KHRCSNOS.

GROUP

SPIR

The SPIR™ Specification

Standard Portable Intermediate Representation

Version 1.2
Revision Date: 2014-01-21
Editor: Boaz Ouriel

Copyright 2011-2014 The Khronos Group Inc. All Rights Reserved

The Khronos Group Inc. SPIR 1.2 1

Contents
1 Introduction 5
1.1 One format, two notations L 5
1.2 Name mangling L e 5
2 OpenCL C mapping to SPIR 6
2.1 Supported Data Types o . 6
2.1.1 Built-in Scalar Data Types 6
2.1.2 Built-in Vector Types e 6
2.1.3 Other Built-in Data Types 7
2.1.3.1 Declaring sampler variables oL 8
2.1.3.2 Image channel data type values. 8
2.1.3.3 Image channel order values 9
2.1.34 Zeroevents 9
2.1.3.5 NULL pointer i 10
2.1.4 Alignment of Types 10
2.1.5 Structs 10
2.2 Address space qualifiers 10
2.3 Kernel qualifiers 11
2.3.1 Optional attribute qualifiers oL 11
2.3.1.1 Work group size information 11
2.3.1.2 Vector type hint information 12
2.4 Kernel Arg Info e 12
2.5 Storage class specifier oL L 14
2.6 Type qualifiers L 14
2.7 Attribute Qualifiers 14
2.7.1 Type Attributes 14
2.7.1.1 aligned attributeo oo 14
2.7.1.2 packed attribute Lo L 14
2.7.2 Variable Attributes 14
2.7.2.1 aligned attribute o oo 14
2.8 Compiler Options o e 15
2.9 Preprocessor Directives and Macros L L oo 16
2.9.1 Floating point contractions L L oo 16
2.10 Built-ins e 16
2.10.1 Name Mangling e 16
2.10.2 Synchronization Functions o 0oL 16
2.10.3 The printf functiono L 16
2.11 KHR Extensions e 16
2.11.1 Declaration of used optional core features 16
2.11.2 Declaration of used KHR extensions 17
2.12 SPIR Version e 18
2.13 OpenCL Version o it e 18
2.14 memcpy functions 18
2.15 Restrictions e 18

The Khronos Group Inc. SPIR 1.2 2

3 SPIR and LLVM IR 18
3.1 LLVM Triple e 18
3.2 LLVM Target data layout 19
3.3 LLVM Supported Instructions 19
3.4 LLVM Supported Intrinsic Functions 21
3.5 SPIR ABI e 21
3.6 LLVM Linkage Types e 21
3.7 Calling Conventions e 22
3.8 Visibility Styles 22
3.9 Parameter Attributes. 22
3.10 Garbage Collection Names o 23
3.11 Function Attributes 23
3.12 Reserved identifiers 23
3.13 Module Level Inline Assembly o 23
3.14 Pointer Aliasing Rules L 23
3.15 Volatile Memory Accesses« ..o e 23
3.16 Memory Model for Concurrent Operations 24
3.17 Atomic Memory Ordering Constraints 24

A SPIR name mangling 24
A1l Datatypes 24
A.2 The restrict qualifier 25
A.3 Summary of changes 26

List of Tables

0O Ui Wi

== = = = O
B Wb~ O

Mapping for built-in scalar data types 6
Mapping for built-in vector types L 7
Mapping for other built-in data types L. 7
sampler initialization values oL L oo 8
image channel data type values L 9
image channel order values L oo 9
Kernel Arg Info metadata description oL 13
Mapping of type qualifiers oo 14
Instructions, part 1 Lo 20
Instructions, part 2 21
Linkage types L L e 22
Parameter attributeso 22
Function attributes 23

Mapping of OpenCL C builtin type names to mangled type names 25

The Khronos Group Inc. SPIR 1.2 3

Copyright (c) 2011-2014 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written permis-
sion of Khronos Group. You may use this specification for implementing the functionality therein,
without altering or removing any trademark, copyright or other notice from the specification, but
the receipt or possession of this specification does not convey any rights to reproduce, disclose, or
distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in
part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter
member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any
fashion, provided that NO CHARGE is made for the specification and the latest available update of
the specification for any version of the API is used whenever possible. Such distributed specification
may be re-formatted AS LONG AS the contents of the specification are not changed in any way.
The specification may be incorporated into a product that is sold as long as such product includes
significant independent work developed by the seller. A link to the current version of this specification
on the Khronos Group web-site should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express
or implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual property.
Khronos Group makes no, and expressly disclaims any, warranties, express or implied, regarding
the correctness, accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or Members or their
respective partners, officers, directors, employees, agents or representatives be liable for any damages,
whether direct, indirect, special or consequential damages for lost revenues, lost profits, or otherwise,
arising from or in connection with these materials.

Khronos, StreamInput, WebGL, COLLADA, OpenKODE, OpenVG, OpenWF, OpenSL ES,
OpenMAX, OpenMAX AL, OpenMAX IL, OpenMAX DL, and SPIR are trademarks and WebCL
is a certification mark of the Khronos Group Inc. OpenCL is a trademark of Apple Inc. and
OpenGL and OpenML are registered trademarks and the OpenGL ES and OpenGL SC logos are
trademarks of Silicon Graphics International used under license by Khronos. All other product
names, trademarks, and/or company names are used solely for identification and belong to their
respective owners.

The Khronos Group Inc. SPIR 1.2

Acknowledgements

Editor: Boaz Ouriel, Intel

Contributors:

David Neto, Altera

Anton Lokhmotov, ARM

Mike Houston, AMD

Micah Villmow, AMD

Brian Sumner, AMD

Richard Relph, AMD

Yaxun Liu, AMD

Tanya Lattner, Apple

Aaftab Munshi, Apple

Holger Waechtler, Broadcom
Christopher Thomson-Walsh, Broadcom
Andrew Richards, Codeplay

Guy Benyei, Intel

Javier E. Martinez, Intel

Boaz Ouriel, Intel

Dillon Sharlet, Intel

Vinod Grover, NVIDIA

Kedar Patil, NVIDIA

Sumesh Udayakumaran, QUALCOMM
Chihong Zhang, QUALCOMM
James Price, University of Bristol

Henry Styles, Xilinx

The Khronos Group Inc. SPIR 1.2 5

1 Introduction

This document defines version 1.2 of the Standard Portable Intermediate Representation (SPIR).
SPIR 1.2 is a mapping from the OpenCL C programming language into LLVM IR.

