an address space
can be accessed without using a register.

Traps:

illegal_instruction (load alternate space withi= 1)

privileged_instruction (load alternate space only)
mem_address_not_aligned (excluding LDSB, LDSBA, LDUB, and LDUBA)
data_access_exception

Instruction Definitions B-5

Solbourne Computer, Inc.

B.3. Load Floating-point Instructions

opcode op3 operation

LDF 100000 | Load Floating-point register
LDDF 100011 | Load Double Floating-point register
LDFSR | 100001 | Load Floating-point State Register

Format (3):

(11] o | op3 [rst =0 | ignored | rs2 |
24 18 13 12 4 0

(1] o | op3 [rst [i=t | simm13 |
24 18 13 12 0

Suggested Assembly Language Syntax

Id [address], freg,q
Idd [address), freg.q
Id [address), %fsr

Description:

The load single floating-point instruction (LDF) moves a word from memory into the f register
identified by the rd field.

The load double floating-point instruction (LDDF) moves a doubleword from memory into an
f register pair. The most significant word at the effective memory address is moved into the
even f register. The least significant word at the effective memory address + 4 is moved into
the odd f register. The least significant bit of the rd field is ignored.

The load floating-point state register instruction (LDFSR) waits for all FPops that have not
finished execution to complete and then loads a word from memory into the FSR.

The effective address for the load instruction is either “rfrs1] + rrs2]" if the i field is zero, or
“rirs1] + sign_ext(simm13)"” if the i field is one.

LDF and LDFSR cause a mem_address_not_aligned trap if the effective address is not
word-aligned; and LDDF traps if the address is not doubleword-aligned. A load floating-point
instruction causes an fp_disabled trap if the EF field of the PSR is 0 or if no FPU is present.

If a load single floating-point instruction is trapped with a data access exception, the destina-
tion f register either remains unchanged or is set to an implementation-defined constant
value.

If a load double floating-point instruction is trapped with a data access exception, either the
destination f registers remain unchanged or one or both are set to an implementation-
defined constant value.

- B.3.1. Programming Note

The execution time of a load floating-point instruction may increase if the next instruction
uses the register specified by the rd field of the load instruction as a source operand (rs1 or
rs2). In the case of load double floating-point instructions, this applies to both destination
registers. Whether the time increases or not is implementation-dependent.

B-6 Instruction Definitions B-6

Solbourne Computer, Inc.

B.3.2. Programming Note

When i= 1 and rs1 = 0, any location in the lowest or highest 4K bytes of an address space
can be accessed without using a register.
Traps:

fp_disabled

_exception
mem_address_not_aligned
data_access_exception

B-7 Instruction Definitions B-7

Solbourne Computer, Inc.

B.4. Load Coprocessor Instructions

opcode op3 operation

LDC 110000 | Load Coprocessor register
LDDC 110011 | Load Double Coprocessor register
LDCSR | 110001 | Load Coprocessor State Register

Format (3):

[11] rd | op3 [rs1 |i=0 | ignored | 2 |
24 18 13 12 4 0

[11] rd | op3 [rs1] i=1] simm13 |
24 18 13 12 0

Suggested Assembly Language Syntax

id [address], creg,q
idd [address], creg.y
id [address], %csr

Description:

The load single coprocessor instruction (LDC) moves a word from memory into a coproces-
sor register. The load double coprocessor instruction (LDDC) moves a doubleword from
memory into a coprocessor register pair. The load coprocessor state register instruction
(LDCSR) moves a word from memory into the Coprocessor State Register. The semantics
of these instructions depend on the implementation of the attached coprocessor.

The effective address for the load instruction is either “rfrs1] + r{rs2]” if the i field is zero, or
“r{rs1] + sign_ext(simm13)” if the /field is one.

LDC and LDCSR cause a mem_address_not_aligned trap if the effective address is not
word-aligned; and LDDC traps if the address is not doubleword-aligned. A load coprocessor
instruction causes a cp_disabled trap if the EC field of the PSR is 0 or if no coprocessor is
present.

If a load coprocessor instruction traps, the state of the coprocessor depends on its imple-
mentation.

B.4.1. Implementation Note:

On effective address + 4 accesses, the system should limit data_access_exceptions to non-
restartable errors, such as uncorrectable memory errors.

B.4.2. Programming Note

The execution time of a load coprocessor instruction may increase if the next instruction
uses the register specified by the rd field of the load instruction as a source operand (rs? or
rs2). In the case of load double coprocessor instructions, this applies to both destination
registers. Whether the time increases or not is implementation-dependent.

B-8 Instruction Definitions B-8

Solbourne Computer, Inc.

B.4.3. Programming Note

When j= 1 and rs1 = 0, any location in the lowest or highest 4K bytes of an address space
can be accessed without using a register.

Traps:

cp_disabled

cp_exception
mem_address_not_aligned
data_access_exception

B-9 Instruction Definitions B-9

Solbourne Computer, Inc.

B.5. Store Integer Instructions

opcode op3 operation

STB 000101 | Store Byte

STBAt | 010101 | Store Byte into Alternate space
STH 000110 | Store Halfword

STHAt | 010110 | Store Halfword into Alternate space

ST 000100 | Store Word
STAt 010100 | Store Word into Alternate space
STD 000111 | Store Doubleword

STDAt | 010111 | Store Doubleword into Alternate space

1 privileged instruction

Format (3):
{11] nd | op3 | rs1 | i=0 | asi | rs2 |
31 28 24 18 13 12 4 0
(11] | op3 | st [i=1] simm13
31 29 24 18 13 12 0
Suggested Assembly Language Syntax
stb reg,q, [address]) synonyms:stub, stsb
stba reg,y [regaddr] asi synonyms:stuba, stsba
sth reg,y, [address] synonyms:stuh, stsba
stha reg,y [regaddr] asi synonyms:stuha, stsha
st reg,y, [address]
sta reg,y [regadar] asi
std regr,s, [address]
stda reg,y [regaddr] asi
Description:

The store single integer instructions move the word, the least significant halfword, or the
least significant byte from the r register specified by the rd field into memory.

The store double integer instructions (STD, STA) move a doubleword from an r register pair
into memory. The most significant word in the even r register is written into memory at the
effective address and the least significant word in the following odd r register is written into
memory at the effective address + 4.

The effective address for a store instruction is either “r{rs1] + rf{rs2]" if the i field is zero, or
“rfrs1] + sign_ext(simm13)” if the i field is one. Instructions which store to an alternate
address space must have zero in the i field and the address space identifier to be used for
the store in the asifield. Otherwise the address space indicates either a user or system data
space access, according to the S bit in the PSR.

ST and STA cause a mem_address_not_aligned trap if the effective address is not word-
aligned; STH and STHA trap if the address is not halfword-aligned; and STD and STDA trap
if the address is not doubleword-aligned.

If a store single instruction traps, memory remains unchanged. However, in the case of a
store double, an implementation might cause a data_access_exception trap during the
effective address + 4 memory access, but not during the effective address access. Thus,

B-10 Instruction Definitions B-10

Solbourne Computer, Inc.

data at the effective memory address can be changed in this case. (Note that this cannot
happen across a page boundary because of the doubleword-alignment restriction.)

B.5.1. Iimplementation Note:

On effective address + 4 accesses, the system should limit data_access_exceptions to non-
restartable errors, such as uncorrectable memory errors.

B.5.2. Programming Note

When i= 1 and rs71 = 0, any location in the lowest or highest 4K bytes of memory can be
written without using a register.

Traps:

illegal_instruction (store alternate with i = 1)
privileged_instruction (store alternate only)
mem_address_not_aligned (excluding STB and STBA)
data_access_exception

B-11 Instruction Definitions B-11

Solbourne Computer, Inc.

B.6. Store Floating-point Instructions

opcode op3 operation

STF 100100 | Store Floating-point

STDF 100111 | Store Double Floating-point
STFSR 100101 | Store Floating-point State Register
STDFQt | 100110 | Store Double Floating-point Queue

1 privileged instruction

Format (3):
(11] | op3 [rst |i=0 | ignored | 2 |
31 25 24 18 13 12 4 0
[11] | op3 [rst Ji=1] simm13 |
31 pa:) 24 18 13 12]
Suggested Assembly Language Syntax
st freg,y [address]
std freg,y [address]
st %fsr, [address]
std %fq, [address]
Description:

The store single floating-point instruction (STF) moves the contents of the f register specified
by the rdfield into memory.

The store double floating-point instruction (STDF) moves a doubleword from an f register
pair into memory. The most significant word in the even f register is written into memory at
the effective address and the least significant word in the odd f register is written into
memory at the effective address + 4.

The store floating-point queue instruction (STDFQ) stores the front entry of the Floating-point
Queue (FQ) into memory. The address part of the front entry is stored into memory at the
effective address, and the instruction part of the front entry at the effective address + 4. If
the FPU is in exception_mode, the queue is then advanced to the next entry, or it becomes
empty (as indicated by the gne bit in the FSR).

The store floating-point state register instruction (STFSR) waits for all FPops that have not
finished execution to complete and then writes the FSR into memory.

The effective address for a store instruction is either “rirs1] + r{rs2]” if the i/ field is zero, or
“rirs1] + sign_ext(simm13)” if the i field is one.

STF and STFSR cause a mem_address_not_aligned trap if the address is not word-aligned
and STDF and STDFQ trap if the address is not doubleword-aligned. A store floating-point
instruction causes an fp_disabled trap if the EF field of the PSR is 0 or if the FPU is not
present.

If a store single floating-point instruction traps, memory remains unchanged. However, in
the case of a store double, an implementation may cause a data_access_exception trap dur-
ing the effective address + 4 memory access, but not during the effective address access.
Data at the effective memory address can be changed in this case. (Note that this cannot
happen across a page boundary because of the doubleword-alignment restriction.)

B-12 Instruction Definitions B-12

Solbourne Computer, Inc.

B.6.1. Implementation Note:

On effective address + 4 accesses, the system should limit data_access_exceptions to non-
restartable errors, such as uncorrectable memory errors.

Traps:
fp_disabled
fp_exception
privileged_instruction (STDFQ only)

mem_address_not_aligned
data_access_exception

B-13 Instruction Definitions B-13

Solbourne Computer, Inc.

B.7. Store Coprocessor Instructions

opcode op3 operation

STC 110100 | Store Coprocessor

STDC 110111 | Store Double Coprocessor
STCSR 110101 | Store Coprocessor State Register
STDCQt | 110110 | Store Double Coprocessor Queue

1 privileged instruction

Format (3):
(11] | op3 | rst | i=0 | ignored [rs2 |
31 28 24 18 13 12 4 0
{11 | d | op3 [rs1 [i=t] simm13 |
31 2 24 18 13 12 0
Suggested Assembly Language Syntax
st creg,y [address]
std creg,q [address]
st %csr, [address]
std %cq, [address]
Description:

The store single coprocessor instruction (STC) moves the contents of a coprocessor register
into memory. The store double coprocessor instruction (STDC) moves the contents of a
coprocessor register pair into memory. The store coprocessor state register instruction
(STCSR) moves the contents of the coprocessor state register into memory. The store dou-
ble coprocessor queue instruction (STDCQ) moves the front entry of the coprocessor queue
into memory. The semantics of these instructions depend on the implementation of the
attached coprocessor, if any.

The effective address for a store instruction is either “rfrs1] + r{rs2]” if the i field is zero, or
“r{rs1] + sign_ext(simm13)” if the i field is one.

STC and STCSR cause a mem_address_not_aligned trap if the address is not word-aligned
and STDC and STDCQ trap if the address is not doubleword-aligned. A store coprocessor
instruction causes a cp_disabled trap if the EC field of the PSR is 0 or if no coprocessor is
present.

If a store single coprocessor instruction traps, memory remains unchanged. However, in the
case of a store double, an implementation might cause a data_access_exception trap during
the effective address + 4 memory access, but not during the effective address access. Thus,
data at the effective memory address can be changed in this case. (Note that this cannot
happen across a page boundary because of the doubleword-alignment restriction.)

~ B.7.1. Implementation Note:

On effective address + 4 accesses, the system should limit data_access_exceptions to non-
restartable errors, such as uncorrectable memory errors.

B-14 Instruction Definitions B-14

Solbourne Computer, Inc.

Traps:

cp_disabled

cp_exception

privileged_instruction (STDCQ only)
mem_address_not_aligned
data_access_exception

B-15 Instruction Definitions

Solbourne Computer, Inc.

B.8. Atomic Load-Store Unsigned Byte Instructions

opcode op3 operation

LDSTUB 001101 | Atomic Load-Store Unsigned Byte
LDSTUBAt | 011101 | Atomic Load-Store Unsigned Byte into Alternate space

T privileged instruction

Format (3):
(11] d | op3 | rs1 | i=0 | asi | rs2 |
31 29 24 18 13 12 4 0
(11] | op3 [st =t] simm13]
31 28 24 18 13 12 0
Suggested Assembly Language Syntax
idstub [address], reg,q
Idstuba [regaddr] asi, reg.q
Description:

The atomic load-store instructions move a byte from memory into an r register identified by
the rdfield and then rewrite the same byte in memory to all ones without allowing intervening
asynchronous traps. In a multiprocessor system, two or more processors executing atomic
load-store instructions addressing the same byte simultaneously are guaranteed to execute
them in some serial order.

The effective address of an atomic load-store is either “rfrs1] + f{rs2]" if the i field is zero, or
“r[rs1] + sign_ext(simm13)” if the /field is one. LDSTUBA must have zero in the ifield, or an
illegal_instruction trap occurs. The address space identifier used for the memory accesses is
taken from the asi field. For LDSTUB, the address space indicates either a user or system
data space access, according to the S bit in the PSR.

If an atomic load-store instruction traps, memory remains unchanged. However, an imple-
mentation may cause a data_access_exception trap during the store memory access, but
not during the load access. In this case, the destination register can be changed.

B.8.1. implementation Note:

The system should limit data_access_exceptions on the store access to non-restartable
errors, such as protection violation or uncorrectable memory errors.

B.8.2. Programming Note

When i= 1 and rs1 = 0, any location in the lowest or highest 4K bytes of memory can be
accessed without using a register.

- Traps:

illegal_instruction (LDSTUBA with i = 1 only)
privileged_instruction (LDSTUBA only)
data_access_exception

B-16 Instruction Definitions B-16

Solbourne Computer, Inc.

B.9. SWAP r Register with Memory

opcode op3 operation

SWAP 001111 | SWAP rregister with memory '
SWAPAT | 011111 | SWAP rregister with Altemate space memory

1 privileged instruction
Format (3):

11 d | op3 | rst | i=0 | asi [rs2 |
24 18 13 12 4 0

1
(11] d | op3 | rst [i=1] simm13 |
1 24 18 13 12 0

Suggested Assembly Language Syntax

swap [source), reg,q
swapa [regsource] asi, regq

Description:

The swap instructions exchange the r register identified by the rd field with the contents of
the addressed memory location. This is performed atomically without allowing asynchronous
traps. In a multiprocessor system, two or more processors issuing swap instructions simul-
taneously are guaranteed to get results corresponding to the executing the instructions seri-
ally, in some order.

The effective address of the swap instruction is either “frs1] + rirs2]" if the i field is zero, or
“rirs1] + sign_ext(simm13)" if the /i field is one. SWAPA must have zero in the i field or an
illegal_instruction trap occurs. The address space identifier used for the memory accesses is
taken from the asifield. For SWAP, the address space indicates either a user or a system
data space access, according to the S bit in the PSR.

These instructions cause a mem_address_not_aligned trap if the effective address is not
word-aligned.

if @ swap instruction traps, memory remains unchanged.

B.9.1. Programming Note

When i= 1 and rs?1 = 0, any location in the lowest or highest 4K bytes of memory can be
written without using a register.

Traps:

illegal instruction (i = 1 and SWAPA only)
privileged_instruction (SWAPA only)
data_access_exception

B-17 Instruction Definitions B-17

Solbourne Computer, Inc.

B.10. Add Instructions

opcode op3 operation

ADD 000000 | Add

ADDcc 010000 | Add and modify icc

ADDX 001000 | Add with Carry

ADDXcc | 011000 | Add with Carry and modify icc

Format (3):
[10] nd | op3 | rs1 | i=0 | ignored [rs2 |
24 18 13 12 4 [+]
(10 | op3 [st =t | simm13]
24 i8 13 12 0
Suggested Assembly Language Syntax
add reg,s1, reg_or_imm, reg,y
addcc reg,ss, reg_or_imm, reg.y
addx regs1, reg_or_imm, reg,q
addxcc reg 1, reg_or_imm, reg.y
Description:

ADD and ADDcc compute either'r[rs1] + rrs2]” if the i field is zero, or “r{rs1] +
sign_ext(simm13)"” if the /field is one, and place the result in the r register specified in the rd
field.

ADDX and ADDXcc add the PSR's carry (c) bit also; that is, they compute “ffrs1] + rrs2] +
c” or “rirs1] + sign_ext(simm13) + ¢" and place the result in the r register specified in the rd
field.

ADDcc and ADDXcc modify all the integer condition codes.
Traps:
(none)

B-18 Instruction Definitions B-18

Solbourne Computer, Inc.

B.11. Tagged Add Instructions

opcode op3 operation

TADDcec 100000 | Tagged Add and modify icc
TADDccTV | 100010 | Tagged Add, modify icc and Trap on Overflow

Format (3):
(10 | op3 [rs1] i=0 | ignored | rs2 |
24 18 13 -12 4 4]
f10] nd | op3 [rst | i=1 | simm13 |
31 29 24 18 13 12 0
Suggested Assembly Language Syntax
taddcc reg,s1, reg_or_imm, reg,y
taddcctv reg.s;, reg_or_imm, reg,y
Description:

These instructions compute either'r[rs1] + rrs2]” i the i field is zero, or “rfrs1] +
sign_ext(simm13)” if the i field is one. An overflow condition exists if bit 1 or bit O of either
operand is not zero, or if the addition generates an arithmetic overfiow.

If a TADDccTV causes an overflow condition, a tag_overflow trap is generated and the desti-
nation register and condition codes remain unchanged. If a TADDccTV does not cause an
overflow condition, all the integer condition codes are updated (in particular, the overfiow bit
(v) is set to 0) and the result of the addition is written into the r register specified by the rd
field.

If a TADDcc causes an overflow condition, the overflow bit (v) of the PSR is set; if it does not
cause an overflow, it is cleared. In either case, the remaining integer condition codes are
also updated and the result of the addition is written into the r register specitied by the rd
field.

Traps:

B-19

tag_overflow (TADDccTV only)

Instruction Definitions B-19

Solbourne Computer, Inc.

B.12. Subtract Instructions

opcode op3 operation

SuB 000100 | Subtract

SUBce 010100 | Subtract and modify icc

SuBX 001100 | Subtract with Carry

SUBXcc | 011100 | Subtract with Carry and modify icc

Format (3):

[10] | op3 | rst =0 | ignored [rs2 |
1 24 13 12 0

18 4

[10] | op3 | rst =t | simm13 |
1 24 18 13 12 0

Suggested Assembly Language Syntax

sub reg,s;, reg_or_imm, reg.y
subcc reg.s;, reg_or_imm, reg.q
subx reg sy, reg_or_imm, reg.y

subxcc reg.s1, reg_or_imm, reg.q

Description:

These instructions compute either “r[rs1] - rfrs2])” if the i field is zero, or “rrs1] -
sign_ext(simm13)" if the /field is one, and place the result in the r register specified in the rd
field.

SUBX and SUBXcc (“SUBtract eXtended") also subtract the PSR's carry (¢) bit; that is, they
compute “rfrs1] - frs2] - ¢” or “r[rs1] - sign_ext(simm13) - ¢’ and place the result in the r
register specified in the rd field. ’

SUBcc and SUBXcc modify all the integer condition codes.

