SPIR.

OpenCL 2.0 Extended Instruction Set
Specification (Provisional)

Boaz Ouiriel, Intel

Version 0.99, Revision 30

April 2, 2015

KHRCONOS

GROUP

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

Copyright © 2014-2015 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any compo-
nents may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner
without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality
therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession
of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell
anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and
redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification
and the latest available update of the specification for any version of the API is used whenever possible. Such distributed
specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification
may be incorporated into a product that is sold as long as such product includes significant independent work developed by the
seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible
with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this spec-
ification, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose or non-
infringement of any intellectual property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification. Under no circumstances will
the Khronos Group, or any of its Promoters, Contributors or Members or their respective partners, officers, directors, employees,
agents, or representatives be liable for any damages, whether direct, indirect, special or consequential damages for lost revenues,
lost profits, or otherwise, arising from or in connection with these materials.

Khronos, SYCL, SPIR, WebGL, EGL, COLLADA, StreamInput, OpenVX, OpenKCam, gITF, OpenKODE, OpenVG, OpenWEF,
OpenSL ES, OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX DL are trademarks and WebCL is a certification mark
of the Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL and OpenML are registered trademarks and the
OpenGL ES and OpenGL SC logos are trademarks of Silicon Graphics International used under license by Khronos. All other
product names, trademarks, and/or company names are used solely for identification and belong to their respective owners.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME
1 Aug 2014 Created ik
29 Mar 2015 Provisional Release ik
30 2-Apr-2015 Provisional Release ik

OpenCL 2.0 Extended Instruction Set Specification (Provisional) iv

Contents
1 Introduction 1
2 Binary Form 1
2.1 Math extended InStruCtions oLl e e e e e e e e 2
2.2 Integer INSrUCHONS ottt it e e e e e e e e e e e e e 30
2.3 CommoOn iNSrUCHIONS . . .+« .t v vt v e e e et e e e e e e e e e e e e e e e e e e e 39
2.4 GeometriC INStIUCtioNS L L e e e e e e e e e e e e e 41
2.5 Relational inStructions e e e e e e e e 44
2.6 Vector Data Load and Store instructions e e e e e e e e 44
2.7 Miscellaneous Vector inStruCtions o v v v v v vt e e e e e e e e e e e e e e e 49
2.8 MISCINSIUCHONS o v i i ittt e e e e e e e e e e e e e e e e e 51
2.9 Imagefunctions L e 51
29.1 Imageencoding e e e 51
2.9.2 Samplerencoding. 53
2.9.3 TImage formatencoding e e e e e e 54
294 Imageread functionsl e 54
2.9.5 Image write functionsl 69

2.9.6 Image query functions L e e e e e e e e 77

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

1/80

Contributors and Acknowledgements

* Yaxun Liu, AMD

¢ Brian Sumner, AMD

e Marty Johnson, AMD

* Mandana Baregheh, AMD
e Andrew Richards, Codeplay
* Guy Benyei, Intel

¢ Raun Krisch, Intel

¢ Yuan Lin, NVIDIA

¢ Lee Howes, Qulacomm

* Chihong Zang, Qualcomm
¢ Ben Gaster, Qualcomm

* Jack Liu, QUALCOMM

1 Introduction

This is the specification of OpenCL.std.20 extended instruction set.

The library is imported into a SPIR-V module in the following manner:

<ext-inst-id> OpExtInstImport "OpenCL.std.20"

The library can only be imported when Memory Model is set to OpenCL20

2 Binary Form

This section contains the semantics and exact form of execution of OpenCL 2.0 extended instructions using the OpExtInst in-

struction.

In this section we use the following naming conventions:

* void denote an OpTypeVoid.

* half, float and double denote an OpTypeFloat with a width of 16, 32 and 64 bits respectively.

* bool denotes an OpTypeBool.

* size_t denotes an 132 when the Addressing Model is Physical32 and 164 when the Addressing Model is Physical64.

i8, 116, i32 and i64 denote an OpTypelnt with a width of 8, 16, 32 and 64 bits respectively.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 2/80

* vector(n) denotes an OpTypeVector where n indicates the component count.

— vector(ny, ny, ..., n;) abbreviates vector(n;), vector(ny), ... or vector(n;).

* integer denotes i8, i16, i32 or i64.

* floating-point denotes half, float, double.

* pointer(storage) denotes an OpTypePointer which points to storage Storage Class.

— pointer(constant) denotes an OpTypePointer with UniformConstant Storage Class.

— pointer(generic) denotes an OpTypePointer with Generic Storage Class.

— pointer(global) denotes an OpTypePointer with WorkgroupGlobal Storage Class.

— pointer(local) denotes an OpTypePointer with WorkgroupLocal Storage Class.

— pointer(private) denotes an OpTypePointer with Private Storage Class.

— pointer(sy, s, ..., s;) abbreviates pointer(s;), pointer(sz), ... or pointer(s;).

* image defines all types of image memory objects (See image encoding section).

» sampler a SPIR-V sampler object (See sampler encoding section).

2.1 Math extended instructions

This section describes the list of external math instructions. The external math instructions are categorized into the following:

* A list of instructions that have scalar or vector argument versions, and,

* A list of instructions that only take scalar float arguments.

The vector versions of the math instructions operate component-wise. The description is per-component.

The math instructions are not affected by the prevailing rounding mode in the calling environment, and always return the same
value as they would if called with the round to nearest even rounding mode.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

3/80

acos
Compute the arc cosine of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 0 <id>
Result Type instructions by
set <id>

acosh
Compute the inverse hyperbolic cosine of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 1 <id>
Result Type instructions X
set <id>

acospi
Compute acos(x) / 7.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 2 <id>
Result Type instructions X
set <id>

asin
Compute the arc sine of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

3

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

4/80

asinh
Compute the inverse hyperbolic sine of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

set <id>

6 44 <id> Result <id> extended 4 <id>
Result Type instructions by
set <id>
asinpi
Compute asin(x) / 7.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 5 <id>
Result Type instructions X
set <id>
atan
Compute the arc tangent of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 6 <id>
Result Type instructions X
set <id>
atan2
Compute the arc tangent of y / x.
Result Type,y and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 7 <id> <id>
Result Type instructions y X

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

5/80

atanh
Compute the hyperbolic arc tangent of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

set <id>

6 44 <id> Result <id> extended 8 <id>
Result Type instructions by
set <id>
atanpi
Compute atan(x) / 7.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 9 <id>
Result Type instructions X
set <id>
atan2pi
Compute atan2(y, x) / 7.
Result Type,y and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 10 <id> <id>
Result Type instructions y X
set <id>
cbrt
Compute the cube-root of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 11 <id>
Result Type instructions X

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

6/80

ceil
Round x to integral value using the round to positive infinity rounding mode.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

set <id>

6 44 <id> Result <id> extended 12 <id>
Result Type instructions by
set <id>
copysign
Returns x with its sign changed to match the sign of y.
Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 13 <id> <id>
Result Type instructions X y
set <id>
cos
Compute the cosine of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 14 <id>
Result Type instructions X
set <id>
cosh
Compute the hyperbolic cosine of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 15 <id>
Result Type instructions X

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

7 /80

cospi
Compute cos(x) / .
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 16 <id>
Result Type instructions by
set <id>

erfc
Complementary error function of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 17 <id>
Result Type instructions X
set <id>

erf
Error function of x encountered in integrating the normal distribution.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 18 <id>
Result Type instructions X
set <id>

exp
Compute the base-e exponential of x. (i.e. e¥)
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

19

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

8/80

exp2
Computes 2 raised to the power of x. (i.e. 2¥)
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 20 <id>
Result Type instructions by
set <id>

expl0
Computes 10 raised to the power of x. (i.e. 10%)
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 21 <id>
Result Type instructions X
set <id>

expml
Computes ¢* - 1.0 .
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 22 <id>
Result Type instructions X
set <id>

fabs
Compute the absolute value of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

23

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

9/80

fdim

Compute x - y if x > y, +0 if x is less than or equal to y.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

All of the operands, including the Result Type operand, must be of the same type.

Result Type,a,b and ¢ must be floating-point or vector(2,3,4,8,16) of floating-point values.

7 44 <id> Result <id> extended 24 <id> <id>
Result Type instructions by y
set <id>
floor
Round x to the integral value using the round to negative infinity rounding mode.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 25 <id>
Result Type instructions X
set <id>
fma

Compute the correctly rounded floating-point representation of the sum of ¢ with the infinitely precise product of a and
b.Rounding of intermediate products shall not occur. Edge case behavior is per the IEEE 754-2008 standard.

8 44 <id> Result <id> | extended 26 <id> <id> <id>
Result Type instructions a b c
set <id>
fmax

Returns y if x < y, otherwise it returns x. If one argument is a NaN, Fmax returns the other argument. If both
arguments are NaNs, Fmax returns a NaN.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Note: fmax behave as defined by C99 and may not match the IEEE 754-2008 definition for maxNum with regard to

signaling NaNs.Specifically, signaling NaNs may behave as quiet NaNs

7

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

27

<id>
X

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

10/80

fmin

All of the operands, including the Result Type operand, must be of the same type.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

Returns y if y < x, otherwise it returns x. If one argument is a NaN, Fmin returns the other argument. If both
arguments are NaNs, Fmin returns a NaN.

Note: fmin behave as defined by C99 and may not match the IEEE 754-2008 definition for minNum with regard to
signaling NaNs.Specifically, signaling NaNs may behave as quiet NaNs

type.

Returns fmmin(x - floor(x), Ox 1 fffffep-1f. floor(x) is returned in ptr.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

ptr must be a pointer(generic) to floating-point or vector(2,3,4,8,16) of floating-point values.

7 44 <id> Result <id> extended 28 <id> <id>
Result Type instructions X y
set <id>
fmod
Modulus. Returns x - y * trunc (x/y).
Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 29 <id> <id>
Result Type instructions X y
set <id>
fract

All of the operands, including the Result Type operand, must be of the same type, or must be a pointer to the same

7

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

30

<id>

<id>
ptr

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

11/80

frexp

component of x equals mantissa returned * 2°*P.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

exp must be a pointer(generic) to i32 or vector(2,3,4,8,16) of i32 values.

count as Result Type and x operands.