This version of the specification is based on LLVM 3.2 [4] [3], and on OpenCL C as specified in
the OpenCL 1.2 Specification [2].

The goal of SPIR 1.2 is to provide a portable interchange format for partly compiled OpenCL C
programs. The format:

e Is vendor neutral.
e Is not C source code.

e Supports almost all core features and KHR extensions for version 1.2 of OpenCL C. (A small
number of features of OpenCL C are not expressible in SPIR.)

e Is designed to support vendor extensions.
e Is compact.
e Is designed to be efficiently loaded by an OpenCL implementation.

e Is designed to be useful as a target format for compilers of programming languages other than
OpenCL C. This is a secondary goal of SPIR.

1.1 One format, two notations
LLVM IR has three semantically equivalent representations:

e An in-memory data structure manipulated by the LLVM software.

e A compact external binary representation, known as bitcode [3].

e A human readable assembly language notation [4].

SPIR adopts two of these: the bitcode and assembly language notations from LLVM. For ease
of exposition, the remainder of this document uses only the assembly language notation.

1.2 Name mangling

OpenCL C has many overloaded built-in functions, meaning the same function name is used with
different argument and return types. For example, the sin built-in function is defined for both
scalar and vector floating point argument and return types. SPIR distinguishes between all of the
variations of the sin function by mangling the root name sin with its argument types.

This means that in SPIR all of the OpenCL C built-in functions are mangled based on their
argument types.

Other kinds of names are not mangled in SPIR. In particular, regular and kernel user functions
from OpenCL C are not mangled when mapped into SPIR.

By not mangling the names of regular functions, SPIR supports being the target for language
families (other than C/C++) having their own distinctive type systems. In other words, mangling of
user-level functions is beyond the scope of SPIR, and is subject to coordination among third parties
(compiler front end and library implementors).

For names that do require mangling, SPIR adopts and extends the name mangling scheme from
Section 5.1 of the Itanium C++ ABI [1]. Extensions are required to support OpenCL concepts
absent from ordinary C++. The SPIR mangling scheme is defined in Appendix A.

1The LLVM 3.2 bitcode notation is only partly documented by [3]. However, bitcode notation is fully (but
implicitly) defined by the behaviour of LLVM 3.2 software release.

The Khronos Group Inc. SPIR 1.2 6

2 OpenCL C mapping to SPIR

2.1 Supported Data Types
The following LLVM data types are supported:

2.1.1 Built-in Scalar Data Types

Table 1 describes the mapping from the OpenCL C built-in scalar data types to SPIR built-in scalar
data types.

OpenCL C Type LLVM Type
bool il
char i8
unsigned char, uchar i8
short i16
unsigned short, ushort | i16

int 32
unsigned int, uint i32
long 164
unsigned long, ulong i64
float float
double double
half half
void void

Table 1: Mapping for built-in scalar data types

Notes:
e Signed and unsigned values are sign extended or zero extended based on the deployed operation.
e While LLVM has many more primitive data types, only the ones described above are allowed
in SPIR.
2.1.2 Built-in Vector Types

Table 2 describes the mapping from the OpenCL C built-in vector data types to SPIR built-in scalar
data types. Supported values of n are 2, 3, 4, 8, and 16 for all vector data types.

The Khronos Group Inc. SPIR 1.2 7

OpenCL C Type | LLVM Type
charn <nxi8>
ucharn <nxi8>
shortn <nxil6>
ushortn <nxil6 >
intn <nxi32>
uintn <nxi32>
longn <nxi6d >
ulongn <nxi6d >
halfn < n x half >
floatn < n x float >
doublen < n x double >

Table 2: Mapping for built-in vector types

Note: LLVM supports many more vector data types, however only the ones described above are
allowed in SPIR. Specifically, a vector of i1’s is disallowed in SPIR.
2.1.3 Other Built-in Data Types

Table 3 defines the mapping of OpenCL images, sampler, events, size t, ptrdiff t,uintptr t,intptr_t
data types to LLVM data types

OpenCL C Type LLVM Type | LLVM Name

imageld t opaque* %opencl.imageld t

imageld array t opaque* %opencl.imageld array t
imageld buffer t opaque* %opencl.imageld buffer t
image2d t opaque* %opencl.image2d t

image2d array t opaque* Y%opencl.image2d array t
image3d t opaque™ %opencl.image3d_t

image2d msaa t opaque* Y%opencl.image2d msaa_t
image2d array msaa t opaque™ %opencl.image2d array msaa_t
image2d msaa_depth t opaque* %opencl.image2d msaa_depth t
image2d array msaa depth t | opaque* Y%opencl.image2d array msaa_depth t
image2d_depth t opaque* %opencl.image2d depth t
image2d array depth t opaque* Y%opencl.image2d array depth t
event t opaque* Y%opencl.event_t

sampler t 132 N/A

size_t i32 or i64 N/A

ptrdiff t i32 or i64 N/A

uintptr_t i32 or i64 N/A

intptr_t i32 or i64 N/A

Table 3: Mapping for other built-in data types

Notes:

e The size of images and event data types is equal to 32 bits or 64 bits according to the device
address width.

The Khronos Group Inc.

e The names given to opaque data types are reserved for SPIR and shall not be used otherwise.

e The OpenCL size t,ptrdiff t,uintptr t and intptr t data types are mapped to LLVM
i32 when the device address width is equal to 32 bits and to LLVM i64 when the device

SPIR 1.2

address width is equal 64 bits

e 132 values that represent sampler t objects, can only be passed as arguments to images
built-ins. Any other operation involving these i32 values is implementation defined.