B.12.1. Programming Note

A SUBcc with rd = 0 can be used for signed and unsigned integer compare.
Traps:

(none)

B-20 Instruction Definitions B-20

Solbourne Computer, Inc.

B.13. Tagged Subtract Instructions

opcode op3 operation
TSUBcc 100001 | Tagged Subtract and modify icc :
TSUBccTV | 100011 | Tagged Subtract, modify icc and Trap on Overflow
Format (3):
(10| nd | op3 [rs1 | i=0 | ignored | |
31 20 24 18 3 12 4 0
(10 rd | op3 [rst Ji=1] simm13]
31 29 24 18 13 12 0
Suggested Assembly Language Syntax
tsubcc reg sy, reg_or_imm, regn
tsubcctvy reg,s1, reg_or_imm, reg,y
Description:

These instructions compute either‘rirs1] - rfrs2]” if the i field is zero, or “rirs1] -
sign_ext(simm13)" if the / field is one. An overflow condition exists if bit 1 or bit 0 of either
operand is not zero, or if the subtraction generates an arithmetic overflow.

If a TSUBCccTV causes an overflow condition, a tag_overflow trap is generated and the desti-
nation register and condition codes remain unchanged. If a TSUBccTV does not cause an
overflow condition, the integer condition codes are updated (in particular, the overflow bit (v)
is set to 0) and the result of the subtraction is written into the r register specified by the rd

field.

If a TSUBcc causes an overflow condition, the overflow bit (v) of the PSR is set; if it does not
cause an overflow, it is cleared. In either case, the remaining integer condition codes are
also updated and the result of the subtraction is written into the r register specified by the rd

field.

Traps:

B-21

tag_overflow (TSUBccTV only)

Instruction Definitions

B-21

Solbourne Computer, Inc.

B.14. Multiply Step Instruction

opcode op3 operation

MULScc | 100100 | Muitiply Step and modity icc

Format (3):

(0] o | op3 [rs1 |i=0 | ignored | rs2 |
1 24 18 13 12 4 0
(10 o | op3 [st Tist] simm13 |
1 24 18 13 12 0

Suggested Assembly Language Syntax

mulscc reg,s1, reg_or_imm, reg.y

Description:

The multiply step instruction can be used to generate the 64-bit product of two signed or
unsigned words (See Appendix E). MULScc works as follows:

1. The value obtained by shifting “r[rs1]” (the incoming partial product) right by one bit and
replacing its high-order bit by “N xor V" (the sign of the previous partial product) is com-
puted.

2. If the least significant bit of the Y register (the multiplier) is set, the value from step (1) is
added to the multiplicand. The multiplicand is “r[rs2]” if the J field is zero or is
“sign_ext(simm13)" if the i field is one. If the LSB of the Y register is not set, then zero
is added to the value from step (1).

3. The result from step (2) is written into “r[rd]” (the outgoing partial product). The PSR's
integer condition codes are updated according to the addition performed in step (2).

4. The Y register (the multiplier) is shifted right by one bit and its high-order bit is replaced
by the least significant bit of “r{rs1]” (the incoming partial product).

Traps:
(none)

B-22 Instruction Definitions B-22

Solbourne Computer, Inc.

B.15. Logical Instructions

opcode op3 operation

AND 000001 | And

ANDcc 010001 | And and modity icc
ANDN 000101 | And Not

ANDNcc | 010101 | And Not and modify icc

OR 000010 | Inclusive Or

ORcc 010010 | Inclusive Or and modify icc
ORN 000110 | Inclusive Or Not

ORNcc 010110 | Inclusive Or Not and modify icc
XOR 000011 | Exclusive Or

XORcc 010011 | Exclusive Or and modify icc
XNOR 000111 | Exclusive Nor
XNORcc | 010111 | Exclusive Nor and modify icc

Format (3):
(10| rd | op3 [rs1 | i=0 | ignored | rs2 |
31 29 24 18 13 12 4 0
(10 rd | op3 [rst | i=1 | simm13 |
31 29 24 18 13 12 0
Suggested Assembly Language Syntax
and reg.s;, reg_or_imm, reg,y
andcc reg,s;, reg_or_imm, rég.y
andn reg,s;, reg_or_imm, reg,y
andncc reg,s1, reg_or_imm, reg,y
or reg,s1, reg_or_imm, reg.y
orcc reg.sy, reg_or_imm, reg.y
orn reg,s;, reg_or_imm, reg,q
orncc reg.sy, reg_or_imm, reg,y
xor reg,s;, reg_or_imm, reg.y
Xorcc reg,sy, reg_or_imm, reg.,y
xnor reg,s;, reg_or_imm, reg.y
xnorce reg,s;, reg_or_imm, reg.y
Description:

These instructions implement the bitwise logical operations. They compute either “r{rs1] op
rrs2]” if the ifield is zero, or “rirs1] op sign_ext(simm13)” if the ifield is one (op = and, and
not, or, or not, xor, xnor).

ANDcc, ANDNce, ORcce, ORNce, XORce and XNORce modify all the integer condition codes
as described in the section Registers.

_ Traps: (none)

B-23 Instruction Definitions B-23

B.16. Shift Instructions

Solbourne Computer, inc.

opcode op3 operation
SLL 100101 | Shift Left Logical
SRL 100110 | Shift Right Logical
SRA 100111 | Shift Right Arithmetic
Format (3):
[70 | | op3 [T rs1 | =0 | ignored ™ rs2 |
1 24 18 13 12 4 0
10 d | op3 | rst Ji=t| ignored | shent |
1 24 18 13 12 4 0
Suggested Assembly Language Syntax
sll reg,sy, reg_or_imm, reg.y
srl reg,s;, reg_or_imm, reg,y
sra reg,sy, reg_or_imm, reg.y
Description:

The shift count for these instructions is the least significant five bits of either “r[rs2]” if the i
field is zero, or “simm13” if the i field is one. (The least significant five bits of “simm13” is
called “shent” in the above format.)

SLL shifts the value of “rirs1]” left by the number of bits implied by the shift count.
SRL and SRA shift the value of “r{rs1]” right by the number of bits implied by the shift count.

SLL and SRL replace vacated positions with zeroes, whereas SRA fills vacated positions
with the most significant bit of “r{rs1].” No shift occurs when the shift count is zero.

All of these instructions place the shifted result in the r register specified in the rd field.
These instructions do nhot modify the condition codes.

B.16.1. Programming Note

“Arithmetic left shift by 1 (and calculate overflow)” can. be implemented with an ADDcc
instruction.

Traps:
(none)

B-24 Instruction Definitions B-24

Solbourne Computer, Inc.

B.17. SETHI Instruction

opcode op op2 operation

SETHI 00 | 100 | SetHigh

Format (2):
00 rd | 100 | imm22 |
1 24 21 0
Suggested Assembly Language Syntax
sethi const22, regry
sethi %hi(value), regpy
Description:

SETHI zeroes the least significant 10 bits of “r{rd]” and replaces its high-order 22 bits with
imma22.

The condition codes are not affected.

B.17.1. Programming Note

It is suggested that sethi 0, %0 be used as the preferred NOP, since it will not cause an
increase in execution time if it follows a load instruction.

Traps:
(none)

B-25 Instruction Definitions B-25

Solbourne Computer, Inc.

B.18. SAVE and RESTORE Instructions

opcode op3 operation
SAVE 111100 | Save caller's window
RESTORE | 111101 | Restore caller's window
Format (3):

[10] o | op3 | rs1 | i=0 | ignored rs2 |
1 24 18 13 12 0
f10| | op3 SRR simm13 |
31 fc) 24 18 13 12 0
Suggested Assembly Language Syntax
save reg,s;, reg_or_imm, reg.y
restore reg,sy, reg_or_imm, reg.q

Description:

The SAVE instruction subtracts one from the CWP (modulo the number of implemented win-
dows) and compares this value, the “new_CWP,” against the Window Invalid Mask (WIM)
register. If the WIM bit corresponding to the new_CWP is set, “(WIM and 276W_CWP) _ ¢ »
then a window_overflow trap is generated. If the WIM bit corresponding to the new_CWP is
resetl, then a window_overflow trap is not generated and new_CWP is written into CWP.
This causes the active window to become the previous window, thereby saving the caller's
window.

The RESTORE instruction adds one to the CWP (modulo the number of implemented win-
dows) and compares this value, the “new_CWP,"” against the Window Invalid Mask (WIM)
register. If the WIM bit corresponding to the new_CWP is set, “(WIM and 2718W_CWP) _ q »
then a window_underflow trap is generated. If the WIM bit corresponding to the new_CWP
is reset, then a window_underflow trap is not generated and new_CWP is written into CWP.
This causes the previous window to become the active window, thereby restoring the
caller's window.

Furthermore, if an overflow or underflow trap is not generated, SAVE and RESTORE
behave like normal ADD instructions, except that the operands “r[rs1]” or “f{rs2]” are read
from the old window (i.e., the window addressed by the original CWP) and the result is writ-
ten into “r{rd]” of the new window (i.e., the window addressed by new_CWP).

Note that CWP arithmetic is performed modulo the number of implemented windows (NWIN-
DOWS).

Traps:

B-26

window_overflow (SAVE only)
window_underflow (RESTORE only)

Instruction Definitions B-26

Solbourne Computer, Inc.

B.19. Branch on Integer Condition Instructions

opcode cond operation . icc test

BA 1000 | Branch Always 1
BN 0000 | Branch Never 0
BNE 1001 | Branch on Not Equal not Z
BE 0001 | Branch on Equal Z
BG 1010 | Branch on Greater not (Z or (N xor V))
BLE 0010 | Branch on Less or Equal Z or (N xor V)
BGE 1011 | Branch on Greater or Equal - not (N xor V)
BL 0011 | BranchonLess N xor V
BGU 1100 | Branch on Greater Unsigned not (C or 2)
BLEU 0100 | Branch on Less or Equal Unsigned (Cor2)
BCC 1101 | Branch on Carry Clear (Greater than or Equal, Unsigned) not C
BCS 0101 | Branch on Carry Set (Less than, Unsigned) o]
BPOS 1110 | Branch on Positive not N
BNEG 0110 | Branch on Negative N
BVC 1111 | Branch on Overtlow Clear not vV
BVS 0111 | Branch on Overflow Set Y

Format (2):
[00 [a | cond | 010 | disp22 |
31 i) 24 21 [}

B-27

To set the “annul” bit for Bicc instructions, append an (optional)
“,.a" to the opcode. For example, use “bgu,a label.
preceding table indicates that the “,a" is optional by enclosing it

Suggested Assembly Language Syntax
ba{,a} label
bn{,a} label
bnef,a) label synonym: bnz
bef,a} label synonym: bz
bgf,a} label
blef,a) label
bgef{,a} label
blf,a} label
bgu{,a) label
bleuf,a) label
becef,a) label synonym: bgeu
besf,a) label synonym: biu
bposf{,a) label
bnegf{.a) label
bvef,a) ‘label
bvs{,a} label

w % %W NOTE & =«

in braces ({})).

Instruction Definitions

The

B-27

Solbourne Computer, Inc.

Description:

A Bicc instruction (except BA and BN) evaluates the integer condition codes (icc)
according to the cond field. If the condition codes evaluate to true the branch is taken
and the instruction causes a PC-relative, delayed control transfer to the address “PC +
(4 * sign_ext (disp22)).” If the condition codes evaluate to false, the branch is not taken.
If the branch is not taken and the a (annul) field is set, the delay instruction is not exe-
cuted (annulled). If the branch is taken, the annul field is ignored. (Annulment, delay
instructions, and delayed control transfers are described further in the section /nstruc-
tions.) .

BN (Branch Never) acts like a “NOP.” except that, if the annul field is one, the delay
instruction is not executed (annulled). If the annul field is zero, the delay instruction is
executed.

BA (Branch Always) causes a transfer of control, irespective of the value of the condi-
tion code bits. If the annul field is one, the delay instruction is not executed (annulled).
If the annul field is zero, the delay instruction is executed.

Yt v+ vt NOTE & &
Except for BA, all Bicc instructions with a=1 annul the delay
instruction when the branch is not taken. However, BA with a=1
does the reverse: it annuls the delay instruction even though the
branch is taken.

The delay instruction of a Bicc, other than a BA, should not be a
delayed control-transfer instruction.

B.19.1. Programming Note

An untaken branch takes as much or more time than a taken branch. The additional time it
takes is implementation-dependent.

Traps:

(none)

B-28

Instruction Definitions B-28

Solbourne Computer, Inc.

B.20. Floating-point Branch on Condition Instructions

opcode cond operation fce test

FBA 1000 | Branch Always 1
FBN 0000 | Branch Never 0
FBU 0111 | Branch on Unordered U
FBG 0110 | Branch on Greater G
FBUG 0101 | Branch on Unordered or Greater GorU
FBL 0100 | Branchon Less L
FBUL 0011 | Branch on Unordered or Less LorU
FBLG 0010 | Branch on Less or Greater LorG
FBNE 0001 | Branch on Not Equal LorGorU
FBE 1001 | Branch on Equal E
FBUE 1010 | Branch on Unordered or Equal EorU
FBGE 1011 | Branch on Greater or Equal EorG
FBUGE | 1100 (| Branch on Unordered or Greater or Equal | EorGorU
FBLE 1101 | Branch on Less or Equal EorL
FBULE 1110 | Branch on Unordered or Less or Equal EorLoruU
FBO 1111 | Branch on Ordered EorLorG

Format (2):

B-29

00 | a| cond | 110 |
28 24 21

disp22

Suggested Assembly Language Syntax

fba{,a} label

fbn{,a} label

fbu{,a) label

fbg{,a} label

fbugf.a} label

fbl{,a} label

fbul{,a} label

fblg{,a} label

fbnef,a) label synonym: fbnz
fbe{,a} label synonym: fbz
fbue{,a) label

fbge{,a} label

fbugel,aj label

fblef,a} label

fbulef,a} label

fbo{,a} label

w % %w NOTE &« %« «

To set the “annul” bit for FBfcc instructions, append an
(optional) “,a" to the opcode. For example, use “fbl,a label”.
The preceding table indicates that the “,.a" is optional by
enclosing it in braces ({}).

Instruction Definitions

B-29

Solbourne Computer, Inc.

Description:

An FBfcc instruction (except FBA and FBN) evaluates the floating-point condition codes (fcc)
according to the cond field. If the condition codes evaluate to true the branch is taken and
the instruction causes a PC-relative, delayed control transfer to the address “PC + (4 *
sign_ext (disp22)).” If the condition codes evaluate to false, the branch is not taken. If the
branch is not taken and the a (annul) field is set, the delay instruction is not executed
(annulled). If the branch is taken, the annul field is ignored and the delay instruction is exe-
cuted. (Annulment, delay instructions, and delayed control transfers are described further in
the section Instructions.)

FBN (Branch Never) acts like a “NOP”, except that if the annul field is one, the delay instruc-
tion is not executed (annulled). If the annul field is zero, the delay instruction is executed.

FBA (Branch Always) causes a transfer of control, irrespective of the value of the condition
code bits. If the annul field is one, the delay instruction is not executed (annulled). If the
annul field is zero, the delay instruction is executed.

An FBfcc instruction generates an fp_disabled trap (and does not branch on annul) if the
PSR's EF bit is reset or if the FPU is not present.

%* % % NOTE &« & w

Except for FBA, all FBfcc instructions with a=1 annul the delay
instruction when the branch is not taken. However, FBA with
a=1 does the reverse: it annuls the delay instruction even though
the branch is taken.

The instruction executed immediately before an FBfcc must not
be a floating-point instruction.

B.20.1. Programming Note

An untaken branch takes as much or more time than a taken branch. The additional time it
takes is implementation-dependent.

Traps:

fp_disabled
fp_exception

B-30 Instruction Definitions B-30

Solbourne Computer, Inc.

B.21. Coprocessor Branch on Condition Instructions

Format (2):

opcode | cond | bp_CP_cc[1:0] test

CBA 1000 | Always
CBN 0000 | Never
CB3 0111 3

CcB2 0110 | 2

CB23 0101 2or3
CB1 0100 | 1

cB13 0011 | 1or3
CB12 0010 | 1or2 -
cB123 0001 | 1or2o0r3
CcBoO 1001 | O

CB03 1010 | Oor3
CBo02 1011 Qor2
cBo023 1100 | Oor2o0r3
CBO01 1101 | Oor1
CB013 1110 | Oor1or3
CB012 1111 | Oortor2

|00 | a | cond [111 | disp22
24 21

B-31

Suggested Assembly Language Syntax
cba{,a} label
cbn{,a) label
cb3{,a) label
cb2{,a} label
cb23{,a) label
cbi{,a} label
cb13{,a} label
cb12{,a) label
cb123{,a} label
cbof,a} label
cb03(,a} label
cb02{,a) label
cb023{,a} label
cbo1{,a) label
cb013{,a} label
cb012{,a} label

w % % NOTE &% &% *
To set the “annul” bit for CBccc instructions, append an
(optional) “,a” to the opcode. For example, use “cb12,a label".
The preceding table indicates that the “a” is optional by
enclosing it in braces ({}).

Instruction Definitions

B-31

Solbourne Computer, Inc.

Description:

A CBccc instruction (except CBA and CBN) evaluates the coprocessor condition codes (sup-
plied by the coprocessor on bp_CP_cc[1:0]) according to the cond field. If the condition
codes evaluate to true the branch is taken and the instruction causes a PC-relative, delayed
control transfer to the address “PC + (4 * sign_ext (disp22)).” If the condition codes evalu-
ate to false, the branch is not taken and the instruction acts like a “NOP.”

If the branch is not taken and the a (annul) field is set, the delay instruction is not executed
(annulled). If the branch is taken, the annul field is ignored and the delay instruction is exe-
cuted. (Annulment, delay instructions, and delayed control transfers are described further in
the section Instructions.)

CBN (Branch Never) acts like a “NOP”, except that if the annul field is'one, the delay
instruction is not executed (annulled). If the annul field is zero, the delay instruction is exe-
cuted.

CBA (Branch Always) causes a transfer of control, irrespective of the value of the condition
code bits. If the annul field is one, the delay instruction is not executed (annulled). If the
annul field is zero, the delay instruction is executed.

A CBccc instruction generates a cp_disabled trap (and does not branch or annul) if the
PSR's EC bit is reset or if no coprocessor is present.

% % w NOTE % & «

Except for CBA, all CBccc instructions with a=1 annul the delay
instruction when the branch is not taken. However, CBA with
a=1 does the reverse: it annuls the delay instruction even though
the branch is taken.

A CBccc instruction must be immediately preceded by a non-
coprocessor instruction.

B.21.1. Programming Note

An untaken branch takes as much or more time than a taken branch. The additional time it
takes is implementation-dependent.

Traps:

cp_disabled
cp_exception

B-32 Instruction Definitions B-32

Solbourne Computer, Inc.

B.22. CALL Instruction

opcode op operation

CALL 01 | Call

Format (1):
01 disp30
1 0
Suggested Assembly Language Syntax
call label
Description:

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to
address “PC + (4 * disp30)”. Since the word displacement (disp30) field is 30 bits wide, the
target address can be arbitrarily distant. The CALL instruction also writes the value of PC,
which contains the address of the CALL, into out register r{15].

The PC-relative displacement is formed by appending two low-order zeros to the
instruction’s 30-bit word displacement field.

B.22.1. Programming Note
A JMPL instruction with rd = 15 can be used as a register-indirect CALL.

B.22.2. Programming Note

The execution time of a CALL instruction may increase if the next instruction uses 15} as a
source operand. Whether this happens is implementation-dependent.

Traps:
(none)

B-33 Instruction Definitions B-33

Solbourne Computer, Inc.

