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SECTION 1: INTRODUCTION 

1.1. Introduction 
, 

This manual describes version 7 of the SPARC architecture, Sun Microsystems' 32-bit RISC 
architecture. This architecture makes possible implementations that can execute instructions for 
high-level language programs at rates approaching 1 instruction per processor clock. It supports 
a floating-point coprocessor with multiple arithmetic units and a second, implementation­
definable coprocessor. 

1.2. Architecture and Implementation 

This document provides a specification for the SPARC architecture; it describes the major 
aspects of that architecture. Any design which conforms to this specification is an implementa­
tion; aspects of the design that are not specified in this document are implementation-dependent. 
For example, the SPARC architecture defines a set of instructions, a set of registers, how the 
registers work, and how traps and interrupts work. It does not define details such as the size 
and timing of data and address busses, caches, or memory management units. 

Specific information about Sun Microsystems' implementations of the SPARC architecture 
appear in companion manuals. 

1.3. Features 

The SPARC architecture provides the following features: 

Simple instructions - Most instructions require only a single arithmetic operation. 

Few and simple instruction formats - All instructions are 32 bits wide, and are aligned on 
32-bit boundaries in memory. There are only three basic instruction formats, and they 
feature uniform placement of opcode and register address fields. 

• Register-intensive architecture - Most instructions operate on either two registers or one 
register and a constant, and place the result in a third register. Only load and store instruc­
tions access storage. 

A large "windowed" register file - The processor has access to a large number of registers 
configured into several overlapping sets. This scheme allows compilers to cache local 
values across subroutine calls, and provides a register-based parameter passing mechan­
ism. 

• Delayed control transfer - The processor always fetches the next instruction after a control 
transfer, and either executes it or annuls it, depending on the transfer's "annul" bit. Com­
pilers can rearrange code to place a useful instruction after a delayed control transfer and 
thereby take better advantage of the processor's pipeline. 

• One-cycle execution - To take maximum advantage of the SPARe architecture, the 
memory system should be able to fetch instructions at an average rate of one per processor 
cycle. This allows most instructions to execute in one cycle. 

• Concurrent floating point - Floating-point operate instructions can execute concurrently with 
each other and with other non-floating-point instructions. 
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• Coprocessor interface - The architecture supports a simple coprocessor Interface. The 
coprocessor instruction set is analogous to the floating-point instruction set. 

1.4. Using This Manual 

This section provides information to help you use this manual. It includes an overview of the 
manual, a definition of the intended audience, a description of the fonts used and what they 
mean, a glossary, and a list of references. 

1.4.1. Contents 

The section after this contains an overview of the SPARC architecture. This is followed by sec­
tions that describe the registers, then the instructions, and finally, trapping and exceptions. 

A series of appendices follow the sections. The most important is Appendix B, Instruction 
Descriptions. This contains a complete description of every instruction that the architecture sup­
ports, and includes tables showing the recommended assembly language syntax for each 
instruction. Another appendix contains tables detailing all the opcodes and condition codes, and 
another contains ISP description language for all the instructions plus other architecture func­
tions. 

1.4.2. Fonts In Text 

In this manual, we use the following fonts to make things clearer: 

• Roman font is the normal font used for text. 

• Italic font represents either a register class or a field name. For example: 

"The rs1 field contains the address of the r register." 

It is also used for regular notes, and for references to sections, sections or appendices in 
this manual, or to other documents. 

• Typewriter font is used for the names of certain signals that are defined in the section 
SPARe Architecture Overview, and for literals in the appendix Suggested Assembly 
Language Syntax. These signal names appear in typewriter font, and contain underbar 
characters in the spaces between the words in the name. For example: 

The signal bp_reseLin indicates that the system is requesting a reset. 

• Bold font indicates that a word or phrase requires emphasis. For example: 

"The delay instruction occurs immediately after a control transfer". 

• UPPER CASE items may be either acronyms or instruction names. The most common acro­
nyms appear in the glossary in this section, and the instructions are all listed by name in 
Appendix B. Note that names of some instructions contain both upper case and lower case 
letters. 

• Underbar characters between two or more words mean that the words represent an 
identifier, which may be a trap, or some other condition. These appear in ordinary text as 
well as in the pseudocode examples in the appendices. For example: 

"The IU acknowledges the exception by taking an fp_exception trap." 
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1.4.3. Notes 

This manual provides three types of notes: ordinary notes, programming notes, and implementa­
tion notes. 

• Ordinary notes contain incidental information about the current subject; they appear in italic 
font. 

• Programming notes contain incidental information about programming using the SPARC 
architecture; they appear in reduced pitch Roman font. 

• Implementation notes contain information which may be specific to an implementation or 
which may differ in different implementations. They also appear in reduced pitch Roman font. 

1.4.4. Glossary 

The following paragraphs fist and describe some of the most important words and acronyms 
used in this manual: 

Architecture/implementation - The architecture is the set of operating principles defined in 
this manual. An implementation is any specific design that conforms to the architecture 
defined here. 

Current window - The block of 24 r registers currently pointed to by the CWP. 

Current Window Pointer (CWP) - Selects the current register window. 

Delay instruction - The instruction immediately following a control transfer. This instruction 
is always fetched, and is either executed or annulled before the control transfer takes place. 

• Floating-Point Unit (FPU) - The coprocessor that performs floating-point calculations. 

Floating-Point Arithmetic Unit (FAU) - A subsection of the FPU that executes floating-point 
operate instructions. 

Floating-Point Operate (FPop) instruction - An instruction that performs a floating-point cal­
culation. They do not include loads and stores between memory and the FPU. 

• Floating-Point Queue (FQ) - The queue where information about floating-point operate 
instructions is held while they are being executed by the FPU. 

• f register- One of the 32 FPU working registers. 

Global registers - A block of 8 registers that are available regardless of the value of the 
current window pointer. 

Integer Unit (IU) - The main computing engine. It fetches all instructions, and executes all 
but FPop and CPop instructions. 

• Next Program Counter (nPC) - Contains the address of the instruction to be executed next 
(assuming a trap does not occur). 

• Processor - The combination of the IU and FPU. 

• Processor State Register (PSR) - The IU's status register. 

• Program Counter (PC) - Contains the address of the current instruction being executed by 
the IU. 

• r register- A global register or a register in the IU's current window. 

• rd, rs1 and rs2 - Fields in instructions. These specify the register operands of an instruc­
tion. rd is the destination register and rs1 and rs2 are the source registers. 
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• r[rd]. r[rs1] and r[rs2] - The r registers specified by rd, rs1 and rs2. 

Word - A word is 32 bits. 

1.4.5. References 

For additional information about RISC architecture. see: 

• "Reduced Instruction Set Computers", Communications of the ACM, Volume 28, Number 1, 
January, 1985 by Dave Patterson. 

1·4 Introduction 1·4 



SECTION 2: SPARC ARCHITECTURE OVERVIEW 

2.1. Introduction 

The SPARC architecture is used in 32-bit Reduced Instruction Set Computers (RISCs). It pro­
vides an Integer Unit (IU) to perform basic processing and a Floating-Point Unit (FPU) to perform 
floating-point calculations concurrently with the IU. It also provides instruction set support for an 
optional coprocessor. The details of the coprocessor itself are implementation-specific. 

A typical system that uses the SPARC architecture is organized around a 32-bit virtual address 
bus and a 32-bit instruction/data bus. Its storage subsystem consists of a memory management 
unit (MMU) and a large cache for both instructions and data. The cache is virtual-address-based. 
Depending on the storage subsystem's interpretation of the processor's address space identifier 
(asl) bits, 1/0 registers are either addressed directly, bypassing the MMU, or they are mapped by 
the MMU into virtual addresses. 

2.2. IU, FPU, and CP 

The IU is the basic processing engine of the SPARe architecture. It executes all the instruction 
set except floating-point operate instructions and coprocessor instructions. A block diagram of 
the IU appears in Figure 2-1. 

The FPU performs floating-point arithmetic using several floating-point arithmetic units (FAUs) to 
perform the actual calculations. The number of these units, which is implementation-dependent, 
determines the minimum number of floating-point operate instructions that can be executed at 
the same time. 

The FPU and the IU operate concurrently. The FPU recognizes floating-point operate instruc­
tions and places them into a queue. Meanwhile, the IU continues to execute instructions. 
Floating-point operate instructions are executed from the queue when the specified floating-point 
registers are free and the required FAU is available. If the FPU encounters a floating-point 
operate instruction that doesn't fit in the queue, the IU stalls until the required FPU resource 
becomes available. 

Floating-point load/store instructions are used to move data between the FPU and memory. The 
IU generates a memory address and the FPU either sources or sinks the data. Note that 
floating-point loads and stores are not floating-point operate Instructions. 

The architecture hides floating-point concurrency from the programmer, so the implementation 
must provide the appropriate register interlocks. A program Including floating-point computa­
tions generates the same results as If all Instructions were executed sequentially. 

The architecture supports an optional coprocessor. Like the FPU, the coprocessor recognizes 
coprocessor arithmetic instructions, and executes them concurrently with instructions executed 
by the IU. 

likewise, coprocessor Ioadlstore instructions are used to move data between the coprocessor 
and memory. For each floating-point loadlstore instruction, there is an analogous coprocessor 
load/store instruction. 
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2.3. Reg Isters 

The register structure forms an important part of the overall architecture. The IU's working regis­
ters are divided into several windows, each with twenty-four 32-bit working registers, and each 
having access to the same eight 32-bit global registers. The current window pointer (CWP) field 
in the processor state register (PSR) keeps track of which window is currently "active". 

In addition to the window registers and global registers, the SPARC architecture provides several 
control and status registers, and a non-windowed working register file for the FPU. 

2.4. Multitasking Support 

The SPARC architecture supports a multitasking operating system by providing user and supervi­
sor modes. Some instructions are privileged, and can only be executed while the processor is in 
supervisor mode. Changing from user to supervisor mode requires taking a hardware trap, or 
using a trap instruction. 

2.5. Instruction categories 

Instructions fall into six basic categories: 

1 Load and store 

2 Arithmeticllogical/shift 

3 Control-transfer 

4 Read/write control register 

5 Floating-point operate 

6 Coprocessor operate 

The following sections describe each briefly; for more detail, see the section Instructions. 

2.5.1. Load and Store Instructions 

Load and store instructions are the only instructions that access memory. They use two IU regis­
ters or an IU register and a signed immediate value to calculate the memory address. The 
instruction's destination field specifies either an IU register, FPU register, or coprocessor register; 
this register supplies the data for a store, or receives the data from a load. 

Integer load and store instructions support byte, haHword (16-bit), word (32-bit), and doubleword 
(64-bit) accesses. Floating-point and coprocessor load and store instructions support word and 
doubleword memory accesses. Halfword accesses must be aligned on a 2-byte boundary, word 
accesses must be aligned on a 4-byte boundary, and doubleword accesses must be aligned on 
an 8-byte boundary. Improperly aligned addresses cause load or store instructions to trap. 

The order of bytes, haHwords, and words appears in Figure 4-2. 

2.5.2. ArithmetlclLog leal/Shift 

These instructions (with one exception) compute a result that is a function of two source 
operands; they either write the result into a destination register or discard it. They perform arith­
metic, tagged arithmetic, logical, or shift operations. The exception is a specialized instruction 
used to create 32-bit constants in two instructions. 
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Shift instructions can be used to shift the contents of a register left or right, by a distance 
specified by the instruction or by an IU register. 

The tagged arithmetic instructions assume that the least-significant two bits of the operands are 
tags and set a condition code bit if they are not zero. 

2.5.3. Control-Transfer Instructions 

Control-transfer instructions include jumps, calls, traps, and branches. Control transfer is usually 
delayed so that the instruction immediately following the control transfer is executed before con­
trol actually transfers to the target address. The instruction following the control-transfer instruc­
tion is called a delay Instruction. The delay instruction is always fetched, even when the control 
transfer is an unconditional branch. However, a bit in the control-transfer instruction can cause 
the delay instruction to be annulled (i.e. to have no effect) if the branch is not taken (or in one 
case, if the branch is taken). 

Branch and call instructions use PC-relative displacements. The jump and link (JMPL) instruction 
uses a register-indirect displacement: it computes its target address as either the sum of two 
registers, or the sum of a register and a 13-bit signed immediate. The branch instruction provides 
a displacement of ± 8 Mbytes, while the call instruction's 30-bit word displacement allows a 
transfer to an arbitrary address. 

2.5.4. ReadlWrlte Control Register 

The SPARC architecture provides instructions to read and write the contents of the various con­
trol registers. For reads and writes, the source and destination (respectively) are implied by the 
instruction itself. 

2.5.5. Floating-point and Coprocessor Operate Instructions 

Floating-point operate instructions perform all floating-point calculations. These are register-to­
register instructions that use the floating-point registers. Like arithmetic/logical/shift instructions, 
these also compute some result that is a function of two source operands. However, they always 
write the result into a destination register. 

Floating-point operate instructions execute concurrently with IU instructions and possibly with 
other floating-point instructions. A particular floating-point operate instruction is specified by a 
subfield of the FPop instructions. . 

Coprocessor arithmetic instructions are defined by the implemented coprocessor, if any. They 
are specified by the CPop instruction. The architecture supports 1024 distinct coprocessor arith­
metic instructions. 

Floating-point loads and stores are NOT floating-pOint operate instructions (FPops), and copro­
cessor loads and stores are NOT coprocessor operate instructions. Floating-point and coproces­
sor loads 'and stores fall in the category "loads and stores". 

Because the IU and the FPU can execute instructions concurrently, when a floating-point excep­
tion occurs, the program counter usually does not contain the address Of the floating-point 

- Instruction that caused the exception. However, the first element of the floating-point queue 
points to the instruction that caused the exception, and the remaining elements point to floating­
point operate instructions that have not yet completed. These can be re-executed or emulated. 

Likewise, if the coprocessor executes instructions concurrently with the IU, the coprocessor can 
support a queue that. at the time of a coprocessor exception, will contain the instruction that 
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generated the exception and remaining, unexecuted coprocessor instructions. 

2.6. Processor Data Types 

The architecture defines nine data types; these appear in Figure 2-2. The integer types include 
byte, unsigned byte, halfword, unsigned halfword, word and unsigned word. The 
ANSI/IEEE 754-1985 floating-point types include Single, double, and extended. A byte is 8 bits 
wide, a halfword is 16 bits, a word is 32 bits, a double is 64 bits, and an extended is 128 bits. 

The floating-point double type includes two subfields: 1) the double-e, which contains the sign, 
exponent, and high-order fraction, and 2) the double-f, which includes the low-order fraction. 
The floating-point extended type includes 4 subfields: 1) the extended-e, which contains the sign 
and exponent, 2) the extended-f, which contains the integer part of the mantissa, and the high­
order part of the fraction, 3) the extended-f-Iow, which contains the low-order fraction, and 4) the 
extended-u which is unused. 

The following tables show a) the double and extended types in memory, b) the single-, double-, 
and extended-precision formats, and c) the processor data types: 
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Byte 

lsi b 
7 6 0 

Unsigned Byte 

b 
7 0 

Halfword 

I s I h 
15 14 0 

Unsigned Halfword 

h 
15 0 

Word 

I s I W 

31 30 0 

Unsigned Word 

w 
31 0 

Single 

lsi e f 
31 30 2322 0 

Double 

Double ·e 

I s I e f-msb 
31 30 20 19 0 

Double ·f 

f-Isb 
31 0 

Extended Precision 

Extended ·e 

lsi e unused/reserved 
31 30 16 15 0 
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Extended ·f 

I j I f-msb 

31 30 0 

Extended ·f low 

f-Isb 

31 0 

Extended ·u 

unused/reserved 

31 0 

subfield address 
double-e n 
double-f n+4 
extended-e n 
extended-f n+4 
extended-f -low n+8 
extended-u n+12 

s = sign (1) 
e = biased exponent (8) 
f = fraction (23) 

normalized number ( 0 < e < 255 ): (_1)s .. 2e-127 • 1.f 
subnormal number ( e = 0 ): (_1)s .. 2-126 • O.f 

zero (e = 0): (_1)s. 0 

signaling NaN: s = u; e = 255 (max); f = .Ouuu- uu 
(at least one bit must be nonzero) 

quiet NaN: s = u; e = 255 (max); f = .1uuu- uu 
infinity: s = u; e = 255 (max); f = .000- 00 

(all zeroes) 

s = sign (1) 
e = biased exponent (11) 
f-msb - f-Isb = f = fraction (52) 

normalized number (0 < e < 2047 ): (_1)s .. 2e-1023 • 1.1 

subnormal number ( e = 0 ): (_1)s • 2-1022 • OJ 
zero (e = 0): (-1)s·0 

signaling NaN: s = u; e = 2047 (max); f = .Ouuu- uu 
(at least one bit must be nonzero) 

quiet NaN: s = u; e = 2047 (max); f = .1uuu- uu 
infinity: s = u; e = 2047 (max); f = .000- 00 

(all zeroes) 
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s - sign (1) 
e = biased exponent (15) 
j ... integer part (1) 
f-msb - f-Isb = f = fraction (63) 

normalized number ( 0 S e < 32767; j = 1 ):t (_1)s. 2e-16383. j.f 
subnormal number (e = 0; j = 0 ): (_1)s. 2-16383 • j.f 
zero ( s = 0; e = 0): (_1)s. 0 

signaling NaN: s = u; e = 32767 (max); j = u; f = .Ouuu- uu 
(at least one bit must be nonzero) 

quiet NaN: s = u; e = 32767 (max); j = u; f = .1uuu-uu 
infinity: s = u; e = 32767 (max};j = u; f = .000- 00 

(all zeroes) 

2.7. Traps and Exceptions 

SPARC supports three types of traps: synchronous, floating-point/coprocessor and asyn­
chronous (asynchronous traps are also called Interrupts). 

Synchronous traps are caused by an instruction, and occur before the instruction is com­
pleted. 

Floating-point/coprocessor traps are caused by a floating-point operate (FPop) or coproces­
sor (CPop) instruction, and occur before the instruction is completed. However, due to the 
concurrent operation of the IU and the FPU, other non-floating-point instructions may have 
executed in the meantime. 

Asynchronous traps occur when an external event interrupts the processor; they are not 
related to any particular instruction and occur between the execution of instructions. 

Synchronous and floating-point/coprocessor traps are generally taken before the instruction 
changes any processor or system state visible to a programmer; they happen "between" instruc­
tions. Instructions which access memory twice (double loads and stores and atomiC instructions) 
are the only exceptions. 

Traps transfer control to an offset within a table. The base address is specified in the trap base 
register (TBR), and the offset depends on the type of trap. Reset traps, however, cause the pro­
cessor to transfer control to address O. Because the program counters are not updated until after 
an instruction completes, the trap hardware captures both program counters and guarantees that 
the PC points to either the instruction that caused a synchronous trap, or to the instruction that 
was about to execute when a floating-point/coprocessor or asynchronous trap occurred. For 
floating-poinVcoprocessor traps, the instruction that caused the trap is in the floating-point queue 
(Fa) or the coprocessor queue (CP), and the PC will usually not point to it. 

Traps are described in the section Traps, Exceptions, and Error Handling. 

2.8. System Interface 

- The SPARC architecture does not define many of the standard signals, such as bus grant and 
request lines, or acknowledges; these may differ among implementations. However. it does 
define the following signals, which are used by the instruction set: 

t The architecture does not define or create results with 0 < e < 32767. j = O. 

2-8 SPARC Architecture Overview 2-8 



Solboume Computer. Inc. 

bp_IRL<3:0> 
This external signal presents an asynchronous interrupt request to the processor. Level 0 
indicates that no interrupt is being requested. and levels 1 through 15 request interrupts. 
with level 15 having the highest priority. Level 15 is non-maskable unless all traps are dis­
abled. The interrupt acknowledge signal is implementation-dependent. 

bp_reseCin 
This signal indicates that the external system is requesting a reset. The processor responds 
by entering resecmode and clearing pb_error. 

pb_error 
The processor asserts this signal when it is in error_mode. 

pb_retain_bus 
The processor asserts this signal to ensure that the memory bus logic will not relinquish the 
bus. 

bp_FPU-present 
This signal indicates that the FPU is present. 

bp_ CP -present 
This signal indicates that a coprocessor is present. 

bp_Lcache-present 
This signal indicates that there is an external instruction cache present. The IFLUSH 
instruction uses this signal. 

bp_CP_exception 
The coprocessor asserts this signal in order to cause a cp_exception trap. An implementa­
tion may delay the taking of the trap to the next CPop instruction. 

bp_CP_cc(1 :0) 
The coprocessor supplies these condition codes for the coprocessor branch instruction 
(CBccc). 

bp_memo'Y_access_exception 

2-9 

The memory system asserts this signal when the memory system is unable to provide the 
data at the requested address. The assertion of this signal will cause either an 
instruction_access_exception or a data_access_exception trap. 
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SECTION 3: REGISTERS 

3.1. Introduction 

The integer unit has two types of registers associated with it; working registers (r registers) and 
control/status registers. Working registers are used for normal operations, and control/status 
registers keep track of and control the state of the IU. The FPU has 32 working registers (called f 
registers), and two control/status registers: the Floating-point State Register (FSR), and the 
Floating-point Queue (FQ). 

3.2. Integer Unit r Registers 

All r registers are 32 bits wide. They are divided into 8 global registers and a number of blocks 
called windows. Each window contains 24 r registers. 

The number of windows (NWINDOWS) ranges from 2 to 32 depending on the implementation. 
Implemented windows must be contiguously numbered from 0 to NWINDOWS -1. 

3.2.1. Programming Note 

At most NWINDOWS -1 windows are available to user code since one window must be available 
for trap handlers. 

The windows are addressed by the CWP, a field of the Processor State Register (PSR). The 
CWP is incremented by a RESTORE or RETT instruction and decremented by a SAVE instruc­
tion. The active window is defined as the window currently pOinted to by the CWP. 

The Window Invalid Mask (WIM) is a register which, under software control, detects the 
occurrence of IU register file overflows and underflows. 

The registers in each window are divided into ins, outs, and locals. Note that the globals, while 
not really part of any particular window, can be addressed when any window is active. When 
any particular window is active, the registers are addressed as follows: 

Register numbers Name 
r[24] to r[31] ins 
r[16] to r[23] locals 
r[8] to r[15] outs 
rIO] to r[7] globals 

Each window shares its ins and outs with adjacent windows. The outs from a previous window 
(CWP + 1) are the ins of the current window. and the outs from the current window are the ins for 
the next window (CWP -1). The globals are equally available from all windows, and the locals 

- are unique to each window. 

The register addresses overlap such that, given a register with address 0 where 
8 ~ 0 ~ 15, 0 refers to exactly the same register as (0 + 16) after the CWP is decremented by 1 
modulo NWINDOWS (pOints to the next window). Likewise. given a register with address i 
where 24 ~ i ~ 31, i refers to exactly the same register as address (i - 16) after the CWP is 
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incremented by 1 modulo NWINDOWS (points to the previous window). 

The windows are joined together in a circular stack. where the highest numbered window is adja­
cent to the lowest. If NWINDOWS = 8. the outs of window 7 are the ins of window O. Figures 3-1 
and 3-2 show the relationships. 

3.3. Special r registers 

The utilization of two r registers is partially fixed by the instruction set: 

• If global register r[01 is addressed as a source operand (rs1 or rs2 = 0). the operand value 0 
is returned. If r[O] is addressed as a destination operand (rd = 0). no register is modified. 

• The CALL instruction writes its own address into out register r[151. 

Also note that traps save the program counters (PC and nPC) into two locals of the next window. 
This is described in the section Traps, Exceptions, and Error Handling. 

3.3.1. Programming Notes 

Because the processor logically provides new locals and outs after every procedure call. register 
local values need not be saved and restored across calls. The overlap registers also minimize 
the overhead of passing and returning values. They can be used as follows: 

• In preparation for a procedure call. a routine generally moves the parameters into its out 
registers. After the CALL. the CWP is decremented with the SAVE instruction. what was the 
next window becomes the active window. and the parameters are directly accessible by the 
callee. since the caller's outs are the callee's ins. 

• Likewise. in preparing for a procedure return, a routine generally moves its result(s) into its in 
registers. After the CWP is incremented via the RESTORE instruction. what was the previ­
ous window becomes the active window, and the return values are accessible by the retur­
nee, because the returner's ins are the returnee's outs. Note that the terms ins and outs are 
defined relative to calling, not returning. 

Since any implementation has only a finite number of windows, the register file becomes full after 
the number of procedure calls exceeds the number of returns by NWINDOWS - 1. A subse­
quent call causes the operating system to move one or more (in and local sets of) windows from 
the register file into memory. The SAVE instruction automatically checks for the 
window_overflow condition. 

Similarly, the register file can become empty when the number of procedure returns exceeds the 
number of calls by NWINDOWS -1. A subsequent return causes one or more previously saved 
windows to be moved from memory into the register file. The RESTORE instruction automati­
cally checks for the window_underflow condition. The architecture works best with efficient 
window_overflow and window_underflow handlers. 

3-2 

~ ~ ~ NOTE ~ ~ ~ 

By software convention, you can provide additional locals (and 
consequently, fewer ins and outs). For example, software can 
assume that the boundary is actually between r[261 and r[271, 
providing 6 outs, 10 locals, and 6 ins. 
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r[31] 
ins 

r[24] 

r[23] 
locals 

r[16] 
r[1 S] 

outs 
r[S] 
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active window 
r[31] 

r[24] 

r[23] 

r[16] 

r[1S] 

r[S] 

r[7] 

r[O] 

ins 

locals 

outs 

globals 

next window 

r[31] 
ins 

r[24] 

r[23] 
locals 

r[16] 
r[1S] 

outs 
r[S] 

In this figure, NWINDOWS = S. It does not show the S globals. If the procedure corresponding to 
the window labeled wO does a procedure call (executes a SAVE instruction). a window_overflow 
trap will occur. The overflow trap handler uses the locals of w7: 

CWP=O active window = 0 
CWP+1 = 1 previous window = 1 
CWP-1 = 7 next window = 7 
WIM=100000002 trap window = 7 
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3.4. Integer Unit Control/Status Registers 

The IU's controVstatus registers are all 32-bit read/write registers unless specified otherwise. 
They include the program counters (PC and nPC), the Processor State Register (PSR), the Win­
dow Invalid Mask register (WIM), the Trap Base Register (TBR), and the multiply-step (Y) regis­
ter. 

* * * NOTE * * * 
ControVstatus registers contain two types of fields, mode and 
status. Mode fields are set by the programmer; they appear in 
UPPER CASE (for example, PIL). Status fields appear in lower 
case italic font (for example, ver). 

3.4.1. Integer Program Counters (PC and nPC) 

The Program Counter (PC) contains the address of the instruction currently being executed by 
the IU, and the nPC holds the address of the next instruction to be executed (assuming a trap 
does not occur). 

In delayed control transfers, the instruction that immediately follows a control transfer may be 
executed before control is transferred to the target. The nPC is necessary to implement this 
feature. 

3.4.2. Processor State Register (PSR) 

This 32-bit register contains various fields describing the state of the IU. It can be modified by 
the SAVE, RESTORE, Ticc and RETT instructions, or by instructions that modify the condition 
codes. The (privileged) instructions RDPSR and WRPSR read and write it directly. 

The PSR provides the following fields: 

impl ver icc reserved PIL CWP 

31:28 27:24 23:20 19:14 11 :8 4:0 

imp/ 
Bits 31 through 28 identify the implementation number of the processor. The WRPSR 
instruction does not modify this field. 

ver Bits 27 through 24 contain a constant: the meaning of this constant depends on the value of 
the implfield. The WRPSR instruction does not modify this field. 

icc Bits 23 through 20 contains the integer unit's condition codes. These bits are modified by 
the WRPSR instruction, and by arithmetic and logical instructions whose names end with the 
letters cc (for example, ANDcc). The Bicc and Ticc instructions base their control transfer on 
these bits, which are defined as follows: 

n I z I v I c I 
23 22 21 20 

Negative (n) 
Bit 23 indicates whether the ALU result was negative for the last instruction that modified the 
icc field. 1 = negative, 0 = not negative. 

Zero (z) 
Bit 22 indicates whether the ALU result was zero for the last instruction that modified the icc 
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field. 1 = result was zero, and 0 = result was nonzero. 

Overflow (II) 
If bit 21 is 1, it indicates that an arithmetic overflow occurred during the last instruction that 
modified the icc field. If bit 21 is 0, this indicates that an arithmetic overflow did not occur. 
Logical instructions that modify the icc field always set the overflow bit to O. 

Carry (c) 
If bit 20 is 1, it indicates that either an arithmetic carry out of bit 31 occurred as the result of 
the last addition that modified the icc, or that a borrow into bit 31 occurred as the result of 
the last subtraction that modified the icc. If bit 20 is 0, this indicates that a carry did not 
occur. Logical instructions that modify the icc field always set the carry bit to O. 

reserved 
Bits 19 through 14 are reserved. This field should only be written to 0 by the WRPSR 
instruction. 

EC This bit determines whether the coprocessor is enabled or disabled. 
1 = enabled, 0 = disabled. 

EF This bit determines whether the FPU is enabled or disabled. 
1 = enabled, 0 = disabled. 

3.4.3. Programming Note 

If the FPU is either disabled, or enabled and not present, an FPop, FBfcc, or floating-point 
load/store instruction causes an fp_disabled trap. Similarly, if the coprocessor is either dis­
abled, or enabled and not present, a CPop, CBccc, or coprocessor load/store instruction 
causes a cp_disabled trap. 

When the FPU (or CP) is disabled, it retains its state until it is reenabled or reset. When dis­
abled, the FPU can continue to execute instructions in its queue. The CP can also, if it has 
a queue. 

When the FPU is present, software can use the EF bit to determine whether a particular pro- .­
cess uses the FPU. If a process does not use the FPU, the FPU·s registers need not be 
saved and restored across context switches. Also, if the FPU is not present, (as indicated by 
the bp_FPU-presenf signal), the fp_disabled trap can be used to emulate the floating-point 
instruction set. (This also applies to the coprocessor.) 

PIL Bits 11 through 8 identify the processor interrupt level. The processor only accepts inter­
rupts whose interrupt level is greater than the value in Pil. Bit 11 is the MSB and bit 8 is the 
LSB. 

S Bit 7 determines whether the processor is in supervisor mode: when S = 1, the processor is 
in supervisor mode. Note that because the instructions to write the PSR are only available in 
supervisor mode, supervisor mode can only be entered by a software or hardware trap. 

PS Bit 6 contains the value of the S bit at the time of the most recent trap. 

