KHRCON @

The Khronos® SPIR™ Working Group

Version 1.6, Revision 6: Unified

Table of Contents

1. Introduction

1.1. Goals
1.2. Execution Environment and Client API
1.3. About This Document
1.3.1. Versioning
1.4. Extendability
1.5. Debuggability
1.6. Design Principles
1.7. Static Single Assignment (SSA)
1.8. Built-In Variables
1.9. Specialization
1.10. Example
. Specification
2.1. Language Capabilities
2.2. Terms
2.2.1. Instructions
2.2.2. Types
2.2.3. Computation
2.2.4. Module
2.2.5. Control Flow
2.2.6. Validity and Defined Behavior
2.3. Physical Layout of a SPIR-V Module and Instruction
2.4. Logical Layout of a Module
2.5. Instructions
2.5.1. SSA Form
2.6. Entry Point and Execution Model
2.7. Execution Modes
2.8. Types and Variables
2.8.1. Unsigned Versus Signed Integers
2.9. Function Calling
2.10. Extended Instruction Sets
2.11. Structured Control Flow
2.11.1. Rules for Structured Control-flow Declarations
2.11.2. Structured Control-flow Constructs
2.11.3. Rules for Structured Control-flow Constructs
2.12. Specialization
2.13. Linkage
2.14. Relaxed Precision
2.15. Debug Information
2.15.1. Function-Name Mangling
2.16. Validation Rules
2.16.1. Universal Validation Rules
2.16.2. Validation Rules for Shader Capabilities
2.16.3. Validation Rules for Kernel Capabilities

© © 00 0 00 N N NN o o

B W W W W W W W W NDNDNDNDNDNDNDNDNDNDNDNDNDNDMDNMNDNDMNERPRPREPERERRPREREPRERPPRPRPER
O © A BB WMNDNO OO WWOWNNO OO O o O B~ WwWDNDNPEPE O NNOO MBSO

2.17. Universal Limits
2.18. Memory Model

2181
2.18.2
2.18.3

. Memory Layout
. Aliasing
. Null pointers

2.19. Derivatives

2.20. Code Motion

2.21. Deprecation

2.22. Unified Specification
2.23. Uniformity

. Binary Form

3.1. Magic Number

3.2. Enumerants

3.2.1.
3.2.2.
3.2.3.
3.2.4.
3.2.5.
3.2.6.
3.2.7.
3.2.8.
3.2.9.

3.2.10.
3.2.11.
3.2.12.
3.2.13.
3.2.14.
3.2.15.
3.2.16.
3.2.17.
3.2.18.
3.2.19.
3.2.20.
3.2.21.
3.2.22.
3.2.23.
3.2.24.
3.2.25.
3.2.26.
3.2.27.
3.2.28.
3.2.29.
3.2.30.
3.2.31.
3.2.32.
3.2.33.

Source Language
Execution Model
Addressing Model
Memory Model
Execution Mode
Storage Class
Dim
Sampler Addressing Mode
Sampler Filter Mode
Image Format
Image Channel Order
Image Channel Data Type
Image Operands
FP Fast Math Mode
FP Rounding Mode
Linkage Type
Access Qualifier.
Function Parameter Attribute
Decoration
Builtin
Selection Control
Loop Control
Function Control
Memory Semantics <id>
Memory Operands
Scope <id>
Group Operation
Kernel Enqueue Flags
Kernel Profiling Info
Capability
Ray Flags
Ray Query Intersection
Ray Query Committed Type

41
41
42
42
44
44
44
44
44
45
46
46
46
46
47
48
48
49
64
67
68
68
68
70
71
71
75
76
77
77
77
78
99

113

114

116

116

119

121

124

126

127

127

153

154

154

3.2.34.
3.2.35.
3.2.36.
3.2.37.
3.2.38.
3.2.39.
3.2.40.
3.2.41.
3.2.42.
3.2.43.
3.2.44.
3.2.45.
3.2.46.
3.2.47.
3.2.48.
3.2.49.
3.2.50.
3.2.51.
3.2.52.
3.2.53.
3.2.54.
3.2.55.
3.2.56.
3.2.57.

Ray Query Candidate Type

Fragment Shading Rate

FP Denorm Mode

FP Operation Mode

Quantization Mode

Overflow Mode

Packed Vector Format

Cooperative Matrix Operands
Cooperative Matrix Layout
Cooperative Matrix Use

Cooperative Matrix Reduce Mode
Tensor Clamp Mode

Tensor Addressing Operands

Tensor Operands

Initialization Mode Qualifier

Host Access Qualifier

Load Cache Control

Store Cache Control

Named Maximum Number of Registers
Matrix Multiply Accumulate Operands
Raw Access Chain Operands

FP Encoding

Cooperative Vector Matrix Layout
Cooperative Vector Matrix Component Type

3.3. Instructions

3.3.1.
3.3.2.
3.3.3.
3.3.4.
3.3.5.
3.3.6.
3.3.7.
3.3.8.
3.3.9.

3.3.10.
3.3.11.
3.3.12.
3.3.13.
3.3.14.
3.3.15.
3.3.16.
3.3.17.
3.3.18.
3.3.19.
3.3.20.
3.3.21.

Miscellaneous Instructions
Debug Instructions
Annotation Instructions
Extension Instructions
Mode-Setting Instructions
Type-Declaration Instructions
Constant-Creation Instructions
Memory Instructions
Function Instructions
Image Instructions
Conversion Instructions
Composite Instructions
Arithmetic Instructions
Bit Instructions
Relational and Logical Instructions
Derivative Instructions
Control-Flow Instructions
Atomic Instructions
Primitive Instructions
Barrier Instructions
Group and Subgroup Instructions

155
155
155
156
156
157
157
157
158
158
158
158
159
159
160
160
160
161
161
161
162
162
162
163
164
164
166
170
173
175
178
187
194
205
207
231
239
244
261
267
280
285
201
301
302
305

3.3.22. Device-Side Enqueue Instructions

3.3.23. Pipe Instructions

3.3.24. Non-Uniform Instructions

3.3.25. Tensor Instructions

3.3.26. Graph Instructions

3.3.27. Reserved Instructions

4. Appendix A: Changes

4.1. Changes from Version 0.99, Revision 31
4.2. Changes from Version 0.99, Revision 32
4.3. Changes from Version 1.00, Revision 1
4.4. Changes from Version 1.00, Revision 2
4.5. Changes from Version 1.00, Revision 3
4.6. Changes from Version 1.00, Revision 4
4.7. Changes from Version 1.00, Revision 5
4.8. Changes from Version 1.00, Revision 6
4.9. Changes from Version 1.00, Revision 7
4.10. Changes from Version 1.00, Revision 8
4.11. Changes from Version 1.00, Revision 9
4.12. Changes from Version 1.00, Revision 10
4.13. Changes from Version 1.00, Revision 11
4.14. Changes from Version 1.00
4.15. Changes from Version 1.1, Revision 1
4.16. Changes from Version 1.1, Revision 2
4.17. Changes from Version 1.1, Revision 3
4.18. Changes from Version 1.1, Revision 4
4.19. Changes from Version 1.1, Revision 5
4.20. Changes from Version 1.1, Revision 6
4.21. Changes from Version 1.1, Revision 7
4.22. Changes from Version 1.1
4.23. Changes from Version 1.2, Revision 1
4.24. Changes from Version 1.2, Revision 2
4.25. Changes from Version 1.2, Revision 3
4.26. Changes from Version 1.2
4.27. Changes from Version 1.3, Revision 1
4.28. Changes from Version 1.3, Revision 2
4.29. Changes from Version 1.3, Revision 3
4.30. Changes from Version 1.3, Revision 4
4.31. Changes from Version 1.3, Revision 5
4.32. Changes from Version 1.3, Revision 6
4.33. Changes from Version 1.3, Revision 7
4.34. Changes from Version 1.3
4.35. Changes from Version 1.4, Revision 1
4.36. Changes from Version 1.4
4.37. Changes from Version 1.5, Revision 1
4.38. Changes from Version 1.5, Revision 2
4.39. Changes from Version 1.5, Revision 3

321
332
344
374
375
376
402
402
403
403
405
406
406
406
406
407
407
407
407
408
409
409
409
409
410
410
410
410
410
410
410
410
411
411
412
413
413
413
414
415
416
416
417
417
418
419

4.40.
4.41.
4.42.
4.43.
4.44.
4.45.
4.46.
4.47.

Changes from Version 1.5, Revision 4
Changes from Version 1.5, Revision 5
Changes from Version 1.5

Changes from Version 1.6, Revision 1
Changes from Version 1.6, Revision 2
Changes from Version 1.6, Revision 3
Changes from Version 1.6, Revision 4
Changes from Version 1.6, Revision 5

420
420
422
422
423
425
426
427

CSPIR-V.

Copyright 2014-2025 The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos. Except as
described by these terms, it or any components may not be reproduced, republished, distributed,
transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written
permission of Khronos.

This Specification has been created under the Khronos Intellectual Property Rights Policy, which is
Attachment A of the Khronos Group Membership Agreement available at
www.khronos.org/files/member_agreement.pdf.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification for any
purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other intellectual property
rights are granted under these terms. Parties desiring to implement the Specification and make use of
Khronos trademarks in relation to that implementation, and receive reciprocal patent license protection
under the Khronos Intellectual Property Rights Policy must become Adopters and confirm the
implementation as conformant under the process defined by Khronos for this Specification; see
https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this Specification, including, without limitation: merchantability, fithess for a particular purpose,
non-infringement of any intellectual property, correctness, accuracy, completeness, timeliness, and
reliability. Under no circumstances will Khronos, or any of its Promoters, Contributors or Members, or their
respective partners, officers, directors, employees, agents or representatives be liable for any damages,
whether direct, indirect, special or consequential damages for lost revenues, lost profits, or otherwise,
arising from or in connection with these materials.

This Specification contains substantially unmodified functionality from, and is a successor to, Khronos
specifications including all versions of "The SPIR Specification", "The OpenGL Shading Language", "The
OpenGL ES Shading Language", as well as all Khronos OpenCL APl and OpenCL programming language

specifications.

The Khronos Intellectual Property Rights Policy defines the terms Scope, Compliant Portion, and
Necessary Patent Claims.

Some parts of this Specification are purely informative and so are EXCLUDED from the Scope of this
Specification. Section 1.3 "About This Document" defines how these parts of the Specification are
identified.

Where this Specification uses technical terminology, defined in the Glossary or otherwise, that refer to
enabling technologies that are not expressly set forth in this Specification, those enabling technologies are
EXCLUDED from the Scope of this Specification. For clarity, enabling technologies not disclosed with
particularity in this Specification (e.g. semiconductor manufacturing technology, hardware architecture,
processor architecture or microarchitecture, memory architecture, compiler technology, object oriented
technology, basic operating system technology, compression technology, algorithms, and so on) are NOT to
be considered expressly set forth; only those application program interfaces and data structures disclosed
with particularity are included in the Scope of this Specification.

For purposes of the Khronos Intellectual Property Rights Policy as it relates to the definition of Necessary
Patent Claims, all recommended or optional features, behaviors and functionality set forth in this
Specification, if implemented, are considered to be included as Compliant Portions.

https://www.khronos.org/adopters

Khronos® and Vulkan® are registered trademarks, and ANARI™, WebGL™, gITF™, NNEF™, OpenVX™,
SPIR™, SPIR-V™ SYCL™, OpenVG™, Vulkan SC™, 3D Commerce™ and Kamaros™ are trademarks of
The Khronos Group Inc. OpenXR™ is a trademark owned by The Khronos Group Inc. and is registered as
a trademark in China, the European Union, Japan and the United Kingdom. OpenCL™ is a trademark of
Apple Inc. used under license by Khronos. OpenGL® is a registered trademark and the OpenGL ES™ and
OpenGL SC™ logos are trademarks of Hewlett Packard Enterprise used under license by Khronos. ASTC
is a trademark of ARM Holdings PLC. All other product names, trademarks, and/or company names are
used solely for identification and belong to their respective owners.

Contributors and Acknowledgments
Editors

» John Kessenich, Google
e Boaz Ouiriel, Intel
¢ Raun Krisch, Intel

* Victor Lomdller, Codeplay (current)
Contributors

Connor Abbott, Intel

Ben Ashbaugh, Intel

Alexey Bader, Intel

Alan Baker, Google

Dan Baker, Oxide Games
Kenneth Benzie, Codeplay
Jeff Bolz, NVIDIA

Stuart Brady, Arm

Gordon Brown, Codeplay
Pat Brown, NVIDIA

Nate Cesario, LunarG

Diana Po-Yu Chen, MediaTek
Stephen Clarke, Imagination
Joshua Davis, Unity

Hugo Deuvillers, University of Saarland
Patrick Doane, Blizzard Entertainment
Alastair Donaldson, Google
Yuehai Du, Qualcomm
Stefanus Du Toit, Google
Faith Ekstrand, Collabora
Gregory Fischer, LunarG
Theresa Foley, Intel

Spencer Fricke, Samsung
Ben Gaster, Qualcomm
Alexander Galazin, ARM
Christopher Gautier, ARM
Arcady Goldmints, LunarG
Jeremy Hayes, LunarG
Tobias Hector, AMD

Nicolai Hahnle, AMD

Neil Henning, AMD

Kerch Holt, NVIDIA

Lee Howes, Qualcomm

Samuel Huang, Mediatek

Marty Johnson, Khronos

Roy Ju, MediaTek

Baldur Karlsson, Valve

Ronan Keryell, Xilinx

John Kessenich, Google
Wooyoung Kim, Qualcomm
Vasileios Klimis, Imperial College London
Daniel Koch, NVIDIA

Ashwin Kolhe, NVIDIA

Tim Kong, Samsung

Raun Krisch, Intel

Graeme Leese, Broadcom

Yuan Lin, NVIDIA

Yaxun Liu, AMD

Victor Lomuller, Codeplay
Timothy Lottes, Epic Games
John McDonald, Valve

Mariusz Merecki, Intel

David Neto, Google

Boaz Ouriel, Intel

Kevin Petit, Arm

Robert Quill, Imagination Technologies
Christophe Riccio, Unity

Andrew Richards, Codeplay

lan Romanick, Intel

Graham Sellers, AMD

Simon Waters, Samsung

Robert Simpson, Qualcomm
Pradyuman Singh, NVIDIA
Bartosz Sochacki, Intel

Nikos Stavropoulos, Think Silicon
Brian Sumner, AMD

John Wickerson, Imperial College London

Andrew Woloszyn, Google

Robin Voetter, StreamHPC
Ruihao Zhang, Qualcomm

Weifeng Zhang, Qualcomm

Chapter 1. Introduction

Up-to-date HTML and PDF versions of this specification may be found at the Khronos

NOTE SPIR-V Registry. (https://www.khronos.org/registry/spir-v/)

Abstract

SPIR-V is a simple binary intermediate language for graphical shaders and compute
kernels. A SPIR-V module contains multiple entry points with potentially shared
functions in the entry point's call trees. Each function contains a control-flow graph
(CFG) of basic blocks, with optional instructions to express structured control flow.
Load/store instructions are used to access declared variables, which includes all
input/output (10). Intermediate results bypassing load/store use static single-
assignment (SSA) representation. Data objects are represented logically, with
hierarchical type information: There is no flattening of aggregates or assignment to
physical register banks, etc. Selectable addressing models establish whether general
pointer operations may be used, or if memory access is purely logical.

This document fully defines SPIR-V, a Khronos-standard binary intermediate language for representing
graphical-shader stages and compute kernels for multiple client APIs.

This is a unified specification, specifying all versions since and including version 1.0.

1.1. Goals

SPIR-V has the following goals:
* Provide a simple binary intermediate language for all functionality appearing in Khronos
shaders/kernels.
* Have a concise, transparent, self-contained specification (sections Specification and Binary Form).
* Map easily to other intermediate languages.
» Be the form passed by a client APl into a driver to set shaders/kernels.

» Support multiple execution environments, specified by client APIs.

Can be targeted by new front ends for novel high-level languages.

Allow the first steps of compilation and reflection to be done offline.

Be low-level enough to require a reverse-engineering step to reconstruct source code.

Improve portability by enabling shared tools to generate or operate on it.

* Reduce compile time during application run time. (Eliminating most of the compile time during
application run time is not a goal of this intermediate language. Target-specific register allocation and
scheduling are still expected to take significant time.)

* Allow some optimizations to be done offline.

https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/
https://www.khronos.org/registry/spir-v/

1.2. Execution Environment and Client API

SPIR-V is adaptable to multiple execution environments: A SPIR-V module is consumed by an execution
environment, as specified by a client API. The full set of rules needed to consume SPIR-V in a particular
environment comes from the combination of SPIR-V and that environment’s client API specification. The
client API specifies its SPIR-V execution environment as well as extra rules, limitations, capabilities, etc.
required by the form of SPIR-V it can validly consume.

1.3. About This Document

This document aims to:

 Specify everything needed to create and consume non-extended SPIR-V, minus:
- Extended instruction sets, which are imported and come with their own specifications.
- Client API-specific rules, which are documented in client API specifications.

» Separate expository and specification language. The specification-proper is in Specification and Binary
Form.

1.3.1. Versioning

The specification covers multiple versions of SPIR-V, as described in the unified section. It has followed a
Major.Minor.Revision versioning scheme, with the specification’s stated version being the most recent
version of SPIR-V.

Major and Minor (but not Revision) are declared within a SPIR-V module.

Major is reserved for future use and has been fixed at 1. Minor changes have signified additions,
deprecation, and removal of features. Revision changes have included clarifications, bug fixes, and
deprecation (but not removal) of existing features.

1.4. Extendability

SPIR-V can be extended by multiple vendors or parties simultaneously:
» Using the OpExtension instruction to add semantics, which are described in an extension
specification.
» Reserving (registering) ranges of the token values, as described further below.
« Aided by instruction skipping, also further described below.

Enumeration Token Values. It is easy to extend all the types, storage classes, opcodes, decorations, etc.
by adding to the token values.

Registration. Ranges of token values in the Binary Form section can be pre-allocated to numerous
vendors/parties. This allows combining multiple independent extensions without conflict. To register ranges,
use the https://github.com/KhronosGroup/SPIRV-Headers repository, and submit pull requests against the
include/spirv/spir-v.xml file.

Extended Instructions. Sets of extended instructions can be provided and specified in separate
specifications. Multiple sets of extended instructions can be imported without conflict, as the extended
instructions are selected by {set id, instruction number} pairs.

Instruction Skipping. Tools are encouraged to skip opcodes for features they are not required to process.

https://github.com/KhronosGroup/SPIRV-Headers

This is trivially enabled by the word count in an instruction, which makes it easier to add new instructions
without breaking existing tools.

1.5. Debuggability

SPIR-V can decorate, with a text string, virtually anything created in the shader: types, variables, functions,
etc. This is required for externally visible symbols, and also allowed for naming the result of any instruction.
This can be used to aid in understandability when disassembling or debugging lowered versions of SPIR-V.

Location information (file names, lines, and columns) can be interleaved with the instruction stream to track
the origin of each instruction.

1.6. Design Principles

Regularity. All instructions start with a word count. This allows walking a SPIR-V module without decoding
each opcode. All instructions have an opcode that dictates for all operands what kind of operand they are.
For instructions with a variable number of operands, the number of variable operands is known by
subtracting the number of non-variable words from the instruction’s word count.

Non Combinatorial. There is no combinatorial type explosion or need for large encode/decode tables for
types. Rather, types are parameterized. Image types declare their dimensionality, arrayness, etc. all
orthogonally, which greatly simplify code. This is done similarly for other types. It also applies to opcodes.
Operations are orthogonal to scalar/vector size, but not to integer vs. floating-point differences.

Modeless. After a given execution model (e.g., pipeline stage) is specified, internal operation is essentially
modeless: Generally, it follows the rule: "same spelling, same semantics", and does not have mode bits that
modify semantics. If a change to SPIR-V modifies semantics, it should use a different spelling. This makes
consumers of SPIR-V much more robust. There are execution modes declared, but these generally affect
the way the module interacts with its execution environment, not its internal semantics. Capabilities are also
declared, but this is to declare the subset of functionality that is used, not to change any semantics of what
is used.

Declarative. SPIR-V declares externally-visible modes like "writes depth”, rather than having rules that
require deduction from full shader inspection. It also explicitly declares what addressing modes, execution
model, extended instruction sets, etc. will be used. See Language Capabilities for more information.

SSA. All results of intermediate operations are strictly SSA. However, declared variables reside in memory
and use load/store for access, and such variables can be stored to multiple times.

0. Some storage classes are for input/output (I0) and, fundamentally, 1O is done through load/store of
variables declared in these storage classes.

1.7. Static Single Assignment (SSA)

SPIR-V includes a phi instruction to allow the merging together of intermediate results from split control
flow. This allows split control flow without load/store to memory. SPIR-V is flexible in the degree to which
load/store is used; it is possible to use control flow with no phi-instructions, while still staying in SSA form,
by using memory load/store.

Some storage classes are for IO and, fundamentally, IO is done through load/store, and initial load and final
store won'’t be eliminated. Other storage classes are shader local and can have their load/store eliminated.
It can be considered an optimization to largely eliminate such loads/stores by moving them into
intermediate results in SSA form.

1.8. Built-In Variables

SPIR-V identifies built-in variables from a high-level language with an enumerant decoration. This assigns
any unusual semantics to the variable. Built-in variables are otherwise declared with their correct SPIR-V
type and treated the same as any other variable.

1.9. Specialization

Specialization enables offline creation of a portable SPIR-V module based on constant values that won't be
known until a later point in time. For example, to size a fixed array with a constant not known during
creation of a module, but known when the module will be lowered to the target architecture.

See Specialization in the next section for more details.

1.10. Example

The SPIR-V form is binary, not human readable, and fully described in Binary Form. This is an example
disassembly to give a basic idea of what SPIR-V looks like:

GLSL fragment shader:

#iversion 450

in vec4 color1;

in vec4 multiplier;
noperspective in vec4 color?;
out vec4 color;

struct S {
bool b;
vecd v[5];
int 1;
bif
uniform blockName {
S's;
bool cond;
I
void main()
{
vec4 scale = vec4(1.0, 1.0, 2.0, 1.0);
if (cond)
color = color1 + s.v[2];
else
color = sqrt(color2) * scale;
for (int i =0; 1 < 4; ++1)
color *= multiplier;
+

Corresponding SPIR-V:

; Magic: 0x07230203 (SPIR-V)

: Version: 0x00010000 (Version: 1.0.0)

; Generator: 0x00080001 (Khronos Glslang Reference Front End; 1)
; Bound: 63

; Schema: 0

OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %4 "main" %31 %33 %42 %57

10

OpExecutionMode %4 OriginLowerleft

; Debug information

OpSource GLSL 450
OpName %4 "main"
OpName %9 "scale"
OpName %17 "S"
OpMemberName %17 @ "b"
OpMemberName %17 1 "v"
OpMemberName %17 2 "i"
OpName %18 "blockName"
OpMemberName %18 @ "s"
OpMemberName %18 1 "cond"
OpName %20 ""

OpName %31 "color"

OpName %33 "color1"

OpName %42 "color2"
OpName %48 "i"
OpName %57 "multiplier"

; Annotations (non-debug)

OpDecorate %15 ArrayStride 16
OpMemberDecorate %17 @ Offset 0
OpMemberDecorate %17 1 Offset 16
OpMemberDecorate %17 2 Offset 96
OpMemberDecorate %18 @ Offset 0
OpMemberDecorate %18 1 Offset 112
OpDecorate %18 Block

OpDecorate %20 DescriptorSet 0
OpDecorate %42 NoPerspective

; ALl types, variables, and constants

%2

OpTypeVoid

OpTypeFunction %2
OpTypeFloat 32
OpTypeVector %6 4
OpTypePointer Function %7
OpConstant %6 1
OpConstant %6 2

OpConstantComposite %7 %10 %10 %11 %10 ;

OpTypelnt 32 @

OpConstant %13 5
OpTypeArray %7 %14
OpTypelnt 32 1
OpTypeStruct %13 %15 %16
OpTypeStruct %17 %13
OpTypePointer Uniform %18
OpVariable %19 Uniform
OpConstant %16 1
OpTypePointer Uniform %13
OpTypeBool

I

void ()

32-bit float

vecd

function-local vec4*

vecd(1.0, 1.0, 2.0, 1.0)
32-bit int, sign-less

11

o°

w

o

>~

o

[=)]

o

S

o°

oo

o

(=]

OpConstant %13 0
OpTypePointer Qutput %7
OpVariable %30 Output
OpTypePointer Input %7
OpVariable %32 Input
OpConstant %16 @
OpConstant %16 2
OpTypePointer Uniform %7
OpVariable %32 Input
OpTypePointer Function %16
OpConstant %16 4
OpVariable %32 Input

OpFunction %2 None %3 ; main()
OpLabel

OpVariable %8 Function

OpVariable %47 Function

OpStore %9 %12

OpAccessChain %22 %20 %21 ; location of cond

OpLoad %13 %23 ; load 32-bit int from cond
OpINotEqual %25 %24 %26 ; convert to bool
OpSelectionMerge %29 None ; structured if
OpBranchConditional %27 %28 %41 ; if cond

OpLabel ; then

OpLoad %7 %33

OpAccessChain %37 %20 %35 %21 %36 7 s.v[2]

OpLoad %7 %38

OpFAdd %7 %34 %39

OpStore %31 %40

OpBranch %29

OpLabel ; else

OpLoad %7 %42

OpExtInst %7 %1 Sqrt %43 ; extended instruction sqrt
OpLoad %7 %9

OpFMul %7 %44 %45

OpStore %31 %46

OpBranch %29

OpLabel ; endif

OpStore %48 %35

OpBranch %49

OpLabel

OpLoopMerge %51 %52 None ; structured loop
OpBranch %53

OpLabel

OpLoad %16 %48

o

o

OpSLessThan %25 %54 %55 ;1 <47
OpBranchConditional %56 %50 %51 ; body or break
OpLabel ; body

OpLoad %7 %57
OpLoad %7 %31

0,

%60

%51

OpFMul %7 %59 %58
OpStore %31 %60
OpBranch %52

= OpLabel
= OplLoad %16 %48

OpIAdd %16 %61 %21
OpStore %48 %62
OpBranch %49
OpLabel

OpReturn
OpFunctionEnd

I

I

I

; continue target

++i

; loop back
; loop merge point

13

Chapter 2. Specification

2.1. Language Capabilities

A SPIR-V module is consumed by a client API that needs to support the features used by that SPIR-V
module. Features are classified through capabilities. Capabilities used by a particular SPIR-V module are
declared early in that module with the OpCapability instruction. Then:

« A validator can validate that the module uses only its declared capabilities.

» A client APl is allowed to reject modules declaring capabilities it does not support.

All available capabilities and their dependencies form a capability hierarchy, fully listed in the capability
section. Only top-level capabilities need to be explicitly declared; their dependencies are implicitly declared.

If an instruction, enumerant, or other feature specifies multiple enabling capabilities, only one such
capability needs to be declared to use the feature. This declaration does not itself imply anything about the
presence of the other enabling capabilities: The execution environment needs to support only the declared
capability.

The SPIR-V specification provides universal capability-specific validation rules, in the validation section.
Additionally, each client API includes the following:

» Which capabilities in the capability section it supports or requires, and hence allows in a SPIR-V
module.

» Any additional validation rules it has beyond those specified by the SPIR-V specification.

» Required limits, if they are beyond the Universal Limits.

2.2. Terms

2.2.1. Instructions
Word: 32 bits.

<id>: A numerical name; the name used to refer to an object, a type, a function, a label, etc. An <id> always
consumes one word. The <id>s defined by a module obey SSA.

Result <id>: Most instructions define a result, named by an <id> explicitly provided in the instruction. The
Result <id> is used as an operand in other instructions to refer to the instruction that defined it.

Literal: An immediate value, not an <id>. Literals larger than one word consume multiple operands, one per
word. An instruction states what type the literal will be interpreted as. A string is interpreted as a nul-
terminated stream of characters. All string comparisons are case sensitive. The character set is Unicode in
the UTF-8 encoding scheme. The UTF-8 octets (8-bit bytes) are packed four per word, following the little-
endian convention (i.e., the first octet is in the lowest-order 8 bits of the word). The final word contains the
string’s nul-termination character (0), and all contents past the end of the string in the final word are padded
with 0. For a numeric literal, the lower-order words appear first. If a numeric type’s bit width is less than 32-
bits, the value appears in the low-order bits of the word, and the high-order bits must be 0 for a floating-
point type or integer type with Signedness of 0, or sign extended for an integer type with a Signedness of 1
(similarly for the remaining bits of widths larger than 32 bits but not a multiple of 32 bits).

Operand: A one-word argument to an instruction. E.g., it could be an <id>, or (or part of) a literal. Which
form it holds is always explicitly known from the opcode.

14

WordCount: The complete number of words taken by an instruction, including the word holding the word
count and opcode, and any optional operands. An instruction’s word count is the total space taken by the
instruction.

Instruction: After a header, a module is simply a linear list of instructions. An instruction contains a word
count, an opcode, an optional Result <id>, an optional <id> of the instruction’s type, and a variable list of
operands. All instruction opcodes and semantics are listed in Instructions.

Decoration: Auxiliary information such as built-in variable, stream numbers, invariance, interpolation type,
relaxed precision, etc., added to <id>s or structure-type members through Decorations. Decorations are
enumerated in Decoration in the Binary Form section.

Object: An instantiation of a non-void type, either as the Result <id> of an operation, or created through
OpVariable.

Memory Object: An object created through OpVariable. Such an object exists only for the duration of a
function if it is a function variable, and otherwise exists for the duration of an invocation.

Memory Object Declaration: An OpVariable, or an OpFunctionParameter of pointer type, or the contents
of an OpVariable that holds either a pointer to the PhysicalStorageBuffer storage class or an array of
such pointers.

Intermediate Object or Intermediate Value or Intermediate Result: An object created by an operation (not
memory allocated by OpVariable) and dying on its last consumption.

Constant Instruction: Either a specialization-constant instruction or a non-specialization constant
instruction: Instructions that start "OpConstant” or "OpSpec".

[a, b]: This square-bracket notation means the range from a to b, inclusive of a and b. Parentheses exclude
their end point, so, for example, (a, b] means a to b excluding a but including b.

Non-Semantic Instruction: An instruction that has no semantic impact, and that can be safely removed from
the module.

Hint: Either an indication to the compiler a property is likely to be observed or a request to the compiler to
perform a specific transformation. They do not affect the semantics of the program. Unless stated
otherwise, the compiler must not assume the property will be observed or the transformation is always safe
to be performed.

2.2.2. Types
Boolean type: The type declared by OpTypeBool.

Integer type: Any width signed or unsigned type from OpTypelnt. By convention, the lowest-order bit is
referred to as bit-number 0, and the highest-order bit as bit-number Width - 1.

Floating-point type: Any width and encoding type from OpTypeFloat.
Numerical type: An integer type or a floating-point type.

Scalar: A single instance of a numerical type or Boolean type. Scalars are also called components when
being discussed either by themselves or in the context of the contents of a vector.

Vector: An ordered homogeneous collection of two or more scalars. Vector sizes are quite restrictive and
dependent on the execution model.

Matrix: An ordered homogeneous collection of vectors. The vectors forming a matrix are also called its

15

columns. Matrix sizes are quite restrictive and dependent on the execution model.

Array: An ordered homogeneous aggregate of any non-void-type objects. The objects forming an array are
also called its elements. Array sizes are generally not restricted.

Structure: An ordered heterogeneous aggregate of any non-void types. The objects forming a structure are
also called its members.

Aggregate: A structure or an array.
Composite: An aggregate, a matrix, or a vector.

Texel: A single scalar or vector element of the data collection described by an image. Each texel is stored in
a particular format. If the Sampled Type operand of the image type is not OpTypeVoid, the value is
converted according to the Sampled Type operand when the texel is read or written.

Image: An opaque descriptor of an ordered, homogeneous, multi-dimensional collection of formatted data
elements called texels. Image objects themselves are opaque and cannot be accessed or modified; an
image’s texels are accessed through dedicated Image instructions. An image type is declared with
OpTypelmage. An image does not include any information about how to access, filter, or sample it.

Sampler: Settings that describe how to access, filter, or sample an image. Comes either from literal
declarations of settings or from an opaque reference to externally bound settings. A sampler does not
include an image.

Sampled Image: An image combined with a sampler, enabling filtered accesses of the image’s contents.

Physical Pointer Type: An OpTypePointer whose Storage Class uses physical addressing according to the
addressing model.

Logical Pointer Type: A pointer type that is not a physical pointer type.

Concrete Type: A numerical scalar, vector, or matrix type, or physical pointer type, or any aggregate
containing only these types.

Abstract Type: An OpTypeVoid or OpTypeBool, or logical pointer type, or any aggregate type containing
any of these.

Opaque Type: A type that is, or contains, or points to, or contains pointers to, any of the following types:

* OpTypelmage

* OpTypeSampler

* OpTypeSampledimage
* OpTypeOpaque

* OpTypeEvent

* OpTypeDeviceEvent

* OpTypeReserveld

* OpTypeQueue

» OpTypePipe

* OpTypeForwardPointer
* OpTypePipeStorage

* OpTypeNamedBarrier

16

Variable pointer: A pointer of logical pointer type that results from one of the following instructions:

* OpSelect

» OpPhi

* OpFunctionCall

« OpPtrAccessChain

* OpLoad

e OpConstantNull
Additionally, any OpAccessChain, OpIlnBoundsAccessChain, or OpCopyObject that takes a variable
pointer as an operand also produces a variable pointer. An OpFunctionParameter of pointer type is a

variable pointer if any OpFunctionCall to the function statically passes a variable pointer as the value of
the parameter.

Explicit Layout: Types with an explicit layout have decorations defining the relative locations of all of their
constituents. A type has an explicit layout if the following statements are true, recursively applied to any
nested types:

 Each structure-type member must have an Offset decoration.

» Each array type must have an ArrayStride decoration, unless it is an array that contains a structure
decorated with Block or BufferBlock, in which case it must not have an ArrayStride decoration.

e Each structure-type member that is a matrix or array-of-matrices must be decorated with a
MatrixStride decoration, and one of the RowMajor or ColMajor decorations.

» ArrayStride, MatrixStride, and Offset decorations must not cause overlap between elements or with
other members.

e Each ArrayStride and MatrixStride must be greater than zero.
A pointer to a structure decorated with Block or BufferBlock must not have an ArrayStride decoration

» All members of a given structure must have distinct Offset decorations.

2.2.3. Computation

Remainder: When dividing a by b, a remainder r is defined to be a value that satisfies r + g x b = a where q
is an integer and |r| < |b].

2.2.4. Module

Module: A single unit of SPIR-V. It can contain multiple entry points, but only one set of capabilities.

Entry Point: A function in a module where execution begins. A single entry point is limited to a single
execution model. An entry point is declared using OpEntryPoint.

Execution Model: A graphical-pipeline stage or OpenCL kernel. These are enumerated in Execution Model.

Execution Mode: Modes of operation relating to the interface or execution environment of the module.
These are enumerated in Execution Mode. Generally, modes do not change the semantics of instructions
within a SPIR-V module.

Vertex Processor: Any stage or execution model that processes vertices: Vertex, tessellation control,
tessellation evaluation, and geometry. Explicitly excludes fragment and compute execution models.

17

2.2.5. Control Flow

Block: A contiguous sequence of instructions starting with an OpLabel, ending with a block termination
instruction. A block has no additional label or block termination instructions.

Function Termination Instruction: One of the following, used to terminate execution of a function:

* OpReturn

* OpReturnValue
» OpKill

* OpUnreachable

« OpTerminatelnvocation
Conditional Branch Instruction: One of the following, used as a block termination instruction:

* OpBranchConditional
» OpSwitch

Branch Instruction: an OpBranch or a conditional branch instruction, used as a block termination
instruction

Block Termination Instruction: One of the following, used to terminate blocks:

 any branch instruction

* any function termination instruction

Control-Flow Graph: The graph formed by a function’s blocks and branches. The blocks are the graph’'s
nodes, and the branches the graph’s edges.

CFG: Control-flow graph.
Merge Instruction: One of the following, used before a branch instruction to declare structured control flow:

» OpSelectionMerge
* OpLoopMerge

Header Block: A block containing a merge instruction.
Loop Header: A header block whose merge instruction is an OpLoopMerge.

Selection Header: A header block whose merge instruction is an OpSelectionMerge and whose
termination instruction is an OpBranchConditional.

Switch Header: A header block whose merge instruction is an OpSelectionMerge and whose termination
instruction is an OpSwitch.

Merge Block: A block declared by the Merge Block operand of a merge instruction.

Branch Edge: There is a branch edge from block A to block B if the terminator of A is a branch instruction
and B is one of the target blocks for the branch instruction.

Merge Edge: There is a merge edge from block A to block B if A contains a merge instruction and B is the
merge block of this merge instruction.

18

Continue Edge: There is a continue edge from block A to block B if A is a loop header and B is the
Continue Target of the loop header's OpLoopMerge instruction.

Structured Control-Flow Edge: There is a structured control-flow edge from block A to block B if there is a
branch edge, merge edge, or continue edge from A to B.

Back Edge: A branch edge that branches to one of its ancestors in a depth-first search over structured
control-flow edges starting at the function’s entry block.

Note: When all loops are structured, each back edge corresponds to exactly one loop header, and vice
versa, making this set of back edges invariant with respect to which depth-first search found them. This
implies that the CFG defined by the function’s structured control-flow edges is reducible.

Back-Edge Block: If there is a back edge from block A to block B then A is a back-edge block.

Path: A sequence of blocks By, By, ..., B, where for each 0 <=i < n there is a branch edge from B; to Bi.;.
This forms a path from By to B,.

Structured Control-Flow Path: A sequence of blocks By, By, ..., B, where for each 0 <=i < n there is a
structured control-flow edge from B; to By.;. This forms a structured control-flow path from B, to B,

Structurally Reachable: A block B is structurally reachable if there exists a structured control-flow path from
the entry block of the function containing B to B.

Dominate: A block A dominates a block B, where A and B are in the same function, if every path from the
function’s entry block to block B includes block A. A strictly dominates B if A dominates B and A and B are
different blocks.

Structurally Dominate: A block A structurally dominates a block B, where A and B are in the same function,
if every structured control-flow path from the function’s entry block to block B includes block A. A strictly
structurally dominates B if A structurally dominates B and A and B are different blocks.

Structurally Post Dominate: A block B structurally post dominates a block A, where A and B are in the same
function, if every structured control-flow path from A to a function termination instruction includes block B.

Invocation: A single execution of an entry point in a SPIR-V module, operating only on the amount of data
explicitly exposed by the semantics of the instructions. (Any implicit operation on additional instances of
data would comprise additional invocations.) For example, in compute execution models, a single invocation
operates only on a single work item, or, in a vertex execution model, a single invocation operates only on a
single vertex.

Quad: The execution environment can partition invocations into quads, where invocations within a quad can
synchronize and share data with each other efficiently. See the client API specification for more details. It
has a size of exactly 4 invocations.

Quad index: The index of an invocation in a quad.

Subgroup: Invocations are partitioned into subgroups, where invocations within a subgroup can
synchronize and share data with each other efficiently. In compute models, the current workgroup is a
superset of the subgroup. A subgroup’s size is defined by the maximum of the current values of the
SubgroupSize and SubgroupMaxSize built-in variables.

Cluster: A partition of invocations in a subgroup. Invocations are partitioned into clusters based on their
subgroup local invocation ID and the per-instruction cluster size ClusterSize, with ClusterSize invocations
per cluster. The first ClusterSize invocations with the smallest subgroup local invocation IDs are assigned to
the first cluster, then the next ClusterSize remaining invocations with the smallest local invocation IDs are
assigned to the next cluster, and so on. If the current value of the SubgroupSize built-in variable is not
evenly divisible by the cluster size then the additional invocations in the last cluster are considered not part

19

of the tangle.

Workgroup: The set of invocations partitioned in some execution models (e.g. GLCompute, Kernel) as a
workgroup. Its size is defined statically by either the WorkgroupSize built-in or the LocalSize or
LocalSizeld Execution Modes, or can be queried via the WorkgroupSize built-in. These values can be
defined in multiple dimensions, and its total size is the product of the size in each specified dimension.

Invocation Group: The complete set of invocations collectively processing a particular compute workgroup
or graphical operation, where the scope of a "graphical operation" is implementation dependent, but at least
as large as a single point, line, triangle, or patch, and at most as large as a single rendering command, as
defined by the client API.

Derivative Group: Defined only for the Fragment Execution Model: The set of invocations collectively
processing derivatives, which is at most as large as a single point, line, or triangle, including any helper
invocations, as defined by the client API.

Scope: A specific set of invocations that are related to each other as defined by Scope <id>. Each
invocation belongs to one or more scopes, but belongs to no more than one scope for each Scope <id>.

Tangle: The set of invocations that execute the same dynamic instance of an instruction.
Tangled invocations: Invocations in the same tangle.

Scope Restricted Tangle: A set of invocations in the same tangle and within the same scope.
Tangled Instruction: One of:

» Group and subgroup instructions
* Non-uniform instructions
» OpControlBarrier

* OpGroupReserveReadPipePackets, OpGroupReserveWritePipePackets,
OpGroupCommitReadPipe and OpGroupCommitWritePipe

e Derivative instructions

» Image instructions that consume an implicit derivative
Tangled instructions communicate between invocations.

Dynamic Instance: Within a single invocation, a single static instruction can be executed multiple times,
giving multiple dynamic instances of that instruction. This can happen if the instruction is executed in a
loop, or in a function called from multiple call sites, or combinations of multiple of these. Different loop
iterations and different dynamic function-call-site chains yield different dynamic instances of such an
instruction.

Additionally, a single dynamic instance may be executed by multiple invocations. At the entry point, all
invocations (in the invocation group, unless otherwise stated) execute the same dynamic instance of the
first instruction in the entry point function. Invocations will continue to execute the same dynamic instances
as long as they follow the same control-flow path. When invocations execute a conditional branch and begin
following different control flow paths, they execute different dynamic instances according to the path taken.
Invocations that have taken different control flow paths may resume executing the same dynamic instances
if their execution reaches the same static instruction. Invocations may only resume executing the same
dynamic instances when all invocations reach the same static instruction. Unless otherwise indicated, the
only reconvergence conditions are those described in the definition of uniform control flow.

Program Order: Program order is an ordering on dynamic instances of instructions executed by a single

20

shader invocation. A dynamic instance A' of an instruction A is program-ordered before a dynamic instance
B' of an instruction B (and B' is program-ordered after A") if and only if:

* A and B are in the same basic block, A is listed in the module before B, and A' is the n’th dynamic
instance of A and B' is the n'th dynamic instance of B.

e Alis a branch instruction, B is OpLabel, and A" branches to B'.
* Alis OpFunctionCall, B is OpFunction, and A' calls B'.

* Ais OpReturn or OpReturnValue, and B' is program-ordered after the OpFunctionCall which called
the function which executed A'.

» A'is program-ordered before a dynamic instance X', and X' is program-ordered before B'.

Dynamically Uniform: An <id> is dynamically uniform for a dynamic instance consuming it if its value is the
same for all invocations (in the invocation group, unless otherwise stated) that execute that dynamic
instance.

Uniform Control Flow: Uniform control flow (or converged control flow) is the state when all invocations (in
the invocation group, unless otherwise stated) execute the same dynamic instance of an instruction.
Uniform control flow is the initial state at the entry point, and lasts until a conditional branch takes different
control paths for different invocations (non-uniform or divergent control flow). Such divergence can
reconverge, with all the invocations once again executing the same control-flow path, and this re-
establishes the existence of uniform control flow. If control flow is uniform upon entry into a structured loop
or selection, and all invocations leave that loop or selection via the header block’s declared merge block,
then control flow reconverges to be uniform at that merge block.

2.2.6. Validity and Defined Behavior

Most SPIR-V rules are expressed statically. These statically expressed rules are based on what can be
seen with a direct static examination of the module in the specific places the rule says to look. These are
expressed using terms like must, must not, valid, not valid, and invalid. Such rules establish whether the
module is classified as valid or not valid, which in turn provides terms that tools may use in labeling and
describing modules they process. A module is valid only if it does not violate any of these statically
expressed rules. Such rules might not be considered violated if a specialization constant is involved, as
described in the specialization constant section.

Some SPIR-V rules say that behavior is not defined, that something results in undefined behavior, or that
behavior is defined only under some circumstances. These all refer only to something that happens
dynamically while an invocation of a shader or kernel executes.

An invocation having undefined behavior is independent of a module being valid. Tools containing smart
transforms may be able to deduce from a static module that behavior will be undefined if some part were to
be executed. However, this does not allow the tool to classify the module as invalid.

Sometimes, SPIR-V refers to the client API to specify what is statically valid or dynamically defined for a
specific situation, in which case those rules come from the client API's execution environment. Otherwise, a
SPIR-V client API can define an execution environment that adds additional statically expressed rules,
further constraining what SPIR-V itself said was valid. However, a client cannot remove any such statically
expressed rules. A client will not remove any undefined behavior specified by SPIR-V.

21

2.3. Physical Layout of a SPIR-V Module and Instruction
A SPIR-V module is a single linear stream of words. The first words are shown in the following table:

Table 1. First Words of Physical Layout

Word
Number Contents
0 Magic Number.
1 Version number. The bytes are, high-order to low-order:

0 | Major Number | Minor Number | O

Hence, version 1.3 is the value 0x00010300.

2 Generator’s magic number. It is associated with the tool that
generated the module. Its value does not affect any semantics, and
is allowed to be 0. Using a non-0 value is encouraged, and can be
registered with Khronos at
https://github.com/KhronosGroup/SPIRV-Headers.

3 Bound; where all <id>s in this module are guaranteed to satisfy

0 <id < Bound

Bound should be small, smaller is better, with all <id> in a module
being densely packed and near O.

4 0 (Reserved for instruction schema, if needed.)

5 First word of instruction stream, see below.

All remaining words are a linear sequence of instructions.
Each instruction is a stream of words:

Table 2. Instruction Physical Layout

Instruction

Word Number Contents
0 Opcode: The 16 high-order bits are the WordCount of the
instruction. The 16 low-order bits are the opcode enumerant.
1 Optional instruction type <id> (presence determined by
opcode).

Optional instruction Result <id> (presence determined by
opcode).

Operand 1 (if needed)
Operand 2 (if needed)

22

https://github.com/KhronosGroup/SPIRV-Headers

Instruction

Word Number Contents

WordCount - 1 Operand N (N is determined by WordCount minus the 1 to 3
words used for the opcode, instruction type <id>, and
instruction Result <id>).

Instructions are variable length due both to having optional instruction type <id> and Result <id> words as
well as a variable number of operands. The details for each specific instruction are given in the Binary Form
section.

2.4. Logical Layout of a Module

The instructions of a SPIR-V module must be in the following order. For sections earlier than function
definitions, it is invalid to use instructions other than those indicated.

All OpCapability instructions.

Optional OpExtension instructions (extensions to SPIR-V).

Optional OpExtInstimport instructions.

The single required OpMemoryModel instruction.

All entry point declarations, using OpEntryPoint.

All execution-mode declarations, using OpExecutionMode or OpExecutionModeld.

N o o M~ 0 Dd P

These debug instructions, which must be grouped in the following order:

a. All OpsString, OpSourceExtension, OpSource, and OpSourceContinued, without forward
references.

b. All OpName and all OpMemberName.

c. All OpModuleProcessed instructions.
8. All annotation instructions:

a. All decoration instructions.

9. All type declarations (OpTypeXXX instructions), all constant instructions, and all global variable
declarations (all OpVariable instructions whose Storage Class is not Function). This is the preferred
location for OpUndef instructions, though they can also appear in function bodies. All operands in all
these instructions must be declared before being used. Otherwise, they can be in any order. This
section is the first section to allow use of:

a. OpLine and OpNoLine debug information.
b. Non-semantic instructions with OpExtInst.

10. All function declarations ("declarations" are functions without a body; there is no forward declaration to
a function with a body). A function declaration is as follows.

a. Function declaration, using OpFunction.
b. Function parameter declarations, using OpFunctionParameter.
c¢. Function end, using OpFunctionEnd.
11. All function definitions (functions with a body). A function definition is as follows.

a. Function definition, using OpFunction.

23

b. Function parameter declarations, using OpFunctionParameter.
c. Block.

d. Block.

e ..

f. Function end, using OpFunctionEnd.
Within a function definition:
» A block always starts with an OplLabel instruction. This may be immediately preceded by an OpLine
instruction, but the OpLabel is considered as the beginning of the block.
A block always ends with a block termination instruction (see validation rules for more detail).

e All OpVariable instructions in a function must have a Storage Class of Function.

» All OpVariable instructions in a function must be in the first block in the function. These instructions,
together with any intermixed OpLine and OpNoLine instructions, must be the first instructions in that
block. (Note the validation rules prevent OpPhi instructions in the first block of a function.)

« A function definition (starts with OpFunction) can be immediately preceded by an OpLine instruction.
Forward references (an operand <id> that appears before the Result <id> defining it) are allowed for:

» Operands that are an OpFunction. This allows for recursion and early declaration of entry points.

» Annotation-instruction operands. This is required to fully know everything about a type or variable once
it is declared.

* Labels.
» OpPhi can contain forward references.
* OpTypeForwardPointer:
- An OpTypeForwardPointer Pointer Type is a forward reference to an OpTypePointer.
- Subsequent consumption of an OpTypeForwardPointer Pointer Type can be a forward reference.
* The list of <id> provided in the OpEntryPoint instruction.
« OpExecutionModeld.
In all cases, there is enough type information to enable a single simple pass through a module to transform
it. For example, function calls have all the type information in the call, phi-functions don’t change type, and

labels don’t have type. The pointer forward reference allows structures to contain pointers to themselves or
to be mutually recursive (through pointers), without needing additional type information.

The Validation Rules section lists additional rules.

2.5. Instructions

Most instructions create a Result <id>, as provided in the Result <id> field of the instruction. These Result
<id>s are then referred to by other instructions through their <id> operands. All instruction operands are
specified in the Binary Form section.

Instructions are explicit about whether an operand is (or is part of) a self-contained literal or an <id>
referring to another instruction’s result. While an <id> always takes one operand, one literal takes one or
more operands. Some common examples of literals:

* A literal 32-bit (or smaller) integer is always one operand directly holding a 32-bit two’s-complement

24

value.

* A literal 32-bit float is always one operand, directly holding a 32-bit IEEE 754 floating-point
representation.

* A literal 64-bit float is always two operands, directly holding a 64-bit IEEE 754 representation. The low-
order 32 bits appear in the first operand.

2.5.1. SSA Form

A module is always in static single assignment (SSA) form. That is, there is always exactly one instruction
resulting in any particular Result <id>. Storing into variables declared in memory is not subject to this; such
stores do not create Result <id>s. Accessing declared variables is done through:

» OpVariable to allocate an object in memory and create a Result <id> that is the name of a pointer to it.

* OpAccessChain or OplnBoundsAccessChain to create a pointer to a subpart of a composite object
in memory.

» OpLoad through a pointer, giving the loaded object a Result <id> that can then be used as an operand
in other instructions.

» OpStore through a pointer, to write a value. There is no Result <id> for an OpStore.

OpLoad and OpStore instructions can often be eliminated, using intermediate results instead. If this
happens in multiple control-flow paths, these values need to be merged again at the path’s merge point.
Use OpPhi to merge such values together.

2.6. Entry Point and Execution Model

The OpEntryPoint instruction identifies an entry point with two key things: an execution model and a
function definition. Execution models include Vertex, GLCompute, etc. (one for each graphical stage), as
well as Kernel for OpenCL kernels. For the complete list, see Execution Model. An OpEntryPoint also
supplies a name that can be used externally to identify the entry point, and a declaration of all the Input
and Output variables that form its input/output interface.

The static function call graphs rooted at two entry points are allowed to overlap, so that function definitions
and global variable definitions can be shared. The execution model and any execution modes associated
with an entry point apply to the entire static function call graph rooted at that entry point. This rule implies
that a function appearing in both call graphs of two distinct entry points may behave differently in each
case. Similarly, variables whose semantics depend on properties of an entry point, e.g. those using the
Input Storage Class, may behave differently if used in call graphs rooted in two different entry points.

2.7. Execution Modes

Information like the following is declared with OpExecutionMode instructions. For example,

* number of invocations (Invocations)

* vertex-order CCW (VertexOrderCcw)

triangle strip generation (OutputTriangleStrip)
» number of output vertices (OutputVertices)

* etc.

For a complete list, see Execution Mode.

25

2.8. Types and Variables

Types are built up hierarchically, using OpTypeXXX instructions. The Result <id> of an OpTypeXXX
instruction becomes a type <id> for future use where type <id>s are needed (therefore, OpTypeXXX
instructions do not have a type <id>, like most other instructions do).

The "leaves" to start building with are types like OpTypeFloat, OpTypelnt, OpTypelmage, OpTypeEvent,
etc. Other types are built up from the Result <id> of these. The numerical types are parameterized to
specify bit width and signed vs. unsigned.

Higher-level types are then constructed using opcodes like OpTypeVector, OpTypeMatrix, OpTypelmage,
OpTypeArray, OpTypeRuntimeArray, OpTypeStruct, and OpTypePointer. These are parameterized by
number of components, array size, member lists, etc. The image types are parameterized by their sampling
result type, dimensionality, arrayness, etc. To do sampling or filtering operations, a type from
OpTypeSampledimage is used that contains both an image and a sampler. Such a sampled image can be
set directly by the client API or combined in a SPIR-V module from an independent image and an
independent sampler.

Types are built bottom up: A parameterizing operand in a type must be defined before being used.

Some additional information about the type of an <id> can be provided using the decoration instructions
(OpDecorate, OpMemberDecorate, OpGroupDecorate, OpGroupMemberDecorate, and
OpDecorationGroup). These can add, for example, Invariant to an <id> created by another instruction.
See the full list of Decorations in the Binary Form section.

Two different type <id>s form, by definition, two different types. It is invalid to declare multiple non-
aggregate, non-pointer type <id>s having the same opcode and operands. It is valid to declare multiple
aggregate type <id>s having the same opcode and operands. This is to allow multiple instances of
aggregate types with the same structure to be decorated differently. (Different decorations are not required;
two different aggregate type <id>s are allowed to have identical declarations and decorations, and will still
be two different types.) Pointer types are also allowed to have multiple <id>s for the same opcode and
operands, to allow for differing decorations (e.g., Volatile) or different decoration values (e.g., different
Array Stride values for the ArrayStride). If new pointers are formed, their types must be decorated as
needed, so the consumer knows how to generate an access through the pointer.

Variables are declared to be of an already built type, and placed in a Storage Class. Storage classes
include UniformConstant, Input, Workgroup, etc. and are fully specified in Storage Class. Variables
declared with the Function Storage Class can have their lifetime’s specified within their function using the
OpLifetimeStart and OpLifetimeStop instructions.

Intermediate results are typed by the instruction’s type <id>, which is constrained by each instruction’s
description.

Built-in variables have special semantics and are declared using OpDecorate or OpMemberDecorate with
the Builtin Decoration, followed by a Builtin enumerant. See the Builtin section for details on what can be
decorated as a built-in variable.

2.8.1. Unsigned Versus Signed Integers

The integer type, OpTypelnt, is parameterized not only with a size, but also with signedness. There are two
different ways to think about signedness in SPIR-V, both are internally consistent and acceptable:

1. As if all integers are "signless", meaning they are neither signed nor unsigned: All OpTypelnt

instructions select a signedness of 0 to conceptually mean "no sign" (rather than "unsigned"). This is
useful if translating from a language that does not distinguish between signed and unsigned types. The

26

type of operation (signed or unsigned) to perform is always selected by the choice of opcode.

2. As if some integers are signed, and some are unsigned: Some OpTypelnt instructions select
signedness of 0 to mean "unsigned” and some select signedness of 1 to mean "signed". This is useful if
signedness matters to external interface, or if targeting a higher-level language that cares about types
being signed and unsigned. The type of operation (signed or unsigned) to perform is still always
selected by the choice of opcode, but a small amount of validation can be done where it is non-sensible
to use a signed type.

Note in both cases all signed and unsigned operations always work on unsigned types, and the semantics
of operation come from the opcode. SPIR-V does not know which way is being used; it is set up to support
both ways of thinking.

Note that while SPIR-V aims to not assign semantic meaning to the signedness bit in choosing how to
operate on values, there are a few cases known to do this, all confined to modules declaring the Shader
capability:

« validation for consistency checking for front ends for directly contradictory usage, where explicitly
indicated in this specification

* interfaces that might require widening of an input value, and otherwise don’t know whether to sign
extend or zero extend, including the following bullet

* an image read that might require widening of an operand, in versions where the SignExtend and
ZeroExtend image operands are not available (if available, these operands are the supported way to
communicate this).

2.9. Function Calling

To call a function defined in the current module or a function declared to be imported from another module,
use OpFunctionCall with an operand that is the <id> of the OpFunction to call, and the <id>s of the
arguments to pass. All arguments are passed by value into the called function. This includes pointers,
through which a callee object could be modified.

2.10. Extended Instruction Sets

Many operations and/or built-in function calls from high-level languages are represented through extended
instruction sets. Extended instruction sets include things like

« trigonometric functions: sin(), cos(), ...

« exponentiation functions: exp(), pow(), ...

» geometry functions: reflect(), smoothstep(), ...

» functions having rich performance/accuracy trade-offs

* etc.
Non-extended instructions, those that are core SPIR-V instructions, are listed in the Binary Form section.
Native operations include:

 Basic arithmetic: +, -, *, min(), scalar * vector, etc.

 Texturing, to help with back-end decoding and support special code-motion rules.

* Derivatives, due to special code-motion rules.

Extended instruction sets are specified in independent specifications, not in this specification. The separate
extended instruction set specification specifies instruction opcodes, semantics, and instruction names.

27

To use an extended instruction set, first import it by name string using OpExtinstimport and giving it a
Result <id>:

<extinst-id> OpExtInstImport "name-of-extended-instruction-set"

Where "name-of-extended-instruction-set" is a literal string. The standard convention for this string is

"<source language name>.<package name>.<version>"

For example "GLSL.std.450" could be the name of the core built-in functions for GLSL versions 450 and
earlier.

There is nothing precluding having two "mirror" sets of instructions with different names but
NOTE the same opcode values, which could, for example, let modifying just the import statement
to change a performance/accuracy trade off.

Then, to call a specific extended instruction, use OpExtInst:

OpExtInst <extinst-id> instruction-number operand®, operandl,

Extended instruction-set specifications provide semantics for each "instruction-number”. It is up to the
specific specification what the overloading rules are on operand type. The specification will be clear on its
semantics, and producers/consumers of it must follow those semantics.

By convention, it is recommended that all external specifications include an enum {...} listing all the
“instruction-numbers", and a mapping between these numbers and a string representing the instruction
name. However, there are no requirements that instruction name strings are provided or mangled.

Producing and consuming extended instructions can be done entirely through numbers (no
string parsing). An extended instruction set specification provides opcode enumerant
values for the instructions, and these are produced by the front end and consumed by the
back end.

NOTE

2.11. Structured Control Flow

SPIR-V can explicitly declare structured control-flow constructs using merge instructions. These explicitly
declare a header block before the control flow diverges and a merge block where control flow subsequently
converges. (Control flow may partially or fully reconverge before reaching the merge block so long as it
converges by the time the merge block is reached.) These blocks delimit constructs that must nest, and
must be entered and exited in structured ways, as per the following.

2.11.1. Rules for Structured Control-flow Declarations

Structured control flow declarations must satisfy the following rules:

 the merge block declared by a header block must not be a merge block declared by any other header
block

» each header block must strictly structurally dominate its merge block

28

« all back edges must branch to a loop header, with each loop header having exactly one back edge
branching to it

« for a given loop header, its merge block, OpLoopMerge Continue Target, and corresponding back-edge
block:

- the Continue Target and merge block must be different blocks
- the loop header must structurally dominate the Continue Target

- the Continue Target must structurally dominate the back-edge block

the back-edge block must structurally post dominate the Continue Target

2.11.2. Structured Control-flow Constructs

A structured control-flow construct is defined as one of:
* a selection construct: the blocks structurally dominated by a selection header, excluding blocks
structurally dominated by the selection header’'s merge block

* a continue construct: the blocks that are both structurally dominated by an OpLoopMerge Continue
Target and structurally post dominated by the corresponding loop’s back-edge block

 a loop construct: the blocks structurally dominated by a loop header, excluding both the loop header’s
continue construct and the blocks structurally dominated by the loop header’s merge block

* a switch construct: the blocks structurally dominated by a switch header, excluding blocks structurally
dominated by the switch header's merge block

 a case construct: the blocks structurally dominated by an OpSwitch Target or Default block, excluding
the blocks structurally dominated by the OpSwitch construct’s corresponding merge block (note that as
a consequence of this definition, an OpSwitch Target or Default block that is equal to the OpSwitch’s
corresponding merge block does not give rise to a case construct)

2.11.3. Rules for Structured Control-flow Constructs

Below, we will use the following terminology:
» A branch edge from block A to block B exits a structured control-flow construct S if and only if A is
contained in S and B is not contained in S

» A single-block loop is a loop construct where the loop’s header block, continue target and back-edge
block are all the same.

» The header block of a continue construct is the continue target of the associated loop.
» The header block of a case construct is the OpSwitch Target or Default block that defines the case
construct.

If the header block of a structured control-flow construct is structurally reachable then that structured
control-flow construct must satisfy the following rules:

« if a branch edge from block A to block B exits the structured control-flow construct S, then the exit must
correspond to one of the following:

- Breaking from a selection construct: S is a selection construct, S is the innermost structured
control-flow construct containing A, and B is the merge block for S

- Breaking from the innermost loop: S is the innermost loop construct containing A, and B is the
merge block for S

- Entering the innermost loop’s continue construct: S is the innermost loop construct containing A,
and B is the continue target for S

29

- Next loop iteration: the branch edge from A to B is a back edge (so that S is the continue construct
of the associated loop)

- Branching from back-edge block to loop merge: A is the back-edge block for a loop construct (so
that S is the continue construct of the associated loop), and B is the merge block for the loop
construct

- Branching from one case construct to another: S is a case construct associated with an OpSwitch
instruction, and B is a target block or default block associated with the OpSwitch instruction

- Breaking from the innermost switch construct without breaking from a loop: S is the innermost
switch construct containing A, B is the merge block for S, and the branch from A to B does not exit a
loop construct

* a branch edge that exits a continue construct must branch to the header block or merge block of the
associated loop

» for a loop construct that is not a single block loop, if there is a branch edge from a block B to the loop’s
continue target that is not a back edge, then B must belong to the loop construct

o if a structured control-flow construct S contains the header block for a selection, loop or switch
construct different from S, then S must also contain that construct’s merge block

« all branches into a selection, loop or switch construct from structurally-reachable blocks outside the
construct must be to the construct's header block

« for a switch construct S with associated OpSwitch instruction:
- the header block for S must structurally dominate every case construct associated with S

- each case construct associated with S must not branch to more than one other case construct
associated with S

- each case construct associated with S must not be branched to by more than one other case
construct associated with S

- if T1 and T2 appear as labels of targets in the OpSwitch instruction and the case construct defined
by T1 branches to the case construct defined by T2 then the last target with label T1 must
immediately precede the first target with label T2 in the list of OpSwitch Target operands

- if T1 and T2 appear as labels of targets in the OpSwitch instruction and the case construct defined
by T1 branches to the Default case construct of the OpSwitch which in turn branches to the case
construct defined by T2, then either:

- the block that defines the Default case construct must appear as a target label in the OpSwitch
instruction, or

- the last target with label T1 must immediately precede the first target with label T2 in the list of
OpSwitch Target operands

- for any label T, all targets with label T must appear consecutively in the list of OpSwitch Target
operands

2.12. Specialization

Specialization is intended for constant objects that will not have known constant values until after initial
generation of a SPIR-V module. Such objects are called specialization constants.

A SPIR-V module containing specialization constants can consume one or more externally provided
specializations: A set of final constant values for some subset of the module’s specialization constants.
Applying these final constant values yields a new module having fewer remaining specialization constants.
A module also contains default values for any specialization constants that never get externally specialized.

30

No optimizing transforms are required to make a specialized module functionally correct.

NOTE The specializing transform is straightforward and explicitly defined below.
Ad hoc specializing should not be done through constants (OpConstant or
NOTE OpConstantComposite) that get overwritten: A SPIR-V -> SPIR-V transform might want

to do something irreversible with the value of such a constant, unconstrained from the
possibility that its value could be later changed.

Within a module, a Specialization Constant is declared with one of these instructions:

* OpSpecConstantTrue

* OpSpecConstantFalse

* OpSpecConstant

* OpSpecConstantComposite
* OpSpecConstantOp

The literal operands to OpSpecConstant are the default numerical specialization constants. Similarly, the
"True" and "False" parts of OpSpecConstantTrue and OpSpecConstantFalse provide the default
Boolean specialization constants. These default values make an external specialization optional. However,
such a default constant is applied only after all external specializations are complete, and none contained a
specialization for it.

An external specialization is provided as a logical list of pairs. Each pair is a Specld Decoration of a scalar
specialization instruction along with its specialization constant. The numeric values are exactly what the
operands would be to a corresponding OpConstant instruction. Boolean values are true if non-zero and
false if zero.

Specializing a module is straightforward. The following specialization-constant instructions can be updated
with specialization constants. These can be replaced in place, leaving everything else in the module exactly
the same:

OpSpecConstantTrue -> OpConstantTrue or OpConstantFalse
OpSpecConstantFalse -> OpConstantTrue or OpConstantFalse
OpSpecConstant -> OpConstant
OpSpecConstantComposite -> OpConstantComposite

Note that the OpSpecConstantOp instruction is not one that can be updated with a specialization
constant.

The OpSpecConstantOp instruction is specialized by executing the operation and replacing the instruction
with the result. The result can be expressed in terms of a constant instruction that is not a specialization-
constant instruction. (Note, however, this resulting instruction might not have the same size as the original
instruction, so is not a "replaced in place" operation.)

When applying an external specialization, the following (and only the following) will be modified to be non-
specialization-constant instructions:
* specialization-constant instructions with values provided by the specialization

* specialization-constant instructions that consume nothing but non-specialization constant instructions
(including those that the partial specialization transformed from specialization-constant instructions;
these are in order, so it is a single pass to do so)

31

A full specialization can also be done, when requested or required, in which all specialization-constant
instructions will be modified to non-specialization-constant instructions, using the default values where
required.

If a statically expressed rule would be broken due to the value of a constant, and that constant is a
specialization constant, then that rule is not violated. (Consequently, specialization-constant default values
are not relevant to the validity of the module.)

2.13. Linkage

The ability to have partially linked modules and libraries is provided as part of the Linkage capability.

By default, functions and global variables are private to a module and cannot be accessed by other
modules. However, a module may be written to export or import functions and global (module scope)
variables. Imported functions and global variable definitions are resolved at linkage time. A module is
considered to be partially linked if it depends on imported values.

Within a module, imported or exported values are decorated using the Linkage Attributes Decoration.
This decoration assigns the following linkage attributes to decorated values:

» A Linkage Type.

* A name, interpreted is a literal string, is used to uniquely identify exported values.

When resolving imported functions, the Function Control and all Function Parameter

NOTE Attributes are taken from the function definition, and not from the function declaration.

2.14. Relaxed Precision

The RelaxedPrecision Decoration allows 32-bit integer and 32-bit floating-point operations to execute with
a relaxed precision of somewhere between 16 and 32 bits.

For a floating-point operation, operating at relaxed precision means that the minimum requirements for
range and precision are as follows:

« the floating point range may be as small as (-2*4, 2'%)
¢ the floating point magnitude range includes 0.0 and [2%4, 224)

« the relative floating point precision may be as small as 21

The range notation here means the largest required magnitude is half of the relative precision less than the
value given.

Relative floating-point precision is defined as the worst case (i.e. largest) ratio of the smallest step in
relation to the value for all non-zero values in the required range:

Precision;eaive = (2bS(V1 - V2)min / @DS(V1))max fOr vi 1= 0, vo 1= 0, vy I= v

It is therefore twice the maximum rounding error when converting from a real number. Subnormal numbers
may be supported and may have lower relative precision.

For integer operations, operating at relaxed precision means that the operation is evaluated by an operation
in which, for some N, 16 <= N <= 32:

« the operation is executed as though its type were N bits in size, and

32

* the result is zero or sign extended to 32 bits as determined by the signedness of the result type of the
operation.

The RelaxedPrecision Decoration must only be applied to:

» The <id> of an OpVariable, where it refers to the value of the variable.
» The <id> of an OpFunctionParameter, where it refers to the value of the parameter.

» The Result <id> of an instruction that reads or filters from an image. E.g. OplmageSampleExplicitLod,
meaning the instruction is to operate at relaxed precision.

» The Result <id> of an OpFunction, where it refers to the value returned by the function.

* A structure-type member (through OpMemberDecorate).

» The Result <id> of an OpFunctionCall, where it refers to the result of the function call.

* The Result <id> of other instructions that operate on numerical types, meaning the instruction is to
operate at relaxed precision. The instruction’s operands may also be truncated to the relaxed precision.

In all cases, the types of the values that the RelaxedPrecision Decoration refers to must be:

* a scalar, vector, or matrix, or array of scalars, vectors, or matrices, and all the components in the types

must be a 32-bit numerical type,

* a pointer to such a type, where it refers to the value pointed to.
The values that the RelaxedPrecision Decoration refers to can be truncated to relaxed precision.

When applied to a variable, function parameter, or structure member, all loads and stores from the
decorated object may be treated as though they were decorated with RelaxedPrecision. Loads may also
be decorated with RelaxedPrecision, in which case they are treated as operating at relaxed precision.

All loads and stores involving relaxed precision still read and write 32 bits of data, respectively. Floating-
point data read or written in such a manner is written in full 32-bit floating-point format. However, a load or
store might reduce the precision (as allowed by RelaxedPrecision) of the destination value.

For debugging portability of floating-point operations, OpQuantizeToF16 may be used to explicitly reduce
the precision of a relaxed-precision result to 16-bit precision. (Integer-result precision can be reduced, for
example, using left- and right-shift opcodes.)

For image-sampling operations, decorations can appear on both the sampling instruction and the image
variable being sampled. If either is decorated, they both should be decorated, and if both are decorated
their decorations must match. If only one is decorated, the sampling instruction can behave either as if both
were decorated or neither were decorated.

2.15. Debug Information
Debug information is supplied with:

» Source-code text through OpString, OpSource, and OpSourceContinued.
* Object names through OpName and OpMemberName.

* Line numbers through OpLine and OpNoLine.

A module does not lose any semantics when all such instructions are removed.