B.23. Jump and Link instruction

opcode op3 operation

JMPL 111000 | Jump and Link

Format (3):
10 d | op3 | rs1 [i=0 | ignored [rs2 |
1 24 18 13 12 4 [}
10| d | op3 [st [i=1] simm13 |
1 24 18 13 12 0

Suggested Assembly Language Syntax
jmpl © address, reg.y
Description:

The JMPL instruction causes a register-indirect control transfer to an address specified by
either “rirs1] + r{rs2]” if the ifield is zero, or “r[rs1] + sign_ext(simm13)” if the ifield is one.

The JMPL instruction writes the PC, which contains the address of the JMPL instruction, into
the destination r register specified in the rd field.

It either of the Ilow-order two bits of the jump address is nonzero, a
mem_address_not_aligned trap occurs.

B.23.1. Programming Note

JMPL with rd = 0 can be used to return from a subroutine. The typical retum address is
“f{31]+8", if the subroutine was entered by a CALL instruction.

B.23.2. Programming Note
JMPL with rd = 15 can be used as a register-indirect CALL.

B.23.3. Programming Note

The execution time of a JMPL instruction may increase if the next instruction uses rfrd] as a
source operand. Whether this happens is implementation-dependent.

Traps:
mem_address_not_aligned

B-34 Instruction Definitions B-34

Solbourne Computer, Inc.

B.24. Return from Trap Instruction

opcode op3 operation

RETTt 111001 | Return from Trap

1 privileged instruction

Format (3):
{10 [ignored | op3 [rst |i=0 | ignored | 2 |
24 18 13 12 4 0
{ 10 | ignored | op3 [rs1 [i=1] simm13 |
24 18 13 12 [+]
Suggested Assembly Language Syntax
rett address
Description:

The RETT instruction adds one to the CWP (modulo the number of implemented windows)
and compares this value, the “new_CWP,"” against the Window Invalid Mask (WIM) register.
if the WIM bit indexed by the new_CWP is set, “(WIM and 2MeW_CWP) - 1" then a
window_underflow trap is generated. If the WIM bit indexed by the new_CWP is reset, then
a window_underflow trap is not generated and new_CWP is written into CWP. This causes
the previous window to become the active window, thereby restoring the window that existed
at the time of the trap.

If a window_underflow trap is not generated, RETT causes a delayed control transfer to the
target address. The target address is either “rfrs1] + r{rs2]” if the i field is zero, or “rirs1] +
sign_ext(simm13)” if the i field is one. Furthermore, RETT restores the S field of the PSR
from the PS field, and sets the ET field to one.

If traps are enabled (ET=1), an illegal_instruction trap occurs. If traps are disabled (ET=0)
and the processor is not in supervisor mode (S=0), or if a window_underflow condition is
detected, or if either of the low-order two bits of the target address is nonzero, a reset trap
occurs. If a reset trap occurs, the ft field of the TBR encodes the trap condition:
privileged_instruction, window_underflow, or mem_address_not_aligned.

w w ww NOTE &« & &

The instruction executed immediately before a RETT must be a
JMPL instruction. (See discussion in the section “Instructions™.)

B.24.1. Programming Note
To re-execute the trapped instruction when returning from a trap handler use the sequence:
jmpl%17, %0 ! old PC
rett %18 ! old nPC

To retumn to the instruction after the trapped instruction (e.g. when emulating an instruction)
use the sequence:

B-35 Instruction Definitions B-35

Solbourne Computer, Inc.

jmpl%18, %0 ! old nPC
rett$18 + 4 ! old nPC + 4

Traps:

illegal_instruction

reset (privileged_instruction)

reset (mem_address_not_aligned)
reset (window_underflow)

B-36 Instruction Definitions B-36

Solbourne Computer, Inc.

B.25. Trap on Integer Condition Instruction

opcode cond operation Icc test
TA 1000 | Trap Always 1
TN 0000 | Trap Never 0
TNE 1001 | Trap on Not Equal notZ
TE 0001 | Trap on Equal y4
TG 1010 | Trap on Greater not (Z or (N xor V))
TLE 0010 | Trap on Less or Equal Z or (N xor V)
TGE 1011 | Trap on Greater or Equal not (N xor V)
TL 0011 | Trap onLess N xor V
TGU 1100 | Trap on Greater Unsigned not (C or 2)
TLEU 0100 | Trap on Less or Equal Unsigned (Cor2)
TCC 1101 | Trap on Carry Clear (Greater than or Equal, Unsigned)) notC
TCS 0101 | Trap on Carry Set (Less Than, Unsigned) C
TPOS 1110 | Trap on Positive not N
TNEG 0110 | Trap on Negative N
TVC 1111 | Trap on Overtiow Clear not V
TVS 0111 | Trap on Overflow Set Y
Format (3): .
L;(LLignored1 cond | 111010 | rs1 |i=0 | ignored | rs2 |
28 24 18 13 12 4 [4]
| 10 | ignored | cond | 111010 | rs1 =t | simm13 |
31 25 28 24 18 13 12 0
Suggested Assembly Language Syntax
ta address
tn address
tne address synonym: tnz
te address synonym: tz
to adaress
tle address
lge address
t address
tgu address
tleu address
tcc address synonym: fgeu
tcs address synonym: tlu
tpos address
tneg address
tve address
tvs address

Description:

A Ticc instruction evaluates the integer condition codes (icc) according to the cond field. If
the condition codes evaluate to true and there are no higher priority traps pending, then a
trap_instruction trap is generated. If the condition codes evaluate to false, a trap_instruction
trap does not occur.

B-37

Instruction Definitions

B-37

Solbourne Computer, Inc.

It a trap_instruction trap is generated, the {t field of the Trap Base Register (TBR) is written
with 128 plus the least significant seven bits of either “rirs1] + r{rs2]” if the i/ field is zero, or
“ffrs1] + sign_ext(simm13)" if the ifield is one.

See the section Traps, Exceptions and Error Handling for the complete definition of a trap.
Traps: _
trap_instruction

B-38 Instruction Definitions B-38

Solbourne Computer, Inc.

B.26. Read State Register Instructions

opcode op3 operation

RDY 101000 | Read Y register

RDPSRt | 101001 | Read Processor State Register
RDWIMt | 101010 | Read Window Invalid Mask register
RDTBRt | 101011 | Read Trap Base Register

1 privileged instruction

Format (3):
[10 | “rd | op3 | ignored | ignored | ignored
24 i8 13 12 [}
Suggested Assembly Language Syntax
rd %y, regrg
rd %psr, Ie€grd
rd %wim, reg,q
Description:

These instructions read the specified IU state registers into the r register specified in the rd
field.

B.26.1. Programming Note

The execution time of any of these instructions may increase if the next instruction uses the
register specified by the rd field of this instruction as a source operand. Whether it does or

not is implementation-dependent.

Traps:
privileged_instruction (RDPSR, RDWIM and RDTBR only)

B-39 instruction Definitions B-39

Solbourne Computer, Inc.

B.27. Write State Register Instructions

opcode op3 operation

WRY 110000 | Write Y register

WRPSRt | 110001 | Write Processor State Register
WRWIMt | 110010 | Write Window Invalid Mask register
WRTBRt | 110011 | Write Trap Base Register

1 privileged instruction

Suggested Assembly Language Syntax

wr reg,s1, reg_or_imm, %y

wr reg,s1, reg_or_imm, %psr
wr reg.sy, reg_or_imm, %wim
wr reg,s1, reg_or_imm, %tbr

Format (3):
[10 | ignored | op3 [rs1]i=0 | ignored [rs2 |
31 28 24 18 13 12 4 4]
{ 10 [ignored | op3 [rs1 =t] simm13 |
24 18 13 12 ()
Description:

These instructions write either “r[rs1] xor rrs2]” if the i field is zero, or “rrs1] xor
sign_ext(simm13)” if the i field is one, to the writeable subfields of the specified U state
register.

WRPSR does not write the PSR and causes an illegal_instruction trap if the result would
cause the CWP field of the PSR to point to an unimplemented window.

These instructions are delayed-write instructions:

1.

If any of the three instructions after a WRPSR uses any field of the PSR that is changed
by the WRPSR, the value of that field is unpredictable. (Note that any instruction which
references a non-global register implicitly uses the CWP.)

If a WRPSR instruction is updating the PSR’s PIL to a new value and is simultaneously
setting ET to 1, this can result in an interrupt trap at a level equal to the old value of the
PIL.

B.27.1. Programming Note

Two WRPSR instructions should be used when enabling traps and changing the value of the PIL.
The first WRPSR should specify ET=0 with the new PIL value, and the second WRPSR should
specify ET=1 and the new PIL value.

3.

4,

B-40

If any of the three instructions after a WRWIM is a SAVE, RESTORE or RETT, the
occurrence of window_overflow and window_underflow traps is unpredictable.

If any of the three instructions that follow a WRY is a MULScc or RDY, the value of Y
used is unpredictable.

If any of the three instructions that follow a WRTBR causes a trap, the trap base
address (TBA) used may be either the old or the new value.

Instruction Definitions B-40

Solbourne Computer, Inc.

6. If any of the three instructions after a write state register instruction reads the modified
state register, the value read is unpredictable.

7. If any of the three instructions after a write state register instruction is trapped, a subse-
quent read state register instruction in the trap handier will get the register's new value.

Traps:

privileged_instruction (WRPSR, WRWIM and WRTBR only)
illegal_instruction (WRPSR only)

B-41 Instruction Definitions B-41

Solbourne Computer, inc.

B.28. Unimplemented Instruction

opcode op op2 operation

UNIMP | 00 | 000 | Unimplemented

Format (2):
{00 | ignored | 000 | const22 |
3N -] 24 21 0
Suggested Assembly Language Syntax
unimp const22
Description:

The UNIMP instruction causes an illegal_instruction trap. The const22 value is ighored.

B.28.1. Programming Note

This instruction can be used as part of the protocol for calling a function that is expected to
retum an aggregate value, such as a C-language structure. See Appendix D for an example.

a) An UNIMP instruction is placed after (not in) the delay slot after the CALL instruction in
the calling function.

b) If the callee function is expecting to return a structure, it will find the size of the structure
that the caller expects to be returned as the const22 operand of the UNIMP instruction.
The callee can check the opcode to make sure it is indeed UNIMP.

c) If the function is not going to return a structure, upon retuming it attempts to execute the
UNIMP instruction rather than skipping over it as it should. This causes the program to
terminate. This behavior adds some run-time type checking to an interface that cannot
be checked properly at compile time. ‘

Traps:
illegal_instruction

B-42 Instruction Definitions B-42

Solbourne Computer, Inc.

B.29. Instruction Cache Flush Instruction

opcode op3 operation

IFLUSH | 111011 | Instruction cache Flush

Format (3):
[10 | ignored | op3 [rs1 [i=0 | ignored [2 |
24 18 13 12 4 0
[_;0 | ignored | op3 [st |i=1 | simm13 |
1 25 24 18 13 12 0
Suggested Assembly Language Syntax
iflush address
Description:

The IFLUSH instruction causes a word to be flushed from an instruction cache that may be
internal to the processor. The address of the word to be flushed is either “rfrs1] + rirs2]" if
the ifield is zero, or “rfrs1] + sign_ext(simm13)” if the ifield is one.

B.29.1. Implementation Note:

If there is no instruction cache internal to the processor, IFLUSH acts as a “NOP.” If there is
an internal instruction cache, IFLUSH flushes the addressed word from the cache. If there is
an external instruction cache, IFLUSH causes an illegal_instruction trap. The presence of
an external instruction cache is determined by the bp_I_cache_present signal.

Traps:
illegal_instruction

B-43 Instruction Definitions B-43

Solbourne Computer, Inc.

B.30. Floating-point Operate (FPop) Instructions

opcode op3 operation

FPop1 110100 | Floating-point operate
FPop2 110101 | Floating-point operate

Format (3):
(0] rd | 110100 | st | opf | 2 |
24 18 13 4 0
[(10] rd | 110101 [rs1 | opf | 2 |
31 29 24 18 13 4 0

The Floating-point Operate (FPop) instructions are encoded using two type 3 instruction formats
called FPop1 and FPop2. The floating-point operations themselves are encoded by the opf field.
(Note that the load/store floating-point instructions are not “FPop” instructions.)

All FPop instructions take all operands from and return all results to f registers and/or the FSR.
They perform operations on ANSI/IEEE 754-1985 single, double, and extended formats (see the
section SPARC Architecture Overview).

All multiple-precision floating-point instructions (including load/store floating-point) assume that
operands are located in register pairs (for double precision) or quadruples (for extended preci-
sion). The following table indicates the alignment assumptions. Note that single-precision
operands can be in any f register.

operand f register address
double-e 0 mod 2
double-f 1 mod 2
extended-e 0 mod 4
extended-t 1 mod 4
extended-f-low 2 mod 4
extended-u 3 mod 4

According to this convention, the least significant bit of an f register address is ignored by
double-precision FPops and the least significant two bits of an f register address are ignored by
extended-precision FPops.

A program including floating-point computations generates the same results as if all instructions
were executed sequentially (assuming it runs to completion). Note that floating-point loads and
stores are not floating-point operate instructions.

Results are written (or traps are caused) in the order that FPops are encountered in the
instruction stream. The section Instructions explains this in more detail. An FPop instruction
causes an fp_disabled trap if the EF field of the PSR is 0 or if no FPU is present.

B-44 Instruction Definitions B-44

Solbourne Computer, Inc.

B.30.1. Convert integer to Floating-point instructions

opcode opf operation

FiTOs 011000100 | Convert integer to Single
FiTOd 011001000 | Convert integer to Double
FiTOx 011001100 | Convert Integer to Extended

Format (3):
10 d | 110100 | ignored | opf | ms2 |
1 24 18 13 4 0
Suggested Assembly Language Syntax
fitos fregrs2, freg
fitod freg sz, freg,q
fitox freg sz, fregrg
Description:

These instructions convert the 32-bit integer argument in the f register specified by rs2 into a
floating-point number in the destination format according to the ANSV/IEEE 754-1985
specification. They place the result in the destination f register(s) specified by rd.

For FiTOs and FiTOx with single-precision rounding, rounding is performed according to the
rounding direction (RD) field of the FSR.

Traps:

_disabled
fp_exception (NX) (FiTOs and FiTOx when RP=single)

B-45 Instruction Definitions B-45

Solbourne Computer, Inc.

B.30.2. Convert Fioating-point to Integer

opcode opf operation

FsTOi 011010001 | Convert Single to Integer
FdTOI 011010010 | Convert Double to Integer
FxTOi 011010011 | Convert Extended to Integer

Format (3):
10 d | 110100 | ignored | opt | ms2 |
1 24 18 13 4 [}
Suggested Assembly Language Syntax
fstoi freg sz, fregrg
fdtoi fregrs2, fregn
fxtoi freg s, fregrg
Description:

These instructions convert the floating-point source argument in the f register or f registers

specified by rs2 to a 32-bit integer (in the f register specified by the rd field) according to the
ANSV/IEEE 754-1985 specification.

The floating-point argument is rounded toward zero and the rd field of the FSR is ignored.
Traps:

fp_disabled
fp_exception (NV, NX)

B-46 Instruction Definitions B-46

Solbourne Computer, Inc.

B.30.3. Convert Between Floating-point Formats Instructions

opcode opt operation

FsTOd | 011001001 | Convert Single to Double
FsTOx 011001101 | Convert Single to Extended
FdTOs 011000110 | Convert Double to Single
FdTOx 011001110 | Convert Double to Extended
FxTOs 011000111 | Convert Extended to Single
FxTOd 011001011 | Convert Extended to Double

Format (3):
10 d | 110100 | ignored | opf [m2 |
3 24 18 13 4 0
Suggested Assembly Language Syntax
fstod freg sz, fregrg
fstox freg sz, fregrq
fdtox fregrs2, fregr
fdtox fregrs2, fregrg
fxtod freg sz, fregry
fxtos freg sz, freg
Description:

These instructions convert the floating-point source argument in the f register or f registers
specified by rs2 to a floating-point number in the destination format according to the
ANSI/IEEE 754-1985 specification. They place the result in the f register or f registers
specified by rd.

Rounding is performed according to the rounding direction (RD) field of the FSR. In the case
of FdTOx, the outcome is also a function of the rounding precision (RP) field.

Traps:

fp_disabled :
fp_exception (OF, UF, NV, NX)

B-47 Instruction Definitions ; B-47

Solbourne Computer, Inc.

B.30.4. Floating-point Move Instructions

opcode opt operation

FMOVs | 000000001 | Move
FNEGs | 000000101 | Negate
FABSs | 000001001 | Absolute Value

Format (3):
10 d | 110100 | ignored | opf rs2
1 24 18 13
Suggested Assembly Language Syntax
fmovs freg s, fregry
fnegs fregrs2, frégr
fabss freg sz, fregy
Description:

FMOVs moves a word from f[rs2] to f[rd]. Multiple FMOVs's are required to transfer a

multiple-precision number between f registers.
FNEGs complements the sign bit, and FABs clears it.
These instructions do not round.

B.30.5. Programming Note

FNEGSs or FABSSs instructions can also operate on the high-order words (the word that con-
tains the sign bit) of double and extended operands. Thus an FNEGs instruction and an
FMOVs instruction would be used to negate a double and put the results in a different pair of

f registers.
Traps:
fp_disabled

B-48 Instruction Definitions

B-48

Solbourne Computer, Inc.

B.31. Floating-point Square Root Instructions

opcode opf operation

FSQRTs | 000101001 | Square Root Single
FSQRTd | 000101010 | Square Root Double
FSQRTx | 000101011 | Square Root Extended

Format (3):
10 d | 110100 | ignored | opf [w2 |
1 - 24 18 13 4 0
Suggested Assembly Language Syntax
fsqrts freg sz, fregrg
fsqrtd freg sz, fregrq
fsqrtx freg sz, freg,y
Description:

These instructions generate the square root of the floating-point source argument in the f
register or f registers specified by rs2 according to the ANSVIEEE 754-1985 specification.
They place the result in the destination f register or f registers specified by the rd field.

Rounding is performed according to the rounding direction (RD) field of the FSR. In the case
of FSQRTX, the outcome is also a function of the rounding precision (RP) field.

Traps:

fp_disabled
fp_exception (NV, NX)

B-49 Instruction Definitions B-49

Solbourne Computer, Inc.

B.31.1. Floating-point Add and Subtract Instructions

opcode

opf

operation

FADDs
FADDd
FADDx

001000001 | Add Single
001000010 | Add Double
001000011 | Add Extended

FSUBs
FSUBd
FSUBXx

001000101 | Subtract Single
001000110 | Subtract Double
001000111 | Subtract Extended

Format (3):

rs1 | opf

[10] rd | 110100 |
24

18 13

Suggested Assembly Language Syntax
fadds freg,s1, fregrsz, fregr
faddd freg,si, freg sz, fregr
faddx freg.s1, fregrsz, fregrg
fsubs freg.s1, fregrsz, fregn
fsubd freg sy, fregrso, fregy
fsubx freg,sy, freg sz, fregny

Description:

These instructions add or subtract their operands according to the ANSI/IEEE 754-1985
specification, and place the result in the f register or f registers specified in the rd field. The
subtract instructions subtract the floating-point value specified by rs2 from the one specified

by rs1.
Traps:

fp_disabled
fp_exception (OF, UF, NX)

B-50

Instruction Definitions

B-50

Solbourne Computer, Inc.

