
STMicroelectronics

ST231 core and
instruction set

architecture

Reference manual

7645929 Rev N

September 2009

BLANK

September 2009 7645929 Rev N 1/331

Reference manual

ST231 core and instruction set architecture

Introduction

The 32-bit ST231 is a member of the ST200 family of cores.

This family of embedded processors uses a scalable technology that allows variation in
instruction issue width, the number and capabilities of functional units and register files, and
the instruction set.

The ST200 family includes the following features:

● parallel execution units, including multiple integer ALUs and multipliers

● architectural support for data prefetch

● predicated execution through select operations

● efficient branch architecture with multiple condition registers

● encoding of immediate operands up to 32 bits

● support for user and supervisor modes and memory protection

www.st.com

http://www.st.com

Contents ST231

2/331 7645929

Contents

Introduction . 1

Preface . 10

ST200 document identification and control. 10

ST200 documentation suite . 10

Conventions used in this guide. 11

Acknowledgements. 12

1 Overview . 13

1.1 VLIW overview . 13

1.2 ST231 overview . 13

1.3 Document overview . 14

2 Execution units . 15

2.1 Integer units (IU) . 15

2.2 Multiply units . 15

2.3 Load/store unit (LSU) . 15

2.3.1 Memory access . 16

2.3.2 Addressing modes . 16

2.3.3 Alignment . 16

2.3.4 Control registers . 16

2.3.5 Cache purging . 16

2.3.6 Dismissible loads . 16

2.4 Branch unit . 17

2.4.1 Idle mode macro . 17

2.4.2 syncins macro . 18

3 Architectural state . 19

3.1 Program counter (PC) . 19

3.2 Register file . 19

3.2.1 Link register . 19

3.3 Branch register file . 19

ST231 Contents

7645929 3/331

3.4 Program status word (PSW) . 19

3.4.1 Bit fields . 20

3.4.2 USER_MODE . 21

3.4.3 DEBUG_MODE . 21

3.4.4 PSW access . 21

3.5 Control registers . 21

4 Execution pipeline and latencies . 22

4.1 Execution pipeline . 22

4.2 Operation latencies . 22

4.3 Branch stalls . 22

4.4 Interlocks . 23

4.5 Additional notes . 23

4.5.1 Flushing the pipeline . 23

4.5.2 Restrictions on link register . 24

5 Traps (exceptions and interrupts) . 25

5.1 Trap mechanism . 25

5.2 Exception handling . 25

5.3 Saved execution state . 26

5.4 Interrupts . 27

5.5 Debug interrupt handling . 27

5.6 Exception types and priorities . 28

5.6.1 Illegal instruction definition . 29

5.7 Speculative load considerations . 29

5.7.1 Misaligned implementation . 30

6 Memory translation and protection . 31

6.1 TLB overview . 31

6.2 Address space . 32

6.2.1 Physical addresses . 32

6.2.2 Virtual addresses . 32

6.3 Caches . 33

6.3.1 Instruction cache organization . 33

Contents ST231

4/331 7645929

6.3.2 Data cache organization . 34

6.4 Control registers . 35

6.4.1 PSW . 35

6.4.2 TLB_INDEX . 35

6.4.3 TLB_ENTRY0 . 35

6.4.4 TLB_ENTRY1 . 38

6.4.5 TLB_ENTRY2 . 38

6.4.6 TLB_ENTRY3 . 38

6.4.7 TLB_REPLACE . 38

6.4.8 TLB_CONTROL . 40

6.4.9 TLB_ASID . 40

6.4.10 TLB_EXCAUSE . 41

6.5 TLB description . 42

6.5.1 Reset . 42

6.5.2 UTLB arbitration . 42

6.5.3 Exceptions . 43

6.5.4 Instruction accesses . 44

6.5.5 Data accesses . 45

6.6 Speculative control unit (SCU) . 46

6.6.1 SCU_BASEx . 47

6.6.2 SCU_LIMITx . 47

6.6.3 Updates to SCU registers . 47

7 Memory subsystem . 48

7.1 Memory subsystem . 49

7.2 I-side memory subsystem . 49

7.2.1 Instruction buffer . 49

7.2.2 Instruction cache . 50

7.2.3 I-side bus error . 51

7.3 D-side memory subsystem . 51

7.3.1 Load/store unit . 51

7.3.2 Data cache partitioning . 52

7.3.3 Speculative loads . 52

7.3.4 Cached loads and stores . 52

7.3.5 Uncached load and stores . 53

7.3.6 Prefetching data . 53

ST231 Contents

7645929 5/331

7.3.7 Purging data caches . 54

7.3.8 D-side synchronization . 54

7.3.9 D-side bus errors . 54

7.3.10 Operations . 55

7.3.11 Cache policy . 55

7.3.12 Write buffer . 58

7.4 Core memory controller (CMC) . 58

7.5 Additional notes . 59

7.5.1 Memory ordering and synchronization . 59

7.5.2 Coherency between I-side and D-side . 59

7.5.3 Reset state . 59

7.5.4 Cached data in uncached region . 59

7.5.5 Prefetch performance . 60

8 Streaming data interface . 61

8.1 Functional description . 61

8.1.1 Data width . 62

8.2 Communication channel . 62

8.2.1 Timeouts . 62

8.3 Registers . 62

8.3.1 Input channel memory mapping . 63

8.3.2 Output channel memory mapping . 64

8.3.3 Protection . 64

8.4 Interrupts, exceptions and restarts . 65

8.4.1 Interrupts . 65

8.4.2 SDI exceptions . 65

8.4.3 Restart (soft reset) . 65

9 Control registers . 67

9.1 Access operations . 67

9.2 Exceptions . 67

9.3 Control register addresses . 68

9.4 Data cache replacement state register . 71

9.5 Version register . 72

Contents ST231

6/331 7645929

10 Timers . 73

10.1 Operation . 73

10.1.1 TIMEDIVIDEi . 73

10.1.2 TIMECOUNTi . 74

10.1.3 TIMECONSTi . 74

10.1.4 TIMECONTROLi . 74

10.2 Timer interrupts . 74

10.3 Programming the timers . 75

11 Peripheral addresses . 76

11.1 Access to peripheral registers . 76

11.2 Peripheral addresses . 76

11.2.1 Interrupt controller and timer registers . 77

11.2.2 DSU registers . 78

11.2.3 DSU ROM . 79

12 Interrupt controller . 80

12.1 Architecture . 80

12.2 Operation . 80

12.2.1 Test register . 81

12.2.2 Master interrupt input . 81

12.3 Interrupt registers . 81

12.3.1 Interrupt pending register (INTPENDING) . 81

12.3.2 Interrupt mask register (INTMASK) . 82

12.3.3 Interrupt mask set and clear registers (INTMASKSET and INTMASKCLR)
82

12.3.4 Interrupt test register (INTTEST) . 84

12.3.5 Interrupt set and clear registers (INTSET and INTCLR) 84

13 Debugging support (TAPLink) . 87

13.1 Core . 87

13.1.1 Debug interrupts . 87

ST231 Contents

7645929 7/331

13.1.2 Hardware breakpoint support . 89

13.2 Debug support unit . 90

13.2.1 Architecture . 90

13.2.2 Shared register bank . 91

13.2.3 DSU control registers . 91

13.3 Debug ROM . 93

13.3.1 Debug initialization loop . 93

13.3.2 Default debug handler . 93

13.4 Host debug interface . 96

13.4.1 Message format . 96

13.4.2 Operation . 97

14 Debugging support (JTAG) . 98

14.1 Core . 98

14.1.1 Debug interrupts . 98

14.1.2 Hardware breakpoint support . 99

14.2 Debug support unit . 101

14.2.1 Architecture . 101

14.2.2 Shared register bank . 102

14.2.3 DSU control registers . 102

14.3 Debug ROM . 103

14.3.1 Debug initialization loop . 103

14.3.2 Default debug handler . 104

14.3.3 User-defined debug handler . 107

14.4 Host debug interface . 107

14.4.1 Protocol and flow control . 108

14.4.2 Command Format . 109

14.4.3 Handling events . 110

15 Performance monitoring . 112

15.1 Events . 112

15.2 Access to registers . 113

15.3 Control register (PM_CR) . 114

15.4 Event counters (PM_CNTi) . 114

15.5 Clock counter (PM_PCLK) . 115

15.6 Recording events . 115

Contents ST231

8/331 7645929

16 Execution model . 116

16.1 Bundle fetch, decode, and execute . 116

16.2 Functions . 118

16.2.1 Bundle decode . 118

16.2.2 Operation execution . 118

16.2.3 Exceptional cases . 118

17 Specification notation . 119

17.1 Variables and types . 119

17.1.1 Integer . 119

17.1.2 Boolean . 120

17.1.3 Bit-fields . 120

17.1.4 Arrays . 120

17.2 Expressions . 120

17.2.1 Integer arithmetic operators . 121

17.2.2 Integer shift operators . 122

17.2.3 Integer bitwise operators . 122

17.2.4 Relational operators . 123

17.2.5 Boolean operators . 123

17.2.6 Single-value functions . 124

17.3 Statements . 125

17.3.1 Undefined behavior . 125

17.3.2 Assignment . 125

17.3.3 Conditional . 126

17.3.4 Repetition . 127

17.3.5 Exceptions . 127

17.3.6 Procedures . 128

17.4 Architectural state . 128

17.5 Memory and control registers . 129

17.5.1 Support functions . 129

17.5.2 Memory model . 130

17.5.3 Control register model . 134

17.5.4 Cache model . 136

17.5.5 Architectural state model . 136

ST231 Contents

7645929 9/331

18 Instruction set . 137

18.1 Bundle encoding . 137

18.1.1 Extended immediates . 137

18.1.2 Encoding restrictions . 138

18.2 Operation specifications . 138

18.3 Example operations . 139

18.3.1 add Immediate . 139

18.4 Macros . 141

18.5 Operations . 142

Appendix A Instruction encoding . 312

A.1 Reserved bits . 312

A.2 Fields. 312

A.3 Formats . 313

A.4 Opcodes . 314

Appendix B STBus endian behavior . 320

B.1 Endianness of bytes and half-words within a word based memory. 320

B.2 Endianness of 64-bit accesses . 321

B.3 System requirements . 321

Glossary . 322

List of instructions . 324

Revision history . 326

Index. 327

Preface ST231

10/331 7645929

Preface

ST200 document identification and control
Each book in the ST200 documentation suite carries a unique ADCS identifier of the form:

ADCS nnnnnnnx

where nnnnnnn is the document number, and x is the revision.

Whenever making comments on an ST200 document, the complete identification
ADCS nnnnnnnx should be quoted.

ST200 documentation suite
The ST200 documentation suite comprises the following volumes:

ST231 Core and Instruction Set Architecture

(ADCS 7645929) This manual describes the architecture and the instruction set of the
ST231 core as used by STMicroelectronics.

ST200 User Manual

(ADCS 8063762) This manual describes the ST200 Micro Toolset and provides an
introduction to OS21. It covers the various cross tools and libraries that are provided in the
toolset, the target platform libraries, how to boot OS21 applications from ROM and how to
port applications which use STMicroelectronics’ OS20 operating systems. Information is
also given on how to build the open source packages that provide the compiler tools, base
run-time libraries and debug tools and how to set up an ST Micro Connect.

ST200 Micro Toolset Compiler Manual

(ADCS 7508723) This manual provides a detailed guide to using the ANSI C and C++
compiler drivers for compiling and linking source code to produce an executable binary. The
compiler drivers are introduced in terms of how they fit into the complete ST200 toolchain.
The manual then concentrates on the facilities provided by the compiler drivers to produce
efficient code. It covers: command line options, predefined macros, supported pragmas,
compiler optimization techniques, GNU C and C++ language extensions and asm
construct, the assembly language and intrinsic functions.

ST200 Run-time Architecture Manual

(ADCS 7521848) This manual describes the common software conventions for the ST200
processor run-time architecture.

ST200 ELF Specification

(ADCS 7932400) This document describes the use of the ELF file format for the ST200
processor. It provides information needed to create and interpret ELF files and is specific to
the ST200 processor.

ST231 Preface

7645929 11/331

OS21 User Manual

(ADCS 7358306) This manual describes the royalty free, light weight, OS21 multitasking
operating system.

OS21 for ST200 User Manual

(ADCS 7410372) This manual describes the use of OS21 on ST200 platforms. It describes
how specific ST200 facilities are exploited by the OS21 API. It also describes the OS21
board support packages for ST200 platforms.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:

● sample code, keyboard input and file names

● variables and code variables

● code comments,

● screens, windows and dialog boxes

● instructions

Hardware notation

The following conventions are used for hardware notation:

● REGISTER NAMES and FIELD NAMES

● PIN NAMES and SIGNAL NAMES

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly:

● Terminal strings of the language, that is, strings not built up by rules of the language,
are printed in teletype font. For example, void.

● Nonterminal strings of the language, that is, strings built up by rules of the language,
are printed in italic teletype font. For example, name.

● If a nonterminal string of the language starts with a nonitalicized part, it is equivalent to
the same nonterminal string without that nonitalicized part. For example, vspace-
name.

● Each phrase definition is built up using a double colon and an equals sign to separate
the two sides (‘::=’).

● Alternatives are separated by vertical bars (‘|’).

● Optional sequences are enclosed in square brackets (‘[’ and ‘]’).

● Items which may be repeated appear in braces (‘{’ and ‘}’).

Preface ST231

12/331 7645929

Acknowledgements
The ST231 core is based on technology jointly developed by Hewlett-Packard Laboratories
and STMicroelectronics.

Microsoft®, Visual Studio® and Windows® are registered trademarks of Microsoft
Corporation in the United States and/or other countries.

ST231 Overview

7645929 13/331

1 Overview

This chapter provides an introduction to the ST231 processor and to this reference manual.

1.1 VLIW overview
VLIW (very long instruction word) processors use a technique where instruction level
parallelism is explicitly exposed to the compiler, which must schedule operations to account
for the operation latency. The hardware implementation of a VLIW processor is significantly
simpler than a corresponding multiple issue superscalar CPU because of the simplicity of
the grouping and scheduling hardware; the complexity is passed to the instruction
scheduling software (compiler and assembler) which is responsible for scheduling the
parallel operations for maximum efficiency.

RISC-like operations (syllables) are grouped into bundles (wide words). The operations in a
bundle are issued simultaneously. In the ST200 family operations also complete
simultaneously. While the delay between issue and completion is the same for all
operations, some results are available for bypassing to subsequent operations prior to
completion. This is discussed further in Chapter 4: Execution pipeline and latencies on
page 22.

1.2 ST231 overview
The ST231 includes the ST231 core and associated peripherals. Figure 1 shows the
arrangement of these components in a block diagram.

Figure 1. Block diagram of the ST231

I-side

subsystem
memory

Debug
support unit

Peripherals

61 interrupts Debuglink

Interrupt
controllerTimers

Trap
controller

STBus

Write
buffer

Control
registers

D-side

subsystem
memory

SDI ports

STBus

ST231 core

MulMul

IUIU IUIU

Instruction
buffer

Register
file (64

8 read
4write)

Load/
store
unit

(LSU)

registers

Branch
register

file

PC and

unit
branch

ICache

Prefetch
cache

DCache

DTLB
ITLB

CMC

UTLB 4 x SDI

32-bit

64-bit

SCU

Overview ST231

14/331 7645929

1.3 Document overview
This manual describes the architecture and instruction set of the ST231 implementation.
This section gives an outline of the following document.

The processor is made up of a number of functional units described in Chapter 2: Execution
units which operate on data stored in the register files (Chapter 3: Architectural state).
These functional units are pipelined and subject to explicit observable latencies (Chapter 4:
Execution pipeline and latencies).

The handling of exceptions and interrupts are detailed in Chapter 5: Traps (exceptions and
interrupts).

The ST231 accesses memory through the memory subsystem (Chapter 7: Memory
subsystem) which provides protection and address translation by means of a translation
lookaside buffer (Chapter 5: Traps (exceptions and interrupts)).

The ST231 has four SDI ports (Chapter 8: Streaming data interface) which allow it to
communicate rapidly with other devices and avoid cache pollution when processing large
amounts of data.

Control of the devices is performed using the memory mapped control registers defined
within the relevant chapters. The address of the control registers and PSW are detailed in
Chapter 9: Control registers.

The ST231 also provides a performance monitoring system to help with software
optimization and debugging (Chapter 15: Performance monitoring).

The following peripheral devices are also provided: timers (Chapter 10: Timers), interrupt
control (Chapter 12: Interrupt controller) and debug support(a) (Chapter 13: Debugging
support (TAPLink) or Chapter 14: Debugging support (JTAG)). The peripheral register
addresses are detailed in Chapter 11: Peripheral addresses.

The execution model is described in Chapter 16: Execution model. The execution of bundles
is described in Section 16.1: Bundle fetch, decode, and execute on page 116, including the
behavior of the machine when exceptions or interrupts are encountered.

Chapter 18: Instruction set describes the details of each operation, including the semantics.
The instruction set includes details of the instruction set encoding, syntax and semantics.
The encoding of bundles is defined in Section 18.1: Bundle encoding on page 137.

The behavior of operations is specified using the notational language defined in Chapter 17:
Specification notation on page 119 through Section 17.3: Statements on page 125. The
descriptions clearly identify where architectural state is updated and the latency of the
operands.

A simple model of memory and control registers defined in Section 17.5.2: Memory model
on page 130 and Section 17.5.3: Control register model on page 134 is used when
specifying load and store operations.

a. Only one of the debugging support chapters is applicable depending upon the version of the core implemented.
Please refer to the product datasheet for specific variant details.

ST231 Execution units

7645929 15/331

2 Execution units

The functional core of ST231 comprises of a number of execution units working on two
register files. The execution units include 4 integer units, 2 multiply units, a load/store unit
and a branch unit which are all described in this chapter. The two register files, the branch
registers and the general purpose registers are described in Chapter 3: Architectural state
on page 19.

2.1 Integer units (IU)
The ST231 has four identical integer units. Each integer unit is capable of executing one
operation per cycle. The results of the integer units can be used as operands of the next
bundle. This is equivalent to a pipeline depth of one cycle.

Each operation can take up to three operands in the form of two 32-bit values and a single
conditional bit. The IU then executes the appropriate operation and produces up to two
results in the form of a 32-bit value and a 1-bit conditional value. The integer operations
supported are detailed in the Chapter 18: Instruction set on page 137.

2.2 Multiply units
The ST231 has two identical multiply units. Each multiply unit is pipelined with a depth of
three cycles, executing an operation every cycle.

Each multiply units takes two 32-bit operands and produces a single 32-bit result. The
multiply operations supported are detailed in the Chapter 18: Instruction set on page 137.

2.3 Load/store unit (LSU)
The ST231 has a single load/store unit. The load/store unit is pipelined with a depth of three
cycles, executing an operation every cycle.

The load store can take up to three 32-bit operands and may produce a single 32-bit result
depending on the operation. The load store operations supported are detailed in the
Chapter 18: Instruction set on page 137.

Memory access protection and translation is implemented by the TLB, this is part of the
memory sub-system. The TLB also controls the cache behavior of data accesses,
Chapter 6: Memory translation and protection on page 31.

Uncached accesses or accesses which miss the data cache cause the load/store unit to
stall the pipeline to ensure correct operation.

Execution units ST231

16/331 7645929

2.3.1 Memory access

The ST231 uses a single 32-bit address space to address the external memory system.
Peripheral devices and control registers are also mapped into the address space.

All cacheable memory transactions are made using the data cache. The data cache
determines if an external memory access (using the STBus) is required to complete the
request.

Note: Cacheable STORE memory transactions that miss are written to the write buffer not the
data cache.

Uncached accesses are performed directly on the memory system, see to Section 7.3.5:
Uncached load and stores on page 53.

2.3.2 Addressing modes

The ST231 supports one addressing mode – the effective address is an immediate
(constant) plus a register.

2.3.3 Alignment

All LOAD and STORE instructions work on data stored on the natural alignment of the data
type; that is, words on word boundaries, half-word on half word boundaries.

LOAD and STORE operations with misaligned addresses raise an exception which makes
possible the implementation of misaligned LOADs by trap handlers.

For a byte or half-word LOAD, the data from memory is loaded into the least significant part
of a register and is either sign-extended or zero extended according to the instruction
definition.

For a byte or half-word STORE, the data stored from the least significant part of a register.

2.3.4 Control registers

The LSU maps a part of the address space that is devoted to control registers (see
Chapter 9: Control registers on page 67 for details). The LSU control register block
intercepts LOADs and STOREs to this area of memory so that it can process the operation.
No access to the data cache is made for control register operations. Transactions are made
across the 32-bit control register bus to those control registers that live outside the LSU.

2.3.5 Cache purging

Cache purging (flush and invalidate) operations are provided on the ST231.

They allow for purging lines and sets from the data cache, and invalidating the entire
instruction cache.

2.3.6 Dismissible loads

Dismissible LOADs are used to support software load speculation. This allows the compiler
to schedule a LOAD in advance of a condition that predicates its use.

Dismissible LOADs are required to return the same value as a normal LOAD if such an
operation can be executed without causing an exception. Otherwise dismissible LOADs
return zero.

ST231 Execution units

7645929 17/331

In the event that misaligned accesses are supported through a software trap handler, the
ST231 may be configured to trap non-aligned dismissible LOADs, see the Chapter 5: Traps
(exceptions and interrupts) on page 25. The TLB can be configured to return zero for
dismissible LOADs in cases where they can be executed without exception; this is to
support peripherals which have destructive read behavior.

2.4 Branch unit
The ST231 has one branch unit. This unit supports both relative immediate branches (with
and without condition code) and absolute and relative jumps and calls.

A conditional branch is performed using the BR and BRF instructions. These instructions
have two operands, a condition code register and the immediate offset of the branch.

An unconditional branch is performed using the GOTO (immediate) instruction. This
instruction has one operand containing the immediate offset of the branch.

An unconditional jump is performed using the GOTO (link register) instruction. This
instruction causes a control transfer to the address stored in the link register, see
Section 3.2.1: Link register on page 19.

An unconditional call is performed using the CALL (link register) and CALL (immediate)
instructions. These instruction cause a control transfer to the address stored in the link
register (see Section 3.2.1: Link register on page 19) or to the specified immediate offset.
After the call, the link register contains the return address.

Due to pipeline restrictions all branches and jumps incur a penalty of one cycle of stall.

2.4.1 Idle mode macro

The IDLE mode macro is encoded as a bundle containing a GOTO (immediate) to the same
bundle. The IDLE mode macro must be alone in a bundle (otherwise it is treated as a
normal GOTO).

The IDLE mode macro is architecturally identical to the branch it is derived from. When an
interrupt or debug interrupt occurs the core exits idle mode and jumps to the correct handler.

Implementation notes

When an IDLE mode macro is executed the ST231:

● empties the pipeline, completing any instructions issued before the idle,

● waits for all outstanding bus transactions to complete:

– all prefetches issued to the bus have completed (responses have come back)

– all writes issued to the bus have completed (responses have come back)

● waits for the SDI output buffer to be become empty

● enters idle mode

The core will not enter idle mode while the performance monitoring hardware is enabled.
When the core enters idle mode a bit is set in the PM_CR register, see Section 15.3: Control
register (PM_CR) on page 114.

Execution units ST231

18/331 7645929

The core discontinues entry to idle mode and jumps to the correct handler on the following
conditions:

● STBus error exception

● external interrupt

● debug interrupt

The core exits idle mode and jumps to the correct handler on the following conditions:

● external interrupt

● debug interrupt

While in idle mode:

● timers continue to operate normally

● the SDI input ports do not accept data

● the SDI output ports do not send out data as they must be empty before the core enters
idle mode

● the peripheral blocks accepts and responds to STBus transactions as normal

● the DSU continues to operate as normal (both using the TAPLink and using the STBus)

2.4.2 syncins macro

The syncins macro can be used to ensure that all previous instructions have completed
and all new instructions have not yet started. The syncins macro ensures that the pipeline
is empty and the instruction buffer is purged.

The syncins macro may only be executed in supervisor mode.

ST231 Architectural state

7645929 19/331

3 Architectural state

This chapter describes the architectural state of the ST231 core, which consists of the
following elements:

● program counter

● register file

● branch register file

● program status word

● control registers

3.1 Program counter (PC)
The PC contains a 32-bit byte address pointing to the beginning of the current bundle in
memory. The two LSBs of the PC are always zero.

3.2 Register file
The general purpose register file contains 64 words of 32 bits each. These are named R0 to
R63.

Reading register zero (R0) always returns the value zero. Writing values to R0 has no effect
on the processor state.

3.2.1 Link register

Register R63, the architectural link register, is used by the call and return mechanism. R63
is updated by explicit register writes and the call operation. Some restrictions apply to
accessing the link register, see Section 4.5.2: Restrictions on link register on page 24.

3.3 Branch register file
The branch register file contains eight single bit branch registers, B0 to B7.

3.4 Program status word (PSW)
The program status word (PSW) contains control information that affects the operation of
the ST231 processor.

Architectural state ST231

20/331 7645929

3.4.1 Bit fields

The PSW contains the bit fields listed in Table 1.

Table 1. PSW bit fields

Name Bit(s) Writable Reset Comment

USER_MODE 0 RW 0x0
0: the core is in supervisor mode

1: the core is in user mode

INT_ENABLE 1 RW 0x0
0: external interrupts are disabled

1: external interrupts are enabled

TLB_ENABLE 2 RW 0x0
0: address translation is disabled

1: address translation is enabled

TLB_DYNAMIC 3 RW 0x0

0: speculative loads and purge
address ignore “no mapping”
violations.

1: speculative loads and purge
address cause “no mapping”
violations.

SPECLOAD_MALIGNTRAP_EN 4 RW 0x0

0: disables exceptions on
speculative load misalignment
errors.
1: enables exceptions on speculative
load misalignment errors.

Reserved 5 RO 0x0 Reserved

Reserved 6 RO 0x0 Reserved

Reserved 7 RO 0x0 Reserved

DBREAK_ENABLE 8 RW 0x0
0: data breakpoints are disabled

1: data breakpoints are enabled

IBREAK_ENABLE 9 RW 0x0

0: instruction breakpoints are
disabled

1: instruction breakpoints are
enabled

Reserved 10 RO 0x0 Reserved

Reserved 11 RO 0x0 Reserved

DEBUG_MODE 12 RW 0x0
0: the core is not in debug mode

1: the core is in debug mode

Reserved [31:13] RO 0x0 Reserved

ST231 Architectural state

7645929 21/331

3.4.2 USER_MODE

The USER_MODE bit indicates whether the machine is in user mode or supervisor mode.
When in user mode, the processor has restricted access:

● the TLB (see Chapter 6: Memory translation and protection on page 31) defines the
level of access to memory in both user and supervisor modes

● in user mode there is limited access to control registers, see Chapter 9: Control
registers on page 67

● certain instructions can not be executed in user mode, see Chapter 18: Instruction set
on page 137

3.4.3 DEBUG_MODE

The DEBUG_MODE bit indicates whether the machine is in debug mode. For the effect of
writing to DEBUG_MODE, see Exiting debug mode on page 88.

3.4.4 PSW access

The PSW can be read as a control register, Section 3.5: Control registers on page 21.

The pswset instruction is used to set any number of bits in the PSW atomically. The pswclr
instruction is used to clear any number of bits in the PSW atomically.

The PSW can also be updated by means of an rfi operation. The required status word
should be stored into the SAVED_PSW and the address of the code to be executed directly
after the change should be stored in the SAVED_PC. Then executing an rfi atomically
copies the SAVED_PSW into the PSW and the SAVED_PC into the PC.

Example: Procedure to write the PSW, (in ST231 assembler code),

_sys_set_psw
 stw SAVED_PC[$r0] = $r63;; // Return address
 stw SAVED_PSW[$r0] = $r4;; // New value
 nop ;;
 nop ;;
 nop ;;
 nop ;;
 rfi ;;

Note: Interrupts must be disabled during this sequence to prevent SAVED_PC and SAVED_PSW
from being changed.

3.5 Control registers
Additional architectural state is held in a number of memory mapped control registers,
Chapter 9: Control registers on page 67. These registers include support for interrupts and
exceptions, and memory protection.

Execution pipeline and latencies ST231

22/331 7645929

4 Execution pipeline and latencies

This chapter describes the architecturally visible pipeline and operation latencies for the
ST231.

4.1 Execution pipeline
The ST231 uses a pipelined execution scheme. This pipeline is architecturally visible in a
number of areas:

● operation latencies

● branch stalls

● bypassing

● usage restrictions

The execution pipeline is three cycles long and comprises three stages E1, E2 and E3. All
operations begin in E1. Operands are read or bypassed to an operation at the start of E1. All
results are written at the end of E3.

This execution pipeline allows arithmetic and load/store operations to execute for up to
three cycles. The results of operations which complete earlier than E3 are made available
for bypassing as operands to subsequent operations, though strictly operations do not
complete until the end of the E3 stage. This is when the architectural state is updated.

The pipeline is designed to efficiently implement the serial execution of the code, see
Chapter 16: Execution model on page 116.

4.2 Operation latencies
ST231 operations begin in E1 cycle and complete in either E1, E2 or E3. The time taken for
an operation to produce a result is called the operation latency. For simple operations like
add and subtract the latency is a single cycle. For operations like multiply and load the
latency is three cycles.

Note: Operational latencies may vary between different members of the ST200 processor family.

4.3 Branch stalls
The ST231 has no penalty for not taken branches.

The ST231 stalls for one cycle when a branch is taken. There may be a further stall caused
by the destination bundle of a branch crossing an I-cache line boundary. See Section 7.2.1:
Instruction buffer on page 49.

ST231 Execution pipeline and latencies

7645929 23/331

4.4 Interlocks
The ST231 provides operation latency interlock checking. This enforces the latency
between all operations by stalling the pipeline, with the following exceptions:

● store to SAVED_PSW to rfi

● store to SAVED_PC to rfi

● store to SAVED_SAVED_PSW to rfi

● store to SAVED_SAVED_PC to rfi

In the cases listed above, the software must ensure that the control register has been
updated before executing the rfi. See Section 3.4.4: PSW access on page 21 for further
details of how to do this.

For all other cases, the ST231 automatically stalls the pipeline to uphold the internal latency
constraints. As such there are no possible latency violations for the above cases.

For optimal machine usage, bundles containing useful operations should be inserted in
order to respect the underlying latency between operations.

4.5 Additional notes
Additional information about flushing the pipeline and restrictions on the link register are
provided in this section.

4.5.1 Flushing the pipeline

As state is stored within the pipeline, some changes require that state to be flushed out to
ensure coherency. For example, the ST231 pipeline needs to be flushed to ensure that
UTLB updates take effect. (For the recommended sequence for UTLB updates, see
Coherency on page 40).

The following instructions cause the pipeline to be emptied:

● rfi

● pswset

● pswclr

● prgins

● prginspg

Execution pipeline and latencies ST231

24/331 7645929

4.5.2 Restrictions on link register

To optimize performance, the ST231 contains a speculative link register (SLR). This is a
copy of possible future updates to R63. In the current implementation, this register is
updated earlier in the pipeline than R63. The core uses SLR as the source for register
indirect branch operations.

There are circumstances when SLR is not a true copy of R63. This occurs when an interrupt
or exception is taken immediately before an update to R63 but after the SLR has been
speculatively changed. The solution to this is to ensure that all interrupt and exception
handlers write explicitly to R63 prior to the execution of an rfi, call $r63 or goto $r63. This
requirement can easily be met with a mov operation from R63 to R63 in one of the first
bundles of the trap handler.

Register indirect call and goto operations also require R63 to be stable. If R63 is modified
in the three bundles preceding one of these operations, an interlock stall occurs.

A number of operations cannot target R63 for efficiency reasons. These include multiply
operations, byte and half-word load operations, see Chapter 18: Instruction set on
page 137.

ST231 Traps (exceptions and interrupts)

7645929 25/331

5 Traps (exceptions and interrupts)

In the ST231 architecture, exceptions and interrupts are jointly termed traps. This chapter
describes the trap mechanism.

5.1 Trap mechanism
The ST231 defines two types of traps:

● external asynchronous traps (interrupts and bus errors),

● internal synchronous traps (exceptions resulting from operation execution).

A trap point is the point in the program execution where a trap occurs. All bundles executed
before the trap point have finished updating the architectural state; no architectural state
has been updated by subsequent bundles. For an exception, the trap point is the (start of
the) bundle which caused the exception. For an interrupt, the trap point is (the start of) the
bundle whose execution has been interrupted. Typically this is a bundle that had been
executed shortly after the interrupt was raised or enabled.

The flow diagram, Figure 16 on page 101 defines when a trap is taken. The aim of this
chapter is to define the steps that are carried out when a trap is to be taken.

In effect, taking a trap can be viewed as executing an operation that branches to the
required handler, with a number of side effects. The side effects are defined by the
statements below. An external interrupt is treated as an EXTERN_INT exception, with only
debug interrupts being handled differently.

At the trap point, the ST231 transfers execution to the trap handler, starting at the address
held in the HANDLER_PC control register, and saves the execution state as detailed in
Section 5.3: Saved execution state. All operations issued before the trapping bundle are
allowed to complete. All operations issued after and including the trapping bundle are
discarded. The architectural state, with the exception of saved execution state, is exactly
that at the trap point. Hence ST231 interrupts and exceptions can be considered precise.

Traps are handled strictly (in order), and indivisibly with respect to the bundle stream.

5.2 Exception handling
Due to the fact that more than one operation can execute at the same time, it is possible to
have more than one exception thrown in a bundle. In this case, only the highest priority
exception is passed to the handler.

Traps (exceptions and interrupts) ST231

26/331 7645929

5.3 Saved execution state
Directly following a trap the saved execution state defines the reason for the trap and the
precise trap point in the execution flow of the processor. Control registers store these values
for use by the handler routine.

Taking an exception can be summarized as:
NEXT_PC ← HANDLER_PC; // Branch to the exception handler

EXCAUSE ← HighestPriority(); // Store information
EXADDRESS ← ExceptAddress(EXCAUSE);// for the handler

SAVED_PSW ← PSW; // Save the PSW and PC
SAVED_PC ← BUNDLE_PC;

PSW[USER_MODE] ← 0; // Enter supervisor mode
PSW[INT_ENABLE] ← 0; // Disable interrupts
PSW[IBREAK_ENABLE] ← 0; // Disable instruction breakpoints
PSW[DBREAK_ENABLE] ← 0; // Disable data breakpoints

Where the function HighestPriority returns the highest priority exception from those
that have been thrown, refer to Section 5.6. The ExceptAddress function defines the
value that is stored into the EXADDRESS control register. Its return value is either 0 or the
address of the data or instruction which has triggered the exception.

Therefore:

variable ← ExceptAddress(exception);

is equivalent to:

IF ((exception = DBREAK) OR
(exception = MISALIGNED_TRAP) OR
 (exception = CREG_NO_MAPPING) OR
 (exception = CREG_ACCESS_VIOLATION) OR
 (exception = DTLB) OR
 (exception = ITLB)) THEN
 variable ← value;
ELSE
 variable ← 0;

Where value is the optional argument that is passed to THROW (see Section 17.3.5:
Exceptions on page 127) when the exception was generated.

ST231 Traps (exceptions and interrupts)

7645929 27/331

The core uses a rfi (return from interrupt) operation to recommence execution at the trap
point. An rfi operation causes the following state updates:

5.4 Interrupts
All interrupts are effectively treated by the ST231 as an exception of type EXTERN_INT.
Individual interrupt lines are indicated by registers in the interrupt controller. See
Chapter 12: Interrupt controller on page 80.

5.5 Debug interrupt handling
Refer to Chapter 13: Debugging support (TAPLink) on page 87.

PC ← SAVED_PC;

PSW ← SAVED_PSW;

SAVED_PC ← SAVED_SAVED_PC;

SAVED_PSW ← SAVED_SAVED_PSW;

// Address execution control is
// transferred to by rfi. Can be
// altered during the exception
// handler routine.

// Restore saved_psw. Can be
// altered during the exception
// handler routine.

// Restore previous saved_pc

// Restore previous saved_psw

Traps (exceptions and interrupts) ST231

28/331 7645929

5.6 Exception types and priorities
The EXCAUSENO control register gives the cause of the last exception. Since only one
exception is thrown at a time, simultaneous exceptions are prioritized. The bit fields for this
register are listed in Table 2.

For backward compatibility, the exception cause is also available as a bit-field by reading
the EXCAUSE register. The EXCAUSE register is read only and always returns
1 << EXCAUSENO_EXCAUSENO.

Table 3 shows the possible exceptions and the value in the EXCAUSENO bitfield of the
EXCAUSENO control register that each corresponds to. The table is listed in exception
priority order starting with the highest priority.

Table 2. EXCAUSENO bit fields

Name Bit(s) Writable Reset Comment

EXCAUSENO [4:0] RW 0x0 Specifies the exception number.

Reserved [31:5] RO 0x0 Reserved.

Table 3. EXCAUSENO_EXCAUSENO values

Name Value Comment

STBUS_IC_ERROR 0 The instruction cache caused a bus error.

STBUS_DC_ERROR 1 The data cache caused a bus error.

EXTERN_INT 2 There was an external interrupt.

IBREAK 3 An instruction address breakpoint has occurred.

ITLB 4 An instruction related TLB exception has occurred.

SBREAK 5 A software breakpoint was found.

ILL_INST 6
The bundle could not be decoded into legal
sequence of operations or a privileged operation is
being issued in user mode.

SYSCALL 7 System call.

DBREAK 8 A breakpoint on a data address has been triggered.

MISALIGNED_TRAP 9
The address is misaligned and misaligned accesses
are not supported.

CREG_NO_MAPPING 10
The load or store address was in control register
space, but no control register exists at that exact
address.

CREG_ACCESS_VIOLATION 11
A store to a control register was attempted whilst in
user mode.

DTLB 12 A data related TLB exception has occurred.

RESERVED 13 Reserved

SDI_TIMEOUT 14
One of the SDI interfaces timed out while being
accessed.

ST231 Traps (exceptions and interrupts)

7645929 29/331

5.6.1 Illegal instruction definition

An illegal instruction exception is caused when an illegal bundle is executed. A legal bundle
and all syllables contained in it must conform to the restrictions as detailed in Chapter 18:
Instruction set on page 137.

In particular, a legal bundle and all the syllables it contains must conform to the following.

● All syllables must be valid operations or an immediate extension.

● A bundle must have a stop bit that is, four zero stop bits are illegal.

● Unused opcode fields must be set to zero, including bit 30.

● Any branch, call, rfi, pswset and pswclr operation must appear as the first syllable of
a bundle.

● Multiply operations must appear at odd word addresses.

● Immediate extensions must appear at even word addresses.

● Immediate extensions must associate with an operation that is in the same bundle and
has an immediate format that can be extended.

● There may be no more than one immediate extension associated with a single
operation.

● A privileged operation can only be executed in supervisor mode. This includes rfi,
pswset, pswclr, prginspg and prgins.

● There can only be one operation requiring the load/store unit in each bundle. This
includes sync, prgset, prgadd, prginspg, pswset, pswclr, rfi, ldb, ldh, ldw, stb, sth
and stw.

● The sbrk operation must have the stop bit set.

● Destination registers in a bundle have to be unique, with the exception of R0.

● ldb, ldh and mul operations must not have R63 as a destination register.

● prgins and syscall must be alone in a bundle.