Extract the mantissa and exponent from x. The Result Type holds the mantissa, and exp points to the exponent. For
each component the mantissa returned is a floating-point with magnitude in the interval [1/2, 1) or 0. Each

Result Type and x operands must be of the same type. exp operand must point to an {32 with the same component

Return the exponent of x as an i32 value.
Result Type must be i32 or vector(2,3,4,8,16) of i32 values.
x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must have the same component count.

7 44 <id> Result <id> extended 31 <id> <id>
Result Type instructions X exp
set <id>
hypot
Compute the value of the square root of x>+ y> without undue overflow or underflow.
Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 32 <id> <id>
Result Type instructions X y
set <id>
ilogh

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

33

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

ldexp

Multiply x by 2 to the power k.

k must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must be of the same type. exp operand must have the same component count as Result
Type and x operands.

7 44 <id> Result <id> extended 34 <id> <id>
Result Type instructions X k
set <id>
Igamma

Log gamma function of x. Returns the natural logarithm of the absolute value of the gamma function.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 35 <id>
Result Type instructions x
set <id>
Igamma_r

Log gamma function of x. Returns the natural logarithm of the absolute value of the gamma function. The sign of the
gamma function is returned in the signp operand

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
singp must be a pointer(generic) to i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x operands must be of the same type. singp operand must point to an i32 with the same component
count as Result Type and x operands.

7 44 <id> Result <id> extended 36 <id> <id>
Result Type instructions X singp
set <id>
log

Compute natural logarithm of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

12 /80

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

13/80

6 44 <id> Result <id> extended 37 <id>
Result Type instructions X
set <id>
log2

Compute a base 2 logarithm of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 38 <id>
Result Type instructions by
set <id>

log10
Compute a base 10 logarithm of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 39 <id>
Result Type instructions x
set <id>

loglp
Compute log(1.0 + x).
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 40 <id>
Result Type instructions X
set <id>

logb
Compute the exponent of x, which is the integral part of log; | x I.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

41

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

14 /80

mad

All of the operands, including the Result Type operand, must be of the same type.

Result Type,a,b and ¢ must be floating-point or vector(2,3,4,8,16) of floating-point values.

mad approximates a * b + c. Whether or how the product of a * b is rounded and how supernormal or subnormal
intermediate products are handled is not defined. mad is intended to be used where speed is preferred over accuracy

Note: For some usages, e.g.mad(a, b, -a*b), the definition of mad() is loose enough that almost any result is allowed from
mad() for some values of a and b.

8 44 <id> Result <id> | extended 42 <id> <id> <id>
Result Type instructions a b c
set <id>
maxmag
Returns xif I xI>1yl,yif lyl>1x1, otherwise finax(x, y).
Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 43 <id> <id>
Result Type instructions X y

set <id>
minmag
Returns x if I x I <1y l, yif | y | <l x|, otherwise fimin(x, y).
Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 44 <id> <id>

Result Type instructions X y

set <id>
modf
Decompose a floating-point number. The modf function breaks the argument x into integral and fractional parts, each
of which has the same sign as the argument. It stores the integral part in the object pointed to by iptr
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
iptr must be a pointer(generic) to floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type, or must be a pointer to the same
type.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

15/80

7 44 <id> Result <id> extended 45 <id> <id>
Result Type instructions X iptr
set <id>
nan
Returns a quiet NaN. The nancode may be placed in the significand of the resulting NaN.
nancode must be i32 or vector(2,3,4,8,16) of i32 values.
Result Type must be floating-point or vector(2,3,4,8,16) of floating-point values.
Result Type and nancode operands must have the same component count.
6 44 <id> Result <id> extended 46 <id>
Result Type instructions nancode
set <id>
nextafter

nextafter() returns the largest representable floating-point number less than x.
Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Computes the next representable floating-point value following x in the direction of y. Thus, if y is less than x,

set <id>

7 44 <id> Result <id> extended 47 <id> <id>
Result Type instructions X y
set <id>
pow
Compute x to the power y.
Result Type,x,y and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
8 44 <id> Result <id> | extended 48 <id> <id> <id>
Result Type instructions X y X

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

16 /80

pown

Compute x to the power y, where y is an i32 integer.

y must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must be of the same type. y operand must have the same component count
as Result Type and x operands.

6 44 <id> Result <id> extended 49 <id>
Result Type instructions y
set <id>

powr
Compute x to the power y, where y is an integer.
Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 50 <id> <id>
Result Type instructions X y
set <id>

remainder

Compute the value r such that r = x - n*y, where n is the integer nearest the exact value of x/y. If there are two
integers closest to x/y, n shall be the even one. If r is zero, it is given the same sign as x.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

7

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

51

<id>

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 17 /80

remquo

The remquo function computes the value r such that r = x - k*y, where k is the integer nearest the exact value of x/y. If
there are two integers closest to x/y, k shall be the even one. If r is zero, it is given the same sign as x. This is the same
value that is returned by the remainder function. remquo also calculates the lower seven bits of the integral quotient x/y,
and gives that value the same sign as x/y. It stores this signed value in the object pointed to by quo.

Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

quo must be a pointer(generic) to i32 or vector(2,3,4,8,16) of i32 values.

Result Type, x and y operands must be of the same type. guo operand must point to an i32 with the same component count
as Result Type, x and y operands.

8 44 <id> Result <id> | extended 52 <id> <id> <id>
Result Type instructions X y quo
set <id>
rint

Round x to integral value (using round to nearest even rounding mode) in floating-point format.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 53 <id>
Result Type instructions X
set <id>

rootn

Compute x to the power 1/y.

y must be i32 or vector(2,3,4,8,16) of i32 values.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Result Type and x operands must be of the same type. y operand must have the same component count as Result Type
and x operands.

7

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

54

<id>
X

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

18 /80

round

Return the integral value nearest to x rounding halfway cases away from zero, regardless of the current

rounding direction.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 55 <id>
Result Type instructions X
set <id>
rsqrt
Compute inverse square root of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 56 <id>
Result Type instructions X
set <id>
sin
Compute sine of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 57 <id>
Result Type instructions X
set <id>

sincos

type.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

cosval must be a pointer(generic) to floating-point or vector(2,3,4,8,16) of floating-point values.

Compute sine and cosine of x. The computed sine is the return value and computed cosine is returned in cosval.

All of the operands, including the Result Type operand, must be of the same type, or must be a pointer to the same

7 44

<id>
Result Type

Result <id>

extended
instructions
set <id>

58

<id>
X

<id>
cosval

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

19/80

sinh
Compute hyperbolic sine of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 59 <id>
Result Type instructions by
set <id>

sinpi
Compute sin (7 X).
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 60 <id>
Result Type instructions X
set <id>

sqrt
Compute square root of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 61 <id>
Result Type instructions X
set <id>

tan
Compute tangent of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id>

Result Type

Result <id>

extended
instructions
set <id>

62

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

20/80

tanh
Compute hyperbolic tangent of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

set <id>

6 44 <id> Result <id> extended 63 <id>
Result Type instructions by
set <id>
tanpi
Compute tan (7 X).
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 64 <id>
Result Type instructions X
set <id>
tgamma
Compute the gamma function of x.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 65 <id>
Result Type instructions X
set <id>
trunc
Round x to integral value using the round to zero rounding mode.
Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 66 <id>
Result Type instructions X

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

21/80

half cos

Compute cosine of x, where x must be in the range -2'¢ ... +21°,

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id> Result <id> extended 67 <id>
Result Type instructions X
set <id>

half divide

Compute x / y.

Result Type,x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value <= 8192 ulp.

The support for denormal values is optional and may return any result allowed even when -cl-denormals-are-zero flag
is not in force.

7 44 <id> Result <id> extended 68 <id> <id>
Result Type instructions by y
set <id>
half_exp

Compute the base-e exponential of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

extended 69 <id>
instructions X
set <id>

Result <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

22/80

half_exp2
Compute the base- 2 exponential of x.
Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id> Result <id> extended 70 <id>
Result Type instructions X
set <id>

half_exp10
Compute the base- 10 exponential of x.
Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id> Result <id> extended 71 <id>
Result Type instructions by
set <id>

half_log
Compute natural logarithm of x.
Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

extended 72 <id>
instructions X
set <id>

Result <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

23/80

half_log2

Compute a base 2 logarithm of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id>

extended
instructions
set <id>

73

<id>
X

half_log10

Compute a base 10 logarithm of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

Result <id>

extended
instructions
set <id>

74

<id>
X

half_powr

Compute x to the power y, where x is >= 0.

Result Type,x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value <= 8192 ulp.

The support for denormal values is optional and may return any result allowed even when -cl-denormals-are-zero flag

is not in force.

7 44

<id>
Result Type

Result <id>

extended
instructions
set <id>

75

<id>
X

<id>
y

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

24/80

half_recip
Compute reciprocal of x.
Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id> Result <id> extended 76 <id>
Result Type instructions X
set <id>

half_rsqrt
Compute inverse square root of x.
Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id> Result <id> extended 77 <id>
Result Type instructions by
set <id>

half sin
Compute sine of x, where x must be in the range 2164016,
Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id>
Result Type

extended 78 <id>
instructions X
set <id>

Result <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

25/80

half_sqrt

Compute the square root of x.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id> Result <id> extended 79 <id>
Result Type instructions X
set <id>
half tan

Compute tangent value of x, where x must be in the range -2'¢ ... +216,

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

This function is implemented with a minimum of 10-bits of accuracy i.e. an ULP value < 8192 ulp.

The support for denormal values is optional and may return any result allowed even when
-cl-denormals-are-zero flag is not in force.