B.31.2. Floating-point Muitiply and Divide instructions

opcode opf operation

FMULs | 001001001 | Multiply Single
FMULd | 001001010 | Multiply Double
FMULx | 001001011 | Multiply Extended
FDIVs 001001101 | Divide Single
FDIvd 001001110 | Divide Double
FDIVx 001001111 | Divide Extended

Format (3):

[10] rd | 110100 [rs1 | opf [2 |
24 18 13 4

Suggested Assembly Language Syntax

tmuls freg.s1, fregrso, fregry
fmuld freg,s1, freg sz, fregy
fmulx freg,s;, freg sz, fregry

fdivs freg,s;, freg.ss, 1fregry
fdivd freg,s1, freg,sz, fregy
fdivx freg,si, freg,ss, freg.y

Description:

These instructions multiply or divide their operands according to the ANSI/IEEE 754-1985
specification, and place the result in the f register or f registers specified in the rd field. The
divide instructions divide the floating-point value specified by rs1 by the one specitied by rs2.

Traps:

fp_disabled
fp_exception (OF, UF, DZ (FDIV only), NV, NX)

B-51 Instruction Definitions B-51

Solbourne Computer, Inc.

B.31.3. Floating-point Compare Instructions

opcode opf operation

FCMPs 001010001 | Compare Single

FCMPd 001010010 | Compare Double

FCMPx 001010011 | Compare Extended

FCMPEs | 001010101 | Compare Single and Exception if Unordered
FCMPEd | 001010110 | Compare Double and Exception if Unordered
FCMPEx | 001010111 | Compare Extended and Exception if Unordered

Format (3):
[10 | ignored | 110101] st | opf | 2 |
1 24 18 13 4 0
Suggested Assembly Language Syntax
fcmps freg s1, freg sz
fcmpd freg s1, freg sz
fempx freg,s1, freg sz
fcmpes fregrs1, fregrsz
fcmped fregrs1, fregrsz
fcmpex freg sy, freg sz
Description:

These instructions compare their operands according to the ANSVIEEE 754-1985
specification. The floating-point condition codes in the FSR are set as follows:

NOTE:
This table is a duplicate of Table 3-5 in the section “Registers”.

fcc Relation
0 fs1=1s2
1 fs1 < 182
2 fs1 > {s2
3 fs1 ?1{s2 (unordered)

In this table, fs1 refers to the value specified by the rs? field and fs2 refers to the value
specified by the rs2 field of the compare instruction.

The “Compare and Cause Exception if Unordered” instructions (FCMPE) cause an invalid
exception (NV) if either of the operands is a signaling or quiet NaN. FCMP also causes an
invalid exception if either operand is a signaling NaN.

w % w NOTE &« & «

A non-floating point instruction must be executed between an
FCMP and a subsequent FBfcc.

Traps:

fp_disabled
fp_exception (NV)

B-52 Instruction Definitions B-52

Solbourne Computer, Inc.

B.32. Coprocessor Operate Instructions

opcode op3 operation

CPop1 110110 | Coprocessor Operate
CPop2 110111 | Coprocessor Operate

Format (3):
10 rd | 110110 [rs1 | opc | 2 |
1 24 18 13 4 0
10 d | 110111 | rs1 | opc | 2 |
1 24 18 13 4 0

% % Y NOTE &« &« «

The assembly language syntax for these instructions is
unspecified.

The Coprocessor Operate (CPop) instructions are encoded via two type 3 instruction formats
called CPop1 and CPop2. The coprocessor operations themselves are encoded by the opc field
and are coprocessor-dependent. (Note that the load/store coprocessor instructions are not
“CPop” instructions.)

All CPop instructions take all operands from and return all results to coprocessor registers. The
data types supported by the coprocessor are coprocessor-dependent. Operand alignment is
coprocessor-dependent.

A CPop instruction causes a cp_disabled trap if the EC field of the PSR is 0 or if no coprocessor
is present.

Whether a CPop generates a cp_exception trap is coprocessor-dependent.

B-53 instruction Definitions B-53

APPENDIX C: ISP DESCRIPTIONS

C.1. Introduction

This appendix provides a description of the SPARC architecture using the Instruction-Set Proces-
sor (ISP) description language. It includes register definitions, instruction fields, processor
states, instruction dispatch, traps, and instruction descriptions.

The instruction interpreter defines the ordering of events. Except for a few cases (which are
documented), the interpreter together with the instruction and register definitions provide a sup-
plemental description of the processor.

Note that the use of a particular-variable in the notation does not necessarily imply that its related
signal is present in an implementation, or visible to the programmer.

The instruction description language is a modified version of Bell and Newell's ISP instruction
description language, which was created to accurately describe computer instruction sets. While
the semantics are somewhat intuitive, the following guidelines provide important details:

* The only data type is the bit vector. Variables are defined as bit vectors of particular widths,
declared as variable<n:m>. Variable subfields can be defined, also with the <n:m> nota-
tion. The value of a vector is a number in a base indicated by its subscript. The default
base is decimal. Armays of vectors are declared as array[n:m].

« The notation « indicates variable assignment, and := indicates a macro definition.

e When a bit vector is assigned to another of greater length, the operand is right-justified in the
destination vector and the high-order positions are zero-filled. The macro zero_extend is
sometimes used to make this clear. Conversely, the macro sign_extend causes the high-
order positions of the result to be filled with the highest-order (sign) bit of its operand.

» The semicolon ‘;’ separates statements. Parentheses ‘()’ group statements and expressions
that could otherwise be interpreted ambiguously.

C-1 ISP Descriptions C-1

Solbourne Computer, Inc.

All statements are generally executed “simultaneously.” However, if the term next appears,
it indicates that the statement or statements which follow the next are executed after those
that appear before the next. Thus, all statements between next phrases are executed con-
currently. More precisely, this means that all expressions on the right hand sides of assign-
ments located between next's are evaluated first, after which the variables on the left hand
sides are updated. (This convention emulates synchronous, clocked hardware.)

For example, if A=0 and B=0, execution of the following two statements,
A &« B+1;
B ¢« A+l;

results in A=1 and B=1. However,
A ¢« B+1;

next;
B « A+l;
results in A=1 and B=2..

The symbol [] designates concatenation of vectors. A comma ‘,’ on the left side of an
assignment separates quantities that are concatenated for the purpose of assignment. For
example, if the 2-bit vector T2 equals 3, and X, Y, and Z are 1-bit vectors, then:

X, ¥, 2 « OfJr2

results in X=0, Y=1, and Z=1.
The operators ‘+' and -’ perform two’s complement arithmetic.

The phrase fork, used only in the instruction interpreter for the FPop instructions, indicates
that the associated routine may be executed concurrently with all other subsequent state-
ments. There is no notation for rejoining: after the forked routine executes its last statement,
it terminates.

The major difference between the notation used here and the 1971 version of ISP is that the
notation here uses the more common:

if cond then S1 else S2
whereas Bell and Newell used the following:

(cond = S1, = cond — S2)
The macros memory_read and memory_write, are implementation-dependent. These rou-
tines define the interface without referring to implementation-specific signals:

load_data < memory_read(addr_space, address)

memory write (addr_space, address, byte mask,
store_data)

Memory_read returns the word in memory specified by both the address and the address
space identifier.

Memory_write writes all or part of the word store_data into the word specified by the given
address. If there is an exception, memory_write does not change the state of the external
system or the MMU. Byte_mask is a 4-bit value that indicates which of the four bytes in
store_data are to be written into the addressed word.

ISP Descriptions C-2

C.2. Register Definitions

PSR<31:0>;

cwpP

TBR<31:0>;
TBA
t
Zero

FSR<31.05;

RD

RP

TEM
NVM
OFM
UFM
DzZM
NXM
AU

reserved

fit
gne

reserved

fec

aexc
nva
ofa
ufa
dza
nxa

cexc
nve
ofc
ufc
dzc
nxc

CSR<31:0>;
WIM<31.0>;

C-3

= FSR<9>;
;= FSA<8>;
:= FSR<7>;
= FSR<6>;
= FSR<5>;

= FSR<4>;

;= FSR<3>;
= FSR<2>,'

= FSR<1>;
= FSR<0>;

= PSR<31:28>;
‘= PSR<27:24>;
= PSR<23.:20>;

= PSR<23>;
= PSR<22>;
= PSR<21>;
= PSR<20>;

= PSR<19:14>;

= PSR<13>;

= PSR<12>;

= PSR<11:8>;

= PSR<7>;

= PSR<6>;

= PSR<5>;

= PSR<4:0>;

= TBR<31:12>;
= TBR<11:4>;
= TBR<3.0>;

= FSR<31:305;

= FSR<29.:28>;
= FSR<27:23>;

;= FSR<27>;
= FSR<26>;
= FSR<25>;
= FSR<24>;
= FSR<23>;
= FSR<22>;

= FSR<21:17>;
= FSR<16:14>;

= FSR<13>;
= FSR<12>;

= FSR<11:10>;

= FSR<9:5>;

= FSR<4.0>;

Solbourne Computer, Inc.

{Procassor State Register}

{Trap Base Register)

{Floating-Point State Register)

{CP State Register}
{Window Invalid Mask Register}

ISP Descriptions

Solbourne Computer, Inc.

Y<31:0>; {Y Register)
PC<31:05; {Program Counter)}
nPC<31.0>; {Naxt Program Counter)
FQ<63:0>; {Filoating-Point Queue}
CQ<63.0>; {Coprocessor Queue}
G[1:7]<31.0>; {Global Registers)
R[0:(16*‘NWINDOWS)-1]<31:0>; {Windowed Registers}
fl0:31]<31:0>; {Floating-Point Registers}
r[n] := if (n = 0)
then 0
else if (1 Sns7T)
then Gln] {globals}
else R[(n-8) + (CWP*16)] ; (windowed registers}

C.3. System Interface Definitions

bp_ IRL<3

:0>;

bp_reset_in;
pb_error;
pb_retain bus;
bp_FPU_present;
bp_CP_present;
bp_I cache_present;

bp_CP_exception;

bp CP_cc

<1:0>;

bp_memory_exception:

C.4. Instruction Flelds
The numbers in braces are the widths of the fields in bits.

instruction<31:0>

op
op2
op3
opf
opc
asi
i

rd

a
cond
rsl
rs2
simm

{2}
{3}
{6}
{9}
{9}
{8}
{1}
{5}
{1}
{4}
{5}
{5}
13 {13}

shent {5}

disp
disp

C4

30 {30}
22 {22}

-
4

:= instruction<31:30>;

.
-

instruction<24:22>;
instruction<24:19>;
instruction<13:5>;
instruction<13:5>;

= instruction<l1l2:5>;

i

instruction<13>;
instruction<29:25>;
instruction<29>;
instruction<28:25>;
instruction<18:14>;
instruction<4:0>;
instruction<12:0>;
instruction<4:0>;

= instruction<29:0>;
= instruction<21:0>;

ISP Descriptions

C4

Solbourne Computer, Inc.

C.5. Processor States and Instruction Fetch
The IU can be in one of three states: execute_mode, reset_mode, or error_mode.

The FPU can be in one of five states: reset_mode, error_mode, fpu_execute_mode,
fpu_exception_pending_mode, or fpu_exception_mode. The FPU's reset_mode and error_mode
correspond to the IU's reset and error modes. The remaining FPU states are described in Sec-
tion C.6.

The processor (that is the IU and FPU) is in reset_mode when bp_reset_in is asserted. The pro-
cessor remains in reset_mode until bp_reset_in is deasserted, at which point the IU enters
execute_mode and the FPU enters fpu_execute_mode.

When bp_reset_in is deasserted, the first instruction address is 0, with ASI=9 (supervisor instruc-
tion).

The processor enters error_mode from any state except reset_mode if a synchronous trap is
generated while traps are disabled. (See the section Traps, Exceptions, and Error Handling).

5.) The processor remains in error_mode until bp_reset_in is asserted, at which time it enters
reset_mode.

C.5.1. implementation Note
The external system should assert bp_reset_in whenever pb_error is detected.

The following ISP code defines the three IU states. In execute_mode, the IU fetches and
dispatches instructions.

C-5 ISP Descriptions C5

Solbourne Computer, Inc.

while (reset_mode) (
if (bp_reset_in = 0) then (
reset_mode « 0;
execute_mode & 1;
trap « 1;
reset « 1

)i
addr_space := S=0 then 8 else 9;

while (execute_mode) (

check_interrupts; - { see Section C.8}

next;

{ the following code emulates the delayed nature of the

write state register instructions.}

PSR ¢ PSR’; PSR’ ¢« PSR’’; PSR'’ « PSR'’'’;

PSR’’’ « PSR'’’’;

TBR ¢« TBR’; TBR’ & TBR‘’; TBR'’ ¢« TBR'’’; TBR'’’ « TBR'''’;
WIM « WIM'; WIM' & WIM'’; WIM''/ & WIM''/'/; WIM''’ & WIM'''’;
Y e Y Y e YU Y e YT, YT e yrrra,;

next;

if (trap = 1) then

execute_trap; { see Section C.8}

next;

instruction « memory_ read(addr_space,
next;

if (bp_memory exception = 1) then (
trap « 1;

PC)

instruction_access_exception « 1

) else (
if (annul = 0) then (
dispatch_instruction
) else (
annul ¢« 0;
PC ¢« nPC;
nPC « nPC + 4

while (error_mode) (
if (bp_reset_in = 1) then
error mode « 0
reset mode & 1
pb_error « 0

ISP Descriptions

{ see Section C.5 }

Solbourne Computer, Inc.

C.6. Instruction Dispatch

The “dispatch_instruction” macro determines if the fetched instruction is an FPop or CPop. If it is
an FPop, it is executed by the “execute_FPU_instruction” macro (Section C.6) as soon as the
FPU can accept another instruction. If the fetched instruction is a CPop, it is executed by the
“execute_CP_instruction” macro (Section C.7) as soon as the CP can accept another instruction.

if the instruction is neither an FPop or a CPop, it is executed by the “execute_lU_instruction”
macro, which includes all the macro definitions in Section C.9 (except for FPop and CPop).

Unused bit patterns in the op, op2, op3, opf, and i fields of instructions cause illegal_instruction
traps. Other fields that are defined to be unused are ignored and do not cause traps.

The macro ‘floating-point_instr’ returns a 1 if the instruction is a floating-point instruction. Simi-
larly, the macro ‘coprocessor_instr’ returns a 1 if the instruction is a coprocessor instruction.

Cc-7 ISP Descriptions Cc-7

c8

unimplemented IU_instr := (

Solbourne Computer, Inc.

if (((op=002) and (op2=0002)) [UNIMP instruction}

or

(((op=112) or (op=102)) and (op3=unassigned))

or

((1 = 1) and

(LDSBA or LDSHA or LDUBA or LDUHA or LDA or
or LDSTUBA or SWAPA
STBA or STHA

LDDA or STDA

)

) then 1 else 0

floating_point_instr := (

if (LDF or LDDF
STF or STDF
FPopl or FPop2

coprccessor_instr:

if (LDC or LDDC
STC or STDC

dispatch_instruction :
if (unimpl_IU_instr
trap « 1;

or
or
or

or
or

(

or STA

LDFSR or
STFSR or STDFQ or
FBfcc) then 1 else 0

LDCSR or
STCSR or STDCQ or CPopl or CPop2 or CBccc) then 1 else 0

1) then (

illegal_instruction « 1

):

if (floating-point_instr = 1) then (

if (EF =

trap « 1;
fp_disabled « 1

) else (

0) then (

if (fpu_exception_pending _mode = 1) then (

);

fpu_exception_pending_mode « 0;
fpu_exception_mode &« 1;
trap « 1

while ((fp_not_ready = 1) and (trap = 0))

|

if (coprocessor_instr

if (EC =

trap « 1;

check_interrupts;

= 1) then (

0) then (

cp_disabled « 1

) else (

check_CP_exception;

next;

while ((cp_not_ready = 1) and (trap = 0)) {

check_interrupts;

ISP Descriptions C-8

Solbourne Computer, Inc.

next;
if (trap = 0) then
if (FPopl or FPop2) then fork execute FPU_instruction

else if (CPopl or CPop2) then fork execute_CP_instruction
else execute_IU_instruction -

execute_IU instruction := (
{ do routine for specific instruction, defined below }
next;
if (trap = 0 and
not (CALL or RETT or JMPL or Bicc or FBfcc or CBccc or Ticc)) then (
PC « nPC;
nPCe nPC + 4

execute_FPU_instruction := (
if (FPU_exception_mode)_ then (
ftt <- sequence_error;
FPU_exception_mode <- 0; {see following discussion}
FPU_exception_pending_mode <- 1
) else (
enqueue_FQ(instruction, PC)

{ execute description defined below }

ISP Descriptions C-9

Solbourne Computer, Inc.

C.7. Floating-Point Instruction Execution

The FPU can execute floating-point operate (FPop) instructions concurrently with other FPops
and with non-floating-point instructions. To do this, it maintains a Floating-point Queue (FQ) of
FPop instructions pending completion, and can force the IU to wait until resource and data
dependencies have been resolved.

The architecture ensures that a program containing FPops generates the same numerical results
as if there were no concurrency.

After the FPU begins to execute an FPop, the U continues to fetch and execute instructions until
one of five “hold” conditions occurs. Any one of these causes the U to stop fetching instructions
until the condition is no longer true:

1) i, for a load floating-point register instruction, the destination f register is the source or desti-
nation register of an executing FPop, the IU waits until the executing FPop no longer
requires the register.

2) If, for a store floating-point register instruction, the source f register is the destination register
of an executing FPop, the U waits until executing FPop no longer require the register.

3) Aload or store floating-point state register instruction (LDFSR, STFSR) causes the IU to wait
until all executing and pending FPops have completed.

4) A branch on floating-point condition (FBfcc) instruction causes the IU to wait until any exe-
cuting or pending floating-point compare instructions (FCMP, FCMPE) have finished.

5) When the IU encounters an FPop, it stops fetching instructions until the FPop has been
accepted by the FPU.

C.7.1. Floating-Point Queue (FQ)

The floating-point queue (FQ) has at least one entry for each of the FPU’s arithmetic units that
can execute in paralle! with other arithmetic units. The depth of the queue is implementation-
dependent.

Each entry in the queue (for the purposes of the definition in this appendix) contains 1) the FPop
instruction itself, 2) the PC from which the FPop was fetched, 3) an indication of the arithmetic
unit executing it, 4) a completion status bit that indicates whether the operation finished properly,
and 5) a temporary result, including any exceptions or condition codes generated by the instruc-
tion. Parts (1) and (2) of the front entry are visible to the programmer using the STDFQ instruc-
tion; the other parts and the other entries are invisible to the programmer.

(Note that load floating-point, store floating-point, and FBfcc instructions are never entered in the
queue.)

For the purposes of the definition in this appendix, when an arithmetic unit finishes, it deposits its
computed result, any exceptions or conditions it may have generated, and a completion status
bit, into the reserved location in the queue. As FPops complete, each entry moves toward the
front of the queue (if it is not already there).

The FPU can stop executing an FPop in one of four ways: 1) completed without exception (nor-
mal), 2) IEEE_exception, 3) unfinished_FPop, or 4) unimplemented_FPop. The following para-
graphs describe each:

Normal Completion
if the FPop represented by the front entry in the queue caused no unmasked exceptions, the
FPU 1) writes the result into the f register(s) specified by the rd field of the instruction (if
any), 2) updates the FSR'’s cexc and fcc fields, 3) removes the entry from the queue, and 4)
advances the queue.

C-10 ISP Descriptions C-10

Solbourne Computer, Inc.

IEEE_Exception
if the FPop pointed to by the front entry in the queue caused an {EEE_exception trap, the
FPU updates the FSR's cexc and fit fields to identify the exception, and does not write the
result into the f register(s) specified by the rd field of the instruction, nor does it remove the
entry from the queue. However, if an IEEE_exception does not result in a fp_exception trap,
all results are written, including the destination f register, cexc, aexc, and fcc.