ET Bit 5 is the Trap Enable bit. When ET = 1, traps are enabled. When ET = 0, traps are dis­
. abled, and all asynchronous traps are ignored. Synchronous traps and floating­

poinVcoprocessor traps cause the IU to halt and enter error_mode. (See Appendix C for a 
definition of error_mode.) 
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3.4.4. Programming Note 

If traps are enabled (ET=1). some care must be taken when you disable them (ET=O). Since 
the "RDPSR, WRPSR" instruction sequence is interruptible, it may not be appropriate in 
some situations. Here are two alternatives: 1) generate a ''trap_instruction'' trap instead 
(this disables traps); or 2) use the "RDPSR, WRPSR" sequence and write the interrupt trap 
handlers so that before they return to the supervisor, they restore the PSR to the value it had 
when the interrupt handler was entered. Note that the PS bit cannot be restored. In alterna­
tive (1), the trap handler should verify that it was called from the supervisor state before 
returning to the supervisor. 

CWP 
Bits 4 through 0 comprise the Current Window Pointer, which points to the current active r 
register window. It is decremented by traps and the SAVE instruction, and incremented by 
RESTORE and RETI instructions. 

The CWP cannot point to an unimplemented window; therefore arithmetic on the CWP is 
done modulo the number of implemented windows (NWINDOWS). 

3.4.5. Window Invalid Mask Register (WIM) 

This register is used to determine whether a window_overflow or window_underflow trap should 
be generated by a SAVE, RESTORE, or RETI instruction. Each bit in the WIM register 
corresponds to a window. For example, bit 0 corresponds to window 0 (CWP = 0), bit 1 
corresponds to window 1 (CWP = 1), and so on. If a SAVE, RESTOR E, or RETT would cause 
the CWP to point to a window whose corresponding WIM bit equals 1, it causes a 
window_overflow (SAVE) or window_underflow (RESTORE, RETI) trap. 

This register can be read by the RDWIM instruction, and written by the WRWIM instruction. Bits 
corresponding to unimplemented windows read as zeroes and values written to unimplemented 
bits are ignored. 

The WIM provides the following fields: 

IW31\W30 \ w29 \ 

31 30 29 210 

3.4.6. Trap Base Register (TBR) 

The trap base register contains three fields that generate the address of the trap handler when a 
trap occurs. These are: 

TBA 

TBA tt zero 

31 :12 11 :4 3:0 

Bits 31 through 12 comprise the Trap Base Address (TBA), which is controlled by software. 
It contains the most-significant 20 bits of the trap table address. (Note that the reset trap is 
an exception; it traps to address 0). The TBA field can be written by the WRTBR instruction. 

tt Bits 11 through 4 comprise the Trap Type (tt) field. This is an S-bit field that is written by the 
processor at the time of a trap, and retains its value until the next trap. It provides an offset 
into the trap table. The WRTBR instruction does not affect the tt field. 

zero 
Bits 3 through 0 are zeroes. The WRTBR instruction does not affect this field. 
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For additional information, see the section Traps, Exceptions, and Error Handling. 

3.4.7. V Register 

The multiply step instruction (MULScc) uses the 32-bit Y register to create 64-bit products. An 
example algorithm is described in Appendix B. 

This register can be read and written using the ROY and WRY instructions. 

3.5. Floating-Point Registers 

The floating-point unit has 32 working registers called f registers, a Floating-Point State Register 
(FSR) that contains mode and status information about the FPU, and a Floating-Point Queue 
(FQ) that holds one or more 64-bit instruction/address pairs. Software uses the FQ to recover 
from floating-point exceptions.' 

3.5.1. Floating-Point f registers 

The 32-bit f registers are numbered from frO] to f[31]. These can be read and written by floating­
point operate (FPop and FPcmp) instructions, or by load/store single/double floating-point 
instructions (LDF, LDDF, STF, STDF). They are addressable at all times. 

A single f register can hold one single-precision operand. Double-precision operands require an f 
register pair, where the double-e datum occupies an even-numbered register, and the double-f 
datum occupies the following odd-numbered register. Extended-precision operands require an f 
register quad, with extended-e, extended-f, extended-f low, and extended-u in register addresses 
0, 1, 2, and 3 modulo 4, respectively. Thus, the f register file can hold 8 extended, 16 double, or 
32 single-precision operands. 

3.5.2. Floating-Point State Register (FSR) 

The FSR register fields contain FPU mode and status information. The fields are: 

TEM reserved aexc cexc 

27:23 21 :17 9:5 4:0 

Rounding Direction (RD) 
Bits 31 and 30 select the rounding direction for floating-point results, according to the 
ANSI/IEEE 754-1985 Standard: 

RD Round Toward: 
o Nearest (even, if a tie) 
1 0 
2 +00 

3 - 00 

Extended Rounding Precision (RP) 

3-7 

Bits 28 and 29 determine the precision to which extended results are rounded, according to 
the ANSI/IEEE 754-1985 Standard: 

Registers 3-7 



Solbourne Computer, Inc. 

RP Round to: 
0 Extended 
1 Single 
2 Double 
3 (Unused) 

Trap Enable Mask (TEM) 
Bits 27 to 23 are enable bits for each of the five floating-point exceptions that can be indi­
cated in the currenCexception field (cexc). (See definition of cexc below.) If a floating-point 
operate instruction generates one or more exceptions and the TEM bit corresponding to one 
or more of the exceptions is set (1), an fp_exception trap is caused. A reset (0) TEM bit 
prevents that exception type from generating a trap. (See below.) The TEM field may be 
read and written by the STFSR and LDFSR instructions. 

INVMloFMIUFMIDZM!NXMI 

27 26 25 24 23 

The TEM field may be read and written by the STFSR and LDFSR instructions. 

An implementation need not implement all of the TEM bits as defined above, except NXM, 
which must be implemented as described above. If a particular bit of the TEM field is not 
implemented according to the above definition, then it is implemented as a state bit instead. 
That is, if the particular bit is written to a value by a LDFSR instruction, that same value will 
be read by a subsequent STFSR instruction. 

Abrupt Underflow (AU) 
Bit 22, when set to 1, causes denormalized floating-point operands and/or results to be 
rounded to zero. The definition of AU mode is implementation-dependent and is not defined 
by the ANSI/IEEE 754-1985 Standard. 

Reserved 
Bits 21 through 17 and bit 12 are reserved. When read by an STFSR instruction, this field 
delivers all zeroes. This field should only be written to zero by the LDFSR instruction. 

Floating-Point Trap Type (ttf) 

3-8 

Bits 16 through 14 identify fp_exception traps. After a floating-point exception trap occurs, 
the ttt field encodes the type of exception. ttt remains valid until the next FPop instruction 
completes. (Note that the exception-causing FPop and its address are in the first entry of 
the Floating-point Queue - see below.) 

The ttt field can be read by the STFSR instruction. An LDFSR instruction does not affect ttt. 
This field encodes the exception types as follows: 
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ttt Trap Type 
0 None 
1 IEEE_exception 
2 unfinished_FPop 
3 unimplemented_FPop 
4 sequence error 

An IEEE_exception indicates that an ANSI/IEEE 754-1985 exception occurred for the 
FPop identified by the front entry of the FQ. The exception type(s) is indicated in the 
cexc field. If the IEEE_exception results in a fp_exception trap (as determined by the 
TEM) then the destination f register, fcc, and aexc fields remain unchanged. However, 
if the IEEE_exception does not result in a trap; then the f register, fcc, and aexc fields 
are updated to their new values 

An unfinished_FPop indicates that an implementation's FPU was unable to generate 
correct results or exceptions, as defined by the ANSI/IEEE 754-1985 Standard. In this 
case, the cexcfield is undefined. (However, the aexc and fcc fields, and the destination f 
register are not affected by the exception.) 

An unimplemented_FPop indicates that an implementation's FPU decoded an FPop that 
it did not implement. In this case, the cexc field is undefined. (However, the aexc and 
fcc fields, and the destination f register are not affected by the exception.) 

3.5.3. Programming Note 

In the case of an unfinished_FPop or unimplemented_FPop, the software should emulate or 
reexecute the instructions in the FQ, and update the FSR and destination f register(s). 

A sequence_error indicates that an FPop or a load floating-point instruction is fetched while 
the FPU is in FPU_exception_mode, waiting for the FQ to be emptied by software. (See 
Appendix C). 

Queue Not Empty (qne) 
Bit 13 indicates whether the Floating-point Queue (FQ) is empty after an fp_exception trap or 
after a Store Double Floating-point Queue (STDFQ) instruction is executed. If qne = 0, the 
queue is empty; if qne = 1, the queue is not empty. 

The qne bit can be read by the STFSR instruction. The LDFSR instruction does not affect 
qne. However, executing successive STDFQ instructions will (eventually) cause the FQ to 
become empty (qne = 0 ). 

Floating-point Condition Codes (fcc) 

3-9 

Bits 11 and 10 contain the FPU condition codes. These bits are updated by floating-point 
compare instructions (FCMP and FCMPE) and are read and written by the STFSR and 
LDFSR instructions, respectively. Note that fcc is updated even if FCMPE generates an 
IEEE_exception trap. 

In the following table, fs1 and fs2 correspond to the values in the f registers specified by an 
instruction's rs1 and rs2 fields. The question mark (?) indicates an unordered relation, which 
is true if either fs1 or fs2 is a signaling or quiet NaN (see the section Processor Data Types 
in the section SPARC Architecture Overview). 
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The FBfcc instruction bases its control transfer on this field. which is interpreted as follows: 

fcc Relation 
0 fs1 = fs2 
1 1s1 < 1s2 
2 fS1 > fs2 
3 fs1 ? fs2 (unordered) 

Accrued Exception Bits (aexe) 
Bits 9 through 5 accumulate IEEE floating-point exceptions while fp_exception traps are dis­
abled. After an FPop completes. the TEM and eexe fields are logically andd together. If the 
result is nonzero. an FP _exception trap is generated; otherwise. the new eexe field is or'd 
into the aexe field. Thus. while traps are masked. exceptions are accumulated in the aexe 
field. (See below). 

I nva Iota I uta I dza I nxa I 
9 8 7 6 5 

The aexc field is read and written by the STFSR and LDFSR instructions. 

An implementation need not implement all of the aexe bits as defined above. except nxa. 
which must be implemented as described above. If a particular bit of the aexe field is not 
implemented according to the above definition. then it is implemented as a state bit instead. 
That is. if the particular bit is written to a value by a LDFSR instruction. that same value will 
be read by a subsequent STFSR instruction. 

Current Exception Bits (eexc) 
Bits 4 through 0 indicate one or more IEEE exceptions that were generated by the most 
recently executed FPop instruction. The absence of an exception causes the corresponding 
bit to be cleared. 

I nve late I ute I dze I nxel 
43210 

The cexc field is read and written by the STFSR and LDFSR instructions. 

An implementation need not implement all of the eexe bits as defined above. except nxc. 
which must be implemented as described above. If a particular bit of the eexc field is not 
implemented according to the above definition. then it is implemented as a state bit instead. 
That is. if the particular bit is written to a value by a LDFSR instruction. that same value will 
be read by a subsequent STFSR instruction. 

The eexe bits are not defined following an FPop that causes an unimplemented_FPop or 
unfinished_FPop fp_exception trap. Following an FPop that does not generate an 
fp_exception trap or that generates an IEEE_exception trap. the eexc bits are set as follows: 

3-10 

nve = 1 indicates invalid: an operand is improper for the operation to be performed. For 
example. 0/0. and 00 - 00 are invalid. 

ate = 1 indicates overflow: the rounded result would be larger in magnitude than the 
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largest normalized number in the specified format. 

ufe = 1 indicates underflow: the rounded result is inexact. and would be smaller in mag­
nitude than the smallest normalized number in the indicated format. 

dze = 1 indicates division-by-zero: XlO. where X is subnormal or normalized. Note that 
0/0 does not set the dze bit. 

nxe = 1 indicates inexact: The rounded result differs from the infinitely precise correct 
result. 

The following illustration summarizes the handling of IEEE_exception traps. Note that the aexe 
and ftt fields can normally only be cleared by software. 

FP-Op generates an IEEE exception; 
eexe ~ IEEE exceptions generated by this FPop; 
If ( eexe and TEM) = 0 
then ( aexc ~ aexc or cexc; f[] ~ result; fcc ~ fcc_result) 
else ( ftt ~ IEEE_exception; cause fp_exception trap) 

3.5.4. Programming Note 

Since the operating system must be capable of simulating the entire FPU in order to properly 
handle the unimplemented_FPop and unfinished_FPop floating-point exceptions. a user process 
always "sees" a fully implemented FSR as defined above. In other words. a user process always 
"sees" eexc, aexc, and TEM fields that conform to the ANSI/IEEE 754-1985 Standard. 

3.5.5. Floating-Point Queue (FQ) 

The Floating-point Queue keeps track of FPops that are pending completion by the FPU when an 
fp_exception trap occurs. When an fp_exception trap occurs. the first entry in the queue gives 
the address of the FPop that caused the exception and the instruction itself. Any remaining 
entries in the queue contain FPop instructions (and their addresses) that had not finished when 
the exception occurred. 

3.5.6. Implementation Note 

If an implementation provides n entries in the queue, at most n FPops can execute simultane­
ously in the FPU. For example, if the FPU provides one adder and one multiplier that can 
operate independently, then the FQ has no fewer than two entries. 
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SECTION 4: INSTRUCTIONS 

4.1. Introduction 

Functionally, SPARC architecture instructions fall into six categories: 1) load and store 2) 
arithmeticllogical/shift, 3) control transfer, 4) read/write control register, 5) floating-point operate, 
and 6) coprocessor operate. Instructions may also be classified into three major formats, two of 
which include subformats. 

4.2. Instruction Fonnats 

The three instruction formats are called format 1, format 2, and format 3. Figure 4-1 shows each 
instruction format, with its fields and bit positions. It also lists the types of instructions that use 
that format: 

The fields in these instructions have the following meanings: 

op This field places the instruction into one of the 3 major formats: 

Format 
1 
2 
3 

op value 
1 
o 

2 or 3 

Instruction 
Call 
Bicc, FBfcc, CBccc, SETHI 
other 

op2 This field comprises bits 24 through 22 of format 2 instructions. It selects the instruction as 
follows: 

op2 value Instruction 

0 UNIMP 
2 Bicc 
4 SETHI 
6 FBfcc 
7 CBccc 

rd For store instructions, this register selects an r register (or an f register pailj, or an f register 
(or an f register pailj to be the source. For all other instructions, this field selects an r regis­
ter (or an f register pailj, or an f register (or an f register pailj to be the destination. 

"Ci "Ci "Ci NOTE "Ci "Ci "Ci 
Reading riO] produces the result 0, and writing it causes the 
result to be discarded. 

For more information on r registers, see the section Registers. 

a The "a" bit means "annul" in format 2 instructions. This bit changes the behavior of the 
instruction encountered immediately after a control transfer, as described later in this sec­
tion. 
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cond 
This field selects the condition code for format 2 instructions. 

imm22 
This field is a 22-bit constant value used by the SETHI instruction. 

disp22 and disp30 
These fields are 30-bit and 22-bit sign-extended word displacements, for PC-relative calls 
and branches, respectively. 

op3 The op3 field selects one of the format 3 opcodes. 

i The i bit selects the type of the second ALU operand for non-FPop instructions. If i = 0, the 
second operand is r[rs2]. If i = 1, the second operand is sign-extended simm13. 

asi This a-bit field is the address space identifier generated by load/store alternate instructions. 
See discussion below. 

rs1 This 5-bit field selects the first source operand from either the r registers or the f registers. 

rs2 This 5-bit field selects the second source operand from either the r registers or the f regis­
ters. 

simm13 

opf 

This field is a sign-extended 13-bit immediate value used as the second ALU operand when i 
= 1. 

This 9-bit field identifies a floating-point operate (FPop) instruction or a coprocessor operate 
(CPop) instruction. Note that it uses the synonym ope for coprocessor operate instructions 
(see the coprocessor operate instructions in Appendix 8). A table in Appendix F shows the 
relationship between the opffield and FPop instructions. 

4.3. Load/Store Instructions 

Load and store instructions are the only instructions that access memory and registers external 
to the processor. They generate a 32-bit byte address. In addition to the address, the processor 
always generates an address space identifier, or asi. 

4.3.1. Address Space Identifier 

The address space identifier generated by the processor is made available to the external sys­
tem to distinguish up to 256 address spaces. These spaces can include system control registers, 
main memory, etc. The number of defined spaces is implementation-dependent. 

The SPARC architecture defines four address spaces and their asivalues; these appear in Table 
4-3. They indicate to the external system whether the processor is in user or supervisor mode 
(as indicated by the PSR), and wheiher the access is an Instruction or a data reference. 

4-2 

asi 
0-7 
a 
9 
10 
11 
12 - 255 

Assignment 
Implementation-definable 
User instruction space 
Supervisor instruction space 
User data space 
Supervisor data space 
Implementation-definable 
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Load/store instructions normally generate an asi of either 10 or 11 for the data access. depend­
ing on whether the processor is in user or supervisor mode. However. the load from alternate 
space and store into alternate space instructions use the as; field supplied by the instruction 
itself. 

Note that the load/store alternate instructions are privileged; they can only be executed in super­
visor mode. 

4.3.2. Addressing Conventions 

The load and store instructions use the following addressing conventions: 

Bytes 
For load and store byte instructions. increasing the address generally means decreasing the 
significance of the byte within a word: the most significant byte (MSB) of a word is accessed 
when address bits <1 :0> are 0 and the least significant byte (LSB) is accessed when 
address<1 :0> = 3. 

Halfwords 
For load and store haHword instructions. when address bit 1 = 1. the least significant half­
word of a word is accessed. and when address bit 1 = O. the most significant halfword is 
accessed. 

Doublewords 
For load and store double instructions. the most significant word is accessed when address 
bit 2 = O. and the least significant word is accessed when address bit 2 = 1. 

In general. the address of a doubleword. word. or halfword is the address of its most significant 
byte. These conventions are illustrated in the following figure: 
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Bytes 

address<1 :0> ° 1 2 3 

17 01 7 01 7 01 7 01 

MSB LSB 

Halfwords 

address<1 :0> 0 2 

115 ° 115 01 

Word 

131 01 

Doubleword 

address<2> 

o 163 32 

0 1 31 

A doubleword-aligned datum is located at a doubleword address, which must be evenly divisible 
by 8. A word-aligned datum is located at a word address, which must be evenly divisible by 4. A 
halfword-aligned datum is located at a halfword address, which must be divisible by 2. 

If a doubleword, word, or halfword load or store instruction generates an improperly aligned 
address, a memory_address_nocaligned trap occurs. 

4.4. Arithmetic, Logical, and Shift Instructions 

All of these instructions compute some result that is a function of two source operands, and 
either write the result into a destination r register (r[rd]) or discard it. One of the operands is 
always r[rs1]. The other operand depends on the i bit in the instruction: if i = 0, the operand is 
r[rs2J, but if i = 1, the operand is the sign-extended constant sign_extend(simm13). 

Reading r[O] produces the value zero. If the destination field indicates a write into r[O], no r regis­
teris modified and the result is discarded. 

Most of these instructions have dual versions which modify the integer condition codes (icc) as a 
- side effect. 
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4.4.1. Programming Note 

riO] can be used to implement a register-to-register move in one of several ways: ADD with 0, OR 
with 0, etc. Subtract and set condition codes (SUBcc) can be used as an integer COMPARE 
instruction. 

The tagged add and subtract instructions (TADDcc, TSUBcc, TADDccTV and TSUBccTV) 
operate on tagged data where the tag is the low-order two bits of the data. If either of the 
instruction's two operands has a nonzero tag, the overflow bit of the PSR is set. The "trap on 
overflow" versions, TADDccTV and TSUBccTV, in addition to writing the condition codes, also 
cause an overflow trap. 

4.4.2. Programming Note 

One possible model for tagging is to use 0 to tag integers and 3 for pointers to doublewords, Le. 
list cells. 

If trapping overhead is insignificant, then TADDccTV or TSUBccTV is faster than the non­
trapping versions, which would need to be followed by 'branch on overflow' instructions. 

Suppose p contains a tagged pOinter to a list cell, Le. has 3 in its low-order two bits. Since the 
load and store instructions execute successfully only with properly aligned addresses, a load or 
store word with an address specifier of "p - 3" or "p + 1" will succeed, accessing the first or 
second word of the list cell, respectively; if, on the other hand, p contains a tag value other than 
3, they will trap. 

Shift instructions shift an r register left or right by a constant or variable amount, as described in 
Appendix B. None of the shift instructions changes the condition codes. 

The "set high 22 bits of r" (SETHI) instruction writes a 22-bit constant from the instruction into the 
high-order bits of the destination register. It clears the low-order 10 bits, and does not change 
the condition codes. 

4.4.3. Programming Note 

SETHI can be used to construct a 32-bit constant using two instructions. 

4.5. Control Transfer Instructions 

Control-transfer instructions change the values of PC and nPC. There are five types of control 
transfer instructions: 

1) Conditional branch (Bicc, FBfcc, CBccc) 

2) Jump and Link (JMPL) 

3) Call (CALL) 

4) Trap (Ticc) 

5) Return from trap (RETT) 

Each of these can be further categorized according to whether it is 1) PC-relative or register­
- indirect, or 2) delayed or non-delayed. The following matrix shows these characteristics: 
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Instruction 

BiCC, FBfcc, CBccc, CALL 
JMPL, RETT 
Ticc 

PC-relative or 
Register-indirect 

PC-Relative 
Reg-Indirect 
Reg-Indirect 

The following paragraphs describe each of the characteristics: 

PC-relative 

Delayed 

Yes 
Yes 
No 

A PC-relative control transfer computes its target address by adding the (shifted) sign­
extended immediate displacement to the program counter (PC). 

Register-indirect 
A register-indirect instruction computes its target address as either "r[rs1] + r[rs2]" if i = 0, or 
"r[rs1] + sign_ext(simm13)" if i = 1. 

Delayed 
A control transfer instruction is delayed if it transfers control to the target address after a 
one-instruction delay. Delayed control transfers are described in the next section. 

4.5.1. Delayed Control Transfers 

Traditional architectures usually execute the target of a control transfer instruction immediately 
after the control·transfer instruction. The SPARC architecture delays by one instruction the exe­
cution of the target of a delayed control-transfer instruction. The instruction encountered immedi­
ately after a delayed control transfer is called the delay instruction. 

4.5.2. PC and nPC 

In general, the PC pOints to the instruction being executed by the IU, and the nPC pOints to the 
instruction to be executed next. Most instructions complete by copying the contents of the nPC 
into the PC, then either increment nPC by 4, or, if the instruction implies a control transfer, write 
the computed target address into nPC. The PC now points to the instruction that will be exe­
cuted next, and the nPC pOints to the instruction that will be executed after the next one; in other 
words, two instructions hence. 

The sequence is: 

PC f- nPC 
nPC f- nPC + 4 or target address 

4.5.3. Delay Instruction 

The instruction pointed to by the nPC when a delayed control-transfer instruction is encountered 
is caffed the delay instruction. Normally, this is the next sequential instruction in the code space. 
However, if the instruction that preceded the delayed control transfer was itself a delayed control 
transfer, the address of the delay instruction is the target of the (first) control·transfer instruction, 
since that is where the nPC will point. This behavior is explained further in the section Back·to· 

_ Back Delayed Control Transfers below. 

The following example shows the order of execution for a simple (not back-to-back) delayed con­
trol transfer. The order of execution is 8, 12, 16, 40. If the delayed control transfer-instruction 
were not taken, the order would be 8, 12, 16,20. 
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nPC 
before 

instruction 
12 
16 
40 

Instruction 

Non-control transfer 
Control transfer (target = 40) 
Non-control transfer (delay instruction) 

Transfers control to 40 

40 44 

4.5.4. Annul Bit 

The a (annul) bit changes the behavior of the delay instruction. This bit is only available on con­
ditional branch instructions (Bicc, FBfcc and CBccc). If a is set on a conditional branch (except 
BA, FBA and CBA) and the branch is not taken, the delay instruction is "annulled" (not exe­
cuted). An annulled instruction has no effect on the state of the IU nor can a trap occur during an 
annulled instruction. If the branch is taken, the a bit is ignored and the delay instruction is exe­
cuted. For example: 

PC nPC Instruction Action 

8 12 Non-control transfer Executed 
12 16 Bicc (a=1) 40 Not taken 
16 40 Non-control transfer Annulled (not executed) 
20 24 ... Executed 

PC nPC Instruction Action 

8 12 Non-control transfer Executed 
12 16 Bicc (a=O) 40 Not taken 
16 40 ... Executed 
40 44 ... Executed 

BA, FBA and CBA instructions are a special case; if the a bit is set in these instructions the delay 
instruction is not executed if the branch is taken, but it is executed if the branch is not taken. 

The following display shows the effect of the a bit on the delay instruction after various kinds of 
branches: 

a bit 
a=1 

4-7 

Type of branch 
Always 
Conditional, taken 
Conditional, not taken 
Always 
Conditional, taken 
Conditional, non taken 

Instructions 

Delay instr. executed? 
No 
Yes 
No 
Yes 
Yes 
Yes 
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4.5.5. Programming Notes 

The annul bit increases the likelihood that a compiler or optimizer can place a useful instruction in 
the delay slot after a branch. Refer to the following table: 

Address Instruction Target 
L non-control transfer instruction 
L' 

Bicc L 
0 NOP 

If the Bicc has a = 0, a code optimizer may be able to move a non-control-transfer instruction 
from within the loop into location D. If the Bicc has a = 1, then the compiler can copy the non­
control-transfer instruction at location L into location 0, and change the branch to Bicc L'. 

The annul bit can also be used to optimize "if-then-else" statements. Since the conditional 
branch instructions provide both true and false tests for all the conditions, an optimizer can 
arrange the code so that a non-control-transfer instruction from either the "else" branch or the 
"then" branch can be moved into the delay position after the branch instruction. For example: 

Address Instruction 

Delay: 

THEN: 

Bicc(cond, a=l) THEN 

then-phrase-instr-l 

else-phrase-instr-l 

else-phrase-instr-2 

goto ... 

then-phrase-instr-2 

then-phrase-instr-3 

Address 

Delay: 

ELSE: 

Instruction 

Bicc(cond, a=l) ELSE 

else-phrase-instr-l 

then-phrase-instr-l 

then-phrase-instr-2 

goto ... 

else-phrase-instr-2 

else-phrase-instr-3 

When set in a branch always instruction (BA, BFA), the annul bit implements a ''traditional,'' non­
delayed branch instruction. This can also be used to dynamically replace unimplemented 
instructions with branches to software emulation routines as this requires less overhead than a 
trap. 

4.5.6. Calls and Returns 

A procedure that requires a register window is invoked by executing both a CALL (or a JMPL) 
and a SAVE instruction. A procedure that does not need a register window, a so-called "leaf" 
routine, is invoked by executing only a CALL (or a JMPL). Leaf routines can use only the out 
registers. 

The CALL instruction stores PC, which pOints to the CALL itself, into register r[15] (an out regis­
ter). JMPL stores PC, which points to the JMPL instruction, into the specified r register. These 
instructions then cause a transfer of control to a target that can be arbitrarily distant. 

The SAVE instruction is similar to an ADD instruction, except that it also decrements the CWP by 
one, causing the active window to become the previous window, thereby "saving" the caller's 
window. Also, the source registers for the addition are from the previous window while the result 
is written into the new window. 
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A procedure that uses a register window returns by executing both a RESTORE and a JMPL 
instruction. A leaf procedure returns by executing a JMPL only. The JMPL instruction typically 
returns to the instruction following the CALL's or JMPL's delay instruction; in other words, the typ­
ical return address is 8 plus the address saved by the CALL. 

The RESTORE instruction, also like an ADD instruction, increments the CWP by one, causing 
the previous window to become the active window, thereby "restoring" the caller's window. Also, 
the source registers for the addition are from the current window while the result is written into 
the previous window. 

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to 
check for window overflow or underflow. 

4.5.7. Programming Note 

The SAVE and RESTORE instructions can be used to atomically update the CWP while estab­
lishing a new memory stack pointer in an r register. 

4.5.8. Trap (Tice) Instruction 

The Ticc instruction evaluates the condition codes specified by its cond field, and if the result is . 
true, it causes a trap with no delay instruction. If the condition codes evaluate to false, it exe­
cutes as a NOP. 

A taken Ticc identifies the software trap by writing "trap_number + 128" into the tt field of the 
TBR. The processor enters supervisor mode, disables traps, decrements the CWP, and saves 
PC and nPC into the locals r[17] and r[18] (respectively) of the new window. 

4.5.9. Programming Note 

Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for 
run-time checks, such as out-of-range array indices, integer overflow, etc. 

4.5.10. Delayed Control Transfers Couples 

When a delayed control transfer is encountered immediately after another delayed control 
transfer, this creates what is called a delayed control-transfer couple, which the processor han­
dles differently from a simple control transfer. 

The following tables show, first, a sequence of instructions that includes a delayed control­
transfer couple, and second, a table that illustrates the order of execution depending on the 
nature of the control-transfer instructions. 

4-9 Instructions 4-9 



Case 
1 
2 
3 
4 
5 
6 

Solbourne Computer, Inc. 

-tr -tr -tr NOTE -tr -tr -tr 
In the following tables, 'delayed control-transfer instruction' is 
abbreviated to 'OCTI'. Note that a "non-OCTI" may be either a 
non-control-transfer instruction, or a control-transfer instruction 
which is not delayed (Le. a Ticc). 

address: instruct ion target 
8: non-OCTI 

12: OCTI 40 
16: OCTI 60 
20: non-OCTI 
24: 

40: non-OCTI 
44: 

60: non-OCTI 

64: 

12: OCTI 40 16: any OCTI 60 Order of Execution: 
OCTI unconditional OCTI taken 12,16,40,60,64, .. , 
OCTI unconditional B*cc(a=O) untaken 12, 16,40,44, ... 
OCTI unconditional B*cc(a=1) untaken 12, 16,44,48, ... (40 annulled) 
OCTI unconditional B*A(a=1) 12,16,60,64, ... (40 annulled) 
B*A(a=1) any CTI 12, 40, 44, ... (16 annulled) 
B*cc OCTI not supported (see text) 

Where the annul bit is not indicated, it may be either ° or 1. Abbreviations are as follows: 

B*A 
S*cc 
OCTI unconditional 
OCTI taken 

BA, FBA or CBA 
Bicc, FBfcc, or CBccc (except B* A) 
CALL, JMPL, RETT, or B*A(a=O) 
CALL, JMPL, RETT, B*cc taken, or B*A(a=O) 

When the first instruction of a delayed control-transfer couple is a conditional branch, the transfer 
of control is undefined (case 6). If such a couple is executed, the location where execution con­
tinues is within the same address space but otherwise undefined. This sequence does not 
change any other aspect of the processor state. 

