
OpenCL 2.0 Extended Instruction Set
Specification (Provisional)

Boaz Ouriel, Intel

Version 0.99, Revision 30

April 2, 2015

OpenCL 2.0 Extended Instruction Set Specification (Provisional) ii

Copyright © 2014-2015 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any compo-
nents may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner
without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality
therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession
of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell
anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and
redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification
and the latest available update of the specification for any version of the API is used whenever possible. Such distributed
specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification
may be incorporated into a product that is sold as long as such product includes significant independent work developed by the
seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible
with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this spec-
ification, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose or non-
infringement of any intellectual property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification. Under no circumstances will
the Khronos Group, or any of its Promoters, Contributors or Members or their respective partners, officers, directors, employees,
agents, or representatives be liable for any damages, whether direct, indirect, special or consequential damages for lost revenues,
lost profits, or otherwise, arising from or in connection with these materials.

Khronos, SYCL, SPIR, WebGL, EGL, COLLADA, StreamInput, OpenVX, OpenKCam, glTF, OpenKODE, OpenVG, OpenWF,
OpenSL ES, OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX DL are trademarks and WebCL is a certification mark
of the Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL and OpenML are registered trademarks and the
OpenGL ES and OpenGL SC logos are trademarks of Silicon Graphics International used under license by Khronos. All other
product names, trademarks, and/or company names are used solely for identification and belong to their respective owners.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) iii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

1 Aug 2014 Created jk

29 Mar 2015 Provisional Release jk

30 2-Apr-2015 Provisional Release jk

OpenCL 2.0 Extended Instruction Set Specification (Provisional) iv

Contents

1 Introduction 1

2 Binary Form 1

2.1 Math extended instructions . 2

2.2 Integer instructions . 30

2.3 Common instructions . 39

2.4 Geometric instructions . 41

2.5 Relational instructions . 44

2.6 Vector Data Load and Store instructions . 44

2.7 Miscellaneous Vector instructions . 49

2.8 Misc instructions . 51

2.9 Image functions . 51

2.9.1 Image encoding . 51

2.9.2 Sampler encoding . 53

2.9.3 Image format encoding . 54

2.9.4 Image read functions . 54

2.9.5 Image write functions . 69

2.9.6 Image query functions . 77

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 1 / 80

Contributors and Acknowledgements

• Yaxun Liu, AMD

• Brian Sumner, AMD

• Marty Johnson, AMD

• Mandana Baregheh, AMD

• Andrew Richards, Codeplay

• Guy Benyei, Intel

• Raun Krisch, Intel

• Yuan Lin, NVIDIA

• Lee Howes, Qulacomm

• Chihong Zang, Qualcomm

• Ben Gaster, Qualcomm

• Jack Liu, QUALCOMM

1 Introduction

This is the specification of OpenCL.std.20 extended instruction set.

The library is imported into a SPIR-V module in the following manner:

<ext-inst-id> OpExtInstImport "OpenCL.std.20"

The library can only be imported when Memory Model is set to OpenCL20

2 Binary Form

This section contains the semantics and exact form of execution of OpenCL 2.0 extended instructions using the OpExtInst in-
struction.

In this section we use the following naming conventions:

• void denote an OpTypeVoid.

• half, float and double denote an OpTypeFloat with a width of 16, 32 and 64 bits respectively.

• i8, i16, i32 and i64 denote an OpTypeInt with a width of 8, 16, 32 and 64 bits respectively.

• bool denotes an OpTypeBool.

• size_t denotes an i32 when the Addressing Model is Physical32 and i64 when the Addressing Model is Physical64.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 2 / 80

• vector(n) denotes an OpTypeVector where n indicates the component count.

– vector(n1, n2, . . . , ni) abbreviates vector(n1), vector(n2), . . . or vector(ni).

• integer denotes i8, i16, i32 or i64.

• floating-point denotes half, float, double.

• pointer(storage) denotes an OpTypePointer which points to storage Storage Class.

– pointer(constant) denotes an OpTypePointer with UniformConstant Storage Class.

– pointer(generic) denotes an OpTypePointer with Generic Storage Class.

– pointer(global) denotes an OpTypePointer with WorkgroupGlobal Storage Class.

– pointer(local) denotes an OpTypePointer with WorkgroupLocal Storage Class.

– pointer(private) denotes an OpTypePointer with Private Storage Class.

– pointer(s1, s2, . . . , si) abbreviates pointer(s1), pointer(s2), . . . or pointer(si).

• image defines all types of image memory objects (See image encoding section).

• sampler a SPIR-V sampler object (See sampler encoding section).

2.1 Math extended instructions

This section describes the list of external math instructions. The external math instructions are categorized into the following:

• A list of instructions that have scalar or vector argument versions, and,

• A list of instructions that only take scalar float arguments.

The vector versions of the math instructions operate component-wise. The description is per-component.

The math instructions are not affected by the prevailing rounding mode in the calling environment, and always return the same
value as they would if called with the round to nearest even rounding mode.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 3 / 80

acos

Compute the arc cosine of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

0 <id>
x

acosh

Compute the inverse hyperbolic cosine of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

1 <id>
x

acospi

Compute acos(x) / π .

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

2 <id>
x

asin

Compute the arc sine of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

3 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 4 / 80

asinh

Compute the inverse hyperbolic sine of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

4 <id>
x

asinpi

Compute asin(x) / π .

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

5 <id>
x

atan

Compute the arc tangent of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

6 <id>
x

atan2

Compute the arc tangent of y / x.

Result Type,y and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

7 <id>
y

<id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 5 / 80

atanh

Compute the hyperbolic arc tangent of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

8 <id>
x

atanpi

Compute atan(x) / π .

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

9 <id>
x

atan2pi

Compute atan2(y, x) / π .

Result Type,y and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

10 <id>
y

<id>
x

cbrt

Compute the cube-root of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

11 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 6 / 80

ceil

Round x to integral value using the round to positive infinity rounding mode.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

12 <id>
x

copysign

Returns x with its sign changed to match the sign of y.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

13 <id>
x

<id>
y

cos

Compute the cosine of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

14 <id>
x

cosh

Compute the hyperbolic cosine of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

15 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 7 / 80

cospi

Compute cos(x) / π .

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

16 <id>
x

erfc

Complementary error function of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

17 <id>
x

erf

Error function of x encountered in integrating the normal distribution.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

18 <id>
x

exp

Compute the base-e exponential of x. (i.e. ex)

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

19 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 8 / 80

exp2

Computes 2 raised to the power of x. (i.e. 2x)

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

20 <id>
x

exp10

Computes 10 raised to the power of x. (i.e. 10x)

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

21 <id>
x

expm1

Computes ex - 1.0 .

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

22 <id>
x

fabs

Compute the absolute value of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

23 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 9 / 80

fdim

Compute x - y if x > y, +0 if x is less than or equal to y.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

24 <id>
x

<id>
y

floor

Round x to the integral value using the round to negative infinity rounding mode.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

25 <id>
x

fma

Compute the correctly rounded floating-point representation of the sum of c with the infinitely precise product of a and
b.Rounding of intermediate products shall not occur. Edge case behavior is per the IEEE 754-2008 standard.

Result Type,a,b and c must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

26 <id>
a

<id>
b

<id>
c

fmax

Returns y if x < y, otherwise it returns x. If one argument is a NaN, Fmax returns the other argument. If both
arguments are NaNs, Fmax returns a NaN.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: fmax behave as defined by C99 and may not match the IEEE 754-2008 definition for maxNum with regard to
signaling NaNs.Specifically, signaling NaNs may behave as quiet NaNs
7 44 <id>

Result Type
Result <id> extended

instructions
set <id>

27 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 10 / 80

fmin

Returns y if y < x, otherwise it returns x. If one argument is a NaN, Fmin returns the other argument. If both
arguments are NaNs, Fmin returns a NaN.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: fmin behave as defined by C99 and may not match the IEEE 754-2008 definition for minNum with regard to
signaling NaNs.Specifically, signaling NaNs may behave as quiet NaNs
7 44 <id>

Result Type
Result <id> extended

instructions
set <id>

28 <id>
x

<id>
y

fmod

Modulus. Returns x - y * trunc (x/y).

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

29 <id>
x

<id>
y

fract

Returns fmin(x - floor(x), 0x1.fffffep-1f. floor(x) is returned in ptr.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

ptr must be a pointer(generic) to floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type, or must be a pointer to the same
type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

30 <id>
x

<id>
ptr

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 11 / 80

frexp

Extract the mantissa and exponent from x. The Result Type holds the mantissa, and exp points to the exponent. For
each component the mantissa returned is a floating-point with magnitude in the interval [1/2, 1) or 0. Each
component of x equals mantissa returned * 2exp.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

exp must be a pointer(generic) to i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x operands must be of the same type. exp operand must point to an i32 with the same component
count as Result Type and x operands.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

31 <id>
x

<id>
exp

hypot

Compute the value of the square root of x2+ y2 without undue overflow or underflow.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

32 <id>
x

<id>
y

ilogb

Return the exponent of x as an i32 value.