5.7 Speculative load considerations
Speculative (or dismissible) loads execute as normal loads except in the following cases.

● The address is in a region where a speculative load may be destructive. In this case,
the SCU (see Section 6.6: Speculative control unit (SCU) on page 46) should be set up
to prevent speculation to this region. In this case, a zero is always returned and no
access is made to the memory.

● A normal load would cause an exception. Generally, in this case, the load is
considered to have been incorrectly speculated and the data is not utilized in the
correct execution of the program. Zero is returned by default.

● If a dismissible load causes a bus error then a bus error exception is always thrown.
The TLB and/or SCU should always be set up to prevent dismissible loads from
causing bus errors. See Chapter 6: Memory translation and protection on page 31.

Traps (exceptions and interrupts) ST231

30/331 7645929

5.7.1 Misaligned implementation

Application or system software may require misalignment support, with misaligned
accesses being correctly interpreted by the exception handler. To improve speculative load
support for misaligned addresses, a control value PSW[SPECLOAD_MALIGNTRAP_EN]
can be set which causes speculative loads to trap on misaligned addresses rather than
returning zero, see Section 3.4: Program status word (PSW) on page 19.

ST231 Memory translation and protection

7645929 31/331

6 Memory translation and protection

The ST231 provides full memory translation and protection by means of a translation
lookaside buffer (TLB).

The TLB enables the ST231 to run memory-managing operating systems (such as Linux). It
also provides a level of backward compatibility for the instruction protection unit (IPU) and
data protection unit (DPU) functions when running a non-memory managed OS (for
example, OS21).

The ST231 memory management system allows multiple virtual address spaces. Each
virtual address space has associated with it an address space identifier (ASID).

The ST231 memory management system allows memory pages to be marked with three
different policies: cached, uncached and write combining uncached, as defined in Table 9.

6.1 TLB overview
The ST231 has a small instruction TLB (ITLB), a small data TLB (DTLB) and a larger unified
TLB (UTLB).

The ITLB performs instruction address translations and acts as a cache for address
translations stored in the UTLB. When the ITLB misses it automatically updates from the
UTLB.

The DTLB performs data address translations and acts as a cache for address translations
stored in the UTLB. When the DTLB misses it automatically updates from the UTLB.

When the UTLB is changed, the ITLB and DTLB are not updated. The ITLB and DTLB can
be flushed under software control by means of the TLB_CONTROL register, see
Section 6.4.8: TLB_CONTROL on page 40.

The ITLB and DTLB act as small caches that keep copies of the currently active
translations. Only translations that are shared or match the current ASID are loaded into the
ITLB and DTLB.

Table 4 provides details of the TLB configuration of the ST231.

The UTLB size can be determined either by reading the core version register (using a
lookup table) or reading the TLB_REPLACE register after reset.

Table 4. TLB information

Item Size Comment

DTLB 8 entries Fully associative buffer with LRU replacement.

ITLB 4 entries Fully associative buffer with LRU replacement.

UTLB 64 entries Fully associative buffer which is managed by the software.

Memory translation and protection ST231

32/331 7645929

6.2 Address space
This section deals with physical and virtual addresses.

6.2.1 Physical addresses

The ST231 TLB supports 32-bit addresses providing up to 4 Gbyte of physical address
space. The layout of the TLB registers allows future variants to support up to 45 bits of
physical address space.

6.2.2 Virtual addresses

Virtual addresses are 32-bits. The TLB performs the mapping from virtual to physical
addresses using one of the following page sizes: 8 Kbyte, 4 Mbyte and 256 Mbyte.

Control registers are accessed by virtual addresses only; virtual addresses corresponding to
control registers are not translated. The (virtual) addresses of the control registers are valid
physical addresses; any access to these physical addresses will be made to the memory
subsystem in the usual way. If the TLB is disabled then the untranslated address will access
control registers.

ST231 Memory translation and protection

7645929 33/331

6.3 Caches
The caches are virtually indexed and physically tagged. The cache tag RAM lookup occurs
in parallel with the TLB lookup.

6.3.1 Instruction cache organization

Instruction cache addressing is illustrated in Figure 2.

The instruction cache is 32 Kbytes direct mapped and built from 512 x 64 byte lines.

The virtual address bits [14:06] are used to index the instruction cache RAMs.

Virtual address bits [31:13] are sent to the ITLB for translation. The translated physical
address bits [31:13] from the ITLB is then compared against the instruction cache tag.

Virtual address bits [05:00] are used to select the correct bytes from the cache line.

Figure 2. Instruction cache addressing

Virtual address
31 131415 12 5 06

Virtual page address

Byte in lineCache row index

Physical address

31 131415 12 5 06

ITLB

Physical page address

Cache tag
compare

Cache tag
ram

Cache data
ram

Data outCache hit out

Byte offset in page

Byte offset in page

Instruction cache accesses

31 1415

Cache tag

13

Memory translation and protection ST231

34/331 7645929

6.3.2 Data cache organization

Instruction cache addressing is illustrated in Figure 3.

The data cache is 32 Kbytes four way set associate and built from 4 x 256 x 32 byte lines.

The virtual address bits [12:05] are used to index the data cache RAMs.

Virtual address bits [31:13] are sent to the DTLB for translation. The translated physical
address bits [31:13] from the DTLB are then compared against the data cache tag.

Virtual address bits [04:00] are used to select the correct bytes from the cache line.

Figure 3. Data cache addressing

Virtual address
31 131415 12 4 05

Virtual page address

Byte in lineCache row index

Physical address

31 131415 12 4 05

DTLB

Physical page address

Cache tag
compare

Cache tag
rams

Cache data
rams

Data outCache hit out

Byte offset in page

Byte offset in page

Data cache accesses

Data Mux

Way select

31 1415

Cache tag

13

Way select

4 x

ST231 Memory translation and protection

7645929 35/331

6.4 Control registers
A full list of control registers is provided in Chapter 9: Control registers on page 67.

6.4.1 PSW

The TLB can be enabled and disabled by a bit in the PSW, see Chapter 3: Architectural
state on page 19.

While address translation is disabled (TLB_ENABLE = 0):

● virtual addresses are not translated and are used directly as the physical address

● all data accesses are made uncached

● no TLB exceptions are thrown

6.4.2 TLB_INDEX

Table 5 shows the mapping for the TLB_INDEX register.

When the TLB_INDEX register is written, subsequent read/writes to the TLB_ENTRYX
registers are to the indicated UTLB entry.

6.4.3 TLB_ENTRY0

This register maps bits [31:00] of the TLB entry. The entry is chosen by writing to the
TLB_INDEX register. Table 6 lists the fields of the TLB_ENTRY0 register; the fields are
described in subsequent tables.

Table 5. TLB_INDEX bit fields

Name Bit(s) Writable Reset Comment

ENTRY [7:0] RW 0x0

Determines which of the 64 TLB entries is mapped
to the TLB_ENTRYx registers. Writing a value to
this register that is greater than the maximum UTLB
entry available has no effect (the entry is not
updated).

RESERVED [31:8] RO 0x0 Reserved.

Table 6. TLB_ENTRY0 bit fields

Name Bit(s) Writable Reset Comment

ASID [7:0] RW 0x0
Indicates which address space this page belongs
to.

SHARED 8 RW 0x0 Page shared by multiple address spaces (ASIDs).

PROT_SUPER [11:9] RW 0x0
A three bit field that defines the protection of this
region in supervisor mode.

PROT_USER [14:12] RW 0x0
A three bit field that defines the protection of this
region in user mode.

Memory translation and protection ST231

36/331 7645929

Writing zero to this register disables the page.

Table 7 lists the possible values of the POLICY field.

DIRTY 15 RW 0x0

Page is dirty. When this bit is 0 write accesses to
this page (when write permission is allowed) cause
a TLB_WRITE_TO_CLEAN exception. When this
bit is 1 writes to this page (when write permission is
allowed) are permitted.

POLICY [19:16] RW 0x0 Cache policy for this page.

SIZE [22:20] RW 0x0 Size of this page (also used to disable the page).

PARTITION [24:23] RW 0x0 Data cache partition indicator.

RESERVED [31:25] RO 0x0 Reserved.

Table 7. TLB_ENTRY0_POLICY values

Name Value Comment

UNCACHED 0
Uncached mode. Reads and write that miss the cache are
uncached.

CACHED 1
Cached mode. Reads that miss the cache cause the cache to be
filled. Writes that hit the cache are written into the cache. Writes that
miss the cache are sent to the write buffer.

WCUNCACHED 2
Write combining uncached. Writes that miss the cache are sent to
the write buffer. Reads that miss the cache are uncached.

Reserved 3
Reserved (on the ST230 reserved cache policies default to
uncached).

Reserved 4
Reserved (on the ST230 reserved cache policies default to
uncached).

Reserved 5
Reserved (on the ST230 reserved cache policies default to
uncached).

Reserved 6
Reserved (on the ST230 reserved cache policies default to
uncached).

Reserved 7
Reserved (on the ST230 reserved cache policies default to
uncached).

Table 6. TLB_ENTRY0 bit fields (continued)

Name Bit(s) Writable Reset Comment

ST231 Memory translation and protection

7645929 37/331

Table 8 lists of the possible values of the SIZE field.

Table 9 lists of the possible values of the PARTITION field:

Table 10 lists of the possible values of the PROT_USER and PROT_SUPER fields:

Table 8. TLB_ENTRY0_SIZE values

Name Value Comment

DISABLED 0 Page is disabled.

8K 1 8 KByte page.

4MB 2 4 MByte page.

256MB 3 256 MByte page.

Reserved 4 Reserved (on the ST230 reserved page sizes disable the page).

Reserved 5 Reserved (on the ST230 reserved page sizes disable the page).

Reserved 6 Reserved (on the ST230 reserved page sizes disable the page).

Reserved 7 Reserved (on the ST230 reserved page sizes disable the page).

Table 9. TLB_ENTRY0_PARTITION values

Name Value Comment

REPLACE 0
Place in the way specified by the replacement counter and
increment the counter.

WAY1 1 Place in the way 1 only.

WAY2 2 Place in the way 2 only.

WAY3 3 Place in the way 3 only.

Table 10. TLB_PROT values

Name Value Comment

EXECUTE 1 Execute permission.

READ 2 Read (prefetch and purge) permission.

WRITE 4 Write permission.

Memory translation and protection ST231

38/331 7645929

6.4.4 TLB_ENTRY1

This register allows access to bits [63:32] of the TLB entry. The entry is chosen by writing to
the TLB_INDEX register. The fields in this register are listed in Table 11.

6.4.5 TLB_ENTRY2

This register allows access to bits [95:64] of the TLB entry. The entry is chosen by writing to
the TLB_INDEX register. The fields in this register are listed in Table 12.

6.4.6 TLB_ENTRY3

This register maps bits [127:96] of the TLB entry. The entry is chosen by writing to the
TLB_INDEX register. The fields in this register are listed in Table 13.

6.4.7 TLB_REPLACE

Table 14 shows the mapping of the TLB_REPLACE register.

Table 11. TLB_ENTRY1 bit fields

Name Bit(s) Writable Reset Comment

VADDR [18:0] RW 0x0

The upper 19 bits of the virtual address. For
4Mbyte pages only the upper 10 bits of this field
are significant. For 256 Mbyte pages only the
upper 4 bits of this field are significant.

RESERVED [31:19] RO 0x0 Reserved.

Table 12. TLB_ENTRY2 bit fields

Name Bit(s) Writable Reset Comment

PADDR [18:0] RW 0x0

The upper 19 bits of the physical address. For
4 Mbyte pages only the upper 10 bits of this field
are significant. For 256 Mbyte pages only the upper
4 bits of this field are significant.

Reserved [31:19] RO 0x0 Reserved.

Table 13. TLB_ENTRY3 bit fields

Name Bit(s) Writable Reset Comment

Reserved [31:0] RO 0x0 Reserved.

Table 14. TLB_REPLACE bit fields

Name Bit(s) Writable Reset Comment

LFSR [15:0] RW 0xFFFF
Random number used to determine which entry to
replace next.

LIMIT [23:16] RW 0x40 Number of TLB entries that can be replaced.

Reserved [31:24] RO 0x00 Reserved.

ST231 Memory translation and protection

7645929 39/331

Figure 4 shows the structure of the REPLACE register.

Figure 4. REPLACE register

Software uses the replacement register to randomly decide which TLB entry to replace. The
value of the REPLACE field is generated in a pseudo-random manner using a 16-bit linear
feedback shift register (LFSR) generating a maximum length sequence (taps on bits 3, 12,
14 and 15).

A read from the TLB_REPLACE register returns the current LFSR and LIMIT values, the
LFSR is then clocked to generate a new value. The current value of the LFSR field can be
changed by writing to the TLB_REPLACE register.

The LIMIT field is reset to the number of entries in the TLB(a). The LIMIT field can be
changed by writing the TLB_REPLACE register. To reserve a number of entries for a fixed
mapping, software sets the LIMIT field to less than the number of entries available to the
TLB.

The LIMIT field is not used by the hardware but is included to allow the software to quickly
determine the next TLB entry to replace. A suggested replacement algorithm is as follows:

unsigned replace, lfsr, limit, index;

// Read replace register to get LIMIT and LFSR
replace = VOLUINT(LXTLB_REPLACE);

// Extract fields
lfsr = LXTLB_REPLACE_LFSR(replace);
limit = LXTLB_REPLACE_LIMIT(replace);

// Decide which entry to replace
index = (lfsr * limit) >> 16;

// Select the correct entry
VOLUINT(LXTLB_INDEX) = index;

Note: The mullhu instruction can be used to extract the LFSR and LIMIT fields from the
TLB_REPLACE register and perform the multiply. The result is then shifted right by 16 bits
to obtain the entry number to replace.

a. This depends on which core is implemented.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Load from REPLACE

LFSR

Memory translation and protection ST231

40/331 7645929

6.4.8 TLB_CONTROL

Table 15 shows the mapping of the TLB_CONTROL register.

Before the ITLB or DTLB are flushed, the hardware ensures that all outstanding writes to the
UTLB have completed.

6.4.9 TLB_ASID

Table 16 shows the mapping of the TLB_ASID register.

Coherency

After making the following changes the software must ensure coherency by:

● changing the current ASID

● updating the UTLB

Changing the ASID

Changing the current ASID requires that all instructions that may be affected by the change
are flushed from the execution pipeline and the instruction buffer. This should be achieved
by:

syncins;;

If it can be guaranteed that no instructions are affected by the change in ASID value for 8
bundles after the change then this may be omitted.

Updating the UTLB

Updating the UTLB requires 6 cycles for the change to take effect. Updating the UTLB does
not automatically update the ITLB or DTLB.

If the meaning of a virtual address is changed (including mapping to a different physical
address or changing other properties), instructions in the pipeline or instruction buffer using
old translations could be incoherent. In this case the ITLB or DTLB must be flushed to
ensure coherency. The execution pipeline and instruction buffer must also be flushed.

Table 15. TLB_CONTROL bit fields

Name Bit(s) Writable Reset Comment

ITLB_FLUSH 0 RW 0x0
Writing a 1 to this bit flushes the entire ITLB.
Writing 0 to this bit has no effect. This bit always
reads as zero.

DTLB_FLUSH 1 RW 0x0
Writing a 1 to this bit flushes the entire DTLB.
Writing 0 to this bit has no effect. This bit always
reads as zero.

Reserved [31:2] RO 0x0 Reserved.

Table 16. TLB_ASID bit fields

Name Bit(s) Writable Reset Comment

ASID [7:0] RW 0x0
Address space identifier. Writes to this register
also cause the ITLB and DTLB to be flushed.

Reserved [31:8] RO 0x0 Reserved.

ST231 Memory translation and protection

7645929 41/331

Clearing the instruction buffer and the execution pipeline can be achieved with syncins.

If updating the UTLB in an exception handler, returning from the handler with an rfi clears
the instruction buffer so syncins is not also necessary.

The recommended sequences for ensuring coherency are shown in Table 17. $r1 contains
the value 1-3 depending on which of the ITLB and/or DTLB require flushing, see
Section 6.4.8: TLB_CONTROL on page 40.

The normal sequence allowing the properties of the virtual address to change may be used
to ensure coherency in any case.

6.4.10 TLB_EXCAUSE

When the ST231 raises a TLB exception, the TLB_EXCAUSE register is updated. The
possible exceptions are listed in Table 18.

When a PROT_VIOLATION or WRITE_TO_CLEAN exception is thrown for data accesses
the given page may be in the ITLB, DTLB, UTLB or any combination of the above.

It is possible for a page to be held in the ITLB or DTLB but not in the UTLB if the software
chose not to purge the ITLB/DTLB when a page was replaced.

When a MULTI_MAPPING exception is thrown, the virtual address maps to more than one
page in the UTLB. In this case the IN_UTLB and INDEX fields of the TLB_EXCAUSE and

Table 17. Ensuring coherency after UTLB updates

Properties of VA changed Properties of VA not changed

Normal

stw TLB_CONTROL[$r0] = $r1;;

nop;;

syncins;;

nop;;

nop;;

syncins;;

Within exception
handler

stw TLB_CONTROL[$r0] = $r1;;

rfi;;

nop;;

rfi;;

Table 18. TLB_EXCAUSE_CAUSE values

Name Value Comment

NO_MAPPING 0

No mapping was found. (The UTLB had no mapping
for the virtual address. The given page is not in the
UTLB and the DTLB (for data accesses) or the ITLB
(for instruction accesses)

PROT_VIOLATION 1

An attempt has been made to violate the
permissions of a page. The given page may be in
the ITLB, DTLB, UTLB or any combination of the
above.

WRITE_TO_CLEAN 2

A write to a clean page has occurred. This allows
the software managing the UTLB to update the
master copy of the table kept in memory and to
handle any shared pages.

MULTI_MAPPING 3
There were multiple hits in the UTLB. The software
managing the TLB should ensure that this does not
happen.

Memory translation and protection ST231

42/331 7645929

the EXADDRESS registers contain the virtual address of the syllable or data which triggered
the exception.

When a TLB exception is taken, the software can determine if the given page is in the UTLB
by checking the IN_UTLB bit.

Table 19 describes the bit fields within the TLB_EXCAUSE register.

6.5 TLB description
The TLB functionality is controlled completely by accessing the provided control registers.

6.5.1 Reset

After reset, the contents of the UTLB are undefined. Before the TLB is enabled all entries
must be programmed (or cleared) to prevent undefined behavior.

6.5.2 UTLB arbitration

The DTLB, ITLB and TLB control registers have to arbitrate for access to the UTLB. The
priority of UTLB accesses are as follows:

Table 19. TLB_EXCAUSE bit fields

Name Bit(s) Writable Reset Comment

INDEX [7:0] RW 0x0 TLB index of excepting page.

Reserved [15:8] RO 0x0 Reserved

CAUSE [17:16] RW 0x0 Cause of current TLB exception.

SPEC 18 RW 0x0
When 1 indicates that this exception was
caused by either a purge address or
speculative load instruction.

WRITE 19 RW 0x0

When 1 indicates that this exception was
caused by an attempted write to a page
(store). When 0 indicates that this exception
was caused by an attempted read or purge of
a page.

IN_UTLB 20 RW 0x0

When 1 the exception address is in the UTLB
and the INDEX field is valid. When 0 the
exception address was not in the UTLB and
the INDEX field is invalid.

Reserved [32:21] RO 0x0 Reserved.

1 (highest) TLB control register access.

2 DTLB.

3 (lowest) ITLB.

ST231 Memory translation and protection

7645929 43/331

6.5.3 Exceptions

When the TLB throws an exception it jumps to the exception vector and updates the
TLB_EXCAUSE, EXADDRESS and EXCAUSENO registers.

When a DTLB exception is thrown, the EXADDRESS register contains the virtual effective
address that caused the exception.

When an ITLB exception is thrown, the EXADDRESS register contains the virtual address
of the syllable that caused the exception. In the case of possible multiple ITLB exceptions,
the exception with the lowest syllable address is thrown.

The SAVED_PC and SAVED_PSW stack are also updated in the same way as other traps.

As noted above, the TLB_EXCAUSE register indicates the nature of the ITLB or DTLB
exception.

Note: Misaligned loads and control register violations are not considered TLB exceptions.

Details of the EXCAUSENO register can be found in Section 5.6: Exception types and
priorities on page 28.

Memory translation and protection ST231

44/331 7645929

6.5.4 Instruction accesses

Instruction accesses are always cached (the cache policy is ignored). The procedures for
accessing instructions are summarized in Figure 5.

Figure 5. Instruction access

TLB_EXCAUSE NO_MAPPING
THROW ITLB_EXCEPTION

TLB_EXCAUSE MULTI_MAPPING
THROW ITLB_EXCEPTION

TLB_EXCAUSE PROT_VIOLATION
THROW ITLB_EXCEPTION

PSW[TLB_ENABLE]?

UTLB hit?Yes No

Cached memory access to
PA

No

Instruction access to virtual address (VA)

ITLB hit?

Yes

No

Yes

Protection
violation? Yes

Multiple hits? YesNo

Physical Address (PA) =
Virtual Address (VA)

No

PA = Translated VA

ST231 Memory translation and protection

7645929 45/331

6.5.5 Data accesses

The procedures for reading and writing data are summarized in Figure 6.

Figure 6. Data access

TLB_EXCAUSE PROT_VIOLATION
THROW DTLB_EXCEPTION

TLB_EXCAUSE NO_MAPPING
THROW DTLB_EXCEPTION

PSW[TLB_ENABLE]?

No

Uncached memory access
to PA

No

Data access to virtual address (VA)

UTLB hit?

Yes

Yes

All other VAs

Protection
violation?No

Yes

VA in control register space

Control register access and
permissions

Multiple hits?

TLB_EXCAUSE MULTI_MAPPING
THROW DTLB_EXCEPTION

YesNo

Access type

Cached memory access to
PA

Write

Yes

Physical Address (PA) =
Virtual Address (VA)

Read

PA = Translated VA

Page clean?

TLB_EXCAUSE WRITE_TO_CLEAN
THROW DTLB_EXCEPTION

Yes

No

CachedNo

DTLB hit?
Yes

No

Memory translation and protection ST231

46/331 7645929

6.6 Speculative control unit (SCU)

Figure 7. ST231 instruction and data cache fetch

The SCU filters physical speculative load addresses (both cached and uncached) and
prefetches that miss the cache to ensure that speculative bus requests are not sent out to
peripherals and unmapped memory regions.

The SCU supports four regions of memory aligned to the smallest TLB page size
(8 Kbyte). If the physical address of the speculative load/prefetch address falls within one
of the four supported regions, the bus access is allowed, otherwise the SCU aborts the
speculative load/prefetch and zero is returned or the prefetch is cancelled.

The regions are configured using the SCU_BASEx and SCU_LIMITx control registers. A
region may be disabled by setting the base to be larger than the limit.

The SCU resets so each of the four regions cover the whole of memory. This allows
speculative loads to be issued before the SCU has been initialized.

Instruction and data cache fetch

Speculative load/prefetch bit

SCU
Speculative
control unit

CMC

Cache miss address

Speculative
abort

Speculative
abort

ST231 Memory translation and protection

7645929 47/331

6.6.1 SCU_BASEx

The SCU base register defines the physical start address of the region where speculative
loads/prefetches are permitted. This region is aligned to the smallest page size (by virtue of
the read only zero bits). The base address is inclusive, so setting BASE == LIMIT defines an
8 Kbyte region.The fields of the SCU base register are listed in Table 20.

6.6.2 SCU_LIMITx

The SCU limit register defines the physical end address of the region where speculative
loads are permitted. This region is aligned to the smallest page size (by virtue of the read
only zero bits). The limit address is inclusive, so setting BASE == LIMIT defines an 8 Kbyte
region. The fields of the SCU limit register are listed in Table 21.

6.6.3 Updates to SCU registers

Any changes to SCU registers take effect for future bus transactions. To ensure that all
STBus transactions prior to an SCU change are made with the old settings, and all STBus
transactions subsequent to an SCU change are made with the new settings, the program
must execute a sync instruction before updating the SCU registers.

Table 20. SCU_BASE0 bit fields

Name Bit(s) Writable Reset Comment

BASE [18:0] RW 0x0 Upper 19 bits of the base of this region.

RESERVED [31:19] RO 0x0 Reserved.

Table 21. SCU_LIMIT0 bit fields

Name Bit(s) Writable Reset Comment

LIMIT [18:0] RW 0x7FFFF Upper 19 bits of the limit of this region.

RESERVED [31:19] RO 0x0 Reserved.

Memory subsystem ST231

48/331 7645929

7 Memory subsystem

This chapter describes the operation of the ST231 processor memory subsystem. The
memory subsystem includes the following components:

● caches

● protection units

● write buffer

● prefetch cache

● translation lookaside buffer (TLB)

● the core memory controller (CMC)

The memory subsystem is split broadly into two parts: the instruction side (I-side) and the
data side (D-side). The CMC interfaces these two parts to the STBus port. The I-side,
containing the instruction cache, supports the fetching of instructions. The D-side,
containing the data cache, prefetch cache and write buffer, support the storing and loading
of data.

The TLB performs memory address translation and protection. The function of the TLB is
detailed in Chapter 6: Memory translation and protection on page 31.

The ST231 ensures that data accesses are coherent with other data accesses. There is no
guarantee of coherency between instruction and data accesses (see Section 7.5.2:
Coherency between I-side and D-side on page 59) or between the core and external
memory. To ensure coherency data must be purged from the core as described later in this
chapter.

The function of the streaming data interface (SDI) is described in Chapter 8: Streaming data
interface on page 61.

ST231 Memory subsystem

7645929 49/331

7.1 Memory subsystem
This section describes the memory subsystem shown in Figure 8.

Figure 8. Memory subsystem block diagram

7.2 I-side memory subsystem
Within the ST231, the instruction buffer is responsible for issuing instructions to the
processor core. The instruction cache uses the CMC to fetch cache lines from memory, and
sends groups of up to four operations to the instruction buffer.

7.2.1 Instruction buffer

The instruction buffer attempts to fetch ahead in the instruction stream in order to keep its
buffer full. When a branch is taken the instruction buffer is invalidated and a fetch started
from the target address.

After a branch, the instruction buffer takes one cycle to fetch the next bundle from the cache,
this means the ST231 stalls for one cycle. If the branch is to a bundle that spans two cache
lines, then it takes two cycles to fetch the bundle and thus the ST231 stalls for two cycles.

I-side memory
subsystem

Write buffer

Prefetch cache

Data cache

Instruction
cache Write

data

Prefetch
request

Prefetch
data

Writes &
(reads/prefetch/sync/flush)

Prefetches &
(reads/writes/flush)

Fetched
data

PC

Read
4x32 bit

Read
request

Read response
cache line

Read/write/
flush/sync/prefetch

request

Read
word

Busy

Busy

Instruction
buffer

Load
Store
Unit

(LSU)

PC and
branch unit

CMC

Uncached
read/writes
& cache fill

D-side
memory
subsystem

STBUS

Memory subsystem ST231

50/331 7645929

7.2.2 Instruction cache

Instructions are always cached; there is no support for uncached instruction fetching. Self
modifying code (loaders for example) must invalidate the cache explicitly.

The instruction cache is a 32 Kbyte direct mapped cache. The cache is made up from 512
sets. Each set contains one 64-byte line.

When a virtual (byte) address is submitted to the cache the address bits are used as follows:

● Bits [05:02] select the word offset within the line

● Bits [14:06] select the set that could contain the required cache line

● Bits [31:13] are translated by the TLB. The resulting physical tag is used to check if the
required line is in the cache

The instruction cache receives fetch requests from the instruction buffer and returns a group
of up to four 32-bit operations (16 bytes).

When syllables are requested from the cache it uses the address to determine whether they
are already present in the cache. If the syllables are not in the cache, they are fetched from
memory and stored into the cache, during which time the processor stalls. The requested
instruction bundle is then returned to the instruction buffer.

Invalidating the entire instruction cache

To invalidate the instruction cache safely, the core must execute the following two
operations.

● The first is prgins, which invalidates the whole instruction cache and causes any
subsequent instruction fetches to be made from memory rather than from the cache.

● The second is syncins, which ensures that the next bundle is fetched with an
invalidated cache, and therefore from memory; if this operation is not performed the
subsequent bundle might have been prefetched into the instruction buffer and might not
correspond to the instruction in memory. The syncins operation is a pseudo operation
implemented as a pswset.

Note: Both prgins and syncins are privileged operations (which means that they can only be
executed in supervisor mode).

Invalidating the instruction cache by page

The instruction cache can also be invalidated in 8 Kbyte pages by means of the prginspg
instruction.

The prginspg operation takes a base and an immediate offset. The base is added to the
offset to produce the effective address (as for other load/store instructions). The effective
address is then used by the instruction cache to perform the purge.

The effective address is split into two parts. Bits [31:13] specify the upper bits of the 8 Kbyte
physical address of the page to be purged. In addition, bits [12:0] are used to specify any
ambiguous address bits of the virtual cache address that may contain entries for the
physical page. This ambiguity occurs when the instruction cache set(s) are larger than the
purgeable page size.

The single way cache is 32 Kbyte and the purgable page size only 8 Kbyte. As a result, two
bits of virtual address need to be specified to indicate the quadrant of the indexed cache in
which physical page entries are scanned for. The bottom two bits of the effective address
(bits [14:13] of the virtual address) are used to specify the quadrant.

ST231 Memory subsystem

7645929 51/331

We recommend that the software system should provide all 13 bits of a potentially
ambiguous virtual address to ensure future compatibility.

To purge a physical page which has more than one virtual mapping, multiple purge pages
need to be executed (except in the case where all the ambiguous address bits are the
same).

Note: prginspg is a privileged operation (which means that it can only be executed in supervisor
mode).

7.2.3 I-side bus error

If the I-side memory subsystem causes a bus error, an STBUS_IC_ERROR exception is
thrown. I-side bus errors are synchronous events which are thrown when trying to execute
the bundle which causes the bus error.

A bus error invalidates the cache line.

7.3 D-side memory subsystem
All data accesses take place through the D-side memory subsystem which contains the
data cache, the prefetch cache and the write buffer.

The data cache is 32 Kbyte 4-way associative with a 32-byte line. The cache is therefore
made up of 256 sets. Each set contains 4 cache lines, one per way. It is operated with a
fixed write-back, no allocate on write-miss policy.

When a virtual (byte) address is submitted to the cache its bits are used as follows.

● Bits [4:0] select the byte offset within the cache line.

● Bits [12:5] select the set (0-255) that could contain the required cache line.

● Bits [31:13] are translated by the TLB. The resultant physical address form the tag that
is used to check if the required line is in the cache.

At most one of the write buffer, the data cache or the prefetch cache can contain a copy of
the data for a particular address.

7.3.1 Load/store unit

The load/store unit (LSU) performs all data access operations. The cacheability is
dependent on the address of the access and is determined by the TLB, see Chapter 6:
Memory translation and protection on page 31. In addition to load and store there are
operations which prefetch data, flush and synchronize the D-side memory subsystem.

The data cache sends write misses and dirty data to the write buffer, see Write buffer on
page 58.

The write buffer combines write transactions and sends them out to memory.

Memory subsystem ST231

52/331 7645929

7.3.2 Data cache partitioning

Data cache partitioning allows, in addition to the normal mode, the data cache to be split
into a normal and either 1, 2 or 3 locked partitions, as three separate modes.

These modes allow the cache to be partitioned as:

● 32 Kbyte 4-way cache

● 24 Kbyte 3-way cache plus 8 Kbyte data RAM*

● 16 Kbyte 2-way cache plus 16 Kbyte data RAM*

● 8 Kbyte direct mapped cache plus 24 Kbyte data RAM*

Where * indicates special cases of the following:

● 24 Kbyte 3-way cache plus separate 8 Kbyte direct mapped cache

● 16 Kbyte 2-way cache plus 2 separate 8 Kbyte direct mapped caches

● 4 separate 8 Kbyte direct mapped caches

Control of partitioning is performed via two mechanisms. Firstly the machine state register
(see Section 9.4: Data cache replacement state register on page 71) defines the number of
data cache ways which are reserved (locked). Secondly a bit field in each TLB entry (see
Chapter 6: Memory translation and protection on page 31) is used to indicate which of the
sets misses are placed in (either the locked section or the rest of the cache).

7.3.3 Speculative loads

Speculative loads are defined as returning the same data as normal loads except that when
a normal load would cause an exception, speculative load returns 0.

Speculative loads are handled in the following way:

● speculative loads that would cause a PROT_VIOLATION exception return 0

● if a speculative load misses the DTLB and maps to more than one entry in the UTLB, it
causes a MULTI_MAPPING exception

● speculative loads that miss the UTLB cause a TLB_NO_MAPPING exception, if the
DYNAMIC bit is set in the PSW (if this bit is clear then speculative loads that miss the
UTLB return 0 without causing an exception)

● speculative loads that miss the cache are validated by the SCU, see Section 6.6:
Speculative control unit (SCU) on page 46, if the speculative load does not fall into one
of the valid regions in the SCU then it returns 0

7.3.4 Cached loads and stores

Cached loads and stores are performed through the data cache. The memory subsystem
can optimize these operations for performance. For example, the memory subsystem can
transfer more data than specified by the load (that is, a loading cache line), aggregate
accesses (combining writes in write buffer) and, or re-order accesses (cache causes word
accesses to be re-ordered).

The memory subsystem presents a consistent view of cached memory to the ST231
programmer, that is, a store followed by a load to the same address always returns the
stored data. To guarantee ordering of accesses to external memory in cached regions,
purge and sync operations must be used.

ST231 Memory subsystem

7645929 53/331

7.3.5 Uncached load and stores

Uncached loads and stores are issued to the STBus in program order. Data accessed
through an uncached TLB entry or when the TLB is disabled is never brought into the data
cache or the prefetch cache. See Section 7.5.4: Cached data in uncached region on
page 59.

The precise amount of data specified in the access is transferred and the access is not
aggregated with any other. The implementation does not optimize these accesses.

To guarantee that an uncached store has reached its STBus target, either a sync or an
uncached load to the same bus target must be issued.

An STbus request arising from a cached (or a write-combining uncached) operation, and an
STbus request arising from an uncached operation, are not guaranteed to be issued to the
STbus in program order unless the operations target the same physical address. To
guarantee ordering, a sync instruction should be inserted between the operations.

7.3.6 Prefetching data

The prefetch cache prefetches and stores data from external memory and sends it to the
data cache when (and if) it is required.

A pft operation is a hint to the memory subsystem that the given item of data may be
accessed in the future. The operation specifies a virtual address which can be prefetched by
the prefetch cache. A pft operation may be ignored.

Prefetches are ignored (treated as nops) in the following cases:

● a prefetch that hits the cache

● a prefetch that does not map to a valid page in the TLB

● a prefetch to an uncached (or write combining uncached) page

● a prefetch to control register space

● a prefetch to a region that does not have read permission

● a prefetch that misses the cache but does not fall into one of the valid regions in the
SCU, see Section 6.6: Speculative control unit (SCU) on page 46

● a prefetch that is issued when 8 other prefetches are outstanding (see below)

For this reason the only exception a prefetch can cause is a DTLB MULTI_MAPPING fault.

The prefetch cache contains eight entries. Each entry contains an entry valid bit, a prefetch
address, a data valid bit and 32 bytes of data.

When a pft request is made and accepted, it enters the prefetch cache as an outstanding
prefetch request, with the data valid bit clear. Older entries may be discarded if the prefetch
cache is full. The prefetch cache attempts to access the memory system to fetch the line
containing the prefetch address. When a fetch completes the data valid bit is set. The
prefetch cache supports multiple outstanding memory requests.

Entries in the prefetch cache are tested when a data cache read miss occurs. If an entry
match occurs and the data valid bit is set, the prefetched line is loaded into the data cache
as if it were fetched from external memory. If the data valid bit is clear, the data cache stalls
until the data is returned from external memory. The entry in the prefetch cache is then
marked as empty and can be reused.

Entries in the prefetch cache are tested when a data cache write miss occurs. If an entry
match occurs the prefetch cache entry is invalidated.

Memory subsystem ST231

54/331 7645929

7.3.7 Purging data caches

The purge (flush and invalidate) operations are used to ensure a copy of a particular data
item is not cached in the D-side of the memory subsystem.

These operations flush out the specified data. Dirty lines are written to the write buffer and
the line is invalidated. Purge addresses are treated as byte aligned.

Purging data by address

The prgadd operation purges the specified virtual address from the data cache.

If the DYNAMIC bit in the PSW is set, and the address is not present in the UTLB, a DTLB
NO_MAPPING exception is thrown.

If the DYNAMIC bit in the PSW is not set, and the address is not present in the UTLB, the
purge is ignored.

If the address to be purged misses the DTLB, and it maps to more than one UTLB entry, it
causes a DTLB MULTI_MAPPING exception.

If the address to be purged does not have read permission (protection fault), the prgadd is
ignored and no exception is thrown.

Purging data by set

The prgset operation purges each of the four lines in the data cache set, indicated by the
address operand, without checking for a cache hit. It also invalidates the entire prefetch
cache.

prgset operates on a subset of the address bits. As such it can be used to purge both virtual
and physical addresses.

Note: The prgset operation also resets the replacement pointer in the set to way 0. This is not
visible unless using data cache partitioning.

7.3.8 D-side synchronization

This is achieved by executing the sync operation. Once the bundle containing the sync
operation has completed, the following conditions hold.

● All previous loads, stores and pfts have completed.

● No future memory operations have started.

● The write buffer is empty, all pending writes to external memory have completed.

7.3.9 D-side bus errors

If the D-side memory subsystem causes a bus error, a STBUS_DC_ERROR exception is
thrown. Bus errors are asynchronous events and are not associated with a particular
operation.

In the case of writes the data has already been discarded and therefore the write is lost. The
write may or may not have completed.

In the case of reads the cache line which has been allocated for the data is invalidated.

ST231 Memory subsystem

7645929 55/331

7.3.10 Operations

Table 22 lists the operations supported by the data side memory subsystem.

It is a requirement that half word load/stores are half word aligned (2 bytes) and word
load/stores are word aligned (4 bytes). Misaligned accesses cause a MISALIGNED_TRAP
exception.

7.3.11 Cache policy

Table 23 details the effect of each of the above memory operations on the ST231’s memory
subsystem.

Note: When a cache line is purged to the write buffer it is also invalidated in the cache.

Table 22. Memory operations

Type Word aligned Half word aligned Byte aligned

Load Load word
Load half
unsigned

Load half
signed

Load byte
unsigned

Load byte
signed

Load dismissible Load word
Load half
unsigned

Load half
signed

Load byte
unsigned

Load byte
signed

Store Store word Store half Store byte

Prefetch Prefetch

Purge
Purge address

Purge set

Sync Sync

Table 23. Cache policy

Instruction Policy Cache
Write
buffer

Prefetch SCU Result

Loads:

ldb, ldh, ldw
Uncached

Miss

Miss

Miss Load uncached

Hit
Discard prefetch entry, Load
uncached

Hit
Flush write-buffer entry, Load
uncached

Hit
clean

Invalidate cache line, Load
uncached

Hit dirty
Purge cache line to write buffer,
flush write buffer, Load data
uncached

Memory subsystem ST231

56/331 7645929

Dismissable
loads

ldb.d, ldh.d,
ldw.d

Uncached

Miss

Miss

Miss
Hit Load uncached

Miss Return 0

Hit
Hit

Discard prefetch entry, Load
uncached

Miss Discard prefetch entry, return 0

Hit

Hit
Flush write-buffer entry, Load
uncached

Miss
Flush write-buffer entry, return
0

Hit
clean

Hit
Invalidate cache line, Load
uncached

Miss Invalidate cache line, return 0

Hit dirty

Hit
Purge cache line to write buffer,
flush write buffer, Load data
uncached

Miss
Purge cache line to write buffer,
flush write buffer, return 0

Stores:

stb, sth, stw
Uncached

Miss

Miss

Miss Store uncached

Hit
Discard prefetch entry, Store
uncached.

