SPIR 1.0 Specification for OpenCL

Khronos Group - OpenCL Working Group - SPIR subgroup
2012-08-24

Abstract

This document defines version 1.0 of the Standard Portable Intermediate Representation
(SPIR) for OpenCL™. El
The Khronos Group Inc. ratified this document as a provisional specification on August 24,

2012.

Contents
(1__Introduction| 6
[L.1 One format, two notations| 6
[1.2 Name mangling] e 6
2 OpenCL C mapping to SPI 7
2.1 Supporte ata Types| 7
2.1.1 Built-in Scalar Data Types|o oo oo 7
2.1.1.1 The size tdatatype 8
2.1.1.1.1 Conversion functions 8
2.1.1.1.2 Arithmetic functions. 9
2.1.1.1.3 Bitwise functionsl. L 9
2.1.1.1.4 Shift functionslo o 9
2.1.1.1.5 Relational functionsl 10
2.1.1.1.6 Pomnter Arithmetics functions|. 10
[2.1.1.1.7 Memory Access functions| 11
RT.T1.8 Device Specific functions| oo oot 11
T2 Built-in Vector Types| o v v v e e 12
2.1.3 Other Built-in Data Types| o L. 12
2.1.3.1 Declaring samplers as global constants|. 12
12.1.3.2 Constructing a zero event typel 13
2.1.3.3 NULL pomnter| 13
T4 Alignment of Types| 13
EI5 Structsd 14
2.2 Address space qualifiers| oL Lo Lo 14
[2.3 Access qualifiers| o oo 15
2.4 Function qualifiers|o 16
241 Optional attribute qUAlIHETS| « v v v v v e e e e 16
2.4.1.1 Work group size information| 16
2.4.1.2 Vector type hint information|, 16
2.5 Kernel Arg Info|. 17

10penCL and the OpenCL logo are trademarks of Apple Inc.

The Khronos Group Inc.

2.6 Storage class specifier]
2.7 Type qualifiers|]
2.8 Attribute Qualifiers|.

2.8.1 Type Attributes]

[2.8.1.1 aligned attribute|
2.8.1.2 packed attributel

2.8.2.1 aligned attribute|

[2.9 Compiler Options|.
[2-10 Preprocessor Directives and Macros| . . .
12.10.1 Preprocessor Directives|
2.10.2 Macrod

2.11.1 Name Manglingl.

|2.11.1.1 Synchronization Functions|

SPIR 1.0 (Provisional)

2.11.1.2 Built-ins with size t arguments|

[2.11.2 The printt tunction|.

2.14 OpenCL Version|
[2.15 memcpy tunctions|

B—SPIR and LLVM TR]

B.1 LLVM Triple|
8.2 LLVM Target data layout|
8.3 LLVM Supported Instructions|.
[3.4 LLVM Supported Intrinsic Functions| . . .
B5_LLVM Linkage Typed - . - - . . -
3.6 alling Conventions|
8.7 Visibility Styles|o

8.12 Module Level Inline Assembly{.
3.13 Pointer Aliasing Rules|
[3.14 Volatile Memory Accesses|
[3.15 Memory Model for Concurrent Operations|

3.16 Atomic Memory Ordering Constraints| . .

SPIR name mangling)

[A.1 Data types|
[A2 Type attributes]

IA.3 'The restrict qualifier|
|A.4 Summary of changes|

17
18
18
18
18
18
18
18
19
19
20
20
20
21
21
21
21
21
21
21
22
23
23
23

24
24
24
24
26
26
27
27
27
27
28
28
28
28
28
28
28

The Khronos Group Inc. SPIR 1.0 (Provisional) 3

List of Tables

I Mapping for built-in scalar data types| oo 7
12 Mapping of size t related types|. oL 8
13 size t conversion functions| oL 8
4 size t arithmetic functions| 9
5] size t bitwise functions| L 9
16 size t shift functions| L 10
|7 size t relational functions| Lo o 10
18 size t pointer arithmetics functions| o0 11
19 size t memory access functions| Lo 11
10 size t device specific constant tunctions| 11
11 Mapping for built-in vector types| 12
12 apping for other built-in data types| 12
113 sampler state initialization values| oo oo 0oL 13
14 Kernel Arg Info metadata description| oL, 17
15 Mapping of type qualifiers| 18
116 Instructions, part 1) L 25
117 Instructions, part 2| 26
18 Linkage types| o e 27
9 Parameter attributesd L 27
20 Function attributes 28
[21 Mapping of OpenCL C builtin type names to mangled type names| 29

P2 Mapping of OpenCL C type attributes to mangled names| 30

The Khronos Group Inc. SPIR 1.0 (Provisional) 4

Copyright (c) 2011-2012 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written permis-
sion of Khronos Group. You may use this specification for implementing the functionality therein,
without altering or removing any trademark, copyright or other notice from the specification, but
the receipt or possession of this specification does not convey any rights to reproduce, disclose, or
distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in
part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter
member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any
fashion, provided that NO CHARGE is made for the specification and the latest available update of
the specification for any version of the API is used whenever possible. Such distributed specification
may be re-formatted AS LONG AS the contents of the specification are not changed in any way.
The specification may be incorporated into a product that is sold as long as such product includes
significant independent work developed by the seller. A link to the current version of this specification
on the Khronos Group web-site should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express
or implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual property.
Khronos Group makes no, and expressly disclaims any, warranties, express or implied, regarding
the correctness, accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or Members or their
respective partners, officers, directors, employees, agents or representatives be liable for any damages,
whether direct, indirect, special or consequential damages for lost revenues, lost profits, or otherwise,
arising from or in connection with these materials.

Khronos, StreamInput, WebGL, COLLADA, OpenKODE, OpenVG, OpenWF, OpenSL ES,
OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX DL are trademarks and WebCL is a
certification mark of the Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL
and OpenML are registered trademarks and the OpenGL ES and OpenGL SC logos are trademarks of
Silicon Graphics International used under license by Khronos. All other product names, trademarks,
and/or company names are used solely for identification and belong to their respective owners.

The Khronos Group Inc. SPIR 1.0 (Provisional)

Acknowledgements

Editor: Boaz Ouriel, Intel

Contributors:

David Neto, Altera

Anton Lokhmotov, ARM

Mike Houston, AMD

Micah Villmow, AMD

Tanya Lattner, Apple

Aaftab Munshi, Apple

Holger Waechtler, Broadcom
Andrew Richards, Codeplay
Guy Benyei, Intel

Javier E. Martinez, Intel
Vinod Grover, NVIDIA

Kedar Patil, NVIDIA

Sumesh Udayakumaran, QUALCOMM
Chihong Zhang, QUALCOMM

Henry Styles, Xilinx

The Khronos Group Inc. SPIR 1.0 (Provisional) 6

1 Introduction

This document defines version 1.0 of the OpenCL Standard Portable Intermediate Representation
(SPIR). SPIR is a mapping from the OpenCL C programming language into LLVM IR.

This version of the specification is based on LLVM 3.1 [4] [3], and on OpenCL C as specified in
the OpenCL 1.2 Specification [2].