Result Type must be i32 or vector(2,3,4,8,16) of i32 values.

x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must have the same component count.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

33 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 12 / 80

ldexp

Multiply x by 2 to the power k.

k must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must be of the same type. exp operand must have the same component count as Result
Type and x operands.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

34 <id>
x

<id>
k

lgamma

Log gamma function of x. Returns the natural logarithm of the absolute value of the gamma function.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

35 <id>
x

lgamma_r

Log gamma function of x. Returns the natural logarithm of the absolute value of the gamma function. The sign of the
gamma function is returned in the signp operand

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

singp must be a pointer(generic) to i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x operands must be of the same type. singp operand must point to an i32 with the same component
count as Result Type and x operands.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

36 <id>
x

<id>
singp

log

Compute natural logarithm of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 13 / 80

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

37 <id>
x

log2

Compute a base 2 logarithm of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

38 <id>
x

log10

Compute a base 10 logarithm of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

39 <id>
x

log1p

Compute loge(1.0 + x).

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

40 <id>
x

logb

Compute the exponent of x, which is the integral part of logr | x |.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

41 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 14 / 80

mad

mad approximates a * b + c. Whether or how the product of a * b is rounded and how supernormal or subnormal
intermediate products are handled is not defined. mad is intended to be used where speed is preferred over accuracy

Result Type,a,b and c must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: For some usages, e.g.mad(a, b, -a*b), the definition of mad() is loose enough that almost any result is allowed from
mad() for some values of a and b.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

42 <id>
a

<id>
b

<id>
c

maxmag

Returns x if | x | > | y | , y if | y | > | x | , otherwise fmax(x, y).

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

43 <id>
x

<id>
y

minmag

Returns x if | x | < | y |, y if | y | < | x |, otherwise fmin(x, y).

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

44 <id>
x

<id>
y

modf

Decompose a floating-point number. The modf function breaks the argument x into integral and fractional parts, each
of which has the same sign as the argument. It stores the integral part in the object pointed to by iptr

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

iptr must be a pointer(generic) to floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type, or must be a pointer to the same
type.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 15 / 80

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

45 <id>
x

<id>
iptr

nan

Returns a quiet NaN. The nancode may be placed in the significand of the resulting NaN.

nancode must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and nancode operands must have the same component count.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

46 <id>
nancode

nextafter

Computes the next representable floating-point value following x in the direction of y. Thus, if y is less than x,
nextafter() returns the largest representable floating-point number less than x.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

47 <id>
x

<id>
y

pow

Compute x to the power y.

Result Type,x,y and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

48 <id>
x

<id>
y

<id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 16 / 80

pown

Compute x to the power y, where y is an i32 integer.

y must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must be of the same type. y operand must have the same component count
as Result Type and x operands.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

49 <id>
y

powr

Compute x to the power y, where y is an integer.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

50 <id>
x

<id>
y

remainder

Compute the value r such that r = x - n*y, where n is the integer nearest the exact value of x/y. If there are two
integers closest to x/y, n shall be the even one. If r is zero, it is given the same sign as x.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

51 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 17 / 80

remquo

The remquo function computes the value r such that r = x - k*y, where k is the integer nearest the exact value of x/y. If
there are two integers closest to x/y, k shall be the even one. If r is zero, it is given the same sign as x. This is the same
value that is returned by the remainder function. remquo also calculates the lower seven bits of the integral quotient x/y,
and gives that value the same sign as x/y. It stores this signed value in the object pointed to by quo.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

quo must be a pointer(generic) to i32 or vector(2,3,4,8,16) of i32 values.

Result Type, x and y operands must be of the same type. quo operand must point to an i32 with the same component count
as Result Type, x and y operands.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

52 <id>
x

<id>
y

<id>
quo

rint

Round x to integral value (using round to nearest even rounding mode) in floating-point format.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

53 <id>
x

rootn

Compute x to the power 1/y.

y must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must be of the same type. y operand must have the same component count as Result Type
and x operands.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

54 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 18 / 80

round

Return the integral value nearest to x rounding halfway cases away from zero, regardless of the current
rounding direction.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

55 <id>
x

rsqrt

Compute inverse square root of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

56 <id>
x

sin

Compute sine of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

57 <id>
x

sincos

Compute sine and cosine of x. The computed sine is the return value and computed cosine is returned in cosval.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

cosval must be a pointer(generic) to floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type, or must be a pointer to the same
type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

58 <id>
x

<id>
cosval

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 19 / 80

sinh

Compute hyperbolic sine of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

59 <id>
x

sinpi

Compute sin (π x).

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

60 <id>
x

sqrt

Compute square root of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

61 <id>
x

tan

Compute tangent of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

62 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 20 / 80

tanh

Compute hyperbolic tangent of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

63 <id>
x

tanpi

Compute tan (π x).

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

64 <id>
x

tgamma

Compute the gamma function of x.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

65 <id>
x

trunc

Round x to integral value using the round to zero rounding mode.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

66 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 21 / 80

half_cos

Compute cosine of x, where x must be in the range -216 . . . +216.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

67 <id>
x

half_divide

Compute x / y.

Result Type,x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when -cl-denormals-are-zero flag
is not in force.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

68 <id>
x

<id>
y

half_exp

Compute the base-e exponential of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

69 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 22 / 80

half_exp2

Compute the base- 2 exponential of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

70 <id>
x

half_exp10

Compute the base- 10 exponential of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

71 <id>
x

half_log

Compute natural logarithm of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

72 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 23 / 80

half_log2

Compute a base 2 logarithm of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

73 <id>
x

half_log10

Compute a base 10 logarithm of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

74 <id>
x

half_powr

Compute x to the power y, where x is >= 0.

Result Type,x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when -cl-denormals-are-zero flag
is not in force.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

75 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 24 / 80

half_recip

Compute reciprocal of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

76 <id>
x

half_rsqrt

Compute inverse square root of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

77 <id>
x

half_sin

Compute sine of x, where x must be in the range -216 . . . +216.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

78 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 25 / 80

half_sqrt

Compute the square root of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

79 <id>
x

half_tan

Compute tangent value of x, where x must be in the range -216 . . . +216.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value ⇐ 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

80 <id>
x

native_cos

Compute cosine of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

81 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 26 / 80

native_divide

Compute x / y over an implementation-defined range. The maximum error is implementation-defined.

Result Type,x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better performance compared
to the non native corresponding functions. Support for denormal values is implementation-defined for this function

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

82 <id>
x

<id>
y

native_exp

Compute the base-e exponential of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

83 <id>
x

native_exp2

Compute the base- 2 exponential of x over an implementation-defined range. The maximum error is
implementation-defined..

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

84 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 27 / 80

native_exp10

Compute the base- 10 exponential of x over an implementation-defined range. The maximum error is
implementation-defined..

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

85 <id>
x

native_log

Compute natural logarithm of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

86 <id>
x

native_log2

Compute a base 2 logarithm of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

87 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 28 / 80

native_log10

Compute a base 10 logarithm of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

88 <id>
x

native_powr

Compute x to the power y, where x is >= 0.

Result Type,x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better performance compared
to the non native corresponding functions. Support for denormal values is implementation-defined for this function

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

89 <id>
x

<id>
y

native_recip

Compute reciprocal of x over an implementation-defined range. The range of x and y are
implementation-defined. The maximum error is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

90 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 29 / 80

native_rsqrt

Compute inverse square root of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

91 <id>
x

native_sin

Compute sine of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

92 <id>
x

native_sqrt

Compute the square root of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

93 <id>
x

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 30 / 80

native_tan

Compute tangent value of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

94 <id>
x

2.2 Integer instructions

This section describes the list of integer instructions that take scalar or vector arguments. The vector versions of the integer
functions operate component-wise. The description is per-component.

s_abs

Returns |x|, where x is treated as signed integer.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

141 <id>
x

s_abs_diff

Returns | x - y | without modulo overflow, where x and y are treated as signed integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

142 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 31 / 80

s_add_sat

Returns the saturated value of x + y, where x and y are treated as signed integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

143 <id>
x

<id>
y

u_add_sat

Returns the saturated value of x + y, where x and y are treated as unsigned integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

144 <id>
x

<id>
y

s_hadd

Returns the value of (x + y) >> 1, where x and y are treated as signed integers. The intermediate sum does not modulo
overflow.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

145 <id>
x

<id>
y

u_hadd

Returns the value of (x + y) >> 1, where x and y are treated as unsigned integers. The intermediate sum does not
modulo overflow.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

146 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 32 / 80

s_rhadd

Returns the value of (x + y + 1) >> 1, where x and y are treated as signed integers. The intermediate sum does not
modulo overflow.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

147 <id>
x

<id>
y

u_rhadd

Returns the value of (x + y + 1) >> 1, where x and y are treated as unsigned integers. The intermediate sum does not
modulo overflow.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

148 <id>
x

<id>
y

s_clamp

Returns s_min(s_max(x,minval),maxval). Results are undefined if minval > maxval.