Hit
Flush write buffer entry, Store
uncached.

Hit
clean

Invalidate cache line, Store
data uncached

Hit dirty
Purge cache line to write buffer,
flush line from write buffer,
Store data uncached

Loads:
ldb, ldh,
ldw,
ldb.d, ldh.d,
ldw.d

Uncached
write
combine

Same as uncached.

Table 23. Cache policy (continued)

Instruction Policy Cache
Write
buffer

Prefetch SCU Result

ST231 Memory subsystem

7645929 57/331

Stores:

stb, sth, stw

Uncached
write
combining

Miss
Miss

Miss Store to write buffer

Hit
Discard prefetch entry, Store
to write buffer

Hit Store to write buffer

Hit
clean

Invalidate cache line, Store to
write buffer

Hit dirty
Purge cache line to write buffer,
flush line from write buffer,
Store data to write buffer

Loads:

ldb, ldh,
ldw,

Cached

Miss

Miss

Miss
Fill cache line from RAM,
Load data from cache

Hit
Transfer data from prefetch
cache to data cache, Load
data from data cache.

Hit
Flush write buffer line, Fill
cache line, Load data from
cache

Hit
clean

Load data from cache

Hit dirty Load data from cache

Dimissable
Loads:

ldb.d, ldh.d,
ldw.d

Cached

Miss

Miss

Miss
Hit

Fill cache line from ram, Load
data from cache

Miss Return 0

Hit
Transfer data from prefetch
cache to data cache, Load
data from data cache.

Hit

Hit
Flush write buffer line, fill cache
line, Load data from cache

Miss
Flush write buffer line, Return
0.

Hit
clean

Load data from cache

Hit dirty Load data from cache

Stores:

stb, sth, stw
Cached

Miss
Miss

Miss Store data to write buffer

Hit
Invalidate prefetch cache line,
Store data to write buffer

Hit Store data to write buffer

Hit
clean

Store data to cache & dirty
cache line

Hit dirty Store data to cache

Table 23. Cache policy (continued)

Instruction Policy Cache
Write
buffer

Prefetch SCU Result

Memory subsystem ST231

58/331 7645929

7.3.12 Write buffer

Stores that miss the data cache and dirty lines that are evicted from the cache are held in
the write buffer, pending write back to external memory.

The write buffer is a write combining buffer that holds up to four entries. Each entry has 32
bytes of data, an address and 32 bits of byte masks. The write buffer is operated as an LRU
(least recently used) buffer.

Write combining allows individual close proximity writes to be merged into a single bus write.
Write combining improves performance significantly (for a no write allocate cache) when
performing sequences of writes to blocks of data which have not been brought into the
cache.

7.4 Core memory controller (CMC)
The CMC allows multiple masters to access the STBus though a single port. The CMC
arbitrates between multiple requestors and correctly routes responses.

prgadd All

Miss
Miss

Miss No effect

Hit Invalidate prefetch cache line

Hit No effect

Hit
clean

Invalidate cache line

Hit dirty Purge cache line to write buffer

prgset All

Purge cache lines in set (dirty
data to write buffer) and
invalidate entire prefetch
cache.

sync

Flush entire write buffer to
memory, wait for all outstanding
writes, prefetches and
uncached writes to complete.

pft

Cached
Miss

Miss
Miss

Hit Prefetch sent to prefetch cache

Miss
Prefetch discarded (may use
prefetch cache slot until SCU is
checked)

Hit Prefetch discarded

Hit Prefetch discarded

Hit Prefetch discarded

Uncached Prefetch discarded

Uncached
write
combining

Prefetch discarded

Table 23. Cache policy (continued)

Instruction Policy Cache
Write
buffer

Prefetch SCU Result

ST231 Memory subsystem

7645929 59/331

7.5 Additional notes
The memory subsystem requires some additional explanation of some key operations and
methods of use. This section is intended to provide this information without filling out the
previous sections.

7.5.1 Memory ordering and synchronization

Use a sync operation to enforce the completion and ordering of memory operations.

A sync operation ensures that:

● the write buffer is empty (by flushing it to memory)

● all outstanding writes have reached external memory (both cached and uncached)

● all outstanding prefetches have completed

After any purge operations have taken place a sync should be issued to ensure that dirty
data that was sent to the write buffer is flushed to memory.

7.5.2 Coherency between I-side and D-side

There is no coherency guaranteed between the external memory and the D-side and I-side
memory subsystems. If coherency is desired then the memory subsystem has to be purged
and synchronized.

This is achieved by the following sequence.

1. Flush the entire data cache by issuing prgset or prgadd operations.

2. Ensure all data is written back to memory by issuing a sync.

3. Invalidate the instruction cache by issuing prgins or prginspg operations.

4. Flush the instruction buffer by issuing a syncins.

7.5.3 Reset state

After reset all lines in the instruction cache and data cache are marked as invalid. The write
buffer and prefetch cache entries are marked as empty.

7.5.4 Cached data in uncached region

If data from an uncached region is in the cache, then accessing the data as uncached
causes it to be purged from the cache. This ensures that uncached accesses are always
performed directly on the memory.

Memory subsystem ST231

60/331 7645929

7.5.5 Prefetch performance

The prefetch cache is intended to improve performance. This can be achieved by explicitly
fetching data from external memory and hiding the associated latency. The following points
must be considered to ensure the prefetch cache works effectively.

● Data must be prefetched well in advance of use. The latency of an external memory
access needs to be hidden between the pft operation and the first load operation
which uses data from the prefetched line. This latency is in the region of 80-120 cycles
for stall free bundles.

● The prefetch cache size should be taken into account, such that the number of
outstanding prefetches does not exceed the number of entries in the prefetch cache.

● Unused prefetches increase bandwidth and waste entries in the prefetch cache.

The first two points indicate a window for which prefetches might be considered.

ST231 Streaming data interface

7645929 61/331

8 Streaming data interface

The ST231 streaming data interface (SDI) is designed to allow fast and easy connection of
on-chip peripherals. Each SDI is unidirectional and includes handshakes to prevent data
loss and improve data flow.

The ST231 implements four SDI interfaces, two input ports and two output ports.

Figure 9. SDI overview

The SDIs:

● provide a mechanism for attaching streaming hardware to the processor core

● reduce STBus traffic and associated processor stall cycles

● reduce cache pollution and control complexity

● prevent deadlock through a timeout mechanism

● allow communication between clock domains without complex synchronization
hardware

The SDI ports are accessed using control registers in the core.

8.1 Functional description
Data is communicated through either an output port or an input port to the processor. Data
is communicated in order, that is, the nth data item communicated arrives after the (n - 1)th
item and before the (n + 1)th data item.

The SDI blocks writes (stores) to an output port if the SDI is full. Conversely, it blocks reads
(loads) from an input port if the channel is empty. The ST231 blocks execution by stalling the
entire processor. No execution proceeds until the channel becomes ready for the requested
communication or an interrupt or timeout exception occurs.

SDI
Input

Data In
SDI

Input

SDI Output

SDI Output

Data Out

Data Out

Control
Registers

ST220 Core

Cluster

Data In

Execution
unit

ST231

Streaming data interface ST231

62/331 7645929

8.1.1 Data width

The SDI port data interface is 32-bits wide. External to the SDI port, however, the data width
can be arbitrary. For example connecting to a DCT peripheral which consumes 16-bits, data
could be sent from the ST231 as single 16-bit items. The ST231 can only write 32-bit data to
control registers, so writing a pair of 16 bit values in a packed word would be twice as fast.

Note: In this case the peripheral has to expect pairs of 16-bit values.

8.2 Communication channel
In its basic form the SDI acts as a communication channel to and from the processor. It is
fully synchronized, allowing idealized input and output to be dealt with directly by the
processor using load and store operations directly access the processor registers.

The SDI accesses can be initiated from C program code as accesses to volatile variables.

8.2.1 Timeouts

The timeouts operate as monitors to each individual SDI access. If an access remains
stalled for too long, as defined by the control registers, an exception occurs.

8.3 Registers
The SDI interfaces directly to the ST231 load store unit. The interface is through a number
of memory mapped registers in the control register address space.

The addresses of these registers are provided in Chapter 9: Control registers on page 67.

ST231 Streaming data interface

7645929 63/331

8.3.1 Input channel memory mapping

SDIi_DATA The SDIi_DATA register is the location from which data is read from the
input channel. The processor control and channel logic synchronize to
ensure no data is lost. If the SDIi_DATA register is empty the processor
stalls. Writing this register has no effect and the processor does not
stall.

SDIi_READY The SDIi_READY register is implementation specific. If non zero it
indicates that the channel has data ready to be read.

This value indicates a minimum number of ready items. Returning the
exact amount of data ready to be read from the channel may not be
possible for a number of reasons, that is, clock boundary issues,
propagation delays, hence the looser condition of the minimum number
of ready items. In its simplest form this ready value can be 1, indicating
at least one item is ready.

SDIi_CONTROL The SDIi_CONTROL register is used to reset the channel and the
SDIi_TIMEOUT register. The usage of the bits are defined in Table 24.
The definition of the privilege bits is given in Section 8.3.3: Protection on
page 64.

SDIi_COUNT The SDIi_TIMEOUT register is reset to this value each time an SDI data
value is successfully accessed. The value may be read or written. At
reset it is set to a fixed value defined by the particular implementation.
Time-outs can be disabled via the SDIi_CONTROL register.

SDIi_TIMEOUT The number of cycles an SDI data access is allowed to stall before a
timeout exception is thrown. The value may be read or written. This
register is normally set to the value of SDIi_COUNT. Exceptions to this
are when it has been specifically set to another value, or when an SDI
access has taken a timeout exception or been interrupted. In the case of
an SDI timeout the SDIi_TIMEOUT register contains the value zero.

Table 24. SDI0_CONTROL bit fields

Name Bit(s) Writable Reset Comment

PRIV [1:0] RW 0x0 Privilege bits.

RESETINPUT 2 RO 0x0
RESETINPUT (read only) acts as
RESETREQUEST when slave,
RESETACK when master.

RESETOUTPUT 3 RW 0x0
RESETOUTPUT, acts as
RESETREQUEST when master,
RESETACK when slave.

INPUTNOTOUTPUT 4 RO 0x0 INPUTNOTOUTPUT (read only).

Reserved 5 RO 0x0 Reserved

MASTERNOTSLAVE 6 RO 0x0 MASTERNOTSLAVE (read only).

TIMEOUTENABLE 7 RW 0x0
Timeout disable (set to 1 to disable
timeout interrupts).

Reserved [31:8] RO 0x0 Reserved

Streaming data interface ST231

64/331 7645929

8.3.2 Output channel memory mapping

8.3.3 Protection

The SDI register space is protected from malicious usage via access permissions held in
each SDIi_CONTROL register. The reset behavior is that accesses to the SDI registers are
only allowed in supervisor mode.

The protection can be loosened to allow user access to an SDIi_DATA and SDIi_READY
registers. This is achieved via the SDIi_CONTROL register, PRIV[1:0] two bit field,
indicating the access allowed for each SDI.

Table 25 lists the SDI_CONTROL_PRIV values.

SDIi_DATA The SDIi_DATA register is the location from which data is written to the
output channel. The processor control and channel logic synchronize to
ensure no data is overwritten. If the SDIi_DATA register is full, the
processor stalls. Reading this value has no effect and the processor
does not stall and a value of zero is returned.

SDIi_READY The SDIi_READY register is implementation specific. If non zero it
indicates that the channel has space where data can be written.

This value indicates a minimum number of empty spaces where data
can be written. In an implementation where the channel is connected to
a FIFO this register could indicate, full, not full, the FIFO is half empty by
returning (for example) the values 0, 1, 32. Returning the exact amount
of data space available in the channel may not be possible for a number
of reasons, that is, clock boundary issues, propagation delays, hence
the looser condition of the minimum number of ready items. In the
simplest form this ready value can be 1, indicating at least one item can
be written.

SDIi_CONTROL Bits defined as Section 8.3.1: Input channel memory mapping on
page 63.

SDIi_COUNT Defined as Section 8.3.1: Input channel memory mapping on page 63.

SDIi_TIMEOUT Defined as Section 8.3.1: Input channel memory mapping on page 63.

Table 25. SDI_CONTROL_PRIV values

Name Value Comment

PRIV_NOUSER 0 Access only allowed in supervisor mode

PRIV_USER 1 Allow user access to data and ready register

Reserved 2 Reserved (defaults to privilege no user).

Reserved 3 Reserved (defaults to privilege no user).

ST231 Streaming data interface

7645929 65/331

8.4 Interrupts, exceptions and restarts
This section provides information about:

● interrupts, including returns from an interrupt and accesses to SDI registers

● SDI exceptions

● restarts or soft resets

8.4.1 Interrupts

The processor can take any interrupt while stalled accessing the SDI. An interrupt would be
taken as if it occurred just prior to the bundle accessing the SDI.

Return from interrupt

The rfi from the exception handler continues program execution at the point prior to the
interrupt.

If the SDI is ready by the completion of the interrupt handler, the SDIi_TIMEOUT register is
reset to the value in SDIi_COUNT.

If, however, the SDI is still not ready upon completion of the handler, the processor reverts
to the stalled state. The processor continues to wait for the channel to become ready while
counting down the SDIi_TIMEOUT register from the value held prior to the exception.

Access to SDI registers

The interrupt handler can access all the SDI registers.

Note: Accessing the SDIi_DATA register may alter the state of the processor observed by the
interrupted processor.

8.4.2 SDI exceptions

In this case the EXCAUSENO register indicates an SDI timeout exception. The exception
address points to the SDI register on which the processor was waiting when the exception
occurred.

A timeout exception occurs if the processor is actively waiting for a response from the
interface for longer than the interface’s timeout period.

The exception handler, in the case of a SDI timeout exception, is able to restart the
communicating process. This is achieved by executing an rfi to the instruction that caused
the exception. This causes re-execution of the instruction accessing the SDI.

Note: The SDIi_TIMEOUT register must be increased from the zero value that caused the
exception, otherwise the exception is triggered again immediately.

The timeout exception is generated by the processor and not the channel.

8.4.3 Restart (soft reset)

A channel can only be restarted by the master of the channel.

A master may be either an input or an output channel. Figure 10 shows how the reset
structure is connected.

Streaming data interface ST231

66/331 7645929

A reset is initiated by the master by setting the resetrequest bit in the control register. This
causes the channel to begin the reset process. Once acknowledged (that is RESETACK =
1) as having been received by the slave, and consequently the entire channel structure
being reset, the reset is removed by the software (that is, RESETREQUEST = 0) is
communicated to the slave port. Once acknowledged (that is, RESTACK = 0), this indicates
that the entire channel has exited the reset state.

When the SDI channel is reset, any data buffered by the core is discarded. This has the
effect of making an output channel ready (as the output buffers are empty) or making an
input channel not ready (as the input buffer is empty) until more data is received.

During the reset sequence the READY and DATA registers should not be accessed as the
results are implementation dependant. The reset sequence does not effect the contents of
the TIMEOUT and COUNT registers.

The slave reset can be used to reset a slave subsystem.

Normally the output channel is the master. However in cases where the output channel is
connected to a dumb peripheral it may be necessary to make the input channel the master,
particularly where this is a processor interface.

The restart structure outlined works across asynchronous clock boundaries. The reset
control structure is shown in Figure 10.

Figure 10. Soft reset control structure

1. Master requests reset: Subsystem resets itself and consumes all data presented at inputs.
RESETREQUEST is forwarded to other slave side subsystems.

2. All units in reset: After subsystem has reset itself AND all slave side subsystems have sent RESETACK,
RESETACK can be forwarded to master.

3. Master requests leave reset: Unit forwards removal of RESETREQUEST to all slave-side subsystems. Unit
leaves reset and stops consuming data.

4. All units out of reset: On receipt of RESETACK from all subsystems, RESETACK is forwarded to master.
System can restart.

Master

Data
Transport

Data
Transport

Slave

Control
Transport

Control
Transport

ResetAck

ResetReq

ResetReques
t

ResetAck

1

2

3

4

ST231 Control registers

7645929 67/331

9 Control registers

The ST231 control registers contain processor state that is not typically accessed by
application code. This includes accessing the TLB, PSW, exception registers and breakpoint
registers.

9.1 Access operations
Control registers(a) are mapped into the address space, allowing access through normal
load and store operations.

All control register accesses are word (32-bit) operations. Byte and half word loads and
stores to control registers are not supported and generate CREG_ACCESS_VIOLATION
exceptions.

Dismissible loads to control register space always return zero. Control register loads or
stores are executed within the LSU without reference to the TLB regions.

9.2 Exceptions
The control register unit generates an exception when a load or store tries to:

● access a control register that does not exist (CREG_NO_MAPPING)

● access to a control register without correct permissions
(CREG_ACCESS_VIOLATION)

● perform a byte or a half word access to control registers
(CREG_ACCESS_VIOLATION)

● perform a misaligned word access to a control register (CREG_NO_MAPPING)

For details of the exception cause register, see Section 5.6: Exception types and priorities
on page 28.

a. Control registers cannot be accessed from the STBus.

Control registers ST231

68/331 7645929

9.3 Control register addresses
Table 26 shows the addresses and access permissions of all control register addresses.
The control registers are all relative to 0xFFFF 0000. Offsets listed in the table are relative to
this, refer to Section 6.2.2: Virtual addresses on page 32 for further information regarding
virtual addresses. Control registers cannot be accessed from translated addresses, see
Section 6.5.5: Data accesses on page 45.

The access column shows the access rights in user and supervisor mode:

NA No access (protection fault)

RO Read only, writes ignored.

ROF Read only fault on write.

RW Read/write.

CF Configurable read/write or no access.

CFRO Configurable read only or no access.

Table 26. Control registers - BASE: CREG_BASE

Name Offset Access (U/S) Comment

PSW 0xFFF8 NA/RO The program status word.

SAVED_PSW 0xFFF0 NA/RW
Saved PSW, written by hardware on
exception.

SAVED_PC 0xFFE8 NA/RW
Saved program counter, written by
hardware on exception.

HANDLER_PC 0xFFE0 NA/RW The address of the exception handler code.

EXCAUSE 0xFFD8 NA/RO
A one hot vector of trap (exception/interrupt)
types, indicating the cause of the last trap.
Written by the hardware on a trap.

EXADDRESS 0xFFD0 NA/RW

This is the data effective address in the
case of either a DPU, CREG, DBREAK, or
MISALIGNED_TRAP exception. For other
exception types this register is zero.

SAVED_SAVED_PSW 0xFFC0 NA/RW PSW saved by debug unit interrupt.

SAVED_SAVED_PC 0xFFB8 NA/RW PC saved by debug unit interrupt.

EXCAUSENO 0xFF88 NA/RW
Exception cause as an integer, indicating
the cause of the last trap.

STATE1 0xFE00 NA/RW
Global machine state register. Controls
cache locking.

VERSION 0xFFC8 NA/RO The version number of the core.

PERIPHERAL_BASE 0xFFB0 NA/RO
Base address of peripheral registers. The
top 12 bits of this register are wired to the
peripheral base input pins.

SCRATCH1 0xFFA8 NA/RW
Scratch register reserved for use by
supervisor software.

ST231 Control registers

7645929 69/331

SCRATCH2 0xFFA0 NA/RW
Scratch register reserved for use by
supervisor software.

SCRATCH3 0xFF98 NA/RW
Scratch register reserved for use by
supervisor software.

SCRATCH4 0xFF90 NA/RW
Scratch register reserved for use by the
debug interrupt handler.

TLB_INDEX 0xFF80 NA/RW
Index of the TLB entry pointed to by
TLB_ENTRY0-3.

TLB_ENTRY0 0xFF78 NA/RW Bits [31:00] of the current TLB entry.

TLB_ENTRY1 0xFF70 NA/RW Bits [63:32] of the current TLB entry.

TLB_ENTRY2 0xFF68 NA/RW Bits [95:64] of the current TLB entry.

TLB_ENTRY3 0xFF60 NA/RW Bits [127:96] of the current TLB entry.

TLB_EXCAUSE 0xFF58 NA/RW Case of the TLB related exception.

TLB_CONTROL 0xFF50 NA/RW Control bits for TLB.

TLB_REPLACE 0xFF48 NA/RW Replacement pointer.

TLB_ASID 0xFF40 NA/RW Current address space ID.

SCU_BASE0 0xD000 NA/RW Base address of speculative load region.

SCU_LIMIT0 0xD008 NA/RW Limit address of speculative load region.

SCU_BASE1 0xD010 NA/RW Base address of speculative load region.

SCU_LIMIT1 0xD018 NA/RW Limit address of speculative load region.

SCU_BASE2 0xD020 NA/RW Base address of speculative load region.

SCU_LIMIT2 0xD028 NA/RW Limit address of speculative load region.

SCU_BASE3 0xD030 NA/RW Base address of speculative load region.

SCU_LIMIT3 0xD038 NA/RW Limit address of speculative load region.

DBREAK_LOWER 0xFE80 NA/RW Data breakpoint lower address.

DBREAK_UPPER 0xFE78 NA/RW Data breakpoint upper address.

DBREAK_CONTROL 0xFE70 NA/RW Data breakpoint control.

IBREAK_LOWER 0xFDD0 NA/RW Instruction breakpoint lower address.

IBREAK_UPPER 0xFDC8 NA/RW Instruction breakpoint upper address.

IBREAK_CONTROL 0xFDC0 NA/RW Instruction breakpoint control.

PM_CR 0xF800 NA/RW Performance monitoring control.

PM_CNT0 0xF808 NA/RW Performance monitor counter 0 value.

PM_CNT1 0xF810 NA/RW Performance monitor counter 1 value.

PM_CNT2 0xF818 NA/RW Performance monitor counter 2 value.

PM_CNT3 0xF820 NA/RW Performance monitor counter 3 value.

PM_PCLK 0xF828 NA/RW Performance monitor core cycle counter.

Table 26. Control registers - BASE: CREG_BASE (continued)

Name Offset Access (U/S) Comment

Control registers ST231

70/331 7645929

SDI0_DATA 0xE000 CF/RW SDI 0 data.

SDI0_READY 0xE008 CFRO/RO SDI 0 ready.

SDI0_CONTROL 0xE010 NA/RW SDI 0 control.

SDI0_COUNT 0xE018 NA/RW SDI 0 count.

SDI0_TIMEOUT 0xE020 NA/RW SDI 0 timeout.

SDI1_DATA 0xE400 CF/RW SDI 1 data.

SDI1_READY 0xE408 CFRO/RO SDI 1 ready.

SDI1_CONTROL 0xE410 NA/RW SDI 1 control.

SDI1_COUNT 0xE418 NA/RW SDI 1 count.

SDI1_TIMEOUT 0xE420 NA/RW SDI 1 timeout.

SDI2_DATA 0xE800 CF/RW SDI 2 data.

SDI2_READY 0xE808 CFRO/RO SDI 2 ready.

SDI2_CONTROL 0xE810 NA/RW SDI 2 control.

SDI2_COUNT 0xE818 NA/RW SDI 2 count.

SDI2_TIMEOUT 0xE820 NA/RW SDI 2 timeout.

SDI3_DATA 0xEC00 CF/RW SDI 3 data.

SDI3_READY 0xEC08 CFRO/RO SDI 3 ready.

SDI3_CONTROL 0xEC10 NA/RW SDI 3 control.

SDI3_COUNT 0xEC18 NA/RW SDI 3 count.

SDI3_TIMEOUT 0xEC20 NA/RW SDI 3 timeout.

RESERVEDFF38 0xFF38 NA/RO Reserved

RESERVEDFF30 0xFF30 NA/RO Reserved

RESERVEDFF28 0xFF28 NA/RO Reserved

RESERVEDFF20 0xFF20 NA/RO Reserved

RESERVEDFF18 0xFF18 NA/RO Reserved

RESERVEDFF10 0xFF10 NA/RO Reserved

RESERVEDFF08 0xFF08 NA/RO Reserved

RESERVEDFF00 0xFF00 NA/RO Reserved

RESERVEDFE40 0xFE40 NA/RO Reserved

RESERVEDFE38 0xFE38 NA/RO Reserved

RESERVEDFE30 0xFE30 NA/RO Reserved

RESERVEDFE28 0xFE28 NA/RO Reserved

RESERVEDFE20 0xFE20 NA/RO Reserved

RESERVEDFE18 0xFE18 NA/RO Reserved

Table 26. Control registers - BASE: CREG_BASE (continued)

Name Offset Access (U/S) Comment

ST231 Control registers

7645929 71/331

9.4 Data cache replacement state register
The STATE1 register controls the global state of the data cache replacement logic. Table 27
lists the fields in the STATE1 register.

When the partition field is changed, the current data in the cache is not altered in any way. If
the software wishes to force data out of a particular partition following a change to this
register, the data must be purged from the cache in the normal way (prgadd or prgset).

For more details on cache partitioning see Section 7.3.2: Data cache partitioning on
page 52.

RESERVEDFE10 0xFE10 NA/RO Reserved

RESERVEDFE08 0xFE08 NA/RO Reserved

Table 26. Control registers - BASE: CREG_BASE (continued)

Name Offset Access (U/S) Comment

Table 27. STATE1 bit fields

Name Bit(s) Writable Reset Comment

PARTITION [1:0] RW 0x0

Sets the maximum value for the round robin
data cache replacement pointers as (3 -
PARTITION).

00: Replace ways 0-3.
01: Replace ways 0-2.

10: Replace ways 0-1.

11: Replace way 0 only.
A full data cache purge using prgset
operations is required following the update
of the field.

Reserved [31:2] RO 0x0 Reserved.

Control registers ST231

72/331 7645929

9.5 Version register
The VERSION register contains three fields which uniquely identify a particular release of
the core. Table 28 lists the fields in the VERSION register.

Table 28. VERSION bit fields

Name Bit(s) Writable Reset Comment

PRODUCT_ID [15:0] RO
Refer to
datasheet

Revision of the ST200 core specified by
CORE_VERSION below.

CORE_VERSION [23:16] RO 0x05
ST200 core type. 0x05 refers to the
ST231 core.

DSU_VERSION [31:24] RO
Refer to
datasheet

Version of the debugging support unit.

ST231 Timers

7645929 73/331

10 Timers

The ST231 provides three timers. These are controlled by registers mapped into the ST231
memory space, see Chapter 11: Peripheral addresses on page 76.

10.1 Operation
For each of the three timers, the TIMECOUNTi register (where i = 0, 1, 2) is the current
value of the timer. When a timer is enabled its TIMECOUNTi value is decremented on each
timer tick until zero is reached. Upon the next tick, TIMECOUNTi is loaded with
TIMECONSTi, the STATUS bit in TIMECONTROLi register is then set.

The ENABLE bit in the TIMECONTROLi register controls the enabling of interrupts for each
timer. The STATUS bit in the TIMECONTROLi register is AND’ed with the interrupt enable
to produce the timer interrupt line. When a value of 1 is written to the STATUS bit it is
cleared (and thus the interrupt is cleared).

Timer counting is enabled by the ENABLE bit in the TIMECONTROLi register. Counters are
not reset when disabled, hence initial values can be written using the TIMECOUNTi
registers.

The frequency of timer ticks is controlled by programming the TIMEDIVIDE register.

These registers are covered in more detail in the following subsections.

10.1.1 TIMEDIVIDEi

The TIMEDIVIDE register sets the number of bus clock cycles between each timer tick. This
register can be programmed with values between 0 and 65535 (using the bottom 16 bits
only). The divide value is equal to the value of this register plus one. This register is reset to
zero (divide by 1). Writing this register sets the divide value and reading it returns the
current divide value.

It is recommended that the boot code sets up the TIMEDIVIDE register so that timer ticks
occur every 1μs.

The bit fields for the TIMEDIVIDE register are listed in Table 29.

Table 29. TIMEDEVIDE bit fields

Name Bit(s) Writable Reset Comment

DIVIDE [15:0] RW 0x0
Number of clock cycles required to decrement
the timers +1. A value of 0 causes the timers to
decrement on every clock cycle.

Reserved [31:16] RW 0x0 Reserved.

Timers ST231

74/331 7645929

10.1.2 TIMECOUNTi

The TIMECOUNTi register returns the current value of the timer counter i.

Write to these registers to set initial values for the counters.

The bit fields of the TIMECOUNTi are listed in Table 30.

10.1.3 TIMECONSTi

The TIMECONSTi register contains the value loaded into timer i when timer i reaches zero.
If interrupts are enabled, the value of TIMECONSTi defines the number of ticks between
interrupts.

The bit fields of the TIMECONSTi are listed in Table 31.

10.1.4 TIMECONTROLi

The TIMECONTROLi register enables the timer, enables timer interrupts and clears a timer
interrupt.

The bit fields of the TIMECONTROLi are listed in Table 32.

10.2 Timer interrupts
The timer interrupt lines are connected to external interrupt bits 2:0, see Section 12.3:
Interrupt registers on page 81.

Table 30. TIMECOUNTi bit fields

Name Bit(s) Writable Reset Comment

COUNT [31:0] RW 0x0 Current value of timer counter.

Table 31. TIMECONSTi bit fields

Name Bit(s) Writable Reset Comment

CONST [31:0] RW 0x0
Value to be reloaded when timer reaches
zero.

Table 32. TIMECONTROLi bit fields

Name Bit(s) Writable Reset Comment

ENABLE 0 RW 0x0 Enable the timer

INTENABLE 1 RW 0x0 Enable the timer interrupt.

STATUS 2 RW 0x0

Status of the timer interrupt. When 1 a
timer has expired. Writing a 0 to this bit
has no effect. Writing a 1 to this bit clears
it.

Reserved [31:3] RO 0x0 Reserved

ST231 Timers

7645929 75/331

10.3 Programming the timers
The TIMECONSTi registers set the value to be reloaded into the corresponding timer. The
value is loaded on the timer tick after a zero is reached, such that, the duration between
timers reaching zero is (TIMECONSTi + 1). For example, setting the value to 99 causes a
reload and timer interrupt (if enabled) every 100 ticks.

Peripheral addresses ST231

76/331 7645929

11 Peripheral addresses

On the ST231 the interrupt controller, debug support registers (DSU), DSU ROM and the
timers are memory mapped peripherals. Under normal usage these peripherals should, with
the exception of the DSU ROM, be mapped in an uncacheable region in the TLB.

11.1 Access to peripheral registers
Peripheral registers are accessed through an STBus port. On the ST231 writes to
addresses on the STBus are posted (the processor does not wait for them to complete
before continuing execution). In order to guarantee that a write to a peripheral register has
completed it is necessary to issue a sync operation.

Note: This is essential in order to guarantee that an interrupt handler has cleared an interrupt or
disabled a timer before doing an rfi.

The ST231 peripheral registers only support word load and store transactions, other
accesses result in a bus error. The DSU ROM can be accessed by word loads and
instruction cache fills, word stores are ignored and other accesses result in a bus error.

11.2 Peripheral addresses
The base address of the peripheral registers is the value of the PERIPHERAL_BASE
register. See Chapter 9: Control registers on page 67.

The access columns in Table 33 and Table 34 list the access rights for the listed registers.
The abbreviations used in this column are:

NA No access (protection fault).

RO Read only, writes ignored.

ROF Read only fault on write.

RW Read/write.

CF Configurable read/write or no access.

CFRO Configurable read only or no access.

ST231 Peripheral addresses

7645929 77/331

11.2.1 Interrupt controller and timer registers

The interrupt controller and timer registers are all relative to PERIPHERAL_BASE. They are
listed in Table 33.

Table 33. Interrupt controller - BASE: INTCR_BASE

Name Offset
Access

(U/S)
Reset Comment

INTPENDING0 0x0000 RO 0x0 Interrupt pending bits 31:0.

INTPENDING1 0x0008 RO 0x0 Interrupt pending bits 63:32.

INTMASK0 0x0010 RW 0x0 Interrupt mask bits 31:0.

INTMASK1 0x0018 RW 0x0 Interrupt mask bits 63:32.

INTTEST0 0x0020 RW 0x0 Interrupt test register bits 31:0.

INTTEST1 0x0028 RW 0x0 Interrupt test register bits 63:32.

INTCLR0 0x0030 RW 0x0 Interrupt clear register bits 31:0.

INTCLR1 0x0038 RW 0x0 Interrupt clear register bits 63:32.

INTSET0 0x0040 RW 0x0 Interrupt set register bits 31:0.

INTSET1 0x0048 RW 0x0 Interrupt clear register bits 63:32.

INTMASKCLR0 0x0108 RW 0x0 Interrupt mask clear bits 31:0.

INTMASKCLR1 0x0110 RW 0x0 Interrupt mask clear bits 63:32.

INTMASKSET0 0x0118 RW 0x0 Interrupt mask set bits 31:0.

INTMASKSET1 0x0120 RW 0x0 Interrupt mask set bits 63:32.

TIMECONST0 0x0200 RW 0x0 Timer constant.

TIMECOUNT0 0x0208 RW 0x0 Timer counter.

TIMECONTROL0 0x0210 RW 0x0 Timer control

TIMECONST1 0x0218 RW 0x0 Timer constant.

TIMECOUNT1 0x0220 RW 0x0 Timer counter.

TIMECONTROL1 0x0228 RW 0x0 Timer control

TIMECONST2 0x0230 RW 0x0 Timer constant.

TIMECOUNT2 0x0238 RW 0x0 Timer counter.

TIMECONTROL2 0x0240 RW 0x0 Timer control.

TIMEDIVIDE 0x0248 RW 0x0 Timer divide.

RESERVED50 0x0050 RO 0x0 Reserved

RESERVED58 0x0058 RO 0x0 Reserved

RESERVED60 0x0060 RO 0x0 Reserved

RESERVED68 0x0068 RO 0x0 Reserved

RESERVED70 0x0070 RO 0x0 Reserved

RESERVED78 0x0078 RO 0x0 Reserved

RESERVED80 0x0080 RO 0x0 Reserved

Peripheral addresses ST231

78/331 7645929

11.2.2 DSU registers

The debug support unit registers are all relative to PERIPHERAL_BASE. They are listed in
Table 34.

RESERVED88 0x0088 RO 0x0 Reserved

RESERVED90 0x0090 RO 0x0 Reserved

RESERVED98 0x0098 RO 0x0 Reserved

RESERVED100 0x0100 RO 0x0 Reserved

Table 33. Interrupt controller - BASE: INTCR_BASE (continued)

Name Offset
Access

(U/S)
Reset Comment

Table 34. Debug support unit - BASE: DSU_BASE

Name Offset
Access

(U/S)
Reset Comment

DSR0 0x0000 RO
See Table 28
on page 72.

DSU version.

DSR1 0x0008 RW
See Table 54
on page 92.

DSU status.

DSR2 0x0010 RW 0x0 DSU output.

DSR3 0x0018 RW 0x0 DSU communication.

DSR4 0x0020 RW 0x0 DSU communication.

DSR5 0x0028 RW 0x0 DSU communication.

DSR6 0x0030 RW 0x0 DSU communication.

DSR7 0x0038 RW 0x0 DSU communication.

DSR8 0x0040 RW 0x0 DSU communication.

DSR9 0x0048 RW 0x0 DSU communication.

DSR10 0x0050 RW 0x0 DSU communication.

DSR11 0x0058 RW 0x0 DSU communication.

DSR12 0x0060 RW 0x0 DSU communication.

DSR13 0x0068 RW 0x0 DSU communication.

DSR14 0x0070 RW 0x0 DSU communication.

DSR15 0x0078 RW 0x0 DSU communication.

DSR16 0x0080 RW 0x0 DSU communication.

DSR17 0x0088 RW 0x0 DSU communication.

DSR18 0x0090 RW 0x0 DSU communication.

DSR19 0x0098 RW 0x0 DSU communication.

DSR20 0x00a0 RW 0x0 DSU communication.

DSR21 0x00a8 RW 0x0 DSU communication.

ST231 Peripheral addresses

7645929 79/331

11.2.3 DSU ROM

The DSU ROM starts from PERIPHERAL_BASE + 0x4000. See Chapter 13: Debugging
support (TAPLink) on page 87.

DSR22 0x00b0 RW 0x0 DSU communication.

DSR23 0x00b8 RW 0x0 DSU communication.

DSR24 0x00c0 RW 0x0 DSU communication.

DSR25 0x00c8 RW 0x0 DSU communication.

DSR26 0x00d0 RW 0x0 DSU communication.

DSR27 0x00d8 RW 0x0 DSU communication.

DSR28 0x00e0 RW 0x0 DSU communication.

DSR29 0x00e8 RW 0x0 DSU communication.

DSR30 0x00f0 RW 0x0 DSU communication.

DSR31 0x00f8 RW 0x0 DSU communication.

Table 34. Debug support unit - BASE: DSU_BASE (continued)

Name Offset
Access

(U/S)
Reset Comment

Interrupt controller ST231

80/331 7645929

12 Interrupt controller

The ST231 interrupt controller supports up to 64 interrupt sources. The system is
programmed using three pairs of 32-bit memory-mapped control registers.

12.1 Architecture
The structure of the interrupt controller is shown in Figure 11.

Figure 11. Interrupt controller

12.2 Operation
An interrupting event takes an interrupt line high. This is then sampled, causing the
corresponding bit in the INTPENDING register to be set. The INTPENDING register is then
parallel ANDed with the INTMASK register. The masked interrupts are then ORed into a
single interrupt line that is presented to the processor core.

This architecture ensures that:

● all external interrupts interrupt the processor

● interrupts can be individually enabled or disabled

Setting or clearing bits in the INTMASK registers enables or disables the corresponding
interrupt lines.

Note: The interrupt handling code is responsible for prioritization of interrupts. No hardware
support is provided.

External
P

ending register

OR
Interrupt line

M
ask register

events

to processor

“AND”

64 lines

“OR”

64 bits

64 lines

Test register

(3 dedicated
to the timer)

Master interrupt input

64 bits

ST231 Interrupt controller

7645929 81/331

12.2.1 Test register

External interrupts are ORed with the contents of the INTTEST register before being
sampled by the INTPENDING register. This allows the programmer to simulate interrupts
into the processor for test purposes.

12.2.2 Master interrupt input

An external interrupt controller can be added to the core through the IRQ_MASTER_IN port.
IRQ_MASTER_IN cannot be masked.

This is intended to be used instead of the internal interrupt controller. In this case, all
interrupt inputs (IRQ) should be tied to zero, internal interrupts should be masked and timer
interrupts outputs (IRQ_TIMER_OUT) should be connected to the external interrupt
controller and dealt with through that.

12.3 Interrupt registers
For the addresses of these memory mapped registers see Chapter 11: Peripheral
addresses on page 76.

12.3.1 Interrupt pending register (INTPENDING)

The INTPENDING registers are a pair of 32-bit registers that hold the current interrupt
status. Bits in these registers are set by external interrupts or by the INTTEST registers.