The goal of SPIR is to provide a portable interchange format for partly compiled OpenCL C
programs. The format:

e Is vendor neutral.
e Is not C source code.

e Supports almost all core features and KHR extensions for version 1.2 of OpenCL C. (A small
number of features of OpenCL C are not expressible in SPIR.)

e Is designed to support vendor extensions.
e Is compact.
e Is designed to be efficiently loaded by an OpenCL implementation.

e Supports targeting devices with either a 32- or 64-bit address space with a single SPIR IR
instance of a program. (To achieve this, the program must already be 32- and 64-bit portable.)

e Is designed to be useful as a target format for compilers of programming languages other than
OpenCL C. This is a secondary goal of SPIR.

1.1 One format, two notations

LLVM IR has three semantically equivalent representations:
e An in-memory data structure manipulated by the LLVM software.
e A compact external binary representation, known as bitcode [3]. E|
e A human readable assembly language notation [4].

SPIR adopts two of these: the bitcode and assembly language notations from LLVM. For ease
of exposition, the remainder of this document uses only the assembly language notation.

1.2 Name mangling

In SPIR, the names of many standard functions are mangled to encode type information. Mangling
names disambiguates between different source language identifiers with the same root name, i.e.
when a function is overloaded on its argument types. Mangling enables standard linkers and loaders
to select the unique implementation of an overloaded function, and permits interface type checking
across module boundaries.

For example, OpenCL C has many overloaded built-in functions, meaning the same function
name is used with different argument and return types. For example, the sin built-in function is
defined for both scalar and vector floating point argument and return types. SPIR distinguishes
between all of variations of the sin function by mangling the root name sin with its argument

types.
Specifically, the following categories of function names are mangled in SPIR:

2The LLVM 3.1 bitcode notation is only partly documented by [3]. However, bitcode notation is fully (but
implicitly) defined by the behaviour of LLVM 3.1 software release.

The Khronos Group Inc. SPIR 1.0 (Provisional) 7

e Functions mentioned in this specification.
e OpenCL C built-in functions that are overloaded on their argument types.

Other kinds of names are not mangled in SPIR. In particular, regular and kernel user functions
from OpenCL C are not mangled when mapped into SPIR.

By not mangling the names of regular functions, SPIR supports being the target for language
families (other than C/C++) having their own distinctive type systems. In other words, mangling of
user-level functions is beyond the scope of SPIR, and is subject to coordination among third parties
(compiler front end and library implementors).

For names that do require mangling, SPIR adopts and extends the name mangling scheme from
Section 5.1 of the Itanium C++ ABI [I]. Extensions are required to support OpenCL concepts
absent from ordinary C++. The SPIR mangling scheme is defined in Appendix [A]

Note: For readability, this document uses the unmangled names for all identifiers. However
actual SPIR instances always use the mangled form for names in the categories as specified above.

2 OpenCL C mapping to SPIR

2.1 Supported Data Types
The following LLVM data types are supported:

2.1.1 Built-in Scalar Data Types

Table [I] describes the mapping from the OpenCL C built-in scalar data types to SPIR built-in scalar
data types.

OpenCL C Type LLVM Type
bool il
char i8
unsigned char, uchar i8
short i16
unsigned short, ushort | 116

int i32
unsigned int, uint i32
long i64
unsigned long, ulong 164
float float
double double
half half
void void

Table 1: Mapping for built-in scalar data types

Notes:
e Signed and unsigned values are sign extended or zero extended based on the deployed operation.

e While LLVM has many more primitive data types, only the ones described above are allowed
in SPIR.

The Khronos Group Inc. SPIR 1.0 (Provisional) 8

2.1.1.1 The size t data type

Table [2] describes the mapping of OpenCL C size t, ptrdiff t, intptr t and uintptr t
types to SPIR types.

OpenCL C Type | LLVM Type LLVM Name
size t opaque structure type | %spir.size t
ptrdiff t opaque structure type | %spir.size t
intptr_t opaque structure type | %spir.size t
uintptr t opaque structure type | %spir.size t

Table 2: Mapping of size t related types

The %spir.size t data type represents an integer type of either 132 or 164 depending on the
address space of the target device. In addition to the new data type, SPIR adds a set of functions
that handle operations using this data type.

Note: SPIR does not provide a way to encode direct arithmetical operations between:

e %spir.size_t and i32
e Y%spir.size t and i64

Such an expression would be the obvious SPIR encoding of an OpenCL C arithemtic operation
between:

e A size t or uintptr t operand, and a uint or ulong operand
e A ptrdiff t or intptr t operand, and a int or long operand
However, such OpenCL C expressions are not portable between devices with 32- and 64-bit address

spaces.

2.1.1.1.1 Conversion functions

Table [3| describes the list of %spir.size_t conversion functions to and from SPIR scalar

datatypes. We use the generic type name gentype to indicate 11,18,116,i32,i64, half, float,
double
Unmangled Name Ret Value Arguments Description
~_spir_sizet convert size t Yospir.size t gentype Convert a scalar gentype

type to spir.size_t

__spir_sizet convert size t

%spir.size_t

addrspace(A) i8*

Convert a pointer to an i8
to a spir.size t where
A denotes the address
space of the pointer.

~_spir_sizet convert gentype

gentype

%spir.size_t

Convert a spir.size t
to a scalar gentype type

~spir_sizet convert ptrA

addrspace(A) i8*

Y%spir.size_t

Convert a a spir.size_t
to a pointer to an i8
where A denotes the ad-
dress space of the pointer.

Table 3: size t conversion functions

The Khronos Group Inc.

2.1.1.1.2 Arithmetic functions

SPIR 1.0 (Provisional) 9

Table [4| describes %spir.size t arithmetic functions:

Unmangled Name | Ret Value

Arguments

Description

~ spir_sizet add Yspir.size t

Yspir.size t,
Y%spir.size t

Addition of two %spir.size t values.
The result is a %spir.size t

__spir_sizet_sub Yospir.size t Yospir.size t a, | Subtraction of two spir.size t val-
Y%spir.size_ t b ues. The result is a - b which is of
spir.size_t type
_spir_sizet _mul Y%spir.size t Yospir.size t a, | Multiplication of two spir.size t val-
Y%spir.size_t b ues. The result is a * b which is of
spir.size_t type
__spir_sizet div Y%spir.size t Yospir.size t a, | Calculate the integer division of two
Y%spir.size_ t b spir.size t values. The result is a
/ b which is of spir.size_t type
~ spir_sizet rem %spir.size t Yospir.size t a, | Calculate the (unsigned) remainder of

Y%spir.size_t b

the division of two spir.size t val-
ues. The result is a % b which is of
spir.size_t type

Table 4: size t arithmetic functions

Note that signed and unsigned versions of ~ spir sizet divand spir sizet rem functions are
distinguished by the mangling process. As described in Section source language types size t
and uintptr_t are mangled to specifier string u2sz, while source language types ptrdiff_ t and
intptr_t are mangled to specifier string u2pd.