Result Type,x,minval and maxval must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

149 <id>
x

<id>
minval

<id>
maxval

u_clamp

Returns u_min(u_max(x,minval),maxval). Results are undefined if minval > maxval.

Result Type,x,minval and maxval must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

150 <id>
x

<id>
minval

<id>
maxval

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 33 / 80

clz

Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, returns
the size in bits of the type of x or component type of x, if x is a vector.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

151 <id>
x

ctz

Returns the count of trailing 0-bits in x. If x is 0, returns the size in bits of the type of x or component
type of x, if x is a vector.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

152 <id>
x

s_mad_hi

Returns mul_hi(a, b) + c, where a,b and c are treated as signed integers.

Result Type,a,b and c must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

153 <id>
a

<id>
b

<id>
c

s_max

Returns y if x < y, otherwise it returns x, where x and y are treated as signed integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

156 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 34 / 80

u_max

Returns y if x < y, otherwise it returns x, where x and y are treated as unsigned integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

157 <id>
x

<id>
y

s_min

Returns y if y < x, otherwise it returns x, where x and y are treated as signed integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

158 <id>
x

<id>
y

u_min

Returns y if y < x, otherwise it returns x, where x and y are treated as unsigned integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

159 <id>
x

<id>
y

s_mul_hi

Computes x * y and returns the high half of the product of x and y, where x and y are treated as signed integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

160 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 35 / 80

rotate

For each element in v, the bits are shifted left by the number of bits given by the corresponding element in i. Bits
shifted off the left side of the element are shifted back in from the right.

Result Type,v and i must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

161 <id>
v

<id>
i

s_sub_sat

Returns the saturated value of x - y, where x and y are treated as signed integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

162 <id>
x

<id>
y

u_sub_sat

Returns the saturated value of x - y, where x and y are treated as unsigned integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

163 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 36 / 80

u_upsample

When hi and lo component type is i8:

Result = ((upcast. . . to i16)hi << 8) | lo

When hi and lo component type is i16:

Result = ((upcast. . . to i32)hi << 8) | lo

When hi and lo component i32:

Result = ((upcast. . . to i64)hi << 8) | lo

hi and lo are treated as unsigned integers.

hi and lo must be i8, i16 or i32 or vector(2,3,4,8,16) of i8, i16 or i32 values.

Result Type must be i16, i32 or i64 or vector(2,3,4,8,16) of i16, i32 or i64 values.

hi and lo operands must be of the same type. When hi and lo component type is i8, the Result Type component type must
be i16. When hi and lo component type is i16, the Result Type component type must be i32. When hi and lo component
type is i32, the Result Type component type must be i64. Result Type must have the same component count as hi and lo
operands.

7 44 <id>
Result Type

Result <id> extended
instructions set
<id>

164 <id>
hi

<id>
lo

s_upsample

When hi and lo component type is i8:

Result = ((upcast. . . to i16)hi << 8) | lo

When hi and lo component type is i16:

Result = ((upcast. . . to i32)hi << 8) | lo

When hi and lo component i32:

Result = ((upcast. . . to i64)hi << 8) | lo

hi and lo are treated as signed integers.

hi and lo must be i8, i16 or i32 or vector(2,3,4,8,16) of i8, i16 or i32 values.

Result Type must be i16, i32 or i64 or vector(2,3,4,8,16) of i16, i32 or i64 values.

hi and lo operands must be of the same type. When hi and lo component type is i8, the Result Type component type must
be i16. When hi and lo component type is i16, the Result Type component type must be i32. When hi and lo component
type is i32, the Result Type component type must be i64. Result Type must have the same component count as hi and lo
operands.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 37 / 80

7 44 <id>
Result Type

Result <id> extended
instructions set
<id>

165 <id>
hi

<id>
lo

popcount

Returns the number of non-zero bits in x.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

166 <id>
x

s_mad24

Multipy two 24-bit integer values x and y and add the 32-bit integer result to the 32-bit integer z. Refer to definition of
s_mul24 to see how the 24-bit integer multiplication is performed.

Result Type,x,y and z must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

167 <id>
x

<id>
y

<id>
z

u_mad24

Multipy two 24-bit integer values x and y and add the 32-bit integer result to the 32-bit integer z. Refer to definition of
u_mul24 to see how the 24-bit integer multiplication is performed.

Result Type,x,y and z must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

168 <id>
x

<id>
y

<id>
z

s_mul24

Multiply two 24-bit integer values x and y, where x and y are treated as signed integers. x and y are 32-bit integers but only
the low 24-bits are used to perform the multiplication. s_mul24 should only be used when values in x and y are in the range
[-223, 223-1]. If x and y are not in this range, the multiplication result is implementation-defined.

Result Type,x and y must be i32 or vector(2,3,4,8,16) of i32 values.

All of the operands, including the Result Type operand, must be of the same type.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 38 / 80

7 44 <id>
Result Type

Result <id> extended
instructions set
<id>

169 <id>
x

<id>
y

u_mul24

Multiply two 24-bit integer values x and y, where x and y are treated as unsigned integers. x and y are 32-bit integers but
only the low 24-bits are used to perform the multiplication. u_mul24 should only be used when values in x and y are in the
range [0, 224-1]. If x and y are not in this range, the multiplication result is implementation-defined.

Result Type,x and y must be i32 or vector(2,3,4,8,16) of i32 values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions set
<id>

170 <id>
x

<id>
y

u_abs

Returns |x|, where x is treated as unsigned integer.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

201 <id>
x

u_abs_diff

Returns | x - y | without modulo overflow, where x and y are treated as unsigned integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

202 <id>
x

<id>
y

u_mul_hi

Computes x * y and returns the high half of the product of x and y, where x and y are treated as unsigned integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

203 <id>
x

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 39 / 80

u_mad_hi

Returns mul_hi(a, b) + c, where a,b and c are treated as unsigned integers.

Result Type,a,b and c must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

204 <id>
a

<id>
b

<id>
c

2.3 Common instructions

This section describes the the list of common instructions that take scalar or vector arguments. The vector versions of the integer
functions operate component-wise. The description is per-component. The common instructions are implemented using the
round to nearest even rounding mode.

fclamp

Returns fmin(fmax(x, minval), maxval). Results are undefined if minval > maxval.

Result Type,x,minval and maxval must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

95 <id>
x

<id>
minval

<id>
maxval

degrees

Converts radians to degrees, i.e. (180 / π) * radians.

Result Type and radians must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

96 <id>
radians

fmax_common

Returns y if x < y, otherwise it returns x. If x or y are infinite or NaN, the return values are undefined.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 40 / 80

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

97 <id>
x

<id>
y

fmin_common

Returns y if y < x, otherwise it returns x. If x or y are infinite or NaN, the return values are undefined.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

98 <id>
x

<id>
y

mix

Returns the linear blend of x & y implemented as:

x + (y - x) * a

Result Type,x,y and a must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This function can be implemented using contractions such as mad or fma

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

99 <id>
x

<id>
y

<id>
a

radians

Converts degrees to radians, i.e. (π / 180) * degrees.

Result Type and degrees must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

100 <id>
degrees

step

Returns 0.0 if x < edge, otherwise it returns 1.0.

Result Type,edge and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 41 / 80

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

101 <id>
edge

<id>
x

smoothstep

Returns 0.0 if x ⇐ edge0 and 1.0 if x >= edge1 and performs smooth Hermite interpolation between 0 and 1, when edge0 <
x < edge1.

This is equivalent to :

t = fclamp((x - edge0) / (edge1 - edge0), 0, 1);

return t * t * (3 - 2 * t);

Results are undefined if edge0 >= edge1 or if x, edge0 or edge1 is a NaN.

Result Type,edge0,edge1 and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: This function can be implemented using contractions such as mad or fma

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

102 <id>
edge0

<id>
edge1

<id>
x

sign

Returns 1.0 if x > 0, -0.0 if x = -0.0, +0.0 if x = +0.0, or -1.0 if x < 0. Returns 0.0 if x is a NaN.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

103 <id>
x

2.4 Geometric instructions

This section describes the the list of geometric instructions. In this section x,y,z and w denote the first, second, third and fourth
component respecitively, of vectors with 3 and four components.The geometric instructions are implemented using the round to
nearest even rounding mode.