2.1.3.1 Declaring sampler variables

A sampler variable is an 132 constant-qualified module scope variable in the constant address
space, initialized with an i32 constant value. The 132 constant value is interpreted as a bit-field

specifying the following properties:

Sampler State

Init Values

addressing mode

CLK_ADDRESS NONE=0x0000
CLK_ADDRESS CLAMP_ TO EDGE=0x0002
CLK_ADDRESS CLAMP=0x0004
CLK_ADDRESS REPEAT=0x0006
CLK_ADDRESS MIRRORED REPEAT=0x0008

normalized coords

CLK_NORMALIZED COORDS_FALSE=0x0000
CLK_NORMALIZED COORDS_TRUE=0x0001

filter mode

CLK_FILTER_NEAREST=0x0010
CLK_FILTER_LINEAR= 0x0020

Table 4: sampler initialization values

2.1.3.2 Image channel data type values

The get_image_channel data_ type() built-in returns an integer value which represents the im-

age channel data type. The following table indicates the valid values:

The Khronos Group Inc. SPIR 1.2 9

Channel order Value

CLK SNORM _INTS8 0x10DO0
CLK_SNORM INT16 0x10D1
CLK_UNORM _INTS8 0x10D2
CLK_UNORM _INT16 0x10D3

CLK_UNORM_SHORT 565 | 0x10D4
CLK_UNORM_SHORT_555 | 0x10D5
CLK_UNORM _INT 101010 | 0x10D6

CLK_SIGNED_INTS 0x10D7
CLK_SIGNED INT16 0x10DS
CLK_SIGNED INT32 0x10D9
CLK_UNSIGNED INTS 0x10DA

CLK_UNSIGNED INT16 0x10DB
CLK_UNSIGNED INT32 0x10D0

CLK_HALF_FLOAT 0x10DD
CLK_FLOAT 0x10DE
CLK_UNORM_INT24 0x10DF

Table 5: image channel data type values

2.1.3.3 Image channel order values

The get_image_channel order() built-in returns an integer value which represents the image
channel order. The following table indicates the valid values:

Channel order Value

CLK R 0x10B0O
CLK A 0x10B1
CLK RG 0x10B2
CLK RA 0x10B3
CLK RGB 0x10B4
CLK_ RGBA 0x10B5
CLK BGRA 0x10B6
CLK ARGB 0x10B7
CLK_INTENSITY 0x10B8
CLK_ LUMINANCE 0x10B9
CLK_ Rx 0x10BA|
CLK RGx 0x10BB
CLK_ RGBx 0x10BC
CLK DEPTH 0x10BD
CLK_DEPTH _ STENCIL | 0x10BE

Table 6: image channel order values

2.1.3.4 Zero events
Zero events are represented using the LLVM null keyword.

The Khronos Group Inc. SPIR 1.2 10

2.1.3.5 NULL pointer
NULL pointers are represented using the LLVM null keyword.

2.1.4 Alignment of Types
SPIR follows the alignment rules of OpenCL. Therefore:

e Stack allocations and module scope variable declarations must follow the alignment rules de-
fined in OpenCL specification.

e All 1load and store operations need to be aligned.

2.1.5 Structs

The alignment of structures data members is the alignment of the SPIR data type. Extra padding
is disallowed. The alignment of the structure is the alignment of the member which requires the

largest alignment.
When mapping an OpenCL C struct data type to SPIR, the order of members shall be preserved.

2.2 Address space qualifiers

OpenCL C address spaces are mapped to the LLVM addrspace(n) qualifier using the following
convention:

e (— private
e 1 — global

e 2 — constant
e 3 —local

Note: Casts between address spaces is disallowed in SPIR.

Note: Each OpenCL C function-scope local variable is mapped into an LLVM module-level
variable in address space 3. They are not allocated using alloca instruction. The name of the
module-level variable consists of the function name, followed by a period, followed by the the source
identifier.

Example OpenCL C program:

void foo(void) {
local floatd 1f4;
}

A valid SPIR mapping:

; Unmangled component names shown here.
; float4 must be 16 bytes aligned.
@foo.1f4 = internal addrspace(3) global <4 x float> zeroinitializer, align 16

define spir_kernel void @foo() nounwind {
entry:
ret void

}

The Khronos Group Inc. SPIR 1.2 11

In OpenCL C, a kernel function can call another kernel. However, when the called kernel de-
clares a variable in the local address space, then the behaviour is implementation defined. SPIR
supports a kernel calling another kernel, but does not allow the called kernel to have a variable in
the ~ local address space. For example, the following example is not valid SPIR:

@bar.1f4 = internal addrspace(3) global <4 x float> zeroinitializer, align 16

define spir_kernel void @bar() nounwind {

entry:
ret void

}

define spir_kernel void @callbar() nounwind {

entry:
call spir_kernel void @bar() ; This is not supported by SPIR
ret void

}

2.3 Kernel qualifiers

Adding qualifiers and attributes to a kernel and its arguments is achieved by usage of the LLVM
metadata infrastructure. Each SPIR module has a opencl.kernels named metadata node con-
taining a list of metadata objects. Each metadata object in opencl.kernels references a list of
metadata objects, each of which represents a single kernel. The first value in a SPIR function meta-
data object is the SPIR function that represents an OpenCL kernel. The rest of the metadata objects
are additional attributes and information which is attached to the SPIR function. The description
of each metadata object inside the SPIR function metadata list is described in the other sections.
The following LLVM textual representation shows how SPIR function attributes are represented:
lopencl.kernels = !{ !0,!1,...,!N }
; Note: The first element is always an LLVM::Function signature

10 = metadata !{ < function signature >, 01, !0, ., 105}
1 = metadata !{ < function signature >, '1y, '15, ..., , '1; }
IN = metadata !'{ < function signature >, !Ny, Ny, ..., , !Ny }

2.3.1 Optional attribute qualifiers
2.3.1.1 Work group size information

Attaching work group size hint and reqd work group size information to kernels is achieved
using LLVM metadata infrastructure. Two new metadata object are introduced. The first item in
the metadata object is the string "work group size hint" or "reqd work_ group_size" fol-
lowed by three 132 constant values. The three 132 values specify the (X,Y,Z) group dimensions.