Three bits in the INTPENDING registers are preassigned to the ST231 timer peripherals.
The remaining 60 bits can be assigned to other peripherals or external devices.

Table 35 and Table 37 list the bit fields in the INTPENDING registers, which indicate the
pending interrupts.

INTPENDING0

INTPENDING1

Table 35. INTPENDING0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RO 0x0 Interrupt is pending from timer 0.

TIMER1 1 RO 0x0 Interrupt is pending from timer 1.

TIMER2 2 RO 0x0 Interrupt is pending from timer 2.

Reserved [31:3] RO 0x0
System defined interrupts 31:3 – refer to
data sheet.

Table 36. INTPENDING1 bit fields

Name Bit(s) Writable Reset Comment

Reserved [31:0] RO 0x0
System defined interrupts 63:32 – refer to
data sheet.

Interrupt controller ST231

82/331 7645929

12.3.2 Interrupt mask register (INTMASK)

The INTMASK registers are a pair of 32-bit registers whose contents are AND-ed with the
corresponding INTPENDING register. They are used to enable and disable external
interrupts.

Interrupts are enabled by setting, and disabled by clearing, the corresponding bits in the
INTMASK registers.

Table 37 and Table 38 list the bits of the INTMASK register.

INTMASK0

INTMASK1

12.3.3 Interrupt mask set and clear registers (INTMASKSET and
INTMASKCLR)

These registers provide a mechanism for atomically setting or clearing bits in the INTMASK
registers, and remove the requirement for an uninterruptible Read-Modify-Write sequence.

When a program stores a 32-bit value into either of the INTMASKSET registers, any bits
that are set to 1 cause the corresponding bit in the corresponding INTMASK register to be
set to 1. Those bits that are 0 have no effect on the corresponding bits in the corresponding
INTMASK register.

When a program stores a 32-bit value into either of the INTMASKCLR registers, any bits
that are set to 1 cause the corresponding bit in the corresponding INTMASK register to be
set to 0. Those bits that are 0 have no effect on the corresponding bits in the corresponding
INTMASK register.

Table 37. INTMASK0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RW 0x0 Mask bit for timer 0

TIMER1 1 RW 0x0 Mask bit for timer 1

TIMER2 2 RW 0x0 Mask bit for timer 2

Reserved [31:3] RW 0x0
Mask bits for system defined interrupts
31:3 – refer to data sheet.

Table 38. INTMASK1 bit fields

Name Bit(s) Writable Reset Comment

Reserved [31:0] RW 0x0
Mask bits for system defined interrupts
63:32 – refer to data sheet.

ST231 Interrupt controller

7645929 83/331

Table 39 shows the outcome of writing a value V to any of the four registers.

OR is a bitwise OR, AND is a bitwise AND and ~V is the bitwise complement of V.

Table 40 and Table 41 list the bits of the INTMASKCLR registers and Table 42 and Table 43
list the bits of the INTMASKSET registers.

INTMASKCLR0

INTMASKCLR1

INTMASKSET0

Table 39. Action of interrupt mask set and clear registers

Value “V” written to:
New value

INTMASK0 INTMASK1

INTMASKSET0 INTMASK0 OR V INTMASK1

INTMASKSET1 INTMASK0 INTMASK1 OR V

INTMASKCLR0 INTMASK0 AND ~V INTMASK1

INTMASKCLR1 INTMASK0 INTMASK1 AND ~V

Table 40. INTMASKCLR0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 WO 0x0 Mask clear bit for timer 0

TIMER1 1 WO 0x0 Mask clear bit for timer 1

TIMER2 2 WO 0x0 Mask clear bit for timer 2

Reserved [31:3] WO 0x0
Mask clear bits for system defined
interrupts 31:3 – refer to data sheet.

Table 41. INTMASKCLR1 bit fields

Name Bit(s) Writable Reset Comment

Reserved [31:0] WO 0x0
Mask clear bits for system defined
interrupts 63:32 – refer to data sheet.

Table 42. INTMASKSET0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 WO 0x0 Mask set bit for timer 0

TIMER1 1 WO 0x0 Mask set bit for timer 1

TIMER2 2 WO 0x0 Mask set bit for timer 2

Reserved [31:3] WO 0x0
Mask set bits for system defined
interrupts 31:3 – refer to data sheet.

Interrupt controller ST231

84/331 7645929

INTMASKSET1

12.3.4 Interrupt test register (INTTEST)

The INTTEST registers are a pair of 32-bit registers whose contents are ORed with the
assertion state of external interrupts. It provides a mechanism for simulating interrupts to the
processor.

Setting bits in the INTTEST registers causes the corresponding bits in the corresponding
INTPENDING register to be set.

Table 44 and Table 45 list the bits of the INTTEST register.

INTTEST0

INTTEST1

12.3.5 Interrupt set and clear registers (INTSET and INTCLR)

These registers provide a mechanism for atomically setting or clearing bits in the INTTEST
registers, and remove the requirement for an uninterruptible Read-Modify-Write sequence.

When a program stores a 32-bit value into either of the INTSET registers, any bits that are
set to 1 cause the corresponding bit in the corresponding INTTEST register to be set to 1.
Those bits that are 0 have no effect on the corresponding bits in the corresponding
INTTEST register.

When a program stores a 32-bit value into the INTCLR register, any bits that are set to 1
cause the corresponding bit in the corresponding INTTEST register to be set to 0. Those
bits that are 0 have no effect on the corresponding bits in the corresponding INTTEST
register.

Table 43. INTMASKSET1 bit fields

Name Bit(s) Writable Reset Comment

Reserved [31:0] WO 0x0
Mask set bits for system defined
interrupts 63:32 – refer to data sheet.

Table 44. INTTEST0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RW 0x0 Interrupt test bit for timer 0

TIMER1 1 RW 0x0 Interrupt test bit for timer 1

TIMER2 2 RW 0x0 Interrupt test bit for timer 2

Reserved [31:3] RW 0x0
Interrupt test bits for system defined
interrupts 31:3 – refer to data sheet.

Table 45. INTTEST1 bit fields

Name Bit(s) Writable Reset Comment

Reserved [31:0] RW 0x0
Interrupt test bits for system defined
interrupts 63:32 – refer to data sheet.

ST231 Interrupt controller

7645929 85/331

Table 46 shows the outcome of writing a value V to any of the four registers.

OR is a bitwise OR, AND is a bitwise AND and ~V is the bitwise complement of V.

Table 47 and Table 48 list the bits of the INTCLR registers and Table 49 and Table 50 list the
bits of the INTSET registers.

INTCLR0

INTCLR1

INTSET0

Table 46. Action of interrupt set and clear registers

Value “V” written to:
New value

INTTEST0 INTTEST1

INTSET0 INTTEST0 OR V INTTEST1

INTSET1 INTTEST0 INTTEST1 OR V

INTCLR0 INTTEST0 AND ~V INTTEST1

INTCLR1 INTTEST0 INTTEST1 AND ~V

Table 47. INTCLR0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 WO 0x0 Interrupt clear bit for timer 0

TIMER1 1 WO 0x0 Interrupt clear bit for timer 1

TIMER2 2 WO 0x0 Interrupt clear bit for timer 2

Reserved [31:3] WO 0x0
Interrupt clear bits for system defined
interrupts 31:3 – refer to data sheet.

Table 48. INTCLR1 bit fields

Name Bit(s) Writable Reset Comment

Reserved [31:0] WO 0x0
Interrupt clear bits for system defined
interrupts 63:32 – refer to data sheet.

Table 49. INTSET0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 WO 0x0 Interrupt set bit for timer 0

TIMER1 1 WO 0x0 Interrupt set bit for timer 1

TIMER2 2 WO 0x0 Interrupt set bit for timer 2

Reserved [31:3] WO 0x0
Interrupt set bits for system defined
interrupts 31:3 – refer to data sheet.

Interrupt controller ST231

86/331 7645929

INTSET1

Table 50. INTSET1 bit fields

Name Bit(s) Writable Reset Comment

Reserved [31:0] WO 0x0
Interrupt set bits for system defined
interrupts 63:32 – refer to data sheet.

ST231 Debugging support (TAPLink)

7645929 87/331

13 Debugging support (TAPLink)

Note: The debugging support specified in this and the next chapter is implementation dependant.
Check the product datasheet for details as to which support is provided.

Debugging support on the ST231 is provided by 4 main components.

13.1 Core
This section describes debug interrupts, including entering and exiting debug mode, and
hardware breakpoint support.

13.1.1 Debug interrupts

The ST231 can accept and service interrupts from the DSU. Debug interrupts are higher
priority than normal interrupts, cannot be masked, and place the ST231 in a debug state.

A debug interrupt can be triggered either by an event from the host (see Generating debug
interrupts on page 97) or by an external trigger, see DSU status register (DSR1) on
page 91.

Core The ST231 core includes a non-maskable debug interrupt, and additional
state to support the taking of debug interrupts. The core also contains
hardware breakpoint support.

DSU Shared DSU registers and state machine which generates debug interrupts
and send responses over debug interface.

Debug ROM Default program run in response to debug interrupt. This program uses the
DSU registers to send higher level protocols over the debug interface. This
program implements the dsu_peek, dsu_poke, dsu_call_or_return and
dsu_flush operations.

Host debug
interface

The hardware link, using the TAPLink protocol, to any connected host target
interface (HTI). Supports peek, poke, peeked and event messages.

Debugging support (TAPLink) ST231

88/331 7645929

Entering debug mode

The ST231 handles a debug interrupt differently to other external interrupts. When a debug
interrupt is taken, the TLB is disabled and the processor jumps to the start of the debug
ROM. As the TLB is disabled, memory accesses above 0xFFFF 0000 access control
registers (see Section 6.5.5: Data accesses on page 45). If access to physical memory from
0xFFFF 0000 upwards is required, the TLB must be re-enabled.

Taking a debug interrupt can be summarized as:

NEXT_PC ← DEBUG_HANDLER_PC; // Branch to handler

SAVED_SAVED_PSW ← SAVED_PSW; // Save the SAVED_PSW and
SAVED_SAVED_PC ← SAVED_PC; // SAVED_PC

SAVED_PSW ← PSW; // Save the PSW and PC
SAVED_PC ← BUNDLE_PC; //

PSW[USER_MODE] ← 0; // Enter supervisor mode
PSW[INT_ENABLE] ← 0; // Disable interrupts
PSW[TLB_ENABLE] ← 0; // Disables the TLB
PSW[DEBUG_MODE] ← 1; // Enter debug mode
PSW[DBREAK_ENABLE] ← 0; // Disable DBreak
PSW[IBREAK_ENABLE] ← 0; // Disable IBreak

The EXCAUSENO and EXADDRESS registers are not updated when entering debug
mode.

If the core accepts another debug interrupt whilst in debug mode, and if the debug interrupt
is still pending when it leaves debug mode, the interrupt re-enters as normal.

The default debug ROM itself is not aware of virtual memory issues and provides the host
with a physical view of memory. If address translation is in use, the operating system must
install its own debug handler that is aware of virtual memory.

Exiting debug mode

When the DEBUG_MODE bit is cleared in the PSW, the ST231 exits debug mode and re-
enters normal mode. If a debug interrupt is pending when the core leaves debug mode, it is
re-entered as normal, see Entering debug mode on page 88.

Although clearing the DEBUG_MODE bit causes the ST231 to exit debug mode, attempting
to set the DEBUG_MODE bit when it is not already set does not cause the core to enter
debug mode and the DEBUG_MODE bit remains clear. The core can only enter debug
mode by taking a debug interrupt from the DSU.

ST231 Debugging support (TAPLink)

7645929 89/331

13.1.2 Hardware breakpoint support

Breakpoints are supported by:

● enable bits in the PSW

● address registers to define memory ranges

● control register to specify comparison operations

The safe way to use the breakpoint registers is to disable the breakpoints and then set the
control and address registers before enabling the breakpoints again. This prevents spurious
breaks due to inconsistent control and address registers.

Enable bits

Breakpoints are enabled though the PSW, one bit for instruction breakpoints and another
data breakpoints, see Section 3.4: Program status word (PSW) on page 19.

Address registers

The ST231 uses two 32-bit registers to define addresses for the instruction and data
breakpoints (IBREAK_LOWER, DBREAK_LOWER, IBREAK_UPPER, DBREAK_UPPER).
These registers are all reset to the value 0.

Control registers

The IBREAK_CONTROL and DBREAK_CONTROL registers determine the comparison
operations performed on the breakpoint addresses. If the comparison is true, then a
breakpoint exception (IBREAK or DBREAK) is signaled.

For instruction breakpoints, the currently executing bundle address (PC) is used for
comparison.

For data breakpoints, the data effective address of loads (both standard and dismissible)
and stores are used for comparison. Prefetches and purges do not trigger data breakpoints.

Table 51 and Table 52 provide details of the comparison operations defined for the
instruction and data breakpoints.

Note: As the PC does not contain bits 1:0, these bits are ignored in any instruction address
comparisons.

Table 51. DBREAK_CONTROL bit fields

Name Bit(s) Writable Reset Comment

BRK_IN_RANGE 0 RW 0x0
Break if address >= lower && address
<=upper.

BRK_OUT_RANGE 1 RW 0x0
Break if address < lower || address >
upper.

BRK_EITHER 2 RW 0x0
Break if address == lower || address ==
upper.

BRK_MASKED 3 RW 0x0 Break if address & upper == lower.

Reserved [31:4] RO 0x0 Reserved

Debugging support (TAPLink) ST231

90/331 7645929

13.2 Debug support unit
The DSU allows both software and hardware to be debugged from a host by providing direct
access to the ST231 core.

13.2.1 Architecture

Figure 12 shows the architecture of the DSU.

Figure 12. DSU architecture

Table 52. IBREAK_CONTROL bit fields

Name Bit(s) Writable Reset Comment

BRK_IN_RANGE 0 RW 0x0
Break if address >= lower && address
<=upper.

BRK_OUT_RANGE 1 RW 0x0
Break if address < lower || address >
upper.

BRK_EITHER 2 RW 0x0
Break if address == lower || address ==
upper.

BRK_MASKED 3 RW 0x0 Break if address & upper == lower.

Reserved [31:4] RO 0x0 Reserved

ST220 core

DEBUG_INTERRUPT_TAKEN

Control
block

Debug Support Unit

Shared
register

bank

DEBUG_INTERRUPT

STBus port

Debug
ROM

WRITEENABLE

Host
debug

interface
Host

ST231 core

ST231 Debugging support (TAPLink)

7645929 91/331

The DSU is controlled by a host through the debug interface. The DSU control block
interacts directly with the ST231 core through the DEBUG_INTERRUPT and
DEBUG_INTERRUPT_TAKEN signals, and the shared register block.

The shared registers can also be accessed through the STBus port.

13.2.2 Shared register bank

The 32 shared registers consists of 3 reserved registers (DSR0-2) and 29 general purpose
registers (DSR3-31). These are used to implement communication between the host and
the target by the debug handler.

The shared register bank is 32-bits wide and only supports 32-bit STBus operations.

Table 53 lists the DSU shared registers.

The STBus addresses of the DSU registers are described in Chapter 11: Peripheral
addresses on page 76.

Shared access conventions

The DSU shared registers are accessible independently from both the DSU and the STBus.
The ST231 and DSU have no hardware support for synchronizing writes, so software
conventions are used to prevent write conflicts.

13.2.3 DSU control registers

This subsection describes the DSU control registers: DSU version register, DSU status
register and DSU output register.

DSU version register (DSR0)

The DSU version register is a read-only ID register. The fields are identical to the version
register described in Table 28: VERSION bit fields on page 72.

DSU status register (DSR1)

The DSU status register contains the DSU status and control bits. See Table 54.

Table 53. DSR_REG values

Name Value Comment

DSR0 0 DSU version register, contains version number for DSU, core and chip.

DSR1 1 DSU status register, contains DSU control and status bits.

DSR2 2 DSU output register, supports message transfer from target to HTI.

DSR3-31 3-31 General purpose registers.

Debugging support (TAPLink) ST231

92/331 7645929

DSU output register (DSR2)

The lower 8 bits of the DSU output register are sent to the TAPLink (to any attached host)
on being written. See Table 55.

If OUTPUT_PENDING is non-zero then the byte most recently written has not yet been sent
to the host target interface (HTI) and additional writes to the DSR2 do not affect the byte
being sent even if they change the contents of the register.

Messages sent using the DSR2 may be delayed if the DSU is busy.

Table 54. DSR1 bit fields

Name Bit(s) Writable Reset Comment

DEBUG_INTERRUPT_TAKEN 0 RO 0x0
Value of
DEBUG_INTERRUPT_TAKE
N signal, active high.

SUPERVISOR_WRITE_ENABLE 1 RW 0x1
STBus writes enabled if the
core is in supervisor mode
(regardless of debug mode).

USER_WRITE_ENABLE 2 RW 0x0
STBus writes enabled if the
core is in user mode
(regardless of debug mode).

BIGENDIAN 3 RO 0x0
When 1 the core is in big
endian mode. When 0 the
core is in little endian.

Reserved 4 RO 0x0 Reserved

OUTPUT_PENDING 5 RO 0x0
DSR2 contains a byte to be
sent to the HTI which has not
yet been sent.

TRIGGER_IN 6 RO 0x0
Current value of the trigger in
pin.

TRIGGER_OUT 7 RW 0x0
Current value of the trigger
out pin.

TRIGGER_ENABLE 8 RW 0x0
Enables/disables debug
interrupts on trigger in.

Reserved [15:9] RO 0x0 Reserved

SW_FLAGS [31:16] RW 0x0
Reserved for future software
use.

Table 55. DSR2 bit fields

Name Bit(s) Writable Reset Comment

DATA [7:0] RW 0x0 Output data.

Reserved [31:8] RO 0x0 Always zero.

ST231 Debugging support (TAPLink)

7645929 93/331

13.3 Debug ROM
The 1024-byte debug ROM is an ST231 peripheral. This contains the debug initialization
loop and the default debug handler.

13.3.1 Debug initialization loop

On reset, the ST231 starts executing at the beginning of the boot ROM. However, if the
DEBUG_ENABLE signal is asserted execution starts at the debug initialization loop (this is
the first word of the debug ROM). This word contains a single syllable bundle which loops
back to the same location, allowing the DSU to intervene and configure the core before it
executes any code.

Note: Where the DEBUG_ENABLE signal cannot be asserted, the boot ROM should start with a
tight loop, or perhaps just a delay loop, to allow time for the DSU to interrupt the processor
before it takes any action.

13.3.2 Default debug handler

The default debug handler program starts at the second word of the debug ROM. It supports
simple host-target debugging and the ability to install a more complex debug handler. The
STBus address of the ROM is given in Chapter 11: Peripheral addresses on page 76.

Operation

On taking a debug interrupt, the default debug handler is executed. This first tests if a user
handler is installed (that is, DSR3 is non zero) and if so branches to this address. The
default debug handler then sends an event message to the host. This occurs even if
DSU_COMMAND is 0. The handler then enters the command loop.

Command loop

The command loop reads and processes commands from a host, delivered via the TAPLink,
to the DSU shared registers. Usage of the designated registers is shown in Table 56.

When the command is complete, the default debug handler stores the results in the
argument registers and sets a success code in the response register.

Table 56. Command register usage

Register name Host use Target use

DSU_COMMAND Set with command Zeroed when command accepted

DSU_ARG1,2,3 Set with arguments for command,
before setting DSU_COMMAND

Set with response arguments before
setting DSU_RESPONSE

DSU_RESPONSE Zeroed after being read Set to indicate outcome of a command

Debugging support (TAPLink) ST231

94/331 7645929

Default handler commands

There are four default handler commands:

● DSU_PEEK (DSU_COMMAND = 4)

Reads the 32-bit memory location addressed by DSU_ARG1 and returns the data in
DSU_ARG1. The address must be word aligned. If the operation is successful
DSU_RESPONSE is set to DSU_PEEKED (1) and a TAPLINK_EVENT_DEFAULT
event is written to DSR2 causing an event with reason = 1 to be sent to the host.

Note: Any code greater than 4 is interpreted as a DSU_PEEK command.

● DSU_POKE (DSU_COMMAND = 3)

Writes the 32-bit data word in DSU_ARG2 to the memory location addressed by
DSU_ARG1. The address must be word aligned. If the operation is successful
DSU_RESPONSE is set to DSU_POKED (2) and a TAPLINK_EVENT_DEFAULT
event is written to DSR2 causing an event with reason = 1 to be sent to the host.

● DSU_CALL_OR_RETURN (DSU_COMMAND = 1)

Calls the routine addressed by DSU_ARG1. If the called routine does not return this is
effectively a branch. If DSU_ARG1 is zero this is a return call. Just before calling the
user routine, or returning from a call, DSU_RESPONSE is set to DSU_RETURNING
(3) and a TAPLINK_EVENT_DEFAULT event is written to DSR2 causing an event with
reason = 1 to be sent to the host.

● DSU_FLUSH (DSU_COMMAND = 2)

Flushes the address range starting at the value in DSU_ARG1 and ending at the value
in DSU_ARG2 from data and instruction caches. If a command was successful
DSU_RESPONSE is set to DSU_FLUSHED (4) and a TAPLINK_EVENT_DEFAULT
event is written to DSR2 causing an event with reason = 1 to be sent to the host.

Trap handler

If a trap occurs while a command is being processed (for example, an invalid address is
supplied on a peek or poke), the core deals with it as follows.

● The operation in progress is completed by loading the PC of the offending bundle, the
exception cause number, and the exception address into DSR_ARG1, DSR_ARG2
and DSR_ARG3 respectively.

● DSU_RESPONSE is set to DSU_GOT_EXCEPTION (Code = 5) and a
TAPLINK_EVENT_DEFAULT (Reason = 7) event is sent to the HTI.

● As with all exceptions, the SAVED_PC, SAVED_PSW, EXCAUSENO and
EXADDRESS registers are updated when the exception occurs. The debug handler
restores the values of these registers upon exit.

Context restore

Prior to exit the default handler restores any state it has altered.

Note: The context may have been further altered by commands issued.

ST231 Debugging support (TAPLink)

7645929 95/331

Default handler register usage

The following DSU registers are defined and used by the default debug handler program:

Table 57. DSU command registers

DSR
number

Designation Comment

DSR3 DSR_USER_DEBUG_HANDLER Control switches to this address if content is
non-zero

DSR4-8(1)

1. Argument registers are placed before the command register in the address space so that a command and
its arguments can be loaded with a single poke operation.

DSU_ARG4-8 Not used in current debug handler

DSR9(1) DSU_ARG3 Command argument 3

DSR10(1) DSU_ARG2 Command argument 2. Used by DSU_POKE
and DSU_FLUSH

DSR11(1) DSU_ARG1
Command argument 1. Used by all DSU
commands

DSR12 DSU_COMMAND Command register. Written by HTI, cleared by
target when command accepted

DSR13 DSU_RESPONSE
Response register. Set by target to a
completion code, cleared by HTI before
issuing next command

DSR14 Context saving Saves SCR4_REG(2)

2. As defined by the toolchain header files.

DSR15 Context saving Saves SCR1_REG(2)

DSR16 Context saving Saves SCR2_REG(2)

DSR17 Context saving Saves SCR3_REG(2)

DSR18 Context saving Saves the branch bits

DSR19 Context saving Saves LINK_REG(2)

DSR20 Context saving Saves HANDLER_PC

DSR21 Context saving Saves SAVED_SAVED_PSW

DSR22 Context saving Saves SAVED_SAVED_PC

DSR23 Context saving Saves SAVED_PSW

DSR24 Context saving Saves SAVED_PC

DSR25 Context saving Saves EXCAUSENO

DSR26 Context saving Saves EXADDRESS

DSR27-30 Unused Unused

DSR31 Context saving Saves DSR1

Debugging support (TAPLink) ST231

96/331 7645929

13.4 Host debug interface
The exchange of information with the host is through an HTI adapter. The DSU connects to
the HTI using a JTAG interface, and the HTI connects to the host using Ethernet or USB.
This is illustrated in Figure 13.

All host-target communication is carried out using peek, poke, peeked and event
messages, passed between the host and the DSU.

Figure 13. DSU overview

13.4.1 Message format

Commands are sent to the DSU in TAPLink message format consisting of a bidirectional
byte stream which is interpreted by the DSU as a stream of commands. Figure 14 shows the
DSU commands in TAPLink message format.

Figure 14. DSU commands

Note: Messages are transmitted little endian, irrespective of the endianness of the ST231 core.

Host
HTI ST200 core

JTAG
DSUadapter

Poke

HTI initiated messages

Response messages

DSR address First data word Second...

Peek DSR address

Peeked First data word Second data word Third...

Event

Header
byte

2nd
byte

HTI or target initiated messages

ST231 Debugging support (TAPLink)

7645929 97/331

Header bytes

Header bytes contain command-specific information such as the range of registers to be
accessed. Header byte formats for the 4 DSU commands are illustrated in Figure 15.

Figure 15. Header bytes

Peek and poke operation

The peek and poke commands read and write the shared DSU registers. Each command
uses a 6-bit count and one byte as a register address. The byte address references the first
register in the range, and the count indicates how many registers are accessed. Counts
greater than 32 have undefined results.

The result of a peek command is returned to the host using a PEEKED message.

Note: PEEKED messages are not supported from the host to the target and their behavior is
undefined.

13.4.2 Operation

The operation of the host debug interface operation.

Generating debug interrupts

To interrupt the core, the host sends an EVENT with reason = 1. The EVENT is decoded by
the DSU and a DEBUG_INTERRUPT signal is sent to the ST231. When the ST231 takes
the interrupt (as described in Section 13.1.1: Debug interrupts on page 87), the
DEBUG_INTERRUPT_TAKEN signal goes high.

The functionality available to the host depends upon the debug handler program running.
The default handler uses designated shared registers to provide the higher level operations
described in Default handler commands on page 94.

Core initiated events

The core can also request service from the host by sending it an EVENT message. This is
done by writing the EVENT to the DSR2 (the output register). The channel and reason fields
of the event message are not examined by the hardware and can be used as desired by the
software.

01234567
Poke 00word count

01234567
Peek 10word count

01234567
Peeked 01word count

01234567
Event 11

Header byte Subsequent bytes

reasonchannel

Debugging support (JTAG) ST231

98/331 7645929

14 Debugging support (JTAG)

Note: The debugging support specified in this and the previous chapter is implementation specific.
Check the product datasheet for details as to which support is provided.

Debugging support on the ST231 is provided by 4 main components.

14.1 Core
This section describes debug interrupts, including entering and leaving debug mode, and
hardware breakpoints.

14.1.1 Debug interrupts

The ST231 can accept and service interrupts from the DSU. Debug interrupts are higher
priority than normal interrupts, cannot be masked, and place the ST231 in a debug state.

A debug interrupt can be triggered either by an event from the host (see Host to DSU events
on page 110) or by an external trigger, see DSU status register (DSR1) on page 102.

Entering debug mode

A debug interrupt is handled differently to other external interrupts. When a debug interrupt
is taken, the TLB is disabled and the processor jumps to the start of the debug ROM. As the
TLB is disabled, memory accesses above 0xFFFF 0000 access control registers (see
Section 6.5.5: Data accesses on page 45). If access to physical memory from
0xFFFF 0000 upwards is required, the TLB must be re-enabled.

Taking a debug interrupt can be summarized as:
NEXT_PC ← DEBUG_HANDLER_PC; // Branch to handler

SAVED_SAVED_PSW ← SAVED_PSW; // Save the SAVED_PSW and
SAVED_SAVED_PC ← SAVED_PC; // SAVED_PC

SAVED_PSW ← PSW; // Save the PSW and PC
SAVED_PC ← BUNDLE_PC; //

Core The ST231 core includes a non maskable debug interrupt and additional
state to support the taking of debug interrupts. The core also contains
hardware breakpoint support.

DSU Shared DSU registers and state machine which generates debug
interrupts and send responses over debug interface.

Debug ROM Default program run in response to debug interrupt. This program uses the
DSU registers to send higher level protocols over the debug interface. This
program implements the dsu_peek, dsu_poke, dsu_call_or_return and
dsu_flush operations.

Host debug
interface

The hardware link, using the JTAG protocol, to a host via a host target
interface (HTI). Supports peek, poke, peeked, poked, event, nop and
event_ack messages.

ST231 Debugging support (JTAG)

7645929 99/331

PSW[USER_MODE] ← 0; // Enter supervisor mode
PSW[INT_ENABLE] ← 0; // Disable interrupts
PSW[TLB_ENABLE] ← 0; // Disables the TLB
PSW[DEBUG_MODE] ← 1; // Enter debug mode
PSW[DBREAK_ENABLE] ← 0; // Disable DBreak
PSW[IBREAK_ENABLE] ← 0; // Disable IBreak

The EXCAUSENO and EXADDRESS registers are not updated when entering debug
mode.

If the core accepts another debug interrupt whilst in debug mode, and if the debug interrupt
is still pending when it leaves debug mode, the interrupt re-enters as normal.

The default debug ROM itself is not aware of virtual memory issues and provides the host
with a physical view of memory. If address translation is in use, the operating system must
install its own debug handler that is aware of virtual memory.

Exiting debug mode

When the DEBUG_MODE bit is cleared in the PSW, the ST231 exits debug mode and re-
enters normal mode. If a debug interrupt is pending when the core leaves debug mode, it is
re-entered as normal, see Entering debug mode on page 98.

Although clearing the DEBUG_MODE bit causes the ST231 to exit debug mode, attempting
to set the DEBUG_MODE bit when it is not already set does not cause the core to enter
debug mode and the DEBUG_MODE bit remains clear. Debug mode can only be entered
by taking a debug interrupt from the DSU.

14.1.2 Hardware breakpoint support

Breakpoints are supported by:

● enable bits in the PSW

● address registers to define memory ranges

● control register to specify comparison operations

The safe way to use the breakpoint registers is to disable the breakpoints and then set the
control and address registers before enabling the breakpoints again. This prevents spurious
breaks due to inconsistent control and address registers.

Enable bits

Breakpoints are enabled though the PSW, one bit for instruction breakpoints and another
data breakpoints, see Section 3.4: Program status word (PSW) on page 19.

Address registers

The ST231 uses two 32-bit registers to define addresses for the instruction and data
breakpoints (IBREAK_LOWER, DBREAK_LOWER, IBREAK_UPPER, DBREAK_UPPER).
These registers are all reset to the value 0.

Control registers

The IBREAK_CONTROL and DBREAK_CONTROL registers determine the comparison
operations performed on the breakpoint addresses. If the comparison is true, then a
breakpoint exception (IBREAK or DBREAK) is signaled.

Debugging support (JTAG) ST231

100/331 7645929

For instruction breakpoints, the currently executing bundle address (PC) is used for
comparison.

For data breakpoints, the data effective address of loads (both standard and dismissible)
and stores are used for comparison. Prefetches and purges do not trigger data breakpoints.

Table 58 and Table 59 provide details of the comparison operations defined for the
instruction and data breakpoints.

Note: As the PC does not contain bits 1:0, these bits are ignored in any instruction address
comparisons.

Table 58. DBREAK_CONTROL bit fields

Name Bit(s) Writable Reset Comment

BRK_IN_RANGE 0 RW 0x0
Break if address >= lower && address
<=upper.

BRK_OUT_RANGE 1 RW 0x0
Break if address < lower || address >
upper.

BRK_EITHER 2 RW 0x0
Break if address == lower || address ==
upper.

BRK_MASKED 3 RW 0x0 Break if address & upper == lower.

Reserved [31:4] RO 0x0 Reserved

Table 59. IBREAK_CONTROL bit fields

Name Bit(s) Writable Reset Comment

BRK_IN_RANGE 0 RW 0x0
Break if address >= lower && address
<=upper.

BRK_OUT_RANGE 1 RW 0x0
Break if address < lower || address >
upper.

BRK_EITHER 2 RW 0x0
Break if address == lower || address ==
upper.

BRK_MASKED 3 RW 0x0 Break if address & upper == lower.

Reserved [31:4] RO 0x0 Reserved

ST231 Debugging support (JTAG)

7645929 101/331

14.2 Debug support unit
The DSU allows both software and hardware to be debugged from a host by giving direct
access to the ST231 core.

14.2.1 Architecture

Figure 16 shows the architecture of the DSU.

Figure 16. DSU architecture

The DSU is controlled by a host through the debug interface. The DSU control block
interacts directly with the ST231 core through the DEBUG_INTERRUPT and
DEBUG_INTERRUPT_TAKEN signals, and the shared register block.

The shared registers can also be accessed via the STBus port.

ST220 core

DEBUG_INTERRUPT_TAKEN

Control
block

Debug Support Unit

Shared
register

bank

DEBUG_INTERRUPT

STBus port

Debug
ROM

WRITEENABLE

Host
debug

interface
Host

ST231 core

Debugging support (JTAG) ST231

102/331 7645929

14.2.2 Shared register bank

The 32 shared registers consist of 3 reserved registers (DSR0-2) and 29 general purpose
registers (DSR3-31). These are used to implement communication between the host and
the target by the debug handler.

The shared register bank is 32-bits wide and only supports 32-bit STBus operations.

Table 60 lists the DSU shared registers.

The STBus addresses of the DSU registers are described in Chapter 11: Peripheral
addresses on page 76.

Shared access conventions

The DSU shared registers are accessible independently from both the DSU and the STBus.
The ST231 and DSU have no hardware support for synchronizing writes, so software
conventions are used to prevent write conflicts.

14.2.3 DSU control registers

This subsection describes the DSU control registers: the DSU version register, the DSU
status register and the DSU output register.

DSU version register (DSR0)

The DSU version register is a read-only ID register. The fields are identical to the version
register described in Table 28: VERSION bit fields on page 72.

DSU status register (DSR1)

The DSU status register contains the DSU status and control bits. See Table 61.

Table 60. DSR_REG values

Name Value Comment

DSR0 0
DSU version register, contains version number for DSU, core and
chip.

DSR1 1 DSU status register, contains DSU control and status bits.

DSR2 2
DSU output register, supports message transfer from target to HTI,
see Section 14.4 on page 107.

DSR3-31 3-31 General purpose registers.

Table 61. DSR1 bit fields

Name Bit(s) Writable Reset Comment

DEBUG_ INTERRUPT_ TAKEN 0 RO 0x0
Value of
DEBUG_INTERRUPT_TAKEN
signal, active high.

SUPERVISOR_ WRITE_ENABLE 1 RW 0x1
STBus writes enabled if the core
is in supervisor mode (regardless
of debug mode).

ST231 Debugging support (JTAG)

7645929 103/331

DSU output register (DSR2)

A value written to DSR2 is sent to the host (using the HTI) by an EVENT message, which is
handshaken with an EVENT_ACK message. See DSU to host events on page 111 for
details. Table 62 gives details of the DSR2 register.

14.3 Debug ROM
The 1024-byte debug ROM is an ST231 peripheral. This contains the debug initialization
loop and the default debug handler.

14.3.1 Debug initialization loop

On reset, the ST231 starts executing at the beginning of the boot ROM. However, if the
DEBUG_ENABLE signal is asserted execution starts at the debug initialization loop (this is
the first word of the debug ROM). This word contains a single syllable bundle which loops
back to the same location, allowing the DSU to intervene and configure the core before it
executes any code.

Note: Where the DEBUG_ENABLE signal cannot be asserted, the boot ROM should start with a
tight loop, or perhaps just a delay loop, to allow time for the DSU to interrupt the processor
before it takes any action.

USER_WRITE_ ENABLE 2 RW 0x0
STBus writes enabled if the core
is in user mode (regardless of
debug mode).

BIGENDIAN 3 RO 0x0
When 1 the core is in big endian
mode. When 0 the core is in little
endian.

HOST_EVENT_ ACK_PENDING 4 RW 0x0
The host is pending an event and
an event_ack command is
pending.

OUTPUT_PENDING 5 RO 0x0
DSR2 contains a byte to be sent
to the HTI which has not yet been
sent.

TRIGGER_IN 6 RO 0x0 Current value of the trigger in pin.

TRIGGER_OUT 7 RW 0x0
Current value of the trigger out
pin.

TRIGGER_ENABLE 8 RW 0x0
Enables/disables debug
interrupts on trigger in.

Reserved [15:9] RO 0x0 Reserved

SW_FLAGS [31:16] RW 0x0 Reserved for future software use.

Table 62. DSR2 bit fields

Name Bit(s) Writable Reset Comment

DATA [31:0] RW 0x0 Output data.

Table 61. DSR1 bit fields (continued)

Name Bit(s) Writable Reset Comment

Debugging support (JTAG) ST231

104/331 7645929

14.3.2 Default debug handler

The default debug handler program starts at the second word of the debug ROM. It supports
simple host-target debugging and the ability to install a more complex debug handler. The
STBus address of the ROM is given in Chapter 11: Peripheral addresses on page 76.

The value in SCRATCH4 is overwritten when the default debug handler starts and is not
restored.

Operation

On taking a debug interrupt, the default debug handler is executed. This first tests if a user
handler is installed (that is, DSR3 is non zero) and if so branches to the given address. See
Section 14.3.3: User-defined debug handler on page 107. The default debug handler then
sends an event message to the host. This occurs even if DSU_COMMAND is 0. The handler
then enters the command loop.

Command loop

The command loop reads and processes commands from a host, delivered over the JTAG
connection, to the DSU shared registers. Usage of the designated registers is shown in
Table 63.

When the command is complete, the default debug handler stores the results in the
argument registers and sets a success code in the response register.

Default handler commands

There are four default handler commands:

● DSU_PEEK (DSU_COMMAND = 4)

Reads the 32-bit memory location addressed by DSU_ARG1 and returns the data in
DSU_ARG1. The address must be word aligned. If the operation is successful
DSU_RESPONSE is set to DSU_PEEKED (1).

The value 0x7 is written to DSR2 causing an event with reason = 1 to be sent to the
host, see DSU to host events on page 111.

Table 63. Command register usage

Register name Host use Target use

DSU_COMMAND
The host sets this register to the
command.

Zeroed when the command is
accepted

DSU_ARG1,2,3
Set with arguments for the command,
before setting DSU_COMMAND

Set with response arguments
before setting DSU_RESPONSE

DSU_RESPONSE
After reading the value the host must
write zero prior to sending the next
command. See Table 64 on page 106.

Set to indicate outcome of a
command

ST231 Debugging support (JTAG)

7645929 105/331

Note: Any code greater than 4 is interpreted as a DSU_PEEK command.

● DSU_POKE (DSU_COMMAND = 3)

Writes the 32-bit data word in DSU_ARG2 to the memory location addressed by
DSU_ARG1. The address must be word aligned. If the operation is successful
DSU_RESPONSE is set to DSU_POKED (2).

The 0x7 is written to DSR2 causing an event with reason = 1 to be sent to the host, see
DSU to host events on page 111.

● DSU_CALL_OR_RETURN (DSU_COMMAND = 1)

Calls the routine addressed by DSU_ARG1. If the called routine does not return this is
effectively a branch. If DSU_ARG1 is zero this is a return call. Just before calling the
user routine, or returning from a call, DSU_RESPONSE is set to DSU_RETURNING
(3).

The 0x7 is written to DSR2 causing an event with reason = 1 to be sent to the host, see
DSU to host events on page 111.

The user routine may overwrite the following state without the need to save and restore:
SCR1_REG, SCR2_REG, SCR3_REG, DSU_BASE_REG (see Table 64) and branch bit
B0.