6 44 <id> Result <id> extended 80 <id>
Result Type instructions by
set <id>
native_cos

Compute cosine of x over an implementation-defined range. The maximum error is

implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better
performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44

<id>
Result Type

Result <id>

extended
instructions
set <id>

81

<id>
X

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

26/80

native_divide

Compute x / y over an implementation-defined range. The maximum error is implementation-defined.
Result Type,x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better performance compared

to the non native corresponding functions. Support for denormal values is implementation-defined for this function

7 44 <id> Result <id> extended 82 <id> <id>
Result Type instructions X y
set <id>
native_exp

Compute the base-e exponential of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id> Result <id> extended 83 <id>
Result Type instructions x
set <id>

native_exp2

Compute the base- 2 exponential of x over an implementation-defined range. The maximum error is
implementation-defined..

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

84

<id>
X

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

271780

native_exp10

Compute the base- 10 exponential of x over an implementation-defined range. The maximum error is
implementation-defined..

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id> Result <id> extended 85 <id>
Result Type instructions X
set <id>

native_log

Compute natural logarithm of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id> Result <id> extended 86 <id>
Result Type instructions by
set <id>

native_log2

Compute a base 2 logarithm of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

87

<id>
X

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

28/80

native_log10

Compute a base 10 logarithm of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id> Result <id> extended 88 <id>
Result Type instructions X
set <id>

native_powr

Compute x to the power y, where x is >= 0.

Result Type,x and y must be float or vector(2,3,4,8,16) of float values.

All of the operands, including the Result Type operand, must be of the same type.

The function may map to one or more native device instructions and will typically have better performance compared

to the non native corresponding functions. Support for denormal values is implementation-defined for this function

7

44 <id> Result <id> extended 89 <id> <id>
Result Type instructions x y
set <id>

native_recip

Compute reciprocal of x over an implementation-defined range. The range of x and y are
implementation-defined. The maximum error is implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

90

<id>
X

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

29/80

native_rsqrt

Compute inverse square root of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id> Result <id> extended 91 <id>
Result Type instructions X
set <id>

native_sin

Compute sine of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id> Result <id> extended 92 <id>
Result Type instructions by
set <id>

native_sqrt

Compute the square root of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id>
Result Type

Result <id> extended 93 <id>
instructions X
set <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 30/80

native_tan

Compute tangent value of x over an implementation-defined range. The maximum error is
implementation-defined.

Result Type and x must be float or vector(2,3,4,8,16) of float values.
All of the operands, including the Result Type operand, must be of the same type.
The function may map to one or more native device instructions and will typically have better

performance compared to the non native corresponding functions. Support for denormal values is
implementation-defined for this function

6 44 <id> Result <id> extended 94 <id>
Result Type instructions X
set <id>

2.2 Integer instructions

This section describes the list of integer instructions that take scalar or vector arguments. The vector versions of the integer
functions operate component-wise. The description is per-component.

s_abs
Returns Ixl, where x is treated as signed integer.
Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 141 <id>
Result Type instructions x
set <id>
s_abs_diff
Returns | x - y | without modulo overflow, where x and y are treated as signed integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 142 <id> <id>
Result Type instructions X y
set <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

31/80

s_add_sat

Returns the saturated value of x + y, where x and y are treated as signed integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 143 <id> <id>
Result Type instructions by y
set <id>
u_add_sat
Returns the saturated value of x + y, where x and y are treated as unsigned integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 144 <id> <id>
Result Type instructions X y
set <id>
s_hadd

Returns the value of (x + y) >> 1, where x and y are treated as signed integers. The intermediate sum does not modulo
overflow.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 145 <id> <id>
Result Type instructions X y
set <id>
u_hadd

Returns the value of (x + y) >> 1, where x and y are treated as unsigned integers. The intermediate sum does not
modulo overflow.

7

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

146

<id>

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 32/80

s _rhadd

Returns the value of (x + y + 1) >> 1, where x and y are treated as signed integers. The intermediate sum does not
modulo overflow.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 147 <id> <id>
Result Type instructions X y
set <id>
u_rhadd

Returns the value of (x + y + 1) >> 1, where x and y are treated as unsigned integers. The intermediate sum does not
modulo overflow.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 148 <id> <id>
Result Type instructions X y
set <id>
s_clamp
Returns s_min(s_max(x,minval),maxval). Results are undefined if minval > maxval.
Result Type x,minval and maxval must be integer or vector(2,3,4,8,16) of integer values.
All of the operands, including the Result Type operand, must be of the same type.
8 44 <id> Result <id> | extended 149 <id> <id> <id>
Result Type instructions x minval maxval
set <id>
u_clamp
Returns u_min(u_max(x,minval),maxval). Results are undefined if minval > maxval.
Result Type,x,minval and maxval must be integer or vector(2,3,4,8,16) of integer values.
All of the operands, including the Result Type operand, must be of the same type.
8 44 <id> Result <id> | extended 150 <id> <id> <id>
Result Type instructions X minval maxval
set <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

33/80

clz

Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, returns
the size in bits of the type of x or component type of x, if x is a vector.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 151 <id>
Result Type instructions X
set <id>
ctz

Returns the count of trailing 0-bits in x. If x is 0, returns the size in bits of the type of x or component
type of x, if x is a vector.

Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

extended 152 <id>
instructions X
set <id>

6 44 <id> Result <id>

Result Type

s_mad_hi
Returns mul_hi(a, b) + ¢, where a,b and c are treated as signed integers.
Result Type,a,b and ¢ must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8

extended 153 <id> <id> <id>
instructions a b c
set <id>

44 <id>
Result Type

Result <id>

s_max
Returns y if x < y, otherwise it returns x, where x and y are treated as signed integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7

44

<id>

Result Type

Result <id>

extended
instructions
set <id>

156

<id>

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

34 /80

u_max
Returns y if x <y, otherwise it returns x, where x and y are treated as unsigned integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 157 <id> <id>
Result Type instructions by y
set <id>
S_min
Returns y if y < x, otherwise it returns x, where x and y are treated as signed integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 158 <id> <id>
Result Type instructions X y
set <id>
u_min
Returns y if y < x, otherwise it returns x, where x and y are treated as unsigned integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 159 <id> <id>
Result Type instructions by y
set <id>

s_mul_hi

Computes x * y and returns the high half of the product of x and y, where x and y are treated as signed integers.

Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

160

<id>

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

35/80

rotate

shifted off the left side of the element are shifted back in from the right.
Result Type,v and i must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

For each element in v, the bits are shifted left by the number of bits given by the corresponding element in i. Bits

set <id>

7 44 <id> Result <id> extended 161 <id> <id>
Result Type instructions v i
set <id>
s_sub_sat
Returns the saturated value of x - y, where x and y are treated as signed integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 162 <id> <id>
Result Type instructions X y
set <id>
u_sub_sat
Returns the saturated value of x - y, where x and y are treated as unsigned integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 163 <id> <id>
Result Type instructions X y

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 36/80

u_upsample

When hi and lo component type is i8:

Result = ((upcast...to i16)hi << 8) | lo

When hi and lo component type is 116:

Result = ((upcast. ..to i32)hi << 8) | lo

When hi and lo component i32:

Result = ((upcast. . .to 164)hi << 8) | lo

hi and lo are treated as unsigned integers.

hi and lo must be i8, i16 or i32 or vector(2,3,4,8,16) of i8, i16 or i32 values.

Result Type must be i16, i32 or i64 or vector(2,3,4,8,16) of i16, i32 or i64 values.

hi and lo operands must be of the same type. When hi and lo component type is i8, the Result Type component type must
be i116. When ki and lo component type is 116, the Result Type component type must be i32. When hi and lo component

type is 132, the Result Type component type must be 164. Result Type must have the same component count as 4i and lo
operands.

7 44 <id> Result <id> extended 164 <id> <id>
Result Type instructions set hi lo
<id>
s_upsample

When hi and lo component type is i8:

Result = ((upcast. ..to 116)hi << 8) | lo

When hi and lo component type is i16:

Result = ((upcast. ..to i32)hi << 8) | lo

When hi and lo component 132:

Result = ((upcast. . .to i64)hi << 8) | lo

hi and lo are treated as signed integers.

hi and lo must be i8, i16 or i32 or vector(2,3,4,8,16) of i8, i16 or i32 values.

Result Type must be i16, i32 or i64 or vector(2,3,4,8,16) of i16, i32 or i64 values.

hi and lo operands must be of the same type. When hi and lo component type is i8, the Result Type component type must
be i116. When i and /o component type is 116, the Result Type component type must be i32. When £i and /o component

type is 132, the Result Type component type must be 164. Result Type must have the same component count as Ai and lo
operands.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

7 44 <id> Result <id> extended 165 <id> <id>
Result Type instructions set hi lo
<id>
popcount

Returns the number of non-zero bits in x.
Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 166 <id>
Result Type instructions by
set <id>
s_mad24

Multipy two 24-bit integer values x and y and add the 32-bit integer result to the 32-bit integer z. Refer to definition of
s_mul24 to see how the 24-bit integer multiplication is performed.

Result Type,x,y and z must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id> Result <id> | extended 167 <id> <id> <id>
Result Type instructions X y Z
set <id>
u_mad24

Multipy two 24-bit integer values x and y and add the 32-bit integer result to the 32-bit integer z. Refer to definition of
u_mul24 to see how the 24-bit integer multiplication is performed.

Result Type,x,y and z must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id> Result <id> | extended 168 <id> <id> <id>
Result Type instructions X y z
set <id>
s_mul24

Multiply two 24-bit integer values x and y, where x and y are treated as signed integers. x and y are 32-bit integers but only
the low 24-bits are used to perform the multiplication. s_mul24 should only be used when values in x and y are in the range
[-223,223-1]. If x and y are not in this range, the multiplication result is implementation-defined.

Result Type,x and y must be i32 or vector(2,3,4,8,16) of i32 values.

All of the operands, including the Result Type operand, must be of the same type.

37/80

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 38/80

7 44 <id> Result <id> extended 169 <id> <id>
Result Type instructions set X y
<id>
u_mul24

Multiply two 24-bit integer values x and y, where x and y are treated as unsigned integers. x and y are 32-bit integers but
only the low 24-bits are used to perform the multiplication. u_mul24 should only be used when values in x and y are in the
range [0, 224-1]. Tf x and y are not in this range, the multiplication result is implementation-defined.