; work_group_size_hint(128,1,1)
10 = metadata !{ metadata !"work_group_size_hint", i32 128, i32 1, i32 1}
; reqd_work_group_size(128,1,1)
!1 = metadata !{ metadata !"reqd_work_group_size", 132 128, i32 1, i32 1}

Note:

e Attaching the work group size hint to a non-kernel SPIR function is invalid.

The Khronos Group Inc. SPIR 1.2 12

2.3.1.2 Vector type hint information

Attaching vec_type_hint information to kernels is achieved using LLVM metadata infrastruc-
ture. The first argument in each metadata object is the string "vec_type_hint" followed by a
typed undef LLVM value and an additional i1 value representing the signedness of the value.

; vec_type_hint(float)

10 = metadata !{ metadata !"vec_type_hint", float undef, il 1}

; vec_type_hint (uint8)

!1 = metadata !{ metadata !"vec_type_hint", <8 x i32> undef, il 0}

; vec_type_hint (<type>)
'H = metadata !{ metadata !"vec_type_hint", <type> undef, il isSigned}

Note:
e Attaching vector type hint information to a non-kernel SPIR function is invalid.

e The double data type is an optional type and using it requires marking the SPIR module as
using the c1 doubles optional core feature. See Section 2.11.1.

2.4 Kernel Arg Info

Kernel argument specific information is preserved using metadata objects. These objects are gen-
erated for every kernel, with an exception for the kernel arg name metadata, which is generated
only when the -cl-kernel-arg-info build option is specified for compilation. The metadata nodes
describing the kernel argument info are in the form of a string tag, and then a list of the corresponding
data for each one of the kernel’s arguments.

The following table shows the valid kernel argument information types and values:

The Khronos Group Inc.

SPIR 1.2 13

ARG Info

Type

Values

"kernel arg addr_space" i32

0 — private
1 — global

2 — constant
3 — local

"kernel arg access_qual" | string metadata

”read_only”
?write only”
“read write”
”none”

"kernel arg type"

string metadata

The type name specified for the argument. The
type name will be the argument type name as
it was declared with any whitespace removed. If
argument type name is an unsigned scalar type
(i.e. unsigned char, unsigned short, unsigned int,
unsigned long), uchar, ushort, uint and ulong will
be returned. The argument type name returned
does not include any type qualifiers.

"kernel arg base_ type"

string metadata

The base type name of the argument. The type
name will be identical to the kernel arg type
metadata, except for types derived from a single
OpenCL built-in type (typedef). In this case the
name of the OpenCL built-in type will be used.

"kernel arg type_ qual"

string metadata

”const”

"restrict”

”volatile”

or a single space separated combination of these,

"kernel arg name"

string metadata

the name specified for the argument. Generated
only when the -cl-kernel-arg-info build option is
specified for compilation.

Table 7: Kernel Arg Info metadata description

Note: Images data types reside in global memory and hence should be marked as such in the
"kernel arg addr_space" metadata.

Example:

typedef sampler_t mySampler;
__kernel void helloworld(__global char* in, __global char* out, mySampler s);

lopencl.kernels = !{!0}

10

metadata

1 = metadata
12 = metadata

13 = metadata

14 = metadata

1{void (i8

! {metadata
'{metadata

'{metadata

! {metadata

addrspace(1)*, i8 addrspace(l)*, i32)* @helloworld, metadata !1,
metadata !2, metadata !3, metadata !4, metadata !5, metadata !6}

I"kernel _arg_address_space", i32 1, i32 1, i32 0}
I"kernel _arg_access_qual", metadata !"none", metadata !"none",

metadata !"none"}

!"kernel_arg_type", metadata !"char*", metadata !"charx",
metadata !"mySampler"}

I"kernel_arg_base_type", metadata !"char*", metadata !"charx",
metadata !"sampler_t"}

The Khronos Group Inc. SPIR 1.2 14

15
16

metadata !{metadata !"kernel_arg_type_qual", metadata !"", metadata !"", metadata !""}
metadata !{metadata !'"kernel_arg_name", metadata !"in", metadata !"out", metadata !"s"}

2.5 Storage class specifier

The OpenCL C extern and static storage class specifiers map to the LLVM external and
internal linkage types, respectively.

2.6 Type qualifiers

OpenCL C Type Qualifier | LLVM Mapping

const constant
restrict noalias
volatile Certain memory accesses, such as loads,

stores, and SPIR memcpys may be marked
volatile. (See Notes below.)

Table 8: Mapping of type qualifiers

Notes for the volatile qualifier:

1. The optimizers must not change the number of volatile operations or change their order of
execution relative to other volatile operations.

2. The optimizers may change the order of volatile operations relative to non-volatile operations.

2.7 Attribute Qualifiers
2.7.1 Type Attributes

SPIR provides structure types to describe unions and structures. The layout of structures in SPIR
must take into consideration the alignment rules of OpenCL C. Optimizers are not allowed to do
any modifications to structures.

2.7.1.1 aligned attribute

SPIR structures can be aligned at declaration time. This applies both to module level structures
and stack allocations using the alloca instruction.

2.7.1.2 packed attribute

SPIR structures are marked as packed when __ attribute _ ((packed)) is used in OpenCL
C.
Example:

<{i8 , i32}> is a packed structure known to be 5 bytes in size.

2.7.2 Variable Attributes
2.7.2.1 aligned attribute

e SPIR variables can be aligned at declaration time. This applies both to module level variables
and stack allocations using the alloca instruction.