33

2.15.1. Function-Name Mangling

There is no functional dependency on how functions are named. Signature-typing information is explicitly
provided, without any need for name "unmangling"”.

By convention, for debugging purposes, modules with OpSource Source Language of OpenCL use the
Itanium name-mangling standard.

2.16. Validation Rules

2.16.1. Universal Validation Rules

» When using OpBitcast to convert pointers to/from vectors of integers, only vectors of 32-bit integers
are allowed.

« If neither the VariablePointers nor VariablePointersStorageBuffer capabilities are declared, the
following rules apply to logical pointer types:

- OpVariable must not allocate an object whose type is or contains a logical pointer type.
- Itis invalid for a pointer to be an operand to any instruction other than:

- OpLoad

- OpStore

- OpAccessChain

- OpInBoundsAccessChain

- OpFunctionCall

- OplmageTexelPointer

- OpCopyMemory

- OpCopyObject

- OpArrayLength

- all OpAtomic instructions

- extended instruction-set instructions that are explicitly identified as taking pointer operands
- Itis invalid for a pointer to be the Result <id> of any instruction other than:

- OpVariable

- OpAccessChain

- OpInBoundsAccessChain

- OpFunctionParameter

- OplmageTexelPointer

- OpCopyObject

- All indexes in OpAccessChain and OplnBoundsAccessChain that are OpConstant with type of
OpTypelnt with a signedness of 1 must not have their sign bit set.

- Any pointer operand to an OpFunctionCall must point into one of the following storage classes:
- UniformConstant
- Function

- Private

34

- Workgroup
- AtomicCounter

- Any pointer operand to an OpFunctionCall must be
- a memory object declaration, or

- a pointer to an element in an array that is a memory object declaration, where the element type
is OpTypeSampler or OpTypelmage.

- The instructions OpPtrEqual and OpPtrNotEqual must not be used.

« If the VariablePointers or VariablePointersStorageBuffer capability is declared, the following are
additionally allowed for logical pointer types, while other prohibitions remain:

- If OpVariable allocates an object whose type is or contains a logical pointer type, the Storage Class
operand of the OpVariable must be one of the following:

- Function
- Private

- If a pointer is the Object operand of OpStore or result of OpLoad, the storage class the pointer is
stored to or loaded from must be one of the following:

- Function
- Private
- A pointer type can be the:
- Result Type of OpFunction
- Result Type of OpFunctionCall
- Return Type of OpTypeFunction
- A pointer can be a variable pointer
- A pointer can be an operand to one of:
- OpReturnValue
- OpPtrAccessChain
- OpPtrEqual
- OpPtrNotEqual
- OpPtrDiff
- A variable pointer must point to one of the following storage classes:
- StorageBuffer
- Workgroup (if the VariablePointers capability is declared)

- If the VariablePointers capability is not declared, a variable pointer must be selected from pointers
pointing into the same structure or be OpConstantNull.

- A pointer operand to OpFunctionCall can point into the storage class:
- StorageBuffer

- For pointer operands to OpFunctionCall, the memory object declaration-restriction is removed for
the following storage classes:

- StorageBuffer
- Workgroup
- The instructions OpPtrEqual and OpPtrNotEqual can be used only if the Storage Class of the

35

operands' OpTypePointer declaration is

- StorageBuffer if the VariablePointersStorageBuffer capability is explicitly or implicitly
declared, whether or not operands point into the same buffer, or

- Workgroup, which can be used only if the VariablePointers capability was declared.

A variable pointer must not:

be an operand to an OpArrayLength instruction
point to an array of structures with a structure type decorated with Block or BufferBlock.
point to an object that is or contains an OpTypeMatrix

point to a column, or a component in a column, within an OpTypeMatrix

e Memory model

Memory accesses that use NonPrivatePointer must use pointers in the Uniform, Workgroup,
CrossWorkgroup, Generic, Image, or StorageBuffer storage classes.

If the Vulkan memory model is declared and any instruction uses Device scope, the
VulkanMemoryModelDeviceScope capability must be declared.

* Physical storage buffer

If the addressing model is not PhysicalStorageBuffer64, then the PhysicalStorageBuffer storage
class must not be used.

OpVariable must not use the PhysicalStorageBuffer storage class.

Any pointer value whose storage class is PhysicalStorageBuffer and that points to a matrix, an
array of matrices, or a row or element of a matrix must be the result of an OpAccessChain or
OpPtrAccessChain instruction whose Base operand is a structure type (or recursively must be the
result of a sequence of only access chains from a structure to the final value). Such a pointer must
only be used as the Pointer operand to OpLoad or OpStore.

The result type of OpConstantNull must not be a pointer type with storage class
PhysicalStorageBuffer.

Operands to OpPtrEqual, OpPtrNotEqual, and OpPtrDiff must not be pointers into the
PhysicalStorageBuffer storage class.

* SSA

Each <id> must appear exactly once as the Result <id> of an instruction.
The definition of an SSA <id> should dominate all uses of it, with the following exceptions:

- Function calls may call functions not yet defined. However, note that the function’s operand and
return types are already known at the call site.

- An OpPhi can consume definitions that do not dominate it.

* Entry Point

36

There is at least one OpEntryPoint instruction, unless the Linkage capability is declared.

It is invalid for any function to be targeted by both an OpEntryPoint instruction and an
OpFunctionCall instruction.

Each OpEntryPoint must not set more than one of the DenormFlushToZero or DenormPreserve
execution modes for any given Target Width.

Each OpEntryPoint must not set more than one of the RoundingModeRTE or
RoundingModeRTZ execution modes for any given Target Width.

Each OpEntryPoint must contain at most one of LocalSize, LocalSizeld, LocalSizeHint, or
LocalSizeHintld Execution Modes.

» Functions

A function declaration (an OpFunction with no basic blocks), must have a Linkage Attributes
Decoration with the Import Linkage Type.

A function definition (an OpFunction with basic blocks) must not be decorated with the Import
Linkage Type.

A function must not have both a declaration and a definition (no forward declarations).

» Global (Module Scope) Variables

A module-scope OpVariable with an Initializer operand must not be decorated with the Import
Linkage Type.

 Control-Flow Graph (CFG)

Blocks exist only within a function.

The first block in a function definition is the entry point of that function and must not be the target of
any branch. (Note this means it has no OpPhi instructions.)

The order of blocks in a function must satisfy the rule that blocks appear before all blocks they
dominate.

Each block starts with a label.
- A label is made by OpLabel.
- This includes the first block of a function (OpFunction is not a label).
- Labels are used only to form blocks.
The last instruction of each block is a block termination instruction.
Each block termination instruction must be the last instruction in a block.
Each OpLabel instruction must be within a function.

All branches within a function must be to labels in that function.

» All OpFunctionCall Function operands are an <id> of an OpFunction in the same module.

e Data rules

Scalar floating-point types must be parameterized only as 32 bit, plus any additional sizes enabled
by capabilities.

Scalar integer types must be parameterized only as 32 bit, plus any additional sizes enabled by
capabilities.

Vector types must be parameterized only with numerical types or the OpTypeBool type.

Vector types must be parameterized only with 2, 3, or 4 components, plus any additional sizes
enabled by capabilities.

Matrix types must be parameterized only with floating-point types.
Matrix types must be parameterized only with 2, 3, or 4 columns.

Specialization constants (see Specialization) are limited to integers, Booleans, floating-point
numbers, and vectors of these.

Image, sampler, and sampled image objects must not appear as operands to OpPhi instructions, or
OpSelect instructions, or any instructions other than the image or sampler instructions specified to
operate on them.

All OpSampledIimage instructions, or instructions that load an image or sampler reference, must be
in the same block in which their Result <id> are consumed.

The capabilities StorageBuffer16BitAccess, UniformAndStorageBuffer16BitAccess,

37

StoragePushConstant16, and StoragelnputOutputl6 do not generally add 16-bit operations.
Rather, they add only the following specific abilities:

- An OpTypePointer pointing to a 16-bit scalar, a 16-bit vector, or a composite containing a 16-bit
member can be used as the result type of OpVariable, or OpAccessChain, or
OpInBoundsAccessChain.

- OpLoad can load 16-bit scalars, 16-bit vectors, and 16-bit matrices.
- OpStore can store 16-bit scalars, 16-bit vectors, and 16-bit matrices.
- OpCopyObject can be used for 16-bit scalars or composites containing 16-bit members.

- 16-bit scalars or 16-bit vectors can be used as operands to a width-only conversion instruction
to another allowed type (OpFConvert, OpSConvert, or OpUConvert), and can be produced as
results of a width-only conversion instruction from another allowed type.

- A structure containing a 16-bit member can be an operand to OpArrayLength.

- The capabilities StorageBuffer8BitAccess, UniformAndStorageBuffer8BitAccess, and
StoragePushConstant8, do not generally add 8-bit operations. Rather, they add only the following
specific abilities:

- An OpTypePointer pointing to an 8-bit scalar, an 8-bit vector, or a composite containing an 8-bit
member can be used as the result type of OpVariable, or OpAccessChain, or
OplInBoundsAccessChain.

- OpLoad can load 8-bit scalars and vectors.
- OpStore can store 8-bit scalars and 8-bit vectors.
- OpCopyObject can be used for 8-bit scalars or composites containing 8-bit members.

- 8-bit scalars and vectors can be used as operands to a width-only conversion instruction to
another allowed type (OpSConvert, or OpUConvert), and can be produced as results of a
width-only conversion instruction from another allowed type.

- A structure containing an 8-bit member can be an operand to OpArrayLength.
» Decoration rules

- The Linkage Attributes Decoration must not be applied to functions targeted by an OpEntryPoint
instruction.

- A Builtin Decoration must be applied only as follows:

- If applied to a structure-type member, all members of that structure type must also be
decorated with Builtin. (No allowed mixing of built-in variables and non-built-in variables within
a single structure.)

- If applied to a structure-type member, that structure type must not be contained as a member of
another structure type.

- There must be no more than one object per Storage Class that contains a structure type
containing members decorated with Builtin, consumed per entry-point.

* OpLoad and OpStore must consume only objects whose type is a pointer.
» A Result <id> resulting from an instruction within a function must be used only in that function.

* A function call must have the same number of arguments as the function definition (or declaration) has
parameters, and their respective types must match.

* An instruction requiring a specific number of operands must have that many operands. The word count
must agree.

» Each opcode specifies its own requirements for number and type of operands, and these must be
followed.

38

e Atomic access rules

- The pointers taken by atomic operation instructions must be a pointer into one of the following
Storage Classes:

- Uniform when used with the BufferBlock Decoration
- StorageBuffer

- PhysicalStorageBuffer

- Workgroup

- CrossWorkgroup

- Generic

- AtomicCounter

- Image

- Function

* It is invalid to have a construct that uses the StorageBuffer Storage Class and a construct that uses
the Uniform Storage Class with the BufferBlock Decoration in the same SPIR-V module.

» All XfbStride Decorations must be the same for all objects decorated with the same XfbBuffer XFB
Buffer Number.

o All Stream Decorations must be the same for all objects decorated with the same XfbBuffer XFB
Buffer Number.

« If the workgroup size is statically specified (using the LocalSize, LocalSizeld execution modes, or the
WorkgroupSize Builtln), the product of all workgroup size dimensions must not be zero.

2.16.2. Validation Rules for Shader Capabilities

* CFG:

- Loops must be structured. That is, the target basic block of a back edge must contain an
OpLoopMerge instruction.

- Selections must be structured. That is, an OpSelectionMerge instruction is required to precede:
- an OpSwitch instruction

- an OpBranchConditional instruction that has different True Label and False Label operands
where neither are declared merge blocks or Continue Targets.

» Entry point and execution model

- Each entry point in a module, along with its corresponding static call tree within that module, forms
a complete pipeline stage.

- Each OpEntryPoint with the Fragment Execution Model must have an OpExecutionMode for
either the OriginLowerLeft or the OriginUpperLeft Execution Mode. (Exactly one of these is
required.)

- An OpEntryPoint with the Fragment Execution Model must not set more than one of the
DepthGreater, DepthLess, or DepthUnchanged Execution Modes.

- An OpEntryPoint with one of the Tessellation Execution Models must not set more than one of the
SpacingEqual, SpacingFractionalEven, or SpacingFractionalOdd Execution Modes.

- An OpEntryPoint with one of the Tessellation Execution Models must not set more than one of the
Triangles, Quads, or Isolines Execution Modes.

- An OpEntryPoint with one of the Tessellation Execution Models must not set more than one of the
VertexOrderCw or VertexOrderCcw Execution Modes.

39

- An OpEntryPoint with the Geometry Execution Model must set exactly one of the InputPoints,
InputLines, InputLinesAdjacency, Triangles, or TrianglesAdjacency Execution Modes.

- An OpEntryPoint with the Geometry Execution Model must set exactly one of the OutputPoints,
OutputLineStrip, or OutputTriangleStrip Execution Modes.

* For structure objects in the Input and Output Storage Classes, the following apply:

- If applied to structure-type members, the decorations Noperspective, Flat, Patch, Centroid, and
Sample must be applied only to the top-level members of the structure type. (Nested objects' types
must not be structures whose members are decorated with these decorations.)

» Type Rules

- All declared types are restricted to those types that are, or are contained within, valid types for an
OpVariable Result Type or an OpTypeFunction Return Type.

- Aggregate types for intermediate objects are restricted to those types that are a valid Type of an
OpVariable Result Type in the global storage classes.

e Decorations

- It is invalid to apply more than one of Noperspective or Flat decorations to the same object or
member.

- It is invalid to apply more than one of Patch, Centroid, or Sample decorations to the same object
or member.

- Itis invalid to apply more than one of Block and BufferBlock decorations to a structure type.

- Block and BufferBlock decorations must not decorate a structure type that is nested at any level
inside another structure type decorated with Block or BufferBlock.

- The FPRoundingMode decoration must be applied only to a width-only conversion instruction
whose only uses are Object operands of OpStore instructions storing through a pointer to a 16-bit
floating-point object in the StorageBuffer, PhysicalStorageBuffer, Uniform, or Output Storage
Classes.

* All <id> used for Scope <id> and Memory Semantics <id> must be of an OpConstant.

» Atomic access rules

- The pointers taken by atomic operation instructions are further restricted to not point into the
Function storage class.

2.16.3. Validation Rules for Kernel Capabilities

» The Signedness in OpTypelnt must always be 0.

40

2.17. Universal Limits

These quantities are minimum limits for all implementations and validators. Implementations are allowed to
support larger quantities. Client APIs may impose larger minimums. See Language Capabilities.

Validators inform when these limits (or explicitly parameterized limits) are crossed.

Table 3. Limits

Minimum Limit
Limited Entity

Decimal Hexadecimal
Characters in a literal string 65,535 FFFF
Result <id> bound

4,194,303 3FFFFF

See Physical Layout for the shader-specific bound.
Control-flow nesting depth
Measured per function, in program order, counting
the maximum nu_m_ber of OpBrangh, 1023 3FF
OpBranchConditional, or OpSwitch that are seen
without yet seeing their corresponding Merge Block,
as declared by OpSelectionMerge or
OpLoopMerge.
Global variables (Storage Class other than Function) 65,535 FFFF
Local variables (Function Storage Class) 524,287 TFFFF

Number of entries in the

Decorations per target <id> .
: P 9 : Decoration table.
Execution modes per entry point 255 FF

Indexes for OpAccessChain,
OpInBoundsAccessChain, OpPtrAccessChain,

OplInBoundsPtrAccessChain, S FF
OpCompositeExtract, and OpCompositelnsert

l(;l;g;z:ig;function parameters, per function 255 FE
OpFunctionCall actual arguments 255 FF
OpExtinst actual arguments 255 FF
OpSwitch (literal, label) pairs 16,383 3FFF
OpTypeStruct members 16,383 3FFF
Structure nesting depth 255 FF

2.18. Memory Model

A memory model is chosen using a single OpMemoryModel instruction near the beginning of the module.
This selects both an addressing model and a memory model.

41

The Logical addressing model means pointers are abstract, having no physical size or numeric value. In
this mode, pointers must be created only from existing objects, and they must not be stored into an object,
unless additional capabilities, e.g., VariablePointers, are declared to add such functionality.

The non-Logical addressing models allow physical pointers to be formed. OpVariable can be used to
create objects that hold pointers. These are declared for a specific Storage Class. Pointers for one Storage
Class must not be used to access objects in another Storage Class. However, they can be converted with
conversion opcodes. Any particular addressing model describes the bit width of pointers for each of the
storage classes.

2.18.1. Memory Layout

Offset, MatrixStride, and ArrayStride Decorations partially define how a memory buffer is laid out. In
addition, the following also define layout of a memory buffer, applied recursively as needed:

 a vector consumes contiguous memory with lower-numbered components appearing in smaller offsets
than higher-numbered components, and with component 0 starting at the vector’'s Offset Decoration, if
present

* in an array, lower-numbered elements appear at smaller offsets than higher-numbered elements, with
element 0O starting at the Offset Decoration for the array, if present

 in a matrix, lower-numbered columns appear at smaller offsets than higher-numbered columns, and
lower-numbered components within the matrix's vectors appearing at smaller offsets than high-
numbered components, with component 0 of column 0O starting at the Offset Decoration, if present (the
RowMajor and ColMajor Decorations dictate what is contiguous)

2.18.2. Aliasing

Two memory object declarations are said to alias if they can be accessed (in bounds) such that both
accesses address the same memory locations during their intersecting dynamic lifetimes. If two memory
operations access the same locations, and at least one of them performs a write, the memory consistency
model specified by the client API defines the results based on the ordering of the accesses.

How aliasing is managed depends on the memory model:

» The Simple, GLSL, and Vulkan memory models can assume that aliasing is generally not present
between the memory object declarations. Specifically, the consumer is free to assume aliasing is not
present between memory object declarations, unless the memory object declarations explicitly indicate
they alias. Aliasing is indicated by applying the Aliased decoration to a memory object declaration’s
<id>, for OpVariable and OpFunctionParameter. Applying Restrict is allowed, but has no effect. For
variables holding PhysicalStorageBuffer pointers, applying the AliasedPointer decoration on the
OpVariable indicates that the PhysicalStorageBuffer pointers are potentially aliased. Applying
RestrictPointer is allowed, but has no effect. Only those memory object declarations decorated with
Aliased or AliasedPointer may alias each other.

» The OpenCL memory model assumes that memory object declarations might alias each other. An
implementation may assume that memory object declarations decorated with Restrict will not alias any
other memory object declaration. Applying Aliased is allowed, but has no effect.

The Aliased decoration can be used to express that certain memory object declarations may alias.
Referencing the following table, a memory object declaration P may alias another declared pointer Q if

within a single row:

» P is an instruction with opcode and storage class from the first pair of columns, and

* Qis an instruction with opcode and storage class from the second pair of columns.

42

First Storage Class

CrossWorkgroup

Function

Function

Generic

Image

Output

Private

StorageBuffer

PhysicalStorageBuffer

Uniform

UniformConstant

Workgroup

Workgroup

First Instruction(s)

OpFunctionParameter,
OpVariable
OpFunctionParameter
OpVariable

OpFunctionParameter

OpFunctionParameter,
OpVariable

OpFunctionParameter

OpFunctionParameter

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter

OpVariable

Second Instructions

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter,
OpVariable

OpFunctionParameter

Second Storage Classes

CrossWorkgroup,
Generic

Function, Generic

Function, Generic

CrossWorkgroup,
Function, Generic,
Workgroup

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

Output

Private

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

Image, StorageBuffer,
PhysicalStorageBuffer,
Uniform,
UniformConstant

Workgroup, Generic

Workgroup, Generic

In addition to the above table, memory object declarations in the CrossWorkgroup, Function, Input,
Output, Private, or Workgroup storage classes must also have matching pointee types for aliasing to be
present. In all other cases the decoration is ignored.

Because aliasing, as described above, only applies to memory object declarations, a consumer does not
make any assumptions about whether or not memory regions of non memory object declarations overlap.
As such, a consumer needs to perform dependency analysis on non memory object declarations if it
wishes to reorder instructions affecting memory.

43

The memory locations associated with an OpFunctionParameter memory object declaration are
dependent on the dynamic execution of the associated function. A dynamic instance of an
OpFunctionParameter memory object declaration can be traced to either an OpVariable or an entry point
OpFunctionParameter. During the execution of an entry point, behavior is undefined if operations on two
distinct memory object declarations dynamically access the same memory locations during an intersection
of the lifetimes of those two objects, with at least one of them performing a write, and at least one of the
memory object declarations does not have the Aliased decoration (or is assumed to alias via the memory
model).

For the PhysicalStorageBuffer storage class, OpVariable is understood to mean the
PhysicalStorageBuffer pointer value(s) stored in the variable. An Aliased PhysicalStorageBuffer pointer
stored in a Function variable can alias with other variables in the same function, global variables, or
function parameters.

Itis invalid to apply both Restrict and Aliased to the same <id>.

It is invalid to apply both RestrictPointer and AliasedPointer to the same <id>.

2.18.3. Null pointers

A "null pointer" can be formed from an OpConstantNull instruction with a pointer result type. The resulting
pointer value is abstract, and will not equal the pointer value formed from any declared object or access
chain into a declared object. Behavior is undefined if a load or store through OpConstantNull is executed.

2.19. Derivatives

Derivatives appear only in the Fragment Execution Model. They are either implicit or explicit. Some image
instructions consume implicit derivatives, while the derivative instructions compute explicit derivatives. In all
cases, derivatives are well defined when the derivative group has uniform control flow, otherwise see the
client API specification for what behavior is allowed.

2.20. Code Motion

Texturing instructions in the Fragment Execution Model that rely on an implicit derivative won’'t be moved
into control flow that is not known to be uniform control flow within each derivative group.

2.21. Deprecation

A feature may be marked as deprecated by a version of the specification or extension to the specification.
Features marked as deprecated in one version of the specification are still present in that version, but future
versions may reduce their support or completely remove them. Deprecating before removing allows
applications time to transition away from the deprecated feature. Once the feature is removed, all tokens
used exclusively by that feature will be reserved and any use of those tokens will become invalid.

2.22. Unified Specification

This document specifies all versions of SPIR-V.
There are three kinds of entries in the tables of enumerated tokens:

» Reservation: These say Reserved in the enabling capabilities. They often contain token names only,
lacking a semantic description. They are invalid SPIR-V for any version, serving only to reserve the
tokens. They may identify enabling capabilities and extensions, in which case any listed extensions

44

might add the tokens. See the listed extensions for additional information.

» Conditional: These say Missing before or Missing after in the enabling capabilities. They are invalid
SPIR-V for the missing versions. They may identify enabling capabilities and extensions, in which case
any listed extensions might add the tokens for some of the missing versions. See the listed extensions
for additional information. For versions not identified as missing, the tokens are valid SPIR-V, subject to
any listed enabling capabilities.

» Universal: These have no mention of what version they are missing in, or of being reserved. They are
valid in all versions of SPIR-V.

2.23. Uniformity

SPIR-V has multiple notions of uniformity of values. A Result <id> decorated as Uniform (for a particular
scope) is a contract that all invocations within that scope compute the same value for that result, for a given
dynamic instance of an instruction. This is useful to enable implementations to store results in a scalar
register file (scalarization), for example. Results are assumed not to be uniform unless decorated as such.

An <id> is defined to be dynamically uniform for a dynamic instance of an instruction if all invocations (in an
invocation group) that execute the dynamic instance have the same value for that <id>. This is not
something that is explicitly decorated, it is just a property that arises. This property is assumed to hold for
operands of certain instructions, such as the Image operand of image instructions, unless that operand is
decorated as NonUniform. Some implementations require more complex instruction expansions to handle
non-dynamically uniform values in certain instructions, and thus it is mandatory for certain operands to be
decorated as NonUniform if they are not guaranteed to be dynamically uniform.

While the names may suggest otherwise, nothing forbids an <id> from being decorated as both Uniform
and NonUniform. Because dynamically uniform is at a larger scope (invocation group) than the default
Uniform scope (subgroup), it is even possible for the <id> to be uniform at the subgroup scope but not
dynamically uniform.

45

Chapter 3. Binary Form

This section contains the exact form for all instructions, starting with the numerical values for all fields. See
Physical Layout for the order words appear in.

3.1. Magic Number

Magic number for a SPIR-V module.

Endianness: A module is defined as a stream of words, not a stream of bytes. However, if
TIP stored as a stream of bytes (e.g., in a file), the magic number can be used to deduce what
endianness to apply to convert the byte stream back to a word stream.

Magic Number

0x07230203

3.2. Enumerants

3.2.1. Source Language

The source language is for debug purposes only, with no semantics that affect the meaning of other parts
of the module.

Used by OpSource.

Source Language Enabling Capabilities
0 Unknown
1 ESSL
2 GLSL
3 OpenCL_C
4 OpenCL_CPP
5 HLSL
6 CPP_for_OpenCL
7 SYCL
g8 HERO_ C
9 NzZSL
10 WGSL
11 Slang
12 Zig
13 Rust

46

3.2.2. Execution Model

Used by OpEntryPoint and OpConditionalEntryPointINTEL.

Execution Model

Vertex
0 Vertex shading stage.
TessellationControl
1 Tessellation control (or hull) shading stage.
TessellationEvaluation
2 Tessellation evaluation (or domain) shading stage.
Geometry
3 Geometry shading stage.
Fragment
4 Fragment shading stage.
GLCompute
g Graphical compute shading stage.
Kernel
6 Compute kernel.
TaskNV
5267
MeshNV
5268
RayGenerationKHR (RayGenerationNV)
5313
IntersectionKHR (IntersectionNV)
5314
AnyHitKHR (AnyHitNV)
5315
ClosestHitKHR (ClosestHitNV)
5316
MisskKHR (MissNV)
5317
CallableKHR (CallableNV)
5318

Enabling Capabilities

Shader

Tessellation

Tessellation

Geometry

Shader

Shader

Kernel

MeshShadingNV

Reserved.

MeshShadingNV

Reserved.

RayTracingNV, RayTracingKHR

Reserved.

RayTracingNV, RayTracingKHR

Reserved.

RayTracingNV, RayTracingKHR

Reserved.

RayTracingNV, RayTracingkKHR

Reserved.

RayTracingNV, RayTracingKHR

Reserved.

RayTracingNV, RayTracingKHR

Reserved.

47

Execution Model

TaskEXT
5364

MeshEXT
5365

3.2.3. Addressing Model

Used by OpMemoryModel.

Addressing Model
0 Logical

Physical32

1 Indicates a 32-bit module, where the address width

is equal to 32 bits.
Physical64

2 Indicates a 64-bit module, where the address width

is equal to 64 bits.

PhysicalStorageBuffer64

(PhysicalStorageBuffer64EXT)

Indicates that pointers with a storage class of
5348 PhysicalStorageBuffer are physical pointer types

with an address width of 64 bits, while pointers to

all other storage classes are logical.

3.2.4. Memory Model

Used by OpMemoryModel.

Memory Model

Simple
0 Deprecated (use GLSL450).
Memory model is undefined.

GLSL450

1 Memory model needed by later versions of GLSL
and ESSL. Works across multiple versions.

OpenCL
2 OpenCL memory model.

Vulkan (VulkanKHR)

Vulkan memory model, as specified by the client
. API. This memory model must be declared if and

declared.

48

only if the VulkanMemoryModel capability is

Enabling Capabilities

MeshShadingEXT

Reserved.

MeshShadingEXT

Reserved.

Enabling Capabilities

Addresses

Addresses

PhysicalStorageBufferAddresses
Missing before version 1.5.
Also see extensions:

SPV_EXT physical_storage_ buffer,
SPV_KHR_physical_storage buffer

Enabling Capabilities

Shader

Shader

Kernel

VulkanMemoryModel
Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_physical_storage_buffer.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_physical_storage_buffer.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html

3.2.5. Execution Mode

Declare the modes an entry point executes in. All Extra Operands that are <id>s must be the <id>s of
constant instructions unless otherwise stated. It is invalid to apply the same execution mode more than
once to any entry point unless explicitly allowed below for a specific execution mode.

Used by OpExecutionMode and OpExecutionModeld.

Execution Mode Extra Operands Enabling Capabilities
0 Invocations Literal Geometry
Number of invocations is an Number of invocations

unsigned 32-bit integer number of
times to invoke the geometry
stage for each input primitive
received. The default is to run
once for each input primitive. It is
invalid to specify a value greater
than the target-dependent
maximum. Only valid with the
Geometry Execution Model.

1 SpacingEqual Tessellation
Requests the tessellation
primitive generator to divide
edges into a collection of equal-
sized segments. Only valid with
one of the tessellation Execution
Models.

2 SpacingFractionalEven Tessellation
Requests the tessellation
primitive generator to divide
edges into an even number of
equal-length segments plus two
additional shorter fractional
segments. Only valid with one of
the tessellation Execution Models.

3 SpacingFractionalOdd Tessellation
Requests the tessellation
primitive generator to divide
edges into an odd number of
equal-length segments plus two
additional shorter fractional
segments. Only valid with one of
the tessellation Execution Models.

4 VertexOrderCw Tessellation
Requests the tessellation
primitive generator to generate
triangles in clockwise order. Only
valid with one of the tessellation
Execution Models.

49

50

10

Execution Mode Extra Operands

VertexOrderCcw

Requests the tessellation
primitive generator to generate
triangles in counter-clockwise
order. Only valid with one of the
tessellation Execution Models.

PixelCenterinteger

Pixels appear centered on whole-
number pixel offsets. E.g., the
coordinate (0.5, 0.5) appears to
move to (0.0, 0.0). Only valid with
the Fragment Execution Model. If
a Fragment entry point does not
have this set, pixels appear
centered at offsets of (0.5, 0.5)
from whole numbers

OriginUpperLeft

The coordinates decorated by
FragCoord appear to originate in
the upper left, and increase
toward the right and downward.
Only valid with the Fragment
Execution Model.

OriginLowerLeft

The coordinates decorated by
FragCoord appear to originate in
the lower left, and increase
toward the right and upward. Only
valid with the Fragment
Execution Model.

EarlyFragmentTests

Fragment tests are to be
performed before fragment
shader execution. Only valid with
the Fragment Execution Model.

PointMode

Requests the tessellation
primitive generator to generate a
point for each distinct vertex in
the subdivided primitive, rather
than to generate lines or
triangles. Only valid with one of
the tessellation Execution Models.

Enabling Capabilities

Tessellation

Shader

Shader

Shader

Shader

Tessellation

11

12

14

15

Execution Mode Extra Operands

Xfb

This stage runs in transform
feedback-capturing mode and this
module is responsible for
describing the transform-feedback
setup. See the XfbBuffer, Offset,
and XfbStride Decorations.

DepthReplacing

This mode declares that this entry
point dynamically writes the
FragDepth-decorated variable.
Behavior is undefined if this mode
is declared and an invocation
does not write to FragDepth, or
vice versa. Only valid with the
Fragment Execution Model.

DepthGreater

Indicates that per-fragment tests
may assume that any FragDepth
built in-decorated value written by
the shader is greater-than-or-
equal to the fragment’s
interpolated depth value (given by
the z component of the
FragCoord built in-decorated
variable). Other stages of the
pipeline use the written value as
normal. Only valid with the
Fragment execution model.

DepthLess

Indicates that per-fragment tests
may assume that any FragDepth
built in-decorated value written by
the shader is less-than-or-equal
to the fragment’s interpolated
depth value (given by the z
component of the FragCoord
built in-decorated variable). Other
stages of the pipeline use the
written value as normal. Only
valid with the Fragment execution
model.

Enabling Capabilities

TransformFeedback

Shader

Shader

Shader

51

52

16

17

18

19

20

21

22

Execution Mode Extra Operands

DepthUnchanged

Indicates that per-fragment tests
may assume that any FragDepth
built in-decorated value written by
the shader is the same as the
fragment's interpolated depth
value (given by the z component
of the FragCoord built in
-decorated variable). Other
stages of the pipeline use the
written value as normal. Only
valid with the Fragment execution
model.

LocalSize Literal Literal Literal
Indicates the workgroup size in X size ysize zsize
the x, y, and z dimensions. X size,

y size, and z size are unsigned

32-bit integers. Only valid with the

GLCompute or Kernel Execution

Models.
LocalSizeHint Literal Literal Literal
A hint to the compiler, which X size ysize zsize

indicates the most likely to be
used workgroup size in the x, vy,
and z dimensions. x size, y size,
and z size are unsigned 32-bit
integers. Only valid with the
Kernel Execution Model.

InputPoints

Stage input primitive is points.
Only valid with the Geometry
Execution Model.

InputLines

Stage input primitive is lines. Only
valid with the Geometry
Execution Model.

InputLinesAdjacency

Stage input primitive is lines
adjacency. Only valid with the
Geometry Execution Model.

Triangles

For a geometry stage, input
primitive is triangles. For a
tessellation stage, requests the
tessellation primitive generator to
generate triangles. Only valid with
the Geometry or one of the
tessellation Execution Models.

Enabling Capabilities

Shader

Kernel

Geometry

Geometry

Geometry

Geometry, Tessellation

23

24

25

26

27

28

29

Execution Mode Extra Operands

InputTrianglesAdjacency
Geometry stage input primitive is
triangles adjacency. Only valid
with the Geometry Execution
Model.

Quads

Requests the tessellation
primitive generator to generate
guads. Only valid with one of the
tessellation Execution Models.

Isolines

Requests the tessellation
primitive generator to generate
isolines. Only valid with one of the
tessellation Execution Models.

OutputVertices Literal
Vertex Count is an unsigned 32- Vertex count
bit integer. For a geometry stage,

it is the maximum number of

vertices the shader will ever emit

in a single invocation. For a
tessellation-control stage, it is the
number of vertices in the output

patch produced by the

tessellation control shader, which

also specifies the number of

times the tessellation control

shader is invoked. Only valid with

the Geometry or one of the

tessellation Execution Models.

OutputPoints

Stage output primitive is points.
Only valid with the Geometry
Execution Model.

OutputLineStrip

Stage output primitive is line strip.
Only valid with the Geometry
Execution Model.

OutputTriangleStrip

Stage output primitive is triangle
strip. Only valid with the
Geometry Execution Model.

Enabling Capabilities

Geometry

Tessellation

Tessellation

Geometry, Tessellation,
MeshShadingNV,
MeshShadingEXT

Geometry, MeshShadingNV,
MeshShadingEXT

Geometry

Geometry

53

54

Execution Mode Extra Operands
30 VecTypeHint Literal
A hint to the compiler, which Vector type

31

33

34

35

indicates that most operations
used in the entry point are
explicitly vectorized using a
particular vector type. The 16
high-order bits of the Vector Type
operand specify the number of
components of the vector. The 16
low-order bits of the Vector Type
operand specify the data type of
the vector.

These are the legal data type
values:

0 represents an 8-bit integer
value.

1 represents a 16-bit integer
value.

2 represents a 32-bit integer
value.

3 represents a 64-bit integer
value.

4 represents a 16-bit IEEE 754
float value.

5 represents a 32-bit IEEE 754
float value.

6 represents a 64-bit IEEE 754
float value.

Only valid with the Kernel
Execution Model.

ContractionOff

Indicates that floating-point-
expressions contraction is
disallowed. Only valid with the
Kernel Execution Model.

Initializer
Indicates that this entry point is a
module initializer.

Finalizer
Indicates that this entry point is a
module finalizer.

SubgroupSize Literal
Indicates that this entry point Subgroup Size
requires the specified Subgroup

Size. Subgroup Size is an

unsigned 32-bit integer.

Enabling Capabilities

Kernel

Kernel

Kernel

Missing before version 1.1.

Kernel

Missing before version 1.1.

SubgroupDispatch

Missing before version 1.1.

36

37

38

39

4169

4170

4171

4421

4446

Execution Mode

SubgroupsPerWorkgroup
Indicates that this entry point
requires the specified number of
Subgroups Per Workgroup.
Subgroups Per Workgroup is an
unsigned 32-bit integer.

SubgroupsPerWorkgroupld
Same as the
SubgroupsPerWorkgroup
mode, but using an <id> operand
instead of a literal. The operand is
consumed as unsigned and must
be an integer type scalar.

LocalSizeld

Same as the LocalSize Mode,
but using <id> operands instead
of literals. The operands are
consumed as unsigned and each
must be an integer type scalar.

LocalSizeHintld

Same as the LocalSizeHint
Mode, but using <id> operands
instead of literals. The operands
are consumed as unsigned and
each must be an integer type
scalar.

NonCoherentColorAttachment
ReadEXT

NonCoherentDepthAttachment
ReadEXT

NonCoherentStencilAttachmen
tReadEXT

SubgroupUniformControlFlow
KHR

PostDepthCoverage

Extra Operands

Literal
Subgroups Per
Workgroup

<id>
Subgroups Per
Workgroup

<id> <id> <id>
X size ysize zsize

<id> <id> <id>
X size ysize zsize
hint hint hint

Enabling Capabilities

SubgroupDispatch

Missing before version 1.1.

SubgroupDispatch

Missing before version 1.2.

Missing before version 1.2.

Kernel

Missing before version 1.2.

TilelmageColorReadAccessEXT

Reserved.

TilelmageDepthReadAccessEXT

Reserved.

TilelmageStencilReadAccessEXT

Reserved.

Shader

Reserved.

Also see extension:

SPV_KHR_subgroup_uniform_con
trol_flow

SampleMaskPostDepthCoverage
Reserved.
Also see extension:

SPV_KHR_post_depth_coverage

55

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_subgroup_uniform_control_flow.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_subgroup_uniform_control_flow.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_post_depth_coverage.html

4459

4460

56

Execution Mode Extra Operands

DenormPreserve Literal

Any denormalized value input into Target Width
a shader or potentially generated

by any instruction in a shader is

preserved. Denormalized values

obtained via unpacking an integer

into a vector of values with

smaller bit width and interpreting

those values as floating-point

numbers is preserved.

Only affects instructions operating
on a floating-point type using the
IEEE 754 encoding whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer. May be applied at
most once per Target Width to
any entry point.

DenormFlushToZero Literal

Any denormalized value input into Target Width
a shader or potentially generated

by any instruction in a shader is

flushed to zero. Denormalized

values obtained via unpacking an

integer into a vector of values with

smaller bit width and interpreting

those values as floating-point

numbers is flushed to zero.

Only affects instructions operating
on a floating-point type using the
IEEE 754 encoding whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer. May be applied at
most once per Target Width to
any entry point.

Enabling Capabilities

DenormPreserve
Missing before version 1.4.

Also see extension:
SPV_KHR_float_controls

DenormFlushToZero
Missing before version 1.4.

Also see extension:
SPV_KHR float_controls

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html

4461

4462

Execution Mode Extra Operands
SignedZeroInfNanPreserve Literal
The implementation does not Target Width

perform optimizations on floating-
point instructions that do not
preserve sign of a zero, or
assume that operands and results
are not NaNs or infinities. Bit
patterns for NaNs might not be
preserved.

Only affects instructions operating
on a floating-point type using the
IEEE 754 encoding whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer. May be applied at
most once per Target Width to
any entry point.

RoundingModeRTE Literal

The default rounding mode for Target Width
floating-point arithmetic and

conversions instructions is round

to nearest even. If an instruction

is decorated with

FPRoundingMode or defines a

rounding mode in its description,

that rounding mode is applied and
RoundingModeRTE is ignored.

Only affects instructions operating
on a floating-point type using the
IEEE 754 encoding whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer. May be applied at
most once per Target Width to
any entry point.

Enabling Capabilities

SignedZerolnfNanPreserve
Missing before version 1.4.

Also see extension:
SPV_KHR_float_controls

RoundingModeRTE
Missing before version 1.4.

Also see extension:
SPV_KHR_float_controls

57

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html

4463

4489

4490

5017

5027

5069

5070

5071

58

Execution Mode Extra Operands

RoundingModeRTZ

The default rounding mode for
floating-point arithmetic and
conversions instructions is round
toward zero. If an instruction is
decorated with
FPRoundingMode or defines a
rounding mode in its description,
that rounding mode is applied and
RoundingModeRTZ is ignored.

Literal
Target Width

Only affects instructions operating
on a floating-point type using the
IEEE 754 encoding whose
component width is Target Width.
Target Width is an unsigned 32-
bit integer. May be applied at
most once per Target Width to
any entry point.

NonCoherentTileAttachmentRe
adQCOM

TileShadingRateQCOM Literal

y rate

Literal
X rate

EarlyAndLateFragmentTestsA
MD

StencilRefReplacingEXT

CoalescingAMDX

<id>
Is Entry

IsApiEntryAMDX

MaxNodeRecursionAMDX <id>

Literal
Z rate

Number of recursions

Enabling Capabilities

RoundingModeRTZ
Missing before version 1.4.

Also see extension:
SPV_KHR_float_controls

TileShadingQCOM

Reserved.

TileShadingQCOM

Reserved.

Shader

Reserved.

Also see extension:

SPV_AMD_shader_early and_late
_fragment_tests

StencilExportEXT
Reserved.

Also see extension:
SPV_EXT shader_stencil_export

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_stencil_export.html

Execution Mode Extra Operands
5072 StaticNumWorkgroupsAMDX <id> <id>

X size ysize

5073 ShaderlndexAMDX <id>
Shader Index

5077 MaxNumWorkgroupsAMDX <id> <id>
X size ysize

5079 StencilRefUnchangedFrontAM

D

5080 StencilRefGreaterFrontAMD

5081 StencilRefLessFrontAMD

5082 StencilRefUnchangedBackAMD

<id>
Z Size

<id>
Z size

Enabling Capabilities

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

StencilExportEXT
Reserved.

Also see extensions:
SPV_AMD_shader_early _and_late
_fragment_tests,

SPV_EXT shader_stencil_export

StencilExportEXT
Reserved.

Also see extensions:
SPV_AMD_shader_early_and_late
_fragment_tests,
SPV_EXT_shader_stencil_export

StencilExportEXT
Reserved.

Also see extensions:
SPV_AMD_shader_early_and_late
_fragment_tests,

SPV_EXT shader_stencil_export

StencilEXportEXT

Reserved.

Also see extensions:
SPV_AMD_shader_early _and_late

_fragment_tests,
SPV_EXT shader_stencil_export

59

https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_stencil_export.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_stencil_export.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_stencil_export.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_stencil_export.html

Execution Mode Extra Operands

5083 StencilRefGreaterBackAMD

5084 StencilRefLessBackAMD

5088 QuadDerivativesKHR

5089 RequireFullQuadsKHR

5102 SharesInputWithAMDX <id> <id>
Node Shader Index
Name

5269 OutputLinesEXT
(OutputLinesNV)

5270 OutputPrimitiveseEXT Literal
(OutputPrimitivesNV) Primitive count

60

Enabling Capabilities

StencilExportEXT
Reserved.

Also see extensions:
SPV_AMD_shader_early_and_late
_fragment_tests,
SPV_EXT_shader_stencil_export

StencilEXportEXT
Reserved.

Also see extensions:
SPV_AMD_shader_early _and_late
_fragment_tests,

SPV_EXT shader_stencil_export

QuadControlKHR

Reserved.

QuadControlKHR

Reserved.

ShaderEnqueueAMDX

Reserved.

MeshShadingNV,
MeshShadingEXT

Reserved.

Also see extensions:
SPV_NV_mesh_shader,
SPV_EXT_mesh_shader

MeshShadingNV,
MeshShadingEXT

Reserved.
Also see extensions:

SPV_NV_mesh_shader,
SPV_EXT_mesh_shader

https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_stencil_export.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_early_and_late_fragment_tests.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_stencil_export.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html

Execution Mode Extra Operands

5289 DerivativeGroupQuadsKHR
(DerivativeGroupQuadsNV)

5290 DerivativeGroupLinearKHR
(DerivativeGroupLinearNV)

5298 OutputTrianglesEXT
(OutputTrianglesNV)

5366 PixellnterlockOrderedEXT

5367 PixellnterlockUnorderedEXT

Enabling Capabilities

ComputeDerivativeGroupQuadsNV

ComputeDerivativeGroupQuadsK
HR

Reserved.

Also see extensions:
SPV_NV_compute_shader_derivati
ves,
SPV_KHR_compute_shader_deriv
atives

ComputeDerivativeGroupLinearNV

ComputeDerivativeGroupLinearKH
R

Reserved.

Also see extensions:
SPV_NV_compute_shader_derivati
ves,
SPV_KHR_compute_shader_deriv
atives

MeshShadingNV,
MeshShadingEXT

Reserved.

Also see extensions:
SPV_NV_mesh_shader,
SPV_EXT_mesh_shader

FragmentShaderPixellnterlockEXT
Reserved.
Also see extension:

SPV_EXT fragment_shader_interl
ock

FragmentShaderPixellnterlockEXT
Reserved.
Also see extension:

SPV_EXT fragment_shader_interl
ock

61

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html

5368

5369

5370

5371

5618

5620

5621

5622

5623

62

Execution Mode

SamplelnterlockOrderedEXT

SamplelnterlockUnorderedEXT

ShadingRatelnterlockOrderedE

XT

ShadingRatelnterlockUnordere
dEXT

SharedLocalMemorySizeINTEL

RoundingModeRTPINTEL

RoundingModeRTNINTEL

FloatingPointModeALTINTEL

FloatingPointModelEEEINTEL

Extra Operands

Literal
Size

Literal
Target Width

Literal
Target Width

Literal
Target Width

Literal
Target Width

Enabling Capabilities

FragmentShaderSamplelnterlockE
XT

Reserved.

Also see extension:
SPV_EXT fragment_shader_interl
ock

FragmentShaderSamplelnterlockE
XT

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interl
ock

FragmentShaderShadingRatelnterl
OCKEXT

Reserved.

Also see extension:
SPV_EXT_fragment_shader_interl
ock

FragmentShaderShadingRatelnter|
OCKEXT

Reserved.
Also see extension:

SPV_EXT fragment_shader_interl
ock

VectorComputelNTEL

Reserved.

RoundTolInfinityINTEL

Reserved.

RoundTolInfinityINTEL

Reserved.

RoundTolInfinityINTEL

Reserved.

RoundTolInfinityINTEL

Reserved.

https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html

5893

5894

5895

5896

5903

6023

6028

6154

6160

6417

Execution Mode

MaxWorkgroupSizeINTEL

MaxWorkDimINTEL

NoGlobalOffsetINTEL

NumSIMDWorkitemsINTEL

SchedulerTargetFmaxMhzINTE
L

MaximallyReconvergesKHR

FPFastMathDefault

StreamingInterfacelNTEL

RegisterMaplInterfaceINTEL

NamedBarrierCountINTEL

Extra Operands

Literal Literal Literal
max_X max_y max_z
_size _size _size

Literal
max_dimensions

Literal
vector_width

Literal
target_fmax

<id> <id>

Target Fast-Math Mode
Type

Literal

StallFreeReturn

Literal

WaitForDoneWrite

Literal

Barrier Count

Enabling Capabilities

KernelAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

KernelAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

KernelAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

FPGAKernelAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

FPGAKernelAttributesINTEL

Reserved.

Shader

Reserved.

Also see extension:

SPV_KHR_maximal_reconvergenc
e

FloatControls2

Reserved.

FPGAKernelAttributesINTEL

Reserved.

FPGAKernelAttributesv2INTEL

Reserved.

VectorComputeINTEL

Reserved.

63

https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_kernel_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_kernel_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_kernel_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_kernel_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_maximal_reconvergence.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_maximal_reconvergence.html

Execution Mode Extra Operands

6461 MaximumRegistersINTEL Literal

Number of Registers

6462 MaximumRegistersIdINTEL <id>

Number of Registers

6463 NamedMaximumRegistersINTE Named Maximum

L Number of Registers
Named Maximum
Number of Registers

3.2.6. Storage Class

Enabling Capabilities

RegisterLimitsINTEL

Reserved.

RegisterLimitsINTEL

Reserved.

RegisterLimitsINTEL

Reserved.

Class of storage for declared variables. Intermediate values do not form a storage class, and unless stated
otherwise, storage class-based restrictions are not restrictions on intermediate objects and their types.

Used by:

* OpTypePointer

* OpTypeForwardPointer

» OpVariable

» OpGenericCastToPtrExplicit

* OpTypeUntypedPointerKHR
* OpUntypedVariableKHR

64

Storage Class Enabling Capabilities

UniformConstant

Shared externally, visible across all invocations.
Graphics uniform memory. OpenCL constant
memory. Variables declared with this storage class
are read-only. They may have initializers, as
allowed by the client API.

Input

Input from pipeline. Visible only by the current
invocation. Variables declared with this storage
class are read-only, and must not have initializers.

Uniform Shader
Shared externally, visible across all invocations.

Composite objects in this storage class must have

a type with an explicit layout.

Output Shader
Output to pipeline. Visible only by the current
invocation.

Workgroup
Visible across all invocations within a workgroup.

10

11

12

4172

4491

5068

Storage Class

CrossWorkgroup
Visible across all invocations.

Private
Visible only by the current invocation.

Function

Visible only by the current invocation. For memory

allocation within a function with specific lifetime.
See OpVariable for more information.

Generic

For generic pointers, which overload the Function,

Workgroup, and CrossWorkgroup Storage
Classes.

PushConstant
For holding push-constant memory, visible across

all invocations. Intended to contain a small bank of

values pushed from the client API. Variables

declared with this storage class are read-only, and
must not have initializers. Composite objects in this

storage class must have a type with an explicit
layout.

AtomicCounter
For holding atomic counters. Visible only by the
current invocation.

Image
For holding image memory.

StorageBuffer

Shared externally, readable and writable, visible
across all invocations. Composite objects in this
storage class must have a type with an explicit
layout.

TilelmageEXT

TileAttachmentQCOM

NodePayloadAMDX

Enabling Capabilities

Shader, VectorComputeINTEL

GenericPointer

Shader

AtomicStorage

Shader
Missing before version 1.3.
Also see extensions:

SPV_KHR_storage buffer_storage_class,
SPV_KHR variable_pointers

TilelmageColorReadAccessEXT

Reserved.

TileShadingQCOM

Reserved.

ShaderEnqueueAMDX

Reserved.

65

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_storage_buffer_storage_class.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_variable_pointers.html

5328

5329

5338

5339

5342

5343

5349

5385

66

Storage Class

CallableDataKHR (CallableDataNV)

IncomingCallableDataKHR
(IncomingCallableDataNV)

RayPayloadKHR (RayPayloadNV)

HitAttributeKHR (HitAttributeNV)

IncomingRayPayloadKHR
(IncomingRayPayloadNV)

ShaderRecordBufferKHR
(ShaderRecordBufferNV)

PhysicalStorageBuffer
(PhysicalStorageBufferEXT)

Shared externally, readable and writable, visible
across all invocations. Uses physical addressing.
Composite objects in this storage class must have
a type with an explicit layout.

HitObjectAttributeNV

Enabling Capabilities

RayTracingNV, RayTracingkKHR
Reserved.

Also see extensions: SPV_NV ray_tracing,
SPV_KHR_ray_tracing

RayTracingNV, RayTracingkKHR
Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

RayTracingNV, RayTracingKHR
Reserved.

Also see extensions: SPV_NV _ray_tracing,
SPV_KHR_ray_tracing

RayTracingNV, RayTracingKHR
Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

RayTracingNV, RayTracingkKHR
Reserved.

Also see extensions: SPV_NV ray tracing,
SPV_KHR_ray_tracing

RayTracingNV, RayTracingKHR
Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

PhysicalStorageBufferAddresses
Missing before version 1.5.
Also see extensions:

SPV_EXT physical_storage_buffer,
SPV_KHR_physical _storage buffer

ShaderinvocationReorderNV

Reserved.

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_physical_storage_buffer.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_physical_storage_buffer.html

Storage Class

TaskPayloadWorkgroupEXT

5402

CodeSectionINTEL

5605

DeviceOnlyINTEL

5936

HostOnlyINTEL

5937

3.2.7. Dim

Enabling Capabilities

MeshShadingEXT
Missing before version 1.4.

Also see extension: SPV_EXT _mesh_shader

FunctionPointersINTEL
Reserved.

Also see extension:
SPV_INTEL_function_pointers

USMStorageClassesINTEL
Reserved.

Also see extension:
SPV_INTEL_usm_storage_classes

USMStorageClassesINTEL
Reserved.

Also see extension:
SPV_INTEL_usm_storage_classes

Dimensionality of an image. Some uses require capabilities beyond the enabling capabilities, for example
where the type’s Sampled operand is 2, or Arrayed operand is 1. See the capabilities section for more

detail.

Used by OpTypelmage.

Dim
o 1D
1 2D
2 3D
3 Cube
4 Rect
5 Buffer

6 SubpassData

TilelmageDataEXT
4173

Enabling Capabilities
Sampled1D

Shader
SampledRect
SampledBuffer
InputAttachment

TilelmageColorReadAccessEXT

Reserved.

67

https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_usm_storage_classes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_usm_storage_classes.html

3.2.8. Sampler Addressing Mode
Addressing mode for creating constant samplers.
Used by OpConstantSampler.

Sampler Addressing Mode

None

The image coordinates used to sample elements
of the image refer to a location inside the image,

otherwise the results are undefined.

ClampToEdge
1 Out-of-range image coordinates are clamped to
the extent.

Clamp

2 Out-of-range image coordinates result in a border

color.

Repeat
Out-of-range image coordinates are wrapped to

coordinates.

RepeatMirrored

4 Flip the image coordinate at every integer junction.

Must only be used with normalized coordinates.

3.2.9. Sampler Filter Mode

Filter mode for creating constant samplers.

Used by OpConstantSampler.

Sampler Filter Mode

Nearest
0 Use filter nearest mode when performing a read
image operation.

Linear
1 Use filter linear mode when performing a read
image operation.

3.2.10. Image Format

Declarative image format.

Used by OpTypelmage.

Image Format

0 Unknown

1 Rgba32f

68

the valid range. Must only be used with normalized

Enabling Capabilities

Enabling Capabilities

Enabling Capabilities

Shader

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Image Format

Rgbal6f
R32f

Rgba8
Rgba8Snorm
Rg32f
Rg16f
R11fG11fB10f
R16f
Rgbal6
Rgb10A2
Rg16

Rg8

R16

R8
RgbaléSnorm
Rg16Snorm
Rg8Snorm
R16Snorm
R8Snorm
Rgba32i
Rgbaléi
Rgba8i

R32i

Rg32i

Rg16i

Rg8i

R16i

R8i
Rgba32ui
Rgbal6ui
Rgba8ui

R32ui

Enabling Capabilities

Shader

Shader

Shader

Shader
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
Shader

Shader

Shader

Shader
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
StoragelmageExtendedFormats
Shader

Shader

Shader

Shader

69

Image Format Enabling Capabilities

34 Rgbl0a2ui StoragelmageExtendedFormats
35 Rg32ui StoragelmageExtendedFormats
36 Rgl6ui StoragelmageExtendedFormats
37 Rg8ui StoragelmageExtendedFormats
38 R16ui StoragelmageExtendedFormats
39 R8ui StoragelmageExtendedFormats
40 R64ui Int64ImageEXT

41 R64i Int64ImageEXT

3.2.11. Image Channel Order

The image channel orders that result from OplmageQueryOrder.

Image Channel Order Enabling Capabilities
o0 R
1 A
2 RG
3 RA
4 RGB
5 RGBA
6 BGRA
7 ARGB
8 Intensity

9 Luminance
10 Rx

11 RGx

12 RGBXx

13 Depth

14 DepthStencil
15 SRGB

16 SRGBx

17 SRGBA

18 SBGRA

19 ABGR

70

3.2.12. Image Channel Data Type

Image channel data types that result from OplmageQueryFormat.

Image Channel Data Type Enabling Capabilities

0 Snormint8

1 Snormintl6

2 Unormint8

3 Unormintl6

4 UnormShort565

5 UnormShort555

6 Unormint101010

7 Signedint8

g8 Signedintl6

9 SignedInt32

10 UnsignedInt8

11 UnsignedIntl16

12 Unsignedint32

13 HalfFloat

14 Float

15 Unormint24

16 Unormint101010 2

17 UnormIntl0OX6EXT

19 UnsignedIintRawl10EXT
20 UnsignedIntRaw12EXT
21 Unormint2_101010EXT
22 UnsignedInt10X6EXT
23 UnsignedInt12X4EXT
24 UnsignedInt14X2EXT
25 Unormint12X4EXT

26 Unormint1l4X2EXT

3.2.13. Image Operands
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.
Provides additional operands to sampling, or getting texels from, an image. Bits that are set indicate

whether an additional operand follows, as described by the table. If there are multiple following operands

71

indicated, they are ordered: Those indicated by smaller-numbered bits appear first. At least one bit must be
set (None is invalid).

Used by:

» OplmageSamplelmplicitLod

* OplmageSampleExplicitLod

* OplmageSampleDrefimplicitLod

* OplmageSampleDrefExplicitLod

* OplmageSampleProjlmplicitLod

* OplmageSampleProjExplicitLod

* OplmageSampleProjDreflmplicitLod
* OplmageSampleProjDrefExplicitLod
* OplmageFetch

* OplmageGather

* OplmageDrefGather

* OplmageRead

* OplmageWrite

* OplmageSparseSamplelmplicitLod
* OplmageSparseSampleExplicitLod
* OplmageSparseSampleDrefimplicitLod
* OplmageSparseSampleDrefExplicitLod
* OplmageSparseFetch

* OplmageSparseGather

* OplmageSparseDrefGather

* OplmageSparseRead

* OplmageSampleFootprintNV

Image Operands Enabling Capabilities
0x0 None

Bias Shader
A following operand is the bias added to the

implicit level of detail. Only valid with implicit-lod
instructions. It must be a 32-bit floating-point

type scalar using the IEEE 754 encoding. This

must only be used with an OpTypelmage that

has a Dim operand of 1D, 2D, 3D, or Cube, and

the MS operand must be 0.

ox1

72

0x2

0x4

0x8

0x10

Image Operands

Lod

A following operand is the explicit level-of-detall
to use. Only valid with explicit-lod instructions.
For sampling operations, it must be a 32-bit
floating-point type scalar using the IEEE 754
encoding. For fetch operations, it must be a 32-
bit integer type scalar. This must only be used
with an OpTypelmage that has a Dim operand
of 1D, 2D, 3D, or Cube, and the MS operand
must be 0.

Grad

Two following operands are dx followed by dy.
These are explicit derivatives in the x and y
direction to use in computing level of detail.
Each is a scalar or vector containing (du/dx],
dv/dx] [, dw/dx]) and (du/dy[, dv/dy] [, dw/dy]).
The number of components of each must equal
the number of components in Coordinate,
minus the array layer component, if present.
Only valid with explicit-lod instructions. They
must be a scalar or vector of 32-bits floating-
point type using the IEEE 754 encoding. This
must only be used with an OpTypelmage that
has an MS operand of 0. It is invalid to set both
the Lod and Grad bits.

ConstOffset

A following operand is added to (u, v, w) before
texel lookup. It must be an <id> of a constant
instruction with a 32-bit scalar or vector integer
type. Itis invalid for these to be outside a target-
dependent allowed range. The number of
components must equal the number of
components in Coordinate, minus the array
layer component, if present. Not valid with the
Cube dimension. An instruction must specify at
most one of the ConstOffset, Offset, and
ConstOffsets image operands.

Offset

A following operand is added to (u, v, w) before
texel lookup. It must be a 32-bit scalar or vector
of integer type. It is invalid for these to be
outside a target-dependent allowed range. The
number of components must equal the number
of components in Coordinate, minus the array
layer component, if present. Not valid with the
Cube dimension. An instruction must specify at
most one of the ConstOffset, Offset, and
ConstOffsets image operands.

Enabling Capabilities

ImageGatherExtended

73

74

0x20

0x40

0x80

0x100

0x200

Image Operands

ConstOffsets

A following operand is Offsets. Offsets must be
an <id> of a constant instruction making an
array of size four of vectors of two 32-bits
integer components. Each gathered texel is
identified by adding one of these array elements
to the (u, v) sampled location. It is invalid for
these to be outside a target-dependent allowed
range. Only valid with OplmageGather or
OplmageDrefGather. Not valid with the Cube
dimension. An instruction must specify at most
one of the ConstOffset, Offset, and
ConstOffsets image operands.

Sample

A following operand is the sample number of
the sample to use. Only valid with
OplmageFetch, OplmageRead,
OplmageWrite, OplmageSparseFetch, and
OplmageSparseRead. The Sample operand
must be used if and only if the underlying
OpTypelmage has MS of 1. It must be a 32-bit
integer type scalar.

MinLod

A following operand is the minimum level-of-
detail to use when accessing the image. Only
valid with Implicit instructions and Grad
instructions. It must be a 32-bit floating-point
type scalar using the IEEE 754 encoding. This
must only be used with an OpTypelmage that
has a Dim operand of 1D, 2D, 3D, or Cube, and
the MS operand must be 0.

MakeTexelAvailable
(MakeTexelAvailableKHR)

Perform an availability operation on the texel
locations after the store. A following operand is
the memory scope that controls the availability
operation. Requires NonPrivateTexel to also
be set. Only valid with instructions writing
images.

MakeTexelVisible (MakeTexelVisibleKHR)
Perform a visibility operation on the texel
locations before the load. A following operand is
the memory scope that controls the visibility
operation. Requires NonPrivateTexel to also
be set. Only valid with instructions reading
images without a sampler.

Enabling Capabilities

ImageGatherExtended

MinLod

VulkanMemoryModel
Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

VulkanMemoryModel
Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html

Image Operands Enabling Capabilities

NonPrivateTexel (NonPrivateTexelKHR) VulkanMemoryModel
The image access obeys inter-thread ordering,
as specified by the client API. Missing before version 1.5.
0x400
Also see extension:
SPV_KHR_vulkan_memory_model
VolatileTexel (VolatileTexelKHR) VulkanMemoryModel
This access cannot be eliminated, duplicated,
or combined with other accesses. Missing before version 1.5.
0x800
Also see extension:
SPV_KHR_vulkan_memory_model
SignExtend Missing before version 1.4.
The texel value is converted to the target value
via sign extension. Only valid if the texel value
type is a scalar or vector of integer type:
- for sparse images, the texel value type is the
second member of the result type.
0x1000

- for OplmageWrite the texel value type is type
of the Texel operand.

- otherwise, the texel value type is the result
type.

Itis invalid to set both the ZeroExtend and
SignExtend bits.

ZeroExtend Missing before version 1.4.

The texel value is converted to the target value

via zero extension. Only valid if the texel value

type is a scalar or vector of integer type with

signedness of O:

- for sparse images, the texel value type is the
0x2000 Ssecond member of the result type.

- for OplmageWrite the texel value type is type

of the Texel operand.

- otherwise, the texel value type is the result

type.

It is invalid to set both the ZeroExtend and

SignExtend bits.

Nontemporal Missing before version 1.6.
0x4000 Hints that the accessed texels are not likely to
be accessed again in the near future.

0x10000 Offsets

3.2.14. FP Fast Math Mode

This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.
Enables fast math operations which are otherwise unsafe.

Only valid on

75

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html

* OpFAdd, OpFSub, OpFMul, OpFDiv, OpFRem, and OpFMod instructions

» Missing before version 1.6:

- the OpFNegate instruction

- the OpOrdered, OpUnordered, OpFOrdEqual, OpFUnordEqual, OpFOrdNotEqual,
OpFUnordNotEqual, OpFOrdLessThan, OpFUnordLessThan, OpFOrdGreaterThan,
OpFUnordGreaterThan, OpFOrdLessThanEqual, OpFUnordLessThanEqual,
OpFOrdGreaterThanEqual, and OpFUnordGreaterThanEqual instructions

- OpExtinst extended instructions, where expressly permitted by the extended instruction set in use.

FP Fast Math Mode Enabling Capabilities
0x0 None

NotNaN

Assume parameters and result are not NaN. If
this assumption does not hold then the
operation returns an undefined value.

Ox1

NotInf

Assume parameters and result are not +/- Inf. If
this assumption does not hold then the
operation returns an undefined value.

0x2

NSZ
0Ox4 Treat the sign of a zero parameter or result as
insignificant.

AllowRecip
0x8 Allow the usage of reciprocal rather than
perform a division.

Fast
Allow algebraic transformations according to

Braty real-number associative and distributive
algebra. This flag implies all the others.
AllowContract (AllowContractFastINTEL) FloatControls2, FPFastMathModelNTEL
0x10000
Reserved.
AllowReassoc (AllowReassocCINTEL) FloatControls2, FPFastMathModelNTEL
0x20000
Reserved.
AllowTransform FloatControls2
0x40000
Reserved.

3.2.15. FP Rounding Mode

Associate a rounding mode to a floating-point conversion instruction.

76

0

FP Rounding Mode Enabling CapabllltleS

RTE
Round to nearest even.

FP Rounding Mode Enabling Capabilities

RTZ

1 Round towards zero.
RTP

2 Round towards positive infinity.
RTN

3

Round towards negative infinity.

3.2.16. Linkage Type
Associate a linkage type to functions or global variables. See linkage.

Linkage Type Enabling Capabilities

Export Linkage
Accessible by other modules as well.

Import Linkage
1 A declaration of a global variable or a function that
exists in another module.

LinkOnceODR Linkage
2 Reserved.

Also see extension: SPV_KHR_linkonce_odr

3.2.17. Access Qualifier

Defines the access permissions.

Used by OpTypelmage, OpTypePipe, and OpTypeBufferSurfacelNTEL.

Access Qualifier Enabling Capabilities
ReadOnly Kernel
0 A read-only object.
WriteOnly Kernel
1 A write-only object.
) ReadWrite Kernel

A readable and writable object.

3.2.18. Function Parameter Attribute

Adds additional information to the return type and to each parameter of a function.

Only one of Zext and Sext can be used to decorate the same <id>, and no attribute may be used multiple
times on the same <id>. Otherwise, multiple function parameter attributes can be applied to the same <id>.

77

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_linkonce_odr.html

Function Parameter Attribute Enabling Capabilities

Zext Kernel
0 Zero extend the value, if needed.
q Sext Kernel

Sign extend the value, if needed.

ByVal Kernel
2 Pass the parameter by value to the function. Only
valid for pointer parameters (not for ret value).

Sret Kernel
The parameter is the address of a structure that is
3 the return value of the function in the source
program. Only applicable to the first parameter,
which must be a pointer parameter.

NoAlias Kernel
The memory pointed to by a pointer parameter is
4 not accessed via pointer values that are not
derived from this pointer parameter. Only valid for
pointer parameters. Not valid on return values.

NoCapture Kernel
The parameter is not copied into a location that is

5 accessible after returning from the callee. Only
valid for pointer parameters. Not valid on return

values.
NoWrite Kernel
The parameter is not used to write to the memory

6 pointed to. Only valid for pointer parameters. Not
valid on return values.
NoReadWrite Kernel
The parameter is not dereferenced, either to read

7 or write the memory pointed to. Only valid for
pointer parameters. Not valid on return values.

5940 RuntimeAlignedINTEL RuntimeAlignedAttributeINTEL

3.2.19. Decoration

Decorations add additional information to an <id> or member of a structure.

It is invalid to decorate any given <id> or structure member more than one time with the same decoration,
unless explicitly allowed below for a specific decoration.

Used by:

* OpDecorate

« OpMemberDecorate

» OpDecorateld

» OpDecorateString

* OpMemberDecorateString

78

Decoration

RelaxedPrecision

Allow reduced precision
operations. To be used as
described in Relaxed Precision.

Specld

Apply only to a scalar
specialization constant.
Specialization Constant ID is an
unsigned 32-bit integer forming
the external linkage for setting a
specialized value. See
specialization.

Block

Apply only to a structure type to
establish it is a memory interface
block.

BufferBlock

Deprecated (use Block
-decorated StorageBuffer
Storage Class objects).

Apply only to a structure type to
establish it is a memory interface
block. When the type is used for a
variable in the Uniform Storage
Class the memory interface is a
StorageBuffer-like interface,
distinct from those variables
decorated with Block. In all other
Storage Classes the decoration is
meaningless.

RowMajor

Applies only to a member of a
structure type. Only valid on a
matrix or array whose most basic
element is a matrix. Indicates that
components within a row are
contiguous in memory. Must not
be used with ColMajor on the
same matrix or matrix aggregate.

ColMajor

Applies only to a member of a
structure type. Only valid on a
matrix or array whose most basic
element is a matrix. Indicates that
components within a column are
contiguous in memory. Must not
be used with RowMajor on the
same matrix or matrix aggregate.

Extra Operands

Literal
Specialization Constant
ID

Enabling Capabilities

Shader

Shader, Kernel

Shader

Shader

Missing after version 1.3.

Matrix

Matrix

79

80

10

11

13

Decoration Extra Operands

ArrayStride Literal
Apply to an array type to specify Array Stride
the stride, in bytes, of the array’s

elements. Can also apply to a

pointer type to an array element.

Array Stride is an unsigned 32-bit

integer specifying the stride of the

array that the element resides in.

Must not be applied to any other

type.
MatrixStride Literal
Applies only to a member of a Matrix Stride

structure type. Only valid on a
matrix or array whose most basic
element is a matrix. Matrix Stride
is an unsigned 32-bit integer
specifying the stride of the rows in
a RowMajor-decorated matrix or
columns in a ColMajor-decorated
matrix.

GLSLShared
Apply only to a structure type to
get GLSL shared memory layout.

GLSLPacked
Apply only to a structure type to
get GLSL packed memory layout.

CPacked

Apply only to a structure type, to
marks it as "packed"”, indicating
that the alignment of the structure
is one and that there is no
padding between structure
members.

Builtln Builtin
Indicates which built-in variable

an object represents. See Builtin

for more information.

NoPerspective

Must only be used on a memory
object declaration or a member of
a structure type. Requests linear,
non-perspective correct,
interpolation. Only valid for the
Input and Output Storage
Classes.

Enabling Capabilities

Shader

Matrix

Shader

Shader

Kernel

Shader

14

15

16

17

18

Decoration Extra Operands

Flat

Must only be used on a memory
object declaration or a member of
a structure type. Indicates no
interpolation is done. The non-
interpolated value comes from a
vertex, as specified by the client
API. Only valid for the Input and
Output Storage Classes.

Patch

Must only be used on a memory
object declaration or a member of
a structure type. Indicates a
tessellation patch. Only valid for
the Input and Output Storage
Classes. Invalid to use on objects
or types referenced by non-
tessellation Execution Models.

Centroid

Must only be used on a memory
object declaration or a member of
a structure type. If used with
multi-sampling rasterization,
allows a single interpolation
location for an entire pixel. The
interpolation location lies in both
the pixel and in the primitive being
rasterized. Only valid for the
Input and Output Storage
Classes.

Sample

Must only be used on a memory
object declaration or a member of
a structure type. If used with
multi-sampling rasterization,
requires per-sample interpolation.
The interpolation locations are the
locations of the samples lying in
both the pixel and in the primitive
being rasterized. Only valid for
the Input and Output Storage
Classes.