Case 1 of the above table includes the "JMPL, RETT" couple. RETT must always be preceded 
by a JMPL instruction. (If it is not, the location where execution continues is not necessarily 
within the address space implied by the PS bit of the PSR.) 

4.5.11. Programming Note 

Trap handlers complete execution by executing the "JMPL, RETT" couple. 
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4.6. Read and Write Control Reg Isters 

These instructions read or write the contents of the programmer-visible control registers. This 
category includes instructions to read and write the PSR, the WIM, the TBR, the Y register, the 
FSR, and the CSR. These instructions are all privileged (available in supervisor state only), 
except those that read and write the Y register, the FSR, and the CSR. 

4.7. Floating Point Operate (FPop) Instructions 

Floating-point operate instructions (FPops) are generally three-register instructions that compute 
some result that is a function of one or two source operands, and place the result in a destination 
f register. The exception is floating-point compare operations, which update the fcc field of the 
FSR. 

The term "FPop" does NOT include the load/store floating-point instructions. 

Multiple-precision instructions assume that their operands are in multiple contiguous f registers. 
The operands must be aligned in the f registers according to their size: the number of the first f 
register of a multiprecision operand must be a multiple of the operand size in words. 

All FPops except move instructions can modify the status fields of the FSR. 

FPops execute concurrently with IU instructions and other FPops. Concurrent operation is 
described in the section SPARC architecture Overview and in Appendix C. 

There are no direct IU-to-FPU or FPU-to-IU move instructions. 

4.8. Coprocessor Operate (CPop) Instructions 

The coprocessor operate instructions are executed by the attached coprocessor. If there is no 
attached coprocessor, a CPop instruction generates a cp_disabled trap. 

The instruction fields of a CPop instruction, except for op and op3, are interpreted only by the 
coprocessor. A CPop takes all operands from and returns all results to coprocessor registers. 

Note that the term "CPop" does NOT include the load/store coprocessor instructions. 
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SECTION 5: TRAPS, EXCEPTIONS, AND ERROR HANDLING 

5.1. Introduction 

SPARC supports three types of traps: synchronous, floating-point/coprocessor and asyn­
chronous (asynchronous traps are also called Interrupts). Synchronous traps are caused by an 
instruction, and occur before the instruction is completed. Floating-point/coprocessor traps are 
caused by a Floating-Point Operate (FPop) or coprocessor (CPop) instruction, and occur before 
the instruction is completed. However, due to the concurrent operation of the IU and the FPU, 
other non-floating-point instructions may have executed in the meantime. Asynchronous traps 
occur when an external event interrupts the processor. They are not related to any particular 
instruction and occur between the execution of instructions. 

Synchronous and floating-pOint/coprocessor traps are generally taken before the instruction 
changes any processor or system state visible to a programmer; they happen "between" instruc­
tions. Instructions which access memory twice (double loads and stores and atomiC instructions) 
are the only exceptions. 

An instruction is defined to be trapped if any trap occurs during the course of its execution. If 
multiple traps occur during one instruction, the highest priority trap is taken. Lower priority traps 
are ignored because the traps are arranged under the assumption that the lower priority traps 
perSist, recur, or are meaningless due to the presence of the higher priority trap. For example, if 
a mem_address_noCaligned trap is detected during an instruction fetCh, the potential 
unimplemented_instruction trap is meaningless because the address is invalid. Pending inter­
rupts persist; therefore, they have the lowest priority. 

The ET bit in the PSR must be set for traps to occur normally. If a synchronous trap occurs while 
traps are disabled the processor halts and enters an error state. In most implementations, this 
causes a reset trap. 

5.1.1. Implementation Note 

Since interrupts are ignored while traps are disabled, they should persist until they are ack­
nowledged. 

Load/store instructions generally trap before the instruction changes the state of the processor. 
However, those instructions that do more than one memory access (namely the load and store 
doubles and the atomic load and store instructions) may trap on a data_access_exception after 
the first memory access, causing a trap after the processor state has been partially modified. 
This can only occur for non-resumable exceptions, such as uncorrectable memory errors. (See 
Appendix B for instruction descriptions.) 

5.2. Trap Addressing 

The Trap Base Register (TBR) generates the exact address of a trap handling routine. When a 
trap (other than some types of reset trap) occurs, the hardware writes a value into the trap type 
(tf) field of the TBR. This uniquely identifies the trap and serves as an offset into the table whose 
starting address is given by the TBA field of the TBA. 
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The 8-bit wide tt field allows for 256 distinct types of traps. Half of these (0 - 127) are dedicated 
to hardware traps, and half (128-255) are dedicated to programmer-initiated traps (see the Ticc 
instruction). The ttfield remains valid until another trap occurs. 

5.3. Trap Priorities 

The following table shows the trap types, priorities, and assignments. 

Trap Priority tt 
reset 1 -
instruction_access_exception 2 1 
iIIegaUnstruction 3 2 
privileged_instruction 4 3 
fp_disabled 5 4 
cp_disabled 5 36 
window_overflow 6 5 
window_underflow 7 6 
mem_address_nocaligned 8 7 
fp_exception 9 8 
cp_exception 9 40 
data_access_exception 10 9 
tag_overflow 11 10 
trap_instruction (Ticc) 12 128-255 
interrupUeveL15 13 31 
interrupUeveL14 14 30 
interrupUeveL13 15 29 
interrupUeveL12 16 28 
interrupUeveL11 17 27 
interrupUevel_10 18 26 
interrupUeveL9 19 25 
interrupUevel_8 20 24 
interrupUeveL7 21 23 
interrupUevel_6 22 22 
interrupUeveL5 23 21 
interrupUeveL 4 24 20 
interrupUeveL3 25 19 
interrupUevel_2 26 18 
interrupUeveL1 27 17 

5.4. Trap Definition 

A trap causes the following action: 

• It disables traps (ET +- 0). 

• It copies the S field of the PSR into the PS field and then sets the S field to 1. 

• It decrements the CWP by 1, modulo the number of implemented windows. 

• It saves the PC and nPC into r{17] and r{18], respectively, of the new window. 

• It sets the ttfield of the TBR to the appropriate value. 

• If the trap is not a reset, it writes the PC with the contents of TBR, and the nPC with the con­
tents of TBR + 4. If the trap is a reset, it loads the PC with 0 and the nPC with 4. 
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-cr -cr -cr NOTE -cr -cr -cr 
Unlike many other processors, the SPARC architecture does not 
automatically save the PSR into memory during a trap. Instead, 
it saves the volatile S field into the PSR itself and the remaining 
fields are either altered in a reversible way (ET and CWP), or 
should not be altered in a trap handler until the PSR has been 
saved into memory. 

The last two instructions of a trap handler should be a JMPL fol­
lowed by a RETI. This restores the PC, the nPC and the S bit 
of the PSR. 

Because the FPU and IU operate concurrently, the address that is saved from the PC as a result 
of a floating-point exception may not be the address of the FPop that caused the exception. If a 
floating-point exception occurs, the first element in the FQ points to the FPop that caused the 
exception, and the remaining elements point to FPops that have been started by the FPU but 
have not yet completed. These can be re-executed or emulated. 

For additional information on trap handlers, see Appendix C. 

5.5. Interrupt Detection 

As long as ET = 1, the IU checks for interrupts. It compares the external interrupt level (bp_IRL) 
against the PIL field of the PSR, and if bp_IRL is greater than the PIL, or if bp_IRL is 15 
(unmaskable), then a trap occurs at the level requested by bp_IRL. 

5.5.1. Implementation Note 

Processor implementations may ignore interrupts for multiple cycles even though ET =1. 

5.6. Floating-point/Coprocessor Exception Traps 

Floating-point/coprocessor exception traps are considered a separate class of traps because 
they are both synchronous and asynchronous. They are asynchronous because they occur 
sometime after the floating-point or coprocessor instruction that caused the exception. However, 
they are synchronous because a floating-point or coprocessor instruction must be encountered in 
the instruction stream before the trap is taken. 

When the FPU or CP recognizes an exception condition, it enters an "exceptionJ>8nding_mode" 
state, and remains in this state until the IU takes the fp_exception trap. When the IU takes the 
exception trap, the FPU leaves "exceptionJ)ending" state, and enters "exception_mode" state. 
The FPU or coprocessor remains in the exception_mode state until the floating-point or copro­
cessor queue has been emptied by execution of one or more STDFQ or STDCQ instructions. 

The PC that corresponds to a floating-point or coprocessor exception always points to a floating­
point or coprocessor instruction. However, the exception itseH is always due to a previously exe­
ruted floating-point or coprocessor instruction. The instruction and the value of the PC from 
which it was fetched are in the floating-point (or coprocessor) queue. 

5.7. Trap Descriptions 

The following paragraphs describe the various traps, and the conditions that cause them. 
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reset 
A reset trap occurs when the IU leaves resecmode and enters execute_mode. This is con­
trolled by the bp-,eseLin signal. The IU enters reseCmode when bp_reseLin == 1, and 
enters execute mode when bp_reseLin '" O. Except in one situation, reset does not change 
the value of the tt field of the TBR; the exception is when a return from trap instruction is 
executed while traps are not enabled and the processor is not in supervisor mode (see 
description of return from trap instruction in Appendix 8). Also, a reset trap causes the IU to 
begin execution at location 0, regardless of the value of the TBA. 

Reset traps set the PSR S bit to 1 and the ET bit to O. All other PSR fields, and all other 
registers retain their values from the last execute_mode, except that on power-up they are 
undefined. 

instruction_access_exception 
This trap occurs when bp_memory_access_exception = 1 for a memory address used in an 
instruction fetch. 

iIIegaUnstruction 
This trap occurs 1) when the UNIMP instruction is encountered, 2) when an unimplemented 
instruction which is not an FPop or a CPop is encountered, or 3) when an instruction is 
fetched which, if executed. would result in an illegal processor state (e.g. writing an illegal 
CWP into the PSR). Unimplemented floating point operate and unimplemented coprocessor 
operate instructions generate fp_exceptions and cp_exception traps. respectively. 

privileged_instruction 
This trap occurs when a privileged instruction is encountered while the S bit in the PSR = O. 

fp_disabled 
This trap occurs when a FPop. FBfcc. or a floating-point load or store is encountered while 
the EF bit in the PSR = 0 or no FPU is present. 

cp_disabled 
This trap occurs when a CPop. CBccc. or a coprocessor load or store instruction is decoded 
while the EC bit in the PSR = 0 or no coprocessor is present. 

window_overflow 
This trap occurs when a SAVE instruction would, if executed. cause the CWP to point to a 
window marked invalid in the WIM. 

window_underflow 
This trap occurs when a RESTORE instruction WOUld. if executed. cause the CWP to point to 
a window marked invalid in the WIM. 

mem_address_noCaligned 
This trap occurs when a load. store or JMPL instruction WOUld. if executed. generate a 
memory address or a new PC value that is not property aligned. 

fp_exception 
This trap occurs when the FPU is in exception-pending state and a floating-point instuction 
(FP operate, floating-point load/store. FBfcc) is encountered in the instruction stream. The 
type of exception is encoded in the tt field of the FSR as described in the section Registers. 

cp_exception 
This trap occurs when the CP is in exception-pending state and a coprocessor instuction 
(CP operate. coprocessor load/store. CBccc) is encountered in the instruction stream. 

data_access_exception 

5-4 

This trap occurs when bp_memory_exception=1 for a memory address that corresponds to a 
data movement by a load or store instruction. 
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tag_overflow 
This trap occurs when a TADDccTV or TSUBccTV instruction is executed which causes the 
overflow bit of the integer condition codes to be set. 

trap_instruction 
This trap occurs when a taken Ticc instruction is executed. 

interrupUevek3 :0> 

5·5 

External interrupts are controlled by the value of bp_IRL. A value of 0 indicates that no 
interrupt is requested. Level 1 is the lowest priority interrupt and 15 is the highest. Interrupt 
level 15 cannot be masked by the Processor Interrupt Level (PIL) field of the PSR. When ET 
= 1, an external interrupt is recognized if bp_IRL = 15 or bp_IRL > PIL. When ET = 0 or 
(bp_IRL:t. 15 and bp_IRL::; PIL), no external interrupt is recognized. 
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APPENDIX A: SUGGESTED ASSEMBLY LANGUAGE 

A.1. Introduction 

This appendix supports Appendix B, Instruction Descriptions. Every instruction description in 
Appendix B includes a table that describes the suggested assembly language format for that 
instruction. This appendix describes the notation used in the assembly language syntax descrip­
tions. 

Understanding the use of type fonts Is crucial to understanding the syntax descriptions In 
Appendix B. Items in typewriter font are literals, to be entered exactly as they appear. Items in 
italic font are metasymbols which are to be replaced by numeric or symbolic values when actual 
SPARe assembly-language code is written. For example, "asr would be replaced by a number 
in the range of 0 to 255 (the value of the asi bits in the binary instruction), or by a symbol which 
had been bound to such a number. 

Subscripts on rnetasymbols further identify the placement of the operand in the generated binary 
instruction. For example, reg,s2 is a reg (i.e. register name) whose binary value will end up in the 
rs2 field of the resulting instru~lIon. 
Register Names 

A-1 

reg A reg is an Integer Unit register. It can have a value of: 

%0 through %31 
%gOthrough %g7 
%00 through %07 
%10 through %17 
%iO through %i7 

all integer registers 
global registers - same as %0 through %7 
out registers - same as %8 through % 15 
local registers - same as % 16 through %23 
in registers - same as 0/024 through %31 

Subscripts further identify the placement of the operand in the binary instruction as one 
of: 

regrs 1 - rs1 field 
reg rs2 - rs2 field 
reg,d - rdfield 

'reg An 'reg is a floating-point register. It can have a value from %fO through %f31. Sub-
scripts further identify the place~ent of the operand in the binary instruction as one of: 

freg,s1- rs1 field 
freg ,s2 - rs2 fie Id 
fregrd - rei field 
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creg 
A creg is a coprocessor register. It can have a value from %cO through %c31. Sub­
scripts further identify the placement of the operand in the binary instruction as one of: 

cregrs1- r51 field 
creg (s2 - r52 field 
cregrd - rd field 

Special Symbol Names 
Certain special symbols need to be written exactly as they appear in the syntax table. These 
appear in typewriter font, and include a percent sign (%), also in typewriter font. The percent 
sign is part of the symbol name; it must appear as part of the literal value. 

The symbol names are: 

%psr 
%wim 
%tbr 
%y 
%fsr 
%csr 
%fq 
%cq 
%hi 
%10 

Processor State Register 
Window Invalid Mask register 
Trap Base Register 
Y register 
Floating-point State Register 
Coprocessor State Register 
Floating-point Queue 
Coprocessor Queue 
Unary operator that extracts high 22 bits of its operand 
Unary operation that extracts low 10 bits of its operand 

Values 
Some instructions use operands comprising values as follows: 

Label 

simm13 - A signed immediate constant that fits in 13 bits 

const22 - A constant that fits in 22 bits 

asi- An alternate address space identifier (0 to 255) 

A sequence of characters, comprised of alphabetic letters (a-z, A-Z [upper and lower case 
distinct]), underscore U, dollar sign ($), period (.), and decimal digits (0-9), which does not 
begin with a decimal digit. 

Some instructions offer a choice of operands. These are grouped as follows: 

regaddr. 

reg (s1 

reg rs 1 + reg rs2 
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fefL°,-imm 

A-3 

+ reg,s2 
+ simm13 

simm13 

reg,s1 
reg,s 1 

reg,s1 
reg,s1 
simm13 
simm13 + 

reg,s2 
simm13 
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APPENDIX B: INSTRUCTION DEFINITIONS 

B.1. Introduction 

This appendix describes the SPARe arch~ecture's instruction set. A more detailed, algorithmic 
definition of the instruction set appears in Appendix C. 

Related instructions are grouped into subsections. Each subsection consists of five parts: 

(1) A table of the opcodes defined in the subsection with the values of the field(s) which 
uniquely identify the instruction(s). . 

(2) An illustration of the applicable instruction format(s). 

(3) A table of the suggested assembly language syntax. (The syntax notation is described In 
Appendix A.) 

(4) A description of the salient features. restrictions. and trap conditions. 

(6) A list of the synchronous or floating-point/coprocessor traps which can occur as a conse-
quence of executing the instruction(s). 

This section does not include any timing information (in either cycles or absolute time) since tim­
ing is strictly implementation-dependent. 

The following table lists all the instructions: 
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Opcode Name 

LDSB (LDSBA t) Load Signed Byte (from Alternate space) 
LDSH (LOS HAt) Load Signed Halfword (from Alternate space) 
LDUB (LDUBAt) Load Unsigned Byte (from Alternate space) 
LDUH (LDUHAt) Load Unsigned Halfword (from Altemate space) 
LD (LDAt) Load Word (from Alternate space) 
LDD (LDDA)t Load Doubleword (from Alternate space) 

LDF Load Floating-point 
LDDF Load Double Floating-point 
LDFSR Load Floating-point State Register 
LDC Load Coprocessor 
LDDC Load Double Coprocessor 
LDCSR Load Coprocessor State Register 
STB (STBAt) Store Byte (into Alternate space) 
STH (STHAt) Store Halfword (into Alternate space) 
ST (STAt) Store Word (into Alternate space) 
STD (STOAt) Store Doubleword (into Alternate space) 

STF Store Floating-point 
STDF Store Double Floating-point 
STFSR Store Floating-point State Register 
STDFQt Store Double Floating-point Queue 
STC Store Coprocessor 
STDC Store Double Coprocessor 
STCSR Store Coprocessor State Register 
STDCQt Store Double Coprocessor Queue 
LDSTUB (LDSTUBAt) Atomic Load-Store UnSigned Byte (in Alternate space) 
SWAP (SWAPAt) Swap r Register with Memory (in Alternate space) 

ADD (ADDcc) Add (and modify iCc) 
ADDX (ADDXcc) Add with Carry (and modify iCc) 
TADDcc (T ADDccTV) Tagged Add and modify icc (and Trap on overflow) 

SUB (SUBcc) Subtract (and modify iCc) 
SUBX (SUBXcc) Subtract with Carry (and modify iCC) 
TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on overflow) 
MULScc Multiply Step and modify icc 
AND (ANDcc) And (and modify icc) 
ANON (ANDNcc) And Not (and modify iCC) 
OR (ORcc) Inclusive-Or (and modify icc) 
ORN (ORNcc) Inclusive-Or Not (and modify icc) 
XOR (XORcc) Exclusive-Or (and modify iCC) 
XNOR (XNORcc) Exclusive-Nor (and modify iCC) 
SLL Shift Left Logical 
SRL Shift Right Logical 
SRA Shift Right Arithmetic 
SETHI Set High 22 bits of r register 
SAVE Save caller's window 
RESTORE Restore caller's window 
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Opcode Name .. 

Bicc Branch on integer condition codes 
FBfcc Branch on floating-point condition codes 
CBccc Branch on coprocessor condition codes 
CALL Call 
JMPL Jump and Link 
REnt Return from Trap 
Tice Trap on integer condition codes 

ROY Read Y register 
RDPSRt Read Processor State Register 
RDWIMt Read Window Invalid Mask register 
RDTBRt Read Trap Base Register 
WRY Write Y register 
WRPSRt Write Processor State Register 
WRWIMt Write Window Invalid Mask register 
WRTBRt Write Trap Base Register 

UNIMP Unimplemented instruction 
IFLUSH Instruction cache Flush 

FPop Floating-point Operate: FiTO(s,d,x), F(s,d,x)TOi 
FsTOd, FsTOx, FdTOs, FdTOx, FxTOs, FxTOd, FMOVs, FNEGs, FABSs, 
FSQRT(s,d,x), FADD(s,d,x), FSUB(s,d,x), FMUL(s,d,x), FDIV(s,d,x), 
FCMP(s,d,x), FCMPE(s,d,x) 

CPop Coprocessor operate 

t privileged instruction 
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B.2. Load Integer Instructions 

opcode op3 operation 

LDSB 001001 Load Signed Byte 
LDSBAt 011001 Load Signed Byte from Altemate space 
LDSH 001010 Load Signed HaHword 
LDSHAt 011010 Load Signed HaHword from Alternate space 
LDUB 000001 Load Unsigned Byte 
LDUBAt 010001 Load Unsigned Byte from Altemate space 
LDUH 000010 Load Unsigned Halfword 
LDUHAt 010010 Load Unsigned HaHword from Alternate space 
LD 000000 Load Word 
LDAt 010000 Load Word from Altemate space 
LDD 000011 Load Doubleword 
LDDAt 010011 Load Doubleword from Alternate space 

t privileged instruction 

Format (3): 

111 I rd op3 rs1 i=O asi rs2 I :J1 ~ 24 111 1:J 12 !5 4 

111 rd op3 rs1 i=1 simm13 I 31 ~ 24 111 1:J 12 !5 

Suggested Assembly Language Syntax 

Idsb [address]. reg,d 
Idsba [regaddr] asi. reg,d 
Idsh [address], reg,d 
Idsha [regaddr] asi, reg,d 
Idub [address], reg,d 
Iduba [regaddr] asi, reg,d 
Iduh [address], reg,d 
Iduha [regaddr] asi. reg,d 
Id [address], reg,d 
Ida [regaddr] asi, reg,d 
Idd [address]. reg,d 
Idda [regaddr] asi, reg,d 

Description: 

8-4 

The load single integer instructions move either a byte, halfword. or word from memory into 
the r register defined by the rd field. A fetched byte or halfword is right-justified in rd and 
may be either zero-filled or Sign-extended. 

The load double integer instructions (LDD. LDDA) move a doubleword from memory into an r 
register pair. The most significant word at the effective memory address is moved into the 
even r register. The least significant word at the effective memory address + 4 is moved into 
the odd r register. The least significant bit of the rd field is ignored. (Note that a load double 
with rd = 0 modifies only rI1].) 

The effective address for a load instruction is either "rIrs1] + rIrs2]" if the i field is zero, or 
"rIrs1] + sign_ext(simm13)" if the i field is one. Instructions which load from an alternate 
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address space must have zero in the i field and the address space identifier to be used for 
the load in the asi field. Otherwise the address space indicates either a user or system data 
space access, according to the S bit of the PSR. 

LO and LOA cause a mem_address_not_aligned trap if the effective address is not word­
aligned; LOUH, LOSH, LOUHA, and LOSHA trap if the address is not halfword-aligned; and 
LOO and LOOA trap if the address is not doubleword-aligned. 

If a load single instruction traps, the destination register remains unchanged. 

If a load double instruction is trapped with a data access exception during the effective 
address memory access, the destination registers remain unchanged. However a specific 
implementation might cause a data_access_exception trap during the effective address + 4 
memory access, but not during the effective address access. Thus, the even destination r 
register can be changed in this case. (Note that this cannot happen across a page boundary 
because of the doubleword-alignment restriction.) 

8.2.1. Implementation Note: 

On effective address + 4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such as uncorrectable memory errors. 

8.2.2. Programming Note 

The execution time of a load integer instruction may increase if the next instruction uses the 
register specified by the rd field of the load instruction as a source operand (rs1 or rs2). In 
the case of load doubleword instructions, this applies to both destination registers. Whether 
the time increase occurs or not is implementation-dependent. 

8.2.3. Programming Note 

When i = 1 and rs1 = 0, any location in the lowest or highest 4K bytes of an address space 
can be accessed without using a register. 

Traps: 

8-5 

iIIegaUnstruction (load alternate space with i = 1) 
privileged_instruction (load a~ernate space only) 
mem_address_nocaligned (excluding LOSS, LOSSA, LDUS, and LDUSA) 
data_access_exception 
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8.3. Load Floating-point Instructions 

opcode op3 operation 

LDF 100000 Load Floating-point register 
LDDF 100011 Load Double Floating-point register 
LDFSR 100001 Load Floating-point State Register 

Format (3): 

111 rd I op3 rs1 i=O ignored 1 rs2 
31 ~ 24 1S ;3 12 4 II 

111 rd op3 rs1 i=1 simm13 
31 ZI 24 1S ;3 12 II 

Suggested Assembly Language Syntax 

Id [address]. fregrd 
Idd [address]. fregrd 
Id [address]. %fsr 

Description: 

The load single floating-point instruction (LDF) moves a word from memory into the' register 
identified by the reffield. 

The load double floating-point instruction (LDDF) moves a doubleword from memory into an 
, register pair. The most significant word at the effective memory address is moved into the 
even 'register. The least significant word at the effective memory address + 4 is moved into 
the odd f register. The least significant bit of the rdfield is ignored. 

The load floating-point state register instruction (LDFSR) waits for all FPops that have not 
finished execution to complete and then loads a word from memory into the FSR. 

The effective address for the load instruction is either "r[rs1] + r[rs2]" if the ifield is zero, or 
"r[rs1] + sign_ext(simm13)" if the ifield is one. 

LDF and LDFSR cause a mem_address_not_aligned trap if the effective address is not 
word-aligned; and LDDF traps if the address is not doubleword-aligned. A load floating-point 
instruction causes an fp_disabled trap if the EF field of the PSR is 0 or if no FPU is present. 

If a load single floating-point instruction is trapped with a data access exception, the destina­
tion , register either remains unchanged or is set to an implementation-defined constant 
value. 

If a load double floating-point instruction is trapped with a data access exception, either the 
destination , registers remain unchanged or one or both are set to an implementation­
defined constant value. 

- 8.3.1. Programming Note 

8-6 

The execution time of a load floating-point instruction may increase if the next instruction 
uses the register specified by the ref field of the load instruction as a source operand (rs1 or 
rs2). In the case of load double floating-point instructions. this applies to both destination 
registers. Whether the time increases or not is implementation-dependent. 
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B.3.2. Programming Note 

When i = 1 and (51 = 0, any location in the lowest or highest 4K bytes of an address space 
can be accessed without using a register. 

Traps: 

B-7 

fp_disabled 
fp_exception 
mem_address_noCaligned 
data_access_exception 
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B.4. Load COprocessor Instructions 

opcode op3 operation 

LDC 110000 Load Coprocessor register 
LDDC 110011 Load Double Coprocessor register 
LDCSR 110001 Load Coprocessor State Register 

Format (3): 

111 rd op3 rs1 i=O 
13 12 

ignored rs2 
4 0 31 29 24 18 

op3 rs1 i=1 
18 13 12 

111 1 rd simm13 
31 29 24 o 

Suggested Assembly Language Syntax 

Id [address], cregrd 
Idd [address]. creg,d 
let [address]. %csr 

Description: 

The load single coprocessor instruction (LDC) moves a word from memory into a coproces­
sor register. The load double coprocessor instruction (LDDC) moves a doubleword from 
memory into a coprocessor register pair. The load coprocessor state register instruction 
(LDCSR) moves a word from memory into the Coprocessor State Register. The semantics 
of these instructions depend on the implementation of the attached coprocessor. 

The effective address for the load instruction is either "rtrs1] + r[rs2]" if the ; field is zero. or 
"r[rs1] + sign_ext(simm13)" if the ifield is one. 

LDC and LDCSR cause a mem_address_noCaligned trap if the effective address is not 
word-aligned; and LDDC traps if the address is not doubleword-aligned. A load coprocessor 
instruction causes a cp_disabled trap if the EC field of the PSR is 0 or if no coprocessor is 
present. 

If a load coprocessor instruction traps, the state of the coprocessor depends on its imple­
mentation. 

B.4.1. Implementation Note: 

On effective address + 4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such as uncorrectable memory errors. 

B.4.2. Programming Note 

8-8 

The execution time of a load coprocessor instruction may increase if the next instruction 
uses the register specified by the rei field of the load instruction as a source operand (rs1 or 
rs2). In the case of load double coprocessor instructions, this applies to both destination 
registers. Whether the time increases or not is implementation-dependent. 
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B.4.3. Programming Note 

When i = 1 and rs1 = 0, any location in the lowest or highest 4K bytes of an address space 
can be accessed without using a register. 

Traps: 

8-9 

cp_disabled 
cp_exception 
mem_address_noCaligned 
data_access_exception 
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B.S. Store Integer Instructions 

opcode op3 operation 

STB 000101 Store Byte 
STBAt 010101 Store Byte into Alternate space 
STH 000110 Store Halfword 
STHAt 010110 Store Halfword into Alternate space 
ST 000100 Store Word 
STAt 010100 Store Word into Alternate space 
STD 000111 Store Doubleword 
STOAt 010111 Store Doubleword into Alternate space 

t privileged instruction 

Format (3): 

111 1 ref I op3 rs1 i=O asi rs2 
:11 2§ 24 ,Il ,:1 . 12 4 i:I 

111 1 rd op3 rs1 i=1 simm13 
:11 2§ 24 ,Il ,:1 12 i:I 

Suggested Assembly Language Syntax 

stb reg,d. [address] synonyms:stub, stsb 
stba regrd. [regaddr] as; synonyms:stuba, stsba 
sth regrd. [address] synonyms:stuh, stsba 
stha regrd. [regaddr] as; synonyms:stuha, stsha 
st reg,d. [address] 
sta reg,d. [regaddr] as; 
std reg,d. [address] 
stda reg,d. [regaddr] as; 

Description: 

The store single integer instructions move the word, the least significant halfword, or the 
least significant byte from the r register specified by the rdfield into memory. 

The store double integer instructions (STD, STA) move a doubleword from an r register pair 
into memory. The most significant word in the even r register is written into memory at the 
effective address and the least significant word in the following odd r register is written into 
memory at the effective address + 4. 

The effective address for a store instruction is either "r{rs1] + r{rs2]" if the i field is zero, or 
"r{rs1] + sign_ext(simm13)" if the i field is one. Instructions which store to an alternate 
address space must have zero in the i field and the address space identifier to be used for 
the store in the asi field. Otherwise the address space indicates either a user or system data 
space access, according to the S bit in the PSR. 

ST and STA cause a mem_address_noCaligned trap if the effective address is not word­
aligned; STH and STHA trap if the address is not halfword-aligned; and STD and STDA trap 
if the address is not doub/eword-aligned. 

If a store single instruction traps, memory remains unchanged. However, in the case of a 
store double, an implementation might cause a data_access....;exception trap during the 
effective address + 4 memory access, but not during the effective address access. Thus, 
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data at the effective memory address can be changed in this case. (Note that this cannot 
happen across a page boundary because of the doubleword-alignment restriction.) 

B.5.1. implementation Note: 

On effective address + 4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such as uncorrectable memory errors. 

B.5.2. Programming Note 

When; = 1 and rs1 = 0, any location in the lowest or highest 4K bytes of memory can be 
written without using a register. 