● DSU_FLUSH (DSU_COMMAND = 2)

Flushes the address range starting at the value in DSU_ARG1 and ending at the value
in DSU_ARG2 from data and instruction caches.

If a command was successful DSU_RESPONSE is set to DSU_FLUSHED (4).

The 0x7 is written to DSR2 causing an event with reason=1 to be sent to the host, see
DSU to host events on page 111.

Trap handler

If a trap occurs while a command is being processed (for example, an invalid address is
supplied on a peek or poke), the core deals with it as follows.

● The operation in progress is completed by loading the PC of the offending bundle, the
exception cause number, and the exception address into DSU_ARG1, DSU_ARG2 and
DSU_ARG3 respectively.

● DSU_RESPONSE is set to DSU_GOT_EXCEPTION (Code = 5).

● As with all exceptions, the SAVED_PC, SAVED_PSW, EXCAUSENO and
EXADDRESS registers are updated when the exception occurred; the debug handler
restores the values of these registers upon exit

Context restore

Before exiting the default handler restores any state it has altered.

Note: The context may have been further altered by commands issued.

Debugging support (JTAG) ST231

106/331 7645929

Default handler register usage

The DSU registers in Table 64 are defined and used by the default debug handler program.

Table 64. DSU command registers

DSR
number

Designation Comment

DSR3
DSR_USER_DEBUG_
HANDLER

Control switches to this address if content is non-zero

DSR4-8(1)

1. Argument registers are placed before the command register in the address space so that a command and
its arguments can be loaded with a single poke operation.

DSU_ARG4-8 Not used in current debug handler

DSR9(1) DSU_ARG3 Command argument 3

DSR10(1) DSU_ARG2
Command argument 2. Used by DSU_POKE and
DSU_FLUSH

DSR11(1) DSU_ARG1 Command argument 1. Used by all DSU commands

DSR12 DSU_COMMAND
Command register. Written by host, cleared by target when
command accepted

DSR13 DSU_RESPONSE
Response register. Set by target to a completion code,
cleared by host before issuing next command

DSR14 Context saving Saves DSU_BASE_REG (R13)

DSR15 Context saving Saves SCR1_REG (R9)

DSR16 Context saving Saves SCR2_REG (R10)

DSR17 Context saving Saves SCR3_REG (R11)

DSR18 Context saving Saves branch bit B0

DSR19 Context saving Saves LINK_REG(2)

DSR20 Context saving Saves HANDLER_PC

DSR21 Context saving Saves SAVED_SAVED_PSW

DSR22 Context saving Saves SAVED_SAVED_PC

DSR23 Context saving Saves SAVED_PSW

DSR24 Context saving Saves SAVED_PC

DSR25 Context saving Saves EXCAUSENO

DSR26 Context saving Saves EXADDRESS

DSR27-30 Unused Unused

DSR31 Context saving Saves DSR1

ST231 Debugging support (JTAG)

7645929 107/331

14.3.3 User-defined debug handler

A user-defined debug handler may be installed to replace the default debug handler. If
DSR3 is non-zero, the core executes the following sequence to jump to the user-defined
debug handler.

● SCR1_REG, SCR2_REG, SCR3_REG, DSU_BASE_REG and R63 are saved as shown in
Table 64

● Branch bit B0 is saved as shown in Table 64

● SCRATCH4 is overwritten

● DSUBASE_REG is replaced by the base address of the DSU register block.

● A goto operation to the address in DSR3 is executed

There is no facility for reusing the state restoration routine in the default debug handler for
completion of a user-defined debug handler.

14.4 Host debug interface
Exchange of information with the host is through an HTI (host target interface) adapter. The
DSU connects to the HTI through a JTAG interface, and the HTI connects to the host using
Ethernet or USB. This is illustrated in Figure 17.

All host-target communication is done with peek, poke, peeked, poked, nop, event and
event_ack commands sent between the host and the DSU.

Figure 17. DSU overview

The JTAG interface provides access to the registers within the DSU only, as described in
Section 14.2.2: Shared register bank on page 102.

Access is made to memory using a software convention with the ST200 CPU as described
in Section 14.3.2: Default debug handler on page 104.

event messages can be sent in either direction to allow software on the CPU to synchronize
with software on the host.

Host
HTI ST200 core

JTAG
DSUadapter

Debugging support (JTAG) ST231

108/331 7645929

14.4.1 Protocol and flow control

40-bit commands are exchanged between the host and the DSU using the JTAG port.
Whenever a command is sent to the DSU by the host, the DSU responds with a response
from a previous command, or a nop if no response is pending.

A symmetrical protocol is employed where every action request is handshaken. Therefore,
the DSU sends the following responses:

● for a peek from the host, it sends a peeked

● for a poke from the host, it sends a poked

● for an event from the host, it sends an event_ack

● an event_ack from the host does not require a response; the DSU sends a nop if no
other response is pending

● a nop from the host does not require a response; the DSU sends a nop if no other
response is pending

The DSU sends a response to the ith command, either after the DSU receives the (i + 1)th
command (in the initial state), or after it receives the (i + 2)th command (in the buffered
state).

In its initial state, the DSU responds to the ith command when it receives the (i + 1)th
command, and continues to do so until the processor writes to DSR2, sending an event to
the host. The sending of the event is prioritized over the sending of a response to the ith
command, which is buffered.

In the state where there is a buffered response, DSU responds to the ith command when it
receives the (i + 2)th command. When the DSU receives an event_ack or a nop as a (i + 2)th
command, it sends the response to the (j + 1)th command. Since neither the event_ack nor
the nop require a response, the buffer is now empty, so the DSU re-enters the initial state.

As only one event can be outstanding to the host at a given time, the DSU is required to
buffer one response only. As responses are not always sent immediately to incoming
commands, the host must account for every peek and poke that is sent. The host must also
poll the DSU with nops to receive events.

ST231 Debugging support (JTAG)

7645929 109/331

14.4.2 Command Format

Commands supported across the JTAG interface are as listed in Table 65. Commands are
40 bits long and consist of an 8-bit header and a 32-bit data field. The header is split into two
fields. Commands are sent over the JTAG interface bit[0] first.

Table 65. JTAG commands
C

o
m

m
an

d

h
ea

d
er

[2
:0

]

h
ea

d
er

[7
:3

]

d
at

a[
39

:8
]

C
o

m
m

an
d

 n
ee

d
s

a
re

sp
o

n
se Action / comment

Commands from the Host to the DSU

nop 0x0 0x0 0x0 No

No action. No command is
currently waiting to be sent.
nops can be used to poll for
events.

peek 0x1 Address 0x0 Yes

Request to peek the DSU
register specified by the
address field. The DSU replies
with peeked, address, value(1).

poke 0x2 Address Data Yes

Request to poke a DSU register
specified by the address field
with the value specified by the
data field. The DSU replies with
poked, address, 0.

event 0x3 0x0
reason[10:8]

channel[13:11]

0x0[39:14]

Yes

If reason = 1 and channel = 0
then raise a debug interrupt,
otherwise a debug interrupt is
not raised. The DSU replies with
event_ack, reason, channel,
0.

event_ack 0x4 0x0 DSR2[31:0] No

An event from the DSU to the
host has been processed. The
original word in DSR2 is
returned, but is not used.

reserved(2) 0x5-
0x7

Undefined Undefined No
Reserved commands are
treated as nops.

Commands from the DSU to the host

nop 0x0 0x0 0x0 No
No command is currently
waiting to be sent.

peeked 0x1 Address Value No
Peeked data being returned to
the host.

poked 0x2 Address 0x0 No
Response to a request to poke
a DSU register.

Debugging support (JTAG) ST231

110/331 7645929

14.4.3 Handling events

This section describes how the DSU handles events.

Host to DSU events

The DSU generates an event_ack in response to an event command. The response
indicates that the DSU has signalled a debug interrupt to the processor; it does not indicate
that the processor has taken a debug interrupt (for instance, interrupts may have been
disabled or the processor may be servicing a cache miss). The host can determine whether
the processor is in debug mode by peeking DSR1. Bit 0 is set on entering debug mode and
is cleared on exiting.

If the processor has not returned from debug mode, a subsequent event command causes
an additional debug interrupt. The controlling software must ensure that events are not sent
until previous events have been completely processed.

event 0x3 0x0 DSR2[31:0] Yes

DSR2 [31:0] is copied into the
data field, and the use is
defined by software. Must be
eventually replied to by an
event_ack.

event_ack 0x4 0x0

reason[10:8]

channel[13:11]
0x0[39:14]

No

An event has been processed
(i.e. a debug interrupt has been
applied to the core, it may not
have been processed yet). The
data field from the incoming
command is placed in the data
field of the response command.

reserved(2) 0x5-
0x7

Undefined Undefined No
The behavior is defined by the
host software.

1. The response may be delayed by one message if an event_ack is outstanding, as described in
Section 14.4.1 on page 108.

2. Commands marked reserved are held for future development.

Table 65. JTAG commands (continued)

C
o

m
m

an
d

h
ea

d
er

[2
:0

]

h
ea

d
er

[7
:3

]

d
at

a[
39

:8
]

C
o

m
m

an
d

 n
ee

d
s

a
re

sp
o

n
se Action / comment

ST231 Debugging support (JTAG)

7645929 111/331

DSU to host events

Multiple events can be sent from the host to the DSU, but only one outstanding DSU-to-host
event is permitted. Two bits in DSR1 give information about the current DSU-to-host event
status as shown in Table 66.

Table 66. Status of events and DSR1 bit fields

OUTPUT_ PENDING
DSR1[5]

HOST_EVENT_ACK_
PENDING DSR1[4]

Comment

0 0 No outstanding DSU to host event.

1 0

DSR2 has been written to, event has not been
sent yet. Writes to DSR2 before DSR1[4] is set
do not cause extra events, but update the
value of DSR2 which is sent with the event.

1 1
This case does not occur. DSR1[5] and
DSR1[4] are mutually exclusive.

0 1
The event has been sent. Writes to DSR2 do
not cause further events to be sent.

0 0
The event_ack has been received. Writes to
DSR2 cause event again.

Performance monitoring ST231

112/331 7645929

15 Performance monitoring

The ST231 provides a hardware instrumentation system which consists of the following:

● a control register (PM_CR)

● a core clock counter (PM_PCLK)

● four event counters (PM_CNTi, i = 0, 1, 2, 3)

They are all mapped to addresses in the control register space as defined in Section 9.3:
Control register addresses on page 68.

15.1 Events
The programmable events supported by the ST231 are listed in Table 67.

Table 67. PM_EVENT values

Name Value Comment

PM_EVENT_DHIT 0
Number of cached loads and stores that hit the
cache.

PM_EVENT_DMISS 1
Number of cached loads and stores that miss the
cache. This includes stores that miss the cache and
are sent to the write buffer.

PM_EVENT_DMISSCYCLES 2
Number of cycles the core is stalled waiting for
load/store operations to complete (this includes
DTLB and uncached stalls).

PM_EVENT_PFTISSUED 3 Number of prefetches that are sent to the bus.

PM_EVENT_PFTHITS 4 Number of cached loads that hit the prefetch buffer.

PM_EVENT_WBHITS 5 Number of writes that hit the write buffer.

PM_EVENT_IHIT 6
Number of accesses the instruction buffer made
that hit the instruction cache.

PM_EVENT_IMISS 7
Number of accesses the instruction buffer made
that missed the instruction cache.

PM_EVENT_IMISSCYCLES 8
Number of cycles the instruction cache was stalled
for due to refill from the STBus.

PM_EVENT_IBUFINVALID 9
Duration where IBuffer is not able to issue bundles
to the pipeline.

PM_EVENT_BUNDLES 10 Bundles executed.

PM_EVENT_LDST 11

Load/Store instructions executed. These include:
stw, sth, stb, pft, prgadd, prgset, prginspg, pswset,
pswclr, sync, ldb, ldb.d, ldbu, ldbu.d, ldh, ldh.d, ldhu,
ldhu.d, ldw, ldw.d.

PM_EVENT_TAKENBR 12
Number of taken branches, includes br, brf, rfi, goto
and call.

PM_EVENT_NOTTAKENBR 13 Number of not taken branches (br and brf).

PM_EVENT_EXCEPTIONS 14 Number of exceptions and debug interrupts.

ST231 Performance monitoring

7645929 113/331

All the events relating to the architectural state of the machine are sampled when bundles
commit.

15.2 Access to registers
As all the performance monitoring registers are mapped into the control register space,
access is only supported in supervisor mode. An attempt to read or write a register in user
mode causes a CREG_ACCESS_VIOLATION exception.

PM_EVENT_INTERRUPTS 15 Number of interrupts.

PM_EVENT_BUSREADS 16
Number of architectural read transactions issued to
the bus. This is the number of uncached reads, I &
D cache refills and prefetches issued to the bus.

PM_EVENT_BUSWRITES 17

Number of architectural write transactions issued to
the bus. This is the number of write buffer lines
evicted and the number of uncached writes issued
to the bus.

PM_EVENT_OPERATIONS 18

Number of completed operations. Includes nops in
the instruction stream but not those added
dynamically. This counter excludes long
immediates.

PM_EVENT_WBMISSES 19
Number of writes that missed the cache and missed
the write buffer. This excludes cache line evictions.

PM_EVENT_NOPBUNDLES 20

Number of completed bundles that were empty or
contained only nops. This includes nop bundles
generated by instruction buffer stalls and
interlocking stalls. It excludes pipeline stalls due to
load/stores and control register/SDI accesses.

PM_EVENT_LONGIMM 21 Number of long immediates in completed bundles.

PM_EVENT_ITLBMISS 22
Number of instruction cache reads that missed the
ITLB.

PM_EVENT_DTLBMISS 23
Number of load/store operations that missed the
DTLB when the TLB is enabled.

PM_EVENT_UTLBHIT 24 Number of accesses to the UTLB which were hits.

PM_EVENT_ITLBWAITCYCLES 25
Number of cycles the instruction cache spends
waiting for the ITLB to fill.

PM_EVENT_DTLBWAITCYCLE
S

26
Number of cycles the data cache spends waiting for
the DTLB to fill.

PM_EVENT_UTLB
ARBITRATIONCYCLES

27
Number of cycles where the ITLB or DTLB was
waiting for access to the UTLB because the UTLB
was busy servicing a request.

Reserved 28-31
Reserved for future use (on the ST230, counting
reserved events has no effect, the counter does not
increment).

Table 67. PM_EVENT values (continued)

Name Value Comment

Performance monitoring ST231

114/331 7645929

15.3 Control register (PM_CR)
The program uses this control register to reset and enable all the counters, and define the
events of the four programmable count registers. The control register’s bit fields are listed in
Table 68.

If counting is enable when the PM_CR register is written to any event that is triggered on the
same bundle/cycle as the write is ignored. For example, if one of the event counters counts
the load/store operations, a store to the PM_CR register is not included in the count.

Note: When the performance monitoring counters are enabled, the core does not enter idle mode,
see Section 2.4.1: Idle mode macro on page 17.

15.4 Event counters (PM_CNTi)
Each of the four event counters is incremented by one each time the countable event
specified in the PM_CR occurs. The four programmable event counters can record any one
of the events specified in Table 67 on page 112.

Reading from these registers returns the current event count. Writing changes the current
count. If a counter is written at the same time as an event triggers the counter to increment,
then the increment is ignored.

If counting is enabled, when the counter is read the value of the counter does not include
any event that was triggered on the same bundle/cycle as the read itself. For example, if an
event counter was counting load/stores, the load that reads the count is not included in the
count (but the event is still counted and will be available next time the counter is read).

Table 68. PM_CR bit fields

Name Bit(s) Writable Reset Comment

ENB 0 RW 0x0
0: counting is disabled.
1: counting is enabled.

RST 1 RW 0x0

When a 1 is written all the counters
(PM_CNT0-3 and PM_PCLK) are set to
zero. If a 0 is written it is ignored. This
field does not retain its value and so
always reads as 0.

IDLE 2 RW 0x0

When the core enters idle mode, this bit
is set to 1. Writing a 0 to this bit has no
effect. Writing a 1 to this bit clears the
bit.

Reserved [11:3] RO 0x0 Reserved

EVENT0 [16:12] RW 0x0
5-bit field specifying the event being
monitored for this counter.

EVENT1 [21:17] RW 0x0
5-bit field specifying the event being
monitored for this counter.

EVENT2 [26:22] RW 0x0
5-bit field specifying the event being
monitored for this counter.

EVENT3 [31:27] RW 0x0
5-bit field specifying the event being
monitored for this counter.

ST231 Performance monitoring

7645929 115/331

15.5 Clock counter (PM_PCLK)
The PM_PCLK register is read/write. Reading the PM_PCLK register returns a 32-bit value.
Writes to PM_PCLK update its value. This counter silently wraps back to zero when it
overflows.

15.6 Recording events
To start recording, write the desired fields to an ST231 general purpose register. This can be
achieved by first reading the PM_CR register, then modifying it as appropriate.

The ENB bit needs to be set to 1. The RST bit needs to be set to 1 if the counters are to be
reset. The four programmable counter fields (EVENTi (where i = 0 to 3) of the PM_CR
register) must be modified to the value representing the events to be counted. See the
Value column in Table 67: PM_EVENT values on page 112.

The value in the register is then written to the memory mapped PM_CR for the operation to
begin.

To stop recording, read the value of PM_CR, set the ENB bit to zero, and then write back to
PM_CR. Do not change any other bits. If the RST bit is set to 1 then the PM_CNTi registers
are reset.

Whilst counting events over a long period of time, the 32-bit counters may overflow. This
overflow happens silently and the values wrap around to zero. To obtain a continuous
profile, the counters must be read and reset at appropriate regular intervals (the exact
interval depends upon the core clock frequency).

Execution model ST231

116/331 7645929

16 Execution model

This chapter defines how bundles are executed in terms of their component operations.

In the absence of traps, the core fetches a bundle from memory, decodes the operations
within it and reads their operands. It then executes the operations in parallel and writes the
results back to the architectural state of the machine. All operations in a bundle commit their
results to the state of the machine at the same point in time. This is known as the commit
point.

In the presence of traps, the core uses the commit point to distinguish between recoverable
and non-recoverable traps.

Traps that are detected prior to the commit point are treated as recoverable. They are
recoverable because the machine state has not been updated, which means that the state
prior to the execution of the bundle can be recovered. In some cases, the cause of the trap
can be corrected and the bundle restarted.

Traps detected after the commit point are unrecoverable. The machine state has been
updated and in some cases it may not be clear which bundle caused the trap. Non-
recoverable traps are consequently of a serious nature and cannot be restarted. On the
ST231, the only class of non-recoverable trap is an error in the external memory system,
which translates to a bus error exception.

16.1 Bundle fetch, decode, and execute
The fetching, decoding and executing of bundles is specified using an abstract sequential
model to show the effects on the architectural state of the machine. In this abstract model,
each bundle is executed sequentially with respect to other bundles. This means that all
actions associated with one bundle are completed before any actions associated with the
next are started.

Specific implementations of the ST231 are generally designed to deliver substantial
optimizations on the scheme provided by this abstract model. However, for legal bundle
sequences that permit execution latency, these effects are not visible architecturally. The
behavior of illegal cases is defined by Chapter 5: Traps (exceptions and interrupts) on
page 25.

The execution flow shown in Figure 18 uses notation defined in Chapter 17: Specification
notation on page 119. There are additional functions that can be used to extract details from
bundles. These are described in Section 16.2: Functions on page 118.

ST231 Execution model

7645929 117/331

Figure 18. Execution model

REPEAT oper FROM 1 FOR NUM_OPERS
 Commit(oper);

Bus error?

Debug
interrupt?

Yes
THROW

EXTERN_INT

No

Fetch bundle from memory

Start

Yes

Exception
detected?

No

Yes

NumWords(PC) > 4

No

THROW
ILL_INST

Yes

InitiateDebugIntHandler(); InitiateExceptionHandler();

REPEAT oper FROM 1 FOR NUM_OPERS
 Pre-commit(oper);

Interrupt?

No

No

THROW
STBUS_IC_ERROR

Data Cache?

THROW
STBUS_DC_ERROR

No

YesYes

BUNDLE_PC ZeroExtend 32 (PC);

NUM_OPERS NumWords(PC) - NumExtImms(PC);

BUNDLE_SIZE NumWords(PC) x 4;

PC Register(BUNDLE_PC + BUNDLE_SIZE);

Execution model ST231

118/331 7645929

16.2 Functions
The flow chart in Figure 18 includes a number of functions that abstract out some the
details. Those functions are described in this section. Starting with those used in the decode
phase, then execution of operations, and finally the exceptional cases.

16.2.1 Bundle decode

The ST231 uses the functions listed in Table 69 in the bundle decode phase.

16.2.2 Operation execution

The ST231 uses the functions listed in Table 70 in the operation execution phase.

16.2.3 Exceptional cases

The ST231 uses the functions listed in Table 71 in exceptional cases.

Table 69. Bundle decode functions

Function Description

NumWords(address)
Returns the number of words in the bundle. The return value is equal
to the number of contiguous words, starting from address, without
their stop bit set + 1.

NumExtImms(address)
Returns the number of extended immediates in the bundle starting at
address.

Table 70. Operation execution functions

Function Description

Pre-commit(n)
For the operation nth operation in the bundle, execute the Pre-commit
phase (Section 18.2 on page 138)(1).

1. Where n is in the range [1 ... number of operations in the bundle] inclusive.

Commit(n)
For the operation nth operation in the bundle, execute the Commit
phase (Section 18.2 on page 138)(1).

Table 71. Operation execution functions

Function Description

InitiateExceptionHandler()
Execute the statements defined in Section 5.3: Saved execution
state on page 26.

InitiateDebugIntHandler()
Execute the statements defined in Section 13.1.1: Debug
interrupts on page 87.

ST231 Specification notation

7645929 119/331

17 Specification notation

This chapter describes the formal language used in this manual for describing operations,
exceptions and interrupts. The language has the following features:

● a simple variable and type system, see Section 17.1

● expressions, see Section 17.2

● statements, see Section 17.3

● notation for the architectural state of the machine, see Section 17.4

Additional mechanisms are defined to model memory (Section 17.5.2), control registers
(Section 17.5.3), and cache instructions (Section 17.5.4).

Chapter 18: Instruction set on page 137 describes each instruction using informal text as
well as the formal language. Occasionally it is not appropriate for one of these descriptions
to describe the full semantics of the instruction; in such cases, both descriptions must be
taken into account to constitute the full specification. In the case of an ambiguity or conflict,
the notational language takes precedence over the text.

17.1 Variables and types
Variables are used to hold state. The type of a variable determines the set of values that the
variable can take and the operators that can be applied to it. The scalar types are integers,
booleans and bit-fields. One-dimensional arrays of scalar types are also supported.

The architectural state of the machine is represented by a set of variables. Each of these
variables has an associated type, which is either a bit-field or an array of bit-fields. Bit-fields
are used to give a bit-accurate representation of the variables.

The formal language uses additional variables to hold temporary values. The type of a
temporary variable is determined by its context rather than explicit declaration. The type of a
temporary variable is an integer, a boolean or an array of integers or boolean.

17.1.1 Integer

An integer variable can take the value of any mathematical integer. No limits are imposed
on the range of integers supported. Integers obey their standard mathematical properties.
Integer operations do not overflow. The integer operators are defined so that singularities do
not occur. For example, no definition is given to the result of divide by zero; the operator is
simply not available when the divisor is zero.

The representation of literal integer values is achieved using the following notations:

● Unsigned decimal numbers are represented by the regular expression: [0-9]+

● Signed decimal numbers are represented by the regular expression: -[0-9]+

● Hexadecimal numbers are represented by the regular expression: 0x[0-9a-fA-F]+

● Binary numbers are represented by the regular expression: 0b[0-1]+

These notations are standard and map onto integer values in the obvious way. Underscore
characters (‘_’) can be inserted into any of the above literal representations. These do not
change the represented value but can be used as spacers to aid readability.

Specification notation ST231

120/331 7645929

17.1.2 Boolean

A boolean variable can take two values:

● boolean false: the literal representation of boolean false is FALSE

● boolean true: the literal representation of boolean true is TRUE

17.1.3 Bit-fields

Bit-fields are provided to define ‘bit-accurate’ storage.

Bit-fields containing arbitrary numbers of bits are supported. A bit-field of b bits contains bits
numbered from 0 (the least significant bit) up to b-1 (the most significant bit). Each bit can
take the value 0 or the value 1.

Bit-fields are mapped to, and from, unsigned integers in the usual way. If bit i of a b-bit
bitfield, where i is in [0, b), is set then it contributes 2i to the integral value of the bitfield. The
integral value of the bit-field as a whole is an integer in the range [0, 2b).

Bit-fields are mapped to, and from, signed integers using two’s complement representation.
This is as above, except that the bit b-1 of a b-bit bitfield contributes -2(b-1) to the integral
value of the bitfield. The integral value of the bit-field as a whole is an integer in the range
[-2b-1, 2b-1].

A bitfield may be used in place of an integer value. In this case the integral value of the
bitfield is used. A bit-field variable may be used in place of an integer variable as the target
of an assignment. In this case the integer must be in the range of values supported by the
bit-field.

17.1.4 Arrays

One-dimensional arrays of the above types are also available. Indexing into an n-element
array A is achieved using the notation A[i] where A is an array of some type and i is an
integer in the range [0, n). This selects the ith. element of the array A. If i is zero this selects
the first entry, and if i is n-1 then this selects the last entry. The type of the selected element
is the base type of the array.

Multi-dimensional arrays are not provided.

17.2 Expressions
Expressions are constructed from monadic operators, dyadic operators and functions
applied to variables and literal values.

There are no defined precedence and associativity rules for the operators. Parentheses are
used to specify the expression unambiguously.

Sub-expressions can be evaluated in any order. If a particular evaluation order is required,
then sub-expressions must be split into separate statements.

ST231 Specification notation

7645929 121/331

17.2.1 Integer arithmetic operators

Since the notation uses straightforward mathematical integers, the set of standard
mathematical operators is available and already defined.

The standard dyadic operators are listed in Table 72.

The division operator truncates towards zero. The remainder operator is consistent with this.
The sign of the result of the remainder operator follows the sign of the dividend. Division and
remainder are not defined for a divisor of zero.

For a numerator (n) and a denominator (d), the following properties hold where d != 0:

The standard monadic operators are described in Table 73.

Table 72. Standard dyadic operators

Operation Description

i + j Integer addition

i - j Integer subtraction

i × j Integer multiplication

i / j Integer division*

i \ j Integer remainder*

* These operators are defined only for j <> 0

n = d X (n/d) + (n\d)

(-n)/d = -(n/d) = n/(-d)

(-n)\d = -(n\d)

n\(-d) = n\d

0 <= (n\d) < d where n> = 0 and d> 0

Table 73. Standard monadic operators

Operator Description

- i Integer negation

|i| Integer modulus (absolute value)

Specification notation ST231

122/331 7645929

17.2.2 Integer shift operators

The available integer shift operators are listed in Table 74.

The shift operators are defined on integers as follows where b >= 0:

Right shifting by b places is a division by 2b but with the result rounded towards minus
infinity. This contrasts with division, which rounds towards zero, and is the reason why the
right shift definition is separate for positive and negative n.

17.2.3 Integer bitwise operators

The available integer bitwise operators are listed in Table 75.

In order to define bitwise operations all integers are considered as having an infinitely long
two’s complement representation. Bit 0 is the least significant bit of this representation, bit 1
is the next higher bit, and so on. The value of bit b, where b >= 0, in integer n is given by:

Care must be taken whenever the infinitely long two’s complement representation of a
negative number is constructed. This representation contains an infinite number of higher
bits with the value 1 representing the sign. Typically, a subsequent conversion operation is
used to discard these upper bits and return the result back to a finite value.

Bitwise AND (∧), OR (∨), XOR (⊕) and NOT (∼) are defined on integers as follows, where b
takes all values such that b >= 0:

Table 74. Shift operators

Operation Description

n << b Integer left shift

n >> b Integer right shift

n b« n 2
b×=

n b»
n 2

b⁄ where n 0≥

n 2
b

1+–() 2
b⁄ where n 0<⎩

⎪
⎨
⎪
⎧

=

Table 75. Bitwise operators

Operation Description

i ∧ j Integer bitwise AND

i ∨ j Integer bitwise OR

i ⊕ j Integer bitwise XOR

~ i Integer bitwise NOT

n<b FOR m> Integer bit-field extraction: extract m bits starting at bit b from integer n

n Integer bit-field extraction: extract 1 bit starting at bit b from integer n

BIT(n, b) = (n/2b)\2 where n >= 0

BIT(n, b) = 1 - BIT((-n - 1), b) where n < 0

ST231 Specification notation

7645929 123/331

Note: Bitwise NOT of any finite positive i results in a value containing an infinite number of higher
bits with the value 1 representing the sign.

Bitwise extraction is defined on integers as follows, where b ≥ 0 and m > 0:

The result of n<b FOR m> is an integer in the range [0, 2m).

17.2.4 Relational operators

Relational operators are defined to compare integral values and give a boolean result. See
Table 76.

17.2.5 Boolean operators

Boolean operators are defined to perform logical AND, OR, XOR and NOT. These
operators have boolean sources and result. Additionally, the conversion operator INT is
defined to convert a boolean source into an integer result. See Table 77.

BIT i j∧ b,() BIT i b,() BIT j b,()×=

BIT i j∨ b,() BIT i j∧ b,() BIT i j⊕ b,()+=

BIT i j⊕ b,() BIT i b,() BIT j b,()+()\2=

BIT ~i b,() 1 BIT i b,()–=

n b FOR m〈 〉 n b»() 2
m

1–()∧=

n b〈 〉 n b FOR 1〈 〉=

Table 76. Relational operators

Operation Description

i = j Result is TRUE if i is equal to j, otherwise FALSE

i ! = j Result is TRUE if i is not equal to j, otherwise FALSE

i < j Result is TRUE if i is less than j, otherwise FALSE

i > j Result is TRUE if i is greater than j, otherwise FALSE

i <= j Result is TRUE if i is less than or equal to j, otherwise FALSE

i >= j Result is TRUE if i is greater than or equal to j, otherwise FALSE

Table 77. Boolean operators

Operation Description

i AND j Result is TRUE if i and j are both true, otherwise FALSE

i OR j Result is TRUE if either/both i and j are true, otherwise FALSE

i XOR j Result is TRUE if exactly one of i and j are true, otherwise FALSE

NOT i Result is TRUE if i is false, otherwise FALSE

INT i Result is 0 if i is false, otherwise 1

Specification notation ST231

124/331 7645929

17.2.6 Single-value functions

In some cases it is inconvenient or inappropriate to describe an expression directly in the
specification language. In these cases a function call is used to reference the undescribed
behavior.

A single-value function evaluates to a single value (the result), which can be used in an
expression. The type of the result value can be determined by the expression context from
which the function is called. There are also multiple-value functions which evaluate to
multiple values. These are only available in an assignment context, and are described in
Section 17.3.2: Assignment on page 125.

Functions may generate side-effects.

Arithmetic functions

Scalar conversions

Two monadic functions are defined to support conversion from integers to bit-limited signed
and unsigned number ranges. For a bit-limited integer representation containing n bits, the
signed number range is [-2n-1, 2n-1] while the unsigned number range is [0, 2n].

These functions are often used to convert between signed and unsigned bit-limited integers
and between bit-fields and integer values.

These two functions are defined as follows, where n > 0:

For syntactic convenience, conversion functions are also defined for converting an integer
or boolean to a single bit and to a value which can be stored as a 32-bit register. Table 80
shows the additional functions provided.

Table 78. Arithmetic functions

Function Description

CountLeadingZeros(i)

Convert integer i to 32-bit bitfield and return the number of leading
zeros in the bitfield. For example:
If i<31> is 1 then the return value is 0.
If all bits are 0 then the return value is 32.

Table 79. Integer conversion operators

Function Description

ZeroExtendn(i) Convert integer i to an n-bit 2’s complement unsigned range

SignExtendn(i) Convert integer i to an n-bit 2’s complement signed range

ZeroExtendn i() i 0 FOR n〈 〉=

SignExtendn i()

i 0 FOR n〈 〉 where i n 1–〈 〉 0=

i 0 FOR n 1–()〈 〉 2
n

– where i n 1–〈 〉 1=
⎩
⎪
⎨
⎪
⎧

=

ST231 Specification notation

7645929 125/331

17.3 Statements
An instruction specification consists of a sequence of statements. These statements are
processed sequentially in order to specify the effect of the instruction on the architectural
state of the machine. The available statements are discussed in this section.

Each statement has a semi-colon terminator. A sequence of statements can be aggregated
into a statement block using ‘{’ to introduce the block and ‘}’ to terminate the block. A
statement block can be used anywhere that a statement can.

17.3.1 Undefined behavior

The statement:

UNDEFINED();

indicates that the resultant behavior is architecturally undefined.

A particular implementation can choose to specify an implementation-defined behavior in
such cases. It is very likely that any implementation-defined behavior varies from
implementation to implementation. Exploitation of implementation-defined behavior should
be avoided to allow software to be portable between implementations.

In cases where architecturally undefined behavior can occur in user mode, the
implementation ensures that implemented behavior does not break the protection model.
Thus, the implemented behavior is some execution flow that is permitted for that user mode
thread.

17.3.2 Assignment

The ‘←’ operator is used to denote assignment of an expression to a variable. An example
assignment statement is:

variable ← expression;

The expression can be constructed from variables, literals, operators and functions as
described in Section 17.2: Expressions on page 120. The expression is fully evaluated
before the assignment takes place. The variable can be an integer, a boolean, a bit-field or
an array of one of these types.

Table 80. Conversion operators from integers to bit-fields

Operation Description

Bit(i)

If i is a boolean, then this is equivalent to Bit(INT i)
Otherwise, convert lowest bit of integer i to a 1-bit value

This is a convenient notation for i<0>

Register(i)

If i is a boolean, then this is equivalent to Register(INT i)

Otherwise, convert lowest 32 bits of integer i to an unsigned 32-bit value

This is a convenient notation for i<0 FOR 32>

Specification notation ST231

126/331 7645929

Assignment to architectural state

This is where the variable is part of the architectural state, as described in Table 81: Scalar
architectural state on page 128. The type of the expression and the type of the variable must
match, or the type of the variable must be able to represent all possible values of the
expression.

Assignment to a temporary

Alternatively, if the variable is not part of the architectural state, then it is a temporary
variable. The type of the variable is determined by the type of expression. A temporary
variable must be assigned to, before it is used in the instruction specification.

Assignment of an undefined value

An assignment of the following form results in a variable being initialized with an
architecturally undefined value:

variable ← UNDEFINED;

After assignment the variable holds a value which is valid for its type. However, the value is
architecturally undefined. The actual value can be unpredictable; that is to say the value
indicated by UNDEFINED can vary with each use of UNDEFINED. Architecturally-undefined
values can occur in both user and privileged modes.

A particular implementation can choose to specify an implementation-defined value in such
cases. It is very likely that any implementation-defined values vary from implementation to
implementation. If software is intended to be portable between ST231 implementation, then
exploitation of implementation-defined values should be avoided.

Assignment of multiple values

Multi-value functions are used to return multiple values, and are only available when used in
a multiple assignment context. The syntax consists of a list of comma-separated variables,
an assignment symbol followed by a function call. The function is evaluated and returns
multiple results into the variables listed. The number of variables and the number of results
of the function must match. The assigned variables must all be distinct, that is, no aliases.

For example, a two-valued assignment from a function call with 3 parameters can be
represented as:

variable1, variable2 ← call(param1, param2, param3);

17.3.3 Conditional

Conditional behavior is specified using IF, ELSE IF and ELSE.

Conditions are expressions that result in a boolean value. If the condition after an IF is true,
then its block of statements is executed and the whole conditional is considered complete,
ignoring any ELSE IF or ELSE clauses, if they exist. If the condition is false, then each of
the ELSE IF clauses are processed, in turn, in the same manner. If no conditions are met
and there is an ELSE clause then its block of statements is executed. Finally, if no
conditions are met and there is no ELSE clause, then the statement has no effect apart from
the evaluation of the condition expressions.

ST231 Specification notation

7645929 127/331

The ELSE IF and ELSE clauses are optional. In ambiguous cases, the ELSE matches with
the preceding IF or ELSE IF.

For example:

IF (condition1)
block1

ELSE IF (condition2)
block2

ELSE

block3

17.3.4 Repetition

Repetitive behavior is specified using the following construct:

REPEAT i FROM m FOR n STEP s
block

The block of statements is iterated n times, with the integer i taking the values:

m, m + s, m + 2s, m + 3s, up to m + (n - 1) × s.

The behavior is equivalent to textually writing the block n times with i being substituted with
the appropriate value in each copy of the block.

The value of n must be greater or equal to 0, and the value of s must be non-zero. The
values of the expressions for m, n and s must be constant across the iteration. The integer i
must not be assigned to within the iterated block. The STEPs can be omitted in which case
the step-size takes the default value of 1.

17.3.5 Exceptions

Exception handling is triggered by a THROW statement. When an exception is thrown, no
further statements are executed from the operation specification; no architectural state is
updated. Furthermore, if any one of the operations in a bundle triggers an exception, none
of the operations update the architectural state.

If any operation in a bundle triggers an exception then an exception is taken. The actions
associated with the taking of an exception are described in Section 5.2: Exception handling
on page 25.

There are two forms of throw statement:

THROW type;

and:

THROW type, value;

where type indicates the type of exception which is launched, and value is an optional
argument to the exception handling sequence. If value is not given, then it is undefined.

The exception types and priorities are described in detail in Chapter 5: Traps (exceptions
and interrupts) on page 25.

Specification notation ST231

128/331 7645929

17.3.6 Procedures

Procedure statements contain a procedure name followed by a list of comma-separated
arguments contained within parentheses followed by a semi-colon. The execution of
procedures typically causes side-effects to the architectural state of the machine.

Procedures are generally used where it is difficult or inappropriate to specify the effect of an
instruction using the abstract execution model. A fuller description of the effect of the
instruction is given in the surrounding text.

An example procedure with two parameters is:

proc(param1, param2);

17.4 Architectural state
Chapter 3: Architectural state on page 19 contains a full description of the visible state. The
notations used in the specification to refer to this state are summarized in Table 81 and
Table 82. Each item of scalar architectural state is a bit-field of a particular width. Each item
of array architectural state is an array of bit-fields of a particular width.

Table 81. Scalar architectural state

Architectural state
Type is a bit-field
containing:

Description

PC 32 bits
Program counter; address of the current
bundle

PSW 32 bits Program status word

SAVED_PC 32 bits Copy of the PC used during interrupts

SAVED_PSW 32 bits Copy of the PSW used during interrupts

SAVED_SAVED_PC 32 bits Copy of the PC used during debug interrupts

SAVED_SAVED_PSW 32 bits
Copy of the PSW used during debug
interrupts

RI where i is in [0, 63] 32 bits
64 x 32-bit general purpose registers
R0 reads as zero
Assignments to R0 are ignored

LR 32 bits Link register, synonym for R63

BI where I is in [0, 7] 1 bit 8 x 1-bit branch registers

Table 82. Array architectural state

Architectural state
Type is an array of bit-
fields each containing:

Description

CRi where i is index of the
control register

32 bits

Control registers, for which some
specifications refer to individual control
registers by their names as defined in the
Chapter 9: Control registers on page 67.