Result Type,x and y must be i32 or vector(2,3,4,8,16) of i32 values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 170 <id> <id>
Result Type instructions set X y
<id>
u_abs

Returns Ixl, where x is treated as unsigned integer.
Result Type and x must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 201 <id>
Result Type instructions by
set <id>
u_abs_diff

Returns | x - y | without modulo overflow, where x and y are treated as unsigned integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 202 <id> <id>
Result Type instructions X y
set <id>
u_mul_hi

Computes x * y and returns the high half of the product of x and y, where x and y are treated as unsigned integers.
Result Type,x and y must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 203 <id> <id>
Result Type instructions X y
set <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 39/80

u_mad_hi
Returns mul_hi(a, b) + ¢, where a,b and c are treated as unsigned integers.
Result Type,a,b and ¢ must be integer or vector(2,3,4,8,16) of integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id> Result <id> | extended 204 <id> <id> <id>
Result Type instructions a b c
set <id>

2.3 Common instructions

This section describes the the list of common instructions that take scalar or vector arguments. The vector versions of the integer
functions operate component-wise. The description is per-component. The common instructions are implemented using the
round to nearest even rounding mode.

fclamp
Returns fmin(fmax(x, minval), maxval). Results are undefined if minval > maxval.
Result Type,x,minval and maxval must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id> Result <id> | extended 95 <id> <id> <id>
Result Type instructions X minval maxval
set <id>
degrees

Converts radians to degrees, i.e. (180 / w) * radians.
Result Type and radians must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 96 <id>
Result Type instructions radians
set <id>

fmax_common
Returns y if x <y, otherwise it returns x. If X or y are infinite or NaN, the return values are undefined.
Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

40/80

7 44 <id> Result <id> extended 97 <id> <id>
Result Type instructions X y
set <id>
fmin_common
Returns y if y < x, otherwise it returns x. If X or y are infinite or NaN, the return values are undefined.
Result Type,x and y must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
7 44 <id> Result <id> extended 98 <id> <id>
Result Type instructions X y
set <id>
mix
Returns the linear blend of x & y implemented as:
x+(@-x)*a
Result Type,x,y and a must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
Note: This function can be implemented using contractions such as mad or fma
8 44 <id> Result <id> | extended 99 <id> <id> <id>
Result Type instructions X y a
set <id>
radians
Converts degrees to radians, i.e. (7t / 180) * degrees.
Result Type and degrees must be floating-point or vector(2,3,4,8,16) of floating-point values.
All of the operands, including the Result Type operand, must be of the same type.
6 44 <id> Result <id> extended 100 <id>
Result Type instructions degrees
set <id>

step
Returns 0.0 if x < edge, otherwise it returns 1.0.
Result Type,edge and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

41/80

7 44 <id> Result <id> extended 101 <id> <id>
Result Type instructions edge X
set <id>
smoothstep

X < edge;j.

This is equivalent to :

returnt * t * (3 - 2 * t);

t = fclamp((x - edgep) / (edge; - edgep), 0, 1);

Results are undefined if edgey >= edge; or if x, edgey or edge; is a NaN.

All of the operands, including the Result Type operand, must be of the same type.

Note: This function can be implemented using contractions such as mad or fma

Result Type,edgep,edge; and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

Returns 0.0 if x <= edgep and 1.0 if x >= edge; and performs smooth Hermite interpolation between 0 and 1, when edgey <

All of the operands, including the Result Type operand, must be of the same type.

Returns 1.0 if x > 0, -0.0 if x =-0.0, +0.0 if x = +0.0, or -1.0 if x < 0. Returns 0.0 if x is a NaN.

Result Type and x must be floating-point or vector(2,3,4,8,16) of floating-point values.

8 44 <id> Result <id> | extended 102 <id> <id> <id>
Result Type instructions edgeg edge; x
set <id>
sign

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

103

<id>

2.4 Geometric instructions

This section describes the the list of geometric instructions. In this section x,y,z and w denote the first, second, third and fourth
component respecitively, of vectors with 3 and four components.The geometric instructions are implemented using the round to
nearest even rounding mode.

Note: The geometric functions can be implemented using contractions such as mad or fma

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

42/80

Cross

Returns the cross product of py.xyz and p;.xyz.

When the vector component count is 4, the w component returned will be 0.0.
Result Type,po and p; must be vector(3,4) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

Returns the distance between py and p;. This is calculated as length(pg - p;).
Result Type must be floating-point.

po and p; must be floating-point or vector(2,3,4) of floating-point values.

7 44 <id> Result <id> extended 104 <id> <id>
Result Type instructions Do D1
set <id>
distance

po and p; operands must have the same type. Result Type, pp and p; operands must have the same component type

Return the length of vector p, i.e. sgrt(p.x> +p.y> +...)
Result Type must be floating-point.
p must be vector(2,3,4) of floating-point values.

Result Type and p operands must have the same component type

7 44 <id> Result <id> extended 105 <id> <id>
Result Type instructions Do pi
set <id>
length

6 44 <id> Result <id> extended 106 <id>

Result Type instructions p
set <id>

normalize

Returns a vector in the same direction as p but with a length of 1.

Result Type and p must be floating-point or vector(2,3,4) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

6 44 <id> Result <id> extended 107 <id>
Result Type instructions p

set <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

43/80

fast_distance

Returns fast_length(po - p;).

Result Type must be floating-point.

po and p; must be floating-point or vector(2,3,4) of floating-point values.

po and p; operands must have the same type. Result Type, pp and p; operands must have the same component type

7 44

<id>
Result Type

Result <id>

extended
instructions
set <id>

108

<id>
Po

<id>
Pi

fast_length

Result Type must be floating-point.

p must be vector(2,3,4) of floating-point values.

Result Type and p operands must have the same component type

Return the length of vector p computed as: half sqrt(p.x> +p.y> +...)

6

44 <id> Result <id> extended
Result Type instructions
set <id>

109

<id>

fast_normalize

undefined.

p * half_rsqri(px*>+py>...)

if (all(p == 0.0f)) { result =p; }

with the following exceptions :

else { result = p / sqri(p.x> +p.y> +...); }

Returns a vector in the same direction as p but with a length of 1 computed as:

The result shall be within 8192 ulps error from the infinitely precise result of:

Result Type and p must be floating-point or vector(2,3,4) of floating-point values.

All of the operands, including the Result Type operand, must be of the same type.

2) If the sum of squares is less than FLT_MIN then the implementation may return back p.

1) If the sum of squares is greater than FLT_MAX then the value of the floating-point values in the result vector are

3) If the device is in "denorms are flushed to zero" mode, individual operand elements with magnitude less than
sqrt(FLT_MIN) may be flushed to zero before proceeding with the calculation.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

44 /80

6 44 <id> Result <id> extended 110 <id>
Result Type instructions set p
<id>

2.5 Relational instructions

This section describes the the list of relational instructions that take scalar or vector arguments. The vector versions of the integer
functions operate component-wise. The description is per-component.

bitselect

Each bit of the result is the corresponding bit of a if the corresponding bit of ¢ is 0. Otherwise it is the corresponding bit of
b.

Result Type,a,b and ¢ must be floating-point or integer or vector(2,3,4,8,16) of floating-point or integer values.

All of the operands, including the Result Type operand, must be of the same type.

8 44 <id> Result <id> | extended 186 <id> <id> <id>
Result Type instructions a b c
set <id>
select

Each bit of the result is the corresponding bit of a if the corresponding bit of ¢ is 0. Otherwise it is the corresponding bit of
b.

¢ must be integer or vector(2,3,4,8,16) of integer values.
Result Type,a and b must be floating-point or integer or vector(2,3,4,8,16) of floating-point or integer values.

Result Type, a and b must have the same type. ¢ operand must have the same component count and component bit width as
the rest of the operands.

8 44 <id> Result <id> | extended 187 <id> <id> <id>
Result Type instructions a b c
set <id>

2.6 Vector Data Load and Store instructions

This section describes the list of instructions that allow reading and writing of vector types from a pointer to memory.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

vloadn
Return a vector value which is read from address (p + (offset * n)).

The address computed as (p + (offset * n)) must be 8-bit aligned if p points to i8 value; 16-bit aligned if p points to 116 or
half value; 32-bit aligned if p points to i32 or float value; 64-bit aligned if p points to 164 or double value.

offset must be size_t.

p must be a pointer(constant, generic) to floating-point, integer.

Result Type must be vector(2,3,4,8,16) of floating-point or integer values.

Result Type component count must be equal to # and its component type must be equal to the type pointed by p.

n must be 2,3,4,8 or 16.

45/80

8 44 <id> Result <id> | extended 171 <id> <id> Literal
Result Type instructions offset p Number
set <id> n
vstoren

Write data vector value to the address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the
component count of the vector data.

The address computed as (p + (offset * compCountOf(data))) must be 8-bit aligned if p points to 18 value; 16-bit aligned if
p points to 116 or half value; 32-bit aligned if p points to 132 or float value; 64-bit aligned if p points to 164 or double value.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to floating-point, integer.

data must be vector(2,3,4,8,16) of floating-point or integer values.

data component type must be equal to the type pointed by p.

8 44 <id> Result <id> | extended 172 <id> <id> <id>
Result Type instructions data offset p
set <id>
vload_half

Reads a half value from the address (p + (offset)) and converts it to a float return value. The address computed as (p +
(offset)) must be 16-bit aligned.

Result Type must be float.
offset must be size_t.

p must be a pointer(constant, generic) to half.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 46 /80
44 <id> Result <id> extended 173 <id> <id>
Result Type instructions offset p
set <id>
vload_halfn
Reads a half vector value from the address (p + (offset * n)) and converts it to a float vector return value. The address
computed as (p + (offset * n)) must be 16-bit aligned.
offset must be size_t.
p must be a pointer(constant, generic) to half.
Result Type must be vector(2,3,4,8,16) of float values.
Result Type component count must be equal to 7.
n must be 2,3,4,8 or 16.
8 44 <id> Result <id> | extended 174 <id> <id> Literal
Result Type instructions offset P Number
set <id> n

vstore_half

Converts data float or double value to a half value and then write the converted value to the address (p + offset). The
address computed as (p + offset) must be 16-bit aligned.