Traps: 

iIIegaUnstruction (store alternate with i = 1) 
privileged_instruction (store alternate only) 
mem_address_noCaligned (excluding STB and STBA) 
data_access_exception 
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B.6. Store Floating-point Instructions 

opcode op3 operation 

STF 100100 Store Floating-point 
STDF 100111 Store Double Floating-point 
STFSR 100101 Store Floating-point State Register 
STDFQt 100110 Store Double Floating-point Queue 

t privileged instruction 

Format (3): 

111 rd op3 rs1 i=O ignored rs2 
~1 8 ~4 11! 1~ 1~ 4 l! 

111 rd op3 rs1 i=1 simm13 
~1 8 ~4 11! 13 1~ l! 

Suggested Assembly Language Syntax 

st fregrd, [address] 
std fregrd. [address] 
st %fsr. [address] 
std %fq. [address] 

Description: 

The store single floating-point instruction (STF) moves the contents of the f register specified 
by the rdfield into memory. 

The store double floating-point instruction (STDF) moves a doubleword from an f register 
pair into memory. The most significant word in the even f register is written into memory at 
the effective address and the least significant word in the odd f register is written into 
memory at the effective address + 4. 

The store floating-point queue instruction (STDFO) stores the front entry of the Floating-point 
Queue (FO) into memory. The address part of the front entry is stored into memory at the 
effective address. and the instruction part of the front entry at the effective address + 4. If 
the FPU is in exception_mode, the queue is then advanced to the next entry. or it becomes 
empty (as indicated by the qne bit in the FSR). 

The store floating-point state register instruction (STFSR) waits for all FPops that have not 
finished execution to complete and then writes the FSR into memory. 

The effective address for a store instruction is either "r[rs1] + r[rs2]" if the i field is zero. or 
"r[rs1] + sign_ext(simm13)" if the ifield is one. 

STF and STFSR cause a mem_address_not_aligned trap if the address is not word-aligned 
and STDF and STDFO trap if the address is not doubleword-aligned. A store floating-point 
instruction causes an fp_disabled trap if the EF field of the PSR is 0 or if the FPU is not 
present. 

If a store single floating-point instruction traps. memory remains unchanged. However. in 
the case of a store double, an implementation may cause a data_access_exception trap dur­
ing the effective address + 4 memory access, but not during the effective address access. 
Data at the effective memory address can be changed in this case. (Note that this cannot 
happen across a page boundary because of the doubleword-alignment restriction.) 
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B.6.1. Implementation Note: 

On effective address + 4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such as uncorrectable memory errors. 

Traps: 

fp_disabled 
fp_exception 
privileged_instruction (STDFQ only) 
mem_address_noCaligned 
data_access_exception 
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B.7. Store COprocessor Instructions 

opcode op3 operation 

STC 110100 Store Coprocessor 
STDC 110111 Store Double Coprocessor 
STCSR 110101 Store Coprocessor State Register 
STDCat 110110 Store Double Coprocessor Queue 

t privileged instruction 

Format (3): 

111 1 ref 
31 29 24 

111 I ref 
31 29 24 

Description: 

op3 rs1 i=O ignored 
18 13 12 

op3 rs1 i=1 simm13 
18 13 12 

Suggested Assembly Language Syntax 

st cregrd, [address] 
std cregrd. [address] 
st %csr, [address] 
std %cq, [address] 

rs2 I 
4 0 

0 
I 

The store single coprocessor instruction (STC) moves the contents of a coprocessor register 
into memory. The store double coprocessor instruction (STDC) moves the contents of a 
coprocessor register pair into memory. The store coprocessor state register instruction 
(STCSR) moves the contents of the coprocessor state register into memory. The store dou­
ble coprocessor queue instruction (STDCa) moves the front entry of the coprocessor queue 
into memory. The semantics of these instructions depend on the implementation of the 
attached coprocessor, if any. 

The effective address for a store instruction is either "r[rs1] + r[rs2]" if the i field is zero, or 
"r[rs1] + sign_ext(simm13)" if the ifield is one. 

STC and STCSR cause a mem_address_noCaligned trap if the address is not word-aligned 
and STDC and STDCa trap if the address is not doubleword-aligned. A store coprocessor 
instruction causes a cp_disabled trap if the EC field of the PSR is 0 or if no coprocessor is 
present. 

If a store single coprocessor instruction traps, memory remains unchanged. However, in the 
case of a store double, an implementation might cause a data_access_exception trap during 
the effective address + 4 memory access, but not during the effective address access. Thus, 
data at the effective memory address can be changed in this case. (Note that this cannot 
happen across a page boundary because of the doubleword-alignment restriction.) 

- B.7.1. ImplementatIon Note: 

On effective address + 4 accesses, the system should limit data_access_exceptions to non­
restartable errors, such as uncorrectable memory errors. 

8-14 Instruction Definitions 8-14 



Traps: 

cp_disabled 
cp_exception 

Solbourne Computer, Inc. 

privileged_instruction (STDCQ only) 
mem_address_nocaligned 
data_access_exception 
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8.8. Atomic Load-Store Unsigned 8yte Instructions 

opcode op3 operation 

LDSTUB 001101 Atomic Load-Store Unsigned Byte 
LDSTUBAt 011101 Atomic Load-Store Unsigned Byte into Alternate space 

t privileged instruction 

Format (3): 

111 rd op3 rs1 i=O asi 
31 29 24 18 13 12 

op3 rs1 i=1 
31 29 24 18 13 12 

Suggested Assembly Language Syntax 

Idstub [address], reg,d 
Idstuba [regaddr] asi, reg,d 

Description: 

rs2 
4 0 

simm13 
o 

The atomic load-store instructions move a byte from memory into an r register identified by 
the rd field and then rewrite the same byte in memory to all ones without allowing intervening 
asynchronous traps. In a multiprocessor system, two or more processors executing atomiC 
load-store instructions addressing the same byte simultaneously are guaranteed to execute 
them in some serial order. 

The effective address of an atomic load-store is either "r[rs1] + r[rs2]" if the i field is zero, or 
"r[rs1] + sign_ext(simm13)" if the i field is one. LDSTUBA must have zero in the ifield, or an 
iIIegaUnstruction trap occurs. The address space identifier used for the memory accesses is 
taken from the asi field. For LDSTUB, the address space indicates either a user or system 
data space access, according to the S bit in the PSR. 

If an atomic load-store instruction traps, memory remains unchanged. However, an imple­
mentation may cause a data_access_exception trap during the store memory access, but 
not during the load access. In this case, the destination register can be changed. 

8.8.1. Implementation Note: 

The system should limit data_access_exceptions on the store access to non-restartable 
errors, such as protection violation or uncorrectable memory errors. 

8.8.2. Programming Note 

When; = 1 and rs1 = 0, any location in the lowest or highest 4K bytes of memory can be 
accessed without using a register. 

- Traps: 

iIIegaUnstruction (LDSTUBA with i = 1 only) 
privileged_instruction (LDSTUBA only) 
data_access_exception 
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B.9. SWAP r Register with Memory 

opcode op3 operation 

SWAP 001111 SWAP r register with memory 
SWAPAt 011111 SWAP r register with Alternate space memory 

t privileged instruction 

Format (3): 

111 rd op3 
31 29 24 

111 rd op3 
31 29 24 

18 

18 

rs1 i=O asi 
13 12 

rs1 i=1 
13 12 

Suggested Assembly Language Syntax 

Description: 

swap 
swap a 

[source], reg,d 
[regsource] asi, reg,d 

simm13 

rs2 
4 0 

o 

The swap instructions exchange the r register identified by the rd field with the contents of 
the addressed memory location. This is performed atomically without allowing asynchronous 
traps. In a multiprocessor system, two or more processors issuing swap instructions simul­
taneously are guaranteed to get results corresponding to the executing the instructions seri­
ally, in some order. 

The effective address of the swap instruction is either "r[rs1] + r[rs2]" if the ifield is zero, or 
"r[rs1] + sign_ext(simm13)" if the ifield is one. SWAPA must have zero in the ifield or an 
iIIegaUnstruction trap occurs. The address space identifier used for the memory accesses is 
taken from the as; field. For SWAP, the address space indicates either a user or a system 
data space access, according to the S bit in the PSR. 

These instructions cause a mem_address_noCaJigned trap if the effective address is not 
word-aligned. 

H a swap instruction traps, memory remains unchanged. 

B.9.1. Programming Note 

When i = 1 and (51 = 0, any location in the lowest or highest 4K bytes of memory can be 
written without using a register. 

Traps: 

illegal instruction (i = 1 and SWAPA only) 
privileged_instruction (SWAPA only) 
data_access_exception 
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B.10. Add Instructions 

opcode op3 operation 

ADD 000000 Add 
ADDcc 010000 Add and modify icc 
ADDX 001000 Add with Carry 
ADDXcc 011000 Add with Carry and modify icc 

Format (3): 

110 I rei I op3 rs1 i=O ignored 
31 S 24 ,& 13 12 

110 I rei I op3 rs1 i=1 simm13 
31 S 24 18 13 12 

Suggested Assembly Language Syntax 

Description: 

add 
addcc 
addx 
addxcc 

reg,s1. reg_or_imm. regrd 
reg rs1. reg_ocimm. reg,d 
reg rs1. reg_ocimm. regrd 
reg rs 1. reg_ocimm, reg,d 

I rs2 I 4 IS 

IS 
I 

ADD and ADDcc compute either"r[rs1] + r[rs2]" if the ; field is zero. or "r[rs1] + 
sign_ext(simm13)" if the i field is one, and place the result in the r register specified in the rd 
field. 

ADDX and ADDXcc add the PSR's carry (c) bit also; that is, they compute "r[rs1] + r[rs2] + 
c' or "r[rs11 + sign_ext(simm13) + c" and place the result in the r register specified in the rd 
field. 

ADDcc and ADDXcc modify all the integer condition codes. 

Traps: 

(none) 
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B.11. Tagged Add Instructions 

opcode op3 operation 

TADDcc 100000 Tagged Add and modify icc 
TADDccTV 100010 Tagged Add, modify icc and Trap on Overflow 

Format (3): 

110 I rei op3 rs1 i=O ignored 
3~ 2!l 24 lB ~3 ·~2 

110 I rei op3 rs1 i=1 I simm13 
31 2!l 24 ~B ~3 ~2 

Suggested Assembly Language Syntax 

Description: 

taddcc 
taddcctv 

reg rs 1. reg_or_imm. regrd 
reg rs 1. reg_or_imm. regrd 

rs2 
4 I:! 

I:! 

These instructions compute either"r[rs1] + rfrs2]" if the i field is zero. or "rfrs1] + 
sign_ext(simm13)" if the i field is one. An overflow condition exists if bit 1 or bit 0 of either 
operand is not zero, or if the addition generates an arithmetic overflow. 

If a TADDccTV causes an overflow condition, a tag_overflow trap is generated and the desti­
nation register and condition codes remain unchanged. If a TADDccTV does not cause an 
overflow condition, all the integer condition codes are updated (in particular, the overflow bit 
(\I) is set to 0) and the result of the addition is written into the r register specified by the rd 
field. 

If a TADDcc causes an overflow condition, the overflow bit (\I) of the PSR is set; if it does not 
cause an overflow, it is cleared. In either case, the remaining integer condition codes are 
also updated and the resuH of the addition is written into the r register specified by the rd 
field. 

Traps: 

ta9-0verflow (T AD DccTV only) 
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B.12. Subtract Instructions 

Format (3): 

110 I rd I :J1 2§ 

110 I rd I :J1 29 

Description: 

opcode op3 operation 

SUB 000100 Subtract 
SUBcc 010100 Subtract and modify icc 
SUBX 001100 Subtract with Carry 
SUBXcc 011100 Subtract with Carry and modify icc 

24 

24 

op3 rs1 i=O ignored 
111 1:J 12 

op3 rs1 i=1 simm13 
111 1:J 12 

Suggested Assembly Language Syntax 

sub 
subcc 
subx 
subxcc 

reg'S1. reg_o,-imm. regrd 
reg ,sft reg_o,-imm. reg,d 
reg,s1. reg_o'-imm. regrd 
reg,s1. reg_o'-imm. reg,d 

I rs2 I 4 !J 

!J 

These instructions compute either "r[rs1] - r[rs2]" if the ; field is zero, or "r[rs1] -
sign_ext(simm13)" if the i field is one, and place the result in the r register specified in the rd 
field. 

SUBX and SUBXcc ("SUBtract eXtended") also subtract the PSR's carry (c) bit; that is, they 
compute "r[rs1] - r[rs2] - c' or "r[rs1] - sign_ext(simm13) - c' and place the result in the r 
register speCified in the rdfield. ' 

SUBcc and SUBXcc modify all the integer condition codes. 

B.12.1. Programming Note 

A SUBcc with rd = 0 can be used for signed and unsigned integer compare. 

Traps: 

(none) 
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8.13. Tagged Subtract Instructions 

opcode op3 operation 

TSUBcc 100001 Tagged Subtract and modify icc 
TSUBccTV 100011 Tagged Subtract. modify icc and Trap on Overflow 

Format (3): 

110 I rd 
31 29 

110 1 rd 
31 29 

Description: 

24 
op3 rs1 i=O ignored 

18 13 12 

op3 rs1 i=1 simm13 
18 13 12 

Suggested Assembly Language Syntax 

tsubcc 
tsubcctv 

reg rs1. reg_or_imm. regrrJ 
reg rs 1. reg_or_imm. regrrJ 

rs2 
4 0 

o 

These instructions compute either'r[rs1] - rfrs2]" if the i field is zero. or "r[rs1] -
sign_ext(simm13)" if the i field is one. An overflow condition exists if bit 1 or bit 0 of either 
operand is not zero. or if the subtraction generates an arithmetic overflow. 

If a TSUBccTV causes an overflow condition. a tag_overflow trap is generated and the desti­
nation register and condition codes remain unchanged. If a TSUBccTV does not cause an 
overflow condition. the integer condition codes are updated (in particular. the overflow bit (v) 
is set to 0) and the result of the subtraction is written into the r register specified by the rd 
field. 

If a TSUBcc causes an overflow condition, the overflow bit (v) of the PSR is set; if it does not 
cause an overflow, it is cleared. In either case. the remaining integer condition codes are 
also updated and the result of the subtraction is written into the r register specified by the rd 
field. 

Traps: 

tag_overflow (TSUBccTV only) 
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B.14. Multiply Step Instruction 

opcode op3 operation 

MULScc 1100100 I Multiply Step and modify icc 

Format (3): 

110 I rd I op3 rs1 i=O ignored I rs2 I 
'1 2§ 24 1iJ 1~ ;2 " 1I 

110 I rd I op3 rs1 i=1 simm13 I 
31 2§ 24 1iJ 13 12 1I 

Suggested Assembly Language Syntax 

mulscc reg,s 1 , reg or imm, regrd 

Description: 

The multiply step instruction can be used to generate the 64-bit product of two signed or 
unsigned words (See Appendix E). MULScc works as follows: 

1. The value obtained by shifting "r[rs1]" (the incoming partial product) right by one bit and 
replacing its high-order bit by UN xor V" (the sign of the previous partial product) is com­
puted. 

2. If the least significant bit of the Y register (the multiplier) is set, the value from step (1) is 
added to the multiplicand. The multiplicand is urIrs2]" if the i field is zero or is 
"sign_ext{simm13)" if the ifield is one. If the LS8 of the Y register is not set, then zero 
is added to the value from step (1). 

3. The result from step (2) is written into Ur[rd]" (the outgoing partial product). The PSR's 
integer condition codes are updated according to the addition performed in step (2). 

4. The Y register (the multiplier) is shifted right by one bit and its high-order bit is replaced 
by the least significant bit of urIrs1]" (the incoming partial product). 

Traps: 

(none) 
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B.15. Logical Instructions 

opcode op3 operation 

AND 000001 And 
ANDcc 010001 And and modHy icc 
ANDN 000101 And Not 
ANDNcc 010101 And Not and modify icc 
OR 000010 Inclusive Or 
ORcc 010010 Inclusive Or and modify icc 
ORN 000110 Inclusive Or Not 
ORNcc 010110 Inclusive Or Not and modify icc 
XOR 000011 Exclusive Or 
XORcc 010011 Exclusive Or and modify icc 
XNOR 000111 Exclusive Nor 
XNORcc 010111 Exclusive Nor and modify icc 

Format (3): 

110 1 rd 1 op3 rs1 i=O ignored rs2 
31 2§ 24 11i 13 12 4 .~ 

110 1 rei 1 op3 rs1 i=1 simm13 
31 29 24 18 13 12 ~ 

Suggested Assembly Language Syntax 

and reg,s 1 , reg_or_imm, reg,d 
andcc reg,s 1 , reg_or_imm. reg,d 
andn reg,s1, reg_or_imm. reg,d 
andncc reg,s 1 , reg_ o()mm. reg,d 
or reg,s1, reg_ocimm• reg,d 
orcc reg,s1, reg_ ocimm. reg,d 
om reg,s1. reg_ocimm. reg,d 
omcc reg,s 1 , reg_or_imm, reg,d 
xor reg,s1, reg_ ocimm, reg,d 
xorcc reg,s 1 , reg_ocimm, reg,d 
xnor reg,s 1 , reg_ ocimm. reg,d 
xnorcc reg,s 1 , reg_ocimm, reg,d 

Description: 

These instructions implement the bitwise logical operations. They compute either "r[rs1] op 
r[rs2]" if the ifield is zero, or "r[rs1] op sign_ext(simm13)" if the ifield is one (op = and, and 
not, or, or not, xor, xnor). 

ANDcc, ANDNcc, ORcc, ORNcc, XORcc and XNORcc modify all the integer condition codes 
as described in the section Registers. 

_ Traps: (none) 
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B.16. Shift Instructions 

opcode op3 operation 

SLL 100101 Shift Left Logical 
SRL 100110 Shift Right Logical 
SRA 100111 Shift Right Arithmetic 

Format (3): 

110 I rd I op3 rs1 i=O ignored rs2 
31 ~ l!4 1~ 13 1l! 4 ~ 

110 1 rd I op3 rs1 i=1 ignored shcnt 
31 l!9 l!4 1~ 13 1l! 4 ~ 

Suggested Assembly Language Syntax 

sll reg,s1. reg_o'-imm. reg,d 
sri reg,s1, reg_or_imm. regrd 
sra reg ,sf, reg_o,-imm. regrd 

Description: 

The shift count for these instructions is the least significant five bits of either "r[rs21" if the i 
field is zero, or "simm13" if the i field is one. (The least significant five bits of "simm13" is 
called "shcnt" in the above format.) 

SLL shifts the value of "r[rs1]" left by the number of bits implied by the shift count. 

SRL and SRA shift the value of "r[rs1)" right by the number of bits implied by the shift count. 

SLL and SRL replace vacated positions with zeroes, whereas SRA fills vacated positions 
with the most significant bit of "r[rs1]." No shift occurs when the shift count is zero. 

All of these instructions place the shifted result in the r register specified in the rd field. 

These instructions do not modify the condition codes. 

B.16.1. Programming Note 

"Arithmetic left shift by 1 (and calculate overflow)" can be implemented with an ADDcc 
instruction. 

Traps: 

(none) 
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8.17. SETHI Instruction 

Format (2): 

100 I rd 
31 29 

Description: 

100 

opcode op op2 operation 

SETHI I 00 I 100 I Set High 

imm22 

Suggested Assembly Language Syntax 

sethi const22, regrrJ 
sethi %hi(value}, regrrJ 

o 

SETHI zeroes the least significant 10 bits of "r[rd]" and replaces its high-order 22 bits with 
imm22. 

The condition codes are not affected. 

8.17.1. Programming Note 

It is suggested that sethi 0, %0 be used as the preferred NOP, since it will not cause an 
increase in execution time if it follows a load instruction. 

Traps: 

(none) 
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B.18. SAVE and RESTORE Instructions 

Format (3): 

110 1 rd 
~1 18l 24 

110 I rd 
~1 18l 24 

Description: 

opcode op3 operation 

SAVE 111100 Save caller's window 
RESTORE 111101 Restore caller's window 

op3 rs1 i=O ignored 
16 ;~ 12 

op3 rs1 i=1 simm13 
18 1~ 12 

Suggested Assembly Language Syntax 

save 
restore 

reg,s 1 , reg_ocimm, reg,d 
reg ,s1, reg_or_imm, reg,d 

rs2 I :{ ri 

ri 
1 

The SAVE instruction subtracts one from the CWP (modulo the number of implemented win­
dows) and compares this value, the "new_CWP," against the Window Invalid Mask (WIM) 
register. If the WIM bit corresponding to the new_CWP is set, U(WIM and 2new_CWP) = 1," 
then a window_overflow trap is generated. If the WIM bit corresponding to the new_CWP is 
reset, then a window_overflow trap is not generated and new_CWP is written into CWP. 
This causes the actIve window to become the previous window, thereby saving the caller's 
window. 

The RESTORE instruction adds one to the CWP (modulo the number of implemented win­
dows) and compares this value, the unew_CWP," against the Window Invalid Mask (WIM) 
register. If the WIM bit corresponding to the new_CWP is set, U(WIM and 2new_CWP} = 1," 
then a window_underflow trap is generated. If the WIM bit corresPonding to the new_CWP 
is reset, then a window_underflow trap is not generated and new_CWP is written into CWP. 
This causes the previous window to become the actIve window, thereby restoring the 
caller's window. 

Furthermore, if an overflow or underflow trap is not generated, SAVE and RESTORE 
behave like normal ADD instructions, except that the operands ur[rs1]" or ur[rs2]" are read 
from the old window (Le., the window addressed by the original CWP) and the result is writ­
ten into ur[rd]" of the new window (Le., the window addressed by new_CWP). 

Note that CWP arithmetic is performed modulo the number of implemented windows (NWIN­
DOWS). 

Traps: 

window_overflow (SAVE only) 
window_underflow (RESTORE only) 
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B.19. Branch on Integer Condition Instructions 

opcode cond operation. 
BA 1000 Branch Always 
BN 0000 Branch Never 
BNE 1001 Branch on Not Equal 
BE 0001 Branch on Equal 
BG 1010 Branch on Greater 
BLE 0010 Branch on Less or Equal 
BGE 1011 Branch on Greater or Equal .-
BL 0011 Branch on Less 
BGU 1100 Branch on Greater Unsigned 
BLEU 0100 Branch on Less or Equal Unsigned 
BCC 1101 Branch on Carry Clear (Greater than or Equal, Unsigned) 
BCS 0101 Branch on Carry Set (Less than, Unsigned) 
BPOS 1110 Branch on Positive 
BNEG 0110 Branch on Negative 
BVC 1111 Branch on Overflow Clear 
BVS 0111 Branch on Overflow Set 

Format (2): 

I 00 I a I cond 010 I disp22 
31 29 28 24 21 

B-27 

Suggested Assembly Language Syntax 
ba{,a} label 
bn{,a} label 
bne{,a} label 
be{,a} label 
bg{,a} label 
ble{,a} label 
bge{,a} label 
bl{,a} label 
bgu{,a} label 
bleu{,a} label 
bcc{,a} label 
bcs{,a} label 
bpos{,a} label 
bneg{,a} label 
bvc{,a} label 
bvs{,a} label 

synonym: bnz 
synonym:bz 

synonym: bgeu 
synonym: blu 

~ ~ ~ NOTE -tt -tt -tt 
To set the "annul" bit for Bicc instructions, append an (optional) 
",a" to the opcode. For example, use "bgu,a label". The 
preceding table indicates that the ",a" is optional by enclosing it 
in braces ({}). 

Instruction Definitions 

Icc test 
1 
0 

notZ 
Z 

not (Z or (N xor V)) 
Zor (N xor V) 
not (N xor V) 

NxorV 
not (C or Z) 

(C or Z) 
not C 

C 
not N 

N 
not V 

V 

o 
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Description: 

A Sicc instruction (except SA and BN) evaluates the integer condHion codes (icc) 
according to the cond field. If the condition codes evaluate to true the branch is taken 
and the instruction causes a PC-relative, delayed control transfer to the address "PC + 
(4 * sign_ext (disp22))." If the condHion codes evaluate to false, the branch is not taken. 
If the branch is not taken and the a (annul) field is set, the delay instruction is not exe­
cuted (annulled). If the branch is taken, the annul field is ignored. (Annulment, delay 
instructions, and delayed control transfers are described further in the section Instruc­
tions.) 

SN (Branch Never) acts like a "NOP." except that, if the annul field is one, the delay 
instruction is not executed (annulled). If the annul field is zero, the delay instruction is 
executed. 

SA (Branch Always) causes a transfer of control, irrespective of the value of the condi­
tion code bHs. If the annul field is one, the delay instruction is not executed (annulled). 
If the annul field is zero, the delay instruction is executed. 

'Ci 'Ci 'Ci NOTE 'Ci .:c .:c 
Except for SA, all Sicc instructions with a= 1 annul the delay 
instruction when the branch is not taken. However, SA with a=1 
does the reverse: it annuls the delay instruction even though the 
branch is taken. 

The delay instruction of a Sicc, other than a SA, should not be a 
delayed control-transfer instruction. 

B.19.1. Programming Note 

An untaken branch takes as much or more time than a taken branch. The addHional time H 
takes is implementation-dependent. 

Traps: 

(none) 
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B.20. Floating-point Branch on Condition Instructions 

opcode cond operation fcc test 
FBA 1000 Branch Always 1 
FBN 0000 Branch Never 0 
FBU 0111 Branch on Unordered U 
FBG 0110 Branch on Greater G 
FBUG 0101 Branch on Unordered or Greater GorU 
FBL 0100 Branch on Less L 
FBUL 0011 Branch on Unordered or less LorU 
FBLG 0010 Branch on Less or Greater LorG 
FBNE 0001 Branch on Not Equal Lor G or U 
FBE 1001 Branch on Equal E 
FBUE 1010 Branch on Unordered or Equal E or U 
FBGE 1011 Branch on Greater or Equal EorG 
FBUGE 1100 Branch on Unordered or Greater or Equal E orGorU 
FBLE 1101 Branch on less or Equal Eorl 
FBULE 1110 Branch on Unordered or Less or Equal E or l or U 
FBD 1111 Branch on Ordered E or l or G 

Format (2): 

I 00 I a I cond 110 disp22 

B-29 

31 29 28 24 21 

Suggested Assembly language Syntax 
fba{,a} label 
tbn{,a} label 
(bu{,a} label 
tbg{, a} label 
tbug{,a} label 
tbl{,a} label 
tbul{,a} label 
tblg{,a} label 
tbne{, a} label 
tbe{, a} label 
tbue{, a} label 
tbge{,a} label 
tbuge{, a} label 
fble{, a} label 
fbule{, a} label 
tbo{,a} label 

synonym: fbnz 
synonym: fbz 

-:r -:r * NOTE -:r -:r -:r 
To set the "annul" bit for FBfcc instructions, append an 
(optional) ",a" to the opcode. For example, use "fbl,a labe/". 
The preceding table indicates that the ",a" is optional by 
enclosing it in braces (OJ. 

Instruction Definitions 

o 
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Description: 

An FBfcc instruction (except FBA and FBN) evaluates the floating-point condition codes (fcc) 
according to the cond field. If the condition codes evaluate to true the branch is taken and 
the instruction causes a PC-relative, delayed control transfer to the address "PC + (4 • 
sign_ext (disp22»." If the condition codes evaluate to false, the branch is not taken. If the 
branch is not taken and the a (annul) field is set, the delay instruction is not executed 
(annulled). If the branch is taken, the annul field is ignored and the delay instruction is exe­
cuted. (Annulment, delay instructions, and delayed control transfers are described further in 
the section Instructions.) 

FBN (Branch Never) acts like a "NOP", except that H the annul field is one, the delay instruc­
tion is not executed (annulled). If the annul field is zero, the delay instruction is executed. 

FBA (Branch Always) causes a transfer of control, irrespective of the value of the condition 
code bits. If the annul field is one, the delay instruction is not executed (annulled). If the 
annul field is zero, the delay instruction is executed. 

An FBfcc instruction generates an fp_disabled trap (and does not branch on annUl) if the 
PSR's EF bit is reset or if the FPU is not present. 

* * ~ NOTE * ~ ~ 
Except for FBA, all FBfcc instructions with a=1 annul the delay 
instruction when the branch is not taken. However, FBA with 
a=1 does the reverse: it annuls the delay instruction even though 
the branch is taken. 

The instruction executed immediately before an FBfcc must not 
be a floating-point instruction. 

B.20.1. Programming Note 

An untaken branch takes as much or more time than a taken branch. The additional time it 
takes is implementation-dependent. 

Traps: 

fp_disabled 
fp_exception 
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B.21. Coprocessor Branch on Condition Instructions 

opcode cond bp CP _cc[1 :0] test 
CBA 1000 Always· 
CBN 0000 Never 
CB3 0111 3 
CB2 0110 2 
CB23 0101 2 or 3 
CB1 0100 1 
CB13 0011 1 or 3 
CB12 0010 1 or 2 . 
CB123 0001 1 or 2 or 3 
CBO 1001 0 
CB03 1010 o or3 
CB02 1011 o or 2 
CB023 1100 o or 2 or 3 
CB01 1101 o or 1 
CB013 1110 o or 1 or 3 
CB012 1111 o or 1 or 2 

Format (2): 

I 00 I a I cond I 111 I disp22 

B-31 

31 29 28 24 21 

Suggested Assembly Language Syntax 
cba{,a} label 
cbn{,a} label 
cb3{,a} label 
cb2{,a} label 
cb23{,a} label 
cb 1 {,a} label 
cb13{,a} label 
cb12{,a} label 
cb123{.a} label 
cbO{,a} label 
cb03{,a} label 
cb02{.a} label 
cb023{,a} label 
cbO 1 {.a} label 
cb013{,a} label 
cb012{,a} label 

~ ~ ~ NOTE ~ 'Ct ~ 

To set the "annul" bit for CBccc instructions, append an 
(optional) ",a" to the opcode. For example, use "cb12,a label". 
The preceding table indicates that the ",a" is optional by 
enclosing it in braces ({}). 

Instruction Definitions 

o 
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Description: 

A CBccc instruction (except CSA and CSN) evaluates the coprocessor condition codes (sup­
plied by the coprocessor on bp_CP _cc[1 :0]) according to the cond field. If the condition 
codes evaluate to true the branch is taken and the instruction causes a PC-relative, delayed 
control transfer to the address "PC + (4 • sign_ext (disp22»." If the condition codes evalu­
ate to false, the branch is not taken and the instruction acts like a "NOP." 