MEM[i] where i is in [0, 232] 8 bits 232 bytes of memory

ST231 Specification notation

7645929 129/331

17.5 Memory and control registers
This section describes the formal language defined to model memory (Section 17.5.2 on
page 130), for control registers (Section 17.5.3 on page 134) and cache instructions
(Section 17.5.3 on page 134).

17.5.1 Support functions

The functions used in the memory and control register descriptions are listed in Table 83.

Table 83. Support functions

Function Description

DataBreakPoint(address)

Result is TRUE if address is in the range defined by
data breakpoint control mechanism (Section 13.1.2:
Hardware breakpoint support on page 89),
otherwise FALSE

Misalignedn(address)
Result is TRUE if address is not n-bit aligned,
otherwise FALSE

NoTranslation(address)
Result is TRUE if the TLB is enabled and has no
mapping for address, otherwise FALSE

MultiMapping(address)
Results is TRUE if the TLB has more than one mapping
for address, otherwise FALSE

Translate(address)
Looks up address in the TLB and returns the
associated physical address

SCUHit(paddress)
Results is TRUE if the physical address, paddress, hit
the SCU, otherwise FALSE

ReadAccessViolation(address)
Result is TRUE if the TLB is enabled and a read access
to address is not permitted by the TLB, otherwise
FALSE

WriteAccessViolation(address)
Result is TRUE if the TLB is enabled and a write access
to address is not permitted by the TLB, otherwise
FALSE

IsCRegSpace(address)
Result is TRUE if address is in the control register
space, otherwise FALSE

UndefinedCReg(address)
Result is TRUE if address does not correspond to a
defined control register, otherwise FALSE

CRegIndex(address)
Returns the index of the control register which maps to
address

CRegReadAccessViolation(index)
Result is TRUE if read access is not permitted to the
given control register, otherwise FALSE

CRegWriteAccessViolation(index)
Result is TRUE if write access is not permitted to given
control register, otherwise FALSE

BusReadError(paddress)
Result is TRUE if reading from physical address,
paddress, generates a Bus Error, otherwise FALSE

IsDBreakHit(address)
Result is TRUE if address triggers a data breakpoint,
otherwise it is FALSE

Specification notation ST231

130/331 7645929

17.5.2 Memory model

The instruction specification uses a simple model of memory access which defines the
relationship between the content of a logical memory and the values manipulated by
instructions. The simple model ignores any caches that may be present; their operation is
defined by the text of the architecture manual.

The processor's view of logical memory is defined in terms of an array MEM[i] defined in
Table 82: Array architectural state on page 128. The mapping between the logical memory
and a physical memory are described in Appendix B: STBus endian behavior on page 320.

The notation MEM[s FOR n] is used to denote an 8*n bit bitfield produced from the
concatenation of the n elements MEM[s] through MEM[s+i-1], where i (the byte number)
varies in the range [0, n). The value of MEM[s FOR n] depends on the endianness of the
processor.

● If the processor is operating in little endian mode then:

This equivalence states that byte number i in the bit-field MEM[s FOR n] is the ith. byte
in memory counting upwards from MEM[s].

● If the processor is operating in big endian mode then:

This equivalence states that byte number i, using big endian byte numbering (that is,
byte 0 is bits 8n-8 to 8n-1), in the bit-field MEM[s FOR n] is the ith. byte in memory
counting downwards from MEM[n].

For syntactic convenience, functions and procedures are provided to read and write
memory.

Support functions

The specification of the memory instructions relies on the support functions listed in
Table 83: Support functions on page 129. These functions are used to model the behavior of
the TLB described in Chapter 6: Memory translation and protection on page 31.

MEM s FOR n[]() 8i FOR 8〈 〉 MEM s i+[]=

MEM s FOR n[]() 8i FOR 8〈 〉 MEM s n 1–+() i–[]=

ST231 Specification notation

7645929 131/331

Reading memory

The functions provided to support the reading of memory are listed in Table 84.

The ReadCheckMemoryn procedure takes an integer parameter to indicate the address
being accessed. The number of bits being read (n) is one of 8, 16, or 32. The procedure
throws any alignment or access violation exceptions generated by a read access to that
address.

ReadCheckMemoryn(a);

is equivalent to:

IF (Misalignedn(a))
 THROW MISALIGNED_TRAP, a;

IF (PSW[TLB_ENABLE])
 IF (NoTranslation(a) OR
 MultiMapping(a) OR
 ReadAccessViolation(a))
 THROW DTLB, a;

Similarly, if the memory access is a dismissible read:

DisReadCheckMemoryn(a);

is equivalent to:

IF (Misalignedn(a) AND PSW[SPECLOAD_MALIGNTRAP_EN])
 THROW MISALIGNED_TRAP, a;

IF (PSW[TLB_ENABLE]) {
 IF (MultiMapping(a))
 THROW DTLB, a;
 IF (PSW[TLB_DYNAMIC] AND NoTranslation(a))

 THROW DTLB, a;
}

Table 84. Memory read functions

Function Description

ReadCheckMemoryn(address)
Throws any non-BusError exception generated by an n-bit
read from address.

PrefetchCheckMemory(address)
Throws any BusError exceptions generated by a prefetch
from address.

ReadMemoryn(address)
Issues an n-bit read to address (can generate BusError
exception).

DisReadCheckMemoryn(address)
Throws any non-BusError exception generated by an n-bit
dismissible read from address.

DisReadMemoryn(address)
Returns either n-bits from address or 0 (can generate
BusError exception).

ReadMemResponse() Returns the value of the read request issued.

Specification notation ST231

132/331 7645929

The ReadMemoryn procedure takes an integer parameter to indicate the address being
accessed. The number of bits being read (n) is one of 8, 16, or 32. The required bytes are
read from memory, interpreted according to endianness, and the read bit-field value
assigned to a temporary integer. If the read memory value is to be interpreted as signed,
then a sign-extension should be used when accessing the result using ReadMemResponse.
The procedure call:

ReadMemoryn(a);

is equivalent to:

pa = Translate(a);
width ← n / 8;
IF (BusReadError(pa))
 THROW BUS_DC_ERROR, a; // Non-recoverable

mem_response ← MEM[pa FOR width];

The DisReadMemoryn performs the same functionality for a dismissible read from memory.
The procedure call:

DisReadMemoryn(a);

is equivalent to:

width ← n / 8;
IF (NOT Misalignedn(a) AND
 NOT NoTranslation(a) AND
 NOT ReadAccessViolation(a) {
 pa = Translate(a);
 IF (SCUHit(pa) {
 IF (BusReadError(pa))
 THROW BUS_DC_ERROR, a; // Non-recoverable
 mem_response ← MEM[pa FOR width];
 }
 ELSE
 mem_response ← 0;
 }

ELSE
 mem_response ← 0;

The function ReadMemResponse returns the data that has been read from memory. The
assignment:

result ← ReadMemResponse();

is equivalent to:

result ← mem_response;

ST231 Specification notation

7645929 133/331

Prefetching memory

Table 85 describes the procedure that is provided to denote memory prefetch.

This is used for a software-directed data prefetch from a specified effective address. This is
a hint to give advance notice that particular data will be required. PrefetchMemory,
performs the implementation-specific prefetch when the address is valid:

PrefetchMemory(a);

This is equivalent to:

IF (NOT NoTranslation(a) AND
 NOT MultiMapping(a)
 NOT ReadAccessViolation(a)) {
 pa = Translate(a);
 IF (SCUHit(pa))
 Prefetch(a);
 }

where Prefetch is a cache operation defined in Section 17.5.4: Cache model on
page 136. Prefetching memory does not generate any exceptions.

Writing memory

Table 86 lists the procedures that are provided to write memory.

The WriteCheckMemoryn procedure takes an integer parameter to indicate the address
being accessed. The number of bits being written (n) is one of 8, 16, or 32. The procedure
throws any alignment or access violation exceptions generated by a write access to that
address.

WriteCheckMemoryn(a);

This is equivalent to:

IF (Misalignedn(a))
 THROW MISALIGNED_TRAP, a;

IF (NoTranslation(a) OR
 MultiMapping(a) OR
 WriteAccessViolation(a))
 THROW DTLB, a;

Table 85. Memory prefetch procedure

Function Description

PrefetchMemory(address) Prefetch memory if possible.

Table 86. Memory write procedures

Function Description

WriteCheckMemoryn(address)
Throws any exception generated by an n-bit write to
address

WriteMemoryn(address, value) Aligned n-bit write to memory

Specification notation ST231

134/331 7645929

The WriteMemoryn procedure takes an integer parameter to indicate the address being
accessed, followed by an integer parameter containing the value to be written. The number
of bits being written (n) is one of 8, 16, 32 or 64 bits. The written value is interpreted as a bit-
field of the required size; all higher bits of the value are discarded. The bytes are written to
memory, ordered according to endianness. The statement:

WriteMemoryn(a, value);

This is equivalent to:

pa = Translate(a);
width ← n / 8;
MEM[pa FOR width] ← value<0 FOR n>;

17.5.3 Control register model

This section describes the control register model; how control registers are read and written
to.

Reading control registers

The procedures listed in Table 87 are provided to read from control registers.

Note: Only word (32-bit) control register accesses are supported.

The ReadCheckCReg procedure takes an integer parameter to indicate the address being
accessed. The procedure throws any alignment or non-mapping exception generated by
reading from the control register space.

ReadCheckCReg(a);

This is equivalent to:

IF (UndefinedCReg(a))
 THROW CREG_NO_MAPPING, a;

index ← CRegIndex(a);
IF (CRegReadAccessViolation(index))
 THROW CREG_ACCESS_VIOLATION, a;

The control register file is denoted CR. The function ReadCReg is provided:

ReadCReg(a);

This is equivalent to:

index ← CRegIndex(a);
mem_response ← CRindex;

Table 87. Control register read functions

Function Description

ReadCheckCReg(address)
Throws any exception generated by reading from address in
the control register space

ReadCReg(address) Issues a read from the control register mapped to address

ST231 Specification notation

7645929 135/331

Writing control registers

The procedures listed in Table 88 are provided to read from control registers. Note that only
word (32-bit) control register accesses are supported.

The WRITECHECKCREG procedure takes an integer parameter to indicate the address
being accessed. The procedure throws any alignment, non-mapping or access violation
exceptions generated by writing to the control register space:

WriteCheckCReg(a);

is equivalent to:

IF (UndefinedCReg(a))
 THROW CREG_NO_MAPPING, a;

index ← CRegIndex(a);
IF (CRegWriteAccessViolation(index))
 THROW CREG_ACCESS_VIOLATION, a;

A procedure called WRITECREG is provided to write control registers:

WriteCReg(a, value);

is equivalent to:

index ← CRegIndex(a);
CRindex ← value;

Table 88. Control registers write procedures

Function Description

WriteCheckCReg(address)
Throws any exception generated by writing to the address in
the control register space

WriteCReg(address, value) Writes value to the control register mapped to address

Specification notation ST231

136/331 7645929

17.5.4 Cache model

The core uses cache operations to prefetch and purge lines in caches. The effects of these
operations are beyond the scope of the specification language, and are therefore modelled
using procedure calls. The behavior of these procedure calls is elaborated in the Chapter 7:
Memory subsystem on page 48.

17.5.5 Architectural state model

Architectural state such as the PC and PSW is modified by a number of procedures. These
also have the effect of flushing the pipeline; this is beyond the scope of the specification
language.

Table 89. Procedures to model cache operations

Procedure Description

PurgeIns()
Invalidate the entire instruction cache (see
Invalidating the entire instruction cache on
page 50).

Sync()
Data memory subsystem synchronization function
(see Section 7.3.8: D-side synchronization on
page 54).

PurgeAddressCheckMemory(address)
Throws any exceptions generated by purging
addresses from the data cache (see Purging data by
address on page 54).

PurgeAddress(address)
Purge address from the data cache (see Purging
data by address on page 54).

PurgeSet(address)
Purge a set of lines from the data cache (see Purging
data by set on page 54).

Prefetch(address)
Prefetch a data cache line if it is in cacheable memory
(see Section 7.3.6: Prefetching data on page 53).

PurgeInsPg(address)

Purges the given virtual/physical address combination
8 Kbyte page from the instruction cache (see
Invalidating the instruction cache by page on
page 50).

Table 90. Procedures to model changing architectural state

Procedure Description

Rfi()
Return from interrupt. This flushes the pipeline (see
Section 5.3: Saved execution state on page 26).

PswSet(value)

PSW <- PSW | value. This flushes the pipeline (see
Section 3.4.4: PSW access on page 21). If value is zero then
this flushes out any unexecuted syllables so that the next bundle
is guranteed to be fetched from the instruction cache.

PswClr(value)
PSW <- PSW & (~value). This flushes the pipeline (see
Section 3.4.4: PSW access on page 21).

ST231 Instruction set

7645929 137/331

18 Instruction set

This chapter contains descriptions of all the operations and macros (pseudo-operations) in
the ST231 instruction set. Section 18.1: Bundle encoding has been included in order to
describe how operations are encoded in the context of bundles.

18.1 Bundle encoding
An instruction bundle consists of between one and four consecutive 32-bit words, known as
syllables. Each syllable encodes either an operation or an extended immediate. The most
significant bit of each syllable (bit 31) is a stop bit which is set to indicate that it is the last in
the bundle, as shown in Figure 19.

Figure 19. Syllable

18.1.1 Extended immediates

Many operations have an Immediate form. In general only small (9-bit) immediates can be
directly encoded in a single word syllable. In the event that larger immediates are required,
an immediate extension is used. This extension is encoded in an adjacent word in the
bundle, making the operation effectively a two-word operation.

These immediate extensions associate either with the operation to their left or their right in
the bundle. Bit 23 is used to indicate the association.

● 0 indicates left association (word address - 1) (imml)

● 1 indicates right association (word address + 1) (immr)

The semantic descriptions of Immediate form operations use the following function to take
into account possible immediate extensions, as shown in Table 91.

293031 0

STOP bit OPERATIONReserved

Table 91. Extended immediate functions

Function Description

Imm(i)
Given short immediate value i, returns an integer value that
represents the full immediate.

Instruction set ST231

138/331 7645929

This function effectively performs the following:

If there is an immr word to the left (word address - 1) or an imml word to the right
(word address + 1) in the bundle, then Imm returns:

(ZeroExtend23(extension) << 9) + ZeroExtend9(i);

Where extension represents the lower 23 bits of the associated immr or imml.

Otherwise Imm returns:

SignExtend9(i);

18.1.2 Encoding restrictions

There are a number of restrictions placed on the encoding of bundles. It is the duty of the
assembler to ensure that these restriction are obeyed.

● Long immediates must be encoded at even word addresses.

● Multiply operations must be encoded at odd word addresses.

● There may only be one control flow operation per bundle, and it must be the first
syllable.

● There may only be one load or store operation per bundle.

18.2 Operation specifications
The specification of each operation contains the following fields:

● Name: the name of the operation with an optional subscript. The subscript
distinguishes between operations with different operand types. For example, integer
operations can have either Register or Immediate formats. If no subscript exists for an
operation, then there is only one format.

● Syntax: presents the assembly syntax of the operation (ST200 Programming Manual)

● Encoding: the binary encoding is summarized in a table. It shows which bits are used
for the opcode, which bits are reserved (empty fields) and which bit-fields encode the
operands. The operands are either register designators or immediate constants.

● Semantics: a table containing the statements (Section 17.3: Statements on page 125)
that define the operation. The notation used is defined in Chapter 17: Specification
notation on page 119. The table is divided into two parts by the commit point. (See
Chapter 16: Execution model on page 116.)

● Description: a brief textual description of the operation

Pre-commit phase:

● No architectural state of the machine is updated.

● Any recoverable exceptions are thrown here.
← Commit point

Commit phase - executed if no exceptions have been thrown:

● All architectural state is updated.

● Any exceptions thrown here are non-recoverable(1).

1. For the ST231 the only non-recoverable exception is a bus error.

ST231 Instruction set

7645929 139/331

● Restrictions: contains any details of restrictions, these may be of the following types:

– Address/bundle: In encoding a bundle with the operation there are a number of
possible restrictions which may apply, see Section 18.1.2

– Latency: certain operands have latency constraints that must be observed

– Destination restrictions: certain operations are not allowed to use the Link Register
(LR) as a destination

● Exceptions: if this operation is able to throw any exceptions, they are listed here. The
semantics of the operation detail how and when they are thrown

18.3 Example operations

18.3.1 add Immediate

The specification for this operation is shown in Figure 20.

Figure 20. Example operation

add Immediate
add RIDEST = RSRC1, ISRC2

Semantics:

Description: Add

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

The operation is given the subscript Immediate to indicate that one of its source operands is an
immediate rather than both being registers.

The next line of the description shows the assembly syntax of the operation.

Just below is the binary encoding table with fields showing:

● The opcode: Bits 29:21

● The operands: An s in bit 31 represents the stop bit (Section 18.1)

– The 9-bit immediate constant, bits 20:1

– The destination register designator, bits 11:6

– The source register designator, bits 5:0

● Unused bits: Bit 30

s 00 1 0 00000 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 + operand2;

RIDEST ← Register(result1);

Instruction set ST231

140/331 7645929

The semantics table specifies the effects of the executing this operation. The table is divided
into two parts. The first half containing statements which do not affect the architectural state
of the machine. The second half containing statements that will not be executed if an
exception occurs in the bundle.

The statements themselves are organized into 3 stages as follows:

1. The first two statements read the required source information:

operand1 <- SignExtend32(RSRC1);

operand2 <- Imm(ISRC2);

The first statement reads the value of the RSRC1 register, interprets it as a signed 32-bit
value and assigns this to a temporary integer called operand1. The second statement
passes the value of ISRC2 to the immediate handling function Imm (Section 18.1.1).
The result of the function is interpreted as a signed 32-bit value and assigned to a
temporary integer called operand2.

2. The next statement implements the addition:

result <- operand1 + operand2;

This statement does not refer to any architectural state. It adds the 2 integers
operand1 and operand2 together, and assigns the result to a temporary integer
called result. Note that since this is a conventional mathematical addition, the result
can contain more significant bits of information than the sources.

3. The final statement, executed if no exceptions have been thrown in the bundle,
updates the architectural state:

RIDEST <- Register(result);

The function Register (Section 17.2.6: Single-value functions on page 124) converts
the integer result back to a bit-field, discarding any redundant higher bits. This value is
then assigned to the RIDEST register.

After the semantic description is a simple textual description of the operation.

The restrictions section shows that this operation has no restrictions. This means that up to
four of these operations can be used in a bundle, and that all operands are ready for use by
operations in the next bundle.

Finally, this operation can not generate any exceptions.

ST231 Instruction set

7645929 141/331

18.4 Macros
Table 92 is a list of the currently implemented pseudo-operations or ‘macros’. Each macro is
essentially a simplified synonym for another, less intuitive operation.

Table 92. Macros

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

convbi
s 01 1 001 scond 000000001 idest 000000
slctf RIDEST = BSCOND, R0, 1

convib
s 00 0 1 1 1100 000000 bdest 000000 src1

orl BBDEST2 = RSRC1, R0

idle
1 11 0 001 0 00000000000000000000000

goto 0

mfb
s 01 1 001 scond 000000001 idest 000000
slctf RIDEST = BSCOND, R0, 1

movbsrc
s 01 1 001 scond 000000001 idest 000000

slctf RIDEST = BSCOND, R0, 1

movbdest
s 00 0 1 1 1100 bdest 000000 src1
orl BBDEST = RSRC1, R0

movInt3R
s 00 0 0 00000 dest src2 000000

add RDEST = R0, RSRC2

movInt3I
s 00 1 0 00000 isrc2 idest 000000

add RIDEST = R0, ISRC2

mtb
s 00 0 1 1 1100 bdest 000000 src1
orl BBDEST = RSRC1, R0

nop
s 00 0 0 00000 000000 000000 000000

add R0 = R0, R0

return
s 11 0 001 1 btarg

goto $r63

syncins
s 10 10010 000000 src1
pswset R0

zxtb
s 00 1 0 01001 011111111 idest src1

and RIDEST = RSRC1, 255

Instruction set ST231

142/331 7645929

18.5 Operations
Each operation is now specified. They are listed alphabetically for ease of use. The
semantics of the operations are written using the notational language defined in Chapter 17:
Specification notation on page 119.

add Register
add RDEST = RSRC1, RSRC2

Semantics:

Description: Add

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 00000 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result1 ← operand1 + operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 143/331

add Immediate
add RIDEST = RSRC1, ISRC2

Semantics:

Description: Add

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 00000 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 + operand2;

RIDEST ← Register(result1);

Instruction set ST231

144/331 7645929

addcg
addcg RDEST, BBDEST = RSRC1, RSRC2, BSCOND

Semantics:

Description: Add with carry and generate carry

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 01 0010 scond bdest dest src2 src1

31 30 29 28 27 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
operand3 ← ZeroExtend1(BSCOND);

result1 ← (operand1 + operand2) + operand3;

result2 ← Bit(result1, 32);

RDEST ← Register(result1);

BBDEST ← Bit(result2);

ST231 Instruction set

7645929 145/331

and Register
and RDEST = RSRC1, RSRC2

Semantics:

Description: Bitwise and

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 01001 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ∧ operand2;

RDEST ← Register(result1);

Instruction set ST231

146/331 7645929

and Immediate
and RIDEST = RSRC1, ISRC2

Semantics:

Description: Bitwise and

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01001 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ∧ operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 147/331

andc Register
andc RDEST = RSRC1, RSRC2

Semantics:

Description: Complement and bitwise and

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 01010 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (~operand1) ∧ operand2;

RDEST ← Register(result1);

Instruction set ST231

148/331 7645929

andc Immediate
andc RIDEST = RSRC1, ISRC2

Semantics:

Description: Complement and bitwise and

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01010 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (~operand1) ∧ operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 149/331

andl Register - Register
andl RDEST = RSRC1, RSRC2

Semantics:

Description: Logical and

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 1010 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 ! = 0) AND (operand2 ! = 0);

RDEST ← Register(result1);

Instruction set ST231

150/331 7645929

andl Branch Register - Register
andl BBDEST = RSRC1, RSRC2

Semantics:

Description: Logical and

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 1010 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 ! = 0) AND (operand2 ! = 0);

BBDEST ← Bit(result1);

ST231 Instruction set

7645929 151/331

andl Register - Immediate
andl RIDEST = RSRC1, ISRC2

Semantics:

Description: Logical and

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 1010 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 ! = 0) AND (operand2 ! = 0);

RIDEST ← Register(result1);

Instruction set ST231

152/331 7645929

andl Branch Register - Immediate
andl BIBDEST = RSRC1, ISRC2

Semantics:

Description: Logical and

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 1010 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 ! = 0) AND (operand2 ! = 0);

BIBDEST ← Bit(result1);

ST231 Instruction set

7645929 153/331

br
br BBCOND, BTARG

Semantics:

Description: Branch

Restrictions: Must be the first syllable of a bundle.

There is a latency of 2 bundles between an operation writing BBCOND and this
operation being issued.

Exceptions: None.

s 11 1 0 bcond btarg

31 30 29 28 27 26 25 23 22 0

operand1 ← ZeroExtend1(BBCOND);

operand2 ← SignExtend23(BTARG)<< 2;
IF (operand1 ! = 0)

PC ← Register(ZeroExtend32(BUNDLE_PC) + operand2);

Instruction set ST231

154/331 7645929

break
break

Semantics:

Description: Break

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: ILL_INST

s 01 1111111

31 30 29 28 27 21 20 0

THROW ILL_INST;

ST231 Instruction set

7645929 155/331

brf
brf BBCOND, BTARG

Semantics:

Description: Branch false

Restrictions: Must be the first syllable of a bundle.

There is a latency of 2 bundles between an operation writing BBCOND and this
operation being issued.

Exceptions: None.

s 11 1 1 bcond btarg

31 30 29 28 27 26 25 23 22 0

operand1 ← ZeroExtend1(BBCOND);

operand2 ← SignExtend23(BTARG)<< 2;
IF (operand1 = 0)

PC ← Register(ZeroExtend32(BUNDLE_PC) + operand2);

Instruction set ST231

156/331 7645929

bswap
bswap RIDEST = RSRC1

Semantics:

Description: Byte swap

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01110 000000010 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

byte0 ← operand1<0 FOR 8>;
byte1 ← operand1<8 FOR 8>;

byte2 ← operand1<16 FOR 8>;

byte3 ← operand1<24 FOR 8>;
result1 ← ((byte0 << 24) ∨ (byte1 << 16)) ∨ ((byte2 << 8) ∨ byte3);

RIDEST ← Register(result1);

ST231 Instruction set

7645929 157/331

call Immediate
call $r63 = BTARG

Semantics:

Description: Jump and link

Restrictions: Must be the first syllable of a bundle.

No latency constraints.

Exceptions: None.

s 11 0 000 0 btarg

31 30 29 28 27 26 24 23 22 0

operand1 ← SignExtend23(BTARG)<< 2;

NEXT_PC← PC;
PC ← Register(ZeroExtend32(BUNDLE_PC) + operand1);

LR ← NEXT_PC;

Instruction set ST231

158/331 7645929

call Link Register
call $r63 = $r63

Semantics:

Description: Jump (using Link Register) and link

Restrictions: Must be the first syllable of a bundle.

There are no latency constraints between an call uprating the LR and this operation.
There is a latency of 4 bundles between a load writing to the LR and this operation.
There is a latency of 2 bundles between any other operation updating the LR and this
operation.

Exceptions: None.

s 11 0 000 1 00000000000000000000000

31 30 29 28 27 26 24 23 22 0

NEXT_PC← PC;

PC ← Register(ZeroExtend32(LR));
LR ← NEXT_PC;

ST231 Instruction set

7645929 159/331

clz
clz RIDEST = RSRC1

Semantics:

Description: Count leading zeros

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01110 000000100 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

result1 ← CountLeadingZeros(operand1);

RIDEST ← Register(result1);

Instruction set ST231

160/331 7645929

cmpeq Register - Register
cmpeq RDEST = RSRC1, RSRC2

Semantics:

Description: Test for equality

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 0000 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 = operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 161/331

cmpeq Branch Register - Register
cmpeq BBDEST = RSRC1, RSRC2

Semantics:

Description: Test for equality

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 0000 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 = operand2;

BBDEST ← Bit(result1);

Instruction set ST231

162/331 7645929

cmpeq Register - Immediate
cmpeq RIDEST = RSRC1, ISRC2

Semantics:

Description: Test for equality

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 0000 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 = operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 163/331

cmpeq Branch Register - Immediate
cmpeq BIBDEST = RSRC1, ISRC2

Semantics:

Description: Test for equality

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 0000 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 = operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

164/331 7645929

cmpge Register - Register
cmpge RDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare equal or greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 0010 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ≥ operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 165/331

cmpge Branch Register - Register
cmpge BBDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare equal or greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 0010 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ≥ operand2;

BBDEST ← Bit(result1);

Instruction set ST231

166/331 7645929

cmpge Register - Immediate
cmpge RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare equal or greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 0010 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 >= operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 167/331

cmpge Branch Register - Immediate
cmpge BIBDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare equal or greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 0010 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 >= operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

168/331 7645929

cmpgeu Register - Register
cmpgeu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare equal or greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 0011 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 >= operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 169/331

cmpgeu Branch Register - Register
cmpgeu BBDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare equal or greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 0011 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 >= operand2;

BBDEST ← Bit(result1);

Instruction set ST231

170/331 7645929

cmpgeu Register - Immediate
cmpgeu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare equal or greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 0011 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 >= operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 171/331

cmpgeu Branch Register - Immediate
cmpgeu BIBDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare equal or greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 0011 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 >= operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

172/331 7645929

cmpgt Register - Register
cmpgt RDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 0100 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 > operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 173/331

cmpgt Branch Register - Register

cmpgt BBDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 0100 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 > operand2;

BBDEST ← Bit(result1);

Instruction set ST231

174/331 7645929

cmpgt Register - Immediate
cmpgt RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 0100 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 > operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 175/331

cmpgt Branch Register - Immediate
cmpgt BIBDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 0100 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 > operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

176/331 7645929

cmpgtu Register - Register
cmpgtu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 0101 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 > operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 177/331

cmpgtu Branch Register - Register
cmpgtu BBDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 0101 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 > operand2;

BBDEST ← Bit(result1);

Instruction set ST231

178/331 7645929

cmpgtu Register - Immediate
cmpgtu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 0101 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 > operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 179/331

cmpgtu Branch Register - Immediate
cmpgtu BIBDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare greater than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 0101 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 > operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

180/331 7645929

cmple Register - Register
cmple RDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare equal or less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 0110 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 <= operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 181/331

cmple Branch Register - Register
cmple BBDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare equal or less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 0110 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 <= operand2;

BBDEST ← Bit(result1);

Instruction set ST231

182/331 7645929

cmple Register - Immediate
cmple RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare equal or less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 0110 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 <= operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 183/331

cmple Branch Register - Immediate
cmple BIBDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare equal or less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 0110 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 <= operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

184/331 7645929

cmpleu Register - Register
cmpleu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare equal or less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 0111 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 <= operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 185/331

cmpleu Branch Register - Register
cmpleu BBDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare equal or less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 0111 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 <= operand2;

BBDEST ← Bit(result1);

Instruction set ST231

186/331 7645929

cmpleu Register - Immediate
cmpleu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare equal or less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 0111 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 <= operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 187/331

cmpleu Branch Register - Immediate
cmpleu BIBDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare equal or less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 0111 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 <= operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

188/331 7645929

cmplt Register - Register
cmplt RDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 1000 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 < operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 189/331

cmplt Branch Register - Register
cmplt BBDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 1000 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 < operand2;

BBDEST ← Bit(result1);

Instruction set ST231

190/331 7645929

cmplt Register - Immediate
cmplt RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 1000 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 < operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 191/331

cmplt Branch Register - Immediate
cmplt BIBDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 1000 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 < operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

192/331 7645929

cmpltu Register - Register
cmpltu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 1001 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 < operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 193/331

cmpltu Branch Register - Register
cmpltu BBDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 1001 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 < operand2;

BBDEST ← Bit(result1);

Instruction set ST231

194/331 7645929

cmpltu Register - Immediate
cmpltu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 1001 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 < operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 195/331

cmpltu Branch Register - Immediate
cmpltu BIBDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare less than

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 1001 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 < operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

196/331 7645929

cmpne Register - Register
cmpne RDEST = RSRC1, RSRC2

Semantics:

Description: Test for inequality

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 0001 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ! = operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 197/331

cmpne Branch Register - Register
cmpne BBDEST = RSRC1, RSRC2

Semantics:

Description: Test for inequality

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 0001 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ! = operand2;

BBDEST ← Bit(result1);

Instruction set ST231

198/331 7645929

cmpne Register - Immediate

cmpne RIDEST = RSRC1, ISRC2

Semantics:

Description: Test for inequality

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 0001 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ! = operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 199/331

cmpne Branch Register - Immediate
cmpne BIBDEST = RSRC1, ISRC2

Semantics:

Description: Test for inequality

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 0001 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ! = operand2;

BIBDEST ← Bit(result1);

Instruction set ST231

200/331 7645929

divs
divs RDEST, BBDEST = RSRC1, RSRC2, BSCOND

Semantics:

Description: Non-restoring divide stage

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 01 0100 scond bdest dest src2 src1

31 30 29 28 27 24 23 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
operand3 ← ZeroExtend1(BSCOND);

temp ← ZeroExtend32(operand1 × 2) ∨ (operand3 ∧ 1);

IF (operand1 < 0)
{

result1 ← temp + operand2;

result2 ← 1;

}
ELSE

{

result1 ← temp - operand2;
result2 ← 0;

}

RDEST ← Register(result1);
BBDEST ← Bit(result2);

ST231 Instruction set

7645929 201/331

goto Immediate
goto BTARG

Semantics:

Description: Jump

Restrictions: Must be the first syllable of a bundle.

No latency constraints.

Exceptions: None.

s 11 0 001 0 btarg

31 30 29 28 27 26 24 23 22 0

operand1 ← SignExtend23(BTARG)<< 2;

PC ← Register(ZeroExtend32(BUNDLE_PC) + operand1);

Instruction set ST231

202/331 7645929

goto Link Register
goto $r63

Semantics:

Description: Jump (using Link Register)

Restrictions: Must be the first syllable of a bundle.

There are no latency constraints between an call uprating the LR and this operation.
There is a latency of 4 bundles between a load writing to the LR and this operation.
There is a latency of 2 bundles between any other operation updating the LR and this
operation.

Exceptions: None.

s 11 0 001 1 00000000000000000000000

31 30 29 28 27 26 24 23 22 0

PC ← Register(ZeroExtend32(LR));

ST231 Instruction set

7645929 203/331

imml
imml IMM

Semantics:

Description: Long immediate for previous syllable

Restrictions: Must be encoded at an even word address.

No latency constraints.

Exceptions: None.

s 01 01010 imm

31 30 29 28 27 23 22 0

extension ← ZeroExtend23(IMM);

Instruction set ST231

204/331 7645929

immr
immr IMM

Semantics:

Description: Long immediate for next syllable

Restrictions: Must be encoded at an even word address.

No latency constraints.

Exceptions: None.

s 01 01011 imm

31 30 29 28 27 23 22 0

extension ← ZeroExtend23(IMM);

ST231 Instruction set

7645929 205/331

ldb
ldb RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Signed load byte

Restrictions: Cannot write the link register ($r63).

Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB

s 10 0011 0 isrc2 nlidest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;

ELSE

ReadCheckMemory8(ea);

ReadMemory8(ea);

result1 ← SignExtend8(ReadMemResponse());

RNLIDEST ← Register(result1);

Instruction set ST231

206/331 7645929

ldb.d
ldb.d RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Signed load byte dismissable

Restrictions: Cannot write the link register ($r63).

Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: DBREAK, DTLB

s 10 0011 1 isrc2 nlidest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT (IsCRegSpace(ea)))

DisReadCheckMemory8(ea);

IF (NOT (IsCRegSpace(ea)))

DisReadMemory8(ea);
IF (IsCRegSpace(ea))

result1 ← 0;

ELSE
result1 ← SignExtend8(ReadMemResponse());

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 207/331

ldbu
ldbu RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Unsigned load byte

Restrictions Cannot write the link register ($r63).

Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB

s 10 0100 0 isrc2 nlidest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;

ELSE

ReadCheckMemory8(ea);

ReadMemory8(ea);

result1 ← ZeroExtend8(ReadMemResponse());

RNLIDEST ← Register(result1);

Instruction set ST231

208/331 7645929

ldbu.d
ldbu.d RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Unsigned load byte dismissable

Restrictions: Cannot write the link register ($r63).

Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: DBREAK, DTLB

s 10 0100 1 isrc2 nlidest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT (IsCRegSpace(ea)))

DisReadCheckMemory8(ea);

IF (NOT (IsCRegSpace(ea)))

DisReadMemory8(ea);
IF (IsCRegSpace(ea))

result1 ← 0;

ELSE
result1 ← ZeroExtend8(ReadMemResponse());

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 209/331

ldh
ldh RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Signed load half-word

Restrictions: Cannot write the link register ($r63).

Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 0001 0 isrc2 nlidest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;

ELSE

ReadCheckMemory16(ea);

ReadMemory16(ea);

result1 ← SignExtend16(ReadMemResponse());

RNLIDEST ← Register(result1);

Instruction set ST231

210/331 7645929

ldh.d
ldh.d RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Signed load half-word dismissable

Restrictions: Cannot write the link register ($r63).

Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: DBREAK, DTLB, MISALIGNED_TRAP

s 10 0001 1 isrc2 nlidest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT (IsCRegSpace(ea)))

DisReadCheckMemory16(ea);

IF (NOT (IsCRegSpace(ea)))

DisReadMemory16(ea);
IF (IsCRegSpace(ea))

result1 ← 0;

ELSE
result1 ← SignExtend16(ReadMemResponse());

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 211/331

ldhu
ldhu RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Unsigned load half-word

Restrictions: Cannot write the link register ($r63).

Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 0010 0 isrc2 nlidest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;

ELSE

ReadCheckMemory16(ea);

ReadMemory16(ea);

result1 ← ZeroExtend16(ReadMemResponse());

RNLIDEST ← Register(result1);

Instruction set ST231

212/331 7645929

ldhu.d
ldhu.d RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Unsigned load half-word dismissable

Restrictions: Cannot write the link register ($r63).

Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: DBREAK, DTLB, MISALIGNED_TRAP

s 10 0010 1 isrc2 nlidest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT (IsCRegSpace(ea)))

DisReadCheckMemory16(ea);

IF (NOT (IsCRegSpace(ea)))

DisReadMemory16(ea);
IF (IsCRegSpace(ea))

result1 ← 0;

ELSE
result1 ← ZeroExtend16(ReadMemResponse());

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 213/331

ldw
ldw RIDEST = ISRC2[RSRC1]

Semantics:

Description: Load word

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RIDEST is available for reading.

If writing the LR ($r63), there is a latency of 3 bundles before a call LR or goto LR is
issued.

Exceptions: DBREAK, DTLB, MISALIGNED_TRAP, CREG_ACCESS_VIOLATION,
CREG_NO_MAPPING

s 10 0000 0 isrc2 idest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

ReadCheckCReg(ea);

ELSE

ReadCheckMemory32(ea);

IF (IsCRegSpace(ea))

ReadCReg(ea);

ELSE
ReadMemory32(ea);

result1 ← SignExtend32(ReadMemResponse());

RIDEST ← Register(result1);

Instruction set ST231

214/331 7645929

ldw.d
ldw.d RIDEST = ISRC2[RSRC1]

Semantics:

Description: Load word dismissable

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

There is a latency of 2 bundles before RIDEST is available for reading.

If writing the LR ($r63), there is a latency of 3 bundles before a call LR or goto LR is
issued.