Invariant

Apply only to a variable or
member of a block-decorated
structure type to indicate that
expressions computing its value
be computed invariantly with
respect to other shaders
computing the same expressions.

Enabling Capabilities

Shader

Tessellation

Shader

SampleRateShading

Shader

81

82

19

20

21

22

Decoration Extra Operands

Restrict

Apply only to a memory object
declaration, to indicate the
compiler may compile as if there
is no aliasing. See the Aliasing
section for more detail.

Aliased

Apply only to a memory object
declaration, to indicate the
compiler is to generate accesses
to the variable that work correctly
in the presence of aliasing. See
the Aliasing section for more
detail.

Volatile

Must be applied only to memory
object declarations or members of
a structure type. Any such
memory object declaration, or any
memory object declaration that
contains such a structure type,
must be one of:

- An image with Sampled
Operand of 2 and Dim other than
SubpassData (see
OpTypelmage).

- A block in the StorageBuffer
storage class, or in the Uniform
storage class with the
BufferBlock decoration.

This indicates the memory
holding the variable is volatile
memory. Accesses to volatile
memory cannot be eliminated,
duplicated, or combined with
other accesses. Volatile applies
only to a single invocation and
does not guarantee each
invocation performs the access.
Volatile is not allowed if the
declared memory model is
Vulkan. The memory operand bit
Volatile, the image operand bit
VolatileTexel, or the memory
semantic bit Volatile can be used
instead.

Constant

Indicates that a global variable is
constant and never modified.
Only allowed on global variables.

Enabling Capabilities

Kernel

23

24

Decoration Extra Operands

Coherent

Must be applied only to memory
object declarations or members of
a structure type. Any such
memory object declaration, or any
memory object declaration that
contains such a structure type,
must be one of:

- An image with Sampled
Operand of 2 and Dim other than
SubpassData (see
OpTypelmage).

- A block in the StorageBuffer
storage class, or in the Uniform
storage class with the
BufferBlock decoration.

This indicates the memory
backing the object is coherent.
Coherent is not allowed if the
declared memory model is
Vulkan. The memory operand
bits MakePointerAvailable and
MakePointerVisible or the image
operand bits MakeTexelAvailable
and MakeTexelVisible can be
used instead.

NonWritable

Must be applied only to memory
object declarations or members of
a structure type. Any such
memory object declaration, or any
memory object declaration that
contains such a structure type,
must be one of:

- An image with Sampled
Operand of 2 and Dim other than
SubpassData (see
OpTypelmage).

- A block in the StorageBuffer
storage class, or in the Uniform
storage class with the
BufferBlock decoration.

- Missing before version 1.4: An
object in the Private or Function
storage classes.

This indicates that this module
does not write to the memory
holding the variable. It does not
prevent the use of initializers on a
declaration.

Enabling Capabilities

83

84

25

26

27

Decoration Extra Operands

NonReadable

Must be applied only to memory
object declarations or members of
a structure type. Any such
memory object declaration, or any
memory object declaration that
contains such a structure type,
must be one of:

- An image with Sampled
Operand of 2 and Dim other than
SubpassData (see
OpTypelmage).

- A block in the StorageBuffer
storage class, or in the Uniform
storage class with the
BufferBlock decoration.

This indicates that this module
does not read from the memory
holding the variable. For image
variables, it does not prevent
query operations from reading
metadata associated with the
image.

Uniform

Apply only to an object. Asserts
that, for each dynamic instance of
the instruction that computes the
result, all invocations in the same
tangle within the invocation’s
Subgroup scope compute the
same result value.

Uniformld Scope <id>
Apply only to an object. Asserts Execution
that, for each dynamic instance of

the instruction that computes the

result, all invocations in the same

tangle within the invocation’s

Execution scope compute the

same result value. Execution

must not be Invocation.

Enabling Capabilities

Shader, UniformDecoration

Shader, UniformDecoration

Missing before version 1.4.

28

29

30

Decoration Extra Operands

SaturatedConversion

Indicates that a conversion to an
integer type which is outside the
representable range of Result
Type is clamped to the nearest
representable value of Result
Type. NaN is converted to 0.

This decoration must be applied
only to conversion instructions to
integer types, not including the
OpSatConvertUToS and
OpSatConvertSToU instructions.

Stream Literal

Must only be used on a memory Stream Number
object declaration or a member of

a structure type. Stream Number

is an unsigned 32-bit integer

indicating the stream number to

put an output on. Only valid for

the Output Storage Class and

the Geometry Execution Model.

Location Literal
Apply only to a variable or a Location
structure-type member. Location

is an unsigned 32-bit integer that

forms the main linkage for

Storage Class Input and Output
variables:

- between the client APl and
vertex-stage inputs,

- between consecutive

programmable stages, or

- between fragment-stage outputs

and the client APL.

It can also tag variables or

structure-type members in the
UniformConstant Storage Class

for linkage with the client API.

Only valid for the Input, Output,

and UniformConstant Storage

Classes.

Enabling Capabilities

Kernel

GeometryStreams

Shader

85

86

31

32

33

34

35

Decoration Extra Operands

Component Literal

Must only be used on a memory Component
object declaration or a member of

a structure type. Component is an

unsigned 32-bit integer indicating

which component within a

Location is taken by the

decorated entity. Only valid for the

Input and Output Storage

Classes.

Index Literal
Apply only to a variable. Index is Index
an unsigned 32-bit integer

identifying a blend equation input

index, used as specified by the

client API. Only valid for the

Output Storage Class and the
Fragment Execution Model.

Binding Literal

Apply only to a variable.Binding Binding Point
Point is an unsigned 32-bit integer

forming part of the linkage

between the client APl and SPIR-

V memory buffers, images, etc.

See the client API specification

for more detail.

DescriptorSet Literal

Apply only to a Descriptor Set
variable.Descriptor Set is an

unsigned 32-bit integer forming

part of the linkage between the

client APl and SPIR-V memory

buffers, images, etc. See the

client API specification for more

detail.

Offset Literal
Apply only to a structure-type Byte Offset
member. Byte Offset is an

unsigned 32-bit integer. It dictates

the byte offset of the member

relative to the beginning of the

structure. It can be used, for

example, by both uniform and
transform-feedback buffers. It

must not cause any overlap of the
structure’s members, or overflow

of a transform-feedback buffer’s
XfbStride.

Enabling Capabilities
Shader

Shader

Shader

Shader

Shader

36

37

38

39

40

41

Decoration Extra Operands

XfbBuffer Literal

Must only be used on a memory XFB Buffer Number
object declaration or a member of

a structure type. XFB Buffer is an

unsigned 32-bit integer indicating

which transform-feedback buffer

an output is written to. Only valid

for the Output Storage Classes of

vertex processing Execution

Models.

XfbStride Literal
Apply to anything XfbBuffer is XFB Stride
applied to. XFB Stride is an

unsigned 32-bit integer specifying

the stride, in bytes, of transform-
feedback buffer vertices. If the
transform-feedback buffer is

capturing any double-precision
components, the stride must be a
multiple of 8, otherwise it must be

a multiple of 4.

FuncParamAttr Function Parameter
Indicates a function return value Attribute

or parameter attribute. Multiple Function Parameter
uses of this decoration are Attribute

allowed on the same <id>, as

described in the function

parameter attributes.

FPRoundingMode FP Rounding Mode
Indicates a floating-point rounding Floating-Point Rounding
mode. Mode
FPFastMathMode FP Fast Math Mode
Indicates a floating-point fast Fast-Math Mode

math flag.

LinkageAttributes Literal Linkage Type
Associate linkage attributes to Name Linkage Type

values. Name is a string
specifying what name the Linkage
Type applies to. Only valid on
OpFunction or global (module
scope) OpVariable. See linkage.

Enabling Capabilities

TransformFeedback

TransformFeedback

Kernel

Kernel, FloatControls2

Linkage

87

88

42

43

44

45

46

Decoration Extra Operands

NoContraction

Apply only to an arithmetic
instruction to indicate the
operation cannot be combined
with another instruction to form a
single operation. For example, if
applied to an OpFMul, that
multiply can’t be combined with
an addition to yield a fused
multiply-add operation.
Furthermore, such operations are
not allowed to reassociate; e.qg.,
add(a + add(b+c)) cannot be
transformed to add(add(a+b) + c).

InputAttachmentindex Literal

Apply only to a variable. Attachment Index

Attachment Index is an unsigned
32-bit integer providing an input-
target index (as specified by the
client API). Only valid in the
Fragment Execution Model and
for variables of type
OpTypelmage with a Dim
operand of SubpassData.

Alignment Literal
Apply only to a pointer. Alignment Alignment
is an unsigned 32-bit integer

declaring a known minimum

alignment the pointer has.

MaxByteOffset Literal

Apply only to a pointer.Max Byte Max Byte Offset
Offset is an unsigned 32-bit

integer declaring a known

maximum byte offset this pointer

will be incremented by from the

point of the decoration. This is a

guaranteed upper bound when

applied to

OpFunctionParameter.

Alignmentld <id>
Same as the Alignment Alignment
decoration, but using an <id>

operand instead of a literal. The

operand is consumed as

unsigned and must be an integer

type scalar.

Enabling Capabilities

Shader

InputAttachment

Kernel

Addresses

Missing before version 1.1.

Kernel

Missing before version 1.2.

a7

4216

4469

Decoration Extra Operands

MaxByteOffsetld <id>

Same as the MaxByteOffset Max Byte Offset
decoration, but using an <id>

operand instead of a literal. The

operand is consumed as

unsigned and must be an integer

type scalar.

SaturatedToLargestFloat8Norm
alConversionEXT

NoSignedWrap

Apply to an instruction to indicate
that it does not cause signed
integer wrapping to occur, in the
form of overflow or underflow.

It must decorate only the following
instructions:

- OplAdd

- OplISub

- OpIMul

- OpShiftLeftLogical

- OpSNegate

- OpExtInst for instruction
numbers specified in the
extended instruction-set
specifications as accepting this
decoration.

If an instruction decorated with
NoSignedWrap does overflow or
underflow, behavior is undefined.

Enabling Capabilities

Addresses

Missing before version 1.2.

Float8EXT

Reserved.

Missing before version 1.4.
Also see extension:

SPV_KHR_no_integer_wrap_decor
ation

89

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_no_integer_wrap_decoration.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_no_integer_wrap_decoration.html

4470

4487

4488

4499

4999

5019

5020

5078

90

Decoration Extra Operands

NoUnsignedWrap

Apply to an instruction to indicate
that it does not cause unsigned
integer wrapping to occur, in the
form of overflow or underflow.

It must decorate only the following
instructions:

- OplAdd

- OplISub

- OpIMul

- OpShiftLeftLogical

- OpExtInst for instruction
numbers specified in the
extended instruction-set
specifications as accepting this
decoration.

If an instruction decorated with
NoUnsignedWrap does overflow
or underflow, behavior is
undefined.

WeightTextureQCOM

BlockMatchTextureQCOM

BlockMatchSamplerQCOM

ExplicitinterpAMD

NodeSharesPayloadLimitsWith <id>
AMDX Payload Type

NodeMaxPayloadsAMDX <id>

Max number of payloads

TrackFinishWriting AMDX

Enabling Capabilities

Missing before version 1.4.

Also see extension:
SPV_KHR_no_integer_wrap_decor
ation

Reserved.

Also see extension:
SPV_QCOM_image_processing

Reserved.

Also see extension:
SPV_QCOM _image_processing

Reserved.

Also see extension:
SPV_QCOM _image_processing2

Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex
_parameter

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_no_integer_wrap_decoration.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_no_integer_wrap_decoration.html
https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_image_processing.html
https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_image_processing.html
https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_image_processing2.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html

5091

5098

5099

5100

5105

5248

5250

5252

5256

5271

Decoration Extra Operands
PayloadNodeNameAMDX <id>
Node Name

PayloadNodeBaselndexAMDX <id>
Base Index

PayloadNodeSparseArrayAMD
X

PayloadNodeArraySizeAMDX <id>
Array Size

PayloadDispatchIindirectAMDX

OverrideCoverageNV

PassthroughNV

ViewportRelativeNV

SecondaryViewportRelativeNV Literal
Offset

PerPrimitiveEXT
(PerPrimitiveNV)

Enabling Capabilities

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

SampleMaskOverrideCoverageNV

Reserved.

Also see extension:

SPV_NV_sample_mask_override_

coverage

GeometryShaderPassthroughNV
Reserved.

Also see extension:

SPV_NV_geometry_shader_passth

rough

ShaderViewportMaskNV

Reserved.

ShaderStereoViewNV
Reserved.

Also see extension:
SPV_NV_stereo_view_rendering

MeshShadingNV,
MeshShadingEXT

Reserved.
Also see extensions:

SPV_NV_mesh_shader,
SPV_EXT _mesh_shader

91

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_sample_mask_override_coverage.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_sample_mask_override_coverage.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_geometry_shader_passthrough.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_geometry_shader_passthrough.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_stereo_view_rendering.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html

5272

5273

5285

5300

5355

5356

5386

92

Decoration Extra Operands

PerViewNV

PerTaskNV

PerVertexKHR (PerVertexNV)

NonUniform (NonUniformEXT)
Apply only to an object. Asserts
that the value backing the
decorated <id> is not dynamically
uniform. See the client API
specification for more detail.

RestrictPointer
(RestrictPointerEXT)

Apply only to a memory object
declaration, to indicate the
compiler may compile as if there
is no aliasing of the pointer stored
in the variable. See the aliasing
section for more detail.

AliasedPointer
(AliasedPointerEXT)

Apply only to a memory object
declaration, to indicate the
compiler is to generate accesses
to the pointer stored in the
variable that work correctly in the
presence of aliasing. See the
aliasing section for more detail.

HitObjectShaderRecordBufferN
V

Enabling Capabilities

MeshShadingNV
Reserved.

Also see extension:
SPV_NV_mesh_shader

MeshShadingNV
Reserved.

Also see extension:
SPV_NV_mesh_shader

FragmentBarycentricKHR
Reserved.

Also see extensions:
SPV_NV_fragment_shader_baryce
ntric,
SPV_KHR_fragment_shader_baryc
entric

ShaderNonUniform
Missing before version 1.5.

Also see extension:
SPV_EXT descriptor_indexing

PhysicalStorageBufferAddresses
Missing before version 1.5.

Also see extensions:
SPV_EXT_physical_storage_buffer

SPV_KHR_physical_storage_buffe
r

PhysicalStorageBufferAddresses
Missing before version 1.5.

Also see extensions:
SPV_EXT physical_storage_ buffer

SPV_KHR_physical_storage_ buffe
r

ShaderlnvocationReorderNV

Reserved.

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_fragment_shader_barycentric.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_fragment_shader_barycentric.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_fragment_shader_barycentric.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_fragment_shader_barycentric.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_physical_storage_buffer.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_physical_storage_buffer.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_physical_storage_buffer.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_physical_storage_buffer.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_physical_storage_buffer.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_physical_storage_buffer.html

5398

5399

5400

5401

5599

5602

5607

5608

5624

5625

5626

5627

5628

Decoration

BindlessSamplerNV

BindlessImageNV

BoundSamplerNV

BoundimageNV

SIMTCallINTEL Literal

N

ReferencedIndirectlyINTEL

ClobberINTEL Literal

Register

SideEffectsINTEL

VectorComputeVariableINTEL

FuncParamIOKindINTEL Literal

Kind

VectorComputeFunctionINTEL

StackCallINTEL

GlobalVariableOffsetINTEL Literal
Offset

Extra Operands

Enabling Capabilities

BindlessTextureNV

Reserved.

BindlessTextureNV

Reserved.

BindlessTextureNV

Reserved.

BindlessTextureNV

Reserved.

VectorComputelNTEL

Reserved.

IndirectReferencesINTEL
Reserved.

Also see extension:
SPV_INTEL_function_pointers

AsmINTEL

Reserved.

AsmINTEL

Reserved.

VectorComputeIlNTEL

Reserved.

VectorComputelNTEL

Reserved.

VectorComputelNTEL

Reserved.

VectorComputeINTEL

Reserved.

VectorComputeINTEL

Reserved.

93

Decoration

5634 CounterBuffer
(HIsICounterBufferGOOGLE)
The <id> of a counter buffer
associated with the decorated
buffer. It must decorate only a
variable in the Uniform storage
class. Counter Buffer must be a
variable in the Uniform storage
class.

5635 UserSemantic
(HIsISemanticGOOGLE)
Semantic is a string describing a
user-defined semantic intent of
what it decorates. User-defined
semantics are case insensitive. It
must decorate only a variable or a

member of a structure type.

If decorating a variable, the
variable must be in the Input or
Output storage classes. If
decorating a structure member,
memory object declarations that
contain such structure type can
be in any storage classe.

A variable or a structure member
can be decorated more than one
time with this decoration, but at
most once for any particular string
operand.

5636 UserTypeGOOGLE

5822 FunctionRoundingModelNTEL

5823 FunctionDenormModeINTEL

94

Extra Operands

<id>
Counter Buffer

Literal
Semantic

Literal

User Type

Literal FP Rounding

Target Mode

Width FP Rounding
Mode

Literal FP Denorm

Target Mode

Width FP Denorm
Mode

Enabling Capabilities

Missing before version 1.4.

Also see extension:
SPV_GOOGLE_hlsl_functionalityl

Missing before version 1.4.

Also see extension:
SPV_GOOGLE _hlsl_functionalityl

Reserved.

Also see extension:
SPV_GOOGLE_user_type

FunctionFloatControlINTEL

Reserved.

FunctionFloatControlINTEL

Reserved.

https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_hlsl_functionality1.html
https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_hlsl_functionality1.html
https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_user_type.html

5825

5826

5827

5828

5829

5830

5831

Decoration

RegisterINTEL

MemoryINTEL

NumbanksINTEL

BankwidthINTEL

MaxPrivateCopiesINTEL

SinglepumpINTEL

DoublepumpINTEL

Extra Operands

Literal
Memory Type

Literal
Banks

Literal
Bank Width

Literal
Maximum Copies

Enabling Capabilities

FPGAMemoryAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.
Also see extension:

SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.
Also see extension:

SPV_INTEL_fpga_memory_attribut
es

95

https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html

5832

5833

5834

5835

5836

5883

5884

5885

5899

96

Decoration

MaxReplicatesINTEL

SimpleDualPortINTEL

MergeINTEL

BankBitsINTEL

ForcePow2DepthINTEL

StridesizelNTEL

WordsizeINTEL

TrueDualPortINTEL

BurstCoalesceINTEL

Extra Operands

Literal
Maximum Replicates

Literal Literal
Merge Merge Type
Key

Literal
Bank Bits

Literal
Force Key

Literal
Stride Size

Literal
Word Size

Enabling Capabilities

FPGAMemoryAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL
Reserved.
Also see extension:

SPV_INTEL_fpga_memory_attribut
es

FPGAMemoryAttributesINTEL

Reserved.

FPGAMemoryAttributesINTEL

Reserved.

FPGAMemoryAttributesINTEL

Reserved.

FPGAMemoryAccessesINTEL

Reserved.

https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html

5900

5901

5902

5905

5907

5909

5914

5915

5917

5918

5919

5921

5944

Decoration

CacheSizelNTEL

DontStaticallyCoalescelNTEL

PrefetchINTEL

StallEnableINTEL

FuseLoopsinFunctionINTEL

MathOpDSPModeINTEL

AliasScopelNTEL

NoAliasINTEL

InitiationIntervalINTEL

MaxConcurrencyINTEL

PipelineEnableINTEL

BufferLocationINTEL

IOPipeStoragelNTEL

Extra Operands

Literal
Cache Size in bytes

Literal

Prefetcher Size in bytes

Literal Literal
Mode Propagate
<id>

Aliasing Scopes List

<id>
Aliasing Scopes List

Literal
Cycles

Literal
Invocations

Literal
Enable

Literal
Buffer Location ID

Literal
10 Pipe ID

Enabling Capabilities

FPGAMemoryAccessesINTEL

Reserved.

FPGAMemoryAccessesINTEL

Reserved.

FPGAMemoryAccessesINTEL

Reserved.

FPGACIusterAttributesINTEL

Reserved.

LoopFuseINTEL

Reserved.

FPGADSPControlINTEL

Reserved.

MemoryAccessAliasingINTEL

Reserved.

MemoryAccessAliasingINTEL

Reserved.

FPGAInvocationPipeliningAttribut

esINTEL

Reserved.

FPGAInvocationPipeliningAttribut

esINTEL

Reserved.

FPGAInvocationPipeliningAttribut

esINTEL

Reserved.

FPGABufferLocationINTEL

Reserved.

IOPipesINTEL

Reserved.

97

6080

6085

6087

6140

6151

6170

6172

6173

6175

6176

6177

6178

6179

6180

98

Decoration

FunctionFloatingPointModelNT
EL

SingleElementVectorINTEL

VectorComputeCallableFunctio
NINTEL

MediaBlock|IOINTEL

StallFreeINTEL

FPMaxErrorDecorationINTEL

LatencyControlLabelINTEL

LatencyControlConstraintINTE
L

ConduitKernelArgumentINTEL

RegisterMapKernelArgumentIN
TEL

MMHostInterfaceAddressWidth
INTEL

MMHostInterfaceDataWidthINT
EL

MMHostInterfaceLatencyINTEL

MMHostInterfaceReadWriteMod
eINTEL

Extra Operands

Literal FP Operation

Target Mode

Width FP Operation
Mode

Literal

Max Error

Literal

Latency Label

Literal ' Literal Literal

Relativ Control Relativ

e To Type e Cycle

Literal

AddressWidth

Literal

DataWidth

Literal

Latency

Access Qualifier
ReadWriteMode

Enabling Capabilities

FunctionFloatControlINTEL

Reserved.

VectorComputeINTEL

Reserved.

VectorComputeINTEL

Reserved.

VectorComputeINTEL

Reserved.

FPGACIusterAttributesV2INTEL

Reserved.

FPMaxErrorINTEL

Reserved.

FPGALatencyControlINTEL

Reserved.

FPGALatencyControlINTEL

Reserved.

FPGAArgumentinterfacesINTEL

Reserved.

FPGAArgumentinterfacesINTEL

Reserved.

FPGAArgumentinterfacesINTEL

Reserved.

FPGAArgumentinterfacesINTEL

Reserved.

FPGAArgumentinterfacesINTEL

Reserved.

FPGAArgumentinterfacesINTEL

Reserved.

Decoration Extra Operands Enabling Capabilities

6181 MMHostInterfaceMaxBurstINTE Literal FPGAArgumentinterfacesINTEL
L MaxBurstCount
Reserved.
6182 MMHostInterfaceWaitRequestl Literal FPGAArgumentinterfacesINTEL
NTEL Waitrequest
Reserved.
6183 StableKernelArgumentINTEL FPGAArgumentinterfacesINTEL
Reserved.
6188 HostAccessINTEL Host Literal GlobalVvariableHostAccessINTEL
Access Name
Quialifie Reserved.
r
Access
6190 InitModeINTEL Initialization Mode GlobalVvariableFPGADecorationsIN
Quialifier TEL
Trigger
Reserved.
6191 ImplementinRegisterMapINTEL Literal GlobalVvariableFPGADecorationsIN
Value TEL
Reserved.
6247 ConditionalINTEL <id> SpecConditionalINTEL
Condition
Reserved.
6442 CacheControlLoadINTEL Literal Load Cache CacheControlsINTEL

Cache Control
Level Cache Control Reserved.

6443 CacheControlStoreINTEL Literal | Store Cache CacheControlsINTEL
Cache Control
Level Cache Control Reserved.

3.2.20. Builtln

Used when Decoration is Builtin. Apply to:

» The result <id> of the OpVariable declaration of the built-in variable,
A structure-type member, if the built-in is a member of a structure, or

» Deprecated: a constant instruction, when the built-in is a constant.

As stated per entry below, these have additional semantics and constraints specified by the client API.

For all the declarations of all the global variables and constants statically referenced by the entry-point’s call
tree, within any specific storage class it is invalid to decorate with a specific Builtin more than once.

Application to a constant instruction has previously been used to define the workgroup size with
specialization constants in some client APIs. As of version 1.6, all client APIs should instead use the

99

LocalSizeld execution mode.

100

Builtin

Position

Output vertex position from a vertex processing
Execution Model. See the client API specification
for more detail.

PointSize

Output point size from a vertex processing
Execution Model. See the client API specification
for more detail.

ClipDistance
Array of clip distances. See the client API
specification for more detail.

CullDistance
Array of clip distances. See the client API
specification for more detail.

VertexId
Input vertex ID to a Vertex Execution Model. See
the client API specification for more detail.

Instanceld
Input instance ID to a Vertex Execution Model.
See the client API specification for more detail.

Primitiveld
Primitive ID in a Geometry Execution Model. See
the client API specification for more detail.

Invocationld

Invocation ID, input to Geometry and
TessellationControl Execution Model. See the
client API specification for more detail.

Layer
Layer selection for multi-layer framebuffer. See the
client API specification for more detail.

The Geometry capability allows for a Layer output

by a Geometry Execution Model, input to a
Fragment Execution Model.

The ShaderLayer capability allows for Layer
output by a Vertex or Tessellation Execution
Model.

Enabling Capabilities

Shader

Shader

ClipDistance

CullDistance

Shader

Shader

Geometry, Tessellation, RayTracingNV,
RayTracingKHR, MeshShadingNV,
MeshShadingEXT

Geometry, Tessellation

Geometry, ShaderLayer,
ShaderViewportindexLayerEXT,
MeshShadingNV, MeshShadingEXT

10

11

12

13

14

15

16

17

18

Builtln

Viewportindex

Viewport selection for viewport transformation
when using multiple viewports. See the client API
specification for more detail.

The MultiViewport capability allows for a
Viewportindex output by a Geometry Execution
Model, input to a Fragment Execution Model.

The ShaderViewportindex capability allows for a
Viewportindex output by a Vertex or Tessellation
Execution Model.

TessLevelOuter

Output patch outer levels in a TessellationControl
Execution Model. See the client API specification
for more detail.

TessLevellnner

Output patch inner levels in a TessellationControl
Execution Model. See the client API specification
for more detail.

TessCoord

Input vertex position in TessellationEvaluation
Execution Model. See the client API specification
for more detail.

PatchVertices

Input patch vertex count in a tessellation Execution
Model. See the client API specification for more
detail.

FragCoord

Coordinates (x, y, z, 1/w) of the current fragment,
input to the Fragment Execution Model. See the
client API specification for more detail.

PointCoord

Coordinates within a point, input to the Fragment
Execution Model. See the client API specification
for more detail.

FrontFacing

Face direction, input to the Fragment Execution
Model. See the client API specification for more
detail.

Sampleld

Input sample number to the Fragment Execution
Model. See the client API specification for more
detail.

Enabling Capabilities

MultiViewport, ShaderViewportindex,
ShaderViewportindexLayerEXT,
MeshShadingNV, MeshShadingEXT

Tessellation

Tessellation

Tessellation

Tessellation

Shader

Shader

Shader

SampleRateShading

101

Builtin Enabling Capabilities

SamplePosition SampleRateShading
Input sample position to the Fragment Execution

Model. See the client API specification for more

detail.

19

SampleMask Shader
Input or output sample mask to the Fragment

Execution Model. See the client API specification

for more detail.

20

FragDepth Shader
Output fragment depth from the Fragment

Execution Model. See the client API specification

for more detail.

22

Helperinvocation Shader
Input whether a helper invocation, to the

Fragment Execution Model. See the client API
specification for more detail.

23

NumWorkgroups

Number of workgroups in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

24

WorkgroupSize

Workgroup size in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

25

Workgroupld

Workgroup ID in GLCompute or Kernel Execution
Models. See the client API specification for more
detail.

26

Locallnvocationld

Local invocation ID in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

27

Globallnvocationld

Global invocation ID in GLCompute or Kernel
Execution Models. See the client API specification
for more detail.

28

Locallnvocationindex

Local invocation index in GLCompute Execution

Models. See the client API specification for more
29 detail.

Workgroup Linear ID in Kernel Execution Models.
See the client API specification for more detail.

WorkDim Kernel
30 Work dimensions in Kernel Execution Models.
See the client API specification for more detail.

102

31

32

33

34

36

37

38

39

40

41

42

43

Builtln
GlobalSize

Global size in Kernel Execution Models. See the
client API specification for more detail.

EnqueuedWorkgroupSize

Enqueued workgroup size in Kernel Execution
Models. See the client API specification for more

detail.

GlobalOffset

Global offset in Kernel Execution Models. See the
client API specification for more detail.

GlobalLinearld

Global linear ID in Kernel Execution Models. See
the client API specification for more detail.

SubgroupSize

Subgroup size. See the client API specification for
more detail.

SubgroupMaxSize

Subgroup maximum size in Kernel Execution
Models. See the client API specification for more
detail.

NumSubgroups

Number of subgroups in GLCompute or Kernel

Execution Models. See the client API specification

for more detail.

NumEnqueuedSubgroups

Number of enqueued subgroups in Kernel
Execution Models. See the client API specification

for more detail.

Subgroupld

Subgroup ID in GLCompute or Kernel Execution
Models. See the client API specification for more
detail.

SubgroupLocallnvocationld

Subgroup local invocation ID. See the client API

specification for more detail.

VertexIndex

Vertex index. See the client API specification for

more detail.

Instancelndex

Instance index. See the client API specification for

more detail.

4160 CorelDARM

4161 CoreCountARM

4162 CoreMaxIDARM

Enabling Capabilities

Kernel

Kernel

Kernel

Kernel

Kernel, GroupNonUniform,

SubgroupBallotKHR

Kernel

Kernel, GroupNonUniform

Kernel

Kernel, GroupNonUniform

Kernel, GroupNonUniform,
SubgroupBallotKHR

Shader

Shader

CoreBuiltinsARM
CoreBuiltinsARM

CoreBuiltinsARM

103

4163

4164

4416

4417

4418

4419

4420

4424

4425

104

Builtln
WarpIDARM

WarpMaxIDARM

SubgroupEgMask (SubgroupEqMaskKHR)
Subgroup invocations bitmask where bit index =
SubgrouplLocallnvocationld.

See the client API specification for more detail.

SubgroupGeMask (SubgroupGeMaskKHR)
Subgroup invocations bitmask where bit index >=
SubgroupLocallnvocationld.

See the client API specification for more detail.

SubgroupGtMask (SubgroupGtMaskKHR)
Subgroup invocations bitmask where bit index >
SubgroupLocallnvocationld.

See the client API specification for more detail.

SubgroupLeMask (SubgroupLeMaskKHR)
Subgroup invocations bitmask where bit index <=
SubgroupLocallnvocationld.

See the client API specification for more detail.

SubgroupLtMask (SubgroupLtMaskKHR)
Subgroup invocations bitmask where bit index <
SubgroupLocallnvocationld.

See the client API specification for more detail.

BaseVertex
Base vertex component of vertex ID.
See the client API specification for more detail.

Baselnstance
Base instance component of instance ID.
See the client API specification for more detail.

Enabling Capabilities
CoreBuiltinsARM
CoreBuiltinsARM

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

SubgroupBallotKHR,
GroupNonUniformBallot

Missing before version 1.3.

Also see extension: SPV_KHR_shader_ballot

DrawParameters
Missing before version 1.3.

Also see extension:
SPV_KHR_shader_draw_parameters

DrawParameters
Missing before version 1.3.

Also see extension:
SPV_KHR_shader_draw_parameters

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_draw_parameters.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_draw_parameters.html

4426

4432

4438

4440

4444

4492

4493

4494

4992

Builtln

DrawIndex
Contains the index of the draw currently being
processed.

See the client API specification for more detail.

PrimitiveShadingRateKHR

Devicelndex
Input device index of the logical device.

See the client API specification for more detail.

ViewIndex
Input view index of the view currently being
rendered to.

See the client API specification for more detail.

ShadingRateKHR

TileOffsetQCOM

TileDimensionQCOM

TileApronSizeQCOM

BaryCoordNoPerspAMD

Enabling Capabilities

DrawParameters, MeshShadingNV,
MeshShadingEXT

Missing before version 1.3.
Also see extensions:
SPV_KHR_shader_draw_parameters,

SPV_NV_mesh_shader,
SPV_EXT_mesh_shader

FragmentShadingRateKHR
Reserved.

Also see extension:
SPV_KHR_fragment_shading_rate

DeviceGroup
Missing before version 1.3.

Also see extension: SPV_KHR_device _group

MultiView
Missing before version 1.3.

Also see extension: SPV_KHR_multiview

FragmentShadingRateKHR
Reserved.

Also see extension:
SPV_KHR_fragment_shading_rate

TileShadingQCOM

Reserved.

TileShadingQCOM

Reserved.

TileShadingQCOM

Reserved.

Reserved.
Also see extension:

SPV_AMD_shader_explicit_vertex_paramet
er

105

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_draw_parameters.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_fragment_shading_rate.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_device_group.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_multiview.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_fragment_shading_rate.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html

4993

4994

4995

4996

4997

4998

5014

5021

5073

106

Builtin
BaryCoordNoPerspCentroidAMD

BaryCoordNoPerspSampleAMD

BaryCoordSmoothAMD

BaryCoordSmoothCentroidAMD

BaryCoordSmoothSampleAMD

BaryCoordPullModelAMD

FragStencilRefEXT

RemainingRecursionLevelsAMDX

ShaderindexAMDX

Enabling Capabilities

Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

Reserved.

Also see extension:
SPV_AMD_shader_explicit_vertex_paramet
er

StencilExportEXT
Reserved.

Also see extension:
SPV_EXT shader_stencil_export

ShaderEnqueueAMDX

Reserved.

ShaderEnqueueAMDX

Reserved.

https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_explicit_vertex_parameter.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_stencil_export.html

5253

5257

5258

5261

5262

5264

5274

Builtin
ViewportMaskNV

SecondaryPositionNV

SecondaryViewportMaskNV

PositionPerViewNV

ViewportMaskPerViewNV

FullyCoveredEXT

TaskCountNV

Enabling Capabilities
ShaderViewportMaskNV, MeshShadingNV
Reserved.

Also see extensions:

SPV_NV_viewport_array2,
SPV_NV_mesh_shader

ShaderStereoViewNV
Reserved.

Also see extension:
SPV_NV_stereo_view_rendering

ShaderStereoViewNV
Reserved.

Also see extension:
SPV_NV_stereo_view_rendering

PerViewAttributesNV, MeshShadingNV
Reserved.
Also see extensions:

SPV_NVX_multiview_per_view_attributes,
SPV_NV_mesh_shader

PerViewAttributesNV, MeshShadingNV
Reserved.
Also see extensions:

SPV_NVX_multiview_per_view_attributes,
SPV_NV_mesh_shader

FragmentFullyCoveredEXT
Reserved.

Also see extension:
SPV_EXT_fragment_fully_covered

MeshShadingNV
Reserved.

Also see extension: SPV_ NV _mesh shader

107

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_viewport_array2.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_stereo_view_rendering.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_stereo_view_rendering.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NVX_multiview_per_view_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NVX_multiview_per_view_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_fully_covered.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html

5275

5276

5277

5278

5279

5280

5281

5286

108

Builtln

PrimitiveCountNV

PrimitivelndicesNV

ClipDistancePerViewNV

CullDistancePerViewNV

LayerPerViewNV

MeshViewCountNV

MeshViewIndicesNV

BaryCoordKHR (BaryCoordNV)

Enabling Capabilities

MeshShadingNV

Reserved.

Also see extension:

MeshShadingNV

Reserved.

Also see extension:

MeshShadingNV

Reserved.

Also see extension:

MeshShadingNV

Reserved.

Also see extension:

MeshShadingNV

Reserved.

Also see extension:

MeshShadingNV

Reserved.

Also see extension:

MeshShadingNV

Reserved.

Also see extension:

SPV_NV_mesh_shader

SPV_NV_mesh_shader

SPV_NV_mesh_shader

SPV_NV_mesh_shader

SPV_NV_mesh_shader

SPV_NV_mesh_shader

SPV_NV_mesh_shader

FragmentBarycentricKHR

Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentric,
SPV_KHR_fragment_shader_barycentric

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_fragment_shader_barycentric.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_fragment_shader_barycentric.html

5287

5292

5293

5294

5295

5296

5299

5319

Builtln

BaryCoordNoPerspKHR
(BaryCoordNoPerspNV)

FragSizeEXT (FragmentSizeNV)

FraglnvocationCountEXT
(InvocationsPerPixelNV)

PrimitivePointIndicesEXT

PrimitiveLinelndicesEXT

PrimitiveTrianglelndicesEXT

CullPrimitiveEXT

LaunchldKHR (LaunchldNV)

Enabling Capabilities

FragmentBarycentricKHR
Reserved.

Also see extensions:
SPV_NV_fragment_shader_barycentric,
SPV_KHR_fragment_shader_barycentric

FragmentDensityEXT
Reserved.

Also see extensions:
SPV_EXT fragment_invocation_density,
SPV_NV_shading_rate

FragmentDensityEXT
Reserved.
Also see extensions:

SPV_EXT_fragment_invocation_density,
SPV_NV_shading_rate

MeshShadingEXT

Reserved.

Also see extension: SPV_EXT_mesh_shader

MeshShadingEXT

Reserved.

Also see extension: SPV_EXT_mesh_shader

MeshShadingEXT

Reserved.

Also see extension: SPV_EXT_mesh_shader

MeshShadingEXT

Reserved.

Also see extension: SPV_EXT _mesh_shader

RayTracingNV, RayTracingKHR

Reserved.

Also see extensions: SPV_NV_ray_tracing,

SPV_KHR_ray_tracing

109

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_fragment_shader_barycentric.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_fragment_shader_barycentric.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_invocation_density.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shading_rate.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_invocation_density.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shading_rate.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html

Builtin Enabling Capabilities

LaunchSizeKHR (LaunchSizeNV) RayTracingNV, RayTracingkKHR
Reserved.
5320
Also see extensions: SPV_NV ray_tracing,
SPV_KHR_ray_tracing

WorldRayOriginKHR (WorldRayOriginNV) RayTracingNV, RayTracingkKHR

Reserved.

5321
Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

WorldRayDirectionKHR (WorldRayDirectionNV) RayTracingNV, RayTracingKHR
Reserved.
5322
Also see extensions: SPV_NV _ray_tracing,
SPV_KHR_ray_tracing

ObjectRayOriginKHR (ObjectRayOriginNV) RayTracingNV, RayTracingKHR

Reserved.

5323
Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

ObjectRayDirectionKHR RayTracingNV, RayTracingkKHR
(ObjectRayDirectionNV)
Reserved.
5324
Also see extensions: SPV_NV ray tracing,
SPV_KHR_ray_tracing

RayTminKHR (RayTminNV) RayTracingNV, RayTracingKHR
Reserved.
5325
Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

RayTmaxKHR (RayTmaxNV) RayTracingNV, RayTracingKHR

Reserved.

5326
Also see extensions: SPV_NV ray tracing,
SPV_KHR_ray_tracing

InstanceCustomindexKHR RayTracingNV, RayTracingKHR
(InstanceCustomIindexNV)
Reserved.
5327
Also see extensions: SPV_NV ray tracing,
SPV_KHR ray_tracing

110

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html

5330

5331

5332

5333

5334

5335

5337

5344

5351

Builtin
ObjectToWorldKHR (ObjectToWorldNV)

WorldToObjectKHR (WorldToObjectNV)

HitTNV

HitKindKHR (HitKindNV)

CurrentRayTimeNV

HitTriangleVertexPositionsKHR

HitMicroTriangleVertexPositionsNV

HitMicroTriangleVertexBarycentricsNV

IncomingRayFlagsKHR (IncomingRayFlagsNV)

Enabling Capabilities

RayTracingNV, RayTracingkKHR
Reserved.

Also see extensions: SPV_NV ray_tracing,
SPV_KHR_ray_tracing

RayTracingNV, RayTracingkKHR
Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

RayTracingNV
Reserved.

Also see extension: SPV_NV ray tracing

RayTracingNV, RayTracingKHR
Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

RayTracingMotionBIurNV
Reserved.

Also see extension:
SPV_NV _ray_tracing_motion_blur

RayTracingPositionFetchKHR

Reserved.

RayTracingDisplacementMicromapNV

Reserved.

RayTracingDisplacementMicromapNV

Reserved.

RayTracingNV, RayTracingKHR
Reserved.

Also see extensions: SPV_NV_ray_tracing,
SPV_KHR_ray_tracing

111

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing_motion_blur.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html

5352

5359

5360

5361

5374

5375

5376

5377

112

Builtln

RayGeometrylndexKHR

HitlsSphereNV

HitISLSSNV

HitSpherePositionNV

WarpsPerSMNV

SMCountNV

WarpIDNV

SMIDNV

Enabling Capabilities

RayTracingKHR
Reserved.

Also see extension: SPV_KHR ray tracing

RayTracingSpheresGeometryNV
Reserved.

Also see extension:
SPV_NV_linear_swept_spheres

RayTracingLinearSweptSpheresGeometryN
Y

Reserved.

Also see extension:
SPV_NV_linear_swept_spheres

RayTracingSpheresGeometryNV
Reserved.

Also see extension:
SPV_NV_linear_swept_spheres

ShaderSMBuiltinsNV
Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

ShaderSMBuiltinsNV
Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

ShaderSMBuiltinsNV
Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

ShaderSMBuiltinsNV
Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_linear_swept_spheres.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_linear_swept_spheres.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_linear_swept_spheres.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_sm_builtins.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_sm_builtins.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_sm_builtins.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_sm_builtins.html

Builtln
HitLSSPositionsNV

5396

HitKindFrontFacingMicroTriangleNV
5405

HitKindBackFacingMicroTriangleNV
5406

HitSphereRadiusNV

5420

HitLSSRadiiNV

5421

ClusterIDNV

5436

CullMaskKHR

6021

3.2.21. Selection Control

Enabling Capabilities

RayTracingLinearSweptSpheresGeometryN
Vv

Reserved.

Also see extension:
SPV_NV _linear_swept_spheres

RayTracingDisplacementMicromapNV

Reserved.

RayTracingDisplacementMicromapNV

Reserved.

RayTracingSpheresGeometryNV
Reserved.

Also see extension:
SPV_NV_linear_swept_spheres

RayTracingLinearSweptSpheresGeometryN
\Y

Reserved.

Also see extension:
SPV_NV_linear_swept_spheres

RayTracingClusterAccelerationStructureNV
Reserved.

Also see extension:
SPV_NV_cluster_acceleration_structure

RayCullMaskKHR
Reserved.

Also see extension: SPV_KHR_ray cull_mask

This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpSelectionMerge.

Selection Control

0x0 None

Enabling Capabilities

113

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_linear_swept_spheres.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_linear_swept_spheres.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_linear_swept_spheres.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cluster_acceleration_structure.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_cull_mask.html

Selection Control

Flatten

Ox1 Performance hint. Strong request to optimize
away the control flow for this selection.
DontFlatten

0x2 Performance hint. Strong request to keep this

selection as control flow.

3.2.22. Loop Control

Enabling Capabilities

This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Bits that are set indicate whether an additional operand follows, as described by the table. If there are
multiple following operands indicated, they are ordered: Those indicated by smaller-numbered bits appear

first.

Used by OpLoopMerge.

Loop Control

0x0 None

Unroll
Performance hint. Strong request to unroll or

Ox1 ynwind this loop.

This must not be used with the DontUnroll bit.

DontUnroll
Performance hint. Strong request to keep this
loop as a loop, without unrolling.

0x2

Dependencylnfinite
Guarantees that there are no dependencies
between loop iterations.

0x4

DependencylLength
Guarantees that there are no dependencies

0x8 between a number of loop iterations. The

dependency length is specified in a subsequent

unsigned 32-bit integer literal operand.

Minlterations

Unchecked assertion that the loop executes at
least a given number of iterations. The iteration
count is specified in a subsequent unsigned 32-

0x10

bit integer literal operand.

MaxlIterations

Unchecked assertion that the loop executes at
most a given number of iterations. The iteration
count is specified in a subsequent unsigned 32-

0x20

bit integer literal operand.

114

Enabling Capabilities

Missing before version 1.1.

Missing before version 1.1.

Missing before version 1.4.

Missing before version 1.4.

0x40

0x80

0x100

0x10000

0x20000

0x40000

0x80000

0x100000

0x200000

0x400000

0x800000

0x1000000

Loop Control

IterationMultiple

Unchecked assertion that the loop executes a
multiple of a given number of iterations. The
number is specified in a subsequent unsigned
32-bit integer literal operand. It must be greater
than 0.

PeelCount

Performance hint. Request that the loop be
peeled by a given number of loop iterations.
The peel count is specified in a subsequent
unsigned 32-bit integer literal operand.

This must not be used with the DontUnroll bit.

PartialCount

Performance hint. Request that the loop be
partially unrolled by a given number of loop
iterations. The unroll count is specified in a
subsequent unsigned 32-bit integer literal
operand.

This must not be used with the DontUnroll bit.

InitiationIntervalINTEL

MaxConcurrencyINTEL

DependencyArrayINTEL

PipelineEnableINTEL

LoopCoalescelNTEL

MaxInterleavingINTEL

SpeculatedlterationsINTEL

NoFusionINTEL

LoopCountINTEL

Enabling Capabilities

Missing before version 1.4.

Missing before version 1.4.

Missing before version 1.4.

FPGALoopControlsINTEL

Reserved.

FPGALoopControlsINTEL

Reserved.

FPGALoopControlsINTEL

Reserved.

FPGALoopControlsINTEL

Reserved.

FPGALoopControlsINTEL

Reserved.

FPGALoopControlsINTEL

Reserved.

FPGALoopControlsINTEL

Reserved.

FPGALoopControlsINTEL

Reserved.

FPGALoopControlsINTEL

Reserved.

115

Loop Control Enabling Capabilities

MaxReinvocationDelayINTEL FPGALoopControlsINTEL

0x2000000
Reserved.

3.2.23. Function Control

This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpFunction.

Function Control Enabling Capabilities
0x0 None
Inline
Ox1 Performance hint. Strong request to inline the
function.
Dontlinline

0ox2 Performance hint. Strong request to not inline
the function.

Pure

Compiler can assume this function has no side

effect, but might read global memory or read
0x4 through dereferenced function parameters.

Always computes the same result when called

with the same argument values and the same

global state.

Const
Compiler assumes this function has no side
effects, and does not access global memory or

0x8 dereference function parameters. Always
computes the same result for the same
argument values.
OptNoneEXT (OptNoneINTEL) OptNoneEXT
0x10000
Reserved.

3.2.24. Memory Semantics <id>

The <id>'s value is a mask; it can be formed by combining the bits from multiple rows in the table below.

The value’s type must be a 32-bit integer scalar. This value is expected to be formed only from the bits in
the table below, where at most one of these four bits can be set: Acquire, Release, AcquireRelease, or
SequentiallyConsistent. If validation rules or the client API require a constant <id>, it is invalid for the
value to not be formed this expected way. If non-constant <id> are allowed, behavior is undefined when the
value is not formed this expected way.

Requesting both Acquire and Release semantics is done by setting the AcquireRelease bit, not by setting
two bits.

116

Memory semantics define memory-order constraints, and on what storage classes those constraints apply
to. The memory order constrains the allowed orders in which memory operations in this invocation are
made visible to another invocation. The storage classes specify to which subsets of memory these
constraints are to be applied. Storage classes not selected are not being constrained.

Used by:

* OpControlBarrier

* OpMemoryBarrier

* OpAtomicLoad

* OpAtomicStore

« OpAtomicExchange

* OpAtomicCompareExchange
* OpAtomicCompareExchangeWeak
* OpAtomiclincrement

* OpAtomiclDecrement

* OpAtomiclAdd

« OpAtomiclSub

* OpAtomicSMin

* OpAtomicUMin

* OpAtomicSMax

* OpAtomicUMax

* OpAtomicAnd

e OpAtomicOr

» OpAtomicXor

* OpAtomicFlagTestAndSet

» OpAtomicFlagClear

*« OpMemoryNamedBarrier

e OpAtomicFMIinEXT

* OpAtomicFMaxEXT

* OpAtomicFAddEXT

» OpControlBarrierArriveINTEL
e OpControlBarrierWaitINTEL

Memory Semantics Enabling Capabilities

0x0 None (Relaxed)

117

0x2

0x4

0x8

0x10

0x40

0x80

0x100

0x200

0x400

118

Memory Semantics Enabling Capabilities

Acquire

On an atomic instruction, orders memory
operations provided in program order after this
atomic instruction against this atomic
instruction. On a barrier, orders memory
operations provided in program order after this
barrier against atomic instructions before this
barrier. See the client API specification for more
detail.

Release

On an atomic instruction, orders memory
operations provided in program order before
this atomic instruction against this atomic
instruction. On a barrier, orders memory
operations provided in program order before
this barrier against atomic instructions after this
barrier. See the client API specification for more
detail.

AcquireRelease

Has the properties of both Acquire and
Release semantics. It is used for read-modify-
write operations.

SequentiallyConsistent

All observers see this memory access in the
same order with respect to other sequentially-
consistent memory accesses from this
invocation.

If the declared memory model is Vulkan,
SequentiallyConsistent must not be used.

UniformMemory Shader
Apply the memory-ordering constraints to
StorageBuffer, PhysicalStorageBuffer, or

Uniform Storage Class memory.

SubgroupMemory
Apply the memory-ordering constraints to
subgroup memory.

WorkgroupMemory
Apply the memory-ordering constraints to
Workgroup Storage Class memory.

CrossWorkgroupMemory
Apply the memory-ordering constraints to
CrossWorkgroup Storage Class memory.

AtomicCounterMemory AtomicStorage
Apply the memory-ordering constraints to
AtomicCounter Storage Class memory.

Memory Semantics Enabling Capabilities

ImageMemory

Apply the memory-ordering constraints to
0x800 image contents (types declared by

OpTypelmage), or to accesses done through

pointers to the Image Storage Class.

OutputMemory (OutputMemoryKHR) VulkanMemoryModel
Apply the memory-ordering constraints to
Output storage class memory. Missing before version 1.5.
0x1000
Also see extension:
SPV_KHR_vulkan_memory_model
MakeAvailable (MakeAvailableKHR) VulkanMemoryModel
Perform an availability operation on all
references in the selected storage classes. Missing before version 1.5.
0x2000
Also see extension:
SPV_KHR_vulkan_memory_model
MakeVisible (MakeVisibleKHR) VulkanMemoryModel
Perform a visibility operation on all references in
the selected storage classes. Missing before version 1.5.
0x4000
Also see extension:
SPV_KHR_vulkan_memory_model
Volatile VulkanMemoryModel
This access cannot be eliminated, duplicated,
or combined with other accesses. Missing before version 1.5.
0x8000

Also see extension:
SPV_KHR_vulkan_memory_model

3.2.25. Memory Operands

This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Provides additional operands to the listed memory instructions. Bits that are set indicate whether an
additional operand follows, as described by the table. If there are multiple following operands indicated, they
are ordered: Those indicated by smaller-numbered bits appear first. An instruction needing two masks must
first provide the first mask followed by the first mask’s additional operands, and then provide the second
mask followed by the second mask’s additional operands.

Used by:

e OpLoad

* OpStore

* OpCopyMemory

* OpCopyMemorySized

» OpCooperativeMatrixLoadKHR
» OpCooperativeMatrixStoreKHR

119

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html

» OpCooperativeVectorLoadNV
» OpCooperativeVectorStoreNV
» OpCooperativeMatrixLoadNV
» OpCooperativeMatrixStoreNV
« OpCooperativeMatrixLoadTensorNV
» OpCooperativeMatrixStoreTensorNV

* OpSubgroupBlockPrefetchINTEL

Memory Operands Enabling Capabilities
0x0 None

Volatile
Ox1 This access cannot be eliminated, duplicated,
or combined with other accesses.

Aligned

This access has a known alignment. The
alignment is specified in a subsequent unsigned
32-bit integer literal operand. The value must be
a power of two. Valid values are defined by the
execution environment.

0x2

Nontemporal
0x4 Hints that the accessed address is not likely to
be accessed again in the near future.

MakePointerAvailable VulkanMemoryModel
(MakePointerAvailableKHR)
Perform an availability operation on the Missing before version 1.5.

locations pointed to by the pointer operand,

0x8 after a store. A following operand is the memory Also see extension:
scope for the availability operation. Requires SPV_KHR_vulkan_memory_model
NonPrivatePointer to also be set. Only valid
with instructions writing memory.
MakePointerVisible VulkanMemoryModel
(MakePointerVisibleKHR)
Perform a visibility operation on the locations Missing before version 1.5.
pointed to by the pointer operand, before a
0x10 load. A following operand is the memory scope Also see extension:
for the visibility operation. Requires SPV_KHR_vulkan_memory_model
NonPrivatePointer to also be set. Only valid
with instructions reading memory.
NonPrivatePointer (NonPrivatePointerKHR) VulkanMemoryModel
The memory access obeys inter-thread
0x20 ordering, as specified by the client API. Missing before version 1.5.

Also see extension:
SPV_KHR_vulkan_memory_model

120

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html

Memory Operands Enabling Capabilities

AliasScopeINTELMask MemoryAccessAliasingINTEL

Reserved.
0x10000

Also see extension:
SPV_INTEL_memory_access_aliasing

NoAliasINTELMask MemoryAccessAliasingINTEL

Reserved.
0x20000

Also see extension:
SPV_INTEL_memory_access_aliasing

3.2.26. Scope <id>

Must be an <id> of a 32-bit integer scalar. Its value is expected to be one of the values in the table below. If
validation rules or the client API require a constant <id>, it is invalid for it to not be one of these values. If
non-constant <id> are allowed, behavior is undefined if <id> is not one of these values.

If labeled as a memory scope, it specifies the distance of synchronization from the current invocation. If
labeled as an execution scope, it specifies the set of executing invocations taking part in the operation.
Other usages (neither memory nor execution) of scope are possible, and each such usage defines what
scope means in its context.

Used by:

* OpControlBarrier

* OpMemoryBarrier

* OpAtomicLoad

« OpAtomicStore

* OpAtomicExchange

» OpAtomicCompareExchange
* OpAtomicCompareExchangeWeak
e OpAtomiclincrement

» OpAtomiclDecrement

« OpAtomiclAdd

* OpAtomiclSub

e OpAtomicSMin

e OpAtomicUMin

* OpAtomicSMax

* OpAtomicUMax

* OpAtomicAnd

* OpAtomicOr

* OpAtomicXor

121

e OpGroupAsyncCopy

¢ OpGroupWaitEvents

e OpGroupAll

* OpGroupAny

* OpGroupBroadcast

¢ OpGrouplAdd

¢ OpGroupFAdd

¢ OpGroupFMin

* OpGroupUMin

¢ OpGroupSMin

¢ OpGroupFMax

e OpGroupUMax

e OpGroupSMax

¢ OpGroupReserveReadPipePackets
* OpGroupReserveWritePipePackets
* OpGroupCommitReadPipe

¢ OpGroupCommitWritePipe

¢ OpAtomicFlagTestAndSet

¢ OpAtomicFlagClear

¢ OpMemoryNamedBarrier

* OpGroupNonUniformElect

¢ OpGroupNonUniformAll

¢ OpGroupNonUniformAny

¢ OpGroupNonUniformAllEqual

¢ OpGroupNonUniformBroadcast

¢ OpGroupNonUniformBroadcastFirst
* OpGroupNonUniformBallot

¢ OpGroupNonUniformInverseBallot
¢ OpGroupNonUniformBallotBitExtract
¢ OpGroupNonUniformBallotBitCount
¢ OpGroupNonUniformBallotFindLSB
* OpGroupNonUniformBallotFindMSB
¢ OpGroupNonUniformShuffle

¢ OpGroupNonUniformShuffleXor

¢ OpGroupNonUniformShuffleUp

¢ OpGroupNonUniformShuffleDown

¢ OpGroupNonUniformlAdd

¢ OpGroupNonUniformFAdd

122

¢ OpGroupNonUniformIMul

¢ OpGroupNonUniformFMul

¢ OpGroupNonUniformSMin

* OpGroupNonUniformUMin

¢ OpGroupNonUniformFMin

¢ OpGroupNonUniformSMax

¢ OpGroupNonUniformUMax

¢ OpGroupNonUniformFMax

* OpGroupNonUniformBitwiseAnd
* OpGroupNonUniformBitwiseOr
¢ OpGroupNonUniformBitwiseXor
¢ OpGroupNonUniformLogicalAnd
¢ OpGroupNonUniformLogicalOr
¢ OpGroupNonUniformLogicalXor
* OpGroupNonUniformQuadBroadcast
¢ OpGroupNonUniformQuadSwap
¢ OpGroupNonUniformRotateKHR
¢ OpTypeCooperativeMatrixKHR

¢ OpGrouplAddNonUniformAMD
e OpGroupFAddNonUniformAMD
* OpGroupFMinNonUniformAMD
¢ OpGroupUMinNonUniformAMD
¢ OpGroupSMinNonUniformAMD
¢ OpGroupFMaxNonUniformAMD
¢ OpGroupUMaxNonUniformAMD
¢ OpGroupSMaxNonUniformAMD
* OpReadClockKHR

¢ OpAllocateNodePayloadsAMDX
¢ OpTypeCooperativeMatrixNV

¢ OpAtomicFMInEXT

¢ OpAtomicFMaxEXT

* OpAtomicFAddEXT

* OpControlBarrierArrivelNTEL

¢ OpControlBarrierWaitINTEL

¢ OpGroupIMulKHR

¢ OpGroupFMulKHR

¢ OpGroupBitwiseAndKHR

* OpGroupBitwiseOrKHR

123

* OpGroupBitwiseXorKHR
* OpGroupLogicalAndKHR
* OpGroupLogicalOrKHR

* OpGroupLogicalXorKHR

Scope

CrossDevice
Scope crosses multiple devices.

Device
Scope is the current device.

Workgroup
Scope is the current workgroup.

Subgroup
Scope is the current subgroup.

Invocation
Scope is the current Invocation.

QueueFamily (QueueFamilyKHR)
Scope is the current queue family.

ShaderCallKHR

3.2.27. Group Operation

Enabling Capabilities

VulkanMemoryModel

Missing before version 1.5.

RayTracingKHR

Reserved.

Defines the class of operation for group and non-uniform group instructions.

Used by:

e OpGrouplAdd
* OpGroupFAdd
* OpGroupFMin
e OpGroupUMin
* OpGroupSMin

* OpGroupFMax

* OpGroupUMax

* OpGroupSMax

* OpGroupNonUniformBallotBitCount

* OpGroupNonUniformlAdd
e OpGroupNonUniformFAdd

e OpGroupNonUniformIMul

* OpGroupNonUniformFMul

* OpGroupNonUniformSMin

124

* OpGroupNonUniformUMin

e OpGroupNonUniformFMin

* OpGroupNonUniformSMax

e OpGroupNonUniformUMax

e OpGroupNonUniformFMax

* OpGroupNonUniformBitwiseAnd
* OpGroupNonUniformBitwiseOr
* OpGroupNonUniformBitwiseXor
* OpGroupNonUniformLogicalAnd
e OpGroupNonUniformLogicalOr
* OpGroupNonUniformLogicalXor
* OpGrouplAddNonUniformAMD
* OpGroupFAddNonUniformAMD
e OpGroupFMinNonUniformAMD
e OpGroupUMinNonUniformAMD
e OpGroupSMinNonUniformAMD
* OpGroupFMaxNonUniformAMD
* OpGroupUMaxNonUniformAMD
* OpGroupSMaxNonUniformAMD
e OpGroupIMulKHR

e OpGroupFMulKHR

* OpGroupBitwiseAndKHR

* OpGroupBitwiseOrKHR

» OpGroupBitwiseXorKHR

e OpGroupLogicalAndKHR

* OpGroupLogicalOrKHR

* OpGroupLogicalXorKHR

Group Operation Enabling Capabilities

Reduce Kernel, GroupNonUniformArithmetic,
A reduction operation for all values of a specific GroupNonUniformBallot

value X specified by invocations within a

workgroup.

InclusiveScan Kernel, GroupNonUniformArithmetic,
A binary operation with an identity | and n (where n GroupNonUniformBallot

1 is the size of the workgroup) elements[ay, a, ... an
1] resulting in [ao, (a0 Op @;), ...(ao Op @, Op ... Op a,.

)

125

Group Operation Enabling Capabilities

ExclusiveScan Kernel, GroupNonUniformArithmetic,
A binary operation with an identity | and n (where n GroupNonUniformBallot
2 s the size of the workgroup) elements[a,, ai, ... an.
1] resulting in [l, ao, (a0 Op @), ... (g Op a; op ... op
an2)]-

ClusteredReduce GroupNonUniformClustered

Missing before version 1.3.

PartitionedReduceNV GroupNonUniformPartitionedNV
Reserved.

Also see extension:
SPV_NV_shader_subgroup_partitioned

PartitionedInclusiveScanNV GroupNonUniformPartitionedNV
Reserved.

Also see extension:
SPV_NV_shader_subgroup_partitioned

PartitionedExclusiveScanNV GroupNonUniformPartitionedNV
Reserved.
Also see extension:

SPV_NV_shader_subgroup_partitioned

3.2.28. Kernel Enqueue Flags

Specify when the child kernel begins execution.

Note: Implementations are not required to honor this flag. Implementations may not schedule kernel launch
earlier than the point specified by this flag, however. Used by OpEnqueueKernel.

Kernel Enqueue Flags Enabling Capabilities

NoWait Kernel
Indicates that the enqueued kernels do not need to

wait for the parent kernel to finish execution before

they begin execution.

126

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_subgroup_partitioned.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_subgroup_partitioned.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_subgroup_partitioned.html

Kernel Enqueue Flags Enabling Capabilities

WaitKernel Kernel
Indicates that all invocations of the parent kernel

finish executing and all immediate side effects are
committed before the enqueued child kernel

begins execution.

Note: Immediate meaning not side effects
resulting from child kernels. The side effects would
include stores to global memory and pipe reads
and writes.

WaitWorkGroup Kernel
Indicates that the enqueued kernels wait only for

the workgroup that enqueued the kernels to finish

before they begin execution.

Note: This acts as a memory synchronization
point between invocations in a workgroup and
child kernels enqueued by invocations in the
workgroup.

3.2.29. Kernel Profiling Info
The <id>'s value is a mask; it can be formed by combining the bits from multiple rows in the table below.

Specifies the profiling information to be queried. Used by OpCaptureEventProfilinginfo.

Kernel Profiling Info Enabling Capabilities
0x0 None

CmdExecTime Kernel
0ox1 Indicates that the profiling info queried is the
execution time.

3.2.30. Capability

Capabilities a module can declare it uses.

All used capabilities need to be declared, either explicitly with OpCapability or implicitly through the
Implicitly Declares column: If a capability defined with statically expressed rules is used, it is invalid to not
declare it. If a capability defined in terms of dynamic behavior is used, behavior is undefined unless the
capability is declared. The Implicitly Declares column lists additional capabilities that are all implicitly
declared when the Capability entry is explicitly or implicitly declared. It is not necessary, but allowed, to
explicitly declare an implicitly declared capability.

See the capabilities section for more detail.

Used by OpCapability, OpConditionalCapabilityINTEL, and OpSpecConstantCapabilitiesINTEL.

127

10

11

12

13

14

128

Capability Implicitly Declares

Matrix
Uses OpTypeMatrix.

Shader Matrix
Uses Vertex, Fragment, or GLCompute
Execution Models.

Geometry Shader
Uses the Geometry Execution Model.

Tessellation Shader
Uses the TessellationControl or
TessellationEvaluation Execution Models.

Addresses
Uses physical addressing, non-logical addressing
modes.

Linkage
Uses partially linked modules and libraries.

Kernel
Uses the Kernel Execution Model.

Vectorl6 Kernel
Uses OpTypeVector to declare 8 component or
16 component vectors.

Float16Buffer Kernel
Allows a 16-bit OpTypeFloat instruction using the

IEEE 754 encoding for creating an OpTypePointer

to a 16-bit float. Pointers to a 16-bit float must not

be dereferenced, unless specifically allowed by a

specific instruction. All other uses of 16-bit

OpTypeFloat are disallowed.

Float16
Uses OpTypeFloat to declare the 16-bit floating-
point type using the IEEE 754 encoding.

Float64
Uses OpTypeFloat to declare the 64-bit floating-
point type using the IEEE 754 encoding.

Int64
Uses OpTypelnt to declare 64-bit integer types.

Int64Atomics Int64

Uses atomic instructions on 64-bit integer types.

ImageBasic Kernel
Uses OpTypelmage or OpTypeSampler in a

Kernel.

ImageReadWrite ImageBasic

Uses OpTypelmage with the ReadWrite access
qualifier in a kernel.

15

17

18

19

20

21

22

23

24

25

27

28

29

30

Capability

ImageMipmap
Uses non-zero Lod Image Operands in a kernel.

Pipes
Uses OpTypePipe, OpTypeReserveld or pipe
instructions.

Groups
Uses common group instructions.

DeviceEnqueue
Uses OpTypeQueue, OpTypeDeviceEvent, and
device side enqueue instructions.

LiteralSampler
Samplers are made from literals within the module.
See OpConstantSampler.

AtomicStorage

Uses the AtomicCounter Storage Class, allowing
use of only the OpAtomicLoad,
OpAtomiclincrement, and
OpAtomiclDecrement instructions.

Int16
Uses OpTypelnt to declare 16-bit integer types.

TessellationPointSize
Tessellation stage exports point size.

GeometryPointSize
Geometry stage exports point size

ImageGatherExtended
Uses texture gather with non-constant or
independent offsets

StoragelmageMultisample

An MS operand in OpTypelmage indicates
multisampled, used with an OpTypelmage having
Sampled == 2.

UniformBufferArrayDynamiclndexing
Block-decorated arrays in uniform storage classes
use dynamically uniform indexing.

SampledimageArrayDynamiclndexing
Arrays of sampled images, samplers, or images
with Sampled = 0 or 1 use dynamically uniform
indexing.

StorageBufferArrayDynamiclndexing

Arrays in the StorageBuffer Storage Class, or
BufferBlock-decorated arrays, use dynamically
uniform indexing.

Implicitly Declares

ImageBasic

Kernel

Also see extension: SPV_AMD shader_ballot

Kernel

Kernel

Shader

Tessellation

Geometry

Shader

Shader

Shader

Shader

Shader

129

https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_ballot.html

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

130

Capability

StoragelmageArrayDynamiclndexing
Arrays of images with Sampled = 2 are accessed
with dynamically uniform indexing.

ClipDistance
Uses the ClipDistance Builtin.

CullDistance
Uses the CullDistance Builtin.

ImageCubeArray

Uses the Cube Dim with the Arrayed operand in
OpTypelmage, with an OpTypelmage having
Sampled == 2.

SampleRateShading
Uses per-sample rate shading.

ImageRect
Uses the Rect Dim with an OpTypelmage having
Sampled == 2.

SampledRect
Uses the Rect Dim with an OpTypelmage having
Sampled == 0 or 1.

GenericPointer
Uses the Generic Storage Class.

Int8
Uses OpTypelnt to declare 8-bit integer types.

InputAttachment
Uses the SubpassData Dim.

SparseResidency
Uses OplmageSparse... instructions.

MinLod
Uses the MinLod Image Operand.

Sampled1D
Uses the 1D Dim with an OpTypelmage having
Sampled == 0 or 1.

ImagelD
Uses the 1D Dim with an OpTypelmage having
Sampled == 2.

SampledCubeArray

Uses the Cube Dim with the Arrayed operand in
OpTypelmage, with an OpTypelmage having
Sampled == 0 or 1.

SampledBuffer
Uses the Buffer Dim with an OpTypelmage
having Sampled == 0 or 1.

Implicitly Declares

Shader

Shader

Shader

SampledCubeArray

Shader

SampledRect

Shader

Addresses

Shader

Shader

Shader

Sampled1D

Shader

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

Capability

ImageBuffer
Uses the Buffer Dim with an OpTypelmage
having Sampled == 2.

ImageMSArray
An MS operand in OpTypelmage indicates

multisampled, used with an OpTypelmage having

Sampled == 2 and Arrayed == 1.

StoragelmageExtendedFormats

One of a large set of more advanced image
formats are used, namely one of those in the
Image Format table listed as requiring this
capability.

ImageQuery
The sizes, number of samples, or lod, etc. are
queried.

DerivativeControl
Uses fine or coarse-grained derivatives, e.g.,
OpDPdxFine.

InterpolationFunction

Uses one of the InterpolateAtCentroid,
InterpolateAtSample, or InterpolateAtOffset
GLSL.std.450 extended instructions.

TransformFeedback
Uses the Xfb Execution Mode.

GeometryStreams
Uses multiple numbered streams for geometry-
stage output.

StoragelmageReadWithoutFormat
OplmageRead can use the Unknown Image
Format.

StoragelmageWriteWithoutFormat
OplmageWrite can use the Unknown Image
Format.

MultiViewport
Multiple viewports are used.

SubgroupDispatch
Uses subgroup dispatch instructions.

NamedBarrier
Uses OpTypeNamedBarrier.

PipeStorage
Uses OpTypePipeStorage.

Implicitly Declares

SampledBuffer

Shader

Shader

Shader

Shader

Shader

Shader

Geometry

Shader

Shader

Geometry

DeviceEnqueue

Missing before version 1.1.

Kernel

Missing before version 1.1.

Pipes

Missing before version 1.1.

131

61

62

63

64

65

66

67

68

69
70

71

4165

4166

4167

4168

132

Capability
GroupNonUniform

GroupNonUniformVote

GroupNonUniformArithmetic

GroupNonUniformBallot

GroupNonUniformShuffle

GroupNonUniformShuffleRelative

GroupNonUniformClustered

GroupNonUniformQuad

ShaderLayer
ShaderViewportindex

UniformDecoration

Uses the Uniform or Uniformld decoration

CoreBuiltinsARM

TilelmageColorReadAccessEXT

TilelmageDepthReadAccessEXT

TilelmageStencilReadAccessEXT

Implicitly Declares
Missing before version 1.3.

GroupNonUniform

Missing before version 1.3.

GroupNonUniform

Missing before version 1.3.

GroupNonUniform

Missing before version 1.3.

GroupNonUniform

Missing before version 1.3.

GroupNonUniform

Missing before version 1.3.

GroupNonUniform

Missing before version 1.3.

GroupNonUniform

Missing before version 1.3.
Missing before version 1.5.
Missing before version 1.5.

Missing before version 1.6.

Reserved.

Also see extension: SPV_ARM_core_builtins

Reserved.

Also see extension:

SPV_EXT_shader_tile_image

Reserved.

Also see extension:

SPV_EXT_shader_tile_image

Reserved.