Note: The geometric functions can be implemented using contractions such as mad or fma

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 42 / 80

cross

Returns the cross product of p0.xyz and p1.xyz.

When the vector component count is 4, the w component returned will be 0.0.

Result Type,p0 and p1 must be vector(3,4) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

104 <id>
p0

<id>
p1

distance

Returns the distance between p0 and p1. This is calculated as length(p0 - p1).

Result Type must be floating-point.

p0 and p1 must be floating-point or vector(2,3,4) of floating-point values.

p0 and p1 operands must have the same type. Result Type, p0 and p1 operands must have the same component type
7 44 <id>

Result Type
Result <id> extended

instructions
set <id>

105 <id>
p0

<id>
p1

length

Return the length of vector p, i.e. sqrt(p.x2 + p.y2 + . . .)

Result Type must be floating-point.

p must be vector(2,3,4) of floating-point values.

Result Type and p operands must have the same component type
6 44 <id>

Result Type
Result <id> extended

instructions
set <id>

106 <id>
p

normalize

Returns a vector in the same direction as p but with a length of 1.

Result Type and p must be floating-point or vector(2,3,4) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

107 <id>
p

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 43 / 80

fast_distance

Returns fast_length(p0 - p1).

Result Type must be floating-point.

p0 and p1 must be floating-point or vector(2,3,4) of floating-point values.

p0 and p1 operands must have the same type. Result Type, p0 and p1 operands must have the same component type
7 44 <id>

Result Type
Result <id> extended

instructions
set <id>

108 <id>
p0

<id>
p1

fast_length

Return the length of vector p computed as: half_sqrt(p.x2 + p.y2 + . . .)

Result Type must be floating-point.

p must be vector(2,3,4) of floating-point values.

Result Type and p operands must have the same component type
6 44 <id>

Result Type
Result <id> extended

instructions
set <id>

109 <id>
p

fast_normalize

Returns a vector in the same direction as p but with a length of 1 computed as:

p * half_rsqrt(p.x2 + p.y2 . . .)

The result shall be within 8192 ulps error from the infinitely precise result of:

if (all(p == 0.0f)) { result = p; }

else { result = p / sqrt(p.x2 + p.y2 + . . .); }

with the following exceptions :

1) If the sum of squares is greater than FLT_MAX then the value of the floating-point values in the result vector are
undefined.

2) If the sum of squares is less than FLT_MIN then the implementation may return back p.

3) If the device is in "denorms are flushed to zero" mode, individual operand elements with magnitude less than
sqrt(FLT_MIN) may be flushed to zero before proceeding with the calculation.

Result Type and p must be floating-point or vector(2,3,4) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 44 / 80

6 44 <id>
Result Type

Result <id> extended
instructions set
<id>

110 <id>
p

2.5 Relational instructions

This section describes the the list of relational instructions that take scalar or vector arguments. The vector versions of the integer
functions operate component-wise. The description is per-component.

bitselect

Each bit of the result is the corresponding bit of a if the corresponding bit of c is 0. Otherwise it is the corresponding bit of
b.

Result Type,a,b and c must be floating-point or integer or vector(2,3,4,8,16) of floating-point or integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

186 <id>
a

<id>
b

<id>
c

select

Each bit of the result is the corresponding bit of a if the corresponding bit of c is 0. Otherwise it is the corresponding bit of
b.

c must be integer or vector(2,3,4,8,16) of integer values.

Result Type,a and b must be floating-point or integer or vector(2,3,4,8,16) of floating-point or integer values.

Result Type, a and b must have the same type. c operand must have the same component count and component bit width as
the rest of the operands.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

187 <id>
a

<id>
b

<id>
c

2.6 Vector Data Load and Store instructions

This section describes the list of instructions that allow reading and writing of vector types from a pointer to memory.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 45 / 80

vloadn

Return a vector value which is read from address (p + (offset * n)).

The address computed as (p + (offset * n)) must be 8-bit aligned if p points to i8 value; 16-bit aligned if p points to i16 or
half value; 32-bit aligned if p points to i32 or float value; 64-bit aligned if p points to i64 or double value.

offset must be size_t.

p must be a pointer(constant, generic) to floating-point, integer.

Result Type must be vector(2,3,4,8,16) of floating-point or integer values.

Result Type component count must be equal to n and its component type must be equal to the type pointed by p.

n must be 2,3,4,8 or 16.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

171 <id>
offset

<id>
p

Literal
Number
n

vstoren

Write data vector value to the address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the
component count of the vector data.

The address computed as (p + (offset * compCountOf(data))) must be 8-bit aligned if p points to i8 value; 16-bit aligned if
p points to i16 or half value; 32-bit aligned if p points to i32 or float value; 64-bit aligned if p points to i64 or double value.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to floating-point, integer.

data must be vector(2,3,4,8,16) of floating-point or integer values.

data component type must be equal to the type pointed by p.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

172 <id>
data

<id>
offset

<id>
p

vload_half

Reads a half value from the address (p + (offset)) and converts it to a float return value. The address computed as (p +
(offset)) must be 16-bit aligned.

Result Type must be float.

offset must be size_t.

p must be a pointer(constant, generic) to half.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 46 / 80

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

173 <id>
offset

<id>
p

vload_halfn

Reads a half vector value from the address (p + (offset * n)) and converts it to a float vector return value. The address
computed as (p + (offset * n)) must be 16-bit aligned.

offset must be size_t.

p must be a pointer(constant, generic) to half.

Result Type must be vector(2,3,4,8,16) of float values.

Result Type component count must be equal to n.

n must be 2,3,4,8 or 16.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

174 <id>
offset

<id>
p

Literal
Number
n

vstore_half

Converts data float or double value to a half value and then write the converted value to the address (p + offset). The
address computed as (p + offset) must be 16-bit aligned.

This function uses the default rounding mode when converting data to a half value. The default rounding mode is round to
nearest even.

data must be float or double.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to half.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

175 <id>
data

<id>
offset

<id>
p

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 47 / 80

vstore_half_r

Converts data float or double value to a half value and then write the converted value to the address (p + offset). The
address computed as (p + offset) must be 16-bit aligned.

This function uses mode rounding mode when converting data to a half value.

data must be float or double.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to half.

9 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

176 <id>
data

<id>
offset

<id>
p

FP
Rounding
Mode
mode

vstore_halfn

Converts data vector of float or vector of double values to a vector of half values and then write the converted value to the
address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the component count of the vector
data.

The address computed as (p + (offset * compCountOf(data))) must be 16-bit aligned.

This function uses the default rounding mode when converting data to a vector of half values. The default rounding mode
is round to nearest even.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

177 <id>
data

<id>
offset

<id>
p

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 48 / 80

vstore_halfn_r

Converts data vector of float or vector of double values to a vector of half values and then write the converted value to the
address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the component count of the vector data.

The address computed as (p + (offset * compCountOf(data))) must be 16-bit aligned.

This function uses mode rounding mode when converting data to a half value.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

9 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

178 <id>
data

<id>
offset

<id>
p

FP
Rounding
Mode
mode

vloada_halfn

Reads a half vector value from the address (p + (offset * n)) and converts it to a float vector return value. The address
computed as (p + (offset * n)) must be (2 * n) bytes aligned, when n = 2,4,8,16; For n = 3, the function returns a vector of 3
float values from the address (p + (offset * 4)). The address computed as (p + (offset * 4)) must be 8-bytes aligned

offset must be size_t.

p must be a pointer(constant, generic) to half.

Result Type must be vector(2,3,4,8,16) of float values.

Result Type component count must be equal to n.

n must be 2,3,4,8 or 16.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

179 <id>
offset

<id>
p

Literal
Number
n

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 49 / 80

vstorea_halfn

Converts data vector of float or vector of double values to a vector of half values and then write the converted value to the
address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the component count of the vector
data.

The address computed as (p + (offset * compCountOf(data))) must be (2 * compCountOf(data)) bytes aligned, when n =
2,4,8,16; For n = 3, the function returns a vector of 3 float values from the address (p + (offset * 4)). The address computed
as (p + (offset * 4)) must be 8-bytes aligned.

This function uses the default rounding mode when converting data to a vector of half values. The default rounding mode
is round to nearest even.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

180 <id>
data

<id>
offset

<id>
p

vstorea_halfn_r

Converts data vector of float or vector of double values to a vector of half values and then write the converted value to the
address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the component count of the vector data.

The address computed as (p + (offset * compCountOf(data))) must be (2 * compCountOf(data)) bytes aligned, when n =
2,4,8,16; For n = 3, the function returns a vector of 3 float values from the address (p + (offset * 4)). The address computed
as (p + (offset * 4)) must be 8-bytes aligned.