Unimplemented_FPop or Unfinished_FPop

If the FPop pointed to by the front entry in the queue is not implemented, or if the arithmetic
unit was unable to complete it according to the ANSIIEEE 754-1985 specification (for exam-
ple, a multiply unit may not be able to postnormalize a denormalized result or handle a NaN),
the FPU updates the fit field of the FSR to identify the exception, and does not write the
result into the f register(s) specified by the rd field of the instruction, nor does it remove the
entry from the queue. The front entry in the queue identifies the FPop that generated the
floating-point exception trap.

C.7.2. FQ_Front_Done

The implementation-dependent macro ‘FQ_front_done’ returns a 1 if an arithmetic unit has
finished processing the FPop at the front of the FQ. The implementation-dependent macro
‘stop_FPU’ stops all current processing of FQ entries.

C.7.3. FPU States

The FPU can be in any of three modes: FPU_execute_mode, FPU_exception_pending_mode, or
FPU_exception_mode. In FPU_execute_mode, it executes floating-point instructions.

The FPU enters the FPU_exception_pending_mode state when an FPop instruction causes an
IEEE_exception, unfinished_FPop exception, unimplemented_FPop exception, or a
sequence_error. The FPU remains in FPU_exception_pending_mode until the IU fetches
another floating-point instruction, at which time a fp_exception trap is caused and the FPU enters
the FPU_exception_mode state.

In FPU_exception_mode, the FPU executes only store floating point instructions. if an FPop or a
load floating point instruction is fetched while the unit is in FPU_exception_mode, the ftt field of
the FSR will be updated to indicate *“sequence_error’, and the FPU will enter
FPU_exception_pending_mode. The instruction that caused the sequence_error is not entered
into the FQ.

The FPU retumns to FPU_execute_mode after the FQ has been emptied via STDFQ instructions,
that is, gneis 0.

C-11 ISP Descriptions C-11

Solbourne Computer, Inc.

while (FPU_execute_mode) (
if (FQ_front_done = 1) then (
if (fp_unimplemented = 1) then ({not implemented}
fp_exception ¢ 1; ftt & unimplemented FPop;

if (FQ_c = 0) then ({ {not finished}
fp_exception « 1; ftt & unfinished_FPop;
) else ({executed and finished}

cexc &« texc;
next;
if (cexc and TEM # 0) then ((floating-point trap}
fp_exception « 1; ftt « IEEE_Exception;
) else ({no floating-point trap}
aexc & aexc Or cexc;
if (FQ_single_result = 1) then
f{rd] & result;
if (FQ_double_result = 1) then
flrdE], £f[{rdO] & result;
if (FQ_extended_result = 1) then
f[rdEE]}, f([rdEO], f[rdOE] & result;
if (FQ_compare = 1) then
fecec & tfce;
dequeue_FQ;

)

next;

if (fp_exception = 1) then (
FPU_execute_mode « 0;
FPU_exception_pending_mode & 1

ISP Descriptions

Cc-12

Solbourne Computer, Inc.

C.8. Coprocessor instruction Execution

The CP can execute coprocessor operate (CPop) instructions concurrently with integer instruc-
tions and other CPops. Although the instruction set includes a “store CP double queue” instruc-
tion, the existence of the queue and the type of concurrency available in the coprocessor is
dependent on the coprocessor itself.

The FPU leaves FPU_exception_mode and enters FPU_execute_mode after the FQ has been
emptied (via execution of STDFQ instructions.)

execute_CP_instruction := (({(not specified}) ;

C.9. Traps

C-13 ISP Descriptions C-13

Solbourne Computer, Inc.

execute_trap := (
select_trap;
ET « 0; {(ignore asynchronous traps}
PS &« S;
annul « 0;
CWP ¢« (CWP - 1) mod NWINDOWS;{point to next window}
r[17] & PC; {preserve program counters}
r[18] &« nPC;
next;
S « 1; {set supervisor mode}
if (reset_trap = 0) then (
PC & TBR;
nPC « TBR + 4
) else (
reset_trap « 0;
PC « 0;
nPC « 4

select_trap := (

if (ET = 0 or reset_trap = 1) then
error_mode & 1

else if (instruction_access_exception = 1) then
tt « 00000001,

else if (illegal_instruction = 1) then
tt « 00000010,

else if (privileged_instruction = 1) then
tt « 00000011,

else if (fp_disabled = 1) then
tt « 00000100,

else if (cp_disabled = 1) then
tt « 00100100,

else if (window_overflow = 1) then
tt « 00000101,

else if (window_underflow = 1) then
tt « 00000110,

else if (mem_address_not_aligned = 1) then
tt « 00000111,

else if (fp_exception = 1) then
tt « 00001000,/

else if (cp_exception = 1) then
tt « 00101000,/

else if (data_access_exception = 1) then
tt « 00001001,

else if (tag_overflow = 1) then
tt « 00001010,

else if (trap_instruction = 1) then
tt « lzﬂticc_trap_type

else if (interrupt_level > 0) then
tt « 00012Dinterrupt_level

next;

trap « 0; {since the tt field has been set, reset the trap signal}

reset_trap « 0;

ISP Descriptions C-14

Solbourne Computer, Inc.

instruction_access_exception « 0;
illegal_instruction « 0;
privileged_instruction & 0;
fp_disabled « 0;
cp_disabled « 0;
window_overflow « 0;
window_underflow « 0;
mem_address_not_aligned « 0;
fp_exception « 0;
cp_exception « 0;
data_access_exception « 0;
tag_overflow « 0;
trap_instruction « 0;
interrupt_level « 0

check_interrupts := (
if (bp_reset_in = 1) then (
reset_mode & 1
) else if (ET = 1 and (bp_IRL = 15 or bp_IRL > PIL)) then (
trap « 1;
interrupt_level « bp_ IRL

C-15 ISP Descriptions C-15

Solbourne Computer, Inc.

C.10. Instruction Definitions

This section contains the ISP definitions of the SPARC architecture instructions. These comple-
ment the instruction descriptions in Appendix B, Instruction Descriptions.

C.10.1. Load Instructions

C-16 ISP Descriptions C-16

Solbourne Computer, Inc.

if ((LDF or LDDF or LDFSR) then (
if (EF = 0 or bp_FPU_present = 0) then (
trap ¢« 1; fp_disabled « 1
) else if (FPU_exception_mode = 1) then (
ftt « sequence_error;
FPU_exception_mode « 0 ;
FPU_exception_pending_mode &« 1 ;
)
if ((LDC or LDDC or LDCSR) and (EC = 0 or bp CP_present = 0)) then (
trap « 1; cp_disabled « 1) ;
next;
if (trap = 0) then (
if (LDD or LD or LDSH or LDUH or LDSB or LDUB
or LDDF or LDF or LDFSR or LDDC or LDC or LDCSR) then (
address « r(rsl] + (if i=0 then r([rs2] else sign_extend(simml3));
addr_space « (if (5 = 0) then 10 else 11)
) else if (LDDA or LDA or LDSHA or LDUHA or LDSBA or LDUBA) then (
if (5 = 0) then (
trap « 1; privileged_instruction « 1
)
address & r(rsli] + r(rs2j;
addr_space ¢ asi

)z
next;
if (trap = 0) then (
if (((LDD or LDDA or LDCF or LDDC) and address<2:0> # 0) or
((LD or LDA or LDF or LDFSR or LDC or LDCSR) and address<l:0> # 0) or
((LDSH or LDSHA or LDUH or LDUHA) and address<0> # 0)) then (
trap « 1; mem_addr_not_aligned « 1

)i
next;
if (trap = 0) then (
data ¢« memory_read(addr_space, address);
MAE « bp_memory_exception;
next;
if (MAE = 1) then (
trap « 1l; data_access_exception « 1
) else (
if (LDSB or LDSBA or LDUB or LDUBA) then (
if (address<1:C> = 0) byte &« data<31:24>
else if (address<l:0> 1) byte « data<23:16>
else if (address<1:0> = 2) byte &« data<l5:8>
else if (address<l:0> 3) byte & data<7:0>;

next;
if (LDSB or LDSBA) then
word0 « sign_extend_byte (byte)
else
word0 & zero_extend_byte (byte)
) else if (LDSH or LDSHA or LDUB or LDUHA) then (

if (address<1:0> = 0) halfword « data<31:16>
else if (address<l1:0> = 2) halfword « data<l5:0>;
next;

C-17 ISP Descriptions C-17

Solbourne Computer, Inc.

if (LDSH or LDSHA) then
word0 « sign_extend_halfword(halfword)
else
word0 ¢ zero_extend_ halfword(halfword)
) else
word0 « data

)}z
next;
if (trap = 0) then (
if (rd # 0 and (LD or LDA or LDSH or or LDSHA or LDUHA or LDUH or LDSB or LDSBA or 1l
r{rd] & word0
else if (((rd and 111102) # 0) and (LDD or LDDA)) then
r(rd and 111102] « word0
else if (LDF) then
f(rd] & word0
else if (LDFSR) then (
wait_for FAUs_to_complete; {implementation-defined}
FSR & word0)
else if (LDC) then
c(rd] & word0
else if (LDCSR) then
CSR ¢ word0
)2
next;
if (trap = 0 and (LDD or LDDA or LDDF or LDDC)) then (
wordl & memory_read(addr_space, address + 4);
MAE ¢« bp_memory_exception;
next;
if (MAE = 1) then |
trap « 1; data_access_exception ¢« 1)
else if (LDD or LDDA) then
r{rd or 1] &« wordl
else if (LDDF) then
f(rd or 1] & wordl
else if (LDDC) then
clrd or 1] « wordl

C-18 ISP Descriptions C-18

Solbourne Computer, Inc.

C.10.2. Store Instructions

C-19 ISP Descriptions C-19

Solbourne Computer, Inc.

if ((STF or STDF or STFSR or STDFQ) and (EF = 0 or bp FPU_present = 0)) then (
trap « 1; fp disabled « 1) ;
if ((STC or STDC or STCSR or STDCQ) and (EC = 0 or bp CP_present = 0)) then (
trap ¢« 1; cp_disabled « 1) ;
if (trap = 0) then (:
if (STD or ST or STH or STB or STF or STDF or STFSR or STDFQ or STCSR or STC or STDC o
address « r(rsl] + (if i=0 then r([rs2] else sign_extend(simml3));
addr_space ¢ (if 5=0 then 10 else 11)
) else if (STDA or STA or STHA or STBA) then (
if (S = 0) then (
trap & 1; privileged_instruction « 1
) else (
address & rlrsl] + r(rs2];
addr_space & asi;

):
next;
if (trap = 0) then (
if (STD or STDA or STDF or STDFQ or STDC or STDCQ) then (
if (address<2:0> # 0) then
trap « 1; mem_addr_not aligned « 1)
else if (ST or STA or STF or STFSR or STC or STCSR) then (
if (address<1:0> # 0) then
trap ¢ 1; mem_addr_not_aligned « 1)
else if (STH or STHA) then {(
if (address<0> # 0) then (
trap & 1; mem_addr_not_aligned « 1)

):
next;
if (trap = 0) then (
if (STDF) then (
byte_mask « 1111,; dataC & £[rd and 1110,])
else if (STDFQ) then (
byte_mask ¢« 1111,; datal « FQ.ADDR)
else if (STDC) then (
byte_mask ¢ 1111,; data0 & c[rd and 1110,])
else if (STDCQ) then {(
byte_mask « 1111,; dataC « CQ.ADDR)
else if (STD or STDA) then (
byte mask e 1111,; catal « rird and 1110,])
else if (ST or STA) then)
byte_mask = 1111,; datal = r[rdl)
else if (STH or STHA) then (
if (address<1:0> = 0) then (
byte_mask & 1100,; dats0 « shift_left_logical(r{rd], 16))
else if (address<l1:0> = 2) zhen {(
byte_mask « 001l,; date0 « rrd]))
else if (STB or STBA) then (
if (address<1:C> = 0) then (
byte_mask « 1000,; date0 « shift_left_logical(r[rd], 24))
else if (address<1:0> = 1) zhen (
byte_mask ¢ 0100,; data0 « shift_left logical(r[rd], 16))

C-20 ISP Descriptions C-20

Solbourne Computer, Inc.

else if (address<l1:0> = 2) then (

byte_mask & 0010,; data0 « shift_left_logical(r[rd], 8))
else if (address<1:0> = 3) =-hen (

byte_mask « 0001,; data0 & r(rd])

):
next;
if (trap = 0) then {(
memory write (addr_space, address, byte_mask, data0);
MAE ¢ bp memory exception
next;
if (MAE = 1) then (
trap ¢« 1; data_access_exception « 1

):
next;
if (trap = 0) then (
if (STD or STDA) then datal ¢ r(rd or 1)
else if (STDF) then datal & f{rd or 1]
else if (STDFQ) then (
datal <- FQ.INSTR;
dequeuve_FQ;
next;
if (gne = 0) then (
FPU_exception_mcde « 0 ;
FPU_execute_mode ¢ 1
)
)
else if (STDC) then datal ¢ clrd or 1)
else if (STDCQ) then datal ¢ CQ.INSTR
next;
memory_ write(addr_spece, address + 4, 1111,, datal);
MAE « bp_memory_exception;
next;
if (MAE = 1) then (

trap « 1; data_access_exception & 1

C-21 ISP Descriptions c-21

Solbourne Computer, Inc.

C.10.3. Atomic Load-Store Unsigned Byte Instructions

if (LDSTUB) then (
address ¢ r(rsl]) + (if i=0 then r(rs2] else sign_extend(simml3));
addr_space ¢« (if (S = 0) then 10 else 11)
) else if (LDSTUBA) then (
if (S = 0) then (
trap « 1; privileged_instruction « 1
)
address ¢« rirsl) + rirs2];
addr_space & asi
):
next;
if (trap = 0) then (
pb_retain_bus « 1;
next;
data ¢ memory_read(addr_space, address);
MAE « bp_memory_exception;
next;
if (MAE = 1) then (
trap & 1; data_access_exception « 1
) else (
if (address<1:C> = 0) word & zero_extend_byte(data<31:24>)
else if (address<l:0> = 1) word « zero_extend byte(data<23:16>)
else if (address<l:0> = 2) word & zerc_extend_byte(data<l15:8>)
else if (address<l1:0> = 3) word & zero_extend_byte(data<7:0>);
next;
if (rd # 0) then r{rd] & word

)2

next;

if (trap = 0) then (
if (address<1:0> = 0) then (byte_mask « 1000,)
else if (address<1:0> = 1) then (byte_mask & 0100,)
else if (address<1:0> = 2) then (byte_mask « 0010,)
else if (address<1:0> = 3) then (byte_mask « 0001,)
next;

memory_write(addr_space, address, byte_mask, FFFFFFFF,¢);
MAE & bp_memory exception;
next;
pb_retain_bus « O0;
if (MAE = 1) then (
trap « 1; data_access_exception & 1

C-22 ISP Descriptions c-22

Solbourne Computer, Inc.

C.10.4. Swap r Register with Memory Instructions

if (SwaP) then (
address « r(rsl) + (if i=0 then r(rs2] else sign_extend(simml3));
addr_space &« (if (s = 0) then 10 else 11)
) else if (SWAPA) then (
if (s = 0) then (
trap « 1; privileged_instruction « 1
)
address ¢ rrsl) + r(rs2];
addr_space « asi
);
next;
if (trap = 0) then (
temp « r(rd];
pb_retain_bus « 1;
next;
word « memory_read(addr_space, address);
MAE & bp_memory_exception;
next;
if (MAE = 1) then (
trap « 1; data_access_exception « 1
) else (
if (rd # 0) then r(rd] & worc

):
next;
if (trap = 0) then (
memory_write (addr_space, address, 1111,, temp);
MAE « bp_memory_exception;
next;
pb_retain_bus « 0;
if (MAE = 1) then (
trap « 1; data_access_exception « 1

c-23 ISP Descriptions Cc-23

C.10.5.

C.10.6.

C-24

Solbourne Computer, Inc.

Add Instructions

operand2 := if i=0 then r[rs2] else sign_extend(simml3);

if (ADD or ADDcc) then
result « r{rsl] + operand2;
else if (ADDX or ADDXcc) then
result ¢« r{rsl] + operand2 + C;
next;
if (rd # 0) then
r(rd] & result;
if (ADDcc or ADDXcc) then (
N & result<3l>;
2 & 1f result=0 then 1 else.O;
V &« (r[rsl)<31> and operand2<:1> and not result<31>) or

(not r{rsl]<31> and not operand2<31> and result<31>);

C &« (r[rsl]<31> and operand2<:l>) or
(not result<31> and (r[rsl])<31> or operand2<31>))

Tagged Add Instructions

operand2 := if i=0 then r(rs2]) else sign_extend(simml3);

result & r[rsl] + operand2;
next;
temp_v & (r{rsl)<31> and operand2<31> and not result<31>) or
(not r([rsl)<31> and not operand2<31> and result<31>) or
(r{rsl]<1:0> # 0 or operand2<1:0> # 0);
next;
if (TADDccTV and temp_v = 1) then (
trap « 1; tag_overflow « 1
) else (
N & result<3l>;
2 &« if result=0 then 1 else 0;
V & temp_v;
C & (r[rsl)<31> and operand2<Z1>) or
(not result<31> ancd (rirsl])<31> or operand2<31>));
if (rd # 0) then
r(rd] & result;

ISP Descriptions

C-24

Solbourne Computer, Inc.

C.10.7. Subtract Instructions

operand2 := if i=0 then r([rs2] else sign_extend(simml3);

if (SUB or SUBcc) then
result ¢« rlrsl) - operand2;
else if (SUBX or SUBXcc) then
result & r([rsl] - operand2 - C;
next;
if (rd # 0) then
r{rd] & result;
if (SUBcc or SUBXcc) then (
N &« result<3l>;
2 ¢ if result=0 then 1 else 0;
V « (r[rsl)]<31> and not operand2<31> and not result<31l>) or
(not r{rsl)}<31> and operand2<31> and result<3l>);
C « (not r[rsl)<31> and operard2<31>) or
(result<31> and (not r(rsl]<31> or operand2<31>))

C.10.8. Tagged Subtract Instructions

operand2 := if i=0 then r(rs2] else sign_extend(simml3);

result & r(rsl) - operand2;
next;
temp_v &« (r{rsl]<31> and not operand2<31> and not result<31>) or
(not r[rsl]<31> and operand2<31> and result<31>) or
(r[rsl]<1:0> # 0 or operand2<l:0> # 0);
next;
if (TSUBccTV and temp_v = 1) then (
trap « 1; tag_overflow « 1
) else (
N & result<3l>;
2 « if result=C then 1 else 0;
V & temp_v;
C « (not r[rsl)<31> and operand2<31>) or
(result<31> and (not ri{rsl)<31> or operand2<31>));
if (rd # 0) then
r(rd] & result;

C-25 ISP Descriptions C-25

Solbourne Computer, Inc.

C.10.9. Multiply Step Instruction

operandl := (N xor V)Dr[rsl]<31:1>;
operand2 := (
if (¥<0> = 0) then O
else if (i = 0) then r(rs2] else sign_extend(simml3)

result ¢ operandl + operand2;
Y & rlrs1]<0>[Jy<31:1>;
next;
if (rd # 0) then
r{rd] & result;
N & result<3l>;
2 « if result=0 then 1 else 0;
V & (operandl<31> and operand2<31> and not result<31>) or
{not operand1<31> and not operand2<31> and result<31>);
C & (operandl<31> and operand2<31>) or
(not result<31> and (operandl<31> or operand2<31>))

C.10.10. Logical Instructions

C-26

operand2 := if i=0 then r(rs2] else sign_extend(simml3);

if (AND or ANDcc) then result & rlrsi] and operand2

else if (ANDN or ANDNcec) then result « r(rsl] and not operand2

else if (OR or ORcc) ther result & rirsl] or operand2
else if (ORN or ORNcc) then rescit & rirsl] or not operand2
else if (XOR or XORcc) then resuit « r(rsl] xor operand2

else if (XNOR or XNORcc) then resull & r{rsl] xor not operand2;

next;
if (rd # 0) then r(rd] & result;

if (ANDcc or ANDNcc or ORcc or ORNce or XORcc or XNORce) then (

N & result<3l>;

2 ¢« if result=0 then 1 else 0;
Ve 0;

Ce 0

ISP Descriptions

C-26

Solbourne Computer, Inc.