Also see extension:

SPV_EXT_shader_tile_image

https://github.khronos.org/SPIRV-Registry/extensions/ARM/SPV_ARM_core_builtins.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_tile_image.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_tile_image.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_tile_image.html

4174

4175

4176

4191

4201

4212

4213

4422

4423

4427

4428

Capability
TensorsARM

StorageTensorArrayDynamicindexingARM

StorageTensorArrayNonUniformindexingARM

GraphARM

CooperativeMatrixLayoutsARM

Float8EXT

Float8CooperativeMatrixEXT

FragmentShadingRateKHR

SubgroupBallotKHR

DrawParameters

WorkgroupMemoryExplicitLayoutKHR

Implicitly Declares

Reserved.

Also see extension: SPV_ARM_tensors

Reserved.

Also see extension: SPV_ARM tensors

Reserved.

Also see extension: SPV_ARM tensors

Reserved.

Also see extension: SPV_ARM graph

Reserved.

Also see extension:
SPV_ARM_ _cooperative_matrix_layouts

Reserved.

Also see extension: SPV_EXT float8

Float8EXT, CooperativeMatrixKHR
Reserved.

Also see extension: SPV_EXT float8

Shader
Reserved.

Also see extension:
SPV_KHR_fragment_shading_rate

Reserved.

Also see extension: SPV_KHR_shader_ballot

Shader
Missing before version 1.3.

Also see extension:
SPV_KHR_shader_draw_parameters

Shader
Reserved.

Also see extension:

SPV_KHR_workgroup_memory_explicit_lay

out

133

https://github.khronos.org/SPIRV-Registry/extensions/ARM/SPV_ARM_tensors.html
https://github.khronos.org/SPIRV-Registry/extensions/ARM/SPV_ARM_tensors.html
https://github.khronos.org/SPIRV-Registry/extensions/ARM/SPV_ARM_tensors.html
https://github.khronos.org/SPIRV-Registry/extensions/ARM/SPV_ARM_graph.html
https://github.khronos.org/SPIRV-Registry/extensions/ARM/SPV_ARM_cooperative_matrix_layouts.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_float8.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_float8.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_fragment_shading_rate.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_draw_parameters.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_workgroup_memory_explicit_layout.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_workgroup_memory_explicit_layout.html

4429

4430

4431

4433

4434

4435

4436

4437

134

Capability

WorkgroupMemoryExplicitLayout8BitAccessK
HR

WorkgroupMemoryExplicitLayout16BitAccess
KHR

SubgroupVoteKHR

StorageBuffer16BitAccess
(StorageUniformBufferBlock16)

Uses 16-bit OpTypeFloat and OpTypelnt
instructions for creating scalar, vector, and
composite types that become members of a block
residing in the StorageBuffer storage class, the
PhysicalStorageBuffer storage class, or the
Uniform storage class with the BufferBlock
decoration.

UniformAndStorageBuffer16BitAccess
(StorageUniform16)

Uses 16-bit OpTypeFloat and OpTypelnt
instructions for creating scalar, vector, and
composite types that become members of a block
residing in the StorageBuffer storage class, the
PhysicalStorageBuffer storage class, or the
Uniform storage class.

StoragePushConstant16

Uses 16-bit OpTypeFloat and OpTypelnt
instructions for creating scalar, vector, and
composite types that become members of a block
residing in the PushConstant storage class.

StoragelnputOutputl6

Uses 16-bit OpTypeFloat and OpTypelnt
instructions for creating scalar, vector, and
composite types that become members of a block
residing in the Output storage class.

DeviceGroup

Implicitly Declares
WorkgroupMemoryExplicitLayoutKHR
Reserved.

Also see extension:

SPV_KHR_workgroup_memory_explicit_lay
out

WorkgroupMemoryExplicitLayoutKHR
Reserved.
Also see extension:

SPV_KHR_workgroup_memory_explicit_lay
out

Reserved.

Also see extension:
SPV_KHR_subgroup_vote

Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

StorageBuffer16BitAccess
Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

Missing before version 1.3.

Also see extension: SPV_KHR_16bit_storage

Missing before version 1.3.

Also see extension: SPV_KHR_device_group

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_workgroup_memory_explicit_layout.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_workgroup_memory_explicit_layout.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_workgroup_memory_explicit_layout.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_workgroup_memory_explicit_layout.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_subgroup_vote.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_16bit_storage.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_16bit_storage.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_16bit_storage.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_16bit_storage.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_device_group.html

4439

4441

4442

4445

4447

4448

4449

4450

4464

Capability

MultiView

VariablePointersStorageBuffer

Allow variable pointers, each confined to a single
Block-decorated struct in the StorageBuffer
storage class.

VariablePointers
Allow variable pointers.

AtomicStorageOps

SampleMaskPostDepthCoverage

StorageBuffer8BitAccess

Uses 8-bit OpTypelnt instructions for creating
scalar, vector, and composite types that become
members of a block residing in the StorageBuffer
storage class or the PhysicalStorageBuffer
storage class.

UniformAndStorageBuffer8BitAccess

Uses 8-bit OpTypelnt instructions for creating
scalar, vector, and composite types that become
members of a block residing in the StorageBuffer
storage class, the PhysicalStorageBuffer storage
class, or the Uniform storage class.

StoragePushConstant8

Uses 8-bit OpTypelnt instructions for creating
scalar, vector, and composite types that become
members of a block residing in the PushConstant
storage class.

DenormPreserve
Uses the DenormPreserve execution mode.

Implicitly Declares

Shader
Missing before version 1.3.

Also see extension: SPV_KHR_multiview

Shader
Missing before version 1.3.

Also see extension:
SPV_KHR variable_pointers

VariablePointersStorageBuffer
Missing before version 1.3.

Also see extension:
SPV_KHR_variable_pointers

AtomicStorage
Reserved.

Also see extension:
SPV_KHR_shader_atomic_counter_ops

Reserved.

Also see extension:
SPV_KHR_post_depth_coverage

Missing before version 1.5.

Also see extension: SPV_KHR_8bit_storage

StorageBuffer8BitAccess
Missing before version 1.5.

Also see extension: SPV_KHR_8bit_storage

Missing before version 1.5.

Also see extension: SPV_KHR_8bit_storage

Missing before version 1.4.

Also see extension: SPV_KHR_float controls

135

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_multiview.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_variable_pointers.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_variable_pointers.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_atomic_counter_ops.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_post_depth_coverage.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_8bit_storage.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_8bit_storage.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_8bit_storage.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html

4465

4466

4467

4468

4471

4472

4473

4478

4479

4484

4485

136

Capability
DenormFlushToZero
Uses the DenormFlushToZero execution mode.

SignedZerolnfNanPreserve
Uses the SignedZeroInfNanPreserve execution
mode.

RoundingModeRTE
Uses the RoundingModeRTE execution mode.

RoundingModeRTZ
Uses the RoundingModeRTZ execution mode.

RayQueryProvisionalKHR

RayQueryKHR

UntypedPointersKkHR

RayTraversalPrimitiveCullingKHR

RayTracingKHR

TextureSampleWeighted QCOM

TextureBoxFilterQCOM

Implicitly Declares

Missing before version 1.4.

Also see extension: SPV_KHR_float_controls

Missing before version 1.4.

Also see extension: SPV_KHR_float controls

Missing before version 1.4.

Also see extension: SPV_KHR_float_controls

Missing before version 1.4.

Also see extension: SPV_KHR_float controls

Shader
Reserved.

Also see extension: SPV_KHR_ray query

Shader
Reserved.

Also see extension: SPV_KHR_ray query

Reserved.

Also see extension:
SPV_KHR_untyped_pointers

RayQueryKHR, RayTracingKHR
Reserved.

Also see extensions: SPV_KHR ray query,
SPV_KHR_ray_tracing

Shader
Reserved.

Also see extension: SPV_KHR_ray tracing

Reserved.

Also see extension:
SPV_QCOM_image_processing

Reserved.

Also see extension:
SPV_QCOM image_processing

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_query.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_query.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_untyped_pointers.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_query.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_image_processing.html
https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_image_processing.html

4486

4495

4496

4498

5008

5009

5010

5013

Capability
TextureBlockMatchQCOM

TileShadingQCOM

CooperativeMatrixConversionQCOM

TextureBlockMatch2QCOM

Floatl6lmageAMD

ImageGatherBiasLodAMD

FragmentMaskAMD

StencilEXportEXT

Implicitly Declares

Reserved.

Also see extension:
SPV_QCOM _image_processing

Shader
Reserved.

Also see extension: SPV_QCOM _tile_shading
CooperativeMatrixKHR

Reserved.

Also see extension:

SPV_QCOM_cooperative_matrix_conversio
n

Reserved.

Also see extension:
SPV_QCOM image_processing2

Shader
Reserved.

Also see extension:
SPV_AMD_gpu_shader_half_float_fetch

Shader
Reserved.

Also see extension:
SPV_AMD _texture_gather_bias_lod

Shader
Reserved.

Also see extension:
SPV_AMD_shader_fragment_mask

Shader
Reserved.

Also see extension:
SPV_EXT shader_stencil_export

137

https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_image_processing.html
https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_tile_shading.html
https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_cooperative_matrix_conversion.html
https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_cooperative_matrix_conversion.html
https://github.khronos.org/SPIRV-Registry/extensions/QCOM/SPV_QCOM_image_processing2.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_gpu_shader_half_float_fetch.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_texture_gather_bias_lod.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_fragment_mask.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_stencil_export.html

5015

5016

5055

5067

5087

5112

5114

5116

5117

5118

138

Capability
ImageReadWriteLodAMD

Int64ImageEXT

ShaderClockKHR

ShaderEnqueueAMDX

QuadControlKHR

Int4TypeINTEL

Int4CooperativeMatrixINTEL

BFloat16TypeKHR

BFloatl6DotProductKHR

BFloatl6CooperativeMatrixKHR

Implicitly Declares

Shader
Reserved.

Also see extension:
SPV_AMD_shader_image_load_store_lod

Shader
Reserved.

Also see extension:
SPV_EXT_shader_image_int64

Reserved.

Also see extension: SPV_KHR_shader_clock

Shader
Reserved.

Also see extension:
SPV_AMDX shader_enqueue

Reserved.

Also see extension: SPV_KHR_quad_control

Reserved.

Also see extension: SPV_INTEL int4

Int4TypeINTEL, CooperativeMatrixKHR
Reserved.

Also see extension: SPV_INTEL_int4

Reserved.

Also see extension: SPV_KHR_bfloat16

BFloat16TypeKHR
Reserved.

Also see extension: SPV_KHR_bfloatl6

BFloat16TypeKHR, CooperativeMatrixKHR
Reserved.

Also see extension: SPV_KHR_bfloatl16

https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_image_load_store_lod.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_image_int64.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_shader_clock.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMDX_shader_enqueue.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_quad_control.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_int4.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_int4.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_bfloat16.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_bfloat16.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_bfloat16.html

5249

5251

5254

5255

5259

5260

5265

5266

Capability

SampleMaskOverrideCoverageNV

GeometryShaderPassthroughNV

ShaderViewportindexLayerEXT
(ShaderViewportindexLayerNV)

ShaderViewportMaskNV

ShaderStereoViewNV

PerViewAttributesNV

FragmentFullyCoveredEXT

MeshShadingNV

Implicitly Declares

SampleRateShading
Reserved.

Also see extension:
SPV_NV_sample_mask_override_coverage

Geometry
Reserved.

Also see extension:
SPV_NV_geometry_shader_passthrough

MultiViewport
Reserved.
Also see extensions:

SPV_EXT_shader_viewport_index_layer,
SPV_NV_viewport_array?2

ShaderViewportindexLayerEXT
Reserved.

Also see extension: SPV_NV_viewport_array?2

ShaderViewportMaskNV
Reserved.

Also see extension:
SPV_NV_stereo_view_rendering

MultiView
Reserved.

Also see extension:
SPV_NVX_multiview_per_view_attributes

Shader
Reserved.

Also see extension:
SPV_EXT_fragment_fully_covered

Shader
Reserved.

Also see extension: SPV_NV_mesh_shader

139

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_sample_mask_override_coverage.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_geometry_shader_passthrough.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_viewport_index_layer.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_viewport_array2.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_viewport_array2.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_stereo_view_rendering.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NVX_multiview_per_view_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_fully_covered.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_mesh_shader.html

Capability Implicitly Declares

ImageFootprintNV Reserved.
5282 Also see extension:
SPV_NV_shader_image_footprint
MeshShadingEXT Shader
5283 Reserved.
Also see extension: SPV_EXT _mesh_shader
FragmentBarycentricKHR Reserved.
(FragmentBarycentricNV)
5284 Also see extensions:
SPV_NV_fragment_shader_barycentric,
SPV_KHR_fragment_shader_barycentric
ComputeDerivativeGroupQuadsKHR Shader
(ComputeDerivativeGroupQuadsNV)
Reserved.
5288
Also see extensions:
SPV_NV_compute_shader_derivatives,
SPV_KHR_compute_shader_derivatives
FragmentDensityEXT (ShadingRateNV) Shader
Reserved.
5291
Also see extensions:
SPV_EXT_fragment_invocation_density,
SPV_NV_shading_rate
GroupNonUniformPartitionedNV Reserved.
5297 Also see extension:
SPV_NV_shader_subgroup_partitioned
ShaderNonUniform (ShaderNonUniformEXT) Shader
Uses the NonUniform decoration on a variable or
instruction. Missing before version 1.5.
5301
Also see extension:
SPV_EXT_descriptor_indexing
RuntimeDescriptorArray Shader
(RuntimeDescriptorArray EXT)
. Uses arrays of resources which are sized at run- Missing before version 1.5.

time.
Also see extension:
SPV_EXT descriptor_indexing

140

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_image_footprint.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_mesh_shader.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_fragment_shader_barycentric.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_fragment_shader_barycentric.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_invocation_density.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shading_rate.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_subgroup_partitioned.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html

5303

5304

5305

5306

5307

5308

5309

5310

Capability

InputAttachmentArrayDynamiclndexing
(InputAttachmentArrayDynamiclndexing EXT)
Arrays of InputAttachments use dynamically
uniform indexing.

UniformTexelBufferArrayDynamiclndexing

(UniformTexelBufferArrayDynamiclndexing EXT

)
Arrays of SampledBuffers use dynamically
uniform indexing.

StorageTexelBufferArrayDynamiclndexing

(StorageTexelBufferArrayDynamiclindexingEXT

)

Arrays of ImageBuffers use dynamically uniform
indexing.

UniformBufferArrayNonUniformIndexing
(UniformBufferArrayNonUniformIndexingEXT)

Block-decorated arrays in uniform storage classes

use non-uniform indexing.

SampledimageArrayNonUniformIndexing

(SampledimageArrayNonUniformIndexingEXT)

Arrays of sampled images use non-uniform
indexing.

StorageBufferArrayNonUniformIndexing
(StorageBufferArrayNonUniformIndexingEXT)
Arrays in the StorageBuffer storage class or
BufferBlock-decorated arrays use non-uniform
indexing.

StoragelmageArrayNonUniformIndexing
(StoragelmageArrayNonUniformindexing EXT)
Arrays of non-sampled images use non-uniform
indexing.

InputAttachmentArrayNonUniformIndexing

(InputAttachmentArrayNonUniformIndexingEX

T
Arrays of InputAttachments use non-uniform
indexing.

Implicitly Declares

InputAttachment
Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

SampledBuffer
Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

ImageBuffer
Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

ShaderNonUniform
Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

ShaderNonUniform
Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

ShaderNonUniform
Missing before version 1.5.

Also see extension:
SPV_EXT_descriptor_indexing

ShaderNonUniform
Missing before version 1.5.

Also see extension:
SPV_EXT descriptor_indexing

InputAttachment, ShaderNonUniform
Missing before version 1.5.

Also see extension:
SPV_EXT descriptor_indexing

141

https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html

Capability Implicitly Declares

UniformTexelBufferArrayNonUniformindexing SampledBuffer, ShaderNonUniform
(UniformTexelBufferArrayNonUniformindexing

EXT) Missing before version 1.5.

5311 Arrays of SampledBuffers use non-uniform
indexing. Also see extension:

SPV_EXT_descriptor_indexing

StorageTexelBufferArrayNonUniformindexing ImageBuffer, ShaderNonUniform
(StorageTexelBufferArrayNonUniformindexing
EXT) Missing before version 1.5.

5312

Arrays of ImageBuffers use non-uniform indexing.
Also see extension:
SPV_EXT_descriptor_indexing

RayTracingPositionFetchKHR Shader
Reserved.
5336
Also see extension:
SPV_KHR _ray_tracing_position_fetch
RayTracingNV Shader
5340 Reserved.
Also see extension: SPV_NV ray tracing
RayTracingMotionBlurNV Shader
Reserved.
5341
Also see extension:
SPV_NV ray_tracing_motion_blur
VulkanMemoryModel Missing before version 1.5.

(VulkanMemoryModelKHR)

5345 Uses the Vulkan memory model. This capability Also see extension:
must be declared if and only if the Vulkan memory SPV_KHR_vulkan_memory_model
model is declared.

VulkanMemoryModelDeviceScope Missing before version 1.5.
(VulkanMemoryModelDeviceScopeKHR)

5346 ses Device scope with any instruction when the Also see extension:
Vulkan memory model is declared. SPV_KHR_vulkan_memory_model
PhysicalStorageBufferAddresses Shader
(PhysicalStorageBufferAddressesEXT)
Uses physical addressing on storage buffers. Missing before version 1.5.

5347

Also see extensions:
SPV_EXT physical_storage buffer,
SPV_KHR_physical_storage_ buffer

142

https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_descriptor_indexing.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing_position_fetch.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_ray_tracing_motion_blur.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_vulkan_memory_model.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_physical_storage_buffer.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_physical_storage_buffer.html

5350

5353

5357

5363

5372

5373

5378

5379

Capability

ComputeDerivativeGroupLinearKHR
(ComputeDerivativeGroupLinearNV)

RayTracingProvisionalKHR

CooperativeMatrixNV

FragmentShaderSamplelnterlockEXT

FragmentShaderShadingRatelnterlockEXT

ShaderSMBuiltinsNV

FragmentShaderPixellnterlockEXT

DemoteToHelperinvocation
(DemoteToHelperinvocationEXT)

Implicitly Declares
Shader

Reserved.

Also see extensions:

SPV_NV_compute_shader_derivatives,
SPV_KHR_compute_shader_derivatives

Shader
Reserved.

Also see extension: SPV_KHR_ray_tracing

Shader
Reserved.

Also see extension:
SPV_NV_cooperative_matrix

Shader
Reserved.

Also see extension:
SPV_EXT_fragment_shader_interlock

Shader
Reserved.

Also see extension:
SPV_EXT_fragment_shader_interlock

Shader
Reserved.

Also see extension:
SPV_NV_shader_sm_builtins

Shader
Reserved.

Also see extension:
SPV_EXT_fragment_shader_interlock

Shader
Missing before version 1.6.

Also see extension:
SPV_EXT _demote_to_helper_invocation

143

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_compute_shader_derivatives.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cooperative_matrix.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_sm_builtins.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_fragment_shader_interlock.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_demote_to_helper_invocation.html

Capability Implicitly Declares

DisplacementMicromapNV Shader

Reserved.
5380

Also see extension:
SPV_NV_displacement_micromap

RayTracingOpacityMicromapEXT Shader

Reserved.
5381

Also see extension:
SPV_EXT_opacity_micromap

ShaderInvocationReorderNV RayTracingKHR

Reserved.
5383

Also see extension:
SPV_NV_shader_invocation_reorder

BindlessTextureNV Reserved.

5390 Also see extension:

SPV_NV_bindless_texture

RayQueryPositionFetchKHR Shader

Reserved.
5391

Also see extension:
SPV_KHR_ray_tracing_position_fetch

CooperativeVectorNV Reserved.

5394 Also see extension:

SPV_NV_cooperative_vector
AtomicFloatl6VectorNV Reserved.

5404 Also see extension:

SPV_NV_shader_atomic_fp16_vector

RayTracingDisplacementMicromapNV RayTracingKHR

Reserved.
5409

Also see extension:
SPV_NV_displacement_micromap

RawAccessChainsNV Reserved.

5414 Also see extension:

SPV_NV_raw_access_chains

144

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_displacement_micromap.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_opacity_micromap.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_invocation_reorder.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_bindless_texture.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_tracing_position_fetch.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cooperative_vector.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_shader_atomic_fp16_vector.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_displacement_micromap.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_raw_access_chains.html

5418

5419

5430

5431

5432

5433

5434

5435

5437

5439

5568

Capability
RayTracingSpheresGeometryNV

RayTracingLinearSweptSpheresGeometryNV

CooperativeMatrixReductionsNV

CooperativeMatrixConversionsNV

CooperativeMatrixPerElementOperationsNV

CooperativeMatrixTensorAddressingNV

CooperativeMatrixBlockLoadsNV

CooperativeVectorTrainingNV

RayTracingClusterAccelerationStructureNV

TensorAddressingNV

SubgroupShuffleINTEL

Implicitly Declares

Reserved.

Also see extension:
SPV_NV _linear_swept_spheres

Reserved.

Also see extension:
SPV_NV_linear_swept_spheres

Reserved.

Also see extension:
SPV_NV_cooperative_matrix2

Reserved.

Also see extension:
SPV_NV_cooperative_matrix2

Reserved.

Also see extension:
SPV_NV_cooperative_matrix2

Reserved.

Also see extension:
SPV_NV_cooperative_matrix2

Reserved.

Also see extension:
SPV_NV_cooperative_matrix2

Reserved.

Also see extension:
SPV_NV_cooperative_vector

RayTracingKHR
Reserved.

Also see extension:
SPV_NV_cluster_acceleration_structure

Reserved.

Also see extension:
SPV_NV_tensor_addressing

Reserved.

Also see extension: SPV_INTEL subgroups

145

https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_linear_swept_spheres.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_linear_swept_spheres.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cooperative_matrix2.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cooperative_matrix2.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cooperative_matrix2.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cooperative_matrix2.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cooperative_matrix2.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cooperative_vector.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_cluster_acceleration_structure.html
https://github.khronos.org/SPIRV-Registry/extensions/NV/SPV_NV_tensor_addressing.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_subgroups.html

5569

5570

5579

5582

5583

5584

5603

5604

5606

5612

5613

146

Capability
SubgroupBufferBlocklOINTEL

SubgrouplmageBlocklOINTEL

SubgrouplmageMediaBlockIOINTEL

RoundTolInfinityINTEL

FloatingPointModeINTEL

IntegerFunctions2INTEL

FunctionPointersINTEL

IndirectReferencesINTEL

AsmINTEL

AtomicFloat32MinMaxEXT

AtomicFloat64MinMaxEXT

Implicitly Declares

Reserved.

Also see extension: SPV_INTEL_subgroups

Reserved.

Also see extension: SPV_INTEL_subgroups

Reserved.

Also see extension:
SPV_INTEL_media_block_io

Reserved.

Also see extension:
SPV_INTEL_float _controls2

Reserved.

Also see extension:
SPV_INTEL_float_controls2

Reserved.

Also see extension:
SPV_INTEL_shader_integer_functions2

Reserved.

Also see extension:
SPV_INTEL_function_pointers

Reserved.

Also see extension:
SPV_INTEL_function_pointers

Reserved.

Also see extension:
SPV_INTEL_inline_assembly

Reserved.

Also see extension:
SPV_EXT shader_atomic_float_ min_max

Reserved.

Also see extension:
SPV_EXT_shader_atomic_float_min_max

https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_subgroups.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_subgroups.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_media_block_io.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_shader_integer_functions2.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_atomic_float_min_max.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_atomic_float_min_max.html

5616

5617

5619

5629

5696

5697

5698

5817

5821

5824

Capability
AtomicFloat16MinMaxEXT

VectorComputeINTEL

VectorAnyINTEL

ExpectAssumeKHR

SubgroupAvcMotionEstimationINTEL

SubgroupAvcMotionEstimationintraINTEL

SubgroupAvcMotionEstimationChromalNTEL

VariableLengthArrayINTEL

FunctionFloatControlINTEL

FPGAMemoryAttributesINTEL

Implicitly Declares

Reserved.

Also see extension:
SPV_EXT _shader_atomic_float_min_max

VectorAnyINTEL
Reserved.

Also see extension:
SPV_INTEL_vector_compute

Reserved.

Also see extension:
SPV_INTEL_vector_compute

Reserved.

Also see extension:
SPV_KHR_expect_assume

Reserved.

Also see extension:

SPV_INTEL_device_side_avc_motion_estim

ation

Reserved.

Also see extension:

SPV_INTEL_device_side_avc_motion_estim

ation

Reserved.

Also see extension:

SPV_INTEL_device_side_avc_motion_estim

ation

Reserved.

Also see extension:
SPV_INTEL_variable_length_array

Reserved.

Also see extension:
SPV_INTEL_float controls2

Reserved.

Also see extension:
SPV_INTEL_fpga _memory_attributes

147

https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_atomic_float_min_max.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_expect_assume.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_device_side_avc_motion_estimation.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_device_side_avc_motion_estimation.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_device_side_avc_motion_estimation.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_device_side_avc_motion_estimation.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_device_side_avc_motion_estimation.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_device_side_avc_motion_estimation.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_attributes.html

5837

5844

5845

5886

5888

5892

5897

5898

5904

5906

5908

148

Capability
FPFastMathModelNTEL

ArbitraryPrecisionintegersINTEL

ArbitraryPrecisionFloatingPointINTEL

UnstructuredLoopControlsINTEL

FPGALoopControlsINTEL

KernelAttributesINTEL

FPGAKernelAttributesINTEL

FPGAMemoryAccessesINTEL

FPGACIusterAttributesINTEL

LoopFuseINTEL

FPGADSPControlINTEL

Implicitly Declares

Kernel
Reserved.

Also see extension:
SPV_INTEL_fp_fast_math_mode

Reserved.

Also see extension:
SPV_INTEL_arbitrary_precision_integers

Reserved.

Also see extension:
SPV_INTEL_arbitrary_precision_floating_po
int

Reserved.

Also see extension:
SPV_INTEL_unstructured_loop_controls

Reserved.

Also see extension:
SPV_INTEL_fpga_loop_controls

Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

Reserved.

Also see extension:
SPV_INTEL_fpga _memory_accesses

Reserved.

Also see extension:
SPV_INTEL_fpga cluster_attributes

Reserved.

Also see extension: SPV_INTEL_loop_fuse

Reserved.

Also see extension:
SPV_INTEL_fpga dsp_control

https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fp_fast_math_mode.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_arbitrary_precision_integers.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_arbitrary_precision_floating_point.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_arbitrary_precision_floating_point.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_unstructured_loop_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_loop_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_kernel_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_kernel_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_memory_accesses.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_cluster_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_loop_fuse.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_dsp_control.html

5910

5916

5920

5922

5935

5939

5943

5945

5948

6016

6017

Capability Implicitly Declares

MemoryAccessAliasingINTEL Reserved.
Also see extension:
SPV_INTEL_memory_access_aliasing
FPGAInvocationPipeliningAttributesINTEL Reserved.
Also see extension:
SPV_INTEL_fpga_invocation_pipelining_attr
ibutes
FPGABufferLocationINTEL Reserved.
Also see extension:
SPV_INTEL_fpga_buffer_location
ArbitraryPrecisionFixedPointINTEL Reserved.
Also see extension:
SPV_INTEL_arbitrary_precision_fixed_point
USMStorageClassesINTEL Reserved.
Also see extension:
SPV_INTEL_usm_storage_classes
RuntimeAlignedAttributeINTEL Reserved.
Also see extension:
SPV_INTEL_runtime_aligned
IOPipesINTEL Reserved.
Also see extension: SPV_INTEL io_pipes
BlockingPipesINTEL Reserved.
Also see extension:
SPV_INTEL_blocking_pipes
FPGARegINTEL Reserved.
Also see extension: SPV_INTEL fpga reg
DotProductinputAll (DotProductinputAlIKHR) Missing before version 1.6.
Uses vector of any integer type as input to the dot
product instructions Also see extension:
SPV_KHR_integer_dot_product
DotProductinput4x8Bit Int8
(DotProductinput4x8BitKHR)
Uses vectors of four components of 8-bit integer Missing before version 1.6.

type as inputs to the dot product instructions
Also see extension:
SPV_KHR_integer_dot_product

149

https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_invocation_pipelining_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_invocation_pipelining_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_buffer_location.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_arbitrary_precision_fixed_point.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_usm_storage_classes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_runtime_aligned.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_io_pipes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_blocking_pipes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_reg.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_integer_dot_product.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_integer_dot_product.html

Capability Implicitly Declares

DotProductinput4x8BitPacked Missing before version 1.6.
(DotProductinput4x8BitPackedKHR)

6018 Uses 32-bit integer scalars packing 4-component Also see extension:
vectors of 8-hit integers as inputs to the dot SPV_KHR_integer_dot_product
product instructions

DotProduct (DotProductKHR) Missing before version 1.6.

Uses dot product instructions

6019 Also see extension:

SPV_KHR_integer_dot_product

RayCullMaskKHR Reserved.

6020
Also see extension: SPV_KHR_ray cull _mask

CooperativeMatrixKHR Reserved.

6022 Also see extension:

SPV_KHR_cooperative_matrix
ReplicatedCompositesEXT Reserved.

6024 Also see extension:

SPV_EXT replicated_composites
Bitinstructions Reserved.

6025 Also see extension:

SPV_KHR_bit_instructions

GroupNonUniformRotateKHR GroupNonUniform

Reserved.
6026

Also see extension:
SPV_KHR_subgroup_rotate

FloatControls2 Reserved.

6029 Also see extension:

SPV_KHR_float_controls2
AtomicFloat32AddEXT Reserved.

6033 Also see extension:

SPV_EXT_shader_atomic_float_add
AtomicFloat64AddEXT Reserved.

6034 Also see extension:

SPV_EXT shader_atomic_float_add
LongCompositesINTEL Reserved.

6089 Also see extension:

SPV_INTEL_long_composites

150

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_integer_dot_product.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_integer_dot_product.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_ray_cull_mask.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_cooperative_matrix.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_replicated_composites.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_bit_instructions.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_subgroup_rotate.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_float_controls2.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_atomic_float_add.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_atomic_float_add.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_long_composites.html

6094

6095

6114

6115

6141

6144

6150

6161

6162

6169

Capability
OptNoneEXT (OptNonelINTEL)

AtomicFloat16AddEXT

DebuginfoModuleINTEL

BFloatl6ConversionINTEL

SplitBarrierINTEL

ArithmeticFenceEXT

FPGACIusterAttributesV2INTEL

FPGAKernelAttributesv2INTEL

TaskSequencelNTEL

FPMaxErrorINTEL

Implicitly Declares

Reserved.

Also see extensions: SPV_EXT_optnone,
SPV_INTEL_optnone

Reserved.

Also see extension:
SPV_EXT shader_atomic_float16 add

Reserved.

Also see extension:
SPV_INTEL_debug_module

Reserved.

Also see extension:
SPV_INTEL_bfloatl6 conversion

Reserved.

Also see extension: SPV_INTEL_split_barrier

Reserved.

Also see extension:
SPV_EXT _arithmetic_fence

FPGACIusterAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_fpga_cluster_attributes

FPGAKernelAttributesINTEL
Reserved.

Also see extension:
SPV_INTEL_kernel_attributes

Reserved.

Also see extension:
SPV_INTEL task _sequence

Reserved.

Also see extension:
SPV_INTEL_fp_max_error

151

https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_optnone.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_shader_atomic_float16_add.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_bfloat16_conversion.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_split_barrier.html
https://github.khronos.org/SPIRV-Registry/extensions/EXT/SPV_EXT_arithmetic_fence.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_cluster_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_kernel_attributes.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_task_sequence.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fp_max_error.html

6171

6174

6187

6189

6220

6228

6229

6230

6236

6241

152

Capability
FPGALatencyControlINTEL

FPGAArgumentinterfacesINTEL

GlobalVariableHostAccessINTEL

GlobalVariableFPGADecorationsINTEL

SubgroupBufferPrefetchINTEL

Subgroup2DBIlockIOINTEL

Subgroup2DBlockTransformINTEL

Subgroup2DBlockTransposelNTEL

SubgroupMatrixMultiplyAccumulateINTEL

TernaryBitwiseFunctionINTEL

Implicitly Declares

Reserved.

Also see extension:
SPV_INTEL_fpga latency_control

Reserved.

Also see extension:
SPV_INTEL_fpga_argument_interfaces

Reserved.

Also see extension:
SPV_INTEL_global_variable_host_access

Reserved.

Also see extension:
SPV_INTEL_global_variable_fpga_decoratio
ns

Reserved.

Also see extension:
SPV_INTEL_subgroup_buffer_prefetch

Reserved.

Also see extension: SPV_INTEL_2d_block_io

Subgroup2DBIlockIOINTEL
Reserved.

Also see extension: SPV_INTEL_2d_block _io

Subgroup2DBIlocklOINTEL
Reserved.

Also see extension: SPV _INTEL 2d block io

Reserved.

Also see extension:
SPV_INTEL_subgroup_matrix_multiply_acc
umulate

Reserved.

Also see extension:
SPV_INTEL_ternary_bitwise_function

https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_latency_control.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_fpga_argument_interfaces.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_global_variable_host_access.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_global_variable_fpga_decorations.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_global_variable_fpga_decorations.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_subgroup_buffer_prefetch.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_2d_block_io.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_2d_block_io.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_2d_block_io.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_subgroup_matrix_multiply_accumulate.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_subgroup_matrix_multiply_accumulate.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_ternary_bitwise_function.html

6245

6246

6400

6425

6427

6441

6460

6528

Capability
SpecConditionalINTEL

FunctionVariantsINTEL

GroupUniformArithmeticKHR

TensorFloat32RoundingINTEL

MaskedGatherScatterINTEL

CacheControlsINTEL

RegisterLimitsINTEL

BindlessimagesINTEL

3.2.31. Ray Flags

Implicitly Declares

Reserved.

Also see extension:
SPV_INTEL_function_variants

SpecConditionalINTEL
Reserved.

Also see extension:
SPV_INTEL_function_variants

Reserved.

Also see extension:
SPV_KHR_uniform_group_instructions

Reserved.

Also see extension:
SPV_INTEL tensor_float32 _conversion

Reserved.

Also see extension:
SPV_INTEL_masked_gather_scatter

Reserved.

Also see extension:
SPV_INTEL_cache_controls

Reserved.

Also see extension:
SPV_INTEL_maximum_registers

Reserved.

Also see extension:
SPV_INTEL_bindless_images

This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Ray Flags

0x0 None

OpaqueKHR

0Ox1

Enabling Capabilities

RayQueryKHR, RayTracingKHR

Reserved.

153

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_uniform_group_instructions.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_tensor_float32_conversion.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_masked_gather_scatter.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_cache_controls.html
https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_maximum_registers.html

Ray Flags Enabling Capabilities

NoOpaqueKHR RayQueryKHR, RayTracingKHR
0x2
Reserved.
TerminateOnFirstHitKHR RayQueryKHR, RayTracingKHR
0x4
Reserved.
SkipClosestHitShaderKHR RayQueryKHR, RayTracingKHR
0x8
Reserved.
CullBackFacingTrianglesKHR RayQueryKHR, RayTracingKHR
0x10
Reserved.
CullFrontFacingTrianglesKHR RayQueryKHR, RayTracingKHR
0x20
Reserved.
CullOpaqueKHR RayQueryKHR, RayTracingKHR
0x40
Reserved.
CullNoOpaqueKHR RayQueryKHR, RayTracingKHR
0x80
Reserved.
SkipTrianglesKHR (SkipBuiltinPrimitivesNV) RayTraversalPrimitiveCullingkKHR
0x100
Reserved.
SkipAABBsKHR RayTraversalPrimitiveCullingkK HR
0x200
Reserved.
ForceOpacityMicromap?2StateEXT RayTracingOpacityMicromapEXT
0x400
Reserved.
3.2.32. Ray Query Intersection
Ray Query Intersection Enabling Capabilities
RayQueryCandidatelntersectionKHR RayQueryKHR
0
Reserved.
RayQueryCommittedIntersectionKHR RayQueryKHR
1
Reserved.

3.2.33. Ray Query Committed Type

154

RayQueryCommittedIntersectionNoneKHR

RayQueryCommittedintersectionTriangleKHR

RayQueryCommittedIntersectionGeneratedKH

2 R

3.2.34. Ray Query Candidate Type

RayQueryCandidatelntersectionTriangleKHR

RayQueryCandidatelntersectionAABBKHR

Ray Query Committed Type

Ray Query Candidate Type

3.2.35. Fragment Shading Rate

This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

0x0

Ox1

0x2

0x4

0x8

Fragment Shading Rate

None

Vertical2Pixels

Vertical4Pixels

Horizontal2Pixels

Horizontal4Pixels

3.2.36. FP Denorm Mode

Floating point denormalized handling mode.

Enabling Capabilities

RayQueryKHR

Reserved.

RayQueryKHR

Reserved.

RayQueryKHR

Reserved.

Enabling Capabilities

RayQueryKHR

Reserved.

RayQueryKHR

Reserved.

Enabling Capabilities

FragmentShadingRateKHR

Reserved.

FragmentShadingRateKHR

Reserved.

FragmentShadingRateKHR

Reserved.

FragmentShadingRateKHR

Reserved.

155

FP Denorm Mode

Preserve

FlushToZero

3.2.37. FP Operation Mode

Floating point operation mode.

FP Operation Mode

IEEE

ALT

3.2.38. Quantization Mode

Quantization Mode

TRN
0
TRN_ZERO
1
RND
2
RND_ZERO
3
RND_INF
4
RND_MIN_INF
5
RND_CONV
6

156

Enabling Capabilities

FunctionFloatControlINTEL

Reserved.

FunctionFloatControlINTEL

Reserved.

Enabling Capabilities

FunctionFloatControlINTEL

Reserved.

FunctionFloatControlINTEL

Reserved.

Enabling Capabilities

ArbitraryPrecisionFixedPointINTEL

Reserved.

ArbitraryPrecisionFixedPointINTEL

Reserved.

ArbitraryPrecisionFixedPointINTEL

Reserved.

ArbitraryPrecisionFixedPointINTEL

Reserved.

ArbitraryPrecisionFixedPointINTEL

Reserved.

ArbitraryPrecisionFixedPointINTEL

Reserved.

ArbitraryPrecisionFixedPointINTEL

Reserved.

Quantization Mode

RND_CONV_ODD

3.2.39. Overflow Mode

Overflow Mode

WRAP
0

SAT
1

SAT_ZERO
2

SAT_SYM
3

3.2.40. Packed Vector Format
Used by:

* OpSDot

* OpUDot

* OpSUDot

* OpSDotAccSat
* OpUDotAccSat
* OpSUDotAccSat

Packed Vector Format

PackedVectorFormat4x8Bit

(PackedVectorFormat4x8BitKHR)

Interpret 32-bit scalar integer operands as vectors
0 of four 8-bit components. Vector components

follow byte significance order with the lowest-

numbered component stored in the least

significant byte.

3.2.41. Cooperative Matrix Operands

Enabling Capabilities

ArbitraryPrecisionFixedPointINTEL

Reserved.

Enabling Capabilities

ArbitraryPrecisionFixedPointINTEL

Reserved.

ArbitraryPrecisionFixedPointINTEL

Reserved.

ArbitraryPrecisionFixedPointINTEL

Reserved.

ArbitraryPrecisionFixedPointINTEL

Reserved.

Enabling Capabilities

Missing before version 1.6.

Also see extension:
SPV_KHR_integer_dot_product

This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpCooperativeMatrixMulAddKHR,
OpCooperativeVectorMatrixMulAddNV.

OpCooperativeVectorMatrixMulNV,

and

157

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_integer_dot_product.html

Cooperative Matrix Operands Enabling Capabilities

0x0 None

0Ox1 MatrixASignedComponentsKHR Reserved.
0x2 MatrixBSignedComponentsKHR Reserved.
0x4 MatrixCSignedComponentsKHR Reserved.
0x8 MatrixResultSignedComponentsKHR Reserved.
0x10 SaturatingAccumulationKHR Reserved.

3.2.42. Cooperative Matrix Layout

Cooperative Matrix Layout Enabling Capabilities
0 RowMajorKHR Reserved.
1 ColumnMajorKHR Reserved.
4202 RowBlockedInterleavedARM Reserved.
4203 ColumnBlockedInterleavedARM Reserved.

3.2.43. Cooperative Matrix Use

Cooperative Matrix Use Enabling Capabilities
0 MatrixAKHR Reserved.
1 MatrixBKHR Reserved.
2 MatrixAccumulatorKHR Reserved.

3.2.44. Cooperative Matrix Reduce Mode
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpCooperativeMatrixReduceNV.

Cooperative Matrix Reduce Mode Enabling Capabilities
0x0 None
0x1 Row Reserved.
0x2 Column Reserved.
0x4 2x2 Reserved.

3.2.45. Tensor Clamp Mode

Tensor Clamp Mode Enabling Capabilities

0 Undefined Reserved.

158

Tensor Clamp Mode Enabling Capabilities

1 Constant Reserved.
2 ClampToEdge Reserved.
3 Repeat Reserved.
4 RepeatMirrored Reserved.

3.2.46. Tensor Addressing Operands
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpCooperativeMatrixLoadTensorNV and OpCooperativeMatrixStoreTensorNV.

Tensor Addressing Operands Enabling Capabilities
0x0 None
TensorView CooperativeMatrixTensorAddressingNV
Ox1
Reserved.
DecodeFunc CooperativeMatrixBlockLoadsNV
0x2
Reserved.

3.2.47. Tensor Operands
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpTensorReadARM and OpTensorWriteARM.

Tensor Operands Enabling Capabilities
0x0 None
NontemporalARM TensorsARM
Ox1
Reserved.
OutOfBoundsValueARM TensorsARM
0x2
Reserved.
MakeElementAvailableARM TensorsARM
0x4
Reserved.
MakeElementVisibleARM TensorsARM
0x8
Reserved.
NonPrivateElementARM TensorsARM
0x10
Reserved.

159

3.2.48. Initialization Mode Qualifier

Initialization Mode Qualifier

InitOnDeviceReprogramINTEL

InitOnDeviceResetINTEL

3.2.49. Host Access Qualifier

Host Access Qualifier

NonelNTEL

ReadINTEL

WriteINTEL

ReadWriteINTEL

3.2.50. Load Cache Control

160

Load Cache Control

UncachedINTEL

CachedINTEL

StreamingINTEL

InvalidateAfterReadINTEL

ConstCachedINTEL

Enabling Capabilities

GlobalVariableFPGADecorationsINTEL

Reserved.

GlobalVariableFPGADecorationsINTEL

Reserved.

Enabling Capabilities

GlobalVariableHostAccessINTEL

Reserved.

GlobalVariableHostAccessINTEL

Reserved.

GlobalVariableHostAccessINTEL

Reserved.

GlobalVariableHostAccessINTEL

Reserved.

Enabling Capabilities

CacheControlsINTEL

Reserved.

CacheControlsINTEL

Reserved.

CacheControlsINTEL

Reserved.

CacheControlsINTEL

Reserved.

CacheControlsINTEL

Reserved.

3.2.51. Store Cache Control

Store Cache Control Enabling Capabilities
UncachedINTEL CacheControlsINTEL
0
Reserved.
WriteThroughINTEL CacheControlsINTEL
1
Reserved.
WriteBackINTEL CacheControlsINTEL
2
Reserved.
StreamingINTEL CacheControlsINTEL
3
Reserved.

3.2.52. Named Maximum Number of Registers

Named Maximum Number of Registers Enabling Capabilities
AutoINTEL RegisterLimitsINTEL
0
Reserved.

3.2.53. Matrix Multiply Accumulate Operands

This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpSubgroupMatrixMultiplyAccumulateINTEL.

Matrix Multiply Accumulate Operands Enabling Capabilities

0x0 None

Ox1 MatrixASignedComponentsINTEL Reserved.
0Ox2 MatrixBSignedComponentsINTEL Reserved.
0x4 MatrixCBFloat16INTEL Reserved.
0x8 MatrixResultBFloat16INTEL Reserved.
0x10 MatrixAPackedInt8INTEL Reserved.
0x20 MatrixBPackedInt8INTEL Reserved.
0x40 MatrixAPackedInt4INTEL Reserved.
0x80 MatrixBPackedInt4INTEL Reserved.
0x100 MatrixATF32INTEL Reserved.
0x200 MatrixBTF32INTEL Reserved.
ox400 MatrixAPackedFloat16INTEL Reserved.

161

Matrix Multiply Accumulate Operands Enabling Capabilities

0x800 MatrixBPackedFloat16INTEL Reserved.
0x1000 MatrixAPackedBFloat16INTEL Reserved.
0x2000 MatrixBPackedBFloat16INTEL Reserved.

3.2.54. Raw Access Chain Operands
This is a literal mask; it can be formed by combining the bits from multiple rows in the table below.

Used by OpRawAccessChainNV.

Raw Access Chain Operands Enabling Capabilities
0x0 None
RobustnessPerComponentNV RawAccessChainsNV
0x1
Reserved.
RobustnessPerElementNV RawAccessChainsNV
0x2
Reserved.

3.2.55. FP Encoding

Specifies an alternative floating point encoding.

The Width(s) column specifies the set of valid width the encoding operand can be used with. If no value is
provided, the valid widths for the operand are defined by the client API. Otherwise, the Width operand of
OpTypeFloat must match one the specified values.

Used by OpTypeFloat.

FP Encoding Width(s) Enabling Capabilities
0 BFloatl6KHR 16 BFloat1l6TypeKHR
Reserved.
4214 Float8E4AM3EXT 8 Float8EXT
Reserved.
4215 Float8E5SM2EXT 8 Float8EXT
Reserved.

3.2.56. Cooperative Vector Matrix Layout

Cooperative Vector Matrix Layout Enabling Capabilities

0 RowMajorNV Reserved.

162

1
2

3

Cooperative Vector Matrix Layout

ColumnMajorNV
InferencingOptimalNV

TrainingOptimalNV

Enabling Capabilities
Reserved.
Reserved.

Reserved.

3.2.57. Cooperative Vector Matrix Component Type

N

o ~N o O

10

1000
4910
00

1000
4910
01

1000
4910
02

1000
4910
03

Cooperative Vector Matrix Component Type

Float16NV
Float32NV
Float64NV
SignedInt8NV
SignedInt16NV
SignedInt32NV
SignedInt64NV
UnsignedInt8NV
UnsignedInt16NV
UnsignedInt32NV
UnsignedInt64NV

SignedInt8PackedNV

UnsignedInt8PackedNV

FloatEAM3NV

FloatESM2NV

Enabling Capabilities
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.
Reserved.

Reserved.

Reserved.

Reserved.

Reserved.

163

3.3. Instructions

Form for each instruction:

Opcode Name (name-alias, name-alias, ...) Capability
Enabling
Instruction description. Capabilities

(when needed)
Word Count is the high-order 16 bits of word 0O of the
instruction, holding its total WordCount. If the
instruction takes a variable number of operands, Word
Count also says "+ variable", after stating the minimum
size of the instruction.

Opcode is the low-order 16 bits of word O of the
instruction, holding its opcode enumerant.

Results, when present, are any Result <id> or Result
Type created by the instruction. Each Result <id> is
always 32 bits.

Operands, when present, are any literals, other
instruction’s Result <id>, etc., consumed by the
instruction. Each operand is always 32 bits.

Word Count Opcode Results Operands

3.3.1. Miscellaneous Instructions
OpNop

This has no semantic impact and can safely be removed from a
module.

1 0
OpUndef

Make an intermediate object whose value is undefined.

Result Type is the type of object to make. Result Type can be any type
except OpTypeVoid.

Each consumption of Result <id> yields an arbitrary, possibly different
bit pattern or abstract value resulting in possibly different concrete,
abstract, or opaque values.

& 1 <id> Result <id>
Result Type

164

OpSizeOf

Computes the run-time size of the type pointed to by Pointer

Result Type must be a 32-bit integer type scalar.

Pointer must point to a concrete type.

4 321 <id>
Result Type

OpCooperativeMatrixLengthKHR

Reserved.
4 4460 <id>

Result Type
OpAssumeTrueKHR
Reserved.
2 5630
OpExpectKHR
Reserved.
5 5631 <id>

Result Type

OpArithmeticFenceEXT
Reserved.
4 6145 <id>

Result Type

Capalbility:
Addresses

Missing before version
1.1.

Result <id> <id>
Pointer
Capability:
CooperativeMatrixKHR
Reserved.
Result <id> <id>
Type
Capability:
ExpectAssumeKHR
Reserved.
<id>
Condition
Capability:
ExpectAssumeKHR
Reserved.
Result <id> <id> <id>
Value ExpectedValue
Capability:
ArithmeticFenceEXT
Reserved.
Result <id> <id>
Target

165

3.3.2. Debug Instructions
OpSourceContinued

Continue specifying the Source text from the previous instruction.
This has no semantic impact and can safely be removed from a
module.

Continued Source is a continuation of the source text in the
previous Source.

The previous instruction must be an OpSource or an
OpSourceContinued instruction. As is true for all literal strings,
the previous instruction’s string was nul terminated. That
terminating nul from the previous instruction is not part of the
source text; the first character of Continued Source logically
immediately follows the last character of Source before its nul.

2 + variable 2 Literal

Continued Source

OpSource
Document what source language and text this module was
translated from. This has no semantic impact and can safely be

removed from a module.

Version is the version of the source language. It is an unsigned 32-
bit integer.

File is an OpString instruction and is the source-level file name.
Source is the text of the source-level file.

Each client API specifies what form the Version operand takes, per
source language.

3 + variable 3 Source Language Literal Optional
Version <id>
File

OpSourceExtension

Document an extension to the source language. This has no
semantic impact and can safely be removed from a module.

Extension is a string describing a source-language extension. Its
form is dependent on the how the source language describes
extensions.

2 + variable 4 Literal
Extension

166

Optional
Literal
Source

OpName

Assign a nhame string to another instruction’s Result <id>. This has no
semantic impact and can safely be removed from a module.

Target is the Result <id> to assign a name to. It can be the Result <id> of
any other instruction; a variable, function, type, intermediate result, etc.

Name is the string to assign.

3 + variable 5 <id> Literal
Target Name

OpMemberName

Assign a hame string to a member of a structure type. This has no semantic impact
and can safely be removed from a module.

Type is the <id> from an OpTypeStruct instruction.

Member is the number of the member to assign in the structure. The first member
is member 0, the next is member 1, ... Member is an unsigned 32-bit integer.

Name is the string to assign to the member.

4 + variable 6 <id> Literal Literal
Type Member Name

OpString

Assign a Result <id> to a string for use by other debug instructions (see
OpLine and OpSource). This has no semantic impact and can safely be
removed from a module. (Removal also requires removal of all instructions
referencing Result <id>.)

String is the string being assigned a Result <id>.

3 + variable 7 Result <id> Literal
String

167

OpLine

Add source-level location information. This has no semantic impact and can
safely be removed from a module.

This location information applies to the instructions physically following this
instruction, up to the first occurrence of any of the following: the next end of
block, the next OpLine instruction, or the next OpNoLine instruction.

File must be an OpString instruction and is the source-level file name.
Line is the source-level line number. Line is an unsigned 32-bit integer.

Column is the source-level column number. Column is an unsigned 32-bit
integer.

OpLine can generally immediately precede other instructions, with the
following exceptions:

- it may not be used until after the annotation instructions,
(see the Logical Layout section)

- must not be the last instruction in a block, which is defined to end with a
termination instruction

- if a branch merge instruction is used, the last OpLine in the block must be
before its merge instruction

4 8 <id> Literal
File Line

OpNoLine

Discontinue any source-level location information that might be active
from a previous OpLine instruction. This has no semantic impact and
can safely be removed from a module.

This instruction must only appear after the annotation instructions (see
the Logical Layout section). It must not be the last instruction in a
block, or the second-to-last instruction if the block has a merge
instruction. There is not a requirement that there is a preceding
OpLine instruction.

1 317

168

Literal
Column

OpModuleProcessed Missing before version 1.1.

Document a process that was applied to a module. This has no
semantic impact and can safely be removed from a module.

Process is a string describing a process and/or tool (processor)
that did the processing. Its form is dependent on the processor.

2 + variable 330 Literal
Process

169

3.3.3. Annotation Instructions
OpDecorate
Add a Decoration to another <id>.

Target is the <id> to decorate. It can potentially be any <id> that is a forward
reference. A set of decorations can be grouped together by having multiple
decoration instructions targeting the same OpDecorationGroup instruction.

This instruction is only valid if the Decoration operand is a decoration that takes no

Extra Operands, or takes Extra Operands that are not <id> operands.

3 + variable 71 <id> Decoration Literal, Literal, ...
Target See Decoration.

OpMemberDecorate
Add a Decoration to a member of a structure type.
Structure type is the <id> of a type from OpTypeStruct.

Member is the number of the member to decorate in the type. The
first member is member 0, the next is member 1, ...

Note: See OpDecorate for creating groups of decorations for
consumption by OpGroupMemberDecorate

4 + variable 72 <id> Literal Decoration Literal, Literal, ...
Structure Type Member See Decoration.

OpDecorationGroup

Deprecated (directly use non-group decoration
instructions instead).

A collector for Decorations from OpDecorate and
OpDecorateld instructions. All such decoration
instructions targeting this OpDecorationGroup
instruction must precede it. Subsequent
OpGroupDecorate and
OpGroupMemberDecorate instructions that
consume this instruction’s Result <id> will apply
these decorations to their targets.

2 73 Result <id>

170

OpGroupDecorate

Deprecated (directly use non-group decoration instructions instead).
Add a group of Decorations to another <id>.

Decoration Group is the <id> of an OpDecorationGroup instruction.
Targets is a list of <id>s to decorate with the groups of decorations. The

Targets list must not include the <id> of any OpDecorationGroup
instruction.

2 + variable 74 <id> <id>, <id>, ...

Decoration Group Targets

OpGroupMemberDecorate

Deprecated (directly use non-group decoration instructions instead).

Add a group of Decorations to members of structure types.

Decoration Group is the <id> of an OpDecorationGroup instruction.
Targets is a list of (<id>, Member) pairs to decorate with the groups of
decorations. Each <id> in the pair must be a target structure type, and the

associated Member is the number of the member to decorate in the type.
The first member is member 0, the next is member 1, ...

2 + variable 75 <id> <id> 1, literal 1, <id> 2,
Decoration Group literal 2, ...
Targets
OpDecorateld Missing before

version 1.2.

Add a Decoration to another <id>, using <id>s as Extra Operands.

Also see extension:
Target is the <id> to decorate. It can potentially be any <id> that is a forward SPV_GOOGLE_hlsl

reference. A set of decorations can be grouped together by having multiple _functionalityl

decoration instructions targeting the same OpDecorationGroup instruction.

This instruction is only valid if the Decoration operand is a decoration that takes
Extra Operands that are <id> operands. All such <id> Extra Operands must be
constant instructions or OpVariable instructions.

3 + variable 332 <id> Decoration <id>, <id>, ...
Target See Decoration.

171

https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_hlsl_functionality1.html
https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_hlsl_functionality1.html

OpDecorateString (OpDecorateStringGOOGLE) Missing before version 1.4.

Add a string Decoration to another <id>. Also see extensions:
SPV_GOOGLE_decorate_string,

Target is the <id> to decorate. It can potentially be any <id>thatisa SPV_GOOGLE_hlsl functionalityl

forward reference, except it must not be the <id> of an

OpDecorationGroup.

Decoration is a decoration that takes at least one Literal operand,
and has only Literal string operands.

4 + variable 5632 <id> Decoration Literal Optional Literals
Target See Decoration. | See Decoration.
OpMemberDecorateString (OpMemberDecorateStringGOOGLE) Missing before version 1.4.
Add a string Decoration to a member of a structure type. Also see extensions:
SPV_GOOGLE_decorate_str
Structure Type is the <id> of an OpTypeStruct. ing,

SPV_GOOGLE_hlsl_function
Member is the number of the member to decorate in the type. Memberis ality1
an unsigned 32-bit integer. The first member is member 0, the next is
member 1, ...

Decoration is a decoration that takes at least one Literal operand, and has
only Literal string operands.

5 + variable 5633 <id> Literal Decoration Literal Optional
Struct Type Member See Literals
Decoration. See
Decoration.

172

https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_decorate_string.html
https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_hlsl_functionality1.html
https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_decorate_string.html
https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_decorate_string.html
https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_hlsl_functionality1.html
https://github.khronos.org/SPIRV-Registry/extensions/GOOGLE/SPV_GOOGLE_hlsl_functionality1.html

3.3.4. Extension Instructions
OpExtension

Declare use of an extension to SPIR-V. This allows validation of
additional instructions, tokens, semantics, etc.

Name is the extension’s name string.

2 + variable 10 Literal
Name

OpExtinstimport

Import an extended set of instructions. It can be later referenced by the
Result <id>.

Name is the extended instruction-set’s name string. Before version 1.6, there
must be an external specification defining the semantics for this extended
instruction set. Starting with version 1.6, if Name starts with "NonSemantic.",
including the period that separates the namespace "NonSemantic" from the
rest of the name, it is encouraged for a specification to exist on the SPIR-V
Registry, but it is not required.

Starting with version 1.6, an extended instruction-set name which is prefixed
with "NonSemantic." is guaranteed to contain only non-semantic instructions,
and all OpExtiInst instructions referencing this set can be ignored. All
instructions within such a set must have only <id> operands; no literals.
When literals are needed, then the Result <id> from an OpConstant or
OpString instruction is referenced as appropriate. Result <id>s from these
non-semantic instruction-set instructions must be used only in other non-
semantic instructions.

See Extended Instruction Sets for more information.

3 + variable 11 Result <id> Literal
Name

173

OpExtinst

Execute an instruction in an imported set of extended instructions.

Result Type is defined, per Instruction, in the external specification for Set.
Set is the result of an OpExtInstimport instruction.

Instruction is the enumerant of the instruction to execute within Set. It is
an unsigned 32-bit integer. The semantics of the instruction are defined in

the external specification for Set.

Operand 1, ... are the operands to the extended instruction.

5 + variable 12 <id> Result <id> <id>
Result Type Set

OpExtinstWithForwardRefsKHR

Reserved.

5 + variable 4433 <id> Result <id> <id>
Result Type Set

OpConditionalExtensionINTEL

Reserved.

3 + variable 6248 <id>
Condition

174

Literal <id>, <id>, ...
Instruction Operand 1,

Operand 2, ...
Reserved.

Also see extension:
SPV_KHR_relaxed_extended
_instruction

Literal <id>, <id>, ...
Instruction Operand 1,
Operand 2, ...
Capability:

SpecConditionalINTEL

Reserved.

Literal
Name

https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_relaxed_extended_instruction.html
https://github.khronos.org/SPIRV-Registry/extensions/KHR/SPV_KHR_relaxed_extended_instruction.html

3.3.5. Mode-Setting Instructions

OpMemoryModel

Set addressing model and memory model for the entire module.
Addressing Model selects the module’s Addressing Model.

Memory Model selects the module’s memory model, see Memory
Model.

3 14 Addressing Model Memory Model

OpEntryPoint
Declare an entry point, its execution model, and its interface.

Execution Model is the execution model for the entry point and its
static call tree. See Execution Model.

Entry Point must be the Result <id> of an OpFunction instruction.

Name is a name string for the entry point. A module must not have
two OpEntryPoint instructions with the same Execution Model and
the same Name string.

Interface is a list of <id> of global OpVariable instructions. These
declare the set of global variables from a module that form the
interface of this entry point. The set of Interface <id> must be equal
to or a superset of the global OpVariable Result <id> referenced by
the entry point’s static call tree, within the interface’s storage
classes. Before version 1.4, the interface’s storage classes are
limited to the Input and Output storage classes. Starting with
version 1.4, the interface’s storage classes are all storage classes
used in declaring all global variables referenced by the entry point’s
call tree.

Interface <id> are forward references. Before version 1.4,
duplication of these <id> is tolerated. Starting with version 1.4, an
<id> must not appear more than once.

4 + variable 15 Execution Model <id> Literal
Entry Point Name

<id>, <id>, ...

Interface

175

OpExecutionMode

Declare an execution mode for an entry point.

Entry Point must be the Entry Point <id> operand of an OpEntryPoint instruction.
Mode is the execution mode. See Execution Mode.

This instruction is only valid if the Mode operand is an execution mode that takes
no Extra Operands, or takes Extra Operands that are not <id> operands.

3 + variable 16 <id> Execution Mode Literal, Literal, ...
Entry Point Mode See Execution Mode

OpCapability

Declare a capability used by this module.
Capability is the capability declared by this
instruction. There are no restrictions on the order in

which capabilities are declared.

See the capabilities section for more detail.

2 17 Capability
Capability
OpExecutionModeld Missing before
version 1.2.
Declare an execution mode for an entry point, using <id>s as Extra Operands.
Entry Point must be the Entry Point <id> operand of an OpEntryPoint instruction.
Mode is the execution mode. See Execution Mode.
This instruction is only valid if the Mode operand is an execution mode that takes
Extra Operands that are <id> operands.
3 + variable 331 <id> Execution Mode <id>, <id>, ...
Entry Point Mode See Execution Mode
OpConditionalEntryPointINTEL Capability:
SpecConditionalINTEL
Reserved.
Reserved.
5 + variable 6249 <id> Execution <id> Literal <id>, <id>, ...
Condition Model Entry Point Name Interface

176

OpConditionalCapabilityINTEL

Reserved.

6250

<id>
Condition

Capability:
SpecConditionalINTEL

Reserved.

Capability
Capability

177

3.3.6. Type-Declaration Instructions
OpTypeVoid

Declare the void type.

2 19

OpTypeBool

Declare the Boolean type. Values of this type can
only be either true or false. There is no physical
size or bit pattern defined for these values. If they
are stored (in conjunction with OpVariable), they
must only be used with logical addressing
operations, not physical, and only with non-
externally visible shader storage classes:
UniformConstant, Workgroup, CrossWorkgroup,
Private, Function, Input, and Output.

2 20

OpTypelnt

Declare a new integer type.

Result <id>

Result <id>

Width specifies how many bits wide the type is. Width is an unsigned 32-bit
integer. The bit pattern of a signed integer value is two’s complement.

Signedness specifies whether there are signed semantics to preserve or

validate.
0 indicates unsigned, or no signedness semantics
1 indicates signed semantics.

In all cases, the type of operation of an instruction comes from the instruction’s

opcode, not the signedness of the operands.

4 21 Result <id>

178

Literal Literal
Width Signedness

OpTypeFloat
Declare a new floating-point type.

Width specifies how many bits wide the type is. Width is an unsigned 32-bit integer.

Floating Point Encoding specifies the bit pattern of values.

Unless Floating Point Encoding is present, the bit pattern of a floating-point value is
the binary format described by the IEEE 754 encoding for the specified Width.

3 + variable 22 Result <id> Literal Optional
Width FP Encoding
Floating Point
Encoding
OpTypeVector

Declare a new vector type.

Component Type is the type of each component in the resulting type. It must be
a scalar type.

Component Count is the number of components in the resulting type.
Component Count is an unsigned 32-bit integer. It must be at least 2.

Components are numbered consecutively, starting with 0.

4 23 Result <id> <id> Literal
Component Type Component Count
OpTypeMatrix Capability:
Matrix

Declare a new matrix type.
Column Type is the type of each column in the matrix. It must be vector type.

Column Count is the number of columns in the new matrix type. Column Count
is an unsigned 32-bit integer. It must be at least 2.

Matrix columns are numbered consecutively, starting with 0. This is true
independently of any Decorations describing the memory layout of a matrix
(e.g., RowMajor or MatrixStride).

4 24 Result <id> <id> Literal
Column Type Column Count

179

OpTypelmage

Declare a new image type. Consumed, for example, by
OpTypeSampledimage. This type is opaque: values of this type have no
defined physical size or bit pattern.

Sampled Type is the type of the components that result from sampling or
reading from this image type. Must be a scalar numerical type or
OpTypeVoid.

Dim is the image dimensionality (Dim).
All the following literals are integers taking one operand each.

Depth is whether or not this image is a depth image. (Note that whether or
not depth comparisons are actually done is a property of the sampling
opcode, not of this type declaration.)

0 indicates not a depth image

1 indicates a depth image

2 means no indication as to whether this is a depth or non-depth image

Arrayed must be one of the following indicated values:
0 indicates non-arrayed content
1 indicates arrayed content

MS must be one of the following indicated values:
0 indicates single-sampled content
1 indicates multisampled content

Sampled indicates whether or not this image is accessed in combination
with a sampler, and must be one of the following values:

0 indicates this is only known at run time, not at compile time

1 indicates an image compatible with sampling operations

2 indicates an image compatible with read/write operations (a storage or
subpass data image).

Image Format is the Image Format, which can be Unknown, as specified
by the client API.

If Dim is SubpassData, Sampled must be 2, Image Format must be
Unknown, and the Execution Model must be Fragment.

Access Qualifier is an image Access Qualifier.

9+ 25 Result <id> Dim Literal Literal Literal Literal Image
variable <id> Sampled Depth Arrayed MS Sampled Format
Type

180

Optional
Access
Quialifier

OpTypeSampler

Declare the sampler type. Consumed by
OpSampledimage. This type is opaque: values of
this type have no defined physical size or bit pattern.

2 26 Result <id>

OpTypeSampledimage

Declare a sampled image type, the Result Type of OpSampledimage,
or an externally combined sampler and image. This type is opaque:
values of this type have no defined physical size or bit pattern.

Image Type must be an OpTypelmage. It is the type of the image in
the combined sampler and image type. It must not have a Dim of
SubpassData. Additionally, starting with version 1.6, it must not have
a Dim of Buffer.

3 27 Result <id> <id>
Image Type

OpTypeArray

Declare a new array type.

Element Type is the type of each element in the array.

Length is the number of elements in the array. It must be at least 1. Length
must come from a constant instruction of an integer-type scalar whose value is

at least 1.

Array elements are numbered consecutively, starting with O.

4 28 Result <id> <id> <id>
Element Type Length
OpTypeRuntimeArray Capability:
Shader

Declare a new run-time array type. Its length is not known at compile
time.

Ifin a OpTypeStruct, it must have the largest Offset decoration of all
members in the structure.

Element Type is the type of each element in the array.

See OpArrayLength for getting the Length of an array of this type.

3 29 Result <id> <id>
Element Type

181

OpTypeStruct

Declare a new structure type.

Member N type is the type of member N of the structure. The first member is
member 0, the next is member 1, ... Itis valid for the structure to have no

members.

If an operand is not yet defined, it must be defined by an OpTypePointer,
where the type pointed to is an OpTypeStruct.

2 + variable 30 Result <id> <id>, <id>, ...
Member O type, member 1
type, ...

OpTypeOpaque Capability:
Kernel

Declare a structure type with no body specified.

3 + variable &l Result <id> Literal
The name of the opaque

type.

OpTypePointer
Declare a new pointer type.

Storage Class is the Storage Class of the memory holding the object pointed
to. If there was a forward reference to this type from an
OpTypeForwardPointer, the Storage Class of that instruction must equal the
Storage Class of this instruction.

Type is the type of the object pointed to.
4 32 Result <id> Storage Class <id>
Type

OpTypeFunction
Declare a new function type.
OpFunction uses this to declare the return type and parameter types of a function.

Return Type is the type of the return value of functions of this type. It must be a
concrete or abstract type, or a pointer to such a type. If the function has no return
value, Return Type must be OpTypeVoid.

Parameter N Type is the type <id> of the type of parameter N. It must not be
OpTypeVoid

3 + variable 33 Result <id> <id> <id>, <id>, ...
Return Type Parameter 0 Type,
Parameter 1 Type, ...

182

OpTypeEvent

Declare an OpenCL event type.

2 34

OpTypeDeviceEvent

Declare an OpenCL device-side event type.

2 35

OpTypeReserveld

Declare an OpenCL reservation id type.
2 36

OpTypeQueue

Declare an OpenCL queue type.

Capability:
Kernel

Result <id>

Capability:
DeviceEnqueue

Result <id>

Capability:
Pipes

Result <id>

Capability:
DeviceEnqueue

2 37 Result <id>

OpTypePipe Capability:
Pipes

Declare an OpenCL pipe type.

Qualifier is the pipe access qualifier.

3 38 Result <id> Access Qualifier
Qualifier

OpTypeForwardPointer Capability:
Addresses,

Declare the storage class for a forward reference to a pointer. PhysicalStorageBufferAddresse
S

Pointer Type is a forward reference to the result of an OpTypePointer.
That OpTypePointer instruction must declare Pointer Type to be a

pointer to an OpTypeStruct. Any consumption of Pointer Type before
its OpTypePointer declaration must be a type-declaration instruction.

Storage Class is the Storage Class of the memory holding the object

pointed to.

3 39 <id>

Pointer Type

Storage Class

183

OpTypePipeStorage Capability:
PipeStorage
Declare the OpenCL pipe-storage type.
Missing before version 1.1.

2 322 Result <id>

OpTypeNamedBarrier Capability:
NamedBarrier
Declare the named-barrier type.
Missing before version 1.1.

2 327 Result <id>
OpTypeTensorARM Capability:
TensorsARM
Reserved.
Reserved.
3 + variable 4163 Result <id> <id> Optional Optional
Element Type <id> <id>
Rank Shape
OpTypeGraphARM Capability:
GraphARM
Reserved.
Reserved.
3 + variable 4190 Result <id> Literal <id>, <id>, ...
Numlnputs InOutTypes
OpTypeUntypedPointerKHR Capability:
UntypedPointersKkHR
Reserved.
Reserved.
3 4417 Result <id> Storage Class
OpTypeCooperativeMatrixKHR Capability:
CooperativeMatrixKHR
Reserved.
Reserved.
7 4456 Result <id> <id> Scope <id> <id> <id> <id>
Component Scope Rows Columns Use
Type
OpTypeRayQueryKHR Capability:
RayQueryKHR
Reserved.
Reserved.
2 4472 Result <id>

184

OpTypeHitObjectNV

Reserved.

2 5281

OpTypeCooperativeVectorNV

Reserved.

4 5288 Result <id>

OpTypeAccelerationStructureKHR
(OpTypeAccelerationStructureNV)

Reserved.

2 5341

OpTypeCooperativeMatrixNV

Component
Type

Reserved.

6 5358 Result <id> <id>
OpTypeTensorLayoutNV

Reserved.

4 5370 Result <id>
OpTypeTensorViewNV

Reserved.

4 + variable 5371

Result <id>

Capability:

ShaderlnvocationReorderNV

Reserved.

Result <id>
Capability:
CooperativeVectorNV
Reserved.

<id> <id>

Component Type Component Count

Capability:

RayTracingNV, RayTracingKHR, RayQueryKHR,
DisplacementMicromapNV

Reserved.

Result <id>

Scope <id>
Execution

<id>
Dim

<id>
Dim

Capability:
CooperativeMatrixNV

Reserved.