2.1.1.1.3 Bitwise functions

Table |p| describes %spir.size t bitwise functions:

Unmangled Name | Ret Value

Arguments

Description

__spir_sizet or Y%spir.size t Yospir.size t a, | Bitwise OR of two spir.size t val-
Yospir.size t b ues. The result is a spir.size t

__spir_sizet _and Y%spir.size t Yospir.size t a, | Bitwise AND of two spir.size_ t val-
Y%spir.size t b ues. The result is a spir.size t

__spir_sizet_xor Yospir.size t Y%spir.size t a, | Bitwise XOR of two spir.size t val-

%spir.size_t b

ues. The result is a spir.size_t

__spir_sizet not Y%spir.size t

Y%spir.size_t a

Bitwise NOT of a spir.size_t value.
The result is a spir.size t

Table 5: size t bitwise functions

2.1.1.1.4 Shift functions

Table [6] describes %spir.size t shift functions:

The Khronos Group Inc.

SPIR 1.0 (Provisional) 10

Unmangled Name | Ret Value

Arguments

Description

_spir_sizet shl Y%spir.size t

Y%spir.size_t a,
Yspir.size_t b

Logical shift left: The spir.size t value ob-
tained by shifting a left by b bit positions, with
zero fill.

~spir_sizet Ishr Y%spir.size t

Yspir.size t a,
Yspir.size_t b

Logical shift right: The spir.size_t value
obtained by shifting a right by b bit positions,
with zero fill.

~ spir_sizet ashr Y%spir.size t

Yspir.size t a,
Y%spir.size_t b

The spir.size_t value obtained by shifting
a right by b bit positions, where vacated posi-
tions are filled with the most significant bit of
the original value of a. (Arithmetic shift right,
treating a as if it were a signed value.)

Table 6: size t shift functions

2.1.1.1.5 Relational functions

Table [7] describes %spir.size t relational functions:

Unmangled Name | Ret Value | Arguments

Description

Yspir.size_t,
Yspir.size_t,
i32

~_spir_sizet cmp il

Comparison of two spir.size_t val-
ues. The last i32 argument is used to
decide what kind of comparison 1is per-
formed and it has the same meaning as the
enumeration LLVM: : ICmpInst: :Predicate
ICMP_EQ = 32 (equal)
ICMP_NE = 33 (not equal)
ICMP_UGT = 34 (unsigned greater than)
ICMP_UGE = 35 (unsigned greater or equal)
ICMP_ULT = 36 (unsigned less than)
ICMP_ULE = 37 (unsigned less or equal)
ICMP_SGT = 38 (signed greater than)
ICMP_SGE = 39 (signed greater or equal)
ICMP_SLT = 40 (signed less than)
ICMP_SLE = 41 (signed less or equal)
The return type is a boolean il, indicating the
result true or false.

Table 7: size t relational functions

2.1.1.1.6 Pointer Arithmetics functions

Table |8 describes pointer arithmetics functions using %spir.size t:

The Khronos Group Inc. SPIR 1.0 (Provisional) 11

Unmangled Name Ret Value Arguments Description

__spir_sizet_add_ptrA | addrspace(A) | addrspace(A) 8% | Add a size_t integer to any pointer
i8%* base, %spir.size t | type where A denotes the address
off space of the pointer. The resulting
pointer is equal to base + off.

Table 8: size t pointer arithmetics functions

2.1.1.1.7 Memory Access functions

Table [J] describes memory access functions:

Unmangled Name Ret Value Arguments Description
__spir_sizet alloca spir.size t* i32 NumElements, | This function allocates
i32 alignment spir.size t memory on the

stack frame of the currently execut-
ing function, to be automatically
released when this function returns
to its caller values. The NumkEle-
ments constant value indicates the
number of spit.size_ t elements
to be allocated. The constant
alignment value is optional. If
specified, the value result of the al-
location is guaranteed to be aligned
to at least that bounday. If not
specified, or if zero, the target can
choose to align the allocation on
any convenient bounday compatible
with size t. The return value is a
spit.size_ tx*

Table 9: size t memory access functions

2.1.1.1.8 Device Specific functions
Table [10] describes device specific functions:

Unmangled Name Ret Value Arguments Description

~spir_size of sizet spir.size_t Constant size in bytes of the
spir.size t type in the current
device

~_spir_size of pointer spir.size t Constant size in bytes of a pointer
on the current device

Table 10: size t device specific constant functions

The Khronos Group Inc. SPIR 1.0 (Provisional) 12

2.1.2 Built-in Vector Types

Table describes the mapping from the OpenCL C built-in vector data types to SPIR built-in
scalar data types. Supported values of n are 2, 3, 4, 8, and 16 for all vector data types.

OpenCL C Type | LLVM Type
charn <nxi8>
ucharn <nxi8>
shortn <nxil6>
ushortn <nxil6 >
intn <nxi32>
uintn <nxi32>
longn <nxi6d >
ulongn <nxi6d >
halfn < n x half >
floatn < n x float >
doublen < n x double >

Table 11: Mapping for built-in vector types

Note: LLVM supports many more vector data types, however only the ones described above are
allowed in SPIR. Specifically, a vector of i1’s is disallowed in SPIR.
2.1.3 Other Built-in Data Types

The OpenCL image, sampler, and event data types are mapped to LLVM named opaque types, as
defined in Table[12l These names are reserved for SPIR and shall not be used otherwise.

OpenCL C Type | LLVM Type | LLVM Name

imageld ¢ opaque Y%spir.imageld t
imageld array t opaque Y%spir.imageld array t
imageld buffer t | opaque Y%spir.imageld buffer t
image2d t opaque Y%spir.image2d_t
image2d array t opaque Y%spir.image2d array t
image3d t opaque Y%spir.image3d_t
sampler t opaque Yospir.sampler t

event t opaque Y%spir.event t

Table 12: Mapping for other built-in data types

2.1.3.1 Declaring samplers as global constants

Each spir.sampler t variable is a constant-qualified module scope variable in the constant address

space.
An opaque variable of spir.sampler t declared in the SPIR program must be initialized using
a 32-bit unsigned integer constant, using the following SPIR function:

void __spir_sampler_initialize(Yspir.sampler_t, i32) readnone

Where the 132 value is interpreted as a bit-field specifiying the following properties:

The Khronos Group Inc. SPIR 1.0 (Provisional) 13

Sampler State Init Values

addressing mode CLK ADDRESS NONE=0

CLK ADDRESS CLAMP=1

CLK ADDRESS CLAMP TO EDGE=2
CLK ADDRESS REPEAT=3

CLK ADDRESS MIRRORED REPEAT=4
normalized coords | CLK_NORMALIZED COORDS _ FALSE=0
CLK NORMALIZED COORDS TRUE=S8
filter mode CLK FILTER NEAREST=0

CLK FILTER LINEAR=16

Table 13: sampler state initialization values

In addition we introduce a function to initialize module scope variables:
void __spir_globals_initializer()

The call to the sampler initialization function is performed inside this function.
Example:

%spir.sampler_t = type opaque
@SMP = constant %spir.sampler_t addrspace(2) zeroinitializer

define spirfnc void @__spir_globals_initializer() {
call spirfnc void @__spir_sampler_initialize(Yspir.sampler_t @SMP, i32 1)

}
Notes:

e The i32 argument of ~ spir sampler initialize must be a constant value.