C.10.11. Shift Instructions

shift_count := if i=0 then r([rs2]<4:0> else shcnt;

if (SLL and rd # 0) then

r[rd] & shift_left_logical(r[rsl], shift_count) :
else if (SRL and rd # 0) then

r{rd] ¢ shift_right_logical(r[rsl], shift_count)
else if (SRA and rd # 0) then

r(rd] & shift_right_arithmetic(r([rsl], shift_count)

C.10.12. SETHI Instruction

if (xd # 0) then (
r{rd]<31:10> &« imm22;
r[(rd)<9:0> « 0

C.10.13. SAVE and RESTORE Instructions

operand2 := if i=0 then r[rs2] else sign_extend(simml3);

if (SAVE) then (
new_cwp ¢« (CWP - 1) mod NWINDOWS;
next;
if ((WIM and 2PeW_CWP) x 0) then (
trap ¢« 1; window_overflow « 1
) else (
result « r[rsl] + operand2; {operands from old window}
CWP ¢« new_cwp
)
) else if (RESTORE) then (
new_cwp ¢« (CWP + 1) mod NWINDOWS:
next;
if ((WIM and 27®%_C¥P) % () then (
trap « 1; window_underflow « 1
) else (
result ¢« r[rsl] + operand2; {operands from old window}
CWP ¢ new_cwp
)
)i

next;
if (trap = 0 and rd # 0) then
r[rd] & result {destination in new window}

c-27 ISP Descriptions Cc-27

Solbourne Computer, Inc.

C.10.14. Branch on Integer Condition Instructions

C-28

eval _icc := (

if (BNE and (2 = 0)) then 1 else 0;
if (BE and (2 = 1)) then 1 else 0;
if (BG and ((2 or (N xor V)) = 0)) then 1 else 0;
if (BLE and ((2 or (N xor V)) = 1)) then 1 else 0;
if (BGE and ((N xor V) = 0)) then 1 else 0;
if (BL and ((N xor V) = 1)) then 1 else 0;
if (BGU and (C = 0 and 2 = 0)) then 1 else 0;
if (BLEU and (C =1 or 2 = 1)) then 1 else 0;
if (BCC and (C = 0)) then 1 else 0;
if (BCS and (C = 1)) then 1 else 0;
if (BPOS and (N = 0)) then 1 else 0;
if (BNEG and (N = 1)) then 1 else 0;
if (BVC and (V = 0)) then 1 else 0;
if (BVS and (V = 1)) then 1 else 0;
if (BA) then 1;
if (BN) then 0
)
PC ¢« nPC;

if (eval_icc) = 1 then (
nPC « PC + sign_extend(dispZZDOOz);

if

(BA and a = 1) then
annul « 1

) else (
nPC & nPC + 4;

if

(a = 1) then
annul « 1

ISP Descriptions

C-28

Solbourne Computer, Inc.

C.10.15. Floating-Point Branch on Condition Instructions

C-29

E := if fcc=0 then 1 else 0;
L := if fcc=1 then 1 else 0;
G := if fcc=2 then 1 else 0;
U := if fcc=3 then 1 else 0;
eval _fcc := (
if (FBU and U)) then 1 else 0;
if (FBG and G) then 1 else 0:;
if (FBUG and (G or U) then 1 else 0;
if (FBL and L) then 1 else 0;
if (FBUL and (L or U)) then 1 else 0;
if (FBLG and (L or G)) then 1 else 0;
if (FBNE and (L or G or U)) then 1 else 0;
if (FBE and E)) then 1 else 0;
if (FBUE and (E or U)) then 1 else 0;
if (FBGE and (E or G)) then 1 else 0;
if (FBUGE and (E or G or U)) then 1 else 0;
if (FBLE and (E or L)) then 1 else 0;
if (FBULE and (E or L or U)) then 1 else 0;
if (FBO and (E or L or G)) then 1 else 0;
if (FBA) then 1;
if (FBN) then 0
)
PC & nPC;

if (eval_fcc = 1) then (
nPC « PC + sign_extend(disp22[] 00,);
if (FBA and (a = 1)) then

annul &« 1

) else (
nPC &« nPC + 4;
if (a = 1) then

annul « 1

ISP Descriptions

C-29

Solbourne Computer, Inc.

C.10.16. Coprocessor Branch on Condition Instructions

CO0 := if bp CP_cc<1:0>=0 then 1 else 0;
Cl := if bp_CP_cc<l:0>=1 then 1 else 0;
1 else 0;
1 else 0;

C2 := if bp_CP_cc<1:0>=2 then
€3 := if bp_CP_cc<1:0>=3 then

eval bp CP_cc := (
if (CB3 and C3)) then 1 else 0;
if (CB2 and C2) then 1 else 0;
if (CB23 and (C2 or C3) then 1 else 0;
if (CBl1 and Cl) then 1 else 0;
if (CB13 and (Cl or C3)) then 1 else 0;
if (CB12 and (Cl or C2)) then 1 else 0;
if (CB123 and (Cl or C2 or C3)) then 1 else 0;
if (CBO and C0)) then 1 else 0O;
if (CBO3 and (CO or C3)) then 1 else 0;
if (CB02 and (CO or C2)) then 1 else 0;
if (CB023 and (CO or C2 or C3)) then 1 else 0;
if (CBOl and (CO or Cl)) then 1 else 0;
if (CBO13 and (CO or Cl or C3)) then 1 else 0;
if (CBO12 and (CO or Cl or C2)) then 1 else 0;
if (CBA) then 1;
if (CBN) then 0O

PC « nPC;
if (eval_bp _CP_cc = 1) then (
nPC « PC + sign_extend(disp22[]00,):
if (CBA and (a = 1)) then
annul « 1
) else (
nPC & nPC + 4;
if (a = 1) then
annul &« 1

C.10.17. CALL Instruction

C-30

r[15) « PC;
PC & nPC;
nPC « PC + disp30[J00,

ISP Descriptions

C-30

Solbourne Computer, Inc.

C.10.18. Jump and Link Instruction

jump_address ¢ rrsl) + (if i=0 then r([rs2] else sign_ext (simml3));
next;
if (jump_address<1:0> # 0) then (
trap « 1;
mem_address_not_aligned « 1
) else {(
if (rd #0) then r(rd) &« PC;
PC & nPC;
nPC & jump_address

C.10.19. Return from Trap Instruction

new_cwp ¢ (CWP + 1) mod NWINIOWS;
address ¢ r([rsl) + (if i=0 then r(rs2) else sign_extend(simml3));
next;
if (ET) then (
trap « 1;
illegal_instruction & 1
) else if (S = 0) then {
trap « 1;
privileged_instructicn « 1
) else if ((WIM and 2M€¥_C%P) 2 0) then (
trap « 1;
window_underflow « 1
) else if (address<1:0> # 0) ther (
trap « 1;
mem_address_not_aligred « 1
) else (
ET « 1;
PC « nPC;
nPC « address;
CWP & new_cwp;
S &« ps

C-31 ISP Descriptions C-31

Solbourne Computer, Inc.

C.10.20. Trap on integer Condition Instructions

trap_eval icc := (
if (TNE and (Z = 0)) then 1 else 0;
if (TE and (Z = 1)) then 1 else 0:
if (TG and ((2 or (N xor V)) = 0)) then 1 else 0;
if (TLE and ((Z or (N xor V)) =)) then 1 else 0;
if (TGE and ((N xor V) = 0)) then 1 else 0;
if (TL and ((N xor V) = 1)) then 1 else 0; .
if (TGU and (C = 0 and 2 = 0)) then 1 else 0;
if (TLEU and (C =1 or 2 = 1)) then 1 else 0;
if (TCC and (C = 0)) then 1 else 0;
if (TCS and (C = 1)) then 1 else 0;
if (TPOS and (N = 0)) then 1 else 0;
if (TNEG and (N = 1)) then 1 else 0;
if (TVC and (V = 0)) then 1 else 0O;
if (TVS and (V 1)) then 1 else 0;
if (TA) then 1;
if (TN) then 0

L]

trap_number := r[rsl] + (if i=0 then r{rs2] else sign_ext(simml3));

if (Ticc) then (
if (trap_eval_icc = 1) then (
trap « 1;
trap_instruction « 1;
ticc_trap_type ¢« trap_number <6:0>
) else (
PC & nPC;
nPC ¢ nPC + 4

C-32 ISP Descriptions C-32

Solbourne Computer, Inc.

C.10.21. Read State Register Instructions

if ((RDPSR or RDWIM or RDTBR) and § = 0) then (

trap « 1;
privileged_instruction « 1
) else if (rd # 0) then (
if (RDY) then
r(rd] « Y
else if (RDPSR) then
r(rd] « PSR
else if (RDWIM) then
r[rd] « WIM
else if (RDTBR) then
r{rd] « TBR;

C.10.22. Write State Register Instructions

operand2 := if i=0 then r(rs2} else sign_extend(simml3);

result := r(rsl] xor operand2;

if (WRY) then
Y’ & result
else if (WRPSR) then (
if (result<4:0> 2 NWINDOWS) then (
trap « 1;
illegal_instruction « 1
) else if (S = 0) then (
trap « 1;
privileged_instruction &« 1
) else
PSR’ ¢ result
) else if (WRWIM) then (
if (s = 0) then (
trap « 1;
privileged_instructicn « 1
) else
WIM® & result
) else if (WRTBR) then
if (s = 0) then (
trap « 1;
privileged_instruction « 1
) else
TBR' & result

C-33 ISP Descriptions

C-33

Solbourne Computer, Inc.

C.10.23. Unimplemented Instruction

trap « 1;
illegal_instruction « 1

C.10.24. Instruction Cache Flush Instruction

address := r(rsl] + (if i=0 then r[rs2] else sign_gxﬁend(simml3));

if (IU_cache_present) then

flush_ IU cache_word(address) {implementation-dependent}
else if (bp_I_cache_present) then (

trap « 1;

illegal_instruction ¢ 1

C-34 ISP Descriptions C-34

Solbourne Computer, Inc.

C.11. Floating-Point Operate Instructions
The mutltiple precision FPops use the following notation to indicate f register alignment:

double precision
rsiE := rs1<4:1>[0,; rsl0 := rsl<4:15[]1,;
rs2E := rs2<4:1>[J0,; rs20 := rs2<4:1>[01,7
rdE := rd<4:1>[J0,; rd0 := rd<4:1>[]1,

extended precision
rslEE := rsl1<4:2>[]00,; rslEO := rsl<4:2>[J01,; rs1OE := rs1<4:2>[]10,;
rs2EE := rs2<4:2>[J00,; rs2E0 := rs2<4:2>[J01,; rs20E := rs2<4:2>[]10,;
rdEE := rd<4:2>[J00,; rdEO0 := rd<4:2>[J01,; rdoE := rd<4:2>[J10,

Most of the floating-point routines defined below (or not defined since they are implementation-
dependent) return: (1) a single, double, or extended result, (2) a 5-bit exception vector (texc)
similar to the cexc field of the FSR, or a 2-bit condition code vector (tfcc) identical to the fec field
of the FSR; and (3) a completion status bit (¢) which indicates whether the arithmetic unit was
able to complete the operation.

C.11.1. Convert integer to Floating-Point Instructions

if (FiTOs) then

result, texc, ¢ « cvt_integer_to_single(f[rs2])
else if (FiTOd) then

result, texc, ¢ « cvt_integer_to_double(f[rs2])
else if (FiTOx) then

result, texc, ¢ « cvt_integer to_extended(f[rs2])

C.11.2. Convert Floating-Point to Integer

if (FsTOi) then
result, texc, ¢ « cvt_single_to_integer (f(rs2])
else if (FdTOi) then
result, texc, c « cvi_double_to_integer(f[rs2E][Jf[rs20])
else if (FxTOi) then
result, texc, ¢ « cvi_extended_to_integer (f[rs2EE}[Jf [rs2EO][Jf [rs20E]) ;

C-35 ISP Descriptions C-35

C.11.3.

C.11.4.

C.11.5.

C-36

Solbourne Computer, Inc.

Convert Between Floating-Point Formats Instructions

if (FsTod) then
result, texc, ¢ « cvt_single_to_double(f[rs2])
else if (FsTOx) then
result, texc, ¢ « cvt_single_to_extended(f(rs2])
else if (FdTOs) then
result, texc, ¢ « cvt_double_to_single (f[rs2E][]f[rs20])
else if (FdTOx) then
result, texc, c & cvt_double_to_extended(f[rsZE]Uf[tsZO])
else if (FxTOs) then
result, texc, ¢ ¢ cvt_extended_to_single(f[rs2E][Jf[rs20][]Jf [rs20E])
else if (FxTOd) then
result, texc, ¢ & cv:_extended_to_double(f[rsZEE]Uf[rsZEO]Df[rsZOE])

Floating-Point Move Instructions

if (FMOVs) then

result « f[rs2]
else if (FNEGs) then

result « f[rs2] xor 80000000,
else if (FABSs) then

result & f[rs2] and TFFFFFFF,q;
texc « 0;
Ce1

Floating-Point Square Root Instructions

if (FSQRTs) then
result, texc, c & sqgrt_single(f({rs2))
else if (FSQRTd) then
result, texc, c « sgrt_double (f[rs2E][Jf [rs20])
else if (FSQRTx) then
result, texc, ¢ ¢ sqrt_extended (f [rs2EE][Jf [rs2E0][]Jf [rs20E])

ISP Descriptions

C-36

Solbourne Computer, Inc.

C.11.6. Floating-Point Add and Subtract Instructions

if (FADDs) then

else

else

else

else

else

if

if

if

if

if

result,
(FSUBs)
result,
(FADDd)
result,
(FSUBd)
result,
(FADDx)
result,

(FSUBX)
result,

texc, ¢ « add_single(f(rsl], f(rs2])

then

texc, ¢ « sub_single(f([rsl), flrs2])

then .
texc, ¢ « add_double(f[rle]Df[rle], f(rsZE]Df[rsZO])
then

texc, ¢ & sub_double(f[rle}Df[rle], f[rs2E]Df[rs20])
then :

texc, ¢ « add_extended(f[rslEE][Jf[rs1EO][Jf[rs10E],
flrs2EE)[Jf irs2E0)[Jf irs20E))

then

texc, ¢ « sub_extended (f[rs1EE][]f [rs1EO][Jf [rs10E],
flrs2EE][]f [rs220}[]f {rs2CE])

C.11.7. Floating-Point Multiply and Divide Instructions

if (FMULs) then

else

else

else

else

else

if

if

if

if

if

result,
(FDIVs)
result,
(FMULd)
result,
(FDIVd)
result,
(FMULx)
result,

(FDIVx)
result,

texc, ¢ « mul_single(f(rsl], flrs2])

then

texc, ¢ & div_single(flrsl], f[rs2])

then

texc, C & mul_double(f[rle]DfIrle], f[rsZE]Df[rs20])
then

texc, ¢ « div_double(f(rslE][Jf[rs10], f[rs2E)[Jf(rs20))
then

texc, ¢ « mul_extended (f|rs1EE][Jf [rs1EO][Jf [rs10E],
f(rs2eEE)[Jf [rs22C;[Jf [rs2CE])

then

texc, ¢ « div_extended (f[rs1EE])[Jf [rs1EO][]Jf [rs1OE],
f(rs2ez)[Jf [rs2E0i[]f [rs20E])

C.11.8. Floating-Point Compare Instructions

if (FCMPs) then
tfcc, texc, ¢ & compare_single(f(rsl], f[rs2])

else

else

else
else

else

C-37

if

if

if

if

if

(FCMPd)

then

tfce, texc, ¢ « compare_double(f[rle]Df[rle], f[rsZE]Df[rsZO])

(FCMPx)

then

tfce, texc, c « compare_extended (f[rs1EE][Jf [rs1EO][]f [rs10E],

flrs2EE}[Jf [rs2ECi[]£ [rs20E])

{(FCMPEs) then

tfcc, texc, ¢ « compare_e_single(f(rsl), f(rs2]);

(FCMPEd) then

tfece, texc, c &« ccmpa:e-e_écuble(f[rle]Df[rle], f[rsZE]Df[rs20])
(FCMPEx) then

tfcec, texc, ¢ & compare_e_extended(f[rleE]Df[rleO]DflrleE],

flrs2EE][Jf {rs2E0}[Jf (rs20E))

ISP Descriptions C-37

APPENDIX D: SOFTWARE CONSIDERATIONS |

D.1. Introduction

This appendix describes how software can use the SPARC architecture effectively. it describes
assumptions that compilers may make about the resources available, and how compilers can use
them. It does not discuss how the operating system may use the architecture.

How to use registers is typically a very important resource allocation problem for compilers. The
SPARC architecture provides windowed registers (in, out, local), global registers, and floating-
point registers.

D.1.1. Inand Out Registers

The in and out registers are used primarily for passing parameters to subroutines and receiving
results from them, and for keeping track of the memory stack. When a routine is called, the
caller’s outs become the calliee's ins.

One of the caller's out registers is used as the stack pointer, SP. It points to an area in which the
system can store r16 through r37 when the register file overflows. it is essentlal that this regis-
ter have the correct value when the corresponding underflow trap occurs so that the
reglister window can be reloaded. It is also important that this register be kept up to date with
register window changes, and that the overhead for doing calls be kept as small as possible.
Since SP is in one of the caller's out registers, it can be used by the callee as its FP, and the cal-
lee can use the SAVE instruction to set its own SP from its FP.

Up to six parameters* may be passed by placing them in the out registers; additional parameters
are passed in the memory stack. When the callee is entered, the parameters passed in registers
are now in its corresponding ins. One of the other two infout registers is used as the caller's old
SP, which is also the current routine’s frame pointer, FP (see below). The other is used to pass
the subroutine’s return address. With the exception of SP, out registers may be used as tem-
poraries between subroutine calls.

If a routine is passed more than six parameters, the remainder are passed on the memory stack.
if, on the other hand, it is passed fewer than six parameters, it may use the other parameter
registers as if they were locak. If a register parameter has its address taken, it must be stored
on the memory stack, and used from there for the lifetime of the pointer (or for the extent of the
procedure, if the compiler cannot figure this out). A function returns its value by writing it into its
ins (which are the caller’'s outs).

D.1.2. Local Registers

The locak are used for automatic variables and most temporaries. The compiler may also copy
~ parameters out of the memory stack into the locak and use them from there. If an automatic
variable has its address taken, it must be stored in the memory stack for the lifetime of the

1+ Six is more than adequate, since the overwhelming majority of procedures in system code — at least 97%
measured statically, according to the studies cited by Weicker (Weicker, R.P., Dhrystone: A Synthetic Systems
Programming Benchmark, CACM 27:10, October 1984) — take fewer than six parameters. The average number of
parameters, measured statically or dynamically, is no greater than 2.1 in any of these studies.

D-1 Software Considerations D-1

Solbourne Computer, Inc.

pointer (or for the extent of the procedure, if the compiler cannot figure this out).

D.1.3. Global Registers

Unlike the ins, locak, and outs, the globak are not part of any register window, but are a single
set of registers with global scope, like the registers of a more traditional architecture. This means
that if they are used on a per-procedure basis, they must be saved and restored.