This function uses the default rounding mode when converting data to a half value. The default rounding mode is round to
nearest even.

data must be float or double.
offset must be size_t.
Result Type must be void.

p must be a pointer(generic) to half.

8

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

175

<id>
data

<id>

offset

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 47/80

vstore_half r

Converts data float or double value to a half value and then write the converted value to the address (p + offset). The

address computed as (p + offset) must be 16-bit aligned.

This function uses mode rounding mode when converting data to a half value.

data must be float or double.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to half.

9 44 | <id> Result extended 176 <id> <id> <id> FP
Result <id> instruc- data offset p Rounding
Type tions set Mode

<id> mode

vstore_halfn

Converts data vector of float or vector of double values to a vector of half values and then write the converted value to the
address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the component count of the vector
data.

The address computed as (p + (offset * compCountOf(data))) must be 16-bit aligned.

This function uses the default rounding mode when converting data to a vector of half values. The default rounding mode
is round to nearest even.

offset must be size_t.
Result Type must be void.
p must be a pointer(generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

8 44 <id> Result <id> | extended 177 <id> <id> <id>
Result Type instructions data offset p
set <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

48/80

vstore_halfn_r

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

This function uses mode rounding mode when converting data to a half value.

The address computed as (p + (offset * compCountOf(data))) must be 16-bit aligned.

Converts data vector of float or vector of double values to a vector of half values and then write the converted value to the
address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the component count of the vector data.

9

44

<id>
Result
Type

Result extended 178
<id> instruc-

tions set

<id>

<id>
data

<id>

offset

<id>

FP
Rounding
Mode
mode

vloada_halfn

offset must be size_t.

n must be 2,3,4,8 or 16.

p must be a pointer(constant, generic) to half.

Result Type must be vector(2,3,4,8,16) of float values.

Result Type component count must be equal to n.

Reads a half vector value from the address (p + (offset * n)) and converts it to a float vector return value. The address
computed as (p + (offset * n)) must be (2 * n) bytes aligned, when n = 2,4,8,16; For n = 3, the function returns a vector of 3
float values from the address (p + (offset * 4)). The address computed as (p + (offset * 4)) must be 8-bytes aligned

8

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

179

<id>

offset

<id>

Literal
Number
n

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 49/80

vstorea_halfn

Converts data vector of float or vector of double values to a vector of half values and then write the converted value to the
address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the component count of the vector
data.

The address computed as (p + (offset * compCountOf(data))) must be (2 * compCountOf(data)) bytes aligned, when n =
2,4,8,16; For n = 3, the function returns a vector of 3 float values from the address (p + (offset * 4)). The address computed

as (p + (offset * 4)) must be 8-bytes aligned.

This function uses the default rounding mode when converting data to a vector of half values. The default rounding mode
is round to nearest even.

offset must be size_t.
Result Type must be void.
p must be a pointer(generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

8 44 <id> Result <id> | extended 180 <id> <id> <id>
Result Type instructions data offset p
set <id>

vstorea_halfn_r

Converts data vector of float or vector of double values to a vector of half values and then write the converted value to the
address (p + (offset * compCountOf(data))), where compCountOf(data) is equal to the component count of the vector data.

The address computed as (p + (offset * compCountOf(data))) must be (2 * compCountOf(data)) bytes aligned, when n =
2,4,8,16; For n = 3, the function returns a vector of 3 float values from the address (p + (offset * 4)). The address computed
as (p + (offset * 4)) must be 8-bytes aligned.

This function uses mode rounding mode when converting data to a vector of half values.

offset must be size_t.

Result Type must be void.

p must be a pointer(generic) to half.

data must be vector(2,3,4,8,16) of float or double values.

9 44 | <id> Result extended 181 <id> <id> <id> FP
Result <id> instruc- data offset p Rounding
Type tions set Mode
<id> mode

2.7 Miscellaneous Vector instructions

This section describes additional vector instructions.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

50/80

shuffle

shuffle mask must be vector(2,4,8,16) of integer values.

Result Type and x must be vector(2,4,8,16) of floating-point or integer values.

All of the operands, including the Result Type operand, must be of the same type.

Construct a permutation of components from x vector value, returning a vector value with the same component type as x
and component component count that is the same as shuffle mask.

In this function, only the ilogh(2 m -1) least significant bits of each mask element are considered, where m is equal to the
component count of x.

shuffle mask operand specifies, for each component in the result vector, which component of x it gets.
The size of each component in shuffle mask must match the size of each component in Result Type.

Result Type must have the same component type as x and component count as shuffle mask.

x and y must be of the same type.

shuffle mask must be vector(2,4,8,16) of integer values.

Result Type,x and y must be vector(2,4,8,16) of floating-point or integer values.

All of the operands, including the Result Type operand, must be of the same type.

7 44 <id> Result <id> extended 182 <id> <id>
Result Type instructions set X shuffle mask
<id>
shuffle2

Construct a permutation of components from x and y vector values, returning a vector value with the same component type
as x and y and component count that is the same as shuffle mask.

In this function, only the ilogh(2 m - 1) + 1 least significant bits of each mask component are considered, where m is equal
to the component count of x and y.

shuffle mask operand specifies, for each component in the result vector, which component of x or y it gets. Where
component count begins with x and then proceeds to y.

The size of each component in shuffle mask must match the size of each component in Result Type.

Result Type must have the same component type as x and component count as shuffle mask.

8

44

<id>
Result Type

Result <id>

extended 183
instructions
set <id>

<id>
X

<id>

<id>
shuffle mask

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 51/80

2.8 Misc instructions

This section describes additional miscellaneous instructions.

printf

The printf extended instruction writes output to an implementation-defined stream such as stdout under control of the
string pointed to by format that specifies how subsequent arguments are converted for output. If there are insufficient
arguments for the format, the behavior is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated (as always) but are otherwise ignored. The printf function returns when the end of the format
string is encountered

printf returns 0 if it was executed successfully and -1 otherwise

Result Type must be i32.

format must be OpString.

6+ 44 <id> Result <id> extended 184 <id> <id>, <id>,
vari- Result Type instructions set format .
able <id> additional
arguments
prefetch

Prefetch num_elements * size in bytes of the type pointed by p, into the global cache. The prefetch instruction is
applied to a work-item in a work-group and does not affect the functional behavior of the kernel.

num_elements must be size_t.
Result Type must be void.

p must be a pointer(global) to floating-point, integer or vector(2,3,4,8,16) of floating-point, integer values.

7 44 <id> Result <id> extended 185 <id> <id>
Result Type instructions num_elements | p
set <id>

2.9 Image functions

The instructions defined in this section can only be used with image memory objects. An image memory object can be accessed
by specific function calls that read from and/or write to specific locations in the image.

2.9.1 Image encoding

The following list denotes the different valid OpTypeSampler encodings of image objects.

imageld

A 1D image

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 52/80
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 0 Type 0 0 0 Qualifier
1 qualifier
imageldBuffer
A 1D image created from a buffer object.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 5 Type 0 0 0 Qualifier
1 qualifier
imageldArray
A 1D image array.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 0 Type 1 0 0 Qualifier
1 qualifier
image2d
A 2D image.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 1 Type 0 0 0 Qualifier
1 qualifier
image2dArray
A 2D image array.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 1 Type 1 0 0 Qualifier
1 qualifier
image2dDepth
A 2D depth image.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 1 Type 0 1 0 Qualifier
1 qualifier
image2dArrayDepth
A 2D depth image array.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 1 Type 1 1 0 Qualifier
1 qualifier

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 53/80
image2dMsaa
A 2D multi-sample color image.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 1 Type 0 0 1 Qualifier
1 qualifier
image2dArrayMsaa
A 2D multi-sample color image array.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 1 Type 1 0 1 Qualifier
1 qualifier
image2dMsaaDepth
A 2D multi-sample depth image.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 1 Type 0 1 1 Qualifier
1 qualifier
image2dArrayMsaaDepth
A 2D multi-sample depth image array.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 1 Type 1 1 1 Qualifier
1 qualifier
image3d
A 1D image created from a buffer object.
9 14 | Result Sampled Dim Image Array Depth Sample Access
<id> Type <0> 2 Type 0 0 0 Qualifier
1 qualifier
2.9.2 Sampler encoding
A SPIR-V sampler object is encoded via the OpTypeSampler instruction in the following way:
sampler
An image sampler object.
8 14 Result <id> | Sampled Dim Image Type | Array Depth Sample
Type <0> 0 2 0 0 0

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

54 /80

In addition, it is possible to define a constant sampler using the OpConstantSampler.

2.9.3 Image format encoding

Every image memory object has a format. An image format is a combination of channel order and channel data type. The
channel order specifies the number of channels and the channel layout i.e.the memory layout in which channels are stored in the
image. The channel data type describes the size of the channel data type.

ImageChannelOrder
4272 | R
4273 | A
4274 | RG
4275 | RA
4276 | RGB
4277 | RGBA
4278 | BGRA
4279 | ARGB
4280 | INTENSITY
4281 | LUMINANCE
4282 | Rx
4283 | RGx
4284 | RGBx
4285 | DEPTH
4286 | DEPTH STENCIL
4287 | sRGB
4288 | sRGBx
4289 | sRGBA
4290 | sBGRA
ImageChannelType
4304 | SNORM INTS
4305 | SNORM INT16
4306 | UNORM INTS
4307 | UNORM_INT16
4308 | UNORM SHORT 565
4309 | UNORM SHORT 555
4310 | UNORM INT 101010
4311 | SIGNED INTS
4312 | SIGNED INT16
4313 | SIGNED INT32
4314 | UNSIGNED INTS8
4315 | UNSIGNED INT16
4316 | UNSIGNED INT32
4317 | HALF FLOAT
4318 | FLOAT
4319 | UNORM INT24

2.9.4 Image read functions

This section describes the list of instructions that allow reading from image memory objects.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 55/80

read_imagef

Use the coordinate specified by coords and the sampler object specified by s to do an element lookup to the image object
specified by img.