2.1.3.2 Constructing a zero event type

Constructing a zero event type is achieved by calling the ¥spir.event_t _ _spir_eventt_null()
SPIR function.

2.1.3.3 NULL pointer

SPIR introduces a set of new functions that generates a NULL pointer per address space:
i8 addrspace(A)* __spir_get_null ptrA()
where A denotes the numeric address space.

Note: The unmangled name of the function is shown.

2.1.4 Alignment of Types

SPIR follows the alignment rules of OpenCL. When the OpenCL specification does not define a
minimum alignment, e.g. for size t, a default alignment of 1 may be used. Therefore:

e Stack allocations and module scope variable declarations must follow the alignment rules de-
fined in OpenCL specification, or use a default of 1.

e All load and store operations need to be aligned.

The Khronos Group Inc. SPIR 1.0 (Provisional) 14

2.1.5 Structs

The alignment of structures data members is the alignment of the SPIR data type. Extra padding
is disallowed. The alignment of the structure is the alignment of the member which requires the
largest alignment. Pointer data members consume 64 bits and are aligned to 64 bits.

When mapping an OpenCL C struct data type to SPIR, the order of members shall be preserved.

2.2 Address space qualifiers

OpenCL C address spaces are mapped to the LLVM addrspace(n) qualifier using the following
convention:

e (— private

e 1 — global

e 2 — constant

e 3 —local

e 4 — global with endian(host) attribute

e 5 — constant with endian(host) attribute

Note: Casts between address spaces is disallowed in SPIR.

Note: Each OpenCL C function-scope local variable is mapped into an LLVM module-level
variable in address space 3. They are not allocated using alloca instruction. The name of the
module-level variable consists of the (mangled) function name, followed by a period, followed by the
(mangled) the source identifier.

Example OpenCL C program:

void foo(void) {
local floatd 1f4;
}

A valid SPIR mapping:

; Unmangled component names shown here.
; float4 must be 16 bytes aligned.
@foo.1f4 = internal addrspace(3) global <4 x float> zeroinitializer, align 16

define spirkrnl void @foo() nounwind {
entry:
ret void

}

In OpenCL C, a kernel function can call another kernel. However, when the called kernel de-
clares a variable in the local address space, then the behaviour is implementation defined. SPIR
supports a kernel calling another kernel, but does not allow the called kernel to have a variable in
the _ local address space. For example, the following example is not valid SPIR:

@bar.1f4 = internal addrspace(3) global <4 x float> zeroinitializer, align 16

define spirkrnl void @bar() nounwind {

The Khronos Group Inc. SPIR 1.0 (Provisional) 15

entry:
ret void

¥

define spirkrnl void @callbar() nounwind {

entry:
call spirkrnl void @bar() ; This is not supported by SPIR
ret void

3

2.3 Access qualifiers

In OpenCL C, each kernel argument that is an image object is associated with an access qualifier.
In SPIR, access qualifiers are associated with kernel arguments by attaching a metadata object to
the kernel function. The metadata object is a list of the following:

e A "access qualifier" string metadata object

e One constant 132 value per kernel argument, in the same order as the kernel arguments in
OpenCL C.

The 132 value mapping is as follows:
e 0 - read only
e 1 - write only
e 2 - Reserved for read-and-write
e 3 - none (Use this for kernel arguments tha are not image objects)
For example, consider the following OpenCL C function:

kernel void foo(
read_only image2d_t A,
image2d_t B, // implicitly read_only
write_only image2d_t C,
int N) { ...}

The corresponding access qualifier metadata object would be as follows (except it probably isn’t
10):

10 = metadata !{!"access_qualifier", i32 0, i32 0, 132 1, i32 3}
Notes:
e Failing to attach access qualifiers to image arguments is invalid.

e A mismatch between the number of kernel arguments and the i32 values in the metadata
object is invalid.

e Usage of values disallowed values in the metadata objects is invalid.

The Khronos Group Inc. SPIR 1.0 (Provisional) 16

2.4 Function qualifiers

Functions in SPIR are divided into OpenCL kernels and user functions.

Adding qualifiers and attributes to a kernel or a user function and its arguments is achieved
by usage of the LLVM metadata infrastructure. Each SPIR module has a spir.functions named
metadata node containing a list of metadata objects. Each metadata object in spir.functions
references a list of metadata objects, each of which represents a single kernel or a single user function.
The first value in a SPIR function metadata object is the SPIR function that represents an OpenCL
kernel or a user function. The rest of the metadata objects are additional attributes and information
which is attached to the SPIR function. The description of each metadata object inside the SPIR
function metadata list is described in the other sections.

The following LLVM textual representation shows how SPIR function attributes are represented:
Ispir.functions = !{ 10,!1,...,!N }

; Note: The first element is always an LLVM::Function signature

10 = metadata !'{ < function signature >, '0y, !0, ..., , '0; }
1 = metadata !{ < function signature >, '1;, 19, ..., , !1; }
IN = metadata !{ < function signature >, 'Ny, 'No, ..., , !Nk }

2.4.1 Optional attribute qualifiers
2.4.1.1 Work group size information

Attaching work group size hint and reqd work group size information to kernels is achieved
using LLVM metadata infrastructure. Two new metadata object are introduced. The first item in
the metadata object is the string "work_group_ size hint" or "reqd work group_ size" fol-
lowed by three 132 constant values. The three 132 values specify the (X,Y,Z) group dimensions.

; work_group_size_hint(128,1,1)
10 = metadata !{ metadata !"work_group_size_hint", 132 128, i32 1, i32 1}
; reqd_work_group_size(128,1,1)
!1 = metadata !{ metadata !"reqd_work_group_size", i32 128, i32 1, i32 1}

Note:

e Attaching the work group size hint to a non-kernel SPIR function is invalid.

2.4.1.2 Vector type hint information

Attaching vec type hint information to kernels is achieved using LLVM metadata infrastruc-
ture. The first argument in each metadata object is the string "vec type hint" followed by a
typed undef LLVM value and an additional i1 value representing the signedness of the value.

; vec_type_hint(float)

10 = metadata !{ metadata !"vec_type_hint", float undef, il 1}

; vec_type_hint(uint8)

!1 = metadata !{ metadata !"vec_type_hint", <8 x 132> undef, il 0}

; vec_type_hint (<type>)
'H = metadata !{ metadata !"vec_type_hint", <type> undef, il isSigned}

Note:

e Attaching vector type hint information to a non-kernel SPIR function is invalid.