If the branch is not taken and the a (annul) field is set, the delay instruction is not executed 
(annulled). If the branch is taken, the annul field is ignored and the delay instruction is exe­
cuted. (Annulment, delay instructions, and delayed control transfers are described further in 
the section Instructions.) 

CBN (Branch Never) acts like a "NOP", except that H the annul field is one, the delay 
instruction is not executed (annulled). If the annul field is zero, the delay instruction is exe­
cuted. 

CSA (Branch Always) causes a transfer of control, irrespective of the value of the condition 
code bits. If the annul field is one, the delay instruction is not executed (annulled). If the 
annul field is zero, the delay instruction is executed. 

A CSccc instruction generates a cp_disabled trap (and does not branch or annul) if the 
PSR's EC bit is reset or if no coprocessor is present. 

~ ~ ~ NOTE ~ ~ ~ 
Except for CSA, all CSccc instructions with a=1 annul the delay 
instruction when the branch is not taken. However, CBA with 
a=1 does the reverse: it annuls the delay instruction even though 
the branch is taken. 

A CBccc instruction must be immediately preceded by a non­
coprocessor instruction. 

B.21.1. Programming Note 

An untaken branch takes as much or more time than a taken branch. The additional time it 
takes is implementation-dependent. 

Traps: 

cp_disabled 
cp_exception 
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101 
31 29 

Description: 

call 

Solbourne Computer. Inc. 

opcode op operation 

CALL I 01 I Call 

diSp30 
o 

Suggested Assembly Language Syntax 

label 

The CALL instruction causes an unconditional. delayed, PC-relative control transfer to 
address "PC + (4 • disp30)". Since the word displacement (disp3CJ) field is 30 bits wide, the 
target address can be arbitrarily distant. The CALL instruction also writes the value of PC. 
which contains the address of the CALL, into out register r{1S]. 

The PC-relative displacement is formed by appending two low-order zeros to the 
instruction's 30-bit word displacement field. 

8.22.1. Programming Note 

A JM PL instruction with rd = 15 can be used as a register-indirect CALL. 

B.22.2. Programming Note 

The execution time of a CALL instruction may increase if the next instruction uses r{1S] as a 
source operand. Whether this happens is implementation-dependent. 

Traps: 

(none) 
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B.23. Jump and Link Instruction 

opcocle op3 operation 

JMPL 1111000 I Jump and Link 

Format (3): 

110 1 rd 
31 29 

op3 rs1 i=O ignored rs2 
24 18 13 12 4 0 

110 I rd op3 rs1 i=1 simm13 
31 , 29 24 18 13 12 o 

Suggested Assembly Language Syntax 

jmpl .. address, regrd 

Description: 

The JMPL instruction causes a register-indirect control transfer to an address specified by 
either "r[rs1] + r[rs2]" if the ifield is zero, or "r[rs1] + sign_ext(simm13)" if the ifield is one. 

The JMPL instruction writes the PC, which contains the address of the JMPL instruction, into 
the destination r register specified in the rd field. 

If either of the Jow-order two bits of the jump address is nonzero, a 
mem_address_nocaligned trap occurs. 

B.23.1. Programming Note 

JMPL with rd = 0 can be used to return from a subroutine. The typical retum address is 
"r[31]+8", if the subroutine was entered by a CALL instruction. 

B.23.2. Programming Note 

JMPL with rd= 15 can be used as a register-indirect CALL. 

B.23.3. Programming Note 

The execution time of a JMPL instruction may increase if the next instruction uses r[rd] as a 
source operand. Whether this happens is implementation-dependent. 

Traps: 

mem_address_nocaligned 
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B.24. Return from Trap Instruction 

opcode op3 operation 

REnt I 111001 I Return from Trap 

t privileged instruction 

Format (3): 

110 1 ignored 1 op3 rs1 i ... O I. ignored 1 rs2 I 
!~ 2tI :!lI ~B '3 U! 41 II 

110 1 ignored 1 op3 rs1 i=1 simm13 I 
3~ 2tI :!lI ~B '3 '2 II 

Suggested Assembly Language Syntax 

rett address 

Description: 

The REn instruction adds one to the CWP (modulo the number of implemented windows) 
and compares this value, the "new_CWP," against the Window Invalid Mask (WIM) register. 
H the WIM bit indexed by the new_CWP is set, U(WIM and 2new_CWP) .. 1," then a 
window_underflow trap is generated. If the WIM bit indexed by the new_CWP is reset, then 
a window_underflow trap is not generated and new_CWP is written into CWP. This causes 
the previous window to become the active window, thereby restoring the window that existed 
at the time of the trap. 

H a window_underflow trap is not generated, REn causes a delayed control transfer to the 
target address. The target address is either "r[rs1) + r[rs2]" If the ifield is zero, or "r[rs1) + 
sign_ext(simm13)" If the i field is one. Furthermore, RETT restores the S field of the PSR 
from the PS field, and sets the ET field to one. 

H traps are enabled (ET =1), an iIIegaUnstruction trap occurs. If traps are disabled (ET =0) 
and the processor is not in supervisor mode (S=O), or if a window_underflow condition is 
detected, or If either of the low-order two bits of the target address is nonzero, a reset trap 
occurs. If a reset trap occurs, the tt field of the TBR encodes the trap condition: 
privileged_instruction, window_underflow, or mem_address_nocaligned. 

'Cc 'Cc 'Cc NOTE 'Cc 'Cc 'Cc 
The instruction executed immediately before a RETT must be a 
JMPL instruction. (See discussion in the section "Instructions".) 

B.24.1. Programming Note 

To re-execute the trapped instruction when returning from a trap handler use the sequence: 

jrnpl%17, %0 
rett%18 

! old PC 
! old nPC 

To retum to the instruction after the trapped instruction (e.g. when emulating an instruction) 
use the sequence: 

8·35 Instruction Definitions 8-35 



Traps: 

jrnpl%l8, %0 
rett%l8 + 4 

IliegaUnstruction 
reset (privilegecUnstruction) 
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old nPC 
old nPC + 4 

reset (mem_address_nocaligned) 
reset (window_underflow) 
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8.25. Trap on Integer Condition Instruction 

opcode cond 

TA 1000 
TN 0000 
TNE 1001 
TE 0001 
TG 1010 
TLE 0010 
TGE 1011 
TL 0011 
TGU 1100 
TLEU 0100 
TCC 1101 
TCS 0101 
TPOS 1110 
TNEG 0110 
TVC 1111 
TVS 0111 

Format (3): 

110 
3' 

I ignored 1 
8 

110 1 ignored I 
31 l!9 

Description: 

operation Icc test 

Trap Always 1 
Trap Never 0 
Trap on Not Equal notZ 
Trap on Equal Z 
Trap on Greater not (Z or (N xor V)) 
Trap on Less or Equal Z or (N xorV) 
Trap on Greater or Equal not (N xorV) 
Trap on Less NxorV 
Trap on Greater Unsigned not (C or Z) 
Trap on Less or Equal Unsigned (C or Z) 
Trap on Carry Clear (Greater than or Equal. Unsigned)) not C 
Trap on Carry Set (Less Than. Unsigned) 
Trap on Positive 
Trap on Negative 
Trap on Overflow Clear 
Trap on Overflow Set 

cond 111010 rs1 i=O 
2B 24 'B '3 '2 
cond 1 111010 rs1 i=1 
28 24 18 13 12 

Suggested Assembly Language Syntax 

ta 
tn 
tne 
te 
tg 
tIe 
tge 
tl 
tgu 
tleu 
tcc 
tcs 
tpos 
tneg 
tvc 
tvs 

address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 
address 

synonym: tnz 
synonym:tz 

synonym: tgeu 
synonym: tlu 

C 
not N 

N 
not V 

V 

ignored 1 rs2 
41 

simm13 

A TIcc Instruction evaluates the integer condition codes (icc) according to the cend field. If 
the condition codes evaluate to true and there are no higher priority traps pending. then a 
trap_instruction trap is generated. If the condition codes evaluate to false, a trap_instruction 
trap does not occur. 
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" a trap_instruction trap is generated, the tt field of the Trap 8ase Register (TBR) Is written 
with 128 plus the least significant seven bits of either "r[rs1] + r[rs2]" if the ifield is zero. or 
"r[rs1] + sign_ext(simm13)" if the ifield is one. 

See the section Traps, Exceptions and Error Handling for the complete definition of a trap. 

Traps: 

trap_instruction 
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B.26. Read State Register Instructions 

opcode 

ROY 
RDPSRt 
RDWIMt 
RDTBRt 

t privileged instruction 

Format (3): 

110 1 rd 
31 29 24 

op3 

op3 operation 

101000 Read Y register 
101001 Read Processor State Register 
101010 Read Window Invalid Mask register 
101011 Read Trap Base Register 

ignored I ignored 1 ignored 
1S 13 12 

Suggested Assembly Language Syntax 

Description: 

rd 
rd 
rd 
rd 

%y, regrd 
%psr, regrd 
%wim, regrd 
%tbr, regrd 

o 

These instructions read the specified IU state registers into the r register specified in the rd 
field. 

B.26.1. Programming Note 

The execution time of any of these instructions may increase if the next instruction uses the 
register specified by the rd field of this instruction as a source operand. Whether it does or 
not is implementation-dependent. 

Traps: 

privileged_instruction (ROPSR, RDWIM and RDTBR only) 
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B.27. Write State Register Instructions 

opcode op3 operation 

WRY 110000 Write Y register 
WRPSRt 110001 Write Processor State Register 
WRWIMt 110010 Write Window Invalid Mask register 
WRTBRt 110011 Write Trap Base Register 

t privileged instruction 

Suggested Assembly Language Syntax 

wr reg rs 1, reg_o,-imm, %y 
wr reg,s1, reg_o'-imm, %psr 
wr reg,s 1 , reg_o,-imm, %wim 
wr reg,s1, reg_or_imm, %tbr 

Format (3): 

1 10 1 ignored 1 op3 rs1 i=O ignored rs2 
3, :1!l :14 is i3 ;2 4 !l 

1 10 1 ignored 1 op3 rs1 i=1 simm13 
3; :1!l :14 is ;3 12 !l 

Description: 

These instructions write either "r[rs1] xor r[rs2)" if the i field is zero, or "r[rs1] xor 
sign_ext(simm13}" if the ifield is one, to the writeable subfields of the specified IU state 
register. 

WRPSR does not write the PSR and causes an iIIegaUnstruction trap if the result would 
cause the CWP field of the PSR to point to an unimplemented window. 

These instructions are delayed-write instructions: 

1. If any of the three instructions after a WRPSR uses any field of the PSR that is changed 
by the WRPSR, the value of that field is unpredictable. (Note that any instruction which 
references a non-global register implicitly uses the CWP.) 

2. If a WRPSR instruction is updating the PSR's PIL to a new value and is simultaneously 
setting ET to 1, this can result in an interrupt trap at a level equal to the old value of the 
PIL. 

B.27.1. Programming Note 

Two WRPSR instructions should be used when enabling traps and changing the value of the PIL. 
The first WRPSR should specify ET =0 with the new PIL value, and the second WRPSR should 
specify ET=1 and the new PIL value. 

3. If any of the three instructions after a WRWIM is a SAVE, RESTORE or REn, the 
occurrence of window_overflow and window_underflow traps is unpredictable. 

4. If any of the three instructions that follow a WRY is a MULScc or ROY, the value of Y 
used is unpredictable. 

5. If any of the three instructions that follow a WRTBR causes a trap, the trap base 
address (TBA) used may be either the old or the new value. 
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6. If any of the three instructions after a write state register instruction reads the modified 
state register, the value read is unpredictable. 

7. If any of the three instructions after a write state register Instruction is trapped, a subse­
quent read state register instruction in the trap handler will get the register's new value. 

Traps: 

privileged_instruction (WRPSR, WRWIM and WRTBR only) 
iIIegaUnstruction (WRPSR only) 
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8.28. Unimplemented Instruction 

opcode op op2 operation 

UNIMP . J 00 J 000 J Unimplemented 

Format (2): 

I 00 I ignored I 000 I const22 
31 29 24 21 o 

Suggested Assembly Language Syntax 

unimp const22 

Description: 

The UNIMP instruction causes an iIIegaUnstruction trap. The const22 value is ignored. 

B.28.1. Programming Note 

This instruction can be used as part of the protocol for calling a function that is expected to 
retum an aggregate value, such as a C-Ianguage structure. See Appendix Dfor an example. 

a) An UNIMP instruction is placed after (not in) the delay slot after the CALL instruction in 
the calling function. 

b) If the callee function is expecting to return a structure, it will find the size of the structure 
that the caller expects to be returned as the const22 operand of the UNIMP instruction. 
The callee can check the opcode to make sure it is indeed UNIMP. 

c) If the function is not going to return a structure, upon retuming it attempts to execute the 
UNIMP instruction rather than skipping over it as it should. This causes the program to 
terminate. This behavior adds some run-time type checking to an interface that cannot 
be checked properly at compile time. 

Traps: 

lIIegaUnstruction 
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B.29. Instruction cache Flush Instruction 

opcode op3 operation 

IFLUSH I 111011 I Instruction cache Flush 

Format (3): 

110 I ignored I op3 rs1 I i=O I ignored I rs2 I 
!~ 211 24 ~II ~:J t2 4 1I 

110 I ignored 1 op3 rs1 i=1 simm13 I 
:J, 211 24 ,11 ,:J tz 1I 

Suggested Assembly Language Syntax 

Hlush address 

Description: 

The IFLUSH instruction causes a word to be flushed from an instruction cache that may be 
Internal to the processor. The address of the word to be flushed is either "r[rs1] + r[rs21" H 
the ifield is zero, or "rtrs1] + sign_ext(simm13)" if the ifield is one. 

B.29.1. Implementation Note: 

If there is no instruction cache internal to the processor, IFLUSH acts as a "NOP." If there is 
an internal instruction cache, IFLUSH flushes the addressed word from the cache. If there is 
an external instruction cache. IFLUSH causes an iIIegaUnstruction trap. The presence of 
an external instruction cache is determined by the bp_LcacheJJresent signal. 

Traps: 

iIIegaUnstruction 
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8.30. Floating-point Operate (FPop) Instructions 

opcode op3 operation 

FPop1 110100 Floating-point operate 
FPop2 110101 Floating-point operate 

Format (3): 

110 I rd I 110100 rs1 opf I rs2 
31 29 24 18 13 4 0 

110 1 rd 1 110101 rs1 opf rs2 I 
31 29 24 18 13 4 0 

The Floating-point Operate (FPop) instructions are encoded using two type 3 instruction formats 
called FPop1 and FPop2. The floating-point operations themselves are encoded by the opffield. 
(Note that the load/store floating-point instructions are not "FPop" instructions.) 

All FPop instructions take all operands from and return all results to f registers andlor the FSR. 
They perform operations on ANSIIIEEE 754-1985 single, double, and extended formats (see the 
section SPARe Architecture OvervieW). 

All multiple-precision floating-point instructions (including Ioadlstore floating-point) assume that 
operands are located in register pairs (for double precision) or quadruples (for extended preci­
sion). The following table indicates the alignment assumptions. Note that single-precision 
operands can be in any f register. 

operand f register address 

double-e Omod2 
double-f 1 mod 2 
extended-e o mod 4 
extended-f 1 mod 4 
extended-f-Iow 2mod4 
extended-u 3 mod 4 

According to this convention, the least significant bit of an f register address is ignored by 
double-precision FPops and the least significant two bits of an f register address are, ignored by 
extended-precision FPops. 

A program including floating-point computations generates the same results as if all instructions 
were executed sequentially (assuming it runs to completion). Note that floating-point loads and 
stores are not floating-point operate instructions. 

Results are written (or traps are caused) in the order that FPops are encountered in the 
instruction stream. The section Instructions explains this in more detail. An FPop instruction 
causes an fp_disabled trap if the EF field of the PSR is 0 or if no FPU is present. 
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8.30.1. Convel1lnteger to Floating-point Instructions 

opcode opf operation 

FiTOs 011000100 Convert Integer to Single 
FiTOd 011001000 Convert Integer to Double 
FiTOx 011001100 Convert Integer to Extended 

Format (3): 

110 1 rd 1 1'0100 ignored I opf 1 rs2 
4 0 31 29 24 18 13 

Suggested Assembly Language Syntax 

fitos treg rs2, tregrd 
fitod treg rs2, tregrd 
fit ox treg rs2, tregrd 

Description: 

These instructions convert the 32-bit integer argument in the f register specified by rs2 into a 
floating-point number in the destination format according to the ANSI/IEEE 754-1985 
specification. They place the result in the destination f register(s) specified by rd. 

For FiTOs and FiTOx with single-precision rounding, rounding is performed according to the . 
rounding direction (RD) field of the FSR. 

Traps: 

fp_disabled 
fp_8xception (NX) (FiTOs and FiTOx when RP",single) 
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8.30.2. Convert Floating-point to Integer 

opcode opf operation 

FsTOi 011010001 Convert Single to Integer 
FdTOi 011010010 Convert Double to Integer 
FxTOi 011010011 Convert Extended to Integer 

Format (3): 

110 1 rd I 110100 1 ignored I 
18 13 

opf I rs2 
4 0 31 Z9 24 

Suggested Assembly Language Syntax 

fstoi freg rs2. fregrd 
fdtoi freg rs2. fregrd 
fxtoi freg rs2. fregrd 

Description: 

These instructions convert the floating-point source argument in the f register or f registers 
specified by rs2 to a 32-bit integer (in the f register specified by the rd field) according to the 
ANSIII EEE 754-1985 specification. 

The floating-point argument is rounded toward zero and the rdfield of the FSR is ignored. 

Traps: 

fp_disabled 
fp_exception (NV. NX) 
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B.30.3. Convert Between Floating-point Formats Instructions 

opCOde opf operation 

FsTOd 011001001 Convert Single to Double 
FsTOx 011001101 Convert Single to Extended 
FdTOs 011000110 Convert Double to Single 
FdTOx 011001110 Convert Double to Extended 
FxTOs 011000111 Convert Extended to Single 
FxTOd 011001011 Convert .Extended to Double 

Format (3): 

110 I rd I 110100 opf 
4 b 

ignored I 
31 29 24 18 13 

rs2 

Suggested Assembly Language Syntax 

fstod freg ,s2. freg,d 
fstox freg ,s2, freg,d 
fdtox freg,s2, freg,d 
fdtox freg ,s2, freg,d 
fxtod freg ,s2. freg,d 
fxtos freg ,s2, fregrd 

Description: 

These Instructions convert the floating-point source argument in the f register or f registers 
specified by rs2 to a floating-point number in the destination format according to the 
ANSI/IEEE 754-1985 specification. They place the result in the f register or f registers 
specified by rd. 

Rounding is performed according to the rounding direction (RD) field of the FSR. In the case 
of FdTOx, the outcome is also a function of the rounding precision (RP) field. 

Traps: 

fp_disabled 
fp_exception (OF, UF, NV, NX) 

8-47 Instruction Definitions 8-47 



Solboume Computer, Inc. 

8.30.4. Floating-point Move Instructions 

opcode opf operation 

FMOVs 000000001 Move 
FNEGs 000000101 Negate 
FABSs 000001001 Absolute Value 

Format (3): 

110 I rd I 110100 
31 29 24 

ignored I opf I rs2 
.. 0 18 13 

Suggested Assembly Language Syntax 

fmovs freg,s2, freg,d 
fnegs freg ,s2, freg,d 
fabss freg ,s2, freg,d 

Description: 

FMOVs moves a word from f[rs2] to f[rd]. Multiple FMOVs's are required to transfer a 
multiple-precision number between f registers. 

FNEGs complements the sign bit, and FABs clears it. 

These instructions do not round. 

8.30.5. Programming Note 

FNEGs or FABSs instructions can also operate on the high-order words (the word that con­
tains the sign bit) of double and extended operands. Thus an FNEGs instruction and an 
FMOVs instruction would be used to negate a double and put the results in a different pair of 
f registers. 

Traps: 

fp_disabled 
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B.31. Floating-point Square Root Instructions 

opcode opf operation 

FSORTs 000101001 Square Root Single 
FSORTd 000101010 Square Root Double 
FSORTx 000101011 Square Root Extended 

Format (3): 

110 1 rd 1 110100 
31 29 24 

ignored 1 opf rs2 
18 13 4 0 

Suggested Assembly Language Syntax 

fsqrts (reg ,s2. (reg,d 
fsqrtd (reg ,s2. (reg,d 
fsqrtx (reg ,s2, (reg,d 

Description: 

These instructions generate the square root of the floating-point source argument in the f 
register or f registers specified by rs2 according to the ANSIIIEEE 754-1985 specification. 
They place the result in the destination f register or f registers specified by the rdfield. 

Rounding is performed according to the rounding direction (RD) field of the FSR. In the case 
of FSORTx, the outcome is also a function of the rounding precision (RP) field. 

Traps: 

fp_disabled 
fp_exception (NV, NX) 
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8.31.1. floating-point Add and Subtract Instructions 

opcode opf operation 

FADDs 001000001 Add Single 
FADDd 001000010 Add Double 
FADDx 001000011 Add Extended 
FSUBs 001000101 Subtract Single 
FSUBd 001000110 Subtract Double 
FSUBx 001000111 Subtract Extended 

Format (3): 

110 1 rd rs1 opf 
4 b 

1 110100 
24 18 13 31 29 

1 rs2 I 

Suggested Assembly Language Syntax 

fadds freg'S1. freg rs2. fregrd 
faddd freg'S1. freg rs2. fregrd 
faddx freg'S1. freg rs2. fregrd 
fsubs freg'S1' freg rs2. fregrd 
fsubd freg rs1. freg rs2. fregrd 
fsubx freg rs 1. freg rs2, fregrd 

Description: 

These instructions add or subtract their operands according to the ANSI/IEEE 754-1985 
specification, and place the result in the f register or f registers specified in the rd field. The 
subtract instructions subtract the floating-point value specified by rs2 from the one specified 
by rs1. 

Traps: 

fp_disabled 
fp_exception (OF. UF, NX) 
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8.31.2. Floating-point Multiply and Divide Instructions 

opcode opf operation 

FMULs 001001001 Multiply Single 
FMULd 001001010 Multiply Double 
FMULx 001001011 Multiply Extended 
FDIVs 001001101 Divide Single 
FDIVd 001001110 Divide Double 
FDIVx 001001111 Divide Extended 

Format (3): 

110 1 rd 1 110100 rs1 opf I rs2 
4 b S1 29 24 1S 1S 

Suggested Assembly Language Syntax 

fmuls freg,s1. freg,s2. freg,d 
fmuld freg,s1. freg,s2. fregrd 
fmulx freg,s1. freg,s2. fregrd 
fdivs freg'S1' freg,s2. fregrd 
fdivd freg,s1' freg,s2. fregrd 
fdivx freg'S1' freg,s2. freg,d 

Description: 

These instructions multiply or divide their operands according to the ANSI/IEEE 754-1985 
speCification. and place the result in the f register or f registers specified in the rd field. The 
divide instructions divide the floating-point value specified by rs1 by the one specified by rs2. 

Traps: 

fp_disabled 
fp_exception (OF. UFo DZ (FDIVonly). NV. NX) 
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8.31.3. Floating-point Compare Instructions 

opcode opf operation 

FCMPs 001010001 Compare Single 
FCMPd 001010010 Compare Double 
FCMPx 001010011 Compare Extended 
FCMPEs 001010101 Compare Single and Exception if Unordered 
FCMPEd 001010110 Compare Double and Exception if Unordered 
FCMPEx 001010111 Compare Extended and Exception if Unordered 

Format (3): 

11 0 I ignored I 11 01 01 rs1 opt rs2 
31 29 24 18 '" 0 

Suggested Assembly Language Syntax 

fcmps treg rs1. treg,s2 
fcmpd treg rs1. treg,s2 
fcmpx treg rs1. freg,s2 
fcmpes freg '51. treg,s2 
fcmped freg rs1, freg,s2 
fcmpex freg rs1. freg rs2 

Description: 

These Instructions compare their operands according to the ANSI/IEEE 754-1985 
specification. The floating-point condition codes in the FSR are set as follows: 

NOTE: 
This table is a duplicate of Table 3-5 in the section "Registers". 

fcc Relation 
0 fs1 = fs2 
1 fs1 < fs2 
2 fs1 > fs2 
3 fs1 ? fs2 (unordered) 

In this table, (s1 refers to the value specified by the rs1 field and (s2 refers to the value 
specified by the rs2 field of the compare instruction. 

The "Compare and Cause Exception if Unordered" instructions (FCMPE) cause an invalid 
exception (NV) if either of the operands is a signaling or quiet NaN. FCMP also causes an 
invalid exception if either operand is a signaling NaN. 

-0- -0- -0- NOTE -0- -0- -0-
A non-floating point instruction must be executed between an 
FCMP and a subsequent F8fcc. 

Traps: 

fp_disabled 
fp_exception (NV) 
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B.32. Coprocessor Operate Instructions 

opcode op3 operation 

CPop1 110110 Coprocessor Operate 
CPop2 110111 Coprocessor Operate 

Format (3): 

110 I rd I 110110 rs1 ope rs2 
31 29 24 18 13 4 0 

110 I rd 110111 rs1 ope rs2 
31 29 24 18 13 4 0 

~ ~ ~ NOTE 'Cl 'Cl 'Cl 
The assembly language syntax for these instructions is 
unspecified. 

The Coprocessor Operate (CPop) instructions are encoded via two type 3 instruction formats 
called CPop1 and CPop2. The coprocessor operations themselves are encoded by the ope field 
and are coprocessor-dependent. (Note that the load/store coprocessor instructions are not 
"CPop" instructions.) 

All CPop instructions take all operands from and return all results to coprocessor registers. The 
data types supported by the coprocessor are coprocessor-dependent. Operand alignment is 
coprocessor-dependent. 

A CPop instruction causes a cp_disabled trap if the EC field of the PSR is 0 or If no coprocessor 
is present. 

Whether a CPop generates a cp_exception trap is coprocessor-dependent. 
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APPENDIX C: ISP DESCRIPTIONS 

C.1. Introduction 

This appendix provides a description of the SPARC architecture using the Instruction-Set Proces­
sor (ISP) description language. It includes register definitions, instruction fields, processor 
states, instruction dispatch, traps, and instruction descriptions. 

The instruction interpreter defines the ordering of events. Except for a few cases (which are 
documented), the interpreter together with the instruction and register definitions provide a sup­
plemental description of the processor .. 

Note that the use of a particularvariable in the notation does not necessarily imply that its related 
signal is present in an implementation, or visible to the programmer. 

The instruction description language is a modified version of Bell and Newell's ISP instruction 
description language, which was created to accurately describe computer instruction sets. While 
the semantics are somewhat intuitive, the following guidelines provide important details: 

• The only data type is the bit vector. Variables are defined as bit vectors of particular widths, 
declared as varlablecn:m>. Variable subfields can be defined, also with the cn:m> nota­
tion. The value of a vector is a number in a base indicated by its subscript. The default 
base is decimal. Arrays of vectors are declared as array[n:m]. 

• The notation ~ indicates variable assignment, and := indicates a macro definition. 

• When a bit vector is assigned to another of greater length, the operand is right-justified in the 
destination vector and the high-order positions are zero-filled. The macro zero_extend is 
sometimes used to make this clear. Conversely, the macro Sign_extend causes the high­
order positions of the result to be filled with the highest-order (Sign) bit of its operand. 

• The semicolon 'j' separates statements. Parentheses '0' group statements and expressions 
that could otherwise be interpreted ambiguously. 
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• All statements are generally executed "simultaneously'" However, If the term next appears, 
It Indicates that the statement or statements which follow the next are executed after those 
that appear before the next. Thus, all statements between next phrases are executed con­
currently. More precisely, this means that all expressions on the right hand sides of assign­
ments located between next's are evaluated first, after which the variable~ on the left hand 
sides are updated. (This convention emulates synchronous, clocked hardware.) 

For example, if A.O and 8=0, execution of the following two statements, 

A ~ B+l; 
B ~ A+l; 

results in A=1 and B=1. However, 

A ~ B+l; 
next; 
B ~ A+l; 

results in A=1 and B=2.-

• The symbol 0 designates concatenation of vectors. A comma ',' on the left side of an 
assignment separates quantities that are concatenated for the purpose of assignment. For 
example, if the 2-bit vector T2 equals 3, and X, Y, and Z are 1-bit vectors, then: 

x, Y, Z ~ oOn 

results in X=O, Y=1, and Z=1. 

• The operators '+' and '-' perform two's complement arithmetic. 

• The phrase fork, used only in the instruction interpreter for the FPop instructions, indicates 
that the associated routine may be executed concurrently with all other subsequent state­
ments. There is no notation for rejoining: after the forked routine executes its last statement, 
it terminates. 

• The major difference between the notation used here and the 1971 version of ISP is that the 
notation here uses the more common: 

if cond then 51 else 52 

whereas Bell and Newell used the following: 

(cond -+ 51, ...., cond -+ 52) 

• The macros memory_read and memory_write, are implementation-dependent. These rou­
tines define the interface without referring to implementation-specific signals: 

C-2 

load_data ~ memory_read(addr_space, address) 

memory_write (addr_space, address, byte_mask, 
store_data) 

Memory_read returns the word in memory specified by both the address and the address 
space identifier. 