This function uses mode rounding mode when converting data to a vector of half values.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

9 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

181 <id>
data

<id>
offset

<id>
p

FP
Rounding
Mode
mode

2.7 Miscellaneous Vector instructions

This section describes additional vector instructions.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 50 / 80

shuffle

Construct a permutation of components from x vector value, returning a vector value with the same component type as x
and component component count that is the same as shuffle mask.

In this function, only the ilogb(2 m -1) least significant bits of each mask element are considered, where m is equal to the
component count of x.

shuffle mask operand specifies, for each component in the result vector, which component of x it gets.

The size of each component in shuffle mask must match the size of each component in Result Type.

Result Type must have the same component type as x and component count as shuffle mask.

shuffle mask must be vector(2,4,8,16) of integer values.

Result Type and x must be vector(2,4,8,16) of floating-point or integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id>
Result Type

Result <id> extended
instructions set
<id>

182 <id>
x

<id>
shuffle mask

shuffle2

Construct a permutation of components from x and y vector values, returning a vector value with the same component type
as x and y and component count that is the same as shuffle mask.

In this function, only the ilogb(2 m - 1) + 1 least significant bits of each mask component are considered, where m is equal
to the component count of x and y.

shuffle mask operand specifies, for each component in the result vector, which component of x or y it gets. Where
component count begins with x and then proceeds to y.

x and y must be of the same type.

The size of each component in shuffle mask must match the size of each component in Result Type.

Result Type must have the same component type as x and component count as shuffle mask.

shuffle mask must be vector(2,4,8,16) of integer values.

Result Type,x and y must be vector(2,4,8,16) of floating-point or integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

183 <id>
x

<id>
y

<id>
shuffle mask

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 51 / 80

2.8 Misc instructions

This section describes additional miscellaneous instructions.

printf

The printf extended instruction writes output to an implementation-defined stream such as stdout under control of the
string pointed to by format that specifies how subsequent arguments are converted for output. If there are insufficient
arguments for the format, the behavior is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated (as always) but are otherwise ignored. The printf function returns when the end of the format
string is encountered

printf returns 0 if it was executed successfully and -1 otherwise

Result Type must be i32.

format must be OpString.

6 +
vari-
able

44 <id>
Result Type

Result <id> extended
instructions set
<id>

184 <id>
format

<id>, <id>,
. . .
additional
arguments

prefetch

Prefetch num_elements * size in bytes of the type pointed by p, into the global cache. The prefetch instruction is
applied to a work-item in a work-group and does not affect the functional behavior of the kernel.

num_elements must be size_t.

Result Type must be void.

p must be a pointer(global) to floating-point, integer or vector(2,3,4,8,16) of floating-point, integer values.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

185 <id>
num_elements

<id>
p

2.9 Image functions

The instructions defined in this section can only be used with image memory objects. An image memory object can be accessed
by specific function calls that read from and/or write to specific locations in the image.

2.9.1 Image encoding

The following list denotes the different valid OpTypeSampler encodings of image objects.

image1d

A 1D image

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 52 / 80

9 14 Result
<id>

Sampled
Type <0>

Dim
0

Image
Type
1

Array
0

Depth
0

Sample
0

Access
Qualifier
qualifier

image1dBuffer

A 1D image created from a buffer object.

9 14 Result
<id>

Sampled
Type <0>

Dim
5

Image
Type
1

Array
0

Depth
0

Sample
0

Access
Qualifier
qualifier

image1dArray

A 1D image array.

9 14 Result
<id>

Sampled
Type <0>

Dim
0

Image
Type
1

Array
1

Depth
0

Sample
0

Access
Qualifier
qualifier

image2d

A 2D image.

9 14 Result
<id>

Sampled
Type <0>

Dim
1

Image
Type
1

Array
0

Depth
0

Sample
0

Access
Qualifier
qualifier

image2dArray

A 2D image array.

9 14 Result
<id>

Sampled
Type <0>

Dim
1

Image
Type
1

Array
1

Depth
0

Sample
0

Access
Qualifier
qualifier

image2dDepth

A 2D depth image.

9 14 Result
<id>

Sampled
Type <0>

Dim
1

Image
Type
1

Array
0

Depth
1

Sample
0

Access
Qualifier
qualifier

image2dArrayDepth

A 2D depth image array.

9 14 Result
<id>

Sampled
Type <0>

Dim
1

Image
Type
1

Array
1

Depth
1

Sample
0

Access
Qualifier
qualifier

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 53 / 80

image2dMsaa

A 2D multi-sample color image.

9 14 Result
<id>

Sampled
Type <0>

Dim
1

Image
Type
1

Array
0

Depth
0

Sample
1

Access
Qualifier
qualifier

image2dArrayMsaa

A 2D multi-sample color image array.

9 14 Result
<id>

Sampled
Type <0>

Dim
1

Image
Type
1

Array
1

Depth
0

Sample
1

Access
Qualifier
qualifier

image2dMsaaDepth

A 2D multi-sample depth image.

9 14 Result
<id>

Sampled
Type <0>

Dim
1

Image
Type
1

Array
0

Depth
1

Sample
1

Access
Qualifier
qualifier

image2dArrayMsaaDepth

A 2D multi-sample depth image array.

9 14 Result
<id>

Sampled
Type <0>

Dim
1

Image
Type
1

Array
1

Depth
1

Sample
1

Access
Qualifier
qualifier

image3d

A 1D image created from a buffer object.

9 14 Result
<id>

Sampled
Type <0>

Dim
2

Image
Type
1

Array
0

Depth
0

Sample
0

Access
Qualifier
qualifier

2.9.2 Sampler encoding

A SPIR-V sampler object is encoded via the OpTypeSampler instruction in the following way:

sampler

An image sampler object.

8 14 Result <id> Sampled
Type <0>

Dim
0

Image Type
2

Array
0

Depth
0

Sample
0

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 54 / 80

In addition, it is possible to define a constant sampler using the OpConstantSampler.

2.9.3 Image format encoding

Every image memory object has a format. An image format is a combination of channel order and channel data type. The
channel order specifies the number of channels and the channel layout i.e.the memory layout in which channels are stored in the
image. The channel data type describes the size of the channel data type.

ImageChannelOrder
4272 R
4273 A
4274 RG
4275 RA
4276 RGB
4277 RGBA
4278 BGRA
4279 ARGB
4280 INTENSITY
4281 LUMINANCE
4282 Rx
4283 RGx
4284 RGBx
4285 DEPTH
4286 DEPTH STENCIL
4287 sRGB
4288 sRGBx
4289 sRGBA
4290 sBGRA

ImageChannelType
4304 SNORM INT8
4305 SNORM INT16
4306 UNORM INT8
4307 UNORM_INT16
4308 UNORM SHORT 565
4309 UNORM SHORT 555
4310 UNORM INT 101010
4311 SIGNED INT8
4312 SIGNED INT16
4313 SIGNED INT32
4314 UNSIGNED INT8
4315 UNSIGNED INT16
4316 UNSIGNED INT32
4317 HALF FLOAT
4318 FLOAT
4319 UNORM INT24

2.9.4 Image read functions

This section describes the list of instructions that allow reading from image memory objects.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 55 / 80

read_imagef

Use the coordinate specified by coords and the sampler object specified by s to do an element lookup to the image object
specified by img.

This function returns floating-point values in the range [0.0 . . . 1.0] for image objects created with channel data type set to
one of the pre-defined packed formats or UNORM INT8, or UNORM INT16.

This function returns floating-point values in the range[-1.0 . . . 1.0] for image objects created with channel data type set to
SNORM INT8, or SNORM INT16.

This function returns floating-point values for image objects created with channel data type set to HALF FLOAT, or
FLOAT.

When called with i32 coordinates the sampler object must be defined with a filter mode set to Nearest, coordinates set to
non-parametric coordinates and addressing mode set to ClampToEdge, Clamp or None; otherwise the values returned are
undefined.

Values returned by this function for image objects with channel data type which is not specified in the description above
are undefined.

Result Type must be float or vector(4) of float values.

coords must be float or i32 or vector(2,4) of float or i32 values.

img must be image1d, image1dArray, image2d, image2dArray, image2dArrayDepth, image2dDepth, image2dMsaa,
image2dArrayMsaa, image2dMsaaDepth, image2dArrayMsaaDepth or image3d value, with ReadOnly or ReadWrite
access qualifier.

s must be sampler value.

When img is a image1d, coords must be float or i32.

When img is a image2d, image2dDepth, image2dMsaa or image2dMsaaDepth, coords must be vector(2) of float or i32
values.

When img is a image1dArray, coords must be vector(2) of i32 values. The second component of coords is used to identify
the image in the array

When img is a image2dArray, image2dArrayDepth, image2dArrayMsaa or image2dArrayMsaaDepth, coords must be
vector(4) of i32 values. The third component of coords is used to identify the image in the array, while the fourth
component is ignored.