The global registers can be used for temporaries and for global variables or pointers, either visi-
ble to the user or maintained as part of the program’s execution environment. For instance, one
could by convention address all global scalars by offsets from register r7. This would allow 2'3
bytes of global scalars, and would enable access to these variables faster than if they were only
accessible via absolute addresses. This is because absolute addresses longer than 13 bits
require a SETHI instruction.

D.1.4. Floating-Point Registers

There are thirty-two 32-bit floating-point registers. They are accessed differently from the other
registers and cannot be moved to or from anything but memory. Like the global registers, they
must be managed by software. Compilers probably will not pass parameters in them, but will
use them for user variables and compiler temporaries. Across a procedure call, either the caller
saves the live floating-point registers, or the callee saves the ones it uses and subsequently
restores them.

D-2 Software Considerations D-2

Solbourne Computer, Iné.

31 (i7) return address

30 (FP) frame pointer

re9 (i5) incoming param reg 5
in reg8 (id4) incoming param reg 4

r27 (i3) incoming param reg 3
re6 (i2) incoming param reg 2
re5 (i) incoming param reg 1

re4 (i0) incoming param reg 0

re3 (17) local 7

re2 (i) local 6

rz1 (I5) local 5
local r20 (14) local 4

ri9 (13) local 3

rg (12) local 2

ri7 (1) local 1

ri6 (l0) local 0

ris (07) temp

ri4 (SP) stack pointer

ri3 (05) | outgoing paramreg 5
out ri2 (o4) | outgoing paramreg 4

ri1 (03) | outgoing paramreg 3

ri0 (02) | outgoing paramreg 2

¢°] (01) | outgoing paramreg 1

r8 (00) | outgoing paramreg 0

r7 (97) global 7

r6 (g6) global 6

r5 (g5) global 5
global r4 (04) global 4

r3 (g3) global 3

re (g2) global 2

r1 (a1) global 1

r0 (g0) 0

131 floating-point value
floating :
point

f0 floating-point value

D.2. The Memory Stack

Parameters beyond the sixth are passed on the stack. Parameters which must be addressable
are stored in the stack. Space is reserved on the stack for passing a one-word hidden parame-
" ter. This is used when the caller is expecting to be returned a C language struct by value; it gives
the address of stack space allocated by the caller for that purpose (see Section D.4). Space is
reserved on the stack for keeping the procedure’s in and local registers, should the register stack
overflow. Automatic variables which must be addressable are kept there, as are some compiler-
generated temporaries. These include automatic arrays and automatic records. Space is
reserved on the stack for saving floating-point registers across calls. Space on the stack may be

D-3 Software Considerations D-3

Solbourne Computer, Inc.

dynamically allocated using the alloca function from the C library. Automatic variables on the
stack are addressed relative to FP, while temporaries and outgoing parameters are addressed
relative to SP. When a procedure is active, its stack frame appears as in Figure D-2.

FP,old SP —»

D.3. Example Code

SP -

Previous Stack

PROGRAM STACK
Frame
Local stack space for addressable
automatics
Dynamically allocated stack space
Local stack space for compiler temporaries Current Stack
and saved floating-point registers Frame

Outgoing parameters past the sixth

6 words into which callee may store register
arguments

One-word hidden parameter (address
at which callee should store aggregate return value)

16 words in which to save in and local

registers
{

Stack Growth
(Decreasing Memory Addresses)

in the following example we assume the following pseudo-instructions are provided by the

assembler:

pseudo-instruction equivalent instruction
ret jmp %i7 + 8
retl! jmp %07 + 8

mov reg_or_imm, reg or %g0, reg_or_imm, reg

The following code fragment shows a simple procedure call with a value returned, and the pro-
cedure itself:

D-4

Software Considerations

D4

Solbourne Computer, Inc.

! CALLER:
! int 4; /* in register 8§17 */
! i1 =sum3(1, 2, 3);

mov 1, %00

mov 2, %ol

call sum3

mov 3, %02 ! last parameter in delay slot
mov %00, %17

! CALLEE:

! int sum3(a, b, ¢)

! int a, b, c¢; /* received %i0, 8%il and %i2 */
! {

! return a+b+c;

1

}

sum3
save 8sp, -(16*4), %sp ! setup new sp
add §%i0, %il, %17 ! compute sum in local
add %17, %i2, %17
ret
restore $17, 0, %00 ! move result into output reg, restore

Since “sum3” does not call any subroutines (i.e. it is a “leaf” routine) it can be recoded as:

sum3:
add %00, %01, %03 ! use %03 as a local
retl ! can’t use ret; use retl
add %02, %03, %ol

D.4. Functions Returning Aggregate Values

Some programming languages, including C, some dialects of Pascal, and Modula-2, allow the
user to define a function returning an aggregate value, such as a C struct or a Pascal record.
Since such a value may not fit into the registers, another value returning protocol must be
defined to return the result in memory. Reentrancy and efficiency considerations require that the
memory used to hold such a return value be allocated by the function’s caller. The address of
this memory area is passed as the one-word hidden parameter mentioned in the section The
Memory Stack in this appendix. Because of the lack of type safety in the C language, a function
should not assume that its caller is expecting an aggregate return value and has provided a valid
memory address. Thus some additional handshaking is required.

When a procedure expecting an aggregate function value is compiled, an UNIMP instruction is
placed after the delay-slot instruction following the call to the function in question. The immediate
field in this UNIMP instruction is the low-order twelve bits of the size in byles of the aggregate
~ value expected. When an aggregate-returning function is about to return its value in the memory
allocated by its caller, it first tests for the presence of this UNIMP instruction in its caller’s instruc-
tion stream. If it is found, then the hidden parameter is assumed to be valid, and the function
returns control to the location following the unimplemented instruction. Otherwise, the hidden
parameter is assumed not to be valid, and no value can be retumed. Conversely, if a scalar-
returning function is called when an aggregate value is expected, the function retums as usual,
executing the UNIMP instruction and causing a trap.

D-5 Software Considerations D-5

APPENDIX E: EXAMPLE INTEGER MULTIPLICATION AND
DIVISION ROUTINES

E.1. Introduction

This appendix contains routines a SPARC architecture system might use to perform integer mul-

tiplication and division.

In these examples, it is assumed that the assembler provides the following pseudo-instructions:

Pseudo Instruction

nop

Jmp

ret

ret/

mov reg_or_imm, neg
tstreg

neg reg

cmp reg, reg_or_imm
increg

incc reg

dec reg

deccc reg

Equivalent Instruction

sethi 0,%g0

Jjmpl address, %g0

Jmp %i7 +8

jmp %07 +8

or %g0, reg_or_imm, reg
subcce reg,%g0, %90
sub %g0, reg, reg

subcc reg, reg_or_imm, %g0
addreg, 1, reg
addccreg, 1, reg
subreg, 1, reg

subcc reg, 1, reg

It is also assumed that the assembler recognizes “/*..."/’-style comments, and “/* as the begin-
ning of a comment which extends to the end of the current line.

E-1 Example Integer Multiplication and Division Routines E-1

Solbourne Computer, Inc.

E.2. Signed Multiplication

E-2 Example Integer Multiplication and Division Routines

~
*

* % % % % % * * % %

* % ¥ * * %

Solbourne Computer, Inc.

Procedure to perform a 32-bit by 32-bit multiply.

Pass the multiplicand in %i0, anc the multiplier in %il.

The least significant 32 bits of the result are returned in %i0,
and the most significant in %il. :

This code has an optimization bujilt-in for short (less than 13-bit)
multiplies. Short multiplies recuire 26 or 27 instruction cycles, and
long ones require 47 to 51 instruction cycles. For two positive numbers
(the most common case) a long multiply takes 47 instruction cycles.

This code indicates that overflow has occurred by leaving the Z condition
code clear. The following call seguence would be used if you wish to
deal with overflow:

call .mul
nop ! (or set up last parameter here)
bnz overflow_code ! (or tnz to overflow handler)

Note that this is a Leaf routine; i.e. it calls no other routines and does
all of its work in the Out registers. Thus, the usual SAVE and RESTORE
instructions are not needed.

*/
.global .mul
.mul:
mov $00, %y ! muitiplier to Y register
andncc %00, Oxfff, %gl ! mask out lower 12 bits
be mul_shortway ! can do it the short way
andcc %g0, %g0, %04 ! zero the partial product and clear N and V conditions

! long multiply
1

mulscc %04, %01, %04 ! first iteration of 33
mulscc %04, %o0l, %04
mulscc %04, %o0l, %04
mulscc %04, %o0l, %c4
mulscc %04, %o0l, %04
mulscc %04, %o0l, %ot
mulscc %04, %cl, %ot
mulscc %04, %o0l, sci
mulscc %04, %01, %o4
mulscc %04, %cl, %o4
mulscc %04, %01, %04
mulscc $04, %ol, %ot
mulscc %04, %01, %04
mulscc %04, %01, %04
mulscc %04, %o0l, %04
mulscc %04, %o0l, %04
mulscc %04, %o0l, %04
mulscc %04, %o0l, %04
mulscc $04, %o0l, %04
mulscc %04, %o0l, %04
mulscc %04, %cl, %o4

Example Integer Multiplication and Division Routines E-3

Solbourne Computer, Inc.

mulscc 804, %ol, %oé

mulscc $04, %01, %04

mulsce %04, %ol, %04

mulsce %04, %ol, %04

mulscc %04, %o0l, %04

mulscc $04, %o0l, %04

mulscc %04, %01, %04

mulscc %04, %01, %04

mulscc %04, %o0l, %04

mulscec %04, %o0l, %04

mulsce $04, %o0l, %04 ! 32nd iteration
mulscc %04, %g0, %04 ! last iteration only shifts

1
! If %00 (multiplier) was negative, the result is:
! (%00 * %0l) + %0l * (2**32)

! We fix that here.
1]

tst %00

rd %y, %00

bge 1f

tst %00 ! for when we check for overflow

sub %04, %ol, %04 ! bit 33 and up of the product are in

-
! %c4, so we don’t have to shift %ol
! We haven’t overflowed if:

low-order bits are pcsitive and high-order bits are 0

!
! low-order bits are negative and nigh-order bits are -1
!
1

If you are not interested ir detecting overflow,
! replace the following few instructions with:

! 1: retl

! mov %04, %ol
!
1:
bge 2f ! if low-order bits were positive.
addcc %04, %g0, %ol ! rezurn most sig. bits of prod and set
! Z appropriately (for positive product)
retl ! leaf-routine return
subcc %04, -1, %g0 ! sex Z if high order bits are -1 (for negative product)
2:
retl ! leaf-routine return
nop
!
! short multiply
!
mul_shortway:
mulsce %04, %01, %04 ! first iteration of 13
mulscc %04, %o0l, %04
mulscc %04, %ol, %04
mulscc %04, %ol, %04
mulscc %04, %o0l, %04
mulscc %04, %o0l, %04

Exarhple Integer Multiplication and Division Routines E-4

mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc

rd
sll

srl
!

S04,
S04,
%04,
%04,
804,
%04,
%04,

fol,
fo0l,
%01,
%01,
%01,
tol,
$g0,

Sy, %05

%04,
%05,

12,
20,

Solbourne Computer, Inc.

%04
%04
%04
04
%04
L 1-14
%04

00
%05

! 12th iteration
! last iteration only shifts

! left shift middle bits by 12 bits
! right shift low bits by 20 bits

! We haven’t overflowed if:

! low-order bits are positive and high-order bits are 0

! low-order bits are negative and high-order bits are -1

! if you are not interested in detecting overflow,

! replace the following code with:

orcc
bge
sra

retl

subcc

retl
addcc

or
retl
mov

%05,

3f
%04,

%01,

%00,

20,

-1,

%c5S,

%04,

%00

%01

%04, ko0

ol

! merge for true product

! if low-order bits were positive.

! right shift high bits by 20 bits

! ans put into %ol

leaf-routine return

! set Z if high order bits are -1 (for
! negative product)

leaf-routine return
! se= 2 if high order bits are 0

Example Integer Multiplication and Division Routines

Solbourne Computer, Inc.

E.3. Unsigned Multiplication

E-6 Example Integer Multiplication and Division Routines

Solbourne Computer, Inc.

/*
* Procedure to perform a 32 by 32 unsigned multiply.
* Pass the multiplier in %00, and the multiplicand in %ol.
* The least significant 32 bits of the result will be returned in %&o0,
* and the most significant in %ol. ’
*

* This code has an optimizaticn built-in for short (less than 13 bit)
* multiplies. Short multiplies require 25 instruction cycles, and long ones
*

require 46 or 48 instruction cycles.

»

»

This code indicates that overflow has occured, by leaving the Z condition

* code clear. The following call seguence would be used if you wish to
* deal with overflow:

*

* call .umul

* nop ! (or set up last parameter here)

* bnz overflow_code ! (or tnz to overflow handler)

* Note that this is a Leaf routine; i.e. it calls no other routines and does
* all of its work in the Out registers. Thus, the usual SAVE and RESTORE
* instructions are not needed.

*x/
.global .umul
.umul:
or %00, %01, %04 ! logical or of multiplier and multiplcand
mov %00, %y ! multiplier tec Y register
andncc %04, Oxfff, tc> ! masx out lower 12 bits
be mul_shortway ! can co it the short way
andcc %cC, %g0, %04 ! zero the partial product and clear N and V conditions

1
! long multiply

!

mulscc %o4, %o0l, %04 ! firs. iteration of 33
mulscc %04, %ol, %o4
mulscc %o4, %o0l, %04
mulscc %o4, %ol, %04
mulscc %04, %o0l, %o4
mulscc %o4, %ol, %04
mulscc %04, %o0l, %04
mulscc %04, %o0l, %oé
mulscc %04, %01, %04
mulscc %04, %o0i, %o4
mulscc %04, %ol, %04
mulscc %04, %o0l, %04
mulscc %04, %o0l, %04
mulscc %04, %o0l, %04
mulscc %04, %o0l, %04
mulscc %04, %ol, %04
mulscc %04, %ol, %04
mulscc %04, %01, %o4
mulscc %04, %o0l, %04
mulscc %04, %o0l, %cé
mulscc %04, %0i, %04
mulscc %04, %ol, %04

Example Integer Multiplication and Division Routines E-7

mulscc
mulscc
mulsce
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
/*

804,
$04,
S04,
%04,
%04,
§o4,
%04,
%04,
$04,
%04,
%04,

%01,
%ol,
%01,
%01,
%01,
%01,
%01,
fol,
tol,
%01,
%90,

* Normally, with
* you get the correct result. With 32-bit twos-complement numbers,

*
*
*
* x *
* -x ¥
* X *
* oy ¥
*
*

*

Yy
Yy
4
-y

Solbourne Computer, Inc.

%04

%04

%04

%04

%04

%04

%04

$04

%04

%04l ! 32nd iteration
$04 ! last iteration only shifts

the shifty-add approach, if both numbers are positive,

-x can be represented as ((2 - (x/(2**32)) mod 2) * 2**32. To avoid
a lot of 2**32's, we can just move the radix point up to be just
to the left of

the sign bit. So:

= (xy) mod 2

= (2

= x * (2 - y) mod 2

= (2

- xX) mod 2 * vy (2y - xy) mod 2
(2x - xy) mod 2

(4 - 2x - 2y + xy) mod 2

- x) * (2 -y)

For signed multiplies, we subtract (2**32) * x from the partial
product to fix this prcblem fcr negative multipliers (see multiply.s)

* Because of the way the shift into the partial product is calculated

* (N xor V), this terr is automatically removed for the multiplicand,

so we don’t have to adjust.

* But for unsigned mulitiplies, the high order bit wasn’t a sign bit,

and the correcticn is wrong. So for unsigned multiplies where the

*
* high order bit is cne, we end up with xy - (2**32) * y. To fix it
*

we add y * (2**32).

*/
tst %ol
bge 1f
nop
add %04, %00, %c4

1:

rd $y, %00 ! return least sig. bits of prod

retl ! leaf-routine return
addcc %04, %gl, tol ! delay slot; return high bits and set

! short multiply

!
mul_shortway

mulscc
mulscc
mulscc
mulscc
mulscc
mulscc
mulscc

%04,
%04,
$04,
%04,
%04,
%04,
%04,

$ol,
%01,
%ol,
%01,
%ol,
%01,
fol,

! zero tit appropriately

%04 ! first iteration of 13
%04 '

%01

%04

%04

%04

$04

Example Integer Multiplication and Division Routines

mulscc
mulscc
mulscc
mulscc
mulscc
mulscc

rd
sll
srl
or

%04,
%04,
%04,
%04,
804,
%04,

sy,

%04,
%05,
$05,

Sol,
§%ol,
§01,
%01,
$ol,
%90,

$05

%04
%04
%04
RS04
%04
%04

Solbourne Computer, Inc.

! 12th iteration
! last iteration only shifts

12, %04 ! left shift partial product by 12 bits

20,
%04,

200

%05 ! right shift product by 20 bits

! merge for true product

! The delay instruction (addcc) moves zero into %ol,
! sets the zero condition code, and clears the other conditions.
! This is the equivalent result to a long umultiply which doesn’t overflow.

!
retl
addcc

%gl,

.

%0,

leaf-routine return
%cl

Example Integer Multiplication and Division Routines

Solbourne Computer, Inc.

E.4. Division

Integer division implemented in software or microcode is usually done by a method such as the
non-restoring algorithm, which provides one digit of quotient per step. A W-by-W digit division, of
radix-B digits, is most easily achieved using 2*W-digit arithmetic.

E.4.1. Program 1

A binary-radix, 16-digit version of this method is illustrated by the C language function in Program
1, which performs an unsigned division, producing the quotient in Q and the remainder in R.

#include <stdio.h>
#$include <assert.h>

#define W 16 /* maximum number of bits in the dividend & divisor */
unsigned short

divide(dividend, divisor)
unsigned short dividend, diviscr;

long R; /* partial remainder =-- need 2*W bits */
unsigned short Q; /* partial guctient */
int iter;

R = dividend;
Q= 0;

for (iter = W; iter >= ¢ ter == 1){
assert (Q*divisor+R == divicerd);
if (R >= 0){
R =-= divisor <<iter;
Q += 1<iter;
} else {
R += divisor <<iter;
Q == 1l<<iter;

}

}

if (R <0){
R += divisor;
Q-=1;

}

return Q;

E-10 Example Integer Multiplication and Division Routines E-10

Solbourne Computer, Inc.

E.4.2. Program 2

In the simple form shown above, this method has two drawbacks:
* It requires a 2*W-digit accumulator

« It always requires W steps.

Both these problems may be overcome by estimating the quotient before the actual division is
carried out. This can cut the time required for a division from O(W) to O(logg(quotient)). Pro-
gram 2 illustrates how this estimate may be used to reduce the number of divide steps required
and the size of the accumulator.

E-11 Example Integer Multiplication and Division Routines E-11

Solbourne Computer, Inc.

#include <stdio.h>
#include <assert.h>

#define W 32 /* maximum number of bits in a divisor or dividend */
#define Big_value (unsigned) (1<<(W-2)) /* 2 ~ (W-1) */
int

estimate_log_guotient(dividend, divisor)
unsigned dividend, divisor;

{
unsigned log_quotient;
for (log_quotient = 0; log_guotient < W; log_guotient += 1)
if ((divisor <<log_quotient) > Big_value)
break;
else if ((divisor <<lcg_guotient) >= dividend)
break;
return log_gquotient;
}
unsigned

divide(dividend, divisor)
unsigned dividend, divisor;

int R; /* remainder */
unsigned Q; /* gquotient */

int iter;
R = dividend;
Q = 0;
for (iter = estimate_log_guotient(dividend, divisor); iter >= 0; iter -= 1){
assert (Q*divisor+R == divicend);
if (R >= 0){
R == divisor <<iter;
Q += 1l<<iter;
} else {
R += divisor <<iter;
Q -= l<<iter;
}
}
if (R <0){
R += divisor;
Q -=1;
}

return Q;

E-12 Example Integer Multiplication and Division Routines E-12

Solbourne Computer, Inc.