The Khronos Group Inc. SPIR 1.0 (Provisional) 17

e The double data type is an optional type and using it requires marking the SPIR module as
using the c1_doubles optional core feature. See Section [2.12.1

2.5 Kernel Arg Info

When compiling a kernel with the -cl-kernel-arg-info option the following information is preserved
using the LLVM metadata infrastructure. This metadata is added to the list of metadata objects
in the kernel list of metadata objects. The first argument in the metadata object is the string
"cl-kernel-arg-info" followed by a list of metadata objects based on the number kernel argu-
ments. Each metadata object contains a list of metadata object pairs. Each pair consists of a string
and its value. The following table shows the valid pairs:

ARG Info Type Values
0 — private
1 — global
) o) 2 — constant
address_qualifier i32 3 _ local

4 — global with endian(host) attribute

5 — constant with endian(host) attribute
0 — read only

1 — write only

access_qualifier i32 9 _ read and write
3 — none
"arg type_name" string metadata | The type name specified for the argument. The

type name returned will be the argument type
name as it was declared with any whitespace re-
moved. If argument type name is an unsigned
scalar type (i.e. unsigned char, unsigned short,
unsigned int, unsigned long), uchar, ushort, uint
and ulong will be returned. The argument type
name returned does not include any type quali-

fiers.
0 — none
"arg type qualifier" | i32 1 COHSF
- - 2 — restrict
4 — volatile
"arg name" string metadata | the name specified for the argument

Table 14: Kernel Arg Info metadata description

2.6 Storage class specifier

The OpenCL C extern and static storage class specifiers map to the LLVM external and
internal linkage types, respectively.

The Khronos Group Inc. SPIR 1.0 (Provisional) 18

2.7 Type qualifiers

OpenCL C Type Qualifier | LLVM Mapping

const constant
restrict noalias
volatile Certain memory accesses, such as loads,

stores, and spir memcpys may be marked
volatile. (See Notes below.)

Table 15: Mapping of type qualifiers

Notes for the volatile qualifier:

1. The optimizers must not change the number of volatile operations or change their order of
execution relative to other volatile operations.

2. The optimizers may change the order of volatile operations relative to non-volatile operations.

2.8 Attribute Qualifiers
2.8.1 Type Attributes

SPIR provides structure types to describe unions and structures. The layout of structures in SPIR
must take into consideration the alignment rules of OpenCL C. Optimizers are not allowed to do
any modifications to structures.

2.8.1.1 aligned attribute

SPIR structures can be aligned at declaration time. This applies both to module level structures
and stack allocations using the alloca instruction.

2.8.1.2 packed attribute

SPIR structures are marked as packed when attribute ((packed)) is used in OpenCL
C.
Example:

<{i8 , i32}> is a packed structure known to be 5 bytes in size.

2.8.2 Variable Attributes
2.8.2.1 aligned attribute

e SPIR variables can be aligned at declaration time. This applies both to module level variables
and stack allocations using the alloca instruction.

e SPIR does not provide a mechanism to reflect the alignment of structure members. Instead
the SPIR generator is expected to create a structure definition taking into consideration this
attribute, for example by inserting dummy members to occupy the extra space. Optimizers
are not allowed to modify the data layout of structures.

The Khronos Group Inc. SPIR 1.0 (Provisional) 19

2.8.2.2 endian attribute

Marking endianess of variables in the program endian(host) attribute is achieved using LLVM
address space mechanism.

e 4 - global memory with endian(host) attribute
e 5 - constant memory with endian(host) attribute

Note: Casts between address spaces is disallowed in SPIR.

2.9 Compiler Options

Compiler optinos are represented in SPIR using a named metadata node spir.compiler.options.
The named metadata node will contain a single metadata node that holds a list of string metadata
objects. Each string metadata object corresponds to a single standard OpenCL compiler option.
Preprocessor options are not saved in SPIR and the list of the allowed options are as follows:

e -cl-single-precision-constant
e -cl-denorms-are-zero

e -cl-fp32-correctly-rounded-divide-sqrt

-cl-opt-disable

-cl-mad-enable

-cl-no-signed-zeros

-cl-unsafe-math-optimizations

-cl-finite-math-only

-cl-fast-relaxed-math

o -W

e -Werror

-cl-kernel-arg-info

-create-library

-enable-link-options

Note: The -cl-std option is propagated to the spir.ocl.version as defined in Section
OpenCL Version.

This example indicates that both —~cl-mad-enable and -cl-denorms-are-zero standard com-
pile options were used to compile the module:

I'spir.compiler.options = !{!2}
12 = metadata !{metadata !"-cl-mad-enable", metadata !"-cl-denorms—-are-zero"}

Compilation options which are not part of the OpenCL specification are stored via the named
metadata node spir.compiler.ext.options. The named metadata node contains a single meta-
data node that holds a list of string metadata objects. Each string metadata object corresponds to
a non-standard compile option. Compilation options which appear in spir.compiler.ext.options
shall not affect functional portability of the SPIR module.

This example indicates that the (hypothetical) non-standard option -opt-arch-pdp11 was used
to compile the module:

The Khronos Group Inc. SPIR 1.0 (Provisional) 20

I'spir.compiler.ext.options = !{!5}
15 = metadata !{metadata !"-opt-arch-pdpli"}

2.10 Preprocessor Directives and Macros
2.10.1 Preprocessor Directives

The named metadata spir.disable.FP CONTRACT can be used to disable contractions at module
level.

Note: This is one case where some valid OpenCL C programs are not expressible in SPIR.
OpenCL C permits control over the FP_ CONTRACT pragma at a granular level: at various points
in program scope, and within functions. In contrast, SPIR only supports a single module-wide
setting.

2.10.2 Macros
It is the SPIR generator’s responsibility to deal with the following macros:
e Replace user macros
e Replace ~ FILE with a character string literal
e Replace LINE with an i32 contsant
e Replace CL__VERSION 1 O with the i32 constant 100
e Replace CL__VERSION 1 1 with the i32 constant 110
e Replace CL__VERSION 1 2 with the i32 constant 120
e Replace CL__VERSION 2 O with the i32 constant 200

e Replace = OPENCL C VERSION with the i32 constant described in -cl-std build option. If

the -cl-std build option is not specified the behavior of this Macro follows the ~~ OPENCL VERSION

rules.

e Replace OPENCL VERSION with call to thenew i32 = spir opencl version() builtin
function which exposes the OpenCL ”C” version supported by the device. The return value
of this function is 100, 110, or 120 for OpenCL version 1.0, 1.1 and 1.2 (respectively).

e Replace ENDIAN LITTLE _ withacalltothenew i32 = spir endian little() builtin
function which is used to determine if the OpenCL device is a little endian architecure or a
big endian architecture. The return value of this function is 1 if the device is little endian and
undefined otherwise.

e Replace __ IMAGE_SUPPORT _ with acall tothenew 132 __spir_ image support () builtin
function which is used to determine if the OpenCL device supports images. The return value
of this function is 1 if the device supports images and is undefined otherwise.

e Replace = FAST RELAXED MATH with an i32 constant 1 if the -cl-fast-relaced-math build
option is used.

e TBD: Device Specific C99 Macros are resolved the same way we will decide to deal with size t
(not sure this is allowed in OpenCL C)

Note: The builtin functions described in this subsection are shown with their unmangled names.

The Khronos Group Inc. SPIR 1.0 (Provisional) 21

2.11 Built-ins
2.11.1 Name Mangling
Notes:

e Reminder: All of the built-in names described in this document are shown in their unmangled
form.