Memory_write writes all or part of the word store_data into the word specified by the given 
address. If there is an exception, memory_write does not change the state of the external 
system or the MMU. Byte_mask is a 4-bit value that indicates which of the four bytes in 
store_data are to be written into the addressed word. 
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Co2. Register Definitions 

PSR<31:D>; 
impl 

Wlr 

icc 
N 
Z 
V 
C 

t8served 
EC 
EF 
PIL 
S 
PS 
ET 
CWP 

TBR<31:0>; 

TBA 
tt 
zero 

FSR<31:0>; 

RD 
RP 
TEM 

NVM 
OFM 

UFM 

DZM 
NXM 
AU 

t8served 
ftt 
qne 
t8served 
fcc 
aexe 

nva :=FSR<9>: 

ola :=FSR<8>; 

ula :..FSR<7>: 

dza :.FSR<6>: 

nxa :.FSR<S>; 

cexe 
nw: .--FSR<4>: 

ole :-FSR<3>; 

uk :-FSR<2>: 
dze :.FSR<1>: 

nxc :-FSR<O>: 

CSR<31:0>; 

WlM<31;O>; 
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:. PSR<31:28>; 

:- PSR<27:24>; 

:. PSR<23:20>; 

:. PSR<23>; 

:. PSR<22>; 

:.PSR<21>; 

:. PSR<20>; 

:. PSR<19:14>; 

:.PSR<13>; 

; ... PSR<12>; 

;. PSR<11:8>; 

:.PSR<7>; 

:..,PSR<6>; 

: ... PSR<S>; 

:= PSR<4:0>; 

:. TBR<31:12>; 

:= TBR<11 :4>; 
:. TBR<3:0>; 

:= FSR<31 :30>; 

:= FSR<29:28>; 

:. FSR<27:23>; 

:. FSR<27>; 

: .. FSR<26>; 

:= FSR<2S>; 

:. FSR<24>; 

:= FSR<23>; 

:. FSR<22>; 

:. FSR<21:17>; 

:- FSR<16:14>; 

:=FSR<13>; 

:.FSR<12>; 

:.FSR<11:10>; 

:= FSR<9:S>: 

: ... FSR<4:0>: 

{Prooessor Slate Register) 

(Trap Base Register) 

(Floating·Point State Register) 

(CP State Register) 
{Window Invalid Mask Register} 
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Y<31:0>; (Y Register) 
PC<31:0>; (program Counter) 
nPC<31.'O>; (Next Program Counter) 

(Floating-Point Queue) 
(Coprocessor Queue) 
(Global Registers) 
(Windowed Registers) 
(Floating-Point Registers) 

F0<63:0>; 
00<63.'0>; 
G{1:7}<31.'O>; 
R[O:(16*NWlNDOWS)-lj<31 :0>; 

f(0:31j<31.'O>; 

r[n] :'" if (n = 0) 
then 0 
else if (1 S n S 7) 

then G[n] 
else R[ (n-B) + (CWP*16) 1 

{glohals} 
{windowed registers} 

C.3. System Interface Definitions 

bp_IRL<3: 0>: 
bp_reset_in; 
pb error: 
pb_retain_bus: 
bp_FI?Uyresent: 
bp_Cl?yresent: 
bp_I_cacheyresent: 
bp_CI?_exception: 
bp_CI?_cc <1: 0>: 
bp_memory_exception; 

C.4. Instruction Fields 

The numbers in braces are the widths of the fields in bits. 

instruction<31:0> : 
op {2 } := instruction<31:30>; 
op2 {3} := instruction<24:22>; 
op3 {6 } := instruction<24:19>; 
opf {9 } := instruction<13:5>; 
opc {9 } := instruction<13:5>: 
as! {8 } := instruction<12:5>: 
i {1 } := instruction<13>: 
rd {5} := instruction<29:25>; 
a {l} := instruction<29>; 
cond {4 } :"'" instruction<28:25>: 
rs1 {5 } := instruction<18:14>; 
rs2 {S} :== instruction<4:0>: 
simm13 {l3} := instruction<12:0>: 
shcnt {5} := instruction<4:0>; 
disp30 {30} := instruction<29:0>; 
disp22 {22} := instruction<21:0>: 
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CoS. Processor States and Instruction Fetch 

The IU can be in one of three states: execute_mode. reset_mode. or errocmode. 

The FPU can be in one of five states: reseCmode. error_mode. fpu_execute_mode. 
fpu_exceptionJ)8ndirl9-mode. or fpu_exception_mode. The FPU's reseCmod~ and error_mode 
correspond to the IU's reset and error modes. The remaining FPU states are described in Sec-
tion C.6. . 

The processor (that is the IU and FPU) is in reseCmode when bp_reseUn is asserted. The pro­
cessor remains in reseCmode until bp_reseUn is de asserted. at which point the IU enters 
exeClJte_mode and the FPU enters fpu_execute_mode. 

When bp_reseUn is deasserted. the first instruction address is O. with ASI=9 (supervisor instruc­
tion). 

The processor enters errocmode from any state except resecmode if a synchronous trap is 
generated while traps are disabled. (See the section Traps, Exceptions. and Error Handling). 
5.) The processor remains in errocmode until bp_reseUn is asserted. at which time it enters 
reseCmode. 

C.S.1. implementation Note 

The external system should assert bp-,eseLin whenever pb_e"or is detected. 

The following ISP code defines the three IU states. In execute_mode. the IU fetches and 
dispatches instructions. 

C-5 ISP Descriptions C-5 



C-6 

Solboume Computer, Inc. 

while (reset_mode) ( 

) ; 

if (bp_reset_in - 0) then 
reset_mode +- 0; 
execute_mode +- 1; 
trap +- 1; 
reset +- 1 

addr_space :- S=O then 8 else 9; 

while (execute~ode) ( 
check_interrupts; 
next; 

{ see Section C.8} 

the following code emulates the delayed nature of the 

) ; 

write state register instructions.} 

PSR +- PSR'; PSR' +- PSR"; PSR' , +- PSR"'; PSR'" 
TBR +- TBR' ; TBR' +- TBR"; TBR' , +- TBR"'; TBR'" 
WIM +- WIM'; WIM' +- WIM"; WIM' , +- WIM"'; WIM'" 
Y +- Y'; Y' +- Y"; Y" +- Y"'; Y'" +- Y""; 
next; 

+-
+-
+-

if (trap = 1) then 
execute_trap; { see Section C.8} 

next; 

instruction +- memory_read(addr_space, PC); 
next; 

if (bp_memory_exception - 1) then ( 
trap +- 1; 
instruction_access_exception +- 1 

) else ( 
if (annul = 0) then ( 

PSR""; 
TBR""; 
WIM""; 

dispatch_instruction {see Section C.S } 
) else ( 

annul +- 0; 
PC +- nPC; 
nPC +- nPC + 4 

while (error_mode) 
if (bp_reset_in = 1) then 

error mode +- 0 
reset mode +- 1 
pb error +- 0 
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) ; 

C.6. Instruction Dispatch 

The "dispatch_Instruction" macro determines if the fetched instruction is an FPop or CPop. If it is 
an FPop, it Is executed by the "execute_FPU_instruction" macro (Section C.6) as soon as the 
FPU can accept another instruction. If the fetched instruction Is a CPop, It Is executed by the 
"execute_CP _instruction" macro (Section C.7) as soon as the CP can accept another instruction. 

H the instruction is neither an FPop or a CPop, it is executed by the "execute_IU_instruction" 
macro, which includes all the macro definitions in Section C.g (except for FPop and CPop). 

Unused bit patterns in the op, op2, op3, opf, and i fields of Instructions cause lIIegaUnstruction 
traps. Other fields that are defined to be unused are ignored and do not cause traps. 

The macro 'floating-poinUnstr' returns a 1 if the Instruction is a floating-point instruction. Simi­
larly, the macro 'coprocessoUnstr' returns a 1 if the instruction is a coprocessor instruction. 
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unimplemented_IU_instr :- ( 

) ; 

if ( ( (opc002) and (op2=0002) 

or 

[UNIMP instruction} 

«op~112) or (op=10 2 » and (op3=unassiqned) ) 

or 

(i • 1) and 

(LOSBA or LOSHA or LOUBA or LOUHA or LOA or 

LOOA or STOA or LOSTUBA or SWAPA 

STBA or STHA or STA 

then 1 else 0 

f1oatinq-point_instr := 

) ; 

if (LOF or LOOF or LOFSR or 

STF or STOF or STFSR or STOFQ or 

FPopl or FPop2 or FBfcc) then 1 else 0 

coprocessor_instr: c ( 

if (LOC or LOOC or LDCSR or 

STC or STDC or STCSR or STDCQ or CPopl or CPop2 or CBccc) then 1 else 0 

) ; 

dispatch_instruction := ( 
if (unimpl_IU_instr = 1) then 

trap 4- 1; 

illegal_instruction 4- 1 

) ; 

if (floating-point_instr = 1) ~hen ( 

if (EF = 0) then ( 

) ; 

trap 4- 1; 

fp_disabled 4- 1 

else ( 

if ( fpu_exception_pending_mode = 1 ) then ( 

fpu_exception_pending_mode 4- 0; 

fpu_excepticn_mcde 4- 1; 

trap 4- 1 

) ; 

while ( (fp_not_ready 

check_interrupts; 

1) and (trap = 0) ) 

1f (coprocessor_instr 1) then ( 

if IEC = 0) then 

) ; 

trap 4- 1; 

cp_disabled 4- 1 

else I 

check_CP_exception; 

next; 

while ( (cp_nct_ready 

check_interrupts; 

1) and (trap = 0) ) ( 
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next; 
if (trap = 0) then 

) ; 

if (FPopl or FPop2) then fork execute_FPU_instruction 
else if (CPopl or CPop2) ~hen fork execute_CP_instruction 
else execute_IU_instruction 

execute_IU_instruction :- ( 

) ; 

{ do routine for specific instruction, defined below } 
next; 
if (trap - 0 and 

not (CALL or RETT or JMPL or Bicc or FBfcc or CBccc or Ticc) ) then ( 
PC +- nPC; 
nPC+- nPC + 4 

execute_FPU_instruction := ( 

) ; 

if (FPU_exception_mode)_ then 
ftt <- sequence_error; 
FPU_exception_mode <- 0; 
FPU_exception_pending_mode <- 1 

else ( 
enqueue_FQ(instruction, PC) 
{ execute description defined below } 

ISP Descriptions 
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C.7. Floating-Point Instruction Execution 

The FPU can execute floating-point operate (FPop) instructions concurrently with other FPops 
and with non-floating-point instructions. To do this. it maintains a Floating-point Queue (Fa) of 
FPop Instructions pending completion, and can force the IU to wait until resource and data 
dependencies have been resolved. 

The architecture ensures that a program containing FPops generates the same I'IJmerical results 
as if there were no concurrency. 

After the FPU begins to execute an FPop, the IU continues to fetch and execute instructions until 
one of five "hold" conditions occurs. Anyone of these causes the IU to stop fetching instructions 
until the condition is no longer true: 

1) H, for a load floating-point register instruction, the destination f register is the source or desti­
nation register of an executing FPop. the IU waits until the executing FPop no longer 
requires the register. 

2) If, for a store floating-point register instruction. the source f register is the destination register 
of an executing FPop. the IU waits until executing FPop no longer require the register. 

3) A load or store floating-point state register instruction (LDFSR. STFSR) causes the IU to wait 
until all executing and pending FPops have completed. 

4) A branch on floating-point condition (FBtcc) instruction causes the IU to wait until any exe­
cuting or pending floating-point compare instructions (FCMP. FCMPE) have finished. 

5) When the IU encounters an FPop. it stops fetching instructions until the FPop has been 
accepted by the FPU. 

C.7.1. Floating-Point Queue (FQ) 

The floating-point queue (Fa) has at least one entry for each of the FPU's arithmetic units that 
can execute in parallel with other arithmetic units. The depth of the queue is implementation­
dependent. 

Each entry In the queue (for the purposes of the definition in this appendix) contains 1) the FPop 
instruction itself. 2) the PC trom which the FPop was fetched, 3) an indication of the arithmetic 
unit executing it, 4) a completion status bit that indicates whether the operation finished proper1y. 
and 5) a temporary result. including any exceptions or condition codes generated by the instruc­
tion. Parts (1) and (2) of the front entry are visible to the programmer using the STDFa instruc­
tion; the other parts and the other entries are inviSible to the programmer. 

(Note that load floating-point. store floating-point. and FBfcc instructions are never entered in the 
queue.) 

For the purposes of the definition in this appendix, when an arithmetic unit finishes, It deposits its 
computed result. any exceptions or conditions it may have generated. and a completion status 
bit. into the reserved location in the queue. As FPops complete. each entry moves toward the 
front of the queue (if It is not already there). 

The FPU can stop executing an FPop in one of four ways: 1) completed without exception (nor­
mal). 2) IEEE_exception, 3) unfinished_FPop. or 4} unimpiemented_FPop. The following para­
graphs describe each: 

Normal Completion 
If the FPop represented by the front entry in the queue caused no unmasked exceptions. the 
FPU 1) writes the result into the f register(s) specified by the ret field of the instruction (if 
any). 2) updates the FSR's cexc and fcc fields. 3) removes the entry from the queue. and 4) 
advances the queue. 
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IEEE_Exception 
If the FPop pointed to by the front entry in the queue caused an iEEE_exception trap, the 
FPU updates the FSR's cexc and ftt fields to identify the exception, and does not write the 
result into the f registe,(s) specified by the rd field of the Instruction, nor does it remove the 
entry from the queue. However, if an IEEE_exception does not result In a fp_exception trap, 
all results are written, Including the destination f ,egister, cexc, sexc, and fee. 

UnimplementecCFPop or Unfinished_FPop 
If the FPop pointed to by the front entry in the queue is not implemented, or if the arithmetic 
unit was unable to complete it according to the ANSI/IEEE 754-1985 specification (for exam­
ple, a multiply unit may not be able to post normalize a denormalized result or handle a NaN), 
the FPU updates the ftt field of the FSR to identify the exception, and does not write the 
result into the f ,egiste,(s) specified by the rd field of the instruction, nor does it remove the 
entry from the queue. The front entry in the queue identifies the FPop that generated the 
floating-point exception trap. 

C.7.2. fQ_front_Done 

The implementation-dependent macro 'Fa_fronCdone: returns a 1 if an arithmetic unit has 
finished processing the FPop at the front of the Fa. The implementation-dependent macro 
'stop_FPU' stops all current processing of Fa entries. 

C.7.3. fPU States 

The FPU can be in any of three modes: FPU_execute_mode, FPU_exception-pendin9-mode, or 
FPU_exception_mode. In FPU_execute_mode, it executes floating-point instructions. 

The FPU enters the FPU_exception-pending_mode state when an FPop instruction causes an 
IEEE_exception, unfinished_FPop exception, unimplemented_FPop exception, or a 
sequence_error. The FPU remains in FPU_exception-pendi"9-mode until the IU fetches 
another floating-point instruction, at which time a fp_exception trap is caused and the FPU enters 
the FPU_exception_mode state. 

In FPU_exception_mode, the FPU executes only store floating point instructions. If an FPop or a 
load floating point instruction is fetched while the unit is in FPU_exception_mode, the m field of 
the FSR will be updated to indicate "sequence_error", and the FPU will enter 
FPU_exception-pending_mode. The instruction that caused the sequence_error is not entered 
into the Fa. 

The FPU retums to FPU_execute_mode after the Fa has been emptied via STDFa instructions, 
that is, qne is O. 
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while (FPU_execute_mode) ( 
if (FO_front_done = 1) then ( 

if (fp_unimplemented - 1) then ( (not implemented) 
fp_exception +- 1: ftt +- unimplemented_FPop: 

) ; 

if (FO_c = 0) then ( (not finished) 
fp_exception +- 1; ftt +- unfinished_FPop; 

else ( {executed and finished} 
cexc +- texc; 
next; 
if ( cexc and TEM ~ 0) then {floating-point trap} 

fp_exception +- I: ftt +- IEEE_Exception: 
else ( {no floating-point trap} 

aexc +- aexc or cexc; 

if (FQ_single_result = 1) then 
f[rd) +- result; 

if (FQ_double_result - 1) then 
f [rdE), f[rdO) +- result; 

if (FQ_extended_result - 1) then 

next; 

f [rdEE), f [rdEO) , f[rdOE) 
if (FQ_compare = 1) then 

fcc +- tfcc; 
dequeue_FQ; 

if (fp_exception = 1) the, ( 
FPU_execute_moae +- 0; 
FPU_exception_pending_mode +- 1 

ISP Descriptions 
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C.8. Coprocessor Instruction Execution 

The CP can execute coprocessor operate (CPop) instructions concurrently with integer Instruc­
tions and other CPops. Although the instruction set includes a "store CP double queue" instruc­
tion. the existence of the queue and the type of concurrency available in the coprocessor is 
dependent on the coprocessor itself. 

The FPU leaves FPU_exception_mode and enters FPU_execute_mode after the Fa has been 
emptied (via execution of STDFQ instructions.) 

{not specified} 

C.9. Traps 
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execute_trap :& ( 

) ; 

select_trap; 
ET ~ 0; 

PS ~ S; 

annul +- 0; 

{ignore Asynchronous traps} 

CWP ~ (CWP - 1) mod NWINDOWS;(point to next window} 
r(17) ~ PC; {preserve program counters} 

r[lB) +- nPC; 
next; 
S ~ I; {set supervisor mode} 

if (reset_trap = 0) then 

PC +- TBR; 

nPC +- TBR + 4 

else ( 

reset_trap +- 0; 

PC +- 0; 

nPC +- 4 

select_trap := ( 

if (ET = 0 or reset_trap = 1) then 

error mode +- 1 

else if (instruction_access_exception 1) 

tt +- 000000012 

else if (illegal_ instruction = 1 ) then 

tt +- 000000102 

else if (pri vileged_inst ruct iOIl 1) then 

tt +- 000000112 

else if (fp_disabled 1) then 

tt +- 000001002 

else if (cp_disabled = 1) then 

tt +- 00100100 2 

else if (window_overflow = 1) then 

tt +- 000001012 

else if (window_underflow = 1) then 

tt +- 000001102 

else if (mem_address_not _aligned = 1) then 

tt +- 000001112 

else if (fp_exception = 1 ) then 

tt +- 000010002 ; 

else if (cp_exception = 1) then 

tt +- 0010100°2; 
else if (data_access_exception E 1) then 

tt +- 000010012 
else if (tag_overflow = 1) then 

tt +- 000010102 
else if (trap_instruction = 1) then 

tt +- 12Oticc_trap_type 
else if (interrupt_level > 0) then 

tt +- 0001 Ointerrupt level 
2 -

then 

next; 

trap ~ 0; {since the tt field has been set, reset the trap signal} 
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instruction_access_excepcion +- 0; 
illegal_instruction +- 0; 
privileged_instruction +- 0; 
fp_disabled +- 0; 
cp_disabled +- 0; 
window_overflow +- 0; 
window_underflow +- 0; 
mem_address_not_aligned +- 0; 
fp_exception +- 0; 
cp_exception +- 0; 
data_access_exception +- 0; 
tag_overflow +- 0; 
trap_instruction +- 0; 
interrupt_level +- 0 

check_interrupts := I 

) ; 

if Ibp_reset_in 1) then 
reset_mode +- 1 

) ; 

else if lET = 1 and Ibp_IRL ~ 15 or bp_IRL > PIL» then ( 
trap +- 1; 
interrupt_level +- bp_IRL 
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C.10. Instruction Definitions 

This section contains the ISP definitions of the SPARC architecture instructions. These comple­
ment the instruction descriptions in Appendix S, Instruction Descriptions. 

C.10.1. Load Instructions 
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if ( (LDF or LDDF or LDFSR) then ( 

) ; 

if (EF DOor bp_FPU_present s 0) then 
trap +- 1; fp_disabled +- 1 

else if (FPU_exception_mode = 1) then 
ftt +- sequence_error: 
FPU_exception_mode +- 0 : 
FPU_exception_pending_mode +- 1 : 

if ( (LDC or LDDC or LDCSR) and (EC = 0 or bp_CP-present - 0) ) then ( 
trap +- 1: cp_disabled +- 1 ) ; 

next: 
if (trap e 0) then ( 

) : 
next; 

if (LOO or LO or LDSH or LDUH or LOSB or LDUB 

) ; 

or LDOF or LOF or LDFSR or LODC or LOC or LOCSR) then ( 
address +- r[rsll ~ (if i~O then r[rs2] else sign_extend(simm13»: 
addr_space +- (if (5 = 0) then 10 else 11) 

else if (LODA or LOA or LOSHA or LOUHA or LOSBA or LDUBA) then ( 
if (S - 0) then ( 

trap +- 1: privileged_instruction +- 1 

address +- r[rs11 + r[rs21: 
addr_space +- asi 

if (trap = 0) then ( 
if ( «LOD or LODA or LD:F or ~OOC) and address<2:0> ¢ 0) or 

«LO or LOA or LDF or LDFSR or LOC or LDCSR) and address<1:0> ¢ 0) or 
«LOSH or LOSHA or LDUH or LOUHA) and address<O> ¢ 0) ) then ( 
trap +- 1: mem_addr_no~_uligned +- 1 

) ; 

next; 
if (trap = 0) then ( 

data +- memory_read (addr_space, address): 
MAE +- bp_memory_exception; 
next; 
if (MAE = 1) then ( 

trap +- 1; data_Access_exception +- 1 
else ( 

if (LOSB or LDSBA or LDUB or LOUBA) then 
if (address<l:C> = 0) byte +- data<31:24> 
else if (address<1:0> = 1) byte +- data<23:16> 
else if (address<1:0> ~ 2) byte +- data<15:8> 
else if (address<1:C> 
next: 
if (LDSB or LDSBA) then 

3) byte +- data<7:0>; 

wordO +- sign_extend_byte(byte) 
else 

wordO +- zero_extend_byte(byte) 
else if (LDSH or LDSHA or LOUH or LDUHA) then ( 

if (address<1:0> = 0) halfword +- data<31:16> 
else if (address<l:O> = 2) halfword +- data<15:0>; 
next: 
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if CLDSH or LDSHA) then 
wordO +- siqn_extend_halfword(halfword) 

else 
wordO +- zero_extend_halfwordChalfword) 

else 
wordO +- data 

if (trap = 0) then C 
if ( rd * 0 and (LO or LOA or I.OSH or or LOSHA or LOURA or LOUH or LOSB or LOSBA or 1 

r [rd] +- wordO 

I ; 
next; 

else if ( «rd and 111102 ) ¢ 0) and (LOO or LDOA) ) then 
r[rd and 111102] +- wordO 

else if (LDF) then 
f [rd] +- wordO 

else if (LDFSR) then 
wait_for_FAUs_to_complete; (implementation-defined) 
FSR +- wordO ) 

else if (LDC) then 
c [rd] +- wordO 

else if (LDCSR) then 
CSR +- wordO 

if (trap e 0 and (LOO or LDOA or LOOF or LDDC» then 
word1 +- memory_readladdr_space, address + 4); 
MAE +- bp_memory_exception; 

) ; 

next; 
if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 I 
else if (LDD or LDDA) then 

r[rd or 1] +- wordl 
else if (LOOF) then 

f[rd or 1] +- word1 
else if (LODC) then 

c[rd or 1] +- word1 
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C.10.2. Store Instructions 
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if «STF or STDF or STFSR or STOFQ) and (EF - 0 or bp_FPU-present - 0) ) then ( 
trap +- 1; fp_disabled +- 1 ) ; 

if «STC or STOC or STCSR or STDCQ) and (EC 
trap +- 1; ep_disabled +- 1 ) ; 

if (trap 2 0) then ( 

o or bp_CP-present - 0) ) then ( 

if (STD or ST or STH or STB or STF or STOF or STFSR or STDFQ or STCSR or STC or STOC 0 

address +- r[rs1] + (if i=O then r[rs2] else sign_extend(simm13»; 

) ; 

addr_space +- (if S=O then ]0 else 11) 
else if (STOA or STA or STHA or STBA) then ( 

if (5 = 0) then ( 
trap +- 1; privileged_instruction +- 1 

else ( 

address +- rrrsl) + rrrs2]; 
addr_space +- asi; 

) ; 

next; 
if (trap - 0) then ( 

if (STO or STOA or STOF or STOrQ or STOC or STOCQ) then ( 
if (address<2:0> ~ 0) then 

trap +- 1; mem_addr_not._aligned +- 1 ) 
else if (ST or STA or STF or STFSR or STC or STCSR) then ( 

if (address<1:0> ~ 0) then 
trap +- 1; mem_addr_not_aligned +- 1 ) 

else if (STH or STHA) then ( 
if (address<O> ~ 0) then ( 

trap +- 1; mem_addr_not._aligned +- 1 ) 
) ; 

) ; 

next; 
if (trap = 0) then ( 

if (STOF) then ( 

byte_mask +- 11112 ; dataC +- f[rd and 11102 ) 

else if (STDFQ) then ( 

byte_mask +- 11112; dataO +- FQ.ADDR ) 
else if (STDe) then ( 

byte_mask +- 11112 ; dataO +- c[rd and 11102] 
else if (STOCQ) then ( 

byte_mask +- 11112 ; dataC +- CQ.ADDR ) 
else if (STO or STOA) then ( 

byte_mask +- 1111 2 ; dat.aO +- rlrd and 11102 ] 

else if (ST or STA) then l 

byte_mask = 11112 ; dataC = r[rdj) 
else if (STH or STHA) then ( 

if (address<1:0> = 0) then ( 

byte_mask +- 11002; dataO +- shift_left_logica1(r[rd], 161 I 
else if (address<1:0> = 2) ~hen ( 

byte_mask +- 0011 2 ; dataO +- rlrdl ) ) 
else if (STB or STBA) then ( 

if (address<1:0> = 0) then 

byte_mask +- 10002 ; dataO +- shift_left_1ogieal(r[rdj, 24) 
else if (address<l:O> = 1) ~hen ( 

byte_mask +- 0100 2 ; dataO +- shift_left_logical(r[rd], 16) 
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else if (address<1:0> = 2J then 
byte_mask +- 00102 : dataO +- shift_left_loqical(r[rd), 8) ) 

else if (address<1:0> - 3J ~hen ( 
byte_mask +- 00012 : dataO +- r[rd) ) 

) ; 

next; 
if (trap = 0) then ( 

memory_write (addr_space, address, byte_mask, dataO); 
MAE +- bp_memory_exception 

next: 
if (MAE c 1) then ( 

trap +- 1: data_access_exception +- 1 

) : 
next; 
if (trap ~ 0) then ( 

) : 

+- r[rd or 1) 
+- f[rd or 1] 

if (5TD or 5TDAJ then datal 
else if (STDF) then datal 

else if (5TDFOJ then ( 
datal <- FO.!~STR; 

next: 
if (qne = OJ then ( 

FPU_exception_mocie +- 0 
FPU execute mode +- 1 - -

else if (5TDC) then datal 
else if (5TDCO) then datal 

next: 

+- c[rd or 1] 
+- CO.INSTR 

memory_write (addr_space, addres~ • 4, 11112 , datal): 
MAE +- bp_memory_exception; 

next: 
if (MAE = 1) then ( 

trap +- 1: data access_exception +- 1 
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C.10.3. Atomic Load-Store Unsigned Byte Instructions 

C-22 

if (LDSTUB) then ( 
address +- r[rs1] + (if i=O then r[rs2] else siqn_extend(simm13»; 
addr_space +- (if (S - 0) then 10 else 11) 

else if (LDSTUBA) then ( 

) ; 

next; 

if (5 - 0) then ( 
trap +- 1; privileged_instruction +- 1 

address +- r[rs1) + r(rs2): 
addr_space +- asi 

if (trap = 0) then 
pb_retain_bus +- 1; 
next; 

) ; 

next; 

data +- memory_read(addr_space, address); 
MAE +- bp_memory_exception; 
next; 
if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 
else ( 

if (address<l:C> 0) word +- zero_extend_byte(data<31:24» 
else if (address<1:0> = 1) word +- zero_extend_byte(data<23:16» 
else if (address<1:0> = 2) word +- zero_extend_byte(data<15:8» 

else if (address<1:0> 3) word +- zero_extend_byte(data<7:0»; 
next; 
if (rd ~ 0) then r(rd) +- word 

if (trap 0) then ( 

) ; 

if (address<1:0> = 0) then ( byte_mask +- 10002 ) 

else if (address<1:0> 1) then ( byte_mask +- 01002) 

else if (address<1:0> 2) then ( byte_mask +- 00102 ) 

else if (address<1:0> 3) then byte_mask +- 00012 ) 

next; 
memory_write (addr_space, address, byte_mask, FFFFFFFF16); 

MAE +- bp_memory_exception; 
next; 
pb_retain_bus +- 0; 
if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 
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C.10.4. Swap r RegIster with Memory Instructions 

C-23 

if (SWAP) then ( 

address +- rlrs1] + (if i-O then rlrs2) else sign_extend(simm13»; 

addr_space +- (if (S & 0) then 10 else 11) 

else if (SWAPA) then ( 

if (S = 0) then ( 

trap +- 1; privileged_instruction +- 1 

address +- r[rs1) + r[rs2); 

addr_space +- asi 

) ; 

next; 

if (trap = 0) then ( 

temp +- r lrdl; 

pb_retain_bus +- 1; 

next; 

word +- memory_read (addr_space. address); 

MAE +- bp_memory_exception; 

next; 

if (MAE = 1) then ( 

trap +- 1; data_access_exception +- 1 

else ( 

if (rd ~ 0) then r[rdJ +- wore 

) ; 

next; 

if (trap = 0) then ( 

) ; 

memory_write (addr_space, address, 11112 , temp); 

MAE +- bp_memory_exception; 

next; 

pb_retain_bus +- 0; 

if (MAE = 1) then ( 

trap +- 1; data_access_exceptjon +- 1 
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C.10.S. Add Instructions 

operand2 :- if icO then r[rs2] else sign_extend(simm13); 

if (ADD or ADDcc) then 

result +- r[rslj + operand2; 
else if (ADDX or ADDXcc) then 

result +- r[rslj + operand2 + C; 

next; 

if (rd * 0) then 
r[rd] +- result; 

if (ADDcc or ADDXcc) then 

N +- result<31>; 

) ; 

Z +- if result=O then 1 else 0; 
V +- (r[rslj<31> and operand2<31> and not result<31» or 

(not r[rsl]<31> and not ooerand2<31> and result<31»; 
C +- (r[rsl]<31> and operand2<31» or 

(not result<31> and (r[rsl]<31> or operand2<31») 

C.10.S. Tagged Add Instructions 

C-24 

operand2 := if i=O then r[rs2] else sign_extend(simm13); 

result +- r[rsl] + operand2; 

next; 
temp_v +- (r[rsl]<31> and operand2<31> and not result<31» or 

(not r(rsl]<31> and not operand2<31> and result<31» or 
(r[rsl]<l:O> ~ 0 or opcrand2<1:0> ~ 0); 

next; 
if (TADDccTV and temp_v = 1) then 

trap +- 1; tag_overflow +- 1 

) ; 

else 

N +- result<31>; 

Z +- if result=O then 1 else 0; 
V +- temp_v; 

C +- (r[rslj<31> and opcrand2<21» or 

(not result<31> ana (r[rslj<3l> or operand2<31»); 
if (rd ~ 0) then 

r[rd] +- result; 
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C.10.7. Subtract Instructions 

operand2 :- if i-O then r[rs21 else sign_extend(simm13); 

if (SUB or SUBcc) then 

result +- r[rsll - operand2; 
else if (SUBX or SUBXcc) then 

result +- r[rsll - operand2 - C; 
next; 
if (rd VI! 0) then 

r[rdl +- result; 
if (SUBcc or SUBXcc) then 

N +- result<31>; 

I; 

Z +- if result:O then 1 else 0; 
V +- (r[rslj<3l> and not operand2<31> and not result<31» or 

(not r[rsl)<31> and opera~d2<31> and result<31>1; 
C +- (not r[rsl)<31> and operard2<31» or 