When img is a image3d, coords must be vector(4) of float or i32 values. The fourth component of coords is ignored.

Result Type must be a float when img is a image2dArrayDepth, image2dDepth, image2dMsaaDepth or
image2dArrayMsaaDepth, and vector(4) of float values when img is on of the remaining valid image types for this
instruction.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

111 <id>
img

<id>
s

<id>
coords

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 56 / 80

read_imagei

Use the coordinate specified by coords and the sampler object specified by s to do an element lookup to the image object
specified by img.

This function returns a non-parametric i32 integer value.

This function can only be used if img image object channel data type is set to SIGNED INT8, SIGNED INT16 or
SIGNED INT32. If the channel data type is not one of these values, the values returned by read_imagei are undefined.

The sampler object must be defined with a filter mode set to Nearest, coordinates set to non-parametric coordinates and
addressing mode set to ClampToEdge, Clamp or None; otherwise the values returned are undefined.

Result Type must be vector(4) of i32 values.

coords must be float or i32 or vector(2,4) of float or i32 values.

img must be image1d, image1dArray, image2d, image2dArray, image2dMsaa, image2dArrayMsaa or image3d value, with
ReadOnly or ReadWrite access qualifier.

s must be sampler value.

When img is a image1d, coords must be float or i32.

When img is a image2d, image2dDepth, image2dMsaa or image2dMsaaDepth, coords must be vector(2) of float or i32
values.

When img is a image1dArray, coords must be vector(2) of i32 values. The second component of coords is used to identify
the image in the array

When img is a image2dArray, image2dArrayDepth, image2dArrayMsaa or image2dArrayMsaaDepth, coords must be
vector(4) of i32 values. The third component of coords is used to identify the image in the array, while the fourth
component is ignored.

When img is a image3d, coords must be vector(4) of float or i32 values. The fourth component of coords is ignored.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

112 <id>
img

<id>
s

<id>
coords

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 57 / 80

read_imageui

Use the coordinate specified by coords and the sampler object specified by s to do an element lookup to the image object
specified by img.

This function returns a non-parametric i32 integer value.

This function can only be used if img image object channel data type is set to UNSIGNED INT8, UNSIGNED INT16 or
UNSIGNED INT32. If the channel data type is not one of these values, the values returned by read_imagei are undefined.

The sampler object must be defined with a filter mode set to Nearest, coordinates set to non-parametric coordinates and
addressing mode set to ClampToEdge, Clamp or None; otherwise the values returned are undefined.

Result Type must be vector(4) of i32 values.

coords must be float or i32 or vector(2,4) of float or i32 values.

img must be image1d, image1dArray, image2d, image2dArray, image2dMsaa, image2dArrayMsaa or image3d value, with
ReadOnly or ReadWrite access qualifier.

s must be sampler value.

When img is a image1d, coords must be float or i32.

When img is a image2d, image2dDepth, image2dMsaa or image2dMsaaDepth, coords must be vector(2) of float or i32
values.

When img is a image1dArray, coords must be vector(2) of i32 values. The second component of coords is used to identify
the image in the array

When img is a image2dArray, image2dArrayDepth, image2dArrayMsaa or image2dArrayMsaaDepth, coords must be
vector(4) of i32 values. The third component of coords is used to identify the image in the array, while the fourth
component is ignored.

When img is a image3d, coords must be vector(4) of float or i32 values. The fourth component of coords is ignored.

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

113 <id>
img

<id>
s

<id>
coords

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 58 / 80

read_imageh

Use the coordinate specified by coords and the sampler object specified by s to do an element lookup to the image object
specified by img.

This function returns half precision floating-point values in the range [0.0 . . . 1.0] for image objects created with channel
data type set to one of the pre-defined packed formats or UNORM INT8, or UNORM INT16.

This function returns half precision floating-point values in the range[-1.0 . . . 1.0] for image objects created with channel
data type set to SNORM INT8, or SNORM INT16.

This function returns half precision floating-point values for image objects created with channel data type set to HALF
FLOAT, or FLOAT.

When called with i32 coordinates the sampler object must be defined with a filter mode set to Nearest, coordinates set to
non-parametric coordinates and addressing mode set to ClampToEdge, Clamp or None; otherwise the values returned are
undefined.

Values returned by this function for image objects with channel data type which is not specified in the description above
are undefined.

Result Type must be half or vector(4) of half values.

coords must be float or i32 or vector(2,4) of float or i32 values.

img must be image1d, image1dArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access
qualifier.

s must be sampler value.

When img is a image1d, coords must be float or i32.

When img is a image2d, coords must be vector(2) of float or i32 values.

When img is a image1dArray, coords must be vector(2) of i32 values. The second component of coords is used to identify
the image in the array

When img is a image2dArray, coords must be vector(4) of i32 values. The third component of coords is used to identify
the image in the array, while the fourth component is ignored.

When img is a image3d, coords must be vector(4) of float or i32 values. The fourth component of coords is ignored.

Result Type must be a half when img is a image2dArrayDepth, image2dDepth, image2dMsaaDepth or
image2dArrayMsaaDepth, and vector(4) of half values when img is on of the remaining valid image types for this
instruction.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

114 <id>
img

<id>
s

<id>
coords

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 59 / 80

read_imagef_samplerless

Use the coordinate specified by coords to do an element lookup to the image object specified by img. This function
behaves exactly as the corresponding read_imagef function that take integer coordinates and a sampler with filter mode set
to Nearest, non-parametric coordinates and addressing mode set to None.

Result Type must be float or vector(4) of float values.

coords must be i32 or vector(2,4) of i32 values.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or
image3d value, with ReadOnly or ReadWrite access qualifier.

7 44 <id>
Result Type

Result <id> extended
instructions set
<id>

115 <id>
img

<id>
coords

read_imagei_samplerless

Use the coordinate specified by coords to do an element lookup to the image object specified by img. This function
behaves exactly as the corresponding read_imagei function that take integer coordinates and a sampler with filter mode set
to Nearest, non-parametric coordinates and addressing mode set to None.

Result Type must be vector(4) of i32 values.

coords must be i32 or vector(2,4) of i32 values.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray, image2dMsaa, image2dArrayMsaa or
image3d value, with ReadOnly or ReadWrite access qualifier.

7 44 <id>
Result Type

Result <id> extended
instructions set
<id>

116 <id>
img

<id>
coords

read_imageui_samplerless

Use the coordinate specified by coords to do an element lookup to the image object specified by img. This function
behaves exactly as the corresponding read_imageui function that take integer coordinates and a sampler with filter mode
set to Nearest, non-parametric coordinates and addressing mode set to None.

Result Type must be vector(4) of i32 values.

coords must be i32 or vector(2,4) of i32 values.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray or image3d value, with ReadOnly or
ReadWrite access qualifier.

7 44 <id>
Result Type

Result <id> extended
instructions set
<id>

117 <id>
img

<id>
coords

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 60 / 80

read_imageh_samplerless

Use the coordinate specified by coords to do an element lookup to the image object specified by img. This function
behaves exactly as the corresponding read_imageh function that take integer coordinates and a sampler with filter mode set
to Nearest, non-parametric coordinates and addressing mode set to None.

Result Type must be vector(4) of half values.

coords must be i32 or vector(2,4) of i32 values.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray or image3d value, with ReadOnly or
ReadWrite access qualifier.

7 44 <id>
Result Type

Result <id> extended
instructions set
<id>

118 <id>
img

<id>
coords

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 61 / 80

read_imagef_mipmap_lod

Use the coordinate specified by coords, and the sampler object specified by s to do an element lookup in the mip-level
specified by lod in the image object specified by img.

Result Type must be float or vector(4) of float values.

img must be image1d, image1dArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value,
with ReadOnly or ReadWrite access qualifier.

s must be sampler value.

s must be set to use parametric coordinates.

lod is clamped to the minimum of (actual number of mip-levels - 1) in the image or value specified for
CL_SAMPLER_LOD_MAX.

When img type is image2d:

- coords must be a vector(2) of float values.

- Result Type must be a vector(4) of float values.

When img type is image2dArray:

- coords must be a vector(4) of float values.

- Result Type must be a vector(4) of float values.

When img type is image1d:

- coords must be a float.

- Result Type must be a vector(4) of float values.

When img type is image1dArray:

- coords must be a vector(2) of float values.

- Result Type must be a vector(4) of float values.

When img type is image3d:

- coords must be a vector(4) of float values.

- Result Type must be a vector(4) of float values.

When img type is image2dDepth:

- coords must be a vector(2) of float values.

- Result Type must be a float.

When img type is image2dArrayDepth:

- coords must be a vector(4) of float values.