<id> <id>

Rows Columns
Capability:

TensorAddressingNV

Reserved.
<id>

ClampMode

Capability:
TensorAddressingNV

Reserved.

<id> <id>, <id>, ...
HasDimensions p

185

OpTypeBufferSurfacelNTEL

Reserved.

3 6086 Result <id>
OpTypeStructContinuedINTEL

Reserved.

1 + variable 6090

OpTypeTaskSequencelNTEL

Reserved.

2 6199

186

Capability:

Capability:
VectorComputelNTEL

Reserved.

Access Qualifier
AccessQualifier

Capability:
LongCompositesINTEL

Reserved.

<id>, <id>, ...

Member 0 type, member 1 type, ...

TaskSequencelNTEL

Reserved.

Result <id>

3.3.7. Constant-Creation Instructions
OpConstantTrue
Declare a true Boolean-type scalar constant.

Result Type must be the scalar Boolean type.

& 41 <id> Result <id>
Result Type

OpConstantFalse
Declare a false Boolean-type scalar constant.

Result Type must be the scalar Boolean type.

3 42 <id> Result <id>
Result Type

OpConstant
Declare a new integer-type or floating-point-type scalar constant.
Result Type must be a scalar integer type or floating-point type.

Value is the bit pattern for the constant. Types 32 bits wide or smaller take one
word. Larger types take multiple words, with low-order words appearing first.

4 + variable 43 <id> Result <id> Literal
Result Type Value

OpConstantComposite
Declare a new composite constant.

Result Type must be a composite type, whose top-level
members/elements/components/columns have the same type as the types of the
Constituents. The ordering must be the same between the top-level types in Result
Type and the Constituents.

Constituents become members of a structure, or elements of an array, or
components of a vector, or columns of a matrix. There must be exactly one
Constituent for each top-level member/element/component/column of the result.
The Constituents must appear in the order needed by the definition of the Result
Type. The Constituents must all be <id>s of non-specialization constant-instruction
declarations or an OpUndef.

3 + variable 44 <id> Result <id> <id>, <id>, ...
Result Type Constituents

187

OpConstantSampler Capalbility:
LiteralSampler
Declare a new sampler constant.

Result Type must be OpTypeSampler.

Sampler Addressing Mode is the addressing mode; a literal from
Sampler Addressing Mode.

Param is a 32-bit integer and is one of:
0: Non Normalized

1: Normalized

Sampler Filter Mode is the filter mode; a literal from Sampler Filter

Mode.
6 45 <id> Result <id> Sampler Literal Sampler Filter
Result Type Addressing Param Mode
Mode
OpConstantNull

Declare a new null constant value.

The null value is type dependent, defined as follows:

- Scalar Boolean: false

- Scalar integer: 0

- Scalar floating point: +0.0 (all bits 0)

- All other scalars: Abstract

- Composites: Members are set recursively to the null constant
according to the null value of their constituent types.

Result Type must be one of the following types:
- Scalar or vector Boolean type

- Scalar or vector integer type

- Scalar or vector floating-point type

- Pointer type

- Event type

- Device side event type

- Reservation id type

- Queue type

- Composite type

3 46 <id> Result <id>
Result Type

188

OpSpecConstantTrue

Declare a Boolean-type scalar specialization constant with a default
value of true.

This instruction can be specialized to become either an
OpConstantTrue or OpConstantFalse instruction.

Result Type must be the scalar Boolean type.

See Specialization.

& 48 <id> Result <id>
Result Type

OpSpecConstantFalse

Declare a Boolean-type scalar specialization constant with a default
value of false.

This instruction can be specialized to become either an
OpConstantTrue or OpConstantFalse instruction.

Result Type must be the scalar Boolean type.

See Specialization.

3 49 <id> Result <id>
Result Type

OpSpecConstant

Declare a new integer-type or floating-point-type scalar specialization constant.
Result Type must be a scalar integer type or floating-point type.

Value is the bit pattern for the default value of the constant. Types 32 bits wide or
smaller take one word. Larger types take multiple words, with low-order words
appearing first.

This instruction can be specialized to become an OpConstant instruction.

See Specialization.

4 + variable 50 <id> Result <id> Literal
Result Type Value

189

OpSpecConstantComposite
Declare a new composite specialization constant.

Result Type must be a composite type, whose top-level
members/elements/components/columns have the same type as the types of the
Constituents. The ordering must be the same between the top-level types in Result
Type and the Constituents.

Constituents become members of a structure, or elements of an array, or
components of a vector, or columns of a matrix. There must be exactly one
Constituent for each top-level member/element/component/column of the result.
The Constituents must appear in the order needed by the definition of the type of
the result. The Constituents must be the <id> of other specialization constants,
constant declarations, or an OpUndef.

This instruction will be specialized to an OpConstantComposite instruction.

See Specialization.

3 + variable 51 <id> Result <id>
Result Type

190

<id>, <id>, ...
Constituents

OpSpecConstantOp

Declare a new specialization constant that results from doing an
operation.

Result Type must be the type required by the Result Type of
Opcode.

Opcode is an unsigned 32-bit integer. It must equal one of the
following opcodes.

OpSConvert, OpUConvert (missing before version 1.4),
OpFConvert

OpSNegate, OpNot, OplAdd, OpISub

OpIMul, OpUDiv, OpSDiv, OpUMod, OpSRem, OpSMod
OpShiftRightLogical, OpShiftRightArithmetic,
OpShiftLeftLogical

OpBitwiseOr, OpBitwiseXor, OpBitwiseAnd
OpVectorShuffle, OpCompositeExtract, OpCompositelnsert
OpLogicalOr, OpLogicalAnd, OpLogicalNot,
OpLogicalEqual, OpLogicalNotEqual

OpSelect

OplEqual, OpINotEqual

OpULessThan, OpSLessThan

OpUGreaterThan, OpSGreaterThan

OpULessThanEqual, OpSLessThanEqual
OpUGreaterThanEqual, OpSGreaterThanEqual

If the Shader capability was declared, OpQuantizeToF16 is also
valid.

If the Kernel capability was declared, the following opcodes are also
valid:

OpConvertFToS, OpConvertSToF

OpConvertFToU, OpConvertUToF

OpUConvert, OpConvertPtrToU, OpConvertUToPtr
OpGenericCastToPtr, OpPtrCastToGeneric, OpBitcast
OpFNegate, OpFAdd, OpFSub, OpFMul, OpFDiv, OpFRem,
OpFMod

OpAccessChain, OpIlnBoundsAccessChain

OpPtrAccessChain, OplnBoundsPtrAccessChain

Operands are the operands required by opcode, and satisfy the
semantics of opcode. In addition, all Operands that are <id>s must
be either:

- the <id>s of other constant instructions, or

- OpUndef, when allowed by opcode, or

- for the AccessChain named opcodes, their Base is allowed to be
a global (module scope) OpVariable instruction.

See Specialization.

4 + variable 52 <id> Result <id> Literal
Result Type Opcode

<id>, <id>, ...
Operands

191

OpConstantCompositeReplicateEXT

Reserved.

4 4461 <id>
Result Type

OpSpecConstantCompositeReplicateEXT

Reserved.

4 4462 <id>
Result Type

OpConstantCompositeContinuedINTEL

Reserved.

1 + variable 6091

OpSpecConstantCompositeContinuedINTEL

Reserved.

1 + variable 6092

OpSpecConstantTargetINTEL

Reserved.

4 + variable 6251 <id>
Result Type

OpSpecConstantArchitectureINTEL

Reserved.

7 6252 <id> Result <id>
Result Type

192

Category

Result <id>

Result <id>

Result <id>

Capalbility:
ReplicatedComposites
EXT

Reserved.

<id>
Value

Capability:
ReplicatedComposites
EXT

Reserved.

<id>
Value

Capability:
LongCompositesINTEL
Reserved.

<id>, <id>, ...
Constituents

Capability:
LongCompositesINTEL
Reserved.

<id>, <id>, ...
Constituents

Capability:
FunctionVariantsINTEL

Reserved.

Literal Literal, Literal, ...

Target Features
Capability:

FunctionVariantsINTEL

Reserved.
Literal Literal Literal
Family Opcode Architecture

OpSpecConstantCapabilitiesINTEL Capability:
FunctionVariantsIN

Reserved. TEL
Reserved.
3 + variable 6253 <id> Result <id> Optional
Result Type Capability
Capabilities

193

3.3.8. Memory Instructions
OpVariable

Allocate an object in memory, resulting in a pointer to it, which can
be used with OpLoad and OpStore.

Result Type must be an OpTypePointer. Its Type operand is the
type of object in memory.

Storage Class is the Storage Class of the memory holding the
object. It must not be Generic. It must be the same as the Storage
Class operand of the Result Type. If Storage Class is Function, the
memory is allocated on execution of the instruction for the current
invocation for each dynamic instance of the function. The current
invocation’s memory is deallocated when it executes any function
termination instruction of the dynamic instance of the function it was
allocated by.

Initializer is optional. If Initializer is present, it will be the initial value
of the variable’s memory content. Initializer must be an <id> from a
constant instruction or a global (module scope) OpVariable
instruction. Initializer must have the same type as the type pointed
to by Result Type.

4 + variable 59 <id> Result <id> Storage Class
Result Type

194

Optional
<id>
Initializer

OplmageTexelPointer

Form a pointer to a texel of an image. Use of such a pointer is limited
to atomic operations.

Result Type must be an OpTypePointer whose Storage Class
operand is Image. Its Type operand must be a scalar numerical type
or OpTypeVoid.

Image must have a type of OpTypePointer with Type OpTypelmage.
The Sampled Type of the type of Image must be the same as the Type
pointed to by Result Type. The Dim operand of Type must not be
SubpassData.

Coordinate and Sample specify which texel and sample within the
image to form a pointer to.

Coordinate must be a scalar or vector of integer type. It must have the
number of components specified below, given the following Arrayed
and Dim operands of the type of the OpTypelmage.

If Arrayed is O:

1D: scalar

2D: 2 components
3D: 3 components
Cube: 3 components
Rect: 2 components
Buffer: scalar

If Arrayed is 1:

1D: 2 components

2D: 3 components

Cube: 3 components; the face and layer combine into the 3rd
component, layer_face, such that face is layer_face % 6 and layer is
floor(layer_face / 6)

Sample must be an integer type scalar. It specifies which sample to
select at the given coordinate. Behavior is undefined unless it is a
valid <id> for the value 0 when the OpTypelmage has MS of 0.

6 60 <id> Result <id> <id> <id>
Result Type Image Coordinate

<id>
Sample

195

OpLoad
Load through a pointer.

Result Type is the type of the loaded object. It must be a type with
fixed size; i.e., it must not be, nor include, any
OpTypeRuntimeArray types.

Pointer is the pointer to load through. Its type must be an
OpTypePointer whose Type operand is the same as Result Type.

If present, any Memory Operands must begin with a memory
operand literal. If not present, it is the same as specifying the
memory operand None.

4 + variable 61 <id> Result <id> <id> Optional
Result Type Pointer Memory
Operands
OpStore

Store through a pointer.

Pointer is the pointer to store through. Its type must be an OpTypePointer whose
Type operand is the same as the type of Object.

Object is the object to store.

If present, any Memory Operands must begin with a memory operand literal. If not
present, it is the same as specifying the memory operand None.

3 + variable 62 <id> <id> Optional
Pointer Object Memory Operands

196

OpCopyMemory

Copy from the memory pointed to by Source to the memory pointed
to by Target. Both operands must be non-void pointers and having
the same <id> Type operand in their OpTypePointer type
declaration. Matching Storage Class is not required. The amount of
memory copied is the size of the type pointed to. The copied type
must have a fixed size; i.e., it must not be, nor include, any
OpTypeRuntimeArray types.

If present, any Memory Operands must begin with a memory
operand literal. If not present, it is the same as specifying the
memory operand None. Before version 1.4, at most one memory
operands mask can be provided. Starting with version 1.4 two
masks can be provided, as described in Memory Operands. If no
masks or only one mask is present, it applies to both Source and
Target. If two masks are present, the first applies to Target and must
not include MakePointerVisible, and the second applies to Source
and must not include MakePointerAvailable.

3 + variable 63 <id> <id> Optional Optional
Target Source Memory Memory
Operands Operands
OpCopyMemorySized Capability:
Addresses,

Copy from the memory pointed to by Source to the memory pointed to by UntypedPointersKHR
Target.

Size is the number of bytes to copy. It must have a scalar integer type. If it
is a constant instruction, the constant value must not be 0. It is invalid for

both the constant’s type to have Signedness of 1 and to have the sign bit

set. Otherwise, as a run-time value, Size is treated as unsigned, and if its
value is 0, no memory access is made.

If present, any Memory Operands must begin with a memory operand
literal. If not present, it is the same as specifying the memory operand
None. Before version 1.4, at most one memory operands mask can be
provided. Starting with version 1.4 two masks can be provided, as
described in Memory Operands. If no masks or only one mask is
present, it applies to both Source and Target. If two masks are present,
the first applies to Target and must not include MakePointerVisible, and
the second applies to Source and must not include
MakePointerAvailable.

4 + variable 64 <id> <id> <id> Optional Optional
Target Source Size Memory Memory
Operands Operands

197

OpAccessChain
Create a pointer into a composite object.

Result Type must be an OpTypePointer. Its Type operand must be
the type reached by walking the Base’s type hierarchy down to the
last provided index in Indexes, and its Storage Class operand must
be the same as the Storage Class of Base.

If Result Type is an array-element pointer that is decorated with
ArrayStride, its Array Stride must match the Array Stride of the
array’s type. If the array’s type is not decorated with ArrayStride,
Result Type also must not be decorated with ArrayStride.

Base must be a pointer, pointing to the base of a composite object.

Indexes walk the type hierarchy to the desired depth, potentially
down to scalar granularity. The first index in Indexes selects the top-
level member/element/component/column of the base composite. All
composite constituents use zero-based numbering, as described by
their OpType... instruction. The second index applies similarly to
that result, and so on. Once any non-composite type is reached,
there must be no remaining (unused) indexes.

Each index in Indexes

- must have a scalar integer type

- is treated as signed

- if indexing into a structure, must be an OpConstant whose value
is in bounds for selecting a member

- if indexing into a vector, array, or matrix, with the result type being
a logical pointer type, causes undefined behavior if not in bounds.

4 + variable 65 <id> Result <id> <id>
Result Type Base

OpInBoundsAccessChain

Has the same semantics as OpAccessChain, with the addition that
the resulting pointer is known to point within the base object.

4 + variable 66 <id> Result <id> <id>
Result Type Base

198

<id>, <id>, ...
Indexes

<id>, <id>, ...
Indexes

OpPtrAccessChain Capability:

Addresses, VariablePointers,
Has the same semantics as OpAccessChain, with the addition of the VariablePointersStorageBuff

Element operand. er,

PhysicalStorageBufferAddre

Base is treated as the address of an element in an array, and a new sses
element address is computed from Base and Element to become the
OpAccessChain Base to walk the type hierarchy as per

OpAccessChain. This computed Base has the same type as the

originating Base.

To compute the new element address, Element is treated as a signed
count of elements E, relative to the original Base element B, and the
address of element B + E is computed using enough precision to avoid
overflow and underflow. For objects in storage classes requiring explicit
layout, the element’s address or location is calculated using a stride,
which will be the Base-type’s Array Stride if the Base type is decorated
with ArrayStride. For all other objects, the implementation calculates the
element’s address or location.

With one exception, undefined behavior results when B + E is not an
element in the same array (same innermost array, if array types are
nested) as B. The exception being when B + E = L, where L is the length
of the array: the address computation for element L is done with the same
stride as any other B + E computation that stays within the array.

If the storage class of Base requires an explicit layout then its type must
be decorated with ArrayStride.

If Base points to a structure decorated with Block or BufferBlock and the
value of Element is not zero then behavior is undefined.

Note: If Base is typed to be a pointer to an array and the desired
operation is to select an element of that array, OpAccessChain should be
directly used, as its first Index selects the array element.

5 + variable 67 <id> Result <id> <id> <id>
Result Type Base Element

<id>, <id>, ...
Indexes

199

OpArrayLength Capability:
Shader

Length of a run-time array. The contents of the array are not

accessed.

Result Type must be an OpTypelnt with 32-bit Width and 0
Signedness.

Structure must be a logical pointer to an OpTypeStruct whose
last member is a run-time array.

Array member is an unsigned 32-bit integer index of the last
member of the structure that Structure points to. That
member’s type must be from OpTypeRuntimeArray.

5 68 <id> Result <id> <id>
Result Type Structure

OpGenericPtrMemSemantics

Result is a valid Memory Semantics which includes mask bits set for the
Storage Class for the specific (non-Generic) Storage Class of Pointer.

Pointer must point to Generic Storage Class.

Result Type must be an OpTypelnt with 32-bit Width and 0 Signedness.

4 69 <id> Result <id>
Result Type

OpInBoundsPtrAccessChain

Has the same semantics as OpPtrAccessChain, with the addition that
the resulting pointer is known to point within the base object.

5 + variable 70 <id> Result <id> <id>
Result Type Base

Literal
Array member

Capability:
Kernel

<id>
Pointer

Capability:
Addresses

<id> <id>, <id>, ...

Element Indexes

OpPtrEqual Missing before version 1.4.

Result is true if Operand 1 and Operand 2 have the same
value. Result is false if Operand 1 and Operand 2 have
different values.

Result Type must be a Boolean type scalar.

The types of Operand 1 and Operand 2 must be
OpTypePointer of the same type.

5 401 <id> Result <id> <id>
Result Type Operand 1

200

<id>
Operand 2

OpPtrNotEqual Missing before version 1.4.
Result is true if Operand 1 and Operand 2 have different

values. Result is false if Operand 1 and Operand 2 have the

same value.

Result Type must be a Boolean type scalar.

The types of Operand 1 and Operand 2 must be
OpTypePointer of the same type.

5 402 <id> Result <id> <id> <id>
Result Type Operand 1 Operand 2
OpPtrDiff Capability:

Addresses, VariablePointers,
Element-number subtraction: The number of elements to add VariablePointersStorageBuffer
to Operand 2 to get to Operand 1.

Missing before version 1.4.
Result Type must be an integer type scalar. It is computed as a
signed value, as negative differences are allowed,
independently of the signed bit in the type. The result equals
the low-order N bits of the correct result R, where R is
computed with enough precision to avoid overflow and
underflow and Result Type has a bitwidth of N bits.

The units of Result Type are a count of elements. l.e., the
same value you would use as the Element operand to
OpPtrAccessChain.

The types of Operand 1 and Operand 2 must be
OpTypePointer of exactly the same type, and point to a type
that can be aggregated into an array. For an array of length L,
Operand 1 and Operand 2 can point to any element in the
range [0, L], where element L is outside the array but has a
representative address computed with the same stride as
elements in the array. Additionally, Operand 1 must be a valid
Base operand of OpPtrAccessChain. Behavior is undefined if
Operand 1 and Operand 2 are not pointers to element numbers
in [0, L] in the same array.

5 403 <id> Result <id> <id> <id>
Result Type Operand 1 Operand 2
OpUntypedVariableKHR Capability:
UntypedPointersKHR
Reserved.
Reserved.
4 + variable 4418 <id> Result <id> Storage Class Optional Optional
Result Type <id> <id>

Data Type Initializer

OpUntypedAccessChainKHR

Reserved.
5 + variable 4419 <id> Result <id> <id>
Result Type Base Type
OpUntypedInBoundsAccessChainKHR
Reserved.
5 + variable 4420 <id> Result <id> <id>
Result Type Base Type
OpUntypedPtrAccessChainKHR
Reserved.
6 + variable 4423 <id> Result <id> <id> <id>
Result Type Base Type Base
OpUntypedInBoundsPtrAccessChainKHR
Reserved.
6 + variable 4424 <id> Result <id> <id> <id>
Result Type Base Type Base
OpUntypedArrayLengthKHR
Reserved.
6 4425 <id> Result <id> <id>
Result Type Structure
OpUntypedPrefetchKHR
Reserved.
3 + variable 4426 <id> <id> Optional
Pointer Type Num Bytes <id>
RW

202

Capability:
UntypedPointersKHR

Reserved.

<id> <id>, <id>, ...
Base Indexes
Capability:

UntypedPointersKHR

Reserved.

<id> <id>, <id>, ...

Base Indexes
Capability:

UntypedPointersKkHR

Reserved.
<id> <id>, <id>,
Element

Indexes
Capability:
UntypedPointersKkHR
Reserved.
<id> <id>, <id>,
Element

Indexes

Capability:

UntypedPointersKkHR

Reserved.

<id> Literal

Pointer Array member
Capability:

UntypedPointersKHR

Reserved.

Optional Optional
<id> <id>
Locality Cache Type

OpCooperativeMatrixLoadKHR

Capability:

CooperativeMatrixKHR

Reserved.
Reserved.
5 + variable 4457 <id> Result <id> <id> <id> Optional Optional
Result Type Pointer MemoryLay <id> Memory
out Stride Operands
Memory
Operand
OpCooperativeMatrixStoreKHR Capability:
CooperativeMatrixKHR
Reserved.
Reserved.
4 + variable 4458 <id> <id> <id> Optional Optional
Pointer Object MemoryLayout <id> Memory
Stride Operands
Memory
Operand
OpCooperativeVectorLoadNV Capability:
CooperativeVectorNV
Reserved.
Reserved.
5 + variable 5302 <id> Result <id> <id> <id> Optional
Result Type Pointer Offset Memory
Operands
OpCooperativeVectorStoreNV Capability:
CooperativeVectorNV
Reserved.
Reserved.
4 + variable 5303 <id> <id> <id> Optional
Pointer Offset Object Memory
Operands
OpCooperativeMatrixLoadTensorNV Capability:
CooperativeMatrixTens
Reserved. orAddressingNV
Reserved.
8 5367 <id> Result <id> <id> <id> <id> Memory Tensor
Result Type Pointer Object TensorLayo Operands Addressing
ut Memory Operands
Operand Tensor
Addressing
Operands

203

OpCooperativeMatrixStoreTensorNV

Reserved.

6 5368 <id> <id>
Pointer Object

OpRawAccessChainNV

Reserved.
7+ 5398 <id> Result
variable Result <id>

Type

OpMaskedGatherINTEL

Reserved.

7 6428 <id> Result <id>
Result Type

OpMaskedScatterINTEL

Reserved.

5 6429 <id>
InputVector

204

Capability:
CooperativeMatrixTensorAddre
ssingNV
Reserved.
<id> Memory Tensor
TensorLayout Operands Addressing
Memory Operands
Operand Tensor
Addressing
Operands
Capability:

<id>
Base

<id>
PtrVector

<id>
PtrVector

RawAccessChainsNV

Reserved.
<id> <id> <id> Optional
Byte stride Element Byte offset Raw
index Access
Chain
Operands
Capability:
MaskedGatherScatterINTE
L
Reserved.
Literal <id> <id>
Alignment Mask FillEmpty

Capability:
MaskedGatherScatterINTEL

Reserved.
Literal <id>
Alignment Mask

3.3.9. Function Instructions
OpFunction

Add a function. This instruction must be immediately followed
by one OpFunctionParameter instruction per each formal
parameter of this function. This function’s body or declaration
terminates with the next OpFunctionEnd instruction.

Result Type must be the same as the Return Type declared in
Function Type.

Function Type is the result of an OpTypeFunction, which
declares the types of the return value and parameters of the
function.

5 54 <id> Result <id> Function Control
Result Type

OpFunctionParameter
Declare a formal parameter of the current function.
Result Type is the type of the parameter.

This instruction must immediately follow an OpFunction or
OpFunctionParameter instruction. The order of contiguous
OpFunctionParameter instructions is the same order arguments are
listed in an OpFunctionCall instruction to this function. It is also the
same order in which Parameter Type operands are listed in the
OpTypeFunction of the Function Type operand for this function’s
OpFunction instruction.

3 55 <id> Result <id>

Result Type

OpFunctionEnd

Last instruction of a function.

1 56

<id>
Function Type

205

OpFunctionCall
Call a function.

Result Type is the type of the return value of the function. It must be
the same as the Return Type operand of the Function Type operand
of the Function operand.

Function is an OpFunction instruction. This could be a forward
reference.

Argument N is the object to copy to parameter N of Function.

Note: A forward call is possible because there is no missing type
information: Result Type must match the Return Type of the
function, and the calling argument types must match the formal
parameter types.

4 + variable 57 <id> Result <id> <id> <id>, <id>, ...
Result Type Function Argument O,
Argument 1, ...
OpCooperativeMatrixPerElementOpNV Capability:
CooperativeMatrixPerEleme
Reserved. ntOperationsNV
Reserved.
5 + variable 5369 <id> Result <id> <id> <id> <id>, <id>, ...
Result Type Matrix Func Operands

206

3.3.10. Image Instructions
OpSampledimage

Create a sampled image, containing both a sampler and an
image.

Result Type must be OpTypeSampledimage.

Image is an object whose type is an OpTypelmage, whose
Sampled operand is 0 or 1, and whose Dim operand is not
SubpassData. Additionally, starting with version 1.6, the Dim
operand must not be Buffer.

Sampler must be an object whose type is OpTypeSampler.

If the client API does not ignore Depth, the Image Type
operand of the Result Type must be the same as the type of
Image. Otherwise, the type of Image and the Image Type
operand of the Result Type must be two OpTypelmage with all
operands matching each other except for Depth which can be
different.

5 86 <id> Result <id> <id>
Result Type Image

<id>
Sampler

207

OplmageSamplelmplicitLod Capability:
Shader
Sample an image with an implicit level of detalil.

An invocation will not execute a dynamic instance of this instruction (X') until
all invocations in its derivative group have executed all dynamic instances that
are program-ordered before X'.

Result Type must be a vector of four components of floating-point type or
integer type. Its components must be the same as Sampled Type of the
underlying OpTypelmage (unless that underlying Sampled Type is
OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must not have a Dim of Buffer. The MS operand of the
underlying OpTypelmage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v]
... [, array layer]) as needed by the definition of Sampled Image. It may be a
vector larger than needed, but all unused components appear after all used

components.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

5 + variable 87 <id> Result <id> | <id> <id> Optional Optional
Result Type Sampled Coordinate Image <id>, <id>,
Image Operands

208

OplmageSampleExplicitLod
Sample an image using an explicit level of detalil.

Result Type must be a vector of four components of floating-point type or integer
type. Its components must be the same as Sampled Type of the underlying
OpTypelmage (unless that underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must not have a Dim of Buffer. The MS operand of the underlying
OpTypelmage must be 0.

Coordinate must be a scalar or vector of floating-point type or integer type. It
contains (u[, v] ... [, array layer]) as needed by the definition of Sampled Image.
Unless the Kernel capability is declared, it must be floating point. It may be a
vector larger than needed, but all unused components appear after all used
components.

Image Operands encodes what operands follow, as per Image Operands. Either
Lod or Grad image operands must be present.

7+ 88 <id> Result <id> <id> Image
variable Result <id> Sampled Coordinate Operands
Type Image

<id> Optional
<id>, <id>,

209

OplmageSampleDreflmplicitLod Capability:
Shader
Sample an image doing depth-comparison with an implicit level of detalil.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are
program-ordered before X'.

Result Type must be a scalar of integer type or floating-point type. It must be the
same as Sampled Type of the underlying OpTypelmage.

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must not have a Dim of Buffer. The MS operand of the underlying
OpTypelmage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] ... [,
array layer]) as needed by the definition of Sampled Image. It may be a vector
larger than needed, but all unused components appear after all used
components.

D, is the depth-comparison reference value. It must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

6 + 89 <id> Result <id> <id> <id> Optional ~ Optional
variable Result <id> Sampled Coordinate D, Image <id>, <id>,
Type Image Operands

210

OplmageSampleDrefExplicitLod Capability:
Shader

Sample an image doing depth-comparison using an explicit level of

detail.

Result Type must be a scalar of integer type or floating-point type. It
must be the same as Sampled Type of the underlying OpTypelmage.

Sampled Image must be an object whose type is
OpTypeSampledimage. Its OpTypelmage must not have a Dim of
Buffer. The MS operand of the underlying OpTypelmage must be O.

Coordinate must be a scalar or vector of floating-point type. It contains (
u[, v] ... [, array layer]) as needed by the definition of Sampled Image. It
may be a vector larger than needed, but all unused components appear
after all used components.

D is the depth-comparison reference value. It must be a 32-bit floating-
point type scalar.

Image Operands encodes what operands follow, as per Image
Operands. Either Lod or Grad image operands must be present.

8 + 90 <id> Result <id> <id> <id> Image <id>
variable Result <id> Sampled Coordinat D Operands
Type Image e

Optional
<id>,
<id>, ...

211

OplmageSampleProjimplicitLod Capability:
Shader
Sample an image with with a project coordinate and an implicit level of detail.

An invocation will not execute a dynamic instance of this instruction (X') until
all invocations in its derivative group have executed all dynamic instances that
are program-ordered before X'.

Result Type must be a vector of four components of floating-point type or
integer type. Its components must be the same as Sampled Type of the
underlying OpTypelmage (unless that underlying Sampled Type is
OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledimage.
The Dim operand of the underlying OpTypelmage must be 1D, 2D, 3D, or
Rect, and the Arrayed and MS operands must be 0.

Coordinate must be a vector of floating-point type. It contains (u[, v] [, wl, q),
as needed by the definition of Sampled Image, with the g component
consumed for the projective division. That is, the actual sample coordinate is
(u/q [, v/q] [, w/q]), as needed by the definition of Sampled Image. It may be a
vector larger than needed, but all unused components appear after all used
components.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

5+ variable 91 <id> Result <id> <id> <id> Optional Optional
Result Type Sampled Coordinate Image <id>, <id>,
Image Operands

212

OplmageSampleProjExplicitLod
Sample an image with a project coordinate using an explicit level of detail.

Result Type must be a vector of four components of floating-point type or integer
type. Its components must be the same as Sampled Type of the underlying
OpTypelmage (unless that underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledimage. The
Dim operand of the underlying OpTypelmage must be 1D, 2D, 3D, or Rect, and
the Arrayed and MS operands must be 0.

Coordinate must be a vector of floating-point type. It contains (u[, v] [, w], q), as
needed by the definition of Sampled Image, with the g component consumed for
the projective division. That is, the actual sample coordinate is (u/q [, v/q] [, w/q]),
as needed by the definition of Sampled Image. It may be a vector larger than
needed, but all unused components appear after all used components.

Image Operands encodes what operands follow, as per Image Operands. Either
Lod or Grad image operands must be present.

7+ 92 <id> Result <id> <id> Image
variable Result <id> Sampled Coordinate Operands
Type Image

Capability:
Shader

<id>

Optional
<id>, <id>,

213

OplmageSampleProjDreflmplicitLod Capability:
Shader

Sample an image with a project coordinate, doing depth-comparison, with an

implicit level of detail.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are
program-ordered before X'

Result Type must be a scalar of integer type or floating-point type. It must be the
same as Sampled Type of the underlying OpTypelmage.

Sampled Image must be an object whose type is OpTypeSampledimage. The
Dim operand of the underlying OpTypelmage must be 1D, 2D, 3D, or Rect, and
the Arrayed and MS operands must be 0.

Coordinate must be a vector of floating-point type. It contains (u[, v] [, w], q), as
needed by the definition of Sampled Image, with the g component consumed for
the projective division. That is, the actual sample coordinate is (u/q [, v/q] [, w/q]),
as needed by the definition of Sampled Image. It may be a vector larger than
needed, but all unused components appear after all used components.

D /q is the depth-comparison reference value. D,s must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

6 + 93 <id> Result <id> <id> <id> Optional
variable Result <id> Sampled Coordinate D, Image
Type Image Operands

214

Optional
<id>, <id>

OplmageSampleProjDrefExplicitLod Capability:
Shader

Sample an image with a project coordinate, doing depth-comparison,

using an explicit level of detail.

Result Type must be a scalar of integer type or floating-point type. It
must be the same as Sampled Type of the underlying OpTypelmage.

Sampled Image must be an object whose type is
OpTypeSampledimage. The Dim operand of the underlying
OpTypelmage must be 1D, 2D, 3D, or Rect, and the Arrayed and MS
operands must be 0.

Coordinate must be a vector of floating-point type. It contains (u[, v] [, w],
q), as needed by the definition of Sampled Image, with the g component
consumed for the projective division. That is, the actual sample
coordinate is (u/q [, v/q] [, w/q]), as needed by the definition of Sampled
Image. It may be a vector larger than needed, but all unused
components appear after all used components.

D /q is the depth-comparison reference value. D, must be a 32-bit
floating-point type scalar.

Image Operands encodes what operands follow, as per Image
Operands. Either Lod or Grad image operands must be present.

8+ 94 <id> Result <id> <id> <id> Image <id> Optional
variable Result <id> Sampled Coordinat Dy Operands <id>,
Type Image e <id>, ...

OplmageFetch

Fetch a single texel from an image whose Sampled operand is 1.

Result Type must be a vector of four components of floating-point type or
integer type. Its components must be the same as Sampled Type of the
underlying OpTypelmage (unless that underlying Sampled Type is
OpTypeVoid).

Image must be an object whose type is OpTypelmage. Its Dim operand must
not be Cube, and its Sampled operand must be 1.

Coordinate must be a scalar or vector of integer type. It contains (u[, v] ... [,
array layer]) as needed by the definition of Sampled Image.

Image Operands encodes what operands follow, as per Image Operands.

5 + variable 95 <id> Result <id> <id> <id> Optional Optional
Result Type Image Coordinate Image <id>, <id>,
Operands

215

OplmageGather Capability:

Shader
Gathers the requested component from four texels.

Result Type must be a vector of four components of floating-point type or integer
type. Its components must be the same as Sampled Type of the underlying
OpTypelmage (unless that underlying Sampled Type is OpTypeVoid). It has one
component per gathered texel.

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must have a Dim of 2D, Cube, or Rect. The MS operand of the
underlying OpTypelmage must be O.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] ... [,
array layer]) as needed by the definition of Sampled Image.

Component is the component number gathered from all four texels. It must be a
32-bit integer type scalar. Behavior is undefined if its value is not 0, 1, 2 or 3.

Image Operands encodes what operands follow, as per Image Operands.

6 + 96 <id> Result <id> <id> <id> Optional
variable Result <id> Sampled Coordinate Componen Image
Type Image t Operands

OplmageDrefGather Capability:

Shader
Gathers the requested depth-comparison from four texels.

Result Type must be a vector of four components of floating-point type or integer
type. Its components must be the same as Sampled Type of the underlying
OpTypelmage (unless that underlying Sampled Type is OpTypeVoid). It has one
component per gathered texel.

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must have a Dim of 2D, Cube, or Rect. The MS operand of the
underlying OpTypelmage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] ... [,
array layer]) as needed by the definition of Sampled Image.

D is the depth-comparison reference value. It must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

6 + 97 <id> Result <id> <id> <id> Optional
variable Result <id> Sampled Coordinate D, Image
Type Image Operands

216

Optional
<id>, <id>,

Optional
<id>, <id>,

OplmageRead
Read a texel from an image without a sampler.

Result Type must be a scalar or vector of floating-point type or integer type. It
must be a scalar or vector with component type the same as Sampled Type of
the OpTypelmage (unless that Sampled Type is OpTypeVoid).

Image must be an object whose type is OpTypelmage with a Sampled
operand of 0 or 2. If the Arrayed operand is 1, then additional capabilities may
be required; e.g., ImageCubeArray, or ImageMSArray.

Coordinate must be a scalar or vector of floating-point type or integer type. It
contains non-normalized texel coordinates (u[, v] ... [, array layer]) as needed
by the definition of Image. See the client API specification for handling of
coordinates outside the image.

If the Image Dim operand is SubpassData, Coordinate is relative to the
current fragment location. See the client API specification for more detail on
how these coordinates are applied.

If the Image Dim operand is not SubpassData, the Image Format must not be
Unknown, unless the StoragelmageReadWithoutFormat or Kernel

Capabilities were declared.

Image Operands encodes what operands follow, as per Image Operands.

5 + variable 98 <id> Result <id> | <id> <id> Optional Optional
Result Type Image Coordinate Image <id>, <id>
Operands

217

OplmageWrite
Write a texel to an image without a sampler.

Image must be an object whose type is OpTypelmage with a Sampled
operand of 0 or 2. If the Arrayed operand is 1, then additional capabilities
may be required; e.g., ImageCubeArray, or ImageMSArray. Its Dim
operand must not be SubpassData.

Coordinate must be a scalar or vector of floating-point type or integer
type. It contains non-normalized texel coordinates (u[, v] ... [, array layer])
as needed by the definition of Image. See the client API specification for
handling of coordinates outside the image.

Texel is the data to write. It must be a scalar or vector with component
type the same as Sampled Type of the OpTypelmage (unless that
Sampled Type is OpTypeVoid).

The Image Format must not be Unknown, unless the
StoragelmageWriteWithoutFormat or Kernel Capabilities were

declared.

Image Operands encodes what operands follow, as per Image Operands.

4 + variable 99 <id> <id> <id> Optional Optional
Image Coordinate Texel Image <id>, <id>, ...
Operands
Oplmage

Extract the image from a sampled image.
Result Type must be OpTypelmage.

Sampled Image must have type OpTypeSampledimage whose Image Type is
the same as Result Type.

4 100 <id> Result <id> <id>
Result Type Sampled Image
OplmageQueryFormat Capability:
Kernel

Query the image format of an image created with an Unknown Image Format.

Result Type must be a scalar integer type. The resulting value is an enumerant
from Image Channel Data Type.

Image must be an object whose type is OpTypelmage.

4 101 <id> Result <id> <id>
Result Type Image

218

OplmageQueryOrder Capability:
Kernel
Query the channel order of an image created with an Unknown Image Format.

Result Type must be a scalar integer type. The resulting value is an enumerant
from Image Channel Order.

Image must be an object whose type is OpTypelmage.

4 102 <id> Result <id> <id>
Result Type Image

OplmageQuerySizelLod Capability:

Kernel, ImageQuery
Query the dimensions of Image for mipmap level for Level of
Detail.

Result Type must be an integer type scalar or vector. The
number of components must be

1 for the 1D dimensionality,

2 for the 2D and Cube dimensionalities,

3 for the 3D dimensionality,

plus 1 more if the image type is arrayed. This vector is filled in
with (width [, height] [, depth] [, elements]) where elements is
the number of layers in an image array, or the number of cubes
in a cube-map array.

Image must be an object whose type is OpTypelmage. Its Dim
operand must be one of 1D, 2D, 3D, or Cube, and its MS must
be 0. See OplmageQuerySize for querying image types
without level of detail. See the client API specification for
additional image type restrictions.

Level of Detail is used to compute which mipmap level to query
and must be a 32-bit integer type scalar.

5 103 <id> Result <id> <id> <id>
Result Type Image Level of Detall

219

OplmageQuerySize Capability:
Kernel, ImageQuery
Query the dimensions of Image, with no level of detalil.

Result Type must be an integer type scalar or vector. The number of
components must be:

1 for the 1D and Buffer dimensionalities,

2 for the 2D, Cube, and Rect dimensionalities,

3 for the 3D dimensionality,

plus 1 more if the image type is arrayed. This vector is filled in with (width [,
height] [, elements]) where elements is the number of layers in an image array
or the number of cubes in a cube-map array.

Image must be an object whose type is OpTypelmage. Its Dim operand must
be one of those listed under Result Type, above. Additionally, if its Dim is 1D,
2D, 3D, or Cube, it must also have either an MS of 1 or a Sampled of O or 2.
There is no implicit level-of-detail consumed by this instruction. See
OplmageQuerySizelLod for querying images having level of detail. See the
client API specification for additional image type restrictions.

4 104 <id> Result <id> <id>
Result Type Image

220

OplmageQueryLod Capability:
ImageQuery

Query the mipmap level and the level of detail for a

hypothetical sampling of Image at Coordinate using an implicit

level of detail.

An invocation will not execute a dynamic instance of this
instruction (X") until all invocations in its derivative group have
executed all dynamic instances that are program-ordered
before X'.

Result Type must be a two-component floating-point type
vector.

The first component of the result contains the mipmap array
layer.

The second component of the result contains the implicit level
of detail relative to the base level.

Sampled Image must be an object whose type is
OpTypeSampledimage. Its OpTypelmage Dim operand must
be one of 1D, 2D, 3D, or Cube, and its MS must be O.

Coordinate must be a scalar or vector of floating-point type. It
contains (u[, v] ...) as needed by the definition of Sampled
Image, not including any array layer index.

This instruction is only valid in the Fragment Execution Model.
In addition, it consumes an implicit derivative that can be
affected by code motion.

5 105 <id> Result <id> <id> <id>
Result Type Sampled Image Coordinate

OplmageQueryLevels Capability:
Kernel, ImageQuery
Query the number of mipmap levels accessible through Image.

Result Type must be a scalar integer type. The result is the number of mipmap
levels,as specified by the client API.

Image must be an object whose type is OpTypelmage. Its Dim operand must
be one of 1D, 2D, 3D, or Cube, and its MS must be 0. See the client API
specification for additional image type restrictions.

4 106 <id> Result <id> <id>
Result Type Image

221

OplmageQuerySamples Capalbility:
Kernel, ImageQuery
Query the number of samples available per texel fetch in a multisample image.

Result Type must be a scalar integer type. The result is the number of samples.

Image must be an object whose type is OpTypelmage. Its Dim operand must
be one of 2D and MS of 1.

4 107 <id> Result <id> <id>
Result Type Image
OplmageSparseSamplelmplicitLod Capability:

SparseResidency
Sample a sparse image with an implicit level of detalil.

An invocation will not execute a dynamic instance of this instruction (X') until
all invocations in its derivative group have executed all dynamic instances that
are program-ordered before X'

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OplmageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its
components must be the same as Sampled Type of the underlying
OpTypelmage (unless that underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must not have a Dim of Buffer. The MS operand of the
underlying OpTypelmage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v]
... [, array layer]) as needed by the definition of Sampled Image. It may be a
vector larger than needed, but all unused components appear after all used

components.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

5 + variable 305 <id> Result <id> <id> <id> Optional Optional
Result Type Sampled Coordinate Image <id>, <id>,
Image Operands

222

OplmageSparseSampleExplicitLod
Sample a sparse image using an explicit level of detail.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OplmageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its components
must be the same as Sampled Type of the underlying OpTypelmage (unless that
underlying Sampled Type is OpTypeVoid).

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must not have a Dim of Buffer. The MS operand of the underlying
OpTypelmage must be 0.

Coordinate must be a scalar or vector of floating-point type or integer type. It
contains (u[, v] ... [, array layer]) as needed by the definition of Sampled Image.
Unless the Kernel capability is declared, it must be floating point. It may be a
vector larger than needed, but all unused components appear after all used
components.

Image Operands encodes what operands follow, as per Image Operands. Either
Lod or Grad image operands must be present.

7+ 306 <id> Result <id> <id> Image
variable Result <id> Sampled Coordinate Operands
Type Image

Capability:

SparseResidency

<id>

Optional
<id>, <id>,

223

OplmageSparseSampleDreflmplicitLod Capability:

SparseResidency

Sample a sparse image doing depth-comparison with an implicit level of detail.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are
program-ordered before X'.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OplmageSparseTexelsResident. The second member must be a
scalar of integer type or floating-point type. It must be the same as Sampled Type
of the underlying OpTypelmage.

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must not have a Dim of Buffer. The MS operand of the underlying
OpTypelmage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] ... [,
array layer]) as needed by the definition of Sampled Image. It may be a vector
larger than needed, but all unused components appear after all used
components.

D is the depth-comparison reference value. It must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

This instruction is only valid in the Fragment Execution Model. In addition, it
consumes an implicit derivative that can be affected by code motion.

6+ 307 <id> Result <id> <id> <id> Optional
variable Result <id> Sampled Coordinate Dy Image
Type Image Operands

224

Optional
<id>, <id>,

OplmageSparseSampleDrefExplicitLod Capability:
SparseResidency

Sample a sparse image doing depth-comparison using an explicit level of

detail.

Result Type must be an OpTypeStruct with two members. The first
member’s type must be an integer type scalar. It holds a Residency
Code that can be passed to OplmageSparseTexelsResident. The
second member must be a scalar of integer type or floating-point type. It
must be the same as Sampled Type of the underlying OpTypelmage.

Sampled Image must be an object whose type is
OpTypeSampledimage. Its OpTypelmage must not have a Dim of
Buffer. The MS operand of the underlying OpTypelmage must be 0.

Coordinate must be a scalar or vector of floating-point type. It contains (
uf, v] ... [, array layer]) as needed by the definition of Sampled Image. It
may be a vector larger than needed, but all unused components appear
after all used components.

D is the depth-comparison reference value. It must be a 32-bit floating-
point type scalar.

Image Operands encodes what operands follow, as per Image
Operands. Either Lod or Grad image operands must be present.

8+ 308 <id> Result <id> <id> <id> Image <id> Optional

variable Result <id> Sampled Coordinat Dy Operands <id>,
Type Image e <id>, ...

OplmageSparseFetch Capability:

SparseResidency
Fetch a single texel from a sampled sparse image whose Sampled operand is
1.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OplmageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its
components must be the same as Sampled Type of the underlying
OpTypelmage (unless that underlying Sampled Type is OpTypeVoid).

Image must be an object whose type is OpTypelmage. Its Dim operand must
not be Cube.

Coordinate must be a scalar or vector of integer type. It contains (u[, v] ... [,
array layer]) as needed by the definition of Sampled Image.

Image Operands encodes what operands follow, as per Image Operands.

5 + variable 313 <id> Result <id> <id> <id> Optional Optional
Result Type Image Coordinate Image <id>, <id>,
Operands

225

OplmageSparseGather Capability:
SparseResidency
Gathers the requested component from four texels of a sparse image.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OplmageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its components
must be the same as Sampled Type of the underlying OpTypelmage (unless that
underlying Sampled Type is OpTypeVoid). It has one component per gathered
texel.

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must have a Dim of 2D, Cube, or Rect.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] ... [,
array layer]) as needed by the definition of Sampled Image.

Component is the component number gathered from all four texels. It must be a
32-bit integer type scalar. Behavior is undefined if its value is not 0, 1, 2 or 3.

Image Operands encodes what operands follow, as per Image Operands.

6 + 314 <id> Result <id> <id> <id> Optional ~ Optional

variable Result <id> Sampled Coordinate Componen Image <id>, <id>,
Type Image t Operands

OplmageSparseDrefGather Capability:

SparseResidency
Gathers the requested depth-comparison from four texels of a sparse image.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OplmageSparseTexelsResident. The second member must be a
vector of four components of floating-point type or integer type. Its components
must be the same as Sampled Type of the underlying OpTypelmage (unless that
underlying Sampled Type is OpTypeVoid). It has one component per gathered
texel.

Sampled Image must be an object whose type is OpTypeSampledimage. Its
OpTypelmage must have a Dim of 2D, Cube, or Rect.

Coordinate must be a scalar or vector of floating-point type. It contains (u[, v] ... [,
array layer]) as needed by the definition of Sampled Image.

D is the depth-comparison reference value. It must be a 32-bit floating-point
type scalar.

Image Operands encodes what operands follow, as per Image Operands.

6+ 315 <id> Result <id> <id> <id> Optional Optional
variable Result <id> Sampled Coordinate D, Image <id>, <id>,
Type Image Operands

226

OplmageSparseTexelsResident Capability:
SparseResidency

Translates a Resident Code into a Boolean. Result is false if any of the texels

were in uncommitted texture memory, and true otherwise.

Result Type must be a Boolean type scalar.

Resident Code is a value from an OplmageSparse... instruction that results in
a resident code.

4 316 <id> Result <id> <id>
Result Type Resident Code
OplmageSparseRead Capability:

SparseResidency
Read a texel from a sparse image without a sampler.

Result Type must be an OpTypeStruct with two members. The first member’s
type must be an integer type scalar. It holds a Residency Code that can be
passed to OplmageSparseTexelsResident. The second member must be a
scalar or vector of floating-point type or integer type. It must be a scalar or
vector with component type the same as Sampled Type of the OpTypelmage
(unless that Sampled Type is OpTypeVoid).

Image must be an object whose type is OpTypelmage with a Sampled
operand of 2.

Coordinate must be a scalar or vector of floating-point type or integer type. It
contains non-normalized texel coordinates (u[, v] ... [, array layer]) as needed
by the definition of Image. See the client API specification for handling of
coordinates outside the image.

The Image Dim operand must not be SubpassData. The Image Format must
not be Unknown unless the StoragelmageReadWithoutFormat or Kernel

Capabilities were declared.

Image Operands encodes what operands follow, as per Image Operands.

5 + variable 320 <id> Result <id> <id> <id> Optional Optional
Result Type Image Coordinate Image <id>, <id>,
Operands
OpColorAttachmentRead EXT Capability:
TilelmageColorReadAccessEXT
Reserved.
Reserved.
4 + variable 4160 <id> Result <id> <id> Optional
Result Type Attachment <id>

Sample

227

OpDepthAttachmentRead EXT

Reserved.
3 + variable 4161 <id>
Result Type
OpStencilAttachmentRead EXT
Reserved.
3 + variable 4162 <id>
Result Type
OplmageSampleWeightedQCOM
Reserved.
6 4480 <id> Result <id>
Result Type
OplmageBoxFilterQCOM
Reserved.
6 4481 <id> Result <id>
Result Type

OplmageBlockMatchSSDQCOM

Reserved.

8 4482 Result <id> <id>

Target

<id>
Result Type

228

Result <id

Result <id

Capability:
TilelmageDepthRea
dAccessEXT

Reserved.

> Optional
<id>
Sample

Capability:
TilelmageStencilRe
adAccessEXT

Reserved.
> Optional

<id>

Sample

Capability:
TextureSampleWeighted QCOM

Reserved.
<id> <id> <id>
Texture Coordinates Weights
Capability:
TextureBoxFilterQCOM
Reserved.
<id> <id> <id>
Texture Coordinates Box Size
Capability:
TextureBlockMatchQC
OM
Reserved.
<id> <id> <id> <id>
Target Reference Reference Block Size

Coordinates

Coordinates

OplmageBlockMatchSADQCOM

Reserved.

8 4483 Result <id> <id>

Target

<id>
Result Type

OplmageBlockMatchWindowSSDQCOM

Reserved.
8 4500 <id> Result <id> <id>
Result Type Target
Sampled
Image

OplmageBlockMatchWindowSADQCOM

Reserved.
8 4501 <id> Result <id> <id>
Result Type Target
Sampled
Image

OplmageBlockMatchGatherSSDQCOM

Reserved.
8 4502 <id> Result <id> <id>
Result Type Target
Sampled
Image

OplmageBlockMatchGatherSADQCOM

Reserved.
8 4503 <id> Result <id> <id>
Result Type Target
Sampled
Image

<id>
Reference

<id>
Target
Coordinates

<id> <id>
Target Reference
Coordinates Sampled
Image
<id> <id>
Target Reference
Coordinates Sampled
Image
<id> <id>
Target Reference
Coordinates Sampled
Image
<id> <id>
Target Reference
Coordinates Sampled
Image

Capalbility:
TextureBlockMatchQC
OM

Reserved.
<id> <id>
Reference Block Size

Coordinates

Capability:
TextureBlockMatch2QC
OM

Reserved.
<id> <id>
Reference Block Size

Coordinates

Capability:
TextureBlockMatch2QC
oM

Reserved.
<id> <id>
Reference Block Size

Coordinates

Capability:
TextureBlockMatch2QC
OM

Reserved.
<id> <id>
Reference Block Size

Coordinates

Capability:
TextureBlockMatch2QC
OM

Reserved.
<id> <id>
Reference Block Size

Coordinates

229

OplmageSampleFootprintNV

Capability:
ImageFootprintNV

Reserved.

Reserved.
7+ 5283 <id> Result <id> <id> <id> <id> Optional Optional
variable Result <id> Sampled Coordinat Granularit Coarse Image <id>,

Type Image e y

OpConvertHandleTolmagelNTEL

Reserved.

4 6529 <id> Result <id>
Result Type

OpConvertHandleToSamplerINTEL

Reserved.

4 6530 <id> Result <id>
Result Type

OpConvertHandleToSampledimageINTEL

Reserved.

4 6531 <id> Result <id>
Result Type

230

Operands <id>, ...

Capability:
BindlessimagesINTEL
Reserved.

<id>
Operand

Capability:
BindlessimagesINTEL
Reserved.

<id>
Operand

Capability:
BindlessimagesINTEL
Reserved.

<id>
Operand

3.3.11. Conversion Instructions
OpConvertFToU

Convert value numerically from floating point to unsigned integer, with round
toward 0.0.

Result Type must be a scalar or vector of integer type, whose Signedness
operand is 0. Behavior is undefined if Result Type is not wide enough to hold

the converted value.

Float Value must be a scalar or vector of floating-point type. It must have the
same number of components as Result Type.

Results are computed per component.

4 109 <id> Result <id> <id>
Result Type Float Value

OpConvertFToS

Convert value numerically from floating point to signed integer, with round
toward 0.0.

Result Type must be a scalar or vector of integer type. Behavior is undefined if
Result Type is not wide enough to hold the converted value.

Float Value must be a scalar or vector of floating-point type. It must have the
same number of components as Result Type.

Results are computed per component.

4 110 <id> Result <id> <id>
Result Type Float Value

OpConvertSToF
Convert value numerically from signed integer to floating point.
Result Type must be a scalar or vector of floating-point type.

Signed Value must be a scalar or vector of integer type. It must have the same
number of components as Result Type.

Results are computed per component.

4 111 <id> Result <id> <id>
Result Type Signed Value

231

OpConvertUToF
Convert value numerically from unsigned integer to floating point.
Result Type must be a scalar or vector of floating-point type.

Unsigned Value must be a scalar or vector of integer type. It must have the
same number of components as Result Type.

Results are computed per component.

4 112 <id> Result <id> <id>
Result Type Unsigned Value

OpUConvert
Convert unsigned width. This is either a truncate or a zero extend.

Result Type must be a scalar or vector of integer type, whose Signedness
operand is 0.

Unsigned Value must be a scalar or vector of integer type. It must have the
same number of components as Result Type. The component width must not

equal the component width in Result Type.

Results are computed per component.

4 113 <id> Result <id> <id>
Result Type Unsigned Value

OpSConvert

Convert signed width. This is either a truncate or a sign extend.

Result Type must be a scalar or vector of integer type.

Signed Value must be a scalar or vector of integer type. It must have the same
number of components as Result Type. The component width must not equal

the component width in Result Type.

Results are computed per component.

4 114 <id> Result <id> <id>
Result Type Signed Value

232

OpFConvert

Convert value numerically from one floating-point width to another width.
Result Type must be a scalar or vector of floating-point type.

Float Value must be a scalar or vector of floating-point type. It must have the
same number of components as Result Type. The component type must not

equal the component type in Result Type.

Results are computed per component.

4 115 <id> Result <id>
Result Type

OpQuantizeToF16

Quantize a floating-point value to what is expressible by a 16-bit floating-point
value.

Result Type must be a scalar or vector of floating-point type. The component
width must be 32 bits and must not have a Floating Point Encoding operand.

Value is the value to quantize. The type of Value must be the same as Result
Type.

If Value is an infinity, the result is the same infinity. If Value is a NaN, the result

is a NaN, but not necessarily the same NaN. If Value is positive with a
magnitude too large to represent as a 16-bit floating-point value, the result is

positive infinity. If Value is negative with a magnitude too large to represent as a

16-bit floating-point value, the result is negative infinity. If the magnitude of
Value is too small to represent as a normalized 16-bit floating-point value, the
result must be either +0 or -0.

The RelaxedPrecision Decoration has no effect on this instruction.

Results are computed per component.

4 116 <id> Result <id>
Result Type

<id>
Float Value

Capability:
Shader

<id>
Value

233

OpConvertPtrToU

Bit pattern-preserving conversion of a pointer to an unsigned scalar integer of
possibly different bit width.

Result Type must be a scalar of integer type, whose Signedness operand is O.

Pointer must be a physical pointer type. If the bit width of Pointer is smaller than
that of Result Type, the conversion zero extends Pointer. If the bit width of
Pointer is larger than that of Result Type, the conversion truncates Pointer. For
same bit width Pointer and Result Type, this is the same as OpBitcast.

4 117 <id> Result <id>
Result Type

OpSatConvertSToU

Convert a signed integer to unsigned integer. Converted values outside the
representable range of Result Type are clamped to the nearest representable
value of Result Type.

Result Type must be a scalar or vector of integer type.

Signed Value must be a scalar or vector of integer type. It must have the same
number of components as Result Type.

Results are computed per component.

4 118 <id> Result <id>
Result Type

OpSatConvertUToS

Convert an unsigned integer to signed integer. Converted values outside the
representable range of Result Type are clamped to the nearest representable
value of Result Type.

Result Type must be a scalar or vector of integer type.

Unsigned Value must be a scalar or vector of integer type. It must have the
same number of components as Result Type.

Results are computed per component.

4 119 <id> Result <id>
Result Type

234

Capalbility:

Addresses,
PhysicalStorageBuffer
Addresses

<id>
Pointer

Capability:
Kernel

<id>
Signed Value

Capability:
Kernel

<id>
Unsigned Value

OpConvertUToPtr

Bit pattern-preserving conversion of an unsigned scalar integer to a pointer.

Result Type must be a physical pointer type.

Integer Value must be a scalar of integer type, whose Signedness operand is 0.
If the bit width of Integer Value is smaller than that of Result Type, the
conversion zero extends Integer Value. If the bit width of Integer Value is larger
than that of Result Type, the conversion truncates Integer Value. For same-

width Integer Value and Result Type, this is the same as OpBitcast.

Behavior is undefined if the storage class of Result Type does not match the

one used by the operation that produced the value of Integer Value.

4 120 <id> Result <id>
Result Type

OpPtrCastToGeneric

Convert a pointer’'s Storage Class to Generic.

Result Type must be an OpTypePointer. Its Storage Class must be Generic.

Pointer must point to the Workgroup, CrossWorkgroup, or Function Storage

Class.

Result Type and Pointer must point to the same type.

4 121 <id> Result <id>
Result Type

OpGenericCastToPtr
Convert a pointer’s Storage Class to a non-Generic class.

Result Type must be an OpTypePointer. Its Storage Class must be
Workgroup, CrossWorkgroup, or Function.

Pointer must point to the Generic Storage Class.

Result Type and Pointer must point to the same type.

4 122 <id> Result <id>
Result Type

Capalbility:

Addresses,
PhysicalStorageBuffer
Addresses

<id>
Integer Value

Capability:
Kernel

<id>
Pointer

Capability:
Kernel

<id>
Pointer

235

OpGenericCastToPtrExplicit Capability:
Kernel

Attempts to explicitly convert Pointer to Storage storage-class

pointer value.

Result Type must be an OpTypePointer. Its Storage Class
must be Storage.

Pointer must have a type of OpTypePointer whose Type is the
same as the Type of Result Type.Pointer must point to the
Generic Storage Class. If the cast fails, the instruction result is
an OpConstantNull pointer in the Storage Storage Class.

Storage must be one of the following literal values from Storage
Class: Workgroup, CrossWorkgroup, or Function.

5 123 <id> Result <id> <id> Storage Class
Result Type Pointer Storage

236

OpBitcast
Bit pattern-preserving type conversion.

Result Type must be an OpTypePointer, or a scalar or vector of numerical-
type.

Operand must have a type of OpTypePointer, or a scalar or vector of
numerical-type. It must be a different type than Result Type.

Before version 1.5: If either Result Type or Operand is a pointer, the other
must be a pointer or an integer scalar.

Starting with version 1.5: If either Result Type or Operand is a pointer, the
other must be a pointer, an integer scalar, or an integer vector.

If both Result Type and the type of Operand are pointers, they both must point
into same storage class.

Behavior is undefined if the storage class of Result Type does not match the
one used by the operation that produced the value of Operand.

If Result Type has the same number of components as Operand, they must
also have the same component width, and results are computed per
component.

If Result Type has a different number of components than Operand, the total
number of bits in Result Type must equal the total number of bits in Operand.
Let L be the type, either Result Type or Operand’s type, that has the larger
number of components. Let S be the other type, with the smaller number of
components. The number of components in L must be an integer multiple of the
number of components in S. The first component (that is, the only or lowest-
numbered component) of S maps to the first components of L, and so on, up to
the last component of S mapping to the last components of L. Within this
mapping, any single component of S (mapping to multiple components of L)
maps its lower-ordered bits to the lower-numbered components of L.

4 124 <id> Result <id> <id>
Result Type Operand
OpBitCastArrayQCOM Capability:
CooperativeMatrixConv
Reserved. ersionQCOM
Reserved.
4 4497 <id> Result <id> <id>
Result Type Source Array

237

OpCooperativeMatrixConvertNV

Reserved.

4 5293 <id>
Result Type

OpCooperativeMatrixTransposeNV

Reserved.

4 5390 <id>
Result Type

OpConvertFToBF16INTEL

Reserved.

4 6116 <id>
Result Type

OpConvertBF16ToFINTEL

Reserved.
4 6117 <id>
Result Type
OpRoundFToTF32INTEL
Reserved.
4 6426 <id>
Result Type

238

Result <id>

Result <id>

Result <id>

Result <id>

Result <id>

Capalbility:
CooperativeMatrixConv
ersionsNV

Reserved.

<id>
Matrix

Capability:
CooperativeMatrixConv
ersionsNV

Reserved.

<id>
Matrix

Capability:
BFloatl6ConversionINT
EL

Reserved.

<id>
Float Value

Capability:
BFloatl16ConversionINT
EL

Reserved.

<id>
BFloatl6 Value

Capability:
TensorFloat32Roundin
gINTEL

Reserved.

<id>
Float Value

3.3.12. Composite Instructions
OpVectorExtractDynamic

Extract a single, dynamically selected, component of a vector.
Result Type must be a scalar type.

Vector must have a type OpTypeVector whose Component
Type is Result Type.

Index must be a scalar integer. It is interpreted as a 0-based
index of which component of Vector to extract.

Behavior is undefined if Index’s value is less than zero or
greater than or equal to the number of components in Vector.

5 77 <id> Result <id> <id>
Result Type Vector

OpVectorinsertDynamic

Make a copy of a vector, with a single, variably selected, component
modified.

Result Type must be an OpTypeVector.

Vector must have the same type as Result Type and is the vector that
the non-written components are copied from.

Component is the value supplied for the component selected by Index.
It must have the same type as the type of components in Result Type.

Index must be a scalar integer. It is interpreted as a 0-based index of
which component to modify.

Behavior is undefined if Index’s value is less than zero or greater than
or equal to the number of components in Vector.

6 78 <id> Result <id> <id> <id>
Result Type Vector Component

<id>
Index

<id>
Index

239

OpVectorShuffle
Select arbitrary components from two vectors to make a new vector.

Result Type must be an OpTypeVector. The number of components in
Result Type must be the same as the number of Component operands.

Vector 1 and Vector 2 must both have vector types, with the same
Component Type as Result Type. They do not have to have the same
number of components as Result Type or with each other. They are
logically concatenated, forming a single vector with Vector 1's
components appearing before Vector 2’s. The components of this logical
vector are logically numbered with a single consecutive set of numbers
from O to N - 1, where N is the total number of components.

Components are these logical numbers (see above), selecting which of
the logically numbered components form the result. Each component is
an unsigned 32-bit integer. They can select the components in any order
and can repeat components. The first component of the result is selected
by the first Component operand, the second component of the result is
selected by the second Component operand, etc. A Component literal
may also be FFFFFFFF, which means the corresponding result
component has no source and is undefined. All Component literals must
either be FFFFFFFF orin [0, N - 1] (inclusive).

Note: A vector “swizzle” can be done by using the vector for both Vector
operands, or using an OpUndef for one of the Vector operands.

5 + variable 79 <id> Result <id> <id> <id> Literal, Literal,
Result Type Vector 1 Vector 2
Components

OpCompositeConstruct
Construct a new composite object from a set of constituent objects.

Result Type must be a composite type, whose top-level
members/elements/components/columns have the same type as the types of the
operands, with one exception. The exception is that for constructing a vector, the
operands may also be vectors with the same component type as the Result Type
component type. If constructing a vector, the total number of components in all the
operands must equal the number of components in Result Type.

Constituents become members of a structure, or elements of an array, or
components of a vector, or columns of a matrix. There must be exactly one
Constituent for each top-level member/element/component/column of the result,
with one exception. The exception is that for constructing a vector, a contiguous
subset of the scalars consumed can be represented by a vector operand instead.
The Constituents must appear in the order needed by the definition of the type of
the result. If constructing a vector, there must be at least two Constituent operands.

3 + variable 80 <id> Result <id> <id>, <id>, ...
Result Type Constituents

240

OpCompositeExtract
Extract a part of a composite object.

Result Type must be the type of object selected by the last provided
index. The instruction result is the extracted object.

Composite is the composite to extract from.

Indexes walk the type hierarchy, potentially down to component
granularity, to select the part to extract. All indexes must be in
bounds. All composite constituents use zero-based numbering, as
described by their OpType... instruction. Each index is an unsigned
32-bit integer.

4 + variable 81 <id> Result <id> <id> Literal, Literal, ...
Result Type Composite Indexes

OpCompositelnsert

Make a copy of a composite object, while modifying one part of it.
Result Type must be the same type as Composite.

Object is the object to use as the modified part.

Composite is the composite to copy all but the modified part from.

Indexes walk the type hierarchy of Composite to the desired depth,
potentially down to component granularity, to select the part to modify. All
indexes must be in bounds. All composite constituents use zero-based
numbering, as described by their OpType... instruction. The type of the
part selected to modify must match the type of Object. Each index is an
unsigned 32-bit integer.

5 + variable 82 <id> Result <id> <id> <id> Literal, Literal,
Result Type Object Composite
Indexes

OpCopyObject
Make a copy of Operand. There are no pointer dereferences involved.

Result Type must equal Operand type. Result Type can be any type except
OpTypeVoid.

4 83 <id> Result <id> <id>
Result Type Operand

241

OpTranspose
Transpose a matrix.

Result Type must be an OpTypeMatrix.

Matrix must be an object of type OpTypeMatrix. The number of columns and

the column size of Matrix must be the reverse of those in Result Type. The

types of the scalar components in Matrix and Result Type must be the same.

Matrix must have of type of OpTypeMatrix.

4 84 <id> Result <id>
Result Type

OpCopyLogical

Make a logical copy of Operand. There are no pointer dereferences involved.

Result Type must not equal the type of Operand (see OpCopyObject), but
Result Type must logically match the Operand type.

Logically match is recursively defined by these three rules:

1. They must be either both be OpTypeArray or both be OpTypeStruct
2. If they are OpTypeArray:

- they must have the same Length operand, and

- their Element Type operands must be either the same or must logically match.

3. If they are OpTypeStruct:

- they must have the same number of Member type, and

- Member N type for the same N in the two types must be either the same or
must logically match.

4 400 <id> Result <id>
Result Type

OpCompositeConstructReplicateEXT

Reserved.

4 4463 <id> Result <id>
Result Type

OpCompositeConstructCoopMatQCOM

Reserved.

4 4540 <id> Result <id>
Result Type

242

Capalbility:
Matrix

<id>
Matrix

Missing before version
1.4.

<id>
Operand

Capability:
ReplicatedComposites
EXT

Reserved.

<id>
Value

Capability:
CooperativeMatrixConv
ersionQCOM

Reserved.

<id>
Source Array

OpCompositeExtractCoopMatQCOM

Reserved.

4 4541 <id>
Result Type

OpExtractSubArrayQCOM

Reserved.

5 4542 <id>
Result Type

OpCompositeConstructContinuedINTEL

Result <id>

Result <id>

Reserved.
3 + variable 6096 <id>
Result Type
OpConditionalCopyObjectINTEL
Reserved.
3 + variable 6254 <id>
Result Type

Capability:

Capalbility:
CooperativeMatrixConv
ersionQCOM

Reserved.

<id>
Source Cooperative
Matrix

CooperativeMatrixConversionQCOM

Reserved.

<id>

Source Array

Result <id>

Result <id>

<id>
index

Capability:
LongCompositesIN
TEL

Reserved.

<id>, <id>, ...
Constituents

Capability:
SpecConditionalINT
EL

Reserved.

<id>, <id>, ...
Condition 0, Operand
0,

Condition 1, Operand
1,

243

3.3.13. Arithmetic Instructions

OpSNegate

Signed-integer subtract of Operand from zero.

Result Type must be a scalar or vector of integer type.

Operand’s type must be a scalar or vector of integer type. It must have the
same number of components as Result Type. The component width must equal

the component width in Result Type.

Results are computed per component.

4 126 <id> Result <id> <id>
Result Type Operand

OpFNegate

Inverts the sign bit of Operand. (Note, however, that OpFNegate is still
considered a floating-point instruction, and so is subject to the general floating-
point rules regarding, for example, subnormals and NaN propagation).

Result Type must be a scalar or vector of floating-point type.

The type of Operand must be the same as Result Type.

Results are computed per component.

4 127 <id> Result <id> <id>
Result Type Operand

OplAdd
Integer addition of Operand 1 and Operand 2.
Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same number of
components as Result Type. They must have the same
component width as Result Type.

The resulting value equals the low-order N bits of the correct
result R, where N is the component width and R is computed
with enough precision to avoid overflow and underflow.

Results are computed per component.

5 128 <id> Result <id> <id> <id>

Result Type Operand 1 Operand 2

244

OpFAdd
Floating-point addition of Operand 1 and Operand 2.
Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same
as Result Type.

Results are computed per component.

5 129 <id> Result <id> <id>
Result Type Operand 1

OplISub

Integer subtraction of Operand 2 from Operand 1.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same number of
components as Result Type. They must have the same
component width as Result Type.

The resulting value equals the low-order N bits of the correct
result R, where N is the component width and R is computed

with enough precision to avoid overflow and underflow.

Results are computed per component.

5 130 <id> Result <id> <id>
Result Type Operand 1

OpFSub
Floating-point subtraction of Operand 2 from Operand 1.
Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same
as Result Type.

Results are computed per component.

5 131 <id> Result <id> <id>
Result Type Operand 1

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

245

OpIMul

Integer multiplication of Operand 1 and Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same number of
components as Result Type. They must have the same
component width as Result Type.

The resulting value equals the low-order N bits of the correct
result R, where N is the component width and R is computed

with enough precision to avoid overflow and underflow.

Results are computed per component.

5 132 <id> Result <id> <id>
Result Type Operand 1

OpFMul
Floating-point multiplication of Operand 1 and Operand 2.
Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same
as Result Type.

Results are computed per component.

5 133 <id> Result <id> <id>
Result Type Operand 1

OpUDiv
Unsigned-integer division of Operand 1 divided by Operand 2.

Result Type must be a scalar or vector of integer type, whose
Signedness operand is 0.

The types of Operand 1 and Operand 2 both must be the same
as Result Type.