2.11.1.1 Synchronization Functions

Synchronization functions accept c1_mem_fence_ flags enumeration as an argument. In SPIR
this maps to a constant 132 value which is a bitwise OR between CLK LOCAL MEM FENCE =
1 and CLK GLOBAL MEM FENCE = 2.

Note: The legal values are 1, 2, and 3

2.11.1.2 Built-ins with size t arguments

Many builtin functions have variants taking arguments of type int, uint, long, or ulong. Each
of these variants is representable in SPIR by mangling the original builtin function name along with
the source language types of the arguments and the return value.

However, for each such builtin, SPIR also supports a variation of such a builtin as if size t
were substituted with int, uint, long, or ulong in any argument type or return value.

For example, OpenCL C supports the the clz function over types itype and all vector types
over itype where itype is one of char, uchar, short, ushort, int, uint, long, ulong. As with
all builtins, SPIR supports all these variants of clz via mangling of the argument type and the
return type. However, SPIR also supports the variant of clz as if it were declared in OpenCL as
size t clz(size t).

2.11.2 The printf function
The printf function is supported, and is mangled according to its prototype as follows:
int printf(constant char * restrict fmt, ...)

Note that the ellipsis formal argument (.. .) is mangled to argument type specifier z.

Use of a scalar float argument with floating point conversion specifiers (f, F, e, E, g, G, a,
or a) is not portable. The OpenCL specification says that on devices supporting doubles, the float
value is converted to a double before calling the function; on devices that do not support doubles,
no conversion is performed. SPIR allows either alternative to be expressed, but does not require
consistent behaviour across devices for this case.

2.12 KHR Extensions

2.12.1 Declaration of used optional core features

The named metadata object spir.used.optional.core.features contains a single metadata ob-
ject. The metadata object should contain a list of metdata strings, each of which encodes the name
of an optional core feature used by the SPIR module.

This is the list of valid strings and their meaning:

e "cl images" - indicates that images are used

e "cl doubles" - indicates that doubles are used

The Khronos Group Inc.

SPIR 1.0 (Provisional) 22

A device may reject a SPIR module using an unsupported optional core feature.
This example indicates that the module uses both images and doubles.

!'spir.used.optional.core.features =

1{10}

10 = metadata !{metadata !"cl_doubles", metadata !"cl_images"}

2.12.2 Declaration of used KHR extensions

A SPIR module using one or more KHR extension, must declare them inside the SPIR module. The
named metadata object spir.used.extensions is used to declare this list. The named metadata
object contains a metadata object consisting of a list of metadata strings, where each string indicates
a usage of a KHR extension inside the SPIR module.

This is the list of extension strings:

cl khr int64 base atomics

cl _khr int64 extended atomics

cl _khr fpl6

cl_khr gl sharing

cl _khr gl event

cl_khr d3d10_sharing

cl_khr media_sharing

cl_khr d3d11_sharing

cl_khr global int32 base atomics
cl_khr global int32 extended atomics
cl_khr local int32 base atomics
cl_khr local int32 extended atomics
cl_khr byte addressable store

cl_khr 3d image writes

This example shows that c1_khr_ fp16 and cl1_khr int64 base atomics standard exten-
sions are used in the module.

Ispir.used.extensions = !{!6}

16 = metadata !{metadata !"cl_khr_fpl6", metadata !"cl_khr_int64_base_atomics"}

Notes:

e A device may reject a SPIR module using an unsupported KHR extension.

e A device using c1_khr 3d_image writes must also declare its use of cl_images inside

spir.used.optional.core.features.

e cl khr fp64 doesn’t exist in SPIR. Instead SPIR generators should use the c1 doubles

optional core features.

The Khronos Group Inc. SPIR 1.0 (Provisional) 23

2.13 SPIR Version

The SPIR version used by the module is stored in the spir.version named metadata. The named
metadata contains a metadata node consisting of a list of two 132 constant values denoting the
major and minor version numbers.

The following example indicates the module uses SPIR version 1.0:

I'spir.version = !{!3}
13 = metadata !'{i32 1, i32 0}

2.14 OpenCL Version

The OpenCL version used by the module is stored in the spir.ocl.version named metadata node.
The named metadata node contains a metadata node consisting of a list of two 132 constant values
denoting the major and minor version numbers.

This example indicates the module is compiled for OpenCL 1.0:

I'spir.ocl.version = !{!4}
14 = metadata '{i32 1, i32 0}

This example indicates the module is compiled for OpenCL 1.1:

I'spir.ocl.version = !{!4}
14 = metadata !'{i32 1, i32 1}

2.15 memcpy functions

The _ spir_ memcpy functions copy a block of memory from an i8* (void) source location to an
i8* (void) destination location.

Syntax:

declare void @__ spir_ memcpy(i8 addrspace(A1)* dst, i8 addrspace(A2)* sre, 132 len, 132 align, il
isVolatile)

declare void @__ spir_ memcpy(i8 addrspace(A1)* dst, i8 addrspace(A2)* sre, 164 len, 132 align, il
isVolatile)

Where Al and A2 can denote the address space of the first and second pointer arguments ac-
cordingly.

Arguments: the first argument is a pointer to the destination, the second is a pointer to the
source. The third argument is an integer argument specifying the number of bytes to copy, the
fourth argument is the alignment of the source and destination locations, and the fifth is a boolean
indicating a volatile access.

If the call to this intrinsic has an alignment value that is not 0 or 1, then the caller guarantees
that both the source and destination pointers are aligned to that boundary.

Semantics: Copy a block of memory from the source location to the destination location, which
are not allowed to overlap. It copies ”len” bytes of memory over. If the argument is known to be
aligned to some boundary, this can be specified as the fourth argument, otherwise it should be set
to0or 1.

The Khronos Group Inc. SPIR 1.0 (Provisional) 24

3 SPIR and LLVM IR

3.1 LLVM Triple
SPIR introduces a new LLVM triple called named “spir”:

target triple = "spir"
3.2 LLVM Target data layout

The spir triple datalayout is as follows:

target datalayout = "i11:8-i8:8-116:16-132:32-164:64-£32:32-£64:64-v16:16-v24:32-v32:32
-v48:64-v64:64-v96:128-v128:128-v192:256-v256:256-v512:512-v1024:1024"

Note: Endianness, pointers, stack objects and native integer sizes are not a part of the datalayout.

3.3 LLVM Supported Instructions
The following tables show which LLVM instructions are may be used in SPIR:

25

The Khronos Group Inc. SPIR 1.0 (Provisional)

LLVM Instruction Family | Instruction name | Supported

Terminator ret yes

Terminator br yes

Terminator switch yes

Terminator indirectbr no, required for GNU extension (array
of pointer of functions)

Terminator invoke no, exception handling related

Terminator unwind no, exception handling related

Terminator resume no, exception handling related

Terminator unreachable yes, might be used for switch state-
ments

Binary add yes

Binary fadd yes

Binary sub yes

Binary fsub yes

Binary mul yes

Binary fmul yes

Binary udiv yes

Binary sdiv yes

Binary fdiv yes

Binary urem yes

Binary srem yes

Binary frem yes

Bitwise Binary shl yes, left-shifted by log2(N), where N is
the number of bits used to represent the
data type of the shifted value

Bitwise Binary Ishr yes, right-shifted by log2(N), where N
is the number of bits used to represent
the data type of the shifted value.