The Khronos Group Inc. SPIR 1.2 15

e SPIR does not provide a mechanism to reflect the alignment of structure members. Instead
the SPIR generator is expected to create a structure definition taking into consideration this
attribute, for example by inserting dummy members to occupy the extra space. Optimizers
are not allowed to modify the data layout of structures.

2.8 Compiler Options

Compiler options are represented in SPIR using a named metadata node opencl.compiler.options.
The named metadata node will contain a single metadata node that holds a list of string metadata
objects. Each string metadata object corresponds to a single standard OpenCL compiler option.
Preprocessor options are not saved in SPIR and the list of the allowed options are as follows:

e cl-single-precision-constant

e -cl-denorms-are-zero

-cl-fp32-correctly-rounded-divide-sqrt

-cl-opt-disable

-cl-mad-enable

e —cl-no-signed-zeros

-cl-unsafe-math-optimizations

-cl-finite-math-only

-cl-fast-relaxed-math

o -W

e -Werror

-cl-kernel-arg-info

Note: The -cl-std option is propagated to the opencl.ocl.version as defined in Section 2.13,
OpenCL Version.

This example indicates that both —cl-mad-enable and -cl-denorms-are-zero standard com-
pile options were used to compile the module:

lopencl.compiler.options = !{!2}
12 = metadata !'{metadata !"-cl-mad-enable", metadata !"-cl-denorms-are-zero"}

Compilation options which are not part of the OpenCL specification are stored via the named
metadata node opencl.compiler.ext.options. The named metadata node contains a single meta-
data node that holds a list of string metadata objects. Each string metadata object corresponds to a
non-standard compile option. Compilation options which appear in opencl.compiler.ext.options
shall not affect functional portability of the SPIR module.

This example indicates that the (hypothetical) non-standard option -opt-arch-pdp11 was used
to compile the module:

lopencl.compiler.ext.options = !{!5}
15 = metadata !{metadata !"-opt-arch-pdpli"}

The Khronos Group Inc. SPIR 1.2 16

2.9 Preprocessor Directives and Macros

It is the SPIR generator’s responsibility to handle all preprocessor responsibilities including macro
substitution.

2.9.1 Floating point contractions

The named metadata opencl.enable.FP_CONTRACT can be used to enable contractions at module
level. If the named metadata node exists, contractions can be generated by a SPIR optimizer at
module level.

Note: This is a case where OpenCL C allows finer grained optimisation than SPIR, since it allows
the selective enabling of floating point contraction for only certain calculations within a compilation
unit.

SPIR can nevertheless express these programs. Since FP_ CONTRACT only relaxes precision
requirements, OpenCL C programs that use FP_ CONTRACT selectively can still be safely and
legally represented as more precise SPIR programs without FP_ CONTRACT. However, such a
program will not necessarily have the same performance or identical rounding and precision as the
original on any particular platform.

2.10 Built-ins
2.10.1 Name Mangling

All of the built-in names described in this document are shown in their unmangled form.

2.10.2 Synchronization Functions

Synchronization functions accept c1 mem fence flags enumeration as an argument. In SPIR this
maps to a constant i32 value which is a bitwise OR between CLK LOCAL MEM FENCE =1
and CLK GLOBAL MEM FENCE = 2.

Note: The legal values are 1, 2, and 3

2.10.3 The printf function
The printf function is supported, and is mangled according to its prototype as follows:
int printf(constant char * restrict fmt, ...)

Note that the ellipsis formal argument (.. .) is mangled to argument type specifier z.

In SPIR the conversion specifiers e,E,g,G,a,A require a double type argument to be passed to
the function printf. Thus a float or half argument that is a scalar type should be explicitly
converted to a double. A device that doesn’t support the double data type shall disregard this
explicit conversion, or replace the conversion with a conversion to a float data type in the case of
a half data type argument.

The presence of this conversion alone is not enough to force the listing of "c1 doubles" as a
”used optional core features” for this SPIR instance.

2.11 KHR Extensions
2.11.1 Declaration of used optional core features

The named metadata object opencl.used.optional.core.features contains a single metadata
object. The metadata object should contain a list of metadata strings, each of which encodes the
name of an optional core feature used by the SPIR module.

This is the list of valid strings and their meaning:

The Khronos Group Inc. SPIR 1.2 17

e "cl images" - indicates that images are used
e "cl doubles" - indicates that doubles are used

A device may reject a SPIR module using an unsupported optional core feature.
This example indicates that the module uses both images and doubles.

lopencl.used.optional.core.features = !{!0}
10 = metadata !{metadata !"cl_doubles", metadata !"cl_images"}

2.11.2 Declaration of used KHR extensions

A SPIR module using one or more KHR extension, must declare them inside the SPIR module. The
named metadata object opencl.used.extensions is used to declare this list. The named metadata
object contains a metadata object consisting of a list of metadata strings, where each string indicates
a usage of a KHR extension inside the SPIR module.

This is the list of extension strings:

e cl khr int64 base atomics

e cl khr int64 extended atomics

e cl khr fpl6

e cl khr gl sharing

e cl khr gl event

e cl khr d3d10_sharing

e cl _khr media_sharing

e cl khr d3dll_sharing

e cl khr global int32 base atomics

e cl khr global int32 extended atomics
e cl khr local int32 base atomics

e cl khr local int32 extended atomics
e cl khr byte addressable store

e cl khr 3d image writes

e cl khr gl msaa sharing

e cl_khr depth images

cl_khr gl depth images

This example shows that cl_khr fpl16 and cl1_khr int64 base atomics standard exten-
sions are used in the module.

lopencl.used.extensions = !{!6}
16 = metadata !{metadata !"cl_khr_fpl6", metadata !"cl_khr_int64_base_atomics"}

Notes:

The Khronos Group Inc. SPIR 1.2 18

e A device may reject a SPIR module using an unsupported KHR extension.

e A device using c¢1_khr_ 3d_image writes must also declare its use of cl_images inside
opencl.used.optional.core.features.

e cl khr fp64 doesn’t exist in SPIR. Instead SPIR generators should use the c1 doubles
optional core features.