Exceptions: DBREAK, DTLB, MISALIGNED_TRAP, CREG_ACCESS_VIOLATION,
CREG_NO_MAPPING

s 10 0000 1 isrc2 idest src1

31 30 29 28 27 24 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))

THROW DBREAK;
IF (NOT (IsCRegSpace(ea)))

DisReadCheckMemory32(ea);

IF (NOT (IsCRegSpace(ea)))

DisReadMemory32(ea);
IF (IsCRegSpace(ea))

result1 ← 0;

ELSE
result1 ← SignExtend32(ReadMemResponse());

RIDEST ← Register(result1);

ST231 Instruction set

7645929 215/331

max Register
max RDEST = RSRC1, RSRC2

Semantics:

Description: Signed maximum

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 10000 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
IF (operand1 > operand2)

result1 ← operand1;

ELSE
result1 ← operand2;

RDEST ← Register(result1);

Instruction set ST231

216/331 7645929

max Immediate
max RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed maximum

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 10000 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
IF (operand1 > operand2)

result1 ← operand1;

ELSE
result1 ← operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 217/331

maxu Register
maxu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned maximum

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 10001 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
IF (operand1 > operand2)

result1 ← operand1;

ELSE
result1 ← operand2;

RDEST ← Register(result1);

Instruction set ST231

218/331 7645929

maxu Immediate
maxu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned maximum

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 10001 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
IF (operand1 > operand2)

result1 ← operand1;

ELSE
result1 ← operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 219/331

min Register
min RDEST = RSRC1, RSRC2

Semantics:

Description: Signed minimum

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 10010 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
IF (operand1 < operand2)

result1 ← operand1;

ELSE
result1 ← operand2;

RDEST ← Register(result1);

Instruction set ST231

220/331 7645929

min Immediate
min RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed minimum

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 10010 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
IF (operand1 < operand2)

result1 ← operand1;

ELSE
result1 ← operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 221/331

minu Register
minu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned minimum

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 10011 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);
IF (operand1 < operand2)

result1 ← operand1;

ELSE
result1 ← operand2;

RDEST ← Register(result1);

Instruction set ST231

222/331 7645929

minu Immediate
minu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned minimum

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 10011 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));
IF (operand1 < operand2)

result1 ← operand1;

ELSE
result1 ← operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 223/331

mulh Register
mulh RNLDEST = RSRC1, RSRC2

Semantics:

Description: Word by upper-half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 10111 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← operand1 × (operand2 >> 16);

RNLDEST ← Register(result1);

Instruction set ST231

224/331 7645929

mulh Immediate
mulh RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Word by upper-half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 10111 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← operand1 × (operand2 >> 16);

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 225/331

mulhh Register
mulhh RNLDEST = RSRC1, RSRC2

Semantics:

Description: Upper-half-word by upper-half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11101 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← (operand1 >> 16) × (operand2 >> 16);

RNLDEST ← Register(result1);

Instruction set ST231

226/331 7645929

mulhh Immediate
mulhh RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Upper-half-word by upper-half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11101 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← (operand1 >> 16) × (operand2 >> 16);

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 227/331

mulhhs Register
mulhhs RNLDEST = RSRC1, RSRC2

Semantics:

Description: Word by upper-half-word signed multiply, returns top 32 bits of 48 bit result

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 10100 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← (operand1 × (operand2 >> 16)) >> 16;

RNLDEST ← Register(result1);

Instruction set ST231

228/331 7645929

mulhhs Immediate
mulhhs RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Word by upper-half-word signed multiply, returns top 32 bits of 48 bit result

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 10100 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← (operand1 × (operand2 >> 16)) >> 16;

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 229/331

mulhhu Register
mulhhu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Upper-half-word by upper-half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11110 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← ZeroExtend16(operand1 >> 16) × ZeroExtend16(operand2 >> 16);

RNLDEST ← Register(result1);

Instruction set ST231

230/331 7645929

mulhhu Immediate
mulhhu RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Upper-half-word by upper-half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11110 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← ZeroExtend16(operand1 >> 16) × ZeroExtend16(operand2 >> 16);

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 231/331

mulhs Register
mulhs RNLDEST = RSRC1, RSRC2

Semantics:

Description: Sign extended word by zero extended upper-half-word signed multiply. Result is left
shifted 16 places.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11111 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← (operand1 × ZeroExtend16(operand2 >> 16)) << 16;

RNLDEST ← Register(result1);

Instruction set ST231

232/331 7645929

mulhs Immediate
mulhs RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Sign extended word by zero extended upper-half-word signed multiply. Result is left
shifted 16 places.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11111 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← (operand1 × ZeroExtend16(operand2 >> 16)) << 16;

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 233/331

mulhu Register
mulhu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Word by upper-half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11000 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← operand1 × ZeroExtend16(operand2 >> 16);

RNLDEST ← Register(result1);

Instruction set ST231

234/331 7645929

mulhu Immediate
mulhu RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Word by upper-half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11000 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← operand1 × ZeroExtend16(operand2 >> 16);

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 235/331

mull Register
mull RNLDEST = RSRC1, RSRC2

Semantics:

Description: Word by half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 10101 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend16(RSRC2);

result1 ← operand1 × operand2;

RNLDEST ← Register(result1);

Instruction set ST231

236/331 7645929

mull Immediate
mull RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Word by half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 10101 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend16(Imm(ISRC2));

result1 ← operand1 × operand2;

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 237/331

mullh Register
mullh RNLDEST = RSRC1, RSRC2

Semantics:

Description: Half-word by upper-half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11011 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← operand1 × (operand2 >> 16);

RNLDEST ← Register(result1);

Instruction set ST231

238/331 7645929

mullh Immediate
mullh RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Half-word by upper-half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11011 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← operand1 × (operand2 >> 16);

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 239/331

mullhu Register
mullhu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Half-word by upper-half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11100 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← operand1 × ZeroExtend16(operand2 >> 16);

RNLDEST ← Register(result1);

Instruction set ST231

240/331 7645929

mullhu Immediate
mullhu RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Half-word by upper-half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11100 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← operand1 × ZeroExtend16(operand2 >> 16);

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 241/331

mullhus Register
mullhus RNLDEST = RSRC1, RSRC2

Semantics:

Description: Sign extended word by zero extended lower-half-word signed multiply. Returns top
16 bits of 48 bit result, sign extended.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 01111 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← ZeroExtend16(RSRC2);

result1 ← (operand1 × operand2) >> 32;

RNLDEST ← Register(result1);

Instruction set ST231

242/331 7645929

mullhus Immediate
mullhus RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Sign extended word by zero extended lower-half-word signed multiply. Returns top
16 bits of 48 bit result, sign extended.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 01111 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← ZeroExtend16(Imm(ISRC2));

result1 ← (operand1 × operand2) >> 32;

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 243/331

mulll Register
mulll RNLDEST = RSRC1, RSRC2

Semantics:

Description: Half-word by half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11001 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);

operand2 ← SignExtend16(RSRC2);

result1 ← operand1 × operand2;

RNLDEST ← Register(result1);

Instruction set ST231

244/331 7645929

mulll Immediate
mulll RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Half-word by half-word signed multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11001 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);

operand2 ← SignExtend16(Imm(ISRC2));

result1 ← operand1 × operand2;

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 245/331

mulllu Register
mulllu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Half-word by half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11010 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);

operand2 ← ZeroExtend16(RSRC2);

result1 ← operand1 × operand2;

RNLDEST ← Register(result1);

Instruction set ST231

246/331 7645929

mulllu Immediate
mulllu RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Half-word by half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11010 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);

operand2 ← ZeroExtend16(Imm(ISRC2));

result1 ← operand1 × operand2;

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 247/331

mullu Register
mullu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Word by half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 10110 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend16(RSRC2);

result1 ← operand1 × operand2;

RNLDEST ← Register(result1);

Instruction set ST231

248/331 7645929

mullu Immediate
mullu RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Word by half-word unsigned multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 10110 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend16(Imm(ISRC2));

result1 ← operand1 × operand2;

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 249/331

mul32 Register
mul32 RNLDEST = RSRC1, RSRC2

Semantics:

Description: 32 by 32 multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 1 01110 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← operand1 × operand2;

RNLDEST ← Register(result1);

Instruction set ST231

250/331 7645929

mul32 Immediate
mul32 RNLIDEST = RSRC1, ISRC2

Semantics:

Description: 32 by 32 multiply

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 1 01110 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← operand1 × operand2;

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 251/331

mul64h Register
mul64h RNLDEST = RSRC1, RSRC2

Semantics:

Description: 32 by 32 signed multiply, return the top 32 bits of the 64 bit result.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 1 01111 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);

result1 ← (operand1 × operand2) >> 32;

RNLDEST ← Register(result1);

Instruction set ST231

252/331 7645929

mul64h Immediate
mul64h RNLIDEST = RSRC1, ISRC2

Description: 32 by 32 signed multiply, return the top 32 bits of the 64 bit result.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 1 01111 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

result1 ← (operand1 × operand2) >> 32;
RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 253/331

mul64hu Register
mul64hu RNLDEST = RSRC1, RSRC2

Semantics:

Description: 32 by 32 unsigned multiply, return the top 32 bits of the 64 bit result.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 1 11110 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(RSRC2);

result1 ← (operand1 × operand2) >> 32;

RNLDEST ← Register(result1);

Instruction set ST231

254/331 7645929

mul64hu Immediate
mul64hu RNLIDEST = RSRC1, ISRC2

Semantics:

Description: 32 by 32 unsigned multiply, return the top 32 bits of the 64 bit result.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 1 11110 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend32(Imm(ISRC2));

result1 ← (operand1 × operand2) >> 32;

RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 255/331

mulfrac Register
mulfrac RNLDEST = RSRC1, RSRC2

Semantics:

Description: fractional multiply.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 1 11111 nldest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);

IF (((-operand1) = 0x80000000) AND ((-operand2) = 0x80000000))

{

result1 ← 0x7FFFFFFF;
}

ELSE

{

result1 ← operand1 × operand2;
result1 ← result1 + (1 << 30);

result1 ← result1 >> 31;

}
RNLDEST ← Register(result1);

Instruction set ST231

256/331 7645929

mulfrac Immediate
mulfrac RNLIDEST = RSRC1, ISRC2

Semantics:

Description: fractional multiply.

Restrictions: Cannot write the link register ($r63).

Must be encoded at an odd word address.

There is a latency of 2 bundles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 1 11111 isrc2 nlidest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));

IF (((-operand1) = 0x80000000) AND ((-operand2) = 0x80000000))

{

result1 ← 0x7FFFFFFF;
}

ELSE

{

result1 ← operand1 × operand2;
result1 ← result1 + (1 << 30);

result1 ← result1 >> 31;

}
RNLIDEST ← Register(result1);

ST231 Instruction set

7645929 257/331

nandl Register - Register
nandl RDEST = RSRC1, RSRC2

Semantics:

Description: Logical nand

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 1011 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

RDEST ← Register(result1);

Instruction set ST231

258/331 7645929

nandl Branch Register - Register
nandl BBDEST = RSRC1, RSRC2

Semantics:

Description: Logical nand

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 1011 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

BBDEST ← Bit(result1);

ST231 Instruction set

7645929 259/331

nandl Register - Immediate
nandl RIDEST = RSRC1, ISRC2

Semantics:

Description: Logical nand

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 1011 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

RIDEST ← Register(result1);

Instruction set ST231

260/331 7645929

nandl Branch Register - Immediate
nandl BIBDEST = RSRC1, ISRC2

Semantics:

Description: Logical nand

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 1011 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

BIBDEST ← Bit(result1);

ST231 Instruction set

7645929 261/331

norl Register - Register
norl RDEST = RSRC1, RSRC2

Semantics:

Description: Logical nor

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 1101 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

RDEST ← Register(result1);

Instruction set ST231

262/331 7645929

norl Branch Register - Register
norl BBDEST = RSRC1, RSRC2

Semantics:

Description: Logical nor

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 1101 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

BBDEST ← Bit(result1);

ST231 Instruction set

7645929 263/331

norl Register - Immediate
norl RIDEST = RSRC1, ISRC2

Semantics:

Description: Logical nor

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 1101 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

RIDEST ← Register(result1);

Instruction set ST231

264/331 7645929

norl Branch Register - Immediate
norl BIBDEST = RSRC1, ISRC2

Semantics:

Description: Logical nor

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 1101 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

BIBDEST ← Bit(result1);

ST231 Instruction set

7645929 265/331

or Register
or RDEST = RSRC1, RSRC2

Semantics:

Description: Bitwise or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 01011 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ∨ operand2;

RDEST ← Register(result1);

Instruction set ST231

266/331 7645929

or Immediate
or RIDEST = RSRC1, ISRC2

Semantics:

Description: Bitwise or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01011 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ∨ operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 267/331

orc Register
orc RDEST = RSRC1, RSRC2

Semantics:

Description: Complement and bitwise or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 01100 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (~operand1) ∨ operand2;

RDEST ← Register(result1);

Instruction set ST231

268/331 7645929

orc Immediate
orc RIDEST = RSRC1, ISRC2

Semantics:

Description: Complement and bitwise or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01100 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (~operand1) ∨ operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 269/331

orl Register - Register
orl RDEST = RSRC1, RSRC2

Semantics:

Description: Logical or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 0 1100 dest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 ≠ 0) OR (operand2 ≠ 0);

RDEST ← Register(result1);

Instruction set ST231

270/331 7645929

orl Branch Register - Register
orl BBDEST = RSRC1, RSRC2

Semantics:

Description: Logical or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 1 1 1100 bdest src2 src1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 ≠ 0) OR (operand2 ≠ 0);

BBDEST ← Bit(result1);

ST231 Instruction set

7645929 271/331

orl Register - Immediate
orl RIDEST = RSRC1, ISRC2

Semantics:

Description: Logical or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 0 1100 isrc2 idest src1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 ≠ 0) OR (operand2 ≠ 0);

RIDEST ← Register(result1);

Instruction set ST231

272/331 7645929

orl Branch Register - Immediate
orl BIBDEST = RSRC1, ISRC2

Semantics:

Description: Logical or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 1 1 1100 isrc2 ibdest src1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 ≠ 0) OR (operand2 ≠ 0);

BIBDEST ← Bit(result1);

ST231 Instruction set

7645929 273/331

pft
pft ISRC2[RSRC1]

Semantics:

Description: Prefetch

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

No latency constraints.

Exceptions: None.

s 10 01101 isrc2 000000 src1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

PrefetchCheckMemory(ea);

PrefetchMemory(ea);

Instruction set ST231

274/331 7645929

prgadd
prgadd ISRC2[RSRC1]

Semantics:

Description: Purge the address given from the data cache

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

No latency constraints.

Exceptions: DTLB

s 10 01110 isrc2 000000 src1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

PurgeAddressCheckMemory(ea);

PurgeAddress(ea);

ST231 Instruction set

7645929 275/331

prgins
prgins

Semantics:

Description: Purge the instruction cache

Restrictions: Must be in a bundle by itself

No latency constraints.

Exceptions: ILL_INST

s 01 1111100

31 30 29 28 27 21 20 0

IF (PSW[USER_MODE])

THROW ILL_INST;

PurgeIns();

Instruction set ST231

276/331 7645929

prginspg
prginspg ISRC2[RSRC1]

Semantics:

Description: Purge a 8kb page from the instruction cache

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

No latency constraints.

Exceptions: ILL_INST

s 10 10001 isrc2 000000 src1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
IF (PSW[USER_MODE])

THROW ILL_INST;

ea ← ZeroExtend32(operand1 + operand2);

PurgeInsPg(ea);

ST231 Instruction set

7645929 277/331

prgset
prgset ISRC2[RSRC1]

Semantics:

Description: Purge a set of four cache lines from the data cache

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

No latency constraints.

Exceptions: None.

s 10 01111 isrc2 000000 src1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

PurgeSet(ea);

Instruction set ST231

278/331 7645929

pswclr
pswclr RSRC2

Semantics:

Description: Atomic psw clear.

Restrictions: Must be the first in a bundle and uses the ld/st unit for which only one operation is
allowed per bundle.

No latency constraints.

Exceptions: ILL_INST

s 10 10011 src2 000000

31 30 29 28 27 23 22 21 20 12 11 6 5 0

operand2 ← SignExtend32(RSRC2);

IF (PSW[USER_MODE])
THROW ILL_INST;

PswClr(operand2);

ST231 Instruction set

7645929 279/331

pswset
pswset RSRC2

Semantics:

Description: Atomic PSW set.

Restrictions: Must be the first in a bundle and uses the ld/st unit for which only one operation is
allowed per bundle.

No latency constraints.

Exceptions: ILL_INST

s 10 10010 src2 000000

31 30 29 28 27 23 22 21 20 12 11 6 5 0

operand2 ← SignExtend32(RSRC2);

IF (PSW[USER_MODE])
THROW ILL_INST;

PswSet(operand2);

Instruction set ST231

280/331 7645929

rfi
rfi

Semantics:

Description: Return from interrupt

Restrictions: Must be the first in a bundle and uses the ld/st unit for which only one operation is
allowed per bundle.

Instructions writing SAVED_PC must be followed by 4 bundles before this instruction
can be issued.

Instructions writing SAVED_PSW must be followed by 4 bundles before this
instruction can be issued.

Instructions writing SAVED_SAVED_PC must be followed by 4 bundles before this
instruction can be issued.

Instructions writing SAVED_SAVED_PSW must be followed by 4 bundles before this
instruction can be issued.

Instructions writing PSW must be followed by 4 bundles before this instruction can be
issued.

Exceptions: ILL_INST

s 11 0 010 0 00000000000000000000000

31 30 29 28 27 26 24 23 22 0

IF (PSW[USER_MODE])

THROW ILL_INST;
PC ← Register(ZeroExtend32(SAVED_PC));

PSW ← SAVED_PSW;

SAVED_PC← SAVED_SAVED_PC;
SAVED_PSW← SAVED_SAVED_PSW;

Rfi();

ST231 Instruction set

7645929 281/331

sbrk
sbrk SBRKNUM

Semantics:

Description: Software breakpoint

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: SBREAK

1 01 1111101 sbrknum

31 30 29 28 27 21 20 0

operand1 ← ZeroExtend21(SBRKNUM);

THROW SBREAK;

Instruction set ST231

282/331 7645929

sh1add Register
sh1add RDEST = RSRC1, RSRC2

Semantics:

Description: Shift left one and accumulate

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 00101 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 << 1) + operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 283/331

sh1add Immediate
sh1add RIDEST = RSRC1, ISRC2

Semantics:

Description: Shift left one and accumulate

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 00101 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 << 1) + operand2;

RIDEST ← Register(result1);

Instruction set ST231

284/331 7645929

sh2add Register
sh2add RDEST = RSRC1, RSRC2

Semantics:

Description: Shift left two and accumulate

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 00110 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 << 2) + operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 285/331

sh2add Immediate
sh2add RIDEST = RSRC1, ISRC2

Semantics:

Description: Shift left two and accumulate

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 00110 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 << 2) + operand2;

RIDEST ← Register(result1);

Instruction set ST231

286/331 7645929

sh3add Register
sh3add RDEST = RSRC1, RSRC2

Semantics:

Description: Shift left three and accumulate

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 00111 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 << 3) + operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 287/331

sh3add Immediate
sh3add RIDEST = RSRC1, ISRC2

Semantics:

Description: Shift left three and accumulate

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 00111 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 << 3) + operand2;

RIDEST ← Register(result1);

Instruction set ST231

288/331 7645929

sh4add Register
sh4add RDEST = RSRC1, RSRC2

Semantics:

Description: Shift left four and accumulate

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 01000 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 << 4) + operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 289/331

sh4add Immediate
sh4add RIDEST = RSRC1, ISRC2

Semantics:

Description: Shift left four and accumulate

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01000 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 << 4) + operand2;

RIDEST ← Register(result1);

Instruction set ST231

290/331 7645929

shl Register
shl RDEST = RSRC1, RSRC2

Semantics:

Description: Shift left

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 00010 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← ZeroExtend8(RSRC2);
IF (operand2 > 31)

result1 ← 0;

ELSE
result1 ← operand1 << operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 291/331

shl Immediate
shl RIDEST = RSRC1, ISRC2

Semantics:

Description: Shift left

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 00010 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← ZeroExtend8(Imm(ISRC2));
IF (operand2 > 31)

result1 ← 0;

ELSE
result1 ← operand1 << operand2;

RIDEST ← Register(result1);

Instruction set ST231

292/331 7645929

shr Register
shr RDEST = RSRC1, RSRC2

Semantics:

Description: Arithmetic shift right

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 00011 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← ZeroExtend8(RSRC2);
result1 ← operand1 >> operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 293/331

shr Immediate
shr RIDEST = RSRC1, ISRC2

Semantics:

Description: Arithmetic shift right

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 00011 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← ZeroExtend8(Imm(ISRC2));
result1 ← operand1 >> operand2;

RIDEST ← Register(result1);

Instruction set ST231

294/331 7645929

shru Register
shru RDEST = RSRC1, RSRC2

Semantics:

Description: Logical shift right

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 00100 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend8(RSRC2);
result1 ← operand1 >> operand2;

RDEST ← Register(result1);

ST231 Instruction set

7645929 295/331

shru Immediate
shru RIDEST = RSRC1, ISRC2

Semantics:

Description: Logical shift right

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 00100 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

operand2 ← ZeroExtend8(Imm(ISRC2));
result1 ← operand1 >> operand2;

RIDEST ← Register(result1);

Instruction set ST231

296/331 7645929

slct Register
slct RDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description: Conditional select

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 01 0 000 scond dest src2 src1

31 30 29 28 27 26 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend1(BSCOND);

operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);

IF (operand1 ≠ 0)

result1 ← operand2;
ELSE

result1 ← operand3;

RDEST ← Register(result1);

ST231 Instruction set

7645929 297/331

slct Immediate
slct RIDEST = BSCOND, RSRC1, ISRC2

Semantics:

Description: Conditional select

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 01 1 000 scond isrc2 idest src1

31 30 29 28 27 26 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend1(BSCOND);

operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(Imm(ISRC2));

IF (operand1 ≠ 0)

result1 ← operand2;
ELSE

result1 ← operand3;

RIDEST ← Register(result1);

Instruction set ST231

298/331 7645929

slctf Register
slctf RDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description: Conditional select

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 01 0 001 scond dest src2 src1

31 30 29 28 27 26 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend1(BSCOND);

operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);

IF (operand1 = 0)

result1 ← operand2;
ELSE

result1 ← operand3;

RDEST ← Register(result1);

ST231 Instruction set

7645929 299/331

slctf Immediate
slctf RIDEST = BSCOND, RSRC1, ISRC2

Semantics:

Description: Conditional select

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 01 1 001 scond isrc2 idest src1

31 30 29 28 27 26 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend1(BSCOND);

operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(Imm(ISRC2));

IF (operand1 = 0)

result1 ← operand2;
ELSE

result1 ← operand3;

RIDEST ← Register(result1);

Instruction set ST231

300/331 7645929

stb
stb ISRC2[RSRC1] = RSRC2

Semantics:

Description: Store byte

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

No latency constraints.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB

s 10 01100 isrc2 src2 src1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);

ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))
THROW DBREAK;

IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;

WriteCheckMemory8(ea);

WriteMemory8(ea, operand3);

ST231 Instruction set

7645929 301/331

sth
sth ISRC2[RSRC1] = RSRC2

Semantics:

Description: Store half-word

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

No latency constraints.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 01011 isrc2 src2 src1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);

ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))
THROW DBREAK;

IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;

WriteCheckMemory16(ea);

WriteMemory16(ea, operand3);

Instruction set ST231

302/331 7645929

stw
stw ISRC2[RSRC1] = RSRC2

Semantics:

Description: Store word

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

No latency constraints.

Exceptions: DBREAK, DTLB, MISALIGNED_TRAP, CREG_ACCESS_VIOLATION,
CREG_NO_MAPPING

s 10 01010 isrc2 src2 src1

31 30 29 28 27 23 22 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));

operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);

ea ← ZeroExtend32(operand1 + operand2);

IF (IsDBreakHit(ea))
THROW DBREAK;

IF (IsCRegSpace(ea))

WriteCheckCReg(ea);

ELSE
WriteCheckMemory32(ea);

IF (IsCRegSpace(ea))

WriteCReg(ea, operand3);
ELSE

WriteMemory32(ea, operand3);

ST231 Instruction set

7645929 303/331

sub Register
sub RDEST = RSRC2, RSRC1

Semantics:

Description: Subtract

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 00001 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand2 - operand1;

RDEST ← Register(result1);

Instruction set ST231

304/331 7645929

sub Immediate
sub RIDEST = ISRC2, RSRC1

Semantics:

Description: Subtract

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 00001 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand2 - operand1;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 305/331

sxtb
sxtb RIDEST = RSRC1

Semantics:

Description: Sign extend byte

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01110 000000000 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend8(RSRC1);

result1 ← operand1;

RIDEST ← Register(result1);

Instruction set ST231

306/331 7645929

sxth
sxth RIDEST = RSRC1

Semantics:

Description: Sign extend half

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01110 000000001 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);

result1 ← operand1;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 307/331

sync
sync

Semantics:

Description: Ensure synchronization

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.

No latency constraints.

Exceptions: None.

s 10 10000 000000 000000

31 30 29 28 27 23 22 21 20 12 11 6 5 0

Sync();

Instruction set ST231

308/331 7645929

syscall
syscall SBRKNUM

Semantics:

Description: System call

Restrictions: Must be in a bundle by itself

No latency constraints.

Exceptions: SYSCALL

s 01 1111110 sbrknum

31 30 29 28 27 21 20 0

operand1 ← ZeroExtend21(SBRKNUM);

THROW SYSCALL;

ST231 Instruction set

7645929 309/331

xor Register
xor RDEST = RSRC1, RSRC2

Semantics:

Description: Bitwise exclusive-or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 0 0 01101 dest src2 src1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ⊕ operand2;

RDEST ← Register(result1);

Instruction set ST231

310/331 7645929

xor Immediate
xor RIDEST = RSRC1, ISRC2

Semantics:

Description: Bitwise exclusive-or

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01101 isrc2 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ⊕ operand2;

RIDEST ← Register(result1);

ST231 Instruction set

7645929 311/331

zxth
zxth RIDEST = RSRC1

Semantics:

Description: Zero extend half

Restrictions: No address or bundle restrictions.

No latency constraints.

Exceptions: None.

s 00 1 0 01110 000000011 idest src1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);

result1 ← operand1;

RIDEST ← Register(result1);

Instruction encoding ST231

312/331 7645929

Appendix A Instruction encoding

This appendix describes the ST231 instruction encoding.

A.1 Reserved bits
Any bits that are not defined are reserved. These bits must be set to 0.

A.2 Fields
Each instruction encoding is composed of a number of fields representing the operands.
These are listed in Table 93.

Table 93. Operand fields

Operand field Description

BCOND Branch register containing the branch condition.

BDEST Destination branch register for register format operations.

BDEST2 Destination branch register.

BTARG Branch offset value from PC.

DEST Destination general purpose register for register format operations.

NLDEST
Destination general purpose register for multiply operations ($r63 cannot be
used).

IBDEST Destination branch register for immediate format operations.

IDEST Destination general purpose register for immediate format operations.

NLIDEST
Destination general purpose register for immediate format multiplies ($r63 cannot
be used).

ISRC2 9-bit short immediate value.

IMM 23-bit value used to extend a short immediate.

SCOND Source branch register used for select condition or carry.

SRC1 General purpose source register.

SRC2 General purpose source register.

SBRKNUM 21-bit immediate operand for sbrk

ST231 Instruction encoding

7645929 313/331

A.3 Formats

Table 94. Formats
S

to
p

bi
t

F
o

rm
at

O
p

co
d

e

Im
m

ed
ia

te
/

D
es

t

D
es

t/
S

rc
2

D
es

t/
S

rc
2

S
rc

1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Int3R s 00 0 0 OPC DEST SRC2 SRC1

Int3I s 00 1 0 OPC ISRC2 IDEST SRC1

Monadic s 00 1 0 01110 OPC IDEST SRC1

Cmp3R_Reg s 00 0 1 0 OPC DEST SRC2 SRC1

Cmp3R_Br s 00 0 1 1 OPC BDEST SRC2 SRC1

Cmp3I_Reg s 00 1 1 0 OPC ISRC2 IDEST SRC1

Cmp3I_Br s 00 1 1 1 OPC ISRC2 IBDEST SRC1

Imm s 01 OPC IMM

SelectR s 01 0 OPC SCOND DEST SRC2 SRC1

SelectI s 01 1 OPC SCOND ISRC2 IDEST SRC1

cgen s 01 OPC SCOND BDEST DEST SRC2 SRC1

SysOp s 01 OPC

SBreak s 01 OPC SBRKNUM

System s 10 1111 111 OPC SRC2 SRC1

Load s 10 OPC D ISRC2 IDEST SRC1

Store s 10 OPC ISRC2 SRC2 SRC1

Psw s 10 OPC SRC2 SRC1

Call s 11 0 OPC LNK BTARG

Branch s 11 1 OPC BCOND BTARG

Mul64R s 00 0 1 OPC NLDEST SRC2 SRC1

Mul64I s 00 1 1 OPC ISRC2 NLIDEST SRC1

AsmR_Reg s 10 1 1 OPC DEST SRC2 SRC1

AsmI_Reg s 10 1 1 OPC ISRC2 IDEST SRC1

Instruction encoding ST231

314/331 7645929

Important points to note.

● The stop bit indicates the end of bundle and is set in the last syllable of the bundle.

● The format bits are used to decode the class of operation. There are four formats:

● Additional decoding is performed using the most significant instruction bits.

● Int3 operations have two base formats, register (Int3R) and immediate (Int3I). Bit 27
specifies the Int3 format, 0=register format, 1=immediate format. In register format, the
operation consists of RDEST = RSRC1 Op RSRC2. Immediate format consists of RDEST =
RSRC1 Op IMMEDIATE.

● Cmp3 format is similar to Int3 except it can have as a destination either a general
purpose register or a branch register (BBDEST). In register format, the target register
specifier occupies bits 12 to 17, while the target branch register bits 18 to 20. In
immediate format, bits 6 to 11 specify either the target general purpose register or
target branch register (bits 6 to 8).

● Load operations follow RDEST = Mem[RSRC1 + IMMEDIATE] semantics, while stores
follow Mem[RSRC1 + IMMEDIATE] = RSRC2. Thus bits 6 to 11 specify either the target
destination register (RDEST) or the second operand source register (RSRC2), depending
on whether the operation is a load or store.

A.4 Opcodes

Integer arithmetic, comparison

Specific immediate extension, selects, extended arithmetic

Memory load, store

Control transfer branch, call, rfi, goto

Table 95. Instruction encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

add s 00 0 0 00000 DEST SRC2 SRC1

sub s 00 0 0 00001 DEST SRC2 SRC1

shl s 00 0 0 00010 DEST SRC2 SRC1

shr s 00 0 0 00011 DEST SRC2 SRC1

shru s 00 0 0 00100 DEST SRC2 SRC1

sh1add s 00 0 0 00101 DEST SRC2 SRC1

sh2add s 00 0 0 00110 DEST SRC2 SRC1

sh3add s 00 0 0 00111 DEST SRC2 SRC1

sh4add s 00 0 0 01000 DEST SRC2 SRC1

and s 00 0 0 01001 DEST SRC2 SRC1

andc s 00 0 0 01010 DEST SRC2 SRC1

or s 00 0 0 01011 DEST SRC2 SRC1

orc s 00 0 0 01100 DEST SRC2 SRC1

xor s 00 0 0 01101 DEST SRC2 SRC1

mullhus s 00 0 0 01111 NLDEST SRC2 SRC1

ST231 Instruction encoding

7645929 315/331

max s 00 0 0 10000 DEST SRC2 SRC1

maxu s 00 0 0 10001 DEST SRC2 SRC1

min s 00 0 0 10010 DEST SRC2 SRC1

minu s 00 0 0 10011 DEST SRC2 SRC1

mulhhs s 00 0 0 10100 NLDEST SRC2 SRC1

mull s 00 0 0 10101 NLDEST SRC2 SRC1

mullu s 00 0 0 10110 NLDEST SRC2 SRC1

mulh s 00 0 0 10111 NLDEST SRC2 SRC1

mulhu s 00 0 0 11000 NLDEST SRC2 SRC1

mulll s 00 0 0 11001 NLDEST SRC2 SRC1

mulllu s 00 0 0 11010 NLDEST SRC2 SRC1

mullh s 00 0 0 11011 NLDEST SRC2 SRC1

mullhu s 00 0 0 11100 NLDEST SRC2 SRC1

mulhh s 00 0 0 11101 NLDEST SRC2 SRC1

mulhhu s 00 0 0 11110 NLDEST SRC2 SRC1

mulhs s 00 0 0 11111 NLDEST SRC2 SRC1

cmpeq s 00 0 1 0 0000 DEST SRC2 SRC1

cmpne s 00 0 1 0 0001 DEST SRC2 SRC1

cmpge s 00 0 1 0 0010 DEST SRC2 SRC1

cmpgeu s 00 0 1 0 0011 DEST SRC2 SRC1

cmpgt s 00 0 1 0 0100 DEST SRC2 SRC1

cmpgtu s 00 0 1 0 0101 DEST SRC2 SRC1

cmple s 00 0 1 0 0110 DEST SRC2 SRC1

cmpleu s 00 0 1 0 0111 DEST SRC2 SRC1

cmplt s 00 0 1 0 1000 DEST SRC2 SRC1

cmpltu s 00 0 1 0 1001 DEST SRC2 SRC1

andl s 00 0 1 0 1010 DEST SRC2 SRC1

nandl s 00 0 1 0 1011 DEST SRC2 SRC1

orl s 00 0 1 0 1100 DEST SRC2 SRC1

norl s 00 0 1 0 1101 DEST SRC2 SRC1

mul32 s 00 0 1 01110 NLDEST SRC2 SRC1

mul64h s 00 0 1 01111 NLDEST SRC2 SRC1

cmpeq s 00 0 1 1 0000 BDEST SRC2 SRC1

cmpne s 00 0 1 1 0001 BDEST SRC2 SRC1

cmpge s 00 0 1 1 0010 BDEST SRC2 SRC1

Table 95. Instruction encoding (continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction encoding ST231

316/331 7645929

cmpgeu s 00 0 1 1 0011 BDEST SRC2 SRC1

cmpgt s 00 0 1 1 0100 BDEST SRC2 SRC1

cmpgtu s 00 0 1 1 0101 BDEST SRC2 SRC1

cmple s 00 0 1 1 0110 BDEST SRC2 SRC1

cmpleu s 00 0 1 1 0111 BDEST SRC2 SRC1

cmplt s 00 0 1 1 1000 BDEST SRC2 SRC1

cmpltu s 00 0 1 1 1001 BDEST SRC2 SRC1

andl s 00 0 1 1 1010 BDEST SRC2 SRC1

nandl s 00 0 1 1 1011 BDEST SRC2 SRC1

orl s 00 0 1 1 1100 BDEST SRC2 SRC1

norl s 00 0 1 1 1101 BDEST SRC2 SRC1

mul64hu s 00 0 1 11110 NLDEST SRC2 SRC1

mulfrac s 00 0 1 11111 NLDEST SRC2 SRC1

add s 00 1 0 00000 ISRC2 IDEST SRC1

sub s 00 1 0 00001 ISRC2 IDEST SRC1

shl s 00 1 0 00010 ISRC2 IDEST SRC1

shr s 00 1 0 00011 ISRC2 IDEST SRC1

shru s 00 1 0 00100 ISRC2 IDEST SRC1

sh1add s 00 1 0 00101 ISRC2 IDEST SRC1

sh2add s 00 1 0 00110 ISRC2 IDEST SRC1

sh3add s 00 1 0 00111 ISRC2 IDEST SRC1

sh4add s 00 1 0 01000 ISRC2 IDEST SRC1

and s 00 1 0 01001 ISRC2 IDEST SRC1

andc s 00 1 0 01010 ISRC2 IDEST SRC1

or s 00 1 0 01011 ISRC2 IDEST SRC1

orc s 00 1 0 01100 ISRC2 IDEST SRC1

xor s 00 1 0 01101 ISRC2 IDEST SRC1

sxtb s 00 1 0 01110 000000000 IDEST SRC1

sxth s 00 1 0 01110 000000001 IDEST SRC1

bswap s 00 1 0 01110 000000010 IDEST SRC1

zxth s 00 1 0 01110 000000011 IDEST SRC1

clz s 00 1 0 01110 000000100 IDEST SRC1

mullhus s 00 1 0 01111 ISRC2 NLIDEST SRC1

max s 00 1 0 10000 ISRC2 IDEST SRC1

maxu s 00 1 0 10001 ISRC2 IDEST SRC1

Table 95. Instruction encoding (continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST231 Instruction encoding

7645929 317/331

min s 00 1 0 10010 ISRC2 IDEST SRC1

minu s 00 1 0 10011 ISRC2 IDEST SRC1

mulhhs s 00 1 0 10100 ISRC2 NLIDEST SRC1

mull s 00 1 0 10101 ISRC2 NLIDEST SRC1

mullu s 00 1 0 10110 ISRC2 NLIDEST SRC1

mulh s 00 1 0 10111 ISRC2 NLIDEST SRC1

mulhu s 00 1 0 11000 ISRC2 NLIDEST SRC1

mulll s 00 1 0 11001 ISRC2 NLIDEST SRC1

mulllu s 00 1 0 11010 ISRC2 NLIDEST SRC1

mullh s 00 1 0 11011 ISRC2 NLIDEST SRC1

mullhu s 00 1 0 11100 ISRC2 NLIDEST SRC1

mulhh s 00 1 0 11101 ISRC2 NLIDEST SRC1

mulhhu s 00 1 0 11110 ISRC2 NLIDEST SRC1

mulhs s 00 1 0 11111 ISRC2 NLIDEST SRC1

cmpeq s 00 1 1 0 0000 ISRC2 IDEST SRC1

cmpne s 00 1 1 0 0001 ISRC2 IDEST SRC1

cmpge s 00 1 1 0 0010 ISRC2 IDEST SRC1

cmpgeu s 00 1 1 0 0011 ISRC2 IDEST SRC1

cmpgt s 00 1 1 0 0100 ISRC2 IDEST SRC1

cmpgtu s 00 1 1 0 0101 ISRC2 IDEST SRC1

cmple s 00 1 1 0 0110 ISRC2 IDEST SRC1

cmpleu s 00 1 1 0 0111 ISRC2 IDEST SRC1

cmplt s 00 1 1 0 1000 ISRC2 IDEST SRC1

cmpltu s 00 1 1 0 1001 ISRC2 IDEST SRC1

andl s 00 1 1 0 1010 ISRC2 IDEST SRC1

nandl s 00 1 1 0 1011 ISRC2 IDEST SRC1

orl s 00 1 1 0 1100 ISRC2 IDEST SRC1

norl s 00 1 1 0 1101 ISRC2 IDEST SRC1

mul32 s 00 1 1 01110 ISRC2 NLIDEST SRC1

mul64h s 00 1 1 01111 ISRC2 NLIDEST SRC1

cmpeq s 00 1 1 1 0000 ISRC2 IBDEST SRC1

cmpne s 00 1 1 1 0001 ISRC2 IBDEST SRC1

cmpge s 00 1 1 1 0010 ISRC2 IBDEST SRC1

cmpgeu s 00 1 1 1 0011 ISRC2 IBDEST SRC1

cmpgt s 00 1 1 1 0100 ISRC2 IBDEST SRC1

Table 95. Instruction encoding (continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction encoding ST231

318/331 7645929

cmpgtu s 00 1 1 1 0101 ISRC2 IBDEST SRC1

cmple s 00 1 1 1 0110 ISRC2 IBDEST SRC1

cmpleu s 00 1 1 1 0111 ISRC2 IBDEST SRC1

cmplt s 00 1 1 1 1000 ISRC2 IBDEST SRC1

cmpltu s 00 1 1 1 1001 ISRC2 IBDEST SRC1

andl s 00 1 1 1 1010 ISRC2 IBDEST SRC1

nandl s 00 1 1 1 1011 ISRC2 IBDEST SRC1

orl s 00 1 1 1 1100 ISRC2 IBDEST SRC1

norl s 00 1 1 1 1101 ISRC2 IBDEST SRC1

mul64hu s 00 1 1 11110 ISRC2 NLIDEST SRC1

mulfrac s 00 1 1 11111 ISRC2 NLIDEST SRC1

slct s 01 0 000 SCOND DEST SRC2 SRC1

slctf s 01 0 001 SCOND DEST SRC2 SRC1

addcg s 01 0010 SCOND BDEST DEST SRC2 SRC1

divs s 01 0100 SCOND BDEST DEST SRC2 SRC1

imml s 01 01010 IMM

immr s 01 01011 IMM

slct s 01 1 000 SCOND ISRC2 IDEST SRC1

slctf s 01 1 001 SCOND ISRC2 IDEST SRC1

prgins s 01 1111100

sbrk 1 01 1111101 SBRKNUM

syscall s 01 1111110 SBRKNUM

break s 01 1111111

ldw s 10 0000 0 ISRC2 IDEST SRC1

ldw.d s 10 0000 1 ISRC2 IDEST SRC1

ldh s 10 0001 0 ISRC2 NLIDEST SRC1

ldh.d s 10 0001 1 ISRC2 NLIDEST SRC1

ldhu s 10 0010 0 ISRC2 NLIDEST SRC1

ldhu.d s 10 0010 1 ISRC2 NLIDEST SRC1

ldb s 10 0011 0 ISRC2 NLIDEST SRC1

ldb.d s 10 0011 1 ISRC2 NLIDEST SRC1

ldbu s 10 0100 0 ISRC2 NLIDEST SRC1

ldbu.d s 10 0100 1 ISRC2 NLIDEST SRC1

stw s 10 01010 ISRC2 SRC2 SRC1

sth s 10 01011 ISRC2 SRC2 SRC1

Table 95. Instruction encoding (continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST231 Instruction encoding

7645929 319/331

stb s 10 01100 ISRC2 SRC2 SRC1

pft s 10 01101 ISRC2 000000 SRC1

prgadd s 10 01110 ISRC2 000000 SRC1

prgset s 10 01111 ISRC2 000000 SRC1

sync s 10 10000 000000 000000

prginspg s 10 10001 ISRC2 000000 SRC1

pswset s 10 10010 SRC2 000000

pswclr s 10 10011 SRC2 000000

call s 11 0 000 0 BTARG

call s 11 0 000 1 00000000000000000000000

goto s 11 0 001 0 BTARG

goto s 11 0 001 1 00000000000000000000000

rfi s 11 0 010 0 00000000000000000000000

br s 11 1 0 BCOND BTARG

brf s 11 1 1 BCOND BTARG

Table 95. Instruction encoding (continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STBus endian behavior ST231

320/331 7645929

Appendix B STBus endian behavior

The processor behaves in a different manner depending on whether the ST231 is operating
in big endian or in little endian mode. Section 17.5.2: Memory model on page 130
introduces the notation used in this appendix and defines the processor's operation in terms
of a logical view of memory. This appendix describes the mapping between that logical
memory and an actual physical memory attached to an STBus.