Bitwise Binary ashr yes, right-shifted by log2(N), where N is
the number of bits used to represent the
data type of the shifted value. exact is
disallowed and used for trap values

Bitwise Binary and yes

Bitwise Binary or yes

Bitwise Binary Xor yes

Vector extractelement yes

Vector insertelement yes

Vector shufflevector yes

Aggregate extractvalue yes

Aggregate insertvalue yes

Memory Access & Addressing | alloca yes

Memory Access & Addressing | load yes, atomic is disallowed

Memory Access & Addressing | store yes, atomic is disallowed

Memory Access & Addressing | fence no, use built-ins instead

Memory Access & Addressing | cmpxchg no, use built-ins instead

Memory Access & Addressing | atomicrmw no, use built-ins instead

Memory Access & Addressing | getelementptr yes

Table 16: Instructions, part 1

The Khronos Group Inc. SPIR 1.0 (Provisional)

LLVM Instruction Family | Instruction name | Supported

Conversion Operations trunc .. to yes, but only for scalars
Conversion Operations zext .. to yes, but only for scalars
Conversion Operations sext .. to yes, but only for scalars
Conversion Operations fptrunc .. to yes, but only for scalars
Conversion Operations fpext .. to yes, but only for scalars
Conversion Operations fptoui .. to yes, but only for scalars
Conversion Operations fptosi .. to yes, but only for scalars
Conversion Operations uitofp .. to yes, but only for scalars
Conversion Operations sitofp .. to yes, but only for scalars

Conversion Operations

ptrtoint .. to

no, use size t intrinsics instead

Conversion Operations

inttoptr .. to

no, use size t intrinsics instead

Conversion Operations bitcast .. to yes

Other Operations icmp yes

Other Operations femp yes

Other Operations phi yes

Other Operations select yes

Other Operations call yes, but not to pointers to functions
Other Operations va_ arg no, not supported by OpenCL

Other Operations

landingpad arg

no

Table 17: Instructions, part 2

3.4 LLVM Supported Intrinsic Functions

None of the LLVM intrinsics are allowed in SPIR.

3.5 LLVM Linkage Types

The following table shows the LLVM linkage types allowed in SPIR:

26

The Khronos Group Inc. SPIR 1.0 (Provisional) 27

Linkage type Supported

private yes

linker private no

linker private weak no

linker private weak def auto | no

available externally yes (describes C99 inline definition)
linkonce no

internal yes (maps to static)

weak no

common yes

appending no

extern weak no

linkonce odr no

weak odr no

external yes (will be required for libraries)
dllimport no

dllexport no

Table 18: Linkage types

3.6 Calling Conventions

SPIR kernels should use "spirkrnl" calling convention. Non-kernel functions use "spirfnc" calling
convention. All other calling conventions are disallowed. []

3.7 Visibility Styles
Visibility styles are not used in SPIR and should be set to ”default”. Other values are disallowed.

3.8 Parameter Attributes

The following table defines which parameter attributes are usable in SPIR:

Parameter Attribute | Supported
zeroext yes

signext yes

inreg no

byval yes

sret yes
nocapture yes

nest no

Table 19: Parameter attributes

3.9 Garbage Collection Names

Garbage collection is not part of SPIR, hence functions are not allowed to specify a garbage collector
name.

3If we are unable to add this calling convention to the LLVM open source project, we will switch back to the “ccc”
calling convention for SPIR.

The Khronos Group Inc. SPIR 1.0 (Provisional) 28

3.10 Function Attributes

Every SPIR function should use the nounwind attribute. In addition the following optional attributes
could be used: alwaysinline, inlinehint, noinline, readnone, readonly. The rest of the function
attributes are disallowed.

Function Attribute | Supported
alignstack no
alwaysinline yes
nonlazybind no
inlinehint yes

naked no
noimplicitfloat no

noinline yes
noredzone no

noreturn no
nounwind yes, needs to be always set
optsize no
readnone yes
readonly yes

Ssp no

sspreq no

uwtable no

returns_ twice no

Table 20: Function attributes

3.11 Reserved identifiers

All identifiers that begin with __ spir and spir.* are reserved and shall not be used by SPIR
generators (for user source identifiers).

3.12 Module Level Inline Assembly
LLVM module level inline assembly is not allowed in SPIR.

3.13 Pointer Aliasing Rules
SPIR follows the pointer aliasing rules of LLVM.

3.14 Volatile Memory Accesses

SPIR requires use of volatile memory accesses and follows LLVM IR rules for 1oad’s, store’s and
Spir.memcpy’s.

3.15 Memory Model for Concurrent Operations

SPIR does not use the LLVM atomic intrinsics, because OpenCL has its own set of intrinsics.

3.16 Atomic Memory Ordering Constraints
The LLVM atomic orderings are disallowed in SPIR.

The Khronos Group Inc. SPIR 1.0 (Provisional) 29

A SPIR name mangling

In order to support cross device compatibility of SPIR, the name mangling scheme must be stan-
darized across vendors. SPIR adopts and extends the name mangling scheme in Section 5.1 of the
Itanium C++ ABI [1]. There are three major issues to deal with, along with many minor items.
The major items are data types, address spaces, and overloaded ‘C’ functions.

Normally, ‘C’ functions require no overloading, and their names are not mangled. When gener-
ating SPIR, functions must use this mangling scheme if and only if they:

e Are defined in the SPIR specification, or

e Are OpenCL C built-in functions that are overloaded over their argument types.

A.1 Data types

The following table shows the mapping from OpenCL C data types to the type names used in the
mangling scheme:

OpenCL C type Mangling scheme type name
bool b

unsigned char, char h

char c

unsigned short, short t

short S

unsigned int, uint j

int i

unsigned long, ulong m

long 1

half Dh

float f

double d

Vector types with up to 8 elements | u2vN <mangled-element-type-name> (where N is one of 2, 3, 4, 8)
Vector types with 16 elements u3dvl6<mangled-element-type-name>
imageld_t u3ild

imageld array t udila

imageld buffer t u3ilb

image2d t u3di2d

image2d array t udi2a

image3d_t u3i3d

event t u2ev

sampler t u2sa

size t, uintptr t u2sz

ptrdiff t, intptr t u2pd

Table 21: Mapping of OpenCL C builtin type names to mangled type names

A.2 Type attributes

The following table shows the mapping from OpenCL C specific type qualifiers to their mangled
encoding;:

The Khronos Group Inc. SPIR 1.0 (Provisional) 30

OpenCL C type attribute | Mangled encoding
read_only UlR

write only UlW

read_write (Reserved) UlB

LLVM address space N U2AN

Table 22: Mapping of OpenCL C type attributes to mangled names

A.3 The restrict qualifier
The Itanium ABI states:

The restrict qualifier is part of the C99 standard, but is strictly an extension to C++
at this time. There is no standard specification of whether the restrict attribute is part of
the type for overloading purposes. An implementation should include its encoding in the
mangled name if and only if it also treats it as a distinguishing attribute for overloading
purposes. This ABI does not specify that choice.”