2.12 SPIR Version

The SPIR version used by the module is stored in the opencl.spir.version named metadata. The
named metadata contains a metadata node consisting of a list of two 132 constant values denoting
the major and minor version numbers.

The following example indicates the module uses SPIR version 1.2:

lopencl.spir.version = !{!3}

13 = metadata !'{i32 1, i32 2}

2.13 OpenCL Version

The OpenCL version used by the module is stored in the opencl.ocl.version named metadata
node. The named metadata node contains a metadata node consisting of a list of two 132 constant
values denoting the major and minor version numbers.

This example indicates the module is compiled for OpenCL 1.0:

lopencl.ocl.version = !'{!4}
14 = metadata !{i32 1, i32 0}

This example indicates the module is compiled for OpenCL 1.1:
lopencl.ocl.version = !'{!4}

14 = metadata !{i32 1, i32 1}

2.14 memcpy functions

The usage of LLVM memcpy and memset intrinsics is allowed in SPIR

2.15 Restrictions

Restrictions from OpenCL C also apply to programs represented in SPIR.
Also, recall that use of FP_ CONTRACT is encoded at the module level. See Section 2.9.1 for a
discussion of how this limits what OpenCL programs may be represented in SPIR.

3 SPIR and LLVM IR
3.1 LLVM Triple

SPIR introduces a couple of new LLVM triples called “spir-unknown-unknown” and “spir64-unknown-unknown”

target triple = "spir-unknown-unknown"
target triple = "spir64-unknown-unknown"

“spir” targets devices with address width of 32 bits. “spir64” targets devices with address
width of 64 bits.

The Khronos Group Inc. SPIR 1.2 19

3.2 LLVM Target data layout
The spir triple datalayout is as follows:
target datalayout = "e-p:32:32:32-11:8:8-18:8:8-116:16:16-132:32:32-164:64:64-
£32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:32-v48:64:64-

v64:64:64-v96:128:128-v128:128:128-v192:256:256-v256:256:256-
v512:512:512-v1024:1024:1024"

The spir64 triple datalayout is as follows:
target datalayout = "e-p:64:64:64-11:8:8-18:8:8-116:16:16-132:32:32-164:64:64-
£32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:32-v48:64:64-

v64:64:64-v96:128:128-v128:128:128-v192:256:256-v256:256:256-
v512:512:512-v1024:1024:1024"

3.3 LLVM Supported Instructions
The following tables show which LLVM instructions are may be used in SPIR:

20

The Khronos Group Inc. SPIR 1.2

LLVM Instruction Family | Instruction name | Supported

Terminator ret yes

Terminator br yes

Terminator switch yes

Terminator indirectbr no, required for GNU extension (array
of pointer of functions)

Terminator invoke no, exception handling related

Terminator unwind no, exception handling related

Terminator resume no, exception handling related

Terminator unreachable yes, might be used for switch state-
ments

Binary add yes

Binary fadd yes

Binary sub yes

Binary fsub yes

Binary mul yes

Binary fmul yes

Binary udiv yes

Binary sdiv yes

Binary fdiv yes

Binary urem yes

Binary srem yes

Binary frem yes

Bitwise Binary shl yes, left-shifted by log2(N), where N is
the number of bits used to represent the
data type of the shifted value

Bitwise Binary Ishr yes, right-shifted by log2(N), where N
is the number of bits used to represent
the data type of the shifted value.

Bitwise Binary ashr yes, right-shifted by log2(N), where N is
the number of bits used to represent the
data type of the shifted value. exact is
disallowed and used for trap values

Bitwise Binary and yes

Bitwise Binary or yes

Bitwise Binary Xor yes

Vector extractelement yes

Vector insertelement yes

Vector shufflevector yes

Aggregate extractvalue yes

Aggregate insertvalue yes

Memory Access & Addressing | alloca yes

Memory Access & Addressing | load yes, atomic is disallowed

Memory Access & Addressing | store yes, atomic is disallowed

Memory Access & Addressing | fence no, use built-ins instead

Memory Access & Addressing | cmpxchg no, use built-ins instead

Memory Access & Addressing | atomicrmw no, use built-ins instead

Memory Access & Addressing | getelementptr yes

Table 9: Instructions, part 1

The Khronos Group Inc.

SPIR 1.2

LLVM Instruction Family

Instruction name

Supported

Conversion Operations trunc .. to yes, but only for scalars
Conversion Operations zext .. to yes, but only for scalars
Conversion Operations sext .. to yes, but only for scalars
Conversion Operations fptrunc .. to yes, but only for scalars
Conversion Operations fpext .. to yes, but only for scalars
Conversion Operations fptoui .. to yes, but only for scalars
Conversion Operations fptosi .. to yes, but only for scalars
Conversion Operations uitofp .. to yes, but only for scalars
Conversion Operations sitofp .. to yes, but only for scalars
Conversion Operations ptrtoint .. to yes

Conversion Operations inttoptr .. to yes

Conversion Operations bitcast .. to yes

Other Operations icmp yes

Other Operations femp yes

Other Operations phi yes

Other Operations select yes

Other Operations call yes, but not to pointers to functions
Other Operations va_ arg no, not supported by OpenCL

Other Operations

landingpad arg

no

3.4 LLVM Supported Intrinsic Functions

Table 10: Instructions, part 2

None of the LLVM intrinsics are allowed in SPIR except the memcpy intrinsics.

3.5 SPIR ABI

21

In this section we define the application binary interface for OpenCL ”C” programs in SPIR. The
SPIR ABI defines the interfaces between the SPIR program and the OpenCL runtime, built-ins
libraries and additional third party SPIR libraries.