This function returns floating-point values in the range [0.0 ... 1.0] for image objects created with channel data type set to
one of the pre-defined packed formats or UNORM INTS8, or UNORM INT16.

This function returns floating-point values in the range[-1.0 ... 1.0] for image objects created with channel data type set to
SNORM INTS, or SNORM INT16.

This function returns floating-point values for image objects created with channel data type set to HALF FLOAT, or
FLOAT.

When called with 132 coordinates the sampler object must be defined with a filter mode set to Nearest, coordinates set to
non-parametric coordinates and addressing mode set to ClampToEdge, Clamp or None; otherwise the values returned are

undefined.

Values returned by this function for image objects with channel data type which is not specified in the description above
are undefined.

Result Type must be float or vector(4) of float values.

coords must be float or i32 or vector(2,4) of float or i32 values.

img must be imageld, imageldArray, image2d, image2dArray, image2dArrayDepth, image2dDepth, image2dMsaa,
image2dArrayMsaa, image2dMsaaDepth, image2dArrayMsaaDepth or image3d value, with ReadOnly or ReadWrite
access qualifier.

s must be sampler value.

When img is a imageld, coords must be float or i32.

When img is a image2d, image2dDepth, image2dMsaa or image2dMsaaDepth, coords must be vector(2) of float or i32
values.

When img is a imageldArray, coords must be vector(2) of i32 values. The second component of coords is used to identify
the image in the array

When img is a image2dArray, image2dArrayDepth, image2dArrayMsaa or image2dArrayMsaaDepth, coords must be
vector(4) of i32 values. The third component of coords is used to identify the image in the array, while the fourth
component is ignored.

When img is a image3d, coords must be vector(4) of float or i32 values. The fourth component of coords is ignored.
Result Type must be a float when img is a image2dArrayDepth, image2dDepth, image2dMsaaDepth or

image2dArrayMsaaDepth, and vector(4) of float values when img is on of the remaining valid image types for this
instruction.

8 44 <id> Result <id> | extended 111 <id> <id> <id>
Result Type instructions img s coords
set <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

read_imagei

Use the coordinate specified by coords and the sampler object specified by s to do an element lookup to the image object
specified by img.

This function returns a non-parametric i32 integer value.

This function can only be used if img image object channel data type is set to SIGNED INTS8, SIGNED INT16 or
SIGNED INT32. If the channel data type is not one of these values, the values returned by read_imagei are undefined.

The sampler object must be defined with a filter mode set to Nearest, coordinates set to non-parametric coordinates and
addressing mode set to ClampToEdge, Clamp or None; otherwise the values returned are undefined.

Result Type must be vector(4) of i32 values.
coords must be float or i32 or vector(2,4) of float or i32 values.

img must be imageld, imageldArray, image2d, image2dArray, image2dMsaa, image2dArrayMsaa or image3d value, with
ReadOnly or ReadWrite access qualifier.

s must be sampler value.
When img is a imageld, coords must be float or i32.

When img is a image2d, image2dDepth, image2dMsaa or image2dMsaaDepth, coords must be vector(2) of float or i32
values.

When img is a imageldArray, coords must be vector(2) of i32 values. The second component of coords is used to identify
the image in the array

When img is a image2dArray, image2dArrayDepth, image2dArrayMsaa or image2dArrayMsaaDepth, coords must be
vector(4) of i32 values. The third component of coords is used to identify the image in the array, while the fourth

component is ignored.

When img is a image3d, coords must be vector(4) of float or i32 values. The fourth component of coords is ignored.

56 /80

8

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

112

<id>
img

<id>
S

<id>
coords

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 57/80

read_imageui

Use the coordinate specified by coords and the sampler object specified by s to do an element lookup to the image object
specified by img.

This function returns a non-parametric i32 integer value.

This function can only be used if img image object channel data type is set to UNSIGNED INTS8, UNSIGNED INT16 or
UNSIGNED INT32. If the channel data type is not one of these values, the values returned by read_imagei are undefined.

The sampler object must be defined with a filter mode set to Nearest, coordinates set to non-parametric coordinates and
addressing mode set to ClampToEdge, Clamp or None; otherwise the values returned are undefined.

Result Type must be vector(4) of i32 values.
coords must be float or i32 or vector(2,4) of float or i32 values.

img must be imageld, imageldArray, image2d, image2dArray, image2dMsaa, image2dArrayMsaa or image3d value, with
ReadOnly or ReadWrite access qualifier.

s must be sampler value.
When img is a imageld, coords must be float or i32.

When img is a image2d, image2dDepth, image2dMsaa or image2dMsaaDepth, coords must be vector(2) of float or i32
values.

When img is a imageldArray, coords must be vector(2) of i32 values. The second component of coords is used to identify
the image in the array

When img is a image2dArray, image2dArrayDepth, image2dArrayMsaa or image2dArrayMsaaDepth, coords must be
vector(4) of i32 values. The third component of coords is used to identify the image in the array, while the fourth

component is ignored.

When img is a image3d, coords must be vector(4) of float or i32 values. The fourth component of coords is ignored.

8 44 <id> Result <id> | extended 113 <id> <id> <id>
Result Type instructions img s coords
set <id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

read_imageh

Use the coordinate specified by coords and the sampler object specified by s to do an element lookup to the image object
specified by img.

This function returns half precision floating-point values in the range [0.0 ... 1.0] for image objects created with channel
data type set to one of the pre-defined packed formats or UNORM INTS8, or UNORM INT16.

This function returns half precision floating-point values in the range[-1.0 ... 1.0] for image objects created with channel
data type set to SNORM INTS, or SNORM INT16.

This function returns half precision floating-point values for image objects created with channel data type set to HALF
FLOAT, or FLOAT.

When called with 132 coordinates the sampler object must be defined with a filter mode set to Nearest, coordinates set to
non-parametric coordinates and addressing mode set to ClampToEdge, Clamp or None; otherwise the values returned are

undefined.

Values returned by this function for image objects with channel data type which is not specified in the description above
are undefined.

Result Type must be half or vector(4) of half values.
coords must be float or i32 or vector(2,4) of float or i32 values.

img must be imageld, imageldArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access
qualifier.

s must be sampler value.
When img is a imageld, coords must be float or i32.
When img is a image2d, coords must be vector(2) of float or i32 values.

When img is a imageldArray, coords must be vector(2) of i32 values. The second component of coords is used to identify
the image in the array

When img is a image2dArray, coords must be vector(4) of i32 values. The third component of coords is used to identify
the image in the array, while the fourth component is ignored.

When img is a image3d, coords must be vector(4) of float or i32 values. The fourth component of coords is ignored.
Result Type must be a half when img is a image2dArrayDepth, image2dDepth, image2dMsaaDepth or

image2dArrayMsaaDepth, and vector(4) of half values when img is on of the remaining valid image types for this
instruction.

8 44 <id> Result <id> | extended 114 <id> <id> <id>
Result Type instructions img s coords
set <id>

58 /80

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 59/80

read_imagef samplerless

Use the coordinate specified by coords to do an element lookup to the image object specified by img. This function
behaves exactly as the corresponding read_imagef function that take integer coordinates and a sampler with filter mode set
to Nearest, non-parametric coordinates and addressing mode set to None.

Result Type must be float or vector(4) of float values.

coords must be i32 or vector(2,4) of i32 values.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or
image3d value, with ReadOnly or ReadWrite access qualifier.

7 44 <id> Result <id> extended 115 <id> <id>
Result Type instructions set img coords
<id>

read_imagei_samplerless

Use the coordinate specified by coords to do an element lookup to the image object specified by img. This function
behaves exactly as the corresponding read_imagei function that take integer coordinates and a sampler with filter mode set
to Nearest, non-parametric coordinates and addressing mode set to None.

Result Type must be vector(4) of i32 values.

coords must be i32 or vector(2,4) of i32 values.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray, image2dMsaa, image2dArrayMsaa or
image3d value, with ReadOnly or ReadWrite access qualifier.

7 44 <id> Result <id> extended 116 <id> <id>
Result Type instructions set img coords
<id>

read_imageui_samplerless

Use the coordinate specified by coords to do an element lookup to the image object specified by img. This function
behaves exactly as the corresponding read_imageui function that take integer coordinates and a sampler with filter mode
set to Nearest, non-parametric coordinates and addressing mode set to None.

Result Type must be vector(4) of i32 values.

coords must be i32 or vector(2,4) of i32 values.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray or image3d value, with ReadOnly or
ReadWrite access qualifier.

7 44 <id> Result <id> extended 117 <id> <id>
Result Type instructions set img coords
<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

60 /80

read_imageh_samplerless

Result Type must be vector(4) of half values.

coords must be i32 or vector(2,4) of i32 values.

Use the coordinate specified by coords to do an element lookup to the image object specified by img. This function
behaves exactly as the corresponding read_imageh function that take integer coordinates and a sampler with filter mode set
to Nearest, non-parametric coordinates and addressing mode set to None.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray or image3d value, with ReadOnly or
ReadWrite access qualifier.

7

44

<id>
Result Type

Result <id>

extended
instructions set
<id>

118

<id>
img

<id>
coords

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

61/80

read_imagef mipmap_lod

Use the coordinate specified by coords, and the sampler object specified by s to do an element lookup in the mip-level
specified by lod in the image object specified by img.

Result Type must be float or vector(4) of float values.

img must be imageld, imageldArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value,
with ReadOnly or ReadWrite access qualifier.

s must be sampler value.
s must be set to use parametric coordinates.

lod is clamped to the minimum of (actual number of mip-levels - 1) in the image or value specified for
CL_SAMPLER_LOD_MAX.

When img type is image2d:

- coords must be a vector(2) of float values.

- Result Type must be a vector(4) of float values.
When img type is image2dArray:

- coords must be a vector(4) of float values.

- Result Type must be a vector(4) of float values.
When img type is imageld:

- coords must be a float.

- Result Type must be a vector(4) of float values.
When img type is imageldArray:

- coords must be a vector(2) of float values.