SPIR encodes the “restrict” qualifier as part of the mangled name using the ‘r’ token in the

CV-qualifiers. Hence SPIR treats the “restrict” qualifier as significant for overloading.

A.4 Summary of changes

The following is a summary of the mangling of builtin types:

<builtin-type> ::= v # void (Maps to OpenCL void)
=W # wchar_t (xNot valid)
=b # bool (Maps to OpenCL bool)
= ¢ # char(Maps to OpenCL char)
= a # signed char (*#Not valid)
=h # unsigned char (Maps to OpenCL uchar)
= s # short (Maps to OpenCL short)
=t # unsigned short (Maps to OpenCL ushort)
=i # int (Maps to OpenCL int)
= j # unsigned int (Maps to OpenCL uint)
=1 # long (Maps to OpenCL long)
=m # unsigned long(Maps to OpenCL ulong)
= x # long long, __int64(*Not valid)
=y # unsigned long long, __int64(*Not valid)
=n # __int128 (*Not valid)
= o # unsigned __int128(xNot valid)
= f # float (Maps to OpenCL float)
=d # double (Maps to OpenCL double)
= e # long double, __float80(xNot valid)
=g # __float128 (*Not valid)
=z # ellipsis (*Valid only for printfx*)
= Dd # IEEE 754r decimal floating point (64 bits) (*Not valid)
= De # IEEE 754r decimal floating point (128 bits) (*Not valid)
= Df # IEEE 754r decimal floating point (32 bits) (*Not valid)
= Dh # IEEE 754r half-precision floating point (16 bits) (Maps to OpenCL Half)
= Di # char32_t (*Not valid)
= Ds # charl6_t(xNot valid)
= Da # auto (in dependent new-expressions)
= Dn # std::nullptr_t (i.e., decltype(nullptr))

The Khronos Group Inc.

;= u[23]vN

::= u3dild
;1= u3ila
::= u3dilb
1= u3di2d
1= u3i2a
1= u3i3d

H OB H H R

SPIR 1.0 (Provisional) 31

<builtin-type> # An OpenCL vector of length ’N’ of the specified type.

= e e e

1d
1d
1d
2d
2d
3d

image
image
image
image
image
image

Only values of 2, 3, 4, 8 and 16 are valid.

type
array type
buffer type
type
array type
type

1:= u2ev # A event type

::= u2sa # A sampler type
1= u2sz # A size_t type
1:= u2pd # A ptrdiff_t type

u <source-name> # vendor extended type

SPIR also extends the CV-qualifier list as follows. All CV-qualifiers are order-insensitive.

<CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
= [Uiw] [U1B] [U1R] # write_only, read_write("both"; Reserved), read_only
= [U2A[N]] # Address space N, where N is valid for 1-5.

These are order-insensitive.

Note: By default, objects reside in the private address space (number 0). No address space
qualification is used to indicate the private address space.

References

[1] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, SGI, and others. Itanium C++ ABL
http://mentorembedded.github.com/cxx-abi/abi.htmll

[2] Khronos OpenCL Working Group. The OpenCL Specification, version 1.2. http://www.
khronos.org/registry/cl/specs/opencl-1.2.pdf, November 2011.

[3] LLVM Team. LLVM Bitcode File Format. |http://www.llvm.org/releases/3.1/docs/
BitCodeFormat.html, 2012. Version 3.1.

[4] LLVM Team. LLVM Language Reference Manual. http://www.1llvm.org/releases/3.1/docs/
LangRef .html, 2012. Version 3.1.

http://mentorembedded.github.com/cxx-abi/abi.html
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.llvm.org/releases/3.1/docs/BitCodeFormat.html
http://www.llvm.org/releases/3.1/docs/BitCodeFormat.html
http://www.llvm.org/releases/3.1/docs/LangRef.html
http://www.llvm.org/releases/3.1/docs/LangRef.html

	1 Introduction
	1.1 One format, two notations
	1.2 Name mangling

	2 OpenCL C mapping to SPIR
	2.1 Supported Data Types
	2.1.1 Built-in Scalar Data Types
	2.1.1.1 The size_t data type
	2.1.1.1.1 Conversion functions
	2.1.1.1.2 Arithmetic functions
	2.1.1.1.3 Bitwise functions
	2.1.1.1.4 Shift functions
	2.1.1.1.5 Relational functions
	2.1.1.1.6 Pointer Arithmetics functions
	2.1.1.1.7 Memory Access functions
	2.1.1.1.8 Device Specific functions

	2.1.2 Built-in Vector Types
	2.1.3 Other Built-in Data Types
	2.1.3.1 Declaring samplers as global constants
	2.1.3.2 Constructing a zero event type
	2.1.3.3 NULL pointer

	2.1.4 Alignment of Types
	2.1.5 Structs

	2.2 Address space qualifiers
	2.3 Access qualifiers
	2.4 Function qualifiers
	2.4.1 Optional attribute qualifiers
	2.4.1.1 Work group size information
	2.4.1.2 Vector type hint information

	2.5 Kernel Arg Info
	2.6 Storage class specifier
	2.7 Type qualifiers
	2.8 Attribute Qualifiers
	2.8.1 Type Attributes
	2.8.1.1 aligned attribute
	2.8.1.2 packed attribute

	2.8.2 Variable Attributes
	2.8.2.1 aligned attribute
	2.8.2.2 endian attribute

	2.9 Compiler Options
	2.10 Preprocessor Directives and Macros
	2.10.1 Preprocessor Directives
	2.10.2 Macros

	2.11 Built-ins
	2.11.1 Name Mangling
	2.11.1.1 Synchronization Functions
	2.11.1.2 Built-ins with size_t arguments

	2.11.2 The printf function

	2.12 KHR Extensions
	2.12.1 Declaration of used optional core features
	2.12.2 Declaration of used KHR extensions

	2.13 SPIR Version
	2.14 OpenCL Version
	2.15 memcpy functions

	3 SPIR and LLVM IR
	3.1 LLVM Triple
	3.2 LLVM Target data layout
	3.3 LLVM Supported Instructions
	3.4 LLVM Supported Intrinsic Functions
	3.5 LLVM Linkage Types
	3.6 Calling Conventions
	3.7 Visibility Styles
	3.8 Parameter Attributes
	3.9 Garbage Collection Names
	3.10 Function Attributes
	3.11 Reserved identifiers
	3.12 Module Level Inline Assembly
	3.13 Pointer Aliasing Rules
	3.14 Volatile Memory Accesses
	3.15 Memory Model for Concurrent Operations
	3.16 Atomic Memory Ordering Constraints

	A SPIR name mangling
	A.1 Data types
	A.2 Type attributes
	A.3 The restrict qualifier
	A.4 Summary of changes