(result<31> and (not r[rsl)<31> or operand2<31>11 

C.10.B. Tagged Subtract Instructions 

C·25 

operand2 :- if i-O then r[rs21 else sign_extend(simm131; 

result +- r[rsl) - operand2; 
next; 
temp_v +- (r[rsll<31> and not operand2<31> and not result<31>1 or 

(not r[rsl)<31> and operand2<31> and result<31» or 
(r[rsl)<l:O> ¢ 0 or operand2<1:0> ~ 0); 

next; 
if (TSUBccTV and temp_v - 1) then 

trap +- 1; tag_overflow +- 1 

I ; 

else 
N +- result<31>; 
Z +- if result:O then 1 else 0; 
V +- temp_v; 
C +- (not r[rsl)<31> and operand2<31» or 

(result<31> and (not r[rs~J<31> or operand2<31»I; 
if (rd ¢ 0) then 

r[rdj +- result; 
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C.10.9. Multiply Step Instruction 

operandI :- (N xor V)Or[rsll<31:1>: 
operand2 :-

if (Y<O> = 0) then 0 
else if (i = 0) then r[rs2) else sign_extend (simm13) 

) ; 

result +- operandI + operand2: 
Y +- r[rsl]<0>OY<31:1>: 

next; 

if (rd '* 0) then 
r[rdl +- result; 

N +- result<31>; 
Z +- if result=O then 1 else 0; 

V +- (operandl<3l> and operand2<31> and not result<31» or 

(not operandl<3l> and not operand2<3l> and result<31»; 
C +- (operandl<3l> and operand2<3l» or 

(not result<3l> and (operandl<3l> or operand2<3l») 

C.10.10. Logical Instructions 

C-26 

operand2 := if i=O then r[rs2] else sign_extend(simm13); 

if (AND or ANDee) then result +- r[rslJ and operand2 

else if 

else if 
else if 
else if 

else if 
next; 

(ANON or AN:):>:ee) the" resul t. +- r [rsl] and not operand2 
(OR or ORee) tr.er result +- r!rsl] or operand2 

(ORN or ORNec) the~ result +- r[rsl] or not operand2 
(XOR or XORcc) tr.E'n res·.1:Ct +- rlrslJ xor operand2 

(XNOR or XNORce) the~ :cesul:. +- r [rsl] xor not operand2; 

if (rd,* 0) then r[rdj +- result; 

if (ANDee or ANDNee or ORee or OR~cc or XORee or XNORee) then ( 
N +- result<31>: 

) ; 

Z +- if result=O then 1 else 0; 

V +- 0; 

C+-O 
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C.10.11. Shift Instructions 

shift_count :K if i=O then r[rs2)<4:0> else shcnt; 

if (SLL and rd * 0) then 
r[rd) +- shift_left_logical(r[rs1), shift_count) : 

else if (SRL and rd * 0) then 
r[rd] +- shift_right_logical(r[rs1), shift_count) 

else if (SRA and rd * 0) then 
r[rd] +- shift_right_arithmetic(r[rs1), shift_count) 

C.10.12. SETHI Instruction 

if (rd * 0) then 
r[rd]<31:10> +- imm22; 
r[rd]<9:0> +- 0 

C.10.13. SAVE and RESTORE Instructions 

C-27 

operand2 := if i=O then r[rs2) else sign_extend(simm13); 

if (SAVE) then 
new_cwp +- (CWP - 1) mod NWINDOWS; 
next; 
if «WIM and 2new_cwp) * 0) then ( 

trap +- 1; window_overflow +- 1 
else ( 

result +- r[rsl) + operand2; {operands from old window} 
CWP +- new _ cwp 

else if (RESTORE) then 
new_cwp +- (CWP + 1) mod NWINDOWS; 
next; 
if «WIM and 2new_cwp) * 0) then ( 

trap +- 1; window_underflow +- 1 
else ( 

result +- r[rs1) + operand2; {operands from old window} 
CWP +- new_cwp 

) ; 

next; 
if (trap = 0 and rd * 0) then 

r [rd) +- result {destination in new window} 
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C.10.14. Branch on Integer Condition Instructions 

C-28 

eval_icc := ( 

) ; 

if (BNE and (Z = 0» then 1 else 0; 
if (BE and (Z = 1» then 1 else 0; 
if (BG and «Z or (N xor V» = 0» then 1 else 0; 
if (BLE and «Z Or (N xor V» - 1» then 1 else 0; 
if (BGE and «N xor V) = 0» then 1 else 0; 
if (BL and «N xor V) = 1» then 1 else 0; 
if (BGU and (C - 0 and Z =: 0» then 1 else 0; 
if (BLEU and (C = 1 or Z c 1» then 1 else 0; 
if (BCC and (C = 0» then 1 else 0; 
if (BCS and (C = 1» then 1 else 0; 
if (BPOS and (N = 0» then 1 else 0; 
if (BNEG and (N = 1» then 1 else 0; 
if (BVC and (V = 0» then 1 else 0; 
if (BVS and (V = 1» then 1 else 0; 
if (BA) then 1; 
if (BN) then 0 

PC ~ nPC; 
if (eval_icc) = 1 then ( 

nPC ~ PC + sign_extend(disp220002); 
if (BA and a 1) then 

annul ~ 1 
else ( 

nPC ~ nPC + 4; 
if (a =: 1) then 

annul ~ 1 
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C.10.1S. Floating-Point Branch on Condition Instructions 

C-29 

E := if fcc=O then 1 else 0; 
L :-= if fcc"'l then 1 else 0; 
G :""' if fcc"2 then 1 else 0; 
U :'"' if fcc=3 then 1 else 0; 

eval_fcc := 
if (FEU and U) ) then 1 else 0; 
if (FEG and G) then 1 else 0; 
if (FEUG and (G or U) then 1 else 0; 
if (FEL and L) then 1 else 0; 
if (FEUL and (L or U» then 1 else 0; 
if (FELG and (L or G» then 1 else 0; 
if (FENE and (L or G or U» then 1 else 0; 
if (FEE and E» then 1 else 0; 
if (FEUE and (E or U» then 1 else 0; 
if (FEGE and (E or G» then 1 else 0; 
if (FEUGE and (E or G or U» then 1 else 0; 
if (FELE and (E or L» then 1 else 0; 
if (FEULE and (E or L or U» then 1 else 0; 
if (FEO and (E or L or G» then 1 else 0; 
if (FEA) then 1: 
if (FEN) then 0 

) ; 

PC +- nPC; 
if (eval fcc .. 1) then ( 

nPC ~ PC + sign_extend (disp22D 002); 

if (FEA and (a = 1» then 
annul +- 1 

else ( 
nPC +- nPC + 4; 
if (a ... 1) then 

annul +- 1 
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C.10.16. Coprocessor Branch on Condition Instructions 

co :- if bp_CP_cc<l:O>=O then 1 else 0; 
Cl : .. if bp_CP_cc<l:O>=1 then I else 0; 
C2 :- if bp_CP_cc<1:0>=2 then 1 else 0; 
C3 :- if bp_CP_cc<1:0>=3 then 1 elsE' 0; 

eval_bp_CP_cc :- ( 

if (CB3 and C3» then I else 0; 
if (CB2 and C2) then I else 0; 

if (CB23 and (C2 or C3) then 1 else 

if (CBl and Cl) then 1 else 0; 

if (CBI3 and (CI or C3» then 1 else 

if (CBl2 and (CI or C2) I then 1 else 

if (CB123 and (CI or C2 or C3» then 

if (CBO and CO» then 1 else 0; 

if (CB03 and (CO or C3» then 1 else 

if (CB02 and (CO or C2» then 1 else 
if (CB023 and (CO or C2 or C3») then 
if (CBOI and (CO or Cll) then 1 else 

if (CBOI3 and (CO or CI or C3) ) then 

if (CBOl2 and (CO or Cl or C2») then 
if (CBA) then 1; 

if (CBN) then 0 
) ; 

PC +- nPC; 
if (eval_bp_CP_cc = 1) then ( 

nPC +- PC + sign_extend(tiisp22D002 1; 

if (CBA and (a = 1)1 then 
annul +- 1 

else ( 
nPC +- nPC + 4; 

if (a '" 1) then 
annul +- 1 

C.10.17. CALL Instruction 

r [15) +- PC; 
PC +- nPC; 

nPC +- PC + disp30Do0 2 

0; 

0; 
0; 
I else 

0; 
0; 
I else 
0; 

I else 
1 else 
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C.10.18. Jump and Link Instruction 

jump_address +- r[rs1) + (if ieO then r[rs2) else sign_ext(simm13»: 

next; 

if (jump_address<1:0> ~ 0) then 

trap +- 1: 

mem_address_not_aligned +- 1 

else I 

if Ird ~O) then r[rd) +- PC; 

PC +- nPC; 

nPC +- jump_address 

C.10.19. Return from Trap Instruction 

C-31 

new_cwp +- ICWP + 1) mod NW!N~OW5; 

address +- r[rs1) + (if ieO then r[rs2) else sign_extendlsimm13»; 

next: 

if lET) then 

trap +- 1; 

illegal_instruction +- 1 

) else if IS = 0) then I 

trap +- 1; 

privileged_instruction +- 1 

) else if (IWIM and 2ne,,_cwp) ~ 0) then 

trap +- 1; 

window underflow +- 1 

) else if (address<1:0> ¢ 0) thcr. 

trap +- 1; 

) else 

mem_address_not a:lg~ed +- 1 

ET +- 1; 

PC +- nPC; 

nPC +- address; 

CWP +- new_cwp; 

5 +- p5 
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C.10.20. Trap on Integer Condition Instructions 

C-32 

trap_eva1_icc :- ( 

I; 

if (TNE and (Z = 011 then 1 else 0; 
if 

if 

if 

if 

if 
if 

if 
if 

if 

if 
if 

if 

if 

if 

if 

(TE and IZ = 111 then 1 else 0; 
(TG and I(Z or IN xor VII = 0» then 1 else 0; 
(TLE and «Z or (N xor V» = :11 then 1 else 0; 
(TGE and (IN xor VI - 01) then 1 else 0; 
(TL and (IN xor V) = 111 then 1 else 0; . 
(TGU and (C = 0 and Z = 0» then 1 else 0; 
(TLEU and (C = 1 or Z = 111 then 1 else 0; 
(TCC and (C = 011 then 1 else 0; 
(TCS and (C = 1» then 1 else 0; 
(TPOS and (N = 0» then 1 els(! 0; 
(TNEG and (N = 1» then 1 else 0; 
(TVC and (V = 0» then 1 else 0; 
(TVS and (V = 1» then 1 else 0; 
(TA) then 1; 
(TN) then 0 

trap_number := r[rsl] + (if i=O then r[rs2] else sign_ext(simmI31); 

if (Ticc) then 

I ; 

if (trap_eva1_icc = 1) then 
trap 4- 1; 
trap_instruction .- 1; 
ticc_trap_type 4- trap_number <6:0> 

else ( 
PC .- nPC; 
nPC 4- nPC + 4 
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C.10.21. Read State Register Instructions 

if «RDPSR or RDWIM or RDTBR) and 5 c 0) then ( 
trap 4- 1: 

) ; 

privileged_instruction 4- 1 
else if (rd * 0) then ( 

if (RDY) then 
r[rd] 4- Y 

else if (RDPSR) then 
r [rdl 4- PSR 

else if (RDWIM) then 
r [rd] 4- WIM 

else if (RDTBR) then 
r[rdl 4- TBR; 

C.10.22. WrHe State Register Instructions 

C-33 

operand2 := if i=O then r[rs2J else sig~_extend(simm13); 
result := r[rs11 xor operand2; 

if (WRY) then 
Y' 4- result 

else if (WRPSR) then 

I ; 

if (result<4:0> ~ NWINDOWS) then 
trap 4- 1; 
illegal_instruction 4- 1 

else if (5 = 0) then ( 
trap 4- 1; 
privileged_instr~cticn 4- 1 

else 
PSR' +- result 

else if (WRWIM) the~ 

if (5 c 0) then ( 
trap 4- 1; 
privilegcd_instructic~ 4- 1 

else 
WIM' +- result 

else if (WRTBR) then 
if (5 = 0) then ( 

trap 4- 1; 
privileged_instruction 4- 1 

else 
TBR' 4- res~l t 
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C.10.23. Unimplemented Instruction 

trap +- 1; 
illegal_instruction +- 1 

C.10.24. Instruction cache Flush Instruction 

address :- r[rsl] + (if i=O then r[rs2] else siqn_extend(simrn13»; 

C-34 

if (IU_cache-present) then 
flush_IU_cache_word(address) {implementation-dependent} 

else if (bp_I_cache-present) then ( 
trap +- 1; 
illegal_instruction +- 1 
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C.11. Floating-Point Operate Instructions 

The multiple precision FPops use the following notation to Indicate f register alignment: 

double precision 
rslE :E rsl<4:1>OOz: rslO :- rsl<~:l>Olz: 
rs2E :- rs2<4:1>OOz: rs20 :- rn2<~:1>Olz: 
rdE :- rd<4:1>OOz: rdO := rd<4:l>Olz 

extended precision 
rslEE :- rsl<4:2>0002: rslEO := rsl<4:2>0012: rslOE :- rsl<4:2>OlOz: 
rs2EE :- rs2<4:2>0002: rs2EO := rS2<4:2>OOlz: rs20E :- rs2<4:2>OlOz: 
rdEE :- rd<~:2>0002: rdEO := rd<4:2>OOlz; rdOE :c rd<4:2>OlOz 

Most of the floating-point routines defined below (or not defined since they are implememation­
dependent) return: (1) a single, double, or extended result, (2) a 5-bit exception vector (texc) 
similar to the cexc field of the FSR, or a 2-bit condition code vector (tfcc) identical to the fcc field 
of the FSR; and (3) a completion status bit (c) which indicates whether the arithmetic unit was 
able to complete the operation. 

C.11.1. Convert Integer to Floating-Point Instructions 

if (FiTOs) then 
result, texc, c~ cvt_integer_to_single(f[rs2]) 

else if (FiTOd) then 
result, texc, c~ cvt_integer_to_double(f[rs2]) 

else if (FiTOx) then 
result, texc, c~ cvt_integer_to_extended(f[rs2]) 

C.11.2. Convert Floatlng·Point to Integer 

if (FsTOi) then 
result, texc, 

else if (FdTOi) then 
result, texc, 

else if (FxTOi) then 
result, texc, 
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C.11.3. Convert Between Floating-Point Formats Instructions 

if (FsTOd) then 
result, texc, c+- cvt_sinqle_to_doubleCf[rs2]) 

else if CFsTOx) then 
result, texc, c+- cvt_single_to_extendedCf[rs2]) 

else if (FdTOs) then 
result, texc, c+- cvt_double_to_sinqleCf[rs2E]Df[rs20]) 

else if CFdTOx) then 
result, texc, c+- cvt_Qouble_to_extendedCf(rs2E]Df[rs20]) 

else if CFxTOs) then 
result, texc, c+- cvt_extended_to_sinqleCf[rs2E]Df[rs20JDf[rs20E]) 

else if (FxTOd) then 
result, texc, e+- evt_extended_to_doubleCf(rs2EEJDf(rs2EOJDf[rs20E]) 

C.11.4. Floating-Point Move Instructions 

if CFMOVs) then 
result +- f(rs2J 

else if (FNEGs) then 
result +- f[rs2J xor 80000000 16 

else if CFABSs) then 
result +- f[rs2J and 7FFFFFFFI6 : 

texc +- 0; 

C +- 1 

C.11.S. Floating-Point Square Root Instructions 

if CFSQRTs) then 
result, texe r e+- sqrt_single(f!rs2j) 

else if CFSQRTd) then 
result, texe, e+- sqrt_QoubleCf(rs2EJDf(rs20]) 

else if CFSQRTx) then 
result, texe r e+- sqrt_extendedCf(rs2EEJDf[rs2E01Df[rs20EJ) 

C-36 ISP Descriptions C-36 



Solbourne Computer, Inc. 

C.11.6. Floating-Point Add and Subtract Instructions 

if (FADDs) then 
result, texe, e 4- add_single(f[rsl), f[rs2) 

else if (FSUBs) then 
result, 

else if (FADDd) 
result, 

else if (FSUBd) 
result, 

else if (FADDx) 
result, 

texe, e 4- sub_single(f[rsl), f[rs2) 
then 
texe, e 4- add_double (f[rslE)Of[rslO), f[rs2E)Of(rs20) 
then 
texe, e 4- sub_double(f[rslE)Of[rslO), f(rs2E)Of[rs20) 
then 
texe, e 4- add_exte~dedCr[rslEE)Of[rslEO)Of(rslOE), 

f[rs2EE10r!rs2 E010rtrs20E) 
else if (FSUBx) then 

result, texe, e 4- sub_exte~dedCf[rslEE1Df[rslEO)Of[rslOE), 

f[rs2EEJOf[rs2EOJOr[rs20E) 

C.11.7. Floating-Point Multiply and Divide Instructions 

if (FMULs) then 
result, texe, e 4- mul_single(f[rsl), f (rs2) 

else if (FDIVs) then 
result, texe, e 4- div_single(f[rsl), f [rs2)) 

else if (FMULd) then 
result, texc, e 4- mul_doubleCf[rslE1Of[rslOl, f (rs2E)Of [rs20) 

else if (FDIVd) then 
result, texc, e 4- div_double(flrslE10f[rslO), f[rs2E10f[rs20) 

else if (FMULx) then 
result, texc, e 4- mul_extencied(f[rslEE1Df[rslEO)Of[rslOE), 

f[rs2EE)Oflrs2EOjO!I:s20E) 
else if (FDIVx) then 

result, texe, e 4- div_extended(f[rslEE1Df[rslE010f[rslOE), 
f[rs2EE)Of[rs2EO)Of[rs20E) 

C.11.B. Floating-Point Compare Instructions 

C-37 

if (FCMP s) then 
tfee, texe, e +- eompare_singleCf[rsl), f[rs2) 

else if (FCMPd) then 
tfee, texe, e 4- eompare_do~bleCf[rslE)Df[rslO), f[rs2E)Df[rs2o) 

else if (FCMPx) then 
tfee, texe, e +- compare_extended (f[rslEE)Df[rslEO)Df[rslOE), 

f[rs2EEJOf[rs2EOjD![rs20E) 
else if (FCMPEs) then 

tfee, texe, c +- eompare_e_singleCf[rsl), f[rs2); 
else if (FCMPEd) then 

tfee, texe, c +- ecmpare_e_ccuble(f[rslE)Df[rslO), f[rs2E)Df[rs20) 
else if (FCMPEx) then 

tfee, texe, e 4- eompare_e_extendedCf[rslEE)Of[rslEO)Df[rslOE), 
f[rs2EE)Of[rs2EOJOf[rs20El) 
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APPENDIX D: SOFTWARE CONSIDERATIONS 

0.1. Introduction 

This appendix describes how software can use the SPARC architecture effectively. It describes 
assumptions that compilers may make about the resources available, and how compilers can use 
them. It does not discuss how the operating system may use the architecture. 

How to use registers is typically a very important resource allocation problem for compilers. The 
SPARC architecture provides windowed registers (in, out, loca~, global registers, and f1oating­
point registers. 

0.1.1. In and Out Registers 

The in and out registers are used primarily for passing parameters to subroutines and receiving 
results from them, and for keeping track of the memory stack. When a routine is called, the. 
caller's outs become the callee's ins. 
One of the caller's out registers is used as the stack pointer, SP. It points to an area in which the 
system can store ,16 through ,31 when the register file overflows. It Is essential that this regis­
ter have the correct value when the corresponding underflow trap occurs so that the 
register window can be reloaded. It is also important that this register be kept up to date with 
register window changes, and that the overhead for doing calls be kept as small as possible. 
Since SP is in one of the caller's out registers, it can be used by the callee as its FP, and the cal­
lee can use the SAVE instruction to set its own SP from its FP. 

Up to six parameters· may be passed by placing them in the out registers; additional parameters 
are passed in the memory stack. When the callee is entered, the parameters passed in registers 
are now in its corresponding ins. One of the other two irVout registers is used as the caller's old 
SP, which is also the current routine's frame pointer, FP (see below). The other is used to pass 
the subroutine's return address. With the exception of SP, out registers may be used as tem­
poraries between subroutine calls. 

If a routine is passed more than six parameters, the remainder are passed on the memory stack. 
If, on the other hand, it is passed fewer than six parameters, it may use the other parameter 
registers as if they were locals. If a register parameter has its address taken, It must be stored 
on the memory stack, and used from there for the IHetime of the pointer (or for the extent of the 
procedure, if the compiler cannot figure this out). A function returns its value by writing it into its 
ins (which are the caller's outs). 

0.1.2. Local Registers 

The locals are used for automatic variables and most temporaries. The compiler may also copy 
_. parameters out of the memory stack into the locals and use them from there. If an automatic 

variable has its address taken, it must be stored in the memory stack for the lifetime of the 

t Six is more than adequate, since the overwhelming majority of procedures in system code - at least 97"10 
measured statically, according to the studies cited by Weicker (Weicker, R.P., Ohrystone: A Synthetic Systems 
Programming Benchmark, CACM 27:10, October 1984) - take fewer than six parameters. The average number of 
parameters, measured statically or dynamically, is no greater than 2.1 in any of these studies. 
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pointer (or for the extent of the procedure. if the compiler cannot figure this out). 

D.1.3. Global Registers 

Unlike the ins. locals. and outs. the g/obals are not part of any register window, but are a single 
set of registers with global scope. like the registers of a more traditional architecture. This means 
that if they are used on a per-procedure basis. they must be saved and restored. 

The global registers can be used for temporaries and for global variables or pointers, either visi­
ble to the user or maintained as part of the program's execution environment. For instance, one 
could by convention address all global scalars by offsets from register r7. This would allow 213 

bytes of global scalars. and would enable access to these variables faster than if they were only 
accessible via absolute addresses. This is because absolute addresses longer than 13 bits 
require a SETHI instruction. 

D.1.4. Floating-Point Registers 

There are thirty-two 32-bit floating-point registers. They are accessed differently from the other 
registers and cannot be moved to or from anything but memory. Like the global registers. they 
must be managed by software. Compilers probably will not pass parameters in them. but will 
use them for user variables and compiler temporaries. Across a procedure call. either the caller 
saves the live floating-point registers. or the callee saves the ones it uses and subsequently 
restores them. 
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r31 (i7) return address 
r30 (FP) frame pointer 
r29 (is) incoming param reg S 

in r28 (i4) incoming param reg 4 
r27 (i3) incoming param reg 3 
r26 (i2) incoming param reg 2 
r2S (i1 ) incoming param reg 1 
r24 (iO) incoming param reg 0 
r23 (17) local 7 
r22 (16) local 6 
r21 (15) localS 

local r20 (14) local 4 
r19 (13) local 3 
r18 (12) local 2 
r17 (11 ) local 1 
r16 (10) local 0 
r15 (07) temp 
r14 (SP) stack pOinter 
r13 (05) outgoing param reg 5 

out r12 (04) outgoing param reg 4 
r11 (03) outgoing param reg 3 
r10 (02) outgoing param reg 2 
r9 (01 ) outgoing param reg 1 
rB (00) outgoing param reg 0 
r7 (g7) global 7 
r6 (g6) global 6 
rS (g5) globalS 

global r4 (g4) global 4 
r3 (g3) global 3 
r2 (g2) global 2 
r1 (g1 ) global 1 
rO (gO) 0 
131 floating-point value 

floating 
point 

fa floating-point value 

0.2. The Memory Stack 

Parameters beyond the sixth are passed on the stack. Parameters which must be addressable 
are stored in the stack. Space is reserved on the stack for passing a one-word hidden parame-

- ter. This is used when the caller is expecting to be returned a C language structby value; it gives 
the address of stack space allocated by the caller for that purpose (see Section 0.4). Space is 
reserved on the stack for keeping the procedure's in and local registers, should the register stack 
overflow. Automatic variables which must be addressable are kept there, as are some compiler­
generated temporaries. These include automatic arrays and automatic records. Space is 
reserved on the stack for saving floating-point registers across calls. Space on the stack may be 
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dynamically allocated using the slloes function from the C library. Automatic variables on the 
stack are addressed relative to FP. while temporaries and outgOing parameters are addressed 
relative to SP. When a procedure is active. its stack frame appears as in Figure 0-2. 

FP, old SP-. 

SP-. 

0.3. Example COde 

PROGRAM STACK 

Local stack space for addressable 
automatics 
Dynamically allocated stack space 
Local stack space for compiler temporaries 
and saved floating-point registers 
Outgoing parameters past the sixth 
6 words into which callee may store register 
arguments 
One-word hidden parameter (address 
at which callee should store aggregate return value) 
16 words in which to save in and local 
registers 

.L. 
Stack Growth 

(DecreaSing Memory Addresses) 

Previous Stack 
Frame 

Current Stack 
Frame 

In the following example we assume the following pseudO-instructions are provided by the 
assembler: 

pseudo-instruction 
ret 
retl 
rnov reg_o,-imm, reg 

equivalent instruction 
jmp %i7+8 
jmp %07+8 
or %gO, re/Lo,-imm, reg 

The following code fragment shows a simple procedure call with a value returned, and the pro­
cedure itself: 
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CALLER: 

1nt 1; 
1 ~ sum3( 1, 2, 3 ); 

mov 1, toO 

mov 2, to1 

call sum3 
mov 3, t02 
mov toO, U7 

CALLEE: 

sum3: 

int sum3( a, b, c ) 

1nt a, b, c; 

return a+b+c; 

save tsp, -(16*4), 

add !HO, til, %17 
add U7, %i2, %17 

ret 
restore %17, 0, 

tsp 

%00 

1* 1n register t17 *1 

last parameter 1n delay slot 

1* rece1°ved tiO, til and t12 *1 

setup new sp 
compute sum in local 

! move result into output reg, restore 

Since "sum3" does not call any subroutines (Le. it is a "leaf" routine) it can be recoded as: 

sum3: 
add 
retl 
add 

%00, %01, %03 

%02, %03, %oC 

D.4. Functions Returning Aggregate Values 

use %03 as a local 
can't use ret; use retl 

Some programming languages, including C, some dialects of Pascal, and Modula-2, allow the 
user to define a function returning an aggregate value, such as a C struct or a Pascal record. 
Since such a value may not fit into the registers, another value returning protocol must be 
defined to return the result in memory. Reentrancy and efficiency considerations require that the 
memory used to hold such a return value be allocated by the function's caller. The address of 
this memory area is passed as the one-word hidden parameter mentioned in the section The 
Memory Stack in this appendix. Because of the lack of type safety in the C language, a function 
should not assume that its caller is expecting an aggregate return value and has provided a valid 
memory address. Thus some additional handshaking is required. 

When a procedure expecting an aggregate function value is compiled, an UNIMP instruction is 
placed after the delay-slot instruction following the call to the function in question. The immediate 
field in this UNIMP instruction is the low-order twelve bits of the size in bytes of the aggregate 
value expected. When an aggregate-returning function is about to return its value in the memory 
allocated by its caller, it first tests for the presence of this UNIMP instruction in its caller's instruc­
tion stream. If It is found, then the hidden parameter is assumed to be valid, and the function 
returns control to the location following the unimplemented instruction. Otherwise, the hidden 
parameter is assumed not to be valid, and no value can be returned. Conversely, if a scalar­
returning function is called when an aggregate value is expected, the function returns as usual, 
executing the UNIMP instruction and causing a trap. 
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APPENDIX E: EXAMPLE INTEGER MULTIPLICATION AND 
DIVISION ROUTINES 

E.1. Introduction 

This appendix contains routines a SPARe architecture system might use to perform integer mul­
tiplication and division. 

In these examples, it is assumed that the assembler provides the following pseudo-instructions: 

Pseudo Instruction 

nop 

jrnp 
ret 
retl 
mov re{Lo,-imm, neg 

tst reg 

neg reg 

inc reg 

inccreg 

dec reg 

decccreg 

Equivalent Instruction 

sethiO,%gO 

jmpl address, "gO 

jmp%i7+8 
jmp%07+8 
or %gO, reg_oOmm, reg 

subcc reg, %gO, %gO 

sub %gO, reg, reg 

subcc reg, reg_or_imm, %gO 

add reg, 1, reg 

addcc reg, 1, reg 

sub reg, 1, reg 

subcc reg, 1, reg 

It is also assumed that the assembler recognizes "1" ... *I'-style comments, and .. ,. as the begin­
ning of a comment which extends to the end of the current line. 

E-1 Example Integer Multiplication and Division Routines E-1 



Solbourne Computer, Inc. 

E.2. Signed Multiplication 
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1* 
* Procedure to perform a 32-bit by 32-bit multiply. 
* Pass the multiplicand in 'liD, ana the multiplier in 'i1. 
* The least significant 32 bits of the result are returned in 'iO, 
* and the most significant in 'i1. 

* 
* This code has an optimization built-in for short (less than I3-bit) 
* multiplies. Short multiplies rel,uire 26 or 27 instruction cycles, and 
* long ones require 47 to 51 instrllction cycles. For two positive numbers 
* (the most common case) a long multiply takes 47 instruction cycles. 

* 
* This code indicates that overflow has occurred by leaving the Z condition 
* code clear. The following call sequence would be used if you wish to 
* deal with overflow: 

* 
* .mul 

* 
* 

call 

nop 
bnz overflow code 

(or set up last parameter here) 
(or tnz to overflow handler) 

* 
* Note that this is a Leaf routine; i.e. it calls no other routines and does 
* all of its work in the Out registers. Thus, the usual SAVE and RESTORE 
* instructions are not needed. 