- Result Type must be a float.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 62 / 80

9 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

123 <id>
img

<id>
s

<id>
coords

<id>
lod

read_imagei_mipmap_lod

Use the coordinate specified by coords, and the sampler object specified by s to do an element lookup in the mip-level
specified by lod in the image object specified by img.

Result Type must be vector(4) of i32 values.

img must be image1d, image1dArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access
qualifier.

s must be sampler value.

s must be set to use parametric coordinates.

lod is clamped to the minimum of (actual number of mip-levels - 1) in the image or value specified for
CL_SAMPLER_LOD_MAX.

When img type is image2d:

- coords must be a vector(2) of float values.

- lod must be a float.

When img type is image2dArray:

- coords must be a vector(4) of float values.

When img type is image1d:

- coords must be a float.

When img type is image1dArray:

- coords must be a vector(2) of float values.

When img type is image3d:

- coords must be a vector(4) of float values.

9 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

124 <id>
img

<id>
s

<id>
coords

<id>
lod

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 63 / 80

read_imageui_mipmap_lod

Use the coordinate specified by coords, and the sampler object specified by s to do an element lookup in the mip-level
specified by lod in the image object specified by img.

Result Type must be vector(4) of i32 values.

img must be image1d, image1dArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access
qualifier.

s must be sampler value.

s must be set to use parametric coordinates.

lod is clamped to the minimum of (actual number of mip-levels - 1) in the image or value specified for
CL_SAMPLER_LOD_MAX.

When img type is image2d:

- coords must be a vector(2) of float values.

When img type is image2dArray:

- coords must be a vector(4) of float values.

When img type is image1d:

- coords must be a float.

When img type is image1dArray:

- coords must be a vector(2) of float values.

When img type is image3d:

- coords must be a vector(4) of float values.

9 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

125 <id>
img

<id>
s

<id>
coords

<id>
lod

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 64 / 80

read_imagef_mipmap_gradient

Use the gradients grad_x and grad_y, the coordinates specified by coords, and the sampler object specified by s to do an
element lookup in the computed mip-level in the image object specified by img.

Result Type must be float or vector(4) of float values.

img must be image1d, image1dArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value,
with ReadOnly or ReadWrite access qualifier.

s must be sampler value.

s must be set to use parametric coordinates.

When img type is image2d:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.

- Result Type must be a vector(4) of float values.

When img type is image2dArray:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.

- Result Type must be a vector(4) of float values.

When img type is image1d:

- coords must be a float.

- grad_x and grad_y must be a float.

- Result Type must be a vector(4) of float values.

When img type is image1dArray:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a float.

- Result Type must be a vector(4) of float values.

When img type is image3d:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(4) of float values.

- Result Type must be a vector(4) of float values.

When img type is image2dDepth:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.

- Result Type must be a float.

When img type is image2dArrayDepth:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.

- Result Type must be a float.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 65 / 80

10 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

126 <id>
img

<id>
s

<id>
coords

<id>
grad_x

<id>
grad_y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 66 / 80

read_imagei_mipmap_gradient

Use the gradients grad_x and grad_y, the coordinates specified by coords, and the sampler object specified by s to do an
element lookup in the computed mip-level in the image object specified by img.

Result Type must be vector(4) of i32 values.

img must be image1d, image1dArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access
qualifier.

s must be sampler value.

s must be set to use parametric coordinates.

When img type is image2d:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.

When img type is image2dArray:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.

When img type is image1d:

- coords must be a float.

- grad_x and grad_y must be a float.

When img type is image1dArray:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a float.

When img type is image3d:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(4) of float values.

When img type is image2dDepth:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.

When img type is image2dArrayDepth:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 67 / 80

10 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

127 <id>
img

<id>
s

<id>
coords

<id>
grad_x

<id>
grad_y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 68 / 80

read_imageui_mipmap_gradient

Use the gradients grad_x and grad_y, the coordinates specified by coords, and the sampler object specified by s to do an
element lookup in the computed mip-level in the image object specified by img.

Result Type must be vector(4) of i32 values.

img must be image1d, image1dArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access
qualifier.

s must be sampler value.

s must be set to use parametric coordinates.

When img type is image2d:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.

When img type is image2dArray:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.

When img type is image1d:

- coords must be a float.

- grad_x and grad_y must be a float.

When img type is image1dArray:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a float.

When img type is image3d:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(4) of float values.

When img type is image2dDepth:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.

When img type is image2dArrayDepth:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 69 / 80

10 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

128 <id>
img

<id>
s

<id>
coords

<id>
grad_x

<id>
grad_y

2.9.5 Image write functions

This section describes the list of instructions that allow writing to image memory objects.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 70 / 80

write_imagef

Write value to the coordinates specified by coords to the image object specified by img. The write happens only after the
data in value is converted to the appropraite img image channel data type. coords are considered to be non-parametric
coordinates.

Result Type must be void.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or
image3d value, with WriteOnly or ReadWrite access qualifier.

When img is a image2d, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT, FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width - 1), (0 . . .
image height - 1) respectively.

- value is a vector(4) of float values.

When img is a image2dArray, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT, FLOAT.

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width - 1),
(0 . . . image height - 1), (0 . . . image number of layers - 1) respectively. The fourth component is ignored.

- value is a vector(4) of float values.

When img is a image1d or image1dBuffer, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT, FLOAT.

- coords is a i32, and is in the range (0 . . . image width - 1)

- value is a vector(4) of float values.

When img is a image1dArray, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT, FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width - 1), (0 . . .
image number of layers - 1) respectively.

- value is a vector(4) of float values

When img is a image2dDepth, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM INT16, UNORM INT24, FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width - 1), (0 . . .
image height - 1) respectively.

- value is a float.

When img is a image2dArrayDepth, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM INT16, UNORM INT24, FLOAT.

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width - 1),
(0 . . . image height - 1), (0 . . . image number of layers - 1) respectively. The fourth component is ignored.

- value is a float.

When img is a image3d, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT, FLOAT.

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width - 1),
(0 . . . image height - 1), (0 . . . image depth - 1) respectively. The fourth component is ignored.

- value is a vector(4) of float values.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 71 / 80

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

119 <id>
img

<id>
coords

<id>
value

write_imagei

Write value to the coordinates specified by coords to the image object specified by img. The write happens only after the
data in value is converted to the appropraite img image channel data type. value component type is considered to be a
signed integer. coords are considered to be non-parametric coordinates.

Result Type must be void.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray or image3d value, with WriteOnly or
ReadWrite access qualifier.

The channel data type of img must be set to SIGNED INT8, SIGNED INT16, SIGNED INT32.

When img is a image2d:

- coords must be a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width - 1),
(0 . . . image height - 1) respectively.

- value must be a vector(4) of i32 values.

When img is a image2dArray:

- coords must be a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width
- 1), (0 . . . image height - 1), (0 . . . image number of layers - 1) respectively. The fourth component is ignored.

- value must be a vector(4) of i32 values.

When img is a image1d or image1dBuffer:

- coords must be a i32, and is in the range (0 . . . image width - 1)

- value must be a vector(4) of i32 values.

When img is a image1dArray:

- coords must be a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width - 1),
(0 . . . image number of layers - 1) respectively.

- value must be a vector(4) of i32 values

When img is a image3d:

- coords must be a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width
- 1), (0 . . . image height - 1), (0 . . . image depth - 1) respectively. The fourth component is ignored.

- value must be a vector(4) of i32 values.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

120 <id>
img

<id>
coords

<id>
value

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 72 / 80

write_imageui

Write value to the coordinates specified by coords to the image object specified by img. The write happens only after the
data in value is converted to the appropraite img image channel data type. value component type is considered to be an
unsigned integer. coords are considered to be non-parametric coordinates.

Result Type must be void.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray or image3d value, with WriteOnly or
ReadWrite access qualifier.

The channel data type of img must be set to UNSIGNED INT8, UNSIGNED INT16, UNSIGNED INT32.

When img is a image2d:

- coords must be a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width - 1),
(0 . . . image height - 1) respectively.

- value must be a vector(4) of i32 values.

When img is a image2dArray:

- coords must be a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width
- 1), (0 . . . image height - 1), (0 . . . image number of layers - 1) respectively. The fourth component is ignored.

- value must be a vector(4) of i32 values.

When img is a image1d or image1dBuffer:

- coords must be a i32, and is in the range (0 . . . image width - 1)

- value must be a vector(4) of i32 values.

When img is a image1dArray:

- coords must be a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width - 1),
(0 . . . image number of layers - 1) respectively.

- value must be a vector(4) of i32 values

When img is a image3d:

- coords must be a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width
- 1), (0 . . . image height - 1), (0 . . . image depth - 1) respectively. The fourth component is ignored.