Results are computed per component. Behavior is undefined if
Operand 2 is 0.

5 134 <id> Result <id> <id>
Result Type Operand 1

246

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

OpSDiv
Signed-integer division of Operand 1 divided by Operand 2.
Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same number of
components as Result Type. They must have the same
component width as Result Type.

Results are computed per component. Behavior is undefined if
Operand 2 is 0. Behavior is undefined if Operand 2 is -1 and
Operand 1 is the minimum representable value for the
operands' type, causing signed overflow.

5 135 <id> Result <id> <id>
Result Type Operand 1

OpFDiv
Floating-point division of Operand 1 divided by Operand 2.
Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same
as Result Type.

Results are computed per component.

5 136 <id> Result <id> <id>
Result Type Operand 1

OpUMod
Unsigned modulo operation of Operand 1 modulo Operand 2.

Result Type must be a scalar or vector of integer type, whose
Signedness operand is 0.

The types of Operand 1 and Operand 2 both must be the same
as Result Type.

Results are computed per component. Behavior is undefined if
Operand 2 is 0.

5 137 <id> Result <id> <id>
Result Type Operand 1

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

247

OpSRem

Signed remainder operation for the remainder whose sign
matches the sign of Operand 1.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same number of
components as Result Type. They must have the same
component width as Result Type.

Results are computed per component. Behavior is undefined if
Operand 2 is 0. Behavior is undefined if Operand 2 is -1 and
Operand 1 is the minimum representable value for the
operands' type, causing signed overflow. Otherwise, the result
is the remainder r of Operand 1 divided by Operand 2 where if
r I= 0, the sign of r is the same as the sign of Operand 1.

5 138 <id> Result <id> <id>
Result Type Operand 1

OpSMod

Signed remainder operation for the remainder whose sign
matches the sign of Operand 2.

Result Type must be a scalar or vector of integer type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same number of
components as Result Type. They must have the same
component width as Result Type.

Results are computed per component. Behavior is undefined if
Operand 2 is 0. Behavior is undefined if Operand 2 is -1 and
Operand 1 is the minimum representable value for the
operands' type, causing signed overflow. Otherwise, the result
is the remainder r of Operand 1 divided by Operand 2 where if
r I= 0, the sign of r is the same as the sign of Operand 2.

5 139 <id> Result <id> <id>
Result Type Operand 1

248

<id>
Operand 2

<id>
Operand 2

OpFRem

The floating-point remainder whose sign matches the sign of
Operand 1.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same
as Result Type.

Results are computed per component. The resulting value is
undefined if Operand 2 is 0. Otherwise, the result is the
remainder r of Operand 1 divided by Operand 2 where if r 1= 0,
the sign of r is the same as the sign of Operand 1.

5 140 <id> Result <id> <id>
Result Type Operand 1

OpFMod

The floating-point remainder whose sign matches the sign of
Operand 2.

Result Type must be a scalar or vector of floating-point type.

The types of Operand 1 and Operand 2 both must be the same
as Result Type.

Results are computed per component. The resulting value is
undefined if Operand 2 is 0. Otherwise, the result is the
remainder r of Operand 1 divided by Operand 2 where if r 1= 0,
the sign of r is the same as the sign of Operand 2.

5 141 <id> Result <id> <id>
Result Type Operand 1

OpVectorTimesScalar
Scale a floating-point vector.
Result Type must be a vector of floating-point type.

The type of Vector must be the same as Result Type. Each
component of Vector is multiplied by Scalar.

Scalar must have the same type as the Component Type in
Result Type.

5 142 <id> Result <id> <id>
Result Type Vector

<id>
Operand 2

<id>
Operand 2

<id>
Scalar

249

OpMatrixTimesScalar Capability:

Matrix
Scale a floating-point matrix.

Result Type must be an OpTypeMatrix whose Column Type is
a vector of floating-point type.

The type of Matrix must be the same as Result Type. Each
component in each column in Matrix is multiplied by Scalar.

Scalar must have the same type as the Component Type in
Result Type.

5 143 <id> Result <id> <id>
Result Type Matrix

OpVectorTimesMatrix Capability:

Matrix
Linear-algebraic Vector X Matrix.

Result Type must be a vector of floating-point type.

Vector must be a vector with the same Component Type as the
Component Type in Result Type. Its number of components
must equal the number of components in each column in
Matrix.

Matrix must be a matrix with the same Component Type as the
Component Type in Result Type. Its number of columns must
equal the number of components in Result Type.

5 144 <id> Result <id> <id>
Result Type Vector

OpMatrixTimesVector Capability:

Matrix
Linear-algebraic Matrix X Vector.

Result Type must be a vector of floating-point type.

Matrix must be an OpTypeMatrix whose Column Type is
Result Type.

Vector must be a vector with the same Component Type as the
Component Type in Result Type. Its number of components
must equal the number of columns in Matrix.

5 145 <id> Result <id> <id>
Result Type Matrix

250

<id>
Scalar

<id>
Matrix

<id>
Vector

OpMatrixTimesMatrix Capability:

Matrix
Linear-algebraic multiply of LeftMatrix X RightMatrix.

Result Type must be an OpTypeMatrix whose Column Type is
a vector of floating-point type.

LeftMatrix must be a matrix whose Column Type is the same
as the Column Type in Result Type.

RightMatrix must be a matrix with the same Component Type

as the Component Type in Result Type. Its number of columns
must equal the number of columns in Result Type. Its columns
must have the same number of components as the number of
columns in LeftMatrix.

5 146 <id> Result <id> <id>
Result Type LeftMatrix

OpOuterProduct Capability:

Matrix
Linear-algebraic outer product of Vector 1 and Vector 2.

Result Type must be an OpTypeMatrix whose Column Type is
a vector of floating-point type.

Vector 1 must have the same type as the Column Type in
Result Type.

Vector 2 must be a vector with the same Component Type as
the Component Type in Result Type. Its number of components
must equal the number of columns in Result Type.

5 147 <id> Result <id> <id>
Result Type Vector 1

OpDot
Dot product of Vector 1 and Vector 2.
Result Type must be a floating-point type scalar.

Vector 1 and Vector 2 must be vectors of the same type, and
their component type must be Result Type.

5 148 <id> Result <id> <id>
Result Type Vector 1

<id>
RightMatrix

<id>
Vector 2

<id>
Vector 2

251

OplAddCarry

Result is the unsigned integer addition of Operand 1 and
Operand 2, including its carry.

Result Type must be from OpTypeStruct. The struct must have
two members, and the two members must be the same type.
The member type must be a scalar or vector of integer type,
whose Signedness operand is 0.

Operand 1 and Operand 2 must have the same type as the
members of Result Type. These are consumed as unsigned
integers.

Results are computed per component.

Member 0 of the result gets the low-order bits (full component
width) of the addition.

Member 1 of the result gets the high-order (carry) bit of the
result of the addition. That is, it gets the value 1 if the addition
overflowed the component width, and O otherwise.

5 149 <id> Result <id> <id>
Result Type Operand 1

OplSubBorrow

Result is the unsigned integer subtraction of Operand 2 from
Operand 1, and what it needed to borrow.

Result Type must be from OpTypeStruct. The struct must have
two members, and the two members must be the same type.
The member type must be a scalar or vector of integer type,
whose Signedness operand is O.

Operand 1 and Operand 2 must have the same type as the
members of Result Type. These are consumed as unsigned
integers.

Results are computed per component.

Member O of the result gets the low-order bits (full component
width) of the subtraction. That is, if Operand 1 is larger than
Operand 2, member 0 gets the full value of the subtraction; if
Operand 2 is larger than Operand 1, member O gets 2% +
Operand 1 - Operand 2, where w is the component width.

Member 1 of the result gets 0 if Operand 1 >= Operand 2, and
gets 1 otherwise.

5 150 <id> Result <id> <id>
Result Type Operand 1

252

<id>
Operand 2

<id>
Operand 2

OpUMulExtended

Result is the full value of the unsigned integer multiplication of
Operand 1 and Operand 2.

Result Type must be from OpTypeStruct. The struct must have
two members, and the two members must be the same type.
The member type must be a scalar or vector of integer type,
whose Signedness operand is 0.

Operand 1 and Operand 2 must have the same type as the
members of Result Type. These are consumed as unsigned
integers.

Results are computed per component.

Member 0 of the result gets the low-order bits of the
multiplication.

Member 1 of the result gets the high-order bits of the
multiplication.

5 151 <id> Result <id> <id>
Result Type Operand 1

OpSMulExtended

Result is the full value of the signed integer multiplication of
Operand 1 and Operand 2.

Result Type must be from OpTypeStruct. The struct must have
two members, and the two members must be the same type.
The member type must be a scalar or vector of integer type.

Operand 1 and Operand 2 must have the same type as the
members of Result Type. These are consumed as signed
integers.

Results are computed per component.

Member 0 of the result gets the low-order bits of the
multiplication.

Member 1 of the result gets the high-order bits of the
multiplication.

5 152 <id> Result <id> <id>
Result Type Operand 1

<id>
Operand 2

<id>
Operand 2

253

OpSDot (OpSDotKHR) Capability:
DotProduct
Signed integer dot product of Vector 1 and Vector 2.
Missing before version 1.6.
Result Type must be an integer type whose Width must be greater than or
equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must have the same type.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductinput4x8BitPacked capability) or vectors of integer type
(enabled by the DotProductinput4x8Bit or DotProductinputAll
capability).

When Vector 1 and Vector 2 are scalar integer types, Packed Vector
Format must be specified to select how the integers are to be interpreted
as vectors.

All components of the input vectors are sign-extended to the bit width of
the result’s type. The sign-extended input vectors are then multiplied
component-wise and all components of the vector resulting from the
component-wise multiplication are added together. The resulting value will
equal the low-order N bits of the correct result R, where N is the result
width and R is computed with enough precision to avoid overflow and

underflow.
5 + variable 4450 <id> Result <id> <id> <id> Optional
Result Type Vector 1 Vector 2 Packed Vector
Format
Packed Vector
Format

254

OpUDot (OpUDotKHR) Capability:
DotProduct

Unsigned integer dot product of Vector 1 and Vector 2.

Missing before version 1.6.

Result Type must be an integer type with Signedness of 0 whose Width
must be greater than or equal to that of the components of Vector 1 and
Vector 2.

Vector 1 and Vector 2 must have the same type.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductinput4x8BitPacked capability) or vectors of integer type with
Signedness of 0 (enabled by the DotProductinput4x8Bit or
DotProductinputAll capability).

When Vector 1 and Vector 2 are scalar integer types, Packed Vector
Format must be specified to select how the integers are to be interpreted
as vectors.

All components of the input vectors are zero-extended to the bit width of
the result’s type. The zero-extended input vectors are then multiplied
component-wise and all components of the vector resulting from the
component-wise multiplication are added together. The resulting value will
equal the low-order N bits of the correct result R, where N is the result
width and R is computed with enough precision to avoid overflow and
underflow.

5 + variable 4451 <id> Result <id> <id> <id>
Result Type Vector 1 Vector 2

Optional

Packed Vector

Format

Packed Vector

Format

255

OpSUDot (OpSUDotKHR) Capability:

DotProduct
Mixed-signedness integer dot product of Vector 1 and Vector 2.
Components of Vector 1 are treated as signed, components of Vector 2 Missing before version 1.6.
are treated as unsigned.

Result Type must be an integer type whose Width must be greater than or
equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductinput4x8BitPacked capability) or vectors of integer type with
the same number of components and same component Width (enabled
by the DotProductinput4x8Bit or DotProductinputAll capability). When
Vector 1 and Vector 2 are vectors, the components of Vector 2 must have
a Signedness of 0.

When Vector 1 and Vector 2 are scalar integer types, Packed Vector
Format must be specified to select how the integers are to be interpreted
as vectors.

All components of Vector 1 are sign-extended to the bit width of the
result’s type. All components of Vector 2 are zero-extended to the bit width
of the result’s type. The sign- or zero-extended input vectors are then
multiplied component-wise and all components of the vector resulting
from the component-wise multiplication are added together. The resulting
value will equal the low-order N bits of the correct result R, where N is the
result width and R is computed with enough precision to avoid overflow
and underflow.

5 + variable 4452 <id> Result <id> <id> <id> Optional
Result Type Vector 1 Vector 2 Packed Vector
Format
Packed Vector
Format

256

OpSDotAccSat (OpSDotAccSatKHR)

Signed integer dot product of Vector 1 and Vector 2 and signed saturating
addition of the result with Accumulator.

Result Type must be an integer type whose Width must be greater than or
equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must have the same type.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductinput4x8BitPacked capability) or vectors of integer type (enabled
by the DotProductinput4x8Bit or DotProductinputAll capability).

The type of Accumulator must be the same as Result Type.

When Vector 1 and Vector 2 are scalar integer types, Packed Vector Format
must be specified to select how the integers are to be interpreted as vectors.

All components of the input vectors are sign-extended to the bit width of the
result’s type. The sign-extended input vectors are then multiplied component-
wise and all components of the vector resulting from the component-wise
multiplication are added together. Finally, the resulting sum is added to the
input accumulator. This final addition is saturating.

If any of the multiplications or additions, with the exception of the final
accumulation, overflow or underflow, the result of the instruction is undefined.

6 + variable 4453 <id> Result <id> <id> <id>
Result Type Vector 1 Vector 2

Capability:
DotProduct

Missing before version

1.6.

<id>
Accumulator

Optional
Packed
Vector
Format
Packed
Vector
Format

257

OpUDotAccSat (OpUDotAccSatKHR) Capability:
DotProduct

Unsigned integer dot product of Vector 1 and Vector 2 and unsigned

saturating addition of the result with Accumulator. Missing before version
1.6.

Result Type must be an integer type with Signedness of 0 whose Width must

be greater than or equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must have the same type.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductinput4x8BitPacked capability) or vectors of integer type with
Signedness of 0 (enabled by the DotProductinput4x8Bit or
DotProductinputAll capability).

The type of Accumulator must be the same as Result Type.

When Vector 1 and Vector 2 are scalar integer types, Packed Vector Format
must be specified to select how the integers are to be interpreted as vectors.

All components of the input vectors are zero-extended to the bit width of the
result’s type. The zero-extended input vectors are then multiplied component-
wise and all components of the vector resulting from the component-wise
multiplication are added together. Finally, the resulting sum is added to the
input accumulator. This final addition is saturating.

If any of the multiplications or additions, with the exception of the final
accumulation, overflow or underflow, the result of the instruction is undefined.

6 + variable 4454 <id> Result <id> <id> <id> <id> Optional
Result Type Vector 1 Vector 2 Accumulator Packed
Vector
Format
Packed
Vector
Format

258

OpSUDotAccSat (OpSUDotAccSatKHR) Capability:
DotProduct

Mixed-signedness integer dot product of Vector 1 and Vector 2 and signed

saturating addition of the result with Accumulator. Components of Vector 1 are Missing before version

treated as signed, components of Vector 2 are treated as unsigned. 1.6.

Result Type must be an integer type whose Width must be greater than or
equal to that of the components of Vector 1 and Vector 2.

Vector 1 and Vector 2 must be either 32-bit integers (enabled by the
DotProductinput4x8BitPacked capability) or vectors of integer type with the
same number of components and same component Width (enabled by the
DotProductinput4x8Bit or DotProductinputAll capability). When Vector 1
and Vector 2 are vectors, the components of Vector 2 must have a
Signedness of 0.

The type of Accumulator must be the same as Result Type.

When Vector 1 and Vector 2 are scalar integer types, Packed Vector Format
must be specified to select how the integers are to be interpreted as vectors.

All components of Vector 1 are sign-extended to the bit width of the result’s
type. All components of Vector 2 are zero-extended to the bit width of the
result’s type. The sign- or zero-extended input vectors are then multiplied
component-wise and all components of the vector resulting from the
component-wise multiplication are added together. Finally, the resulting sum is
added to the input accumulator. This final addition is saturating.

If any of the multiplications or additions, with the exception of the final
accumulation, overflow or underflow, the result of the instruction is undefined.

6 + variable 4455 <id> Result <id> <id> <id> <id> Optional
Result Type Vector 1 Vector 2 Accumulator Packed
Vector
Format
Packed
Vector
Format
OpCooperativeMatrixMulAddKHR Capability:
CooperativeMatrixKHR
Reserved.
Reserved.
6 + variable 4459 <id> Result <id> <id> <id> <id> Optional
Result Type A B © Cooperative
Matrix
Operands
Cooperative
Matrix
Operands

259

OpCooperativeMatrixReduceNV Capalbility:

CooperativeMatrixReductionsN
Reserved. \%

Reserved.

6 5366 <id> Result <id> <id> Cooperative <id>
Result Type Matrix Matrix Reduce CombineFunc
Mode
Reduce

260

3.3.14. Bit Instructions
OpShiftRightLogical

Shift the bits in Base right by the number of bits specified in
Shift. The most-significant bits are zero filled.

Result Type must be a scalar or vector of integer type.

The type of each Base and Shift must be a scalar or vector of
integer type. Base and Shift must have the same number of
components. The number of components and bit width of the
type of Base must be the same as in Result Type.

Shift is consumed as an unsigned integer. The resulting value
is undefined if Shift is greater than or equal to the bit width of
the components of Base.

Results are computed per component.

5 194 <id> Result <id> <id>
Result Type Base

OpShiftRightArithmetic

Shift the bits in Base right by the number of bits specified in
Shift. The most-significant bits are filled with the most-
significant bit from Base.

Result Type must be a scalar or vector of integer type.

The type of each Base and Shift must be a scalar or vector of
integer type. Base and Shift must have the same number of
components. The number of components and bit width of the
type of Base must be the same as in Result Type.

Shift is treated as unsigned. The resulting value is undefined if
Shift is greater than or equal to the bit width of the components
of Base.

Results are computed per component.

5 195 <id> Result <id> <id>
Result Type Base

<id>
Shift

<id>
Shift

261

OpShiftLeftLogical

Shift the bits in Base left by the number of bits specified in
Shift. The least-significant bits are zero filled.

Result Type must be a scalar or vector of integer type.

The type of each Base and Shift must be a scalar or vector of
integer type. Base and Shift must have the same number of
components. The number of components and bit width of the
type of Base must be the same as in Result Type.

Shift is treated as unsigned. The resulting value is undefined if
Shift is greater than or equal to the bit width of the components
of Base.

The number of components and bit width of Result Type must
match those Base type. All types must be integer types.

Results are computed per component.

5 196 <id> Result <id> <id>
Result Type Base

OpBitwiseOr

Result is 1 if either Operand 1 or Operand 2 is 1. Result is O if
both Operand 1 and Operand 2 are O.

Results are computed per component, and within each
component, per bit.

Result Type must be a scalar or vector of integer type. The type
of Operand 1 and Operand 2 must be a scalar or vector of
integer type. They must have the same number of components
as Result Type. They must have the same component width as
Result Type.

5 197 <id> Result <id> <id>
Result Type Operand 1

262

<id>
Shift

<id>
Operand 2

OpBitwiseXor

Result is 1 if exactly one of Operand 1 or Operand 2 is 1.
Result is 0 if Operand 1 and Operand 2 have the same value.

Results are computed per component, and within each
component, per bit.

Result Type must be a scalar or vector of integer type. The type
of Operand 1 and Operand 2 must be a scalar or vector of
integer type. They must have the same number of components
as Result Type. They must have the same component width as
Result Type.

5 198 <id> Result <id> <id>
Result Type Operand 1

OpBitwiseAnd

Resultis 1 if both Operand 1 and Operand 2 are 1. Resultis 0
if either Operand 1 or Operand 2 are O.

Results are computed per component, and within each
component, per bit.

Result Type must be a scalar or vector of integer type. The type
of Operand 1 and Operand 2 must be a scalar or vector of
integer type. They must have the same number of components

as Result Type. They must have the same component width as
Result Type.

5 199 <id> Result <id> <id>
Result Type Operand 1

OpNot

Complement the bits of Operand.

Results are computed per component, and within each component, per bit.
Result Type must be a scalar or vector of integer type.

Operand’s type must be a scalar or vector of integer type. It must have the

same number of components as Result Type. The component width must equal

the component width in Result Type.

4 200 <id> Result <id>
Result Type

<id>
Operand 2

<id>
Operand 2

Operand

263

OpBitFieldInsert Capability:

Shader, BitInstructions
Make a copy of an object, with a modified bit field that comes from another
object.

Results are computed per component.
Result Type must be a scalar or vector of integer type.
The type of Base and Insert must be the same as Result Type.

Any result bits numbered outside [Offset, Offset + Count - 1] (inclusive)
come from the corresponding bits in Base.

Any result bits numbered in [Offset, Offset + Count - 1] come, in order, from
the bits numbered [0, Count - 1] of Insert.

Count must be an integer type scalar. Count is the number of bits taken
from Insert. It is consumed as an unsigned value. Count can be 0, in which
case the result is Base.

Offset must be an integer type scalar. Offset is the lowest-order bit of the bit
field. It is consumed as an unsigned value.

The resulting value is undefined if Count or Offset or their sum is greater
than the number of bits in the result.

7 201 <id> Result <id> <id> <id> <id> <id>
Result Type Base Insert Offset Count

264

OpBitFieldSExtract Capability:
Shader, BitInstructions
Extract a bit field from an object, with sign extension.

Results are computed per component.

Result Type must be a scalar or vector of integer type.

The type of Base must be the same as Result Type.

If Count is greater than O: The bits of Base numbered in [Offset, Offset
+ Count - 1] (inclusive) become the bits numbered [0, Count - 1] of the
result. The remaining bits of the result will all be the same as bit Offset
+ Count - 1 of Base.

Count must be an integer type scalar. Count is the number of bits
extracted from Base. It is consumed as an unsigned value. Count can

be 0, in which case the result is 0.

Offset must be an integer type scalar. Offset is the lowest-order bit of
the bit field to extract from Base. It is consumed as an unsigned value.

The resulting value is undefined if Count or Offset or their sum is
greater than the number of bits in the result.

6 202 <id> Result <id> <id> <id> <id>
Result Type Base Offset Count
OpBitFieldUExtract Capability:

Shader, BitInstructions
Extract a bit field from an object, without sign extension.

The semantics are the same as with OpBitFieldSExtract with the
exception that there is no sign extension. The remaining bits of the
result will all be 0.

6 203 <id> Result <id> <id> <id> <id>
Result Type Base Offset Count
OpBitReverse Capability:

Shader, BitInstructions
Reverse the bits in an object.

Results are computed per component.
Result Type must be a scalar or vector of integer type.
The type of Base must be the same as Result Type.

The bit-number n of the result is taken from bit-number Width - 1 - n of Base,
where Width is the OpTypelnt operand of the Result Type.

4 204 <id> Result <id> <id>
Result Type Base

265

OpBitCount

Count the number of set bits in an object.

Results are computed per component.

Result Type must be a scalar or vector of integer type. The components must
be wide enough to hold the unsigned Width of Base as an unsigned value. That
is, no sign bit is needed or counted when checking for a wide enough result

width.

Base must be a scalar or vector of integer type. It must have the same number
of components as Result Type.

The result is the unsigned value that is the number of bits in Base that are 1.

4 205 <id> Result <id> <id>
Result Type Base

OpBitwiseFunctionINTEL Capability:
TernaryBitwiseFunctionINT

Reserved. EL
Reserved.

7 6242 <id> Result <id> <id> <id> <id> <id>

Result Type A B © LUTIndex

266

3.3.15. Relational and Logical Instructions

OpAny

Result is true if any component of Vector is true, otherwise result is false.
Result Type must be a Boolean type scalar.

Vector must be a vector of Boolean type.

4 154 <id> Result <id> <id>
Result Type Vector

OpAll
Result is true if all components of Vector are true, otherwise result is false.
Result Type must be a Boolean type scalar.

Vector must be a vector of Boolean type.

4 155 <id> Result <id> <id>
Result Type Vector

OplsNan

Result is true if x is a NaN for the floating-point encoding used by the type of X,
otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

X must be a scalar or vector of floating-point type. It must have the same
number of components as Result Type.

Results are computed per component.

4 156 <id> Result <id> <id>
Result Type X

OplsInf

Result is true if x is an Inf for the floating-point encoding used by the type of x,
otherwise result is false

Result Type must be a scalar or vector of Boolean type.

X must be a scalar or vector of floating-point type. It must have the same
number of components as Result Type.

Results are computed per component.

4 157 <id> Result <id> <id>
Result Type X

267

OplsFinite

Result is true if x is a finite number for the floating-point encoding used by the
type of x, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

X must be a scalar or vector of floating-point type. It must have the same
number of components as Result Type.

Results are computed per component.

4 158 <id> Result <id>
Result Type

OplsNormal

Result is true if x is a normal number for the floating-point encoding used by
the type of x, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

X must be a scalar or vector of floating-point type. It must have the same
number of components as Result Type.

Results are computed per component.

4 159 <id> Result <id>
Result Type

OpSignBitSet
Result is true if x has its sign bit set, otherwise result is false.
Result Type must be a scalar or vector of Boolean type.

X must be a scalar or vector of floating-point type. It must have the same
number of components as Result Type.

Results are computed per component.

4 160 <id> Result <id>
Result Type

268

Capalbility:
Kernel

<id>

Capability:
Kernel

<id>

Capability:
Kernel

<id>

OpLessOrGreater

Deprecated (use OpFOrdNotEqual).

Has the same semantics as OpFOrdNotEqual.

Result Type must be a scalar or vector of Boolean type.

X must be a scalar or vector of floating-point type. It must have
the same number of components as Result Type.

y must have the same type as x.

Results are computed per component.

5 161 <id> Result <id>
Result Type

OpOrdered

Result is true if both x == x and y ==y are true, where
OpFOrdEqual is used as comparison, otherwise result is
false.

Result Type must be a scalar or vector of Boolean type.

x must be a scalar or vector of floating-point type. It must have
the same number of components as Result Type.

y must have the same type as x.

Results are computed per component.

5 162 <id> Result <id>
Result Type

OpUnordered

Result is true if either x or y is an NaN for the floating-point

encoding used by the type of x and y, otherwise result is false.

Result Type must be a scalar or vector of Boolean type.

X must be a scalar or vector of floating-point type. It must have
the same number of components as Result Type.

y must have the same type as x.

Results are computed per component.

5 163 <id> Result <id>
Result Type

Capability:
Kernel

Missing after version 1.5.

<id> <id>
X y
Capability:

Kernel

<id> <id>
X y
Capability:

Kernel

<id> <id>
X y

269

OpLogicalEqual

Result is true if Operand 1 and Operand 2 have the same
value. Result is false if Operand 1 and Operand 2 have
different values.

Result Type must be a scalar or vector of Boolean type.
The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.

5 164 <id> Result <id> <id>
Result Type Operand 1

OpLogicalNotEqual

Result is true if Operand 1 and Operand 2 have different
values. Result is false if Operand 1 and Operand 2 have the
same value.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 must be the same as Result Type.

The type of Operand 2 must be the same as Result Type.

Results are computed per component.

5 165 <id> Result <id> <id>
Result Type Operand 1

OpLogicalOr

Resultis true if either Operand 1 or Operand 2 is true. Result
is false if both Operand 1 and Operand 2 are false.

Result Type must be a scalar or vector of Boolean type.
The type of Operand 1 must be the same as Result Type.
The type of Operand 2 must be the same as Result Type.

Results are computed per component.

5 166 <id> Result <id> <id>
Result Type Operand 1

270

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

OpLogicalAnd

Result is true if both Operand 1 and Operand 2 are true.
Result is false if either Operand 1 or Operand 2 are false.

Result Type must be a scalar or vector of Boolean type.
The type of Operand 1 must be the same as Result Type.
The type of Operand 2 must be the same as Result Type.

Results are computed per component.

5 167 <id> Result <id> <id>
Result Type Operand 1

OpLogicalNot

Result is true if Operand is false. Result is false if Operand is true.
Result Type must be a scalar or vector of Boolean type.

The type of Operand must be the same as Result Type.

Results are computed per component.

4 168 <id> Result <id>
Result Type

OpSelect

Select between two objects. Before version 1.4, results are only
computed per component.

Before version 1.4, Result Type must be a pointer, scalar, or vector.
Starting with version 1.4, Result Type can additionally be a composite
type other than a vector.

The types of Object 1 and Object 2 must be the same as Result Type.
Condition must be a scalar or vector of Boolean type.

If Condition is a scalar and true, the result is Object 1. If Condition is a
scalar and false, the result is Object 2.

If Condition is a vector, Result Type must be a vector with the same
number of components as Condition and the result is a mix of Object 1
and Object 2: If a component of Condition is true, the corresponding
component in the result is taken from Object 1, otherwise it is taken
from Object 2.

6 169 <id> Result <id> <id> <id>

Result Type Condition Object 1

<id>
Operand 2

<id>
Operand

<id>
Object 2

271

OplEqual
Integer comparison for equality.
Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as
Result Type.

Results are computed per component.

5 170 <id> Result <id> <id>
Result Type Operand 1

OpINotEqual
Integer comparison for inequality.
Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as
Result Type.

Results are computed per component.

5 171 <id> Result <id> <id>
Result Type Operand 1

OpUGreaterThan

Unsigned-integer comparison if Operand 1 is greater than
Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as
Result Type.

Results are computed per component.

5 172 <id> Result <id> <id>
Result Type Operand 1

272

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

OpSGreaterThan

Signed-integer comparison if Operand 1 is greater than
Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as

Result Type.

Results are computed per component.

5 173 <id> Result <id> <id>
Result Type Operand 1
OpUGreaterThanEqual

Unsigned-integer comparison if Operand 1 is greater than or
equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as

Result Type.

Results are computed per component.

5 174 <id> Result <id> <id>
Result Type Operand 1
OpSGreaterThanEqual

Signed-integer comparison if Operand 1 is greater than or
equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as
Result Type.

Results are computed per component.

5 175 <id> Result <id> <id>
Result Type Operand 1

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

273

OpULessThan

Unsigned-integer comparison if Operand 1 is less than
Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as
Result Type.

Results are computed per component.

5 176 <id> Result <id> <id>
Result Type Operand 1

OpSLessThan

Signed-integer comparison if Operand 1 is less than Operand
2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as
Result Type.

Results are computed per component.

5 177 <id> Result <id> <id>
Result Type Operand 1

OpULessThanEqual

Unsigned-integer comparison if Operand 1 is less than or equal
to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as
Result Type.

Results are computed per component.

5 178 <id> Result <id> <id>
Result Type Operand 1

274

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

OpSLessThanEqual

Signed-integer comparison if Operand 1 is less than or equal to
Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of integer type. They must have the same component
width, and they must have the same number of components as
Result Type.

Results are computed per component.

5 179 <id> Result <id> <id>
Result Type Operand 1

OpFOrdEqual
Floating-point comparison for being ordered and equal.
Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.

Results are computed per component.

5 180 <id> Result <id> <id>
Result Type Operand 1

OpFUnordEqual
Floating-point comparison for being unordered or equal.
Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.
Results are computed per component.

5 181 <id> Result <id> <id>
Result Type Operand 1

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

275

OpFOrdNotEqual
Floating-point comparison for being ordered and not equal.
Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.

Results are computed per component.

5 182 <id> Result <id> <id>
Result Type Operand 1

OpFUnordNotEqual
Floating-point comparison for being unordered or not equal.
Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.

Results are computed per component.

5 183 <id> Result <id> <id>
Result Type Operand 1

OpFOrdLessThan

Floating-point comparison if operands are ordered and
Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.

Results are computed per component.

5 184 <id> Result <id> <id>
Result Type Operand 1

276

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

OpFUnordLessThan

Floating-point comparison if operands are unordered or
Operand 1 is less than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.

Results are computed per component.

5 185 <id> Result <id> <id>
Result Type Operand 1

OpFOrdGreaterThan

Floating-point comparison if operands are ordered and
Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.
The type of Operand 1 and Operand 2 must be a scalar or

vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.

Results are computed per component.

5 186 <id> Result <id> <id>
Result Type Operand 1
OpFUnordGreaterThan

Floating-point comparison if operands are unordered or
Operand 1 is greater than Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.
Results are computed per component.

5 187 <id> Result <id> <id>
Result Type Operand 1

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

277

OpFOrdLessThanEqual

Floating-point comparison if operands are ordered and
Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.
The type of Operand 1 and Operand 2 must be a scalar or

vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.

Results are computed per component.

5 188 <id> Result <id> <id>
Result Type Operand 1
OpFUnordLessThanEqual

Floating-point comparison if operands are unordered or
Operand 1 is less than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.

Results are computed per component.

5 189 <id> Result <id> <id>
Result Type Operand 1

OpFOrdGreaterThanEqual

Floating-point comparison if operands are ordered and
Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.

Results are computed per component.

5 190 <id> Result <id> <id>
Result Type Operand 1

278

<id>
Operand 2

<id>
Operand 2

<id>
Operand 2

OpFUnordGreaterThanEqual

Floating-point comparison if operands are unordered or
Operand 1 is greater than or equal to Operand 2.

Result Type must be a scalar or vector of Boolean type.

The type of Operand 1 and Operand 2 must be a scalar or
vector of floating-point type. They must have the same type,
and they must have the same number of components as Result

Type.
Results are computed per component.

5 191 <id> Result <id> <id>
Result Type Operand 1

<id>
Operand 2

279

3.3.16. Derivative Instructions

OpDPdx Capability:
Shader

Same result as either OpDPdxFine or OpDPdxCoarse on P. Selection of

which one is based on external factors.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are

program-ordered before X'

Result Type must be a scalar or vector of floating-point type using the IEEE 754
encoding. The component width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

4 207 <id> Result <id> <id>
Result Type P
OpDPdy Capability:
Shader

Same result as either OpDPdyFine or OpDPdyCoarse on P. Selection of
which one is based on external factors.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are
program-ordered before X'.

Result Type must be a scalar or vector of floating-point type using the IEEE 754
encoding. The component width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

4 208 <id> Result <id> <id>
Result Type P

280

OpFwidth Capability:
Shader

Result is the same as computing the sum of the absolute values of OpDPdx

and OpDPdy on P.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are

program-ordered before X'

Result Type must be a scalar or vector of floating-point type using the IEEE 754
encoding. The component width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

4 209 <id> Result <id> <id>
Result Type P
OpDPdxFine Capability:

DerivativeControl
Result is the partial derivative of P with respect to the window x
coordinate.Uses local differencing based on the value of P for the current
fragment and its immediate neighbor(s).

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are
program-ordered before X'

Result Type must be a scalar or vector of floating-point type using the IEEE 754
encoding. The component width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

4 210 <id> Result <id> <id>
Result Type P

281

OpDPdyFine Capability:
DerivativeControl

Result is the partial derivative of P with respect to the window y

coordinate.Uses local differencing based on the value of P for the current

fragment and its immediate neighbor(s).

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are

program-ordered before X'

Result Type must be a scalar or vector of floating-point type using the IEEE 754
encoding. The component width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

4 211 <id> Result <id> <id>
Result Type P
OpFwidthFine Capability:

DerivativeControl
Result is the same as computing the sum of the absolute values of
OpDPdxFine and OpDPdyFine on P.

An invocation will not execute a dynamic instance of this instruction (X*) until all
invocations in its derivative group have executed all dynamic instances that are
program-ordered before X'.

Result Type must be a scalar or vector of floating-point type using the IEEE 754
encoding. The component width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

4 212 <id> Result <id> <id>
Result Type P

282

OpDPdxCoarse Capability:
DerivativeControl

Result is the partial derivative of P with respect to the window x coordinate.

Uses local differencing based on the value of P for the current fragment’s

neighbors, and possibly, but not necessarily, includes the value of P for the

current fragment. That is, over a given area, the implementation can compute x

derivatives in fewer unique locations than would be allowed for OpDPdxFine.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are

program-ordered before X'

Result Type must be a scalar or vector of floating-point type using the IEEE 754
encoding. The component width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

4 213 <id> Result <id> <id>
Result Type P
OpDPdyCoarse Capability:

DerivativeControl
Result is the partial derivative of P with respect to the window y coordinate.
Uses local differencing based on the value of P for the current fragment’s
neighbors, and possibly, but not necessarily, includes the value of P for the
current fragment. That is, over a given area, the implementation can compute y
derivatives in fewer unique locations than would be allowed for OpDPdyFine.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are
program-ordered before X'

Result Type must be a scalar or vector of floating-point type using the IEEE 754
encoding. The component width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

4 214 <id> Result <id> <id>
Result Type P

283

OpFwidthCoarse Capability:
DerivativeControl

Result is the same as computing the sum of the absolute values of

OpDPdxCoarse and OpDPdyCoarse on P.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its derivative group have executed all dynamic instances that are
program-ordered before X'.

Result Type must be a scalar or vector of floating-point type using the IEEE 754
encoding. The component width must be 32 bits.

The type of P must be the same as Result Type. P is the value to take the
derivative of.

This instruction is only valid in the Fragment Execution Model.

4 215 <id> Result <id> <id>
Result Type P

284

3.3.17. Control-Flow Instructions
OpPhi
The SSA phi function.

The result is selected based on control flow: If control reached the current block
from Parent i, Result Id gets the value that Variable i had at the end of Parent i.

Result Type can be any type except OpTypeVoid.

Operands are a sequence of pairs: (Variable 1, Parent 1 block), (Variable 2, Parent
2 block), ... Each Parent i block is the label of an immediate predecessor in the
CFG of the current block. There must be exactly one Parent i for each parent block
of the current block in the CFG. If Parent i is reachable in the CFG and Variable i is
defined in a block, that defining block must dominate Parent i. All Variables must
have a type matching Result Type.

Within a block, this instruction must appear before all non-OpPhi instructions
(except for OpLine and OpNoLine, which can be mixed with OpPhi).

3 + variable 245 <id> Result <id> <id>, <id>, ...
Result Type Variable, Parent, ...

OpLoopMerge

Declare a structured loop.

This instruction must immediately precede either an OpBranch or
OpBranchConditional instruction. That is, it must be the second-
to-last instruction in its block.

Merge Block is the label of the merge block for this structured loop.

Continue Target is the label of a block targeted for processing a loop
"continue".

Loop Control Parameters appear in Loop Control-table order for any
Loop Control setting that requires such a parameter.

See Structured Control Flow for more detail.

4 + variable 246 <id> <id> Loop Control Literal, Literal, ...
Merge Block Continue Target Loop Control
Parameters

285

OpSelectionMerge

Declare a structured selection.

This instruction must immediately precede either an
OpBranchConditional or OpSwitch instruction. That is, it must be

the second-to-last instruction in its block.

Merge Block is the label of the merge block for this structured
selection.

See Structured Control Flow for more detail.

3 247 <id> Selection Control
Merge Block

OpLabel
The label instruction of a block.

References to a block are through the Result <id> of
its label.

2 248 Result <id>
OpBranch
Unconditional branch to Target Label.

Target Label must be the Result <id> of an OpLabel
instruction in the current function.

This instruction must be the last instruction in a
block.

2 249 <id>
Target Label

286

OpBranchConditional

If Condition is true, branch to True Label, otherwise branch to False
Label.

Condition must be a Boolean type scalar.
True Label must be an OplLabel in the current function.
False Label must be an OpLabel in the current function.

Starting with version 1.6, True Label and False Label must not be
the same <id>.

Branch weights are unsigned 32-bit integer literals. There must be
either no Branch Weights or exactly two branch weights. If present,
the first is the weight for branching to True Label, and the second is
the weight for branching to False Label. The implied probability that
a branch is taken is its weight divided by the sum of the two Branch
weights. At least one weight must be non-zero. A weight of zero
does not imply a branch is dead or permit its removal; branch
weights are only hints. The sum of the two weights must not
overflow a 32-bit unsigned integer.

If Condition is an OpUndef, behavior is undefined.

This instruction must be the last instruction in a block.

4 + variable 250 <id> <id> <id>
Condition True Label False Label

Literal, Literal, ...
Branch weights

287

OpSwitch
Multi-way branch to one of the operand label <id>.

Selector must have a type of OpTypelnt. Selector is compared for equality to the
Target literals.

Default must be the <id> of a label. If Selector does not equal any of the Target
literals, control flow branches to the Default label <id>.

Target must be alternating scalar integer literals and the <id> of a label. If Selector
equals a literal, control flow branches to the following label <id>. It is invalid for any
two literal to be equal to each other. If Selector does not equal any literal, control
flow branches to the Default label <id>. Each literal is interpreted with the type of
Selector: The bit width of Selector’s type is the width of each literal’s type. If this
width is not a multiple of 32-bits and the OpTypelnt Signedness is set to 1, the
literal values are interpreted as being sign extended.

If Selector is an OpUndef, behavior is undefined.

This instruction must be the last instruction in a block.

3 + variable 251 <id> <id> literal 1, label <id> 1,
Selector Default literal 2, label <id> 2,
Target
OpKill Capability:
Shader

Deprecated (use OpTerminatelnvocation or
OpDemoteToHelperinvocation).

Fragment-shader discard.

Ceases all further processing in any invocation that executes it: Only
instructions these invocations executed before OpKill have observable
side effects. If this instruction is executed in non-uniform control flow,
all subsequent control flow is non-uniform (for invocations that
continue to execute).

This instruction must be the last instruction in a block.

This instruction is only valid in the Fragment Execution Model.

1 252

OpReturn
Return with no value from a function with void return type.

This instruction must be the last instruction in a block.

1 253

288

OpReturnValue
Return a value from a function.

Value is the value returned, by copy, and must
match the Return Type operand of the
OpTypeFunction type of the OpFunction body this
return instruction is in. Value must not have type
OpTypeVoid.

This instruction must be the last instruction in a
block.

2 254 <id>
Value

OpUnreachable
Behavior is undefined if this instruction is executed.

This instruction must be the last instruction in a block.

1 255
OpLifetimeStart Capability:
Kernel

Declare that an object was not defined before this instruction.

Pointer is a pointer to the object whose lifetime is starting. Its type
must be an OpTypePointer with Storage Class Function.

Size is an unsigned 32-bit integer. Size must be 0 if Pointer is a
pointer to a non-void type or the Addresses capability is not declared.
If Size is non-zero, it is the number of bytes of memory whose lifetime

is starting.
3 256 <id> Literal
Pointer Size
OpLifetimeStop Capability:
Kernel

Declare that an object is dead after this instruction.

Pointer is a pointer to the object whose lifetime is ending. Its type must
be an OpTypePointer with Storage Class Function.

Size is an unsigned 32-bit integer. Size must be 0 if Pointer is a
pointer to a non-void type or the Addresses capability is not declared.
If Size is non-zero, it is the number of bytes of memory whose lifetime
is ending.

3 257 <id> Literal
Pointer Size

289

OpTerminatelnvocation
Fragment-shader terminate.

Ceases all further processing in any invocation that executes it: Only
instructions these invocations executed before
OpTerminatelnvocation will have observable side effects. If this
instruction is executed in non-uniform control flow, all subsequent
control flow is non-uniform (for invocations that continue to execute).

This instruction must be the last instruction in a block.

This instruction is only valid in the Fragment Execution Model.

1

OpDemoteToHelperinvocation
(OpDemoteToHelperinvocationEXT)

Demote this fragment shader invocation to a helper invocation. Any
stores to memory after this instruction are suppressed and the
fragment does not write outputs to the framebuffer.

Unlike the OpTerminatelnvocation instruction, this does not
necessarily terminate the invocation which might be needed for
derivative calculations. It is not considered a flow control instruction
(flow control does not become non-uniform) and does not terminate
the block. The implementation may terminate helper invocations

before the end of the shader as an optimization, but doing so must not

affect derivative calculations and does not make control flow non-
uniform.

After an invocation executes this instruction, any subsequent load of
Helperlnvocation within that invocation will load an undefined value
unless the Helperlnvocation built-in variable is decorated with
Volatile or the load included Volatile in its Memory Operands

This instruction is only valid in the Fragment Execution Model.

1

290

Capability:
Shader

Missing before version 1.6.

4416

Capability:
DemoteToHelperinvocation

Missing before version 1.6.

5380

3.3.18. Atomic Instructions

OpAtomicLoad

Atomically load through Pointer using the given Semantics. All
subparts of the value that is loaded are read atomically with respect to
all other atomic accesses to it within Memory.

Result Type must be a scalar of integer type or floating-point type.

Pointer is the pointer to the memory to read. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

6 227 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics <id>
Semantics
OpAtomicStore
Atomically store through Pointer using the given Semantics. All
subparts of Value are written atomically with respect to all other
atomic accesses to it within Memory.
Pointer is the pointer to the memory to write. The type it points
to must be a scalar of integer type or floating-point type.
Value is the value to write. The type of Value and the type
pointed to by Pointer must be the same type.
Memory is a memory Scope.
5 228 <id> Scope <id> Memory Semantics <id>
Pointer Memory <id> Value
Semantics

201

OpAtomicExchange

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value from copying Value, and

3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be a scalar of integer type or floating-point type.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 229 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics

<id>
Semantics

OpAtomicCompareExchange

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value from Value only if Original Value equals
Comparator, and

3) store the New Value back through Pointer only if Original Value
equaled Comparator.

The instruction’s result is the Original Value.
Result Type must be an integer type scalar.

Use Equal for the memory semantics of this instruction when Value
and Original Value compare equal.

Use Unequal for the memory semantics of this instruction when Value
and Original Value compare unequal. Unequal must not be set to
Release or Acquire and Release. In addition, Unequal cannot be set
to a stronger memory-order then Equal.

The type of Value must be the same as Result Type. The type of the
value pointed to by Pointer must be the same as Result Type. This

type must also match the type of Comparator.

Memory is a memory Scope.

9 230 <id> Result <id> Scope Memory Memory <id>
Result <id> Pointer <id> Semantics Semantics Value
Type Memory <id> <id>
Equal Unequal

292

<id>
Value

<id>
Comparat
or

OpAtomicCompareExchangeWeak Capability:
Kernel
Deprecated (use OpAtomicCompareExchange).

Missing after version 1.3.

Has the same semantics as OpAtomicCompareExchange.

Memory is a memory Scope.

9 231 <id> Result <id> Scope Memory Memory
Result <id> Pointer <id> Semantics Semantics Value
Type Memory <id> <id>
Equal Unequal

OpAtomiclincrement

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value through integer addition of 1 to Original Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

6 232 <id> Result <id> <id> Scope <id>
Result Type Pointer Memory

OpAtomiclDecrement

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value through integer subtraction of 1 from Original
Value, and

3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

6 233 <id> Result <id> <id> Scope <id>
Result Type Pointer Memory

<id>
Comparat
or

Memory
Semantics <id>
Semantics

Memory
Semantics <id>
Semantics

293

OpAtomiclAdd

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value by integer addition of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 234 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics

<id>
Semantics

OpAtomiclSub

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value by integer subtraction of Value from Original Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 235 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics
<id>
Semantics

294

<id>
Value

<id>
Value

OpAtomicSMin

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value by finding the smallest signed integer of Original Value
and Value, and

3) store the New Value back through Pointer.

The instruction’s result is the Original Value.
Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 236 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics
<id>
Semantics

OpAtomicUMin

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value by finding the smallest unsigned integer of Original
Value and Value, and

3) store the New Value back through Pointer.

The instruction’s result is the Original Value.
Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 237 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics

<id>
Semantics

<id>
Value

<id>
Value

295

OpAtomicSMax

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value by finding the largest signed integer of Original Value
and Value, and

3) store the New Value back through Pointer.

The instruction’s result is the Original Value.
Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 238 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics
<id>
Semantics

OpAtomicUMax

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value by finding the largest unsigned integer of Original Value
and Value, and

3) store the New Value back through Pointer.

The instruction’s result is the Original Value.
Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 239 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics

<id>
Semantics

296

<id>
Value

<id>
Value

OpAtomicAnd

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value by the bitwise AND of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.

Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 240 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics
<id>
Semantics
OpAtomicOr

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value by the bitwise OR of Original Value and Value, and
3) store the New Value back through Pointer.

The instruction’s result is the Original Value.
Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 241 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics
<id>
Semantics

<id>
Value

<id>
Value

297

OpAtomicXor

Perform the following steps atomically with respect to any other atomic
accesses within Memory to the same location:

1) load through Pointer to get an Original Value,

2) get a New Value by the bitwise exclusive OR of Original Value and Value,
and

3) store the New Value back through Pointer.

The instruction’s result is the Original Value.
Result Type must be an integer type scalar.

The type of Value must be the same as Result Type. The type of the value
pointed to by Pointer must be the same as Result Type.

Memory is a memory Scope.

7 242 <id> Result <id> <id> Scope <id> Memory
Result Type Pointer Memory Semantics
<id>
Semantics
OpAtomicFlagTestAndSet Capability:
Kernel

Atomically sets the flag value pointed to by Pointer to the set state.

Pointer must be a pointer to a 32-bit integer type representing an
atomic flag.

The instruction’s result is true if the flag was in the set state or false if
the flag was in the clear state immediately before the operation.

Result Type must be a Boolean type.
The resulting values are undefined if an atomic flag is modified by an
instruction other than OpAtomicFlagTestAndSet or

OpAtomicFlagClear.

Memory is a memory Scope.

6 318 <id> Result <id> <id> Scope <id>
Result Type Pointer Memory

298

<id>
Value

Memory
Semantics <id>
Semantics

OpAtomicFlagClear Capability:

Kernel
Atomically sets the flag value pointed to by Pointer to the clear state.
Pointer must be a pointer to a 32-bit integer type representing an atomic flag.
Memory Semantics must not be Acquire or AcquireRelease
The resulting values are undefined if an atomic flag is modified by an
instruction other than OpAtomicFlagTestAndSet or OpAtomicFlagClear.
Memory is a memory Scope.
4 319 <id> Scope <id> Memory Semantics <id>
Pointer Memory Semantics
OpAtomicFMInEXT Capability:
AtomicFloat16MinMaxEXT,
Reserved. AtomicFloat32MinMaxEXT,

AtomicFloat64MinMaxEXT,
AtomicFloatl6VectorNV

Reserved.

7 5614 <id> Result <id> <id> Scope <id> Memory <id>
Result Type Pointer Memory Semantics Value

<id>

Semantics
OpAtomicFMaxEXT Capability:

AtomicFloat16MinMaxEXT,
Reserved. AtomicFloat32MinMaxEXT,

AtomicFloat64MinMaxEXT,
AtomicFloatl6VectorNV

Reserved.
7 5615 <id> Result <id> <id> Scope <id> Memory <id>
Result Type Pointer Memory Semantics Value
<id>
Semantics

299

OpAtomicFAddEXT

Reserved.

7

300

6035

<id>
Result Type

Result <id>

<id>
Pointer

Scope <id>
Memory

Capability:
AtomicFloat16AddEXT,
AtomicFloat32AddEXT,
AtomicFloat64AddEXT,
AtomicFloatl6VectorNV

Reserved.

Memory <id>
Semantics Value
<id>

Semantics

3.3.19. Primitive Instructions

OpEmitVertex Capalbility:
Geometry

Emits the current values of all output variables to the current output

primitive. After execution, the values of all output variables are

undefined.

This instruction must only be used when only one stream is present.

1 218
OpEndPrimitive Capability:
Geometry

Finish the current primitive and start a new one. No vertex is emitted.

This instruction must only be used when only one stream is present.

1 219

OpEmitStreamVertex Capability:
GeometryStreams

Emits the current values of all output variables to the

current output primitive. After execution, the values

of all output variables are undefined.

Stream must be an <id> of a constant instruction
with a scalar integer type. That constant is the
output-primitive stream number.

This instruction must only be used when multiple
streams are present.

2 220 <id>
Stream
OpEndStreamPrimitive Capability:
GeometryStreams

Finish the current primitive and start a new one. No
vertex is emitted.

Stream must be an <id> of a constant instruction
with a scalar integer type. That constant is the
output-primitive stream number.

This instruction must only be used when multiple
streams are present.

2 221 <id>
Stream

301

3.3.20. Barrier Instructions
OpControlBarrier

Wait for all invocations in the scope restricted tangle to reach the current point
of execution before executing further instructions.

Execution is the scope defining the scope restricted tangle affected by this
command.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its scope restricted tangle have executed all dynamic instances
that are program-ordered before X'.

An invocation will not execute dynamic instances that are program-ordered
after a dynamic instance of this instruction (X") until all invocations in its scope
restricted tangle have executed X'.

When Execution is Workgroup or larger, behavior is undefined unless all
invocations within Execution execute the same dynamic instance of this
instruction.

If Semantics is not None, this instruction also serves as an OpMemoryBarrier
instruction, and also performs and adheres to the description and semantics of
an OpMemoryBarrier instruction with the same Memory and Semantics
operands. This allows atomically specifying both a control barrier and a
memory barrier (that is, without needing two instructions). If Semantics is
None, Memory is ignored.

Before version 1.3, it is only valid to use this instruction with
TessellationControl, GLCompute, or Kernel execution models. There is no
such restriction starting with version 1.3.

If used with the TessellationControl execution model, it also implicitly
synchronizes the Output Storage Class: Writes to Output variables performed
by any invocation executed prior to a OpControlBarrier are visible to any other
invocation proceeding beyond that OpControlBarrier.

4 224 Scope <id> Scope <id> Memory Semantics <id>
Execution Memory Semantics

302

OpMemoryBarrier
Control the order that memory accesses are observed.

Ensures that memory accesses issued before this instruction are
observed before memory accesses issued after this instruction. This
control is ensured only for memory accesses issued by this invocation
and observed by another invocation executing within Memory scope. If
the Vulkan memory model is declared, this ordering only applies to
memory accesses that use the NonPrivatePointer memory operand
or NonPrivateTexel image operand.

Semantics declares what kind of memory is being controlled and what
kind of control to apply.

To execute both a memory barrier and a control barrier, see
OpControlBarrier.

3 225 Scope <id> Memory Semantics <id>
Memory Semantics
OpNamedBarrierlnitialize Capability:

NamedBarrier
Declare a new named-barrier object.

Missing before version
Result Type must be the type OpTypeNamedBarrier. 1.1.

Subgroup Count must be a 32-bit integer type scalar representing the number
of subgroups that must reach the current point of execution.

4 328 <id> Result <id> <id>
Result Type Subgroup Count
OpMemoryNamedBarrier Capability:

NamedBarrier
Wait for other invocations of this module to reach the current point of execution.

Missing before version
Named Barrier must be the type OpTypeNamedBarrier. 1.1.

If Semantics is not None, this instruction also serves as an OpMemoryBarrier
instruction, and also performs and adheres to the description and semantics of
an OpMemoryBarrier instruction with the same Memory and Semantics
operands. This allows atomically specifying both a control barrier and a
memory barrier (that is, without needing two instructions). If Semantics None,
Memory is ignored.

4 329 <id> Scope <id> Memory Semantics <id>
Named Barrier Memory Semantics

303

OpControlBarrierArriveINTEL

Reserved.

4 6142 Scope <id>
Execution

OpControlBarrierWaitINTEL

Reserved.

4 6143 Scope <id>
Execution

304

Scope <id>
Memory

Scope <id>
Memory

Capalbility:
SplitBarrierINTEL

Reserved.

Memory Semantics <id>
Semantics

Capability:
SplitBarrierINTEL

Reserved.

Memory Semantics <id>
Semantics

3.3.21. Group and Subgroup Instructions

305

OpGroupAsyncCopy Capability:
Kernel

Perform an asynchronous group copy of Num Elements elements from

Source to Destination. The asynchronous copy is performed by all

invocations in the scope restricted tangle.

This instruction results in an event object that can be used by
OpGroupWalitEvents to wait for the async copy to finish.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Result Type must be an OpTypeEvent object.

Destination must be a pointer to a scalar or vector of floating-point
type or integer type.

Destination pointer Storage Class must be Workgroup or
CrossWorkgroup.

The type of Source must be the same as Destination.

If Destination pointer Storage Class is Workgroup, the Source pointer
Storage Class must be CrossWorkgroup. In this case Stride defines
the stride in elements when reading from Source pointer.

If Destination pointer Storage Class is CrossWorkgroup, the Source
pointer Storage Class must be Workgroup. In this case Stride defines
the stride in elements when writing each element to Destination
pointer.

Stride and NumElements must be a 32-bit integer type scalar if the
addressing model is Physical32 and 64 bit integer type scalar if the
Addressing Model is Physical64.

Event must have a type of OpTypeEvent.

Event can be used to associate the copy with a previous copy allowing
an event to be shared by multiple copies. Otherwise Event should be
an OpConstantNull.

If Event is not OpConstantNull, the result is the event object supplied
by the Event operand.

9 259 <id> Result Scope <id> <id> <id> <id>
Result <id> <id> Destinatio Source Num Stride
Type Execution n Elements

306

<id>
Event

OpGroupWaitEvents Capability:
Kernel

Wait for events generated by OpGroupAsyncCopy operations to complete.

Events List points to Num Events event objects, which is released after the wait

is performed.

Execution is the scope defining the scope restricted tangle affected by this
command.

Behavior is undefined unless all invocations within Execution execute the same
dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its scope restricted tangle have executed all dynamic instances
that are program-ordered before X'.

Num Events must be a 32-bit integer type scalar.

Events List must be a pointer to OpTypeEvent.

4 260 Scope <id> <id> <id>
Execution Num Events Events List

OpGroupAll Capability:
Groups

Evaluates a predicate for all invocations in the scope restricted

tangle,resulting in true if predicate evaluates to true for all

invocations in the scope restricted tangle, otherwise the result

is false.

Execution is the scope defining the scope restricted tangle
affected by this command.

Behavior is undefined unless all invocations within Execution
execute the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this
instruction (X") until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered
before X'.

Result Type must be a Boolean type.

Predicate must be a Boolean type.

5 261 <id> Result <id> Scope <id> <id>

Result Type Execution Predicate

307

OpGroupAny Capability:
Groups

Evaluates a predicate for all invocations in the scope restricted

tangle,resulting in true if predicate evaluates to true for any

invocation in the scope restricted tangle, otherwise the result is

false.

Execution is the scope defining the scope restricted tangle
affected by this command.

Behavior is undefined unless all invocations within Execution
execute the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this
instruction (X") until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered
before X'.

Result Type must be a Boolean type.

Predicate must be a Boolean type.

5 262 <id> Result <id> Scope <id> <id>
Result Type Execution Predicate
OpGroupBroadcast Capability:
Groups

Broadcast the Value of the invocation identified by the local id Localld
to the result of all invocations in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

The type of Value must be the same as Result Type.

Localld must be an integer datatype. It must be a scalar, a vector with
2 components, or a vector with 3 components. Behavior is undefined
unless Localld is the same for all invocations in the group, or if it is
greater than or equal to the size of the group in any dimension.

6 263 <id> Result <id> Scope <id> <id> <id>
Result Type Execution Value Localld

308

OpGrouplAdd Capability:

Groups
An integer add group operation specified for all values of X specified
by invocations in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.
Result Type must be a scalar or vector of integer type.

The identity | for Operation is 0.

The type of X must be the same as Result Type.

6 264 <id> Result <id> Scope <id> Group Operation <id>
X

Result Type Execution Operation

OpGroupFAdd Capability:

Groups
A floating-point add group operation specified for all values of X
specified by invocations in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Result Type must be a scalar or vector of floating-point type.

The identity | for Operation is 0.

The type of X must be the same as Result Type.

6 265 <id> Result <id> Scope <id> Group Operation <id>

Result Type Execution Operation

X

309

OpGroupFMin Capability:
Groups

A floating-point minimum group operation specified for all values of X

specified by invocations in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Result Type must be a scalar or vector of floating-point type.
The identity | for Operation is +INF.

The type of X must be the same as Result Type.

6 266 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X

OpGroupUMin Capability:
Groups

An unsigned integer minimum group operation specified for all values

of X specified by invocations in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Result Type must be a scalar or vector of integer type.

The identity | for Operation is UINT_MAX when X is 32 bits wide and
ULONG_MAX when X is 64 bits wide.

The type of X must be the same as Result Type.

6 267 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X

310

OpGroupSMin Capalbility:

Groups
A signed integer minimum group operation specified for all values of X
specified by invocations in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Result Type must be a scalar or vector of integer type.

The identity | for Operation is INT_MAX when X is 32 bits wide and
LONG_MAX when X is 64 bits wide.

The type of X must be the same as Result Type.

6 268 <id> Result <id> Scope <id> Group Operation <id>
X

Result Type Execution Operation

OpGroupFMax Capability:

Groups
A floating-point maximum group operation specified for all values of X
specified by invocations in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Result Type must be a scalar or vector of floating-point type.

The identity | for Operation is -INF.

The type of X must be the same as Result Type.

6 269 <id> Result <id> Scope <id> Group Operation <id>

Result Type Execution Operation

X

311

OpGroupUMax Capability:
Groups

An unsigned integer maximum group operation specified for all values

of X specified by invocations in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Result Type must be a scalar or vector of integer type.
The identity | for Operation is 0.

The type of X must be the same as Result Type.

6 270 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X

OpGroupSMax Capability:
Groups

A signed integer maximum group operation specified for all values of

X specified by invocations in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Result Type must be a scalar or vector of integer type.

The identity | for Operation is INT_MIN when X is 32 bits wide and
LONG_MIN when X is 64 bits wide.

The type of X must be the same as Result Type.

6 271 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X

312

OpSubgroupBallotKHR

Reserved.

4 4421 <id>
Result Type

OpSubgroupFirstinvocationKHR

Reserved.
4 4422 <id>
Result Type
OpSubgroupAllIKHR
Reserved.
4 4428 <id>
Result Type
OpSubgroupAnyKHR
Reserved.
4 4429 <id>
Result Type

OpSubgroupAllEqualKHR

Reserved.

4 4430 <id>
Result Type

OpGroupNonUniformRotateKHR

Reserved.

6 + variable 4431 <id> Result <id>
Result Type

Result <id>

Result <id>

Result <id>

Result <id>

Result <id>

Scope <id>
Execution

<id>
Value

Capalbility:
SubgroupBallotKHR
Reserved.

<id>
Predicate

Capability:
SubgroupBallotKHR
Reserved.

<id>
Value

Capability:
SubgroupVoteKHR
Reserved.

<id>
Predicate

Capability:
SubgroupVoteKHR
Reserved.

<id>
Predicate

Capability:
SubgroupVoteKHR

Reserved.

<id>
Predicate

Capability:
GroupNonUniformRotate
KHR

Reserved.
<id> Optional
Delta <id>

ClusterSize

313

OpSubgroupReadInvocationKHR

Capability:
SubgroupBallotKHR

Reserved.
Reserved.
5 4432 <id> Result <id> <id> <id>
Result Type Value Index
OpGrouplAddNonUniformAMD Capability:
Groups
Reserved.
Reserved.
Also see extension:
SPV_AMD_shader_ballot
6 5000 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X
OpGroupFAddNonUniformAMD Capability:
Groups
Reserved.
Reserved.
Also see extension:
SPV_AMD_ shader_ballot
6 5001 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X
OpGroupFMinNonUniformAMD Capability:
Groups
Reserved.
Reserved.
Also see extension:
SPV_AMD_ shader_ballot
6 5002 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X
OpGroupUMinNonUniformAMD Capability:
Groups
Reserved.
Reserved.
Also see extension:
SPV_AMD_shader_ballot
6 5003 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X

314

https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_ballot.html

OpGroupSMinNonUniformAMD Capability:
Groups
Reserved.
Reserved.
Also see extension:
SPV_AMD_shader_ballot
6 5004 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X
OpGroupFMaxNonUniformAMD Capability:
Groups
Reserved.
Reserved.
Also see extension:
SPV_AMD_shader_ballot
6 5005 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X
OpGroupUMaxNonUniformAMD Capability:
Groups
Reserved.
Reserved.
Also see extension:
SPV_AMD_shader_ballot
6 5006 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X
OpGroupSMaxNonUniformAMD Capability:
Groups
Reserved.
Reserved.
Also see extension:
SPV_AMD_shader_ballot
6 5007 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation X
OpSubgroupShuffleINTEL Capability:
SubgroupShuffleINTEL
Reserved.
Reserved.
5 5571 <id> Result <id> <id> <id>
Result Type Data Invocationld

315

https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_ballot.html
https://github.khronos.org/SPIRV-Registry/extensions/AMD/SPV_AMD_shader_ballot.html

OpSubgroupShuffleDownINTEL

Capability:
SubgroupShuffleINTEL

Reserved.
Reserved.
6 5572 <id> Result <id> <id> <id> <id>
Result Type Current Next Delta
OpSubgroupShuffleUpINTEL Capability:
SubgroupShuffleINTEL
Reserved.
Reserved.
6 5573 <id> Result <id> <id> <id> <id>
Result Type Previous Current Delta
OpSubgroupShuffleXorINTEL Capability:
SubgroupShuffleINTEL
Reserved.
Reserved.
5 5574 <id> Result <id> <id> <id>
Result Type Data Value
OpSubgroupBlockReadINTEL Capability:
SubgroupBufferBlockl
Reserved. OINTEL
Reserved.
4 5575 <id> Result <id> <id>
Result Type Ptr
OpSubgroupBlockWriteINTEL Capalbility:
SubgroupBufferBlocklOINTEL
Reserved.
Reserved.
3 5576 <id> <id>
Ptr Data
OpSubgrouplmageBlockReadINTEL Capability:
SubgrouplmageBlocklOINTEL
Reserved.
Reserved.
5 5577 <id> Result <id> <id> <id>
Result Type Image Coordinate

316

OpSubgrouplmageBlockWriteINTEL

Capalbility:
SubgrouplmageBlockIO

Reserved. INTEL
Reserved.
4 5578 <id> <id> <id>
Image Coordinate Data
OpSubgrouplmageMediaBlockReadINTEL Capability:
SubgrouplmageMediaBloc
Reserved. KIOINTEL
Reserved.
7 5580 <id> Result <id> <id> <id> <id> <id>
Result Type Image Coordinate Width Height
OpSubgrouplmageMediaBlockWriteINTEL Capalbility:
SubgrouplmageMediaBlockIOIN
Reserved. TEL
Reserved.
6 5581 <id> <id> <id> <id> <id>
Image Coordinate Width Height Data
OpSubgroupBlockPrefetchINTEL Capability:
SubgroupBufferPref
Reserved. etchINTEL
Reserved.
3 + variable 6221 <id> <id> Optional
Ptr NumBytes Memory Operands
OpSubgroup2DBlockLoadINTEL Capability:
Subgroup2DBIlockIOINTE
Reserved. L
Reserved.
1 6231 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
1 Element Block Block Block Src Memory Memory Memory Coordin Dst
Size Width Height Count Base Width Height Pitch ate Pointer
Pointer

317

OpSubgroup2DBlockLoadTransformINTEL

Capability:
Subgroup2DBlockTransfo

Reserved. rmINTEL
Reserved.
1 6232 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
1 Element Block Block Block Src Memory Memory Memory Coordin Dst
Size Width Height Count Base Width Height Pitch ate Pointer
Pointer
OpSubgroup2DBlockLoadTransposelNTEL Capability:
Subgroup2DBlockTransp
Reserved. 0seINTEL
Reserved.
1 6233 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
1 Element Block Block Block Src Memory Memory Memory Coordin Dst
Size Width Height Count Base Width Height Pitch ate Pointer
Pointer
OpSubgroup2DBlockPrefetchINTEL Capability:
Subgroup2DBlockIOINTEL
Reserved.
Reserved.
1 6234 <id> <id> <id> <id> <id> <id> <id> <id> <id>
0 Element Block Block Block Src Base Memory Memory Memory Coordina
Size Width Height Count Pointer Width Height Pitch te
OpSubgroup2DBlockStorelNTEL Capability:
Subgroup2DBIlockIOINTE
Reserved. L
Reserved.
1 6235 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
1 Element Block Block Block Src Dst Memory Memory Memory Coordin
Size Width Height Count Pointer Base Width Height Pitch ate
Pointer

318

OpSubgroupMatrixMultiplyAccumulateINTEL

Reserved.
7+ 6237 <id>
variable Result
Type

OpGroupIMulKHR
Reserved.
6 6401 <id>

Result Type
OpGroupFMulKHR
Reserved.
6 6402 <id>

Result Type

OpGroupBitwiseAndKHR

Reserved.

6 6403 <id>
Result Type

OpGroupBitwiseOrKHR

Reserved.

6 6404 <id>
Result Type

OpGroupBitwiseXorKHR

Reserved.

6 6405 <id>
Result Type

Result
<id>

Result <id>

Result <id>

Result <id>

Result <id>

Result <id>

<id>
K Dim

<id>

Matrix A

Scope <id>
Execution

Scope <id>
Execution

Scope <id>
Execution

Scope <id>
Execution

Scope <id>
Execution

Capability:
SubgroupMatrixMu

Iti

plyAccumulateINTEL

GroupUniformArithmeticKkHR

Reserved.

Group Operation <id>
Operation X

Capability:
GroupUniformArithmeticKkHR

Reserved.

Group Operation <id>
Operation X

Capability:
GroupUniformArithmeticKHR

Reserved.

Group Operation <id>
Operation X

Capability:
GroupUniformArithmeticKkHR

Reserved.

Group Operation <id>
Operation X

Capability:
GroupUniformArithmeticKHR

Reserved.

Group Operation <id>
Operation X

Reserved.
<id> <id> Optional
Matrix B Matrix C Matrix
Multiply
Accumulat
e
Operands
Capability:

319

OpGrouplLogicalAndKHR

Reserved.

6 6406 <id> Result <id>
Result Type

OpGrouplLogical OrkKHR

Reserved.

6 6407 <id> Result <id>
Result Type

OpGroupLogicalXorKHR

Reserved.

6 6408 <id> Result <id>

Result Type

320

Scope <id>
Execution

Scope <id>
Execution

Scope <id>
Execution

Capability:
GroupUniformArithmeticKkHR

Reserved.

Group Operation <id>
Operation X

Capability:
GroupUniformArithmeticKkHR

Reserved.

Group Operation <id>
Operation X

Capability:
GroupUniformArithmeticKkHR

Reserved.

Group Operation <id>
Operation X

3.3.22. Device-Side Enqueue Instructions
OpEnqueueMarker

Enqueue a marker command to the queue object specified by Queue. The
marker command waits for a list of events to complete, or if the list is empty
it waits for all previously enqueued commands in Queue to complete before
the marker completes.

Result Type must be a 32-bit integer type scalar. A successful enqueue
results in the value 0. A failed enqueue results in a non-0 value.

Queue must be of the type OpTypeQueue.

Num Events specifies the number of event objects in the wait list pointed to
by Wait Events and must be a 32-bit integer type scalar, which is treated as
an unsigned integer.

Wait Events specifies the list of wait event objects and must be a pointer to
OpTypeDeviceEvent.

Ret Event is a pointer to a device event which gets implicitly retained by this
instruction. It must have a type of OpTypePointer to OpTypeDeviceEvent.
If Ret Event is set to null this instruction becomes a no-op.