- Result Type must be a vector(4) of float values.
When img type is image3d:

- coords must be a vector(4) of float values.

- Result Type must be a vector(4) of float values.
When img type is image2dDepth:

- coords must be a vector(2) of float values.

- Result Type must be a float.

When img type is image2dArrayDepth:

- coords must be a vector(4) of float values.

- Result Type must be a float.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

62 /80

9 44 <id> Result extended 123 <id> <id> <id> <id>
Result <id> instruc- img s coords lod
Type tions set
<id>

read_imagei_mipmap_lod

Use the coordinate specified by coords, and the sampler object specified by s to do an element lookup in the mip-level
specified by lod in the image object specified by img.

Result Type must be vector(4) of i32 values.

img must be imageld, imageldArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access
qualifier.

s must be sampler value.
s must be set to use parametric coordinates.

lod is clamped to the minimum of (actual number of mip-levels - 1) in the image or value specified for
CL_SAMPLER_LOD_MAX.

When img type is image2d:

- coords must be a vector(2) of float values.
- lod must be a float.

When img type is image2dArray:

- coords must be a vector(4) of float values.
When img type is imageld:

- coords must be a float.

When img type is imageldArray:

- coords must be a vector(2) of float values.
When img type is image3d:

- coords must be a vector(4) of float values.

9 44 <id> Result extended 124 <id> <id> <id> <id>
Result <id> instruc- img s coords lod
Type tions set
<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

63 /80

read_imageui_mipmap_lod

qualifier.

s must be sampler value.

CL_SAMPLER_LOD_MAX.

When img type is image2d:

When img type is image2dArray:

When img type is imageld:

- coords must be a float.

When img type is imageldArray:

When img type is image3d:

Result Type must be vector(4) of i32 values.

s must be set to use parametric coordinates.

- coords must be a vector(2) of float values.

- coords must be a vector(4) of float values.

- coords must be a vector(2) of float values.

- coords must be a vector(4) of float values.

lod is clamped to the minimum of (actual number of mip-levels - 1) in the image or value specified for

Use the coordinate specified by coords, and the sampler object specified by s to do an element lookup in the mip-level
specified by lod in the image object specified by img.

img must be imageld, imageldArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access

9 44 <id> Result
Result <id>
Type

extended
instruc-
tions set
<id>

125

<id>
img

<id>

<id>
coords

<id>
lod

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 64 /80

read_imagef mipmap_gradient

Use the gradients grad_x and grad_y, the coordinates specified by coords, and the sampler object specified by s to do an
element lookup in the computed mip-level in the image object specified by img.

Result Type must be float or vector(4) of float values.

img must be imageld, imageldArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value,
with ReadOnly or ReadWrite access qualifier.

s must be sampler value.

s must be set to use parametric coordinates.

When img type is image2d:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.
- Result Type must be a vector(4) of float values.

When img type is image2dArray:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.
- Result Type must be a vector(4) of float values.

When img type is imageld:

- coords must be a float.

- grad_x and grad_y must be a float.

- Result Type must be a vector(4) of float values.

When img type is imageldArray:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a float.

- Result Type must be a vector(4) of float values.

When img type is image3d:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(4) of float values.
- Result Type must be a vector(4) of float values.

When img type is image2dDepth:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.

- Result Type must be a float.

When img type is image2dArrayDepth:

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

65/80

<id>

10 | 44 | <id> Result extended | 126 <id> <id> <id> <id> <id>
Result <id> instruc- img s coords grad_x grad_y
Type tions set

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 66 /80

read_imagei_mipmap_gradient

Use the gradients grad_x and grad_y, the coordinates specified by coords, and the sampler object specified by s to do an
element lookup in the computed mip-level in the image object specified by img.

Result Type must be vector(4) of i32 values.

img must be imageld, imageldArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access
qualifier.

s must be sampler value.

s must be set to use parametric coordinates.

When img type is image2d:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.
When img type is image2dArray:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.
When img type is imageld:

- coords must be a float.

- grad_x and grad_y must be a float.

When img type is imageldArray:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a float.

When img type is image3d:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(4) of float values.
When img type is image2dDepth:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.
When img type is image2dArrayDepth:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 67 /80

10 | 44 | <id> Result extended | 127 <id> <id> <id> <id> <id>
Result <id> instruc- img s coords grad_x grad_y
Type tions set

<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 68 /80

read_imageui_mipmap_gradient

Use the gradients grad_x and grad_y, the coordinates specified by coords, and the sampler object specified by s to do an
element lookup in the computed mip-level in the image object specified by img.

Result Type must be vector(4) of i32 values.

img must be imageld, imageldArray, image2d, image2dArray or image3d value, with ReadOnly or ReadWrite access
qualifier.

s must be sampler value.

s must be set to use parametric coordinates.

When img type is image2d:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.
When img type is image2dArray:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.
When img type is imageld:

- coords must be a float.

- grad_x and grad_y must be a float.

When img type is imageldArray:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a float.

When img type is image3d:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(4) of float values.
When img type is image2dDepth:

- coords must be a vector(2) of float values.

- grad_x and grad_y must be a vector(2) of float values.
When img type is image2dArrayDepth:

- coords must be a vector(4) of float values.

- grad_x and grad_y must be a vector(2) of float values.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 69/80

10 | 44 | <id> Result extended | 128 <id> <id> <id> <id> <id>
Result <id> instruc- img s coords grad_x grad_y

Type tions set

<id>

2.9.5 Image write functions

This section describes the list of instructions that allow writing to image memory objects.

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 70/80

write_imagef

Write value to the coordinates specified by coords to the image object specified by img. The write happens only after the
data in value is converted to the appropraite img image channel data type. coords are considered to be non-parametric
coordinates.

Result Type must be void.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or
image3d value, with WriteOnly or ReadWrite access qualifier.

When img is a image2d, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INTS8, SNORM INTS8, UNORM INT16, SNORM INT16, HALF FLOAT, FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width - 1), (0...
image height - 1) respectively.

- value is a vector(4) of float values.
When img is a image2dArray, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INTS, SNORM INTS, UNORM INT16, SNORM INT16, HALF FLOAT, FLOAT.

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width - 1),
(0... image height - 1), (0 ... image number of layers - 1) respectively. The fourth component is ignored.

- value is a vector(4) of float values.
When img is a imageld or imageldBuffer, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INTS, SNORM INTS, UNORM INT16, SNORM INT16, HALF FLOAT, FLOAT.

- coords is a i32, and is in the range (0 ... image width - 1)
- value is a vector(4) of float values.
When img is a imageldArray, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INTS8, SNORM INTS, UNORM INT16, SNORM INT16, HALF FLOAT, FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width - 1), (0 ...
image number of layers - 1) respectively.

- value is a vector(4) of float values
When img is a image2dDepth, the behavior of the function is undefined unless:
- The channel data type of img is set to UNORM INT16, UNORM INT24, FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width - 1), (0...
image height - 1) respectively.

- value is a float.

Whenimg s aimage2dArrayDepri, the behavior of the function is undefined umntess:

- The channel data type of img is set to UNORM INT16, UNORM INT24, FLOAT.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

8 44 <id> Result <id> | extended 119 <id> <id> <id>
Result Type instructions img coords value
set <id>

write_imagei

Write value to the coordinates specified by coords to the image object specified by img. The write happens only after the
data in value is converted to the appropraite img image channel data type. value component type is considered to be a
signed integer. coords are considered to be non-parametric coordinates.

Result Type must be void.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray or image3d value, with WriteOnly or
ReadWrite access qualifier.

The channel data type of img must be set to SIGNED INTS8, SIGNED INT16, SIGNED INT32.
When img is a image2d:

- coords must be a vector(2) of i32 values, where the first and second components are in the range (0 ... image width - 1),
(0 ... image height - 1) respectively.

- value must be a vector(4) of i32 values.
When img is a image2dArray:

- coords must be a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width
-1),(0... image height - 1), (0 ... image number of layers - 1) respectively. The fourth component is ignored.

- value must be a vector(4) of i32 values.

When img is a imageld or imageldBuffer:

- coords must be a i32, and is in the range (0 ... image width - 1)
- value must be a vector(4) of i32 values.

When img is a imageldArray:

- coords must be a vector(2) of i32 values, where the first and second components are in the range (0 ... image width - 1),
(0 ... image number of layers - 1) respectively.

- value must be a vector(4) of i32 values
When img is a image3d:

- coords must be a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width
-1),(0... image height - 1), (0 ... image depth - 1) respectively. The fourth component is ignored.

- value must be a vector(4) of i32 values.

71/80

8

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

120

<id>
img

<id>
coords

<id>
value

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

write_imageui

Write value to the coordinates specified by coords to the image object specified by img. The write happens only after the
data in value is converted to the appropraite img image channel data type. value component type is considered to be an
unsigned integer. coords are considered to be non-parametric coordinates.

Result Type must be void.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray or image3d value, with WriteOnly or
ReadWrite access qualifier.

The channel data type of img must be set to UNSIGNED INTS8, UNSIGNED INT16, UNSIGNED INT32.
When img is a image2d:

- coords must be a vector(2) of i32 values, where the first and second components are in the range (0 ... image width - 1),
(0 ... image height - 1) respectively.

- value must be a vector(4) of i32 values.
When img is a image2dArray:

- coords must be a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width
-1),(0... image height - 1), (0 ... image number of layers - 1) respectively. The fourth component is ignored.

- value must be a vector(4) of i32 values.

When img is a imageld or imageldBuffer:

- coords must be a i32, and is in the range (0 ... image width - 1)
- value must be a vector(4) of i32 values.

When img is a imageldArray:

- coords must be a vector(2) of i32 values, where the first and second components are in the range (0 ... image width - 1),
(0 ... image number of layers - 1) respectively.

- value must be a vector(4) of i32 values
When img is a image3d:

- coords must be a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width
- 1), (0 ... image height - 1), (0 ... image depth - 1) respectively. The fourth component is ignored.

- value must be a vector(4) of i32 values.