*1 

.global .mul 
.mul: 

'00, ,y multiplier to Y register 
mask out lower 12 bits 
ca~ do it the short way 

mov 
andncc 
be 
andcc 

'00, Oxfff. %gD 
mul_shortway 
,gO, ,gO, %ot, zero the partial product and clear N and V conditions 

long multiply 

mulscc %04, %01, %04 first iteration of 33 
mulscc %04, %01, %04 
mulscc %04, liel, %o~ 

mulscc %04, '01, %o~ 

mulscc %04, lel, %01. 

mulscc %04, %01, %04 
mulscc %04, %01, %04 
mulscc %04, %01, 'let; 

mulscc %04, %01, %of. 

mulscc %04, %cl, %0'; 

mulscc %04, %01, %04 
mulsoc %04, %01, %o~ 

mu1scc %04, %01, %04 
mulscc '04, %01, %04 
mulscc '04, %01, %04 
mulscc %04, '01, %04 
mulscc '04, '01, %04 
mulscc '04, %01, %o~ 

mulscc '04, %01, %o~ 

mulscc '04, %01. %o~ 

mulscc '04, %e1, %04 
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mulsee '04, '01, '04 
mulsee '04, '01, '04 
mulsee t04, to1, %04 
mulsee t04, to1, t04 
mulsee t04, %01, '04 
mulsee t04, %01, %04 
mulsee %04, to1, t04 
mulsee t04, tal, '04 
mulsee t04, %01, %04 
mulsee t04, to1, '04 
mulsee t04, %01, '04 32nd iteration 

mulsee '04, ,gO, %04 last iteration only shifts 

If toO (multiplier) was negat.ive, the result is: 
(toO * %01) ~ %01 * (2--32) 

We fix that here. 

tst %00 
rd %y, %00 
bge If 

tst '00 

sub %04, %01, '04 

fo= when we cheek for overflow 

bi~ 33 and up of the product are in 
'o·~, so we don't have to shift %01 

We haven't overflowed if: 
low-order bits are posi~ive and high-order bits are 0 
low-order bits arp ~ega~~ve and high-order bits are -1 

If you are not interested ~r. detecting overflow, 
replace the following few i~3tr~ctions with: 

1: 

bge 2f 

addec %04, 

retl 

retl 
mov 

%gO, %01 

%04, %01 

if low-order bits were positive. 
re~urn most sig. bits of prod and set 
Z ,lppropriately (for positive product) 
le,lf-routine return 

subec %04, -1, %gO se~ Z if high order bits are -1 (for negative product) 
2: 

retl le.f-routine return 
nap 

! short mUltiply 

mul_shortway: 
mulsec %04, %01, %04 first iteration of 13 
mulsec %04, '01, %04 
mu1sec %04, %01, %04 
mu1see %04, %01, %04 
mulsec %04, %01, %04 
mulsec '04, %01, %04 
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mulscc '04, '01, '04 
mulscc '04, %01, %04 

mulscc '04, '01, %04 
mulscc '04, '01, '04 
mulscc '04, '01, '04 
mulscc '04, '01, '04 12th iteration 

mulscc '04, ,gO, '04 last iteration only shifts 

rd 'y, %05 

s11 '04, 12, %00 left shift middle bits by 12 bits 

srl %05, 20, %05 right shift low bits by 20 bits 

We haven't overflowed if: 
low-order bits are positive and high-order bits are 0 
low-order bits are nega:ive and high-order bits are -1 

if you are not interested in detecting overflow, 
replace the following code w:th: 

orcc 
bge 
sra 

retl 
subcc 

retl 
addeo 

or 
retl 

%05, 'o~, %00 

mov %o~, %01 

'05, %00, %00 
3f 

%04, 20, %01 

'01, -1, %gO 

%01, %gO, IIgC 

me~ge for true product 
if low-order bits were positive. 
right shift high bits by 20 bits 

and put into '01 
leaf-routine return 
se~ Z if high order bits are -1 (for 
negative product) 

• lea:-routine return 
se~ Z if high order bits are 0 
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E.3. Unsigned Multiplication 
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I" 
.. Procedure to perform a 32 by 32 llnsigned mUltiply • 

.. Pass the multiplier in %00, and the multiplicand in %01 • 

.. The least significant 32 bits of the result will be returned in %00, 

.. and the most significant in %01 • .. 

.. This code has an optimization Duilt-in for short (less than 13 bit) 

.. multiplies. Short multiplies require 25 instruction cycles, and long ones 

.. require 46 or 48 instruction cyc:'es . 

.. 

.. This code indicates that ove:-flo., has occured, by leaving the Z condition 

.. code clear. The following ca21 seq~ence would be used if you wish to 

.. deal with overflow: 

* 
* 
* 
* 
* 

call 

nop 

bnz 

.umul 

overflow code 

(or set up last parameter here) 

(or tnz to overflow handler) 

* Note that this is a Leaf rout1ne: i.e. it calls no other routines and does 

* all of its work in the Out regist.ers. Thus, the usual SAVE and RESTORE 

* instructions are not needed. 

*1 
.global .umul 

.umul: 

or %00, %01, %04 ! logi,:al or of multiplier and multiplcand 

mov %00, %y ~~l:jplivr to Y register 

andncc %04, Oxfff, 'toS rna si< out lower 12 bits 

be mul_shortway! c~n do it. the short way 

andcc %gO, %gD, %04 : zero the partial product and clear N and V conditions 

! long multiply 

mulscc %04, %01, %04 firs:. iteration of 33 

mulscc %04, %01, %04 

mulscc %04, %01, %04 

mulscc %04, %01, %04 

mulscc %04, %01, %04 

mulscc %04, '01, %04 

mulscc %04, %01, %04 

mulscc %04, %01, %04 

mulscc %04, %ol, %o~ 

mulscc %04, %01, %04 

mulscc %04, %0:', %o~ 

mulscc %04, %01, %o~ 

mulscc %04, %01, %04 

mulscc %04, %01, %04 

mulscc %04, %01, %0"' 

mulscc %04, %01, %04 

mulscc %04, %01, %04 

mulscc %04, %01, %04 

mulscc %04, %01, %04 

mulscc %04, tol, %o~ 

mulscc %04, %01, %0"' 

mulscc %04, %01, %04 
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mulscc \04, '01, '04 
mulscc '04, '01, '04 
mulscc '04, '01, '04 
mulscc '04, '01, '04 
mulscc %04, %01, %04 

mulscc '04, %01, '04 
mulscc %04, '01, %04 

mulscc '04, %01, %04 

mulscc '04, '01, %04 

mulscc %04, '01, 'o~ 32nd iteration 

mulscc %04, ,gO, %04 last. iterat.ion only shifts 

1* 
* Normally, with the shifty-add approach, if both numbers are positive, 

* you get the correct. result. With 32-bit twos-complement numbers, 

* -x can be represented as «2 - (x/(2**32» mod 2) * 2**32. To avoid 

* a lot of 2**32's, we can just move the radix point up to be just 

* to the left of the sign bit. So: 

* 
* x * y (xy) mod 2 

* -x * y - (2 - x) mod 2 * y = (2y - xy) mod 2 

* x * -y .. x * (2 - y) mod 2 (2x - xy) mod 2 

* -x * -y z (2 - x) * (2 - y) (4 - 2x - 2y + xy) mod 2 

* 
* For signed multipl ies, we sui)t!"act (2**32) * x from the partial 

* product to fix this prcb:e~ :cr negative multipliers (see multiply.s) 

* Because of the way the shift into the partial product is calculated 

* (N xor V), this terl!' is !E.I1:.o~,atically removed for the multiplicand, 

* so we don't have :0 adjus~. 

* 
* But for unsigned multiplies, the high order bit wasn't a sign bit, 

* and the correctien is wrong. So for unsigned multiplies where the 

* high order bit is one, we end up with xy - (2**32) * y. To fix it 

* we add y * (2**32). 

*1 
tst 

bge 

nop 

add 

rd 

retl 

addce 

%01 

If 

%04, %00, %o'~ 

%y, '00 , ret~~r. l~ast sig. bits of prod 

leaf-rout.ine return 

%04, %gO, %01 ! delay slot; return high bits and set 

zero bit. appropriately 

short mUltiply 

mul_shortway: 

mulscc %04, '01, %04 first: iteration of 13 
mulsee '04, '01, '04 
mulsec %04, %01, %04 

mulscc '04, '01, %04 

mulscc '04, %01, %04 

mulsee '04, '01, %04 

mulsce %04, %01, %o~ 
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mulscc '04. '01. '04 
mulscc '04. '01. '04 
mulscc '04. '01. '04 
mulscc '04. '01. 'o~ 

mulscc '04. '01. %04 l/th iteration 
mulscc '04, ,gO. '04 last. iteration only shifts 

rd 'yo '05 
sl1 '04. 12. '04 ! left shift partial product by 12 bits 
srI '05. 20. %05 ! right shjft product by 20 bits 
or '05. '04. '00 ! merg(! for true product 

The delay instruction (addcc) moves zero into '01. 
sets the zero conditio~ code. and clears the other conditions. 
This is the equivalent result to a long umultiply which doesn't overflow., 

retl 
addcc 

leaf-rou:ine return 

,gO, %gO. '0" 
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E.4. Division 

Integer division implemented in software or microcode is usually done by a method such as the 
non-restoring algorithm, which provides one digit of quotient per step. A W-by-W digit division, of 
radix-B digits, is most easily achieved using 2*W-digit arithmetic. 

E.4.1. Program 1 

A binary-radix, 16-digit version of this method is illustrated by the C language function in Program 
1, which performs an unsigned division, producing the quotient in Q and the remainder in R. 

E-10 

'include <stdio.h> 
'include <assert.h> 

'define N 16 1* maximum number of bits in the dividend, divisor *1 

unsigned short 
divide( dividend, divisor) 

unsigned short dividend, diviscr; 

long R; 1* partial rc~ainrier -- need 2*N bits *1 
unsigned short 0; /* r-ar~:al quc~ient *1 
int iter; 

R "' dividend; 

o "' 0: 
for ( iter - W; iter >- C; !ter -= 1 ) I 
assert! O*divisor+R == divicie~d ); 

} 

if (R >= 0) { 

} 

R -= divisor «iter; 
Q += l«iter; 

else { 
R += divisor «iter; 

Q -- l«lter; 

if(R<O){ 

R +"' divisor; 
Q -a 1: 

return Q: 
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E.4.2. Program 2 

In the simple form shown above, this method has two drawbacks: 

• It requires a 2*W-digit accumulator 

• It always requires W steps. 

Both these problems may be overcome by estimating the quotient before the actual division is 
carried out. This can cut the time required for a division from O(W) to o (Iogs(quotient)). Pro­
gram 2 illustrates how this estimate may be used to reduce the number of divide steps required 
and the size of the accumulator. 
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'include <stdio.h> 
'include <assert.h> 

'define W 32 /* maximum number of h;ts in a divisor or dividend */ 

'define Big_value (unsigned) (1«(W-2» /* 2 A (W-l) */ 

int 
estimate_log_quotient( dividend, divisor) 

unsigned dividend, divisor; 

unsigned log_quotient; 

for (log_quotient = 0; log_quot:.ent < W; log_quotient +'" 1 ) 

if ( ( divisor «log_quotient) ~ Big_value) 
break; 

else if ( (divisor «log_quotient) >= dividend 
break; 

return log_quotient; 

unsigned 
divide( dividend, divisor) 

unsigned dividend, divisor; 

int R; /* remainder * 1 

unsigned 0; 1* quotient *1 

int iter; 
R '" dividend; 
o = 0; 

for ( iter = estimate_log_quotient( dividend, divisor); iter >- 0; iter -= 1 ) ( 
assert { O*divisor+R == diviQe~d ); 
if (R >= 0) { 

} 

R -= divisor «iter; 
o + .. l«iter; 

else { 
R += divisor «iter; 
o -= 1«iter; 

} 

if{R<O){ 

R +- divisor; 
o -= 1; 

return 0; 

Example Integer Multiplication and Division Routines E·12 



Solbourne Computer, Inc. 

E.4.3. Program 3 

Another way of reducing the number of division steps required is to choose a larger base, B'. 
This is only feasible if the cost of the radix-B' inner loop does not exceed the cost of the radix-B 
Inner loop by more than 109s (B'). When B' - aN for some integer N, a radix-B' inner loop can 
easily be constructed from the radix-B inner loop by arranging an N-high, B-ary decision tree. 
Programs 3 and 4 illustrate how this can be done. Program 3 uses N-Ievel reaJrsion to show the 
principle, but the overhead of recursion in this example far outweighs the loop overhead saved 
by reducing the number of steps required. Program 4 shows how run-time recursion can be elim­
Inated if N is fixed at two. 
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'include <stdio.h> 
'include <assert.h> 

'define " 32 1* bits in a word *1 

int B, 1* number base of division (must be a power of 2) ·*1 
N; 1*10g2(B)"/ 

'define we (WIN) I" base B digits in a word *1 
'define Big_vaiue (unsigned) (B«(WB-2» /* B A (WB-l) *1 

int Q, 

R, 
V; 

/" partial quotient ,,/ 
1* partial remainder ,,/ 
/* mUltiple of the diviso~ w/ 

int 
estimate_lag_quotient ( dividend. di"isor 

unsigned dividend, divisor; 

int 

unsigned log_quotient; 

for (log_quotient = 0; log_qt:otient < WB; log_quotient +- 1 ) 

if ( ( divisor «log_quotient*N) > Big_value) 
break; 

else if ( (divisor «log_quoti~r.t*N) >= dividend 
break; 

return log_quotient; 

compute_digitI level, quotie~t digit) 
int level, quotient_digit; 

if (R >= O){ 
R - .. V « level; 
quotient_digit += l«level; 

else { 
R +- V « level; 
quotient_digit l«level; 

if (level > 0) 

return compute_digit! level-I, quotient_digit ); 
else 

return quotient_digit; 

unsigned 
divide( dividend, divisor) 

unsigned dividend, divisor; 

int iter; 
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B'" (l«(N»; 
R '" dividend; 

o - 0; 

Solbourne Computer, Inc. 

for ( iter - estimate_lo9_quoti(,nt( dividend, divisor); iter >- 0; iter -& 1 )( 
assert( O"divisor+R == dividend ); 
V'" divisor « (iter*N); 
o += compute_digit ( N-1, C) « (iter*N); 

} 

if ( R < 0 )( 

R += divisor; 

o -= 1; 
) 

return Q; 
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E.4.4. Program 4 
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'include <stdio.h> 
'include <assert.h> 

'define W 32 1* bits in a·word 

'define B 4 1* number base of 

'define N 2 1* 10g2 (B) "/ 

*/ 

division 

'define WB (WIN) 1* base B digits in a 

'define Big_value (unsigned) (B« (1'."3-2» 1* 

int 
estimate_log_quotient( dividend, divisor) 

unsigned dividend. divisor; 

unsigned log_quotient; 

(must be 

word *1 
B A WE-I 

a power of 2) 

*1 

for (log_quotient E 0; log_quot:ent < WB; log_quotient +E 1 ) 
if ( ( divisor «log_quotie~t*~) > Big_value) 

break; 
else if ( (divisor «log_quotient*N) >c dividend 

break; 

return log_quotient; 

int 
unsigned 

divide ( dividend. divisor) 
unsigned dividend. divisor; 

int O. 1* partial quotient ,,; 

R. 1* partial 

V; 1* multiple 

int iter; 

R = dividend; 
o = 0; 

remai~der '*/ 
of the divis=:- '*' 

*1 

for ( iter E estimate_log_quotient( dividend. divisor); iter >= 0; iter -= 1 )1 

assert ( O*divisor+R == dividend ); 

V - divisor « (ite~*N); 

1* N-deep. B-wide decision tre~ *i 

if ( R >= 0 )1 
R -= V«l; 
if ( R >= 0 ) I 

R V; 

0 += 3 «(N'*iter); 

else 

R += V; 

0 += 1 «(l\'*iter); 

else 
R += V«l; 
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if ( R >= C ) ( 

R -= V; 
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0-= 1 «(N*itcr); 
else { 

R += V; 
o -= 3 «(N*iter); 

if ( R < 0 )( 

R +- divisor; 

o -= Ii 

return 0; 
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E.4.5. Program 5 

At the risk of losing even more clarity, we can optimize away several of the bookkeeping opera­
tions, as shown in Program 5. 
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'include <stdio.h> 

'include <assert.h> 

'define W 32 1* bits in a word ·1 

'define B .q 

'define N 2 
1* nurr~er base of division (must be a power of 2) */ 
1* 10g2 (B) */ 

'define WB (WIN) /. base B digits in a word *1 
'define Big_value (unsigned) (B« (W3-2») /* B ~ WB-l */ 

int 

unsigned 

divide{ dividend, divisor) 

unsigned dividend, divisor; 

int 0, 1* partial quotient */ 

R, 1* partial remainder */ 

V; 1* multiple of the divisor 

int iter; 

R = dividend; 

0 = 0; 

V = divisor; 

.. / 

for ( iter 0; V <= Big_value && V <= dividend; iter += 1 ) 
V «= N; 

for ( V «= (N-l); iter >~ 0; her 1) ( 

o «= N; 
assert{ O*{I«{iter*N) )*diviso~+R 

/* N-deep, B-wide decision tree */ 

if ( R >= 0 )( 
R -= V; 

V »= 1; 
if ( R >= 0 ) ( 

R V; 

V »= 1; 

0 += 3 ; 

else 

R += V; 
V »= 1; 
Q += 1 ; 

else 

R += V; 

V »= 1; 

if ( R >= 0 ) { 

R V· , 
V »= 1; 

o 1; 

else 

R += V; 

V »= 1; 

dividend ); 
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Q -= 3; 

H(R<O){ 

R += divisor; 

Q -= 1; 

return 0; 

Solbourne Computer, Inc. 
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E.4.6. Program 6 

Program 6 is, essentially, the method we recommend for SPARC. The depth of the decision tree 
- two in the preceding examples - is controlled by the constant N, and is aJrrently set to three, 
based on empirical evidence. The decision tree is not explicitly coded, but defined by the recur­
sive m4 macro DEVELOP _QUOTIENT _BITS. Other differences include: 

• Handling of signed and unsigned operands 

• More care is taken to avoid overflow for very large quotients or divisors 

• Special tests are made for division by zero and zero quotient 

• The routine is conditionally compiled for either division or remaindering. 
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1* 
* Divison/Remainder 

* 
* Input is: 
* dividend -- the thing being divided 

* divisor -- how many ways ~o divide it 

* Important parameters: 

* 
* 
* 
* 

N -- how many bits per iteration we try to get 
as our current guess: define(N, 3) 

WORDSIZE -- how many bits altogether we're talking about: 
obviously: define (WORDSIZE, 32) 

* A derived constant: 

* TOPBITS -- how rr~ny bits are in the top "decade" of a number: 
* define (TOPBITS, eval ( WORDSIZE - N'O «WORDSIZE-l) IN) ) 

* Important variables are: 

* 0 -- the partial quo~ient under development -- initally 0 

* 
* 
* .. 
.. 

R -- the reMainder s~ :ar -- initially ~= the dividend 
ITER -- nur.-.ber of :~.era:.io,s of the main division loop which will 

be required. Eq~al to CE:L( 192(quotient)/N ) 

Note tha:. t~is is 10s_oase_(2AN) of the quotient • 

V -- the current cc~pa=a~d -- initially divisor'02 A(ITER*N-1) 

* Cost: .. current estir.-ate fo: non-large dividend is 
.. CEIL( Ig2(quo:.iert) / N ) x ( 10 + 7N/2 ) + C .. a large dividend is one greater than 2~(31-TOPBITS) and takes a 

different path, as ~he upper bits of the quotient must be developed 

one bit at a ti~c. 
This uses the M~ and cpp macro preprocessors. 

*1 

'include "sw_trap.h" 

define (dividend, '%iO') 

define (divisor, '%il') 

define (0, '% i2' ) 

define(R, '%i3') 

define (ITER, '%10') 

define (V, '%11') 

define (SIGN, 

define (T, 

define (SC, 

1* 

'%13' ) 

'%14' ) 

'%12' ) 

worj(ing variable 

* This is the recursive oefinition of how we develop quotient digits. 

* It takes three imp~rtant parameters: 
.. $1 the current. depth, l<=Sl<=N 

* $2 

N 

the current accumulation of quotient bits 

max depth 

* We add a new bit to $2 and either recurse or insert the bits in the quotient. 
* Dynamic input: 

* R current rer'!".a i ndC':-.. 0 current quotie~~ 

* V current cOMF'ara:-c 
.. cc -- set on currer.t value of R 

* Dynamic output: 
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* R', 0', V', cc' 

*/ 

define (DEVELOP_OUOTIENT_BITS, 
!depth S1, accumulated bits S2 
bl L.$1.eval(2AN~$2) 

srl V,1,V 
! remainder is positive 
subcc R,V,R 
ifelse ( $1, N, 

b 9f 

add 0, (S:?"2"~), 0 
, , , DEVELOP _OvCTIE!l:T_B:!:TS ( incr (S1), 'eval (2*S2+1)') 
') 

L.$1.eval(2AN~S2): 

addcc R,V,R 
Helse ( S1, N, 

b 9f 

add 0, (S2 W 2-11. 0 

remainder is negative 

, , , DEVELOP_QUO:'IE!_'!"_BITS ( i:lcr ($1), 'eval (2*S2-1)') 
, ) 
ifelse( S1, 1, '9:') 

, ) 
ifelse (ANSw"ER, 'quot ient.', , 

.global .div, .udiv 
.udiv: ! UNSIGNED D:V~D~ 

save tsp,-64,%sp 
b divide 
mov O,SIGN 

.div:! SIGNED DIV:DE 

, , , 

save tsp,-64,%sp 
orcc divisor,divja~~ci,%gO 
bqe divide 
xor divisor, ciividcnc, SIGN 

tst divisor 
bqe 2f 
tst dividend 

divisor < 0 

bqe divide 
neg divisor 
2: 

dividC:ld < 0 
neg dividend 

FALL THROUGP. 

.global .·re:r., .U[C~ 

.urem: ! UNS!GNEn RE~Al~DER 

save tsp,-e4,~sp 
b divide 
mov O,SIGN 

.rem:! SIGNED RE~~IN~ER 

save 'sp,-6~,%sp 

result always positive 

! are either dividend or divisor negative 
! if not, skip this junk 

: record sign of result in sign of SIGN 

do this for debugging 

result always positive 

do this for debugging 
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orce divisor,dividend"gO 
bge divide 
mov dividenci,SIG~ 

tst divisor 
bge 2f 
tst dividend 

divisor < 0 
bge divide 
neg divisor 

2: 
dividend < 0 

neg dividend 
FALL THROUGH 

are either dividend or divisor negative 
if not, skip this junk 
record sign of result in sign of SIGN 

divide: 
compute size of quotient, scale comparand 
orcc divisor, ,gO, V ! movee di visor, V 
te ST_DIVa! if divisor = 0 

mov dividend, R 
mov O,Q 
sethi 'hi(1«(WORDS:ZE-TOPBIT5-1»,T 
cmp R,T 
blu not_rea:~y_big 

mov 0, ITER 

Here, the dividc~d ~s >= 2 A (31-N) or so. We must be careful here, as 
our usual N-a~-a-s~nt divide step will cause overflow and havoc. The 
total number of bits in t~e result here is N*ITER+SC, where SC <= N. 
Compute ITER, in an unorthodox manner: know we need to Shift V into 

1: 

2: 

the top decade: so don't even bother to compare to R. 

cmp V,T 
bgeu 3f 
mov 1,SC 
s11 V,N,V 

b lb 
inc ITER 

Now corr.p·,,;:,c 5(: 

addec V, 'I, V 
bcc nc~ __ tec_Dig 

add SC,l,SC 
bee 

We're here if the divisor overflowed when Shifting. 
This mea~s that R has the high-order bit set. 
Restore V and subtract from R. 

s11 T,TO?BITS,~! high order bit 
srI V,l,V! rest of V 

add V,T,V 
b do_single_div 

dec SC 
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not_too_big: 
3: cmp V,R 

blu 2b 
nop 

Solbourne Computer, Inc. 

be co_singlc_civ 
nop 

V > R: went too far: bac~ up 1 step 
srI V,l,v 

dec SC 

do single-bit divide steps 

We have to be careful here. We know that R >~ V, so we can do the 
first divide step without thinking. BUT, the others are conditional, 
and are only done if R >= O. Because both R and V may have the high­
order bit set in the first step, just falling into the regular 
division lcop will mess up the first time around. 
50 we unroll slightly .•• 

do_single_div: 
deccc 5C 

bi enc_regular_divide 
nop 
sub R, V,R 

mov 1,0 

b end_single_divlcop 
nop 

single_divloo!': 
sl1 Q,l,Q 

bl If 

1: 

srI V,l,V 

! R >= 0 

sub R,V,R 
b 2f 
inc 0 
! R < 0 

add R, V,R 

dec 0 
2: 
end_single_divloop: 

deccc SC 

bge single_div!oop 
tst R 
b enc_regular_divide 
nop 

not_really_big: 
1: 

sll V,N,V 

cmp V,R 

bleu Ib 
inccc ITER 
be got_result 
dec ITER 

do_regular_dividc: 
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! Do the main division iteration 
tst R 
! Fall through into divide loop 

divloop: 
sll Q,N,Q 

DEVELOP_QUOTIENT_BITS( 1, 0 ) 

end_regular_divide: 
deccc ITER 

bge divloop 
tst R 

nop 
! non-resto~ir.g fix~r. ~ere 

ifelse (ANSWER, 'crl.lo~ie:;t', 

dec Q 

I, \ add R,divisc~,R 

, ) 

got_result: 
tst SIGN 

bge lf 

restore 
! answer < 0 
retl ! leaf-rou~ine return 

ifelse (ANSWER, 'ql:ot ie!"lt' , 

, , , 
, ) 
1: 

neg %02,%oC Quo~ie!"lt <--Q 

neg %03, %oC rema:'ncie!.- <- -R 

retl Jea!-ro~~ine return 

ifelse( ANS\\'ER, 'c!\;o~ier.t', 

, , , 
, ) 

mov %c2,%00 
mov %03,%00 

quotient <- Q 

! remainder <- R 
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APPENDIX F: OPCODES AND CONDITION CODES 

F.1. Introduction 

This appendix lists the opcodes and condition codes. 

F-1 

op Instruction 
01 CALL 

op2 Instruction 
000 UNIMP 
001 unimplemented 
010 Bicc 
011 unimplemented 
100 SETHI 
101 unimplemented 
110 FBfcc 
111 CBccc 
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op3 Instruction 
000000 ADD 
000001 AND 
000010 OR 
000011 XOR 
000100 SUB 
000101 ANON 
000110 ORN 
000111 XNOR 
001000 ADDX 
001001 unimplemented 
001010 unimplemented 
001011 unimplemented 
001100 SUBX 
001101 unimplemented 
001110 unimplemented 
001111 unimplemented 
010000 ADDec 
010001 ANDcc 
010010 ORce 
010011 XORcc 
010100 SUBcc 
010101 ANDNcc 
010110 ORNee 
010111 XNORee 
011000 ADDXcc 
011001 unimplemented 
011010 unimplemented 
011011 unimplemented 
011100 SUBXee 
011101 unimplemented 
011110 unimplemented 
011111 unimplemented 

F-2 Opcodes and Condition Codes F-2 



Solbourne Computer, Inc. 

op3 Instruction 
100000 TADDee 
100001 TSUBec 
100010 TAD DccTV 
100011 TSUBccTV 
100100 MULScc 
100101 SLL 
100110 SRL 
100111 SRA 
101000 RDY 
101001 RDPSR 
101010 RDWIM 
101011 RDTBR 
101100 unimplemented 
101101 unimplemented 
101110 unimplemented 
101111 unimplemented 
110000 WRY 
110001 WRPSR 
110010 WRWIM 
110011 WRTBR 
110100 FPop1 
110101 FPop2 
110110 CPop1 
110111 CPop2 
111000 JMPL 
111001 RETT 
111010 Tice 
111011 IFLUSH 
111100 SAVE 
111101 RESTORE 
111110 unimplemented 
111111 unimplemented 
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op3 Instruction 
000000 LD 
000001 LDUB 
000010 LDUH 
000011 LDD 
000100 ST 
000101 STB 
000110 STH 
000111 STO 
001000 unimplemented 
001001 LOSB 
001010 LOSH 
001011 unimplemented 
001100 unimplemented 
001101 LOSTUB 
001110 unimplemented 
001111 SWAP 
010000 LOA 
010001 LOUBA 
010010 LOUHA 
010011 LOOA 
010100 STA 
010101 STBA 
010110 STHA 
010111 STOA 
011000 unimplemented 
011001 LOSBA 
011010 LOSHA 
011011 unimplemented 
011100 unimplemented 
011101 LOSTUBA 
011110 unimplemented 
011111 SWAPA 

F-4 Opcodes and Condition Codes F-4 



Solbourne Computer, Inc. 

op3 Instruction 
100000 LDF 
100001 lDFSR 
100010 unimplemented 
100011 LDDF 
100100 STF 
100101 STFSR 
100110 STDFO 
100111 STDF 
101000 - 101111 unimplemented 
110000 LDC 
110001 LDCSR 
110010 unimplemented 
110011 LDDC 
110100 STC 
110101 STCSR 
110110 STDCO 
110111 STDC 
111000 - 111111 unimplemented 

opf Instruction 
000000001 FMOVs 
000000101 FNEGs 
000001001 FABSs 
000101001 FSORTs 
000101010 FSORTd 
000101011 FSORTx 
001000001 FADDs 
001000010 FADDd 
001000011 FADDx 
001000101 FSUBs 
001000110 FSUBd 
001000111 FSUBx 
001001001 FMULs 
001001010 FMULd 
001001011 FMULx 
001001101 FDIVs 
001001110 FDIVd 
001001111 FDIVx 
011000100 FiTOs 
011000110 FdTOs 
011000111 FxTOs 
011001000 FiTOd 
011001001 FsTOd 
011001011 FxTOd 
011001100 FiTOx 
011001101 FsTOx 
011001110 FdTOx 
011010001 FsTOi 
011010010 FdTOi 
011010011 FxTOi 
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opf Instruction 
001010001 FCMPs 
001010010 FCMPd 
001010011 FCMPx 
001010101 FCMPEs 
001010110 FCMPEd 
001010111 FCMPEx 

cond test 
0000 never 
0001 equal 
0010 less than or equal 
0011 less than 
0100 less than or equal, unsigned 
0101 carry set (less than. unsigned) 
0110 negative 
0111 overflow set 
1000 always 
1001 not equal 
1010 greater than 
1011 greater than or equal 
1100 greater than, unsigned 
1101 carry clear (greater than or equal, unsigned) 
1110 positive 
1111 overflow clear 

cond test 
0000 never 
0001 not equal 
0010 less than or greater than 
0011 unordered or less than 
0100 less than 
0101 unordered or greater than 
0110 greater than 
0111 unordered 
1000 always 
1001 equal 
1010 unordered or equal 
1011 greater than or equal 
1100 unordered or greater than or equal 
1101 less than or equal 
1110 unodered or less than or equal 
'111 ordered 
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opcode cond bp_CP _cc[1 :0] test 

CBN 0000 Never 
CB123 0001 1 or 2 or 3 
CB12 0010 1 or 2 
CB13 0011 1 or 3 
CB1 0100 1 
CB23 0101 2 or 3 
CB2 0110 2 
CB3 0111 3 
CBA 1000 Always 
CBO 1001 0 
CB03 1010 o or3 
CB02 1011 o or 2 
CB023 1100 o or 2 or3 
CB01 1101 o or 1 
CB013 1110 o or 1 or 3 
CB012 1111 o or 1 or 2 
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