E.4.3. Program 3

Another way of reducing the number of division steps required is to choose a larger base, B'.
This is only feasible if the cost of the radix-B' inner loop does not exceed the cost of the radix-B
inner loop by more than logs (B'). When B' = BN for some integer N, a radix-B’ inner loop can
easily be constructed from the radix-B inner loop by arranging an N-high, B-ary decision tree.
Programs 3 and 4 illustrate how this can be done. Program 3 uses N-level recursion to show the
principle, but the overhead of recursion in this example far outweighs the loop overhead saved
by reducing the number of steps required. Program 4 shows how run-time recursion can be elim-
inated if N is fixed at two.

E-13 Example Integer Multiplication and Division Routines E-13

Solbourne Computer, Inc.

#include <stdio.h>
#include <assert.h>

#define W 32 /* bits in a word */

int B, /* number base of division (must be a power of 2) */
N; /* log2(B) */ .

tdefine WB (W/N) /* base B digits in a word */

tdefine Big_vaiue (unsigned) (B<<(WB-2)) /* B ~ (WB-1) */

int Q, /* partial quotient */

R, /* partial remainder */

v; /* multiple of the divisor =/
int

estimate_log_quotient(dividend, divisor)
unsigned dividend, divisor;

unsigned log_guotient;

for (log_guotient = 0; log_guctient < WB; log_quotient += 1)
if ((divisor <<locg_quctient*N) > Big_value)
break;
else if ((divisor <<log_guotient*N) >= dividend)
break;

return log_gquotient;

int
compute_digit(level, quotient digit)
int level, quotient_digit;

{
if (R >= 0){
R == V << level;
quotient_digit += 1l<<level;
} else {
R += V << level;
quotient_digit -= l<<level;
)
if (level > 0)
return compute_digit(leval-l, quotient_digit);
else
return gquotient digit;
}
unsigned

divide(dividend, divisor)
unsigned dividend, divisor;

int iter;

E-14 Example Integer Multiplication and Division Routines E-14

Solbourne Computer, Inc.

B = (1<<(N));
R = dividend;
Q= 0;
for (iter = estimate_log_quotient (dividend, divisor); iter >= 0; iter -= 1){
assert (Q*divisor+R == dividend);
V = divisor << (iter*N);
Q += compute_digit (N-1,) << (iter*N);
}
if (R <D0){
R += divisor;
0 -=1;
}

return Q;

E-15 Example Integer Multiplication and Division Routines. E-15

E.4.4. Program 4

E-16

Solbourne Computer, Inc.

Example Integer Multiplication and Division Routines

E-16

Solbourne Computer, Inc.

#include <stdio.h>
#include <assert.h>

#define W 32 /* bits in a word */

#define B 4 /* number base of division (must be a power of 2) */
#define N 2 /* log2(B) */

#define WB (W/N) /* base B digits in a word */

#define Big_value (unsigned) (B<<(¥3-2)) /* B ~ WB-1 */

int
estimate_log_quotient (dividend, divisor)
unsigned dividend, divisor;

{
unsigned log_gquotient;
for (log_quotient = 0; log_quotient < WB; log_gquotient += 1)
if ((divisor <<log_quotienti*N) > Big_value)
break;
else if ((divisor <<log_guotient*N) >= dividend)
break;
return log_guotient;
}
int
unsigned

divide(dividend, divisor)
unsigned dividenc, divisor;

{

int Q, /* partial gquotient */
R, /* partial remairder */
A\ /* multiple of the diviscr */
int iter;

R = dividend;

Q= 0;
for (iter = estimate_loc_guotient(dividend, divisor); iter >= 0; iter == 1){
assert (Q*divisor+R == dividenc);

V = divisor << (iter*\N);
/* N-deep, B-wide decisicn tree */
if (R >= 0){

R == V<<1;
if (R >= 0){
R -= V;
Q += 3 <<(N*jter);
} else {
R += V;
Q += 1 << (N*iter);
}
} else {
R += V<<1;

E-17 Example Integer Multiplication and Division Routines E-17

Solbourne Computer, Inc.

if (R>=C){

R == V;

Q -= 1 <<(N*iter);
} else {

R += V;

Q -= 3 <<(N*iter);

}

if (R <0){
R += divisor;
Q-=1;

}

return Q;

E-18 Example Integer Multiplication and Division Routines E-18

Solbourne Computer, Inc.

E.4.5. Program 5

At the risk of losing even more clarity, we can optimize away several of the bookkeeping opera-
tions, as shown in Program 5.

E-19 Example Integer Multiplication and Division Routines E-19

E-20

Solbourne Computer, Inc.

#include <stdio.h>
#include <assert.h>

fdefine

#¢define
#define
#¢define
#define

W 32 /* bits in a word */

B 4 /* number base of division (must be a power of 2) */
N 2 /* log2(B) */
WB (W/N) /* base B digits in a word */

Big_value (unsigned) (B<<(W3-2)) /* B ~ WB-1 */

int
unsigned
divide(dividend, divisor)
unsigned dividend, divisor;
{
int Q, /* partial guotient */
R, /* partial remainder */
V; /* multiple of the divisor */
int iter;
R = dividend;
Q= 0;
V = divisor;
for (iter = 0; V <= Big_value && V <= dividend; iter += 1)
V <<= N;
for (V <<= (N-1); iter >= C; iter == 1){
Q <<= N;

assert (Q*(l<<(iter*N))*diviso-+R == dividend);

/* N-deep, B-wide decision tree */
if (R >= 0){
R -=V;
V >>=1;
if (R>= 0){
R -=V;
V >>= 1;
Q += 3 ;
} else {
R += V;
V >>= 1;
Q +=1;
}
} else {
R += V;
V >>= 1;
if (R >= 0){
R == V;
V >>= 1;
Q -=1;
} else {
R += V;
vV >>= 1;

Example Integer Multiplication and Division Routines

E-20

Solbourne Computer, Inc.

}

)

if (R < 0){
R += divisor;
Q -=1;

}

return Q;

E-21 Example Integer Multiplication and Division Routines E-21

Solbourne Computer, Inc.

E.4.6. Program 6

Program 6 is, essentially, the method we recommend for SPARC. The depth of the decision tree
— two in the preceding examples — is controlled by the constant N, and is currently set to three,
based on empirical evidence. The decision tree is not explicitly coded, but defined by the recur-
sive m4 macro DEVELOP_QUOTIENT_BITS. Other differences include:

Handling of signed and unsigned operands

More care is taken to avoid overflow for very large quotients or divisors
Special tests are made for division by zero and zero quotient

The routine is conditionally compiled for either division or remaindering.

E-22 Example Integer Multiplication and Division Routines E-22

Solbourne Computer, Inc.

/t

* Divison/Remainder

*

* Input is:

* dividend -- the thinc being divided

* divisor -- how many ways to divide it
*

Important parameters:

*

N -- how many bits per iteration we try to get

* as our current guess: define(N, 3)

* WORDSIZE -- how many kbits altogether we’re talking about:
* obviously: define (WORDSIZE, 32)

A derived cocnstant:

»*

* TOPBITS -- how many bits are in the top "decade" of a number:
* define (TOPBITS, eval{ WORDSIZE - N*((WORDSIZE-1)/N)))
* Important variables are:

* Q -- the partial quctient uncder development =-- initally O

* R -- the remaincer sc far -- initially == the dividend

* ITER -- number of iteraticns of the main division loop which will

* be reguired. Egtel tc CEIL(lg2(gquotient)/N)

* Note that this is loc_base_(2”N) of the guotient.

* V -- the current ccmparand -- initially divisor*2#(ITER*N-1)

* Cost:

* current estimate for ncn-larce dividend is

* CEIL(lc2(quctiert) / N) x (10 + IN/2) + C

* a large dividenc is cne greater than 2%(31-TOPBITS) and takes a
* different path, as the upper bits of the quotient must be developed
* one bit at a time.

* This uses the m4 and cpp macro preprocessors.

*/

#include "sw_trap.h"

define (dividend, ‘%iC’)
define (divisor, ‘%il’)
define (Q, ‘%i2’)
define (R, ‘%i3')
define (ITER, ‘$1C’)
define(V, ‘%11')
define (SIGN, ‘$127)

define (T, ‘%13') ! working variakle
define (SC, ‘%14')
/*

* This is the recursive cefinition of how we develop quotient digits.
* It takes three impcrtant parameters:
* $1 -- the current depth, 1<=51<=N

*

$2 -- the current accumulation of gquotient bits

N -- max depth
We add a new bit to $2 and either recurse or insert the bits in the gquotient.
Dynamic input:

R =-- current remainder

Q -- current guotient

* % % % % *

V -- current comparanrd

*

cc -- set on currernt value of R
* Dynamic output:

E-23 Example Integer Multiplication and Division Routines E-23

* RI'

*/

Solbourne Computer, Inc.

o', V', cc’

define (DEVELOP_QUOTIENT_BITS,
N tdepth $1, accumulated bits $2

bl

srl

L.Sl.eval(2°N+$2)
v,1,Vv

! remainder is positive

subcec R,V,R
ifelse(S$1, N,
N b 9f

add Q, (s2*2+X), Q
', DEVELOP_QUOTIENT_BITS(incr(sl), ‘eval(2*$2+1)')

’)
L.S$l.eval(2°N+s2):
addecc R,V,R
ifelse(S1, N,
M b 9f

! remainder is negative

add Q, (s2¥2-1), Q
', % DEVELOP_QUOTIENT_BITS(incr($l), ‘eval(2*$2-1)')

"

ifelse($1, 1, '3:’)

")

ifelse(ANSWER, ‘gquotient’, °

.global .div,

.udiv

.udiv: ! UNSIGNED DIVIDE

save %sp,-64,%sp
b divide
mov 0,SIGN

.div:! SIGNEDC DIVIDE
save %sp,-64,%sp
orcc divisor,div
bge divide

xor divisor,divigdenc,SIGN

tst divisor
bge 2f

tst dividenc

! divisor < 0

bge divide
neg divisor
2:

! result always positive

1

iaeng, $g0
! if not, skip this junk

! dividené < 0O

neg dividend

! FALL THRCUGH

1

.global .rem,

.urem

.urem: ! UNSIGNED REMAIXNDER

save %sp,-€4,%sp
b divide
mov 0,SIGN

! do this for debugging

! result always positive

.rem: ! SIGNED REMAINCER

save %sp,-64,%sp

! co this for debugging

E-24 Example Integer Multiplication and Division Routines

are either dividend or divisor negative

record sign of result in sign of SIGN

E-24

Solbourne Computer, Inc.

orcc divisor,dividend,%g0 ! are either dividend or divisor negative

bge divide ! if not, skip this junk

mov dividend, SIGN ! record sign of result in sign of SIGN
tst divisor

bge 2f

tst dividend

! divisor < O

bge divide

neg divisor

! dividend < 0

neg dividend

! FALL THROUGH
‘)

divide:
! compute size of quotient, scale comparand
orcc divisor,%g0,V ! movcc divisor,V

te ST_DIVO ! if divisor = 0
mov dividend,R

mov O0,Q
sethi %hi(1<<(WORDCSIZE-TOPBITS-1)),T
cmp R,T

blu not_really_tig

mov 0,ITER

!

! Here, the dividend is >= 27(31-N) or so. We must be careful here, as
! our usual N-at-a-shot divide step will cause overflow and havoc. The
! total number of bits in the result here is N*ITER+SC, where SC <= N.

! Compute ITER, in an unorthodox manner: know we need to Shift V into

! the top decade: so don’t even bother to compare to R.

1:
cmp V,T
bgeu 3f
mov 1,SC
sll V,N,V
b 1b

inc ITER
! Now compuzec ST

2: addcc V, Y,V
bcc neoi_tee_zig ! bec not_too_big
add sC,1,sC

! We’re here if the divisor overflowed when Shifting.
! This means that R has the high-order bit set.

! Restcre V and subtract from R.

sll T,TOPBITS,T” ! high order bit

srl V,1,V ! rest of Vv

adé V,T,V
b co_sincle_div
dec SC

E-25 Example Integer Multiplication and Division Routines E-25

Solbourne Computer, Inc.

not_too_big:
3: emp V,R

blu 2b

nop

be cdo_single_div

nop
! V> R: went too far: back up 1 step
! srl Vv,1,V
! dec SC

! do single-bit divide steps

! We have toc be careful here. We know that R >= V, so we can do the

! first divide step without thinking. BUT, the others are conditional,
! and are only done if R >= 0. Because both R and V may have the high-
! order bit set in the first step, just falling into the regular

! division lcop will mess up the first time around.

! So we unroll sligntly...

do_single_div:

deccc SC

bl end_regular_divide
nop

sub R,V,R

mov 1,0Q

b end_single_divlcop

nop
single_divloop:
sll ¢,1,¢
bl 1f
srl Vv,1,V
' R>= 0
sub R,V,R
b 2f
inc Q
1: 'R <O
add R,V,R
dec Q
2:
end_single_divloop:
deccc sC
bge single_divliocp
tst R
b end_reguliar_divide
nop

not_really big:

1:
sll V,N,V
cmp V,R
bleu 1b

inccc ITER

be got_result

dec ITER
do_regular_divide:

E-26 Example Integer Multiplication and Division Routines E-26

E-27

Solbourne Computer, Inc.

! Do the main division iteration

tst

R

! Fall through into divide lcop

divloop:
sll

Q. N, Q

DEVELOP_QUOTIENT_BITS(1, 0)
end_regular_divide:

deccc ITER

bge divloop
tst R

bge got_result

nop

! non-restorirg fixcr here
ifelse(ANSWZR, ‘guotient’,

N dec
r,v add
)

Q
R,diviscr,R

got_result:

tst SIGN
bge 1f
restore

! answer < 0

retl ! leaf~routire return
ifelse(ANSWER, ‘quotient’,

N neg %02,%00 ! quotient <= =Q

‘," neg %03,%00 ! remainder <- =R

')

1: retl ! 1eaf-rouiine return

ifelse(ANSWER, ‘cuotient’,

N mov
‘,' mov

")

%c2,%00 ! gquetient <- Q
%03, %00 ! remainder <~ R

Example Integer Multiplication and Division Routines

E-27

APPENDIX F: OPCODES AND CONDITION CODES

F.1. Introduction
This appendix lists the opcodes and condition codes.

op instruction

01 CALL
op2 Instruction
000 UNIMP
001 unimplemented
010 Bicc
011 unimplemented
100 SETHI
101 unimplemented
110 FBfcc
111 CBcce

F-1 Opcodes and Condition Codes

Solbourne Computer, Inc.

op3 Instruction

000000 ADD

000001 AND

000010 OR

000011 XOR

000100 SUB

000101 ANDN

000110 ORN

000111 XNOR

001000 ADDX

001001 unimplemented

001010 unimplemented

001011 unimplemented

001100 SUBX

001101 unimplemented

001110 unimplemented

001111 unimplemented

010000 ADDcc

010001 ANDcc

010010 ORcc

010011 XORcc

010100 SUBcc

010101 ANDNcc

010110 ORNcc
1010111 XNORcc

011000 ADDXcc

011001 unimplemented

011010 unimplemented

011011 unimplemented

011100 SUBXcc

011101 unimplemented

011110 unimplemented

011111 unimplemented

Opcodes and Condition Codes

Solbourne Computer, Inc.

op3 instruction
100000 TADDcc
100001 TSUBcc
100010 TADDccTV
100011 TSUBccTV
100100 MULScc
100101 SLL
100110 SRL
100111 SRA
101000 RDY
101001 RDPSR
101010 RDWIM
101011 RDTBR
101100 unimplemented
101101 unimplemented
101110 unimplemented
101111 unimplemented
110000 WRY
110001 WRPSR
110010 WRWIM
110011 WRTBR
110100 FPop1
110101 FPop2
110110 CPop1
110111 CPop2
111000 JMPL
111001 RETT
111010 Tice
111011 IFLUSH
111100 SAVE
111101 RESTORE
111110 unimplemented
111111 unimplemented

Opcodes and Condition Codes

F-4

Solbourne Computer, Inc.

op3 instruction
000000 LD
000001 LDUB
000010 LDUH
000011 LDD
000100 ST
000101 STB
000110 STH
000111 STD
001000 unimplemented
001001 LDSB
001010 LDSH
001011 unimplemented
001100 unimplemented
001101 LDSTUB
001110 unimplemented
001111 SWAP
010000 LDA
010001 LDUBA
010010 LDUHA
010011 LDDA
010100 STA
010101 STBA
010110 STHA
010111 STDA
011000 unimplemented
011001 LDSBA
011010 LDSHA
011011 unimplemented
011100 unimplemented
011101 LDSTUBA
011110 unimplemented
011111 SWAPA

Opcodes and Condition Codes

Solbourne Computer, Inc.

op3 instruction
100000 LDF
100001 LDFSR
100010 unimplemented
100011 LDDF
100100 STF
100101 STFSR
100110 STDFQ
100111 STDF
101000 — 101111 unimplemented
110000 LDC
110001 LDCSR
110010 unimplemented
110011 LDDC
110100 STC
110101 STCSR
110110 STDCQ
110111 STDC
111000 — 111111 unimplemented
opf instruction
000000001 FMOVs
000000101 FNEGSs
000001001 FABSs
000101001 FSQRTs
000101010 FSQRTd
000101011 FSQRTx
001000001 FADDs
001000010 FADDd
001000011 FADDx
001000101 FSUBs
001000110 FSUBd
001000111 FSUBx
001001001 FMULs
001001010 FMULd
001001011 FMULx
001001101 FDIVs
001001110 FDIvd
001001111 FDIVx
011000100 FiTOs
011000110 FdTOs
011000111 FxTOs
011001000 FiTOd
011001001 FsTOd
011001011 FxTOd
011001100 FiTOx
011001101 FsTOx
011001110 FdTOx
011010001 FsTOi
011010010 FdTOi
011010011 FxTOi

Opcodes and Condition Codes

F-5

Solbourne Computer, Inc.

0001 not equal

0010 less than or greater than

0011 unordered or less than

0100 lessthan

0101 unordered or greater than
0110 greater than

0111 unordered

1000 always

1001 equal

1010 unordered or equal

1011 greater than or equal

1100 unordered or greater than or equal
1101 less than or equal

1110 unodered or less than or equal
1111 ordered

opf instruction

001010001 FCMPs
001010010 FCMPd
001010011 FCMPx
001010101 FCMPEs
001010110 FCMPEd
001010111 FCMPEXx

cond test

0000 never

0001 equal

0010 less than or equal

0011 lessthan

0100 less than or equal, unsigned

0101 carry set (less than, unsigned)

0110 negative

0111 overflow set

1000 always

1001 not equal

1010 greater than

1011 greater than or equal

1100 greater than, unsigned

1101 carry clear (greater than or equal, unsigned)

1110 positive

1111 overflow clear

cond test
0000 never

Opcodes and Condition Codes

F-6

Solbourne Computer, inc.

opcode | cond | bp_CP_cc[1:0] test
CBN 0000 | Never
cB123 0001 | tor2or3
CcB12 0010 | 1or2
CB13 0011 | 1or3
CB1 0100 | 1

cB23 0101 | 20r3
CcB2 0110 | 2

CB3 0111 3

CBA 1000 | Always
CB0O 1001 | O

CB03 1010 | Oor3
CBo02 1011 Qor2
CB023 1100 { Oor2o0r3
CBO01 1101 | Oor1
CB013 1110 | Oor1or3
CBo12 1111 | Oortor2

Opcodes and Condition Codes