8 44 <id> Result <id> | extended 121 <id> <id> <id>
Result Type instructions img coords value
set <id>

72/80

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 73/80

write_imageh

Write value to the coordinates specified by coords to the image object specified by img. The write happens only after the
data in value is converted to the appropraite img image channel data type. coords are considered to be non-parametric
coordinates.

Result Type must be void.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray or image3d value, with WriteOnly or
ReadWrite access qualifier.

When img is a image2d, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INTS8, SNORM INTS8, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width - 1), (0...
image height - 1) respectively.

- value is a vector(4) of half values.
When img is a image2dArray, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INTS, SNORM INT8, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width - 1),
(0... image height - 1), (0 ... image number of layers - 1) respectively. The fourth component is ignored.

- value is a vector(4) of half values.
When img is a imageld or imageldBuffer, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INTS, SNORM INTS, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a i32, and is in the range (0 ... image width - 1)
- value is a vector(4) of half values.
When img is a imageldArray, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INTS8, SNORM INTS, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width - 1), (0 ...
image number of layers - 1) respectively.

- value is a vector(4) of half values
When img is a image3d, the behavior of the function is undefined unless:

- The channel data type of img is set to UNORM SHORT 565,UNORM SHORT 555, UNORM INT 101010, UNORM
INTS, SNORM INTS, UNORM INT16, SNORM INT16, HALF FLOAT.

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width - 1),
(0 ... image height - 1), (0 ... image depth - 1) respectively. The fourth component is ignored.

- value is a vector(4) of half values.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

74/80

<id>
Result Type

Result <id>

extended
instructions
set <id>

122

<id>
img

<id>
coords

<id>
value

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 75/80

write_imagef mipmap_lod

Write value to the coordinates specified by coords in the mip-level specified by lod to the image object specified by img.
The write happens only after the data in value is converted to the appropraite img image channel data type. coords are
considered to be non-parametric coordinates.

Result Type must be void.

img must be imageld, imageldArray, image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value,
with WriteOnly or ReadWrite access qualifier.

The behavior of the function is undefined unless lod value is in the range (0 ... number of mip-levels in the image - 1).
When img is a image2d, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image height of the mip-level specified by lod - 1) respectively.

- value is a vector(4) of float values.

When img is a image2dArray, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image height of the mip-level specified by lod - 1), (0 ... image number of layers - 1)
respectively. The fourth component is ignored.

- value is a vector(4) of float values.

When img is a imageld or imageldBuffer, the behavior of the function is undefined unless:

- coords is a i32, and is in the range (0 ... image width of the mip-level specified by lod - 1)

- value is a vector(4) of float values.

When img is a imageldArray, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image number of layers - 1) respectively.

- value is a vector(4) of float values.
When img is a image2dDepth, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width of the
mip-level specified by lod- 1), (0 ... image height of the mip-level specified by lod- 1) respectively.

- value is a float.

When img is a image2dArrayDepth, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image height of the mip - level specified by lod - 1), (0 ... image number of layers -
1) respectively. The fourth component is ignored.

- value is a float.

When img is a image3d, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width of the

mmip-tevel specified by fod = 1), (0~ mage height of the mip-tevet specified by fod = 1), (0~ image deptirof the
mip-level specified by lod - 1) respectively. The fourth component is ignored.

- value is a vector(4) of float values.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

9 44 <id> Result extended 129 <id> <id> <id> <id>
Result <id> instruc- img coords lod value
Type tions set
<id>

write_imagei_mipmap_lod

Write value to the coordinates specified by coords in the mip-level specified by lod to the image object specified by img.
The write happens only after the data in value is converted to the appropraite img image channel data type. coords are
considered to be non-parametric coordinates. value component type is treated as signed integer.

Result Type must be void.

img must be imageld, imageldArray, image2d, image2dArray or image3d value, with WriteOnly or ReadWrite access
qualifier.

The behavior of the function is undefined unless lod value is in the range (0 ... number of mip-levels in the image - 1).
When img is a image2d, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image height of the mip-level specified by lod - 1) respectively.

When img is a image2dArray, the behavior of the function is undefined unless:

- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image height of the mip-level specified by lod - 1), (0 ... image number of layers - 1)
respectively. The fourth component is ignored.

When img is a imageld or imageldBuffer, the behavior of the function is undefined unless:

- coords is a i32, and is in the range (0 ... image width of the mip-level specified by lod - 1)

When img is a imageldArray, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image number of layers - 1) respectively.

When img is a image3d, the behavior of the function is undefined unless:
- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width of the

mip-level specified by lod - 1), (0 ... image height of the mip-level specified by lod - 1), (0 ... image depth of the
mip-level specified by lod - 1) respectively. The fourth component is ignored.

76 /80

9 44 <id> Result extended 130 <id> <id> <id> <id>
Result <id> instruc- img coords lod value
Type tions set
<id>

OpenCL 2.0 Extended Instruction Set Specification (Provisional) 77780

write_imageui_mipmap_lod

Write value to the coordinates specified by coords in the mip-level specified by lod to the image object specified by img.
The write happens only after the data in value is converted to the appropraite img image channel data type. coords are
considered to be non-parametric coordinates. value component type is treated as unsigned integer.

Result Type must be void.

img must be imageld, imageldArray, image2d, image2dArray or image3d value, with WriteOnly or ReadWrite access
qualifier.

The behavior of the function is undefined unless lod value is in the range (0 ... number of mip-levels in the image - 1).
When img is a image2d, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image height of the mip-level specified by lod - 1) respectively.

When img is a image2dArray, the behavior of the function is undefined unless:

- coords 1s a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image height of the mip-level specified by lod - 1), (0 ... image number of layers - 1)
respectively. The fourth component is ignored.

When img is a imageld or imageldBuffer, the behavior of the function is undefined unless:

- coords is a i32, and is in the range (0 ... image width of the mip-level specified by lod - 1)

When img is a imageldArray, the behavior of the function is undefined unless:

- coords is a vector(2) of i32 values, where the first and second components are in the range (0 ... image width of the
mip-level specified by lod - 1), (0 ... image number of layers - 1) respectively.

When img is a image3d, the behavior of the function is undefined unless:
- coords is a vector(4) of i32 values, where the first, second and third components are in the range (0 ... image width of the

mip-level specified by lod - 1), (0 ... image height of the mip-level specified by lod - 1), (0 ... image depth of the
mip-level specified by lod - 1) respectively. The fourth component is ignored.

9 44 | <id> Result extended 131 <id> <id> <id> <id>
Result <id> instruc- img coords lod value
Type tions set
<id>
2.9.6 Image query functions

This section describes the list of instructions that provide information of image memory objects.

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

78/80

get_image_width

Result Type must be i32.

Return the width in pixels of the image object specified by img.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray, image2dArrayDepth,
image2dDepth or image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

132

<id>
img

get_image_height
Return the height in pixels of the image object specified by img.
Result Type must be i32.

img must be image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value, with
ReadOnly, WriteOnly or ReadWrite access qualifier.

6 44 <id> Result <id> extended 133 <id>
Result Type instructions img
set <id>

get_image_depth
Return the depth in pixels of the image object specified by img.
Result Type must be i32.

img must be image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

6 44 <id> Result <id> extended 134 <id>
Result Type instructions img
set <id>

get_image_channel_data_type
Return the channel data type of the image object specified by img.

Result Type must be i32.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray, image2dArrayDepth,

image2dDepth or image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

Result Type must contain a value from ImageChannelType enumeration.

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

135

<id>
img

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

79/80

get_image_channel_order

Return the channel order of the image object specified by img.

Result Type must be i32.

img must be imageld, imageldBuffer, imageldArray, image2d, image2dArray, image2dArrayDepth,
image2dDepth or image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

Result Type must contain a value from ImageChannelOrder enumeration.

6 44 <id> Result <id> extended 136 <id>
Result Type instructions img
set <id>

get_image_dim
Return the dimensions of the image object specified by img.
Result Type must be i32 or vector(2,4) of i32 values.

img must be image2d, image2dArray, image2dArrayDepth, image2dDepth or image3d value, with
ReadOnly, WriteOnly or ReadWrite access qualifier.

Result Type ' must be "vector(2) of i32 values when img is a image2d, image2dArray,
image2dArrayDepth or image2dDepth. The width and height of the image are contained in the first
and second components of the return value repectively.

Result Type’must be 'vector(4) of i32 values when img is a image3d. The width, height and depth of
the image are contained in the first, second and third components of the return value repectively. The
fourth component is 0.

6 44 <id> Result <id> extended 137 <id>
Result Type instructions img
set <id>

get_image_array_size
Return the number of samples in the MSAA image object specified by img.
Result Type must be i32.

Result Type must be size_t.

img must be imageldArray, image2dArray or image2dArrayDepth value, with ReadOnly, WriteOnly or ReadWrite
access qualifier.

img must be image2dMsaa, image2dArrayMsaa, image2dMsaaDepth or image2dArrayMsaaDepth value, with
ReadOnly, WriteOnly or ReadWrite access qualifier.

7

44

<id>
Result Type

Result <id>

extended 138

instructions
set <id>

<id>
img

<id>
img

OpenCL 2.0 Extended Instruction Set Specification (Provisional)

80/80

get_image_num_mip_levels

Result Type must be i32.

Return the number of mip-levels of the image object specified by img.

img must be imageld, imageldArray, image2d, image2dArray, image2dArrayDepth, image2dDepth
or image3d value, with ReadOnly, WriteOnly or ReadWrite access qualifier.

6

44

<id>
Result Type

Result <id>

extended
instructions
set <id>

140

<id>
img

	1 Introduction
	2 Binary Form
	2.1 Math extended instructions
	2.2 Integer instructions
	2.3 Common instructions
	2.4 Geometric instructions
	2.5 Relational instructions
	2.6 Vector Data Load and Store instructions
	2.7 Miscellaneous Vector instructions
	2.8 Misc instructions
	2.9 Image functions
	2.9.1 Image encoding
	2.9.2 Sampler encoding
	2.9.3 Image format encoding
	2.9.4 Image read functions
	2.9.5 Image write functions
	2.9.6 Image query functions