- value must be a vector(4) of i32 values.
8 44 <id>

Result Type
Result <id> extended

instructions
set <id>

121 <id>
img

<id>
coords

<id>
value

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 73 / 80

write_imageh

Write value to the coordinates specified by coords to the image object specified by img. The write happens only after the
data in value is converted to the appropraite img image channel data type. coords are considered to be non-parametric
coordinates.

Result Type must be void.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray or image3d value, with WriteOnly or
ReadWrite access qualifier.

When img is a image2d, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width - 1), (0 . . .
image height - 1) respectively.

- value is a vector(4) of half values.

When img is a image2dArray, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width - 1),
(0 . . . image height - 1), (0 . . . image number of layers - 1) respectively. The fourth component is ignored.

- value is a vector(4) of half values.

When img is a image1d or image1dBuffer, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a i32, and is in the range (0 . . . image width - 1)

- value is a vector(4) of half values.

When img is a image1dArray, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width - 1), (0 . . .
image number of layers - 1) respectively.

- value is a vector(4) of half values

When img is a image3d, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INT8, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width - 1),
(0 . . . image height - 1), (0 . . . image depth - 1) respectively. The fourth component is ignored.

- value is a vector(4) of half values.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 74 / 80

8 44 <id>
Result Type

Result <id> extended
instructions
set <id>

122 <id>
img

<id>
coords

<id>
value

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 75 / 80

write_imagef_mipmap_lod

Write value to the coordinates specified by coords in the mip-level specified by lod to the image object specified by img.
The write happens only after the data in value is converted to the appropraite img image channel data type. coords are
considered to be non-parametric coordinates.

Result Type must be void.

img must be image1d, image1dArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value,
with WriteOnly or ReadWrite access qualifier.

The behavior of the function is undefined unless lod value is in the range (0 . . . number of mip-levels in the image - 1).

When img is a image2d, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip-level specified by lod - 1) respectively.

- value is a vector(4) of float values.

When img is a image2dArray, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip-level specified by lod - 1), (0 . . . image number of layers - 1)
respectively. The fourth component is ignored.

- value is a vector(4) of float values.

When img is a image1d or image1dBuffer, the behavior of the function is undefined unless:

- coords is a i32, and is in the range (0 . . . image width of the mip-level specified by lod - 1)

- value is a vector(4) of float values.

When img is a image1dArray, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image number of layers - 1) respectively.

- value is a vector(4) of float values.

When img is a image2dDepth, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width of the
mip-level specified by lod- 1), (0 . . . image height of the mip-level specified by lod- 1) respectively.

- value is a float.

When img is a image2dArrayDepth, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip - level specified by lod - 1), (0 . . . image number of layers -
1) respectively. The fourth component is ignored.

- value is a float.

When img is a image3d, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip-level specified by lod - 1), (0 . . . image depth of the
mip-level specified by lod - 1) respectively. The fourth component is ignored.

- value is a vector(4) of float values.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 76 / 80

9 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

129 <id>
img

<id>
coords

<id>
lod

<id>
value

write_imagei_mipmap_lod

Write value to the coordinates specified by coords in the mip-level specified by lod to the image object specified by img.
The write happens only after the data in value is converted to the appropraite img image channel data type. coords are
considered to be non-parametric coordinates. value component type is treated as signed integer.

Result Type must be void.

img must be image1d, image1dArray, image2d, image2dArray or image3d value, with WriteOnly or ReadWrite access
qualifier.

The behavior of the function is undefined unless lod value is in the range (0 . . . number of mip-levels in the image - 1).

When img is a image2d, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip-level specified by lod - 1) respectively.

When img is a image2dArray, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip-level specified by lod - 1), (0 . . . image number of layers - 1)
respectively. The fourth component is ignored.

When img is a image1d or image1dBuffer, the behavior of the function is undefined unless:

- coords is a i32, and is in the range (0 . . . image width of the mip-level specified by lod - 1)

When img is a image1dArray, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image number of layers - 1) respectively.

When img is a image3d, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip-level specified by lod - 1), (0 . . . image depth of the
mip-level specified by lod - 1) respectively. The fourth component is ignored.

9 44 <id>
Result
Type

Result
<id>

extended
instruc-
tions set
<id>

130 <id>
img

<id>
coords

<id>
lod

<id>
value

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 77 / 80

write_imageui_mipmap_lod

Write value to the coordinates specified by coords in the mip-level specified by lod to the image object specified by img.
The write happens only after the data in value is converted to the appropraite img image channel data type. coords are
considered to be non-parametric coordinates. value component type is treated as unsigned integer.

Result Type must be void.

img must be image1d, image1dArray, image2d, image2dArray or image3d value, with WriteOnly or ReadWrite access
qualifier.

The behavior of the function is undefined unless lod value is in the range (0 . . . number of mip-levels in the image - 1).

When img is a image2d, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip-level specified by lod - 1) respectively.

When img is a image2dArray, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip-level specified by lod - 1), (0 . . . image number of layers - 1)
respectively. The fourth component is ignored.

When img is a image1d or image1dBuffer, the behavior of the function is undefined unless:

- coords is a i32, and is in the range (0 . . . image width of the mip-level specified by lod - 1)

When img is a image1dArray, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image number of layers - 1) respectively.

When img is a image3d, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 . . . image width of the
mip-level specified by lod - 1), (0 . . . image height of the mip-level specified by lod - 1), (0 . . . image depth of the
mip-level specified by lod - 1) respectively. The fourth component is ignored.
9 44 <id>

Result
Type

Result
<id>

extended
instruc-
tions set
<id>

131 <id>
img

<id>
coords

<id>
lod

<id>
value

2.9.6 Image query functions

This section describes the list of instructions that provide information of image memory objects.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 78 / 80

get_image_width

Return the width in pixels of the image object specified by img.

Result Type must be i32.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray, image2dArrayDepth,
image2dDepth or image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

132 <id>
img

get_image_height

Return the height in pixels of the image object specified by img.

Result Type must be i32.

img must be image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value, with
ReadOnly, WriteOnly or ReadWrite access qualifier.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

133 <id>
img

get_image_depth

Return the depth in pixels of the image object specified by img.

Result Type must be i32.

img must be image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

134 <id>
img

get_image_channel_data_type

Return the channel data type of the image object specified by img.

Result Type must be i32.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray, image2dArrayDepth,
image2dDepth or image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

Result Type must contain a value from ImageChannelType enumeration.
6 44 <id>

Result Type
Result <id> extended

instructions
set <id>

135 <id>
img

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 79 / 80

get_image_channel_order

Return the channel order of the image object specified by img.

Result Type must be i32.

img must be image1d, image1dBuffer, image1dArray, image2d, image2dArray, image2dArrayDepth,
image2dDepth or image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

Result Type must contain a value from ImageChannelOrder enumeration.
6 44 <id>

Result Type
Result <id> extended

instructions
set <id>

136 <id>
img

get_image_dim

Return the dimensions of the image object specified by img.

Result Type must be i32 or vector(2,4) of i32 values.

img must be image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value, with
ReadOnly, WriteOnly or ReadWrite access qualifier.

Result Type’must be ’vector(2) of i32 values when img is a image2d, image2dArray,
image2dArrayDepth or image2dDepth. The width and height of the image are contained in the first
and second components of the return value repectively.

Result Type’must be ’vector(4) of i32 values when img is a image3d. The width, height and depth of
the image are contained in the first, second and third components of the return value repectively. The
fourth component is 0.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

137 <id>
img

get_image_array_size

Return the number of samples in the MSAA image object specified by img.

Result Type must be i32.

Result Type must be size_t.

img must be image1dArray, image2dArray or image2dArrayDepth value, with ReadOnly, WriteOnly or ReadWrite
access qualifier.

img must be image2dMsaa, image2dArrayMsaa, image2dMsaaDepth or image2dArrayMsaaDepth value, with
ReadOnly, WriteOnly or ReadWrite access qualifier.

7 44 <id>
Result Type

Result <id> extended
instructions
set <id>

138 <id>
img

<id>
img

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 80 / 80

get_image_num_mip_levels

Return the number of mip-levels of the image object specified by img.

Result Type must be i32.

img must be image1d, image1dArray, image2d, image2dArray, image2dArrayDepth, image2dDepth
or image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

6 44 <id>
Result Type

Result <id> extended
instructions
set <id>

140 <id>
img

	1 Introduction
	2 Binary Form
	2.1 Math extended instructions
	2.2 Integer instructions
	2.3 Common instructions
	2.4 Geometric instructions
	2.5 Relational instructions
	2.6 Vector Data Load and Store instructions
	2.7 Miscellaneous Vector instructions
	2.8 Misc instructions
	2.9 Image functions
	2.9.1 Image encoding
	2.9.2 Sampler encoding
	2.9.3 Image format encoding
	2.9.4 Image read functions
	2.9.5 Image write functions
	2.9.6 Image query functions