Each function argument and return type is classified as follows:

e Any aggregate type is passed as a pointer. Memory allocation (if needed) is the responsibility

of the caller function.

e Enumeration types are handled as the underlying integer type.

e If the argument type is a promotable integer type, it will be extended according to the C99

integer promotion rules.

e Any other type, including floating point types, vectors, etc.. will be passed directly as the

corresponding LLVM type.

Note: The ABI described in this section is implemented in Clang 3.2 and is called the ”default”

ABI.

3.6 LLVM Linkage Types
The following table shows the LLVM linkage types allowed in SPIR:

The Khronos Group Inc.

SPIR 1.2

Linkage type

Supported

private yes
linker private no
linker private weak no
linker private weak def auto | no

available externally

yes (describes C99 inline definition)

linkonce no
internal yes (maps to static)
weak no
common yes
appending no
extern weak no
linkonce odr no
weak odr no
external yes
dllimport no
dllexport no

Table 11: Linkage types

22

In addition, SPIR allows the usage of LLVM unnamed addr optional attribute for both global

variables and functions.

3.7 Calling Conventions

SPIR kernels should use "spir_kernel" calling convention. Non-kernel functions use "spir_func"
calling convention. All other calling conventions are disallowed.

3.8 Visibility Styles

Visibility styles are not used in SPIR and should be set to ”default”. Other values are disallowed.

3.9 Parameter Attributes

The following table defines which parameter attributes are usable in SPIR:

Parameter Attribute | Supported
zeroext yes

signext yes

inreg no

byval yes

sret yes
nocapture yes

nest no

Table 12: Parameter attributes

The Khronos Group Inc. SPIR 1.2 23

3.10 Garbage Collection Names

Garbage collection is not part of SPIR, hence functions are not allowed to specify a garbage collector
name.

3.11 Function Attributes

Every SPIR function should use the nounwind attribute. In addition the following optional attributes
could be used: alwaysinline, inlinehint, noinline, readnone, readonly. The rest of the function
attributes are disallowed.

Function Attribute | Supported
alignstack no
alwaysinline yes
nonlazybind no
inlinehint yes

naked no
noimplicitfloat no

noinline yes
noredzone no

noreturn no
nounwind yes, needs to be always set
optsize no
readnone yes
readonly yes

Ssp no

sspreq no

uwtable no

returns_ twice no

Table 13: Function attributes

3.12 Reserved identifiers

All identifiers that begin with opencl.* are reserved and shall not be used by SPIR generators (for
user source identifiers).

3.13 Module Level Inline Assembly
LLVM module level inline assembly is not allowed in SPIR.

3.14 Pointer Aliasing Rules
SPIR follows the pointer aliasing rules of LLVM.

3.15 Volatile Memory Accesses

SPIR requires use of volatile memory accesses and follows LLVM IR rules for load’s, store’s,
1lvm.memcpy’s and 1lvm.memset’s.

The Khronos Group Inc. SPIR 1.2 24

3.16 Memory Model for Concurrent Operations

SPIR does not use the LLVM atomic intrinsics, because OpenCL has its own set of intrinsics.

3.17 Atomic Memory Ordering Constraints
The LLVM atomic orderings are disallowed in SPIR.

A SPIR name mangling

In order to support cross device compatibility of SPIR, the name mangling scheme must be stan-
dardized across vendors. SPIR adopts and extends the name mangling scheme in Section 5.1 of the
Itanium C++ ABI [1]. There are three major issues to deal with, along with many minor items.
The major items are data types, address spaces, and overloaded ‘C’ functions.

Normally, ‘C’ functions require no overloading, and their names are not mangled. When gener-
ating SPIR, OpenCL C built-in functions must use this mangling scheme.

A.1 Data types

The following table shows the mapping from OpenCL C data types to the type names used in the
mangling scheme:

The Khronos Group Inc.

SPIR 1.2

OpenCL C type

Mangling scheme type name

bool b
unsigned char, char h
char ¢
unsigned short, short t
short s
unsigned int, uint j
int i
unsigned long, ulong m
long 1
half Dh
float f
double d

pointer to private address space

P<mangled-element-type-name>

pointer to non private address space

PU3ASN <mangled-element-type-name> (where N
is the address space number)

Vector types with N elements

DvN _<mangled-element-type-name> (where N is
one of 2, 3, 4, 8, 16)

imageld t

1locl imageld

imageld array t

160cl_imageldarray

imageld buffer t

170cl imageldbuffer

image2d t 1locl image2d
image2d array t 16ocl image2darray
image3d_t 1locl_image3d

image2d msaa_t

150cl _image2dmsaa

image2d array msaa t

20ocl image2darraymsaa

image2d msaa_depth_t

20ocl _image2dmsaadepth

image2d array msaa depth t

250cl image2darraymsaadepth

image2d_depth_t

160cl _image2ddepth

image2d array depth t

21locl image2darraydepth

event t

9ocl _event

sampler t

1locl sampler

size t, uintptr t

treated as uint or ulong

ptrdiff t, intptr t

treated as int or long

Table 14: Mapping of OpenCL C builtin type names to mangled type names

A.2 The restrict qualifier
The Itanium ABI states:

The restrict qualifier is part of the C99 standard, but is strictly an extension to C++
at this time. There is no standard specification of whether the restrict attribute is part of
the type for overloading purposes. An implementation should include its encoding in the
mangled name if and only if it also treats it as a distinguishing attribute for overloading
purposes. This ABI does not specify that choice.”

25

SPIR encodes the “restrict” qualifier as part of the mangled name using the ‘r’ token in the

CV-qualifiers. Hence SPIR treats the “restrict” qualifier as significant for overloading.

The Khronos Group Inc.

SPIR 1.2

A.3 Summary of changes

The following is a summary of the mangling of builtin types:

<builtin-type> :

SPIR also uses the CV-qualifier list as follows. All CV-qualifiers are order-insensitive.