B.1 Endianness of bytes and half-words within a word based
memory
The STBus views memory as being constructed from an array of 32-bit words. The notation
WMEM[i] is used to represent 32-bit words in memory where i varies in the range [0, 230),
and MEM[s] represents a byte indexed within WMEM[i].

For a little endian memory system:

MEM[s] = WMEM[s/4]<8(s\4) FOR 8>

For a big endian memory system:

MEM[s] = WMEM[s/4]<8(3-s\4) FOR 8>

Half-word accesses are made by pairing byte accesses using the equations given above.

Considering two processors of different endianness connected to the same memory
system, and representing the logical memory as seen by them as MEMLE[i] for the little
endian processor and MEMBE[i] for the big endian processor:

MEMLE[i] = MEMBE[i⊕3]

and:

WMEMLE[i] = WMEMBE[i]

As an example given the word WMEM[i], which stores the value 0xAABBCCDD. In either
endianness the word will read the same, but when read as bytes by a little endian
processor:

MEMLE[i] = 0xDD

MEMLE[i+1] = 0xCC

MEMLE[i+2] = 0xBB

MEMLE[i+3] = 0xAA

When read by a big endian processor:

MEMBE[i] = 0xAA

MEMBE[i+1] = 0xBB

MEMBE[i+2] = 0xCC

MEMBE[i+3] = 0xDD

ST231 STBus endian behavior

7645929 321/331

B.2 Endianness of 64-bit accesses
The ST231 has a 64-bit STBus initiator port. The data presented to the STBus is
determined differently depending upon the endianness mode. The STBus also interprets the
information differently.

DMEM[i] refers to a double word in memory where i varies in the range [0, 229). When a
little endian processor accesses a word address s:

WMEMLE[s] = DMEMLE[s/2]<32(s\2) FOR 32>

and for a big-endian processor:

WMEMBE[s] = WMEMLE[s/2]<32(1-s\2) FOR 32>

For example, if

WMEM[s]=0xaaaaaaaa

WMEM[s+1]=0xbbbbbbbb

then the contents of DMEM are:

DMEMLE[s] = 0xbbbbbbbb_aaaaaaaa

DMEMBE[s] = 0xaaaaaaa_bbbbbbbb

therefore the order of words within the double word has changed.

B.3 System requirements
Systems operating purely in a single mode are straightforward. All accesses as seen by the
processor are consistent and behave as would be expected for a processor of that
endianness.

Issues can arise where the memory system can be observed in both little-endian and big-
endian modes. A correctly implemented system behaves according to the definitions given
in this document. To ensure a correct implementation, the following points must be
addressed in the system.

● The STBus and all devices with 64-bit target ports must be aware of the endianness of
an access.

● Size convertors must be correctly configured for the endianness of the system. The
correct operation of any size convertors ensure that 32-bit target ports do not need to
be aware of endianness.

If a system is NOT properly configured then the following problems may be observed.

● The peripheral registers of the ST231 may appear at the wrong address; bit 2 of the
address could be inverted. This can be caused by a size convertor not being aware of
endianness.

● Pairs of words may be swapped in memory.

● Words may be written to the wrong address; bit[2] could be inverted.

Glossary ST231

322/331 7645929

Glossary

Branch registers The set of eight 1-bit registers that encode the condition for conditional
branches and carry bits.

Bundle Wide instruction of multiple operations always issued during the same
cycle and executed in parallel.

Cache set A set of a cache refers to all cache lines which may contain data at a
given address. For a direct mapped cache the size of the set is 1, and
for an n-way set associative cache the size of the set is n.

Commit point The point at which the results of operations are written to the
architectural state of the ST231.

Control register One of a set of address mapped registers maintained by the hardware
(or operating system or user). These registers may have side effects
and may require supervisor access permissions.

Core The core is the ST231 processor core excluding peripherals.

Dyadic operation An operation on two operands.

General-purpose
registers

The set of directly addressed fixed-point registers. ST200 contains one
GR file organized as a bank of 64 32-bit registers. The compiler is
responsible for explicitly scheduling data transfers among GRs.

Half-word, word,
long word

Half-word relates to a 16-bit data item. Word relates to a 32-bit data
item. Long word relates to a 64-bit data item.

Level-1 I-cache Level-1 instruction cache also referred as the “closest” or “lowest”
cache. Similar notations apply to the Level-1 data cache. ST200
supports multiple Level-1 data caches.

Long word See half-word definition.

LRU Least Recently Used. A replacement policy for caches and buffers. An
LRU policy will replace the oldest entry whenever there is insufficient
space for a new entry.

Main memory This is the system-accessible memory, cached.

Misaligned A memory access is misaligned if the access does not fit the natural
alignment width of the word being accessed, and the access is illegal.

Monadic operation An operation on one operand.

Operation An operation is an atomic ST200 action, in general considered roughly
equivalent to a typical instruction of a traditional 32-bit RISC machine.

Predication The operation of selectively quashing an operation according to the
value of a register (called predicate). One of the simplest forms of
predication is a select operation, which is supported in ST200.

Round robin A replacement policy for caches and buffers. A round robin policy
replaces entries in turn whenever there is insufficient space for a new
entry.

Set See cache set definition.

ST231 Glossary

7645929 323/331

Speculative A speculative operation (also known as “eager”) is an operation
executed prior to the resolution of the branch under which the operation
would normally execute. Special attention must be paid to speculative
memory load operations to handle the possible resulting exceptions.
Speculative memory load operation are sometimes called “dismissible”
as any exception deriving from the operation has to be ignored
(“dismissed”) by the system.

ST231 The ST231 is the processor core as described in this manual including
the associated peripherals. Also see “core” definition.

Superscalar An architecture with multiple functional units in which instructions are
scheduled dynamically by the hardware at run-time.

Syllable Encoded component of a bundle that specifies one operation to be
executed by the machine functional units. Syllables are composed of
register and/or immediate fields and opcode specifiers. A bundle in
ST200 may contain multiple syllables, each of them 32-bit wide.

VLIW Very long instruction word: instructions (called “bundles” in ST200
terminology) potentially encode multiple, independent operations, and
are fully scheduled at compile time.

Word See half-word definition.

ST231 List of instructions

7645929 324/331

List of instructions

add Immediate 139
add Immediate 143
add Register 142
addcg 144
and Immediate 146
and Register 145
andc Immediate 148
andc Register 147
andl Branch Register - Immediate 152
andl Branch Register - Register 150
andl Register - Immediate 151
andl Register - Register 149
br 153
break 154
brf 155
bswap 156
call Immediate 157
call Link Register 158
clz 159
cmpeq Branch Register - Immediate 163
cmpeq Branch Register - Register 161
cmpeq Register - Immediate 162
cmpeq Register - Register 160
cmpge Branch Register - Immediate 167
cmpge Branch Register - Register 165
cmpge Register - Immediate 166
cmpge Register - Register 164
cmpgeu Branch Register - Immediate 171
cmpgeu Branch Register - Register 169
cmpgeu Register - Immediate 170
cmpgeu Register - Register 168
cmpgt Branch Register - Immediate 175
cmpgt Branch Register - Register 173
cmpgt Register - Immediate 174
cmpgt Register - Register 172
cmpgtu Branch Register - Immediate 179
cmpgtu Branch Register - Register 177
cmpgtu Register - Immediate 178
cmpgtu Register - Register 176
cmple Branch Register - Immediate 183
cmple Branch Register - Register 181
cmple Register - Immediate 182
cmple Register - Register 180
cmpleu Branch Register - Immediate 187
cmpleu Branch Register - Register 185
cmpleu Register - Immediate 186
cmpleu Register - Register 184
cmplt Branch Register - Immediate 191
cmplt Branch Register - Register 189

cmplt Register - Immediate 190
cmplt Register - Register 188
cmpltu Branch Register - Immediate 195
cmpltu Branch Register - Register 193
cmpltu Register - Immediate 194
cmpltu Register - Register 192
cmpne Branch Register - Immediate 199
cmpne Branch Register - Register 197
cmpne Register - Immediate 198
cmpne Register - Register 196
divs 200
goto Immediate 201
goto Link Register 202
imml 203
immr 204
ldb 205
ldb.d 206
ldbu 207
ldbu.d 208
ldh 209
ldh.d 210
ldhu 211
ldhu.d 212
ldw 213
ldw.d 214
max Immediate 216
max Register 215
maxu Immediate 218
maxu Register 217
min Immediate 220
min Register 219
minu Immediate 222
minu Register 221
mul32 Immediate 250
mul32 Register 249
mul64h Immediate 252
mul64h Register 251
mul64hu Immediate 254
mul64hu Register 253
mulfrac Immediate 256
mulfrac Register 255
mulh Immediate 224
mulh Register 223
mulhh Immediate 226
mulhh Register 225
mulhhs Immediate 228
mulhhs Register 227
mulhhu Immediate 230
mulhhu Register 229

List of instructions ST231

325/331 7645929

mulhs Immediate 232
mulhs Register 231
mulhu Immediate 234
mulhu Register 233
mull Immediate 236
mull Register 235
mullh Immediate 238
mullh Register 237
mullhu Immediate 240
mullhu Register 239
mullhus Immediate 242
mullhus Register 241
mulll Immediate 244
mulll Register 243
mulllu Immediate 246
mulllu Register 245
mullu Immediate 248
mullu Register 247
nandl Branch Register - Immediate 260
nandl Branch Register - Register 258
nandl Register - Immediate 259
nandl Register - Register 257
norl Branch Register - Immediate 264
norl Branch Register - Register 262
norl Register - Immediate 263
norl Register - Register 261
or Immediate 266
or Register 265
orc Immediate 268
orc Register 267
orl Branch Register - Immediate 272
orl Branch Register - Register 270
orl Register - Immediate 271
orl Register - Register 269
pft 273
prgadd 274
prgins 275
prginspg 276
prgset 277
pswclr 278
pswset 279
rfi 280
sbrk 281
sh1add Immediate 283
sh1add Register 282
sh2add Immediate 285
sh2add Register 284
sh3add Immediate 287
sh3add Register 286
sh4add Immediate 289
sh4add Register 288
shl Immediate 291

shl Register 290
shr Immediate 293
shr Register 292
shru Immediate 295
shru Register 294
slct Immediate 297
slct Register 296
slctf Immediate 299
slctf Register 298
stb 300
sth 301
stw 302
sub Immediate 304
sub Register 303
sxtb 305
sxth 306
sync 307
syscall 308
xor Immediate 310
xor Register 309
zxth 311

Revision history ST231

326/331 7645929

Revision history

Table 96. Document revision history

Date Revision Changes

07-Sep-2009 N

Chapter 14: Debugging support (JTAG) made the following changes:

– Table 61 on page 102 updated HOST_EVENT_ACK_PENDING

– Section 14.3.2: Default debug handler reworded section Command
loop on page 104 and Table 63 and in section Default handler
commands on page 104, changed “TAPLINK_EVENT_DEFAULT
event” to “value 0x7” throughout.

– Table 65 on page 109 updated event command (sent from host)

03-Mar-2009 M

Made a number of changes throughout the manual to bring this
manual in line with the layout of the ST240 core and instruction set
reference manual (ADCS 8059133).

Updated Section 7.3.5: Uncached load and stores on page 53.

Updated Chapter 12: Interrupt controller on page 80.

Updated Section 18.4: Macros on page 141.

26-Jun-2008 L
Corrected minor errors throughout.

Added List of instructions on page 324.

12-Sep-2007 K
Updated the preface to reflect the current documentation suite.

No technical changes.

28-Mar-2007 J

Miscellaneous updates to:

Chapter 6: Memory translation and protection on page 31
Chapter 5: Traps (exceptions and interrupts) on page 25

Chapter 9: Control registers on page 67

Chapter 14: Debugging support (JTAG) on page 98
Chapter 17: Specification notation on page 119

Chapter 18: Instruction set on page 137

30-Jan-2007 I Update into new corporate template.

ST231 Index

7645929 327/331

Index

A
add .22
address space .32
AND .123
architecture .323
Arrays .120

B
B .128
Backus-Naur Form .11
Bit-fields .120
BNF. See Backus-Naur Form.
Boolean .120
Boolean operators .123
br .17
branch .29, 323
breakpoint registers .67
brf .17
bundle .323
Bundle decode .118
bus errors .25
bypassing .22

C
cache .33, 322
Cache set .322
call . 17, 19, 24, 29
carry .322
CMC .58
Commit point 116, 138, 322
compiler .322
conditional .322
control registers .68
Control transfer .314
Core .322
core memory controller 48, 58
CR .128
CREG_ACCESS_VIOLATION67
CREG_NO_MAPPING67

D
Data cache .34, 52
DBREAK_CONTROL89, 99
DBREAK_LOWER89, 99
DBREAK_UPPER 89, 99
debug interrupt . 17-18

debug ROM (JTAG) 103
debug ROM (TAPLink) 93
debug support unit . 90
debug support unit (JTAG) 101
DEBUG_ENABLE 93, 103
DEBUG_INTERRUPT 91, 101
DEBUG_INTERRUPT_TAKEN 91, 101
DEBUG_MODE . 88, 99
decode . 116
dismissible . 323
dismissible loads 16, 29, 67
DSR0 . 91, 102
DSR1 . 91, 102
DSR2 . 92, 103
DSU . 90, 101
DSU control registers (JTAG) 102

output register . 103
status register . 102
version register . 102

DSU control registers (TAPLink) 91
output register . 92
status register . 91
version register . 91

DSU_CALL_OR_RETURN87, 94, 98, 105
DSU_FLUSH87, 94, 98, 105
DSU_PEEK87, 94, 98, 104
DSU_POKE87, 94, 98, 105
DTLB . 31, 34, 54
Dyadic operation . 322
DYNAMIC . 54

E
ELSE . 126-127
encoding . 138
event . 87, 98, 107
EXADDRESS . 26
EXCAUSE . 28
EXCAUSENO . 28, 65
ExceptAddress . 26
exception . 25, 29, 323
exception registers . 67
execute . 116
execution pipeline . 22
expressions . 119-120
extended immediates 137
EXTERN_INT . 25, 27
external interrupt . 18

Index ST231

328/331 7645929

F
fetch .116
Fields .312
flush .51
FOR 122-123, 125, 127, 130, 132, 134
FROM .127
Function

Bit(i) .125
BusReadError(address) 129
Commit(n) .118
ControlRegister(address) 129
CregReadAccessViolation(index)129
CregWriteAccessViolation(index) 129
DataBreakPoint(address) 129
DisReadCheckMemory(address) 131
DisReadMemory(address) 131
DPUNoTranslation(address)129
Imm(i) .137
InitiateDebugIntHandler() 118
InitiateExceptionHandler()118
IsControlSpace(address) 129
IsDBreakHit(address) 129
Misaligned(address) 129
NumExtImms(address)118
NumWords(address)118
Pre-commit(n) .118
Prefetch(address) .136
PrefetchMemory(address)133
PurgeAddress(address) 136
PurgeIns() .136
PurgeSet(address) 136
ReadAccessViolation(address)129
ReadCheckControl(address)134
ReadCheckMemory(address)131
ReadControl(address)134
ReadMemory(address)131
Register(i) .125
SignExtend(i) .124
Sync() .136
UndefinedControlRegister(address) 129
WriteAccessViolation(address)129
WriteCheckControl(address)135
WriteCheckMemory(address)133
WriteControl(address, value) 135
WriteMemory(address, value)133
ZeroExtend(i) .124

G
goto . 17, 24, 314

H
Half word . 322
HANDLER_PC . 25
HighestPriority . 26
Host debug interface 107
host debug interface . 96
host target interface 96, 107
HTI . 87, 98

I
IBREAK_CONTROL 89, 99
IBREAK_LOWER 89, 99
IBREAK_UPPER . 89, 99
idle . 17
IF . 126-127, 132
illegal bundle . 29
illegal instruction exception 29
Imm . 137
Immediate . 137-138
immediate . 323
imml . 137
immr . 137
instruction . 322
instruction buffer . 49
instruction cache . 33, 50
INT . 123
Int3I . 314
Int3R . 314
INTCLR . 84
INTCLR0 . 85
INTCLR1 . 85
integer . 314
Integer arithmetic operators 121
Integer bitwise operators 122
Integer shift operators 122
integer variable . 119
interrupt . 25
interrupt clear register 84
interrupt controller . 80
interrupt mask clear register 82
Interrupt mask register 82
interrupt mask set register 82
interrupt pending register 81
interrupt set register . 84
interrupt test register . 84
interrupts . 27
INTMASK0 . 82
INTMASK1 . 82
INTMASKCLR . 82
INTMASKCLR0 . 83
INTMASKCLR1 . 83

ST231 Index

7645929 329/331

INTMASKSET .82
INTMASKSET0 .83
INTMASKSET1 .84
INTPENDING0 .81
INTPENDING1 .81
INTSET .84
INTSET0 .85
INTSET1 .86
INTTEST .84
INTTEST0 .84
INTTEST1 .84
ITLB .31, 33

L
ldb .29
ldh .29
ldw .29
Least recently used .322
legal bundle .29
LFSR .39
LIMIT .39
Link register .19
load 14, 16, 22, 24, 29, 46, 52, 55, 138, 314, 323
load/store .22
load/store unit 15, 29, 51
loads .54
long immediates .138
Long word .322
LR .128
LRU .322

M
MEM 128, 130, 132, 134
memory .314
Misaligned .322
Monadic operation .322
mov .24
mul .29
mullhu .39
multiply .22, 24
multiply operations .138
multiply units .15

N
NO_MAPPING .54
nops .53
NOT .123

O
Opcodes . 314
operation execution 25, 118
operation latencies . 22
operations . 322-323
OR . 123
or . 322

P
parallel . 322
PARTITION . 37
PC . 19, 128
peek . 87, 98, 107
peeked . 87, 98, 107
PERIPHERAL_BASE 76
pft . 53, 60
physical addresses . 32
PM_CNTi . 114
PM_CR . 17, 114
poke . 87, 98, 107
POLICY . 36
prefetch . 51
prgadd . 29, 59
prgins . 29, 59
prginspg . 29, 59
prgset . 29, 59
Program counter . 19
PROT_SUPER . 37
PROT_USER . 37
PROT_VIOLATION . 52
PSW 21, 30, 35, 54, 67, 88-89, 99, 128
psw . 19
pswclr . 29
pswset . 29

R
R . 128
R63 . 19
Register . 138
register . 322-323
Relational operators 123
REPEAT . 127
REPLACE . 39
RESETACK . 66
RESETREQUEST . 66
return . 19
return from interrupt . 27
rfi .21, 24, 27, 29
Round robin . 322

Index ST231

330/331 7645929

S
SAVED_PC .21, 128
SAVED_PSW .21, 128
SAVED_SAVED_PC 128
SAVED_SAVED_PSW128
sbrk .29
SCU .29
SCU_BASEx .47
SCU_LIMITx .47
SDI .61
SDI interface .62
SDI ports .61
SDI_CONTROL_PRIV64
SDIi_CONTROL . 63-64
SDIi_COUNT . 63-65
SDIi_DATA . 63-65
SDIi_READY . 63-64
SDIi_TIMEOUT . 63-65
select .322
semantics .138
Set .322
single-value functions124
SIZE .37
SLR .24
specific .314
SPECLOAD_MALIGNTRAP_EN30
speculation .323
speculative link register 24
speculative loads .52
ST231 .323
STATE1 register .71
statements .119, 125
STATUS bit .73
stb .29
STBus 53, 61, 67, 93, 104
STBUS_DC_ERROR .54
STBUS_IC_ERROR .51
STEP .127
sth .29
stop bit .118, 137
store . 14, 29, 138
streaming data interface61
stw .29
subtract .22
supervisor .21, 64
sync .29, 59
syncins .59
syscall .29

T
THROW . 26, 127, 132

TIMECONSTi . 74
TIMECONTROLi . 74
TIMECOUNTi . 74
TIMEDIVIDE . 73
TLB .15, 31, 35, 67
TLB_ASID . 40
TLB_CONTROL . 40
TLB_ENABLE . 35
TLB_ENTRY0 . 35
TLB_ENTRY1 . 38
TLB_ENTRY2 . 38
TLB_ENTRY3 . 38
TLB_INDEX . 35
TLB_NO_MAPPING . 52
TLB_REPLACE . 38
trap handler . 25
trap point . 25
traps . 25
types . 119

U
UNDEFINED . 125-126
usage restrictions . 22
user . 21, 64
USER_MODE . 21
UTLB . 31, 52

V
variables . 119
VERSION register . 72
virtual addresses . 32
VLIW . 13

W
Word . 323

XYZ
XOR . 123

ST231

7645929 Rev N 331/331

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Introduction
	Preface
	ST200 document identification and control
	ST200 documentation suite
	Conventions used in this guide
	Acknowledgements

	1 Overview
	1.1 VLIW overview
	1.2 ST231 overview
	Figure 1. Block diagram of the ST231

	1.3 Document overview

	2 Execution units
	2.1 Integer units (IU)
	2.2 Multiply units
	2.3 Load/store unit (LSU)
	2.3.1 Memory access
	2.3.2 Addressing modes
	2.3.3 Alignment
	2.3.4 Control registers
	2.3.5 Cache purging
	2.3.6 Dismissible loads

	2.4 Branch unit
	2.4.1 Idle mode macro
	2.4.2 syncins macro

	3 Architectural state
	3.1 Program counter (PC)
	3.2 Register file
	3.2.1 Link register

	3.3 Branch register file
	3.4 Program status word (PSW)
	3.4.1 Bit fields
	Table 1. PSW bit fields

	3.4.2 USER_MODE
	3.4.3 DEBUG_MODE
	3.4.4 PSW access

	3.5 Control registers

	4 Execution pipeline and latencies
	4.1 Execution pipeline
	4.2 Operation latencies
	4.3 Branch stalls
	4.4 Interlocks
	4.5 Additional notes
	4.5.1 Flushing the pipeline
	4.5.2 Restrictions on link register

	5 Traps (exceptions and interrupts)
	5.1 Trap mechanism
	5.2 Exception handling
	5.3 Saved execution state
	5.4 Interrupts
	5.5 Debug interrupt handling
	5.6 Exception types and priorities
	Table 2. EXCAUSENO bit fields
	Table 3. EXCAUSENO_EXCAUSENO values
	5.6.1 Illegal instruction definition

	5.7 Speculative load considerations
	5.7.1 Misaligned implementation

	6 Memory translation and protection
	6.1 TLB overview
	Table 4. TLB information

	6.2 Address space
	6.2.1 Physical addresses
	6.2.2 Virtual addresses

	6.3 Caches
	6.3.1 Instruction cache organization
	Figure 2. Instruction cache addressing

	6.3.2 Data cache organization
	Figure 3. Data cache addressing

	6.4 Control registers
	6.4.1 PSW
	6.4.2 TLB_INDEX
	Table 5. TLB_INDEX bit fields

	6.4.3 TLB_ENTRY0
	Table 6. TLB_ENTRY0 bit fields
	Table 7. TLB_ENTRY0_POLICY values
	Table 8. TLB_ENTRY0_SIZE values
	Table 9. TLB_ENTRY0_PARTITION values
	Table 10. TLB_PROT values

	6.4.4 TLB_ENTRY1
	Table 11. TLB_ENTRY1 bit fields

	6.4.5 TLB_ENTRY2
	Table 12. TLB_ENTRY2 bit fields

	6.4.6 TLB_ENTRY3
	Table 13. TLB_ENTRY3 bit fields

	6.4.7 TLB_REPLACE
	Table 14. TLB_REPLACE bit fields
	Figure 4. REPLACE register

	6.4.8 TLB_CONTROL
	Table 15. TLB_CONTROL bit fields

	6.4.9 TLB_ASID
	Table 16. TLB_ASID bit fields
	Table 17. Ensuring coherency after UTLB updates

	6.4.10 TLB_EXCAUSE
	Table 18. TLB_EXCAUSE_CAUSE values
	Table 19. TLB_EXCAUSE bit fields

	6.5 TLB description
	6.5.1 Reset
	6.5.2 UTLB arbitration
	6.5.3 Exceptions
	6.5.4 Instruction accesses
	Figure 5. Instruction access

	6.5.5 Data accesses
	Figure 6. Data access

	6.6 Speculative control unit (SCU)
	Figure 7. ST231 instruction and data cache fetch
	6.6.1 SCU_BASEx
	Table 20. SCU_BASE0 bit fields

	6.6.2 SCU_LIMITx
	Table 21. SCU_LIMIT0 bit fields

	6.6.3 Updates to SCU registers

	7 Memory subsystem
	7.1 Memory subsystem
	Figure 8. Memory subsystem block diagram

	7.2 I-side memory subsystem
	7.2.1 Instruction buffer
	7.2.2 Instruction cache
	7.2.3 I-side bus error

	7.3 D-side memory subsystem
	7.3.1 Load/store unit
	7.3.2 Data cache partitioning
	7.3.3 Speculative loads
	7.3.4 Cached loads and stores
	7.3.5 Uncached load and stores
	7.3.6 Prefetching data
	7.3.7 Purging data caches
	7.3.8 D-side synchronization
	7.3.9 D-side bus errors
	7.3.10 Operations
	Table 22. Memory operations

	7.3.11 Cache policy
	Table 23. Cache policy

	7.3.12 Write buffer

	7.4 Core memory controller (CMC)
	7.5 Additional notes
	7.5.1 Memory ordering and synchronization
	7.5.2 Coherency between I-side and D-side
	7.5.3 Reset state
	7.5.4 Cached data in uncached region
	7.5.5 Prefetch performance

	8 Streaming data interface
	Figure 9. SDI overview
	8.1 Functional description
	8.1.1 Data width

	8.2 Communication channel
	8.2.1 Timeouts

	8.3 Registers
	8.3.1 Input channel memory mapping
	Table 24. SDI0_CONTROL bit fields

	8.3.2 Output channel memory mapping
	8.3.3 Protection
	Table 25. SDI_CONTROL_PRIV values

	8.4 Interrupts, exceptions and restarts
	8.4.1 Interrupts
	8.4.2 SDI exceptions
	8.4.3 Restart (soft reset)
	Figure 10. Soft reset control structure

	9 Control registers
	9.1 Access operations
	9.2 Exceptions
	9.3 Control register addresses
	Table 26. Control registers - BASE: CREG_BASE

	9.4 Data cache replacement state register
	Table 27. STATE1 bit fields

	9.5 Version register
	Table 28. VERSION bit fields

	10 Timers
	10.1 Operation
	10.1.1 Timedividei
	Table 29. TIMEDEVIDE bit fields

	10.1.2 TIMECOUNTi
	Table 30. TIMECOUNTi bit fields

	10.1.3 TIMECONSTi
	Table 31. TIMECONSTi bit fields

	10.1.4 TIMECONTROLi
	Table 32. TIMECONTROLi bit fields

	10.2 Timer interrupts
	10.3 Programming the timers

	11 Peripheral addresses
	11.1 Access to peripheral registers
	11.2 Peripheral addresses
	11.2.1 Interrupt controller and timer registers
	Table 33. Interrupt controller - BASE: INTCR_BASE

	11.2.2 DSU registers
	Table 34. Debug support unit - BASE: DSU_BASE

	11.2.3 DSU ROM

	12 Interrupt controller
	12.1 Architecture
	Figure 11. Interrupt controller

	12.2 Operation
	12.2.1 Test register
	12.2.2 Master interrupt input

	12.3 Interrupt registers
	12.3.1 Interrupt pending register (INTPENDING)
	Table 35. INTPENDING0 bit fields
	Table 36. INTPENDING1 bit fields

	12.3.2 Interrupt mask register (INTMASK)
	Table 37. INTMASK0 bit fields
	Table 38. INTMASK1 bit fields

	12.3.3 Interrupt mask set and clear registers (INTMASKSET and INTMASKCLR)
	Table 39. Action of interrupt mask set and clear registers
	Table 40. INTMASKCLR0 bit fields
	Table 41. INTMASKCLR1 bit fields
	Table 42. INTMASKSET0 bit fields
	Table 43. INTMASKSET1 bit fields

	12.3.4 Interrupt test register (INTTEST)
	Table 44. INTTEST0 bit fields
	Table 45. INTTEST1 bit fields

	12.3.5 Interrupt set and clear registers (INTSET and INTCLR)
	Table 46. Action of interrupt set and clear registers
	Table 47. INTCLR0 bit fields
	Table 48. INTCLR1 bit fields
	Table 49. INTSET0 bit fields
	Table 50. INTSET1 bit fields

	13 Debugging support (TAPLink)
	13.1 Core
	13.1.1 Debug interrupts
	13.1.2 Hardware breakpoint support
	Table 51. DBREAK_CONTROL bit fields
	Table 52. IBREAK_CONTROL bit fields

	13.2 Debug support unit
	13.2.1 Architecture
	Figure 12. DSU architecture

	13.2.2 Shared register bank
	Table 53. DSR_REG values

	13.2.3 DSU control registers
	Table 54. DSR1 bit fields
	Table 55. DSR2 bit fields

	13.3 Debug ROM
	13.3.1 Debug initialization loop
	13.3.2 Default debug handler
	Table 56. Command register usage
	Table 57. DSU command registers

	13.4 Host debug interface
	Figure 13. DSU overview
	13.4.1 Message format
	Figure 14. DSU commands
	Figure 15. Header bytes

	13.4.2 Operation

	14 Debugging support (JTAG)
	14.1 Core
	14.1.1 Debug interrupts
	14.1.2 Hardware breakpoint support
	Table 58. DBREAK_CONTROL bit fields
	Table 59. IBREAK_CONTROL bit fields

	14.2 Debug support unit
	14.2.1 Architecture
	Figure 16. DSU architecture

	14.2.2 Shared register bank
	Table 60. DSR_REG values

	14.2.3 DSU control registers
	Table 61. DSR1 bit fields
	Table 62. DSR2 bit fields

	14.3 Debug ROM
	14.3.1 Debug initialization loop
	14.3.2 Default debug handler
	Table 63. Command register usage
	Table 64. DSU command registers

	14.3.3 User-defined debug handler

	14.4 Host debug interface
	Figure 17. DSU overview
	14.4.1 Protocol and flow control
	14.4.2 Command Format
	Table 65. JTAG commands

	14.4.3 Handling events
	Table 66. Status of events and DSR1 bit fields

	15 Performance monitoring
	15.1 Events
	Table 67. PM_EVENT values

	15.2 Access to registers
	15.3 Control register (PM_CR)
	Table 68. PM_CR bit fields

	15.4 Event counters (PM_CNTi)
	15.5 Clock counter (PM_PCLK)
	15.6 Recording events

	16 Execution model
	16.1 Bundle fetch, decode, and execute
	Figure 18. Execution model

	16.2 Functions
	16.2.1 Bundle decode
	Table 69. Bundle decode functions

	16.2.2 Operation execution
	Table 70. Operation execution functions

	16.2.3 Exceptional cases
	Table 71. Operation execution functions

	17 Specification notation
	17.1 Variables and types
	17.1.1 Integer
	17.1.2 Boolean
	17.1.3 Bit-fields
	17.1.4 Arrays

	17.2 Expressions
	17.2.1 Integer arithmetic operators
	Table 72. Standard dyadic operators
	Table 73. Standard monadic operators

	17.2.2 Integer shift operators
	Table 74. Shift operators

	17.2.3 Integer bitwise operators
	Table 75. Bitwise operators

	17.2.4 Relational operators
	Table 76. Relational operators

	17.2.5 Boolean operators
	Table 77. Boolean operators

	17.2.6 Single-value functions
	Table 78. Arithmetic functions
	Table 79. Integer conversion operators
	Table 80. Conversion operators from integers to bit-fields

	17.3 Statements
	17.3.1 Undefined behavior
	17.3.2 Assignment
	17.3.3 Conditional
	17.3.4 Repetition
	17.3.5 Exceptions
	17.3.6 Procedures

	17.4 Architectural state
	Table 81. Scalar architectural state
	Table 82. Array architectural state

	17.5 Memory and control registers
	17.5.1 Support functions
	Table 83. Support functions

	17.5.2 Memory model
	Table 84. Memory read functions
	Table 85. Memory prefetch procedure
	Table 86. Memory write procedures

	17.5.3 Control register model
	Table 87. Control register read functions
	Table 88. Control registers write procedures

	17.5.4 Cache model
	Table 89. Procedures to model cache operations

	17.5.5 Architectural state model
	Table 90. Procedures to model changing architectural state

	18 Instruction set
	18.1 Bundle encoding
	Figure 19. Syllable
	18.1.1 Extended immediates
	Table 91. Extended immediate functions

	18.1.2 Encoding restrictions

	18.2 Operation specifications
	18.3 Example operations
	18.3.1 add Immediate
	Figure 20. Example operation
	add Immediate

	18.4 Macros
	Table 92. Macros

	18.5 Operations
	add Register
	add Immediate
	addcg
	and Register
	and Immediate
	andc Register
	andc Immediate
	andl Register - Register
	andl Branch Register - Register
	andl Register - Immediate
	andl Branch Register - Immediate
	br
	break
	brf
	bswap
	call Immediate
	call Link Register
	clz
	cmpeq Register - Register
	cmpeq Branch Register - Register
	cmpeq Register - Immediate
	cmpeq Branch Register - Immediate
	cmpge Register - Register
	cmpge Branch Register - Register
	cmpge Register - Immediate
	cmpge Branch Register - Immediate
	cmpgeu Register - Register
	cmpgeu Branch Register - Register
	cmpgeu Register - Immediate
	cmpgeu Branch Register - Immediate
	cmpgt Register - Register
	cmpgt Branch Register - Register
	cmpgt Register - Immediate
	cmpgt Branch Register - Immediate
	cmpgtu Register - Register
	cmpgtu Branch Register - Register
	cmpgtu Register - Immediate
	cmpgtu Branch Register - Immediate
	cmple Register - Register
	cmple Branch Register - Register
	cmple Register - Immediate
	cmple Branch Register - Immediate
	cmpleu Register - Register
	cmpleu Branch Register - Register
	cmpleu Register - Immediate
	cmpleu Branch Register - Immediate
	cmplt Register - Register
	cmplt Branch Register - Register
	cmplt Register - Immediate
	cmplt Branch Register - Immediate
	cmpltu Register - Register
	cmpltu Branch Register - Register
	cmpltu Register - Immediate
	cmpltu Branch Register - Immediate
	cmpne Register - Register
	cmpne Branch Register - Register
	cmpne Register - Immediate
	cmpne Branch Register - Immediate
	divs
	goto Immediate
	goto Link Register
	imml
	immr
	ldb
	ldb.d
	ldbu
	ldbu.d
	ldh
	ldh.d
	ldhu
	ldhu.d
	ldw
	ldw.d
	max Register
	max Immediate
	maxu Register
	maxu Immediate
	min Register
	min Immediate
	minu Register
	minu Immediate
	mulh Register
	mulh Immediate
	mulhh Register
	mulhh Immediate
	mulhhs Register
	mulhhs Immediate
	mulhhu Register
	mulhhu Immediate
	mulhs Register
	mulhs Immediate
	mulhu Register
	mulhu Immediate
	mull Register
	mull Immediate
	mullh Register
	mullh Immediate
	mullhu Register
	mullhu Immediate
	mullhus Register
	mullhus Immediate
	mulll Register
	mulll Immediate
	mulllu Register
	mulllu Immediate
	mullu Register
	mullu Immediate
	mul32 Register
	mul32 Immediate
	mul64h Register
	mul64h Immediate
	mul64hu Register
	mul64hu Immediate
	mulfrac Register
	mulfrac Immediate
	nandl Register - Register
	nandl Branch Register - Register
	nandl Register - Immediate
	nandl Branch Register - Immediate
	norl Register - Register
	norl Branch Register - Register
	norl Register - Immediate
	norl Branch Register - Immediate
	or Register
	or Immediate
	orc Register
	orc Immediate
	orl Register - Register
	orl Branch Register - Register
	orl Register - Immediate
	orl Branch Register - Immediate
	pft
	prgadd
	prgins
	prginspg
	prgset
	pswclr
	pswset
	rfi
	sbrk
	sh1add Register
	sh1add Immediate
	sh2add Register
	sh2add Immediate
	sh3add Register
	sh3add Immediate
	sh4add Register
	sh4add Immediate
	shl Register
	shl Immediate
	shr Register
	shr Immediate
	shru Register
	shru Immediate
	slct Register
	slct Immediate
	slctf Register
	slctf Immediate
	stb
	sth
	stw
	sub Register
	sub Immediate
	sxtb
	sxth
	sync
	syscall
	xor Register
	xor Immediate
	zxth

	Appendix A Instruction encoding
	A.1 Reserved bits
	A.2 Fields
	Table 93. Operand fields

	A.3 Formats
	Table 94. Formats

	A.4 Opcodes
	Table 95. Instruction encoding

	Appendix B STBus endian behavior
	B.1 Endianness of bytes and half-words within a word based memory
	B.2 Endianness of 64-bit accesses
	B.3 System requirements

	Glossary
	List of instructions
	Revision history
	Table 96. Document revision history

	Index