7 291 <id> Result <id> <id> <id>
Result Type Queue Num Events

Capalbility:

DeviceEnqueue

<id>
Wait Events

<id>
Ret Event

321

OpEnqueueKernel Capability:
DeviceEnqueue

Enqueue the function specified by Invoke and the NDRange specified by ND

Range for execution to the queue object specified by Queue.

Result Type must be a 32-bit integer type scalar. A successful enqueue
results in the value 0. A failed enqueue results in a non-0 value.

Queue must be of the type OpTypeQueue.

Flags must be an integer type scalar. The content of Flags is interpreted as
Kernel Enqueue Flags mask.

The type of ND Range must be an OpTypeStruct whose members are as
described by the Result Type of OpBuildNDRange.

Num Events specifies the number of event objects in the wait list pointed to
by Wait Events and must be 32-bit integer type scalar, which is treated as an
unsigned integer.

Wait Events specifies the list of wait event objects and must be a pointer to
OpTypeDeviceEvent.

Ret Event must be a pointer to OpTypeDeviceEvent which gets implicitly
retained by this instruction.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.

- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypelnt.

- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be
a pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must
be a 32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type
scalar, which is treated as an unsigned integer.

Each Local Size operand corresponds (in order) to one OpTypePointer to
Workgroup Storage Class parameter to the Invoke function, and specifies
the number of bytes of Workgroup storage used to back the pointer during
the execution of the Invoke function.

13+ 292 <id> Resul <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>

variab Resul t<id> Queu Flags ND Num Wait Ret Invok Para Para Para
le t Type e Rang Event Event Event e m m m
e s S Size Align

322

<id>,
<id>,
Local
Size

OpGetKernelNDrangeSubGroupCount

Result is the number of subgroups in each workgroup of the dispatch (except
for the last in cases where the global size does not divide cleanly into
workgroups) given the combination of the passed NDRange descriptor
specified by ND Range and the function specified by Invoke.

Result Type must be a 32-bit integer type scalar.

The type of ND Range must be an OpTypeStruct whose members are as
described by the Result Type of OpBuildNDRange.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.

- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypelnt.

- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a
pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be

a 32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar,

which is treated as an unsigned integer.

8 293 <id> Result <id> <id> <id> <id>
Result Type ND Range Invoke Param

Capalbility:
DeviceEnqueue

<id> <id>

Param Size Param Align

323

OpGetKernelNDrangeMaxSubGroupSize Capalbility:
DeviceEnqueue

Result is the maximum subgroup size for the function specified by Invoke and

the NDRange specified by ND Range.

Result Type must be a 32-bit integer type scalar.

The type of ND Range must be an OpTypeStruct whose members are as
described by the Result Type of OpBuildNDRange.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.

- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypelnt.

- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a
pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be
a 32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar,
which is treated as an unsigned integer.

8 294 <id> Result <id> <id> <id> <id> <id> <id>
Result Type ND Range Invoke Param Param Size Param Align

324

OpGetKernelWorkGroupSize Capability:

DeviceEnqueue

Result is the maximum workgroup size that can be used to execute the
function specified by Invoke on the device.

Result Type must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.

- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypelnt.

- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be
a pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and
must be a 32-bit integer type scalar, which is treated as an unsigned
integer.

Param Align is the alignment of Param and must be a 32-bit integer type
scalar, which is treated as an unsigned integer.

7 295 <id> Result <id> <id> <id> <id>
Result Type Invoke Param Param Size

<id>
Param Align

325

OpGetKernelPreferredWorkGroupSizeMultiple Capability:

DeviceEnqueue

Result is the preferred multiple of workgroup size for the function specified
by Invoke. This is a performance hint. Specifying a workgroup size that is
not a multiple of this result as the value of the local work size does not fail
to enqueue Invoke for execution unless the workgroup size specified is
larger than the device maximum.

Result Type must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.

- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypelnt.

- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be
a pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and
must be a 32-bit integer type scalar, which is treated as an unsigned
integer.

Param Align is the alignment of Param and must be a 32-bit integer type
scalar, which is treated as an unsigned integer.

7 296 <id> Result <id> <id> <id> <id>
Result Type Invoke Param Param Size
OpRetainEvent Capability:

DeviceEnqueue
Increments the reference count of the event object
specified by Event.

Behavior is undefined if Event is not a valid event.

2 297 <id>
Event
OpReleaseEvent Capability:

DeviceEnqueue
Decrements the reference count of the event object
specified by Event. The event object is deleted once
the event reference count is zero, the specific
command identified by this event has completed (or
terminated) and there are no commands in any
device command queue that require a walit for this
event to complete.

Behavior is undefined if Event is not a valid event.

2 298 <id>
Event

326

<id>
Param Align

OpCreateUserEvent Capability:
DeviceEnqueue

Create a user event. The execution status of the created event is set

to a value of 2 (CL_SUBMITTED).

Result Type must be OpTypeDeviceEvent.

3 299 <id> Result <id>
Result Type

OplsValidEvent Capability:
DeviceEnqueue

Result is true if the event specified by Event is a valid event, otherwise false.
Result Type must be a Boolean type.

Event must have a type of OpTypeDeviceEvent

4 300 <id> Result <id> <id>
Result Type Event
OpSetUserEventStatus Capability:

DeviceEnqueue
Sets the execution status of a user event specified by Event.Status
can be either 0 (CL_COMPLETE) to indicate that this kernel and all its
child kernels finished execution successfully, or a negative integer
value indicating an error.

Event must have a type of OpTypeDeviceEvent that was produced by
OpCreateUserEvent.

Status must have a type of 32-bit OpTypelnt treated as a signed
integer.

3 301 <id> <id>
Event Status

327

OpCaptureEventProfilingInfo Capability:
DeviceEnqueue

Captures the profiling information specified by Profiling Info for the command

associated with the event specified by Event in the memory pointed to by

Value.The profiling information is available in the memory pointed to by Value

after the command identified by Event has completed.

Event must have a type of OpTypeDeviceEvent that was produced by
OpEnqueueKernel or OpEnqueueMarker.

Profiling Info must be an integer type scalar. The content of Profiling Info is
interpreted as Kernel Profiling Info mask.

Value must be a pointer to a scalar 8-bit integer type in the CrossWorkgroup
Storage Class.

If Profiling Info is CmdExecTime, Value behavior is defined only if it points to
128-bit memory range.

The first 64 bits contain the elapsed time CL_PROFILING_ COMMAND_END -
CL_PROFILING_COMMAND_START for the command identified by Event in
nanoseconds.

The second 64 bits contain the elapsed time
CL_PROFILING_COMMAND_COMPLETE -
CL_PROFILING_COMMAND_START for the command identified by Event in
nanoseconds.

Note: What is captured is undefined if this instruction is called multiple times
for the same event.

4 302 <id> <id> <id>
Event Profiling Info Value
OpGetDefaultQueue Capability:

DeviceEnqueue
The result is the default device queue, or if a default device queue has
not been created, a null queue object.

Result Type must be an OpTypeQueue.

3 303 <id> Result <id>
Result Type

328

OpBuildNDRange Capability:

DeviceEnqueue

Given the global work size specified by GlobalWorkSize, local work
size specified by LocalWorkSize and global work offset specified by
GlobalWorkOffset, builds the result as a 1D, 2D, or 3D ND-range
descriptor structure.

Result Type must be an OpTypeStruct with the following ordered list
of members, starting from the first to last:

1) A 32-bit integer type scalar that specifies the number of dimensions
in the global size and the workgroup size.

2) An OpTypeArray with 3 elements, where each element is a 32-bit
integer type scalar if the addressing model is Physical32 or a 64-bit
integer type scalar if the addressing model is Physical64. This is an
array of per-dimension unsigned values that specifies the global offset
used to calculate the global ID for an invocation.

3) An OpTypeArray with 3 elements, where each element is a 32-bit
integer type scalar if the addressing model is Physical32 or a 64-bit
integer type scalar if the addressing model is Physical64. This is an
array of per-dimension unsigned values that specifies the number of
global invocations that execute the kernel function.

4) An OpTypeArray with 3 elements, where each element is a 32-bit
integer type scalar if the addressing model is Physical32 or a 64-bit
integer type scalar if the addressing model is Physical64. This is an
array of per-dimension unsigned values that specifies the number of
invocations in a workgroup.

GlobalWorkSize must be a scalar or an array with 2 or 3 components.
Where the type of each element in the array is 32-bit integer type
scalar if the addressing model is Physical32 or 64-bit integer type
scalar if the addressing model is Physical64.

The type of LocalWorkSize must be the same as GlobalWorkSize.

The type of GlobalWorkOffset must be the same as GlobalWorkSize.

6 304 <id> Result <id> <id> <id>
Result Type GlobalWorkSize LocalWorkSize

<id>

GlobalWorkOffs

et

329

OpGetKernelLocalSizeForSubgroupCount Capability:

SubgroupDispatch
Result is the 1D local size to enqueue Invoke with Subgroup Count subgroups
per workgroup. Missing before version
1.1.

Result Type must be a 32-bit integer type scalar.
Subgroup Count must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.

- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypelnt.

- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be a
pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and must be
a 32-bit integer type scalar, which is treated as an unsigned integer.

Param Align is the alignment of Param and must be a 32-bit integer type scalar,
which is treated as an unsigned integer.

8 325 <id> Result <id> <id> <id> <id> <id> <id>
Result Type Subgroup Invoke Param Param Size Param Align
Count

330

OpGetKernelMaxNumSubgroups Capability:
SubgroupDispatch

Result is the maximum number of subgroups that can be used to execute

Invoke on the device. Missing before version 1.1.

Result Type must be a 32-bit integer type scalar.

Invoke must be an OpFunction whose OpTypeFunction operand has:
- Result Type must be OpTypeVoid.

- The first parameter must have a type of OpTypePointer to an 8-bit
OpTypelnt.

- An optional list of parameters, each of which must have a type of
OpTypePointer to the Workgroup Storage Class.

Param is the first parameter of the function specified by Invoke and must be
a pointer to an 8-bit integer type scalar.

Param Size is the size in bytes of the memory pointed to by Param and
must be a 32-bit integer type scalar, which is treated as an unsigned
integer.

Param Align is the alignment of Param and must be a 32-bit integer type
scalar, which is treated as an unsigned integer.

7 326 <id> Result <id> <id> <id> <id> <id>
Result Type Invoke Param Param Size Param Align

331

3.3.23. Pipe Instructions
OpReadPipe

Read a packet from the pipe object specified by Pipe into Pointer. Result is
0 if the operation is successful and a negative value if the pipe is empty.

Result Type must be a 32-bit integer type scalar.
Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Pointer must have a type of OpTypePointer with the same data type as
Pipe and a Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

7 274 <id> Result <id> <id> <id>
Result Type Pipe Pointer

OpWritePipe

Write a packet from Pointer to the pipe object specified by Pipe. Result is O
if the operation is successful and a negative value if the pipe is full.

Result Type must be a 32-bit integer type scalar.
Pipe must have a type of OpTypePipe with WriteOnly access qualifier.

Pointer must have a type of OpTypePointer with the same data type as
Pipe and a Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

7 |275 <id> Result <id> <id> <id>
Result Type Pipe Pointer

332

Capalbility:
Pipes

<id>
Packet Size

Capability:
Pipes

<id>
Packet Size

<id>
Packet
Alignment

<id>
Packet
Alignment

OpReservedReadPipe

Read a packet from the reserved area specified by Reserve Id and
Index of the pipe object specified by Pipe into Pointer. The reserved
pipe entries are referred to by indices that go from O ... Num Packets -
1. Result is O if the operation is successful and a negative value
otherwise.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with ReadOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveld.

Index must be a 32-bit integer type scalar, which is treated as an
unsigned value.

Pointer must have a type of OpTypePointer with the same data type
as Pipe and a Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

9 276 <id> Result <id> <id> <id>
Result <id> Pipe Reserve Index
Type Id

Capability:

Pipes

<id>
Pointer

<id>
Packet
Size

<id>
Packet
Alignment

333

OpReservedWritePipe Capability:
Pipes

Write a packet from Pointer into the reserved area specified by

Reserve Id and Index of the pipe object specified by Pipe. The

reserved pipe entries are referred to by indices that go from 0 ... Num

Packets - 1. Result is O if the operation is successful and a negative

value otherwise.

Result Type must be a 32-bit integer type scalar.

Pipe must have a type of OpTypePipe with WriteOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveld.

Index must be a 32-bit integer type scalar, which is treated as an
unsigned value.

Pointer must have a type of OpTypePointer with the same data type
as Pipe and a Generic Storage Class.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

9 277 <id> Result <id> <id> <id> <id> <id>
Result <id> Pipe Reserve Index Pointer Packet
Type Id Size

334

<id>
Packet
Alignment

OpReserveReadPipePackets Capability:

Pipes
Reserve Num Packets entries for reading from the pipe object specified by
Pipe. Result is a valid reservation ID if the reservation is successful.
Result Type must be an OpTypeReserveld.
Pipe must have a type of OpTypePipe with ReadOnly access qualifier.
Num Packets must be a 32-bit integer type scalar, which is treated as an
unsigned value.
Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.
Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.
Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.
7 278 <id> Result <id> <id> <id> <id> <id>
Result Type Pipe Num Packets Packet Size Packet
Alignment
OpReserveWritePipePackets Capability:
Pipes
Reserve num_packets entries for writing to the pipe object specified by
Pipe. Result is a valid reservation ID if the reservation is successful.
Pipe must have a type of OpTypePipe with WriteOnly access qualifier.
Num Packets must be a 32-bit OpTypelnt which is treated as an unsigned
value.
Result Type must be an OpTypeReserveld.
Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.
Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.
Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.
7 279 <id> Result <id> <id> <id> <id> <id>
Result Type Pipe Num Packets Packet Size Packet
Alignment

335

OpCommitReadPipe Capability:
Pipes

Indicates that all reads to Num Packets associated with the

reservation specified by Reserve Id and the pipe object

specified by Pipe are completed.

Pipe must have a type of OpTypePipe with ReadOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveld.

Packet Size must be a 32-bit integer type scalar that represents
the size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that
represents the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly
divides Packet Size.

5 280 <id> <id> <id>
Pipe Reserve Id Packet Size

OpCommitWritePipe Capability:
Pipes

Indicates that all writes to Num Packets associated with the

reservation specified by Reserve Id and the pipe object

specified by Pipe are completed.

Pipe must have a type of OpTypePipe with WriteOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveld.

Packet Size must be a 32-bit integer type scalar that represents
the size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that
represents the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly
divides Packet Size.

5 281 <id> <id> <id>
Pipe Reserve Id Packet Size

336

<id>
Packet Alignment

<id>
Packet Alignment

OplsValidReserveld

Result is true if Reserve Id is a valid reservation id and false otherwise.

Result Type must be a Boolean type.

Reserve Id must have a type of OpTypeReserveld.

4 282 <id> Result <id>
Result Type

OpGetNumPipePackets

Result is the number of available entries in the pipe object specified by
Pipe. The number of available entries in a pipe is a dynamic value.
The result is considered immediately stale.

Result Type must be a 32-bit integer type scalar, which should be
treated as an unsigned value.

Pipe must have a type of OpTypePipe with ReadOnly or WriteOnly
access qualifier.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

6 283 <id> Result <id> <id>
Result Type Pipe

Capalbility:

Pipes

<id>

Reserve Id
Capability:
Pipes
<id> <id>
Packet Size Packet

Alignment

337

OpGetMaxPipePackets Capability:

Pipes
Result is the maximum number of packets specified by the creation of
Pipe.
Result Type must be a 32-bit integer type scalar, which should be
treated as an unsigned value.
Pipe must have a type of OpTypePipe with ReadOnly or WriteOnly
access qualifier.
Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.
Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.
Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.
6 284 <id> Result <id> <id> <id>
Result Type Pipe Packet Size

338

<id>
Packet
Alignment

OpGroupReserveReadPipePackets Capability:
Pipes

Reserve Num Packets entries for the scope restricted tangle for reading from

the pipe object specified by Pipe. Result is a valid reservation id if the

reservation is successful.

The reserved pipe entries are referred to by indices that go from O ... Num
Packets - 1.

Execution is the scope defining the scope restricted tangle affected by this
command.

Behavior is undefined unless all invocations within Execution execute the same
dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its scope restricted tangle have executed all dynamic instances
that are program-ordered before X'.

Result Type must be an OpTypeReserveld.
Pipe must have a type of OpTypePipe with ReadOnly access qualifier.

Num Packets must be a 32-bit integer type scalar, which is treated as an
unsigned value.

Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides Packet
Size.

8 285 <id> Result <id> Scope <id> <id> <id> <id> <id>
Result Type Execution Pipe Num Packet Size Packet
Packets Alignment

339

OpGroupReserveWritePipePackets Capability:

Pipes
Reserve Num Packets entries for the scope restricted tangle for writing to the
pipe object specified by Pipe. Result is a valid reservation id if the reservation is
successful.
The reserved pipe entries are referred to by indices that go from O ... Num
Packets - 1.
Execution is the scope defining the scope restricted tangle affected by this
command.
Behavior is undefined unless all invocations within Execution execute the same
dynamic instance of this instruction.
An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its scope restricted tangle have executed all dynamic instances
that are program-ordered before X'.
Result Type must be an OpTypeReserveld.
Pipe must have a type of OpTypePipe with WriteOnly access qualifier.
Num Packets must be a 32-bit integer type scalar, which is treated as an
unsigned value.
Packet Size must be a 32-bit integer type scalar that represents the size in
bytes of each packet in the pipe.
Packet Alignment must be a 32-bit integer type scalar that represents the
alignment in bytes of each packet in the pipe.
Behavior is undefined unless Packet Alignment > 0 and evenly divides Packet
Size.
8 286 <id> Result <id> Scope <id> <id> <id> <id> <id>
Result Type Execution Pipe Num Packet Size Packet
Packets Alignment

340

OpGroupCommitReadPipe Capability:
Pipes

Indicates that all reads to Num Packets associated with the

reservation specified by Reserve Id and the pipe object specified by

Pipe were completed by the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Pipe must have a type of OpTypePipe with ReadOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveld.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

6 287 Scope <id> <id> <id> <id>
Execution Pipe Reserve Id Packet Size

<id>
Packet
Alignment

341

OpGroupCommitWritePipe Capalbility:
Pipes

Indicates that all writes to Num Packets associated with the

reservation specified by Reserve Id and the pipe object specified by

Pipe were completed by the scope restricted tangle.

Execution is the scope defining the scope restricted tangle affected by
this command.

Behavior is undefined unless all invocations within Execution execute
the same dynamic instance of this instruction.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

Pipe must have a type of OpTypePipe with WriteOnly access
qualifier.

Reserve Id must have a type of OpTypeReserveld.

Packet Size must be a 32-bit integer type scalar that represents the
size in bytes of each packet in the pipe.

Packet Alignment must be a 32-bit integer type scalar that represents
the alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

6 288 Scope <id> <id> <id> <id>
Execution Pipe Reserve Id Packet Size

342

<id>
Packet
Alignment

OpConstantPipeStorage Capability:
PipeStorage
Creates a pipe-storage object.

Missing before version 1.1.
Result Type must be OpTypePipeStorage.

Packet Size is an unsigned 32-bit integer. It represents the size in
bytes of each packet in the pipe.

Packet Alignment is an unsigned 32-bit integer. It represents the
alignment in bytes of each packet in the pipe.

Behavior is undefined unless Packet Alignment > 0 and evenly divides
Packet Size.

Capacity is an unsigned 32-bit integer. It is the minimum number of
Packet Size blocks the resulting OpTypePipeStorage can hold.

6 323 <id> Result <id> Literal Literal Literal
Result Type Packet Size Packet Capacity
Alignment
OpCreatePipeFromPipeStorage Capability:

PipeStorage
Creates a pipe object from a pipe-storage object.

Missing before version
Result Type must be OpTypePipe. 1.1.

Pipe Storage must be a pipe-storage object created from
OpConstantPipeStorage.

Qualifier is the pipe access qualifier.

4 324 <id> Result <id> <id>
Result Type Pipe Storage
OpReadPipeBlockingINTEL Capability:
BlockingPipesINTEL
Reserved.
Reserved.
5 5946 <id> Result <id> <id> <id>
Result Type Packet Size Packet Alignment
OpWritePipeBlockingINTEL Capability:
BlockingPipesINTEL
Reserved.
Reserved.
5 5947 <id> Result <id> <id> <id>
Result Type Packet Size Packet Alignment

343

3.3.24. Non-Uniform Instructions

OpGroupNonUniformElect Capability:
GroupNonUniform

Result is true only in the tangled invocation with the lowest id within the

Execution scope, otherwise result is false. Missing before version
1.3.

Result Type must be a Boolean type.

Execution is the scope defining the scope restricted tangle affected by this
command. It must be Subgroup.

An invocation will not execute a dynamic instance of this instruction (X') until all
invocations in its scope restricted tangle have executed all dynamic instances
that are program-ordered before X'.

4 333 <id> Result <id> Scope <id>
Result Type Execution

OpGroupNonUniformAll Capability:
GroupNonUniformVote

Evaluates a predicate for all tangled invocations within the

Execution scope, resulting in true if predicate evaluates to true Missing before version 1.3.

for all tangled invocations within the Execution scope,

otherwise the result is false.

Result Type must be a Boolean type.

Execution is the scope defining the scope restricted tangle
affected by this command. It must be Subgroup.

Predicate must be a Boolean type.

An invocation will not execute a dynamic instance of this
instruction (X") until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered
before X'.

5 334 <id> Result <id> Scope <id> <id>
Result Type Execution Predicate

344

OpGroupNonUniformAny Capability:
GroupNonUniformVote

Evaluates a predicate for all tangled invocations within the

Execution scope, resulting in true if predicate evaluates to true Missing before version 1.3.

for any tangled invocations within the Execution scope,

otherwise the result is false.

Result Type must be a Boolean type.

Execution is the scope defining the scope restricted tangle
affected by this command. It must be Subgroup.

Predicate must be a Boolean type.
An invocation will not execute a dynamic instance of this

instruction (X') until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered

before X'.

5 335 <id> Result <id> Scope <id> <id>
Result Type Execution Predicate

OpGroupNonUniformAllEqual Capability:

GroupNonUniformVote
Evaluates a value for all tangled invocations within the
Execution scope. The result is true if Value is equal for all Missing before version 1.3.
tangled invocations within the Execution scope. Otherwise, the
result is false.

Result Type must be a Boolean type.

Execution is the scope defining the scope restricted tangle
affected by this command. It must be Subgroup.

Value must be a scalar or vector of floating-point type, integer
type, or Boolean type. The compare operation is based on this
type, and if it is a floating-point type, an ordered-and-equal
compare is used.

An invocation will not execute a dynamic instance of this
instruction (X") until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered
before X'.

5 336 <id> Result <id> Scope <id> <id>
Result Type Execution Value

345

OpGroupNonUniformBroadcast Capability:
GroupNonUniformBallot

Result is the Value of the invocation identified by the id Id to all tangled

invocations within the Execution scope. Missing before version 1.3.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is the scope defining the scope restricted tangle affected by
this command. It must be Subgroup.

The type of Value must be the same as Result Type.

Id must be a scalar of integer type, whose Signedness operand is O.
Before version 1.5, Id must come from a constant instruction. Starting
with version 1.5, this restriction is lifted. However, behavior is

undefined when Id is not dynamically uniform.

The resulting value is undefined if Id is not part of the scope restricted
tangle, or is greater than or equal to the size of the scope.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'

6 337 <id> Result <id> Scope <id> <id> <id>
Result Type Execution Value Id
OpGroupNonUniformBroadcastFirst Capability:

GroupNonUniformBallot
Result is the Value of the invocation from the tangled
invocations with the lowest id within the Execution scope to all Missing before version 1.3.
tangled invocations within the Execution scope.

Result Type must be a scalar or vector of floating-point type,
integer type, or Boolean type.

Execution is the scope defining the scope restricted tangle
affected by this command. It must be Subgroup.

The type of Value must be the same as Result Type.

An invocation will not execute a dynamic instance of this
instruction (X") until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered
before X'.

5 338 <id> Result <id> Scope <id> <id>
Result Type Execution Value

346

OpGroupNonUniformBallot Capability:

GroupNonUniformBallot

Result is a bitfield value combining the Predicate value from all

tangled invocations within the Execution scope that execute the Missing before version 1.3.

same dynamic instance of this instruction. The bit is setto 1 if
the corresponding invocation is part of the tangled invocations
within the Execution scope and the Predicate for that invocation
evaluated to true; otherwise, it is set to 0.

Result Type must be a vector of four components of integer
type scalar, whose Width operand is 32 and whose Signedness
operand is 0.

Result is a set of bitfields where the first invocation is
represented in the lowest bit of the first vector component and
the last (up to the size of the scope) is the higher bit number of
the last bitmask needed to represent all bits of the invocations
in the scope restricted tangle.

Execution is the scope defining the scope restricted tangle
affected by this command.

Predicate must be a Boolean type.

An invocation will not execute a dynamic instance of this
instruction (X") until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered
before X'.

5 339 <id> Result <id> Scope <id>
Result Type Execution

<id>
Predicate

347

OpGroupNonUniformInverseBallot Capability:
GroupNonUniformBallot
Evaluates a value for all tangled invocations within the

Execution scope, resulting in true if the bit in Value for the Missing before version 1.3.
corresponding invocation is set to 1, otherwise the result is
false.

Result Type must be a Boolean type.

Execution is the scope defining the scope restricted tangle
affected by this command. It must be Subgroup.

Value must be a vector of four components of integer type
scalar, whose Width operand is 32 and whose Signedness
operand is 0.

Behavior is undefined unless Value is the same for all
invocations that execute the same dynamic instance of this
instruction.

Value is a set of bitfields where the first invocation is
represented in the lowest bit of the first vector component and
the last (up to the size of the scope) is the higher bit number of
the last bitmask needed to represent all bits of the invocations
in the scope restricted tangle.

An invocation will not execute a dynamic instance of this
instruction (X") until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered
before X'.

5 340 <id> Result <id> Scope <id> <id>
Result Type Execution Value

348

OpGroupNonUniformBallotBitExtract Capability:
GroupNonUniformBallot

Evaluates a value for all tangled invocations within the Execution

scope, resulting in true if the bit in Value that corresponds to Index is Missing before version 1.3.

set to one, otherwise the result is false.
Result Type must be a Boolean type.

Execution is the scope defining the scope restricted tangle affected by
this command. It must be Subgroup.

Value must be a vector of four components of integer type scalar,
whose Width operand is 32 and whose Signedness operand is O.

Value is a set of bitfields where the first invocation is represented in
the lowest bit of the first vector component and the last (up to the size
of the scope) is the higher bit number of the last bitmask needed to
represent all bits of the invocations in the scope restricted tangle.

Index must be a scalar of integer type, whose Signedness operand is
0.

The resulting value is undefined if Index is greater than or equal to the
size of the scope.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

6 341 <id> Result <id> Scope <id> <id>
Result Type Execution Value

<id>
Index

349

OpGroupNonUniformBallotBitCount Capability:
GroupNonUniformBallot

Result is the number of bits that are set to 1 in Value, considering only

the bits in Value required to represent all bits of the scope restricted Missing before version 1.3.

tangle.

Result Type must be a scalar of integer type, whose Signedness
operand is 0.

Execution is the scope defining the scope restricted tangle affected by
this command. It must be Subgroup.

The identity | for Operation is 0.

Value must be a vector of four components of integer type scalar,
whose Width operand is 32 and whose Signedness operand is O.

Value is a set of bitfields where the first invocation is represented in
the lowest bit of the first vector component and the last (up to the size
of the scope) is the higher bit number of the last bitmask needed to
represent all bits of the invocations in the scope restricted tangle.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'

6 342 <id> Result <id> Scope <id> Group Operation <id>
Result Type Execution Operation Value

350

OpGroupNonUniformBallotFindLSB

Find the least significant bit set to 1 in Value, considering only
the bits in Value required to represent all bits of the scope
restricted tangle. If none of the considered bits is set to 1, the
resulting value is undefined.

Result Type must be a scalar of integer type, whose
Signedness operand is 0.

Execution is the scope defining the scope restricted tangle
affected by this command. It must be Subgroup.

Value must be a vector of four components of integer type
scalar, whose Width operand is 32 and whose Signedness
operand is 0.

Value is a set of bitfields where the first invocation is
represented in the lowest bit of the first vector component and
the last (up to the size of the scope) is the higher bit number of
the last bitmask needed to represent all bits of the invocations
in the scope restricted tangle.

An invocation will not execute a dynamic instance of this
instruction (X') until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered
before X'.

5 343 <id> Result <id>
Result Type

Capability:
GroupNonUniformBallot

Missing before version 1.3.

Scope <id> <id>
Execution Value

351

OpGroupNonUniformBallotFindMSB Capability:
GroupNonUniformBallot

Find the most significant bit set to 1 in Value, considering only

the bits in Value required to represent all bits of the scope Missing before version 1.3.

restricted tangle. If none of the considered bits is set to 1, the

resulting value is undefined.

Result Type must be a scalar of integer type, whose
Signedness operand is 0.

Execution is the scope defining the scope restricted tangle
affected by this command. It must be Subgroup.

Value must be a vector of four components of integer type
scalar, whose Width operand is 32 and whose Signedness
operand is 0.

Value is a set of bitfields where the first invocation is
represented in the lowest bit of the first vector component and
the last (up to the size of the scope) is the higher bit number of
the last bitmask needed to represent all bits of the invocations
in the scope restricted tangle.

An invocation will not execute a dynamic instance of this
instruction (X') until all invocations in its scope restricted tangle
have executed all dynamic instances that are program-ordered

before X'.

5 344 <id> Result <id> Scope <id> <id>
Result Type Execution Value

OpGroupNonUniformShuffle Capability:

GroupNonUniformShuffle
Result is the Value of the invocation identified by the id Id.

Missing before version 1.3.
Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is the scope defining the scope restricted tangle affected by
this command.

The type of Value must be the same as Result Type.
Id must be a scalar of integer type, whose Signedness operand is 0.

The resulting value is undefined if Id is not part of the scope restricted
tangle, or is greater than or equal to the size of the scope.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'

6 345 <id> Result <id> Scope <id> <id> <id>
Result Type Execution Value Id

352

OpGroupNonUniformShuffleXor Capability:
GroupNonUniformShuffle

Result is the Value of the invocation identified by the current

invocation’s id within the scope xor’ed with Mask. Missing before version 1.3.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is the scope defining the scope restricted tangle affected by
this command. It must be Subgroup.

The type of Value must be the same as Result Type.

Mask must be a scalar of integer type, whose Signedness operand is
0.

The resulting value is undefined if current invocation’s id within the
scope xor'ed with Mask is not part of the scope restricted tangle, or is
greater than or equal to the size of the scope.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

6 346 <id> Result <id> Scope <id> <id> <id>
Result Type Execution Value Mask
OpGroupNonUniformShuffleUp Capability:

GroupNonUniformShuffleRelati

Result is the Value of the invocation identified by the current ve
invocation’s id within the scope - Delta.
Missing before version 1.3.
Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is the scope defining the scope restricted tangle affected by
this command. It must be Subgroup.

The type of Value must be the same as Result Type.

Delta must be a scalar of integer type, whose Signedness operand is
0.

Delta is treated as unsigned. The resulting value is undefined if Delta
is greater than the current invocation’s id within the scope or if the
identified invocation is not in scope restricted tangle.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

6 347 <id> Result <id> Scope <id> <id> <id>
Result Type Execution Value Delta

353

OpGroupNonUniformShuffleDown Capability:

GroupNonUniformShuffleRelati

Result is the Value of the invocation identified by the current ve
invocation’s id within the scope + Delta.

Missing before version 1.3.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is the scope defining the scope restricted tangle affected by
this command. It must be Subgroup.

The type of Value must be the same as Result Type.

Delta must be a scalar of integer type, whose Signedness operand is
0.

Delta is treated as unsigned. The resulting value is undefined if Delta
is greater than or equal to the size of the scope, or if the identified
invocation is not in scope restricted tangle

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its scope restricted tangle have executed all
dynamic instances that are program-ordered before X'.

6 348 <id> Result <id> Scope <id> <id>
Result Type Execution Value

354

<id>
Delta

OpGroupNonUniformlAdd Capability:

GroupNonUniformArith

An integer add group operation of all Value operands contributed by all metic,

tangled invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of integer type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 349 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

Optional
<id>
ClusterSize

355

OpGroupNonUniformFAdd Capability:
GroupNonUniformArith

A floating point add group operation of all Value operands contributed by all metic,

tangled invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of floating-point type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type. The method used to
perform the group operation on the contributed Value(s) from the tangled
invocations is implementation defined.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X') until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 350 <id> Result <id> Scope <id> Group <id> Optional
Result Type Execution Operation Value <id>
Operation ClusterSize

356

OpGroupNonUniformIMul Capability:

GroupNonUniformArith

An integer multiply group operation of all Value operands contributed by all metic,

tangled invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of integer type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is 1. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 351 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

Optional
<id>
ClusterSize

357

OpGroupNonUniformFMul Capability:

GroupNonUniformArith

A floating point multiply group operation of all Value operands contributed by metic,

all tangled invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of floating-point type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is 1. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type. The method used to
perform the group operation on the contributed Value(s) from the tangled
invocations is implementation defined.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X') until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 352 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

358

Optional
<id>
ClusterSize

OpGroupNonUniformSMin Capability:

GroupNonUniformArith

A signed integer minimum group operation of all Value operands contributed metic,

by all tangled invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of integer type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is INT_MAX. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 353 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

Optional
<id>
ClusterSize

359

OpGroupNonUniformUMin Capability:
GroupNonUniformArith

An unsigned integer minimum group operation of all Value operands metic,

contributed by all tangled invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of integer type, whose Signedness GroupNonUniformPartiti

operand is 0. onedNV

Execution is the scope defining the scope restricted tangle affected by this Missing before version

command. It must be Subgroup. 1.3.

The identity | for Operation is UINT_MAX. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X) until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 354 <id> Result <id> Scope <id> Group <id> Optional
Result Type Execution Operation Value <id>
Operation ClusterSize

360

OpGroupNonUniformFMin Capability:

GroupNonUniformArith

A floating point minimum group operation of all Value operands contributed by metic,

all tangled invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of floating-point type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is +INF. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type. The method used to
perform the group operation on the contributed Value(s) from the tangled
invocations is implementation defined. From the set of Value(s) provided by
the tangled invocations within a subgroup, if for any two Values one of them is
a NaN, the other is chosen. If all Value(s) that are used by the current
invocation are NaN, then the result is an undefined value.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X*) until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 355 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

Optional
<id>
ClusterSize

361

OpGroupNonUniformSMax

A signed integer maximum group operation of all Value operands contributed
by all tangled invocations within the Execution scope.

Result Type must be a scalar or vector of integer type.

Execution is the scope defining the scope restricted tangle affected by this
command. It must be Subgroup.

The identity | for Operation is INT_MIN. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a

constant instruction. Behavior is undefined unless ClusterSize is at least 1 and

a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 356 <id> Result <id> Scope <id> Group
Result Type Execution Operation
Operation

362

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

<id> Optional
Value <id>
ClusterSize

OpGroupNonUniformUMax Capability:

GroupNonUniformArith

An unsigned integer maximum group operation of all Value operands metic,

contributed by all tangled invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of integer type, whose Signedness GroupNonUniformPartiti

operand is 0. onedNV

Execution is the scope defining the scope restricted tangle affected by this Missing before version

command. It must be Subgroup. 1.3.

The identity | for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X) until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 357 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

Optional
<id>
ClusterSize

363

OpGroupNonUniformFMax Capability:

GroupNonUniformArith

A floating point maximum group operation of all Value operands contributed by metic,

all tangled invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of floating-point type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is -INF. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type. The method used to
perform the group operation on the contributed Value(s) from the tangled
invocations is implementation defined. From the set of Value(s) provided by
the tangled invocations within a subgroup, if for any two Values one of them is
a NaN, the other is chosen. If all Value(s) that are used by the current
invocation are NaN, then the result is an undefined value.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X*) until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 358 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

364

Optional
<id>
ClusterSize

OpGroupNonUniformBitwiseAnd Capability:

GroupNonUniformArith

A bitwise and group operation of all Value operands contributed by all tangled metic,

invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of integer type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is ~0. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 359 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

Optional
<id>
ClusterSize

365

OpGroupNonUniformBitwiseOr Capability:
GroupNonUniformArith
A bitwise or group operation of all Value operands contributed by all tangled metic,

invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of integer type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 360 <id> Result <id> Scope <id> Group <id> Optional
Result Type Execution Operation Value <id>
Operation ClusterSize

366

OpGroupNonUniformBitwiseXor Capability:

GroupNonUniformArith

A bitwise xor group operation of all Value operands contributed by all tangled metic,

invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of integer type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 361 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

Optional
<id>
ClusterSize

367

OpGroupNonUniformLogicalAnd

A logical and group operation of all Value operands contributed by all tangled
invocations within the Execution scope.

Result Type must be a scalar or vector of Boolean type.

Execution is the scope defining the scope restricted tangle affected by this
command. It must be Subgroup.

The identity | for Operation is ~0. If Operation is ClusteredReduce,
ClusterSize must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a

constant instruction. Behavior is undefined unless ClusterSize is at least 1 and

a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 362 <id> Result <id> Scope <id> Group
Result Type Execution Operation
Operation

368

Capability:
GroupNonUniformArith
metic,
GroupNonUniformCluste
red,
GroupNonUniformPartiti
onedNV

Missing before version
1.3.

<id> Optional
Value <id>
ClusterSize

OpGroupNonUniformLogicalOr Capability:

GroupNonUniformArith

A logical or group operation of all Value operands contributed by all tangled metic,

invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of Boolean type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 363 <id> Result <id> Scope <id> Group <id>
Result Type Execution Operation Value
Operation

Optional
<id>
ClusterSize

369

OpGroupNonUniformLogical Xor Capability:
GroupNonUniformArith
A logical xor group operation of all Value operands contributed by all tangled metic,

invocations within the Execution scope. GroupNonUniformCluste
red,

Result Type must be a scalar or vector of Boolean type. GroupNonUniformPartiti
onedNV

Execution is the scope defining the scope restricted tangle affected by this

command. It must be Subgroup. Missing before version
1.3.

The identity | for Operation is 0. If Operation is ClusteredReduce, ClusterSize
must be present.

The type of Value must be the same as Result Type.

ClusterSize is the size of cluster to use. ClusterSize must be a scalar of
integer type, whose Signedness operand is 0. ClusterSize must come from a
constant instruction. Behavior is undefined unless ClusterSize is at least 1 and
a power of 2. If ClusterSize is greater than the size of the scope, executing
this instruction results in undefined behavior.

An invocation will not execute a dynamic instance of this instruction (X") until
all invocations in its scope restricted tangle have executed all dynamic
instances that are program-ordered before X'.

6 + variable 364 <id> Result <id> Scope <id> Group <id> Optional
Result Type Execution Operation Value <id>
Operation ClusterSize

370

OpGroupNonUniformQuadBroadcast Capability:

GroupNonUniformQuad

Result is the Value of the invocation within the quad with a quad index

equal to Index. Missing before version 1.3.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope, but has no effect on the behavior of this
instruction. It must be Subgroup.

The type of Value must be the same as Result Type.

Index must be a scalar of integer type, whose Signedness operand is
0.

Before version 1.5, Index must come from a constant instruction.
Starting with version 1.5, Index must be dynamically uniform.

If the value of Index is greater than or equal to 4, or refers to an
invocation not part of the tangled invocations within the quad, the
resulting value is undefined.

An invocation will not execute a dynamic instance of this instruction (
X") until all invocations in its quad have executed all dynamic instances
that are program-ordered before X'.

6 365 <id> Result <id> Scope <id> <id>
Result Type Execution Value

<id>
Index

371

OpGroupNonUniformQuadSwap Capability:
GroupNonUniformQuad

Swap the Value of the invocation within the quad with another

invocation in the quad using Direction. Missing before version 1.3.

Result Type must be a scalar or vector of floating-point type, integer
type, or Boolean type.

Execution is a Scope, but has no effect on the behavior of this
instruction. It must be Subgroup.

The type of Value must be the same as Result Type.
Direction is the kind of swap to perform.

Direction must be a scalar of integer type, whose Signedness operand
is 0.

Direction must come from a constant instruction.

The value returned in Result is the value provided to Value by another
invocation in the same quad scope instance. The invocation providing
this value is determined according to Direction.

A Direction of 0 indicates a horizontal swap;

- Invocations with quad indices of 0 and 1 swap values
- Invocations with quad indices of 2 and 3 swap values
A Direction of 1 indicates a vertical swap;

- Invocations with quad indices of 0 and 2 swap values
- Invocations with quad indices of 1 and 3 swap values
A Direction of 2 indicates a diagonal swap;

- Invocations with quad indices of 0 and 3 swap values
- Invocations with quad indices of 1 and 2 swap values

Direction must be one of the above values.

If a tangled invocation within the quad reads Value from an invocation
not part of the tangled invocation within the same quad, the resulting

value is undefined.

An invocation will not execute a dynamic instance of this instruction (

X") until all invocations in its quad have executed all dynamic instances
that are program-ordered before X'.

6 366 <id> Result <id> Scope <id> <id>
Result Type Execution Value

OpGroupNonUniformQuadAIllIKHR

Reserved.

4 5110 <id> Result <id>
Result Type

372

<id>
Direction

Capability:
QuadControlKHR
Reserved.

<id>
Predicate

OpGroupNonUniformQuadAnyKHR

Reserved.

4 5111 <id>
Result Type

OpGroupNonUniformPartitionNV

Reserved.

4 5296 <id>
Result Type

Result <id>

Result <id>

Capalbility:
QuadControlKHR
Reserved.

<id>

Predicate

Capability:
GroupNonUniformPartit
ionedNV

Reserved.

<id>
Value

373

3.3.25. Tensor Instructions

OpTensorReadARM
Reserved.
5 + variable 4164 <id>

Result Type
OpTensorWriteARM
Reserved.
4 + variable 4165 <id>

Tensor
OpTensorQuerySizeARM
Reserved.
5 4166 <id>
Result Type

374

Capability:
TensorsARM
Reserved.
Result <id> <id> <id> Optional
Tensor Coordinates Tensor
Operands
Capability:
TensorsARM
Reserved.
<id> <id> Optional
Coordinates Object Tensor Operands
Capability:
TensorsARM
Reserved.
Result <id> <id> <id>
Tensor Dimension

3.3.26. Graph Instructions

OpGraphConstantARM
Reserved.
4 4181 <id>
Result Type

OpGraphEntryPointARM

Reserved.

3 + variable 4182

OpGraphARM

Reserved.

3 4183

OpGraphlnputARM

Reserved.

4 + variable 4184

OpGraphSetOutputARM

Reserved.

3 + variable 4185

OpGraphEndARM

Reserved.

<id>
Graph

<id>
Result Type

<id>
Result Type

<id>
Value

Capability:
GraphARM

Reserved.

Result <id> Literal
GraphConstantlD

Capability:
GraphARM
Reserved.
Literal <id>, <id>, ...
Name Interface
Capability:
GraphARM
Reserved.
Result <id>
Capability:
GraphARM
Reserved.
Result <id> <id> <id>, <id>, ...
Inputindex Elementindex
Capability:
GraphARM
Reserved.
<id> <id>, <id>, ...
Outputindex Elementindex
Capability:
GraphARM
Reserved.
4186

375

3.3.27. Reserved Instructions

OpTraceRayKHR Capability:
RayTracingKHR
Reserved.
Reserved.
1 444 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>

2|5 Accel Ray Cull SBT SBT Miss Ray Ray Ray Ray Payloa
Flags Mask Offset Stride Index Origin Tmin Directio Tmax d

n
OpExecuteCallableKHR Capability:
RayTracingKHR
Reserved.
Reserved.
3 4446 <id> <id>
SBT Index Callable Data
OpConvertUToAccelerationStructureKHR Capability:
RayTracingKHR,
Reserved. RayQueryKHR
Reserved.
4 4447 <id> Result <id> <id>
Result Type Accel
OplgnorelntersectionKHR Capability:
RayTracingKHR
Reserved.
Reserved.
1 4448
OpTerminateRayKHR Capability:
RayTracingKHR
Reserved.
Reserved.
1 4449
OpRayQuerylnitializeKHR Capability:
RayQueryKHR
Reserved.
Reserved.
9 4473 <id> <id> <id> <id> <id> <id> <id> <id>
RayQuery Accel RayFlags CullMask RayOrigin RayTMin RayDirecti RayTMax
on

376

OpRayQueryTerminateKHR Capability:
RayQueryKHR
Reserved.
Reserved.
2 4474 <id>
RayQuery
OpRayQueryGeneratelntersectionKHR Capability:
RayQueryKHR
Reserved.
Reserved.
3 4475 <id> <id>
RayQuery HitT
OpRayQueryConfirmintersectionKHR Capability:
RayQueryKHR
Reserved.
Reserved.
2 4476 <id>
RayQuery
OpRayQueryProceedKHR Capability:
RayQueryKHR
Reserved.
Reserved.
4 4477 <id> Result <id> <id>
Result Type RayQuery
OpRayQueryGetintersectionTypeKHR Capability:
RayQueryKHR
Reserved.
Reserved.
5 4479 <id> Result <id> <id> <id>
Result Type RayQuery Intersection
OpFragmentMaskFetchAMD Capability:
FragmentMaskAMD
Reserved.
Reserved.
5 5011 <id> Result <id> <id> <id>
Result Type Image Coordinate

377

OpFragmentFetchAMD

Reserved.
6 5012 <id> Result <id>
Result Type
OpReadClockKHR
Reserved.
4 5056 <id>
Result Type
OpAllocateNodePayloadsAMDX
Reserved.
6 5074 <id> Result <id>
Result Type
OpEnqueueNodePayloadsAMDX
Reserved.
2 5075
OpTypeNodePayloadArrayAMDX
Reserved.
3 5076 Result <id>

OpFinishWritingNodePayloadAMDX

Reserved.

4 5078 <id>
Result Type

378

Capability:
FragmentMaskAMD
Reserved.
<id> <id> <id>
Image Coordinate Fragment Index
Capability:
ShaderClockKHR
Reserved.
Result <id> Scope <id>
Scope
Capability:
ShaderEnqueueAMDX
Reserved.
Scope <id> <id> <id>
Visibility Payload Count Node Index
Capability:
ShaderEnqueueAMDX
Reserved.
<id>
Payload Array
Capability:
ShaderEnqueueAMDX
Reserved.
<id>
Payload Type
Capability:
ShaderEnqueueAMDX
Reserved.
Result <id> <id>
Payload

OpNodePayloadArrayLengthAMDX

Reserved.

4 5090 <id>
Result Type

OplsNodePayloadValidAMDX

Reserved.

5 5101 <id>
Result Type

OpConstantStringAMDX

Reserved.

3 + variable 5103

OpSpecConstantStringAMDX

Reserved.

3 + variable 5104

OpHitObjectRecordHitMotionNV

Reserved.

152 <id> <id> <id> <id> <id>

5 49 Hit Accel Insta Primit Geo
Objec eratio nceld iveld metry Kind
t n Index
Struct
ure

Result <id>

Result <id>

<id> <id> <id> <id>
SBT SBT Origin TMin
Recor Recor

d d

Offset Stride

Capalbility:
ShaderEnqueueAMDX
Reserved.
Result <id> <id>
Payload Array
Capability:
ShaderEnqueueAMDX
Reserved.
Result <id> <id> <id>
Payload Type Node Index
Capalbility:
ShaderEnqueueAMDX
Reserved.

Literal
Literal String

Capability:
ShaderEnqueueAMDX

Reserved.

Literal
Literal String

Capability:
ShaderlnvocationReorde
rNV,
RayTracingMotionBIurNV

Reserved.

<id> <id> <id> <id>
Direct TMax Curre HitOb

ion nt ject
Time Attrib
utes

379

OpHitObjectRecordHitWithIndexMotionNV

Reserved.
1 525 <id> <id> <id> <id> <id> <id> <id> <id> <id>
4 0 Hit Accel Instan Primiti Geom Hit SBT Origin TMin
Object eratio celd veld etryln Kind Recor
n dex d
Struct Index
ure
OpHitObjectRecordMissMotionNV
Reserved.
8 5251 <id> <id> <id> <id> <id>
Hit Object SBT Index Origin TMin Direction
OpHitObjectGetWorldToObjectNV
Reserved.
4 5252 <id> Result <id>
Result Type
OpHitObjectGetObjectToWorldNV
Reserved.
4 5253 <id> Result <id>
Result Type
OpHitObjectGetObjectRayDirectionNV
Reserved.
4 5254 <id> Result <id>
Result Type

380

Capability:
ShaderilnvocationReorderN

Vu

RayTracingMotionBIurNV

Reserved.
<id> <id> <id> <id>
Directi TMax Curre HitObj
on nt ect
Time Attribu
tes
Capability:

ShaderlnvocationReord
erNV,
RayTracingMotionBlur
NV

Reserved.

<id> <id>

TMax Current
Time

Capability:

ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

OpHitObjectGetObjectRayOriginNV Capability:
ShaderlnvocationReord

Reserved. erNV
Reserved.
4 5255 <id> Result <id> <id>
Result Type Hit Object
OpHitObjectTraceRayMotionNV Capability:
ShaderlnvocationReorderN
Reserved. V,

RayTracingMotionBIurNV

Reserved.
1 525 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
4 6 Hit Accel RayFl Cullm SBT SBT Miss Origin TMin Directi TMax Time Paylo
Object eratio ags ask Recor Recor Index on ad
n d d
Struct Offset Stride
ure
OpHitObjectGetShaderRecordBufferHandleNV Capability:
ShaderlnvocationReord
Reserved. erNV
Reserved.
4 5257 <id> Result <id> <id>
Result Type Hit Object
OpHitObjectGetShaderBindingTableRecordIndexNV Capability:
ShaderlnvocationReord
Reserved. erNV
Reserved.
4 5258 <id> Result <id> <id>
Result Type Hit Object
OpHitObjectRecordEmptyNV Capability:
ShaderlnvocationReorderNV
Reserved.
Reserved.
2 5259 <id>
Hit Object

381

OpHitObjectTraceRayNV

Capability:
ShaderlnvocationReorderNV

Reserved.
Reserved.

1 526 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
30 Hit Accele RayFla Cullma SBT SBT Miss Origin TMin Directi TMax Payloa
Object ration gs sk Recor Recor Index on d

Structu d d
re Offset Stride
OpHitObjectRecordHitNV Capability:
ShaderInvocationReorderN
Reserved. \%
Reserved.
1 526 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
4 1 Hit Accel Instan Primiti Geom Hit SBT SBT Origin TMin Directi TMax HitObj
Object eratio celd veld etryin Kind Recor Recor on ect
n dex d d Attribu
Struct Offset Stride tes
ure
OpHitObjectRecordHitWithIndexNV Capability:
ShaderinvocationReorderNV
Reserved.
Reserved.
1 526 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
3|2 Hit Accele Instan Primiti Geom Hit SBT Origin TMin Directi TMax HitObj
Object ration celd veld etrylnd Kind Recor on ect
Structu ex d Attribut
re Index es
OpHitObjectRecordMissNV Capability:
ShaderInvocationReorderN
Reserved. \
Reserved.
7 5263 <id> <id> <id> <id> <id> <id>
Hit Object SBT Index Origin TMin Direction TMax
OpHitObjectExecuteShaderNV Capability:
ShaderlnvocationReorderNV
Reserved.
Reserved.
3 5264 <id> <id>
Hit Object Payload

382

OpHitObjectGetCurrentTimeNV

Reserved.

4 5265 <id> Result <id>
Result Type

OpHitObjectGetAttributesNV

Reserved.
3 5266 <id>
Hit Object
OpHitObjectGetHitKindNV
Reserved.
4 5267 <id> Result <id>
Result Type

OpHitObjectGetPrimitivelndexNV

Reserved.

4 5268 <id> Result <id>

Result Type

OpHitObjectGetGeometrylndexNV

Reserved.

4 5269 <id> Result <id>
Result Type

OpHitObjectGetinstanceldNV

Reserved.

4 5270 <id> Result <id>
Result Type

Capalbility:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderinvocationReorderNV
Reserved.

<id>
Hit Object Attribute

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

383

OpHitObjectGetinstanceCustomIindexNV

Reserved.

4 5271 <id> Result <id>
Result Type

OpHitObjectGetWorldRayDirectionNV

Reserved.

4 5272 <id> Result <id>
Result Type

OpHitObjectGetWorldRayOriginNV

Reserved.

4 5273 <id> Result <id>
Result Type

OpHitObjectGetRay TMaxNV

Reserved.

4 5274 <id> Result <id>
Result Type

OpHitObjectGetRay TMinNV

Reserved.

4 5275 <id> Result <id>
Result Type

OpHitObjectIsEmptyNV

Reserved.

4 5276 <id> Result <id>
Result Type

384

Capalbility:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderinvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

OpHitObjectIsHitNV

Reserved.

4 5277

OpHitObjectisMissNV

Reserved.

4 5278

<id>
Result Type

<id>
Result Type

OpReorderThreadWithHitObjectNV

Reserved.

2 + variable 5279

OpReorderThreadWithHintNV

Reserved.

3 5280 <id>
Hint

OpCooperativeVectorMatrixMulNV

Reserved.

12+ 528 <id> Resul <id> <id>

variab 9 Resul t<id> Input Inputl

le t Type nterpr
etatio
n

<id>
Hit Object

Result <id>

Result <id>

Optional
<id>
Hint

<id> <id>
Matrix Matrix Matrix M
Offset Interp

retati
on

Capalbility:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationReord
erNV

Reserved.

<id>
Hit Object

Capability:
ShaderlnvocationRe
orderNV

Reserved.
Optional
<id>

Bits

Capability:
ShaderlnvocationReorderNV

Reserved.

<id>

Bits

<id>
K

Capability:
CooperativeVectorNV

Reserved.

<id> <id> Optio Optio
Mem Trans nal nal

oryLa pose <id> Coop
yout Matrix erativ

Stride e
Matrix
Oper
ands

385

OpCooperativeVectorOuterProductAccumulateNV

Capability:
CooperativeVectorTra

Reserved. iningNV
Reserved.
7+ 5290 <id> <id> <id> <id> <id> <id> Optional
variable Pointer Offset A B MemoryLa Matrixinter <id>
yout pretation MatrixStrid
e
OpCooperativeVectorReduceSumAccumulateNV Capability:
CooperativeVectorTrain
Reserved. ingNVv
Reserved.
4 5291 <id> <id> <id>
Pointer Offset Vv
OpCooperativeVectorMatrixMulAddNV Capability:
CooperativeVectorNV
Reserved.
Reserved.
15+ 52 <id> Res <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> Opti Opti
varia 92 Res ult Inpu Inpu Matr Matr Matr Bias Bias Bias M K Me Tran onal onal
ble ult <id> 't tinte ix ixOff ixInt Offs Inter mor spos <id> Coo
Type rpret set erpr et pret yLay e Matr pera
ation etati ation out ixStr tive
on ide Matr
iX
Ope
rand
s
OpEmitMeshTasksEXT Capability:
MeshShadingEXT
Reserved.
Reserved.
4 + variable 5294 <id> <id> <id> Optional
Group Count X Group CountY Group CountZ <id>
Payload
OpSetMeshOutputsEXT Capability:
MeshShadingEXT
Reserved.
Reserved.
3 5295 <id> <id>

Vertex Count

386

Primitive Count

OpWritePackedPrimitivelndices4x8NV

Reserved.

3 5299 <id>

Index Offset

OpFetchMicroTriangleVertexPositionNV

Reserved.

8 5300 <id> Result <id> <id>
Result Type Accel

OpFetchMicroTriangleVertexBarycentricNV

Reserved.

8 5301 <id> Result <id> <id>
Result Type Accel

OpReportintersectionKHR (OpReportintersectionNV)

Capability:
MeshShadingNV

Reserved.

<id>

Packed Indices

<id> <id>
Instance Id Geometry
Index
<id> <id>
Instance Id Geometry
Index

Capability:

Capability:
DisplacementMicromap
NV

Reserved.

<id> <id>
Primitive Barycentric
Index

Capability:

DisplacementMicromap
NV

Reserved.

<id> <id>
Primitive Barycentric
Index

RayTracingNV, RayTracingKHR

Reserved.
Reserved.
5 5334 <id> Result <id> <id> <id>
Result Type Hit HitKind
OplgnorelntersectionNV Capability:

Reserved.

OpTerminateRayNV

Reserved.

RayTracingNV

Reserved.

5335

Capability:
RayTracingNV

Reserved.

5336

387

OpTraceNV Capability:
RayTracingNV
Reserved.
Reserved.

1 533 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
2|7 Accel Ray Cull SBT SBT Miss Ray Ray Ray Ray Payloa
Flags Mask Offset Stride Index Origin Tmin Directio Tmax did
n

OpTraceMotionNV Capability:
RayTracingMotionBIurNV
Reserved.
Reserved.

1 533 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
3|8 Accel Ray Cull SBT SBT Miss Ray Ray Ray Ray Time Payloa

Flags Mask Offset Stride Index Origin Tmin Directi Tmax did
on
OpTraceRayMotionNV Capability:

RayTracingMotionBlurNV
Reserved.
Reserved.

1 533 <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id> <id>
3|9 Accel Ray Cull SBT SBT Miss Ray Ray Ray Ray Time Payloa
Flags Mask Offset Stride Index Origin Tmin Directi Tmax d
on

OpRayQueryGetintersectionTriangleVertexPositionsKHR Capability:
RayQueryPositionFetchKHR

Reserved.
Reserved.
5 5340 <id> Result <id> <id> <id>
Result Type RayQuery Intersection
OpExecuteCallableNV Capability:
RayTracingNV
Reserved.
Reserved.
3 5344 <id> <id>
SBT Index Callable Datald

388

OpRayQueryGetClusterldNV Capability:
RayTracingClusterAccelerationStructu

Reserved. reNVv
Reserved.
5 5345 <id> Result <id> <id> <id>
Result Type RayQuery Intersection
OpHitObjectGetClusterldNV Capability:

Reserved.

4 5346 <id> Result <id>

Result Type

OpCooperativeMatrixLoadNV

Reserved.

6 + variable 5359 <id> Result <id> <id>
Result Type Pointer

OpCooperativeMatrixStoreNV

Reserved.

5 + variable 5360 <id> <id> <id>
Pointer Object Stride

OpCooperativeMatrixMulAddNV

Reserved.

6 5361 <id> Result <id> <id>
Result Type A

OpCooperativeMatrixLengthNV

Reserved.

4 5362 <id> Result <id>
Result Type

<id>
Stride

RayTracingClusterAcce
lerationStructureNV

Reserved.

<id>
Hit Object

Capability:
CooperativeMatrixNV

Reserved.
<id> Optional
Column Memory
Major Operands
Capability:
CooperativeMatrixNV
Reserved.
<id> Optional
Column Major Memory
Operands
Capability:

CooperativeMatrixNV

Reserved.

<id> <id>

B C
Capability:

CooperativeMatrixNV

Reserved.

<id>
Type

389

OpBegininvocationinterlockEXT

Reserved.

OpEndInvocationinterlockEXT

Reserved.

OpCreateTensorLayoutNV

Reserved.

3 5372 <id>
Result Type

OpTensorLayoutSetDimensionNV

Reserved.

4 + variable 5373 <id> Result <id>
Result Type

OpTensorLayoutSetStrideNV

Reserved.

4 + variable 5374 <id> Result <id>

Result Type

390

Capability:
FragmentShaderSamplelnterloc
KEXT,
FragmentShaderPixellnterlockE
XT,
FragmentShaderShadingRatelnt
erlockEXT

Reserved.

5364

Capability:
FragmentShaderSamplelnterloc
KEXT,
FragmentShaderPixellnterlockE
XT,
FragmentShaderShadingRatelnt
erlockEXT

Reserved.

5365

Capability:
TensorAddressingNV

Reserved.

Result <id>

Capability:
TensorAddressingNV

Reserved.

<id> <id>, <id>, ...
TensorLayout Dim
Capability:

TensorAddressingNV

Reserved.
<id> <id>, <id>, ...
TensorLayout Stride

OpTensorLayoutSliceNV

Reserved.
4 + variable 5375 <id> Result <id>
Result Type
OpTensorLayoutSetClampValueNV
Reserved.
5 5376 <id> Result <id>
Result Type
OpCreateTensorViewNV
Reserved.
3 5377 <id>
Result Type
OpTensorViewSetDimensionNV
Reserved.
4 + variable 5378 <id> Result <id>
Result Type
OpTensorViewSetStrideNV
Reserved.
4 + variable 5379 <id> Result <id>
Result Type
OplsHelperinvocationEXT
Reserved.
3 5381 <id>
Result Type

Capability:
TensorAddressingNV

Reserved.

<id> <id>, <id>, ...

TensorLayout Operands
Capability:

TensorAddressingNV

Reserved.

<id> <id>

TensorLayout Value
Capability:

TensorAddressingNV

Reserved.

Result <id>

Capability:
TensorAddressingNV

Reserved.

<id> <id>, <id>
TensorView Dim
Capability:

TensorAddressingNV

Reserved.

<id> <id>, <id>

TensorView Stride
Capability:

DemoteToHelperinvocation

Reserved.

Result <id>

391

OpTensorViewSetClipNV

Capalbility:
TensorAddressingNV

Reserved.
Reserved.
8 5382 <id> Result <id> <id> <id> <id> <id> <id>
Result Type TensorView ClipRowOff ClipRowSp ClipColOffs ClipColSpa
set an et n
OpTensorLayoutSetBlockSizeNV Capability:
TensorAddressingNV
Reserved.
Reserved.
4 + variable 5384 <id> Result <id> <id> <id>, <id>, ...
Result Type TensorLayout BlockSize
OpConvertUTolmageNV Capability:
BindlessTextureNV
Reserved.
Reserved.
4 5391 <id> Result <id> <id>
Result Type Operand
OpConvertUToSamplerNV Capability:
BindlessTextureNV
Reserved.
Reserved.
4 5392 <id> Result <id> <id>
Result Type Operand
OpConvertimageToUNV Capability:
BindlessTextureNV
Reserved.
Reserved.
4 5393 <id> Result <id> <id>
Result Type Operand
OpConvertSamplerToUNV Capability:
BindlessTextureNV
Reserved.
Reserved.
4 5394 <id> Result <id> <id>
Result Type Operand

392

OpConvertUToSampledimageNV

Reserved.

4 5395 <id>

Result Type

OpConvertSampledimageToUNV

Reserved.

4 5396 <id>

Result Type

OpSamplerimageAddressingModeNV

Reserved.

2 5397

OpRayQueryGetintersectionSpherePositionNV

Capalbility:
BindlessTextureNV
Reserved.

<id>
Operand

Result <id>

Capability:
BindlessTextureNV
Reserved.

Result <id> <id>

Operand

Capability:
BindlessTextureNV

Reserved.

Literal
Bit Width

Capability:
RayTracingSpheresGeometryNV

Reserved.
Reserved.
5 5427 <id> Result <id> <id> <id>
Result Type RayQuery Intersection
OpRayQueryGetintersectionSphereRadiusNV Capability:

RayTracingSpheresGeometryNV

Reserved.
Reserved.
5 5428 <id> Result <id> <id> <id>
Result Type RayQuery Intersection
OpRayQueryGetintersectionLSSPositionsNV Capability:
RayTracingLinearSweptSpheresGeom
Reserved. etryNV
Reserved.
5 5429 <id> Result <id> <id> <id>
Result Type RayQuery Intersection

393

OpRayQueryGetintersectionLSSRadiiNV

Reserved.

5 5430 <id>
Result Type

Result <id>

OpRayQueryGetintersectionLSSHitValueNV

Reserved.

5 5431 <id>
Result Type

OpHitObjectGetSpherePositionNV

Reserved.

4 5432 <id>
Result Type

OpHitObjectGetSphereRadiusNV

Reserved.

4 5433 <id>
Result Type

OpHitObjectGetLSSPositionsNV

Reserved.

4 5434 <id>
Result Type

OpHitObjectGetLSSRadiiNV

Reserved.

4 5435 <id>
Result Type

394

Result <id>

Capability:
RayTracingLinearSweptSpheresGeom
etryNV

Reserved.

<id> <id>
RayQuery Intersection
Capability:

RayTracingLinearSweptSpheresGeom
etryNV

Reserved.

<id> <id>
RayQuery Intersection

Capability:
RayTracingSpheresGeo
metryNV

Reserved.

Result <id> <id>

Hit Object

Capability:
RayTracingSpheresGeo
metryNV

Reserved.

Result <id> <id>

Hit Object

Capability:
RayTracingLinearSwept
SpheresGeometryNV

Reserved.

Result <id> <id>

Hit Object

Capability:
RayTracingLinearSwept
SpheresGeometryNV

Reserved.

Result <id> <id>

Hit Object

OpHitObjectlsSphereHitNV

Reserved.

4 5436 <id>
Result Type

OpHitObjectIsLSSHitNV

Reserved.

4 5437 <id>
Result Type

OpRayQuerylsSphereHitNV

Reserved.

5 5438 <id>
Result Type

OpRayQuerylsLSSHitNV

Reserved.

5 5439 <id>

Result Type

OpUCountLeadingZerosINTEL

Reserved.

4 5585 <id>
Result Type

OpUCountTrailingZerosINTEL

Reserved.

4 5586 <id>
Result Type

Capalbility:
RayTracingSpheresGeo
metryNV

Reserved.

Result <id> <id>

Hit Object

Capability:
RayTracingLinearSwept
SpheresGeometryNV

Reserved.

Result <id> <id>

Hit Object

Capability:
RayTracingSpheresGeometryNV

Reserved.
Result <id> <id> <id>

RayQuery Intersection

Capability:

RayTracingLinearSweptSpheresGeom

etryNV

Reserved.

Result <id> <id> <id>

RayQuery Intersection
Capability:
IntegerFunctions2INTE
L
Reserved.

Result <id> <id>
Operand
Capability:
IntegerFunctions2INTE
L
Reserved.
Result <id> <id>

Operand

395

OpAbsISubINTEL Capability:
IntegerFunctions2INTEL

Reserved.
Reserved.
5 5587 <id> Result <id> <id> <id>
Result Type Operand 1 Operand 2
OpAbsUSUbINTEL Capability:
IntegerFunctions2INTEL
Reserved.
Reserved.
5 5588 <id> Result <id> <id> <id>
Result Type Operand 1 Operand 2
OplAddSatINTEL Capability:
IntegerFunctions2INTEL
Reserved.
Reserved.
5 5589 <id> Result <id> <id> <id>
Result Type Operand 1 Operand 2
OpUAddSatINTEL Capability:
IntegerFunctions2INTEL
Reserved.
Reserved.
5 5590 <id> Result <id> <id> <id>
Result Type Operand 1 Operand 2
OplAverageINTEL Capability:
IntegerFunctions2INTEL
Reserved.
Reserved.
5 5591 <id> Result <id> <id> <id>
Result Type Operand 1 Operand 2
OpUAverageINTEL Capability:
IntegerFunctions2INTEL
Reserved.
Reserved.
5 5592 <id> Result <id> <id> <id>
Result Type Operand 1 Operand 2

396

OplAverageRoundedINTEL

Reserved.

5 5593 <id>
Result Type

OpUAverageRoundedINTEL

Reserved.
5 5594 <id>
Result Type
OplISubSatINTEL
Reserved.
5 5595 <id>
Result Type
OpUSubSatINTEL
Reserved.
5 5596 <id>
Result Type
OpIMul32x16INTEL
Reserved.
5 5597 <id>
Result Type

OpUMul32x16INTEL

Reserved.

5 5598 <id>
Result Type

Result <id>

Result <id>

Result <id>

Result <id>

Result <id>

Result <id>

Capability:
IntegerFunctions2INTEL

Reserved.

<id> <id>
Operand 1 Operand 2
Capability:

IntegerFunctions2INTEL

Reserved.

<id> <id>
Operand 1 Operand 2
Capability:

IntegerFunctions2INTEL

Reserved.

<id> <id>
Operand 1 Operand 2
Capability:

IntegerFunctions2INTEL

Reserved.

<id> <id>
Operand 1 Operand 2
Capability:

IntegerFunctions2INTEL

Reserved.

<id> <id>
Operand 1 Operand 2
Capability:

IntegerFunctions2INTEL

Reserved.
<id> <id>
Operand 1 Operand 2

397

OpLoopControlINTEL

Reserved.

1 + variable

OpFPGARegINTEL

Reserved.

4 5949 <id>
Result Type

OpRayQueryGetRayTMinKHR

Reserved.

4 6016 <id>
Result Type

OpRayQueryGetRayFlagsKHR

Reserved.

4 6017 <id>
Result Type

OpRayQueryGetintersectionTKHR

Reserved.

5 6018 <id>
Result Type

5887

OpRayQueryGetintersectioninstanceCustomindexKHR

Reserved.

5 6019 <id>
Result Type

398

Capability:
UnstructuredLoopControlsINTEL

Reserved.
Literal, Literal, ...
Loop Control Parameters
Capability:
FPGARegINTEL
Reserved.
Result <id> <id>
Input
Capability:
RayQueryKHR
Reserved.
Result <id> <id>
RayQuery
Capability:
RayQueryKHR
Reserved.
Result <id> <id>
RayQuery
Capability:
RayQueryKHR
Reserved.

Result <id> <id> <id>
RayQuery Intersection
Capability:

RayQueryKHR
Reserved.

Result <id> <id> <id>

RayQuery Intersection

OpRayQueryGetintersectioninstanceldKHR

Reserved.

5 6020 <id>
Result Type

Result <id>

OpRayQueryGetintersectioninstanceShaderBindingTableR

ecordOffsetKHR

Reserved.

5 6021 <id>
Result Type

Result <id>

OpRayQueryGetintersectionGeometrylndexKHR

Reserved.

5 6022 <id>
Result Type

Result <id>

OpRayQueryGetintersectionPrimitivelndexKHR

Reserved.

5 6023 <id>
Result Type

Result <id>

OpRayQueryGetintersectionBarycentricsKHR

Reserved.

5 6024 <id>
Result Type

Result <id>

OpRayQueryGetintersectionFrontFaceKHR

Reserved.

5 6025 <id>
Result Type

Result <id>

Capability:
RayQueryKHR
Reserved.

<id>
RayQuery

Capability:
RayQueryKHR
Reserved.

<id>
RayQuery

Capability:
RayQueryKHR
Reserved.

<id>
RayQuery

Capability:
RayQueryKHR
Reserved.

<id>
RayQuery

Capability:
RayQueryKHR
Reserved.

<id>
RayQuery

Capability:
RayQueryKHR
Reserved.