<CV-qualifiers>

= v # void

(Maps to OpenCL void)

wchar_t (xNot valid)

bool (Maps to OpenCL bool)
char (Maps to OpenCL char)
signed char (*Not valid)

char (Maps to OpenCL uchar)

short (Maps to OpenCL short)

short (Maps to OpenCL ushort)

int (Maps to OpenCL int)

int (Maps to OpenCL uint)

long (Maps to OpenCL long)

long(Maps to OpenCL ulong)

long long, __int64(*Not valid)

long long, __int64(*Not valid)
(*Not valid)
__int128(*Not valid)

float (Maps to OpenCL float)
double (Maps to OpenCL double)
long double, __float80(*Not valid)
__float128 (*Not valid)

(*Valid only for printfx)

decimal floating point (64 bits) (*Not valid)
decimal floating point (128 bits) (*Not valid)
decimal floating point (32 bits) (*Not valid)

26

half-precision floating point (16 bits) (Maps to OpenCL Half)

w #

b #

[« #

a #

h # unsigned
s #

t # unsigned
i #

j # unsigned
1 #

m # unsigned
X #

y # unsigned
n # __int128
o # unsigned
£ #

d #

e #

g #

z # ellipsis
Dd # IEEE 754r
De # IEEE 754r
Df # IEEE 754r
Dh # IEEE 754r
Di # char32_t(*Not valid)
Ds # char16_t(*Not valid)
Da #

auto (in dependent new-expressions)

Dn # std::nullptr_t (i.e., decltype(nullptr))
P<builtin-type> # A pointer to private address space.

PU3ASN<builtin-type> # A pointer to address space ’N’ (non-private).

DvN_<builtin-type> # An OpenCL vector of length ’N’ of the specified type.
Only values of 2, 3, 4, 8 and 16 are valid.

Only values of 1, 2 and 3 are valid.

1locl_imageld # A 1d image type
16ocl_imageldarray # A 1d image array type
17ocl_imageldbuffer # A 1d image buffer type
1locl_image2d # A 2d image type
16ocl_image2darray # A 2d image array type
1locl_image3d # A 3d image type
150cl_image2dmsaa

20ocl_image2darraymsaa
20ocl_image2dmsaadepth
25ocl_image2darraymsaadepth
16ocl_image2ddepth
21ocl_image2darraydepth

9ocl_event # A

event type

llocl_sampler # A sampler type
u <source-name> # vendor extended type

c:= [r] [V] [K]

restrict (C99), volatile, const

The Khronos Group Inc. SPIR 1.2 27

These are order-insensitive.

Note: By default, objects reside in the private address space (number 0). No address space

qualification is used to indicate the private address space.

References

[1]

2]

CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, SGI, and others. Itanium C++ ABI.
http://mentorembedded.github.com/cxx-abi/abi.html.

Khronos OpenCL Working Group. The OpenCL Specification, version 1.2. http://www.
khronos.org/registry/cl/specs/opencl-1.2.pdf, November 2012.

LLVM Team. LLVM Bitcode File Format. http://www.llvm.org/releases/3.2/docs/
BitCodeFormat.html, 2012. Version 3.2.

LLVM Team. LLVM Language Reference Manual. http://www.1llvm.org/releases/3.2/docs/
LangRef .html, 2012. Version 3.2.

http://mentorembedded.github.com/cxx-abi/abi.html
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.llvm.org/releases/3.2/docs/BitCodeFormat.html
http://www.llvm.org/releases/3.2/docs/BitCodeFormat.html
http://www.llvm.org/releases/3.2/docs/LangRef.html
http://www.llvm.org/releases/3.2/docs/LangRef.html

	1 Introduction
	1.1 One format, two notations
	1.2 Name mangling

	2 OpenCL C mapping to SPIR
	2.1 Supported Data Types
	2.1.1 Built-in Scalar Data Types
	2.1.2 Built-in Vector Types
	2.1.3 Other Built-in Data Types
	2.1.3.1 Declaring sampler variables
	2.1.3.2 Image channel data type values
	2.1.3.3 Image channel order values
	2.1.3.4 Zero events
	2.1.3.5 NULL pointer

	2.1.4 Alignment of Types
	2.1.5 Structs

	2.2 Address space qualifiers
	2.3 Kernel qualifiers
	2.3.1 Optional attribute qualifiers
	2.3.1.1 Work group size information
	2.3.1.2 Vector type hint information

	2.4 Kernel Arg Info
	2.5 Storage class specifier
	2.6 Type qualifiers
	2.7 Attribute Qualifiers
	2.7.1 Type Attributes
	2.7.1.1 aligned attribute
	2.7.1.2 packed attribute

	2.7.2 Variable Attributes
	2.7.2.1 aligned attribute

	2.8 Compiler Options
	2.9 Preprocessor Directives and Macros
	2.9.1 Floating point contractions

	2.10 Built-ins
	2.10.1 Name Mangling
	2.10.2 Synchronization Functions
	2.10.3 The printf function

	2.11 KHR Extensions
	2.11.1 Declaration of used optional core features
	2.11.2 Declaration of used KHR extensions

	2.12 SPIR Version
	2.13 OpenCL Version
	2.14 memcpy functions
	2.15 Restrictions

	3 SPIR and LLVM IR
	3.1 LLVM Triple
	3.2 LLVM Target data layout
	3.3 LLVM Supported Instructions
	3.4 LLVM Supported Intrinsic Functions
	3.5 SPIR ABI
	3.6 LLVM Linkage Types
	3.7 Calling Conventions
	3.8 Visibility Styles
	3.9 Parameter Attributes
	3.10 Garbage Collection Names
	3.11 Function Attributes
	3.12 Reserved identifiers
	3.13 Module Level Inline Assembly
	3.14 Pointer Aliasing Rules
	3.15 Volatile Memory Accesses
	3.16 Memory Model for Concurrent Operations
	3.17 Atomic Memory Ordering Constraints

	A SPIR name mangling
	A.1 Data types
	A.2 The restrict qualifier
	A.3 Summary of changes