<id>
RayQuery

<id>
Intersection

<id>
Intersection

<id>
Intersection

<id>
Intersection

<id>
Intersection

<id>
Intersection

399

OpRayQueryGetintersectionCandidateAABBOpaqueKHR Capability:

RayQueryKHR
Reserved.
Reserved.
4 6026 <id> Result <id> <id>
Result Type RayQuery
OpRayQueryGetintersectionObjectRayDirectionKHR Capability:
RayQueryKHR
Reserved.
Reserved.
5 6027 <id> Result <id> <id> <id>
Result Type RayQuery Intersection
OpRayQueryGetintersectionObjectRayOriginKHR Capability:
RayQueryKHR
Reserved.
Reserved.
5 6028 <id> Result <id> <id> <id>
Result Type RayQuery Intersection
OpRayQueryGetWorldRayDirectionKHR Capability:
RayQueryKHR
Reserved.
Reserved.
4 6029 <id> Result <id> <id>
Result Type RayQuery
OpRayQueryGetWorldRayOriginKHR Capability:
RayQueryKHR
Reserved.
Reserved.
4 6030 <id> Result <id> <id>
Result Type RayQuery
OpRayQueryGetintersectionObjectToWorldKHR Capability:
RayQueryKHR
Reserved.
Reserved.
5 6031 <id> Result <id> <id> <id>
Result Type RayQuery Intersection

400

OpRayQueryGetintersectionWorldToObjectKHR Capability:
RayQueryKHR
Reserved.
Reserved.
5 6032 <id> Result <id> <id> <id>
Result Type RayQuery Intersection
OpTaskSequenceCreatelNTEL Capability:
TaskSequencelNTEL
Reserved.
Reserved.
8 6163 <id> Result <id> <id> Literal Literal Literal Literal
Result Type Function Pipelined UseStallEn GetCapacit AsyncCapa
ableCluster y city
S
OpTaskSequenceAsyncINTEL Capalbility:
TaskSequencelNTEL
Reserved.
Reserved.
2 + variable 6164 <id> <id>, <id>, ...
Sequence Arguments
OpTaskSequenceGetINTEL Capability:
TaskSequencelNTEL
Reserved.
Reserved.
4 6165 <id> Result <id> <id>
Result Type Sequence
OpTaskSequenceReleaseINTEL Capability:

TaskSequencelNTEL

Reserved.
Reserved.
2 6166 <id>
Sequence

401

Chapter 4. Appendix A: Changes

4.1. Changes from Version 0.99, Revision 31

» Added the PushConstant Storage Class.
» Added OplAddCarry, OplSubBorrow, OpUMulExtended, and OpSMulExtended.
» Added OpInBoundsPtrAccessChain.

» Added the Decoration NoContraction to prevent combining multiple operations into a single operation
(bug 14396).

» Added sparse texturing (14486):
- Added OplmageSparse... for accessing images that might not be resident.
- Added MinLod functionality for accessing images with a minimum level of detail.
» Added back the Alignment Decoration, for the Kernel capability (14505).
* Added a Nontemporal Memory Operand (14566).
» Structured control flow changes:
- Changed structured loops to have a structured continue Continue Target in OpLoopMerge (14422).
- Added rules for how "fall through" works with OpSwitch (13579).
- Added definitions for what is "inside" a structured control-flow construct (14422).

» Added SubpassData Dim to support input targets written by a previous subpass as an output target
(14304). This is also a Decoration and a Capability, and can be used by some image ops to read the
input target.

» Added OpTypeForwardPointer to establish the Storage Class of a forward reference to a pointer type
(13822).

» Improved Debuggability

- Changed OplLine to not have a target <id>, but instead be placed immediately preceding the
instruction(s) it is annotating (13905).

- Added OpNoLine to terminate the affect of OpLine (13905).
- Changed OpSource to include the source code:
- Allow multiple occurrences.
- Be mixed in with the OpString instructions.
- Optionally consume an OpString result to say which file it is annotating.
- Optionally include the source text corresponding to that OpString.
- Included adding OpSourceContinued for source text that is too long for a single instruction.

» Added a large number of Capabilities for subsetting functionality (14520, 14453), including 8-bit integer
support for OpenCL kernels.

» Added VertexIndex and Instancelndex Builtin Decorations (14255).

» Added GenericPointer capability that allows the ability to use the Generic Storage Class (14287).
» Added IndependentForwardProgress Execution Mode (14271).

» Added OpAtomicFlagClear and OpAtomicFlag TestAndSet instructions (14315).

» Changed OpEntryPoint to take a list of Input and Output <id> for declaring the entry point’s interface.

402

* Fixed internal bugs

- 14411 Added missing documentation for mad_sat OpenCL extended instructions (enums existed,
just the documentation was missing)

- 14241 Removed shader capability requirement from OplmageQueryLevels and
OplmageQuerySamples.

- 14241 Removed unneeded OplmageQueryDim instruction.
- 14241 Filled in TBD section for OpAtomicCompareExchangeWeek

- 14366 All OpSampledimage must appear before uses of sampled images (and still in the first block
of the entry point).

- 14450 DeviceEnqueue capability is required for OpTypeQueue and OpTypeDeviceEvent
- 14363 OpTypePipe is opaque - moved packet size and alignment to opcodes

- 14367 Float16Buffer capability clarified

- 14241 Clarified how OpSampledlimage can be used

- 14402 Clarified OpTypelmage encodings for OpenCL extended instructions

- 14569 Removed mention of non-existent OpFunctionDecl

- 14372 Clarified usage of OpGenericPtrMemSemantics

- 13801 Clarified the Specld Decoration is just for constants

- 14447 Changed literal values of Memory Semantic enums to match OpenCL/C++11 atomics, and
made the Memory Semantic None and Relaxed be aliases

- 14637 Removed subgroup scope from OpGroupAsyncCopy and OpGroupWaitEvents

4.2. Changes from Version 0.99, Revision 32

* Added UnormiInt101010_2 to the Image Channel Data Type table.

» Added place holder for C++11 atomic Consume Memory Semantics along with an explicit
AcquireRelease memory semantic.

* Fixed internal bugs:

- 14690 OpSwitch literal width (and hence number of operands) is determined by the type of
Selector, and be rigorous about how sub-32-bit literals are stored.

- 14485 The client APl owns the semantics of built-ins that only have "pass through" semantics WRT
SPIR-V.

- 14862 Removed the IndependentForwardProgress Execution Mode.
* Fixed public bugs:
- 1387 Don't describe result type of OplmageWrite.

4.3. Changes from Version 1.00, Revision 1

» Adjusted Capabilities:
- Split geometry-stream functionality into its own GeometryStreams capability (14873).
- Have InputAttachmentindex to depend on InputAttachment instead of Shader (14797).

- Merge AdvancedFormats and StoragelmageExtendedFormats into just
StoragelmageExtendedFormats (14824).

403

Require StoragelmageReadWithoutFormat and StoragelmageWriteWithoutFormat to read and
write storage images with an Unknown Image Format.

Removed the ImageSRGBWrite capability.

 Clarifications

RelaxedPrecision Decoration can be applied to OpFunction (14662).

* Fixed internal bugs:

14797 The literal argument was missing for the InputAttachmentindex Decoration.
14547 Remove the FragColor Builtin, so that no implicit broadcast is implied.

13292 Make statements about "Volatile" be more consistent with the memory model specification
(non-functional change).

14948 Remove image-"Query" overloading on image/sampled-image type and "fetch" on non-
sampled images, by adding the Oplmage instruction to get the image from a sampled image.

14949 Make consistent placement between OpSource and OpSourceExtension in the logical
layout of a module.

14865 Merge WorkgroupLinearld with Locallnvocationld Builtin Decorations.
14806 Include 3D images for OplmageQuerySize.
14325 Removed the Smooth Decoration.

12771 Make the version word formatted as: "0 | Major Number | Minor Number | 0" in the physical
layout.

15035 Allow OpTypelmage to use a Depth operand of 2 for not indicating a depth or non-depth
image.

15009 Split the OpenCL Source Language into two: OpenCL_C and OpenCL_CPP.

14683 OpSampledimage instructions can only be the consuming block, for scalars, and directly
consumed by an image lookup or query instruction.

14325 mutual exclusion validation rules of Execution Modes and Decorations

15112 add definitions for invocation, dynamically uniform, and uniform control flow.

* Renames

404

InputTargetindex Decoration -> InputAttachmentindex
InputTarget Capability -> InputAttachment
InputTarget Dim -> SubpassData

WorkgroupLocal Storage Class -> Workgroup
WorkgroupGlobal Storage Class -> CrossWorkgroup
PrivateGlobal Storage Class -> Private
OpAsyncGroupCopy -> OpGroupAsyncCopy
OpWaitGroupEvents -> OpGroupWaitEvents
InputTriangles Execution Mode -> Triangles
InputQuads Execution Mode -> Quads

Inputlsolines Execution Mode -> Isolines

4.4.

Changes from Version 1.00, Revision 2

» Updated example at the end of Section 1 to conform to the KHR_vulkan_glsl extension and treat
OpTypeBool as an abstract type.

» Adjusted Capabilities:

MatrixStride depends on Matrix (15234).

Sample, Sampleld, SamplePosition, and SampleMask depend on SampleRateShading
(15234).

ClipDistance and CullDistance Builtins depend on, respectively, ClipDistance and CullDistance
(1407, 15234).

Viewportindex depends on MultiViewport (15234).

AtomicCounterMemory should be the AtomicStorage (15234).

Float16 has no dependencies (15234).

Offset Decoration should only be for Shader (15268).

Generic Storage Class is supposed to need the GenericPointer Capability (14287).

Remove capability restriction on the Builtin Decoration (15248).

* Fixed internal bugs:

15203 Updated description of SampleMask Builtin to include "Input or output...", not just "Input..."
15225 Include no re-association as a constraint required by the NoContraction Decoration.
15210 Clarify OpPhi semantics that operand values only come from parent blocks.

15239 Add OplmageSparseRead, which was missing (supposed to be 12 sparse-image
instructions, but only 11 got incorporated, this adds the 12th).

15299 Move OpUndef back to the Miscellaneous section.
15321 OpTypelmage does not have a Depth restriction when used with SubpassData.
14948 Fix the Lod Image Operands to allow both integer and floating-point values.

15275 Clarify specific storage classes allowed for atomic operations under universal validation rules
"Atomic access rules".

15501 Restrict Patch Decoration to one of the tessellation execution models.

15472 Reserved use of OplmageSparseSampleProjlmplicitLod,
OplmageSparseSampleProjExplicitLod, OplmageSparseSampleProjDreflmplicitLod, and
OplmageSparseSampleProjDrefExplicitLod.

15459 Clarify what makes different aggregate types in "Types and Variables".
15426 Don't require OpQuantizeToF16 to preserve NaN patterns.
15418 Don't set both Acquire and Release bits in Memory Semantics.

15404 OpFunction Result <id> can only be used by OpFunctionCall, OpEntryPoint, and
decoration instructions.

15437 Restrict element type for OpTypeRuntimeArray by adding a definition of concrete types.

15403 Clarify OpTypeFunction can only be consumed by OpFunction and functions can only
return concrete and abstract types.

* Improved accuracy of the opcode word count in each instruction regarding which operands are
optional. For sampling operations with explicit LOD, this included not marking the required LOD
operands as optional.

405

* Clarified that when NonWritable, NonReadable, Volatile, and Coherent Decorations are applied to
the Uniform storage class, the BufferBlock decoration must be present.

 Fixed external bugs:
- 1413 (see internal 15275)

- 1417 Added definitions for block, dominate, post dominate, CFG, and back edge. Removed use of
"dominator tree".

4.5. Changes from Version 1.00, Revision 3

» Added definition of derivative group, and use it to say when derivatives are well defined.

4.6. Changes from Version 1.00, Revision 4

» Expanded the list of instructions that may use or return a pointer in the Logical addressing model.

» Added missing ABGR Image Channel Order

4.7. Changes from Version 1.00, Revision 5

» Khronos SPIR-V issue #27: Removed Shader dependency from SampledBuffer and Sampledl1D
Capabilities.

» Khronos SPIR-V issue #56: Clarify that the meaning of "read-only" in the Storage Classes includes not
allowing initializers.

» Khronos SPIR-V issue #57: Clarify "modulo” means "remainder” in OpFMod's description.

* Khronos SPIR-V issue #60: OpControlBarrier synchronizes Output variables when used in
tessellation-control shader.

» Public SPIRV-Headers issue #1: Remove the Shader capability requirement from the Input Storage
Class.

* Public SPIRV-Headers issue #10: Don't say the (u [, v] [, w], q) has four components, as it can be
closed up when the optional ones are missing. Seen in the projective image instructions.

* Public SPIRV-Headers issues #12 and #13 and Khronos SPIR-V issue #65: Allow OpVariable as an
initializer for another OpVariable instruction or the Base of an OpSpecConstantOp with an
AccessChain opcode.

e Public SPIRV-Headers issues #14: add Max enumerants of Ox7FFFFFFF to each of the non-mask
enums in the C-based header files.

4.8. Changes from Version 1.00, Revision 6

» Khronos SPIR-V issue #63: Be clear that OpUndef can be used in sequence 9 (and is preferred to be)
of the Logical Layout and can be part of partially-defined OpConstantComposite.

» Khronos SPIR-V issue #70: Don'’t explicitly require operand truncation for integer operations when
operating at RelaxedPrecision.

e Khronos SPIR-V issue #76: Include OplINotEqual in the list of allowed instructions for
OpSpecConstantOp.

e Khronos SPIR-V issue #79: Remove implication that OplmageQueryLod should have a component for
the array index.

» Public SPIRV-Headers issue #17: Decorations NoPerspective, Flat, Patch, Centroid, and Sample

406

can apply to a top-level member that is itself a structure, so don’t disallow it through restrictions to
numeric types.

4.9. Changes from Version 1.00, Revision 7
» Khronos SPIR-V issue #69: OplmageSparseFetch editorial change in summary: include that it is
sampled image.
» Khronos SPIR-V issue #74: OplmageQueryLod requires a sampler.
» Khronos SPIR-V issue #82: Clarification to the Float16Buffer Capability.

» Khronos SPIR-V issue #89: Editorial improvements to OpMemberDecorate and OpDecorationGroup.

4.10. Changes from Version 1.00, Revision 8

e Add SPV_KHR_subgroup_vote tokens.

» Typo: Change "without a sampler" to "with a sampler" for the description of the SampledBuffer
Capability.

» Khronos SPIR-V issue #61: Clarification of packet size and alignment on all instructions that use the
Pipes Capability.

» Khronos SPIR-V issue #99: Use "invalid" language to replace any "compile-time error" language.
» Khronos SPIR-V issue #55: Distinguish between branch instructions and termination instructions.
» Khronos SPIR-V issue #94: Add missing OpSubgroupReadInvocationKHR enumerant.

» Khronos SPIR-V issue #114: Header blocks strictly dominate their merge blocks.

» Khronos SPIR-V issue #119: OpSpecConstantOp allows OpUndef where allowed by its opcode.

4.11. Changes from Version 1.00, Revision 9
» Khronos Vulkan issue #652: Remove statements about matrix offsets and padding. These are
described correctly in the Vulkan API specifications.

» Khronos SPIR-V issue #113: Remove the "By Default" statements in FP Rounding Mode. These should
be properly specified by the client API.

» Add extension enumerants for
- SPV_KHR_16bit_storage
- SPV_KHR_device_group
- SPV_KHR_multiview

- SPV_NV_sample_mask_override_coverage

SPV_NV_geometry_shader_passthrough
- SPV_NV_viewport_array?2

- SPV_NV_stereo_view_rendering

SPV_NVX_multiview_per_view_attributes

4.12. Changes from Version 1.00, Revision 10

e Add HLSL source language.

407

» Add StorageBuffer storage class.

» Add StorageBuffer16BitAccess, UniformAndStorageBuffer16BitAccess,
VariablePointersStorageBuffer, and VariablePointers capabilities.

e Khronos SPIR-V issue #163: Be more clear that OpTypeStruct allows zero members. Also affects
ArrayStride and Offset decoration validation rules.

» Khronos SPIR-V issue #159: List allowed AtomicCounter instructions with the AtomicStorage
capability rather than the validation rules.

e Khronos SPIR-V issue #36: Describe more clearly the type of ND Range in
OpGetKernelNDrangeSubGroupCount, OpGetKernelNDrangeMaxSubGroupSize, and
OpEnqueueKernel.

» Khronos SPIR-V issue #128: Be clear the OpDot operates only on vectors.

» Khronos SPIR-V issue #80: Loop headers must dominate their continue target. See Structured Control
Flow.

e Khronos SPIR-V issue #150 allow UniformConstant storage-class variables to have initializers,
depending on the client API.

4.13. Changes from Version 1.00, Revision 11
e Public issue #2: Disallow the Cube dimension from use with the Offset, ConstOffset, and
ConstOffset image operands.
» Public issue #48: OpConvertPtrToU only returns a scalar, not a vector.
» Khronos SPIR-V issue #130: Be more clear which masks are literal and which are not.

» Khronos SPIR-V issue #154: Clarify only one of the listed Capabilities needs to be declared to use a
feature that lists multiple capabilities. The non-declared capabilities need not be supported by the
underlying implementation.

e Khronos SPIR-V issue #174: OplmageDrefGather and OplmageSparseDrefGather return vectors,
not scalars.

e Khronos SPIR-V issue #182: The SampleMask built in does not depend on SampleRateShading, only
Shader.

» Khronos SPIR-V issue #183: OpQuantizeToF16 with too-small magnitude can result in either +0 or -O0.
» Khronos SPIR-V issue #203: OplmageTexelPointer has 3 components for cube arrays, not 4.

» Khronos SPIR-V issue #217: Clearer language for OpArraylLength.

» Khronos SPIR-V issue #213: Image Operand LoD is not used by query operations.

» Khronos SPIR-V issue #223: OpPhi has exactly one parent operand per parent block.

» Khronos SPIR-V issue #212: In the Validation Rules, make clear a pointer can be an operand in an
extended instruction set.

Add extension enumerants for
- SPV_AMD_shader_ballot
- SPV_KHR_post_depth_coverage

SPV_AMD_shader_explicit_vertex_parameter

SPV_EXT_shader_stencil_export
- SPV_INTEL_subgroups

408

4.14. Changes from Version 1.00

* Moved version number to SPIR-V 1.1
* New functionality:
- Bug 14202 named barriers:
- Added the NamedBarrier Capability.

- Added the instructions: OpTypeNamedBarrier, = OpNamedBarrierlnitialize,

OpMemoryNamedBarrier.
- Bug 14201 subgroup dispatch:
- Added the SubgroupDispatch Capability.

- Added the instructions: OpGetKernelLocalSizeForSubgroupCount

OpGetKernelMaxNumSubgroups.
- Added SubgroupSize and SubgroupsPerWorkgroup Execution Modes.
- Bug 14441 program-scope pipes:
- Added the PipeStorage Capability.

- Added Instructions: OpTypePipeStorage, OpConstantPipeStorage,

OpCreatePipeFromPipeStorage.
- Bug 15434 Added the OpSizeOf instruction.
- Bug 15024 support for OpenCL-C++ ivdep loop attribute:
- Added Dependencylnfinite and DependencyLength Loop Controls.
- Updated OpLoopMerge to support these.
- Bug 14022 Added Initializer and Finalizer and Execution Modes.
- Bug 15539 Added the MaxByteOffset Decoration.
- Bug 15073 Added the Kernel Capability to the Specld Decoration.
- Bug 14828 Added the OpModuleProcessed instruction.
* Fixed internal bugs:

- Bug 15481 Clarification on alignment and size operands for pipe operands

4.15. Changes from Version 1.1, Revision 1

and

and

and

* Incorporated bug fixes from Revision 6 of Version 1.00 (see section 4.7. Changes from Version 1.00,

Revision 5).

4.16. Changes from Version 1.1, Revision 2

* Incorporated bug fixes from Revision 7 of Version 1.00 (see section 4.8. Changes from Version 1.00,

Revision 6).

4.17. Changes from Version 1.1, Revision 3

* Incorporated bug fixes from Revision 8 of Version 1.00 (see section 4.9. Changes from Version 1.00,

Revision 7).

409

4.18. Changes from Version 1.1, Revision 4

* Incorporated bug fixes from Revision 9 of Version 1.00 (see section 4.10. Changes from Version 1.00,
Revision 8).

4.19. Changes from Version 1.1, Revision 5

* Incorporated changes from Revision 10 of Version 1.00 (see section 4.11. Changes from Version 1.00,
Revision 9).

4.20. Changes from Version 1.1, Revision 6

* Incorporated changes from Revision 11 of Version 1.00 (see section 4.12. Changes from Version 1.00,
Revision 10).

4.21. Changes from Version 1.1, Revision 7

* Incorporated changes from Revision 12 of Version 1.00 (see section 4.13. Changes from Version 1.00,
Revision 11).

» State where all OpModuleProcessed belong, in the logical layout.

4.22. Changes from Version 1.1

* Moved version number to SPIR-V 1.2
* New functionality:

- Added OpExecutionModeld to allow using an <id> to set the execution modes
SubgroupsPerWorkgroupld, LocalSizeld, and LocalSizeHintid.

- Added OpDecorateld to allow using an <id> to set the decorations Alignmentld and
MaxByteOffsetld.

4.23. Changes from Version 1.2, Revision 1

* Incorporated changes from Revision 12 of Version 1.00 (see section 4.13. Changes from Version 1.00,
Revision 11).

* Incorporated changes from Revision 8 of Version 1.1 (see section 4.21. Changes from Version 1.1,
Revision 7).

4.24. Changes from Version 1.2, Revision 2

» Combine the 1.0, 1.1, and 1.2 specifications, making a unified specification. The previous 1.0, 1.1, and
1.2 specifications are replaced with this one unified specification.

4.25. Changes from Version 1.2, Revision 3
Fixed Khronos-internal issues:

» #249: Improve description of OpTranspose.

» #251: Undefined values in OpUndef include abstract and opaque values.

410

» #258: Deprecate OpAtomicCompareExchangeWeak in favor of OpAtomicCompareExchange.
» #241: Use "invalid" instead of "compile-time" error for ConstOffsets.

» #248: OplmageSparseRead is not for SubpassData.

» #257: Allow OplmageSparseFetch and OplmageSparseRead with the Sample image operands.
e #229: Some sensible constraints on branch hints for OpBranchConditional.

» #236: OpVariable's storage class must match storage class of the pointer type.

e #216: Can decorate pointer types with Coherent and Volatile.

o #247: Don’t say Scope <id> is a mask; it is not.

» #254: Remove validation rules about the types atomic instructions can operate on. These rules belong
instead to the client APL.

e #265: OpGroupDecorate cannot target an OpDecorationGroup.

4.26. Changes from Version 1.2

* Moved version number to SPIR-V 1.3
» New functionality:
- Added subgroup operations:
- the OpGroupNonUniform instructions and capabilities.
- Subgroup-mask built-in decorations.
- Khronos SPIR-V issue #125, #138, #196: Removed capabilities from the rounding modes.
- Khronos SPIR-V issue #110: Removed the execution-model restrictions from OpControlBarrier.
* Incorporated the following extensions:
- SPV_KHR_shader_draw_parameters
- SPV_KHR_16bit_storage
- SPV_KHR_device _group
- SPV_KHR_multiview
- SPV_KHR_storage buffer_storage_class
- SPV_KHR_variable_pointers
» Reserved symbols for
- SPV_GOOGLE_decorate_string
- SPV_GOOGLE_hlsl_functionalityl
- SPV_AMD_gpu_shader_half float fetch

» Added deprecation model.

4.27. Changes from Version 1.3, Revision 1

* Fixed Issues:
- Public SPIRV-Headers PR #73: Add missing fields for some NVIDIA-specific tokens.

- Khronos SPIR-V Issue #202: Shader Validation: Be clear that arrays of blocks set by the client API
cannot have an ArrayStride.

411

Khronos SPIR-V Issue #210: Clarify the Result Type of OpSampledimage.

Khronos SPIR-V Issue #211: State that Derivative instructions only work on 32-bit width
components.

Khronos SPIR-V Issue #239: Clarify OplmageFetch is for an image whose Sampled operand is 1.
Khronos SPIR-V Issue #256: OpAtomicCompareExchange does not store if comparison fails.

Khronos SPIR-V Issue #269: Be more clear which bits are mutually exclusive for memory
semantics.

Khronos SPIR-V Issue #278: Delete OpTypeRuntimeArray restriction on storage classes, as this
is already covered by the client API.

Khronos SPIR-V Issue #279:
- Add section expository section 2.8.1 "Unsigned Versus Signed Integers".
- As expected, OpUConvert can have vector Result Type.

Khronos SPIR-V Issue #280: OplmageQuerySizeLod and OplmageQuerylLevels can be limited
by the client API.

Khronos SPIR-V Issue #285: Remove Kernel as a capability implicitly declared by Int8.

Khronos SPIR-V Issue #290: Clarify implicit declaration of capabilities, in part by changing the
column heading to *Implicitly Declares".

Khronos SPIR-V Issues #295: Explicitly say blocks cannot be nested in blocks, in the validation
section. (This was already indirectly required.)

Khronos SPIR-V Issue #299:. Add the ImageGatherExtended capability to ConstOffsets in the
image operands section.

Khronos SPIR-V Issues #303 and #304: OpGroupNonUniformBallotBitExtract documentation:
add Result Type and fix Index parameter.

Khronos SPIR-V Issue #310: Remove instruction word count from the Limits table, as it is already
intrinsically limited.

Khronos SPIR-V Issue #313: Move the FPRoundingMode-decoration validation rule to the shader
validation section (not a universal rule). Also, include the StorageBuffer storage class in this rule.

4.28. Changes from Version 1.3, Revision 2

¢ New enumarents:

For SPV_KHR_8bit_storage

» Fixed Issues:

412

Add definition of Memory Object Declaration.
Khronos SPIR-V Issue #275: Clarify the meaning of Aliased and Restrict in the Aliasing section.

Khronos SPIR-V Issue #315: Be more specific about where many decorations are allowed,
particularly for OpFunctionParameter. Includes being clear that the Builtin decoration does not
apply to OpFunctionParamater.

Khronos SPIR-V Issue #348: Clarify remainder descriptions in OpFRem, OpFMod, OpSRem, and
OpSMod.

Khronos SPIR-V Issue #342: State the DepthReplacing execution-mode behavior more
specifically.

Khronos SPIR-V Issue #341: More specific wording for depth-hint execution modes DepthGreater,
DepthLess, and DepthUnchanged.

Khronos SPIR-V Issues #276 and #311: Take more care with unreachable blocks in structured
control flow and how to branch into a construct.

Khronos SPIR-V Issue #320: Include OpExecutionModeld in the logical layout.

Khronos SPIR-V Issue #238: Fix description of OplmageQuerySize to correct Sampled Type ->
Sampled and list the correct set of dimensions.

Khronos SPIR-V Issue #346: Remove ordered rule for structures in the memory layout: Vulkan
allows out-of-order Offset layouts.

Khronos SPIR-V Issue #322: Allow OplmageQuerySize to query the size of a NonReadable
image.

Khronos SPIR-V Issue #244: Be more clear about the connections between dimensionalities and
capabilities, and in referring to them from OplmageRead and OplmageWrite.

Khronos SPIR-V Issue #333: Be clear about overflow behavior for OplAdd, OplSub, and OpIMul.

4.29. Changes from Version 1.3, Revision 3

» Add enumerants for

SPV_KHR_vulkan_memory_model

* Fixed Issues:

Typo: say OpMatrixTimesVector is Matrix X Vector.

Update on Khronos SPIR-V issue #244: Added Shader and Kernel capabilities to the 2D
dimensionality.

Khronos SPIR-V Issue #317: Clarify that the Uniform decoration should apply only to objects, and
that the dynamic instance of the object is the same, rather than at the consumer usage.

Khronos SPIR-V Issue #335: Clarify and correct when it is valid for pointers to be operands to
OpFunctionCall. Corrections are believed to be consistent with existing front-end and back-end
support.

Khronos SPIR-V Issue #344: don't include inactive invocations in what makes the result of
OpGroupNonUniformBallotBitExtract undefined.

4.30. Changes from Version 1.3, Revision 4

» Add enumerants for

SPV_NV_fragment_shader_barycentric
SPV_NV_compute_shader_derivatives
SPV_NV_shader_image_footprint
SPV_NV_shading_rate
SPV_NV_mesh_shader
SPV_NVX_Raytracing

» Formatting: Removed Enabling Extensions column and instead list the extensions in the Enabling
Capabilities column.

4.31. Changes from Version 1.3, Revision 5

» Reserve Tokens for:

413

SPV_KHR_no_integer_wrap_decoration

SPV_KHR_float_controls

* Fixed Issues:

Khronos SPIR-V Issue #352: Remove from OpFunction the statement limiting the use its result.
This does not result in any change in intent; it only avoids any past and potential future
contradictions.

Khronos SPIR-V Issue #308: Don't allow runtime-sized arrays to be loaded or copied by OpLoad or
OpCopyMemory.

Include back-edge blocks in the list of blocks that can branch outside their own construct in the
structured control-flow rules.

Khronos OpenGL API issue #77: Clarify the OriginUpperLeft and OriginLowerLeft execution
modes apply only to FragCoord.

State the XfbStride and Stream restrictions in the Universal Validation Rules.

Khronos SPIR-V Issue #357: The Memory Operands of OpCopyMemory and
OpCopyMemorySized applies to both Source and Target.

Khronos SPIR-V Issue #385: Be more clear what type <id> must be the same in OpCopyMemory.

Khronos SPIR-V Issue #359: OpAccessChain and OpPtrAccessChain do indexing with signed
indexes, and OpPtrAccessChain is allowed to compute addresses of elements one past the end of
an array.

Khronos SPIR-V Issue #367: General validation rules allow the Function storage class for atomic
access, while the shader-specific validation rules do not.

Khronos SPIR-V Issue #382: In OpTypeFunction, disallow parameter types from being
OpTypeVoid.

Khronos SPIR-V Issue #374: Built-in decorations can also apply to a constant instruction.

» Editorial:

Make it more clear in OpVariable what Storage Classes must be the same.

Remove references to specific APIs, and instead generally refer only to "client API"s. Note that the
previous lists of APIs was nonnormative.

State the FPRoundingMode decoration rule more clearly in the section listing Validation Rules for
Shader Capabilities.

Don't say "value preserving" in the Conversion instructions. These now convert the "value
numerically".

State variable-pointer validation rules more clearly.

4.32. Changes from Version 1.3, Revision 6

» Reserve Tokens for:

SPV_INTEL_media_block_io
SPV_NV_cooperative_matrix

SPV_INTEL_device_side_avc_motion_estimation, partially. See the
SPV_INTEL_device_side_avc_motion_estimation extension specification for a full listing of tokens.

» Fixed Issues:

414

Khronos SPIR-V Issue #406: Scope values must come from the table of scope values.

Khronos SPIR-V Issue #419: Validation rules include AtomicCounter in the list of storage classes
allowed for pointer operands to an OpFunctionCall.

Khronos SPIR-V Issue #325: OpPhi clarifications regarding parent dominance, in the instruction
and the validation rules, and forward references in the Logical Layout section.

Khronos SPIR-V Issue #415: Remove the non-writable storage classes PushConstant and Input
from the FPRoundingMode decoration shader validation rule.

Khronos SPIR-V Issue #404: Clarify when OpGroupNonUniformShuffleXor,
OpGroupNonUniformShuffleUp, and OpGroupNonUniformShuffleDown are valid or result in
undefined values.

Khronos SPIR-V Issue #393: Be more clear that OpConvertUToPtir and OpConvertPtrToU
operate only on unsigned scalar integers.

Khronos SPIR-V Issue #416: Result are undefined for all Shift instructions for shifts amounts equal
to the bit width of the operand.

Khronos SPIR-V Issue #399: Refine the definition of a variable pointer, particularly for function
parameters receiving a variable pointer.

Khronos SPIR-V Issue #441: Clarify that atomic instruction’s Scope <id> must be a valid memory
scope. More generally, all Scope <id> operands are now either Memory or Execution.

Khronos SPIR-V Issue #426: Be more direct about undefined behavior for non-uniform control flow
in OpControlBarrier and the OpGroup... instructions that discuss this.

- Deprecate

Khronos SPIR-V Issue #429: Deprecate OpDecorationGroup, OpGroupDecorate, and
OpGroupMemberDecorate

» Editorial

Add more clarity that the full client API describes the execution environment (there is not a separate
specification from the client API specification).

4.33. Changes from Version 1.3, Revision 7

» Fixed Issues:

Khronos SPIR-V Issue #371: Restrict intermediate object types to variable types allowed at global
scope. See shader validation data rules.

Khronos SPIR-V Issue #408: (Re)allow the decorations Volatile, Coherent, NonWritable, and
NonReadable on members of blocks. (Temporarily dropping this functionality was
accidental/clerical; intent is that it has always been present.)

Khronos SPIR-V Issue #418: Add statements about undefinedness and how NaNs are mixed to
OpGroupNonUniformFAdd, OpGroupNonUniformFMul, OpGroupNonUniformFMin, and
OpGroupNonUniformFMax.

Khronos SPIR-V Issue #435: Expand the universal validation rule for variable pointers and matrices
to also disallow pointing within a matrix.

Khronos SPIR-V Issue #447: Remove implication that OpPtrAccessChain obeys an ArrayStride
decoration in storage classes laid out by the implementation.

Khronos SPIR-V Issue #450: Allow pointers to OpFunctionCall to be pointers to an element of an
array of samplers or images. See the universal validation rules under the Logical addressing model
without variable pointers.

Khronos SPIR-V Issue #452: OpGroupNonUniformAllEqual uses ordered compares for floating-
point values.

415

- Khronos SPIR-V Issue #454: Add OpExecutionModeld to the list of allowed forward references in
the Logical Layout of a Module.

4.34. Changes from Version 1.3

* New Functionality:

- Public issue #35: OpEntryPoint must list all global variables in the interface. Additionally,
duplication in the list is not allowed.

- Khronos SPIR-V Issue #140: Generalize OpSelect to select between two objects.

- Khronos SPIR-V Issue #156: Add OpUConvert to the list of required opcodes in
OpSpecConstantOp.

- Khronos SPIR-V Issue #345: Generalize the NonWritable decoration to include Private and
Function storage classes. This helps identify lookup tables.

- Khronos SPIR-V Issue #84: Add OpCopyLogical to copy similar but unequal types.
- Khronos SPIR-V Issue #170: Add OpPtrEqual and OpPtrNotEqual to compare pointers.

- Khronos SPIR-V Issue #362: Add OpPtrDiff to count the number of elements between two element
pointers.

- Khronos SPIR-V Issue #332: Add SignExtend and ZeroExtend image operands.
- Khronos SPIR-V Issue #340: Add the Uniformld decoration, which takes a Scope operand.
- Khronos SPIR-V Issue #112: Add iteration-control loop controls.

- Khronos SPIR-V Issue #366: Change Memory Access operands and the Memory Access section
to now be Memory Operands and the Memory Operands section.

- Khronos SPIR-V Issue #357: Allow OpCopyMemory and OpCopyMemorySized to have Memory
Operands for both their Source and Target.

* New Extensions Incorporated into SPIR-V 1.4:

- SPV_KHR_no_integer_wrap_decoration. See NoSignedWrap and NoUnsignedWrap decorations
and universal validation decoration rules.

- SPV_GOOGLE_decorate_string. See OpDecorateString and OpMemberDecorateString.
- SPV_GOOGLE_hlsl_functionalityl. See CounterBuffer and UserSemantic decorations.

- SPV_KHR float_controls. See DenormPreserve, DenormFlushToZero,
SignedZerolnfNanPreserve, RoundingModeRTE, and RoundingModeRTZ execution modes and
capabilities.

* Removed:

- Khronos SPIR-V Issue #437: Removed OpAtomicCompareExchangeWeak, and the BufferBlock
decoration.

4.35. Changes from Version 1.4, Revision 1
* GitHub SPIRV-Registry Issue #25: Remove validation rule for simultaneous use of RowMajor and
ColMajor, instead stating this in the decoration cells themselves.

» Khronos Issue #319: Bring in fixes to the SPV_KHR_16bit _storage extension. See the
StorageBufferl6BitAccess and the related 16-bit capabilities.

» Khronos Issue #363: OpTypeBool can be used in the Input and Output storage classes, but the client
APIs still only allow built-in Boolean variables (e.g. FrontFacing), not user variables.

416

» Khronos Issue #432: Remove the untrue expository statement "OpFunction is the only valid use of
OpTypeFunction."

» Khronos Issue #465: Distinguish between the Groups capability and the Group and Subgroup
instructions.

» Khronos Issue #484: Have OpTypeArray and OpTypeStruct point to their definitions.

» Khronos Issue #477: Include 0.0 in the range of required values for RelaxedPrecision and other minor
clarifications in the relaxed-precision section regarding floating-point precision.

» Khronos Issue #226: Be more clear about explicit level-of-detail being either Lod or Grad throughout
the sampling instructions, and that ConstOffset, Offset, and ConstOffsets are mutually exclusive in
the image operand’s descriptions.

» Khronos Issue #390: The Volatile decoration does not guarantee each invocation performs the access.
* Reserved New Tokens for:

- SPV_EXT_fragment_shader_interlock

- SPV_NV_shader_sm_builtins

- SPV_INTEL_shader_integer_functions2

- SPV_EXT_demote_to_helper_invocation

SPV_KHR_shader_clock
- SPV_GOOGLE_user_type

Volatile, for SPV_KHR_vulkan_memory_model

4.36. Changes from Version 1.4

» Extensions Incorporated into SPIR-V 1.5:
- SPV_KHR_8bit_storage
- SPV_EXT_descriptor_indexing

SPV_EXT_shader_viewport_index_layer, with changes: Replaced the single
ShaderViewportindexLayerEXT capability with the two new capabilities ShaderViewportindex
and ShaderLayer. Declaring both is equivalent to declaring ShaderViewportindexLayerEXT.

- SPV_EXT_physical_storage_buffer and SPV_KHR_physical_storage_buffer
- SPV_KHR_vulkan_memory_model

Khronos Issue #402: Relax OpGroupNonUniformBroadcast Id from constant to dynamically uniform,
starting with version 1.5.

Khronos Issue #493: Relax OpGroupNonUniformQuadBroadcast Id from constant to dynamically
uniform, starting with version 1.5.

Khronos Issue #494: Update the Dynamically Uniform definition to say that the invocation group is the
set of invocations, unless otherwise stated.

Khronos Issue #485: When RelaxedPrecision is applied to a numerical instruction, the operands may
be truncated.

4.37. Changes from Version 1.5, Revision 1

» Khronos Issue #511: Allow non-execution non-memory scopes in the introduction to the Scope <id>
section .

417

Khronos MR 1147: Fix OpFNegate so it handles 0.0f properly
Khronos Issue #502: OpAccessChain array indexes must be an in-bounds for logical pointer types.

Khronos Issue #518: Include both VariablePointers and VariablePointersStorageBuffer capabilities
in the validation rules when discussing variable pointer rules.

Khronos Issue #496: Allow Invariant to decorate a block member.

Khronos Issue #469: Disallow OpConstantNull result and OpPtrEqual, OpPtrNotEqual, and
OpPtrDiff operands from being pointers into the PhysicalStorageBuffer storage class. See the
PhysicalStorageBuffer validation rules.

Khronos Issue #425: Clarify what variables can allocate pointers, in the validation rules, based on the
declarations of the VariablePointers or VariablePointersStorageBuffer capabilities.

Khronos Issue #442: Add a note pointing out where signedness has some semantic meaning.
Khronos Issue #498: Relaxed the set of allowed types for some Group and Subgroup instructions.
Khronos Issue #500: Deprecate OpLessOrGreater in favor of OpFOrdNotEqual.

Khronos Issue #354: Rationalize literals throughout the specification. Remove “immediate" as a
separate definition. Be more rigid about a single literal mapping to one or more operands, and that the
instruction description defines the type of the literal.

Khronos Issue #479: Disallow intermediate aggregate types that could not be used to declare global
variables, and disallow all types that can’t be used for declaring variables. See the shader validation
"Type Rules". Also, more strongly state that intermediate values don’t form a storage class, in the
introduction to storage classes.

Khronos Issue #78: Use a more correct definition of back edge.

Khronos Issue #492: Overflow with OpSDiv, OpSRem, and OpSMod results in undefined behavior.

4.38. Changes from Version 1.5, Revision 2

418

Reserve enumerants for SPV_KHR_ray query and SPV_KHR_ray_tracing.

Khronos MR #164: Subtract all exits from what a construct contains, not just the construct's merge
block. See the Structured Control Flow section.

Khronos Issues #394 and #473: More clearly state that the <id> declared by an
OpTypeForwardPointer can be consumed by any type-declaration instruction that can legally
consume the type of <id>. Also consolidated the rules for this within the instruction itself.

Khronos Vulkan Issue #1951: Clarify that the SampledimageArrayDynamiclndexing capability
applies to dynamic indexing of image, sampler and sampled image objects.

Khronos Issue #523: Label as memory Scope the additional operand for each of

- MakeTexelAvailable and MakeTexelVisible image operands, and

- MakePointerAvailable and MakePointerVisible memory operands.
Khronos Issue #529: Allow the scope of uniform control flow to be defined by the client API.
Khronos Issue #530: Allow the definition of derivative group to be set by the client API.

Khronos Issue #293: Editorial simplification and clarification of different types under Types and
Variables.

Khronos Issue #506: Add to the definition of Pure under Function Control that assuming it computes
the same results also requires the same global state.

Khronos Issue #539: Clarify out-of-bounds indexes for OpAccessChain.

Khronos Issue #550: Include OpUndef in the allowed constituents for OpSpecConstantComposite.

» Khronos Issue #389: Be more clear which instructions can be updated with a specialization constant in
the specialization section.

» Khronos Issue #544: Be more concise with OpLabel language.
» Khronos Issue #245: State that D, operands must be 32-bit scalar floats in the image instructions.

» Khronos Issue #457: Change rule for OpUnreachable to being that behavior is undefined if it is
executed.

» Khronos Issue #231: Explicitly state that the component numbers 0, 1, 2, and 3 are 32-bit scalar
integers for OplmageGather and OplmageSparseGather.

» Khronos Issue #534: State where OpNoLine can be in the logical layout and with OpPhi.

» Khronos MR #168: Add definitions of quad and quad index, used by
OpGroupNonUniformQuadBroadcast and OpGroupNonUniformQuadSwap.

4.39. Changes from Version 1.5, Revision 3

» Reserve enumerants for the extensions
- SPV_INTEL_fpga_loop_controls
- SPV_INTEL_blocking_pipes
- SPV_INTEL_unstructured_loop_controls
- SPV_INTEL_fpga_reg
- SPV_INTEL_fpga_memory_attributes
- SPV_INTEL_kernel_attributes
- SPV_INTEL_function_pointers
- SPV_EXT_shader_image_int64
- SPV_KHR_fragment_shading_rate
- SPV_EXT_shader_atomic_float_add

 Establish formal meanings for validity (being statically expressed) and behavior (regarding dynamic
execution), in Validity and Defined Behavior. This also changed a number of uses of these terms
throughout the specifications to be consistent with these definitions.

- Main issue for this: Khronos issue #540.
- Addresses Khronos issues #542, #540, #545, #546, #547, and #548.

- Khronos issue #491: For OpConvertFToU and OpConvertFToS, behavior is undefined if Result
Type is not wide enough to hold the converted value.

- Khronos issue #591: Module validity does not depend on the default values of specialization
constants.

e Fix Khronos issues:

- #214: LoD and gather Image Instructions need non-multisampled images (MS of 0), while others
that provide a Sample Image Operand need a multisampled image (MS of 1).

- #324: For several Capabilities, explicitly list the values OpTypelmage has for Sampled, instead of
saying sampled or unsampled.

- #361: Stop requiring OpTypeRuntimeArray to be concrete, in the description of
OpTypeRuntimeArray. (This may still be restricted elsewhere though.)

- #553: Add definition of a tangled instruction and update the definitions of dynamic instance and
uniform control flow.

419

- #517: Expand the About This Document section to also discuss versioning.
- #564: Depth hint for the DepthLess execution mode means less-than-or-equal to.

- #558: Explicitly say (rather than imply) that ImageMipmap and ImageReadWrite capabilities apply
to kernels.

- #563: Delete unnecessary statement about incomplete images in OplmageQueryLod.
- #570: Update the definitions of the Acquire and Release memory semantics.
- #560: It is not valid to make duplicate Builtin variables.

- #566: The Client API specificies what happens with image coordinates outside the image for
OplmageRead, OplmageWrite, and OplmageSparseRead.

- #573: Clarify the type read/written is scalar or vector in OplmageRead, OplmageWrite, and
OplmageSparseRead.

- #595: Remove the parenthetical partial list of annotation instructions in the logical layout section.
- #574: Constituents of OpConstantComposite must not be specialization constants.
- #444: Use more restrictive "only" language for what decorations may apply to.

- MR 1182: See the client API for how SubpassData coordinates are applied in OplmageRead.

4.40. Changes from Version 1.5, Revision 4

e Update to January 7, 2021 public headers.

4.41. Changes from Version 1.5, Revision 5

 Ported the specification itself to use asciidoctor instead of asciidoc.
» Reserve enumerants for the extensions:
- SPV_INTEL_float_controls2
- SPV_INTEL_vector_compute
- SPV_INTEL_arbitrary_precision_floating_point
- SPV_INTEL_usm_storage_classes
- SPV_INTEL_unstructured_loop_controls
- SPV_KHR_subgroup_uniform_control_flow
- SPV_KHR_linkonce_odr
- SPV_KHR_expect_assume
- SPV_EXT_shader_atomic_float_ min_max
- SPV_KHR_integer_dot_product
- SPV_KHR_hit_instructions
- SPV_NV_ray_tracing_motion_blur
- SPV_INTEL_optnone
- SPV_NV_bindless_texture
» Add CPP_for_OpenCL source language.
* Clarify that OpFDiv has a defined result when the divisor is 0. (MR 1195.)

 Fix execution-mode table to show all 3 operands for LocalSizeHintld.

420

* Fix GitHub SPIRV-Registry issues:

- #79: Clarify the definitions of StoragelmageMultisample and ImageMSArray capabilities.
 Fix Khronos issues:

- #351: OpUDiv and OpUMod have undefined behavior if the divisor is O.

- #621: Clarify the definition of the Sampled operand for OpTypelmage.

- #611: Clarifying string literals are case sensitive for comparisons.

- #615: Clarify Block and BufferBlock decorations.

- #654: Clarify that the ZeroExtend image operand is not valid with signed types.

- #623: Clarify OpAccessChain doesn'’t create any extra restrictions.

- #647: Clarify NoWrite and NoReadWrite function parameter attributes apply to the pointer, not to
the underlying memory.

- #585: Clarify that OpCopyObject cannot have result type OpTypeVoid.
- #614: Clarify that OpUndef, OpPhi, and OpReturnValue cannot have result type OpTypeVoid.

- #115: Clarify the Shader validation rules for when OpSelectionMerge and OplLoopMerge
instructions are necessary.

- #656: Clarify the <id>-based rules for operands apply only to operands that are <id>s, in the
OpSpecConstantOp instruction.

- #627: Clarify the places that the RelaxedPrecision decoration must apply to.

- #549: Clarify the VariablePointers and VariablePointersStorageBuffer capabilities enable
additional features for logical pointers, but keep other prohibitions. Also that the VariablePointers
and VariablePointersStorageBuffer capabilities allow a pointer to be an operand to
OpReturnValue.

- #640: Add parenthetical note in structured control flow about reconverging before reaching a merge
block.

- #656: Clarify the <id>-based rules for OpSpecConstantOp operands apply only to operands that
are <id>s.

- #651: Add a validation rule that the workgroup size cannot have a dimension with the value zero
statically.

- #580: Clarify that Subpassinput is not valid as the Dim operand of OpTypeSampledimage, and
that sampled images with a Dim of Buffer are not valid in image sampling instructions.

- #619: Add a validation rule that LocalSize, LocalSizeld, LocalSizeHint, and LocalSizeHintld
can't be used at the same time.

- #663: Restrict OpSwitch from being used to directly break or continue in a structured loop.

- #678: Allow the AliasedPointer and RestrictPointer decorations to apply to memory object
declarations.

- #682: Clarify that the VariablePointersStorageBuffer capability is sufficient to compare pointers
that point into different storage buffers using OpPtrEqual and OpPtrNotEqual.

» Changes from public headers
- PR #240: Remove the Kernel capability from fast-math flags.

- PR #257: Remove the Shader implicit declaration from SPV_EXT shader atomic_float add
capabilities.

421

4.42. Changes from Version 1.5

* New Functionality:

Khronos SPIR-V issue #515: The FPFastMathMode decoration may now be used with
OpFNegate, with the binary floating-point comparison instructions (including OpOrdered and
OpUnordered), and with OpExtinst where expressly permitted by the extended instruction set.

#661: Added a Nontemporal Image Operand.

» Extensions Incorporated into SPIR-V 1.6:

SPV_KHR_non_semantic_info, see OpExtinstimport.
SPV_KHR_integer_dot_product
SPV_KHR_terminate_invocation

SPV_EXT_demote_to_helper_invocation, with changes: Only OpDemoteToHelperinvocationEXT
was incorporated. Instead of using OplsHelperinvocationEXT, modules should use Volatile loads
of the Helperlnvocation built-in variable.

» Deprecations and Removals, from Khronos SPIR-V issues:

Removed OplLessOrGreater. Use OpFOrdNotEqual instead.
#620: The WorkgroupSize built-in is deprecated starting with version 1.6.

#645: The True Label and False Label of an OpBranchConditional must not be the same, starting
with version 1.6.

#584: Disallow Dim Buffer in OpTypeSampledimage and OpSampledimage starting with version
1.6.

Deprecated OpKill, in favor of OpTerminatelnvocation, or OpDemoteToHelperinvocation.

» Reserve enumerants for the SPV_KHR_fragment_shader_barycentric extension.

4.43. Changes from Version 1.6, Revision 1

* Reserve enumerants for:

SPV_KHR_ray_cull_mask
SPV_KHR_uniform_group_instructions
SPV_AMD_shader_early_and_late_fragment_tests
SPV_INTEL_vector_compute
SPV_INTEL_memory_access_aliasing
SPV_INTEL_split_barrier

SYCL source language

» Fix Khronos issues:

422

#680, #685, #696: Refine, clarify, and fix structured control-flow definitions and rules:

- Add the concept of a structured control-flow path to better express the rules for structured
control flow, as defined by the following terms.

- Terms: Define the terms branch edge, merge edge, continue edge, structured control-flow
edge, path, structured control-flow path, structurally reachable, structurally dominate, and
structurally post dominate. Remove "post dominate". Revise definition of back edge to refer to
branch edge instead of branch. Pull out back-edge block into its own definition. Rename the
term "termination instruction" to block termination instruction and introduce the term function

termination instruction.

- Rework and simplify structured control-flow rules using the terms above. Clarify that a loop’s
continue target must be different from its merge block. Remove redundant condition that a
loop’s continue construct must contain the loop’s back-edge block. Precisely define the rules for
exiting structured control-flow constructs.

- #672, #673, #674: Clarify branching rules for the OpSwitch instruction, for:
- the order in which target operands appear in an OpSwitch instruction,
- duplicated targets, and

- branching between case constructs, to make it clear that branch edges do not have to start at a
switch target, but can come from anywhere in a switch construct.

- #695: For most cases, disallow multiple uses of the same decoration on the same <id> or structure
member.

- #696: Change validation rules for physical storage buffers to clarify they apply to pointers nested in
other types (not just arrays).

- #672, #704: Clarify branching rules under switch construct rules for the OpSwitch instruction,
making it clear that the rules about target ordering only apply to targets that define case constructs,
and resolving ambiguity about what is allowed when the default case construct appears in the list of
targets.

* Clarify the meaning of fast math flags when the asserted properties are not true.

4.44. Changes from Version 1.6, Revision 2

* Reserve enumerants for:
- SPV_KHR_ray_tracing_position_fetch
- SPV_QCOM _image_processing
- SPV_ARM_core_builtins
- SPV_NV_shader_invocation_reorder
- SPV_NV_displacement_micromap
- SPV_AMDX_shader_enqueue
- SPV_INTEL_fp_max_error
- SPV_INTEL_Kkernel_attributes
- SPV_INTEL_cache_controls
- SPV_INTEL_global_variable_fpga_decorations
- SPV_INTEL_global_variable_host_access
- SPV_INTEL_bfloatl6 conversion
- SPV_INTEL_runtime_aligned
- SPV_INTEL_fpga_argument_interfaces
- SPV_INTEL_fpga_dsp_control
- SPV_INTEL_fpga_invocation_pipelining_attributes
- SPV_INTEL_fpga_latency_control
- SPV_INTEL_fpga_loop_controls
- SPV_INTEL_fpga_memory_attributes

423

SPV_EXT_image_raw10_rawl12
SPV_EXT_shader_tile_image
SPV_EXT_mesh_shader

- SPV_EXT_opacity_micromap
» Other changes from public headers

- Added source languages HERO_C, NZSL, WGSL, and Slang

- Removed the Kernel enabling capability from the sampler addressing modes.
* Fix SPIR-V Registry issues:

- #72: Be consistent in OpTypeBool that SPIR-V can support Booleans in the UniformConstant
storage class.

- #197: Clarify that OpQuantizeToF16 must flush denormalized values to 0.

* Fix Khronos SPIR-V issues:
- #689: Clarify use of OpPhi on OpTypelmage in the universal validation rules.
- #708: Remove unused definitions of Break Block, Continue Block and Return Block.
- #707: Clarify that using a bad Direction in OpGroupNonUniformQuadSwap is invalid SPIR-V.
- #712: Clarify multiple UserSemantic decorations can apply to a variable or structure member.
- #731.: Clarify that aliasing is based on dynamic execution.

- #736: Clarify that OpArrayLength may have a logical pointer operand in the universal validation
rules.

- #737: Clarify validation rule restricting OpConstantNull from pointing into the
PhysicalStorageBuffer storage class.

- #738: Restrict OplmageQueryLevels and OplmageQueryLod images to have MS of 0.
- #295: Clarify that the ZeroExtend and SignExtend image operands are not valid together.

- #753: Clarify that GroupNonUniformQuad instructions are not affected by their execution scopes,
and require the value to be subgroup.

- #754: Modify ClusterSize operands to refer to the size of the group of invocations participating in
the instruction instead of always talking about SubgroupSize.

- #755: Clarify set of invocations affected by a group operation:
- Add definition of group (invocations).
- Add definition of workgroup.
- Link to new definitions throughout the specification.
- Define sizes of quad, subgroup, and workgroup.
- Modify description of Execution Scope to clarify that it identifies the group an instruction affects.

- Remove restrictions on Execution Scope for most instructions, leaving it up to client APIs to
restrict them.

- Clarify that non-uniform instructions require the value of Execution Scope to be subgroup.
- Clarify that GroupNonUniformQuad instructions are not affected by their execution scopes.

- #757: Restrict the type of ballot bit sets to be 4-component vectors of 32-bit unsigned integers in
Non-Uniform Instructions.

- #758: Add the definition of a cluster.

424

- #772: Clarify that OpPtrAccessChain does not dereference any pointer.
- #750: Update validation rules to reflect support for image and sampler array non-uniform indexing.
* Khronos SPIR-V MRs:

- #261: Clarify that Sampled operand for OplmageSparseFetch is restricted to 1, bringing it in line
with the constraint for OplmageFetch.

- #280: Control barriers wait only for active invocations.
» Deprecations:

- Issue #756: Deprecated the use of Builtin to decorate a constant to set its value and removed the
deprecation of the WorkgroupSize built-in. That is, WorkgroupSize is kept but no longer marked
as deprecated (it is still required by OpenCL). The use of Builtin to decorate a constant to set its
value was only for WorkgroupSize, which has been superseded by the LocalSizeld execution
mode.

- MR #277: Deprecated Simple memory model in favor of GLSL450.

4.45. Changes from Version 1.6, Revision 3

* Reserve enumerants for:
- SPV_KHR_float_controls2
- SPV_KHR_maximal_reconvergence
- SPV_KHR_quad_control
- SPV_KHR_relaxed_extended_instruction
- SPV_EXT _replicated_composites
- SPV_INTEL_fpga_cluster_attributes
- SPV_INTEL_masked_gather_scatter
- SPV_INTEL_maximum_registers
- SPV_QCOM _image_processing2
- SPV_NV_shader_atomic_fp16_vector
- SPV_NV_raw_access_chains
» Other changes from public headers
- Enforce Core, KHR, EXT, Vendor ordering conventions for aliased names
- Added source languages Zig
- Removed the Kernel enabling capability from Image Channel Order and Image Channel Data Type.
* Fix Khronos SPIR-V Issues:
- #638: Clarify that most execution modes must be applied at most once to a given entry point.
- #766: Clarify the texel value type for the ZeroExtend and SignExtend image operands.

- #724: Clarify that the storage class must match when performing an OpBitcast between two
OpTypePointer. Clarify that the behavior is undefined when using the result of a bit cast between a
scalar and a pointer (OpBitcast and OpConvertUToPtr) if the storage class scalar.

- Add optional operand for OpTypeFloat to specify bit pattern of values. Clarify that OpFConvert
operates on different types not just width. Clarify the following uses IEEE 754 floating-points:
OpQuantizeToF16, Image Operands taking floating-point type operands, VecTypeHint,
DenormPreserve, DenormFlushToZero, SignedZerolnfNanPreserve, RoundingModeRTE and

425

RoundingModeRTZ execution mode, Derivative instructions, Floatl6Buffer, Floatl6 and Int64
capabilities. Clarify that OplsNan, Oplsinf, OplsFinite, OpOrdered and OpUnordered results
depends on the floating-point encoding.

- #767: Rework the Function Storage Class definition. Clarify the memory is visible across all
functions and not just the declaring function. Clarify that an OpVariable with a Function Storage
Class is only allocated from its declaration until reaching a function termination instruction.

4.46. Changes from Version 1.6, Revision 4

* Reserve enumerants for:
- SPV_ARM_cooperative_matrix_layouts
- SPV_EXT_arithmetic_fence
- SPV_EXT_optnone
- SPV_KHR_untyped_pointers
- SPV_INTEL_subgroup_buffer_prefetch
- SPV_INTEL_2d_block_io
- SPV_INTEL_subgroup_matrix_multiply_accumulate
- SPV_NV_cooperative_matrix2
- SPV_NV_tensor_addressing
- Rust source language
» Updated SPV_AMDX_shader_enqueue enumerants
* Fix Khronos SPIR-V Issues:

- #798: Clarify that ArrayStride applies objects in PhysicalStorageBuffer when computing the new
address with OpPtrAccessChain. State the explicit layout requirement in each relevant storage
classes entry.

- #808: Add definition for hint and clarify that the following bits are hints:
- Selection Control: Flatten and DontFlatten
- Loop Control: Unroll, DontUnroll, PeelCount and PartialCount
- Function Control: Inline and DontInline

- #813: Allow mismatching Depth for OpSampledimage

- #809: Clarify structure with members decorated with UserSemantic can be used with any storage
class.

- #811: Refactor validation rules for MakeTexelVisible, MakeTexelAvilable, MakePointerVisible,
MakePointerAvailable:

- Remove mentions in universal validation rules

- Make MakeTexelVisible, MakeTexelAvilable, MakePointerVisible, MakePointerAvailable
description more generic to also capture instruction described in extensions

- #797: No longer print duplicated tokens in enum and mask values. Instead aliases are printed
between parentheses.

- 1321: Remove point of execution reachability paragraph from group operation as it is already implied
by dynamic instance. Non semantic change.

- 1323: Turn the validation rules for explicit layout into a new term definition.

426

- #831: Fix use of element instead of column in OpAccessChain

- #837: Fix use of Memory scope operand in atomic instruction descriptions.

- #815: Clarify that an image is a handle and does not represent directly the memory holding the

texels.

- #827: Lift the requirements to add AliasedPointer and RestrictPointer decorations on memory
object declarations with holding PhysicalStorageBuffer pointers.

#833: Remove entries
OplmageSparseSampleProjExplicitLod,

for OplmageSparseSampleProjlmplicitLod,
OplmageSparseSampleProjDrefimplicitLod,

OplmageSparseSampleProjDrefExplicitLod. The instructions had no definition since 1.0.3,
enums are still reserved and kept in the grammar.

#691 / #832:

- Introduce scope, tangle, tangle invocations and scope restricted tangle terms.

- Remove use of group for invocations.

- Fix missing OpGroupReserveReadPipePackets, OpGroupReserveWritePipePackets,
OpGroupCommitReadPipe and OpGroupCommitWritePipe instructions from tangled

instructions list.

- Reworded tangled instructions to better define which invocations are involved in the operation
by replacing use of active and inactive invocations as well as group.

- Specify that for tangled instructions all invocations in the scope restricted tangle must reach the

instruction before executing it.

- Remove as if all invocations execute simultaneously wording in favor of a wording based on
program order. State the program ordering requirement on all affected instruction.

- Clarify that no dynamic instances program order after an OpControlBarrier can be executed
until all invocations in the scope restricted tangle executed the dynamic instance.

4.47. Changes from Version 1.6, Revision 5

» Reserve enumerants for:

SPV_KHR_bfloat16

SPV_EXT _float8

SPV_ARM_graph

SPV_ARM _tensors
SPV_INTEL_bindless_images
SPV_INTEL_function_variants
SPV_INTEL_int4
SPV_INTEL_task_sequence
SPV_INTEL_ternary_bitwise_function
SPV_INTEL_tensor_float32_conversion
SPV_NV_linear_swept_spheres
SPV_NV_cluster_acceleration_structure
SPV_NV_cooperative_vector

SPV_QCOM_cooperative_matrix_conversion

427

- SPV_QCOM _tile_shading
- Image Channel Data Type for cl_ext_image_unsigned_10x6_12x4 14x2
* Fix Khronos SPIR-V Issues:

- #843: Clarify that OpShiftRightArithmetic fills the bits according to the most-significant bit of
Base.

- 1336: Clarify that Aligned Memory Operands must be a power of two.

Khronos Vulkan Issue #4193: Clarify runtime array must be last struct member by memory layout.
- 1334: Clarify OpArrayLength does not access the array contents.

- #859: Clarify that the Level of Detail operand of OplmageQuerySizelLod is a 32-bit integer type
scalar.

- #860: Clarify that Bias, Lod, Grad, ConstOffset, Offset, Sample, MinLod and Biais Image
Operands uses 32-bit integer or floating point types.

- #865: Clarify OpUndef causes undefined behavior if used as an operand to OpBranchConditional
and OpSwitch.

- 1350: Clarify that variable pointers on arrays of blocks are disallowed.
* Fix Github SPIRV-Headers Issues:
- #487: State that Unknown Image Format can also be used if Kernel capability is declared.
- #510: Header fix to stop enabling PerTaskNV with SPV_EXT_mesh_shader
 Fix Github SPIRV-Registry Issues:
- #336: Fix remainder definition, 'q' is an integer.

- #313: Clarify the definition of dynamic instance and which threads form the same tangle.

428

	SPIR-V Specification
	Table of Contents
	Chapter 1. Introduction
	1.1. Goals
	1.2. Execution Environment and Client API
	1.3. About This Document
	1.3.1. Versioning

	1.4. Extendability
	1.5. Debuggability
	1.6. Design Principles
	1.7. Static Single Assignment (SSA)
	1.8. Built-In Variables
	1.9. Specialization
	1.10. Example

	Chapter 2. Specification
	2.1. Language Capabilities
	2.2. Terms
	2.2.1. Instructions
	2.2.2. Types
	2.2.3. Computation
	2.2.4. Module
	2.2.5. Control Flow
	2.2.6. Validity and Defined Behavior

	2.3. Physical Layout of a SPIR-V Module and Instruction
	2.4. Logical Layout of a Module
	2.5. Instructions
	2.5.1. SSA Form

	2.6. Entry Point and Execution Model
	2.7. Execution Modes
	2.8. Types and Variables
	2.8.1. Unsigned Versus Signed Integers

	2.9. Function Calling
	2.10. Extended Instruction Sets
	2.11. Structured Control Flow
	2.11.1. Rules for Structured Control-flow Declarations
	2.11.2. Structured Control-flow Constructs
	2.11.3. Rules for Structured Control-flow Constructs

	2.12. Specialization
	2.13. Linkage
	2.14. Relaxed Precision
	2.15. Debug Information
	2.15.1. Function-Name Mangling

	2.16. Validation Rules
	2.16.1. Universal Validation Rules
	2.16.2. Validation Rules for Shader Capabilities
	2.16.3. Validation Rules for Kernel Capabilities

	2.17. Universal Limits
	2.18. Memory Model
	2.18.1. Memory Layout
	2.18.2. Aliasing
	2.18.3. Null pointers

	2.19. Derivatives
	2.20. Code Motion
	2.21. Deprecation
	2.22. Unified Specification
	2.23. Uniformity

	Chapter 3. Binary Form
	3.1. Magic Number
	3.2. Enumerants
	3.2.1. Source Language
	3.2.2. Execution Model
	3.2.3. Addressing Model
	3.2.4. Memory Model
	3.2.5. Execution Mode
	3.2.6. Storage Class
	3.2.7. Dim
	3.2.8. Sampler Addressing Mode
	3.2.9. Sampler Filter Mode
	3.2.10. Image Format
	3.2.11. Image Channel Order
	3.2.12. Image Channel Data Type
	3.2.13. Image Operands
	3.2.14. FP Fast Math Mode
	3.2.15. FP Rounding Mode
	3.2.16. Linkage Type
	3.2.17. Access Qualifier
	3.2.18. Function Parameter Attribute
	3.2.19. Decoration
	3.2.20. BuiltIn
	3.2.21. Selection Control
	3.2.22. Loop Control
	3.2.23. Function Control
	3.2.24. Memory Semantics <id>
	3.2.25. Memory Operands
	3.2.26. Scope <id>
	3.2.27. Group Operation
	3.2.28. Kernel Enqueue Flags
	3.2.29. Kernel Profiling Info
	3.2.30. Capability
	3.2.31. Ray Flags
	3.2.32. Ray Query Intersection
	3.2.33. Ray Query Committed Type
	3.2.34. Ray Query Candidate Type
	3.2.35. Fragment Shading Rate
	3.2.36. FP Denorm Mode
	3.2.37. FP Operation Mode
	3.2.38. Quantization Mode
	3.2.39. Overflow Mode
	3.2.40. Packed Vector Format
	3.2.41. Cooperative Matrix Operands
	3.2.42. Cooperative Matrix Layout
	3.2.43. Cooperative Matrix Use
	3.2.44. Cooperative Matrix Reduce Mode
	3.2.45. Tensor Clamp Mode
	3.2.46. Tensor Addressing Operands
	3.2.47. Tensor Operands
	3.2.48. Initialization Mode Qualifier
	3.2.49. Host Access Qualifier
	3.2.50. Load Cache Control
	3.2.51. Store Cache Control
	3.2.52. Named Maximum Number of Registers
	3.2.53. Matrix Multiply Accumulate Operands
	3.2.54. Raw Access Chain Operands
	3.2.55. FP Encoding
	3.2.56. Cooperative Vector Matrix Layout
	3.2.57. Cooperative Vector Matrix Component Type

	3.3. Instructions
	3.3.1. Miscellaneous Instructions
	3.3.2. Debug Instructions
	3.3.3. Annotation Instructions
	3.3.4. Extension Instructions
	3.3.5. Mode-Setting Instructions
	3.3.6. Type-Declaration Instructions
	3.3.7. Constant-Creation Instructions
	3.3.8. Memory Instructions
	3.3.9. Function Instructions
	3.3.10. Image Instructions
	3.3.11. Conversion Instructions
	3.3.12. Composite Instructions
	3.3.13. Arithmetic Instructions
	3.3.14. Bit Instructions
	3.3.15. Relational and Logical Instructions
	3.3.16. Derivative Instructions
	3.3.17. Control-Flow Instructions
	3.3.18. Atomic Instructions
	3.3.19. Primitive Instructions
	3.3.20. Barrier Instructions
	3.3.21. Group and Subgroup Instructions
	3.3.22. Device-Side Enqueue Instructions
	3.3.23. Pipe Instructions
	3.3.24. Non-Uniform Instructions
	3.3.25. Tensor Instructions
	3.3.26. Graph Instructions
	3.3.27. Reserved Instructions

	Chapter 4. Appendix A: Changes
	4.1. Changes from Version 0.99, Revision 31
	4.2. Changes from Version 0.99, Revision 32
	4.3. Changes from Version 1.00, Revision 1
	4.4. Changes from Version 1.00, Revision 2
	4.5. Changes from Version 1.00, Revision 3
	4.6. Changes from Version 1.00, Revision 4
	4.7. Changes from Version 1.00, Revision 5
	4.8. Changes from Version 1.00, Revision 6
	4.9. Changes from Version 1.00, Revision 7
	4.10. Changes from Version 1.00, Revision 8
	4.11. Changes from Version 1.00, Revision 9
	4.12. Changes from Version 1.00, Revision 10
	4.13. Changes from Version 1.00, Revision 11
	4.14. Changes from Version 1.00
	4.15. Changes from Version 1.1, Revision 1
	4.16. Changes from Version 1.1, Revision 2
	4.17. Changes from Version 1.1, Revision 3
	4.18. Changes from Version 1.1, Revision 4
	4.19. Changes from Version 1.1, Revision 5
	4.20. Changes from Version 1.1, Revision 6
	4.21. Changes from Version 1.1, Revision 7
	4.22. Changes from Version 1.1
	4.23. Changes from Version 1.2, Revision 1
	4.24. Changes from Version 1.2, Revision 2
	4.25. Changes from Version 1.2, Revision 3
	4.26. Changes from Version 1.2
	4.27. Changes from Version 1.3, Revision 1
	4.28. Changes from Version 1.3, Revision 2
	4.29. Changes from Version 1.3, Revision 3
	4.30. Changes from Version 1.3, Revision 4
	4.31. Changes from Version 1.3, Revision 5
	4.32. Changes from Version 1.3, Revision 6
	4.33. Changes from Version 1.3, Revision 7
	4.34. Changes from Version 1.3
	4.35. Changes from Version 1.4, Revision 1
	4.36. Changes from Version 1.4
	4.37. Changes from Version 1.5, Revision 1
	4.38. Changes from Version 1.5, Revision 2
	4.39. Changes from Version 1.5, Revision 3
	4.40. Changes from Version 1.5, Revision 4
	4.41. Changes from Version 1.5, Revision 5
	4.42. Changes from Version 1.5
	4.43. Changes from Version 1.6, Revision 1
	4.44. Changes from Version 1.6, Revision 2
	4.45. Changes from Version 1.6, Revision 3
	4.46. Changes from Version 1.6, Revision 4
	4.47. Changes from Version 1.6, Revision 5

